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Abstract

This is the age of software. Almost every modern electronic device has some parts im-
plemented in software. Compared to hardware solutions, software is much cheaper and
more flexible. But there is a downside to this: Software errors can kill. A concurrency
bug in the software of the THERAC-25 system for radiation therapy killed at least three
people. Others were seriously injured [1].

These safety critical systems require a different approach than ordinary business appli-
cations. Testing, which is the dominant method in quality management is not sufficient.
Development of safety critical systems requires formal methods, i.e., a more rigorous
mathematical approach.

This thesis deals with the verification of B and Event-B models using the ProB model
checker. The goal was to significantly improve the performance exploiting the high
abstraction level of B. We achieved this goal. Using the results of this thesis it is
possible to verify models that could not previously be checked within reasonable time
constraints.

In particular the distributed version of ProB improved the model checking run time
by orders of magnitude. Using the prototype developed in this thesis, we think it is
possible to check state spaces with billions of states. Previously it was not possible to
check more than a couple of 10 million states, depending on the model.

We also integrated proof information into the model checking process to reduce the costs
of checking each individual state. Using our improvement, we could halve the run time
for some of the benchmarks.

Finally, we developed a method to extract flow information from Event-B models. The
results can be used to reduce the memory footprint as well as the run time of model
checking. It can also be used to gain better understanding of the algorithmic structure
of a model and for proving deadlock freedom and some other liveness properties.

We evaluated the implementations using several models from academia and industry.
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Zusammenfassung

Wir leben im Zeitalter der Software. Es gibt kaum ein technisches Gerät, das heute oh-
ne Komponenten auskommt, die in Software realisiert sind. Software ist kostengünstig
zu entwickeln und viel flexibler als Hardware. Die Kehrseite der Medaille ist jedoch:
Softwarefehler können töten. Ein Fehler in der Synchronisation der nebenläufigen Soft-
ware des THERAC-25 Linearbeschleunigers für die Strahlentherapie hat mindestens drei
Menschen das Leben gekostet und weitere schwer verletzt [1].

In solchen sicherheitskritischen Systemen kann man nicht die im Umfeld der typischen
Anwendungsentwicklung dominante Methode zur Qualitätssicherung — das Testing —
einsetzen. Solche Software erfordert striktere, mathematische Methoden, die sogenann-
ten formalen Methoden.

In dieser Arbeit beschäftigen wir uns mit der Verifikation von formalen Modellen in B
und Event-B mit Hilfe des Model Checkers ProB.

Das Ziel ist, den hohen Abstraktionsgrad der Modellierungssprachen auszunutzen, um
signifikante Verbesserungen der Laufzeit zu erreichen. Dieses Ziel wurde erreicht. Es
lassen sich mit den in dieser Arbeit vorgestellten Verbesserungen Modelle prüfen, deren
Verifikation vorher nicht praktikabel war.

Insbesondere die verteilte Version von ProB hat eine Verbesserung der Laufzeit von
teilweise zwei Grössenordnungen bewirkt. Mit Hilfe des in dieser Arbeit vorgestellten
Prototypen können potentiell Modelle mit Milliarden von Zuständen verifiziert werden.
Bisher war die praktikable Grenze im Bereich von einigen 10 Millionen Zuständen,
abhängig vom Model.

Desweiteren haben wir eine Integration von Beweisinformationen ausgenutzt um die
Kosten für die Berechnung einzelner Zustände zu reduzieren. Mit Hilfe dieser Methode
konnten wir bei einem Teil der Beispiele eine Reduktion auf die halbe Laufzeit errei-
chen.
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Zusammenfassung

Ausserdem haben wir eine Methode entwickelt, die zur Extraktion von Programmfluss-
Informationen aus Event-B Modellen dienen kann. Diese Methode kann sowohl zur
Reduktion des Speicherverbrauchs und der Laufzeit als auch zum Verständnis der algo-
rithmischen Struktur des Modells beitragen. Ausserdem können mit Hilfe der Analyse
die Abwesenheit von Deadlocks und andere Aussagen über die Lebendigkeit eines Sys-
tems bewiesen werden.

Die Evaluierung der in dieser Arbeit entwickelten Implementierungen erfolgte mit Hilfe
verschiedener akademischer und industrieller Beispiele.

vi



Acknowledgments

This thesis has been influenced by the contributions of so many people to whom I owe
my deepest gratitude.

First of all, I want to thank Michael Leuschel for supporting me in so many ways.
Almost from the very beginning of my studies at the HHU, he opened so many doors
for me. He always encouraged me to pursue my interests and learn as much as I can. I
am deeply grateful that I had the chance to work with Michael, one of the smartest and
kindest persons I have ever met. I also want to thank Stefan Hallerstede. Stefan not
only took the time to read and review my dissertation, but he also shaped my thinking
about formal modeling.

I also want to thank Claudia Kiometzis for her support dealing with the bureaucracy of
a big organization.

When I started studying computer science, I had more than a decade of experience in
developing software. I thought that there wasn’t much more to learn about program-
ming. I couldn’t have been more wrong. I thank all the teachers who opened my eyes
and changed my point of view. I am grateful that they shared their knowledge and
also for their welcoming atmosphere. I always felt welcome when I needed help or had
questions.

I want to thank all my colleagues, co-authors, students and friends at the STUPS group
for their contribution to my research. In alphabetical order: Rene Bartelmus, Michael
Birkhoff, Carl Friedrich Bolz, Markus Borgermans, Marc Büngener, Joy Clark, Ivalyo
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Chapter 1

Introduction

In his essay “Why Software Is Eating The World” the Netscape co-founder Marc An-
dreessen writes how software impacts practically every business and every area of our
daily life.

“In today’s cars, software runs the engines, controls safety features, enter-
tains passengers, guides drivers to destinations and connects each car to
mobile, satellite and GPS networks. The days when a car aficionado could
repair his or her own car are long past, due primarily to the high software
content. The trend toward hybrid and electric vehicles will only acceler-
ate the software shift — electric cars are completely computer controlled.
And the creation of software-powered driverless cars is already under way at
Google and the major car companies.” [2]

Although implementing functionality in software instead of hardware helps to reduce
costs and time to market, there is a big catch. We have to come up with processes
that allow us to reliably produce high-quality software. Producing correct software is a
problem that has been tackled from different angles. Most “Business software” is devel-
oped using testing as the tool to ensure quality. In contrast, safety-critical software is
often developed using formal methods. It is hard to give a precise definition of formal
methods because there are many different approaches and verification techniques, but
the recurring theme is that stronger use of mathematics helps to ensure reliability of the
software. Typical areas where formal methods are applied include aerospace and railway.
In the car industry, we can also observe more interest in formal verification of software.
The most common verification techniques are proof, model checking and abstract inter-
pretation. Proof is often used in a “correct-by-construction” approach, where a software
system is specified abstractly using a mathematical notation and then transformed into
an implementation. Proofs are used to guarantee that the implementation respects
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Chapter 1 Introduction

the specification. The other two techniques can be used with a correct-by-construction
approach, but they also can be used to verify implementations at the code level. In
particular, abstract interpretation is often used on implementations that have not been
developed using a correct-by-construction approach. For abstract interpretation and
model checking, we sometimes don’t even require an explicit specification. Instead the
tools look for standard problems, e.g., buffer overflows or accessing null pointers.

However, because software has become more and more business-critical, there is a grow-
ing number of applications of formal methods outside the domain of safety critical
systems. For instance, Amazon used TLA+ to verify parts of the Amazon Web Ser-
vices [3, 4], Microsoft uses their SLAM tool to verify Windows device drivers [5], and
SAP used a domain specific language on top of Event-B to ensure correctness in the
communication between services [6].

We believe that it will be unavoidable for the IT industry to adopt more rigorous
standards in order to produce quality software. However, the broad adaption of formal
methods in the software engineering community requires tools that are reliable and
fast. In this thesis we propose improvements to the ProB model checker to extend its
applicability. In particular, our distributed version of ProB allows us to verify models
that cannot be checked within reasonable time constraints using the regular version of
ProB.

In the rest of this chapter we will give an overview of the B-Method and its successor
Event-B. We give a short overview of the Rodin toolset and explain what ProB is.

1.1 The B-Method

The B-Method (also referred to as classical B) was developed by Jean-Raymond Abrial
in the 1980s [7]. It is a development method and notation for software systems that
are mathematically proven. It is mainly used to develop safety critical systems, most
notably in the railway domain.

The notation is based on set theory and first order logic. The development method
makes heavy use of refinement and proof. A software system is specified in an abstract
machine and then gradually refined towards a concrete system. The artifact of a classical
B development is a machine, which consists of sets, machine parameters, constants,
variables, and operations.

2



1.1 The B-Method

A set in B is basically a type: it is a non-empty set of elements that is disjoint from
any other set. This means within the sets declaration it is not possible to declare
a set S = {1, 2, 3} because S would not be disjoint from the integer numbers. We
can introduce S as a constant of type P(Z), which could indeed be equal to {1, 2, 3}. A
machine can be parameterized; this is useful to construct generic machines, for instance,
we could implement a generic stack that can be later parameterized to be a stack of
integer numbers or a stack of strings. Parameters can be either sets or constants. All
these elements describe the static properties of the machine, and they can be restricted
using some predicates. The predicates that restrict the parameters are called constraints.
The predicates that restrict the sets and constants are called properties.

The B-Method requires a developer to discharge so called proof obligations (PO) to
verify the correctness of a model. For instance, it requires to prove that the constraints C
are not self contradictory, i.e., there are some parameters p that fulfill the constraints.

∃p · C(p)

It is also required to prove that if the constraints can be satisfied there are sets s and
constants c that satisfy the properties P .

C(p)⇒∃s, c · P (p, s, c)

For instance, if we model a cruise control system, and we want to use parameters to
describe physical properties of the car, we might restrict the range of possible values in
order to guarantee correctness. In our example we may add something that keeps the
top speed below some reasonable limit.

Machines also describe the dynamic behavior using variables. Variables are initialized
in the so called INITIALISATION and modified by operations. The variables form the
state of the model and their values are restricted in the invariant. In the B-Method,
the invariant is very important because it is used to specify the safety properties of
the system. In order to prove correctness, we have to prove that the initialization init

establishes the invariant I for state v.

C(p) ∧ P (p, s, c)⇒ ([init]I)(p, s, c)

Additionally, we have to prove that each operation preserves the invariant. We use S
to describe the substitution of an operation. v denotes the state before applying the

3
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operation, and v′ denotes the state after applying the operation. Pre is the precondition
of the operation. We use [S]I to denote the weakest predicate that describes the largest
set V of states for which ∀v ∈ V ⇒ (([S]I)(v)⇒ I(v′)) holds. This weakest predicate,
called the weakest precondition, can be computed mechanically[S]I [8, p. 25ff]. We
need to prove for all operations that the following holds:

C(p) ∧ P (p, s, c) ∧ I(p, s, c, v) ∧ Pre(p, s, c, v)⇒ ([S]I)(p, s, c, v)

Furthermore, a machine can be refined. A refined machine typically introduces more
detail for an algorithm, i.e., it reduces the non-determinism or introduces more concrete
steps or data structures.

As an example for the introduction of a more concrete implementation detail we will use
swapping the content of two variables (the example is taken from [8, p. 174]). The ab-
stract substitution is x, y := y, x. In principle there are many possible implementations.
For instance, if we assume that x and y contain numbers in a bit-encoding we could
use bitwise XOR (denoted by ⊕) to swap the variables using the following sequence of
substitutions x := x⊕ y; y := x⊕ y;x := x⊕ y. But more likely, we would introduce a
temporary variable, yielding the sequence of statements t := x;x := y; y := t.

If we use different variables in the refinement, we specify a so called gluing invariant
that relates the concrete and abstract variables.There are also proof obligations that
deal with the correctness of the refinement [8, p. 219ff], but they are not relevant in the
context of this thesis.

Once the model has reached a certain level of detail, called B0, automatic tools can
generate executable code from the specification. A B0 specification is also called imple-
mentation and it imposes constraints on the model [8, p. 258]. For instance, while an
abstract machine can use nondeterministic assignment like x :∈ {1, 2, 3}, an implemen-
tation can only use deterministic assignments.

Nowadays, the proof part of the B-Method is mainly supported by the AtelierB [9]
tool, which is developed by the company ClearSy. A free alternative for academic
purposes called B4Free [10] was also offered by ClearSy. Both tools used the same
decision procedures. Since 2009 there has been a free AtelierB community edition and
the development of B4Free has been stopped.

The second important tool for the B-Method is ProB, which is developed at the Uni-
versity of Düsseldorf and described in more detail in Section 1.3.

4



1.2 Event-B and Rodin

AtelierB and ProB are largely orthogonal; AtelierB is used to prove correctness of a
model while ProB is used for animation and visualization. ProB also supports model
checking. ProB can be started from within AtelierB.

1.2 Event-B and Rodin

Event-B [11] is a successor of classical B created to allow specifications on a system
level rather than on the level of software. Rodin [12] is an Eclipse based tool set that
supports modeling in Event-B. The Rodin core tool consists of components for editing,
static checking and proof management. It was developed in the EU funded project
RODIN and successively improved in the projects DEPLOY and ADVANCE.

A drawback of classical B is that it sometimes results in complex and complicated proof
obligations that are hard to discharge, in particular when it comes to refinement proof
obligations. Event-B was designed to produce simpler proof obligations. Its notion of
refinement is also a bit more liberal than refinement in classical B. For instance, in
Event-B we can introduce new events, while in classical B all events have to be present
in the abstract model. In Event-B there are two different artifacts: machines and
contexts. Contexts are used to specify the static parts of the model, i.e., sets, constants
and the corresponding axioms and theorems. Axioms are similar to the constraints and
properties in classical B. The dynamic part, i.e., the variables, the invariant, and the
operations is modeled in a machine. Contexts can extend each other and they are seen
by machines. The only relationship between machines supported by the Rodin core is
refinement. There are plug-ins for Rodin that add new relationships between Event-B
artifacts. An example of such a plug-in is the composition [13] plug-in, which allows
Event-B machines to be to decomposed and composed. The mathematical language of
Event-B used in the Rodin core is — with few exceptions — a subset of the classical B
notation. An example for an exception is an additional syntax for set comprehensions.
In classical B a set comprehension has the form {v | v ∈ T ∧ P (v)} while in Event-B
it has the form {v · P (v) | E(v)}. The Event-B notation is a bit more convenient and
concise, for instance, if we compare how we could specify the set of square numbers in
classical B ({x | x ∈ Z ∧ (∃y · y ∈ Z ∧ x = y ∗ y)}) with the specification in Event-B
({x, y · x = y ∗ y | x}).

Event-B was designed to be rather minimalistic. Many constructs that are present in
classical B are missing in Event-B, for instance, sequences. However, Event-B can be
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extended and in Rodin there is the theory plug-in [14] that allows defining these kind
of language extensions.

As with classical B, the correctness of a development requires proving several obligations.
The Rodin tool uses an incremental and interactive approach to modeling, i.e., each time
a model is changed by the user, Rodin will run a pipeline of tools and update the proof
obligations and the proofs. This is basically done in three steps. The first step is to run a
static checker, which is essentially the Rodin parser and type checker. The static checker
will infer the type for each constant and variable. It will produce an error annotation if
there are syntax or type errors. The static checker produces a new version of the model
that only contains the correct parts of the original input. This static checked model is
then fed into the proof obligation generator (POG), which will generate obligations that
we have to discharge to prove correctness of our development. Finally, Rodin applies
several automatic reasoners to the obligations. We will come back to the automatic
reasoners and other Rodin extensions after discussing the proof obligations that the
POG produces.

We will only cover the proof obligations that are important for this thesis, namely
well-definedness (WD), theorem (THM) and invariant preservation (INV). The most
important proof obligation is INV, but the other two have to be considered because
they have an impact on the soundness of the proof supported model checking, which we
will discuss in Chapter 2 of the thesis. There are also other proof obligations that are
not considered in our work, namely:

• Feasibility of nondeterministic assignment (FIS)

• Refinement proof obligations

– Guard strengthening (GRD)

– Guard merging (MRG)

– Simulation (SIM)

• Proof obligations for termination of convergent events

– Numeric variant is a natural number (NAT)

– Finite set variants (FIN)

– Decreasing of the variant (VAR)

• Witness feasibility (WFIS)
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The WD proof obligation

The WD proof obligation prevents us from specifying ill-defined expressions. If we write,
for instance, the axiom card(S) < 2, the expression card(S) might be ill-defined if S is
not a finite set. Therefore, we need to prove finite(S). We get similar proof obligations
for several other expressions as listed in [11, p. 202].

The THM proof obligation

The THM proof obligation is generated for each theorem. Theorems can be specified in
the axioms clause of a context. In a machine, we can write theorems in the invariant
and also within the guards of an event. Typically, theorems are used to support the
automatic prover by introducing a lemma. We get the theorem as the goal of the proof
obligation and we are allowed to use all axioms/invariants/guards/theorems that occur
before the theorem. For instance, if we specify an axiom ∃p ·p ∈ 1..4�� c and a theorem
finite(c), we can use the axiom to prove the theorem (which can be done). If we flip
the order, we cannot use the axiom to prove the theorem (which cannot be done). The
ordering prevents circular reasoning.

The INV proof obligation

The INV proof obligation [11, p. 188f] is probably the most prominent proof obligation.
As in classical B, it states that we have to prove that the invariant holds after observing
an event given that it was true before the event occurred. As hypotheses, we can use
the event’s guard, the invariant in the predecessor state, as well as axioms and theorems
from seen contexts and theorems from the machine. The rule is:

I(s, c, v) ∧G(s, c, v, x) ∧BA(s, c, v, x, v′) ∧A(s, c) ` inv(s, c, v′) (1.1)

In this rule, s and c denote the sets and constants introduced by some contexts. v and
v′ denote the machine’s variable that form the state, and x are some variables that are
local to the event. I are the invariants and theorems of the machine, G is the guard of
the event, BA is the before-after-predicate for the event’s substitution, and A are the
axioms and theorems from some contexts. Finally, inv is one conjunct of the invariant
of the machine.

7
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The invariant establishment rule is very similar, it states that we have to prove that the
initialization of the machine establishes the invariant:

K(s, c, v′) ∧A(s, c) ` inv(s, c, v′)

Because the system does not have a state before the initialization, we cannot use the
invariant in the proof and the substitution is expressed in the form of an after-predicate
K instead of a before-after predicate. Also the initialization cannot have a guard.

The complete invariant is split into its conjuncts because it is much easier to reason
about a single conjunct at a time. This is equivalent to proving the conjunction because
if we can prove that each conjunct is preserved by an event, the conjunction is preserved
as well ([7, p. 11] and [11, p. 311]).

For our purposes, we do not have to distinguish between the invariant establishment
and preservation proof obligations. From now on, when we talk about the invariant
preservation proof obligation, we will always also mean the invariant establishment
obligation.

As an example for the INV proof obligation rule, let us look at an example. The machine
shown in Figure 1.1 has an error that will be exposed by the proof obligations.

In theory, this machine should require proving four proof obligations:

1. INITIALISATION/type/INV
Invariant establishment of the invariant labeled with type.

2. add/type/INV
Invariant preservation of the invariant labeled with type by the event add.

3. INITIALISATION/positive/INV
Invariant establishment of the invariant labeled with positive.

4. add/positive/INV
Invariant preservation of the invariant labeled with positive by the event add.

In Rodin we only get the proof obligations that are concerned with the positive invariant.
The reason is that since the type invariant can be verified by the type checker, the tool
can always automatically discharge the obligation if the machine is well typed. The tool
therefore does not even create these proof obligations.
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1.2 Event-B and Rodin

MACHINE m0
VARIABLES

n

INVARIANTS
type : n ∈ Z
positive : n > 0

EVENTS
Initialisation

begin
init : n := 1

end
add =̂

any
x

where
type : x ∈ Z

then
add : n := n+ x

end
END

Figure 1.1: Example erroneous Event-B machine

The INITIALISATION/positive/INV obligation boils down to proving 1 > 0 which can
trivially be discharged. The second proof obligation cannot be discharged because from
n > 0 and x ∈ Z we cannot prove that n+ x > 0. In fact, if x is negative and |x| > n,
n will be negative.

There are two reasons why a proof obligation is not discharged. The first reason is
that the machine contains a mistake. In our example, we may realize that we originally
wanted to add the square of x instead of x.

add =̂

any
x

where
type : x ∈ Z

then
add : n := n+ x ∗ x

end

This yields a different proof obligation n > 0 ∧ x ∈ Z ` n + x ∗ x > 0. With only the
automatic provers, Rodin still cannot discharge the obligation. But now the reason is

9
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different. The model is consistent, but the automatic provers are not powerful enough
to discharge the obligation. They require a little hint from the user, namely the lemma
x ∗ x ≥ 0. We can either do this using the interactive prover or by adding the lemma
as a theorem inside the guard. In either case, after adding the lemma, Rodin is able to
discharge the proof obligation.

add =̂

any
x

where
type : x ∈ Z
thm : x ∗ x ≥ 0 (theorem)

then
add : n := n+ x ∗ x

end

The Rodin tool is delivered with a number of automatic tactics that can be applied
to transform a proof obligation or to discharge simple obligations. For instance, if the
goal of the proof obligation is identical to one of the hypotheses, one of the tactics
will automatically discharge the obligation. There is also a decision procedure called
newPP delivered with Rodin. However, most of the time, we do not use newPP but
the battle tested AtelierB provers that are delivered as a Rodin plug-in. More recently,
a plug-in for SMT solvers like veriT [15] and CVC3 [16] has been developed [17]. The
plug-in translates a proof obligation into the SMTLib format and runs one or multiple
solver backends on the SMT formula. ProB can also be used to discharge proof obli-
gations [18]. Given a sequent H1, H2, ...,Hn ` G, we ask ProB to find a solution for
H1, H2, ...,Hn ∧ ¬G. By a solution, we mean a model of the predicate. If we can find
a model, this model is a counterexample for the proof obligation. If we cannot find a
counterexample this either means that the solver wasn’t powerful enough or that there
is no counterexample. Previous incarnation of the tool made no further distinction, but
more recently we have introduced a method to refine the process. Now ProB can —
if no enumeration of a potential infinite set occurred during solving — deduce that no
counterexample can exist and therefore discharge the proof obligation. There is also a
plug-in to use Isabelle/HOL as a prover [19].

There are several other third-party plugins including requirements engineering [20], mod-
eling using an UML like graphical notation [21, 22], editing [23], pretty printing using
LaTeX [22], animation [22, 24, 25], and model checking [26].
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1.3 ProB

ProB [27, 28] is a model checker and animator for a number of different formal speci-
fication languages. Among the supported languages are classical B and Event-B, which
we use in this thesis.

The main goals of ProB are to:

• Increase the confidence that a specification meets the requirements. This is the
scope of the animator part of ProB. Using the animator, we can convince ourselves
that a specific feature is present in the model.

• Help to detect counterexamples for the correctness conditions. This is the domain
of the various model checkers in ProB. Using model checking we can detect errors
without wasting time interactively trying to prove a goal that cannot be proven.

• Improve the understanding of a formal specification by visualizing important in-
formation.

1.3.1 Animation

Animation in this context means the stepwise execution of a formal model making
ProB effectively a debugger. We can step through a model and inspect the values
of each variable at each state. Using the animator it is possible to manually inspect
the happy-paths1 of a model, i.e., validate that the model behaves as expected. The
animator is handy because it catches mistakes at a very early stage in the development
process. For instance, when we developed the formal model described in Section 2.2,
we alternated between proof and animation. After each change we ran the animator
to convince ourselves that the model behaved as expected. Only then did we attempt
to discharge the proof obligations. Animation alone is clearly not sufficient, but in
combination with proof it is a very effective development method.

ProB also has several tools dedicated to debugging, for instance, for analysis of a
predicate. If a predicate (e.g. the guard of an event) is false when we expect it to be
true, we can run an analysis to shrink the predicate down to a smaller predicate that is
also false. We can then inspect why the predicate is false and fix the formal model or
adapt our own mental model.

1“In the context of software or information modeling, a happy path is a default scenario featuring no
exceptional or error conditions, and comprises the sequence of activities executed if everything goes
as expected.” (http://en.wikipedia.org/w/index.php?title=Happy_path&oldid=615829885)
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We can also open an evaluation shell and evaluate expressions in the current state, which
can be handy if the types are very complex and we only care for a projection of the
original data. The Rodin plug-in version of ProB can add expressions and predicates to
the state view. This means we can add a customized derived value to the user interface
and observe the value over time.

1.3.2 Visualization

The person who develops a model usually has a good understanding of what the data
means, but it can become very hard to communicate the meaning to another person.
This is especially the case if the person is a domain expert rather than an expert in
formal modeling. However, the developer of a model can also get into problems when
inspecting a large dataset such as the state space of a machine. ProB has a rich set
of visualizations to help users with these kind of problems. For instance, it is possible
to apply reduction techniques to the state space, i.e., projection on a single expression.
This can help the person who writes a model to verify the behavior at a more abstract
level.

ProB can also help communicating with domain experts using a graphical representa-
tion of the states.

1.3.3 Model Checking

ProB has several different ways to perform model checking. It supports LTL model
checking [29] using an extension written in C. It has an explicit consistency and deadlock
checker written in Prolog, and it also does constraint based checking [30]. This thesis is
mostly concerned with the explicit consistency and deadlock checking. We will therefore
explain explicit model checking in greater detail in Section 1.4 and discuss the other
kinds of model checking only very briefly.

In constraint based model checking (CBC), ProB tries to find a pair (v, v′) of states
such that there is an event that leads from v to v′, and the invariant I holds in v but not
in v′. If ProB finds a solution this means that we cannot prove the model. The solution
is a counterexample for the invariant preservation proof obligation; we have to prove
invariant preservation for any event and any state that satisfies the invariant. However,
this does not mean that the states are reachable from the initialization. Sometimes,
finding a counterexample using CBC only means that our invariant is not strong enough.

12
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However, as mentioned before, this is a weakness in the model that prevents us from
proving that it is correct.

Linear temporal logic (LTL) is a modal temporal logic that can be used to formulate
properties about traces in a model. For instance, we can specify that a system infinitely
often reaches a state where a predicate φ holds using the formula GF{φ}. The curly
braces are part of ProB’s LTL syntax. Inside the curly braces we can use predicates of
the modeling language. G and F are temporal operators; G stands for globally and F

for finally. The formula means that we can select any state (globally) and in the future
(finally) the property has to be true. In other words, there cannot be a last time where
the property holds, therefore it must hold infinitely often.

1.3.4 Other animators and model checkers for B

For classical B there are only few other animators, namely BZTT [31] and the B-
Toolkit [32], none of which provide automatic animation. This means that the user
has to manually provide solutions for the input parameters which can be difficult. For
instance, take the operation:

f oo ( aa , bb ) = PRE
−aa3+ 3aa2 + aa = 3 &
card (bb) = aa &
bb ⊆ y

THEN
x , y := aa , bb

END

ProB is able to find values for aa and bb automatically, while the other tools would
require that the user solves the constraints, i.e., the user has to compute that the three
solutions to −aa3 + 3aa2 + aa = 3 are -1, 1 and 3. Because card(bb) = aa the value of
aa has to be positive. Finally, the user has to select a subset of y with 1 or 3 elements.
As we can see, having an automatic solver is a huge benefit for a user of the tool. In
particular if the solutions are big sets it becomes a very cumbersome task to manually
find them. Another issue is that it is easy to overlook unexpected corner cases. Both
other tools are no longer being developed or supported.

For Event-B there are several other tools. Within Rodin there are AnimB [24] and
BRama [25], both are animators that also have some capabilities for graphical visual-
ization. Both tools have been successfully applied to formal models. Outside of Rodin
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there is B2Express [33] which translates Event-B specifications into the EXPRESS lan-
guage [34]. However, like the tools for B, all of these tools do not find solutions for
parameters automatically.

On the model checking side is Eboc [35] a lazy unbounded model checker written in
Racket. EBoc uses a diagonalization technique to enumerate unbounded sets instead of
using a fixed bound like ProB does.

1.4 Explicit Model Checking

In this section we will explain ProB’s model checking algorithm in a bit more detail.
In principle, we want to find out if the following predicates are true.

∀s · s ∈ reachable States⇒ Invariant(s) (1.2)

∀s · s ∈ reachable States⇒ (∃e · e ∈ Events ∧Guard(e)) (1.3)

Predicate 1.2 describes consistency checking, i.e., the system cannot violate the invari-
ant, while Predicate 1.3 describes one specific deadlock freedom condition. In this case,
each state has at least one successor state, and we don’t require that the successor of a
state is a different state, i.e., a self loop is not a deadlock. In Predicate 1.3, an event e
refers to a solution found by ProB, i.e., the event’s name, a solution for its parameters
and a decision for any nondeterministic assignment inside the event. In other words, e
corresponds to an instance of an event as shown in the operations view of ProB.

It is worth noting that the deadlock freedom condition described in Predicate 1.3 is only
one of many possible options. For instance, we could demand that the successor state
of e is different from s. This would eliminate self loops and rule out query events in
classical B. This could be a reasonable restriction, because a system that can only be
observed cannot be distinguished from a deadlocked system.

We also may want to rule out systems that contain a cycle between the same k states.
For instance, if we have a system that implements a mutual exclusion protocol using
locks and we end up in a situation where the only action the system can perform is to
acquire and release a lock we may consider the system to be in a quasi deadlock often
called a livelock.

Finally, we may also have a correct system that is supposed to contain a deadlock, e.g.,
because it is a model of an algorithm that terminates.
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While ProB supports many different notions of deadlocking through LTL model check-
ing, the consistency checker that we describe here only2 allows us to check for deadlocks
in the sense of Predicate 1.3.

If we knew all reachable states, we could simply check the properties using a loop, but
computing all reachable states in advance is not reasonable when we look for counterex-
amples. In cases where we want to verify the model, we could in principle compute the
reachable states in advance and then check them.

However, we prefer an online algorithm, i.e., exploration and checking of reachable
states is done in a single pass. The advantage is that we can stop as soon as we find
a counterexample, and we can drastically reduce the memory consumption, if we use
hash codes for states that have been checked. This introduces the possibility of errors,
but we can keep the probability of an error very low as we will see in Chapter 4.

The online algorithm ProB uses is shown in Figure 1.2. It is based on algorithm 5.1
from [28]. We abstracted away the details how the processing queue works; in the context
of this thesis it is not important. We also added deadlock checking to the algorithm.

