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Chapter 1

Introduction

1.1 Structural Equation Models

Structural equation modelling with latent variables is a multivariate statistical
technique. It has been very prominent in the social sciences for many decades
to the effect that a great number of studies has been published applying this
technique, f.i. in the fields of housing and earnings, scholastic achievement and
racial discrimination in employment, among many other fields (Jöreskog,
1982, p. 81). Traditionally those models are estimated mainly with the
Maximum Likelihood (ML) approach. Recently, structural equation models
with latent variables are more and more frequently estimated with the Partial
Least Squares (PLS) approach. These studies can be found especially in the
field of marketing and management. A list of examples is given in Appendix
A.1

Structural equation models with latent variables play such an important
role for several reasons (Haenlein/Kaplan, 2004, p. 283 et seqq.): firstly,
structural equation modelling allows to model complex dependencies simultan-
eously and offers great flexibility. Secondly, causalities between unobservable
variables can be modelled. All variables that are not directly corresponding
to anything observable / measurable must be treated as unobservable. They
are called either latent variables or constructs. Such latent variables get op-
erationalised by measurable variables, which are named indicators, manifest

1In section 2.3 I refer more in detail to the respective table.

1



1.1 Structural Equation Models 2

variables or items. Examples for latent variables are satisfaction, service or
product quality, perceived price, or image of a soccer team. Structural equation
models allow the estimation of causalities between latent variables. Thirdly,
in this technique measurement errors can be modelled. A measurement error
occurs when an item is not perfectly measuring what it is supposed to measure,
but it is influenced by other components. These extra influences can occur in
particular in the context of psychological variables.

The purpose of structural equation modelling with latent variables might be
the examination of the dependencies between latent variables. But, it can as
well be the examination of the individual impact of manifest driver variables,
i.e. the identification of the impact of a specific success factor on an outcome
variable. For the latter purpose the research interest extends to the role of the
individual indicators.

The relations between all dependent and all independent latent variables
build the so-called inner model or structural model. In the field of covariance-
based structural equation modelling, to which the ML approach appertains,
the name “structural model” is used whereas in the field of PLS especially the
name “inner model” is used. In this thesis I do not distinguish and use both ex-
pressions equivalently. The inner model shows the causal relations between the
not directly measurable constructs. The latent variables get operationalised
by measurable variables, i.e. by the indicators. This is done individually for
each construct with a so-called measurement model, also named outer model.
The latter name is only found in PLS studies. The expression “measurement
model” can be found especially in ML studies, but also in the field of PLS. I
will call the relationship between a latent variable and its indicators mainly
“measurement model”, but use in the context of PLS (section 2.2.2) the ex-
pression “outer model” equivalently.
In this section the notation of structural equation models will be illustrated
only briefly. A detailed explanation of the notation will be given for each indi-
vidual approach in the respective section, because the notations differ slightly.

Traditionally the inner model is

η = Bη + Γξ + ζ,
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where η is a vector with all latent endogenous variables. The matrix B consists
of the coefficients which connect all latent endogenous variables. Certainly,
it has only zeros on its main diagonal - otherwise a variable would explain
itself, i.e. it would function as dependent and independent variable at the
same time. Besides, B does not necessarily need to be a lower triangular
matrix because models with interdependencies can be estimated, for example
with the ML approach. But, in this thesis exclusively recursive models are
regarded (i.e. models where the causality strictly flows in one direction) - only
this kind of models can be estimated with PLS (Wold, 1982, p. 40).2 ξ is
the latent exogenous variable vector. The matrix Γ contains the coefficients
for the effects of the latent exogenous on the latent endogenous variables. The
vector ζ consists of the error terms.

There are two main different ways of operationalising a latent variable:
either in a reflective or in a formative measurement model.3 The following
paragraphs are mainly based on Bollen/Lennox (1991, p. 305 et seqq.).

Reflective indicators (also named effect indicators) “reflect” a latent vari-
able. The causality goes from the latent variable to its indicators. A main
characteristic is that a change in the latent variables causes a change in all
its reflective indicators simultaneously. Consequently the reflective indicators
which operationalise one specific latent variable need to show high (positive)
correlations. Basically, reflective indicators are interchangeable. A single re-
flective measurement model is

y = Λη + ε. (1.1)

The vector y consists of all indicators that operationalise the specific latent
variable η. Consequently the parameter vector Λ and the disturbance term

2Wold (1982) uses the term “hierarchic structure” which implies a recursive model.
Hui (1982) extended PLS to non-recursive models. But, the common PLS algorithm and
standard software programs do not have this algorithm implemented and work only for
recursive models (Barroso et al., 2010, 432).

3Another way to connect the indicators to a latent variable is the MIMIC way (multiple
effect indicators for multiple causes), where a latent variable has both, cause and effect
indicators (see further Tenenhaus et al., 2005, p. 161 et seqq.; Bollen, 1989, p. 331;
and concerning applications see Woods et al., 2009; Winklhofer/Diamantopoulos,
2002; Stapleton, 1978).



1.1 Structural Equation Models 4

vector ε, which describes the measurement errors, have the same length. An
established example for a reflective operationalised construct is an ability,
f.i. verbal or mathematical ability (Bollen/Lennox, 1991, p. 306;
MacCallum/Browne, 1993, p. 533). The existing ability influences the
performance on a test, i.e. influences the performance with respect to individ-
ual questions. Usually an endogenous latent variable (η) gets operationalised
with a reflective measurement model (Cassel et al., 1999, p. 438; Vilares
et al., 2010, p. 292). But this is not a principle. Indeed, there is a very
long list of published studies using solely reflective measurement models for
all exogenous and endogenous latent variables.4 Referring to equation 1.1 η is
then substituted by ξ.

Formative indicators (also named cause indicators) “form” a latent variable,
in other words they cause it.5 In this regard Rubin (1986, p. 962) stated the
motto “no causation without manipulation”. He meant that an indicator can
only be regarded to be formative if the researcher has the ability to vary it ex-
ogenously. However, this motto is not strictly applicable in practice. Therefore,
it was anew defined that physical manipulation is not required, “but rather
that we be able, as observational analysts, to conceive of the conditions that
would follow from a hypothetical (but perhaps physically impossible) inter-
vention” (Morgan/Winship, 2007, p. 279).6 A formative operationalised
latent variable is composed of the indicators. Thus, in a formative measure-
ment model all indicators that cause the respective latent variable must be
included. Otherwise, with omitting an indicator a part of the formative meas-
urement model would be missing and as a consequence the meaning of the
latent variable would change (Bollen/Lennox, 1991, p. 308). Formative
indicators do not need to show high correlations. Actually, a high correlation

4Examples are Birkinshaw et al. (1998), Hsu/Wang (2008) and Völckner et al.
(2010).

5A hypothetical construct with only causal indicators is not a latent variable in the
traditional sense. Because, traditionally a latent variable is a hypothetical construct op-
erationalised only with multiple effect indicators (this arose from the literature of factor
analysis and covariance structure modelling). But, in a formative measurement model the
construct is a linear combination of its manifest indicators plus an error term and thus it is
a “composite variable” (MacCallum/Browne, 1993, p.534).

6A good review on this is given by Bollen (2013, p. 17 et seq.).
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can even be problematic because the separation of the individual indicator im-
pacts becomes difficult (Bollen/Lennox, 1991, p. 307). This characteristic
is opposed to reflective indicators.7 A formative measurement model is

ξ = πx + δ (1.2)

(in the equation ξ can be substituted by η, see further below). ξ is a spe-
cific latent variable which is determined by several indicators. The latter are
expressed by the vector x, which has the same length as the corresponding
coefficient vector π. Besides, the construct consists of a disturbance term
δ. The causal indicators x enter error free; they do not include an error
term. Hence, only reflective indicators represent an error-afflicted measure-
ment (MacCallum/Browne, 1993, p. 534; see equation 1.1).
Diamantopoulos et al. (2007, p. 15) point out (referring to
Jarvis et al., 2003, p. 202) that the error term δ “represents a surplus
meaning of the construct which is not captured by the set of formative indi-
cators included in the model specification”. Formative measurement models
often make sense for exogenous latent variables (Cassel et al., 1999, p. 438).
But, since this is not a principle ξ could be substituted by η referring to equa-
tion 1.2. An established example for a formative operationalised construct is
socio-economic status. Its indicators are education, income and occupational
prestige. A job loss affects the socio-economic status in a negative way, but
a decreased socio-economic status does not imply a job loss. Besides, the
indicators do not necessarily have to be correlated (Chin, 1998a, p. ix).

There exist no unique overall rules regarding the way of operationalising a
latent variable. Each construct needs to be analysed concerning its meaning.
For example the construct “satisfaction” of hotel guests can be operationlised
in a formative or reflective way depending on its meaning. If satisfaction and
its components are regarded then the different components represent forma-
tive indicators (f.i. satisfaction with cleanliness). But, if the focus is on how
satisfaction expresses itself then those expressions (f.i. the recommendation of

7There exist cases where indicators show (very) low correlations but still capture the
same construct. An example for that phenomenon given from Fornell/Bookstein (1982,
p. 442) is the marketing mix, which is a result of its indicators (plus a disturbance term).
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the hotel) are reflective indicators (Albers/Hildebrandt, 2006, p. 11).8

In the literature a so-called total effect is mentioned repeatedly. It is the
overall effect an exogenous variable has on an endogenous variable and is con-
sequently defined as the sum of the direct and indirect effects. In the context
of structural equation modelling the total effect often refers to the structural
model (Bollen, 1987; Fornell, 1982; Sobel, 1987, among others). In figure
1.1 I illustrate an example for an inner model of a structural equation model,
i.e. a structural model. According to the model there are several direct effects
(ξ1 on η1, ξ1 on η2 and η1 on η2) and one indirect effect (ξ1 on η2 via η1 which
is γ1 times γ3). Hence, the total impact ξ1 has on η2 is γ2 + γ1 · γ3.

1ξ

1η

2η

2γ

3γ
1γ

2ζ

ζ1

Figure 1.1: Example of a structural model.

In my study I apply total effects, but extend the perspective and include the
measurement models. As I outlined before the impact a manifest driver vari-
able has on a certain outcome may be of interest. Figure 1.2 shows the same
structural model as figure 1.1, but is complemented by the indicators. ξ1 is
operationalised in a formative way and both η variables are operationalised
in a reflective way. According to this model, the total effect x1 has on y4 is
π1 · γ2 · λ4 + π1 · γ1 · γ3 · λ4.

8For further information regarding the operationalisation see among others For-
nell/Bookstein (1982), Jarvis et al. (2003) and Diamantopoulos et al. (2007).
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1x

2x

3x

4x

5x

1ξ

1η

2η
4ε

5ε

6ε

π1

2γ

3γ

4λ

π 2

π 3

π 4

π 5
5λ

6λ1γ

1δ

2ζ

1ζ

1y

2y

3y

1λ

λ2
λ3

1ε

2ε

3ε

4y

5y

6y

Figure 1.2: Example of a structural equation model.

1.2 Research Motivation

Researchers who start to get familiar with structural estimation modelling
techniques are confronted with non-trivial estimation approaches. Further the
literature reveals manifold inconsistencies, which can cause confusion. In the
following I will give an overview over these inconsistencies and point out some
sources.

In the PLS literature it is repeatedly stated that models which incorpor-
ate formative indicators cannot get estimated with ML, and consequently to
estimate such models PLS needs to be favoured (Hsu et al., 2006, p. 369,
among others). Further, the statement appears that PLS ought to be preferred
over ML if the data is non-normally distributed (Fornell, 1982; Balzano/
Trinchera, 2011, p. 56, among others). The same statement appears with
respect to small sample sizes, stating that “several hundreds of cases” are
necessary to reason a ML application (Tenenhaus et al., 2005, p. 160).
Moreover, PLS is described as powerful tool, good for an early research stage,
good to handle a large number of variables, good in terms of statistical power
and easy to apply since its convergence is almost sure (Gefen et al., 2000;
Venaik et al., 2005, p. 665; Tenenhaus, 2008, p. 872; Henseler et al.,
2009, p. 288 et seq.; Balzano/Trinchera, 2011, p. 56). Concerning the de-
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tection of significant path coefficients and despite the fact of high power, it is
stated that “PLS produces a conservative test of the substantive relationships”
(Garnefeld et al., 2013, p. 26). In summary, ML is frequently described
as very restricted approach, while in contrast PLS is frequently described as
quite restriction-free. Hair et al. (2011, p. 139, referring to Diamantopou-
los/Siguaw, 2000; Lohmöller, 1989; Reinartz et al., 2009; Ringle
et al., 2009; and Wold, 1982) point this out as follows: “The CB-SEMmodel
estimation requires a set of assumptions to be fulfilled, including the multivari-
ate normality of data, minimum sample size, and so forth [...]. But if CB-SEM
assumptions cannot be met, or the research objective is prediction rather than
confirmation of structural relationships, then variance-based PLS-SEM is the
preferred method” (CB-SEM stands for covariance-based structural equation
modelling). Besides the stated PLS advantage of few restrictions, PLS is de-
scribed as a match for ML in terms of estimation quality, such as by Götz
et al. (2010, p. 691): “As an advantage, the PLS method demands signifi-
cantly fewer requirements compared to that of covariance structure analyses,
but nevertheless delivers consistent estimation results.”

Other studies do not conform with these statements: Firstly, there are
studies which apply the ML approach and whose specified model incorporates
at least one formative measurement model, see f.i. Ringle et al. (2009).
Consequently, the statement that a model which applies formative indicators
cannot get estimated with ML is not (per se) correct. Secondly, according to
Chou/Bentler (1995, p. 52 et seq.) and Dijkstra (2010, p. 24) among
others, estimation accuracy of the coefficients is unaffected by non-normal
data. In this regard Dijkstra (2010, p. 29) encapsulates: “It has been stated
and is often repeated, seemingly thoughtlessly, that LISREL9 is based on nor-
mality, in the sense that its use requires the data to be normally distributed.
This is a prejudice that ought to be cancelled.” Thirdly, Boomsma (1982,
p. 156) f.i. suggests that with respect to accuracy the sample size shall not be
smaller than 100 and Boomsma/Hoogland (2001, p. 2)10 say that from 200

9“LISREL” is the name of a statistical software and is often used as a synonym for
covariance-based structural equation modelling, see further the next section 2.1.1.

10The authors refer to the doctoral dissertation of Boomsma (1983), to which I did not
gain access.
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observations onwards hardly any convergence problems occur. These state-
ments controvert the statement that “several hundreds” of observations are
necessary. Fourthly, it is remarkable that the studies which ascertain high ac-
tual power for PLS did not investigate the test size, i.e. the frequency a type I
error gets committed (Chin et al., 2003; Reinartz et al., 2009, among oth-
ers). Consequently, not only the stated advantage of high PLS power becomes
questionable,11 but also the statement that PLS produces a conservative test
can hardly be confirmed. The study of Goodhue et al. (2007, Appendix F)
implies rather an exceeding of the respective significance level than a conser-
vative test statistic, because in their study on the 5%-level PLS actual size lies
between 5% and 7%. Fifthly, according to some studies (see f.i. Areskoug,
1982; Chou/Bentler, 1995) PLS estimators reveal systematic biases, while
ML yields in general accurate estimates.

After all, some of the frequently stated ML and PLS requirements, pros
and cons or implications appear to be incorrect. Nevertheless, they are to
the present established in the literature. Therefore, there is a research need
to contribute to the resolving of the appearing “prejudices” and confusions
concerning ML and PLS performance and requirements.

Moreover, the studies which assessed ML and PLS performance show dif-
ferent limitations. Several studies assessed only one of the two approaches,
i.e. solely the ML approach (Boomsma, 1982; Chou/Bentler, 1995, among
others) or solely the PLS approach (Chin et al., 2003; Henseler, 2010,
among others). Many ML studies or ML and PLS comparisons appear which
applied solely reflective measurement models (f.i. Chin et al., 2003;
Reinartz et al., 2009). Thus, there is a research need concerning ML
and PLS comparisons applying a model which incorporates formative indica-
tors. With respect to actual power and actual size I mentioned before, that
most PLS studies assessed solely actual power without determining the fre-
quency a type I error gets committed (Chin et al., 2003; Reinartz et al.,
2009, among others). Monte Carlo simulations appear as powerful tool to as-
sess estimator properties, but the number of iterations may not be too low
to obtain reliable results. Nevertheless, studies appear which applied a low

11High power can be obtained by simply rejecting a formulated null hypothesis (too) often.
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number of Monte Carlo iterations, such as 100 (f.i. Chou/Bentler, 1995
and Chin/Newsted, 1999), so that the results may be driven by simulation
error.

This thesis contributes to the literature in the following ways:
Firstly, I will introduce in a comprehensible way the two estimation approaches
ML and PLS. To contribute to the question how ML and PLS perform under
different circumstances, I will summarise simulation study results, referring to
estimator consistency, bias, as well as to other characteristics, such as con-
vergence problems. Further, I will refer to the performance of the test for
significance of the path coefficients, i.e. mainly actual power (only few results
exist concerning the test size).

Secondly, to this non-trivial methods and complex research field I will con-
tribute an approach, which is striking comprehensible. I introduce it as the
so-called Ordinary Least Squares (OLS) approach, because it is exclusively
based on OLS regressions and mathematical computations, emphasising its
simplicity. To my best knowledge it does not yet get applied in structural
equation modelling.

Thirdly, I will contribute a Monte Carlo study and thereby avoid the above
described drawbacks. That is, my study is not restricted to a single approach,
but constitutes a comparison of the ML, PLS and OLS approaches. My model
will explicitly incorporate formative measurement models. Regarding the num-
ber of Monte Carlo iterations I will apply a very large number, i.e. 10,000 it-
erations per case, to gather reliable results. I will test the path coefficients on
their significance and determine for all three approaches beside actual power
explicitly the actual size of each test statistic. Concerning the “prejudices”
and confusions, which I described above, I purpose to present systematic in-
formation with my Monte Carlo study. To do so, I will assess accuracy for all
three approaches and cover many different cases: I will apply non-normal data,
vary the proportions of unexplained variances incorporated in the model, vary
the correlations between formative indicators as well as apply different sample
sizes and number of indicators. My extensive Monte Carlo study is supposed
to be transparent and replicable, including a systematic and reasonable pres-
entation of the results.
To perform the simulation I will use the statistical software R (R Core Team,
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2014). For the PLS estimation I will apply the plspm package (Sanchez
et al., 2013) and for the ML estimation the sem package (Fox et al.,
2013).

To accomplish the described purpose, the thesis is structured in the follow-
ing way:
Firstly, I introduce the ML approach (section 2.1) and the PLS approach (sec-
tion 2.2) and thereafter summarise available informations on both approaches
mainly gained from simulation studies (section 2.3). In the subsequent section
(2.4) I introduce the OLS approach. Concerning the presentation of the ML,
PLS and OLS approach (in 2.1, 2.2 and 2.4), respectively, I firstly introduce
the reader to the approach, secondly describe the estimation procedure, and
thirdly elucidate the issue of identification. Although identification needs to
be given for estimation I explain the estimation procedure prior to the identi-
fication, because I assume it is easier to comprehend the issue of identification
when the estimation procedure is already known.
With respect to my Monte Carlo study (chapter 3) I describe in detail the sim-
ulation study set-up (section 3.1) and the analysis (section 3.2). Thereafter I
present the results (section 3.3) by firstly describing them
(sections 3.3.1 and 3.3.2) and subsequently drawing conclusions from them
(section 3.3.3).
This thesis closes with a brief critical appraisal (chapter 4).



Chapter 2

Methodologies

2.1 Maximum Likelihood Approach

2.1.1 Introduction

The ML approach for the estimation of structural equation models is a so-called
covariance-based methodology. Often “LISREL” (Linear Structural Relation-
ships) is used as a synonym, though LISREL is the name of a very famous and
widespread statistical software used in structural equation modelling. The first
version of LISREL was presented by Karl Jöreskog in 1970 at a conference
on Structural Equation Models in the Social Sciences (Madison, Wisconsin;
Sörbom, 2001, p. 5). Today the software offers different estimation methods
such as ML, GLS (Generalised Least Squares), WLS (Weighted Least Squares)
and ULS (Unweighted Least Squares) among others (Mels, 2006). All those
methods are covariance-based approaches. All covariance-based methods work
with the sample variance-covariance matrix and all its information. Therefore,
the ML approach is a so-called “full information approach” (Huber et al.,
2007, p. 9). The individual observations do not directly get applied within
the estimation procedure, but enter the estimation of the variance-covariance
matrix. In this latter respect the sample size matters - it does not matter for
the identification of a model.
The ML estimation results are model parameter estimations. With these par-
ameter estimates fitted values for the latent variables can be computed. This
proceeding is reverse to PLS, where so-called scores for the latent variables get

12
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estimated first.

Traditionally, in the context of covariance-based structural equation mod-
elling the equations are noted like the following (sources are mainly Jöreskog,
1982 and Bollen, 1989, p. 319 et seqq.; the notation is analogous to section
1.1). The inner model or structural model is

η = Bη + Γξ + ζ, (2.1)

where η is a m x 1 vector with all latent endogenous variables. The m xm

matrix B consists of all coefficients between one latent endogenous variable and
another one. Its main diagonal consists only of zeros. Furthermore, I regard
only cases where B is a lower triangular matrix to ensure a recursive model,
even if models with interdependencies can get estimated, too.12 ξ is the latent
exogenous variable vector with length n. The matrix Γ has the dimensions
m xn and shows the coefficients for the effects of the latent exogenous on the
latent endogenous variables. The disturbances vector ζ has length m and
consists of all influences that are not included in the equation. The expected
value of each error term is zero (E(ζ) = 0). It is supposed to be uncorrelated
with ξ (cov(ξi, ζi) = 0).13 To ensure a recursive model I expect the disturbances
to be uncorrelated (Rigdon, 1995, p. 362). The (reflective) measurement
models are

y = Λyη + ε (2.2)

and

x = Λxξ + δ. (2.3)

The indicators, i.e. the observed variables, are the vectors y and x with length
p and q, respectively.14 The Λ matrices (with dimensions p xm or q xn, re-
spectively) show the coefficients for the relations between the respective latent

12As I mentioned before only recursive models can be estimated with PLS (Wold, 1982,
p. 40).

13In case this assumption is not satisfied, according to Bollen (2013, p. 3) the respective
latent exogenous variable should be specified as an endogenous construct, because it is not
exogenous.

14Only reflective indicators are given here. But the ML approach works as well with
formative indicators. I will get to this in the next paragraph.
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variables (η or ξ) and the respective indicators (y or x) according to the in-
dividual index. The error terms ε (p x 1) and δ (q x 1) are assumed to have
expected values of zero (E(ε) = 0 and E(δ) = 0). In the context of covariance-
based structural equation modelling the literature shows mainly specifications
with only reflective measurement models, according to equation 2.2 and 2.3.
However, formative measurement models can get applied, too. Bollen (1989,
p. 321) modelled cause indicators as follows: Instead of specifying one forma-
tive measurement model he specified each indicator in a reflective way, each
with a single latent variable. Then he restricted all individual coefficients to a
value of one and set the error variances to zero. Hence, applying this “dodge”
each of the respective indicators is set equal to one latent variable

x = ξ. (2.4)

This enables the estimation and is further explained in section 2.1.2 (see figure
2.1 page 16). With η being still operationalised in a reflective way (equation
2.2) the inner model (previously equation 2.1) turns to

η = Bη + Γx + ζ (2.5)

(Bollen, 1989, p. 321). Also endogenous latent variables (η) can be modelled
in a formative way. But, it is not very common to operationalise endogenous
constructs in a formative way (Cassel et al., 1999, p. 438).

Assuming a model is specified as equations 2.1, 2.2 and 2.3, the first four
matrices a researcher needs to elaborate are B, Γ, Λy and Λx. These matrices
represent coefficient matrices. Besides, four variance-covariance matrices need
to be patterned: Φ, Ψ, Θε and Θδ. The first one, Φ, is the variance-covariance
matrix of ξ, the second one, Ψ, is the variance-covariance matrix of ζ, and Θ is
the variance-covariance matrix of ε or δ, respectively. It should be noted that
the variance-covariance matrix of η can be derived from the other matrices
(more precisely from B, Γ, Φ, Ψ).15

The eight matrices (B, Γ, Λy, Λx, Φ, Ψ, Θε, Θδ) must be filled with as much in-
formation as available. That involves not only the paths between all variables
and some coefficient restrictions, but also patterns regarding the variances

15E(ηη′) = (I−B)−1(ΓΦΓ′ +Ψ)[(I−B)−1]′ (Bollen, 1989, p. 324).
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and covariances of the error terms and of ξ. In other words some unknown
parameters might be fixed to a certain value or might equal at least one other
parameter; all other unknown parameters which are not constrained are free.
In practice this is a very difficult task for a researcher and probably there will
remain uncertainties. At the same time this filling of the matrices allows great
flexibility, e.g. reciprocal relationships as well as correlated error terms can be
specified.16 However, this flexibility enables also manipulation.
The described parameter restrictions must entail the scaling of the latent vari-
ables. The scale of each latent variable needs to be defined, because a latent
variable does not have a unique, true scale. For this purpose either the latent
variable variances get set equal to a value of one or some coefficients get re-
stricted to a value of one. Both ways are possible and just one of them needs
to be applied. In the ML approach it is common practice to set one coefficient
in each measurement model to one. In doing so the latent variable adopts the
scale of the respective indicator. That means that on average one unit shift of
the exogenous variable leads to one unit shift in the endogenous variable.

2.1.2 Estimation

The matrix called Σ is the population covariance matrix of the observed vari-
ables x and y. The most crucial assumption in covariance-based methodologies
is that Σ can be written as a function of the unknown (i.e. free) model param-
eters θ. This relation is called the covariance structure hypothesis

Σ = Σ(θ) (2.6)

(Bollen, 1989, p. 89, 333). In other words, the variance-covariance matrix of
x and y can be defined using the model parameters. It is

Σ(θ) =
⎡⎣Σyy(θ) Σyx(θ)
Σxy(θ) Σxx(θ)

⎤⎦ (2.7)

=
⎡⎣Λy(I − B)−1(ΓΦΓ′ + Ψ)[(I − B)−1]′Λ′

y + Θε Λy(I − B)−1ΓΦΛ′
x

ΛxΦΓ′[(I − B)−1]′Λ′
y ΛxΦΛ′

x + Θδ

⎤⎦
16Both cases entail non-recursive models (Rigdon, 1995, p. 362). I focus on recursive

models.
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for a model with solely reflective measurement models (Jöreskog, 1982,
p. 85). The derivation is given in Appendix B. The implied variance-covariance
matrix is applicable also with cause indicators, if Bollen’s (1989, p. 321)
“dodge” concerning the incorporation of formative indicators gets applied
(equations 2.4 and 2.5 page 14). Otherwise, if formative indicators would
get applied in the “normal manner”, according to figure 2.1, the variance-
covariance matrix cannot be derived as a function of the model parameters
because the “magnitude of the indicator correlations is not explained by the
model” (Bollen/Lennox, 1991, p. 307).

Figure 2.1: Covariances between formative indicators (according to Bollen/
Lennox, 1991, p. 306).

The sample variance-covariance matrix is S. It is supposed to be a con-
sistent, unbiased estimate of Σ which follows the specified model (Dijkstra,
2010, p. 27). The estimated matrix Σ̂ contains the variances and covariances
as implied by the estimated parameters. The closer Σ̂ is to S, the better the
model fits the data.

The estimated parameters θ̂ are obtained by maximising the Likelihood L

that S is a sample drawn from a population with true variance-covariance ma-
trix Σ(θ). This procedure is analogous to minimising the discrepancy between
S and Σ̂ or in other words minimising a so-called fitting function. The general
fitting function is named

F (S, Σ(θ))

and is based on the sample variance-covariance matrix and the implied variance-
covariance matrix (Kaplan, 2000, p. 27). As a matter of fact, a variance-
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covariance matrix must be positive definite and the fitting function cannot
take a variance-covariance matrix that is not positive definite (Yuan et al.,
2011, p. 4). The fitting function has the property that it reaches the value
zero only for S = Σ̂ (Kaplan, 2000, p. 27).17 The corresponding ML fitting
function18 to be minimised with respect to θ is

FML = log|Σ(θ)| − log(S) + tr[SΣ−1(θ)] − p − q (2.8)

(Bollen, 1989, p. 334). The derivation - under the assumption that x and y
are multinormally distributed - is shown by Bollen (p. 107, 131 et seqq.).19

However, the equation can be understood intuitively. In the extreme case of
perfect fit the first two summands cancel each other out. The third summand(
tr[SΣ−1(θ)]

)
yields the trace of an identity matrix. Therefore, it equals the

matrix size and the number is equivalent to p+ q. Hence, the third summand
and the last two cancel each other out in case of perfect fit. In conclusion FML

is zero for the extreme case of perfect fit.
The iterative ML estimation procedure stops the minimisation of the residual
covariances if a convergence criterion is fulfilled within a certain number of
iterations, or if the maximum number of iterations is reached. The criterion
is checked after each iteration and is fulfilled when “appropriate derivatives of
the fit function are equal to zero” (Bentler/Chou, 1987, p. 100) and the
difference between successive values is smaller than the convergence criterion
(Jöreskog et al., 2000, p. 43). The convergence criterion can f.i. take the
value 10−6 and the maximum number of iterations for instance 1,000.20

The standard errors of the estimated values can be estimated by taking the
square root of the values on the main diagonal of the inverted information
matrix (Bollen, 1989, p. 286). The information matrix is the matrix of

17The cited source refers to structural equation models with observed variables. But the
characteristic is here true as well.

18Such functions exist for different methods, such as Unweighted Least Squares and Gen-
eralised Least Squares (Bollen, 1989, p. 106).

19However, multinormality is not required for consistency of the estimators (Dijkstra,
2010, p. 27). Simulation studies have shown that for non-normal data the estimates are still
precise (Chou/Bentler, 1995), see further section 2.3 and chapter 3.

20In my following simulation study (chapter 3) I apply the R (R Core Team, 2014)
package sem (Fox et al., 2013), which has the respective default settings.
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second-order derivatives of the fitting function with respect to θ.21

At this point it is important to mention the issue of sample size. Given a
large sample I can expect S to be an accurate estimate of Σ. In that case
large residuals (i.e. a large discrepancy between S and Σ̂) must be caused by
a misspecified model. With a decreasing sample size residuals become more
likely, even for a correctly specified model (Savalei/Bentler, 2006, p. 334).22

A problem which can arise during practical applications is the occurrence
of non-convergence (Fornell/Bookstein, 1982; Boomsma, 1982). Some
reasons for the occurrence of this problem refer to the population covariance
matrix: Firstly, if the covariances get close to zero non-convergence becomes
more likely. Secondly, the sign pattern of the covariances can matter. For
example, if three indicators are attached to the same construct and one of them
is positively correlated with the other two, but the other two show a negative
correlation, then non-convergence is likely (Boomsma, 1985, p. 231 et seq.).
Moreover, the sample sizes matters for the occurrence of non-convergence: the
smaller the sample size, the more likely is non-convergence (Boomsma, 1982).
As Σ(θ) is composed of several “partial” variance-covariance matrices (see
equation 2.7 page 15), the ML estimates “are obtained from different mar-
ginals” (Yuan et al., 2011, p. 4). The resulting variance-covariance matrix
may not be positive definite when the sample size is small. In such case the
involved logarithm in the fitting function (equation 2.8) cannot be calculated.
Also a matrix which is only close to singular can entail non-convergence or “un-
stable parameter estimates” (Yuan et al., 2011, p. 4). One way to solve the
problem of non-convergence can be the selection of appropriate starting values.
The fit of the chosen starting values may influence the number of iterations
until convergence is (possibly) reached. The better the chosen starting values
the lower the number of iterations may be (Boomsma, 1985, p. 231, 239).
Given a model that does not suffer from convergence problems, the choice of

21The information matrix can be noted as plim ∂2F
∂θ∂θ′ .

22To determine whether the model can be assumed to be correctly specified or not the
hypothesis Σ = Σ(θ) (which wants to be retained) can be tested with the test statistic
T = (N − 1)F (S, Σ̂) which follows approximately a chi-square distribution (under certain
assumptions), with the number of non-redundant elements of the covariance matrix (t) minus
the number of free parameters as degrees of freedom (Savalei/Bentler, 2006, p. 334).
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starting values does not influence the estimation results: either default, ideal
or alternative starting values converge towards the same ultimate estimates
(Boomsma, 1985, p. 239 et seq.).

Another problem which can arise during ML applications are improper solu-
tions, like negative variances (Boomsma, 1985, p. 232 et seq.). This problem
may occur even for correctly specified models. It becomes more likely the
smaller the sample size is, but it can even occur with samples of 200 observa-
tions (Boomsma, 1985, p. 234). Moreover, the size of the population variances
do matter again. The closer the variances get to zero the more likely are im-
proper values (Boomsma, 1985, p. 233).
Concerning the characteristics and advices see further section 2.3 as well as
chapter 3.

Now that I explained the ML estimation procedure and some of its charac-
teristics I will talk about multinormality. In the literature (especially in the
field of PLS applications) it is repeatedly stated that for estimation purposes
multinormally distributed data is required (Mintu-Wimsatt/Graham, 2004;
Huber et al., 2007, p. 10; Anderson/Swaminathan, 2011; or
Balzano/Trinchera, 2011, among others). Concerning this issue I quote
Dijkstra (2010, p. 27).23

“More important perhaps is the fact that multinormality and the
independence of the observational vectors is not required for con-
sistency of LISREL-estimators, all that is needed is that the sample
covariance matrix S is a consistent estimator for the theoretical co-
variance matrix Σ. [...] Also, asymptotic normality of the estima-
tors is assured without the assumption of multinormality. All that
is needed is asymptotic normality of S, and that is quite generally
the case. Asymptotic optimality, and a proper interpretation of cal-
culated standard errors as standard errors, as well as the correct
use of test-statistics however does indeed impose heavy restrictions
on the distribution [...].”

