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Abstract

The focus of this thesis lies on the investigation of inhomogeneous fluids of
(infinitely thin) hard platelets. For reasons of comparison, we also treat the
system of (infinitely thin) hard rods in some chapters. The investigations
are done by using Density Functional Theory (DFT). In particular, we use
a recently developed Fundamental Measure Theory (FMT) functional that
includes contributions to the free energy that are of third order in density.

In the first part, we address the bulk behaviour of hard platelets, their free
isotropic-nematic interface as well as their behaviour in contact with a single
planar hard wall. In our bulk calculations, we determine the bulk isotropic-
nematic phase coexistence densities and calculate the equation of state in
the isotropic and nematic phase. For both, we find good agreement with
simulation results. Subsequently, we investigate the wetting behaviour of
the platelets when adsorbed against a hard wall and find complete wetting.
Surprisingly, our results show that oscillations of the isotropic wall profile
disappear for increasing (bulk) densities.

The second part is about platelets in finite external fields. We first investi-
gate the influence of a magnetic field on the location of the isotropic-nematic
phase transition and find the transition to end in a critical point for strong
magnetic fields. After considering the sedimentation of hard platelets under
gravity, we study the sedimentation in the simultaneous presence of a mag-
netic field. We find that increasing magnetic field strength leads to lower
densities at the bottom of the system.

In the third part, we investigate which effects occur in strong geometrical
confinement, i.e. between two parallel hard walls and find a capillary critical
point. For reasons of comparison, we perform these calculations also for rods
between two parallel hard walls (acting on the centres of the rods) and find
a smaller critical capillary width for the rods as compared to the platelets.

The last part of the thesis studies platelets and rods at finite thickness.
We test a modification of the FMT functional and calculate the influence
of the thickness of the particles on the isotropic-nematic phase transition.
For platelets, we also calculate the equation of state. Our results are not
satisfying for platelets nor for rods when compared to simulation results.





Zusammenfassung

Der Schwerpunkt dieser Doktorarbeit liegt auf der Untersuchung der Eigen-
schaften von inhomogenen Flüssigkeiten aus (unendlich dünnen) harten Plätt-
chen. Aus Vergleichsgründen werden wir in einigen Kapiteln aber auch
Flüssigkeiten aus (unendlich dünnen) harten Stäbchen betrachten. Die Un-
tersuchungen wurden mit Hilfe der Dichtefunktionaltheorie (DFT) durchge-
führt. Speziell wurde ein kürzlich entwickelter Fundamental Measure Theory

(FMT) Ansatz verwendet, der Beiträge zur freien Energie enthält, die von
dritter Ordnung in der Dichte sind.

Im ersten Teil der Arbeit untersuchen wir das Bulk-Verhalten von harten
Plättchen, ihre freie isotrop-nematische Grenzfläche sowie das Verhalten der
Plättchen beim Kontakt mit einer planen harten Wand. In unseren bulk-
Rechnungen bestimmen wir die Koexistenz-Dichten am isotrop-nematischen
Phasenübergang und berechnen die Zustandsgleichung in der isotropen und
nematischen Phase. Für beide Punkte finden wir eine gute Übereinstimmung
mit Simulations-Ergebnissen. Anschliessend untersuchen wir das Benetzungs-
verhalten der nematischen Phase der Plättchen beim Kontakt mit einer
harten Wand und finden komplette Benetzung.

Im zweiten Teil beschäftigen wir uns mit Plättchen in endlichen exter-
nen Feldern. Wir untersuchen zunächst den Einfluss eines magnetischen
Feldes auf den isotrop-nematischen Phasenübergang und finden, dass let-
zterer für ausreichend starke Felder in einem kritischen Punkt endet. Als
nächstes widmen wir uns der Berechnung von Sedimentationsprofilen von
harten Plättchen. Abschliessend studieren wir Sedimentation in einem gleich-
zeitig wirksamen magnetischen Feld. Wir beobachten eine Reduktion der
Dichte am Boden des Systems für steigende magnetische Feldstärke.