The algorithm starts from a set of initial states. These states are computed in a special
way. If the machine contains static information, e.g., axioms in Event-B, ProB tries to
find a solution for the static setup. After that, it will execute the initialization event
resulting in proper states. In Figure 1.2 this is done in the initialize function.

ProB then enters its model checking loop, where it selects an unprocessed state and
checks the invariant. If the check fails, it has found an invariant violation and the
algorithm terminates. Otherwise, ProB computes the successor states. If there are
no successors, we have found a deadlock in the model and the algorithm terminates.
Finally, it will iterate over the successors and if they are not yet known, they will be put
into the processing queue. When queue is empty, the algorithm terminates and known

contains all reachable states.

An example run of the algorithm is shown in Figure 1.3. Initially, as shown in Fig-
ure 1.3(a), only state a is known, but its invariant has not yet been checked. Then we
dequeue a, we check its invariant of a compute and enqueue the successors b and c. This
situation is shown in Figure 1.3(b). We then dequeue b resulting in the situation shown
in Figure 1.3(c). Finally, we process c resulting in the situation shown in Figure 1.3(d).

2This is not entirely true, ProB can also check custom predicates that can be used to encode some of
the other possible deadlock conditions.
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// I n i t i a l i z a t i o n
queue := i n i t i a l i z e ( )
known := queue

// Model Checking Loop
while queue 6= ∅ do

s := chose f rom ( queue )
queue := queue \ { s }

i f ¬invariant(s)
then return counter−example ( s ) ;

succ := { s ’ | ∃ e · e ∈ Events ∧ s →e s ’}

i f succ = ∅
then return deadlock ( s ) ;

f o r each s ’ ∈ succ do
i f s ’ 6∈ known then do

queue := queue ∪ { s ’}
known := known ∪ { s ’}

od
od

od

return no−counter−example

Figure 1.2: Explicit Consistency and Deadlock Checking

Table 1.1 shows the states that are in the sets known and queue. Note that b is not en-
queued again in Figure 1.3(d) although it is a successor of the state that was processed.
It is already in the set known and therefore ignored. This ensures termination of the
algorithm for finite state spaces.

It is worth noting that a state is explored in two phases. First, it is “discovered” as
the successor of some state. When discovered, ProB will compute the values of the
state variables and store them, but it will not yet check the invariant and compute the
successors. This is done in the second step. When a state is taken from the processing

Figure known queue

1.3(a) a a
1.3(b) a,b,c b,c
1.3(c) a,b,c,e c,e
1.3(d) a,b,c,d,e d,e

Table 1.1: Exploring the state space in Figure 1.3

16



1.4 Explicit Model Checking

(a) (b)

(c) (d)

Figure 1.3: Exploration of a part of the state space

queue, its invariant is checked and the successors are computed, i.e., the successor states
are now in phase 1. This is also shown in Figure 1.3. Fully unknown states are outlined
with a light gray color, black colored states are in phase 1, and the gray filled states are
fully processed.
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Chapter 2

Proof supported and directed model
checking

This chapter describes work published in [36] on exploiting information about discharged
proofs to improve ProB’s performance. The status of a proof obligation carries valuable
information for a model checker. As described in Section 1.3, ProB’s model checker
performs an exhaustive search. It traverses the state space and verifies that the invariant
is preserved for each state. This section describes how we incorporate proof information
from Rodin into the ProB core. Section 2.1 will explain how we can use the information
about discharged proof obligations to our advantage when doing model checking, and we
will formally show that our approach is sound in Section 2.2. We will then demonstrate
in Section 2.6 that our approach is actually beneficial in terms of model checking runtime
using experimental results. Finally, we will explain how we could use proof information
to create strategies for state space exploration, i.e., use it as a heuristic for best first
search.

2.1 The basic idea of proof supported model checking

Assuming we have a model that contains the invariants I1, I2, and I3. During model
checking we observe an event evt resulting in a new state. For instance, if we have
proven that evt preserves I1 and I3 , there is no need to actually perform the check for
these invariants. This kind of knowledge is precisely what we get from the prover and
it can potentially reduce the cost of invariant verification during model checking if the
benefit we gain from not checking the proven invariants outweighs the cost of filtering
the invariants.
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The ProB plug-in translates a Rodin project, consisting of the model itself, its ab-
stractions, and all necessary contexts, into a representation used by ProB. We evolved
this translation process to also incorporate proof information, i.e., our representation
contains a list of tuples (Ei , Ij) of all discharged POs. This means that we have a proof
that event Ei preserves invariant Ij .

Using this information, we can determine an individual pattern of invariants we have to
check for each event that is defined in the machine. Instead of checking all conjuncts,
we can restrict the checking to only those that are not proven to be correct.

Even better, if multiple events e1, e2, . . . , ek lead to a state, it is sufficient to only
check the invariants that are not proven for all events e1, e2, . . . , ek. If we keep
sets unproven(ei) of invariants that are not proven for an event ei, we would only
have to check the intersection of these sets, i.e., unproven(e1) ∩ unproven(e2) ∩ . . . ∩
unproven(ek).

As an example we can use the Event-B model shown in Figure 2.1. The full state space
of this model and the proof status delivered by the automatic provers of the Rodin tool
are shown in Figure 2.2.

The proof status shows that Rodin is able to discharge the proof obligations a/inv1 and
b/inv2 but not a/inv2 and b/inv1. This means that if a occurs, we can be sure that
f ∈ N 7→N holds in the successor state if it holds in the predecessor state. Analogously,
we know that if b occurs, we are sure that x > 3 holds in the successor state if it holds
in the predecessor state.

Consider a situation, where we already verified that all invariants hold for S1 and
we are about to check that S2 is consistent. We discovered two incoming transitions
corresponding to the events a and b. From a, we can deduce that f ∈ N 7→ N holds.
From b, we know that x > 3 holds. To verify S2 , we need to check the intersection of
unproven invariants, i.e., {f ∈ N 7→ N} ∩ {x > 3} = ∅, thus we already know that all
invariants hold for S2 .

This is of course only a tiny example, but it demonstrates that using proof information
we are able to reduce the number of invariants for each event significantly, and some-
times by combining proof information from different events, we do not have to check any
invariants. If taken to the extreme, it is in principle possible to check invariant preser-
vation of a partially proven model by traversing the state space without ever checking
any invariant at all.
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MACHINE m0
VARIABLES

f
x

INVARIANTS
inv1 : f ∈ N �→ N

inv2 : x > 3

EVENTS
Initialisation

begin
act1 : f := {1 �→ 100}
act2 : x := 10

end
a =̂

begin
act1 : f := {1 �→ 100}
act2 : x := f(1)

end
b =̂

begin
act1 : f := f ∪ {1 �→ 100}
act2 : x := 100

end
END

Figure 2.1: Example: Proof supported checking

✓

✓

Figure 2.2: State space of the model in Figure 2.1
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2.2 Formal Verification

To show that our approach is indeed correct, we have developed a formal model of proof
supported model checking. We omitted a few technical details, such as the way the
state space is traversed by the actual implementation, and we also omitted the fact
that our implementation always uses all available information. Instead, we have proven
correctness for any traversal and any subset of the available information. Our model
was developed using Event-B and has been fully proven in Rodin. The Event-B contexts
and machines are available in Appendix A.

The formal model is structured as shown in Figure 2.3. We artificially linearized the
contexts to avoid warnings in the Rodin tool. For instance, from the modeling point of
view, c3 does not have to extend c2. Both c3 and c2 only have to extend c1. But if
we would combine c2 and c3 in a machine we would get a “Redundant seen context”
warning.

2.2.1 Basic contexts

The c1 context contains the basic carrier sets STATES , INVARIANTS and EVENTS .
By introducing the sets as deferred sets, we make the implicit assumption that all models
contain at least one state, one invariant, and one operation (or event). We think this
is reasonable because otherwise there would be no point in model checking the system,
i.e., a model where one of these assumptions does not hold is trivially correct.

In c1 we also introduce truth, a set containing tuples of states and invariants. An
invariant i is true in the state s if and only if the tuple (s 7→ i) is an element of truth.
Additionally, we introduce two sets preserve and violate that partition the STATES
type into states where each invariant is true and states where at least one invariant
is false. The following axioms are used to tie together the preserve, violate and truth
sets:

preserve ∩ violate = ∅ (2.1)

preserve ∪ violate = STATES (2.2)

preserve = {s | {s} × INVARIANTS ⊆ truth} (2.3)
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Figure 2.3: Organization of the formal model
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Using these definitions, we have proven a number of lemmas that are handy when
proving certain properties in the later development, for instance,

∀t · t ∈ violate⇒ (∃i · t 7→ i 6∈ truth) (2.4)

In context c2, we introduce the notion of transitions between states and an initial state
called root. We also introduce an axiom that ensures that all other states are reachable
from root.

STATES ⊆ cls(transitions)[{root}] ∪ {root} (2.5)

We use the transitive closure cls from the theory plug-in’s standard library. Restricting
the states to the subset of states that are reachable is not a problem in explicit model
checking. We may exclude problematic states that would be detected by constraint
based methods but explicit model checking can only deal with reachable states. The
root state is an artificially introduced state that is supposed to represent the uninitialized
system. For now, we will treat it as a state that preserves all invariants. At a later point
in the development, we add some more restrictions to root.

Context c3 introduces the state of a model checker, i.e., the model checker is either
running or it has terminated with or without reporting an invariant violation. We
capture this in three constants: running, terminated ok and terminated ce.

2.2.2 Abstract Model Checker

Using c1 to c3 we can now specify an abstract model checker. The machine m0 “cheats”
in its specification. It uses global knowledge about the preserve and violate sets. We
use this technique, which is often used in Event-B, to establish the correctness of the
result at a high level of abstraction. We then lose the usage of global knowledge in
further refinement steps. The model consists of two events: terminate ok which can
be observed if the invariant holds in every state, i.e, violate = ∅ and terminate ce, if
there is at least one state that violates the invariant, i.e., violate 6= ∅. Both events set
some state variables: result and counterexample. The full state space of m0 is shown in
Figure 2.4.
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∈

∅

∅

counterexample ={s}
result = terminates_ce

∅

Figure 2.4: State space of the m0 machine

2.2.3 First Refinement: Introducing sequential state processing

In the next refinement m1, we partially introduce the algorithm. We introduce the sets
ok, unchecked and broken. The broken and ok sets are initialized as the empty set,
the unchecked set will initially contain all elements from STATES . We then move each
state s using freshly introduced events checkOK and checkBroken. We move s to the
set ok if s ∈ preserve. Otherwise, if s ∈ violate, the state is moved to the set broken.
After we copied either all states to ok or at least one state to broken, we can observe
one of the terminate events which now use broken and ok in their guards rather than
preserve and violate. Figure 2.5 shows how the effect of terminateOK in the abstraction
is implemented in the refinement.

ok ⊆ preserve

Figure 2.5: Introduce sequential processing

We still require global knowledge for checkOK and checkBroken. We have to remove
this knowledge in the further development, but we already have a basic algorithmic
structure.
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2.2.4 Second Refinement: Model Checker

In this refinement step, we introduce the model checking algorithm. The c4 context in-
troduces two program counters for the concrete model checking algorithm. One counter
is used for the model checking loop, i.e., select a state, check the invariant and compute
the successor states. The second counter is used for processing the successors.

Figure 2.6: Algorithm of m2

An overview of the algorithm is shown in Figure 2.6. The algorithm selects an unpro-
cessed state from a set called queue and checks its invariant. Although the set is called
queue, we do not impose any search strategy, i.e., we non-deterministically choose one
state. We can then decide to terminate if one of the terminate events is enabled. Oth-
erwise we process the successor states. The successors start event calculates the set of
successors. The events successors step and successors skip process each single successor
state. The state is discarded by successors skip if it is either the current state or if it
is already in the processing queue. Otherwise the successor state is added to the queue
by successors step. If all successor states have been processed, we select the next state
from queue.

This refinement step is rather big, and we introduce a lot of events that may seem to be
unnecessary. We could have introduced the two loops in two refinement steps, but we
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have decided to introduce almost the full algorithm in a single step because it allows us to
use the same variables in the whole development. If we were to introduce the algorithm
in two steps, we would have had to introduce new variables in the refinement. This is a
trade off and we decided that the advantage of using the same variables outweighs the
complexity of this refinement step.

2.2.5 Third Refinement: Abstract Invariant Processing

In machine m3 we refine the checkOK and checkBroken events in order to remove
the global knowledge from their guards. We store the information about invariant
conjuncts in some relations between STATES and INVARIANTS called invs, checked
and unchecked. The unchecked relation stores all tuples of state and invariant that we
have to check, and the checked relation stores all the tuples that we have already found
to be true. Any tuple can be at most in one of these two sets. The invs relation is the
union of the two relations, i.e., invs = checked ∪ unchecked.

In this step, we refine the successor step and successor skip events to put the state-
invariant tuples into the sets. The specification of successor step is the following:

successors step =̂
refines successors step

any
s

is
where

pc : mcpc2 = step successors

grd1 : s ∈ succs
grd2 : s /∈ queue
grd3 : s 6= current

grd4 : ∀i·i ∈ is⇒ s 7→ i ∈ truth
grd5 : s /∈ dom(invs)

then
act1 : succs := succs \ {s}
act2 : queue := queue ∪ {s}
act3 : checked := checked ∪ ({s} × is)
act4 : unchecked := unchecked ∪ ({s} × (INV ARIANTS \ is))
act5 : invs := invs ∪ ({s} × INV ARIANTS)

end
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The actions act1 and act2 and the guards pc, grd1, grd2, and grd3 are exactly the same
as in the abstract event. We have added a parameter is that is a set of invariants that
are true in the state s. In regular model checking, this is always the empty set. However,
when we do proof supported model checking we want to remove some of the invariants
that are known to be true. We will refine this model into two different versions in the
next step, one version where is = ∅ that represents regular model checking and one
version that uses proof to determine the set. We create state-invariant tuples and store
them in the corresponding relation. Those tuples that contain an invariant from the set
is are stored in checked; all others are stored in unchecked.

The successor skip event is defined in a very similar way. The difference is that we
have already observed the successor step event previously and therefore the unchecked
and checked relations already contain the tuples. The successor skip event is allowed
to move some tuples from unchecked to checked if their invariant is true. Again, in the
case of regular model checking no tuples are moved. In proof supported model checking
this event means that a new incoming event e for the successor state was discovered
and the algorithm can discard all invariants that are proven for e, i.e., we compute the
intersection of the invariants that are unproven until now and the unproven invariants
of e as explained in Section 2.1.

successors skip =̂
refines successors skip

any
s

is
where

pc : mcpc2 = step successors

grd1 : s ∈ succs
grd2 : s ∈ queue ∨ s = current

grd3 : ∀i·i ∈ is⇒ s 7→ i ∈ truth
grd4 : ({s} × INV ARIANTS) ⊆ invs

then
act1 : succs := succs \ {s}
act2 : unchecked := unchecked \ ({s} × is)
act3 : checked := checked ∪ ({s} × is)

end

The checkOk event is also refined in this step. We replace the guard current ∈ preserve
from the abstraction by checked[current] = INVARIANTS , i.e., we only use information
that the machine has discovered. Note that we do not check the invariant in this step.
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This is done in a new event check true inv that moves one state-invariant tuple to the
checked relation if the invariant holds. The guard current 7→ i ∈ truth represents the
potentially expensive operation to check the invariant in the current state.

check true inv =̂

any
i

where
grd2 : i ∈ unchecked[{current}]
grd3 : current 7→ i ∈ truth
grd4 : mcpc1 = check invariant

then
remove1 : checked := checked ∪ ({current 7→ i})
remove2 : unchecked := unchecked \ ({current 7→ i})

end

Finally, we refined the checkBroken event. The abstract event checked if current ∈
violate whereas the concrete version chooses an invariant such that ¬(current 7→ i ∈
truth).

In an implementation, the check true inv and checkBroken events could be combined
into an if-then-else statement in order to avoid duplicate computation of the predicate
current 7→ i ∈ truth.

2.2.6 Regular and Proof Supported Model Checking

Regular model checking, i.e., checking each invariant for each state, is a very simple
refinement of m3. We only have to refine successor step and successor skip. We add
the guard is = ∅ to both events. The result is that we always put all state invariant
tuples into the unchecked set, and if we encounter the same state again, we will not
change the checked and unchecked relations. As a result, the only way for a tuple to be
moved from the unchecked relation to the checked relation is by actually checking the
truth value using the check true inv event.

Proof supported model checking was modeled similarly to regular model checking. It
is a refinement of m3 where we specify how we calculate the parameter is within the
guards of the successor step and successor skip events.

The first thing we need to model is the information about discharged proof obliga-
tions. For this we have to introduce a labeling function that associates transitions in
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the state space with events. The reason is that the information we get from Rodin
are tuples of invariant and event that we have to map to states. In context c5 we
introduce labels as a total function from transitions to EVENTS . Furthermore, we
need the information about discharged proof obligations. We store the information
about discharged proof obligations in a total function discharged ∈ EVENTS →
P(INVARIANTS). Invariants in the set discharged(e) are proven to be preserved
by the event e. We also define a complementary function single specialized invariant
of the same type. The set single specialized invariant(e) is the set of invariants
that are not known to preserve the invariant, i.e., for any event e the predicate
partition(INVARIANTS , discharged(e), single specialized invariant(e)) holds.

Proof supported model checking is captured in the following axiom. If there is an event
e that leads from state s to state t, s preserves the invariant, and we have discharged the
invariant preservation proof obligation for an invariant i, then i also holds in state t.

∀s, t, e, i·(s 7→ t) 7→ e ∈ labels ∧ i ∈ discharged(e) ∧ s ∈ preserve⇒ t 7→ i ∈ truth

Membership of an invariant in discharged(e) means that the proof obligation 1.1 has
been discharged, i.e. I(s, c, v) ∧G(s, c, v, x) ∧BA(s, c, v, x, v′) ∧A(s, c)⇒ inv(s, c, v′) is
a tautology. If we change the notation to fit our model, we get s ∈ preserve ∧ s 7→ t ∈
transitions ∧ (s 7→ t) 7→ e ∈ labels ∧A(s, c)⇒ t 7→ i ∈ truth.

The axiom we proposed captures almost the entire meaning of a discharged proof obli-
gation with the exception that one necessary condition is missing. In order to use the
proof information, we have to be sure that the axioms and theorems from the contexts
hold, i.e., there must be some s,c for which A(s, c) is true.

We cannot deduce this from our formal model. However, in the implementation this
will not be a problem because ProB tries to find a model for the axioms. If it can find
a model, we have a proof for ∃s, c · A(s, c). In Section 2.2.7, we will discuss some more
details that are missing in our formal model, and we will show why the formal model is
still reasonable.

Another important thing that we have to consider before we can model proof supported
checking is the root state. Previously we only cared about a single state at a time when
we computed if the invariants hold in that state. That means the root state could not
influence the outcome of the model checking. We only required that root itself is not a
counter-example. Proof supported model checking also has to take the predecessor state
into consideration. This means a direct successor of root could potentially be influenced
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by the root state. In order to avoid these kind of problems, we require that all outgoing
transitions of the root state are labeled with the event initialization, i.e.:

labels[{root} / transitions] = {initialization}

The initialization event cannot depend on the previous state so if an initialization proof
obligation is discharged, we can safely use it without having to care about the predecessor
state.

We can now specify a refinement that uses the information about discharged proof
obligations. We need to refine successor step and successor skip again. We remove the
abstract parameter is and add the event e as a parameter. The witness in both cases is
discharged(e) = is.

The successor step event only adds those invariants to the unchecked relation that are
not known to be true. Invariants that are known to be true should directly be stored in
the checked relation avoiding the potentially expensive check in the check true inv and
checkBroken events.

successors step =̂
refines successors step

any
s

e
where

pc : mcpc2 = step successors

grd1 : s ∈ succs
grd2 : s /∈ queue
grd3 : s 6= current

grd5 : s /∈ dom(invs)
grd6 : current ∈ ok
grd7 : (current 7→ s) 7→ e ∈ labels

with
is : discharged(e) = is

then
act1 : succs := succs \ {s}
act2 : queue := queue ∪ {s}
act3 : checked := checked ∪ ({s} × discharged(e))
act4 : unchecked := unchecked ∪ ({s} × single specialized invariant(e))
act5 : invs := invs ∪ ({s} × INV ARIANTS)

end
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2.2.7 Theorems and Well-Definedness

The models m3 and m4 are abstractions of the model checking process. They contain
the parts that are important in the context of this thesis. However, they abstract away
some parts that we have to take into account when implementing the approach. In
particular, they do not have a notion of theorems and well-definedness.

It is possible in ProB to switch off theorem checking because the theorems are supposed
to be implied by the invariants. In the context of proof supported model checking,
turning theorem checking off can lead to incorrect results. An example is the following
machine

MACHINE m0
VARIABLES

x

INVARIANTS
thm1 : x > 10
inv : x > 9

EVENTS
Initialisation

begin
act : x := 20

end
dec =̂

begin
act1 : x := x− 1

end
END

The theorem thm1 cannot be proven, yet it can be used to prove invariant preservation
for the dec event. If x > 10 was true then x− 1 > 9 would also be true after executing
dec. If we do not check the theorem, ProB would eliminate all checks.

A solution is to automatically check theorems if proof supported model checking is
enabled. However, if theorems are proven they can be eliminated.

The second thing that is not modeled is well-definedness. We can produce a model
where all invariant preservation proof obligations are discharged, but a well-definedness
(WD) proof obligation cannot be proven.
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MACHINE wd
VARIABLES

x

INVARIANTS
inv1 : x ∈ {0, 1}
inv2 : 1/x 6= 0 ∨ x = 0

EVENTS
Initialisation

begin
act1 : x := 1

end
set =̂

any
y

where
grd1 : y ∈ {0, 1}

then
act1 : x := y

end
END

However, this is not a problem because ProB checks well-definedness separately; it will
detect if there are WD problems in the model.
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2.3 Implementation of Proof Supported Model Checking

Using the formal model, we can specify an algorithm for proof supported model checking
as shown in Figure 2.7. We tried to be close to the formal model, but we changed some
of the data structures. For instance, some of the bookkeeping data structures like invs
or checked are not required.

queue := { root } ;
known := ∅ ;
ok := ∅ ;
unchecked = {root 7→ ∅}

// Precomputing the s p e c i a l i z e d i n v a r i a n t s
for evt ∈ events do

s p e c i a l i z e d i n v ( evt ) := {invi | invi not proven for evt } ;

// Model Checking Loop
while queue 6= ∅ do

cur rent := take from ( queue ) // s e l e c t s t a t e
queue := queue \ { cur rent }

for i ∈ unchecked(current)
i f i i s fa l se // checkBroken

then return counter−example ( cur r ent ) ; // terminateBroken
else sk ip // c h e c k t r u e i n v

// checkOK
ok := ok ∪ { cur rent } // mark as proce s sed

fo r each succ , evt s . t . cur r ent →evt succ do
i f succ ∈ ok then continue ; // a l r eady proce s sed
i f succ 6∈ known then // s u c c e s s o r s t e p

queue := queue ∪ { succ }
known := known ∪ { succ }
unchecked ( succ ) := s i n g l e s p e c i a l i z e d i n v ( evt )

else // s u c c e s s o r s k i p
unchecked ( succ ) := unchecked ( succ ) ∩ s p e c i a l i z e d i n v ( evt )

od

return no−counter−example // terminateOk

Figure 2.7: Proof Supported Model Checking

The structure of the algorithm is very similar to ProB’s model checking algorithm
published in [28, Algorithm 5.1]. Our algorithm does not specify how successor states
are selected, but we are more specific about how the check for errors works while the
original algorithm is very abstract with respect to error checking.

The algorithm precomputes the subset of invariants that are not proven to be preserved
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for each event of the model. Then, while there are unprocessed states we select one of
them, check the invariant which is associated with that state, and terminate if we find
an invariant violation.

The loop containing the if-then statement combines checkBroken, check true inv,
terminateBroken and checkOK from the formal model. The test in this if-then statement
is basically checkBroken. If the test succeeds, we know that we have a counterexample
and we will observe terminateBroken. The actual implementation would return a trace
to the state that violates the invariant. This is slightly different to the formal model,
which will not terminate and will even allow all the other events to occur except for
terminateOK .

If the test fails, we move on to the next invariant. This is the check true inv event
from the formal model. Finally, when the loop terminates we know that the complete
invariant holds in this state. This corresponds to checkOK in the formal model; we put
the state into the set ok which contains all verified states.

After the invariant checking, we process each successor state. First, we check if the
successor has already been processed. If this is the case, we skip it. In the formal model
removing the checked states is done in the successors start event. The set of successors
is transitions[current] ∩ unknown, i.e., it can only contain unchecked states.

We then test if the state has not yet been seen before. In that case, we mark the state
as seen, add it to the processing queue and assert the specialized invariant for the event
that led to the state. In the formal model this is done in the successors step event.
Otherwise, if the state has been seen before, there must be another incoming edge that
we have processed before. We replace the stored information with the intersection of
the stored set of invariants and the specialized invariants for the current event. This is
successors skip in the formal model.

When all states have been processed without an invariant violation, we report that no
error has been found and terminate. This is equivalent to terminateOK in the formal
model.

2.4 Missing Proof Obligations

When we implemented the translation for ProB, we noticed that Rodin does not gen-
erate all required proof obligations. Some obligations, i.e., those related to typing in-
variants, are considered trivial by the proof obligation generator. The POG does not
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generate these obligations. This is sound because passing the static checker already
is a proof for these proof obligations. However, because ProB only removes proven
invariants, the typing invariants were always kept. We decided to reconstruct the proof
obligations within ProB and automatically mark them as discharged.

2.5 Application in classical B

In this work, we have focused on Event-B. This is because the interaction with the
Rodin prover is very easy. However, in principle the method can be applied to other
formal specification languages with similar proof obligations in the same way. The
obvious candidate is classical B. The current implementation does not incorporate a
prover for classical B, but the automatically reconstructed proof obligations are used
even in classical B.

2.6 Experimental results

The following section is copied almost verbatim from the original paper [36]. The version
of ProB used for the experiments in Table 2.1, 2.2 and 2.4 is rather old (ProB 1.3.0-
final.4, Subversion revision 2874). The mesurements were performed on an Apple Mac
Book Pro, 2.4 GHz Intel Core 2 Duo Computer with 4 GB RAM running Mac OS X
10.5. We carried out single refinement level and multiple refinement level checks. For
the single level animation, we collected 40 samples for each model and calculated the
average and standard deviation of the times measured in milliseconds. For the multi
level animation, we collected 5 samples for each model. Unless explicitly stated, we
removed all interactive proofs and only used the default autoprovers on each model.

Table 2.3 shows some benchmarks performed with a more recent version (ProB 1.5.0-
beta2, git tag bm pomc). The experiment was carried out on an Apple Mac Book Pro,
2.5 GHz Intel Core i5 Computer with 8 GB RAM running Mac OS 10.9.5. The option
to check a single refinement level has been removed in more recent versions of ProB,
so we only provide results for multiple refinement level checks. The difference between
Table 2.2 and 2.3 are due to both, a faster computer and better performance of ProB.

To verify that the combination of proving and model checking results in a considerable
reduction of model checking effort, we prepared an experiment consisting of specifica-
tions we got from academia and industry. In addition, we constructed an example for a
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case where the prover has a very high impact on the performance of the model checker.
The Model Checker model in Table 2.3 is the formal model of proof supported model
checking from Section 2.2.

The rest of this section describes how we carried out the measurement. We will also
briefly introduce the models and discuss the result for each of them. The experiment
contains models where we expected to have a reasonable reduction and models where
we expected to have only a minor or no impact.

2.6.1 Mondex

The mechanical verification of the Mondex Electronic Purse was proposed for the repos-
itory of the verification grand challenge in 2006. We use an Event-B model developed at
the University of Southampton [37]. We have chosen two refinements from the model,
m2 and m3. The refinement m2 is a rather big development step while the second
refinement m3 was used to prove convergence of some events introduced in m2. The
machine m3 only contains gluing invariants.

In case of single refinement level checking, it is obvious that it is not possible to further
simplify the invariant of m3 but we noticed that we do not even lose performance caused
by the additional specialization of the invariants. This is important because it is evidence
that our implementation’s performance is in the order of the standard deviation in our
measurement. For the case of m2, where we have machine invariants, we measured a
reduction of about 12%.

In case of multiple refinement level checking, we have a rare case where we lost a bit
of performance for m2. However, the absolute value is in the order of the standard
deviation. For m3 we also did not get significant improvements of performance, most
likely because the gluing invariant is very simple and only contains simple equalities.

2.6.2 Siemens Deploy Mini Pilot

The Siemens Mini Pilot was developed within the DEPLOY Project. It is a specification
of a fault-tolerant automatic train protection system, that ensures that only one train is
allowed on a part of a track at a time. The Siemens model shows a very good reduction
because the invariants are rather complex. This model only contains a single machine,
thus multi level refinement checking does not affect the speedup.
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2.6.3 Scheduler

This model is an Event-B translation of the scheduler from [38]. The model describes
a typical scheduler that allows a number of processes to enter a critical section. The
experiment has shown that the improvement using proof information is rather small,
which was not a surprise. The model has a state space that grows exponentially when
increasing the number of processes. It is rather cheap to check the invariant

ready ∩ waiting = ∅ ∧ active ∩ (ready ∪ waiting) = ∅ ∧ active = ∅⇒ ready = ∅

because the number of processes is small compared to the number of states. Neverthe-
less, we save a small amount of time in each state and these savings can add up to a
reasonable speedup. The scheduler also contains only a single level of refinement.

2.6.4 Earley Parser

The model of the Earley parsing algorithm was developed and proven by Abrial. As
with the mondex example, we used two refinement steps that have different purposes.
The second refinement step m2 contains a lot of invariants, while the m3 contains only
very few of them. This is reflected in the savings we gained from using the proof
information in the case of single refinement level checking. While m3 showed practically
no improvement, in the m2 model the savings add up to a reasonable amount of time.
In the case of multiple refinement level checking, the result are very different. While
m2 is not affected, the m3 model benefits a lot. The reason is that it contains several
automatically proven gluing invariants.