23The name LISREL is used as byword for the ML approach for structural equation models
with latent variables (Dijkstra, 2010, p. 24).
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Dijkstra’s quoted statement makes clear that not the estimation quality
of the estimators, but the reliability of the standard errors may be (particu-
larly) the problem of non-multinormally distributed indicators. With S be-
ing asymptotically normally distributed, asymptotic normality of the estima-
tors is assured (Dijkstra, 2010, p. 27). But, for inference purposes heavy
distribution assumptions about the observed data are required. If these as-
sumptions are not met the estimation of the standard errors applying the
bootstrap technique represents one solution to obtain reliable standard errors
(Djikstra, 1983; Yung/Bentler, 1998). A brief explanation of the boot-
strap technique is given in Appendix C. But note, standard errors shall not
simply always get bootstrapped, because if normality is given the ML estimates
are accurate, while the bootstrap results can be severely biased, see further
Nevitt/Hancock (2001). Another option is to apply robust standard errors
(Satorra/Bentler, 1994), which “properly reflect additional variability in
the estimates due to nonnormality” (Savalei/Bentler, 2006, p. 355). Es-
pecially if the non-normality is rather extreme they yield good estimates in
terms of unbiasedness, see f.i. Chou/Bentler (1995, p. 52 et seq.).

With respect to other covariance-based methodologies I finally comment,
that the ML approach performs generally better than GLS and ADF (Asymp-
totically Distribution-Free method) even in case the data is non-normal. This
has been shown with simulations (Chou/Bentler, 1995, and Ringle et al.,
2009, among others).

2.1.3 Identification

In general identification is given when each free parameter in θ can be written
as a function of at least one element of Σ (Bollen, 1989, p. 326). If only
one of these parameters cannot be identified then the model is underidentified.
Moreover, the solution needs to be unique. That is, the model is not identified
if two different vectors θ1 and θ2 exist with Σ(θ1) = Σ(θ2). Such a case
implies arbitrary solutions.

One way to define identification is very simple, namely just verbally. ML
estimations can often lead to improper solutions and factor indeterminacy.
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Identification is given if the parameter estimations are in a proper and defined
range (Bollen, 1989, p. 327). But, this definition is very superficial and does
not help ex ante to assess identification.

To determine identification precisely there exist analytic procedures. In this
section these procedures will be explained, but only for the later used recursive
models. For models with reciprocal causations or feedback-loops different rules
need to be applied.24

Some requirements hold in general for identification. One is the restriction
of the diagonal elements of the matrix B to be zero (Bollen, 1989, p. 91).
This is quite self-evident, because otherwise a variable would have a direct
impact on itself, i.e. it would function as dependent and independent variable
in one equation at the same time. Further, the scale of each latent variable
must be defined. As I already mentioned in section 2.1.1 this is usually done
by setting one coefficient in each measurement model to a value of one. Then
the latent variables adopt the scale of the respective indicator. Moreover, ζ

needs to get a scale. This is usually done without noticing it explicitly. The
(latent) error terms are scaled by setting their coefficient to one (Bollen,
1989, p. 91).

Another aspect which can get easily checked and which needs to be fulfilled
for identification, refers to the number of reflective indicators per construct. In
the case of a single reflective indicator (i.e. a latent variable is operationalised
by only one indicator) the model is not identified, or more specifically the
variance of the corresponding disturbance term is not identified. This problem
can be fixed by specifying the variance to take on a concrete value.25

One way to determine identification is algebraically. In section 2.1.2 I
showed that the variance-covariance matrix of the manifest variables (Σ) can
be written as a function of the model parameters (Σ(θ)). The number of avail-
able equations equals the number of non-redundant elements of the variance-
covariance matrix. For a l x l variance-covariance matrix the number of non-
redundant elements takes on the value t = l · (l + 1) · 1

2 . This number (t)
24For example the Rank or Order Condition is appropriate for such non-recursive models.
25The implementation of formative indicators according to equation 2.4 (page 14) includes

error term variances equal to a value of zero.
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represents the number of available equations. If each unknown (or uncon-
strained) parameter can be expressed as a function of one or more equations,
the model is identified or overidentified (Bollen, 1989, p. 326).26 Initially in
each equation several unknown parameters may appear, but with a sufficient
number of equations the parameters can be solved with algebraic manipula-
tions. Consequently the identification of a structural equation model does not
depend on the number of observations.
Overidentification implicates indeterminacies and therefore arbitrary solutions.
MacCallum/Browne (1993, p. 537 et seq.) give in their paper a good ex-
ample for a model with formative measurement models which incorporates
indeterminacies. Applying algebraical manipulations of the structural equa-
tions they show how a structural model incorporates several indeterminacies
(see an example in section 3.1.4, equations 3.4 and 3.5 page 65).
Underidentification can arise from insufficient equations, i.e. from insufficient
information. Moreover, underidentification can arise when a covariance or a
parameter equals a certain value. As the algebraic manipulations to solve the
parameters include divisions, a denominator which equals a value of zero leads
to an undefined solution (Bollen, 1989, p. 327).
For complex models, when the algebraic approach is not very convenient, rules
exist to assess identification.

t-Rule
A necessary but not sufficient rule is the t-Rule (Bollen, 1989, p. 328). It is
based again on the number of non-redundant elements the variance-covariance
matrix has. The t-Rule says a model can only be identified if the number
of available equations, i.e. the number of non-redundant elements of Σ =
Σ(θ) (equation 2.6 page 15), is greater or equal than the number of unknown
parameters (t) of the structural equation model:

t ≤
(1
2

)
(p + q)(p + q + 1) (2.9)

with p manifest y variables and q manifest x variables (Bollen, 1989, p. 328;
Kaplan, 2000, p. 21).27 If t equals 1

2(p + q)(p + q + 1) then the model may
26In an overidentified model the parameters are still unique.
27Bollen (1989, p. 328) includes only the case t greater than the number of available

equations. I include the case when t equals the number of available equations as f.i. Kaplan
(2000, p. 21) does.
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just be identified, if t is lower then the model may be overidentified (Kaplan,
2000, p. 21). If t is greater than the number of available equations the model
cannot be identified.

Two-Step Rule
A sufficient but not necessary condition is the Two-Step Rule. If a model
fulfils this rule then the model is for sure identified. If a model does not fulfil
this condition it can even so be identified.28 The Two-Step-Rule is relatively
complex. As the name indicates it is composed of two steps.

First step of the Two-Step Rule
In the first step the model gets treated as a confirmatory factor analysis model
and the measurement models get analysed regarding their identification. Sub-
sequently the y variables will be named x and the η variables will be named ξ.
The matrices B, Γ and Ψ get ignored at this point. Regarding the relation-
ships between latent variables only variances and covariances get taken into
account. For clarification I present an example, see the model shown in figure
2.2. After the reformulation this model would look like figure 2.3. The iden-
tification of the reformulated model can be determined applying the following
three rules (adapted from Bollen, 1989, p. 242 et seqq.):

Figure 2.2: Example of a model according to Bollen (1989, p. 326).

The first rule is the t-Rule, equivalently to the t-Rule described above. That
is, the number of non-redundant elements of the covariance matrix of x must

28Examples are given by Bollen (1989, p. 329 et seq.).
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Figure 2.3: First step of the Two-Step Rule for the model shown in figure 2.2
(according to Bollen, 1989, p. 329).

be greater than or equal to the number of free parameters. The t-Rule is a
necessary but not a sufficient condition. It is

t ≤ 1
2(q)(q + 1)

with t representing the number of free parameters in θ and q representing the
number of manifest x variables (Bollen, 1989, p. 242 et seq.).
The second rule is the Three-Indicator Rule. If it is fulfilled, identification is
given for sure, i.e. the condition is sufficient. According to this rule a one-factor
model (only one ξ variable) with at least three indicators is identified when the
error terms are uncorrelated (Θδ is diagonal). If there are several factors (ξ
variables) the model is identified when each factor has at least three indicators,
the coefficient matrix Λx has in each row exactly one non-zero element and
the error term matrix Θδ is diagonal (Bollen, 1989, p. 244). The latter two
assumptions imply that each indicator is related only to one latent variable
and the error terms are uncorrelated. Further, each ξj must be scaled (one
λ per latent variable is fixed to a value of one). With three indicators the
variance-covariance matrix of the factors Φ is unrestricted. In this regard the
Three-Indicator Rule is distinct from the subsequently explained Two-Indicator
Rule.
The third rule is the Two-Indicator Rule, which is as well sufficient (regarding
the first step). It is an alternative to the Three-Indicator Rule for models
with at least two ξ variables and at least two indicators per latent variable.
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Analogous to before Λx must have only one non-zero coefficient per row and the
error term matrix must be diagonal. Of course the factors need to be scaled.
Therefore, one λ per factor must be set to a value of one. The variance-
covariance matrix of the latent variables (Φ) must have only elements or at
least one off-diagonal element per row which is non-zero.29

So far I explained the first step of the Two-Step Rule. The examination of
the second step only makes sense if in the first step identification has been
ascertained.

Second step of the Two-Step Rule
In the second step the inner model (i.e. the relationships between the latent
variables) gets assessed regarding its identification, see figure 2.4. The latent
variables get treated as if they were observed and perfectly measured. Under

Figure 2.4: Second step of the Two-Step Rule for the model shown in figure
2.2 (according to Bollen, 1989, p. 329).

this assumption the identification of B, Γ and Ψ needs to be determined.
One requirement is that the diagonal elements of the matrix B need to be
restricted to zero (Bollen, 1989, p. 91). Besides, ζ needs to get a scale. Both
requirements hold for identification in general (see above). Subsequently the
identification can get examined algebraically. To assess identification in the
context of only observable variables, as it is the case in the second step, I
illustrate three rules which apply to recursive models.
Firstly, a necessary but not sufficient condition is again the t-Rule, which I
explained above (see equation 2.9 page 22). Its use in this step is exactly
analogous to before. The second rule is the so-called Null B Rule. It is a
sufficient condition for identification, though not necessary. It says that a
model is identified if B = 0. This implies that the model has no paths between

29Bollen (1989, p. 245 et seq.) proves this for one specific model. For more detailed
information concerning the identification in confirmatory factor analysis see Bollen (1989,
p. 328 et seqq.).
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one endogenous variable and another one. In such case “Φ, Γ and Ψ can
be written as functions of the identified covariance matrix of the observed
variables and are therefore identified” (Bollen, 1989, p. 95). The third rule
is the so-called Recursive Rule, which is not necessary, but sufficient. It holds
for recursive models, whose B matrix is a lower triangular matrix. Besides, Ψ
must be diagonal (Bollen, 1989, p. 94 et seqq.).30

If identification can be ascertained in both, the first and the second step of the
Two-Step Rule, the model is identified.

2.2 Partial Least Squares Approach

2.2.1 Introduction

Herman O. Wold introduced the PLS approach with its final formalisation
in 1979 (Wold, 1979). The main references for PLS are Wold (1982) and
Wold (1985a).

For notation of the PLS algorithm it is advantageous not to distinguish
neither between exogenous and endogenous latent variables, nor between x and
y. The notation specifics concerning this and the subsequent section (2.2.2)
are inspired by Tenenhaus et al. (2005) and Ahrholdt (2010, p. 108 et
seq.). In the model in figure 2.5 I apply the PLS notation.
The notation of the inner model becomes

ξ = Γξ + ζ. (2.10)

ξ and ζ are vectors with length J . The coefficient matrix Γ is a lower triangular
J x J matrix - otherwise a variable would cause itself or the model would not
be recursive. The algebraic notation consists of at least one single and / or
multiple regression (usually multiple regressions are the case).

In the following notations each measurement model j out of all J measure-
ment models is regarded individually.

30For more detailed or further informations regarding the identification of structural equa-
tion models with observed variables (e.g. models with interdependencies) see Bollen (1989,
p. 88 et seqq.).
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Figure 2.5: Model with variablenames as used for notation of the PLS algo-
rithm.

A reflective measurement model j can be noted as

xj = λjξj + εj. (2.11)

One specific latent variable ξj is operationalised by the set of manifest vari-
ables xj. Thereby, measurement model j is composed of Hj indicators. Con-
sequently, the vectors λj and εj have length Hj and the algebraic notation
consists of Hj equation. Each equation corresponds with a simple linear regres-
sion. This way of operationalising a latent variable, referring to the causality
between the indicators and the latent variable, is called “mode A”.
A formative measurement model j can be noted as follows

ξj = π′
jxj + δj. (2.12)

The algebraic notation consists of one equation, which corresponds with a
multiple regression. Analogous to above one specific latent variable ξj is op-
erationalised by Hj manifest variables xj. Consequently πj is a vector with
length Hj and δj represents the error term. This way of operationalising the
latent variable, referring to the causality between the indicators and the latent
variable, is called “mode B”.

Regarding the inner model the latent variables need to be distinguished.
Some latent variables are dependent and get explained by other independent
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variables. A ξl variable that acts as dependent variable is named “follower”
and the variables that are explaining ξl are named “predecessors”. In the
following the latter variables are labelled with a “P” in the exponent. One
specific equation of the inner model is

ξl = γ ′
lξ

(P )
l + ζl. (2.13)

Its conditional expectation equals the systematic part of the linear regression.

E(ξl|ξ(P )
l ) = γ ′

lξ
(P )
l

With respect to linear regressions this assumption is well-known. In the PLS
literature it is called the predictor specification condition. The assumption
implies, that the residual mean equals a value of zero and that the correlation
between the error term and each dependent variable is zero. With respect to
equation 2.13 that means

E(ζl|ξ(P )
l ) = 0 ∀ l,

E(ξl|ξ(P )
l ) = γ ′

lξ
(P )
l ∀ l.

The predictor specification condition applies also to the regression equations
concerning the measurement models. With respect to a reflective measurement
model (equation 2.11) it implies

E(εjh|ξJ) = 0 ∀ h, j,

E(xjh|ξj) = λjhξj ∀ h, j.

Referring to a formative measurement model (equation 2.12) the predictor
specification implies

E(δj|xj) = 0 ∀ j,

E(ξj|xj) = π′
jxj ∀ j.

2.2.2 Estimation

The core of the PLS approach is the estimation of scores for the specified latent
variables. The underlying algorithm basically consists of OLS regressions. If
the algorithm converges, estimated latent variable scores are available and
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thereafter the latent variables get treated as if they were observed variables.
In the literature the estimation of the scores is called stage one. Stage two
is then the estimation of all coefficients, accomplished with OLS regressions
again.
With respect to the core of the PLS approach, the literature reveals statements
like “PLS-SEM maximizes the explained variance of the endogenous latent
variables” (Hair et al., 2012b, p. 415) or PLS minimises error variances
(e.g. Huber et al., 2007, p. 6) or PLS minimises the trace of the error
variance-covariance matrix (Fornell/Bookstein, 1982, p. 449). Regarding
this I point out that solely separate OLS regressions (i.e. no simultaneous
equations) are incorporated within the PLS algorithm and that consequently
the error variances get minimised separately.
As I mentioned in my introduction Wold (1982) and Wold (1985a) constitute
the main sources and my notations are inspired by Tenenhaus et al. (2005)
and Ahrholdt (2010).

The PLS algorithm is an iterative estimation technique. The procedure
scheme is illustrated in figure 2.6. The estimation starts with an initialisa-
tion, named “step 0”. After the initialisation the algorithm continues with
the iteration of an inner and an outer estimation. In doing so the inner and
outer model do not get estimated simultaneously. In both steps weights get
estimated and with these weights latent variable scores get computed. Conse-
quently there are inner and outer weights as well as inner and outer scores. The
two parts get repeated until the outer weights fulfil a convergence criterion,
see “step 1a” below. This criterion is checked every iteration. The procedure
always ends with the computation of outer scores.
For the notation of the algorithm I add an index h (with h = 1, ..., Hj). The
variable xjh represents one indicator which belongs to the specific latent vari-
able ξj, and ξj is operationalised by Hj indicators. Further, the weights and
scores are labelled in the exponent with a “[2]” or “[1]”, whether they result
from the inner or outer estimation, respectively. In the following I will explain
the scheme in detail.
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Figure 2.6: Scheme of the PLS algorithm.
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Step 0: Initialisation
Observations are only available for the indicators. To obtain the first scores
for the latent variables, outer weights are necessary. In the initialisation step
the first set of outer weights takes arbitrary non-zero numbers:

ŵ
[0]
jh �= 0 ∀ j, h.

The “[0]” in the exponent indicates that this is an initialisation weight.31 This
step is performed just once. Subsequently step 1b gets performed. For the
rest of the iterative estimation procedure the outer weights do get estimated
according to step 1a, i.e. step 1a substitutes the initialisation step. Therefore,
in the following I elucidate step 1a .

Step 1a: Estimation of outer weights
Within the iterative estimation procedure step 1a follows on step 2b (see be-
low). In step 1a the outer weights get estimated applying the latent variable
scores of step 2b (ξ̂[2]

j ), which are available after the first iteration. The esti-
mation depends on the mode of the measurement model. In mode A xjh is
explained by ξj. Its outer weight equals the regression coefficient of an OLS
regression of xjh on ξ̂

[2]
j . In doing so the causality is taken into account. As

step 2b includes a scaling of the ξ̂
[2]
j variances to a value of one, the outer

weight estimation in mode A results in

ŵ
[1]
jh = cov(xjh, ξ̂

[2]
j ) ∀ j, h in mode A.

If the measurement model of ξj is mode B, the corresponding xj “form” the
latent variable. Taking the causality into account, the weights result from the
multiple regression of ξ̂

[2]
j on the corresponding block of indicators:

ŵ[1]
j = (X′

jXj)−1X′
jξ̂

[2]
j ∀ j in mode B.

After step 1a a convergence criterion gets checked. Convergence is reached
when the sum of absolute changes between two successive outer weights of two
successive iterations falls below the criterion, e.g. 10−5 (Wold, 1982, p. 14).32

31Often it is ŵ
[0]
jh = ±1. For the choice of the sign there exist some propositions, see

further Tenenhaus et al. (2005, p. 171).
32An alternative is the sum of squared changes in weights.
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In case of convergence the estimation procedure stops with computing the
outer scores as explained in the following step 1b using the last estimated outer
weights. If the convergence criterion is not fulfilled after an ex ante defined
maximum number or iterations (e.g. 100) the procedure stops without having
reached convergence.33 Unless the convergence criterion is not fulfilled and the
maximum number of iterations is not reached step 1 and 2 get reiterated.

Step 1b: Computation of outer latent variable scores
The outer scores of a latent variable ξj are just linear combinations of all x

variables which belong to the j-th measurement model times their weights ŵj.

The direction of causality is not taken into account. The equations are for
mode A and B identical.
The computation of the scores is

ξ̂
[1]
j = f

[1]
j ·

Hj∑
h=1

ŵ
[0]
jhxjh ∀ j (2.14)

within the first iteration and otherwise

ξ̂
[1]
j = f

[1]
j ·

Hj∑
h=1

ŵ
[1]
jhxjh ∀ j. (2.15)

The equations differ regarding the ŵjh depending on the preceding step. Since
the initialisation pertains only to the first iteration, equation 2.14 is used only
once. In the subsequent iterations equation 2.15 gets applied.
The “f [1]

j ” in both equations renders the variance of ξ̂
[1]
j to a value of one.

Hence, it is the reciprocal of the standard deviation of the latent variable
before its variance is adjusted

f
[1]
j = 1√

var
(∑HJ

h=1 ŵ
[1]
jhxjh

) ∀ j. (2.16)

Step 2a: Estimation of inner weights
There are three different ways of estimating inner weights: the centroid, the
factorial and the path weighting scheme.34

33A maximum of 100 iterations and a tolerance criterion of 10−5 are the default settings
in the R (R Core Team, 2014) package plspm (Sanchez et al., 2013).

34The centroid scheme was the original one, implemented by Wold (1985a). The factorial
and the path weighting scheme were implemented later by Lohmöller (1989, p. 40).
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To determine the inner weights according to the centroid scheme adjacent
latent variables get taken into account without considering the direction of the
causality. The inner weight between two adjacent latent variables ξ̂

[1]
j and ξ̂

[1]
k

(j �= k) equals the sign of the correlation ρ between those two variables, i.e.
the inner weight attains either the value one or minus one. The strength of
the correlation does not matter. For two ξ variables, which are not connected
with a path, the weight is compulsory zero.

ŵ
[2]
jk =

⎧⎪⎨⎪⎩
sign

(
ρ
(
ξ̂

[1]
j , ξ̂

[1]
k

))
if ξj and ξk are adjacent

0 otherwise

⎫⎪⎬⎪⎭∀ k, j

This scheme suffers from the disadvantage, that within the estimation proced-
ure the inner weight can alternate between one and minus one. This is likely
to occur if the corresponding correlation is very weak.

In the factorial scheme the exact correlation between two adjacent variables
ξj and ξk is taken as weight. Therefore, this scheme does not suffer from the
drawback of the centroid scheme. Both schemes do not take the causality into
account.

ŵ
[2]
jk =

⎧⎪⎨⎪⎩
ρ
(
ξ̂

[1]
j , ξ̂

[1]
k

)
if ξj and ξk are adjacent

0 otherwise

⎫⎪⎬⎪⎭∀ k, j

In contrast to the previously described schemes, the path weighting scheme
takes the causality into account. To do so the latent variables need to be
distinguished between “followers” and “predecessors” as in the previous section
2.2.1. OLS regressions yield the inner weights: each follower l gets regressed
on all its predecessors. The formula is

ŵ[2]
l =

[(
ξ̂

[1]P
l

)′
ξ̂

[1]P
l

]−1 (
ξ̂

[1]P
l

)′
ξ̂

[1]
l ∀ l.

According to Noonan/Wold (1982) and Ringle et al. (2009; among
others) the PLS estimation results are robust towards the scheme, i.e. the
results vary only slightly and no clear pattern can be derived.

Step 2b: Computation of inner latent variable scores
With respect to the computation of inner scores the causality is disregarded in
any case. A specific latent variable ξj gets computed as a linear combination
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of all its adjacent variables. With ξj having in number Sj adjacent latent
variables its scores get computed as

ξ̂
[2]
j = f

[2]
j ·

Sj∑
s=1

ŵ
[2]
js ξ̂[1]

s for all ξ̂s that are adjacent to ξ̂j.

Such inner scores get computed for each latent variable. Analogous to before
the “f [2]

j ” ensures the variance of the scores takes on the value one (see equation
2.16). Consequently it is

f
[2]
j = 1√

var
(∑Sj

s=1 ŵ
[2]
js ξ̂

[1]
s

) ∀ j.

After step 2b the procedure continues with step 1a (see above).

In case of convergence of the outer weights (step 1a) stage one gets accom-
plished by computing the final scores according to step 1b (equation 2.15). In
stage two all path coefficients get estimated applying these scores. The esti-
mates result from OLS regressions which get performed in all partial models
according to the respective causality. In all reflective measurement models
these OLS coefficients equal the respective correlation if the indicators are
standardised. In all formative measurement models the OLS coefficients cor-
respond with the outer weights which were estimated in the last realisation
of step 1a. In the inner model a single (or multiple) regression is performed
regressing each endogenous latent variable on (all) its predecessor(s).

A replicable numerical example of the algorithm, which can even be solved
with a hand calculator, is given from Ahrholdt (2010, p. 112 et seq.).

In order to estimate standard errors of the estimated coefficients, resampling
techniques should be applied, such as the bootstrap technique (Tenenhaus
et al., 2005, p. 174).35 In this regard I remark that in a formative meas-
urement model the regression of a latent variable on its indicators necessarily

35Also the jackknife technique could be utilised. However, I do not illustrate this technique
since it approximates the bootstrap (Efron/Tibshirani, 1993, p. 287) and bootstrapping
is very established. The bootstrap technique is in general implemented in PLS and ML
software as it is the case for the R (R Core Team, 2014) packages I utilise in my Monte
Carlo simulation in chapter 3 (plspm by Sanchez et al., 2013, and sem by Fox et al.,
2013).
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yields standard deviations of the coefficient estimates that take on the value
zero. This is tautological since the scores itself equal the weighted sum of
its indicators.36 I briefly explain how standard errors get bootstrapped in
Appendix C.

After having illustrated the PLS algorithm I will further define the terms
“composite variable” and “latent variable”. In section 1.1 I distinguished these
two expressions. As step 1b (page 32) of the algorithm reveals a reflective
operationalised construct is not a latent variable in the traditional sense. In
step 1b the outer scores get computed as linear combination of its indicators.
Hence, when being very precise, both, formative and reflective operationalised
constructs are composites (Rönkkö/Evermann, 2013, p. 426). However,
for practical reasons I continue calling all not directly measurable constructs
latent variables.

A characteristic of PLS is to avoid improper solutions (Fornell, 1982,
p. 440). According to Henseler (2010, p. 108) this aspect goes hand in hand
with the “belief” that PLS always converges.37 Indeed, studies have shown that
the PLS convergence rate is very high, but that convergence is not guaranteed
(Henseler, 2010; see further section 2.3 as well as my Monte Carlo results in
section 3.3).

Regarding the measurement scale or distribution of the indicators no as-
sumptions are required, because PLS consists only of OLS regressions
(Reinartz et al., 2009, p. 332 et seq.). As the OLS regressions get applied
in parts of the structural equation model, PLS works as well with samples,
which consist of less observations than the model consists of path coefficients
(see further the identification issues in the subsequent section 2.2.3).

Another characteristic is that the PLS scores are inconsistent even when
the model is correctly specified. Therefore, the resulting PLS estimates are
inconsistent, too. But, the parameter estimates are “consistent at large”. The

36In defiance of the literature Goodhue et al. (2007, Appendix F) applied the OLS
standard errors to test the coefficients of the structural model on their significance. Their
simulation study (applying a model which incorporates solely reflective measurement mod-
els) reveals an actual size about 35% on the 5%-level.

37A proof exists only for certain cases, see further Henseler (2010).
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property “consistency at large” implies that the parameter estimates converge
towards the population values as both, the number of indicators per latent vari-
able and the sample size, increase (Hui/Wold, 1982, p. 123 et seq.; Wold,
1985b, p. 231; Schneeweiss, 1993, p. 309 et seqq.). According to Hui/Wold
(1982, p. 122) the number of indicators must remain small in relation to the
sample size.

2.2.3 Identification

With regard to PLS it is not extensive to determine whether a model is iden-
tified or not. The partial model which incorporates the largest number of
independent variables (either in the inner model or in a measurement model)
determines the minimal sample size. With an unsuppressed constant the min-
imum number of observations equals the respective number of independent
variables plus one. According to this identification rule even models with less
observations than variables can be identified. An example is given in section
3.1.2. How much sense an analysis with such a little sample size makes, is not
discussed here.

2.3 Comparison of Maximum Likelihood and

Partial Least Squares

In this section I will at first illustrate a general difference between the two ap-
proaches ML and PLS. In my introduction to ML and PLS (sections 2.1.1 and
2.2.1) I noted the measurement models and the structural model separately.38

When looking at an entire model, such as the one in figure 2.7, an essential
difference between ML and PLS appears. The difference necessarily pertains in
one and the same model (figure 2.7) to the notation of η1. The arrow relating
δ2 to η1 is dashed, because it is only relevant for PLS.
In the ML world there is one equation with η1 as endogenous variable (see e.g.

38See equation 2.1 page 13 for the ML structural model and equations 2.2 and 2.3 page
13 for the ML measurement models (and possibly equations 2.4 and 2.5 page 14). Referring
to PLS see the structural model in equation 2.10 page 26 and the measurement models in
equations 2.11 and 2.12 page 27.
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Figure 2.7: PLS vs. ML model.

MacCallum/Browne, 1993, p. 537). In the PLS world the measurement
model and structural model get estimated separately, accordingly two separate
equations appear. Using the variable names as in figure 2.7 the equations are
the following:

ML : η1 = γ1ξ1 + π6x6 + π7x7 + π8x8 + ζ1

PLS : η1 = π6x6 + π7x7 + π8x8 + δ2

PLS : η1 = γ1ξ1 + ζ1 (2.17)

This difference results from the different estimation procedures and cannot be
prevented. It entails the following consequence: In the PLS world a change of
a x variable which operationalises ξ1 leads to a change in ξ1. At the same time
the measurement model of η1 is not affected by the change of the respective
x variable, thus η1 is not affected. When looking at the structural model
(equation 2.17) the change of ξ1 enters completely the error term ζ1 as η1 does
not change. This weakness does not occur in the ML world, as the model is
not split into partial models.

With regard to practical applications the ML approach has a long tradition
in all business disciplines (Hair et al., 2012b, p. 415). Only during the
last years more and more studies have been published applying PLS. Hair
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et al. (2012b) have investigated the “growth trend in PLS-SEM use” (p. 419).
They listed all PLS applications that were published in the top 30 marketing
journals39 during 1981 and 2010. In their time series analysis they ascertained
a growing number of PLS publications and an acceleration in growth of PLS
publications (Hair et al., 2012b, p. 419). The increase of PLS publications
may have several reasons. Henseler et al. (2009) and Reinartz et al.
(2009) investigated the individual reason(s) given in PLS application studies
for their choice in favour of PLS (and against ML). I show a similar table
in Appendix A, which shows some overlap with these two studies, but which
(mainly) includes more recent studies. The reasons which are mentioned most
often are a non-normal data distribution and a formative specification of at
least one measurement model. Another recurring reason is that the sample
size is absolutely small or relatively small to the number of indicators. Other
reasons which appear are the model complexity, a prediction orientation40 and
an early research stage. Furthermore, the issue of identification (including
convergence and admissible solutions) drives sometimes the decision. In a
few studies PLS is preferred over ML because of assumed multicollinearity or
misspecification. In some studies no reason is mentioned at all.

No matter what reasons are given in PLS application studies, the decision
between either applying PLS or ML must be driven by the estimators prop-
erties such as consistency, bias and robustness considering the different research
and data situation. Rönkkö/Evermann (2013) state that the reasons which
appear and imply that PLS is advantageous are rather “myths” than proven
facts (see further in this section below and my Monte Carlo results in section
3.3). Only in case a model is not identified in terms of the ML approach
or the sample consists only of a few observations the choice might be rather
easy in favour of PLS. But, those cases may especially occur in the field of
natural sciences such as in genetics or functional magnetic resonance imaging
(Reinartz et al., 2009, p. 336), where studies with low knowledge about
the constructs, very large numbers of variables and small samples may occur.

To investigate consistency, bias and robustness of PLS and ML estimators
39According to Hult et al. (1997).
40Prediction orientation implies the prediction of concrete data points (Huber et al.,

2007, p. V).
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simulation studies are a very powerful tool. With respect to the PLS algo-
rithm Chin (1998b, p. 333) pointed out that for different model characteristics
closed-form solutions are likely not available. He refers to McDonald’s (1996,
p. 240) statement: “The PLS methods are difficult to describe and extremely
difficult to evaluate, partly because PLS constitutes a set of ad hoc algorithms
that have generally not been formally analysed, or shown to possess any clear
global optimising properties [...]”. Hence, Monte Carlo based simulations can
help.
Simulations have no limits regarding both, the model specification and the un-
derlying assumptions, as long as no statistical assumption is violated: Firstly,
a correlation matrix (needed for the data generation process) must be positive
definite. Secondly, identification needs to be given to estimate the model (in
terms of a specific estimation method). The estimators can then get assessed
for example for different sample sizes, data distributions or appearing (imper-
fect) multicollineartiy. Besides, with the recent high computational power a
large number of simulations can easily be run (e.g. 10,000 random samples),
so that the results appear on average no more than marginally affected by
random.

In the past many simulation studies have been performed. Hence, there exist
many informations regarding consistency, accuracy and robustness of PLS and
ML estimators. In Appendix D I describe briefly for a list of studies the study
set-ups (i.e. model and data specifications, object of the study etc.) and the
individual main findings. In the following I describe condensed Monte Carlo
study findings without evaluating them:

The PLS estimators are inconsistent. In other words, PLS estimates do
not become more accurate as sample size increases (Chin/Newsted, 1999;
Cassel et al., 1999; Chin et al., 2003). In contrast ML estimates become
more precise with increasing the sample size (Reinartz et al., 2009). PLS
estimators are consistent at large, i.e. with increasing both, the sample size
and the number of indicators per latent variable, the estimates become more
accurate (Hui/Wold, 1982; Chin/Newsted, 1999).
Usually ML estimates are more accurate than PLS estimates (Areskoug,
1982; Reinartz et al., 2009; Ringle et al., 2009).41 This is even the case

41But, ML may produce outliers (Ringle et al., 2009).
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for non-normally distributed data. In general non-normality does not have an
impact on estimator bias, neither for PLS nor for ML42 (Chou/Bentler,
1995; Reinartz et al., 2009; Ringle et al., 2009).
In general adding indicators has a positive impact on accuracy for ML and
PLS (which is even stronger as sample size increases), but for too little sam-
ples (e.g. 20 observations; Chin et al., 2003). In general eight (or even
more) indicators lead to quite acceptable ML or PLS results (Areskoug,
1982; Chin/Newsted, 1999; Chin et al., 2003).
Strong correlations between formative indicators have no negative impact on
PLS accuracy (Cassel et al., 1999). Positive correlations between forma-
tive indicators which operationalise the same construct can even increase PLS
estimation accuracy (Cassel et al., 1999). Low (zero) correlations between
some or all formative indicators appertaining to the same measurement model
are problematic for ML estimates: the mean squared error increases because
outliers appear (Ringle et al., 2009). In general a homogeneous correlation
pattern between formative indicators increases accuracy for both methods
(Ringle et al., 2009). Strong correlations between reflective indicators can
lead to an increased mean squared error for ML (Ringle et al., 2009).
The convergence rate of the PLS algorithm is very high, but convergence is not
guaranteed (Henseler, 2010, p. 113). However, convergence is much more a
problem for ML than for PLS. The occurrence of improper solutions (such as
negative variances) is a problem for ML. Both, ML non-convergence and im-
proper solutions are likely to occur when the sample includes less than 200 ob-
servations (Boomsma/Hoogland, 2001 citing Hoogland, 1999; Reinartz
et al., 2009).
Actual power is often higher for PLS than for ML: PLS is able to identify
significant causalities (in the inner model) at least as often as ML, regardless
the size of the respective coefficient, the sample size, the magnitude of the co-
efficients in the measurement model and the number of indicators. Under bad
conditions (implying small coefficients in the measurement models and only
two indicators per latent variable) the difference between ML and PLS actual
power can be very large, f.i. 90% for PLS and 16% for ML referring to the
same coefficient (Reinartz et al., 2009, p. 341). For example Reinartz

42I thereby refer to the path coefficients and not to the standard errors.
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et al. (2009, p. 340) suggest that PLS is the method of choice “when the
research focus lies on identifying relationships (i.e., prediction and theory de-
velopment)”.
For both approaches, but especially for ML, statistical power is positively af-
fected by sample size (Reinartz et al., 2009; Goodhue et al., 2007).
Furthermore, the number of indicators per latent variable has a positive im-
pact on power (Chin et al., 2003; Reinartz et al., 2009). As intuitively
conceivable the detection of a coefficient is more likely the larger a coefficient
is. To some extent sample size can compensate for a small coefficient size
(Chin/Newsted, 1999; Chin et al., 2003; Reinartz et al., 2009).
Goodhue et al. (2007, Appendix F) show PLS simulation results for the ac-
tual size of a test for significance of a coefficient in the structural model. Their
results for the test size vary between 5% and 7% on the 5%-level. According
to Goodhue et al. (2007) this is acceptable. Also Henseler et al. (2014,
p. 195 et seqq.) investigated for PLS the respective test size referring to the
inner model.43 With respect to the “normal confidence intervals” it is not
clear whether the deviations from the nominal size are due to random or not,
as one ratio reaches f.i. 6.8% on the 5%-level. However, Henseler et al.
(2014, p. 196) interpret that the significance level of 5% is largely maintained.
Further, their results hint at the relation between high power and a possible ex-
ceeding of the respective nominal size (Henseler et al., 2014, p. 196). I did
not find other PLS simulation studies in which explicitly the test size of a test
for significance of the path coefficients got examined. This lack pertains also
to studies which investigated the corresponding power, e.g. Chin/Newsted
(1999), Chin et al. (2003) and Reinartz et al. (2009).