Im dritten Teil untersuchen wir welche Effekte bei starkem geometrischen
Einschluss, speziell zwischen zwei parallelen harten Wänden, auftreten und
finden einen kritischen Wandabstand, bei dessen Unterschreitung kein isotrop-
nematischer Übergang mehr auftritt. Aus Vergleichsgründen führen wir diese
Rechnung auch für harte Stäbchen durch, wobei wir eine auf den Mittelpunkt
der Stäbchen wirkende Wand annehmen. Es stellt sich heraus, dass der kri-
tische Wandabstand für Stäbchen kleiner ist als für Plättchen.

Der letzte Teil der Doktorarbeit beschäftigt sich mit Plättchen und Stäb-
chen mit endlicher Dicke. Wir testen eine Modifikation des FMT-Funktionals
und berechnen den Einfluss der Dicke auf den isotrop-nematischen Phasen-
übergang. Unsere Resultate zeigenin beiden Fällen keine zufriedenstellende
Übereinstimmung mit Resultaten aus Simulationen.
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Chapter 1

Introduction

Fluids we are exposed to in daily life, like e.g. water, consist of one or several
components which are atoms or molecules. The size of the latter is in the
order of magnitude of several Angstroms. The platelet fluid whose properties
we investigate in this thesis is not such a molecular fluid, but belongs to the
so-called colloidal suspensions. Colloidal suspensions are characterised by a
molecular solvent (typical particle size ≈ 1Å), in which colloidal particles
(typical size ≈ 10nm− 1µm) are suspended. Due to this difference in size of
about four orders of magnitude, the solvent can be treated as a continuum
from the viewpoint of the colloids. This makes it possible to focus on the
behaviour of the colloidal particles because the degrees of freedom of the
solvent can be integrated out. Thus, when talking about fluids of platelets,
one refers to the suspended component and not to the solvent.

Effects occurring in colloidal systems are for example the glass transition,
interfacial phenomena or freezing and melting. Due to the fact that col-
loids belong to the mesoscopic time and length scale, such effects are much
easier observable than in atomic systems. Hence, colloidal particles have
become an important tool for studying these phenomena. One important
phenomenon are phase transitions. The phase behaviour of colloidal suspen-
sions is determined by the interactions between the particles. For charged
colloids, Coulomb forces appear and cause nonlinear interactions with the
counterions of the solvent. Thus, the peculiar features of these interactions
are complicated and depend on the specific materials of which the colloids
consist. However, due to the polarizability of the materials the colloids are
(typically) made of, van der Waals interactions will appear. The van der
Waals interaction, which is attractive, leads to a agglomeration of the col-
loidal particles. To avoid this, one can apply sterically or charge stabilisation.
Steric stabilisation is reached by coating the colloids with polymer chains.

1



2 CHAPTER 1. INTRODUCTION

This leads to a repulsion between the colloids which is of entropic nature.
Charge stabilised colloids interact by a screened Coulomb (Yukawa) interac-
tion. Added salt ions contribute to the screening of the colloids and cause a
short ranged interaction. Thus, both possibilities lead at last to interactions
which can be modelled by the hard core pair potential, which is either zero
(for non-overlapping pairs of particles) or infinite (for overlapping pairs of
particles). Also this approximative model is not exactly solvable except in
one dimension [1].

Beside the interactions, also the shape of the particles has an influence
on the phase behaviour. Dispersions of nonspherical colloidal particles are
model systems used to study a variety of phenomena in condensed matter,
including fluid phase separation and liquid crystalline ordering. The possible
shape of nonspherical objects is manifold and includes cut spheres, hexagons,
spherodisks, platelets, rods etc., see [2] for a classification.

The phase behaviour of such nonspherical colloids is considerably more
complex than that of spherical particles. The latter form a fluid phase at
low densities and undergo a phase transition to a crystal upon increasing
the density. In systems of nonspherical objects partially ordered phases with
properties between those of the fluid and those of the crystal appear. One
particularly important example is the phase transition from an isotropic (I)
fluid to an orientationally ordered nematic (N) fluid. The IN transition
was first observed experimentally in suspensions of (rod-like) tobacco mosaic
virus particles [3, 4]. In Fig. 1.1 we plot a sketch of the isotropic, nematic
and smectic phase of hard rods.

isotropic nematic

ω

smectic A

ω
d

Figure 1.1: Sketch of the isotropic, nematic and smectic phase of hard rods. ω

denotes the nematic director. a) The isotropic phase is a totally disordered
fluid phase. b) The nematic phase is characterised by an ordering of the
orientations, while the centres of mass are still disordered. c) In the smectic A

phase, the centres of mass are ordered in one spatial direction and disordered
in the others; d is the spacing of the smectic layers.