2.6.5 SAP DEPLOY Mini Pilot

As with the Siemens model, this is a DEPLOY pilot project. It is a model of a system
that coordinates transactions between seller and buyer agents. In the case of single
refinement level, we gain a very good speedup from using proof information, i.e., model
checking takes less than half of the time. As in the Siemens example, the model contains
rather complicated invariants. In case of the multi refinement level checking, the speedup
is still good, but it is not as impressive as in single refinement level checking.
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2.6.6 SSF DEPLOY Mini Pilot

The Space Systems Finland example is a model of a subsystem used for the ESA Bepi-
Colombo mission to Mercury. The start of the BepiColombo spacecraft is planned for
2016. The model is a specification of the parts of the BepiColombo On-Board software
that contains a core software and two subsystems used for tele command and telemetry
of the scientific experiments, the Solar Intensity X-ray and particle Spectrometer (SIXS)
and the Mercury Imaging X-ray Spectrometer (MIXS). The time for model checking was
reduced by 7% for a single refinement level and by 16% for multiple refinement check-
ing.

2.6.7 Cooperative Crosslayer Congestion Control CXCC

CXCC [39] is a cross-layer approach to prevent congestion in wireless networks. The key
concept is that, for each end-to-end connection, an intermediate node may only forward
a packet towards the destination after its successor along the route has forwarded the
previous one. The information that the successor node has successfully retrieved a
package is gained by active listening. The model is described in [40]. The invariants
used in the model are rather complex and thus we get a good improvement by using the
proof information in both cases.

2.6.8 Constructed Example

The constructed example is mainly to show a case where we get a huge saving from
using the proofs. It basically contains an event that increments a number x and has an
an invariant ∀a, b, c · a ∈ N ∧ b ∈ N ∧ c ∈ N⇒ (a = a ∧ b = b ∧ c = c ∧ x = x). Because
the invariant contains the variable modified by the event, we cannot simply remove it.
However, Rodin can automatically prove that the event preserves the invariant, thus our
tool is able to remove the whole invariant. Without proof information, ProB needs to
enumerate all possible values for a,b and c which results in an expensive calculation.
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w/o proof using proof Speedup
information [ms] information [ms] Factor

Mondex m3 1454± 5 1453± 5 1.00
Earley Parser m3 2803± 8 2776± 7 1.01
Earley Parser m2 140310± 93 131045± 86 1.07
SSF 31242± 64 29304± 44 1.07
Scheduler 9039± 15 8341± 14 1.08
Mondex m2 1863± 7 1665± 6 1.12
Siemens (auto proof) 54153± 50 25243± 22 2.15
Siemens 56541± 57 26230± 28 2.16
SAP 18126± 18 8280± 14 2.19
CXCC 18198± 21 6874± 12 2.65
Constructed Example 18396± 26 923± 8 19.93

Table 2.1: Experimental results (single refinement level check)

w/o proof using proof Speedup
information [ms] information [ms] Factor

Mondex m2 1747± 21 1767± 38 0.99
Mondex m3 1910± 20 1893± 6 1.01
Earley Parser m2 309810± 938 292093± 1076 1.06
Scheduler 9387± 124 8167± 45 1.15
SSF 35447± 285 30590± 110 1.16
SAP 50783± 232 34927± 114 1.45
Earley Parser m3 7713± 40 5047± 15 1.53
Siemens (auto proof) 51560± 254 24127± 93 2.14
Siemens 51533± 297 23677± 117 2.18
CXCC 18470± 151 6700± 36 2.76
Constructed Example 18963± 31 967± 6 19.61

Table 2.2: Experimental results (multiple refinement level check)

w/o proof using proof Speedup
information [ms] information [ms] Factor

Earley Parser m2 51154± 151 50712± 408 1.01
Model Checker (full) 96686± 197 64678± 39 1.49
Model Checker (auto) 96864± 225 86620± 524 1.12
Siemens 17340± 406 11244± 45 1.54
Scheduler 6752± 39 6546± 16 1.03

Table 2.3: Experimental results (more recent ProB)
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w/o Proof [#] w Proof [#] Savings [%]
Earley Parser m2 − − -
Mondex m3 440 440 0
Earley Parser m3 540 271 50
Constructed Example 42 22 50
SAP 48672 16392 66
Scheduler 20924 5231 75
Mondex m2 6600 1560 76
SSF 24985 5009 80
CXCC 88480 15368 83
Siemens 280000 10000 96
Siemens (auto proof) 280000 10000 96

Table 2.4: Number of invariants evaluated (single refinement level check).

2.7 Using proof information for directed model checking

Proof information can in principle be used to direct the model checker in order to
minimize its work when verifying a model or in order to optimize the search when
trying to find an invariant violation. We define two modes of operation, a proof mode
where we want to prove that the invariant holds in a finite set of states and a debug
mode where we try to find a counterexample. We have not implemented these modes
in ProB, but in principle implementing them seems to be doable with a reasonable
amount of work.

2.7.1 Proof Mode

If we want to verify the correctness of a model, we want to reduce the total amount of
work as much as possible. For this reason, we want to defer the checking of each state
until we have a good knowledge about incoming edges. We use the observation that
if we have multiple events leading to a state, we only need to check the intersection
of the sets of unproven invariants for these events. Instead of ProB’s mixed depth
and breadth first search, we can do a best first search using the number of remaining
invariants as the heuristic. We choose the state with the minimal number of unproven
invariants. This approach does not reduce the number of states but can significantly
reduce the number of invariant evaluations.
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2.7.2 Debug Mode

If we are trying to find counterexamples, the proof mode is only of little help because it
prefers states that are almost (or even fully) proven. Instead, we want to select states
that are most likely broken. The heuristic for debug mode is therefore the exact opposite
of proof mode. We select the states with the most unproven invariants and hope that
we hit a state that violates the invariant. This strategy does not necessary improve the
result, but it might improve performance in some cases and is probably not worse than
random search.

2.8 Related work

There have been several approaches to combine model checking and proof most of which
are far more ambitious than our approach. In previous work [41] we have already shown
how a model checker can be used to complement the proving environment by acting as
a disprover. In [41] it was also shown that sometimes the model checker can be used
as a prover, namely when the underlying sets of the proof obligation are finite. More
recently we have changed the disprover implementation to use constraint solving rather
than model checking. ProB can track enumeration of infinite sets during constraint
solving and is therefore able to tell if the absence of a counterexample is a proof [18].
An experimental plug-in for Rodin exists that is surprisingly efficient. In particular in
cases where a manual proof is very repetitive, e.g., if a manual proof would contain
many case distinctions.

In [42] ProB was used to prove some theorems for the model of an Hamming en-
code/decoder that were difficult to prove using the normal provers. Also in this case
ProB worked well with a large number of case distinctions. The authors applied ProB
manually, today they could probably use the ProB prover instead.

Outside the B community there are also several approaches that combine model checking
and theorem proving. For instance, in [43] Müller and Nipkow used theorem proving to
reduce infinite or large state spaces to small finite cases that could then be verified using
model checking. This combines the strengths of model checking and theorem proving:
“model checking is automatic but limited to finite state processes, theorem proving
requires user interaction but can deal with arbitrary processes” [43]. The authors apply
the method to the Alternating Bit Protocol [44, 45] with an unbounded channel. The
unbounded channel is different from model checking based approaches which typically
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use a bounded channel with a small capacity. The authors use the theorem prover
to create a finite abstraction for an infinite implementation and then they use model
checking to verify that this abstraction is correct with respect to a specification, i.e.,
they show that all traces that are possible in the implementation are also possible in
the specification.

Shankar argues “for a specific combination where theorem proving is used to reduce
verification problems to finite-state form, and model checking is used to explore proper-
ties of these reductions” [46]. The Symblic Analysis Laboratory (SAL) is based on that
approach.

In [47] Pnueli and Shahar used deduction in combination with model checking. The
system proposed by the authors works on top of the symbolic model checker CMU
SMV. T Deduction is used to derive invariants which are used “to restrict the range
of the transition function in computing the backwards closure, usually employed in
model checking for invariance properties” [47]. The method was successfully applied to
partially verify the IEEE Futurebus+ system [48] and the authors found a bug during
their work that was not discovered previously.

Prioni [49] is a tool that integrates the Alloy Analyzer (AA) and the theorem prover
Athena. The authors explain the use case as follows.

“The user starts from an Alloy specification, model-checks it and poten-
tially changes it until it holds for as big a scope as AA can handle. After
eliminating the most obvious errors in this manner, the user may proceed to
prove the specification. This attempt may introduce new proof obligations,
such as an inductive step. The user can then again use AA to model-check
these new formulas to be proved. This way, model checking aids proof engi-
neering. But proving can also help model checking” [49]

The approach is very similar to the way we use the combination of proof and model
checking within Rodin. However, it seems to be more a tool to support a user switching
back and forth between model checking and proving than a deep integration of the
verification methods.

There are several other approaches that loosely combine multiple verification techniques
including model checking and proving to verify systems [50, 51].
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Chapter 3

Automatic Flow Analysis

In this part of the thesis, we define a theoretical framework that allows us to analyze
a model to find an answer to questions like “Can event h take place after event g was
observed? If so, under which circumstances?”.

We derive the notion of event independence, of the enable graph, and of the flow graph.
We propose some applications in model checking. Section 3.7 describes how we can
exploit the flow analysis to reduce the effort of model checking by reducing the number of
guards that need to be checked. In Section 3.13 we describe another potential application
of the flow analysis to direct the model checker and to generate code. This work has
been published in [52]

3.1 Nondeterministic Assignments

In the rest of the chapter, we will always assume that the model might contain non-
determinism in the parameters but does not contain any non-deterministic assignments.
This is necessary because we need to have control over execution in order to derive
precise information. This does not impede the generality of the approach because we
can mechanically transform an event containing a non-deterministic assignment into an
event where the non-determinism has been lifted into the parameters.

For the non-deterministic assignment from a set of values, x :∈ S, we introduce a
fresh variable freshx and add freshx ∈ S to the guards. The assignment becomes
x := freshx. An example result of the transformation of an event with no guards and
x :∈ N as the only action is shown in Figure 3.1.

A Becomes-such-that assignment v1, ..., vk :| P (v1, ..., vk, v
′
1, ..., v

′
k) can also be lifted.

For each variable that is assigned, we introduce a fresh variable and add P to the guard
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g =̂
any

freshx
where

grd1 : freshx ∈ N
then

act1 : x := freshx
end

Figure 3.1: Lifting x :∈ N

replacing the primed variables by the fresh variables. The actions assign each variable
to their fresh counterpart. An example with two variables is shown in Figure 3.2.

g =̂
any

freshx
freshy

where
grd1 : freshx = y + x ∧ freshy = y − x

then
act1 : x := freshx
act1 : y := freshy

end

Figure 3.2: Lifting x, y : |x′ = y + x ∧ y′ = y − x
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3.2 Total substitution lifting

We can define another transformation that practically moves all information the event
contains into its guard leaving only trivial substituitions:

Definition 3.1 (Totally Lifted Form). An event is in the totally lifted form (TLF), if
it only contains actions of the form v := x, where v is a global variable and x is a local
variable of the event introduced using any.

A deterministic assignment v := Expr(...) is transformed similar to Figure 3.1 by in-
troducing a fresh variable freshv and adding freshv = Expr(...) to the guard. The
assignment becomes v := freshv. Note that in some cases we have to rewrite the ex-
pression. For instance, if the assignment is f(x) := f(x) + 1, we have to rewrite it
to f := f C− {x 7→ f(x) + 1} before we can move it into a guard. This is shown in
Figure 3.3.

g =̂
any

freshf, freshx
where

xform1 : freshf = f C− {x 7→ f(x) + 1}
xform2 : freshx = x+ 1

then
act1 : f := freshf
act2 : x := freshx

end

Figure 3.3: Lifting f(x) := f(x) + 1 ‖ x = x+ 1

We can also define a normal form that is the opposite of the totally lifted form. Intu-
itively, we inline as many parameters as possible without introducing non-deterministic
assignments.

Definition 3.2 (Deterministic Inlined Form). An event is in the deterministic inlined
form (DIF), if it only contains deterministic assignments and it is not possible for any
parameter to be inlined into the actions.

The deterministic inlined form of event g from Figure 3.3 is the original assigment, maybe
in a slightly different form, e.g. we would get f := fC−{x 7→ f(x)+1} instead of f(x) :=
f(x)+1. Another example is shown in Figure 3.4. In this example, the parameter x can
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g =̂
any

x, y
where

grd1 : x = q + 1
grd2 : y ∈ N

then
act1 : q := x+ y

end

g’ =̂
any

y
where

grd2 : y ∈ N
then

act1 : q := (q + 1) + y
end

Figure 3.4: Example transformation into the deterministic inlined form

be inlined without introducing a non-deterministic assignment. However, for parameter
y this is not possible.

All the transformations can be applied automatically and transparently by a tool, i.e.,
the user can continue to model in the style he or she prefers, but a tool such as the flow
analysis can transform the events and use the transformed version.

Both normal forms will be used in this thesis. We will discuss the differences between
the results we get from using DIF versus TLF in Section 3.3.4.

3.3 Independence of Events

As an example, let’s say we have an event g that has an action x, y := (x+ 1), 0:

1. If the guard of an event h is y = 1 then executing h after g was observed is
impossible because we know that y will always be 0.

2. If the guard of h is y = 0 then h can always be executed after g was observed for
the same reason.

3. If the guard of h is x = 12 then we can sometimes execute h after g was observed,
i.e., only if x was 11 in the state before g happened.
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4. Finally, if the guard of h is z = 42 executing g has no influence at all because g
does not change the value of z.

In the last case, we say that h is independent from g. Informally said, if h is independent
from g this means that whatever g’s action does, it cannot have any influence on the
truth value of h’s guard. We distinguish two kinds of independence: trivial and non-
trivial independence.

3.3.1 Trivial Independence

Trivial independence is a syntactic property of a model. We can compute trivial inde-
pendence by analyzing the read and write sets of the events.

Definition 3.3 (read/write sets). Let g be an event in deterministic inlined form with
guard G and action S. Let V be the set of state variables. The read set of an event g,
noted read(g), is the set of global variables such that

read(g) = {v | v ∈ V ∧ v is free in G}

The write set of an event, noted write(g), is the set set of global variables such that

write(g) = {v | v ∈ V ∧ S assigns a value to v}

If the event does not have a guard, then read(g) = ∅. If it does not have an action,
then write(g) = ∅. The event can have parameters, but they are not considered in the
read/write sets.

Note that we do not include the variables that are read by the action of the event
because for now, we are only concerned whether an event can be executed or not. This
means that we currently only care about the truth value of the guards of an event.

Also note that the event is in deterministic inlined form, this means we minimize the
number of variables in read while still only using deterministic assignment. We will
discuss the reason for this choice in Section 3.3.4.

Using the information about variables used by the events, we can define a relation
describing which event can possibly have an effect on another event.
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Definition 3.4 (Effect relation). The effect relation η between events g and h is
defined as

η = {init} × Events ∪ {g 7→ h | g, h ∈ Events ∧ read(h) ∩ write(g) 6= ∅}

where Events is the set of events defined in the model including the initialization, init
is the initialization, and read and write are the read/write sets.

Although this is different from [11, p. 43], we assume that initialization is executed
only once. We can easily regain the behavior from [11, p. 43] by introducing a second,
regular event that has the same action as the initialization and no guard.

For every event, we define that that the initialization always has an effect on it; this
will simplify the construction of flow graphs in Section 3.9.

Note that we do not require g 6= h. An event may or may not have an effect on itself.

Using η, we can define the trivial independence. It is just the complement of η.

Definition 3.5 (Trivial Independence). If (g, h) 6∈ η we say that h is trivially indepen-
dent from g.

We have already seen an example of trivial independence in the beginning of this section.
If event g has an action x, y := (x+1), 0 and event h’s guard is z = 42 then h is trivially
independent from g. The read set of h is {z}, the write set of g is {x, y}, therefore
read(h) ∩ write(g) = ∅ and g 7→ h 6∈ η.

3.3.2 Non-Trivial Independence

While (g, h) 6∈ η is sufficient for independence, it is not necessary. Take for instance the
events as shown in Figure 3.5. If we compute the read and write sets for g and h, we
get

read(g) = ∅

write(g) = {x, y, z, q}

read(h) = {x, y}

write(h) = {z}
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Event g clearly modifies variables that are read by h. That means (g, h) ∈ η but g
cannot enable or disable h because the guard of h is invariant under g’s substitution.
Obviously we can prove x+ y > 5 ` (x+ 1) + (y − 1) > 5.

We can use this observation to define a more general notion of independent events.

Initialisation
begin

init : x, y, z, q := 2, 2, 1, 1
end

g =̂
begin

act1 : x := x+ 1
act2 : y := y − 1
act3 : z := z ∗ 2
act4 : q := 2

end
h =̂

when
grd1 : x+ y > 5

then
act1 : z := z/q

end

Figure 3.5: Independent events where (g, h) 6∈ η

Definition 3.6 (Weak Independence of events). Let g and h be events in deterministic
inlined form, furthermore let h 6= init and g 6= init. We say that h is weakly independent
from g — denoted by g 6 w h — if the guard of h is invariant under the substitution of
g, i.e., iff the following holds:

I(s, c, v) ∧G(s, c, v, x) ∧BA(s, c, v, x, v′) ∧A(s, c)⇒∃y′ · (H(s, c, v, y)⇔H(s, c, v′, y′))

where H denotes the guard of event h. y and y’ are the local parameters of h.

In this definition we only care about the truth value of H, for now, we do not require
that H is true using the same local parameters. Later, we will refine this definition to
also consider the local parameters.

Lemma 3.7. If an event h is trivially independent from an event then g 6 w h holds.

Proof Let h be trivially independent from g. This means read(h) ∩ write(g) = ∅.
Thus for all variables vi ∈ read(h) the before-after predicate is v′i = vi because they
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cannot be changed by g. Without loss of generality, let read(h) = {vi | 0 < i ≤ k}, for
some 0 ≤ k. We sort the variables and start with those that are used in the guard of h.
We start from Definition 3.6, and we have to prove that there are some parameters y′

that make the following goal true

true ` I(s, c, v)∧G(s, c, v, x)∧BA(s, c, v, x, v′)∧A(s, c)⇒∃y′·(H(s, c, v, y)⇔H(s, c, v′, y′))

Deduction yields

I(s, c, v) ∧G(s, c, v, x) ∧BA(s, c, v, x, v′) ∧A(s, c) ` ∃y′ · (H(s, c, v, y)⇔H(s, c, v′, y′))

The guard H(s, c, v, y) cannot contain variables vi where i > k, so we can write
H(s, c, v1, ..., vk, y) instead.

I(s, c, v) ∧G(s, c, v, x) ∧BA(s, c, v, x, v′) ∧A(s, c) `

∃y′ · (H(s, c, v1, ..., vk, y)⇔H(s, c, v′1, ..., v′k, y′))

We can now split the before-after predicate S. We have simple equivalences for variables
that are not modified by g, i.e., v′1 = v1 ∧ . . . ∧ v′k = vk and one predicate S>k that
contains the rest of the before-after predicate.

I(s, c, v) ∧G(s, c, v, x) ∧ S>k(s, c, v, x, v′) ∧ v′1 = v1 ∧ . . . ∧ v′k = vk ∧A(s, c) `

∃y′ · (H(s, c, v1, ..., vk, y)⇔H(s, c, v′1, ..., v′k, y′))

We can use the hypothesis v′1 = v1 ∧ . . . ∧ v′k = vk in the goal, yielding

I(s, c, v) ∧G(s, c, v, x) ∧ S>k(s, c, v, x, v′) ∧ v′1 = v1 ∧ . . . ∧ v′k = vk ∧A(s, c) `

∃y′ · (H(s, c, v1, ..., vk, y)⇔H(s, c, v1, ..., vk, y
′))

If we choose y′ = y, the goal is a tautology.

The proof for the negation of the guard follows the same schema: replace H by ¬H.

The trivial independence, i.e., (g, h) 6∈ η, can be decided by simple static analysis, i.e.,
by checking if read(h) ∩ write(g) = ∅. Non-trivial independence is a much harder
problem. In general, proving independence is undecidable, but in real world cases it is
still a good idea to try to prove independence using automatic provers. If a proof can
be found we increased our knowledge about the system. If h is independent from g, but
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we cannot find a proof, only reduces precision of our analysis but does not impede the
soundness of the methods we present in the rest of the chapter.

3.3.3 Application: Guard Evaluation

The exploration of a state during model checking in ProB happens in two phases.
First, the state is discovered as the result of an event occurring. In this first step, ProB
computes the state variables, but it neither checks if the invariant holds nor does it
compute the events that can be observed. This is done in a second step, which also
discovers the successor states. In Chapter 2, we have shown how the costs of invariant
checking can be reduced. In this section, we describe how we can reduce the costs of
guard evaluation for independent events.

Assuming we have an event g that led us from state v to v′, and we have an event h that
is independent from g, then we can skip guard evaluation for h in v′ because we already
know the result. The event g cannot change the truth value of h’s guard, therefore the
guard of h is true in state v′ if and only if it is true in state v.

Here we need the fact that in Definition 3.4 we included {init}×Events in η. This is the
base case for the inductive argument. We need to enforce at least one guard evaluation
in the beginning.

The problem is that Definition 3.6 allows using different local variables, which means
that we still have to evaluate the guard in order to find a solution for y′ although we
already know that the guard is true.

Therefore, we need a stronger notion of independence than Definition 3.6. If we demand
that the local variables cannot change, i.e., y′ = y, we can reuse the solution from v for
v′.

Definition 3.8 (Strong Independence of events). Let g and h be events in totally lifted
form, furthermore let h 6= init and g 6= init. We say that h is strongly independent from
g — denoted by g 6 s h — if the following holds:

I(s, c, v) ∧G(s, c, v, x) ∧BA(s, c, v, x, v′) ∧A(s, c)⇒ (H(s, c, v, y)⇔H(s, c, v′, y))

Note that strong independence implies weak independence.
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g =̂
begin

act1 : x := x+ 1
end

h =̂
any

y
where

grd1 : y = x
then

skip
end

g =̂
any

fx
where

grd1 : fx = x+ 1
then

act1 : x := fx
end

h =̂
any

y
where

grd1 : y = x
then

skip
end

Figure 3.6: Example demonstrating the difference between Definition 3.6 and 3.8.

This is a stricter notion of independence than the notion in Definition 3.6. Here we not
only care if the truth value of the guard is the same. We also demand that the truth
value of the guard is the same using the same values for the parameters.

An example that shows that Definition 3.6 and 3.8 yield different results is shown in
Figure 3.6. On the left hand side the event g is in DIF, on the right hand side g is in
TLF. Let us first examine if h is trivially independent from g. In both cases, we can see
that write(g) = x and read(h) = x and therefore write(g) = x∩ read(h) 6= ∅. In other
words, h is not trivially independent from g.

If we use Definition 3.6, we use the inlined from. Substituting the information from the
events into the condition for weak independence yields:

true ∧ x′ = x+ 1⇒∃y′ · (y = x⇔ y′ = x′)

The guard of g is true in the DIF. We assume that the invariant and axioms do not
matter, e.g., they only contain typing or irrelevant information.

The condition holds, because there is always a y′ that makes the existential quantifica-
tion true, namely y′ = x+ 1.

This means that h is weakly independent from g with respect to Definition 3.6.

If we use Definition 3.8, we get a different result. in this case, we use the totally lifted
form.

fx = x+ 1 ∧ x′ = fx⇒ (y = x⇔ y = x′)

54



3.3 Independence of Events

This is a contradiction. The left hand side of the implication is true, because we in-
vestigate a situation where g happened. This means we can assume is that g’s guard
and before-after-predicate are true. The left hand side is false, it would require that
y = x⇔ y = x+ 1, i.e. x = x+ 1 hold.

This means that h is not non-trivially strongly independent from g with respect to
Definition 3.8.

This is a case where h is weakly independent from g but it is not strongly independent.

3.3.4 TLF versus DIF

It is worth noting that the read set of an event written in DIF is different from the read
set of the event written in TLF.

In the context of weak independence, the choice of the form does not matter. The guard
of an event in TLF compared to the event in DIF only contains some additional conjuncts
of the form x = Expression, where x is a local parameter. This is essentially a let that
introduces new names for expressions. All these new names are existentially quantified
on the right hand side of the implication in the condition for weak independece, hence
they cannot be the cause if the right hand side of the implication is false. But we
potentially move variables from the action into the guard. This means the read set
of an event written in TLF may be larger than the read set of the event written in
DIF. Trivial independence is directly related to the read set. The larger the read set is,
the more likely it is to have a nonempty intersection with the write set of some event.
In other words, events that are trivially weakly independent in DIF can become non-
trivially independent in TLF. Because for weak independence the choice of the normal
form does not matter, we choose DIF as it has potentially more trivial independent
events that are cheaper to find than non-trivial events.

However, for Definition 3.8 the situation is different. We still introduce fresh names for
expression in TLF but they are not existentially quantified. This means they contribute
to the truth value of the right hand side of the implication of the condition for strong
independence.
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g =̂
begin

act1 : y := y + 1
end

h =̂
begin

act1 : x := y
end

g =̂
any

fy
where

grd1 : fy = y + 1
then

act1 : y := fy
end

h =̂
any

fx
where

grd1 : fx = y
then

x := fx
end

Figure 3.7: Example demonstrating the difference between TLF and DIF in Definition
3.8.

We can demonstrate this using the example in Figure 3.7. If we would use DIF in
Definition 3.8 we would conclude, that h is independent from g, the condition for strong
independence would be:

true ∧ y′ = y + 1⇒ (true⇔ true)

Actually in DIF h is trivially independent from g, because read(h) = ∅.

However, in TLF the situation is different. The condition is:

fy = y + 1 ∧ y′ = fy⇒ (fx = y⇔ fx = y′)

This is a contradiction which means that h is not strongly independent from g.

We can conclude that while the choice of the normal form does not matter for weak
independence it does matter for strong independence.

3.3.5 Application: State patching

Besides reduction of the effort to compute guards, strong independence allows us to use
patching to compute successor states instead of computing them by constraint solving.
The situation where state patching can be applied is shown in Figure 3.8. State s has
been fully explored, i.e., its invariant has been checked and the successor states have
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been computed by evaluating the guards of g and h and applying their actions to s. The
event g yields state s′, the event h yields the state t. We have discovered that g ��s h

and the model checker has chosen to check s′ in the next step.

Figure 3.8: Application of effect independence: State patching.

Because g ��s h, we know that the solution computed for the guard of h in state s

is also a solution for the guard of h in state s′. We also know that the substitution
is deterministic because the event is in TLF. Thus, it is possible to compute a “diff”
between t and s and simply apply the “diff” to patch s′ in order to compute t′.

3.3.6 Nontrivial Independence and missing Abstractions

If a model contains non-trivially independent events, it is an indication that there might
exist a useful abstraction where the independence does not exist. We surmise that
constructing this abstraction, if it does not yet exist in the refinement hierarchy, could
help to better understand a model.

In our toy example from Figure 3.5, we could introduce an abstraction that contains a
variable v and the invariant v = x+y. In this abstraction, the independence of h from g

is trivial and we made explicit that x+ y is invariant under execution of g. This taught
us something new about the model.
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3.4 Enabling and disabling Predicates

For dependent events we now introduce the notion of enabling and disabling predicates.
These predicates describe the circumstances under which an event will enable or disable
another event. We have the freedom to choose one of the notions of independence. We
will use strong independence in the rest of this chapter. We will discuss the implications
of choosing weak independence in Section 3.8.

Definition 3.9 (Enabling predicate). Let g and h be events excluding the initialization.
Furthermore, let h depend on g. The predicate PE is called an enabling predicate for an
event h after an event g denoted by g �PE

h, if and only if the following holds:

I(s, c, v) ∧ G(s, c, v, x) ∧ BA(s, c, v, x, v′) ∧ A(s, c) ⇒ (PE(s, c, v, x, y) ⇔ H(s, c, v′, y))

where I(s, c, v) is the invariant of the machine, G(s, c, v, x) is the guard of g with
parameters x and BA(s, c, v, x, v′) the before-after predicate of g’s action, and where
H(s, c, v′, y) is the guard of h with parameters y.

Intuitively, an enable predicate is equivalent to the guard of an event h in the context
that event g will happen. Figure 3.9 shall illustrate the situation, if the enable predicate
P holds in state v, then the guard of h will be true in state v′.

Figure 3.9: Explanation of the enable predicate

Let us take Figure 3.10 as an example. The event depends on itself, we can easily
disprove x < 10 	 x + 1 < 10 using x = 9 as a counterexample. We assume that the
invariant is x ∈ Z and there are no axioms.

We have to find a PE such that the condition from Definition 3.9 holds.

x ∈ Z ∧ x < 10 ∧ x′ = x + 1 ⇒ (PE(x) ⇔ x′ < 10)
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count =̂
when

grd1 : x < 10
then

act1 : x := x+ 1
end

Figure 3.10: Counter event

A possible solution for the enabling predicate is x < 9. There are many other enabling
predicates, for instance x ≤ 8. If the enabling predicte x ≤ 8 holds in state v then it is
guaranteed that the guard of h is true in v′. It is important to note that the enabling
predicate and the guard of h use different states as their input. PE uses the state before
g happens, h’s guard uses the state after g happened.

Analogously to the enabling predicate, we can define a disabling predicate, that ensures
that an event h is not enabled after we observed the occurrence of g.

Definition 3.10 (Disabling predicate). The predicate PD is called disabling predicate
for an event h after an event g excluding the initialization, if and only if the following
holds:

I(s, c, v) ∧G(s, c, v, x) ∧BA(s, c, v, x, v′) ∧A(s, c)⇒ (PD(s, c, v, x, y)⇔ ¬H(s, c, v′, y))

where I(s, c, v) is the invariant of the machine, G(s, c, v, x) is the guard of g with
parameters x and BA(s, c, v, x, v′) the before-after predicate of g’s action, and where
H(s, c, v′, y) is the guard of h with parameters y.

In the case of the count example from Figure 3.10, a candidate for the disabling predicate
is x ≥ 9:

x ∈ Z ∧ x < 10 ∧ x′ = x+ 1⇒ (x ≥ 9⇔ x′ < 10)

Definition 3.11 (Enabling predicate for initialization). The enabling predicate for
(init 7→ init) ∈ η is false and the disabling predicate is true.

We have to specify the special case for the initialization to enforce our chosen semantic,
i.e., the initialization is only observed once in the beginning.

Definition 3.12 (Validity of PE). An enabling predicate PE is valid if PE is not a
disabling predicate. Conversely, a disabling predicate PD is valid if it is not an enabling
predicate.
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Note that if there are inconsistencies in I(s, c, v)∧G(s, c, v, x)∧BA(s, c, v, x, v′)∧A(s, c),
e.g., if the invariant is violated, there is no valid enabling predicate because any arbitrary
predicate is both an enabling and a disabling predicate.