With respect to the standard error estimation the data distribution can
substantially affect the ML estimates, i.e. the standard deviations may be
strongly biased for non-normally distributed data (Chou/Bentler, 1995,
p. 46). Under such circumstances reliable ML standard error estimates can be
obtained by estimating robust standard errors or by applying the bootstrap

43Henseler et al. (2014) apply very simple models with two or four indicators, three
indicators per latent variable, a sample size of 100 or 500 and perform 500 replications. The
number of bootstrap replications is not given. To investigate the test size they apply four
different bootstrap confidence intervals and refer in this regard to DiCiccio et al. (1996).
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technique (Chou/Bentler, 1995; Nevitt/Hancock, 2001). For both ap-
proaches, but especially for the bootstrapping, accuracy of the estimates de-
pends on the sample size. The bootstrap technique appears favourable if the
sample consists of at least 200 observations while the data appears clearly
non-normally distributed (Nevitt/Hancock, 2001, p. 371). With respect to
the PLS approach the standard errors must get bootstrapped in any case (see
section 2.2.2). The corresponding estimates decrease as sample size increases.
In formative measurement models and in the structural model the estimates
are negatively affected by skewness and correlations between the indicators
(Cassel et al., 1999, p. 442 et seqq.). The application of the bootstrap
technique requires the determination of a number of iterations. According to
Nevitt/Hancock (2001, p. 371 et seq.) 250 iterations are sufficient for the
ML approach (while 250 is the lowest number of replications the authors as-
sessed). Concerning the PLS approach Hair et al. (2012a, p. 333) state
that “using a small number of bootstrap samples, particularly when the ori-
ginal sample size is much larger, will considerably deflate standard errors”, but
do not suggest a specific number.

I conclude that in PLS application studies the appearing reasons for the
application of PLS rather than ML do mostly not justify the choice of PLS
over ML. In the following I explicate this conclusion more detailed.

In terms of accuracy ML generally outperforms PLS. The data distribution
does not have an impact on estimation accuracy. Therefore, ML should be
preferred even when the data is non-normally distributed.

The sample size affects estimator accuracy and power. As the ML estima-
tors are consistent by all means ML shall be preferred over PLS if the sample
consists of at least 250 observations. With samples smaller than 200 possibly
ML non-convergence or inadmissible solutions arise. Incorporating informa-
tion in the model specification might solve that problem. The PLS estimators
are inconsistent, but consistent at large: to obtain fairly acceptable estimates
the sample should consist of at least 150 observations and each latent variable
should be operationalised by eight or more indicators. If a model incorporates
measurement models that consist of only a few indicators, say two to four,
the PLS results appear strongly biased. In general the PLS estimates appear
biased, but the appearing biases remain somehow stable under varying circum-
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stances. Therefore, the statement that PLS estimates appear “robust” towards
small sample sizes even so implies biased estimates. Although admissible PLS
estimates can usually be obtained with very small samples researchers must
approach such estimates with caution.

ML identification might reach its limits faster than PLS, and ML iden-
tification problems cannot get solved by augmenting the sample size. One
option to reach ML identification may be the incorporation of further infor-
mation, i.e. the restriction of certain parameters. For ML identification the
variance-covariance matrix of the indicators is crucial. The number of available
equations to solve the model algebraically depends on the number of indica-
tors, or more precise depends on the number of non-redundant elements of the
variance-covariance matrix of the indicators. Concerning PLS additional path
coefficients (i.e. model complexity increases) reduce the degrees of freedom.

In an early research stage the detection of significant causalities might mat-
ter when still theory needs to be developed. The fact that PLS shows higher
actual power than ML might therefore motivate to apply PLS. To obtain good
statistical power the PLS analysis should be based on at least 150 observations.
The statements that PLS is favourable with respect to power must be regarded
with caution because the PLS simulation studies which praise PLS power did
not investigate the corresponding test size. In effect, good statistical power
can be achieved by simply rejecting H0 most of the times, and possibly doing
that at the cost of an inflated actual size, i.e. rejecting H0 erroneously too
often. In my opinion the studies of Goodhue et al. (2007) and Henseler
et al. (2014) do not rule out that the actual size systematically exceeds the
respective α-level, although the authors find actual sizes between 5% and 7%
on the 5%-level acceptable. I consider further and systematic investigations for
PLS of the test size of a test for significance of the path coefficients necessary,
f.i. including a larger number of Monte Carlo iterations and applying a model
which incorporates formative indicators.

A model which incorporates formative indicators can get estimated with
the ML approach. Specialised knowledge might be required because of its
non-triviality, referring to the estimation procedure and model identification.

In summary the literature appears to some extent inconsistent as many
statements are contradictory. Further, the increasing number of PLS studies
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must be considered critically. In my opinion the reasons to apply the PLS ap-
proach cannot or only in seldom cases be justified in the field of business discip-
lines. On that account I will contribute an extensive Monte Carlo simulation
(chapter 3). As I consider the investigation of the test size besides statistical
power important (referring to the test for significance of path coefficients) and
see in this regard a research need, I will explicitly investigate it. The model(s)
I will apply will in particular incorporate formative measurement models, be-
cause ML and PLS have barely been compared under such circumstances. My
simulation study will further incorporate a third estimation approach, namely
the so-called OLS approach, which I present in the following section.

2.4 Ordinary Least Squares Approach

2.4.1 Introduction

The prior introduced methods ML and PLS get frequently applied in different
fields of research. The ML approach has a long tradition and its properties are
well known. The PLS approach has so to say become quite popular in mar-
keting and management application studies. Both methods are not trivial but
tools like user-friendly software make the application of both methods rather
easy. In the following I will present another approach to estimate structural
equation models with latent variables, which on contrast is very transparent
and easy to understand. To my best knowledge this approach has not yet been
applied to solve structural equation models. The approach is solely based on
OLS regressions and mathematical computations. I will reveal that the pres-
ented approach underlies some limitations. I remark, that the presented OLS
approach is distinct from the SEM regression approach, where values for the
latent variables are simply computed as averages over equally weighted sums of
the respective indicators (see hereto Gefen et al., 2000; Goodhue et al.,
2007, among others).
In the subsequent section I demonstrate the estimation procedure for a struc-
tural model of low complexity.
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2.4.2 Estimation

The procedure I will present comprises OLS regressions, the estimation of
covariances, and assumptions concerning the latent variable variances and error
covariances. I demonstrate the procedure for the model shown in figure 2.8. In
this model the causality flows in one direction from the x indicators to the y
indicators. Such a model serves to investigate the importance of success factors
for some outcome variables. Compared to the models I introduced previously
44 this model is simplified, since the inner model incorporates solely direct
effects and no error terms enter on the ξ variables. For the demonstration of
the OLS estimation procedure this model is sufficient.
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Figure 2.8: Model used to demonstrate the OLS estimation procedure.

The path coefficients of the applied model (figure 2.8) are labelled as follows:

• πl with l = 1, ..., L and here L = 8,

• γm with m = 1, .., M and here M = 2, and

• λq with q = 1, .., Q and here Q = 3.

44Referring to figure 2.5 page 27 and figure 2.7 page 37.
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The corresponding equations are the following:

ξ1 = π1x1 + ... + π5x5

ξ2 = π6x6 + ... + π8x8

η1 = γ1ξ1 + γ2ξ2 + ζ1

= γ1π1︸ ︷︷ ︸
dq

1

x1 + ... + γ2π8︸ ︷︷ ︸
dq

8

x8 + ζ1 (2.18)

yq = λqη1 + εq

= λqγ1π1︸ ︷︷ ︸
eq

1

x1 + ... + λqγ2π8︸ ︷︷ ︸
eq

8

x8 + λqζ1 + εq︸ ︷︷ ︸
uq

(2.19)

I introduce the parameters dq and eq, which are composed of several param-
eters, according to the equations 2.18 and 2.19. In the latter equation I also
introduce the error term uq. According to the specified causality yq can be
regressed on x. The index “q” indicates values which result from the regres-
sion of yq on x. The intercept in the regressions should be included, because
it cannot cause less accurate parameter estimates. However, in the following
I focus on the eight coefficients which belong to the eight x variables. The
estimates êq are the OLS estimation coefficients

êq = (X′X)−1X′yq.

As the model consists of three y variables, three OLS regressions get performed.
In one regression each of the eight OLS regression coefficients represents a total
effect, which a single xl variable has on the specific yq. In the presented OLS
approach I target the division of the estimated total effects into the single
coefficients, i.e. into π̂, γ̂ and λ̂.

In the following I show the division for regression q:
At first fitted values get computed as

η̂q∗ = êq
1x1 + ... + êq

8x8.

In the equation η̂q∗ equals the fitted values ŷq, but for didactic reasons I name
these values η̂q∗. It is crucial to note that the only difference between η̂q∗ and
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η̂1 is the factor λ̂q.45 Therefore, the variance relation is

var(η̂q∗) = λ̂2
q · var(η̂1).

η̂1 is unknown, but I specify the variance of η̂1 to take on the value one. As
explained before, the scale of the latent variables needs to be defined (also PLS
assumes latent variable variances of one). Accordingly, λ̂q can be computed as

var(η̂q∗) = λ̂2
q · var(η̂1)︸ ︷︷ ︸

!=1

(2.20)

⇒ λ̂q =
√
var(η̂q∗). (2.21)

Applying the estimate λ̂q I compute d̂q as follows:

êq = λ̂qγ̂
qπ̂q

= λ̂qd̂q

⇒ d̂q = γ̂qπ̂q = êq

λ̂q

(2.22)

An example is d̂q
1 = êq

1
λ̂q
. With the vector d̂q new fitted values ξ̂

q∗
can be

computed as

ξ̂q∗
1 = d̂q

1x1 + ... + d̂q
5x5,

ξ̂q∗
2 = d̂q

6x6 + ... + d̂q
8x8.

The only difference between ξ̂∗
g and ξ̂g (for g = 1, 2) constitutes the factor γ̂m.

Analogous to before I specify the variance of each latent variable to take on
the value one. The variance relation implies (for g = m)

var(ξ̂q∗
g ) = (γ̂q

m)2 · var(ξ̂q
g)︸ ︷︷ ︸

!=1

(2.23)

⇒ γ̂q
m =

√
var(ξ̂q∗

g ).

Using the estimates λ̂q, γ̂q
1 and γ̂q

2 subsequently π̂q can get estimated

π̂q = êq

λ̂γ̂q
. (2.24)

45η̂q∗ = êq
1x1 + ... + êq

8x8 = λ̂qγ̂1π̂1x1 + ... + λ̂qγ̂8π̂8x8 = λ̂q(γ̂1π̂1x1 + ... + γ̂8π̂8x8) = λ̂q η̂1

(according to equation 2.18) with η̂1 = γ̂1π̂1x1 + ... + γ̂8π̂8x8.
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For example the estimate π̂1 is

π̂1
1 =

ê1
1

λ̂1γ̂1
1

(2.25)

based on the regression y1 on x.

This procedure needs to be done for each y variable. In my model there are
eight total effect coefficients for each yq. The result is one estimate λ̂q and Q

estimates for each γ̂ and π̂ (the model consists of Q = 3 y variables). Thus,
π̂1 can be estimated according to equation 2.25 as well as according to the
equations:

π̂2
1 =

ê2
1

λ̂2γ̂2
1
, (2.26)

π̂3
1 =

ê3
1

λ̂3γ̂3
1
. (2.27)

The model contains more information than has been used so far. This
information is revealed by the covariances between the three y variables. In
the equation

cov(ŷk, ŷs) = cov(λ̂kη̂1, λ̂sη̂1) (2.28)

the indices k and s label two different y variables (k �= s), which belong to
the same latent variable η1 (the error terms are uncorrelated). Applying the
covariances between the fitted values of the y variables the λ̂q can get estimated
as follows:

cov(ŷ1, ŷ2) = cov(λ̂1η̂1, λ̂2η̂1)

= λ̂1λ̂2 var(η̂1)︸ ︷︷ ︸
!=1

(2.29)

λ̂2 =
cov(ŷ1, ŷ2)

λ̂1

cov(ŷ1, ŷ3) = cov(λ̂1η̂1, λ̂3η̂1)

= λ̂1λ̂3 var(η̂1)︸ ︷︷ ︸
!=1

λ̂3 =
cov(ŷ1, ŷ3)

λ̂1
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cov(ŷ2, ŷ3) = cov(λ̂2η̂1, λ̂3η̂1)

= λ̂2λ̂3 var(η̂1)︸ ︷︷ ︸
!=1

= cov(ŷ1, ŷ2)
λ̂1

· cov(ŷ1, ŷ3)
λ̂1

=⇒ λ̂1 =

√√√√cov(ŷ1, ŷ2) · cov(ŷ1, ŷ3)
cov(ŷ2, ŷ3)

(2.30)

The variance of the latent variable is consistently specified to take on the
value one. With the estimate λ̂1 the two other parameters λ̂2 and λ̂3 can be
estimated according to the system of equations. As this example demonstrates
a reflective specified latent variable needs at least three indicators for this kind
of estimation procedure. The application of equation 2.30 becomes particularly
important for models which incorporate solely reflective indicators, see at the
end of this section and figure 2.9 page 52.

According to equation 2.30 the fraction below the square root must take on a
non-negative number. Moreover, the denominator may not be zero. The latter
condition is true for all fractions, i.e. for the equations 2.22 and 2.24. Even
values close to zero can be problematic because the respective fraction becomes
irregular large and can thereby distort the results. This fact constitutes a
“limitation” to which I referred in section 2.4.1.

The procedure has several starting points. Instead of solving λ̂1 first al-
ternatively λ̂2 or λ̂3 can get solved first. If a latent variable has more than
three indicators, it does make a difference which parameter gets estimated first.
The number of possible starting points corresponds with a combination with-
out repetition, because cov(ŷk, ŷs) equals cov(ŷs, ŷk). In case a latent variable
is operationalised by five reflective indicators there are(

5
2

)
= 10

starting points, because two indicators get picked out of five (i.e. ŷk and ŷs)
to examine cov(ŷk, ŷs). Further, each starting point can be varied three times
(= 5 − 2). As an example I show the three variations for one starting point
cov(ŷ1, ŷ2) = λ̂1λ̂2 (see equation 2.29):
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1. λ̂1 =
cov(ŷ1, ŷ3)

λ̂3

λ̂2 =
cov(ŷ2, ŷ3)

λ̂3

⇒ λ̂3 =

√√√√cov(ŷ1, ŷ3) · cov(ŷ2, ŷ3)
cov(ŷ1, ŷ2)

2. λ̂1 =
cov(ŷ1, ŷ4)

λ̂4

λ̂2 =
cov(ŷ2, ŷ4)

λ̂4

⇒ λ̂4 =

√√√√cov(ŷ1, ŷ4) · cov(ŷ2, ŷ4)
cov(ŷ1, ŷ2)

3. λ̂1 =
cov(ŷ1, ŷ5)

λ̂5

λ̂2 =
cov(ŷ2, ŷ5)

λ̂5

⇒ λ̂5 =

√√√√cov(ŷ1, ŷ5) · cov(ŷ2, ŷ5)
cov(ŷ1, ŷ2)

On the basis of the covariances between the fitted y values 30 (= 10 · 3)
equations appear to estimate five λ coefficients, i.e. six equations appear for
each λq.

Further, I illustrate how estimates for the error variances can be obtained,
referring to figure 2.8 (page 45). A result of an OLS regression q are the errors
ûq. The covariance between two errors ûk and ûs (k �= s) provides information,
because the covariance ascribes to the common error ζ1, see equation 2.19 (page
46). The latter equation reveals that the residuals uq are composed of λqζ1+εq.
For uncorrelated errors the variance relation is

var(uq) = λ2
q · var(ζ1) + var(εq). (2.31)

Assuming uncorrelated error terms and using the estimated values, the covari-
ance between two different errors is:

cov(ûk, ûs) = cov(λ̂kζ̂1 + ε̂k, λ̂sζ̂1 + ε̂s)

= λ̂k · λ̂s · var(ζ̂1)
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In doing so
(

Q
2

)
=
(

3
2

)
= 3 estimates var(ζ̂1) can be obtained.

According to equation 2.31 the variances of the other error terms ε equal

var(ε̂q) = var(ûq) − λ̂2
q · var(ζ̂1).

According to the presented approach several estimates for one and the same
parameter exist. Although estimates can be obtained in different ways, the
estimates cannot take on two different values such as λ̂q and λ̂q + c for any
constant c. Possible differences are only marginal. Hence, the estimates are
non-arbitrary and determined. By estimating the parameters in different ways
I incorporate all information the model contains. At this point I refer to my
simulation study in chapter 3 and briefly anticipate that my study ascertains
consistent and accurate estimates, so that the proceeding seems appropriate
to receive the best estimate.

So far I concentrated on the estimation of the π, γ and λ coefficients and
of the variances var(ζ) and var(ε). The variances of the coefficient estimates
can get estimated as follows:

The variances of the regression coefficients êq (representing the total effects)
result as well known OLS standard deviations:

var (êq) = (σq)2 (X′X)−1

The variances belonging to π̂, γ̂ and λ̂ can be estimated by applying the
bootstrap technique. Initially, the êq get bootstrapped (for each q). These
estimates get divided into the individual coefficients. The variances of these
estimates (the number of bootstrap replications determines the number of
available estimates) represent the estimated (bootstrapped) variances. For an
introduction to the bootstrap technique see Appendix C.

Finally, I want to call attention to another model specification. In the lit-
erature many studies can be found using exclusively reflective measurement
models, see e.g. figure 2.9.46 The OLS approach works as well for such specifi-
cations. In Appendix E I present the estimation procedure, referring to figure
2.9. The model does not comprise the error terms δ and ζ, but to present the
procedure this simplified model is sufficient.

46In practical applications measurement models may be incorrectly specified in a reflective
way, see hereto Jarvis et al. (2003).
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Figure 2.9: Model with solely reflective indicators.

2.4.3 Identification

With respect to the OLS approach the identification of a structural equation
model requires a sufficient sample size and all parameters need to be deter-
mined.

Referring to sample size OLS identification is partially analogous to the
identification of a multivariate regression. The sample needs to obtain at the
very least as many observations as the model contains regressors (plus one for
the intercept), i.e. degrees of freedom ≥ 0. In a model where all exogenous
latent variables are operationalised in a formative way and all endogenous
latent variables in a reflective way, the required minimal sample size equals
the number of formative indicators (i.e. x variables) plus one for the intercept.
For example in the model shown in figure 2.8 (page 45) the minimum sample
size is nine, if an intercept is included.

In Appendix E I show the estimation procedure for a model which incorpor-
ates solely reflective indicators. To estimate such models each latent variables
needs to be operationalised by at least three indicators (according to equation
2.30).
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Another restriction for identification is analogous to the identification in the
ML world. A model might incorporate indeterminacies which in general imply
somehow missing information and arbitrary results. The incorporation of in-
formation, i.e. imposing restrictions can solve the indeterminacies, for example
to specify an error variance to take on the value zero. Concerning this I refer
again (as in section 2.1.3) to MacCallum/Browne (1993, p. 537 et seq.)
and to section 3.1.4 (equations 3.4 and 3.5 page 65 et seq.), in which I give
an example for exactly this kind of indeterminacy. For this very reason in the
model 2.8 shown in figure I specified ξ error free.

Usually, when we talk about a model, which does not have unique solutions
for parameters, we imply arbitrary results. In the OLS approach determined
results may not be unique in the traditional sense. Parameters can sometimes
be solved in different manners, but still without being arbitrary. I even argue
that by solving parameters in different manners more given information gets
incorporated in the resulting estimates.
My simulation study will ascertain that the average over all available estimates
for one and the same parameter yields a very accurate estimate (see the results
in section 3.3.1).



Chapter 3

Simulation Study

3.1 Set-up

3.1.1 Study Design

I purpose to investigate and compare estimation qualities for the three pre-
sented approaches ML, PLS and OLS. To do so a Monte Carlo simulation is
appropriate, as it represents a powerful tool to assess estimator behaviour, for
example estimator robustness towards multicollinearity or different error term
distributions. In my study I specify many different cases and assess them by
performing 10,000 (K) iterations per case. All estimations get performed with
the software R (R Core Team, 2014), including in particular the contributed
packages plspm (Sanchez et al., 2013) and sem (Fox et al., 2013).

The specified model, see figure 3.1, has three latent variables incorporated.
Two of them are operationalised in a formative way and one in a reflective
way. Looking at the indicators the model shows a straightforward causality
going from the x to the y variables. This case is quite important since the
object of a study is often to investigate the role of drivers / success factors on
a particular outcome, e.g. financial performance. The model design is quite
simple. I choose this model on purpose since it corresponds with the model
I used for the introduction of the OLS approach (section 2.4). Therefore, my
work becomes replicable and transparent.

I determine the number of variables, the paths between them and the error
terms according to figure 3.1. Additionally, the following aspects need to be

54
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determined:

• The variance-covariance matrix V of x,

• the distribution of the x variables,

• the eight π coefficients (L = 8),

• the two γ coefficients (M = 2),

• the three λ coefficients (Q = 3),

• the distribution of the error terms,

• the determination coefficients (R2) and

• the sample size (n).
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Figure 3.1: Specified model for simulation study.

Furthermore, the different assumptions of the three investigated approaches
need to be taken into account. The ML approach restricts some coefficients
to take on the value one (see section 2.1.1). The PLS algorithm ensures that
the variances of the latent variable scores equal a value of one, respectively
(see section 2.2.2). The OLS approach assumes that the variances of the
fitted values of the latent variables take on the value one, respectively (see
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section 2.4.2). Any of these assumptions determines the scale of the latent
variables and constitutes a criterion for identification. Before starting the
data generation process the different suppositions of the methods ought to be
considered. In this study the model gets specified in order to obtain latent
variable variances equal to a value of one, referring only to the explained sum
of squares (ESS). This can be realised by choosing appropriate coefficients (see
section 3.1.3). To compare all estimates with the population parameters, the
estimates must rely on the same scaling as the true model. Therefore, all
estimates, which rely on a different scaling, must get rescaled.
The data generation characteristic ESS=1 is in line with the OLS assumption.
Consequently, the OLS results can be compared with the the population par-
ameters without scaling them.
Although both, the PLS and the OLS approach suppose both latent variable
variances equal to a value of one, the assumptions do somehow differ. Only
when looking at a formative measurement model the PLS estimates do not
need to get rescaled to compare them with the population parameters. The
underlying supposition is in line with ESS=1 (referring to ξ1 and ξ2) as the
PLS approach computes in general scores as weighted sum of the indicators
and in formative measurement model regresses thereafter these scores on its
indicators. Consequently, in formative measurement models each performed
linear regression results in perfect fit, or to put it in other words the error term
is zero and the variance of the scores (here ξ1 and ξ2) is only composed of ESS
(i.e. ESS=TSS, total sum of squares). Concerning the rest of the model the
PLS estimates need to get rescaled. As a part of the algorithm the variance of
the scores of η1 is scaled to a value of one, while the true variance of the latent
variable η1 is different from one, because the true variance of η1 is composed
of ESS (which I set one) and the variance of ζ1 (RSS, residual sum of squares).
Consequently, with respect to the structural model and the reflective measure-
ment model the PLS estimates need to get another scale.
The ML estimates need to get rescaled concerning the entire model, because
its latent variable scaling does not correspond with the population parameters.

The data generation process, which ensures that ESS of all latent variables
takes on the value one, is delineated in section 3.1.3. The scaling procedures
are elucidated in section 3.2.1.
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In the following section I designate all specifications I investigate.

3.1.2 Specifications

The starting point constitutes the model shown in figure 3.1 (page 55). For
this model I determine the specification and name the setting “basic model”.
Later on I perform variations based on this basic model.

The design determinants of the basic model look in detail like the following:
The variance-covariance matrix of x, VI, has on the main diagonal only values
of one.47 The correlations (covariances and correlations are identical) between
the formative measurement blocks range between 0.01 and 0.2 and within the
measurement blocks they range between 0.15 and 0.35.

E(xx′) = VI =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0.25 0.30 0.35 0.20 0.05 0.01 0.05
0.25 1 0.30 0.20 0.15 0.15 0.05 0.15
0.30 0.30 1 0.35 0.20 0.01 0.04 0.02
0.35 0.20 0.35 1 0.25 0.05 0.01 0.02
0.20 0.15 0.20 0.25 1 0.10 0.15 0.20
0.05 0.15 0.01 0.05 0.10 1 0.25 0.30
0.01 0.05 0.04 0.01 0.15 0.25 1 0.20
0.05 0.15 0.02 0.02 0.20 0.30 0.20 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
In order to represent a correlation matrix VI is positive definite.

Settings of the specification are

• normally distributed x variables with μ = 0 and σ2 = 1,

• π′ = (0.8, 0.5, 0.8, 0.6, 0.4, 0.6, 0.4, 0.5),

• γ ′ = (0.9, 0.9),

• λ′ = (1, 0.7, 0.9),48

47The index “I” (in VI) indicates that this matrix is the first one out of several specified
variance-covariance matrices.

48The coefficients π, γ and λ are preliminary, because they do not lead to latent variable
variances that equal a value of one, respectively. The coefficient adjustment is illustrated in
section 3.1.3.
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• (R2)fMM = 1 (determination coefficient in the formative measurement
model),49

• (R2)SM = 0.5 (determination coefficient in the structural model),

• (R2)rMM = 0.5 (determination coefficient in the reflective measurement
model),

• normally distributed error terms with μ = 0, the variances depend i.a.
on the determined R2 (see section 3.1.3) and

• a sample size of n = 300.

To compare estimation qualities for different cases I systematically vary the
specification of the basic model by changing one specific aspect at a time:
I incorporate a lower amount of explained variance, since such cases can be
considered to play a role in practical applications. The same is true for ap-
pearing non-normality, so that I incorporate non-normally distributed error
terms. With regard to sample size I assess different cases, ranging from very
small to very large sample sizes. Further, the PLS property “consistency at
large” is of interest and how the three approaches differ from each other in
terms of accuracy, when the sample size is large and each latent variable gets
operationalised by a relatively large number of indicators. Moreover, I vary the
variance-covariance matrix of x: To understand the behaviour of the estima-
tors I apply an identity matrix (although this case may not occur in practical
applications) and a matrix which features (imperfect) multicollinearity. Fur-
thermore, I simulate a case where the exogenous indicators are discrete such
that they can represent questionnaire data. I specify a model which includes
coefficients which take on the value zero. This model serves to investigate the
test size and statistical power of a test for significance of the path coefficients.

I specify the following cases:

A The determination coefficient R2 is 0.2 in both, the reflective measure-
ment model and the structural model. In the formative measurement
model it is kept 1.

49(R2)fMM = 1 implies that the formative measurement model incorporates no error term,
as it is depicted in figure 3.1. I reason this specific aspect in section 3.1.4.
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B The error terms follow a non-central chi-squared distribution (B1) or a
continuous uniform distribution (B2), respectively, see for details Ap-
pendix F.

C The sample size is 15 (C1), 50 (C2), or 1,000 (C3).

D The number of indicators increases together with the sample size: The
number of indicators remains as specified above (11) and the sample
size is 50 (D1), the number of indicators per latent variable doubles
(22) while n is 300 (D2), and the number of indicators quadruples (44)
while n is 1,000 (D3). As the cases differ in the number of x variables,
the variance-covariance matrices of x necessarily differ. To make the
cases perfectly matchable, I apply for all three cases an identity matrix
as variance-covariance matrix of x.50 The coefficient values correspond
with those specified above, i.e. the respective π and λ coefficients double
or quadruple.

E As variance-covariance matrix of x I apply an identity matrix

VII = I (E1)

and a matrix which features (imperfect) multicollinearity51:

VIII =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0.9 0.8 0.9 0.85 0.45 0.4 0.5
0.9 1 0.8 0.8 0.85 0.45 0.4 0.4
0.8 0.8 1 0.9 0.95 0.4 0.4 0.4
0.9 0.8 0.9 1 0.85 0.4 0.4 0.45
0.85 0.85 0.95 0.85 1 0.45 0.4 0.45
0.45 0.45 0.4 0.4 0.45 1 0.9 0.95
0.4 0.4 0.4 0.4 0.4 0.9 1 0.9
0.5 0.4 0.4 0.45 0.45 0.95 0.9 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(E2)

50The case D1 differs from B2, as in D1 an identity matrix and in B2 the matrix VI

constitutes the variance-covariance matrix of x.
5110,000 x samples (n = 300) yielded on average the following adjusted determination

coefficients: R
2 = 0.958249 for x1 regressed on x2 to x8; R

2 = 0.9396271 for x1 regressed
on x2 to x5; R

2 = 0.9124331 for x6 regressed on x7 and x8.
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The matrices VII and VIII are positive definite, too.52 The variance-
covariance matrix impacts the variances of the endogenous variables, but
I ensure that the proportion between explained and unexplained variance
of the endogenous variables explicitly remains unchanged, respectively.

F The exogenous indicators x are discrete. I first sample the x variables
from a multivariate normal distribution according to the basic model and
thereafter aggregate them to 7 values.

G I augment each measurement model by one extra regressor whose true
influence is zero, see figure 3.2. The dashed lines in the figure indicate
that these coefficients take on the value zero. As all other coefficients
correspond with those specified above, the coefficients are the following:
π′ =(0.8, 0.5, 0.8, 0.6, 0.4, 0, 0.4, 0.6, 0.5, 0), γ ′ = (0.9, 0.9) and
λ′ = (1, 0.7, 0.9, 0).53 The variance-covariance matrix is defined as

VG =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0.25 0.30 0.35 0.20 0.20 0.05 0.01 0.05 0.05
0.25 1 0.30 0.20 0.15 0.20 0.15 0.05 0.15 0.15
0.30 0.30 1 0.35 0.20 0.20 0.01 0.04 0.02 0.01
0.35 0.20 0.35 1 0.25 0.20 0.05 0.01 0.02 0.05
0.20 0.15 0.20 0.25 1 0.20 0.10 0.15 0.20 0.10
0.20 0.20 0.20 0.20 0.20 1 0.05 0.01 0.05 0.05
0.05 0.15 0.01 0.05 0.10 0.05 1 0.25 0.30 0.20
0.01 0.05 0.04 0.01 0.15 0.01 0.25 1 0.20 0.20
0.05 0.15 0.02 0.02 0.20 0.05 0.30 0.20 1 0.20
0.05 0.15 0.01 0.05 0.10 0.05 0.20 0.20 0.20 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and is based on VI.

The specified cases A to G differ from the basic model only in the defined
specification aspect. To simulate an extreme case of non-normality I combine

52The variance-covariance matrix of x constitutes an identity matrix in variation E1 as
well as in all D cases. Although the cases include different number of x variables, implying
different dimensions of their variance-covariance matrix, I will label all identity matrices
VII.

53Analogous to before this coefficients do not yield ESS=1 referring to the latent variables.
Thus, the coefficients still need to get adjusted according to the subsequent section 3.1.3.
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Figure 3.2: Model for case G.

variation A and the two B cases, named AB1 and AB2. These cases involve
non-normally distributed errors and the variation due to error makes 80%
referring to η1 and each yq, respectively.

I investigate estimation accuracy (section 3.3.1) for all cases, but for vari-
ation G. Additionally I investigate accuracy of the PLS estimates applying
the different PLS inner schemes:54 the centroid, factorial and path weighting
scheme, in this respect see further section 3.1.4.

On the basis of variation G I investigate size and power of the test for
significance of the path coefficients (section 3.3.2). The PLS standard errors
need to get bootstrapped to determine significance. I specify the number of
bootstrap replications to 100 (KB), which is the default number of bootstrap
replications in the plspm package (Sanchez et al., 2013) in R (R Core
Team, 2014). Additionally I perform two extra simulations including 300
or 1,000 PLS bootstrap replications, because a too low number of bootstrap
replications may lead to deflated standard deviations (Hair et al., 2012a,
p. 333). In the ML world bootstrapping is not always the best choice. If
the assumption of multinormality is met bootstrapping is not necessary or

54See step 2a in section 2.2.2.
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should even be avoided (Nevitt/Hancock, 2001, p. 369 et seqq.). Since case
G is correctly specified55 and incorporates solely normally distributed data I
consequently use the standard deviations which result from the ML estimation.
Nevertheless, I estimate also the bootstrapped standard errors (with KB =
300), but consider this as an additional check. Further, I investigate whether
the PLS inner schemes have an impact on test size and power.
I will present my simulation results in section 3.3 and prior to this tabulate all
specified cases, see table 3.1 page 76 et seq.

3.1.3 Data Generation

The data generation process is supposed to produce latent variable variances
equal to a value of one referring only to the explained variation (see section
3.1.1). To do so the specified coefficients need to get adjusted. Referring to
the basic model the adjustment works as follows:

The variance-covariance matrix of ξ depends on the specified variance-
covariance matrix of x and on the theoretical values π. It is

E(ξξ′) = π′VIπ (3.1)

with π representing a 8 x 2 matrix

π′ =
⎛⎝0.8 0.5 0.8 0.6 0.4 0 0 0
0 0 0 0 0 0.6 0.4 0.5

⎞⎠
according to the basic specification. To render the variances of ξ1 and ξ2 equal
to a value of one, the coefficients need to get divided by the respective variances
(the values on the main diagonal of E(ξξ′)).