The first theoretical description was given by Onsager [5]. This famous
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treatment of macroscopic ordering due to anisotropic particle shapes con-
stitutes a paradigm to understand the competition between position and
orientation degrees of freedom that maximises the overall entropy of the sys-
tem. Onsager’s theory can be viewed as a truncation of the excess free energy
functional at second order in density. It becomes exact, due to a scaling argu-
ment, in the limit of (vanishingly) thin rods at high concentration. However,
such scaling does not hold in the case of (vanishingly) thin hard platelets;
when applied to this system the theory is known to predict the bulk isotropic-
nematic (IN) transition correctly to be of first order, but to overestimate the
transition densities and value of the nematic order parameter at coexistence
quite severely as compared to simulation results [6,7]. The peculiar features
of the bulk IN transition for platelets are its very small density jump at co-
existence and its very low value of the nematic order parameter S ≈ 0.5 in
the coexisting nematic phase.

During the past several years considerable experimental, simulation and
theoretical work has been devoted to platelet systems. A well established
experimental model system are gibbsite platelets dispersed in toluene, for
which the existence of the IN transition in a colloidal platelet system was
for the first time observed with polarisation microscopy in Ref. [8]. For this
system the nematic-columnar phase transition [9], the hexagonal-columnar
liquid crystal phase [10], and gelation and nematic ordering [11] were inves-
tigated subsequently. Furthermore the influence of external potentials was
considered, e.g. that of gravity [12, 13] and of electric [14] and magnetic [15]
fields. Also platelike clay particles [16,17] and mixtures of colloidal platelets
and polymers [18,19] have received considerable attention. Theoretical inves-
tigations were devoted to the influence of gravity on phase behaviour [20], and
the phenomenon of nematic density inversion [21]. The phase diagram of a
mixture of hard colloidal spheres and disks was calculated using a free volume
approach [22], and the free IN interface in fluids of charged platelike colloids
was investigated using the Zwanzig model with discrete orientations [23].
Ref. [24] is devoted to the effects caused by polydispersity in a mixture of
rods and platelets.

The presence of a substrate commonly leads to rich phenomenology of
surface-induced phase behaviour. The smooth hard planar wall is a basic
model for a substrate that despite its simplicity induces intriguing phenomena
– and has accordingly attracted interest for a variety of hard core models:
Examples include ordering of rods near a hard wall [25], the uniaxial-biaxial
transition of hard rods [26–28], and wetting and layering transitions for model
colloid-polymer mixtures [29–34]. The isotropic phase of platelets in contact
with a wall has been considered in Ref. [35] using Onsager theory, and results
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were compared to those for a hard rod fluid. For the Zwanzig model of
platelets wetting and capillary effects were investigated [36] as well as bulk
and interfacial properties of binary mixtures [37].

In this thesis we first consider vanishingly thin circular hard platelets
with continuous orientations and address their bulk equation of state, the
densities of the bulk isotropic-nematic (IN) coexistence, density profiles and
the interface tension of the (planar) free IN interface, as well as their wetting
properties when adsorbed against a planar hard wall. This is done in chapter
3. In chapter 4 we investigate platelets in magnetic and gravitational fields.
Here we are interested in the influence of the magnetic field on the location
of the IN transition as well as on sedimentation of platelets. Also the si-
multaneous presence of a magnetic and a gravitational field is considered.
Chapter 5 follows with an investigation of effects which occur when platelets
are exposed to strong geometrical confinement, i.e. between two planar hard
walls. We compare our results for platelets with that for infinitely thin hard
rods. We conclude in chapter 6 with platelets and rods with finite thickness.