As an illustration, we will compute the predicates for a small example. Take for instance
a model of a for-loop that iterates over an array and increments each value by one.
Assuming the array is modeled as a function f : 0..n → N and we have a global
counter i : 0..(n+ 1), we can model the loop (at some refinement level) using two events
terminate and loop.

terminate =̂
when

grd1 : i > n
then

skip
end

loop =̂
when

grd1 : i ≤ n
then

act1 2: f(i), i := f(i) + 1, i+ 1
end

Figure 3.11: Incrementing values in an array

First we compute the read and write sets for each event as shown in Table 3.1. The
effect relation is η = {loop 7→ loop, loop 7→ terminate}.

Event read set write set
terminate {i, n} ∅
loop {i, n} {i, f}

Table 3.1: Read/write sets for the model in Figure 3.11

Event Pairs G⇒ (P ⇔ S[H]) Simplified solution for PE

terminate  P terminate i > n⇒ (PE ⇔ i > n) true
loop  P loop i ≤ n⇒ (PE ⇔ (i+ 1) ≤ n) (i+ 1) ≤ n
loop  P terminate i ≤ n⇒ (PE ⇔ (i+ 1) > n) (i+ 1) > n
terminate  P loop i > n⇒ (PE ⇔ i ≤ n) false

Table 3.2: Enable Predicates for the model in Figure 3.11
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Figure 3.12: Graph Representations of Dependence for a Simple Model

We can now try to find enabling predicates for each possible combination of events.
Table 3.2 shows the conditions for PE from Definition 3.9 and a simplified solution for
PE which satisfy it. We left out any context except for the guard of the preceeding
event. We can also see that the solutions are indeed valid enabling predicates. Take,
for instance, the last entry: if the solution for PE were also a disabling predicate, then
i > n ⇒ (false ⇔ i > n), or equivalently, i > n ⇒ ¬(i > n) would have to hold, which
is obviously not the case.

The directed graph on the left in Figure 3.12 is a graphical representation of Table 3.2.
Every event is represented by a node and for every enabling predicate first �P second

from Table 3.2 there is an edge between the corresponding nodes.

The right picture shows the same graph if we take strong independence of events into
account, i.e., if g ��s h, we do not insert an edge between g and h. In particular,
as terminate does not modify any variables, it cannot modify the truth value of any
guard.

On first sight it seems as if we may have also lost some information, namely that after the
execution of terminate the event loop is certainly disabled. However, we have already
seen in Section 3.3.3 that we can eliminate the guard evaluation of strongly independent
events, thus this information loss has no effect on model checking.

3.4.1 Computing the enabling predicates

In absence of non-deterministic assignment and given that the invariant and axioms
are not contradictory, the weakest precondition [S(s, c, v, x, v′)]H(s, c, v′, y) is a valid
enabling predicate, i.e., it is a solution for PE in

I(s, c, v) ∧ G(s, c, v, x) ∧ A(s, c) ⇒ (PE(s, c, v, x, y) ⇔ H(s, c, v′, y))
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It is important that we demand that all non-deterministic assignments were removed. In
the presence of non-deterministic assignments the weakest precondition calculus would
not produce valid enabling predicates. Take the two events shown in Figure 3.13 as an
example.

g =̂
then

act1 : x :∈ N
end

h =̂
when

grd1 : x = 5
then

skip
end

Figure 3.13: No enabling predicate in presence of non-deterministic assigment

g =̂
any

fx
where

grd1 : fx ∈ N
then

act1 : x := fx
end

Figure 3.14: Transformed event allows definition of enabling predicate

The weakest precondition [x :∈ N](x = 5) is false; we cannot guarantee that h is
enabled after g. The weakest precondition for the negation of h’s guard [x :∈ N](x 6= 5)
is also false. This means that the enable predicate is invalid.

However, using the event transformation for non-deterministic assignment on g yields
the event shown in Figure 3.14. It is possible to compute the enabling predicate for this
event. The weakest precondition [x := fx](x = 5) is fx = 5 and the disable predicate
is the negation fx 6= 5.
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3.4.2 Simplification

We need to simplify the solution, otherwise it is likely as complicated as the original
guard and we will probably gain no benefit from using the enable predicate instead of
the original guard. We therefore use the additional information that the guard of the
preceding event g is true and the invariant holds before g occurs.

Consider the model shown in Figure 3.15. The weakest precondition for g preceding h
is [x := x+ 2]x = 1 which yields x = −1. This contradicts the invariant x > 0 and thus
h can never be executed after g took place. In the context of the invariant, x = −1 is
equivalent to false.

INVARIANTS
positive : x > 0

g =̂
then

x := x+ 2
end

h =̂
when

grd1 : x = 1
then

skip
end

Figure 3.15: Simplification of PE

A very important requirement in our setting is that the simplifier does not increase the
number of conjuncts. We have to keep the input small to prevent exponential blowup
in the following steps. The optimal situation is when the simplifier can figure out that
a conjunct is equivalent to true or false. If it is true then it can be removed from the
conjunction; if it is false, the whole conjunction is false.

We have implemented a prototype in Prolog, which was used to carry out our case
studies. The method does not rely on this particular implementation. We can replace
it by more powerful simplification tools in the future.

The prototype simplifier uses a relatively simple approach as shown in Figure 3.16. After
normalizing the fomulas, we successively try to add the conjuncts of the formulas to a
set of current conjuncts K. If we try to add the conjunct c we can observe two special
cases:
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KI := closure(conjuncts(I(v))) // precomputed
Kg := closure(conjuncts(G(v, t))) // precomputed f o r every event g

K := closure(KI ∪Kg)
W P := conjuncts([S(t, v)]H(v, s))
P := ∅
while W P 6= emptyset do

choose c and remove from W P
i f c 6∈ K then

K := closure(K ∪ {c})
i f i n c o n s i s t e n t (K) then

P := { fa l se } ;
W P := ∅

else P := P ∪ {c}
f i

f i
od
P i s the s i m p l i f i e d v e r s i o n o f [S(t, v)]H(v, s)

Figure 3.16: Algorithm for simplifying the weakest precondition in the context of the
invariant and guard of g

1. c is already a member of K: we then skip c because we know that it is true in the
context of K.

2. c is inconsistent with a member of K: the enabling predicate is then false.

The second special case is detected using a small number of Prolog clauses such as the
following (where, the first argument is the binary operator followed by the arguments
to the operator):

i n c o n s i s t e n t f a c t ( not equal ,X,X) .
i n c o n s i s t e n t f a c t ( l e s s ,X,X) .
i n c o n s i s t e n t f a c t ( l e s s ,X,Y) :− value (X) , va lue (Y) , X >= Y.
i n c o n s i s t e n t f a c t ( equal ,X,Y) :− value (X) , va lue (Y) , X \= Y.
i n c o n s i s t e n t f a c t (member , , empty set ) .

The first rule states that x 6= x is inconsistent, the second one that x < x is inconsistent,
the third one that x < y is inconsistent if x and y are known values with x ≥ y, the
fourth rule states that x = y is inconsistent if x and y are known values with x 6= y,
and the fifth rule states that membership in the empty set is inconsistent. We use
normalization to keep the number of rules low. For instance, there is no rule for greater
than. We simply rewrite x ≥ y to y < x and use the rule for less.

In any other case we add the conjunct and calculate the closure of K using some rules
that combine two formulas, computing new logical consequences, e.g., using the transi-
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tivity of < and ≤ we compute x < z as a consequence of x ≤ y and y < z. This step is
important, without computing consequences we would only be able to remove conjuncts
within the enabling predicate that are exact duplicates of conjuncts in the guard or the
invariant or to detect inconsistencies if there is an exact rule for the situation.

For example, assume we have built the set of conjuncts K = {x < 2, y = 5}, and we
now try to add x = y. Assuming we have only the rules mentioned above. Note that
there is no rule that directly detects the contradiction.

When adding the new fact, we have to derive possible consequences, i.e., we combine
the facts until we reach a fixpoint. Combining x = y with y = 5 yields x = 5 which we
add to K. Combining the new fact x = 5 and x < 2, yields 5 < 2. This triggers the
third Prolog rule and we detect an inconsistency.

The actual implementation does not always recompute everything from scratch. We
precompute a closure KI from the conjuncts of the invariant. This set can be reused for
the whole model. For each event g we precompute a closure Kg from the guards. This
set can be reused for all enabling predicates where g is the first event.

If the algorithm has not stopped because of a contradiction the enabling predicate is
the conjunction of the formulas stored in P .
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3.5 Enable Graph

We can now finally define the enable graph that captures the effects between events.
Actually, we have already informally introduced an enable graph in Figure 3.12. The
graph on the right side is the enable graph for the example.

Definition 3.13 (Enable Graph). An Enable Graph of a model M consists of a
directed Graph G = (N,E) and an edge labeling function. The vertices N of the graph
are the events of M . The edges are all pairs of dependent events, i.e., E = {(g, h) | g, h ∈
N ∧ g  y h}. The labeling λ : E → Pred function assigns an enabling predicate PE to
each edge of G, i.e., λ = {(e, P )|e = (g, h) ∧ e ∈ E ∧ g yP h}

Definition 3.13 actually defines a family of graphs because the enabling predicate is not
unique and the information about independence between events may be incomplete, i.e.,
the enable graph can contain additional edges. In the following, when we talk about the
enable graph, we actually mean the graph that is computed by some fixed procedure.

We can also visually represent an enable graph as a forest, where the root of each tree is
an event of the model and the tree contains each event that depends on the root event.
The representation as a forest might be easier for a human to comprehend.

Constructing the enable graph is relatively efficient; it requires the calculation of
O(card(Events)2) enabling predicates. From our experience with invariant reduction
using proof supported model checking, we think that in the case of software specifica-
tions, generating the enable graph and using the information gained for guard reduction
can yield in a reduction of the model checking time. However, we have no experimental
data yet.

We can also influence the graph “interactively”. For instance, take the graph shown in
Figure 3.19. The edges (upini,up), (upini,dn), and (upini,gcd) all contain one conjunct
referring to the variable dn. By inspecting the model, we realize that the initialization
sets dn to false. We also realize that upini does not refer to dn. This means that
the information dn = false is not available for the simplification. Adding a theorem
dn = false to the guard of upini enables the simplifier to remove dn = false from the
enabling predicates of (upini,up), (upini,dn). And more importantly, it can infer that
the enabling predicate of (upini,gcd) is false.

We believe that expressing these theorems does not only improve the graph but also our
understanding of a model because we explicitly formalize properties of the model that
are not obvious, at least not for the automatic simplifier.
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3.6 Example: Extended GCD Algorithm

To demonstrate the process, we use the extended GCD algorithm taken from [53]. We
will only use one part, the first loop, of the last level of refinement as shown in Fig-
ure 3.17. We have also added a guard dn = FALSE to the guard of the upini event.
Adding the guard will not make any difference to the algorithm. The variable dn is
set to false in the initialization and upini is supposed to be the first event after the
initialization.

EVENTS
upini =̂

when
grd1 : up = FALSE

grd2 : dn = FALSE
then

act1 : up := TRUE

act2 : f := 0
act6 : r := {0 7→ a mod b}

end
up =̂

when
grd1 : up = TRUE

grd2 : r(f) 6= 0
grd3 : dn = FALSE

then
act1 : f := f + 1
act5 : r(f + 1) := t(f) mod r(f)

end
dnini =̂

when
grd1 : up = TRUE

grd2 : r(f) = 0
grd3 : dn = FALSE

then
act1 : dn := TRUE

end
END

Figure 3.17: Example Model for automatic flow analysis

First, we need the read and write sets of the events, as shown in Table 3.4. Because we
want to use strong independence, we must transform the events into the totally lifted
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e read(e) write(e)
upini {up,dn} {up,f,r}
up {up,r,f,dn} {f,r}
dnini {up,r,f,dn} {dn}

Table 3.3: Read/Write sets

form. We have omitted the TLF here.

From the sets, we can easily calculate the effect relation.

η = {upini 7→ upini, upini 7→ up, upini 7→ dnini,

up 7→ up, up 7→ dnini,

dnini 7→ dnini, dnini 7→ up, dnini 7→ upini}

For each pair of events we can now calculate PE . By definition the enable graph contains
only edges between dependent events, therefore we can ignore all pairs that are not
element of η. In this example, almost all events are dependent except for upini which
is trivially independent from up.

(upini,upini) ⊥
(upini,up) a mod b 6= 0
(upini,switch) a mod b = 0
(up,up) t(f) mod r(f) 6= 0
(up,dnini) t(f) mod r(f) = 0
(dnini,up) ⊥
(dnini,dnini) ⊥
(dnini,upini) ⊥

Table 3.4: Enable predicates

The resulting graph is shown in Figure 3.18. For better readablity, we split the graph
into subgraphs for each event.

We also applied the process to the full model. This is described in [52]; the full enable
graph is shown in Figure 3.19. We have also explained how the enable graph can reduce
the number of guard evaluations. For one particular run of the algorithm with fixed
input numbers, the run will start with init and upini then contain a certain number
n of up events. This will be followed by dnini and then exactly n dn events and will
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Figure 3.18: Enable graph for example from Figure 3.17

finish with one gcd event. All in all, the calculation takes 2n+4 steps. After each step,
the model checker needs to evaluate 5 event guards (one for each event, except for the
guard of the initialization which does not need to be evaluated) yielding 10n+20 guard
evaluations in total. Using the information of the enable graph we only need a total of
4n + 4 guard evaluations. For example, after observing up, we only need to check the
guards of up and dnini: they are the only outgoing edges of up in Figure 3.19 that are
not labeled with false.

3.7 Application: Guard Evaluation

In Section 3.3.3, we have shown how we can use information about strong independence
between events to avoid guard evaluation. In this section, we will use the enabling
information to reduce or even avoid the guard evaluation when the events are not inde-
pendent.

When we check a model for consistency, we know at least one predecessor state and one
event that led us into the state we want to explore. For example, we might know that g

led us into the state under investigation and furthermore we have computed an enabling
predicate PE for some event h. This information can be exploited to reduce the guard
evaluation for h. We can replace h’s guard by the enabling predicate. In particular, the
special case PE = false is interesting. We can skip the predicate evaluation for every
event where the enabling predicate is false.

Lemma 3.14. Let g and h be events. If the enabling predicate PE is false, then the
guard of h is false after g occurred, assuming that the invariant and the axioms hold.

Proof We start with the definition of the enabling predicate

I(s, c, v) ∧ G(s, c, v, x) ∧ BA(s, c, v, x, v′) ∧ A(s, c) ⇒ (PE(s, c, v, x, y) ⇔ H(s, c, v′, y))
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Figure 3.19: Enable graph for example from [53]

We know that g occurred, i.e., G(s, c, v, x) and BA(s, c, v, x, v′) are true. Also by as-
sumption I(s, c, v) and A(s, c) are true and the enabling predicate is false.

false ⇔ H(s, c, v′, y) ≡ ¬H(s, c, v′, y)

Because we use the invariant when simplifying the enabling predicate, the invariant must
hold in the previous state in order to use the flow information. However, we believe this
is reasonable because most of the time we are hunting bugs and thus we stop at a state
that violates the invariant. The implementation must take this into account, and in the
case of an invariant violation it must not use the information gained by flow analysis.
Also it needs to check not only the invariant but also the theorems and axioms if they
are used in the simplifier.
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Figure 3.20: Example for combining information

Note that we cannot combine the information from all incoming transitions like we did
for invariant preservation checking to further simplify PE .

However, we can freely chose which enabling predicate we select for the guard evaluation.
For instance, say we have four events a, b, c and d, and we know that a disables c and
b disables d. Furthermore, we encounter a state s via a but do not yet calculate the
successors. Later we encounter s again, this time via b. This is shown in Figure 3.20.
On the left is the situation that occured during model checking. On the right hand side
is the partial enable graph. When calculating the successors of s we can skip both c and
d. The reason is that we have a proof for c is disabled because the state was reachable
using event a and a proof that d is disabled because the state was reachable using event
b. Thus the conjunction c and d are disabled is also true.

Because the enable graph does not contain edges (a, a), (a, b), (b, a) and (b, b) we can
assume, that a and b are independent from itself and each other. This means that we
can also deduce that a and b are enabled in state s.

3.8 Weak versus Strong Independence

If we use weak independence instead of strong independence, we can potentially elim-
inate more edges from the enable graph because it is more likely that two events are
weakly independent than strongly independent. On one hand, this means that maybe
we cannot use information about true conjuncts in the enabling predicate for the same
reason why weak independence does not work in Section 3.3.3, i.e., we must keep the
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information about solutions for local parameters. On the other hand, we can use in-
formation about conjuncts that are false (because we then do not have to compute
the guard at all) and the computation of independence and the enable graph might be
cheaper.

In situations where we only care about completely avoiding guard evaluations, for ex-
ample in a deterministic system, it is maybe sufficient to use the cheaper solution. The
price is that we can only use the enabling predicate instead of the guard if the enabling
predicate is false.

3.9 Flow Analysis

Given an enable graph we now want to construct a flow graph. A flow graph is an
abstraction of the model’s state space where an abstract state represents a set of concrete
states. Each abstract state is characterized by a set of events, representing all those
concrete states for which those (and only those) events are enabled.

The flow graph is constructed by an abstract model checking process as shown in Fig-
ure 3.21 and 3.22. We start with a processing list that contains the state init which
represents the uninitialized state, i.e., only the initialization can be executed. A state
is represented by the events that are enabled in the state. Treating the set of enabled
events as the state in the flow graph allows us to use the state directly as an entity in
the algorithm.

While there are still unprocessed states in the todo list, we take one state and iterate
over its members. For each enabled event e ∈ state, we compute the set keep which
contains all enabled events that are independent from e. Because we defined all events to
be dependent on the initialization, we know that keep(init) = ∅. Therefore we evaluate
all guards at least once.

The next step is to compute an expansion which is shown in Figure 3.22. After the
expansion, the variable atoms contains a mapping from predicates to a state of the flow
graph, i.e., a set of events. The flow states, i.e., the range of atoms are put into the
processing list and the flow graph is extended. Finally we clean up the processing list,
removing all states that have been already processed.

After the process list is empty, the flow graph is stored in the variable flow.
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todo := {{init}}
done := ∅
flow := ∅

while todo 6= ∅ do
choose state from todo
f o r each e ∈ state do

keep := state ∩ independent(e)
atoms := expand(e, keep)
todo := (todo ∪ ran(atoms))
flow := flow ∪ {state 7→ atoms}

od
done := done ∪ {state}
todo := todo \ done

od

Figure 3.21: Algorithm for constructing a Flow Graph

The expansion function shown in Figure 3.22 combines enable predicates to create a
new predicate PF for the flow graph transition. The basic idea is that we chose some
of the enable predicates that are used in their original form and for the rest of them we
use their negation.

Given the enable graph as EG : (Events× Events) 7→ P redicate
de f expand(e, keep) =

true pred := {f 7→ true|(e 7→ f) ∈ dom(EG) ∧ EG(e 7→ f) = true} // precomputed
maybe pred := {f 7→ p|(e 7→ f) ∈ dom(EG) ∧ EG(e 7→ f) = p ∧ p 6= false}// precomputed
result := ∅
f o r each s ⊆ maybe pred do

targets := dom(true pred) ∪ keep ∪ dom(s)
predicate :=

∧
ran(s) ∧ ¬(

∨
ran(sC−maybe pred)

result := result ∪ {predicate 7→ targets}
od
return result

end de f

Figure 3.22: Algorithm for expanding the Enable Graph (i.e., computing successor
configurations)

Figure 3.23 shows a simple flow graph construction. Take for instance the vertex labeled
with {a}. In this case we do not have a choice; we must execute a. From the enable
graph on the left hand side we know that if P is true then a will be enbled afterwards
and in the same way if Q holds then b will be enabled. Combining all combinations of P
and Q and their negations, we get the new states {}, {b} and {a, b}. If we continue, we
finally get the graph shown on the right hand side. If more than one event is enabled,
we add edges for each event separately. We can combine edges by the disjunction of the
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predicates. In our case, we did that for the transition from {a, b} to {a} which can be
used by either executing b or a.

We immediately remove predicate combinations that are contradictory. For instance,
from state {b} we have only one outgoing edge (b, true); the other edge (b, false) is
self-contradictory and was removed. If we can, for example, prove that ¬P ∧ Q is a
contradiction, we would also remove the edge between {a} and {b}. We also remove an
edge if the combination contradicts the guard of the event or the invariant. Removing
infeasible paths as early as possible helps to reduce the flow graph.

∧

∧

∧

∧

∧
∨

∧

∧

Figure 3.23: Simple Flow Graph Construction

3.10 Feasibility of Flow Graph Construction

Constructing the flow graph can be infeasible because the flow graph can blow up
exponentially. It is clear that flow analysis is probably not applicable if the model does
not contain any algorithmic structure. In the worst case any combination of events
can be enabled in some state, leading to 2card(Events) states, where card(Events) is the
number of events and it is even worse when it comes to the edges because we have to
combine the guards and the negation of the guards as shown in Figure 3.23. However, in
the case of software development, it is very likely that the model will contain groups of
events, each group implementing a specific functionality of the model. In other words,
at each point during the computation only a hopefully small set of events is enabled.

We surmise that the closer a model is to a low-level implementation, the better the
results from simplification will be. Our experience is that Event-B models of software
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at a sufficiently low level of refinement typically have some notion of an abstract program
counter that implicitly controls the flow in a model. These abstract program counters
are typically used in predicates that only use equivalence or set membership. Therefore
it is very likely that the simplifier can use these predicates for simplification. In many
cases, computing the weakest predicate yields either true or false.

In cases where constructing the flow graph is feasible, we gain a lot of information. A
flow describes the implicit algorithmic structure of an Event-B model. This information
is valuable for a number of different applications, such as code generation, test-case
generation, model comprehension and also model checking.

3.11 Application: Proving Deadlock Freedom

When we build the flow graph, we perform an abstract model checking yielding only
states that are potentially reachable. Conversely, if a particular state does not appear in
the graph, this means the system cannot reach that state. The flow graph may contain
a special state ∅ which represents all states of the original model where no event is
enabled, i.e., a deadlock state. If we construct the flow graph, and we do not encounter
this state, we have a proof that is not possible to reach a deadlock state. The presence
of the ∅-state is not a proof that the system deadlocks. It can also mean that the
simplifier was not powerful enough to find out that some of the enabling predicates
are false. However, beside the information that a deadlock might occur, we also get
information how the deadlocking state can be reached. We can extract scenarios from
the flow graph, i.e. traces leading from the initial state to the deadlock. Then we can
verify if these states are feasible using ProB’s constraint solver.

The example in Figure 3.24 can be used to demonstrate deadlock finding. For simplicity,
we introduced a very obvious deadlock into the system.

The enable graph for the model is shown in Figure 3.25. The flow graph is shown in
Figure 3.26. The flow graph contains the ∅-state, so we cannot prove deadlock freedom.
If we fix the deadlock, for instance by removing the guard of event f , we get the flow
graph shown in Figure 3.27. Because the ∅-state is not in the flow graph, we have
proven deadlock freedom of the fixed model.

The flow graph can also be used for similar tasks. For instance, we can prove that the
system is deterministic, i.e., there is no state containing more than one event.
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MACHINE m0
VARIABLES

x

y

deadlock

INVARIANTS
inv1 : x ∈ Z
inv2 : y ∈ Z
inv3 : deadlock ∈ BOOL

EVENTS
Initialisation

begin
act1 : x := 2
act2 : y := 3
act3 : deadlock := FALSE

end
f =̂

when
grd1 : deadlock = FALSE

then
act1 : y := y + 1

end
g =̂

when
grd1 : deadlock = FALSE

then
act1 : x := y − 4

end
h =̂

when
grd1 : x = 5
grd2 : deadlock = FALSE

then
act1 : deadlock := TRUE

end
END

Figure 3.24: Deadlock finding using flow analysis
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Figure 3.25: Enable graph for deadlock model

∅

Figure 3.26: Flow graph for deadlock model

{f}

Figure 3.27: Flow graph for deadlock model (after fix)

77



Chapter 3 Automatic Flow Analysis

A commonly used modeling-style in Event-B is to model the system that is developed
together with its environment. For instance, if we want to model a cruise controller it
can be helpful to also include parts of its environment into the model. In the case of the
cruise controller this could be, for example, the break pedal. These environment events
often can occur at any time, e.g., the driver can apply the breaks. Environment events
typically have very permissive guards or even no guard. This means that they often do
not have a deadlock because one of the environment events can be observed.

We can use the flow graph to check if the system can be in such a quasi-deadlock by
searching for states in the flow graph that only contain environment events. We can
also check that the model is determinstic with respect to the controller events, i.e., no
state contains more than one controller event.

3.12 Example: Extended GCD Algorithm

In [53] Hallerstede proposes a structural notation for modeling and proving of Event-B
models. The paper contains a graphical notation of the extended GCD algorithm, as
shown in Figure 3.28. If we compare this to the result of our flow construction shown
if Figure 3.29, we see that our graph indeed resembles the algorithmic structure of the
model.

However, the automatic flow analysis helped us to discover an interesting property. The
flow graph contains a state that corresponds to concrete states where no event is enabled,
i.e., states where the system deadlocks. Thus the model contains a potential deadlock.
Inspection showed that the deadlock actually does not occur. The reason why the flow
graph contains the deadlock state was that a guard is too strong. The guards of dn
and gcd only cover f ≥ 0. However, the invariant implicitly prevents the system from
deadlocking by restricting the values of f to non-negative values.

up

upini

dn

dnini gcd

Figure 3.28: Structural model from [53]
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Figure 3.29: Flow Graph

3.13 Future work

Directed Model Checking and Testcase Generation

The flow graph can be used as a guide for model checking. Assume, that we want to
find a deadlock in our model and we have the flow graph from Figure 3.26. We can use
the graph as a guide to find our target state. Instead of performing a random search,
we could use the information from the flow graph to prune the search tree. We could
also use the distance to the deadlock state as a heuristic for a best first search. If we
think of the flow graph as an automaton where {init} is the initial state and our target
is the accepting state, a trace leading to the target must be a word that the automaton
accepts. As with directed model checking, test case generation can benefit from a more
informed search. The flow graph can be used to find traces that cover specific events.

Code Generation

Another potential application for the flow graph is code generation. The flow graph is
very similar to a control flow graph used in compilers. We have to verify that the graph
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is deterministic. As already mentioned in Section 3.11, we can verify this by looking at
the event set of each state. However, we also have to be sure that the substitutions can
be translated into code, i.e., we need an equivalent to B0.

3.14 Related work

Inferring Flow Information Another possible solution for extracting flow information
is reduction or projection of the original state space, i.e., we could use ProB’s reduction
algorithms introduced in [54] to produce abstractions of the state space. In particular,
the signature merge algorithm that merges all states which have the same outgoing
edges produces a graph that is similar to a flow graph. The problem is that we need to
explore the complete state space which can be very time and memory consuming and
maybe even impossible because of an infinite state space. Also, creating the signature
merged graph can become infeasible for extremely large state spaces. The flow graph
can be constructed for infinite state spaces but it potentially suffers from combinatoric
explosion.

The GénéSyst approach [55] infers a symbolic labeled transitions system (SLTS) from
an Event-B model. The paper applies the technique to a specification of an electronic
purse called Demoney [56]. The SLTS is like the flow graph an abstraction of the state
space of an Event-B model. GénéSyst uses a set of predicates P1, ..., Pn for which the
condition Invariant ⇒ P1 ∨ ... ∨ Pn must hold. This set of predicates is used to create
an abstraction of the state space. In contrast to the flow graph this method is focused
on the state of the B model rather than the interplay of events.

Specifying Flow Information Explicit specification of the flow is more common than
automatic extraction. For classical B there has been a lot of work on using CSP [57,
58, 59] to specify the controller of a B model.

In the context of Event-B, there are mainly four other approaches that are related to
our flow analysis. Hallerstede introduced a new approach in [53] to support refinement
in Event-B that contains information about the structure of a component. Also, But-
ler showed in [60] how structural information can be kept during the refinement of a
component. The state diagrams of UML-B are also used to specify a flow. All these
approaches have the advantage of incorporating the information about structure into
the method, resulting in better precision. However, the methods require the developer
to use the methods and corresponding tools from the beginning while automatic flow
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analysis can be applied to existing projects. In particular automatic flow analysis can
actually be used to discover properties of a model such as liveness and feasibility of
events.

Hallerstede’s structural refinement approach is probably the closest to our analysis, but
it does not fully replace our automatic flow analysis. Both methods overlap to some
extent, i.e., they have the similar purpose to enrich Event-B with explicit information
about the algorithmic structure. We think that both approaches can be combined, such
that the automatic flow analysis uses structural information to ease the generation of
the flow graph. In return, our method can suggest candidates for the intermediate
predicates used during structural refinement.

In [61] Cansell, Méry and Merz proposed predicate diagrams to specify reactive systems.
The diagrams start at a high level of abstraction and are refined to add more details.
The diagrams can be model checked using linear temporal logic. Interestingly “all proof
obligations concerning temporal properties are stated in terms of finite transition sys-
tems and can therefore be discharged by model checking”. The paper uses a mutual
exclusion protocol as an example. The top level specification and the first refinement
are shown in Figure 3.30. In the paper the authors experimented with several differ-
ent refinements of the abstract mutual exclusion protocol. The authors conclude that
their “ definitions are flexible enough to support nontrivial refinements of fairness con-
ditions by a mix of low-level fairness assumptions and arguments based on well-founded
orderings.” [61].

Figure 3.30: Top level specification and first refinement. Taken from [61].

Another approach is the Flow plug-in for Rodin [26]. The Flow plug-in allows the devel-
oper to express flow properties for a model and to verify them using proofs. However,
the tool has not been updated and we assume that it has been abandoned.

Finally, based on the theoretical results of this thesis, Dobrikov and Leuschel [62, 63]
have developed another way to generate enable graphs using ProB’s constraint solver
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instead of a prover/simplifier. This analysis cannot produce enable predicates, but it
returns whether an edge in the graph is always true, always false, or undecided. This
analysis was improved with the same technique used for the ProB prover [18]; previously
the analysis could be wrong in the presence of infinite sets.
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Chapter 4

Distributed Model Checking

This chapter describes the results of a distributed version of the ProB model checker.
We will demonstrate that our new tool is able to verify models where model checking
using the regular version of ProB is impossible within reasonable time constraints.
This chapter is based on a not yet published paper and an extended abstract published
in [64]. The full text of the unpublished paper can be found in Appendix B.