πtrue
l = πl√

var(ξ1)
for l = 1, ..., 5

πtrue
l = πl√

var(ξ2)
for l = 6, ..., 8

With respect to η1 the value ESSη1 is supposed to take on the value one. The
procedure is analogous to before. The preliminary variance of η1 gets computed

55A correct model specification is required to obtain unbiased estimates of the standard
errors (Kaplan, 1989, p. 44).
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as var(η1) = d’VId. The vector d has length eight. Its first five elements take
on the values γ1 · πtrue

l with l = 1, ..., 5 and the last three take on the values
γ2 · πtrue

l with l = 6, ..., 8. With

γtrue = γ√
var(η1)

my purpose is accomplished: ESSξ1 = ESSξ2 = ESSη1 = 1, while for both ξ

variables this values corresponds with TSSξg (g = 1, 2). The variances of the
y variables do not need to get a certain scale.

Finally, the coefficients take on the following values:

• (πtrue)′ = (0.55874, 0.34921, 0.55874, 0.41906, 0.27937, 0.45584,
0.68376, 0.56980),

• (γtrue)′ = (0.70711, 0.70711),

• λ′ = (1, 0.7, 0.9).

In the following procedure I exclusively apply these coefficients (referring to
the basic model).

Further, the variances of the error terms need to be determined. The vari-
ance of ζ1 is

var(ζ1) = RSSη1 = ESSη1 ·
(

1
(R2)SM − 1

)
. (3.2)

As in the basic model (R2)SM = 0.5 the variance of ζ1 takes on the value 1.00.
Subsequently, the variance of each error term εq can be determined:

var(εq) = ESSyq ·
(

1
(R2)rMM − 1

)
(3.3)

= λ2
q · var(η1) ·

(
1

(R2)rMM − 1
)

,

with var(η1) = ESSη1 + RSSη1 . For the basic model the variances of the
respective error terms take on the values ε′ = (2.00, 0.98, 1.28).
To generate the data sets no more values are required.
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The data generation process looks like the following. Initially, x gets sam-
pled from a multivariate normal distribution with sample size n. For this pur-
pose I use the R (R Core Team, 2014) package simFrame (Alfons, 2014).
With the x sample the ξ variables can be computed as

ξ1 =
5∑

l=1
πtrue

l · x,

ξ2 =
8∑

l=6
πtrue

l · x.

To compute η1 the error term ζ1 must get sampled from a certain distribu-
tion with certain population parameters (see section 3.1.2). For normally dis-
tributed error terms I sample ζ1 from a normal distribution with mean zero
and var(ζ1) according to equation 3.2. Then η1 can be computed as

η1 = γtrue
1 · ξ1 + γtrue

2 · ξ2 + ζ1.

Further, η1 serves the generation of the three y variables. The required error
terms εq get sampled from the same population as ζ1. The respective distri-
bution is characterised by mean zero and a variance which corresponds with
equation 3.3. With three different samples of εq all y variables can get com-
puted:

y = λη1 + ε.

For the cases in which the error terms are non-normally distributed see further
Appendix F.

The variance-covariance matrix of y is not required for the data generation
process, but is a result from the prior specifications. For the basic model it is

E(yy′) =

⎛⎜⎜⎜⎝
4.00 1.40 1.80
1.40 1.96 1.26
1.80 1.26 3.24

⎞⎟⎟⎟⎠
since the error terms are completely uncorrelated.56

56This matrix arises independent from the applied variance-covariance matrix of x, f.i.
it is cov(y1, y2) = cov(λ1η1 + ε1, λ2η1 + ε2) = λ1λ2var(η1). Since var(η1) is constantly 2
(because ESSη1 = 1 and (R2)SM = 0.5) the variances and covariances can only be influenced
by adjusting the λ coefficients.
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3.1.4 Comments on Model Identification and Estima-
tion

A model needs to fulfil certain requirements in order to be identified in terms
of a certain estimation approach.

The presented approaches scale the latent variables in different manners.
Within the OLS and PLS approach the variances of the latent variable get
fixed to a value of one. In the ML world the respective variances get their
scale by fixing some coefficients.

My specified model (figure 3.1 page 55) is in terms of PLS identified when
the sample consists of at least 6 observations. Concerning ML and OLS the
identification is somehow more extensive. In the following I elucidate these
identification issues.

For ML identification I restrict three coefficients since my specified model
incorporates three latent variables. Precisely I fix one coefficient per measure-
ment model to a value of one, see figure 3.3. In doing so ξ1 adopts the scale of
x1, ξ2 adopts the scale of x6 and η1 adopts the scale of y1. Since the assumption
that ESS of each latent variable equals a value of one is not met, the resulting
estimates need to get rescaled such that the results can be compared with the
population parameters, see section 3.2.1.

Further, some restrictions concerning the error terms are required in respect
of both, OLS and ML identification. If the variances of the errors, which enter
ξ1, ξ2 and η1, would be specified “free” the following indeterminacy would
appear: Substituting ξ1 = π1x1 + ... + π5x5 + δ1 and ξ2 = π6 + ... + π8x8 + δ2

into η1 = γ1ξ1 + γ2ξ2 + ζ1 leads to a total error uη1 = γ1δ1 + γ2δ2 + ζ1. As the
errors are assumed to be uncorrelated (with each other and with the respective
independent variables) the total error variance is

var(uη1) = γ2
1 · var(δ1) + γ2

2 · var(δ2) + var(ζ1). (3.4)

Adding arbitrarily chosen constants in the following manner reveals the inde-
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Figure 3.3: Model to explain identification (referring to figure 3.1).

terminacies:57

var(δ1)� = var(δ1) + c1

var(δ2)� = var(δ2) + c2

var(ζ1)� = var(ζ1) − γ2
1 · c1 − γ2

2 · c2

var(uη1)� = γ2
1 · var(δ1)� + γ2

2 · var(δ2)� + var(ζ1)�

= γ2
1 · var(δ1) + γ2

1 · c1 + γ2
2 · var(δ2) + γ2

2 · c2

+ var(ζ1) − γ2
1 · c1 − γ2

2 · c2

= var(uη1) (3.5)

Hence, an infinite number of solutions for the error variances exists which fulfil
equation 3.4. Consequently, it is not an option to specify var(δ1), var(δ2) and
var(ζ1) as free parameters. However, imposing some restrictions solves the
problem. I choose the restriction

var(δ1) = var(δ2) = 0 (3.6)

and let var(ζ1) free.58

Restriction 3.6 ensures identification for ML and OLS and is in terms of PLS
57See also MacCallum/Browne (1993) to whom I referred earlier in section 2.1.3.
58Alternatively identification could be reached by setting var(δ1) = var(δ2) = var(ζ1).
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favourable. Due to a characteristic of the PLS algorithm equation 3.6 is as
well met in PLS without explicitly imposing this restriction. PLS scores for
a latent variable result as linear combination of its respective indicators (see
section 2.2.2). Thereafter the scores get regressed on the respective indicators
(e.g. ξ̂PLSscores

1 on x1 to x5). Consequently, such multiple regression yields a
determination coefficient which takes on the value one, i.e. the error variance
takes on the value zero. This is the case for ξ1 and ξ2.

The OLS specification is equivalent to the ML specification, but instead of
fixing the red coloured coefficients (see figure 3.3 page 66) the latent variable
variances are fixed to a value of one. The OLS regressions get performed
including intercepts. As I elucidated earlier for some parameters several OLS
estimates might be obtained depending on the model specification. In this
model this is the case for π, γ and λ as well as for var(ζ1). For each parameter
the average over all available estimates yields the parameter estimate, which
gets assessed regarding its accuracy.

Concerning the ML approach I set ex ante starting values. For some
cases ML may converge and yield an inconspicuous estimate of the variance-
covariance matrix but show some implausible estimates of some coefficients and
their standard deviations. This may be the case if the likelihood maximisation
does not have a unique solution and several maxima exist. Given a single case
a conscientious researcher would reject these results. Including starting values
(or changing them) may possibly yield the appropriate ML maximum. Also
appearing non-convergence may get solved by applying good starting values.
Within my Monte Carlo simulation I set in advance starting values (instead
of varying them for each case and assessing the results individually). I do this
solely for the π coefficients which are specified free. To get the highest chance
to get appropriate estimates I use the true values.

With respect to PLS three options exist to estimate the inner weights: the
centroid, the factorial and the path weighting scheme (see section 2.2.2). For
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all specified cases I apply the centroid scheme. In addition to that I apply the
factorial and the path weighting scheme for the basic model and for variation
G (see section 3.1.2) to compare parameter accuracy as well as test size and
power of a test for significance of the path coefficients.59

Regarding variation G there is one more thing to add. As the model includes
coefficients which take on the value zero, some total effects take on the value
zero. Therefore, an accurate OLS estimate of such total effect results in a
value close to zero. A value of zero as well as a value close to zero cannot be
divided accurately. In the equations 2.22 and 2.24 page 47 a small value in the
denominator, yields inflated estimates, respectively. Moreover, the covariance
between y4 and another yq variable is zero and an accurate estimate will yield a
value close to zero. Consequently, the estimation of the λ coefficients according
to equation 2.30 page 49 becomes problematic, too. Therefore, with respect to
variation G I analyse the total effect coefficients in terms of the OLS approach.
As these coefficients equal the OLS estimates also the corresponding standard
errors serve to investigate parameter significance and it is not necessary to
apply the bootstrap technique.

3.2 Analysis

3.2.1 Scaling of the ML and PLS Results

The population parameters and the estimates must match concerning their
underlying scaling, i.e. ESS of each latent variable takes on the value one. A
scaling is necessary for the ML and the PLS approach. The scaled coefficients
can then get compared with the theoretical values and are labelled with “final”.

I begin with the scaling of the ML estimates according to the deployed
model, see figure 3.3 page 66.

59According to Noonan/Wold (1982) and Ringle et al. (2009) the weighting scheme
has only a marginal (and unsteady) impact on the estimation results and the centroid scheme
may get applied. On the contrary Hair et al. (2012a, p. 333) state “[...]researchers have
to consider that the schemes are not universally applicable to all kinds of model set-ups.
For instance, the centroid scheme must not be used when estimating higher order models”.
Therefore, I compare the results for all weighting schemes.
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In order to imply a variance of ξ̂ML equal to a value of one, the ML estimates
π̂ML get scaled as follows:60

π̂MLfinal
l = π̂ML

l√
var

(
ξ̂ML

1

) for l = 1, ..., 5 (3.7)

and

π̂MLfinal
l = π̂ML

l√
var

(
ξ̂ML

2

) for l = 6, ..., 8. (3.8)

The scaled π̂MLfinal coefficients imply a variance of each exogenous latent vari-
able equal to a value of one: var(ξ̂MLfinal

1 ) = var(ξ̂MLfinal
2 ) = 1. This scaling

affects the γ̂ML coefficients in the inner model, where the ξ̂ML variables enter
as independent variables. The corresponding adjustment of γ̂ML is done in two
steps. At first it is

γ̂MLprel
1 = γ̂ML

1 ·
√
var

(
ξ̂ML

1

)
,

γ̂MLprel
2 = γ̂ML

2 ·
√
var

(
ξ̂ML

2

)
,

with ”prel” meaning ”preliminary”. The coefficients are not yet final, because
up to here the variance of η̂ML

1 has not been adjusted. To do so, I compute the
ξ̂MLfinal fitted values with the scaled π̂MLfinal coefficients. In the next step final
γ coefficients get computed such that they lead to var(η̂MLfinal

1 ) = 1. With

η̂MLprel
1 = γ̂MLprel

1 ξ̂MLfinal
1 + γ̂MLprel

2 ξ̂MLfinal
2

the final γ coefficients result as

γ̂MLfinal = γ̂MLprel√
var

(
η̂MLprel

1

) . (3.9)

The latter adjustment according to equation 3.9 has not only consequences
for the inner model, where η is the dependent variable, but as well for the
reflective measurement model where η is the independent variable. Therefore,
the λ coefficients need to be rescaled, too:

λ̂MLfinal = λ̂ML ·
√
var

(
η̂MLprel

1

)
. (3.10)

After all, the scaling process does not change the variance of each yq.
60The variances of ξ̂ML can be computed analogous to equation 3.1 page 62.
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With respect to variation G I investigate the significance of the parameters.
The previously performed scaling of the coefficients entails also a scaling of the
respective standard deviations, which I need to determine significance. How-
ever, a parameter scaling does not have an impact on parameter significance,
i.e. on the value of the test statistic. Consequently, to determine significance
the unscaled parameter estimate and the unscaled standard deviation (whether
bootstrapped or not is irrelevant) can be applied to compute the test statistic.
Nevertheless, I briefly illustrate how the estimated ML standard errors get
scaled, according to the upper described coefficient scaling. Instead of deploy-
ing the square root of the respective variance as scaling factor (equations 3.7,
3.8, 3.9 and 3.10) the variance must be deployed:

var
(
π̂MLfinal

l

)
=
var

(
π̂ML

l

)
var

(
ξ̂ML

1

) for l = 2, ..., 6

var
(
π̂MLfinal

l

)
=
var

(
π̂ML

l

)
var

(
ξ̂ML

2

) for l = 8, ..., 10

γ̂MLfinal
m = γ̂MLprel

m

var
(
η̂MLprel

1

) for m = 1, 2

var
(
λ̂MLfinal

q

)
= var

(
λ̂ML

q

)
· var

(
η̂MLprel

1

)
for q = 2, 3

For the ML fixed parameters (π1, π7 and λ1, see figure 3.2 page 61) no standard
errors get estimated as the parameters themselves do not get estimated.

The scaling of the PLS estimates is more compact. The PLS estimates of
the latent variables ξg do not need to get scaled as the PLS assumptions fits
the assumption of the data generation (see section 3.1). Consequently, the
scaling confines to the scores of η1. As I elucidated above its true variance and
the PLS assumption do not match. PLS fixes the latent variable variance to a
value of one, while the true variance of η1 is larger than one (according to the
data generation it is TSSη1 = 1

(R2)SM with ESSη1 = 1). Thus, the relation is

var
(
η̂PLSfinal

1

)
=

=1︷ ︸︸ ︷
var

(
η̂PLSscores

1

)
· 1
(R2)SM

and the scaled η1 scores result as

η̂PLSfinal
1 = η̂PLSscores

1 ·
√

1
(R2)SM .
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The new scale of the η1 scores implies scaled γ and λ coefficients. For the
partial models where the latent variable η1 enters, a new performance of OLS
regressions (second stage of the PLS algorithm, see section 2.2.2) applying the
η̂PLSfinal values yields the final / scaled PLS γ and λ coefficients.61

As mentioned before the test decision, whether a path coefficient is significantly
different from zero or not, is unaffected by the scaling. Thus, the original PLS
estimates and the PLS bootstrapped standard deviations serve to determine
significance of the path coefficients.

In the following all so-called final values serve for the comparison with the
theoretical coefficients.

3.2.2 Evaluation of the Estimation Results

I evaluate the estimated coefficients π, γ and λ by comparing them with the
population parameters. The estimation procedures for the ML, PLS and OLS
approaches were illustrated in chapter 2. Regarding ML and partially PLS
rescaled estimates enter the comparison (see section 3.2.1). Regarding the
OLS approach and the PLS π coefficients the unscaled estimated coefficients
enter the comparison. Moreover, I investigate the total effects. With respect
to the OLS approach the regression coefficients represent the total effects. In
the ML and PLS approach the total effects (TE) need to get computed:

TExy = πtrueγtrueλ′.62

For example, the total effect of x1 on y3 is TEx1y3 = πtrue
1 · γtrue

1 · λ3. To
investigate the bias and variability of both, the individual coefficients and the
total effects, I apply the following measures of accuracy:

In the following a “β” coefficient stands for any individual coefficient, i.e.
for a πl in a formative measurement model, a γm in the inner model, a λq in

61The variance of the indicators must be considered, too, i.e. whether they enter stan-
dardised or not. In my case I apply unstandardised indicators.

62The factors are (πtrue)′ =
(

πtrue
1 πtrue

2 πtrue
3 πtrue

4 πtrue
5 0 0 0

0 0 0 0 0 πtrue
6 πtrue

7 πtrue
8

)
,

(γtrue)′ = (γtrue
1 γtrue

2 ) and λ′ = (λ1 λ2 λ3). Consequently, TExy is a 8 x 3 matrix. In
Appendix G I show the values for the basic model.
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the reflective model, or a total effect coefficient. A distinction is not necessary.
If β̂ has an index i then it reflects a single estimation result out of the K =
10, 000 iterations. Sometimes no estimation results can be obtained due to
non-convergence of the algorithm (referring to ML and PLS). Therefore, I
compute in general an average over k estimates which are de facto available
(with k ≤ K). A theoretical coefficient which enters the data generation
process is called βtrue.

The mean of the k estimated coefficients is

β̂ = 1
k

k∑
i=1

β̂i.

The mean deviation measures the bias. An estimator is unbiased if the mean
over all samples approaches the true value with increasing the number of sam-
ples. The mean deviation md is

md(β̂) = β̂ − βtrue.

The mean squared error mse measures the robustness of an estimator because
large errors are valued strong. It is crucial to investigate the md and the mse
in order to make precise distinctions between unbiasedness and small vari-
ance of an estimator. An unbiased estimator with large variab ility may be
less favourable compared to an estimator which shows some bias but small
variability. This is because the individual results of an estimator with large
variability behave erratically since their deviation from the population param-
eter is often large. In this study I use the root mean squared error rmse, which
is simply the square root of the mse:

rmse(β̂) =

√√√√1
k

k∑
i=1

(β̂i − βtrue)2.

In order to give a condensed overview I aggregate the results: I compute
md and rmse mean values per partial model, i.e. for each measurement model
and for the inner model. Furthermore, I compute such mean values for the
total effect coefficients per yq. Regarding the basic model that implies 3 values,
whereas the model has 8 · 3 = 24 total effects. With respect to the md means
I do not want a negative md value to neutralise a positive one and therefore
take the respective absolute values (while rmse ≥ 0 anyhow).
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Moreover, I investigate the prediction quality. According to my specified
model (see figure 3.1 page 55) each endogenous outcome variable yq can be
predicted by x. Adequate measures are again the md and the rmse:

md(ŷq) =
1
k

k∑
i=1

1
n

n∑
j=1

(ŷqij − ytrue
qij ), (3.11)

rmse(ŷq) =

√√√√√1
k

k∑
i=1

1
n

n∑
j=1

(ŷqij − ytrue
qij )2. (3.12)

As a characteristic of OLS each md(ŷq) takes on the value zero. I condense
the results again by taking the mean over the respective values.

Another issue I focus on is the investigation of the test size and statistical
power referring to a test for significance of the coefficients. With variation
G I contribute a specification which is suitable to determine both rates (see
figure 3.2 page 61). With respect to ML and PLS I assess significance of the
individual coefficients π, γ and λ, excluding for ML the coefficients which get
ex ante fixed. With respect to the OLS approach I observe actual size and
actual power for the total effects ê (see section 3.1.4).
To determine the actual size and the actual power the question is whether
a parameter (βj) is significantly different from zero or not (H0 : βj = 0,
H1 : βj �= 0). This can be tested with

T = β̂j√
v̂ar

(
β̂j

) .

Referring to ML the upper test statistic T is approximately standard normally
distributed, because the estimator approximates a normal distribution as the
sample size increases (Schermelleh-Engel et al., 2003, p. 26). As in
variation G (n = 300) multinormality and a correctly specified model is given it
is rational to apply the standard deviations that result from the ML estimation.
Additionally I check the respective bootstrapped values (with KB = 300).
Referring to the PLS and OLS approaches the test statistic (T ) is t-distributed
with n − m − 1 degrees of freedom (m represents the number of regressors).
Concerning PLS the standard deviations always get bootstrapped. In general
I perform 100 bootstrap replications, but alternatively specify KB to 300 and
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1,000. Since I analyse for OLS the total effects, which are represented by the
OLS parameter estimates, I apply the corresponding standard errors.63

I assess parameter significance on the 1%-, 5%- and 10%-level, respect-
ively. I exemplify the precise critical values for the 1%-level, although the
t-distribution approximates the z-distribution for increasing n. For ML the
critical value is z[0.995] = 2.57583. For PLS there are three critical values,
because the number of parameters that get estimated within each partial model
is relevant. The values differ only marginally because n is large: t[0.995, 300−
6−1] = 2.59271 for the first formative measurement model, t[0.995, 300−4−
1] = 2.59260 for the second formative measurement model and t[0.995, 300 −
1 − 1] = 2.59243 for each single regression within the reflective measurement
model. With respect to the significance of a OLS total effect coefficient the
critical value is t[0.995, 300 − 8 − 1] = 2.59295.

The actual size is the number of erroneously rejected true null hypothesis
divided by k and consequently refers to coefficients which truly equal zero.
Actual power is the number of correctly rejected null hypothesis divided by k

and consequently refers to coefficients which truly are different from zero.
Regarding variation E I narrow down the presented results and tabulate

only actual size and actual power. With respect to accuracy the results of
variation E can be expected to not differ much from the basic model, since
the only difference between both models constitute the coefficients which truly
take on the value zero: π6, π10 and λ4.64

63In section 2.4.2 I proposed to bootstrap the standard deviations of the individual coef-
ficient estimates.

64In Appendix H I show the corresponding results with respect to accuracy.
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3.3 Results

3.3.1 Estimator accuracy: bias and variability

Before I start presenting the Monte Carlo simulation study results I find it
helpful to recap all specifications and what I respectively assess, see table
3.1.65 The table comprises also variation G and its associated cases, whose
results I show in the subsequent section 3.3.2.

In this section I reveal the results concerning accuracy for the basic model
and the variations A to F. I tabulate the results for each case, such as in
table 3.2 page 78 for the basic model. Each table shows the number of missing
values, whereby the number referring to OLS is put in brackets. It indicates
the number of missing OLS λ̂ estimates. The OLS approach may lead to
covariances between ŷk and ŷs (k �= s) such that a negative value appears under
the root in equation 2.30 page 49. An OLS estimate for each λ coefficient is
available in any case because the solution via equation 2.21 page 47 is always
possible. Further, each table shows the averages of the measures of accuracy,
which are calculated according to section 3.2.2. Concerning these measures
each lowest number is printed in bold.

The individual results per coefficient are shown in Appendix H. Table H.1
to H.16 refer to the basic model and the variations A to F. Table H.17 and
H.18 refer to variation G66.

In this section, as well as in section 3.3.2, I restrict myself to the description
of the results, the conclusions follow in section 3.3.3.

65With respect to table 3.1 I introduce the following abbreviations: distrib. stands for
distribution, inner est. for inner estimation (referring to the PLS schemes), sd for standard
deviation, miss. res. for missing results, cent. for the PLS centroid scheme, fact. for the PLS
factorial scheme, path for the PLS path weighting scheme, cont. unif. for the continuous
uniform distribution, signif. for significance, and boot. for bootstrapped.

66In section 3.3.2 I show the results for variation G, which are related to the significance
of the path coefficients. In Appendix H I show the results concerning accuracy.
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B

Basic ML, PLS, OLS miss.res., β̂, ŷ VI normal 300 0.5 11 no cent. - - -

extra to Basic PLS miss.res., β̂, ŷ VI normal 300 0.5 11 no cent., fact., path - - -

A ML, PLS, OLS miss.res., β̂, ŷ VI normal 300 0.2 11 no cent. - - -

B1 ML, PLS, OLS miss.res., β̂, ŷ VI chi-squared 300 0.5 11 no cent. - - -

B2 ML, PLS, OLS miss.res., β̂, ŷ VI cont. unif. 300 0.5 11 no cent. - - -

AB1 ML, PLS, OLS miss.res., β̂, ŷ VI chi-squared 300 0.2 11 no cent. - - -

AB2 ML, PLS, OLS miss.res., β̂, ŷ VI cont. unif. 300 0.2 11 no cent. - - -

C1 ML, PLS, OLS miss.res., β̂, ŷ VI normal 15 0.5 11 no cent. - - -

C2 ML, PLS, OLS miss.res., β̂, ŷ VI normal 50 0.5 11 no cent. - - -

C3 ML, PLS, OLS miss.res., β̂, ŷ VI normal 1,000 0.5 11 no cent. - - -

D1 ML, PLS, OLS miss.res., β̂, ŷ VII normal 50 0.5 11 no cent. - - -

xxxTable 3.1 continues on the next page.
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D2 ML, PLS, OLS miss.res., β̂, ŷ VII normal 300 0.5 22 no cent. - - -

D3 ML, PLS, OLS miss.res., β̂, ŷ VII normal 1,000 0.5 44 no cent. - - -

E1 ML, PLS, OLS miss.res., β̂, ŷ VII normal 300 0.5 11 no cent. - - -

E2 ML, PLS, OLS miss.res., β̂, ŷ VIII normal 300 0.5 11 no cent. - - -

F ML, PLS, OLS miss.res., β̂, ŷ VI normal 300 0.5 11 yes cent. - - -

G ML, PLS, OLS signif. VG normal 300 0.5 14 no cent. boot. original 100

extra to G PLS signif. VG normal 300 0.5 14 no cent., fact., path boot. - 100

extra to G PLS sd VG normal 300 0.5 14 no cent. boot. - 100

extra to G PLS sd VG normal 300 0.5 14 no cent. boot. - 300

extra to G PLS sd VG normal 300 0.5 14 no cent. boot. - 1,000

extra to G ML sd VG normal 300 0.5 14 no - - boot. 300

xxxTable 3.1: Simulation study cases (from page 76 on).



3.3 Results 78

In my basic specification, see table 3.2, the non-convergence rate is negli-
gible low for ML and exactly zero for PLS. Concerning the OLS approach each
λqi (for i = 1, ..., 10, 000 and q=1,...,3) got estimated applying the covariances
of the fitted values.

md rmse
ML PLS OLS ML PLS OLS

missing results 0.00120 0 (0)
π1 − π5 0.00673 0.09322 0.01284 0.12017 0.15083 0.11810
π6 − π8 0.00461 0.01678 0.00951 0.11109 0.11088 0.11027

γ1, γ2 0.00319 0.10248 0.00637 0.06179 0.11954 0.06025
λ1 − λ3 0.01598 0.13180 0.02014 0.09062 0.14678 0.08645

TE per y1 0.00068 0.04097 0.00097 0.08449 0.09852 0.11100
TE per y2 0.00046 0.04011 0.00046 0.05916 0.06495 0.07776
TE per y3 0.00060 0.03994 0.00056 0.07618 0.08518 0.10044

prediction of y1 − y3 0.00034 0.00029 0 1.48885 1.49572 1.47802

Table 3.2: Simulation study results for the basic model.

With respect to the individual coefficients the ML estimates appear on aver-
age the least biased. The ML bias averages are only slightly lower than those
of OLS, the difference amounts to the third decimal place. Concerning the
variability of the estimates, OLS shows on average the lowest values, whereas
the measures appear only slightly lower than the respective ML values. In sum-
mary, for ML and OLS the individual estimates of each coefficient appear on
average similar accurate, referring to md and rmse. On contrast the PLS esti-
mates show larger biases: the individual PLS biases (see Appendix H table H.1
page 148) lie between circa the 2.5 times (π6) and 42.5 times (γ2) the respective
ML bias. Further, table H.1 reveals that large differences between the individ-
ual md values appear for PLS: md(λ̂PLS

1 ) = 0.228 and md(λ̂PLS
2 ) = 0.026. The

same appears with respect to rmse, i.e. PLS shows noticeably larger values
than ML and OLS (excluding the second formative measurement model) and
large differences appear for the values within one partial model, e.g. in the
reflective measurement model: rmse(λ̂PLS

1 ) = 0.240 and rmse(λ̂PLS
2 ) = 0.061.

Some readers may be interested in the signs of the mean deviations, which
are not identifiable in table 3.2, since the aggregated results base on absolute
values. Appearing (systematic) over- or underestimation can be identified
in Appendix H (e.g. table H.1 for the basic model). Concerning PLS the
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parameters systematically get overestimated in the structural model as well
as in the reflective measurement model. In the respective formative measure-
ment models the signs alternate: some coefficients are on average overestimated
whilst others are underestimated. For ML and OLS the respective signs appear
strictly negative in the formative measurement models and strictly positive in
the reflective measurement model. Concerning the structural model no clear
sign pattern appears.

The mean biases of the total effect coefficients appear low for ML and OLS.
With respect to PLS the respective biases appear larger. Apparently PLS over-
and underestimation of the individual coefficients do not cancel each other out.
In terms of rmse all three approaches vary in the same range, while ML shows
the lowest values.

The predicted values appear for OLS unbiased, which is a characteristic of
OLS. ML and PLS show low biases. Regarding the rmse averages the values
lie in the same range for all three approaches, while OLS reveals the lowest
value.

At this point I additionally bring up a result regarding prediction accuracy
of the latent variables. For the basic model I assessed for ML, PLS and OLS
the fitted values of all latent variables as well as the PLS scores of η1. In a
formative measurement model PLS scores and fitted values are identical. The
fitted values of all latent variables depend directly or indirectly on x, according
to the specified model. The PLS scores η̂PLSscores

1 rely on the corresponding
indicators, i.e. on y, irrespective of the causality in the model.

I briefly summarise my results: With respect to the fitted values the meas-
ures of accuracy take on similar values for all three approaches, while the
largest values appear in general for PLS. The PLS scores η̂PLSscores

1 appear
more precise in terms of rmse than all fitted values.67 However, whether fitted
values or scores result more precise depends on the model causalities and on
the determination coefficients. In the basic model the PLS scores of η1 result
directly as weighted sum of y. In contrast, the fitted values of η1 rely indirectly
on x. Depending on (R2)rMM and (R2)SM either the fitted values of η1 or the the
scores of η1 result more accurate. In case (R2)rMM is relatively small compared

67Although my summary is very condensed I mention some values: rmse(η̂ML
1 ) = 0.99812,

rmse(η̂OLS
1 ) = 0.99704, rmse(η̂PLSfits

1 ) = 1.01480 and rmse(η̂PLSscores
1 ) = 0.76002.
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to (R2)SM the scores of η1 result less accurate than the respective fitted values.
I assessed this for the basic model by changing the determination coefficients
to (R2)SM = 0.8 and (R2)rMM = 0.1. In effect, the PLS scores appear then
less precise than the PLS fitted values. Even more precise appear the ML and
OLS fitted values.68

As mentioned before the presented PLS results base on the centroid scheme.
For the basic model I additionally applied the factorial and the path weighting
scheme. The differences in accuracy appear vanishingly low for the different
schemes. Therefore I show the results in Appendix H, see table H.2 page 149.69

So far all presented results are related to the basic model. The extra results
were either presented additionally (concerning the latent variable prediction)
or arose from a change concerning the PLS estimation procedure (with respect
to the PLS inner schemes). In the following I present the results for the
variations A to F.

In model A, see table 3.3, the determination coefficients are specified lower
than in the basic model ((R2)SM = (R2)rMM = 0.2). Comparing the results
with those of the basic model (table 3.2) I can summarise the following: The
ML non-convergence rate appears in the A model higher than in the basic
model: 15.7% of the 10,000 samples did not converge. PLS did only a few
times not converge, namely in 2 out of 10,000 cases. The OLS estimation of
the λ coefficients applying the covariances between the fitted value was in a
few cases not possible.

The coefficient estimates show clearly larger md averages for all three ap-
proaches compared to the basic model. For PLS the values are low for the
measurement model of ξ2. In the structural model PLS biases are very large
and in the reflective measurement model they are extremely large. In sum-
mary, the ML estimates appear the least biased. Regarding variability all three
approaches yield similar values for the formative measurement models. For the

68The respective values are rmse(η̂ML
1 ) = 0.61461, rmse(η̂OLS

1 ) = 0.57798,
rmse(η̂PLSfits

1 ) = 0.73434 and rmse(η̂PLSscores
1 ) = 1.13333.

69For variation G I apply the different PLS schemes and investigate test size and statistical
power of a test for significance of the path coefficients, see section 3.3.2 page 97 tables 3.22
and 3.23.
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md rmse
ML PLS OLS ML PLS OLS

missing results 0.15740 0.00020 (0.00870)
π1 − π5 0.04815 0.09923 0.08393 0.26724 0.27149 0.24866
π6 − π8 0.03746 0.03243 0.08387 0.26260 0.25082 0.26125

γ1, γ2 0.02300 0.19194 0.03958 0.12729 0.22329 0.10792
λ1 − λ3 0.10975 0.43570 0.14090 0.25888 0.43319 0.29830

TE per y1 0.01450 0.04830 0.00300 0.21431 0.23390 0.31457
TE per y2 0.01016 0.05092 0.00125 0.15064 0.11849 0.22007
TE per y3 0.01308 0.03833 0.00165 0.19385 0.18410 0.28430

prediction y1 − y3 0.00082 0.00094 0 4.21718 4.22121 4.18088

Table 3.3: Simulation study results for variation A.

structural model and the reflective measurement model the rmse values appear
much higher for PLS. Finally, two facts stand out referring to the individual
coefficients estimates: Firstly, ML and OLS yield for the structural models
very good estimators. Secondly, the PLS estimators concerning the reflect-
ive measurement model are outstanding bad and very bad for the structural
model.

For PLS the md values of the total effect coefficients appear on average
similar to those of the basic model. For the other two approaches the respective
values appear higher compared to the basic model. Nevertheless they deviate
on average less from the true parameters than PLS does. OLS reveals on
average the highest accuracy, i.e. the lowest md value. On the other hand, the
OLS estimators vary the most. In terms of rmse the PLS and ML estimates
appear similar precise.

The predicted values of the y variables must deviate sometimes strongly
from the true values as the very large rmse values indicate. All values lie in
the same range, while OLS shows slightly lower values than ML and PLS.