For the platelets, we use a recently proposed fundamental measure the-
ory (FMT) density functional [38] that includes contributions to the free
energy that are of third order in density and predicts values of the coexis-
tence densities and order parameter at the IN transition in good agreement
with simulation results. The hard rods are treated with a FMT density func-
tional which becomes exact in the Onsager limit of infinitely thin hard rods.
We compare our results of chapter 2 obtained by FMT with that from Monte
Carlo (MC) computer simulations, which were performed by M. Dijkstra from
Utrecht University and with theoretical calculations for the Onsager limit,
which were done by R. van Roij, also from Utrecht University. We thank
both for the permission to use their results here.



Chapter 2

Model, theory and numerics

As the focus of this thesis lies on the investigation of infinitely thin hard
platelets, we will introduce this system next. Then we give a short overview
of the basics of classical density functional theory (DFT). After this we intro-
duce Fundamental Measure Theory (FMT) and discuss briefly its application
to hard platelets and hard rods. Finally, we describe the numerical procedure
used.

2.1 Model

We consider a fluid of infinitely thin hard circular platelets of radius R. The
platelets interact with a hard core pair potential V (r, ω, ω′) that depends on
the centre-to-centre distance r between both platelets and on both orienta-
tions, ω and ω

′, taken to be unit vectors perpendicular to the plane of the
particle. V (r, ω, ω′) is infinite provided that the two particles overlap and
vanishes otherwise.

In addition we consider that the system is confined by a planar smooth
hard wall, which we take to be perpendicular to the z-direction and to be
located at z = 0, such that only the halfspace z > 0 is accessible to the
particles. Hence the interaction between the hard planar wall and a platelet
is described by an external potential,

Vext(z, θ) =

{

∞ z < R sin θ

0 otherwise.
(2.1)

where θ is the angle between the z-direction (normal to the wall) and the
particle orientation ω (normal to the platelet), which we can choose to be in

5
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the range 0 < θ < π/2 due to the inflection symmetry of the particles. See
Fig. 2.1a for an illustration of the model.

z = 0

R

z = L

z
Θ

ω

Figure 2.1: Model of hard platelets with radius R and vanishing thickness at
a planar hard wall. The angle between the z direction, perpendicular to the
wall, and the platelet orientation ω is denoted by θ. For convenience we also
consider a second parallel wall at a distance L.

The one-body density distribution of the platelets is denoted by ρ(r, ω).
As bulk parameters we use the scaled density ρR3, where R is the radius of a
platelet, and the normalisation is chosen such that ρ = 1

4π

∫

drdω ρ(r, ω). As
we do not expect biaxiality to occur, we assume invariance with respect to
rotations around the z axis, as well as translational invariance in the x and y
directions. The remaining relevant angle θ is that between the orientation ω

and the z axis, see Fig. 2.1a. It follows that the (number) density distribution
ρ(r, ω) = ρ(z, θ).

In two chapters, we will go beyond this model: in chapter 5 we compare
our results for capillary nematization of hard platelets with those for (in-
finitely thin) hard rods. For this system, the same geometry as above will
be assumed. In chapter 6, we will investigate platelets and rods at finite

thickness, where we restrict ourselves to bulk systems. Relevant quantities
are defined in this chapter.
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2.2 Density functional theory

In this section, we start with a short overview of (classical) density functional
theory (DFT). For more information, we refer the reader to the literature
on DFT, see e.g. [39]. A special version of DFT used in this thesis, the
fundamental measure theory (FMT), will be discussed in section 2.3.

DFT is a theoretical method which is an ideal tool to investigate inhomo-
geneous systems. Originally developed by Hohenberg and Kohn [40, 41] to
describe quantum mechanical systems, it was later modified by Mermin [42]
to allow the application on classical systems. The basic idea is the minimisa-
tion of a grand potential functional Ω̃[ρ], which depends on the one-particle
density ρ. One can show that Ω̃[ρ] is a unique functional of the external
potential Vext and a function of temperature T , volume V and chemical po-
tential µ.

From Ω̃[ρ] follows the equilibrium density profile ρeq for nonspherical par-
ticles via

δΩ̃[ρ]

δρ(r, ω)
= 0, (2.2)

and hence
Ω̃[ρeq] = Ω, (2.3)

where Ω is the equilibrium grand potential.