4.1 Motivation

When we compare ProB with other tools like Spin [65], we may come to the — from
our point of view false — conclusion that ProB is useless as a model checker. While
Spin can deal with billions of states, ProB cannot cope with models that consist of
more than a couple of million states. However, in [66], Leuschel has argued that these
numbers are really difficult to compare due to the different level of abstractions. While
the input language for Spin is almost C like, the classical B language is almost pure
mathematics. The high level of abstraction in B can lead to a significant reduction in
the number of states because a single state at a high level of abstraction can represent
hundreds or even thousand states in a low level language. Leuschel concludes that “due
to the inherent exponential blow-up of the state space, it is often not that relevant
whether a model checking tool can treat 100,000 or 10,000,000 states” [66].

However, we still want to extend the capabilities of ProB to support larger state spaces,
maybe even state spaces that consist of billions of states.

Twenty years ago, the easiest way to double the speed of a program was to wait about
eighteen months and buy a new computer. This is not the case anymore. CPUs are
not getting exponentially faster anymore. Instead, the number of cores in a computer
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increases. Another development is the rise of cloud computing that allows renting
computation power at a reasonable price.

While there is, without doubt, potential for ProB to improve its speed by using new
techniques such as partial evaluation, we have to switch to parallel or distributed com-
putation to make use of new hardware. We think that the tool we developed in this
thesis has the potential to lift ProB to a new level.

Case Study: Interlocking

We start by giving an example of a model where model checking became feasible with
our distributed version of ProB. It is a classical B version of an interlocking system
model from [11] that we studied and optimized for model checking in [67]. In the paper,
we reduced the state space by changing the model using partial order reduction resulting
in a model that can be checked using the normal version of ProB in about two hours.
We use this optimized version as a benchmark for the distributed version of ProB in
Section 4.5, but we also want to be able to check the original version. Its state space
consists of slightly over 61 million states. Our first attempt to model check the system
using the regular ProB version failed. ProB crashed after about 4 days because the
computer ran out of swap space. In a second attempt, we allowed ProB to assume that
there are no hash collisions and to drop states after exploration. This yields a much
smaller memory footprint. We aborted this attempt after ProB had checked 26628001
states in 7 days 11 hours and 41 minutes. We think if this run would have succeeded, it
would have taken over 17 days. This prognosis assumes that ProB would indeed check
all states, which may not be the case because we might miss a part of the state space
due to hash collisions. Furthermore, it assumes that the speed does not degrade over
time, which is also not entirely true.

The new distributed version was able to model check the full state space in about
30 hours on a six core 3.33 GHz Mac Pro with 16 GB of RAM using eleven worker
processes. We could check the specification on the HILBERT high performance cluster
at the University of Düsseldorf in about five hours (295 minutes) using 44 workers spread
over 15 computers. Using 104 worker processes spread over 15 computers, the check took
slightly more than two hours (126 minutes).

To get a better impression, Figure 4.1 shows the model checking time for each experiment
visually. The value for one core is our prognosis of 17 days because we have not actually
finished model checking using the regular ProB version.
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This example shows that — given the model is suitable for parallel checking — we can
extend the applicability of ProB to models where model checking with ProB was not
feasible.

1 (Prognosis) 11 (Mac Pro) 44 (HILBERT) 140 (HILBERT)

Number of workers
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Figure 4.1: Visualization of the model checking speedup for an interlocking system

4.2 Parallel Model Checking

Some questions about a formal model that arise in the B-Method can be answered for
each state individually, that is, without knowledge of the path that led to a particular
state. Answering these kinds of questions can easily be parallelized.

When we want to verify a property P that does not depend on path information we
need to check formulas of the type ∀s.s ∈ States ⇒ P (s). In the B-Method a typical
case for such a property is the invariant. Deadlocking can be checked in the same way
using the disjunction of the guards.

We want to define a family of sets of states S1, ..., Sk such that States = S1∪S2∪ ...∪Sk.
For parallel property checking we want k to be in the order of the number of CPUs we
want to use.
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By construction the following sequent can be proven:

States = S1∪...∪Sk, (∀s.s ∈ S1⇒P (s)), ..., (∀s.s ∈ Sk⇒P (s)) ` (∀s.s ∈ States⇒P (s))

This means that we can perform the check for the full set using k different processes in
parallel with each checking the states in one index set.

Let D be a relation that associates states with processes, i.e., D : States ↔ 1..k. If
(si, j) ∈ D then process j will explore the state si.

We can now define some criteria that describe the quality of a family of sets and therefore
the relation. Firstly, we do not want the processes to check the same element multiple
times, thus the optimal solution would be a family of disjoint sets and the relation D

should actually be a function. Secondly, we want a distribution of the work among all
processes such that every process gets approximately the same amount of work.

If we knew a cost function C that maps each state to a cost value, e.g.,
the time required to check the state, we could compute a solution that mini-
mizes the maximal costs of a single index set, i.e., we would try to minimize
max(

∑
s∈S1 C(s),

∑
s∈S2 C(s), ...,

∑
s∈Sk

C(s)). This is the optimization variant of the
k-PARTITION problem, often called multiprocessor scheduling problem. It is known
to be NP hard [68], but there are efficient approximation algorithms such as the LPT
(longest processing time) algorithm which sorts the states by their costs. Then it assigns
them to the index set with the lowest costs so far, i.e., it is a greedy approach.

However, this approach is not feasible because we have no knowledge about the costs for
a given state before we actually check the state. Currently there is no known method
to produce an approximation of the cost function for a given model.

But even if we could produce a cost function, generating all states in advance in order to
feed the LPT algorithm is itself not feasible. We want to generate the states in parallel,
i.e., we require an online algorithm.

The state space explorations adds another important requirement. If a state is explored,
ProB will return a set of possibly yet unexplored successor states. For each of the states
we have to decide which process should explore the state. Each transfer between two
processes is associated with some additional costs. We want the solution to require as
few state transfers between two processes as possible.

Choosing a process for each state is a trade-off between transfer of states and load
balancing. An approach that puts emphasis on the load balancing side of the tradeoff is
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to produce a hash code H(si) from a state si and then compute the index of the process
that is responsible for the state using H(si) mod k where k is the number of processes.
This approach basically ignores any cost associated with state transfer, i.e., if we have
n processes, the probability that a state is processed by the same process that discovers
the state is only n−1. This approach works very well if the costs for state transfer is
low, for instance, if the model checker uses multiple threads within a single process.

In a distributed model checker that runs on different computers the costs for state
transfer might become a non-negligible factor. This depends on the computer system
and network that is used. On a high performance cluster with InfiniBand connection, the
approach may still work. On a Beowulf cluster with regular Ethernet MBit connection,
it is likely that the approach would not work well.

Figure 4.2: Dynamic state space partitioning example from [69]

Another approach is dynamic state partitioning as proposed in [69]. The idea is to use
state variables to partition the state space on the fly. A partitioning function is computed
on the fly and can be extended later if necessary. Initially the function assigns all states
to the same partition. If a split of a partition is required, a state variable is chosen and
used to split the original partition. An example taken from [69] is shown in Figure 4.2.
In a first step the partition p is split using a boolean state variable into two partitions pt

and pf . Then the partition pt is split using a numeric state variable into p(t,0),p(t,1),p(t,2)

and p(t,3). Finally, p(t,3) is split using a boolean variable into p(t,3,t) and p(t,3,f). This
method tries to take locality into account; the assumption is that states that are linked
are similar.

We have chosen to use a different dynamic approach that does not approximate the
cost function. Instead, we reorganize the partitions through work stealing while model
checking. Each successor state is kept by the worker that discovers that state. This
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means, we try to keep everything local. Only when one worker becomes idle do we
have to transfer some states. However, this means that we have to compromise on load
balancing.

4.3 When does distributed model checking (not) work?

The worst case for our distributed model checker is the model of a counter. Every
state has exactly one successor state and we explore the state space while checking the
invariant, we can only consider a single state of the system at any time. But a state is the
granularity of our implementation. In other words, regardless of how many workers we
add, we will never get any speedup. Adding more processes to the system is associated
with some performance costs. Therefore the model checker can become slower if we add
too many workers. We will examine how big the performance loss is in Section 4.5.1.

If we produce enough successor states to keep the workers busy, we can expect to get
a good speedup using distributed computation. This means that we require a certain
amount of non-determinism in our model. Fortunately, this is very often the case in
real world models. Even if they implement a deterministic controller, the environment
often has non-determinism, i.e., during model checking the controller is checked for
different inputs. Even if the whole dynamic behavior is deterministic, we often have
non-determinism in the setup of the constants and sets.

A technique that can be applied to find the appropriate number of workers is rather
simple using a scan technique. We start the model checker with a single worker for
a fixed amount of time — say a minute — and measure how many states have been
checked. We keep doubling the number of workers and repeating the procedure until we
do not get a good improvement anymore. The improvement can be judged by a simple
heuristic. For instance, if we double from k workers to 2 × k workers we demand to
have checked at least 0.25 × k more states. Once we have an interval, we can narrow
the search down to a reasonable number of workers, e.g. using binary search. It is not
important to be very precise, but we should not use an extreme excess of workers for
two reasons:

a) It blocks valuable resources.

b) The algorithm that controls work stealing is linear in the number of workers, so
we waste a bit of performance for each idling worker.
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Finding the right amount of workers using this scanning approach could also be imple-
mented as an automatic tool. This would be especially valuable in combination with
a tool that automatically reserves resources from a cloud. Implementing such a tool
would likely be a straightforward task.

We can also think about changing the granularity of our work items, i.e., we could split
the checking of the invariant for a state into multiple work items, each dealing with only
a part of the invariant. We use this technique for assertion checking as explained in
Section 4.4.11, but assertion checking uses only a single state. When model checking,
splitting the invariant would require duplicating the states in memory because each
work item has to be self contained in order to be transferable to another process. We
think it would not work well in most cases, but for small state spaces with very difficult
invariants it could improve scaling.

4.4 The parB Model Checker

The core of ProB has been developed in SICStus Prolog. Unfortunately, SICStus
Prolog does not support parallel execution through multi threading, so we could not
implement parallel model checking within a single process. We have to run multiple
Prolog processes instead, i.e., we have to run multiple instances of the ProB binary.
In this section, we will introduce the basic concepts of our distributed version of ProB
which we call parB as well as some of the implementation details.

4.4.1 First Attempts

We have tried a number of different approaches. Initially, we experimented with the
Linda library provided by SICStus. The library implements a tuple space [70], i.e., data
is stored in a central repository and can be retrieved by worker processes. In the case of
ProB, the state space as well as the states that haven’t yet been explored were stored
in the repository.

A worker would retrieve a state, check the invariant, and send all successor states to the
repository. The big disadvantage of the library was that we always had to move states
around; this is an expensive operation. The approach was beneficial for only very few
models where the checking time for each state was very high. This was because of the
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rather big performance overhead caused by the framework. At that time ProB was
much slower. This means that the ratio

Overhead of Linda
Computation Time

was smaller than it is today assuming that the Linda library has not become much
faster. With a more recent version of ProB we can therefore expect that the Linda
approach would perform even worse.

We also implemented a Java based framework that was intended to be a platform for
experimentation with various state distribution methods. In the bachelor thesis that
implemented the approach, Radig [71] found that the “system distributes the workload
uniformly and scales sufficiently but requires about eight times as much computing power
as the single-threaded model checker. [...] there is significant overhead introduced when
exchanging states between the Java and Prolog processes.”

We considered the penalty factor of 8 to be too high to use this approach, so we aban-
doned this implementation and switched to the more rigid low level approach that is
described in this thesis.

However, the Java based approach had some very interesting aspects. It used a peer
to peer network to locate workers, and it was able to easily distribute code among the
servers. This is very handy when we want to operate a model checking cluster. We hope
that we can at some point in the future regain some of the properties of this approach
in the new version.

Finally, we tried a version that shared data between processes using Berkeley DB — a
high-performance embedded key/value store — which can be accessed directly using a
library that is provided by SICStus Prolog. Our hope was that the direct integration
would be fast enough to share states between worker processes. It turned out that
this was not the case. In [72] we experimented with a prototype and found that the
performance dropped from 7 seconds to write 100000 facts to over 2 minutes as soon as
we added another process that concurrently read from the database. The approach did
not scale so we decided to not further pursue it.

4.4.2 Architecture

As already mentioned, we cannot use multi-threading; our distributed version of ProB
therefore runs multiple instances of the Prolog binary in parallel. Some of them run
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on the same physical computer which we will call a node. Each node has at least two
processes running. Exactly one of them is an instance of a hashcode manager. Besides
the manager, each node runs one or more worker processes. Globally, one of the nodes
runs exactly one instance of a master process. The architecture of our distributed version
of ProB thus consists of three components:

1. A globally unique master that coordinates the computation.

2. One hashcode manager process on each physical computer.

3. Multiple instances of a worker process that performs the actual model checking.

The master and worker components are implemented as C libraries but they also contain
a small part written in Prolog. We have chosen to use C because it allows a very
tight integration into ProB. Also, the infrastructure for the distributed model checking
should be fast. Data is transferred very efficiently between Prolog and C.

Figure 4.3 shows an example setup of our architecture on three Quad-Core nodes. Node
B contains the master that coordinates the workers.

Figure 4.3: Running the distributed model checker on three nodes

4.4.3 Work-Items

Our tool is organized around the notion of a work item, which is a task that should
be executed on some worker process. A work item can be any Prolog term. The job
of our distribution framework is to organize the work items, i.e., store them in queues,
balance the workload, and keep a record of what has been done. For the distribution
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framework, the content of a work item is irrelevant; it only handles binary large objects
(BLOBs) and hash codes of these BLOBs.

Tasks are executed by the Prolog part of a worker. When the distribution framework
needs to process a work item, it calls the process/3 predicate as shown in Figure 4.4.
The predicates takes a work item as its input and produces a result and a list of new
work items. The result is specific for the work item. In the case of model checking, for
instance, it will contain the information if the invariant is broken in that state. The
result and successor tasks are sent to the distribution framework for further processing,
i.e., the result is aggregated and potentially displayed to the user and the successor tasks
are enqueued locally.

Figure 4.4: Prolog interface of the distribution framework

This works well for model checking, but the distribution framework could also be applied
to many more areas. We think that the implementation of new kinds of tasks is relatively
simple because the distribution framework does not care about the actual content of
the work items.

4.4.4 Shared Data

The distribution framework has to consider two pieces of data: a processing queue that
contains all states that are considered for processing and a set of already processed
states. Both have to work in a distributed environment.

We actually do not have a global queue but one local queue for each worker. The queues
are independent, we do not force them to be disjoint. That means a state can be stored
in multiple local queues.
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The second piece of data is the set of states that have been processed or are already in a
queue. A bit flag distinguishes states that have been fully checked from states that are
only enqueued. When a state is dequeued from a worker’s local queue, the worker checks
if it has been marked as fully processed. If the set of known states contains the state
and it has been marked as processed, it is dropped. If a successor state is enqueued, we
check if it is present in the set of known states. If it is in the set, either fully processed or
only enqueued, we drop it because we know that it either has been processed or it will be
processed in the future. Figure 4.5 illustrates the decision a worker has to make if a state
should be enqueued or dequeued. As mentioned, the difference is that if we dequeue,
we have to be sure the state has been processed before. The set containing all known
states has to be shared among the workers in order to avoid duplicate calculations.

and checked? 

Figure 4.5: Droping work items

A strictly consistent view, i.e., all components have the exact same information about
processed states, would require a locking mechanism or a centralized service. This would
have a big impact on the performance of the system. However, we know that the set
of processed states is monotonically growing. No state that has been added to the set
is ever removed. This means, we can use an eventually consistent approach [73]. We
replicate the set and we accept that the local information of a worker may differ from
the global view as shown in Figure 4.6. Globally the set of known states consists of
the states 1 to 8, but each worker only has a partial knowledge. In the example it
can happen, that Worker A enqueues State1 for further processing although it can be
dropped. However, the distribution framework will at some point in the future provide
Worker A with the information that State1 has been processed.
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Figure 4.6: Two workers with a different view on the set of known states

As a consequence, a worker might falsely assume that a state has not yet been checked
and unnecessarily re-process the state. However, if we can keep the number of duplicate
calculations reasonably low, the impact on performance is negligible. Our experiments
have shown that this is indeed the case.

Figure 4.7: Single Node

Each worker having its own copy of the set would result in bad memory usage. We
would end up with many copies of the same data on the same computer. Instead, we
decided to use a single copy of the set of processed states in shared memory for each
physical computer [74]. Initializing and freeing the shared memory as well as adding
states that have been checked remotely is the job of the hashcode manager component.
Adding states that have been checked by one of the workers on the same machine is
done directly, i.e., the worker directly writes into the shared memory. To avoid race
conditions we use semaphores as described in [74]. Figure 4.7 shows a single node. The
shared memory block is used by all components. In addition to that each worker has a
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local queue stored in regular memory. In the following section we discuss the memory
management for the hash codes.

4.4.5 Storing checked states

While the states that are queued for later processing are stored in a binary representa-
tion, the states that have been processed are only stored as hash codes. The implemen-
tation currently uses SHA-1, a cryptographic hash function specified in RFC 3174, to
compute the hash codes.

If we encounter states with the same hash code, we assume that the states are the same
state. This can lead to unsoundness of the model checking if two different states produce
the same hash value. However, the probability of hash collisions is very low in the case
of SHA-1. An approximation for the probability p of a hash collision, given the number
of possible keys d, and the number of stored keys n is [75]

p ≈ 1− e
−n

(
n− 1

2d

)
≈ 1− e

−

(
n2

2d

)

SHA-1 produces 160 Bit hash values, therefore the approximate collision probability
for a billion elements is less than 2−100. For a trillion states it is less than 2−80.

p ≈ 1− e
−

(
(109)2

2× 2160

)
≈ 6.8× 10−31 < 2−100

The hash function can be replaced in the future if we want to further reduce the collision
probability.

The reason why we use a cryptographic hash function is that it produces values that
seem to be uniformly distributed. That means if we look at the output of the SHA-1
function, it looks like random data. The reason we want to have such a hash function
is that we use a search tree to store the codes. The costs for searching a value linearly
depends on the height of the tree. We do not use a self-balancing tree like an AVL
tree [76]. Instead we rely on the fact that if we sequentially add random values to a
search tree, the order of the values is random and the resulting tree will most likely be
balanced [77]. Our search tree has a high branching factor of 32, and the resulting tree
is therefore rather shallow. While this is not guaranteed, we have never found a tree
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with a height of more than 10 in our experiments with about 100 million states; the
theoretically minimal depth of a balanced tree containing 100 million states is six.

We use a Trie (also referred to as a prefix tree) to store the states. We will refer to our
implementation as the Hash-Trie. Knuth [78] defines tries as follows:

“A trie is essentially an M-ary tree, whose nodes are M-place vectors with
components corresponding to digits or characters. Each node on level � rep-
resents the set of all keys that begin with a certain sequence of � characters;
the node specifies an M-way branch, depending on the (�+1)st character.”

An example of a trie that stores regular strings is shown in Figure 4.8. The trie on the
left contains the words ”slay”, ”slayer” and ”say”. If we want to store the word ”sad”,
we have to find the leaf node that shares the longest prefix and re-organize it.

Figure 4.8: Storing words in a trie

In our case, we want to store binary strings, i.e., the hash codes of a state. We therefore
use a special variant of the trie data structure inspired by Bagwell [79] and Hickey [80].
Figure 4.9 illustrates how our trie structure is organized. We use arrays as inner nodes
of the trie. The length n of the array is chosen to be a power of 2. This means we can
use log2(n) bits of the input string to identify an index in the array. We use the hash
code of a work item as the key, so we know that all binary strings we want to add have
the same length. This means that we do not have to care about cases like ”slay” and
”slayer” from Figure 4.8 where one input string is the prefix of another string.

In Figure 4.9. We have stored two values that share the common prefix ’0110’. The
next two bits of the values are different, and the values of the other bits of the input do
not matter. Using chunks of 2 bits we can navigate to a value. Our actual trie has a
branching factor of 32, therefore each five bit chunk of the 160 bit input is represented
by one level in the trie.
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Figure 4.9: Example of a Hash Trie

The prefix for each hash code is in principle encoded in the path throughout the trie, i.e.,
in Figure 4.9, it would be sufficient to only store the suffix (denoted ’** ** ** **’) part
in the leaf nodes in order to be able to reconstruct a value. We have decided to store the
full hash codes instead. This requires more memory, but it is very important when we
add a new computer to a running model checking job. We then need to provide the new
computer with a copy of the hash codes. Because we store the full hash codes in linear
blocks of memory, we can put all hash codes into a single message using memcpy without
traversing the trie structure in the sending process. The receiving hashcode manager
inserts the SHA-1 values into its own trie. In other words, the price for synchronization
is almost fully paid by the new node, which is not yet involved in the model checking
process. In other words, the running model checking jobs are not disrupted.

Like the regular trie, we extend the depth of the trie structure if necessary. The algo-
rithm shown in Figure 4.11 explains how the trie is extended. We compute the index
position for a specific level, i.e., we extract the chunk of bits that correspond to the
level. Then we retrieve the content of the array at that index. The content could be
one of four things. It can be the hash code itself; in that case we are done. It can be a
null pointer; in that case we can simply store the hash code. It can be an inner node,
which means we have not yet reached a leaf, therefore we recursively call the function
for the next level. Finally, it can be a different hash code. In that case we create a new
inner node, push down the originally stored hash code and call the function again. In
the next call the index position will be different or we introduce another inner node.
We know that the process will always terminate because the depth of the trie is limited
by the length of the bit string.
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As a simplified example with a branching factor of four, take Figure 4.10. At the bottom
we have chunks of linear memory in which we store the hash codes together with some
meta-data sequentially. On the top of the left side we have a node in our trie structure.
The small squares represent bits that allow us to distinguish pointers to linear memory
from pointers to trie nodes. In the figure we see how the trie is changed if we add a
hash that is supposed to be stored in a slot that is already occupied. We create a new
internal node, we move the pointer to the old content into the new node using the next
five bits of the hash code as the index. We add the new content, point from the original
trie node to the new node and flip the bit to represent a pointer to an internal node.

Figure 4.10: Adding a new layer to the hashtrie
i n s e r t ( sha ) = i n s e r t ( sha , root , 0 )

i n s e r t ( sha , arr , l e v e l ) =
pos = b i t c h u n k f o r ( sha , l e v e l )
switch ar r [ pos ]

case sha :
return // a l r eady present

case n i l :
a r r [ pos ] := sha

case inner−node :
i n s e r t ( sha , a r r [ pos ] , l e v e l +1)

case l e a f −node :
arr ’ = new array ( )
pos ’ = b i t c h u n k f o r ( a r r [ pos ] , l e v e l +1)
arr ’ [ pos ’ ] = ar r [ pos ]
a r r [ pos ] = arr ’
i n s e r t ( sha , arr , l e v e l )

Figure 4.11: Inserting a hashcode into the trie

The layout of the data that is stored in the linear memory is shown in Figure 4.12. A
single state consists of the hash code, a single bit to signal if the state has been checked
and optionally additional data, or seven filling-bits if no additional data is required. The
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additional data could be used to store information about the event in the formal model
that led to the state. This information could then be used to compute a specialized
invariant in order to do proof supported model checking as described in Section 2.1 in
the distributed version of ProB. We discuss this application in Section 4.4.9.

Figure 4.12: Memory layout of an hashtrie entry

It is worth noting that the decision to keep leaf nodes apart from internal trie nodes
together with the decision to put the structure into the shared memory has an important
implication on the implementation. We do not have a single big sequential memory
block. Instead we have multiple segments. Each segment contains either leaf nodes or
internal nodes of the trie. Each process maps the shared memory segments to potentially
different addresses in its virtual address space as shown in Figure 4.13. This means we
cannot have pointers between the memory segments. Instead, we use segment identifiers
and a position index as explained in [74]. However, conceptually we can pretend to have
pointers.

Figure 4.13: Mapping of shared memory segments into different addresses in the virtual
address space
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4.4.6 Communication

The communication between components is implemented using a library called
ØMQ (pronounced Zero MQ) [81]. ØMQ is oriented around message queues that
can be used to implement typical communication patterns, such as direct messaging or
publish-subscribe. We use it for both communication and as a concurrency framework.

“ØMQ [...] looks like an embeddable networking library but acts like a con-
currency framework. It gives you sockets that carry atomic messages across
various transports [...]. It’s fast enough to be the fabric for clustered prod-
ucts. Its asynchronous I/O model gives you scalable multicore applications,
built as asynchronous message-processing tasks.” [81]

We use the ØMQ reactor pattern [81], a loop that queries a set of message queues in a
round robin fashion and calls a specific function if a queue contains a value. We use a
timeout of 1 ms per queue. While this did not cause problems in our initial experiments
on a local computer and on the Amazon cloud, we recently discovered in our experiments
on a high performance cluster that it is necessary to further optimize the queue handling.
The reactor is part of the ØMQ library. Without the reactor loop we probably would
have used threads that concurrently modify the state of the component. For instance,
one thread would receive information about the currently known state space, while
another thread would check a state. Both threads would have had to write to the same
state, which would have been hard to implement correctly. The reactor pattern, on
the other hand, allows us to decompose the concurrent algorithm into simple functions.
Each of these functions has exclusive access to the state of the component because only
one function is run at a time. Using a single queue and dispatching on the message could
also be an option, however we have decided to use multiple queues because using different
communication patterns seems to be simpler. For instance, the part in the master that
is responsible for assigning ids to components uses direct messaging while the part that
sends hash codes uses a publish-subscribe pattern. Fitting every communication into
a single pattern might be possible, but it is clearly harder to accomplish. Also we can
change priorities of certain messages if necessary.

In the following section, we describe each component in more detail. In particular, we
explain the queues that are used for communication.
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The hashcode manager

At the communication level, the hashcode manager is extremely simple. It has three
queues: one queue to receive control information, i.e., the signal that the computation
is completed and the process should terminate, one queue to receive hash codes from
the master, and one queue to synchronize the initialization on a node. Both master
and worker have to register with the hashcode manager and potentially wait until the
manager has run the initialization. In a reactor loop, we try to receive new hash codes.
If we receive hash codes, they are stored in the trie. Then we try to receive a termination
signal and terminate if we receive it.

While the communication of the hashcode manager is ridiculously simple, managing
the memory is rather tricky. The manager is responsible for initializing the trie data
structure for a node and to setup semaphores to control the locking of parts of the trie.
The different locking strategies have been discussed in detail in [74].

The master

The master component has the responsibility of coordinating the work load, managing
and broadcasting the information about known states of the model, collecting data
about the progress, and terminating the workers upon completion of the task. Each
time a worker processes a state, it sends the result (i.e., whether the invariant holds and
whether the state contains a deadlock) together with some metadata to the master. The
metadata includes the SHA-1 hashes of each successor state. In addition, the worker
sends statistical information containing its queue length.

The master forwards all SHA-1 hashes to the hashcode manager components, which will
store them in their local trie replica. The master detects if a state has been checked
independently by two workers. This can happen because the tries are updated asyn-
chronously, i.e., one worker may use an outdated data structure. This double checking
of states cannot be completely avoided, but in most of our experiments the number was
negligible. The introduction of the hashcode manager component reduced the number
of clashes. For instance, in the experiments on the HILBERT cluster for Section 4.1 we
had four collisions for 44 workers on 15 nodes and sixteen collisions in the experiment
using 104 workers on 15 nodes. Previously, we typically had collisions for less than 1%
of the states. In very few exceptional cases we had up to about 10% collisions, which
clearly had an effect on the results.
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The master also gets statistical information. The most important bit is the size of the
worker’s queues. If the master detects that worker W1 has an empty queue while worker
W2 has a certain amount of elements in its queue, the master will initiate work stealing.
It sends a message to W2 who will transmit some of the elements in its queue to the
master. The master forwards the package to W1. We use a parameter min queuesize to
control the minimal amount of elements in the queue and the maximal number of states
a worker sends. The master will only ask a worker to send elements from its queue, if
the queue size is greater than 2 ×min queuesize. The worker sends half of its queue
but at most 5×min queuesize states.

After sending, the worker’s queue will have more then min queuesize states left. There
is no hard guarantee because the information about the queue size is not synchronized,
i.e., the master could have made its decision based on an outdated value. However, it
will prevent unnecessary transmissions sending states back and forth. In particular, if
we were close to the end of a model checking job, the system would start to “jitter” if
we did not use a threshold. In most cases, we can simply use the default value 100,
which seems to be a reasonable choice.

One could argue that it might be more efficient to directly send the work packages from
one worker to the other without the master. This is true, but it also comes at the price
of complicating the setup of the processes. Changing the implementation in the future
to use direct communication should be fairly simple.

The master’s reactor loop consists of four queues:

1. Receive join request. If a worker connects to the master, it sends a join request.
The master answers the request with a unique worker ID and the Prolog term
that represents the initialization code. The term is then evaluated by each worker
process. Typically this means the worker loads a model. The term can also contain
additional information such as settings.

2. Receive hashes request. If a new hashcode manager joins, it will ask the master
to send the hash codes that have already been broadcast. The master answers this
request with all hash codes that are known.

3. Receive statistics. After checking a state, the worker sends a message contain-
ing statistical information such as the time spent to check the state and, more
importantly, the current queue size of the worker. Based on the queue size, the
master may initiate a work sharing request.
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4. Receive results. Also after checking a state, the worker will send a message
containing the result of the check (i.e., if the invariant was violated or a deadlock
was found) and the hash codes of the checked state and all successors. The mas-
ter extracts the hash codes and forwards them to all workers. For performance
reasons, the master automatically combines information from multiple workers.

The worker

The worker components perform the actual computations. The sequence diagram shown
in Figure 4.14 shows an example of a computation. The distribution framework is shown
twice to emphasize that it is a nested call. We start with a work item in the queue of
a worker. The worker dequeues the item (1), which consists of a Prolog term and a
SHA-1 hash code. The worker retrieves the information from the hash trie using the
SHA-1 value as the key. We know that the information must exists because it was stored
there when the item was discovered previously. The worker checks, if the “checked?”
bit is set. If it is, the worker drops the item. Otherwise, it queries Prolog using the
term as the parameter (2). Prolog will process the term, i.e., it will call process/3 to
produce a result and a list of successors. It will then transfer the result to the memory
that is handled by the distribution framework by calling put result and put successor.
The successor work items are enqueued in the local work queue if they have not yet
been seen, i.e., if the hash code is not stored in the hash trie. The other work items
are dropped. In the context of model checking, this leads to a loss of potentially useful
information, namely that there is a transition from the currently checked state to that
particular state. In the future, we will consider keeping and using this information, e.g.,
to exploit proof information as described in Section 4.4.9.