The B models, see tables 3.4 and 3.5, incorporate non-normally distributed
error terms (following a chi-squared distribution in B1 and following a con-
tinuous uniform distribution in B2). The non-convergence rate of PLS is zero
and for ML close to zero. Concerning OLS all λ estimates were available in all
cases. The ratios are similar to those in the basic model (table 3.2 page 78).
In general the differences between the measures of the B cases and those of
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the basic model are only marginal. Thus, regarding accuracy of the individual
estimates ML shows on average the smallest biases, while the OLS estimations
vary the least. The ML and OLS values appear again similar. With respect to
the total effect coefficients ML reveals consistently the highest accuracy. Due
to the similarity to the basic model it seems appropriate to proceed to the
cases AB1 and AB2.

md rmse
ML PLS OLS ML PLS OLS

missing results 0.00130 0 (0)
π1 − π5 0.00675 0.09258 0.01277 0.11968 0.15031 0.11797
π6 − π8 0.00460 0.01608 0.00954 0.11083 0.11118 0.11020

γ1, γ2 0.00477 0.10240 0.00787 0.06244 0.12054 0.06092
λ1 − λ3 0.01542 0.13145 0.01950 0.09129 0.15045 0.08720

TE per y1 0.00069 0.04054 0.00082 0.08449 0.09881 0.11096
TE per y2 0.00053 0.04021 0.00092 0.05908 0.06517 0.07768
TE per y3 0.00068 0.03991 0.00086 0.07604 0.08540 0.10002

prediction y1 − y3 0.00098 0.00107 0 1.48907 1.49609 1.47832

Table 3.4: Simulation study results for variation B1.

md rmse
ML PLS OLS ML PLS OLS

missing results 0.00190 0 (0)
π1 − π5 0.00649 0.09368 0.01260 0.11901 0.15055 0.11708
π6 − π8 0.00449 0.01673 0.00946 0.10934 0.11000 0.10832

γ1, γ2 0.00353 0.10368 0.00673 0.06310 0.12086 0.06145
λ1 − λ3 0.01417 0.13125 0.01821 0.09027 0.14601 0.08672

TE per y1 0.00069 0.04124 0.00092 0.08360 0.09807 0.11035
TE per y2 0.00052 0.04052 0.00073 0.05856 0.06490 0.07730
TE per y3 0.00063 0.04034 0.00077 0.07539 0.08488 0.09981

prediction y1 − y3 0.00064 0.00066 0 1.48929 1.49613 1.47855

Table 3.5: Simulation study results for variation B2.

The models AB1 and AB2 constitute a combination of variation A with
variation B1 or B2, respectively, see tables 3.6 and 3.7. Therefore, the errors
constitute a larger proportion of the variation of the endogenous variables and
the errors are non-normally distributed. The results do quite correspond with



3.3 Results 83

those of the previously described model A. The following summary holds for
both models (AB1 and AB2) since the results of both models appear very
similar. The non-convergence rates resemble with model A: it is almost zero
for PLS and about 15% for ML. In a few cases the OLS λ coefficients could
not be estimated applying the covariances between the fitted values.

md rmse
ML PLS OLS ML PLS OLS

missing results 0.15730 0.00010 (0.01020)
π1 − π5 0.04579 0.09797 0.08265 0.26428 0.27026 0.24783
π6 − π8 0.03688 0.03249 0.08457 0.26012 0.25098 0.26130

γ1, γ2 0.02582 0.19271 0.04189 0.13082 0.22574 0.11067
λ1 − λ3 0.10700 0.43492 0.13867 0.25909 0.43967 0.26756

TE per y1 0.01391 0.04568 0.00239 0.21291 0.23422 0.31340
TE per y2 0.01001 0.05098 0.00235 0.14896 0.11888 0.21948
TE per y3 0.01256 0.03744 0.00228 0.19177 0.18519 0.28243

prediction y1 − y3 0.00261 0.00258 0 4.21619 4.22127 4.18102

Table 3.6: Simulation study results for variation AB1.

md rmse
ML PLS OLS ML PLS OLS

missing results 0.15690 0 (0.00870)
π1 − π5 0.04789 0.10032 0.08350 0.26576 0.27066 0.24741
π6 − π8 0.03724 0.03203 0.08546 0.26074 0.24843 0.25848

γ1, γ2 0.02411 0.19497 0.04101 0.13239 0.22697 0.11075
λ1 − λ3 0.10411 0.43505 0.13438 0.25751 0.43246 0.24845

TE per y1 0.01491 0.04754 0.00292 0.21262 0.23131 0.31257
TE per y2 0.01046 0.05175 0.00210 0.14894 0.11783 0.21892
TE per y3 0.01320 0.03869 0.00230 0.19166 0.18265 0.28250

prediction y1 − y3 0.00138 0.00182 0 4.21927 4.22219 4.18215

Table 3.7: Simulation study results for variation AB2.

Referring to the coefficient estimates, much higher md and rmse averages
appear compared to the basic model. ML and OLS yield quite good estimates
for the structural model. The PLS md averages appear particularly high for the
reflective measurement model. The corresponding values vary again strongly,
between 0.101 and 0.738. The rmse averages referring to the γ coefficients ap-
pear low for ML and OLS. For the rest of the model all rmse appear relatively
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high for all approaches.
Also when referring to the total effect estimates the pattern is identical to

case A. For PLS the biases (referring to md) of the total effect coefficients
appear lower than those of the individual coefficients. Yet, ML and OLS
yield lower biases. Referring to rmse the lowest values appear for PLS. The
corresponding values appear for OLS noticeably higher.

With respect to the predicted values large rmse averages reveal that much
larger deviations appear compared to the basic model. The measures appear
again similar to variation A.

The C models vary in sample size. The results of the three specifications
are shown in table 3.8, 3.9 and 3.10, respectively.

md rmse
ML PLS OLS ML PLS OLS

missing results 0.59530 0.00230 (0.06870)
π1 − π5 0.17341 0.10440 0.16189 0.55027 0.54668 0.47377
π6 − π8 0.19746 0.09069 0.22308 0.56246 0.54521 0.52763

γ1, γ2 0.05077 0.10450 0.15601 0.42592 0.40852 0.25632
λ1 − λ3 0.22182 0.07930 0.36402 0.53637 0.35513 0.54017

TE per y1 0.10959 0.06326 0.00746 0.62285 0.47308 0.84412
TE per y2 0.07677 0.05593 0.00474 0.43677 0.28221 0.59003
TE per y3 0.09439 0.06349 0.00809 0.56184 0.39899 0.75847

prediction y1 − y3 0.00196 0.00338 0 1.33322 1.36384 0.95094

Table 3.8: Simulation study results for variation C1.

C1 (n = 15) reveals a high non-convergence rate for ML, i.e. almost 60% of
all cases did not converge. The non-convergence rate of PLS remains low, as
only 23 cases out of 10,000 did not converge. The number in brackets referring
to OLS appears larger compared to the basic model.

OLS yields on average the largest coefficient biases, which appear much
higher than in the basic model. Also the ML biases increased compared to
the basic model. But, the ML estimates of γ are clearly the least biased. For
PLS the md averages appear not larger compared to the basic model. But,
the values referring to both formative measurement models and the structural
model lie now in the same range. Regarding the reflective measurement model
the bias appears even lower compared to the basic model. Concerning the
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measurement models PLS yields on average the lowest biases. The individual
results in Appendix H (table H.8 page 152) reveal that for each approach the
individual md values vary strongly. The rmse averages appear mainly the
lowest for OLS, while the γ estimates vary the least. Only for the reflective
measurement model the respective PLS value appears lower. Finally, all rmse

values appear very high.
The total effect coefficients appear for all approaches less accurate compared

to the basic model (referring to md). The OLS estimates appear on average
most accurate. The largest biases reveals on average the ML approach. The
variability of the estimated values appears high for all approaches (referring to
rmse). The largest variability appears for OLS and the lowest variability for
PLS.

With respect to prediction the rmse averages appear lower for all ap-
proaches compared to the basic model. In summary, OLS yields the best
prediction. Perhaps it appears confusing to some readers that the coefficient
estimates appear less precise, but the prediction more precise. The reason for
this is the following: as n increases large differences between the fitted values
and the observed values appear in number more often. Since the differences
enter quadratic the mse or rmse increase remarkably.

md rmse
ML PLS OLS ML PLS OLS

missing results 0.18470 0 (0.00090)
π1 − π5 0.04905 0.09840 0.06845 0.28634 0.30063 0.27219
π6 − π8 0.03172 0.02912 0.06712 0.28622 0.28492 0.28386

γ1, γ2 0.02572 0.07425 0.03685 0.14649 0.17202 0.12615
λ1 − λ3 0.09100 0.11519 0.11019 0.24529 0.20661 0.21778

TE per y1 0.01714 0.04249 0.00264 0.22518 0.22310 0.29843
TE per y2 0.01206 0.04409 0.00145 0.15710 0.13658 0.20918
TE per y3 0.01551 0.04531 0.00243 0.20185 0.19068 0.26983

prediction y1 − y3 0.00185 0.00137 0 1.42965 1.44670 1.35893

Table 3.9: Simulation study results for variation C2.

In the C2 model (n = 50) the ML approach did not converge in 18% of
all cases, whereas PLS did always converge. For 9 out of 10,000 cases the
λ coefficients could not get estimated with the OLS approach applying the
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covariances between the fitted values.
Compared to C1 the coefficient biases appear in C2 on average much lower,

but larger compared to the basic model. The md averages appear mostly the
lowest for ML. Only for the second formative measurement model PLS yields
a lower value. The respective value appeared also in the basic model relatively
low for PLS. Likewise to the basic model ML and OLS yield the lowest mean
biases within the structural model. With respect to variability the lowest rmse

values appear for OLS. An exception constitutes the rmse measure referring
to the reflective measurement model, where PLS yields a slightly lower value
than OLS.

The md and rmse averages referring to the total effect coefficients appear
throughout larger compared to the basic model. Compared to variation C1
the values appear lower. In terms of md OLS reveals the best results, whereas
the rmse averages appear the largest for OLS. On that latter score PLS reveals
the lowest values.

The prediction of all y variables appears most accurate for OLS (in terms of
md and rmse). For all approaches the rmse averages appear larger compared
to C1 and marginally lower than in the basic model.

md rmse
ML PLS OLS ML PLS OLS

missing results 0 0 (0)
π1 − π5 0.00204 0.09267 0.00389 0.06538 0.11402 0.06504
π6 − π8 0.00141 0.01632 0.00285 0.06011 0.06215 0.05990

γ1, γ2 0.00130 0.10742 0.00228 0.03472 0.11277 0.03445
λ1 − λ3 0.00487 0.13395 0.00609 0.04913 0.13616 0.04750

TE per y1 0.00028 0.04120 0.00050 0.04568 0.06685 0.06008
TE per y2 0.00019 0.03990 0.00027 0.03199 0.04888 0.04207
TE per y3 0.00024 0.03973 0.00036 0.04114 0.05899 0.05427

prediction y1 − y3 0.00084 0.00087 0 1.49770 1.50336 1.49453

Table 3.10: Simulation study results for variation C3.
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In variation C3 (n = 1, 000) ML and PLS converged for all samples. With
respect to OLS the λ coefficients got estimated in all possible manners.

Compared to the basic model ML and OLS show lower md values for the
individual coefficients as well as for the total effect coefficients. Table H.10
(Appendix H page 153) reveals that for each parameter the md appears lower.
For PLS the md values appear similar to those of the basic model. For the
reflective measurement model and the structural model the respective values
appear even slightly larger. ML yields the smallest coefficient biases. Referring
to the rmse averages ML and OLS reveal lower values compared to the basic
model. The OLS estimates show the lowest variability. Like in the basic model
the measures of accuracy appear very close for ML and OLS. The variability
of the PLS estimates appears lower than in the basic model, but still larger
compared to ML and OLS.

For all approaches the rmse averages of the predicted y variables appear
slightly larger compared to C2. OLS yields the best prediction.

The D models, see tables 3.11, 3.12 and 3.13, are specified such that both,
sample size and the number of indicators, increase. The absolute number of
indicators increases from 11 (D1) to 22 (D2) to 44 (D3) together with the
sample size which increases from 50 (D1) to 300 (D2) to 1,000 (D3). In all D
models an identity matrix gets applied as variance-covariance matrix of x.

Referring to D1 the non-convergence rate is zero for PLS and less than 5%
for ML. Compared to variation C2 the ML non-convergence rate appears much
lower here (D1 and C2 differ only with respect to the variance-covariance ma-
trix of x). Concerning OLS no missing results appeared during the simulation.

In D1 ML shows consequently the lowest md averages. The variability is
mainly the lowest for OLS. Only for the reflective measurement model PLS
yields a slightly lower md average than OLS. A comparison of D1 with C2
reveals, that the estimates are on average similar accurate, just the md average
of the second formative measurement model is now the lowest for ML, too.

The total effect coefficients are on average most accurately estimated by
OLS in terms of md. The lowest variation (referring to rmse) is on average
twice revealed by ML and once by PLS.

The lowest measures of accuracy concerning the prediction of the y variables
appear for OLS.
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md rmse
ML PLS OLS ML PLS OLS

missing results 0.04890 0 (0)
π1 − π5 0.04991 0.06346 0.08620 0.24804 0.27650 0.23968
π6 − π8 0.03397 0.04350 0.06923 0.24959 0.27225 0.24303

γ1, γ2 0.02563 0.09071 0.03489 0.13917 0.19632 0.12135
λ1 − λ3 0.08703 0.11498 0.11023 0.24370 0.21020 0.21734

TE per y1 0.00375 0.01627 0.00241 0.21553 0.22642 0.27390
TE per y2 0.00254 0.04782 0.00142 0.15044 0.14363 0.19202
TE per y3 0.00319 0.03227 0.00247 0.19338 0.19524 0.24747

prediction y1 − y3 0.00122 0.00143 0 1.42969 1.45061 1.35893

Table 3.11: Simulation study results for variation D1.

md rmse
ML PLS OLS ML PLS OLS

missing results 0.00160 0 (0)
π1 − π10 0.01088 0.01501 0.03604 0.09107 0.10522 0.09081

π11 − π16 0.00760 0.01072 0.03823 0.08983 0.10334 0.09166
γ1, γ2 0.00609 0.05545 0.03641 0.05427 0.07996 0.06688

λ1 − λ6 0.02667 0.06640 0.04110 0.08798 0.09721 0.10051
TE per y1 0.00053 0.00205 0.00078 0.07054 0.07986 0.10338
TE per y2 0.00033 0.01713 0.00055 0.04934 0.05390 0.07210
TE per y3 0.00046 0.00941 0.00049 0.06344 0.07014 0.09266
TE per y4 0.00052 0.00229 0.00070 0.07041 0.07975 0.10288
TE per y5 0.00035 0.01697 0.00055 0.04935 0.05386 0.07221
TE per y6 0.00044 0.00976 0.00064 0.06328 0.07003 0.09276

prediction y1 − y6 0.00092 0.00087 0 1.48177 1.48790 1.45738

Table 3.12: Simulation study results for variation D2.

Regarding variation D2 the non-convergence rate is zero for PLS and less
than 2% for ML. Referring to OLS the estimation of the λ coefficients was
throughout possible.

Compared to D1 the PLS estimates appear more accurate in terms of md

and rmse. However, this is also the case for the ML and OLS approach. The
lowest md averages for the individual coefficient estimates as well as for the
total effect estimates are consequently revealed by the ML approach. Moreover,
the ML estimates show the lowest rmse averages. Only the value referring to
the first measurement model is slightly lower for OLS. The best prediction is
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revealed by OLS.

In variation D3 no missing estimates appear for all three approaches. Com-
paring all three D models, the results of all approaches become better as both,
sample size and number of indicators, increase. For D3 all presented measures
of accuracy, either for the coefficient estimates or for the total effect estimates,
appear best for ML. In the previously described variations the PLS averages
of the measures of accuracy concerning the structural model and the reflective
measurement models often appeared remarkably large. In D3 the respective
values are still the largest for PLS, but the differences to ML and OLS are
not any more striking. The total effect coefficients appear in general for all
approaches on average more accurate in terms of md and rmse.

OLS yields the most accurate prediction of y in terms of md and rmse.

md rmse
ML PLS OLS ML PLS OLS

missing results 0 0 (0)
π1 − π20 0.00456 0.00647 0.01127 0.04759 0.05631 0.04728

π21 − π32 0.00346 0.00490 0.00901 0.04726 0.05573 0.04706
γ1, γ2 0.00274 0.03193 0.00705 0.02839 0.04413 0.02777

λ1 − λ12 0.01516 0.03485 0.02630 0.04720 0.05133 0.05716
TE per y1 0.00028 0.00194 0.00037 0.03525 0.04110 0.05569
TE per y2 0.00020 0.00718 0.00031 0.02470 0.02833 0.03900
TE per y3 0.00025 0.00452 0.00048 0.03174 0.03659 0.05023
TE per y4 0.00028 0.00188 0.00043 0.03527 0.04112 0.05572
TE per y5 0.00019 0.00724 0.00033 0.02470 0.02834 0.03913
TE per y6 0.00026 0.00442 0.00037 0.03178 0.03661 0.05023
TE per y7 0.00028 0.00185 0.00052 0.03528 0.04112 0.05568
TE per y8 0.00020 0.00721 0.00034 0.02470 0.02834 0.03899
TE per y9 0.00025 0.00445 0.00040 0.03174 0.03658 0.05023

TE per y10 0.00028 0.00178 0.00056 0.03528 0.04113 0.05584
TE per y11 0.00020 0.00724 0.00025 0.02471 0.02835 0.03896
TE per y12 0.00025 0.00449 0.00041 0.03176 0.03660 0.05018

prediction y1 − y12 0.00029 0.00030 0 1.49147 1.49525 1.47612

Table 3.13: Simulation study results for variation D3.

The E models, see tables 3.14 and 3.15, incorporate different variance-
covariance matrices of x: VII shows no correlations at all (E1) and VIII implies
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some degree of multicollinearity (E2). The matrix VI, which I applied in the
basic model, shows moderate correlations within the blocks of indicators and
weak correlations between the blocks of indicators.

md rmse
ML PLS OLS ML PLS OLS

missing results 0 0 (0)
π1 − π5 0.00802 0.01107 0.01555 0.09742 0.11081 0.09642
π6 − π8 0.00468 0.00672 0.00987 0.09141 0.10347 0.09096

γ1, γ2 0.00291 0.09739 0.00588 0.05869 0.11415 0.05735
λ1 − λ3 0.01604 0.13182 0.02022 0.09054 0.14397 0.08541

TE per y1 0.00058 0.01319 0.00086 0.07882 0.09070 0.10156
TE per y2 0.00038 0.02944 0.00051 0.05521 0.06189 0.07119
TE per y3 0.00051 0.00670 0.00050 0.07120 0.07711 0.09201

prediction y1 − y3 0.00031 0.00029 0 1.48883 1.49248 1.47802

Table 3.14: Simulation study results for variation E1.

With respect to variation E1 no missing values appear for all three ap-
proaches.
A comparison of the measures of accuracy of E1 with those of the basic model
reveals that ML and OLS yield slightly larger values in the formative meas-
urement models. On the contrary the values appear lower in the structural
model and effectively equal in the reflective measurement model. For both
approaches the corresponding rmse averages appear lower compared to the
basic model. With respect to PLS the mean biases appear clearly lower in
the formative measurement models and slightly lower in the structural model.
For the reflective measurement model the respective value appears effectively
equal. The rmse values appear lower for all approaches compared to the basic
model. As in the basic model the PLS md averages appear much larger for the
structural model and especially larger for the reflective measurement model.

All approaches yield more accurate estimates of the total effects compared
to the basic model. The largest md values appears for PLS and the largest
rmse values for OLS. ML and OLS yield similarly low md averages. The ML
estimates vary the least as ML yields the lowest rmse values.

The predicted y variables deviate the less from the observed values for OLS.

Referring to variation E2 PLS converged for all cases while ML shows a
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md rmse
ML PLS OLS ML PLS OLS

missing results 0.44320 0 (0)
π1 − π5 0.21263 0.12034 0.01574 0.54763 0.41127 0.55418
π6 − π8 0.23731 0.11031 0.01673 0.51589 0.31554 0.52011

γ1, γ2 0.01044 0.07950 0.01934 0.07470 0.10593 0.07449
λ1 − λ3 0.01637 0.13177 0.02002 0.09058 0.14231 0.08947

TE per y1 0.13172 0.06873 0.00254 0.32476 0.23431 0.45140
TE per y2 0.09258 0.04524 0.00119 0.22780 0.13981 0.31649
TE per y3 0.11864 0.06053 0.00289 0.29250 0.19908 0.40908

prediction y1 − y3 0.00103 0.00029 0 1.48900 1.49341 1.47802

Table 3.15: Simulation study results for variation E2.

non-convergence rate of approximately 45%. OLS was always able to estimate
the λ coefficients in all manners.

Compared to model E1 and to the basic model the results change remark-
ably referring to the formative measurement models. For ML and OLS the md

and rmse measures appear much larger. For PLS the rmse measure appears
much larger. For PLS the md value of the second formative measurement
model lies now in the same range as the value of the first measurement model.
With respect to the other partial models the PLS results appear slightly more
accurate. Nevertheless, PLS yields less accurate results referring to the struc-
tural model and the reflective measurement model .

Regarding the total effect estimates very large rmse averages appear for
all three approaches, while the PLS estimates vary the least. ML shows the
largest md averages. OLS shows on the one hand the lowest md values and on
the other hand the largest rmse values.

Concerning prediction the measures appear similar to those of the basic
model. OLS yields the highest accuracy.

In table 3.16 I show the results for variation F, in which I classified x to
seven discrete values. The numbers of missing results appear nearly identical
to those of the basic model, i.e. they are zero for PLS and OLS, and close to
zero for ML.

Referring to the individual coefficients the md averages appear very similar
to those of the basic model: the ML and OLS measures appear similar, while
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md rmse
ML PLS OLS ML PLS OLS

missing results 0.00130 0 (0)
π1 − π5 0.01196 0.08590 0.01773 0.11241 0.14039 0.11093
π6 − π8 0.01593 0.01911 0.02042 0.10428 0.10500 0.10415

γ1, γ2 0.00219 0.09279 0.00397 0.06048 0.11097 0.05894
λ1 − λ3 0.03301 0.13933 0.03706 0.09576 0.14840 0.09017

TE per y1 0.00061 0.03702 0.00088 0.08058 0.09376 0.10562
TE per y2 0.00043 0.03750 0.00053 0.05642 0.06203 0.07414
TE per y3 0.00053 0.03642 0.00043 0.07265 0.08104 0.09561

prediction y1 − y3 0.00915 0.36484 0 1.62075 1.67672 1.47795

Table 3.16: Simulation study results for variation F.

ML yields the lowest md values and OLS the lowest rmse values. As in the
basic model PLS shows in general the largest biases and the largest variabilities.

The similarity to the basic model appears also with respect to the accuracy
of the total effect coefficients: PLS shows in general the largest md values and
OLS the largest rmse values.

The prediction of the y variables appears most accurate for OLS.

3.3.2 Significance test of coefficients: actual size and
actual power

In this section I present the results concerning the significance of the path
coefficients. All results refer to variation G.70 As in the previous section I
restrict myself to the description of the results. The conclusion follows in
the subsequent section 3.3.3. I start with the description of the results for
variation G, the results concerning the extra cases are shown below. I show
the ratios of rejected null hypothesis (i.e. actual power and actual size) for the
1%-, 5%- and 10%-significance level. The ML and PLS results are tabulated
together (see tables 3.17 and 3.19), because for these two approaches I refer to
the individual coefficient estimates. The OLS results are tabulated separately
(see tables 3.18 and 3.20), because the corresponding values refer to the total
effect estimates.

70The specification characteristics of variation G and the extra cases I investigate are
summarised in table 3.1 page 77.



3.3 Results 93

The non-convergence rate for variation G is 0.001 for ML and 0 for PLS.
As I did not estimate the OLS individual coefficients no number of missing λ

coefficients appears.

With respect to ML and PLS actual power see table 3.17. The ratios appear
for ML clearly lower in the formative measurement models, whereby ML reveals
values close to zero, e.g. for π2 on the 1%-level actual power is 0.02 for ML
versus 0.69 for PLS. For both approaches actual power is much lower in the
first measurement model than in the second formative measurement model.
In the structural model and in the reflective measurement model PLS detects
the paths, which are truly different from zero, as good as certain. Concerning
the structural model the difference between ML and PLS lessens and for the
reflective measurement model it disappears.

α = 0.01 α = 0.05 α = 0.1
ML PLS ML PLS ML PLS

π1 - 0.61370 - 0.79870 - 0.87200
π2 0.02262 0.69290 0.20180 0.85860 0.39279 0.91540
π3 0.10691 0.48530 0.49199 0.69610 0.72062 0.78890
π4 0.01682 0.28950 0.20440 0.49240 0.43654 0.60620
π5 0.01512 0.67420 0.14174 0.83720 0.29289 0.90380
π7 - 0.97180 - 0.99330 - 0.99670
π8 0.31241 0.66860 0.74374 0.84260 0.87748 0.90440
π9 0.49800 0.92670 0.88639 0.97620 0.96306 0.98930
γ1 0.71411 1.00000 0.88008 1.00000 0.93353 1.00000
γ2 0.97317 0.99990 0.99469 1.00000 0.99770 1.00000
λ1 - 1.00000 - 1.00000 - 1.00000
λ2 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
λ3 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

Table 3.17: Actual power for ML and PLS (variation G).

The OLS results concerning actual power are shown in table 3.18. The ratios
appear quite similar when comparing the values per column. In other words,
the non-zero effects a certain x variable has on y1, y2 or y3 are detected similarly
often. Between the different x variables (referring to the rows) the ratios vary
quite strong. When comparing the ratios with the magnitude of the population
coefficients (see the calculated population values in Appendix G), they appear
to be related: on each significance level the two largest coefficients (TEx7yq
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OLS, α = 0.01 OLS, α = 0.05
y1 y2 y3 y1 y2 y3

x1 0.3871 0.3885 0.4002 0.6330 0.6368 0.6465
x2 0.1362 0.1397 0.1356 0.3156 0.3125 0.3164
x3 0.3877 0.3828 0.3823 0.6341 0.6209 0.6264
x4 0.1907 0.1895 0.1923 0.3989 0.3983 0.4005
x5 0.0827 0.0830 0.0844 0.2202 0.2152 0.2221
x7 0.7758 0.7804 0.7839 0.9162 0.9175 0.9202
x8 0.3895 0.3827 0.3841 0.6368 0.6256 0.6302
x9 0.5838 0.5907 0.5770 0.7962 0.7983 0.7941

OLS, α = 0.1
y1 y2 y3

x1 0.7454 0.7455 0.7515
x2 0.4349 0.4342 0.4399
x3 0.7446 0.7374 0.7423
x4 0.5214 0.5222 0.5245
x5 0.3302 0.3260 0.3212
x7 0.9553 0.9544 0.9541
x8 0.7464 0.7391 0.7429
x9 0.8680 0.8766 0.8737

Table 3.18: Actual power for OLS (variation G).

and TEx9yq ∀ q) are detected most often and the two smallest coefficients the
least frequent (TEx5yq and TEx2yq ∀ q).

In table 3.19 I display how often ML and PLS committed a type I error
(relative to k). For ML in the formative measurement models , referring to
π6 and π10, the actual size is clearly lower than the respective nominal size
(α). Concerning the reflective measurement model (λ4) for ML the actual size
fairly equals the respective α-level. On the contrary, for PLS the actual sizes
throughout exceed the respective nominal sizes. The exceeding is not very
large for λ4, compared with the exceeding concerning π6 and π10. Especially
for the latter coefficient the actual size is clearly larger than the respective
nominal size.

For OLS the actual sizes of the hypothesis test are tabulated in table 3.20.
All values appear in the range of the respective nominal size, in other words
the empirical rates fairly coincide the respective α-level.
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α = 0.01 α = 0.05 α = 0.1
ML PLS ML PLS ML PLS

π6 0.00140 0.01390 0.01772 0.06280 0.05736 0.11290
π10 0.00420 0.02790 0.03714 0.08950 0.08679 0.14930
λ4 0.00921 0.01090 0.05025 0.05350 0.10150 0.10500

Table 3.19: Actual size for ML and PLS (variation G).

OLS, α = 0.01 OLS, α = 0.05
y1 y2 y3 y4 y1 y2 y3 y4

x1 - - - 0.0098 - - - 0.0524
x2 - - - 0.0121 - - - 0.0508
x3 - - - 0.0094 - - - 0.0482
x4 - - - 0.0104 - - - 0.0504
x5 - - - 0.0102 - - - 0.0516
x6 0.0106 0.0094 0.0100 0.0112 0.0495 0.0531 0.0492 0.0510
x7 - - - 0.0084 - - - 0.0450
x8 - - - 0.0089 - - - 0.0471
x9 - - - 0.0096 - - - 0.0520

x10 0.0103 0.0103 0.0124 0.0113 0.0518 0.0525 0.0549 0.0538

OLS, α = 0.1
y1 y2 y3 y4

x1 - - - 0.1026
x2 - - - 0.1000
x3 - - - 0.1008
x4 - - - 0.1020
x5 - - - 0.1050
x6 0.0995 0.1036 0.0968 0.1036
x7 - - - 0.0961
x8 - - - 0.0921
x9 - - - 0.1009

x10 0.0985 0.1019 0.1023 0.1075

Table 3.20: Actual size for OLS (variation G).

In the following I present the PLS bootstrapped standard deviations based
on 100, 300 or 1,000 bootstrap replications.71 In table 3.21 I show for each

71The previously presented PLS results base on standard deviations, which were boot-
strapped applying 100 bootstrap replications.
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coefficient the mean of the bootstrapped standard deviations72 for the different
KB. The largest value (per KB) is printed in bold. For the values which
appear equally more decimal places were checked. Apparently, the largest
values appear sometimes for KB = 1, 000 and sometimes for KB = 300, but
most often for KB = 100. Thus, the standard deviations appear on average
not strictly larger as a larger number of bootstrap replications gets performed.
Moreover, the differences between the estimates appear very low.
A change of the bootstrapped standard deviation implies a different value of
the test statistic T . Therefore, the decision whether a null hypothesis gets
rejected or not may be affected. For a larger number of bootstrap replications
even a larger exceeding of the nominal size is possible: e.g. on the 10%-level
for π10 and KB = 100 the actual size is 14.93% and for KB = 300 or 1,000 the
respective size exceeds 15% (I do not show further tables for the different KB).
As the mean value of the respective standard deviations appears lower and
the standard deviation appears in the denominator of the test statistic, this
makes intuitively sense. However, I remark that a straightforward deduction
from the change of the mean value of the bootstrapped standard deviations on
actual power or actual size is not possible.

With regard to the different PLS inner schemes I show the results concerning
actual size and actual power in table 3.22 and 3.23. The tables show only
the results for the 5%-level. The values appear either equal or the difference
confines to the fourth decimal place.

I detected for ML and PLS large differences concerning actual size and
actual power as well as concerning accuracy of the coefficient estimates. I find
it therefore useful to graphically illustrate some results. The figures 3.4 (page
101 et seq.), 3.5 (page 103) and 3.6 (page 104) show for variation G the density
functions of the ML and PLS coefficient estimates, the corresponding standard
deviations and the resulting test statistics referring to the π, the γ and the λ

coefficients (π1, π7 and λ1 are excluded, since these parameters are fixed for the
ML estimation). I do this although I did not summarise the results of variation
G with respect to accuracy. For all results see Appendix H tables H.17 and
H.18 page 157 et seq. At this point I remark that the results approximate the

72A mean standard deviation equals the square root of the corresponding mean variance.
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KB = 100 KB = 300 KB = 1, 000
π1 0.11597 0.11602 0.11598
π2 0.11149 0.11150 0.11151
π3 0.11818 0.11828 0.11833
π4 0.12038 0.12036 0.12035
π5 0.10959 0.10967 0.10961
π6 0.11419 0.11412 0.11407
π7 0.10874 0.10873 0.10873
π8 0.11363 0.11361 0.11361
π9 0.11023 0.11016 0.11017

π10 0.11769 0.11763 0.11758
γ1 0.06157 0.06158 0.06158
γ2 0.06080 0.06080 0.06079
λ1 0.03392 0.03395 0.03394
λ2 0.03284 0.03395 0.03286
λ3 0.03709 0.03709 0.03708
λ4 0.04835 0.04838 0.04838

Table 3.21: PLS bootstrapped standard deviations (mean values) of all indi-
vidual coefficient estimates (variation G).

centroid factorial path
π6 0.0628 0.0626 0.0624

π10 0.0895 0.0892 0.0892
λ4 0.0535 0.0530 0.0529

Table 3.22: Actual size for
PLS applying different inner
schemes (variation G), α =
0.05.

centroid factorial path
π1 0.7987 0.7989 0.7989
π2 0.8586 0.8587 0.8587
π3 0.6961 0.6961 0.6960
π4 0.4924 0.4927 0.4927
π5 0.8372 0.8370 0.8369
π7 0.9933 0.9932 0.9932
π8 0.8426 0.8424 0.8425
π9 0.9762 0.9762 0.9762
γ1 1.0000 1.0000 1.0000
γ2 1.0000 1.0000 1.0000
λ1 1.0000 1.0000 1.0000
λ2 1.0000 1.0000 1.0000
λ3 1.0000 1.0000 1.0000

Table 3.23: Actual power for PLS
applying different inner schemes
(variation G), α = 0.05.
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results of the basic model in terms of accuracy.
The graphs (referring to the figures 3.4, 3.5 and 3.6) are sorted as follows:
The first columns show the density functions of the coefficient estimates. Each
population parameter is marked with a vertical line, respectively. The second
columns show the density functions of the standard error estimates. Each
dashed line represents the expected standard error of the respective ML or
PLS coefficient estimator. Such value equals the square root of the average over
all respective k estimated coefficient variances (9,990 for ML and 10,000 for
PLS). The third columns of the graphs show the density of the corresponding
test statistics.73 The respective critical value(s) for the 5%-level, i.e. the 0.025
and/or the 0.975 quantile, is (are) marked with a grey line. Since the respective
t- and z-values take on very close values, they graphically coincide.

Concerning the coefficient estimates, i.e. referring to the first column in all
three figures, the ML results appear on average quite unbiased. In contrast,
for PLS the coefficient estimates deviate for most coefficients clearly from the
population parameter. Only with regard to the coefficients which are truly
zero (π6, π10 and λ4) the PLS density functions appear unbiased, and only a
slight shift appears for the coefficients which appertain to the second formative
measurement model (π8 and π9). Also for the three coefficients for which I do
not show any graphs the described results apply: the curve of the coefficient
which appertains to the second formative measurement model (π7) appears for
PLS only slightly shifted, whereas for the other two coefficients (π1 and λ1)
the curves appear apparently shifted compared to the true value. For ML the
density functions I do not show appear unbiased.

In the second column of the respective figures (pages 101 to 104) I show
the density functions of the ML and PLS standard deviations. For ML in
the formative measurement models the curves appear right skewed and show
larger variability than the respective PLS curves. Moreover, the corresponding
curves lie to the left of the respective expected value for both approaches. Since
the marks base on the squared standard deviations large values are weighted
strongly, i.e. the more large values appear the more the mark lies to the right.
Therefore, apparently for ML more large values appear. In general, ML yielded

73The density functions conform a test of H0 : βj = 0.
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larger standard deviations than PLS. However, the described picture is differ-
ent for the standard deviation density functions of π6 and π10, which are truly
zero. The corresponding curves appear for ML less right skewed and show
lower variability.