The grand potential for particles with translational and orientational de-
grees of freedom, denoted by r and ω, is given by

Ω̃([ρ], µ) = Fid[ρ] + Fexc[ρ] +

∫

dr

∫

dω

4π
ρ(r, ω) (Vext(r, ω) − µ) , (2.4)

where Fexc[ρ] is the excess (over ideal gas) contribution to the total (Helmholtz)
free energy that arises from inter-particle interactions, Vext(r, ω) is an exter-
nal potential, µ is the chemical potential, and the ideal gas (Helmholtz) free
energy functional for uniaxial rotators is given by

Fid[ρ] = kBT

∫

dr

∫

dω

4π
ρ(r, ω)

(

ln(ρ(r, ω)Λ3) − 1
)

, (2.5)

where kB is Boltzmann’s constant, T is the absolute temperature, and Λ is
the (irrelevant) thermal wavelength; the dependence on volume V has been
suppressed in the notation. Equation (2.2) can be rewritten, using (2.4), as
an Euler-Lagrange equation

kBT ln(ρ(r, ω)Λ3) − kBTc1([ρ], r, ω) + Vext(r, ω) = µ, (2.6)
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where c1([ρ], r, ω) = −(kBT )−1δFexc[ρ]/δρ(r, ω) is the one-body direct cor-
relation functional.

The problem is that Fexc[ρ] is not known in general and exact results are
only available for special cases (e.g. hard rods in one dimension [1]), so that
one has to rely on approximations when using DFT.

One systematic way to write down the excess free energy functional Fexc[ρ]
is to expand it in a virial series,

Fexc[ρ] = − 1

2

∫

dr

∫

dω

4π

∫

dr′
∫

dω
′

4π
ρ(r, ω)ρ(r′, ω′)f(r− r′, ω, ω′)

+
1

6

∫

dr

∫

dω

4π

∫

dr′
∫

dω
′

4π

∫

dr′′
∫

dω
′′

4π
ρ(r, ω)ρ(r′, ω′)ρ(r′′, ω′′)

(2.7)

× f(r − r′, ω, ω′)f(r − r′′, ω, ω′′)f(r′ − r′′, ω′, ω′′) + O(ρ4)

where f(r, ω, ω′) = exp(−βV (r, ω, ω′)) − 1 is the Mayer function that for
hard bodies is −1 if the two particles overlap and vanishes otherwise. In
practice, one has to resort to approximations and Onsager’s theory relies on
truncating Eq. (2.7) after second order in density. This is known to be a
good approximation for thin rods; we will discuss how it fares for platelets
below.

Several approximations for Fexc[ρ] for platelets have been proposed, see
e.g. [43]. Ref. [44] gives an FMT for parallel hard cubes; Ref. [45,46] investi-
gate the properties of the Zwanzig model (which uses restricted orientations),
and Ref. [47] is devoted to the role of three-body correlations in a system of
hard rectangles. The FMT functional for platelets used in this thesis relies
on the theory of Ref. [38] for a ternary mixture of hard spheres, needles, and
platelets.

2.3 Fundamental Measure Theory

The Fundamental Measure Theory (FMT) was originally derived for additive
hard sphere mixtures [48]. An extension to arbitrarily shaped convex bodies
was proposed in Refs. [49, 50], which yields the correct second virial coeffi-
cients, but gives only an approximation for the Mayer bond(s), and hence the
second order contribution in density to the excess free energy. This is insuf-
ficient to describe e.g. nematic ordering (see e.g. Ref. [51] for a discussion).
The theory of Ref. [38] remedies this deficiency for the case of platelets, and
hence possesses the correct contribution of second order in density, and also
features a term of third order in density, but no higher order terms. The
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absence of higher order terms is intimately connected to the scaled-particle
roots of the approach and can in particular be traced back to the vanishing
volume of the particles. The third order term is different from the exact third
virial contribution, the third order term of Eq. (2.7). It is non-vanishing (and
constant) for cases with common triple intersection of the three particles in-
volved. Global prefactors are used to compensate for the “lost cases” [52,53]
in order to yield reasonable values for the third virial coefficients. A detailed
discussion is given in Ref. [38].