After all successor work items have been submitted, the initial call into Prolog finishes,
and the framework sends a status update containing the hash code of the processed state,
the hash codes of the new successors, the queue size, and some statistical information
to the master process (3). This sequence is repeated until there are no more items in
the worker’s queue. Note that the sequence might restart if new items are put into the
queue.
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Distribution
Framework

Distribution
Framework

ProB 
Prolog

Figure 4.14: Sequence Diagram of work item processing

The reactor loop of a worker consists of the following queues:

1. Receive work items. Packages received from this queue contain work items
that the worker should process. The worker extracts all items and enqueues them
into its working queue. Currently, the master only initiates a work item transfer
if the queue of the worker is empty.

2. Receive share request. The master notifies the worker to share a part of its
queue with another worker. Upon receiving a notification from this queue, the
worker will split its working queue and send half of it. This queue forms the basis
of the work stealing approach together with the previously introduced receive work
items queue and the balancer algorithm in the master.
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3. Receive command. This queue contains commands from the master, e.g., a
terminate command that is issued if the master notices that a user provided max-
imum number of states have been reached.

4. Process state. This queue contains a single token. If the worker receives the
token it will dequeue a task from the working queue and check it. After completion,
the worker will send itself a new token. The purpose of this queue is to properly
interleave the checking process with the other tasks the worker performs. Most of
the time, the worker will only read from this queue.

Fault tolerance

In the previous sections, we gave a slightly incomplete view on the communications
between the components. We left out the durability extension implemented by Körner
in [74] under the author’s supervision. If we want to check large models, i.e., models
where the checker would have to run for weeks, it is important to be able to recover
from errors. In particular, we want to be able to resume model checking if, for instance,
one of the nodes crashed. In [74] an extension to the parB prototype was developed that
uses the node’s harddisk to save all necessary information to recover the model checking
process after the crash. This extension ensures that we can kill any process at any time
and still be able to resume model checking. For instance, dequeueing a work item does
not change the representation on disk until every important result has been written to
some harddisk. This enables recovering the item, if the process is killed while the item
was being processed.

However, the durability extension requires some additional queues for the acknowledge-
ment of received data and heartbeating. For instance, not only the hashcode managers
but also the worker subscribe to the master’s hash code publication queue. The worker
uses the broadcast of a hash code it has sent as the signal that the master has correctly
received the data.

4.4.7 Counterexample Generation

When the normal version of ProB finds a state during model checking that violates
the invariant, it presents the counterexample to the user in the form of a trace, not as a
single state. In parB this is only possible with some additional work. We always discard
the original state, so if we want to present a trace to the user, we have to reconstruct
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it. We have only access to pairs of SHA-1 hash codes of states (v, v′) where v′ is the
successor of v for some event. Trace reconstruction works as follows:

• We start from the state that violates the invariant and we look for its predecessor
SHA-1 code. We repeat this until we reach the root state.

• Now we have a sequence of SHA-1 codes leading from the root state to the target
state. We can use this sequence to construct a counterexample trace.

• We start a regular search in the root state. We compute the successor states and
select the state with the matching hash code. We repeat this until we reach the
target state.

• Finally, we have a trace of states that form the counterexample.

4.4.8 Symmetry Reduction

An important feature of the ProB model checker is symmetry reduction. There are
three modes: nauty, permutation flooding and symmetry marker. The nauty reduc-
tion [82] uses the nauty tool to create a canonical representation of a state. Because
this reduction produces the exact same state for states that are symmetrical, the distri-
bution framework works out of the box.

The framework also supports symmetry markers [83]. The idea behind symmetry mark-
ers is to use a hash function where two symmetrical states produce the same hash value.
This reduction technique is often very efficient, but it can produce collisions, i.e., it may
return the same hash value for two states that are not symmetrical. This means in par-
ticular that we can miss states that violate the invariant. The distribution framework
has the option to change the term that is used to produce our SHA-1 hash code. So
instead of using the work item, we can tell the framework to use the symmetry marker.
Figure 4.15 shows the situation with and without reduction. Without symmetry mark-
ers, the work item consists of the term that represents the task and the SHA-1 hash
code of that term. If we switch on symmetry markers, we keep the task, but we change
the SHA-1 code to the hash code of the corresponding symmetry marker. If another
term with the same symmetry marker is discovered, it will be discarded, because the
hash code is already present.

The third symmetry reduction is permutation flooding. While the first two reductions
actually reduced the size of the state space, permutation flooding [84] reduces the work
of checking symmetrical states by marking them as checked. If a state is checked, the
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Figure 4.15: Work items without and with symmetry markers

flooding algorithm creates all symmetrical states and marks them as checked. The states
are produced, but they are never checked. This can yield in a significantly improved
performance. The distribution framework does not yet support permutation flooding,
but we think it can be implemented without many problems, e.g., by making it possible
to add a list of terms to produce the SHA-1 hash codes instead of a single term. Then
we would add all hash codes to the set of known states as enqueued states. This would
prevent enqueuing future occurrences of one of the symmetrical states. Another option
is to add an additional parameter to the process predicate that contains a list of SHA-1
hash codes. The framework would add these SHA-1 values to the set of known states
as checked. We are leaning towards the second option, but haven’t implemented one of
them yet.

4.4.9 Proof Support

We currently do not have an implementation for proof supported distributed model
checking, but the tool is prepared to support it. As shown in Figure 4.12, we can add
additional data to each hash code. For proof support, we would reserve one bit for
each event, i.e., if event e at position i led to the state represented by the hash code,
we would set the i-th bit to 1. If a worker discovers the same hash code again using
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another event f at position j, the tool would set this bit. If a work item is processed,
we can read the additional information and use the bits that are set to 1 in order to
reduce the invariant. From a design point of view, we would call a combine function
if we hit the same hash code passing in both values of the additional data. For model
checking this combine function would simply be the boolean or operator, but for other
purposes the function could be different.

4.4.10 Control UI

Starting a distributed model checking job using ProB directly is a bit cumbersome
because it requires starting multiple processes on each node. As a first simple solution
for a single multicore computer we wrote a shell script to start a number of workers
and a master. We also developed a small web application that allows us to run the
benchmark experiments more comfortably. We can produce an experiment descriptor
containing parameters for the benchmark experiment such as the number of workers, the
maximal number of states we want to check, the number of repetitions or ProB specific
settings. We put a number of experiment descriptors together with the corresponding B
models into a zip file and upload this file via the web interface. The application runs all
experiments and produces result tables containing the most important information, such
as the runtime, number of states, or invariant violations. For the HILBERT cluster, we
developed a small job script template that could be used to start the computation. The
web application could not be used for this.

We are currently developing a more sophisticated web application that will allow us
to coordinate computations on the Amazon Cloud, e.g., we want to be able to add or
remove computers and get more detailed information about the load on each computer.
For instance, if we exhaust the memory on a single computer, we could automatically
add a second computer from the cloud and move some workers to the second computer.

4.4.11 Assertion checking and Data validation

Another feature that is supported by our tool is distributed assertion checking. Typi-
cally, this feature is used for data validation. For instance, [85] describes a case study
where ProB was used to verify that the assumptions made in a formally developed com-
ponent for an automatic railway system are satisfied by the actual deployment. ProB
was able to drastically reduce the amount of manual work.
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Assertion checking is in principle just a special case of model checking, but the require-
ments for the parallelization framework are different enough to justify special treatment.
It is performed on a single and typically very complex state consisting of large relations.
The processing time for a single assertion is in the order of multiple seconds or min-
utes.

From a parallelization point of view, assertion checking is very simple. We exchange less
information than when performing regular model checking and all tasks are statically
known at loading time.

Our tool uses a different setup procedure for assertion checking than for model checking.
While model checking only loads the model in each worker, assertion checking also
initializes the model, and the term also contains a mapping from numbers to assertion
term. This means that in the work item we can easily refer to an assertion using
a number. Therefore a work item is as simple as check(3). Checking an assertion
never produces a successor work item. Instead, the master has some special treatment.
It produces all work items, i.e., if the model has k assertions, the master generates
check(1) ... check(k) and puts them in a local queue. When the master considers
load balancing, it will first send a packet from that queue if there is one. We use the
same mechanism to start the model checking. The master generates a special root work
item and places it in its own queue. The load balancer will send this packet to one of
the workers. In the case of assertion checking we have multiple packets and the master
will send them in a round-robin fashion.

The experiments show the expected scaling. However, in our experiments we mostly had
a few dominating assertions. Because these assertions are treated as one work package,
the minimal time of assertion checking is at least the maximal time a single assertion
requires.

We applied the tool on a model for a Communication-Based Train Control (CBTC)
System of a metro line in São Paulo, Brazil. The results are shown in Table 4.1. We
can see that the speedup is not linear. If we plot the duration of a single assertion check
against the order of checking as in Figure 4.16 we can see the reason. The most expensive
work items — which take 2 to 6 seconds each — are located at the bottom in the machine
file, i.e., that they run late in the checking process which leads to a non-optimal speedup.
It takes 6789 ms to check the most expensive work item, this is the lower bound for the
assertion checking. We did not bother rearranging the assertions, but we expect to get
closer to the optimum if we sort the assertions by difficulty. However, it is not always
obvious whether an assertion is difficult to check or not.
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Workers Runtime (s)
1 34.0
2 20.0
4 15.2
5 14.7

Table 4.1: Assertion Checking of a CBTC system
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Figure 4.16: Runtimes of work items of the CBTC system
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4.5 Empirical Evaluation

For our experiments we used three types of machines:

• A six core 3.33 GHz Mac Pro with 16 GB of RAM

• Multiple c3.8xlarge instances in the Amazon Cloud. A c3.8xlarge instance has 32
virtual CPUs and is equipped with 64 GB of RAM. The documentation states
that “Each virtual CPU (vCPU) on C3 instances is a hardware hyper-thread from
a 2.8 GHz Intel Xeon E5-2680v2 (Ivy Bridge) processor [...]” [86]. According to
the Intel website, the Xeon E5-2680v2 is a 10 core processor with 20 threads.

• More recently we experimented with the high performance cluster at the university
of Düsseldorf called HILBERT. Our measurements were performed on a Bull INCA
cluster consisting of 112 nodes, each with 24 cores yielding a total of 2688 cores.
The CPUs in use are 2.8 GHz Intel Xeon E5-2680 (Ivy Bridge) processors.

We used the Mac Pro to get an impression if and how well the B models scale. From the
experiments, we chose those models that seemed to scale well and ran the benchmarks
on the Amazon EC computer with a higher number of workers.

We also did few experiments using two or four c3.8xlarge instances which were connected
via a 10 GBit Ethernet connection. From the tool’s point of view there is no difference
whether the workers are located on one computer or on multiple machines. Each worker
gets the IP Address of the master, and then connects to that master, running all workers
and the master on the same host is just a special case of distributed model checking.

We repeated each experiment three times on the Mac Pro. On the Amazon Cloud we
only did a single run. However, in previous experiments we observed that the results
did not differ by much.

For all experiments we used ProB 1.4.0-rc1. On the Mac Pro we used the revision
tagged with bm_macpro, which was built on April 14th, 2014. On the Amazon Cloud
we used a slightly newer revision which is tagged with bm_ec2 and which was built on
April 16th, 2014.

This thesis includes examples where our approach works quite well and models where
our approach does not. We will analyze why the tool does not work for some of the
models and give some guidelines on when not to use the parallel model checker. In
particular, we will describe a very simple experimental approach to determine a good
number of workers.
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All experiments use breadth first search. This is not a restriction of the tool; one can
freely chose among BFS, DFS or ProB’s mixed mode. However, using BFS is a bit
nicer for analysis. In the case of incomplete checking (e.g., if the state space is infinite),
breadth first search eliminates one source of non-determinism, i.e., the choice of the
successor state.

The results of our measurement are summarized in Table 4.2, 4.3, 4.4, and 4.5. Due
to resource constraints, we did not run the model checker using a single worker on the
Amazon cloud.

In summary, we can see that the experiments were very successful, and that our dis-
tributed model checking algorithm is clearly useful. We have achieved considerable
speedups for all real-life benchmarks. For instance, we reduced the runtime of an inter-
locking model from around 119 minutes down to around 26 minutes by using 5 workers
on the 6-core MacPro. On the Amazon cloud, we have further reduced the runtime to
under 7 minutes by using an instance with 32 virtual CPUs.

Below we analyse the experimental results in more detail. In Section 4.5.2 we will
analyse the (few) small benchmarks with limited scaling, and in Section 4.5.3 we will
examine the other benchmarks with good scaling. Before that, we will study the impact
of hyperthreading on the achievable scaling in Section 4.5.1 and the overhead of our
framework in Section 4.5.1.

Workers (#)
Model States (#) 1 2 4 5
Cruise control system 1361 4.8 s 2.8 s 2.4 s 2.5 s
Counter 100000a 18.9 s 19.2 s 20.8 s 21.8 s
Hanoi Towers 6563 26.1 s 13.8 s 9.1 s 8.9 s
Stuttgart 21 10000a 546.1 s 272.4 s 143.4 s 118.2 s
Interlocking 672175 7120.4 s 3599.5 s 1873.3 s 1563.8 s
USB Bus-4 16858 61.6 s 29.9 s 16.0 s 14.0 s
CAN Bus protocol 132599 137.7 s 71.7 s 44.5 s 38.1 s
RETHER 42254 83.5 s 40.8 s 22.0 s 19.3 s
Scheduler 24581 163.0 s 83.0 s 42.8 s 35.1 s
Mode Protocol 810948 4877.8 s 2436.4 s 1245.0 s 1023.5 s
Set Game 2000a 48.0 s 24.8 s 13.5 s 11.3 s

a State space not fully explored

Table 4.2: Runtime on Mac Pro
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Workers (#)
Model States (#) 4 8 16 31
Stuttgart 21 10000a 148.5 s 76.6 s 42.6 s 31.4 s
Interlocking 672175 - 1011.768 s 589.878 s 401.803 s
USB Bus-10 211042 185.5 s 104.5 s 60.6 s 39.7 s
RETHER 42.3 22.1 s 13.8 s 9.2 s 7.7 s
Scheduler 24581 44.1 s 24.4 s 15.6 s 10.9 s
Mode Protocol 810948 - 695.4 s 411.4 s 289.3 s
Set Game 10000 - 44.4 s 29.1 s 21.2 s

Workers (#)
Model States (#) 8 16 32 63
Stuttgart 21 10000a 74.9 s 40.0 s 22.4 s 18.0 s
Interlocking 672175 988.0 s 542.5 s 326.3 s 204.6 s
Mode Protocol 810948 684.3 s 393.0 s 279.0 s 164.2 s

a State space not fully explored

Table 4.3: Runtime on Amazon EC2

Workers (#)
Model States (#) 1 2 4 5
Cruise control system 1361 1.00 1.74 2.05 1.93
Counter 100000a 1.00 0.99 0.91 0.87
Hanoi Towers 6563 1.00 1.89 2.86 2.92
Stuttgart 21 10000a 1.00 2.00 3.81 4.62
Interlocking 672175 1.00 1.98 3.80 4.55
USB Bus-4 16858 1.00 2.06 3.84 4.41
CAN Bus protocol 132599 1.00 1.92 3.1 3.61
RETHER 42254 1.00 2.05 3.79 4.32
Scheduler 24581 1.00 1.96 3.81 4.64
Mode Protocol 810948 1.00 2.00 3.92 4.77
Set Game 2000a 1.00 1.93 3.55 4.24

a State space not fully explored

Table 4.4: Speedup factors on Mac Pro
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Workers (#)
Model States (#) 4 8 16 31
Stuttgart 21 10000a 4.00 7.75 13.95 18.92
Interlocking 672175 - 8.00 13.72 20.14
USB Bus-10 211042 4.00 7.10 12.24 18.68
RETHER 42254 4.00 6.40 9.60 11.53
Scheduler 24581 4.00 7.24 11.29 16.27
Mode Protocol 810948 - 8.00 13.52 19.24
Set Game 10000 - 8.00 12.19 16.79

Workers (#)
Model States (#) 8 16 32 63
Stuttgart 21 10000a 8.00 14.99 26.71 33.28
Interlocking 672175 8.00 14.57 24.23 38.63
Mode Protocol 810948 8.00 14.29 19.62 33.35

a State space not fully explored

Table 4.5: Speedup factors on Amazon EC2

4.5.1 Overhead

It turns out that ProB cannot scale perfectly if it does not run on a real core. Perfect
scaling means that if we multiply the number of workers by k we get 1/k of the runtime.
We can see this in Figure 4.17 where we plotted the speedup in dependency of the
number of workers. We explored the full state space of a mode management protocol
which we will describe in Section 4.5.3. The state space consists of 810948 states.

Our benchmark computer provides six real cores and twelve hyper-threads. If we fit a
linear model on the segments we get about speedup = 0.87×cores+0.28 for 1 to 6 cores
with a correlation of 0.9938. We get speedup = 0.95× cores+ 0.09 for 1 to 5 cores with
a correlation of 0.9995. It does not scale up to exactly 6 because we also run the master
process that uses a bit of the CPU. Between 6 and 12 workers it scales linearly, but the
slope is much lower. Fitting a linear model yields speedup = 0.27×cores+3.59 between
6 and 12 cores with a correlation of 0.9984. For more than 13 worker we actually lose
performance if we add more workers. Another evidence in favor of this hypothesis is
that if we look at the time that is spent within Prolog, we get 5.6 ms with a single
worker and 10.1 ms with 12 workers (on the Mac Pro). The standard deviation is 1.0
ms in the case of a single core and 1.5 ms in the case of 12 cores.
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Figure 4.17: Effects of the CPU / Hyper-Threads

If we use the same model on an Amazon EC2 instance, we get a similar curve. We did
not use the full state space but 100000 states. The correlation is not as high as on the
Mac Pro computer but we still see the same pattern. If we use a linear model, we get
speedup = 0.79× cores+ 0.52 for 1 to 10 cores with a correlation of 0.9955. For 11 to
32 cores we get speedup = 0.27× cores+ 6.40 with a correlation of 0.9784.

From this experiment we can derive the rule that we must not run more workers than
the computer has hyperthreads. We can expect good speedups only for real cores. Also,
we should reserve one hyperthread for the master and hashcode manager.

In order to measure the overhead introduced by our framework we did some experiments
with models that are not supposed to scale well.

The model shown in Figure 4.18(a) does not scale well. We get a speedup of about 2
at most. However, the situation is not as bad as it seems if we look at Table 4.2. The
total model checking of the cruise control system is only about 5 seconds for 1361 states.
This is clearly not a very typical case where we would use parallel or distributed model
checking. We would even accept a worse runtime for these kind of models. However, the
experiment shows that the overhead introduced by our framework is reasonably low.

Figure 4.18(b) shows a model representing a simple counter. The model contains a single
integer variable and one operation that increments the variable by one. As mentioned
in Section 4.3, this is a worst case scenario for distributed model checking; exactly
one worker has a single state to check and all other workers are idle. The loss of
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performance is pure overhead of the distribution framework, Prolog is never called by
the idle workers.

The experiment shows that we do lose a bit of performance, i.e., it is reasonable to put
some effort into optimizing the number of workers. More importantly, if we use too
many workers, we block resources for no good reason.
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Figure 4.18: Impact of the parallelization framework

4.5.2 Benchmarks with limited scaling.

The speedup we get from parallel execution of multiple ProB processes is mainly de-
termined by the degree of branching in the B model. Figure 4.19(a) shows the speedup
for a model of the Hanoi towers1. Figure 4.19(b) shows the development of the queue
size over time, exhibiting a repeating pattern. This pattern mirrors the recursive nature
of the problem. From time to time, we reach a situation where the number of choices
is very limited, e.g., if all disks are on one peg, there are only two possible moves. This
means that at these points all the queues of all the workers are almost empty. This
leads to the sub-linear scaling of the model.

Depth first search (DFS) performs slightly better, e.g., in the case of 4 workers the
average model checking time is 7629 ms with a standard deviation of 107 ms. Breadth
first search (BFS) takes 9150 ms with a standard deviation of 85 ms. Mixed mode
takes 10384 ms. It performs worse than BFS and DFS. The standard deviation for
mixed mode checking is 271 ms. The comparison between the search strategies was

1http://en.wikipedia.org/wiki/Tower_of_Hanoi

116

http://en.wikipedia.org/wiki/Tower_of_Hanoi


4.5 Empirical Evaluation

performed in a separate experiment. We did 30 repetitions for each strategy. The result
in Table 4.2 matches the result of the second experiment.
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Figure 4.19: Limited scaling

4.5.3 Benchmarks with (almost) linear scaling

Stuttgart 21 Interlocking

The Stuttgart 21 Interlocking system (see Figure 4.20) was modeled by H. Wiegard. It
is an interlocking system for the new railway station in Stuttgart. The formal model was
developed with capacity simulation in mind, i.e., it should be able to answer questions
like “How many trains can the station handle safely?”. We limited the experiment to
10,000 states. Checking a single state takes on average 54 ms, thus on a single core the
overall model checking time is about 9 minutes. On the Mac Pro we get a speedup factor
of 4.62 using 5 cores. On a single Amazon EC2 instance we get a factor of 18.9. Using
two EC2 instances we get a factor of 33.3 using 63 workers. Finally, on four instances
we get a factor of 68.8 using 127 workers. For this experiment we used 80,000 instead of
10,000 states. The runtime was 68 seconds, a single worker would have required about
1 hour and 18 minutes.

117



Chapter 4 Distributed Model Checking

1
2

3
4

5

Worker (#)

S
pe

ed
up

1 2 4 5

Figure 4.20: Stuttgart 21 Interlocking

Interlocking system

The other interlocking system (Figure 4.21) is a variation of the model from Abrial’s
book [11]. The model has a reduced state space, which was achieved by manually
applying a partial order reduction. We used this reduced version on the Mac Pro and
on the Amazon cloud. On a high performance cluster we did a few experiments using the
unreduced model. The results of the high performance cluster are discussed separately
in Section 4.5.4.

The speedup factor on the Mac Pro using 5 workers is 4.55. On a single Amazon EC2
we get a factor of 20.1 using 31 workers and using 63 workers on two instances we get
a factor of 38.6.

Bus Systems

We also used two models of bus systems; a USB bus system and a Controller Area
Network (CAN) Bus. CAN Busses are typically used in cars. They allow devices
and controllers to communicate over a shared bus without the need of a special bus
controller. Both models were developed by J. Colley. As we can see in Figure 4.22(a)
and 4.22(b), both models scale reasonably well. The empirical data indicates that the
CAN Bus model probably doesn’t scale much further than 4 cores but at least we can
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Figure 4.21: Interlocking from [11]

get a speedup factor of 3.6. The USB Bus model scales better. Using 5 cores we get
a speedup factor of 4.41. If we compare the runtime for 1 and 2 workers for the USB
Bus, we note something peculiar. The speedup factor is greater than 2 which is counter-
intuitive. We think that neither ProB nor our tool is responsible for this behavior. It
may be the CPU Turbo-Boost or CPU caching effects because the effect vanishes if we
produce slightly more CPU load. Note that the CPU is only checking using two workers
and one master, so it has at least 3 spare cores. On the Amazon EC2 instance we get
a speedup factor of 18.7 for 31 workers.
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Figure 4.22: Bus Systems
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Network Protocol

We used a protocol of a real time Ethernet protocol (RETHER) [87]. The B model by
Büngener is a translation of a model written for the DiVinE model checker [88]. On the
Mac Pro we get a speedup factor of 4.32 using 5 workers. On an Amazon instance the
RETHER model scales very well up to about 8 cores yielding a speedup of a factor 6.
Using 31 worker, we get a overall speedup factor of about 11.5.
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Figure 4.23: Real time Ethernet Protocol

Scheduler

We used a model of a kernel scheduler by J.-P.Bodeveix et al. [89]. On the Mac Pro we
get an improvement by a factor of 4.64 using 5 cores. On the EC2 instance the scheduler
also scales very well up to about 8 cores, yielding a speedup factor of about 7.24. Using
31 workers, we get a total speedup factor of about 16.25.
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Figure 4.24: Process Scheduler

Mode Management Protocol

The model was developed by Space Systems Finland as part of a Distributed System
for Attitude and Orbit Control for a Single Spacecraft (DSAOCSS) System [90, 91, 92].
The model was a part of the case study within the EU Project DEPLOY. On the Mac
Pro we get a speedup factor of 4.77 using 5 workers. On a single EC2 instance we get
a factor of 19.2 using 31 workers and on 2 instances we get a factor of 33.3 using 63
workers. This means we reduce the model checking time from about 1 hour 30 minutes
to less than 3 minutes.

SET Game

We used a model of a game called Set2. The model has the interesting feature that its
state space is actually a tree, i.e., for any state all the successor states are new. Also,
checking the invariant becomes much more expensive the larger the depth of the state
in the computation tree is. On the Mac Pro we get a speedup factor of 4.24 using 5
workers. On an Amazon EC2 instance we get a factor of 16.7.

2http://en.wikipedia.org/wiki/Set_(game)
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Figure 4.25: Mode protocol for a DSAOCSS system
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Figure 4.26: Set Game
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4.5.4 High performance cluster

On the high performance cluster at the university of Düsseldorf (HILBERT) we per-
formed an experiment with a classical B version of the interlocking system described
in chapter 17 of [11]. The model’s state space contains 61648077 states including all
artificial states generated by ProB, e.g., the root state. As described in Section 4.1, we
were not able to run the model using the regular ProB version in a reasonable time. On
the Mac Pro we could get the model checking time down to 30 hours using 11 workers,
on Amazon we got it down to 5 hours. In principle we could get it further down on the
Amazon cloud, but decided to use the HILBERT cluster instead. Figure 4.27 shows the
results; the model scales very well. We could reduce model checking time to 96 minutes
and it does not yet seem to degrade much.

However, the high performance cluster exposed a problem with our reactor loop. Be-
cause each read from the queues has a timeout of 1 millisecond, the master’s queue gets
filled up with requests it cannot answer fast enough. This leads to timeouts on the
workers and in turn a shutdown of the whole computation. We will address this issue in
the near future, so that we will be able to use more workers. We hope that we can reduce
the model checking time from practically-impossible down to can-be-done-over-lunch.
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Figure 4.27: Interlocking system on a high performance cluster
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4.6 Future Work

There are several points that could be addressed in the future:

• Finding the right number of workers. As mentioned in Section 4.3, we can
use a scanning approach to find an appropriate number of workers. This process
could be automated into a tool that automatically runs the experiments. However,
this may not be reasonable on a cluster like HILBERT, where the jobs are under
the control of an external scheduler. It may take quite some time between two
jobs if the cluster has a high load.

• Use Proof Information. As mentioned in Section 4.4.9, during distributed
model checking, we currently do not use information about discharged proof infor-
mation as described in Section 2.1. As a first step we could at use the information
about the transition the model checker took when encountering a state. This can
be done locally by each worker, and can in some cases lead to a significant reduc-
tion in model checking time. If this first step is implemented, we could extend it
with the combine function as described in Section 4.4.9.

• Support for Message Passing Interface. On a high performance cluster it
is probably more efficient to use the Message Passing Interface (MPI) instead of
ØMQ sockets. It may be worth to disentangle the communication part from the
logic. The logic would call functions from an communications API. We could then
exchange the implementation of the API depending on the environment. However,
this refactoring is probably tricky.

• Implement a tool for operations. Currently running the model checker is
manual work. In the case of a local computer we run the parB script or use our
prototypical web application. On the cluster, we use a mixture of shell scripting
and job scripts for the scheduling system. It would be very handy to have a single
tool that can coordinate model checking jobs on different resources. The tool
would run on the user’s computer and connect to a central server that coordinates
the resources. If the local resources are not sufficient the user could decide to
turn the task into a job that runs on the cluster or the cloud. The server could
even allocate resources on demand from the cloud. In the case of the Amazon
cloud it could even use spot instances to reduce the costs. A spot instance has
no fixed price. Instead, users can bid for unused instances. A drawback is that
they can be shut-down by Amazon at any time if they are needed for a regular
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customer. However the durability extension by Körner [74] allows resuming the
model checking job even if it gets killed.

4.7 Related Work

Extending a model checker to do distributed or parallel model checking is very common.
This means that there is a lot of related work already done. However, it is very different
to directly compare model checking in ProB with other model checkers. On one hand,
the high abstraction level of B leads to a very different characteristic when it comes to
metrics like states per second. On the other hand, ProB only checks the invariant (and
deadlock freedom) while most other model checker can check LTL properties.

Invariant checking is a very simple special case of LTL model checking, where the only
kind of formula we consider is of the form Gφ where φ is some atomic proposition
and G is the temporal operator “globally”. In our case the atomic proposition is the
invariant.

Restricting the possible formulas to this special case makes a huge difference when it
comes to the model checking algorithm. ProB can simply explore the state space and
check each state individually. In contrast, a model checker that checks full LTL has
to consider paths as well. One way to find counterexamples is to transform the state
space and the negation of the LTL property into Büchi automatons and check if their
intersection is empty, i.e., the product automaton must not accept any word. Typically
this is done by finding strongly connected components (SCCs) that contain an accepting
state. A counterexample is a path leading to a strongly connected component and a
loop inside the component. This means an LTL counterexample has the shape of a
lasso.

This clearly has an impact on how the model checker and also its distributed or par-
allel version works. As a result, we cannot claim to compete in the same league as
DiVinE [88], TLC [93] or Spin [65, 94, 95]. These tools check real temporal properties,
but on the other hand, their formalisms are at a very low level of abstraction.

Note that ProB can also check full LTL, but this is not part of the distributed version
of the tool. If we want to extend ProB’s LTL model checker to work in a parallel or
distributed way, we would probably use similar techniques as the other model checkers.
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TLC

The closest match for ProB is probably the model checker TLC for TLA+, a rather
high-level language. TLC can run in parallel and also in distributed mode. This work
was presented by Markus Kuppe at the FM’12 TLA workshop and the TLA workshop
co-located with ABZ 2014. Kuppe’s latest work also contains a tool for controlling oper-
ations. It can automatically allocate resources on the Amazon cloud and will definitely
be an influence for our own tool. In [96] and [97] Hansen has developed a translation
from B to TLA+ and from TLA+ to B allowing us to use ProB on TLA+ models TLC
on some B models. Applied to low-level models TLC outperforms ProB, but many
high-level B models cannot be model checked using TLC because it lacks the constraint
solver.