With respect to the structural model the variability of the standard devi-
ations is apparently larger for ML than for PLS. Moreover, the ML curves
appear again right skewed, although this is more difficult to identify from the
scaled graphs. The PLS curves fit better their corresponding expected value,
indicating that large estimates appear less often.

At this point I go more into detail concerning the ML standard deviation
functions relating to the formative measurement models and the structural
model. Giving a close look to the corresponding estimates, some conspicuous
results can be detected, namely coefficient estimates that deviate strongly and
reveal extremely large standard deviations. Such an inaccurate parameter
estimate may occur, if several maxima exist, and the ML approach converges
towards another maximum than the appropriate one. Although these estimates
apparently are implausible, I did not discard these results from my analysis, as
I did not define a threshold for rejecting such estimates. As an example I show
in Appendix I a histogram of the

√
v̂ar (γ̂1) estimates (figure I.1 page 160) and

the corresponding density values (table I.1 page 161). The histogram reveals
the right skewness and the density values reveal that outliers exist. However,
as mentioned above, the results I present do include all estimates.

Referring again to the figures shown on page 101 et seqq. and thereby
concerning the reflective measurement model (figure 3.6) the ML standard
error estimates take on larger values compared to PLS. For both approaches
the curves have a normal shape. Only for PLS the vertical mark indicates
that PLS reveals some large values. With respect to the density function of√
v̂ar

(
λ̂4

)
ML shows lower variability than PLS.

Comparing the density functions of the PLS and ML standard deviations,
the PLS curves lie in general to the left implying lower standard error estimates
(excluding the graphs belonging to the coefficients which are truly zero, π6, π10

and λ4). In this regard I bring to mind that the PLS standard deviations do
not result larger for a larger number of bootstrap replications KB, but rather
fairly coincide with the here presented results, see table 3.21 page 97.
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Further, I investigated also the ML bootstrapped standard deviations, which
becomes more reasonable as the ML approach apparently yielded some large
standard deviations. But, the bootstrapping of the standard error appears not
recommendable. Yet, I can eliminate a possible doubt, that I should have had
to bootstrap the standard errors. However, at this point I omit further tables,
but show some condensed findings in Appendix I table I.2 page 163.

In the third column of the figures (page 101 et seqq.) the resulting test
statistics appear for PLS mainly larger, which is a consequence of the smaller
standard deviations. But, obviously also the coefficient estimates influence
the test statistics: when looking at the PLS estimates related to π10, the
right shift of the density curve of the test statistic appears to result from the
overestimation of the coefficient. The PLS test statistic values show larger
variability compared to ML, except for the values which are truly zero. The
respective ML density curves lie to the left of the corresponding PLS curves,
which especially in the formative measurement models leads to lower power for
ML. Referring to the actual size the graphical assessment is difficult, because
the graphs would need to be depicted much larger. Only for π6 and π10 it
is apparent that the rates are larger for PLS than for ML (the respective
pink curves lie above the black curves). The precise values are given in the
previously shown table 3.19 page 95.
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Figure 3.4 continues on the next page.
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Figure 3.4: ML and PLS simulation results for the π coefficients (variation G,
from page 101 on).
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Figure 3.5: ML and PLS simulation results for the γ coefficients (variation G).
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Figure 3.6: ML and PLS simulation results for the λ coefficients (variation G).
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3.3.3 Conclusions

In this section I resume the simulation study results and draw conclusions. I
ascribe differences in accuracy, that appear between the basic model and a
specific variation, to the individual modification which characterises the spe-
cific variation. This is reasonable firstly, because I let all other specification
aspects unchanged, respectively, and secondly, because I performed a very high
number of Monte Carlo iterations (K = 10, 000 for each specification).

My first topic is ML and PLS convergence. As expected PLS shows much
lower non-convergence rates than ML does. More precisely for PLS no case
is worth mentioning in the context of non-convergence, because the respective
rates remain for all cases below 1%. But, I ascertain that PLS non-convergence
can appear for a correctly specified model.74 Concerning the ML approach the
respective results are overall good, but I can outline three different factors
that have an impact on its convergence: sample size, the underlying variance-
covariance matrix of x and the incorporated explained variance (R2). Sample
size has the largest impact. Unsurprisingly the ML non-convergence rate is
very high if n is very low, i.e. for n = 15 ML did not converge in almost 60%
of all samples. I investigated four different sample sizes and the corresponding
ML non-convergence rates appear to follow a declining curve, see figure 3.7.
Already at n = 50 the non-convergence rate drops to less than 20% and drops
further as n increases until it reaches zero. If the variance-covariance matrix
of x represents an identity matrix (E1) ML has no convergence problems at
all. In this regard my results do not conform the statement that ML non-
convergence becomes more likely if covariances are close to zero (see section
2.1.2). This may be the case because the variance-covariance matrix VII does
not involve any contradictories and its information content is maximal. More-
over, the underlying model specifications may facilitate convergence. Non-
convergence increases strongly if the x variables are afflicted with (imperfect)
multicollinearity (E2). It is intuitive that higher correlations imply lower in-
formation. If the model incorporates lower R2, non-convergence appears more
often, as a comparison of the basic model to variation A, AB1 and AB2 re-
veals. Non-normality does not have an impact on ML non-convergence, since

74Henseler (2010) revealed non-convergence cases for PLS solely for misspecified models.
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Figure 3.7: Relation between ML non-convergence and sample size.

the non-convergence rates remain constant when the basic model is changed
into variation B1 or B2 as well as when variation A is changed into AB1 or
AB2.

With respect to ML convergence I further want to point out an additional
result I gained during some pre-studies. I observed that ML convergence can
be influenced by the imposed restrictions without changing the number of
restrictions, i.e. the number of fixed parameters. In the specified model the
ML non-convergence rate could have been lower by imposing the restrictions
γ1 = γ2 = λ1 = 1 (instead of π1 = π6 = λ1 = 175). However, I did not
choose this restriction in order to stick to the explanations in chapter 2.1
and the common practice. But, it may matter for practical applications that
convergence can be influenced without imposing further restrictions.

OLS is not an iterative estimation procedure and thus, does not at all
suffer from non-convergence, but it may mathematically occur that some λ̂

parameters cannot be estimated, because the covariances between fitted values
ŷOLS

k and ŷOLS
s (k �= s) behave such that a negative value appears under the

square root, referring to equation 2.30 page 49. Even in such case λ̂ estimates
are available, namely those that result from the division of the total effect

75This restrictions apply to all variations, except variation G.
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OLS coefficients. In my study negative values under the root do only occur
for specifications where either the determination coefficients are low (all A
variations) or where the sample size is small (variation C1). The largest rate
appears for variation C1 (n = 15) with 687 missing λ̂q values (∀ q) out of
10,000.76 The maximum number of missing λ̂ values for an A variation appears
for AB1 with 102 missing values. I conclude that first of all the “scaling” of the
y variables is responsible to obtain positive values under the respective square
root. This is intuitive and underpinned by my results, because all remaining
models do not at all suffer from this problem and the model incorporates solely
positive relations. For a small n it is not unlikely that the sample may be
atypical, and may thereby lead to atypical covariances between the y variables
or rather between their fitted values. The same may appear if relatively large
error terms impact the y variables. Since the error term is random it can either
augment each observation positively or negatively and thereby possibly change
the sign of the respective covariances.

In the following I proceed with the evaluation of the simulation study re-
sults concerning the accuracy of the coefficient estimators.
When looking at the md and rmse averages referring to the individual coef-
ficient estimates the main picture can be described in the following way: For
all specifications, apart from variation C1 and E2, the smallest md averages
appear for ML, either regarding all values, or regarding all values except the
one of the second formative measurement model. The lowest variability ap-
pears often for the OLS estimates. The corresponding measures appear similar
for ML. On the contrary the respective PLS values appear clearly larger. In
summary, I can ascertain that the PLS biases appear systematically and that
they are solely small for models which incorporate many indicators and a
large sample (D2, D3). Besides, the differences between the individual md

and rmse values are for PLS much larger than for ML or OLS (see the indi-
vidual results in Appendix H). Especially in the reflective measurement model
extremely large values appear for PLS. Extremely large PLS biases in the re-

76The respective measurement model consists of three indicators. One unsolvable equation
(according to equation 2.30 page 49) entails that all three λ coefficients cannot get estimated
applying the covariances. In case more indicators operationalise the latent variable possibly
some λ̂ estimates may be obtained by using the respective covariances.
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flective measurement model are in line with the results of prior simulation
studies (see f.i. Cassel et al., 1999, p. 442 et seq. or Ringle et al., 2009,
p. 28 et seq.). The fact that the PLS biases appear on average lower in the
formative measurement model of ξ2 than of ξ1 is surprising, because ξ2 is op-
erationalised by less indicators than ξ1. Since n is large (n = 300) the effect of
more indicators should have had a positive impact on accuracy.
The main picture concerning the accuracy of the total effect estimates can be
described in the following way: PLS reveals in general larger md values com-
pared to ML and OLS, although the individual PLS biases cancel each other
out to some degree. A different picture appears again for the case where n

is very small (variation C1) and where the x variables show very high correl-
ations (E2). For these cases PLS is able to keep up in terms of accuracy or
appears even preferable. The largest total effect rmse values appear through-
out for OLS, with the exception of C3. I assume this to be the case because the
OLS total effect estimators do not use all information the models incorporates,
namely the covariances between the y variables. Finally, when considering all
results the most condensed conclusion is that the ML approach outperforms
the other two approaches.

In the following I go more into details and illustrate what I can deduce
from the variations, firstly concerning accuracy, referring to the variations A
to F, and secondly concerning size and power of a test for significance of the
coefficients, referring to variation G.

In case the model incorporates relatively low explained variance (A cases) all
approaches react with an increase in bias and variability. The PLS md values
concerning the γ̂ and λ̂ estimates stand out as much larger than the respective
ML and OLS values. In effect, with respect to the results of variation A PLS
gets clearly outperformed in terms of md and rmse. Nevertheless, PLS shows
quite reasonable results concerning the total effect coefficients. In order to
keep implications straightforward my overall conclusion is to prefer ML when
the proportion of explained variance is relatively low.

On the basis of the B models I conclude that ML, PLS and OLS are robust
towards non-normality, because the measures of accuracy appear almost iden-
tical when changing the basic model into B1 or B2 as well as when changing
variation A into AB1 or AB2. Consequently, the approaches are also robust
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towards the type of distribution since the results of the variations B1 and B2
as well as of the variations AB1 and AB2 appear similar. The respective
cases include error terms which follow either a continuous uniform distribu-
tion or a chi-squared distribution. Finally, my conclusion referring to both B
cases corresponds with the basic model and my conclusion concerning both
AB cases corresponds with variation A: concerning the individual estimates
PLS cannot be recommended, but ML should be favoured. Considering all re-
spective estimation results I conclude that the ML approach can be preferred
over the OLS approach, though the differences are rather small. If the total
effect coefficients are of interest the PLS estimates are acceptable, but ML is
the best choice again.

The C cases reveal the following: When the sample size is extremely low
(in C1 n = 15) ML suffers not only from non-convergence, but also from
large biases and variabilities. The large biases emerge in all measurement
models. Concerning the structural model the ML approach yields the least
biased estimates compared to the other approaches, which is astonishing given
this extremely small sample size. For OLS all values are throughout bad.
As sample sizes increases, the ML and OLS estimates become quickly more
accurate. Already for n = 50 (C2) the accuracy measures concerning the in-
dividual coefficients appear noticeably lower for both approaches. Considering
all respective measures PLS is outperformed by ML and OLS. If sample size
increases further (it is n = 300 in the basic model and n = 1, 000 in C3)
the ML and OLS results become throughout better. Unsurprisingly, the PLS
estimates appear inconsistent since its estimates do not become more accur-
ate as sample size increases. In contrast, PLS results can even become less
accurate as sample size increases.77 I conclude that for a very low sample size
PLS yields the most accurate, yet biased, estimates concerning the individual
and the total effect coefficients. The variability of the estimates is very large.
Therefore, the results need to be analysed carefully. For a moderate sample
size (from 50 onwards) the most straightforward conclusion is to prefer ML
over PLS and OLS. Admittedly also the PLS and OLS results are partially

77Regarding the reflective measurement model the mean bias appears lower in C1 and C2
compared to the basic model. Regarding the structural model the mean bias appears lower
in C2 compared to the basic model.
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acceptable, but I consider straightforward implications as relevant.
The PLS property “consistency at large” is assessed with the D models. The

results ascertain the property that the PLS estimates become more accurate
as both, sample size and number of indicators, increase. However, also the ML
and OLS estimates become better. In summary, with regard to variation D2
and D3 ML outperforms OLS and PLS (concerning the individual coefficients
and the total effects), although D3 features ideal PLS conditions.

The E variations vary with respect to the variance-covariance matrix of x.
PLS reveals the lowest biases if an identity matrix (VII) is applied. However,
the biases remain quite stable as correlations increase (VI in the basic model
exhibits moderate correlations). Even in presence of multicollinearity (VIII)
the biases increase only slightly. The OLS biases concerning the individual
coefficients as well as the total effect coefficients are only slightly affected by
the degree of the incorporated correlations. This is unsurprising, since OLS
estimators, i.e. the total effect estimators, are robust towards imperfect multi-
collinearity and the individual estimates rely on these estimators. Concerning
ML the md values of the π̂ coefficients appear much larger for (imperfectly)
multicollinear x indicators (E2). Unsurprisingly the rmse values concerning
the formative measurement models increase for increasing correlations between
the x variables with regard to all approaches. As the variance-covariance ma-
trix in variation E2 comprises very sparse information, the rmse values appear
extremely large. Referring to the accuracy of the individual and the total ef-
fect coefficients ML cannot be recommended because its π̂ estimates suffer
strongly under the (imperfectly) multicollinear formative indicators. A com-
parison between the PLS and OLS accuracies regarding E2 does not deliver a
straightforward implication: OLS appears preferable in terms of bias but the
variability is unacceptably high. At least PLS variability is a bit lower, but
firstly, it is still high and secondly, the corresponding biases are higher. Con-
sequently, at least the results concerning the formative measurement models
must be assessed carefully no matter which approach gets applied. If the for-
mative measurement models get excluded from the assessment, i.e. with regard
to the other partial models, ML and OLS outperform PLS.

With respect to variation F, where x is discrete, for all three approaches the
measures of accuracy appear very similar to those of the basic model. In other
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words the information loss concerning the x variables did not have a large im-
pact on parameter accuracy, so that I can conclude that the estimation quality
does not suffer, if the exogenous indicators are discrete instead of continuous.

With respect to prediction I mainly assessed the accuracy of the predicted
endogenous y variables. These values refer to the residuals, so that it is un-
surprising that OLS shows in general the highest accuracy: firstly, because in
the OLS approach each y variable gets directly regressed on x and thereby the
sum of squared residuals (the residuals that get assessed) gets minimised and
secondly, because the md is always zero as a characteristic of OLS. Regarding
the cases which incorporate low determination coefficients (all A cases), ML,
PLS and OLS show strictly large rmse values. This is plausible because the
incorporated lower R2 values imply poorer fits of a linear regression to the
data. According to my study PLS is not favourable to make predictions, as
PLS reveals throughout the largest rmse values. The most accurate predicted
values appear for the OLS approach. The ML results approximate the OLS
results in terms of accuracy.

An additional investigation was directed at the accuracy of the fitted values
and scores. I remarked in the context of the accuracy of the scores that the
fact that PLS estimates scores is not per se an advantage. Using formative
indicators (these are exogenous and represent f.i. driver variables) fitted values
can be computed according to the specified model. Whether the ML, PLS
or OLS fitted values or the PLS scores are more accurate depends on certain
model characteristics. It may occur that referring to PLS the fitted values
are more precise than the scores. Further, the fitted values of ML or OLS
may be even more precise. In a model where the causality flows only in one
direction the endogenous y variables can only be predicted by the x variables. I
explicitly stress this point again because indicators may never get predicted by
applying the scores of their corresponding latent variable, because otherwise
an indicator would be used to predict itself. In a model like the one shown in
figure 3.8 the variables y4 to y6 may not get predicted applying the scores of η1.
On the contrary, if a specific yq (for q = 4, 5, or 6) gets predicted applying the
scores of ξ1, the described error does not occur. Consequently, the variables
y1 to y3 cannot at all be predicted without committing the described mistake,
see hereto Wold (1982, p. 9 et seq.).
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Figure 3.8: Simple model that incorporates solely reflective indicators.

Variation G served predominantly to investigate actual size and actual
power referring to a significance test with H0 : βj = 0. I investigated on
the 1%-, 5%- and 10%-level the individual coefficients for the ML and PLS
approach and the total effect coefficients for the OLS approach. Regarding
the individual coefficients I determined actual size in the formative and the
reflective measurement models, while I determined actual power in all partial
models. I enhanced the ML and PLS results by graphical illustrations.

My very condensed findings are the following: The ML actual size never
exceeds the respective nominal size but rather undercuts it. ML actual power
appears low to moderate in the formative measurement models, good in the
structural model and reaches 1.0 in the reflective measurement model. PLS
shows in general high actual power, but its actual size always exceeds the nom-
inal size. Thus, PLS rejects a null hypothesis H0 : βj = 0 too often. Regarding
OLS actual power is moderate to good and the α-level is kept (slight variations
can be reasoned with random fluctuations).

In the following I elaborate these findings first concerning ML and PLS and
thereafter concerning OLS. The graphical ML and PLS illustrations (figures
3.4 to 3.6 page 101 et seqq.) show for each coefficient the density function
of the coefficient estimates, of the respective standard deviations and of the
resulting test statistics.

With respect to ML the prior findings concerning the unbiasedness of the
path coefficients can easily be recognised in the figures. Regarding the standard
deviations some ML estimates are conspicuous bad, but nevertheless entered
the assessment. These large values (outliers) result in a relatively large average
over the k estimates (represented by the dashed line). So in case large values
occur, the dashed line does not “fit” well the density curve. As the average
represents the expected value of the corresponding estimator (k is very large)
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the results appear (partially) distorted. Actually, standard deviation outliers
do occur for the γ coefficients and those π coefficients which truly take on
a non-zero number. Consequently no outliers appear for those π coefficients
which truly are zero and all λ coefficients. It can be reasoned that I should
have had to discard implausible results. However, despite the exclusion of im-
plausible results, the density functions of the standard deviations appear right
skewed in the formative measurement models and the structural model. Thus,
the formative specifications are possibly problematic for ML when it comes
to the estimation of the standard errors, affecting the estimates in the forma-
tive measurement models, and further affecting the estimates of the structural
model as some latent variables are specified in a formative way (in my case
ξ). However, I assume a researcher would identify the very large standard
deviations as implausible and discard them. Notwithstanding, I did not define
a certain threshold within my Monte Carlo study for an automatic discarding,
since it is difficult to reason one concrete value. I assess the ML standard
deviations further applying exemplary

√
v̂ar (γ̂1). A histogram of the standard

deviations reveals that values greater 0.5 appear relatively seldom (see Ap-
pendix I figure I.1 page 160). The corresponding densities are given in table
I.1 (page 161) and reveal that starting from a value of 0.550 the densities for
the classified standard error estimates are throughout lower than 0.1. Figure
I.2 (page 162) shows how the picture changes when all estimates greater 0.550
get discarded.78 As the “large” estimates got removed the dashed line, i.e. the
expected estimator value, fits the density function clearly better.
Concerning the actual power the corresponding test statistic density curves
illustrate that actual power is lower for ML compared to PLS, referring to the
(non-zero) π coefficients and the γ coefficients.79 Numerically this is intuitive,
because the respective ML coefficients appear unbiased and the standard de-
viations larger. With respect to the reflective specifications the ML results are
absolutely inconspicuous. Ultimately, although formative specifications lead
apparently for ML to difficulties with regard to the estimation of the standard
errors (outliers and skewness), the nominal size is never exceeded.
The additionally estimated ML bootstrapped standard deviations are not con-

78I do not claim that 0.550 is the best threshold, but use this value as an example.
79The 5%-significance level is marked with a grey vertical line.
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vincing. Unsurprisingly they imply that for my case, in which multinormality
is given, the original standard deviations from the estimation procedure shall
be preferred over the bootstrapped values (see Appendix I table I.2 page 163).

Concerning PLS the biases that appear for most coefficient estimates be-
come visible in the respective figures (page 101 et seqq.). The bootstrapped
PLS standard deviations show low variability compared to the respective ML
curves. The corresponding dashed lines lie to the right compared to the den-
sity curves and the density curves appear slightly right skewed.
The bootstrapping can be modified in terms of the number of bootstrap repli-
cations (KB). For PLS I investigated three different cases including 100, 300 or
1,000 bootstrap replications. The resulting standard deviations do not strictly
appear larger. On the contrary the largest values appear mainly for the low-
est KB. These values refer mainly to the formative measurement models. But
also for the structural model and the reflective measurement model more values
appear higher for KB = 300 than for KB = 1, 000. Moreover, the differences
between the values are very low so that the impact on the test decision is only
marginal. I did not show further ratios, but pointed out that the actual size
may even become larger as the number of bootstrap replication increases. Con-
sequently, the appearing exceeding of the nominal size may even increase for
a higher KB. This makes intuitively sense, when the mean values of standard
deviations appear lower. Finally, I cannot conclude that the PLS bootstrapped
standard deviations become larger with a higher number of bootstrap replica-
tions.
The test statistic density functions illustrate that PLS leads to higher power
than ML does. However, the PLS test statistic always exceeds the determined
α-level. The graphs only hint at that problem, the precise values in table 3.19
(page 95) give evidence. For example regarding π10 the actual size reaches
nearly 9% on the 5%-level. Finally, the fact that PLS exceeds the respec-
tive α-levels can only lead to the conclusion that the PLS test statistic is not
appropriate to serve its purpose.

I conclude that ML is suitable to determine significance of path coeffi-
cients, although the results appear conservative within formative measurement
models. On the contrary the PLS test statistic is not appropriate to test coef-
ficients on their significance.
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Concerning OLS I investigated actual size and actual power referring to the
total effect coefficients, because the population parameters which equal a value
of zero distort the division of a total effect coefficient into single coefficients.
The simulation results ascertain that OLS power depends on the magnitude
of the respective population parameter. It makes statistically sense that a
population parameter close to zero is much more difficult to distinguish from
zero, or in other words it becomes more difficult to reject the null hypothesis
H0 : βj = 0. In summary, the results for OLS power are inconspicuous. When
it comes to the rejection of a true null hypothesis my simulation study confirms
that the presented OLS approach accurately determines significance since the
actual sizes correspond with the respective nominal sizes - the small variations
can be ascribed to random fluctuation. Therefore, the practical implication
arises that an estimated total effect which is detected as significant (conserva-
tively on the 1%-level) may be divided into single coefficients. If the total effect
is composed of (at least) one coefficient which truly equals zero the estimates
would be distorted in approximately 1% of all cases (α). Therefore, researchers
should investigate the results with respect to plausibility. Inflated estimates
may indicate the implausibility and a researcher may consider whether partial
effect(s) may be zero.

Finally, I complemented my study by assessing the three different PLS inner
schemes, firstly in terms of accuracy (for the basic model) and secondly with
respect to significance of the path coefficients (for case G). Concerning accur-
acy my results ascertain that the differences are marginally low. Concerning
actual size and actual power only marginal differences appear, too.80 Hence,
the PLS estimates appear in general for each weighting scheme the least ac-
curate and the respective α-level is not kept. Consequently I do not conclude
that a certain weighting scheme must be preferred over another one.

80To be precise the actual size appears marginally smaller when the path weighting scheme
is applied, yet the respective nominal size is clearly exceeded.



Chapter 4

Critical Appraisal

The two approaches ML and PLS have a very different proceeding and both are
not trivial. The literature reveals several inconsistencies that can make it even
harder to understand the methods, especially for researchers who just begin to
work with structural equation models or who work application oriented. This
situation plus mainly the two facts that formative measurement models in ML
studies as well as actual test size81 in PLS studies are up to date only rarely
investigated, led to my research motivation.

The purpose of this work was to present a comprehensible introduction to
ML and PLS, as well as to introduce an approach which contributes by its
simplicity. I named this latter approach the OLS approach. I purposed to
assess for all three approaches estimator properties as well as the test size
beside statistical power, particularly applying a model which incorporates for-
mative indicators. By performing a Monte Carlo simulation I purposed to
contribute to the confusions which appear in the PLS literature and present
reliable results and implications.

My general proceeding was the following. In chapter 1 I introduced to struc-
tural equation modelling with latent variables in general and further introduced
inconsistencies that appear in the literature. With chapter 2 I contributed a
comprehensible introduction to ML and PLS. To contrast the classical ML
approach with the currently popular PLS approach, I gave an overview of
simulation study results with regard to consistency, bias, power and conver-
gence (or improper solutions). Further, I introduced the OLS approach and

81Referring to H0 : βj = 0.
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presented in detail the estimation procedure as I propose it. Chapter 3 is dedi-
cated to my extensive simulation study. With regard to all three approaches
I assessed the accuracy of the individual coefficient estimates, of the total ef-
fect coefficient estimates and of the predicted values. I measured accuracy in
terms of mean deviation (md) and variability (rmse) for many different speci-
fications. Specifically I assessed the effect of the degree of correlations between
formative indicators, of the incorporated ratio of unexplained variance, of the
error term distribution, of sample size and of available data (in terms of num-
ber of indicators and sample size). Furthermore, I investigated for all three
approaches the frequency a type I error gets committed (test size) and the
frequency a null hypothesis gets correctly rejected (statistical power) referring
to a test for significance of the coefficients.

The simulation study results led to the following conclusion. Concerning
the confusions which appear in the literature I ascertain that with respect
to accuracy ML is in general the better approach compared to PLS, even if
formative measurement models are applied and if the data is non-normally
distributed. My study ascertains that the PLS estimators systematically de-
liver biased values. These biases appear to be quite stable, even under bad
conditions, such as (imperfectly) multicollinear formative indicators or as ex-
traordinary small sample sizes. I remark that very high correlations between
formative indicators imply low information and consequently lead to high vari-
ability in the estimators. Extremely small sample sizes are in general critical
and can only be justified with circumstances that made it impossible to gather
more observations (including immense costs). ML non-convergence becomes
problematic under the same circumstances under which accuracy suffers, i.e.
extremely small sample size and (imperfectly) multicollinear formative indi-
cators. Though it is remarkable that at a sample size of n = 15 the ML
estimators concerning the structural model appear the least biased.
With respect to the OLS approach I can ascertain that its estimators for the in-
dividual coefficients are unbiased and consistent. In general OLS yields slightly
less accurate results than ML. Clear differences between these two approaches
appear for the case of multicollinearity, because OLS estimators are robust
towards imperfect multicollinearity. Consequently the individual estimates,
which base on the OLS estimates (i.e. on the total effects), appear unbiased.
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Despite their unbiasedness, the estimates reveal large deviations from the true
value, as the rmse values appear large. Further, if the sample size is extremely
small the estimators suffer strongly in terms of bias.

In table 4.1 I summarise the results of my Monte Carlo study, saying which
approach overall seems preferable. For a few table cells I could have referred
also to another approach because the differences are small, or one approach
was slightly better in terms of md and the other one in terms of rmse. In
such cases I display the more straightforward approach. The table shows some
question marks which indicate that the interpretation of such estimates needs
generally be considered with caution. With respect to prediction the OLS
approach seems to be a good alternative in general, but the differences to ML
were rather small, i.e. ML was in general second best. As to the rest ML
appears as good and robust approach.

With respect to...
Coeff. TE Prediction

· R2 relatively high, normal data, n = 300, 3 to
5 indicators per latent variable, low to moderate
correlated formative indicators

ML ML OLS

· R2 low ML ML OLS
· data non-normally distributed ML ML OLS
· extremely few observations (n = 15) PLS? PLS? OLS
· from few (n = 50) observations onwards ML ML OLS
· at least 6 per latent variable and large n ML ML OLS
· low (zero) correlated formative indicators ML ML OLS
· imperfectly multicollinear formative indicators,

accuracy concerning the fMM
?

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ PLS OLS· imperfectly multicollinear formative indicators,
accuracy concerning the SM and the rMM

ML

· exogenous indicators (x) are discrete ML ML OLS

Table 4.1: The overall preferable approach in terms of accuracy for different
cases.

The investigation of the test for significance of the path coefficients revealed
the following: PLS shows larger actual power than ML, but does that at the
cost of an exceeded nominal size, when the null hypothesis is true. The actual
test size of PLS exceeds throughout the respective nominal size for each α-level.
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Especially in the formative measurement models the actual size appears clearly
too large. Consequently, the PLS test statistic is not appropriate to determine
significance of the path coefficients. Admittedly the expected values of the
PLS standard errors of the path coefficients appear relatively low, but this is
not very meaningful as the α-level is not kept. The ML standard errors do,
however, suffer from formative specifications, but the ML test statistic appears
rather conservative, i.e. the respective α-levels get clearly undercut. ML power
depends strongly on the magnitude of the coefficient. The same is true for OLS
(with respect to the total effect coefficients), which also keeps the α-level.

Finally I outline some pros and cons concerning my study.
I consider the introductions to the methods comprehensible. Thereby the
introduced OLS approach constitutes a great benefit in the field of structural
equation modelling. To my best knowledge up to date no studies apply the
presented estimation procedure, which works in a straightforward way, is very
easy to comprehend and thus easy to replicate. Further, the Monte Carlo
set-up is described very transparent and the specifications vary systematically.
All specified cases incorporate formative measurement models, whereby I con-
tribute to a research need. In total I performed remarkably 230,000 Monte
Carlo iterations (excluding all bootstrap replications in the course of a single
Monte Carlo iteration). Thus, my study appears very extensive and since I
performed 10,000 iterations for each particular specification the results can be
considered reliable.

Cons of my study are the following. First of all I need to remark that I
cannot conclude that the presented results are valid for other specifications.
However, other ML and PLS studies reveal similar pictures, underpinning the
reliability of my results.
My specified model can be considered as inadequate with respect to complex-
ity.82 I am aware that more complex models are more relevant for practical
applications. However, to present the OLS approach I chose on purpose a
model of low complexity to exemplify the estimation procedure and later on
applied the same model in my simulation study. I find this charming because
it makes my study transparent and easy to replicate.
In my model the ξ variables were defined error-free. Therefore, these variables

82Only in the in the D2 and D3 variations I augmented further indicators.
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are in any case normally distributed, even with respect to my non-normality
cases, i.e. all B cases. However, with respect to ML and OLS identification it
was not an option to specify all error terms free, but some error terms had to
be restricted to a value of zero.
My simulation study covers certain specifications, but more specifications are
possible. I did not simulate a model that f.i. incorporates a misspecification
or uses solely reflective operationalisations.
I investigated test size and power of a test for significance of the individual
path coefficients for ML and PLS. This investigation is limited to the measure-
ment models. The specified model (referring to variation E, see figure 3.2 page
61) is not appropriate to assess the actual size in the inner model. The model
shown in figure 4.1 corresponds with variation G, but incorporates a third
exogenous latent variable ξ3, whose structural coefficient γ3 = 0. Accordingly
ξ3 is separated from the rest of the model and further the covariances between
the corresponding indicators (x11 to x13) are not explained by the model (see
section 2.1.2). Consequently, such a model is not identified in terms of ML.
To assess the actual size in the inner model the model may incorporate f.i. a
causality leading from ξ2 to ξ3.
Moreover, I did not investigate a Count Data Model, i.e. a model which in-
corporates endogenous discrete variables. The presented OLS approach is not
suitable to estimate the respective coefficients (representing the total effects),
because OLS ignores that the data is discrete and does not ensure integer
outcome values. Under certain circumstances the OLS estimates may even
be inconsistent (Winkelmann, 2008, p. 65 et seq.). The respective coeffi-
cients (representing the total effects) of such Count Data Model need to get
estimated with a suitable approach such as Poisson Regression or Negative
Binomial Regression (for an application see f.i. Koch, 2009).83

For future research I recommend further ML, PLS and OLS comparisons
applying models which incorporate formative indicators. Regarding OLS I
propose to divide the total effect estimates only if they are significant, but

83However, the presented data generation was not suitable to assess such a model, be-
cause applying the population parameters would not have led to discrete y values and an
aggregation after their generation to discrete values would not have matched the population
coefficients.
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Figure 4.1: Model which is in terms of ML not identified.

to assess the results in terms of their plausibility. Implausible results may
indicate that the total effect is composed of (at least) one coefficient which
equals zero. Further, I suggest to capture in general the actual size referring
to the significance testing of path coefficients, but to capture it in particular in
the inner model. With respect to OLS I recommend to assess the significance
of the individual coefficient estimates, applying the bootstrap technique for
the estimation of the corresponding standard errors. Moreover, I recommend
to specify a case applying exclusively discrete indicators (x and y) and e.g.
to vary the coefficient patterns (homogeneous vs. heterogeneous). Further, I
recommend to extend the different specifications, applying f.i. more complex
models or models which incorporate misspecifications.
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Appendix A

PLS Applications

In table A.1 PLS application studies are listed together with their individual
reason(s) for applying PLS (if reasons are given).84 The studies are interdiscip-
linary, i.e. they cover several business areas, such as (international) Marketing
and Strategic Management. The list is partially based on Henseler et al.
(2009) and Reinartz et al. (2009), but includes also others application
studies (such as published after 2009). Since a large number of PLS applica-
tion studies has been published - according to Hair et al. (2012b, p.414)
204 articles were published solely referring to marketing journals until 2010 -
this is only a selection, which gives a condensed overview.