Another downside of TLC is that the hash function it uses to create fingerprints of the
states is limited to 64 bit. This makes hash collisions much more likely than the hash
function used by ProB. However, TLC also checks real temporal properties.

DiVinE

The DiVinE model checker uses the DVE input language and it can also run on LLVM
bitcode.

The LLVM support is particularly interesting because it can be used to check C/C++
programs using an LLVM back end of the compiler. No real IO is allowed in the C
code because the model checker requires a fully controlled environment. However, some
IO can be simulated, in particular the POSIX thread API. This “enables verification of
unmodified multithreaded programs. In particular, DiVinE explores all possible thread
interleavings systematically at the level of individual bitcode instructions. This allows
DiVinE, for example, to virtually prove an absence of deadlock or assertion violation
in a given multithreaded piece of code, which is impossible with standard testing tech-
niques.” [98]

DiVinE uses a so called “One way catch them young” algorithm [99] to detect cycles
and, until version 3.0, a static partitioning approach with a per-thread hash table. In
version 3.0 there is an experimental approach for a single shared hash table. In [98] the
authors state that while “algorithms using traditional static partitioning and per-thread
hash tables provide reasonable scalability, a single shared hash-table and dynamic work
partitioning can give substantially better results”.

126



4.7 Related Work

Another interesting new feature of DiVinE is the Common Explicit-State Model Inter-
face (CESMI). “The CESMI specification defines a simple interface between the model-
checking core and a loadable module representing the model. Generation of model states
is driven by the needs of the model checking engine” [98]. This is very close to the way
ProB’s own LTL model checker works. CESMI could be a way integrate ProB into
DiVinE, allowing the application of DiVinE to a wider range of formalisms.

Spin

Spin is probably the best known model checker. It uses Promela as its input language.
The development of Spin started around 1980. In 2002 it was awarded with the ACM
Software System Award. It was successfully applied to many industrial models, for
instance, for mission critical software at NASA.

In contrast to other tools, Spin does not perform the model checking. Instead it trans-
lates the specification into C code that also contains the verification code; the C code is
then compiled to an executable. Running the executable performs the model checking
for the specification. This is a bit cumbersome but it is also very fast.

Spin can also run on multi-core processors using an extension introduced in [100]. Holz-
man and Bosnaki conclude that they “provided evidence to show that the effect of both
compiler optimization techniques and search optimization techniques such as partial or-
der reduction diminish the benefits of multi-core processing. For applications of interest
though, i.e., large applications with embedded C code and relatively costly transition
functions, or large embedded data structures, the benefits especially for the verification
of safety properties can be significant” and “Finding a liveness verification algorithm
that retains the low complexity of the nested depth-first search method used in SPIN,
yet can scale with increasing numbers of CPU cores, is as yet an open problem” [100].

Spin is incredibly fast on a single core. This makes it very hard to implement a parallel
version that scales well. For instance, the following data was taken from the Spin web-
site (http://spinroot.com/spin/multicore/Table5_Fig10/Data_Gurdag/summary).
It describes the result of running Spin on up to 8 cores on a model. The model itself was
not available, so we did not reproduce the results. The results and the speedup curve
are shown in Figure 4.28. We can see that the scaling is worse than in ProB. However,
this is mainly because it is much easier to scale up a model checker that runs with a
rather low speed on states that are very abstract than to scale up a model checker that
checks low level states at a very high rate.
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Figure 4.28: Gurdag Model with multi-core Spin

Murφ

There are at least two model checkers for the Murφ language that support parallel or
distributed model checking, Eddy Murphi [101] and PReach. Eddy Murphi assigns a
specific worker to each state. To reduce the communication, states for other hosts are
collected in a queue and bundled in a single message. Eddy Murphi uses two threads,
one thread performs the actual computation and the second thread is handling the com-
munication. The threads communicate via shared memory. Communication between
hosts is done using the Message Passing Interface (MPI).

A similar approach could also be used for ProB. Although Sicstus Prolog is single
threaded, the C extension is not limited to a single thread. In principle we could split
the worker into one thread that communicates and one thread that calls Prolog.

PReach [102] is a model checker that sits on top of a tweaked version of the Murφ tool. It
was written in Erlang and is impressively small. “We use the original Murphi front-end
to parse the model description, a layer written in Erlang to handle the communication
aspects of the algorithm, and also use Murphi as a back-end for state expansion and to
store the hash table. This allowed a clean and simple implementation, with the core
parallel algorithms written in under 1000 lines of code.” [102]

Like Eddy Murphi, PReach assigns each state to a specific worker. The worker’s queues
are stored on disk rather than kept in memory. This improves the memory footprint
drastically. Our own implementation does something similar as described by Körner [74].
PReach has been applied to very large industrial use cases. The authors of PReach claim
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that they “have used PREACH to model check an industrial cache coherence protocol
with approximately 30 billion states”.

LTSmin

LTSmin [103, 104] is a language independent model checker. There are front ends for mu-
CRL, mcrl2, DVE, Promela, UPPAAL’s timed automata. There is ongoing research on
integration of ProB and LTSmin using the Partitioned Next-State Interface (PINS).

Load balancing is done using something similar to work stealing. If a worker becomes
idle it asks another random worker for some work items until it finds another worker
that is willing to share some work.
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Chapter 5

Conclusion

The goal of this thesis was to significantly improve the performance of the ProB model
checker using static analysis and parallel execution. We also wanted to extend the
applicability of ProB for large formal models. Both goals have been achieved. We are
now able to check formal models that are orders of magnitude larger.

5.1 Contributions

5.1.1 Proof supported and directed model checking

The status of a proof obligation carries valuable information for a model checker. If
a part of the invariant has been proven to be preserved, we do not have to check it
during model checking. Also we can further reduce the invariants using aggregation
of incoming transitions during model checking. We have explained how the number of
invariants left for a set of states can be exploited to direct the model checker. Finally,
we have formalized the proof supported model checking in Event-B and we have proven
its equivalence to regular model checking.

The following excerpt of the experimental results show that the introduction of proof
information into the model checker significantly improved the performance of ProB.
In some cases the speedup factor was 1.5 to 2. In no case we significantly lost perfor-
mance.
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w/o proof using proof Speedup
information [ms] information [ms] Factor

Mondex m2 1747 ± 21 1767 ± 38 0.99
Earley Parser m2 309810 ± 938 292093 ± 1076 1.06
Scheduler 9387 ± 124 8167 ± 45 1.15
SAP 50783 ± 232 34927 ± 114 1.45
Siemens 51560 ± 254 24127 ± 93 2.14
CXCC 18470 ± 151 6700 ± 36 2.76

Using proof information it is now the default setting in ProB.

5.1.2 Flow Analysis

We define a theoretical framework that allows us to analyze a formal model to answer
questions about the flow of execution in the model, i.e., we can infer the algorithmic
structure of an Event-B model. This structure is typically hidden in the refinement
chain, yet it bears valuable information for people who try to understand the model.

We introduced a notion of event independence that can be used to reduce the effort of
evaluating guards and in a strict form it can be used to reduce the effort of computing
complete states.

We also developed the notion of an enabled graph that can also be used to reduce the
costs of guard evaluation. Informally, we allow the model checker to look one step into
the future.

If P is true in state v and g happens, then in the next state H will be true and therefore
event h will be possible.

Finally we introduced a flow graph that can be used to help covering events when
generating test cases. It can be used for code generation, for directing the model checker
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5.1 Contributions

and also to prove deadlock freedom. However, computing the flow graph can become
infeasible.

5.1.3 Distributed model checking

The distributed model checker is fundamentally changing ProB’s applicability. We can
now check very large models that were practically impossible to check previously. We
are very close to perform model checking on specifications with a few billion states.
Previously ProB was limited to some 10 million states.

Our implementation uses multiple processes coordinated using a master process. They
share information about the set of known work items using an eventual consistent ap-
proach. Work is distributed using work stealing.

The framework is flexible, it is by no means restricted to model checking. Anything that
can be implemented as a Prolog predicate which takes a work item as the input and
produces a result and new work items can be run in parallel using our framework.

The tool can run on single multicore computers as well as on clusters, e.g., the Amazon
cloud. It can also run on high performance clusters. We evaluated the framework on
each of these types of systems and we can conclude that the scaling is very good provided
the model is suited for parallel checking, i.e., the model’s state space contains reasonable
branching. Abrial’s interlocking system [11] has a suited branching factor and results in
an almost linear scaling even for more than 100 worker processes on a high performance
cluster as shown in the following picture:
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Appendix A

Formal Model of Proof Supported Model
Checking

These are the contexts and machines that we used to prove the equivalence of regular
model checking and proof supported model checking.

C1 Context

CONTEXT c1 modelelements

SETS
INVARIANTS
EVENTS
STATES

CONSTANTS
truth

preserve

violate

AXIOMS
type1 : truth ⊆ STATES× INVARIANTS

type2 : partition(STATES, preserve, violate)
link1 : preserve = {s|{s} × INVARIANTS ⊆ truth}
thm3 : ∀t·(∀i·t 7→ i ∈ truth)⇒ t ∈ preserve

thm4 : preserve = {s|∀i·s 7→ i ∈ truth}

thm5 : violate = {s|∃i·s 7→ i /∈ truth}
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thm7 : ∀t·t ∈ preserve⇒ (∀i·t 7→ i ∈ truth)
thm7b : ∀t·t /∈ preserve⇒ (∃i·t 7→ i /∈ truth)
thm7c : ∀t·t ∈ violate⇒ (∃i·t 7→ i /∈ truth)
thm8 : STATES \ violate = preserve

thm9 : STATES \ preserve = violate

END
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C2 Context

CONTEXT c2 statespace
EXTENDS c1 modelelements
CONSTANTS

transitions

root

AXIOMS
type1 : transitions ∈ STATES↔ STATES
type2 : root ∈ STATES

axm1 : STATES ⊆ cls(transitions)[{root}] ∪ {root}
axm2 : root ∈ preserve

END
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C3 Context

CONTEXT c3 modelchecker
EXTENDS c2 statespace
SETS

MC STATE

CONSTANTS
running

terminated ok

terminated ce

AXIOMS
type : partition(MC STATE, {running}, {terminated ce}, {terminated ok})
thm2 : ∀s·s /∈ preserve⇔ (∃i·i ∈ INVARIANTS ∧ (s 7→ i) /∈ truth)

END
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C4 Context

CONTEXT c4 mc states
EXTENDS c3 modelchecker
SETS

APC MC1
APC MC2

CONSTANTS
select state

compute successors

check invariant

start successors

step successors

AXIOMS
type1 : partition(APC MC1, {select state}, {compute successors},

{check invariant})
type2 : partition(APC MC2, {start successors}, {step successors})

END
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C5 Context

CONTEXT c5 labels
EXTENDS c4 mc states
CONSTANTS

labels

initialization

AXIOMS
type1 : labels ∈ transitions→ EVENTS
type2 : initialization ∈ EVENTS

END
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C6 Context

CONTEXT c6 discharge info
EXTENDS c5 labels
CONSTANTS

discharged

single specialized invariant

AXIOMS
type1 : discharged ∈ EVENTS→ P(INVARIANTS)
type2 : single specialized invariant ∈ EVENTS→ P(INVARIANTS)
meaning : ∀s, t, e, i·(s 7→ t) 7→ e ∈ labels ∧ i ∈ discharged(e) ∧

s ∈ preserve⇒ t 7→ i ∈ truth
amx1 : single specialized invariant = {e, is·e ∈ EVENTS ∧

is = INVARIANTS \ discharged(e)|e 7→ is}
axm2 : ∀e·e ∈ EVENTS⇒

partition(INVARIANTS, discharged(e), single specialized invariant(e))
axm3 : labels[{root}C transitions] = {initialization}
thm1 : ∀s, t, e·(s 7→ t) 7→ e ∈ labels ∧ s ∈ preserve⇒

(∀i·i ∈ discharged(e)⇒ t 7→ i ∈ truth)
END
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M0 Machine

MACHINE m0
SEES c3 modelchecker
VARIABLES

result

counterexample

INVARIANTS
type1 : result ∈ MC STATE
type2 : counterexample ⊆ violate

EVENTS
Initialisation

begin
setresult : result := running

setce : counterexample := ∅
end

terminateBroken =̂

any
s

where
grd1 : s ∈ violate

then
act1 : counterexample := {s}
act2 : result := terminated ce

end
terminateOK =̂

when
grd1 : violate = ∅

then
act1 : counterexample := ∅
act2 : result := terminated ok

end
END
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M1 Machine

MACHINE m1 abstract mc
REFINES m0
SEES c3 modelchecker
VARIABLES

ok

broken

unknown

result

counterexample

INVARIANTS
type1 : ok ⊆ STATES
type2 : broken ⊆ STATES
type3 : unknown ⊆ STATES
type4 : result ∈ MC STATE
type5 : counterexample ⊆ STATES
correct1 : ok ⊆ preserve
correct2 : broken ⊆ violate

link : partition(STATES, ok, broken, unknown)
thmlink1 : partition(STATES, ok, violate, unknown \ violate)
thmlink2 : partition(STATES, preserve, broken, unknown \ preserve)
lemma2 : unknown = ∅⇒ ok ∪ broken = preserve ∪ violate

correct4 : result 6= running⇒ (ok = STATES ∨ counterexample 6= ∅)

EVENTS
Initialisation

begin
act1 : ok, broken, unknown := ∅,∅, STATES
act2 : counterexample, result := ∅, running

end

checkOK =̂

any
s

where
grd1 : s ∈ unknown
grd2 : s ∈ preserve

then
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act1 : ok, unknown := ok ∪ {s}, unknown \ {s}
end

checkBroken =̂

any
s

where
grd1 : s ∈ unknown
grd2 : s /∈ preserve

then
act1 : broken, unknown := broken ∪ {s}, unknown \ {s}

end
terminateBroken =̂
refines terminateBroken

any
s

where
grd1 : s ∈ broken

then
act1 : counterexample := {s}
act2 : result := terminated ce

end
terminateOK =̂
refines terminateOK

when
grd1 : broken = ∅
grd2 : unknown = ∅

then
act1 : counterexample := ∅
act2 : result := terminated ok

end
END
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M2 Machine

MACHINE m2 mc cycle
REFINES m1 abstract mc
SEES c4 mc states
VARIABLES

mcpc1
mcpc2
succs

current

queue

ok

broken

unknown

result

counterexample

INVARIANTS
type0 : succs ⊆ STATES
type1 : mcpc1 ∈ APC MC1
type1b : mcpc2 ∈ APC MC2
type3 : queue ⊆ STATES

notinqueue : current /∈ queue
pc : succs 6= ∅⇒mcpc1 = compute successors

EVENTS
Initialisation

extended
begin

act1 : ok, broken, unknown := ∅,∅, STATES
act2 : counterexample, result := ∅, running
initroot : current := root

initqueue : queue := ∅
pc1 : mcpc1 := check invariant

pc2 : mcpc2 := start successors

succs : succs := ∅
end

select state =̂
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any
s

where
grd1 : s ∈ queue
grdpc : mcpc1 = select state

then
act1 : current := s

act2 : queue := queue \ {s}
setpc : mcpc1 := check invariant

end
checkOK =̂
refines checkOK

when
grd1 : current ∈ preserve
grd2 : current ∈ unknown
grd3 : mcpc1 = check invariant

with
s : current = s

then
act1 : mcpc1 := compute successors

act2 : ok, unknown := ok ∪ {current}, unknown \ {current}
end

checkBroken =̂
refines checkBroken

when
grd1 : current /∈ preserve
grd2 : current ∈ unknown
grd3 : mcpc1 = check invariant

with
s : current = s

then
act1 : mcpc1 := compute successors

act2 : broken, unknown := broken ∪ {current}, unknown \ {current}
end

successors start =̂
any

next
where

pc : mcpc1 = compute successors

pc2 : mcpc2 = start successors

successors : next = (transitions[{current}] ∩ unknown)
then

act : succs := next
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actpc : mcpc2 := step successors
end

successors step =̂
any

s
where

pc : mcpc2 = step successors

grd1 : s ∈ succs
grd2 : s /∈ queue
grd3 : s 6= current

then
act1 : succs := succs \ {s}
act2 : queue := queue ∪ {s}

end
successors skip =̂

any
s

where
pc : mcpc2 = step successors

grd1 : s ∈ succs
grd2 : s ∈ queue ∨ s = current

then
act1 : succs := succs \ {s}

end
successors stop =̂

when
grd0 : mcpc2 = step successors

grd1 : succs = ∅
then

pc2 : mcpc2 := start successors

pc1 : mcpc1 := select state
end

terminateBroken =̂
extends terminateBroken

any
s

where
grd1 : s ∈ broken

then
act1 : counterexample := {s}
act2 : result := terminated ce

end
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terminateOK =̂
extends terminateOK

when
grd1 : broken = ∅
grd2 : unknown = ∅

then
act1 : counterexample := ∅
act2 : result := terminated ok

end
END
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M3 Machine

MACHINE m3 INVARIANTS cycle
REFINES m2 mc cycle
SEES c4 mc states
VARIABLES

invs

checked

unchecked

mcpc1
mcpc2
succs

current

queue

ok

broken

unknown

result

counterexample

INVARIANTS
type1 : invs ∈ STATES↔ INVARIANTS
type2 : checked ∈ STATES↔ INVARIANTS

link1 : ∀s·s ∈ dom(invs)⇒ ((∀i·(s 7→ i) ∈ truth)⇒ s ∈ preserve)
link0 : partition(invs, checked, unchecked)
link p : unchecked = invs \ checked
link c : checked ⊆ truth

all or nothing : ∀s·s ∈ dom(invs)⇒{s} × INVARIANTS ⊆ invs
link2 : ∀s·s ∈ dom(invs)⇒ (s /∈ preserve⇒∃i·(s 7→ i) ∈ unchecked)

EVENTS
Initialisation

extended

begin
act1 : ok, broken, unknown := ∅,∅, STATES
act2 : counterexample, result := ∅, running
initroot : current := root
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initqueue : queue := ∅
pc1 : mcpc1 := check invariant

pc2 : mcpc2 := start successors

succs : succs := ∅
act3 : invs := {root} × INVARIANTS
act4 : unchecked := {root} × INVARIANTS
act5 : checked := ∅

end
select state =̂
extends select state

any
s

where
grd1 : s ∈ queue
grdpc : mcpc1 = select state

then
act1 : current := s

act2 : queue := queue \ {s}
setpc : mcpc1 := check invariant

end
check true inv =̂

any
i

where
grd2 : i ∈ unchecked[{current}]
grd3 : current 7→ i ∈ truth
grd4 : mcpc1 = check invariant

then
remove1 : checked := checked ∪ ({current 7→ i})
remove2 : unchecked := unchecked \ ({current 7→ i})

end
checkOK =̂
refines checkOK

when
grd2 : checked[{current}] = INVARIANTS
grd3 : mcpc1 = check invariant

grd4 : current ∈ unknown
then

act1 : mcpc1 := compute successors

act2 : ok, unknown := ok ∪ {current}, unknown \ {current}
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end
checkBroken =̂
refines checkBroken

any
i

where
grd1 : i ∈ unchecked[{current}]
grd3 : current 7→ i /∈ truth
grd4 : current ∈ unknown
grdpc : mcpc1 = check invariant

then
act1 : mcpc1 := compute successors

act2 : broken, unknown := broken ∪ {current}, unknown \ {current}
end

successors start =̂
extends successors start

any
next

where
pc : mcpc1 = compute successors

pc2 : mcpc2 = start successors

successors : next = (transitions[{current}] ∩ unknown)
then

act : succs := next

actpc : mcpc2 := step successors
end

successors step =̂
refines successors step

any
s

is
where

pc : mcpc2 = step successors

grd1 : s ∈ succs
grd2 : s /∈ queue
grd3 : s 6= current

grd4 : ∀i·i ∈ is⇒ s 7→ i ∈ truth
grd5 : s /∈ dom(invs)

then
act1 : succs := succs \ {s}
act2 : queue := queue ∪ {s}
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act3 : checked := checked ∪ ({s} × is)
act4 : unchecked := unchecked ∪ ({s} × (INVARIANTS \ is))
act5 : invs := invs ∪ ({s} × INVARIANTS)

end

successors skip =̂
refines successors skip

any
s

is
where

pc : mcpc2 = step successors

grd1 : s ∈ succs
grd2 : s ∈ queue ∨ s = current

grd3 : ∀i·i ∈ is⇒ s 7→ i ∈ truth
grd4 : ({s} × INVARIANTS) ⊆ invs

then
act1 : succs := succs \ {s}
act2 : unchecked := unchecked \ ({s} × is)
act3 : checked := checked ∪ ({s} × is)

end

successors stop =̂
extends successors stop

when
grd0 : mcpc2 = step successors

grd1 : succs = ∅
then

pc2 : mcpc2 := start successors

pc1 : mcpc1 := select state
end

terminateBroken =̂
extends terminateBroken

any
s

where
grd1 : s ∈ broken

then
act1 : counterexample := {s}
act2 : result := terminated ce

end

terminateOK =̂
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extends terminateOK

when
grd1 : broken = ∅
grd2 : unknown = ∅

then
act1 : counterexample := ∅
act2 : result := terminated ok

end
END
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M4 Machine (Regular)

MACHINE m4 regular mc
REFINES m3 INVARIANTS cycle
SEES c4 mc states
VARIABLES

invs

checked

unchecked

mcpc1
mcpc2
succs

current

queue

ok

broken

unknown

result

counterexample

EVENTS
Initialisation

extended

begin
act1 : ok, broken, unknown := ∅,∅, STATES
act2 : counterexample, result := ∅, running
initroot : current := root

initqueue : queue := ∅
pc1 : mcpc1 := check invariant

pc2 : mcpc2 := start successors

succs : succs := ∅
act3 : invs := {root} × INVARIANTS
act4 : unchecked := {root} × INVARIANTS
act5 : checked := ∅

end

select state =̂
extends select state

156



any
s

where
grd1 : s ∈ queue
grdpc : mcpc1 = select state

then
act1 : current := s

act2 : queue := queue \ {s}
setpc : mcpc1 := check invariant

end

check true inv =̂
extends check true inv

any
i

where
grd2 : i ∈ unchecked[{current}]
grd3 : current 7→ i ∈ truth
grd4 : mcpc1 = check invariant

then
remove1 : checked := checked ∪ ({current 7→ i})
remove2 : unchecked := unchecked \ ({current 7→ i})

end

checkOK =̂
extends checkOK

when
grd2 : checked[{current}] = INVARIANTS
grd3 : mcpc1 = check invariant

grd4 : current ∈ unknown
then

act1 : mcpc1 := compute successors

act2 : ok, unknown := ok ∪ {current}, unknown \ {current}
end

checkBroken =̂
extends checkBroken

any
i

where
grd1 : i ∈ unchecked[{current}]
grd3 : current 7→ i /∈ truth
grd4 : current ∈ unknown
grdpc : mcpc1 = check invariant

then
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act1 : mcpc1 := compute successors

act2 : broken, unknown := broken ∪ {current}, unknown \ {current}
end

successors start =̂
extends successors start

any
next

where
pc : mcpc1 = compute successors

pc2 : mcpc2 = start successors

successors : next = (transitions[{current}] ∩ unknown)
then

act : succs := next

actpc : mcpc2 := step successors
end

successors skip =̂
extends successors skip

any
s

is
where

pc : mcpc2 = step successors

grd1 : s ∈ succs
grd2 : s ∈ queue ∨ s = current

grd3 : ∀i·i ∈ is⇒ s 7→ i ∈ truth
grd4 : ({s} × INVARIANTS) ⊆ invs
grdis : is = ∅

then
act1 : succs := succs \ {s}
act2 : unchecked := unchecked \ ({s} × is)
act3 : checked := checked ∪ ({s} × is)

end

successors step =̂
extends successors step

any
s

is
where

pc : mcpc2 = step successors

grd1 : s ∈ succs
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grd2 : s /∈ queue
grd3 : s 6= current

grd4 : ∀i·i ∈ is⇒ s 7→ i ∈ truth
grd5 : s /∈ dom(invs)
grdis : is = ∅

then
act1 : succs := succs \ {s}
act2 : queue := queue ∪ {s}
act3 : checked := checked ∪ ({s} × is)
act4 : unchecked := unchecked ∪ ({s} × (INVARIANTS \ is))
act5 : invs := invs ∪ ({s} × INVARIANTS)

end
successors stop =̂
extends successors stop

when
grd0 : mcpc2 = step successors

grd1 : succs = ∅
then

pc2 : mcpc2 := start successors

pc1 : mcpc1 := select state
end

terminateBroken =̂
extends terminateBroken

any
s

where
grd1 : s ∈ broken

then
act1 : counterexample := {s}
act2 : result := terminated ce

end
terminateOK =̂
extends terminateOK

when
grd1 : broken = ∅
grd2 : unknown = ∅

then
act1 : counterexample := ∅
act2 : result := terminated ok

end
END
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M4 Machine (Proof Support)

MACHINE m4 use proof
REFINES m3 INVARIANTS cycle
SEES c6 discharge info
VARIABLES

invs

checked

unchecked

mcpc1
mcpc2
succs

current

queue

ok

broken

unknown

result

counterexample

EVENTS
Initialisation

extended

begin
act1 : ok, broken, unknown := ∅,∅, STATES
act2 : counterexample, result := ∅, running
initroot : current := root

initqueue : queue := ∅
pc1 : mcpc1 := check invariant

pc2 : mcpc2 := start successors

succs : succs := ∅
act3 : invs := {root} × INVARIANTS
act4 : unchecked := {root} × INVARIANTS
act5 : checked := ∅

end

select state =̂
extends select state
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any
s

where
grd1 : s ∈ queue
grdpc : mcpc1 = select state

then
act1 : current := s

act2 : queue := queue \ {s}
setpc : mcpc1 := check invariant

end

check true inv =̂
extends check true inv

any
i

where
grd2 : i ∈ unchecked[{current}]
grd3 : current 7→ i ∈ truth
grd4 : mcpc1 = check invariant

then
remove1 : checked := checked ∪ ({current 7→ i})
remove2 : unchecked := unchecked \ ({current 7→ i})

end

checkOK =̂
extends checkOK

when
grd2 : checked[{current}] = INVARIANTS
grd3 : mcpc1 = check invariant

grd4 : current ∈ unknown
then

act1 : mcpc1 := compute successors

act2 : ok, unknown := ok ∪ {current}, unknown \ {current}
end

checkBroken =̂
extends checkBroken

any
i

where
grd1 : i ∈ unchecked[{current}]
grd3 : current 7→ i /∈ truth
grd4 : current ∈ unknown
grdpc : mcpc1 = check invariant

then
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act1 : mcpc1 := compute successors

act2 : broken, unknown := broken ∪ {current}, unknown \ {current}
end

successors start =̂
extends successors start

any
next

where
pc : mcpc1 = compute successors

pc2 : mcpc2 = start successors

successors : next = (transitions[{current}] ∩ unknown)
then

act : succs := next

actpc : mcpc2 := step successors
end

successors skip =̂
refines successors skip

any
s

e
where

pc2 : mcpc2 = step successors

grd1 : s ∈ succs
grd2 : s ∈ queue ∨ s = current

grd4 : ({s} × INVARIANTS) ⊆ invs
grd5 : (current 7→ s) 7→ e ∈ labels
grd6 : current ∈ ok

with
is : discharged(e) = is

then
act1 : succs := succs \ {s}
act2 : unchecked := unchecked \ ({s} × discharged(e))
act3 : checked := checked ∪ ({s} × discharged(e))

end
successors step =̂
refines successors step

any
s

e
where

pc : mcpc2 = step successors

162



grd1 : s ∈ succs
grd2 : s /∈ queue
grd3 : s 6= current

grd5 : s /∈ dom(invs)
grd6 : current ∈ ok
grd7 : (current 7→ s) 7→ e ∈ labels

with
is : discharged(e) = is

then
act1 : succs := succs \ {s}
act2 : queue := queue ∪ {s}
act3 : checked := checked ∪ ({s} × discharged(e))
act4 : unchecked := unchecked ∪ ({s} × single specialized invariant(e))
act5 : invs := invs ∪ ({s} × INVARIANTS)

end
successors stop =̂
extends successors stop

when
grd0 : mcpc2 = step successors

grd1 : succs = ∅
then

pc2 : mcpc2 := start successors

pc1 : mcpc1 := select state
end

terminateBroken =̂
extends terminateBroken

any
s

where
grd1 : s ∈ broken

then
act1 : counterexample := {s}
act2 : result := terminated ce

end
terminateOK =̂
extends terminateOK

when
grd1 : broken = ∅
grd2 : unknown = ∅

then
act1 : counterexample := ∅
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act2 : result := terminated ok
end

END
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Publications

As mentioned before, this thesis is based on two papers that have been published pre-
viously and one paper that is currently being prepared for submission. The content
of all the papers is, of course, the result of fruitful discussions with other researchers.
However, I am the main author of all three papers that form the foundation of this
thesis.

The first paper “Proof Assisted Model Checking for B” [36] was co-authored by Michael
Leuschel. He did most of the related work section, some of the figures, and improved the
writing. Of course, Michael also verified my result and was an invaluable help when it
came to the first prototype implementation. He also continued the further development
of the proof support from the prototype into its present form. The paper was published
at the International Conference of Formal Engineering Methods (ICFEM) in 2009.

The second paper “Automatic Flow Analysis for Event-B” [52] was also co-authored
by Michael Leuschel. He wrote the first version of the simplifier and helped a lot with
the writing of this article. He and Dobrikov also worked later on an approach using
ProB’s contraint solver to compute the enable graph instead of a prover. The paper
was published at the International Conference on Fundamental Approaches to Software
Engineering (FASE) in 2011.