84In the header “MS” is the abbreviation for misspecification and “MC” for multicollinear-
ity.
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Source
Fornell/Robinson, 1983 x x Journal of Consumer

Research
Birkinshaw et al., 1995 x x x Strategic Management

Journal
Dawes et al., 1998 x x Journal of Marketing
Milberg et al., 2000 x x Organization Science
Lee, 2001 x Journal of Business

Research
White et al., 2003 x x Journal of Marketing
Eskildsen et al., 2004 x x x Total Quality Management
Mintu-Wimsatt/Graham, 2004 x x Journal of the Academy of

Marketing Science
Reinartz et al., 2004 x x Journal of Marketing

Research
Venaik et al., 2005 x x x x x Journal of International

Business Studies
Hennig-Thurau et al., 2006 x Journal of Marketing
Johnson et al., 2006 x Journal of Marketing
Ulaga/Eggert, 2006 x Journal of Marketing
Hennig-Thurau et al., 2007 x Journal of Marketing
Hsu/Wang, 2008 x x x Total Quality Management
McFarland et al., 2008 x Journal of Marketing
Harmancioglu et al., 2009 x Journal of Product and &

Brand Management
Wu et al., 2009 x Social Indicators Research
Ernst et al., 2010 x x Journal of Marketing
Lam et al., 2010 x Journal of Marketing
Anderson/Swaminathan, 2011 x x x Journal of Marketing

Theory and Practice
Arazy/Gellatly, 2012 x Journal of Management

Information Systems
Brady et al., 2012 Journal of Marketing
San José-Cabezudo/Camarero-
Izquierdo, 2012

x Journal of Advertising

Bicen/Madhavaram, 2013 x Journal of Marketing The-
ory and Practice

Garnefeld et al., 2013 x x Journal of Marketing
Landau/Bock, 2013 x x x x x Long Range Planning
Nell/Ambos, 2013 x x x x Strategic Management
Calvo-Mora et al., 2014 Journal of Business

Research
Surienty et al., 2014 Social Indicators Research

Table A.1: Reasons for applying PLS (studies are sorted by date).



Appendix B

Derivation of the implied
variance-covariance matrix

The derivation is presented by Bollen (1989, p. 324 et seq.) and Trinchera
(2007, p. 69 et seqq.) among others. Usually for simplicity the variables η, ξ,
y and x enter als deviations from their means. Furthermore, the error terms
are uncorrelated. Both assumptions are not necessary, but they simplify the
notation.

For

Σ(θ) =
⎡⎣Σyy(θ) Σyx(θ)
Σxy(θ) Σxx(θ)

⎤⎦
the “partial” covariance matrices need to be derived. They are Σyy(θ), Σxx(θ),
Σyx(θ) and Σxy(θ). Recall that E(y) = E(x) = 0 and uncorrelated error terms
ε and δ are assumed.

With E(y) = 0 the first one is

Σyy(θ) = E(yy′)

= E
[
(λyη + ε)(η′λ′

y + ε′)
]

= λyE(ηη′)λ′
y + Θε.
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Furthermore, E(ηη′) can be derived (recall η = Bη+Γξ+ζ = (I−B)−1Γξ+ζ):

E(ηη′) = E
([
(I − B)−1Γξ + ζ

]
[ξ′Γ′[(I − B)−1]′ + ζ ′]

)
= (I − B)−1(ΓΦΓ′ + Ψ)

[
(I − B)−1

]′
With this information Σyy(θ) can be transformed to

Σyy(θ) = Λy(I − B)−1(ΓΦΓ′ + Ψ)[(I − B)−1]′Λ′
y + Θε.

The second partial covariance matrix is:

Σxx(θ) = E(xx′)

= E
[
(Λxξ + δ)(ξ′Λ′

x + δ′)
]

= ΛxE(ξξ′)Λ′
x + Θδ

= ΛxΦΛ′
x + Θδ

The third partial covariance matrix is:

Σyx(θ) = E(yx′)

= E[(Λyη + ε)(ξ′Λ′
x + δ′)]

= ΛyE(ηξ′)Λ′
y

= ΛyE
[
(I − B)−1(Γξ + ζ)ξ′]Λ′

x

= Λy(I − B)−1ΓΦΛ′
x

The remaining partial covariance matrix corresponds with the latter one in the
way

Σxy(θ) = [Σyx(θ)]′ ,

because the main diagonal mirrors the two matrices.



Appendix C

Bootstrapping

The estimate θ̂ of a parameter of interest θ is estimated on the basis of a sample
x of size n. The data set has been drawn from a probability distribution F . The
purpose is to estimate the standard error of θ̂, i.e.

√
v̂arF (θ̂). The bootstrap

technique constitutes the simplest non-parametric approach to do so.
A bootstrap sample xb of size n gets drawn with replacement from the em-

pirical distribution F̂ , while each observed value x1, x2, ..., xn has the probabil-
ity 1

n
to get drawn. In other words the observed data is treated as population.

Hence, xb consists only of data points of x, whereby some values appear 0, 1,
2,... times. This bootstrap sample serves subsequently to estimate the param-
eter of interest (θ), which I name θ̂b. This procedure is repeated KB times, so
that finally KB estimates θ̂b are available.

The bootstrap estimate of
√
varF (θ̂) applies the empirical distribution F̂ in-

stead of F and is called “plug-in estimate” (Efron/Tibshirani, 1993, p. 46).
Accordingly, the bootstrap estimate for the standard error of the statistic θ̂ is

√
v̂arF̂ (θ̂b) = 1

KB − 1

KB∑
b=1

(
θ̂b − (¯̂θb)2

)

where (¯̂θb)2 represents the average of the bootstrap parameter estimates. “In
other words, the bootstrap estimate of [...]

[√
varF (θ̂)

]
is the standard error

of θ̂ for data sets of size n randomly sampled from F̂” (Efron/Tibshirani,
1993, p. 46).
With KB going to infinity the ideal bootstrap estimate of

√
varF̂ (θ̂b) is

lim
(KB)→∞

√
v̂arKB

=
√
v̂arF̂ (θ̂b).
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Accordingly, the empirical standard deviation approximates the population
standard deviation as the number of replications KB goes to infinity.

Efron/Tibshirani (1993, p. 48) suggest that 25-200 replications are suf-
ficient to estimate a standard error. Fox et al. (2013) states in his reference
manual (p. 4) that 100 replications “should be enough for computing standard
errors, but not confidence interval”. Consequently the default number of repli-
cations regarding his sem package (Fox et al., 2013) is 100, which pertains
also in the plspm package (Sanchez et al., 2013). Both packages appertain
to the free software R (R Core Team, 2014).



Appendix D

Simulation studies summary

In this section I summarise prior findings gained from Monte Carlo simulation
studies concerning the PLS and ML estimators. Thereby I focus on those
parts of the studies, which correspond with my research interest (f.i. I do
not refer to other methods which were investigated in the respective studies).
With respect to estimator consistency see tables D.1. Results referring to
estimator biases and their robustness towards sample size, data distribution or
misspecification are tabulated in table D.2. Moreover, I summarise simulation
results concerning the special aspects of power in table D.3, and concerning
non-convergence / improper solutions in table D.4.
The findings differ to some extent and depend on the individual study set-up,
e.g. model complexity or sample size. I describe the main characteristics of the
individual study set-ups in table D.5. The table shows study characteristics I
consider advantageously or disadvantageously.
Within each table the articles are sorted by date of publication.
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Source Consistency

Hui/Wold, 1982 With both increasing, the number of indicators per latent variable and the sample size, all PLS estimates and
the fitted values of the latent variables become more accurate. PLS is consistent at large.

Cassel et al.,
1999

“The biases for the estimates seem to be unaffected by the increasing sample size” (p. 443). Hence, PLS
estimators are inconsistent. In the inner model the estimates can even become more biased as sample size
increases.

Chin/Newsted,
1999

PLS structural coefficient estimations do not become more accurate with an increasing sample size. Hence, they
are inconsistent. But, they become more accurate with both increasing, sample size and number of indicators
per latent variable. Thus, they are consistent at large. “For sample sizes of 150 or 200, the mean PLS estimate
yielded the population parameter at indicator level of 16 and 32 [...]” (p. 333).

Chin et al.,
2003

Concerning thePLS structural coefficients: “Increasing the sample size [...] does not improve on these estimations
and, in fact, can make them worse” (p. 204).

Reinartz
et al., 2009

As sample size increases accuracy of ML estimators improves.
“[...] if consistency matters, ML-based CBSEM should be preferred over PLS” (p. 338).

Table D.1: Simulation study results concerning estimator
consistency.
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Source Bias

Areskoug, 1982 With two indicators per construct “unacceptable estimates may result even with large samples” (p. 110) for
ML and PLS. For this extreme biases, however, no clear pattern is recognisable, either ML or PLS coefficient
estimates are on average less biased. Apart from that case ML is usually more accurate than PLS. With adding
indicators the results become better.

Boomsma, 1982 ML estimation quality depends on the size of the coefficients in the measurement models. Large coefficient sizes
are especially advantageously in the case of a relative small sample size (i.e. for n = 25 or 50).

Chou/Bentler,
1995

In general ML generates reliable statistical results, even if the data is non-normally distributed. (ML “consis-
tently provided the most unbiased estimates”, p. 53.)

Cassel et al.,
1999

PLS estimators are biased even under optimal assumptions.
The biases of the coefficient estimates increase as skewness of the indicators increases.
Concerning PLS correlations between formative indicators or exogenous latent variables have no systematic
consequences on the biases. Multicollinearity can even lead to better estimation results.
If a latent variable is missing (i.e. the model is misspecified) especially the coefficients in the inner model are
biased (the bias increases accordingly to the relevance of the missing construct).
The scores of the endogenous latent variable are quite accurate, even with skewed data, multicollinearity and
misspecification.

Chin/Newsted,
1999

A greater number of latent variables does not lead to more accurate PLS estimates concerning the coefficients
in the measurement models. “At best, the standard error dropped slightly as the number of LVs increased, but
only when the number of indicators was at four or eight” (p. 333).
Estimations are comparably accurate if constructs are operationalised by eight or more indicators.

Table D.2 continues on the next page.
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Source Bias

Chin et al.,
2003

Given a measurement model with one single indicator the PLS coefficients in the inner model are always strongly
biased (no matter how large the sample size is).
Concerning the coefficients in the measurement models “it is not until we use 10 to 12 indicators that a more
accurate loading estimate is reached” (p. 205). Less indicators lead to comparable results when the sample size
is larger.
20 observations lead always to bad results, no matter how many indicators are incorporated.
Heterogeneous coefficient sizes in the measurement models improve the estimation of the corresponding structural
coefficient.

Reinartz
et al., 2009

Under optimal assumptions ML estimators are accurate.
“PLS path coefficients systematically deviate from the true parameter values” (p. 339).
For samples smaller than 250 observations PLS estimators are less biased than ML estimators.
Non-normality of the data does not have an impact on PLS and ML estimator biases.
The higher the product sample size times the size of the measurement model coefficients the less are the PLS and
ML structural coefficients biased. The inner ML coefficient estimates can be considered accurate with a sample
of only 100 observations when the coefficients in the measurement model are large. But, when the coefficients in
the measurement model are low a sample of 500 observations is required (this result is based on four indicators
per latent variable).
Overall ML bias is lower than PLS bias.

Table D.2 continues on the next page.
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Source Bias

Ringle et al.,
2009

In the inner model ML estimators are as a general rule more accurate than PLS estimators. The same is
true for all measurement models. But, ML shows some outliers in terms of mean squared error. That is the
case when formative indicators within one block show very heterogeneous correlations (strong and close to zero
correlations). ML mse appears also large in a reflective measurement model if the indicators are highly correlated.
A homogeneous correlation pattern between formative indicators is an advantage for the PLS estimation. ML
estimations show some extreme outliers when indicators show low correlations while they operationalise the same
construct (mse outliers).
There is no systematic change between normal and non-normal data concerning accuracy, not for PLS nor for
ML.
ML estimates are as a general rule more accurate than PLS estimates even with non-normally distributed data.

Table D.2: Simulation study results concerning estimator
bias (from page 131 on).
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Source Power

Chin/Newsted,
1999

Small coefficients (0.2) in PLS measurement models are only detected when the sample size is at least 150-200.
Large coefficients (0.6, 0.8) are already detected with a sample of 20 observations.

Chin et al.,
2003

Concerning PLS: “[...] both sample size and the number of indicators are influential in determining significance
for interaction terms” (p. 203; this results holds for all coefficients in the inner model). However, at least 100-150
observations and 4-6 indicators are required to identify significance in the inner model.
Moreover, the larger a structural coefficient is, the more likely is its detection.

Reinartz
et al., 2009

PLS clearly shows higher power than ML. Concerning both methods, but especially for ML, statistical power
is positively influenced by sample size. Moreover, the size of the coefficients in the measurement models and the
number of indicators per latent variable are important for statistical power with respect to ML.

Table D.3: Simulation study results concerning power.
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Source Non-convergence and improper solutions

Boomsma, 1982 ML non-convergence “depends heavily on the population covariances [...] and the sample size [...]” (p. 155). The
first issue implies that “inconsistencies” such as positive correlated indicators, but whose coefficients (between
them and the latent variable) are positive and negative, may not appear. The second issue implies a negative
impact of sample size on non-convergence frequency. The lower the sample the more likely is non-convergence.
Depending on the respective model good or acceptable convergence rates appear for samples greater or equal 100
and in a few cases even for lower sample sizes.

Boomsma/
Hoogland, 2001

ML non-convergence or improper solutions are likely to occur when the sample size is lower than 200.
Moreover, convergence depends positively on the number of indicators per construct and the size of the respective
coefficients.
Non-convergence and the appearance of improper solutions are not affected by the degree of non-normality.
The more complex a model is, the more often non-convergence or improper solutions occur.

Reinartz
et al., 2009

ML non-convergence is not affected by the data distribution.
ML convergence is positively influenced by the size of the coefficients in the measurement models as well as by
the number of indicators per latent variable. The less indicators are available the more important is the size of
the indicator coefficients with respect to convergence.
For ML convergence the sample size should comprise at least 200 observations.

Table D.4 continues on the next page.
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Source Non-convergence and improper solutions

Henseler, 2010 The PLS algorithm may not converge when a model is misspecified. Occurrence of convergence can then be
influenced by the chosen weighting scheme (the weighting scheme favours convergence) and the chosen starting
values. Furthermore, convergence can be achieved if the misspecification is corrected.
The author advises to choose a small convergence criterion (e.g. 0.00001) because the change of the outer weights
can get very small and then grow again and (for example) converge to a non-zero constant value.

Table D.4: Simulation study results concerning non-
convergence and improper solutions (from page 135 on).
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Source Study characteristics Pros (+) and Cons (-)

Areskoug, 1982 ML and PLS, two latent variables, solely reflective operational-
isation, one sample per case, variation of: number of items per
construct (2-16), sample size (25-800).
Examination of all coefficients (inner model and measurement
models).

- Very simple model, only one
sample per case, only reflec-
tive measurement models.

Boomsma, 1982 Factor analysis model (ML estimation), 300 samples per case,
multivariate normal distribution, variation of: sample size (25-
400), number of indicators per construct (3-4), loading pattern,
correlation between the latent variables (0, 0.3).
Examination of parameter estimates, standard errors, the
goodness-of-fit statistic χ2 and as a side product convergence fre-
quency and rate of inadmissible solutions.

- Simple factor analysis
model, solely ML.

Hui/Wold, 1982 PLS, two latent variables, solely reflective operationalisation, nor-
mally distributed indicators, variation of: number of items per
construct (4-32), sample size (25-100).
Examination of all coefficients (inner model and measurement
models) and of all fitted values of the latent variables.

- Very simple model, num-
ber of replications unknown,
only reflective measurement
models, solely PLS.

Table D.5 continues on the next page.
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Source Study characteristics Pros (+) and Cons (-)

Chou/Bentler, 1995 ML, confirmatory factor analysis, two correlated factors, three in-
dicators per factor, sample size of 200, two different assumptions
(all parameters are free or all six loadings are fixed), variation of:
data distribution, standard errors (robust, not robust).
Examination of accuracy, explicitly of all parameters, standard
errors and the goodness-of-fit statistic χ2.

- Only 100 replications per
case, the results are not pre-
sented numerically, solely ML.

Cassel et al., 1999 PLS, four latent variables, formative and reflective operationali-
sation, R2 = 0.7 in each partial model, error terms in measure-
ment models are continuous uniform distributed, error term in in-
ner model is normally distributed, 500 samples per case, variation
of: sample size (50-1000), distribution of the exogenous indica-
tors, degree of multicollinearity, different cases of misspecifications
(missing variable in the inner model with either large or small co-
efficient).
Examination of all coefficients (inner model and measurement
models) and of the fitted values of the endogenous latent variable.

+ Incorporation of formative
measurement models, detailed
and systematic presentation
of the results.
- Only 500 samples per case,
solely PLS.

Table D.5 continues on the next page.
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Source Study characteristics Pros (+) and Cons (-)

Chin/Newsted, 1999 PLS, three latent variables, heterogeneous coefficients in each mea-
surement model (i.e. one half of the indicators is good, one fourth
is adequate and one fourth is useless), variation of: sample size
(20-200), 100 samples per case, number of latent variables (2-16),
number of items per construct (4-32).
Examination of all coefficients (inner model and measurement
models) and statistical power.

- Only 100 samples per case,
solely reflective measurement
models, solely PLS. Only
Power was investigated with-
out the type I error. The
simulation results are only
put into words, no tables are
given.

Boomsma/
Hoogland, 2001, citing
Boomsma, 1983, and
Boomsma, 1985, and
Hoogland, 1999

Different studies (original sources were partly not accessible), vari-
ation of: sample size (22-1,600), size of coefficients, correlation of
latent variables, number of items per latent variable, number of
latent variables.
Examination of non-convergence and improper solutions.

- Partly not accessible (un-
published dissertation), only
ML, solely reflective indica-
tors.

Chin et al., 2003 PLS, four latent variables (one is an interaction variable), solely
reflective operationalisation, 500 samples per case, variation of:
size of coefficients (in the measurement models), sample size (20-
500), number of items per construct (1-12), degree of measurement
error (R2 in the measurement models).
Examination of coefficients in the inner model (accuracy and stat-
istical power).

- Only reflective measurement
models, only 500 samples per
case, solely PLS. Only Power
was investigated without the
type I error. One table is
missing to which the authors
refer.

Table D.5 continues on the next page.
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Source Study characteristics Pros (+) and Cons (-)

Reinartz et al., 2009 ML and PLS, six latent variables, solely reflective operationalisa-
tion, 200 samples per case, variation of: sample size (100-10,000),
number of items per construct (2-8), data distribution, size of co-
efficients (in the measurement models) and their pattern (equal or
different).
Examination of convergence rate, parameter accuracy in the inner
model and its drivers, statistical power.

+ Simulation of many cases,
very systematically.
- No formative measurement
models, only 200 replications
per case. Only Power was in-
vestigated without the type I
error.

Ringle et al., 2009 ML and PLS, five latent variables, formative and reflective oper-
ationalisation, 1,000 samples per case, n = 300, variation of the
data distribution.
Examination of all coefficients (inner model and measurement
models) with focus on the formative measurement models (i.e. cor-
relation pattern of the formative indicators).

+ Incorporation of formative
measurement models, detailed
presentation of the results.
- The interpretation of the
results appears relatively pro
PLS and contra ML.

Table D.5 continues on the next page.
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Source Study characteristics Pros (+) and Cons (-)

Henseler, 2010 PLS, four latent variables but one is omitted (misspecification),
the remaining three latent variables are operationalised by two in-
dicators respectively, the error term in the inner model is normally
distributed, 500 samples per case, variation of: sample size (20-
500), weighting scheme and starting values.
Examination of PLS convergence.

- Very simple model, only re-
flective measurement models,
solely PLS, only 500 samples
per case.

Table D.5: Design of simulation studies, sorted by date (from
page 137 on).



Appendix E

OLS for SEM applying solely
reflective indicators

In a model where all latent variables are specified reflective it is not possible to
perform regressions with x as exogenous variables. An example for such kind
of model is shown in figure 2.9 page 52. According to the model each yq could
get regressed on the two ξ variables, but the ξ variables are latent. One way to
handle this case is to first estimate fitted values for the latent variables. This
can be done applyiing the parameter estimates π̂.

In section 2.4.2 I showed how to estimate the λ coefficients applying the
fitted values of the (reflective) endogenous indicators ŷ (see equation 2.28 page
48). The case described here, however, is different since no fitted values for
the dependent indicators (here x) are available. Therefore, the observed x get
applied. With uncorrelated error terms and var(ξ̂1) = 1 the relation is f.i.

cov(x1, x2) = cov(π̂1ξ̂1 + ε̂x1, π̂2ξ̂1 + ε̂x2)

= π̂1π̂2 var(ξ̂1)︸ ︷︷ ︸
!=1

π̂2 =
cov(x1, x2)

π̂1
(E.1)

With at least three indicators per latent variable ξg (for g = 1, 2) the corres-
ponding π̂ coefficients can get solved analogous to section 2.4.2 (page 48 et
seqq.), but using the cov(xk, xs) as in equation E.1.
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Fitted values for the latent variable ξ̂1 can be estimated with the correspond-
ing set of observed indicators x and estimated π̂ coefficients. The relationship
between one indicator and its latent variable is

xl = πlξ1 + εxl.

Usually in a linear regression both, the independent (x) and dependent variable
(y) are observable. The estimated linear relation results as y = β̂x + ε̂. The
respective fitted values for y are ŷ = β̂x and lie on a line. Here, ξ is not
observed, no fitted values for neither xl (the dependent variable) nor εxl are
available, but estimates π̂l are available. Hence,the fitted values for the latent
variable can only be estimated as

ξ̂g =
1
π̂l

xl

(for xl appertaining to ξg), which is not utterly accurate. Since one measure-
ment model is composed of several indicators, all corresponding information
gets incorporated by taking the mean over all sets of fitted values.

ξ̂1 =
1
5

5∑
i=1

1
π̂i

xi (E.2)

ξ̂2 =
1
3

8∑
i=6

1
π̂i

xi (E.3)

Equation E.2 and E.3 refer to the model shown in figure 2.9 page 52.
Each yq can then be regressed on ξ̂. Analogous to the procedure described in
section 2.4.2 the OLS parameters can be divided to obtain λ̂ and γ̂. The λ

coefficients can moreover get estimated using again the covariances between
the corresponding indicators (y).



Appendix F

The error term distributions

In this passage the details regarding the error term distributions are described.
In the A specifications the error term is not normally distributed, but either
non-central chi-squared or continuous uniform distributed. This implementa-
tion is realised as follows.

A non-normal chi-squared distribution is specified by three parameters.
These are

• n, the number of observations,

• df , the degrees of freedom and

• ncp, the non-centrality parameter.

The mean and variance of a non-central chi-squared distribution are

μ = df + ncp

and
σ2 = 2 · (df + 2 · ncp).

The shape of the distribution, i.e. the density, is defined by df and ncp. To get
a highly skewed density I determine df = 2.5 and ncp = 0.5. This distribution
has μ = 3.0 and σ2 = 7 (see figure F.1). From this distribution the error
terms ζprel and εprel are drawn (each with sample size n).85 So far μ and σ2

differ from the desired values. To render the mean equal to a value of zero
85In the data generation process I set different seeds for each drawing.
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Figure F.1: The density of the applied chi-squared distribution.

and the variance equal to the value that corresponds with the respective R2 an
adjustment is necessary. The mean adjustment is simply done by subtracting
the mean (3.0). For the variance adjustment first the desired variance needs
to be determined. It can be computed in general as

RSS = ESS
( 1

R2 − 1
)

with RSS standing for the residual variance and ESS standing for the explained
variance. The mean and variance adjustment can be realised with

ε =
(
εprel − μ

)
·
√

RSSrMM

σ2

(ε appertains to the reflective measurement model and is used as an example).

The drawing for the uniform distributed error term works like the following.
Again three parameters need to be set:

• n, the number of observations,

• the minimum min and

• the maximum max.
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It is
μ = 1

2 · (min + max)

and
σ2 = 1

12(max − min)2.

Setting max = −min leads to a mean equal to zero. In order to obtain a
variance which corresponds with the defined R2 the maximum ought to be

max =
√
12 · RSS

2 .

With the determined parameters the samples can get drawn from the re-
spective distribution.



Appendix G

Total Effect Coefficients

The total effect coefficients result as TExy = πtrueγtrueλ′. The population
values are shown in table G.1.

y1 y2 y3 per xl

x1 0.26289 0.18402 0.23660 0.22784
x2 0.16431 0.11501 0.14788 0.14240
x3 0.26289 0.18402 0.23660 0.22784
x4 0.19717 0.13802 0.17745 0.17088
x5 0.13144 0.09201 0.11830 0.11392
x6 0.37238 0.26066 0.33514 0.32273
x7 0.24825 0.17378 0.22343 0.21515
x8 0.31031 0.21722 0.27928 0.26894

per yq 0.24370 0.17059 0.21933

Table G.1: The total effect population parameters.

These values are valid for the basic model and variations A, B and C.
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Appendix H

Individual simulation study
results

mean md rmse
true ML PLS OLS ML PLS OLS ML PLS OLS

π1 0.39500 0.38856 0.33620 0.38037 -0.00644 -0.05880 -0.01462 0.11823 0.13182 0.11692
π2 0.24687 0.24077 0.35030 0.23568 -0.00610 0.10343 -0.01119 0.11706 0.15085 0.11481
π3 0.39500 0.38665 0.29336 0.37922 -0.00834 -0.10163 -0.01577 0.11968 0.15645 0.11772
π4 0.29625 0.28872 0.23163 0.28295 -0.00752 -0.06462 -0.01329 0.12446 0.13741 0.12219
π5 0.19750 0.19223 0.33515 0.18819 -0.00527 0.13765 -0.00930 0.12143 0.17763 0.11884
π6 0.55950 0.55347 0.54486 0.54775 -0.00604 -0.01464 -0.01175 0.10865 0.10790 0.10803
π7 0.37300 0.36969 0.35506 0.36597 -0.00331 -0.01794 -0.00703 0.11401 0.11454 0.11298
π8 0.46625 0.46178 0.48401 0.45652 -0.00448 0.01776 -0.00974 0.11060 0.11021 0.10981
γ1 0.66555 0.66928 0.57411 0.67248 0.00373 -0.09144 0.00693 0.06019 0.11047 0.05854
γ2 0.66555 0.66290 0.55203 0.65974 -0.00265 -0.11351 -0.00581 0.06339 0.12862 0.06196
λ1 1.00000 1.01846 1.22801 1.02378 0.01846 0.22801 0.02378 0.10403 0.23965 0.10885
λ2 0.70000 0.71298 0.72623 0.71639 0.01298 0.02623 0.01639 0.07302 0.06078 0.07608
λ3 0.90000 0.91649 1.04114 0.92025 0.01649 0.14114 0.02025 0.09480 0.15805 0.09894

Table H.1: Individual simulation study results for the basic model.
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md rmse
centroid factorial path centroid factorial path

missing results 0 0 0
π1 − π5 0.09322 0.09322 0.09322 0.15083 0.15083 0.15083
π6 − π8 0.01678 0.01678 0.01678 0.11088 0.11088 0.11089

γ1, γ2 0.10248 0.10250 0.10251 0.11954 0.11963 0.11967
λ1 − λ3 0.13180 0.13179 0.13178 0.14678 0.14681 0.14683

TE per y1 0.04097 0.04097 0.04097 0.09852 0.09854 0.09855
TE per y2 0.04011 0.04012 0.04013 0.06495 0.06496 0.06497
TE per y3 0.03994 0.03995 0.03995 0.08518 0.08519 0.08520

prediction y1 − y3 0.00029 0.00029 0.00029 1.49572 1.49572 1.49572

Table H.2: Simulation study results for PLS applying different inner schemes
(for the basic model).

mean md rmse
true ML PLS OLS ML PLS OLS ML PLS OLS

π1 0.39500 0.40611 0.30184 0.29157 0.01112 -0.09316 -0.10342 0.21832 0.27287 0.25441
π2 0.24687 0.19392 0.31817 0.17673 -0.05295 0.07130 -0.07014 0.27148 0.25045 0.23821
π3 0.39500 0.32585 0.26020 0.28893 -0.06915 -0.13480 -0.10607 0.27903 0.28994 0.25430
π4 0.29625 0.22814 0.20551 0.21363 -0.06811 -0.09073 -0.08262 0.28900 0.27895 0.25507
π5 0.19750 0.15809 0.30364 0.14008 -0.03941 0.10615 -0.05741 0.27840 0.26526 0.24130
π6 0.55950 0.53885 0.51117 0.45849 -0.02066 -0.04833 -0.10101 0.23395 0.24594 0.26207
π7 0.37300 0.33355 0.33400 0.30734 -0.03946 -0.03900 -0.06567 0.27972 0.25890 0.25959
π8 0.46625 0.41397 0.45630 0.38133 -0.05228 -0.00996 -0.08493 0.27412 0.24761 0.26207
γ1 0.66555 0.69069 0.49474 0.70994 0.02514 -0.17081 0.04439 0.12031 0.20507 0.10307
γ2 0.66555 0.64469 0.45248 0.63078 -0.02086 -0.21307 -0.03477 0.13428 0.24151 0.11278
λ1 1.00000 1.12504 1.74367 1.16397 0.12504 0.74367 0.16397 0.29646 0.78226 0.34273
λ2 0.70000 0.78979 0.80283 0.81554 0.08979 0.10283 0.11554 0.20950 0.18810 0.43433
λ3 0.90000 1.01440 1.36060 1.04319 0.11440 0.46060 0.14319 0.27070 0.52088 0.30334

Table H.3: Individual simulation study results for variation A.
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mean md rmse
true ML PLS OLS ML PLS OLS ML PLS OLS

π1 0.39500 0.38729 0.33444 0.37888 -0.00771 -0.06055 -0.01612 0.11794 0.13145 0.11694
π2 0.24687 0.23947 0.34906 0.23453 -0.00740 0.10219 -0.01234 0.11873 0.15125 0.11675
π3 0.39500 0.38712 0.29441 0.37972 -0.00787 -0.10058 -0.01528 0.11950 0.15520 0.11793
π4 0.29625 0.29094 0.23391 0.28565 -0.00530 -0.06234 -0.01060 0.12399 0.13761 0.12192
π5 0.19750 0.19205 0.33471 0.18800 -0.00545 0.13721 -0.00950 0.11825 0.17605 0.11632
π6 0.55950 0.55558 0.54684 0.55001 -0.00392 -0.01266 -0.00949 0.10844 0.10875 0.10786
π7 0.37300 0.36892 0.35406 0.36479 -0.00408 -0.01894 -0.00821 0.11223 0.11426 0.11136
π8 0.46625 0.46047 0.48288 0.45532 -0.00579 0.01663 -0.01093 0.11181 0.11052 0.11138
γ1 0.66555 0.67087 0.57545 0.67398 0.00532 -0.09010 0.00843 0.06095 0.11049 0.05929
γ2 0.66555 0.66132 0.55086 0.65824 -0.00423 -0.11469 -0.00731 0.06394 0.13058 0.06255
λ1 1.00000 1.01779 1.22775 1.02200 0.01779 0.22775 0.02200 0.10593 0.24342 0.11044
λ2 0.70000 0.71177 0.72500 0.71566 0.01177 0.02500 0.01566 0.07318 0.06572 0.07690
λ3 0.90000 0.91671 1.04161 0.92085 0.01671 0.14161 0.02085 0.09477 0.16210 0.09890

Table H.4: Individual simulation study results for variation B1.

mean md rmse
true ML PLS OLS ML PLS OLS ML PLS OLS

π1 0.39500 0.38886 0.33608 0.38031 -0.00613 -0.05892 -0.01469 0.11675 0.13004 0.11601
π2 0.24687 0.24071 0.35016 0.23581 -0.00616 0.10329 -0.01107 0.11977 0.15195 0.11749
π3 0.39500 0.38393 0.29117 0.37659 -0.01107 -0.10383 -0.01840 0.12008 0.15800 0.11820
π4 0.29625 0.29077 0.23307 0.28513 -0.00547 -0.06317 -0.01111 0.12201 0.13626 0.11973
π5 0.19750 0.19389 0.33669 0.18979 -0.00361 0.13919 -0.00771 0.11642 0.17653 0.11398
π6 0.55950 0.55416 0.54586 0.54843 -0.00535 -0.01364 -0.01107 0.10666 0.10711 0.10581
π7 0.37300 0.36942 0.35415 0.36523 -0.00358 -0.01886 -0.00777 0.11168 0.11340 0.11048
π8 0.46625 0.46171 0.48396 0.45673 -0.00454 0.01771 -0.00953 0.10966 0.10950 0.10867
γ1 0.66555 0.66934 0.57317 0.67258 0.00379 -0.09238 0.00703 0.06141 0.11146 0.05956
γ2 0.66555 0.66228 0.55058 0.65912 -0.00327 -0.11497 -0.00643 0.06479 0.13026 0.06333
λ1 1.00000 1.01644 1.22762 1.02105 0.01644 0.22762 0.02105 0.10356 0.23843 0.10865
λ2 0.70000 0.71101 0.72497 0.71452 0.01101 0.02497 0.01452 0.07297 0.05896 0.07642
λ3 0.90000 0.91508 1.04117 0.91904 0.01508 0.14117 0.01904 0.09427 0.15639 0.09848

Table H.5: Individual simulation study results for variation B2.
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mean md rmse
true ML PLS OLS ML PLS OLS ML PLS OLS

π1 0.39500 0.40259 0.29833 0.28834 0.00760 -0.09667 -0.10666 0.21502 0.27126 0.25419
π2 0.24687 0.19367 0.31512 0.17669 -0.05320 0.06824 -0.07018 0.27531 0.25125 0.24104
π3 0.39500 0.32769 0.26287 0.29095 -0.06731 -0.13212 -0.10405 0.27695 0.28919 0.25616
π4 0.29625 0.23515 0.20983 0.21985 -0.06110 -0.08642 -0.07640 0.28492 0.27831 0.25209
π5 0.19750 0.15777 0.30391 0.14152 -0.03973 0.10641 -0.05598 0.26920 0.26127 0.23565
π6 0.55950 0.54163 0.51462 0.46199 -0.01788 -0.04488 -0.09752 0.23109 0.24791 0.26126
π7 0.37300 0.33194 0.33258 0.30436 -0.04106 -0.04042 -0.06864 0.27521 0.25852 0.25852
π8 0.46625 0.41454 0.45408 0.37871 -0.05171 -0.01217 -0.08754 0.27406 0.24651 0.26413
γ1 0.66555 0.69269 0.49629 0.71160 0.02714 -0.16926 0.04605 0.12410 0.20586 0.10545
γ2 0.66555 0.64106 0.44938 0.62782 -0.02449 -0.21617 -0.03773 0.13754 0.24563 0.11588
λ1 1.00000 1.12345 1.73789 1.15675 0.12345 0.73789 0.15675 0.29956 0.78598 0.32880
λ2 0.70000 0.78487 0.80091 0.81347 0.08487 0.10091 0.11347 0.20823 0.19480 0.32891
λ3 0.90000 1.01267 1.36597 1.04579 0.11267 0.46597 0.14579 0.26947 0.53228 0.29664