The third paper “Scalable Distributed Model Checking for High-Level Formal Models”
is currently in preparation for submission. This paper was co-authored by Philipp
Körner and Michael Leuschel. Philipp Körner implemented most of the code under
my supervision. Michael Leuschel helped me to shape the paper into the present form.
In particular he helped to improve the paper’s presentation a lot. He also wrote the
related work section. A draft version of the paper is included in the appendix. We
also submitted an extended abstract [64] to the Rodin User and Developer Workshop
2013.
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Abstract Model checking is an important validation technology for for-
mal models, where it is often challenging to keep validation time within
reasonable bounds. Parallel and distributed model checking promises sub-
stantial improvements in that respect. However, actually delivering upon
that promise is very challenging and there are not that many successful and
easy to use parallel or distributed model checkers.
In this paper we present a scalable approach to parallel and also distributed
model checking of high-level specifications in B, Event-B, Z and TLA+.
The work builds upon several worker instances of ProB connected by the
ØMQ library and controlled by one master process. A queue management
algorithm ensures even work distribution. We present the architecture of
our system, along with extensive empirical evidence gathered on multi-core
systems run locally and in the cloud. For several case studies we achieve
almost perfect scaling. This is not only due to our architecture: we also
benefit here from working on a very high-level formalism, where treating
each individual state induces a high overhead.

1 Background

ProB [19] is a model checker and animator mainly aimed at the B/Event-B lan-
guage, but which can also deal with Z and TLA+ specifications. Some of the tasks
ProB performs would clearly benefit form parallel execution, in particular model
checking. Model checking here refers to the process of checking that an invariant
holds for every reachable state, and that no deadlock occurs. For a typical case
study, the processing time per state is in the order of 1 to 100 ms. For exceptionally
simple models, such as a counter, the processing time for a single state is in the order
of 100 µs, i.e., ProB can calculate at most 10,000 states per second. This is a rather
low number compared with other explicit model checkers such as Spin, but in [18]
we made a case for using ProB and high level languages such as B (sometimes a
single high-level states can represent thousands or millions of low-level states). This
also means that there is considerable potential for more sophisticated parallel and
distributed model checking algorithms. We exploit this fact in this paper, and de-
velop a scalable distributed model checking system for ProB, which ensures load
balancing using a technique called “work stealing”. As the experimental results will
show, this approach does indeed achieve very good (and sometimes near optimal)
scaling characteristics.

?? This research is being carried out as part of the DFG funded research project GEPAVAS.



2 Implementation

The core of ProB was developed in SICStus Prolog. Unfortunately SICStus Prolog
does not support parallel execution, so we could not implement parallel model
checking within a single process; we need to run multiple Prolog process instances
of ProB in order to achieve parallel or distributed model checking.

2.1 First Attempt

Initially, we experimented with the Linda library provided by SICStus. The library
implements a tuple space [9], i.e., data is stored in a central repository and can be
retrieved by worker processes. In the case of ProB, the state space as well as the
states that haven’t been explored yet are stored in the repository.

A worker retrieves a state, checks the invariant and sends all successor states
to the repository. The big disadvantage of the library is that we always have to
move states around; this is an expensive operation. The approach was beneficial for
only very few models, because of a rather big performance overhead caused by the
framework.

2.2 Architecture

The architecture we propose in this paper consists of two components: A single
master that coordinates the computation and several instances of a worker that
perform the actual model checking.

Both components are implemented in Prolog and C, to allow a very tight in-
tegration into ProB. Data is transferred very efficiently between Prolog and C
using an undocumented feature of SICStus Prolog, namely fastread and fastwrite.
To avoid duplicate checking of states, we store SHA-1 hash values of states that
have been processed or are queued for processing. If we encounter two states with
the same SHA-1 hash code, we assume that the two states are actually the same
state. This can lead to unsoundness of the model checking if two different states
produce the same hash value. However, the probability of hash collisions is very
low. SHA-1 is a hash function that is used in cryptography1. It produces 160 Bit
hash values, therefore the approximate collision probability for a billion elements is
less than 2−100. Currently the speed of computers and the performance of ProB
makes checking more than a billion states practically impossible.

The communication between components is implemented using a library called
ØMQ (pronounced Zero MQ) [10]. ØMQ is oriented around message queues that
can be used to implement typical communication patterns, such as direct messaging
or publish-subscribe.

We use the so called reactor pattern, a loop that queries a set of message queues
in a round robin fashion and calls a specific function if a queue contains a value.
The reactor is part of the ØMQ library. Without the reactor loop we probably
would have used threads that concurrently modify the state of the component. For
instance, one thread would receive information about the currently known state

1 SHA-1 is specified in RFC 3174 http://tools.ietf.org/html/rfc3174



space, while another thread would check a state. Both threads would write to the
same state, which is hard to implement correctly. The reactor pattern on the other
hand allows us to decompose the concurrent algorithm into simple functions. Each
of these functions has exclusive access to the state of the component because only
one function is run at a time.

Figure 1 shows an overview of the architecture. Master and worker can exchange
messages via the ZMQ library. Messages are stored in a messaging queue and asyn-
chronously received and processed. The figure only shows a single message queue,
but the design actually uses multiple queues. The reason is that we require different
pattern for different message types. For example, information about the currently
know state space is broadcast using a publish/subscribe pattern while control com-
mands are directly sent between two components. We will describe each queue in
more detail in the rest of the section.

Figure1. Architecture of worker and master components

The master component has the responsibility of coordinating the work load, man-
aging and broadcasting the information about known states of the model, collecting
data about the progress, and terminating the workers upon completion of the task.
Each time a worker processes a state, it sends the result (i.e., whether the invariant
holds and whether the state contains a deadlock) together with some metadata to
the master. The metadata includes the SHA-1 hashes of each successor state and
some statistics.

The master maintains a data structure that contains all known hashes that
have either been processed or are stored in some worker’s queue. We will discuss
the details of the data structure in section 2.3. For now we can think of it as a
set containing tuples that consist of a SHA-1 hash and a boolean flag indicating
whether the state has been processed. The master broadcasts changes to all workers,
which will integrate them into their own local copy of that data structure.

The master can detect if a state has been checked independently by two workers.
This can happen because the data structures are updated asynchronously, i.e., one
worker may use an outdated data structure. This double checking of states cannot
be completely avoided, but in most of our experiments the number is reasonably
low.



The master also gets statistical information. The most important bit is the size of
the worker’s queues. If the master detects that worker W1 has an empty queue while
worker W2 has a certain amount of elements in its queue, the master will initiate
work stealing. It sends a message to W2 who will transmit half of the elements in its
queue to the master. The master forwards the package to W1. We use a parameter
min queuesize to control the minimal amount of elements in the queue. The master
will only ask a worker to send elements from its queue, if the queue size is greater
than 2 ×min queuesize. This does not guarantee that the sending worker has at
least min queuesize after sending but it will prevent unnecessary transmissions. If
we were close to the end of a model checking job, the system would start to “jitter”
if we did not use a threshold.

One could argue that it might be more efficient to directly send the work pack-
ages from one worker to the other without the master. This is true, but it also comes
at a price. We either have to establish a new connection between two workers, which
takes time, or we have to establish a quadratic number of connections in advance.
We could also setup a linear number of connections in advance if we restrict who
can share work with whom, but in this case, it could impact the fair distribution of
load. However, this is a design parameter that we want to explore in the future.

The master’s reactor loop consists of four queues:

1. Receive join request. If a worker connects to the master, it sends a join
request. The master answers request with a unique worker ID and the Prolog
term that represents the B model. We provide an initial number of workers
that need to connect before the master initiates the model checking process.
We can dynamically add more workers, each worker that is connected after the
process was started gets the information that it is late when it joins. We need
the information to ensure that the new worker gets all hashes that have been
processed.

2. Receive hashes request. If a worker joins late, it will ask the master to
send the hash codes that have already been broadcast. The master answers this
request with all hash codes that are known.

3. Receive statistics. After checking a state, the worker sends a message con-
taining statistical information such as the time spent to check the state but
more importantly the current queue size of the worker. Based on the queue size
the master may initiate a work sharing request.

4. Receive results. Also after checking a state, the worker will send a message
containing the result of the check (i.e., if the invariant was violated or a dead-
lock was found) and the hash codes of the checked state and all successors. The
master extracts the hash codes and forwards them to all workers. For perfor-
mance reasons, the master automatically combines information from multiple
workers.

The worker components perform the actual computations. They take a state that
has not yet been checked from their work queue, check if the machine’s invariant
is true for that state, and compute successor states. Like the master, a worker con-
tains a set of states that are globally known. If the worker dequeues a state from



its work queue that has already been checked, the state is dropped. A worker also
drops all successor states that are in the global set, because they already must be in
the queue of some worker. This can lead to a loss of potentially useful information,
namely that there is a transition from the currently checked state to that particular
state. In future we consider keeping and using this information, e.g., to exploit proof
information as shown in previous work [7]. We will discuss this issue in section 4.

The reactor loop of a worker consists of five queues:

1. Receive hashes. The master sends hash codes of known states to this queue.
If a worker receives an item from this queue, it extracts all contained hash codes
and adds them to its own set of hashes.

2. Receive tasks. Packages received from this queue contain states that the
worker should check. The worker extracts all working tasks and enqueues them
into its working queue. Currently this only happens if the queue of the worker
is empty.

3. Receive share request. The master notifies the worker to share the half of
its queue with another worker. Upon receiving a notification from this queue,
the worker will split its working queue and send half of it.

4. Receive command. This queue contains commands from the master, e.g., a
terminate command that is issued if the master notices that a user provided
maximum number of states have been reached.

5. Process state. This queue contains a single token. If the worker receives the
token it will dequeue a task from the working queue and check it. After com-
pletion, the worker will send itself a new token. The purpose of this queue
is to properly interleave the checking process with the other tasks the worker
performs.

2.3 Storing states

To store the hashes we use a Trie (also referred to as a prefix tree). Our implemen-
tation was inspired by Phil Bagwell’s Hash Array Mapped Tries [3]. We use a trie
that has a branching factor of 32, therefore each 5 bit chunk of the 160 bit input is
represented by one level in the trie. We extend the trie structure on demand. As an
example, take Figure 2. On the bottom we have chunks of linear memory in which
we store the hash codes sequentially. This is very important because if workers join
late we want to be able to efficiently send them the hash codes without traversing
the trie. On the top of the left side we have a node in our trie structure. In the
figure we use a branching factor of 4 instead of 32. The small squares are bits that
allow us to tell pointers to linear memory from pointers to trie nodes. In the figure
we see how the trie is changed if we add a hash that is supposed to be stored in a
slot that is already occupied. We create a new internal node, we move the pointer
to the old content into the new node using the next 5 Bits of the hash code as the
index (here 1). We add the new content, point from the original trie node to the
new node and flip the bit to represent a pointer to an internal node.

We use SHA-1 as the hashing function for a state, i.e., each state produces a 160
Bit hash code, thus the maximal depth of the trie is log32(2160) = 32. But because



Figure2. Adding a new layer to the hashtrie

SHA-1 is actually a cryptographic hash function, the hashes can be expected to be
practically randomly distributed, i.e, we can expect that the trie is almost balanced.
Because we use a high branching factor the trie is supposed to be shallow. We
measured the depth of the tree by putting the SHA-1 values of the numbers from
0 to 9999999 into the trie. We found that for these ten million elements the depth
was 8.

The complexity of looking up or adding hash codes is O(log n). However we can
expect that the maximal number of operations for any (currently) reasonable input
size is about 10.

The memory footprint is a trade-off between a number of requirements. We
want to keep the footprint as small as possible. However, for a single state we need
161 bits. 160 bits are for the hash code and one bit is to indicate if a state has
been checked. In fact we could even save more memory by dropping the prefix,
because it is in principle already encoded in the path throughout the trie. However,
this complicates the implementation and the performance if a worker is late. A late
worker requires all hash codes that have been broadcasted so far. If we save memory
by dropping the prefixes, we need to recreate all hashes and traverse the trie. If the
hashes are complete and stored sequentially we can use memcpy to put the hashes
into a ØMQ message.

We also decided to use 21 byte instead of 20 byte and a single bit for each hash
code and thus “waste” 7 bits. There are clearly other solutions but we decided to
use 21 bytes for the sake of a simpler implementation.

2.4 Control UI

Starting a distributed model checking using ProB directly is a bit cumbersome. As
a first simple solution for a single multicore computer we wrote a shell script to start
a number of workers and a master. We also developed a small web application that
allows us to run the benchmark experiments more comfortably. We can produce an
experiment descriptor containing parameters for the benchmark experiment such
as the number of workers, the maximal number of states we want to check, the
number of repetitions or ProB specific settings. We put a number of experiment
descriptors together with the corresponding B models into a zip file and upload this
file via the web interface. The application runs all experiments and produces result



tables containing the most important information, such as the runtime, number of
states, or invariant violations. We are currently developing a more sophisticated web
application that will allow us to coordinate computations on the Amazon Cloud,
e.g., we want to be able to add or remove computers and get more detailed infor-
mation about the load on each computer. For instance, if we exhaust the memory
on a single computer we could automatically add a second computer from the cloud
and move some workers to the second computer.

3 Empirical Evaluation

For our experiments we used two types of machines:

– A six core 3.33 GHz Mac Pro with 16 GB of RAM
– Multiple c3.8xlarge instances in the Amazon Cloud. A c3.8xlarge instance has

32 virtual CPUs and is equipped with 64 GB of RAM. The documentation
states that “Each virtual CPU (vCPU) on C3 instances is a hardware hyper-
thread from a 2.8 GHz Intel Xeon E5-2680v2 (Ivy Bridge) processor [...]” [2].
According to the Intel website, the Xeon E5-2680v2 is a 10 core processor with
20 threads.

We used the Mac Pro to get an impression if and how good the B models
scale. From the experiments we chose those models that seem to scale well and
benchmarked them on the Amazon EC computer with a higher number of workers.

We also did few experiments using two or four c3.8xlarge instances which were
connected via a 10 GBit Ethernet connection. From the tool’s point of view there
is no difference whether the workers are located on one computer or on multiple
machines. Each worker gets the IP Address of a master and then connects to that
master, running all workers and the master on the same host is just a special case
of distributed model checking.

The sample size for experiments on the Mac Pro was 3, for the experiments on
the Amazon Cloud we only did a single run. However, in previous experiments we
observed that the results do not differ by much.

For all experiments we used ProB 1.4.0-rc1. On the Mac Pro we used re-
vision d1829ce0fb6e968f35ffa39c60712e2d5b674a9a, which was built on April
14th, 2014. On the Amazon Cloud we used a slightly newer revision, namely
735295934f31114e1e6a7362d458a88e744282a9 which was built on April 16th, 2014.

This paper includes examples where our approach works quite well and models
where our approach does not. We will analyze why the tool does not work for some of
the models, and give some guidelines on when not to use the parallel model checker.
In particular, we will describe a very simple experimental approach to determine a
good number of workers.

All experiments use breadth first search. This is not a restriction of the tool,
one can freely chose BFS, DFS or ProB’s mixed mode. However, using BFS is a
bit nicer for analysis. In the case of incomplete checking (e.g., if the state space
is infinite) breadth first search eliminates one source of non-determinism, i.e., the
choice of the successor state.

The results of our measurement are summarized in Tables 1 and 2. Due to
resource constraints, we did not run the model checker using a single worker on the



Amazon cloud. The results for one worker are approximated using either the 4 or
the 8 worker result. This means we assume that below 4 or 8 the model scales linear
with a slope of 1. This can only lead to an under-approximation of the runtime for
one worker and therefore to an under-approximation of the speedup factor, i.e., our
estimation of the speedup factor is safe.

Summary In summary we can see that the experiments were very successful,
and that our distributed model checking algorithm is clearly worthwhile. We achieve
considerable speedups for all real-life benchmarks. E.g., we reduce the runtime of
the interlocking model from around 119 minutes down to around 26 minutes by us-
ing 5 workers on the 6-core MacPro. On the Amazon cloud, we can further reduce
the runtime to under 7 minutes, by using an instance with 32 virtual CPUs. Below
we analyse the experimental results in more detail. In Subection 3.3 we analyse the
(few) small benchmarks with limited scaling, while in Subsection 3.4 we examine
the other benchmarks with good scaling. Before that, we study the impact of Hy-
perthreading on the achievable scaling in Subsection 3.1 and the overhead of our
framework in Subsection 3.2.

Workers (#)

Model States (#) 1 2 4 5

Cruise control system 1361 1.00 (4870 ms) 1.74 2.05 1.93

Counter 100000a 1.00 (18919 ms) 0.99 0.91 0.87

Hanoi Towers 6563 1.00 (26091 ms) 1.89 2.86 2.92

Stuttgart 21 10000a 1.00 (546093 ms) 2.00 3.81 4.62

Interlocking 672175 1.00 (7120411 ms) 1.98 3.80 4.55

USB Bus-4 16858 1.00 (61596 ms) 2.06 3.84 4.41

CAN Bus protocol 132599 1.00 (137717 ms) 1.92 3.1 3.61

RETHER 42254 1.00 (83508 ms) 2.05 3.79 4.32

Scheduler 24581 1.00 (162982 ms) 1.96 3.81 4.64

Mode Protocol 810948 1.00 (4877777 ms) 2.00 3.92 4.77

Set Game 2000a 1.00 (47964 ms) 1.93 3.55 4.24

a State space not fully explored
Table1. Benchmarks on Mac Pro

3.1 Hardware influences: Hyper-Threading

It turns out that ProB cannot scale perfectly if it does not run on a real core.
Perfect scaling means that if you multiply the number of workers by k you get 1/k
of the runtime. We can see this in Figure 3. We explored the full state space of a
mode management protocol which we will describe in section 3.4. The state space
consists of 810948 states.

Our benchmark computer provides six real cores and twelve hyper-threads. If
we fit a linear model on the segments we get about speedup = 0.87 × cores+ 0.28
for 1 to 6 cores with a correlation of 0.9938. We get speedup = 0.95 × cores+ 0.09



Workers (#)

Model States (#) 1 4 8 16 31

Stuttgart 21 10000a 1.00 (593808 ms)b 4.00 7.75 13.95 18.92

Interlocking 672175 1.00 (8094144 ms)c - 8.00 13.72 20.14

USB Bus-10 211042 1.00 (741984 ms)b 4.00 7.10 12.24 18.68

RETHER 42254 1.00 (88240 ms) b 4.00 6.40 9.60 11.53

Scheduler 24581 1.00 (176288 ms)b 4.00 7.24 11.29 16.27

Mode Protocol 810948 1.00 (5562928 ms)c - 8.00 13.52 19.24

Set Game 10000 1.00 (355312 ms)c - 8.00 12.19 16.79

Workers (#)

Model States (#) 1 8 16 32 63

Stuttgart 21 10000a 1.00 (599328 ms)c 8.00 14.99 26.71 33.28

Interlocking 672175 1.00 (7904000 ms)c 8.00 14.57 24.23 38.63

Mode Protocol 810948 1.00 (5474200 ms)c 8.00 14.29 19.62 33.35

a State space not fully explored
b Approximation using 4 worker experiment
c Approximation using 8 worker experiment

Table2. Benchmarks on Amazon EC2

for 1 to 5 cores with a correlation of 0.9995. It does not scale up to exactly 6
because we also run the master process that uses a bit of the CPU. Between 6 and
12 workers it scales linearly but the slope is much lower. Fitting a linear model
yields speedup = 0.27 × cores + 3.59 between 6 and 12 cores with a correlation
of 0.9984. For more than 13 worker we actually lose performance if we add more
workers. Another evidence in favor of the hypothesis is that if we look at the time
that is spent within Prolog, we get 5.6 ms with a single worker and 10.1 ms with 12
workers (on the Mac Pro). The standard deviation is 1.0 ms in the case of a single
core and 1.5 ms in the case of 12 cores.

If we use the same model on an Amazon instance, we get a similar curve. We
did not used the full state space but 100000 states. The correlation is not as high as
on the Mac Pro computer but we still see the same pattern. If we fit a linear model,
we get speedup = 0.79 × cores+ 0.52 for 1 to 10 cores with a correlation of 0.9955.
For 11 to 32 we get speedup = 0.27 × cores+ 6.40 with a correlation of 0.9784.

3.2 Overhead of the framework.

In order to measure the overhead introduced by the parallelization framework we
did some experiments with models that are not supposed to scale well.

The model shown in Figure 4(a) does not scale well. We get a speedup of about
2 at most. However, the situation is not as bad as it seems if we look at Table 1.
The total model checking of the cruise control system is only about 5 seconds for
1361 states. This is clearly not a very typical case where we would use parallel or
distributed model checking. We would even accept that the runtime is worse for
these kind of models. The experiment shows that the overhead introduced by our
framework is reasonably low.



1
2

3
4

5
6

7

Worker (#)

S
pe

ed
up

1 2 3 4 5 6 7 8 9 11 13 15 17 19 21

(a) Hyper-Threading on the Mac Pro

2
4

6
8

10
12

14

Worker (#)

S
pe

ed
up

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42

(b) Hyper-Threading on AWS

Figure3. Effects of the CPU / Hyper-Threads

Figure 4(b) shows a quite artificial model, representing a simple counter with a
single operation for incrementation. From the perspective of parallel model checking
this is the worst case because the working queue cannot contain more than a single
task. The experiment shows that we do lose performance, i.e., finding a good number
of workers is important.

We will discuss a method how we can estimate a good number in section 4. We
hope that we can reduce the performance loss in the future because in theory a
work-stealing approach can deal well with workers that are idle.
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Figure4. Impact of the parallelization framework



3.3 Benchmarks with limited scaling.

The speedup we get from parallel execution of multiple ProB processes is mainly de-
termined by the degree of branching in the B model. Figure 5(a) shows the speedup
for a model of the Hanoi towers2. Figure 5(b) shows the development of the queue
size over time, exhibiting a repeating pattern. This pattern mirrors the recursive
nature of the problem. From time to time, we reach a situation where the number
of choices is very limited, e.g., if all disks are on one peg, there are only two possible
moves. This means that at these points all the queues of all the workers are almost
empty. This leads to the sub-linear scaling of the model.
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Figure5. Limited scaling

3.4 Benchmarks with (almost) linear scaling

We mainly used case studies that are close to industrial use cases, such as

– Stuttgart 21. The Stuttgart 21 Interlocking system (see Figure 6(a) was mod-
eled by H. Wiegard. It is an interlocking system for the railway station in
Stuttgart, which is currently being built. It was developed with capacity simu-
lation in mind, i.e., it should be able to answer questions like “How many trains
can the station handle safely?”. We limited the experiment to 10000 states.
Checking a single state takes about 54 ms, thus on a single core the overall
model checking time is 9 minutes. On the Mac Pro we get a speedup factor of
4.62 using 5 cores. On a single Amazon EC2 instance we get a factor of 18.9.
Using two EC2 instances we get a factor of 33.3 using 63 workers. Finally on 4
instances we get a factor of 68.8 using 127 workers. For the experiment on 127
cores we used 80000 instead of 10000 states and we checked them in 68 seconds,
a single worker would have required about 1 hour and 18 minutes.

2 http://en.wikipedia.org/wiki/Tower_of_Hanoi
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Figure6. (Almost) Linear scaling (Mac Pro)

– Interlocking system. The other interlocking system (Figure 6(b)) is a varia-
tion of the model from Abrial’s book [1]. The model has a reduced state space,
which was achieved by manually applying a partial order reduction. The reduc-
tion was not applied for the parallel experiment, we have chosen this variation
because the absolute model checking time of the original model (about 8 days)
was too high for this experiment. The speedup factor on the Mac Pro is 4.55
using 5 workers. On a single Amazon EC2 we get a factor of 20.1 using 31
workers and using 63 workers on two instances we get a factor of 38.6.

– Bus Systems. We also used two models of bus system, A USB bus system and
a Controller Area Network (CAN) Bus. CAN Busses are typically used in cars.
They allow devices and controllers to communicate over a shared bus without
the need of a special bus controller. Both models were developed by J. Colley.
As we can see in Figures 6(c) and 6(d), both models scale reasonably well. The



CAN Bus model probably doesn’t scale much further than 4 cores, but at least
we can get a speedup factor of 3.6. The USB Bus model scales better, using
5 cores we get a speedup factor of 4.41. If we compare the runtime for 1 and
2 workers for the USB Bus we note something peculiar. The speedup factor is
greater than 2 which is counter-intuitive. We think that neither ProB nor our
tool is responsible for this behavior. It may be the CPU Turbo-Boost or CPU
caching effects because the effect vanishes if we produce slightly more CPU load.
Note that the CPU is only checking using two workers and one master, so it has
at least 3 spare cores. On the Amazon EC2 instance we get a speedup factor of
18.7 for 31 workers.

– Network Protocol. We used a protocol of a real time Ethernet protocol
(RETHER) [21]. The B model by M. Büngener is a translation of a model
written for the DiVinE model checker [4]. On the Mac Pro we get a speedup
factor of 4.32 using 5 workers. On an Amazon instance the RETHER model
scales very well up to about 8 cores yielding a speedup of a factor 6. Using 31
worker, we get a overall speedup factor of about 11,5.

– Scheduler. We used a model of a kernel scheduler by J.-P.Bodeveix et al. [8].
On the Mac Pro we get an improvement by a factor of 4.64 using 5 cores. On the
EC2 instance the scheduler also scales very well up to about 8 cores, yielding a
speedup factor of about 7.24. Using 31 workers, we get a total speedup factor
of about 16.25.

– Mode Management Protocol. The model was developed by Space Systems
Finland as part of a Distributed System for Attitude and Orbit Control for a
Single Spacecraft (DSAOCSS) System [14],[16],[15]. The model was a part of the
case study within the EU Project DEPLOY. On the Mac Pro we get a speedup
factor of 4.77 using 5 workers. On a single EC2 instance we get a factor of 19.2
using 31 workers and on 2 instances we get a factor of 33.3 using 63 workers.
This means we reduce the model checking time from about 1 hour 30 minutes
to less than 3 minutes.

– SET Game. We used a model of a game called Set3. The model has the in-
teresting feature that its state space is actually a tree, i.e., for any state all
the successor states are new. Also, checking the invariant becomes much more
expensive the larger the depth of the state in the computation tree is. On the
Mac Pro we get a speedup factor of 4.24 using 5 workers. On an Amazon EC2
instance we improve by a factor of 16.7.

4 Future Work

Finding the right number of workers As we have seen in Sections 3.2 and 3.1 having
too many workers can have a negative effect on the performance, it also blocks
valuable resources. However, it is very simple to find a reasonable amount of workers
using a scan technique. We start the model checker with a single worker for a
fixed amount of time and measure how many states are checked. We keep doubling
the number of workers and repeating the procedure until we do not get a good

3 http://en.wikipedia.org/wiki/Set_(game)
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improvement anymore. The improvement could be judged by a simple heuristic.
For instance, if we double from k workers to 2 × k workers we require that we
check at least 0.25 × k more states. The number 0.25 stems from the experiments
described in Section 3.1. Once we have an interval, we can narrow the search down
to a reasonable number of workers, e.g. using a binary search.

There are several other points that could be addressed in the future:

– Use Proof Information. During distributed model checking, we currently do
not use information about discharged proof information as described in previous
work [7]. As a first step we could at use the information about the transition
the model checker took when encountering a state. This can be done locally
by each worker, and can in some cases lead to a significant reduction in model
checking time. However, it would be interesting to try and track all incoming



transitions, allowing us to check [7] only the invariants that have no proof for
all incoming events.
Also, we do support invariant, assertion and deadlock checking, but not general
LTL model checking. The latter still needs to be run by a single instance of
ProB.

– Reduce Memory footprint. We are currently working on an implementation
that reduces the footprint of the hash trie by sharing it among all workers that
are located on the same computer. This will obviously reduce the global memory
footprint considerably.

5 Related Work and Conclusion

There is a substantial body of research towards achieving parallel and distributed
model checking, ranging from early work for Murφ [20], to work on parallel sym-
bolic model checking [6], and developments for the Spin [11] model checker [13,12].
Many works focus on safety properties (just like we do). A notable exception is for
example [5] and more recently the DiVinE model checker [4]. The work [17] looks
at parallelization in the context of directed model checking using A*.

As far as high-level formalisms is concerned, we want to mention the model
checker TLC [22] for the high-level language TLA+, which can be run in parallel.
There also exists research on a distributed version of TLC, presented by Kuppe at
the FM’12 TLA workshop.4

We have introduced a distributed model checker built on top of ProB that
works very well for industrial case studies provided that the model’s state space
contains reasonable branching. We use work stealing to automatically distribute
work among various instances of ProB. We have empirically demonstrated that
the performance of the implementation is good enough to allow scaling even across
multiple computers.
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6 Appendix: Absolute Runtimes

Workers (#)
Model States (#) 1 2 4 5

Cruise control system 1361 4870 ms 2797 ms 2375 ms 2523 ms
Counter 100000a 18919 ms 19203 ms 20774 ms 21805 ms
Hanoi Towers 6563 26091 ms 13769 ms 9129 ms 8942 ms

Stuttgart 21 10000a 546093 ms 272401 ms 143364 ms 118223 ms
Interlocking 672175 7120411 ms 3599504 ms 1873272 ms 1563760 ms
USB Bus-4 16858 61596 ms 29855 ms 16021 ms 13955 ms
CAN Bus protocol 132599 137717 ms 71681 ms 44488 ms 38123 ms
RETHER 42254 83508 ms 40754 ms 22017 ms 19330 ms
Scheduler 24581 162982 ms 83037 ms 42827 ms 35114 ms
Mode Protocol 810948 4877777 ms 2436374 ms 1245027 ms 1023481 ms
Set Game 2000a 47964 ms 24800 ms 13496 ms 11312 ms

a State space not fully explored

Workers (#)
Model States (#) 1 4 8 16 31
Stuttgart 21 10000a 593808 ms b 148452 ms 76595 ms 42582 ms 31377 ms
Interlocking 672175 8094144 msc - 1011768 ms 589878 ms 401803 ms
USB Bus-10 211042 741984 msb 185496 ms 104515 ms 60614 ms 39719 ms
RETHER 42254 88240 msb 22060 ms 13796 ms 9189 ms 7653 ms
Scheduler 24581 176288 msb 44072 ms 24352 ms 15611 ms 10851 ms
Mode Protocol 810948 5562928 msc - 695366 ms 411416 ms 289202 ms
Set Game 10000 355312 msc - 44414 ms 29137 ms 21168 ms

Workers (#)
Model States (#) 1 8 16 32 63
Stuttgart 21 10000a 599328 msc 74916 ms 39973 ms 22437 ms 18009 ms
Interlocking 672175 7904000 msc 988000 ms 542479 ms 326262 ms 204586 ms
Mode Protocol 810948 5474200 msc 684275 ms 392991 ms 279032 ms 164165 ms

a State space not fully explored
b Approximation using 4 worker experiment
c Approximation using 8 worker experiment
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