Table H.6: Individual simulation study results for variation AB1.

mean md rmse
true ML PLS OLS ML PLS OLS ML PLS OLS

π1 0.39500 0.40712 0.30295 0.29115 0.01213 -0.09205 -0.10384 0.21389 0.26941 0.25375
π2 0.24687 0.19056 0.31749 0.17642 -0.05631 0.07062 -0.07045 0.27765 0.25302 0.24290
π3 0.39500 0.31783 0.25398 0.28384 -0.07716 -0.14102 -0.11116 0.28084 0.29426 0.25761
π4 0.29625 0.23703 0.20901 0.21814 -0.05922 -0.08724 -0.07810 0.28589 0.27704 0.25056
π5 0.19750 0.16285 0.30820 0.14355 -0.03465 0.11070 -0.05395 0.27050 0.25956 0.23225
π6 0.55950 0.54003 0.51421 0.45881 -0.01947 -0.04529 -0.10069 0.23015 0.24465 0.25893
π7 0.37300 0.33248 0.33283 0.30440 -0.04052 -0.04018 -0.06860 0.27697 0.25664 0.25594
π8 0.46625 0.41452 0.45563 0.37916 -0.05174 -0.01062 -0.08709 0.27510 0.24399 0.26057
γ1 0.66555 0.69067 0.49296 0.71071 0.02512 -0.17259 0.04516 0.12511 0.20764 0.10519
γ2 0.66555 0.64245 0.44821 0.62870 -0.02310 -0.21734 -0.03685 0.13967 0.24631 0.11630
λ1 1.00000 1.12095 1.74117 1.15436 0.12095 0.74117 0.15436 0.29577 0.77918 0.32652
λ2 0.70000 0.78310 0.80076 0.80737 0.08310 0.10076 0.10737 0.20846 0.18482 0.22962
λ3 0.90000 1.00829 1.36321 1.04140 0.10829 0.46321 0.14140 0.26829 0.51952 0.32134

Table H.7: Individual simulation study results for variation AB2.
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mean md rmse
true ML PLS OLS ML PLS OLS ML PLS OLS

π1 0.39500 0.54401 0.23404 0.17996 0.14902 -0.16096 -0.21504 0.39879 0.55763 0.49420
π2 0.24687 0.08277 0.24812 0.12338 -0.16411 0.00125 -0.12349 0.57382 0.51577 0.45125
π3 0.39500 0.17346 0.19490 0.18164 -0.22153 -0.20010 -0.21336 0.60201 0.57938 0.50353
π4 0.29625 0.07681 0.17172 0.14781 -0.21944 -0.12453 -0.14844 0.61140 0.56974 0.47819
π5 0.19750 0.08456 0.23266 0.08839 -0.11293 0.03516 -0.10911 0.56532 0.51090 0.44170
π6 0.55950 0.66127 0.43584 0.29137 0.10177 -0.12366 -0.26813 0.38429 0.55451 0.54788
π7 0.37300 0.16563 0.29265 0.19335 -0.20738 -0.08035 -0.17965 0.63202 0.53956 0.50540
π8 0.46625 0.18301 0.39818 0.24480 -0.28324 -0.06807 -0.22145 0.67106 0.54156 0.52960
γ1 0.66555 0.76602 0.70187 0.88259 0.10047 0.03632 0.21704 0.42288 0.42500 0.28205
γ2 0.66555 0.66447 0.49286 0.76053 -0.00108 -0.17269 0.09498 0.42895 0.39203 0.23059
λ1 1.00000 1.26752 1.14556 1.42488 0.26752 0.14556 0.42488 0.60009 0.40936 0.73834
λ2 0.70000 0.87496 0.66885 0.98953 0.17496 -0.03115 0.28953 0.43723 0.26320 0.44531
λ3 0.90000 1.12297 0.96120 1.27766 0.22297 0.06120 0.37766 0.57180 0.35591 0.74644

Table H.8: Individual simulation study results for variation C1.

mean md rmse
true ML PLS OLS ML PLS OLS ML PLS OLS

π1 0.39500 0.41798 0.29964 0.30571 0.02298 -0.09535 -0.08928 0.23208 0.30283 0.27618
π2 0.24687 0.19049 0.31492 0.18800 -0.05638 0.06805 -0.05888 0.29384 0.27881 0.26422
π3 0.39500 0.32738 0.25966 0.30727 -0.06761 -0.13534 -0.08772 0.30346 0.32190 0.28024
π4 0.29625 0.23210 0.21111 0.23170 -0.06414 -0.08514 -0.06455 0.30882 0.30828 0.27770
π5 0.19750 0.16336 0.30563 0.15569 -0.03414 0.10813 -0.04180 0.29348 0.29134 0.26258
π6 0.55950 0.55881 0.51586 0.47857 -0.00070 -0.04364 -0.08093 0.24989 0.28275 0.28472
π7 0.37300 0.33055 0.33240 0.31803 -0.04245 -0.04060 -0.05497 0.30410 0.29009 0.28077
π8 0.46625 0.41423 0.46313 0.40080 -0.05202 -0.00312 -0.06545 0.30467 0.28191 0.28609
γ1 0.66555 0.70020 0.62964 0.71565 0.03465 -0.03591 0.05010 0.14198 0.15387 0.12253
γ2 0.66555 0.64877 0.55296 0.64195 -0.01678 -0.11259 -0.02360 0.15099 0.19018 0.12978
λ1 1.00000 1.10656 1.21020 1.12766 0.10656 0.21020 0.12766 0.28455 0.28220 0.28642
λ2 0.70000 0.77247 0.71152 0.78883 0.07247 0.01152 0.08883 0.19725 0.13855 0.19823
λ3 0.90000 0.99399 1.02385 1.01408 0.09399 0.12385 0.11408 0.25405 0.21552 0.25668

Table H.9: Individual simulation study results for variation C2.
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mean md rmse
true ML PLS OLS ML PLS OLS ML PLS OLS

π1 0.39500 0.39275 0.33940 0.39041 -0.00225 -0.05560 -0.00458 0.06401 0.08436 0.06360
π2 0.24687 0.24521 0.35476 0.24368 -0.00166 0.10789 -0.00319 0.06463 0.12408 0.06427
π3 0.39500 0.39200 0.29780 0.38964 -0.00299 -0.09720 -0.00535 0.06577 0.11735 0.06549
π4 0.29625 0.29436 0.23632 0.29256 -0.00189 -0.05993 -0.00369 0.06709 0.08940 0.06678
π5 0.19750 0.19611 0.34022 0.19484 -0.00139 0.14272 -0.00266 0.06540 0.15491 0.06507
π6 0.55950 0.55715 0.54772 0.55546 -0.00235 -0.01179 -0.00405 0.05853 0.05962 0.05830
π7 0.37300 0.37157 0.35754 0.37044 -0.00143 -0.01546 -0.00256 0.06164 0.06378 0.06144
π8 0.46625 0.46580 0.48797 0.46431 -0.00045 0.02172 -0.00195 0.06015 0.06305 0.05998
γ1 0.66555 0.66693 0.56679 0.66789 0.00138 -0.09876 0.00234 0.03405 0.10464 0.03376
γ2 0.66555 0.66433 0.54947 0.66333 -0.00122 -0.11608 -0.00222 0.03539 0.12091 0.03515
λ1 1.00000 1.00578 1.23053 1.00714 0.00578 0.23053 0.00714 0.05636 0.23403 0.05950
λ2 0.70000 0.70384 0.72785 0.70492 0.00384 0.02785 0.00492 0.03972 0.04111 0.04159
λ3 0.90000 0.90499 1.04347 0.90622 0.00499 0.14347 0.00622 0.05130 0.14858 0.05375

Table H.10: Individual simulation study results for variation C3.

mean md rmse
true ML PLS OLS ML PLS OLS ML PLS OLS

π1 0.55874 0.51117 0.47607 0.44605 -0.04757 -0.08268 -0.11270 0.21770 0.27132 0.24162
π2 0.34922 0.30180 0.29767 0.27756 -0.04741 -0.05154 -0.07166 0.25523 0.27845 0.23693
π3 0.55874 0.48779 0.47327 0.44680 -0.07095 -0.08548 -0.11195 0.24855 0.27295 0.24269
π4 0.41906 0.36738 0.35997 0.33648 -0.05168 -0.05909 -0.08258 0.25669 0.27799 0.23899
π5 0.27937 0.24746 0.24088 0.22727 -0.03191 -0.03850 -0.05210 0.26205 0.28177 0.23817
π6 0.68376 0.64990 0.63131 0.59928 -0.03387 -0.05245 -0.08448 0.22225 0.25756 0.23614
π7 0.45584 0.42209 0.41738 0.39876 -0.03375 -0.03846 -0.05709 0.27070 0.28542 0.24972
π8 0.56980 0.53549 0.53021 0.50367 -0.03431 -0.03959 -0.06613 0.25583 0.27378 0.24323
γ1 0.70711 0.73161 0.64459 0.73936 0.02450 -0.06252 0.03226 0.13338 0.18981 0.11470
γ2 0.70711 0.68035 0.58821 0.66959 -0.02676 -0.11889 -0.03752 0.14496 0.20283 0.12800
λ1 1.00000 1.10140 1.21073 1.12772 0.10140 0.21073 0.12772 0.28288 0.28291 0.28658
λ2 0.70000 0.76951 0.71073 0.78872 0.06951 0.01073 0.08872 0.19569 0.13882 0.19787
λ3 0.90000 0.99018 1.02347 1.01424 0.09018 0.12347 0.11424 0.25254 0.21625 0.25692

Table H.11: Individual simulation study results for variation D1.
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mean md rmse
true ML PLS OLS ML PLS OLS ML PLS OLS

π1 0.39509 0.38210 0.37625 0.34968 -0.01299 -0.01884 -0.04541 0.08917 0.10290 0.09396
π2 0.24693 0.23769 0.23378 0.21781 -0.00924 -0.01315 -0.02912 0.09212 0.10712 0.08907
π3 0.39509 0.38011 0.37545 0.34640 -0.01498 -0.01964 -0.04869 0.08894 0.10285 0.09205
π4 0.29632 0.28654 0.28250 0.26013 -0.00978 -0.01382 -0.03619 0.09237 0.10614 0.08933
π5 0.19755 0.19092 0.18728 0.17498 -0.00663 -0.01026 -0.02257 0.09361 0.10816 0.08869
π6 0.39509 0.38236 0.37735 0.35036 -0.01273 -0.01774 -0.04473 0.08886 0.10249 0.09289
π7 0.24693 0.23782 0.23499 0.21793 -0.00911 -0.01195 -0.02900 0.09175 0.10581 0.08900
π8 0.39509 0.38043 0.37447 0.34871 -0.01466 -0.02063 -0.04638 0.09008 0.10459 0.09469
π9 0.29632 0.28497 0.28205 0.26118 -0.01135 -0.01427 -0.03514 0.09120 0.10520 0.09060

π10 0.19755 0.19025 0.18777 0.17440 -0.00730 -0.00978 -0.02315 0.09258 0.10695 0.08780
π11 0.48349 0.47508 0.47039 0.43917 -0.00841 -0.01310 -0.04432 0.08750 0.10125 0.09385
π12 0.32233 0.31499 0.31188 0.29135 -0.00734 -0.01045 -0.03098 0.09205 0.10555 0.09107
π13 0.40291 0.39450 0.39219 0.36188 -0.00841 -0.01072 -0.04103 0.08956 0.10317 0.08899
π14 0.48349 0.47486 0.47140 0.43910 -0.00863 -0.01209 -0.04439 0.08807 0.10138 0.09507
π15 0.32233 0.31654 0.31358 0.29059 -0.00579 -0.00874 -0.03174 0.09149 0.10489 0.08845
π16 0.40291 0.39587 0.39371 0.36597 -0.00704 -0.00920 -0.03694 0.09032 0.10378 0.09252
γ1 0.70711 0.71281 0.65973 0.75134 0.00570 -0.04738 0.04423 0.05349 0.07418 0.06955
γ2 0.70711 0.70063 0.64359 0.73569 -0.00648 -0.06352 0.02859 0.05505 0.08573 0.06421
λ1 1.00000 1.03174 1.11869 1.04833 0.03174 0.11869 0.04833 0.10202 0.14050 0.11639
λ2 0.70000 0.72104 0.70989 0.73238 0.02104 0.00989 0.03238 0.07126 0.05369 0.08075
λ3 0.90000 0.92803 0.97154 0.94273 0.02803 0.07154 0.04273 0.09150 0.09860 0.10437
λ4 1.00000 1.03086 1.11764 1.04718 0.03086 0.11764 0.04718 0.10098 0.13968 0.11602
λ5 0.70000 0.72190 0.71065 0.73388 0.02190 0.01065 0.03388 0.07155 0.05357 0.08195
λ6 0.90000 0.92649 0.96998 0.94210 0.02649 0.06998 0.04210 0.09058 0.09723 0.10357

Table H.12: Individual simulation study results for variation D2.
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mean md rmse
true ML PLS OLS ML PLS OLS ML PLS OLS

π1 0.27937 0.27407 0.27153 0.26542 -0.00530 -0.00784 -0.01395 0.04678 0.05550 0.04708
π2 0.17461 0.17058 0.16906 0.16515 -0.00403 -0.00555 -0.00945 0.04797 0.05705 0.04721
π3 0.27937 0.27400 0.27154 0.26532 -0.00537 -0.00783 -0.01405 0.04655 0.05527 0.04689
π4 0.20953 0.20497 0.20317 0.19850 -0.00455 -0.00636 -0.01103 0.04749 0.05651 0.04707
π5 0.13969 0.13628 0.13526 0.13198 -0.00340 -0.00442 -0.00771 0.04831 0.05690 0.04728
π6 0.27937 0.27349 0.27120 0.26483 -0.00589 -0.00817 -0.01454 0.04751 0.05641 0.04786
π7 0.17461 0.17038 0.16921 0.16500 -0.00423 -0.00539 -0.00961 0.04794 0.05664 0.04723
π8 0.27937 0.27400 0.27101 0.26533 -0.00538 -0.00836 -0.01404 0.04754 0.05649 0.04777
π9 0.20953 0.20607 0.20394 0.19953 -0.00346 -0.00559 -0.01000 0.04786 0.05647 0.04728

π10 0.13969 0.13600 0.13458 0.13169 -0.00369 -0.00511 -0.00800 0.04851 0.05702 0.04752
π11 0.27937 0.27299 0.27085 0.26433 -0.00638 -0.00853 -0.01504 0.04756 0.05613 0.04805
π12 0.17461 0.17084 0.16967 0.16543 -0.00377 -0.00494 -0.00918 0.04789 0.05633 0.04705
π13 0.27937 0.27378 0.27137 0.26511 -0.00559 -0.00801 -0.01426 0.04658 0.05554 0.04697
π14 0.20953 0.20545 0.20322 0.19903 -0.00408 -0.00631 -0.01049 0.04770 0.05676 0.04735
π15 0.13969 0.13639 0.13531 0.13202 -0.00330 -0.00437 -0.00767 0.04795 0.05677 0.04686
π16 0.27937 0.27345 0.27066 0.26480 -0.00592 -0.00871 -0.01457 0.04694 0.05616 0.04735
π17 0.17461 0.17099 0.16909 0.16555 -0.00362 -0.00551 -0.00906 0.04817 0.05683 0.04733
π18 0.27937 0.27385 0.27150 0.26518 -0.00552 -0.00787 -0.01419 0.04693 0.05560 0.04730
π19 0.20953 0.20452 0.20280 0.19805 -0.00501 -0.00672 -0.01148 0.04783 0.05617 0.04743
π20 0.13969 0.13687 0.13586 0.13253 -0.00282 -0.00382 -0.00716 0.04778 0.05570 0.04672
π21 0.34188 0.33791 0.33633 0.33124 -0.00397 -0.00555 -0.01064 0.04698 0.05512 0.04708
π22 0.22792 0.22517 0.22391 0.22070 -0.00276 -0.00401 -0.00722 0.04766 0.05594 0.04720
π23 0.28490 0.28097 0.27935 0.27542 -0.00393 -0.00555 -0.00948 0.04760 0.05624 0.04744
π24 0.34188 0.33855 0.33664 0.33185 -0.00333 -0.00525 -0.01003 0.04676 0.05507 0.04675
π25 0.22792 0.22532 0.22434 0.22088 -0.00260 -0.00358 -0.00704 0.04753 0.05652 0.04703
π26 0.28490 0.28095 0.27937 0.27541 -0.00395 -0.00553 -0.00949 0.04765 0.05574 0.04751
π27 0.34188 0.33789 0.33556 0.33124 -0.00399 -0.00632 -0.01064 0.04647 0.05525 0.04657
π28 0.22792 0.22520 0.22468 0.22073 -0.00272 -0.00324 -0.00719 0.04753 0.05635 0.04706
π29 0.28490 0.28174 0.28106 0.27616 -0.00316 -0.00384 -0.00874 0.04769 0.05607 0.04741
π30 0.34188 0.33807 0.33606 0.33142 -0.00381 -0.00582 -0.01046 0.04658 0.05480 0.04666
π31 0.22792 0.22451 0.22305 0.22009 -0.00342 -0.00487 -0.00783 0.04764 0.05658 0.04721
π32 0.28490 0.28106 0.27965 0.27550 -0.00384 -0.00525 -0.00940 0.04704 0.05513 0.04685
γ1 0.70711 0.70970 0.67934 0.71336 0.00260 -0.02777 0.00625 0.02806 0.04104 0.02716
γ2 0.70711 0.70421 0.67103 0.69926 -0.00289 -0.03608 -0.00785 0.02872 0.04722 0.02838
λ1 1.00000 1.01681 1.06072 1.02979 0.01681 0.06072 0.02979 0.05443 0.07290 0.06586
λ2 0.70000 0.71255 0.70603 0.72140 0.01255 0.00603 0.02140 0.03800 0.02828 0.04610
λ3 0.90000 0.91562 0.93728 0.92666 0.01562 0.03728 0.02666 0.04883 0.05200 0.05865
λ4 1.00000 1.01716 1.06107 1.03015 0.01716 0.06107 0.03015 0.05442 0.07319 0.06598
λ5 0.70000 0.71219 0.70567 0.72127 0.01219 0.00567 0.02127 0.03827 0.02868 0.04652
λ6 0.90000 0.91620 0.93787 0.92784 0.01620 0.03787 0.02784 0.04939 0.05257 0.06004
λ7 1.00000 1.01734 1.06126 1.03016 0.01734 0.06126 0.03016 0.05423 0.07317 0.06581
λ8 0.70000 0.71232 0.70583 0.72136 0.01232 0.00583 0.02136 0.03827 0.02871 0.04605
λ9 0.90000 0.91602 0.93770 0.92777 0.01602 0.03770 0.02777 0.04877 0.05192 0.05936

λ10 1.00000 1.01781 1.06173 1.03056 0.01781 0.06173 0.03056 0.05413 0.07355 0.06571
λ11 0.70000 0.71214 0.70563 0.72096 0.01214 0.00563 0.02096 0.03842 0.02883 0.04638
λ12 0.90000 0.91577 0.93745 0.92763 0.01577 0.03745 0.02763 0.04929 0.05219 0.05952

Table H.13: Individual simulation study results for variation D3.
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mean md rmse
true ML PLS OLS ML PLS OLS ML PLS OLS

π1 0.55874 0.54958 0.54622 0.53994 -0.00916 -0.01253 -0.01880 0.09214 0.10468 0.09172
π2 0.34922 0.34263 0.34101 0.33642 -0.00659 -0.00821 -0.01280 0.09906 0.11287 0.09764
π3 0.55874 0.54843 0.54445 0.53885 -0.01032 -0.01430 -0.01989 0.09162 0.10427 0.09138
π4 0.41906 0.41046 0.40723 0.40310 -0.00860 -0.01183 -0.01595 0.09919 0.11214 0.09813
π5 0.27937 0.27392 0.27089 0.26908 -0.00545 -0.00848 -0.01030 0.10509 0.12010 0.10326
π6 0.68376 0.67754 0.67576 0.67130 -0.00622 -0.00801 -0.01246 0.08454 0.09457 0.08445
π7 0.45584 0.45244 0.45008 0.44839 -0.00340 -0.00576 -0.00745 0.09840 0.11184 0.09767
π8 0.56980 0.56540 0.56340 0.56011 -0.00441 -0.00641 -0.00970 0.09130 0.10400 0.09076
γ1 0.70711 0.70883 0.61343 0.71048 0.00173 -0.09368 0.00337 0.05838 0.11101 0.05666
γ2 0.70711 0.70301 0.60600 0.69872 -0.00410 -0.10110 -0.00838 0.05900 0.11730 0.05804
λ1 1.00000 1.01860 1.22824 1.02391 0.01860 0.22824 0.02391 0.10391 0.23984 0.10878
λ2 0.70000 0.71296 0.72609 0.71640 0.01296 0.02609 0.01640 0.07302 0.06075 0.07606
λ3 0.90000 0.91657 1.04113 0.92034 0.01657 0.14113 0.02034 0.09470 0.15798 0.09876

Table H.14: Individual simulation study results for variation E1.

mean md rmse
true ML PLS OLS ML PLS OLS ML PLS OLS

π1 0.27372 0.63947 0.36047 0.24863 0.36575 0.08675 -0.02510 0.55412 0.39856 0.59415
π2 0.17108 -0.07995 0.10791 0.16771 -0.25103 -0.06316 -0.00337 0.44325 0.25275 0.44117
π3 0.27372 0.41607 0.04367 0.26974 0.14235 -0.23005 -0.00398 0.66208 0.54240 0.65472
π4 0.20529 0.01890 0.18692 0.18350 -0.18639 -0.01837 -0.02179 0.48721 0.38752 0.50079
π5 0.13686 0.01921 0.34021 0.11241 -0.11765 0.20335 -0.02445 0.59151 0.47513 0.58008
π6 0.41092 0.70586 0.33580 0.40054 0.29494 -0.07512 -0.01038 0.52094 0.33359 0.55364
π7 0.27395 0.32243 0.17871 0.27256 0.04848 -0.09524 -0.00139 0.36277 0.25331 0.35680
π8 0.34243 -0.02609 0.50300 0.30400 -0.36852 0.16057 -0.03843 0.66396 0.35974 0.64987
γ1 0.58460 0.60509 0.51174 0.61083 0.02049 -0.07286 0.02624 0.07654 0.10089 0.07526
γ2 0.58460 0.58499 0.49846 0.59705 0.00039 -0.08614 0.01245 0.07286 0.11096 0.07372
λ1 1.00000 1.01881 1.22786 1.02367 0.01881 0.22786 0.02367 0.10379 0.23951 0.10889
λ2 0.70000 0.71415 0.72633 0.71631 0.01415 0.02633 0.01631 0.07323 0.06077 0.07610
λ3 0.90000 0.91615 1.04110 0.92008 0.01615 0.14110 0.02008 0.09473 0.15802 0.09918

Table H.15: Individual simulation study results for variation E2.



H Individual simulation study results 157

mean md rmse
true ML PLS OLS ML PLS OLS ML PLS OLS

π1 0.39500 0.38123 0.33410 0.37342 -0.01376 -0.06089 -0.02157 0.11023 0.12612 0.10984
π2 0.24687 0.23708 0.33449 0.23224 -0.00980 0.08762 -0.01464 0.11013 0.13630 0.10819
π3 0.39500 0.37966 0.29731 0.37257 -0.01534 -0.09768 -0.02243 0.11171 0.14822 0.11052
π4 0.29625 0.28382 0.23293 0.27836 -0.01242 -0.06332 -0.01789 0.11602 0.13072 0.11437
π5 0.19750 0.18902 0.31750 0.18537 -0.00848 0.12000 -0.01213 0.11397 0.16062 0.11173
π6 0.55950 0.53972 0.53198 0.53440 -0.01978 -0.02752 -0.02510 0.10219 0.10355 0.10239
π7 0.37300 0.36062 0.34741 0.35716 -0.01238 -0.02559 -0.01584 0.10660 0.10929 0.10609
π8 0.46625 0.45064 0.47046 0.44593 -0.01562 0.00421 -0.02032 0.10407 0.10215 0.10398
γ1 0.66555 0.66851 0.58073 0.67165 0.00296 -0.08481 0.00610 0.05926 0.10477 0.05769
γ2 0.66555 0.66696 0.56478 0.66371 0.00141 -0.10077 -0.00184 0.06170 0.11717 0.06020
λ1 1.00000 1.03813 1.23615 1.04330 0.03813 0.23615 0.04330 0.11005 0.24741 0.11533
λ2 0.70000 0.72678 0.73296 0.73016 0.02678 0.03296 0.03016 0.07716 0.06407 0.08056
λ3 0.90000 0.93411 1.04889 0.93773 0.03411 0.14889 0.03773 0.10007 0.16495 0.10459

Table H.16: Individual simulation study results for variation F.

mean md rmse
true ML PLS ML PLS ML PLS

(missing results) (0.00100) (0)
π1 0.39500 0.38375 0.33130 -0.01125 -0.06370 0.11665 0.13236
π2 0.24687 0.24178 0.34937 -0.00509 0.10250 0.12051 0.15242
π3 0.39500 0.38532 0.29359 -0.00968 -0.10141 0.12092 0.15643
π4 0.29625 0.28588 0.22885 -0.01036 -0.06740 0.12415 0.14053
π5 0.19750 0.19139 0.33470 -0.00611 0.13720 0.11899 0.17634
π6 0.00000 0.00023 -0.00080 0.00023 -0.00080 0.11874 0.11524
π7 0.55950 0.55140 0.53480 -0.00811 -0.02470 0.10780 0.10979
π8 0.37300 0.36746 0.34476 -0.00554 -0.02824 0.11328 0.11577
π9 0.46625 0.45801 0.47217 -0.00824 0.00592 0.11204 0.11118
π10 0.00000 -0.00091 0.05556 -0.00091 0.05556 0.12093 0.13085
γ1 0.66555 0.67067 0.57480 0.00512 -0.09075 0.06146 0.10999
γ2 0.66555 0.66223 0.55195 -0.00332 -0.11360 0.06358 0.12908
λ1 1.00000 1.02345 1.22863 0.02345 0.22863 0.10399 0.24006
λ2 0.70000 0.71654 0.72584 0.01654 0.02584 0.07257 0.05963
λ3 0.90000 0.92098 1.04060 0.02098 0.14060 0.09413 0.15679
λ4 0 -0.00041 -0.00039 -0.00041 -0.00039 0.04696 0.04793

Table H.17: Simulation study results for variation G with respect to the indi-
vidual ML and PLS path coefficients.
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OLS
true mean md rmse

TEx1y1 0.26289 0.26171 -0.00118 0.11274
TEx2y1 0.16431 0.16576 0.00145 0.11268
TEx3y1 0.26289 0.26494 0.00205 0.11491
TEx4y1 0.19717 0.19533 -0.00184 0.11637
TEx5y1 0.13144 0.13246 0.00102 0.10980
TEx6y1 0 0.00108 0.00108 0.10787
TEx7y1 0.37238 0.37293 0.00055 0.11066
TEx8y1 0.24825 0.24916 0.00091 0.10701
TEx9y1 0.31031 0.30939 -0.00092 0.11196
TEx10y1 0 -0.00106 -0.00106 0.10736
TEx1y2 0.18402 0.18334 -0.00068 0.07856
TEx2y2 0.11501 0.11616 0.00115 0.07892
TEx3y2 0.18402 0.18427 0.00025 0.08096
TEx4y2 0.13802 0.13777 -0.00024 0.08043
TEx5y2 0.09201 0.09205 0.00004 0.07712
TEx6y2 0 -0.00038 -0.00038 0.07565
TEx7y2 0.26066 0.26102 0.00035 0.07775
TEx8y2 0.17378 0.17373 -0.00004 0.07614
TEx9y2 0.21722 0.21824 0.00102 0.07710
TEx10y2 0 0.00023 0.00023 0.07564
TEx1y3 0.23660 0.23707 0.00047 0.10135
TEx2y3 0.14788 0.14978 0.00190 0.09994
TEx3y3 0.23660 0.23720 0.00060 0.10310
TEx4y3 0.17745 0.17659 -0.00086 0.10489
TEx5y3 0.11830 0.11749 -0.00081 0.10017
TEx6y3 0 0.00030 0.00030 0.09649
TEx7y3 0.33514 0.33581 0.00067 0.09859
TEx8y3 0.22343 0.22415 0.00072 0.09705
TEx9y3 0.27928 0.27755 -0.00173 0.09882
TEx10y3 0 -0.00041 -0.00041 0.09851
TEx1y4 0 0.00047 0.00047 0.06599
TEx2y4 0 0.00030 0.00030 0.06474
TEx3y4 0 0.00017 0.00017 0.06657
TEx4y4 0 -0.00101 -0.00101 0.06669
TEx5y4 0 0.00005 0.00005 0.06430
TEx6y4 0 -0.00004 -0.00004 0.06252
TEx7y4 0 0.00024 0.00024 0.06303
TEx8y4 0 -0.00067 -0.00067 0.06158
TEx9y4 0 -0.00046 -0.00046 0.06379
TEx10y4 0 -0.00073 -0.00073 0.06267

Table H.18: Simulation study results for variation G with respect to the OLS
total effect coefficients.



Appendix I

ML standard error estimates

I classified the continuous ML standard errors estimates of γ̂1 and show in
figure I.1 the corresponding histogram. The abscissa in the graph is restricted
to values between 0.1 and 0.6, although the estimates vary between 0.09319
and 3.00844. However, the missing bars would appear very low. Applying this
scale the skewness of the estimates is better identifiable than in figure 3.5 page
103. Table I.1 (page 161) reveals the densities for the classified data. The
ML approach shows a few large standard deviations. From a value of 0.550
onwards the density is strictly lower than 0.1. In less than 2.5% (247 counts
divided by k=9,990) the value exceeds an estimation value of 0.550.
In practical applications a researcher would assess the results individually,
identify conspicuous results and discard them. Such a proceeding is reasonable
since the ML approach may converge towards another maximum if several
maxima exist. I did not define a threshold to discard results automatically
within my Monte Carlo study, but show with figure I.2 (page 162) how the
results change, if standard deviations which are larger than 0.550 get discarded:
the green density curve appears very similar to the original (black) one. In
contrast, the mark which represents the expected value of the ML standard
error estimator lies much more to the left - since the values enter squared to
calculate the expected value, the discarding of large values has a strong impact.
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Figure I.1: Histogram of the ML standard deviations of γ̂1.

Additionally I estimated the standard deviations also by applying the
bootstrap technique with 300 bootstrap replications (KB). Table I.2 (page
163) reveals that it is favourable to apply the original estimates. The table
shows for the classified estimates the absolute number of estimates within one
class and the corresponding densities. With respect to the latter table the
data is classified such that results appear quite condensed, but large values
(outliers) can be identified. The table reveals that compared to the original
estimates the bootstrapping produces many more outliers.
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0 0.050 0 0 0.345 0.355 98 0.98098
0.050 0.100 1 0.00200 0.355 0.365 70 0.70070
0.100 0.105 0 0 0.365 0.375 74 0.74074
0.105 0.115 19 0.19019 0.375 0.385 75 0.75075
0.115 0.125 82 0.82082 0.385 0.395 58 0.58058
0.125 0.135 158 1.58158 0.395 0.405 65 0.65065
0.135 0.145 322 3.22322 0.405 0.415 58 0.58058
0.145 0.155 411 4.11411 0.415 0.425 38 0.38038
0.155 0.165 572 5.72573 0.425 0.435 51 0.51051
0.165 0.175 667 6.67668 0.435 0.445 34 0.34034
0.175 0.185 760 7.60761 0.445 0.455 31 0.31031
0.185 0.195 690 6.90691 0.455 0.465 35 0.35035
0.195 0.205 734 7.34735 0.465 0.475 25 0.25025
0.205 0.215 640 6.40641 0.475 0.485 29 0.29029
0.215 0.225 609 6.09610 0.485 0.495 26 0.26026
0.225 0.235 499 4.99499 0.495 0.550 66 0.12012
0.235 0.245 453 4.53453 0.550 0.600 43 0.08609
0.245 0.255 387 3.87387 0.600 0.650 40 0.08008
0.255 0.265 317 3.17317 0.650 0.700 28 0.05606
0.265 0.275 288 2.88288 0.700 0.750 17 0.03403
0.275 0.285 270 2.70270 0.750 0.800 25 0.05005
0.285 0.295 220 2.20220 0.800 1.000 44 0.02202
0.295 0.305 2 2.00200 1.000 1.200 17 0.00851
0.305 0.315 191 1.91191 1.200 1.700 21 0.00420
0.315 0.325 158 1.58158 1.700 2.200 5 0.00100
0.325 0.335 135 1.35135 2.200 2.700 4 0.00080
0.335 0.345 128 1.28128 2.700 3.200 2 0.00040

Table I.1: Classified ML standard deviations of γ̂1.
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Figure I.2: Density function of the ML standard deviations of γ̂1 including all
or a selection of estimates.
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0 0.1 1 0.00100 4 0.00400
0.1 0.2 4071 4.07508 3704 3.70771
0.2 0.3 4128 4.13213 4398 4.40240
0.3 0.4 1120 1.12112 1248 1.24925
0.4 0.5 366 0.36637 301 0.30130
0.5 0.6 101 0.10110 103 0.10310
0.6 0.8 110 0.05506 91 0.04555
0.8 1.0 44 0.02202 12 0.00601
1.0 1.2 17 0.00851 9 0.00450
1.2 1.7 21 0.00420 14 0.00280
1.7 2.2 5 0.00100 6 0.00120
2.2 2.7 4 0.00080 0 0
2.7 3.2 2 0.00040 0 0
3.2 10.0 0 0 17 0.00025

10.0 20.0 0 0 11 0.00011
20.0 30.0 0 0 11 0.00011
30.0 40.0 0 0 10 0.00010
40.0 50.0 0 0 8 0.00008
50.0 60.0 0 0 7 0.00007
60.0 70.0 0 0 3 0.00003
70.0 80.0 0 0 1 0.00001
80.0 90.0 0 0 3 0.00003
90.0 100.0 0 0 1 0.00001

100.0 150.0 0 0 3 0.00001
150.0 200.0 0 0 0 0
200.0 400.0 0 0 4 0.00000
400.0 700.0 0 0 8 0.00000
700.0 1000.0 0 0 7 0.00000

1000.0 15500.0 0 0 6 0.00000

Table I.2: Classified ML standard deviations (original and bootstrapped) of
γ̂1.
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