The excess free energy functional is expressed as an integral over space
and (in the case of platelets) twice over director space,

βFexc[ρ] =

∫

dr

∫

dω

4π

∫

dω
′

4π
Φ({nν

i }), (2.8)

where the (reduced) free energy density, Φ, is a function of a set of the
weighted densities nν

i , where ν and i label the type of weighted density (de-
tailed below).

2.3.1 Application to hard platelets

For pure infinitely thin hard platelets the free energy density is given by

Φ({nν
i }) = nDD

1 (ω)nD
2 (ω) +

1

24π
nD

2 (ω)nDDD
2 (ω, ω′)nD

2 (ω′), (2.9)

where the first term on the r.h.s. recovers the exact second virial contribution.
The weighted densities are related to the bare one-body density, ρ(r, ω), via

nD
2 (r, ω) = wD

2 (r, ω) ∗ ρ(r, ω), (2.10)

nDD
1 (r, ω′) =

∫

dω

4π
wDD

1 (r, ω; ω′) ∗ ρ(r, ω), (2.11)

nDDD
2 (r; ω; ω′) =

∫

dω
′′

4π
wDDD

2 (r, ω′′; ω; ω′) ∗ ρ(r, ω′′), (2.12)

where ∗ denotes the three-dimensional convolution, and the weight functions
are given by

wD
1 (r, ω) = δ(R − |r|)δ(r · ω)/8, (2.13)

wD
2 (r, ω) = 2Θ(R − |r|)δ(r · ω), (2.14)

wDD
1 (r, ω; ω′) =

2

R
|ω · (ω′ × r)|wD

1 (r, ω), (2.15)

wDDD
2 (r, ω; ω′; ω′′) =

8

π
|ω · (ω′ × ω

′′)|wD
2 (r, ω), (2.16)



10 CHAPTER 2. MODEL, THEORY AND NUMERICS

where Θ(·) is the unit step (Heaviside) function and δ(·) is the Dirac distribu-
tion. We have kept the notation of Ref. [38] where the upper index D refers
to the species (disks), and its number of appearances indicates the number
of particle orientations that appear in the definition of the weight functions,
Eqs. (2.13)- (2.16). We will initially restrict ourselves to the case of infinitely
thin hard platelets. In chapter 7, we will investigate hard platelets with fi-
nite thickness. Then, additional weight functions to those given above will
appear.

2.3.2 Application to hard rods

As for platelets, we will firstly restrict ourselves to infinitely thin hard rods,
thus L/D → ∞, where L denotes the length L and D the width of the rods.
In chapter 6, we will drop this restriction and look at hard rods with finite
thickness. Although the Onsager limit has yet been discussed (see the first
term of (2.7)), we repeat it here in the FMT formalism to establish a basis
for the investigations in chapter 6.

However, the excess free energy in the Onsager limit of hard rods is given
by an integral over a free energy density Φ as in the case of platelets,

βFexc[ρ] =

∫

dr

∫

dω

4π
Φ({nν

i }). (2.17)

Note that we integrate here only once over director space (in contrast to
Eq. (2.8) for platelets, where three particle correlations were involved). The
reason is that for rods the Onsager limit is sufficient to describe the IN
transition. The free energy density Φ reads as

Φ = n1n
NN
2 (2.18)

with the weighted densities n1 and nNN
2 ,

nN
1 (r, ω) = wN

1 (r, ω) ∗ ρ(r, ω), (2.19)

nNN
2 (r, ω′) =

∫

dω

4π
wNN

2 (r, ω, ω′) ∗ ρ(r, ω), (2.20)

where ∗ again denotes the three-dimensional convolution, and the weight
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functions are given by

wNN
2 (r, ω, ω′) = 4D

√

1 − (ωω
′)

2

L/2
∫

−L/2

dlδ(~r + lω), (2.21)

wN
1 (r, ω) =

1

4

L/2
∫

−L/2

dlδ(~r + l~Ω). (2.22)

(2.23)

The upper index N again refers to the species under consideration (here
denoted as needles) to be consistent with Ref. [54] and [38].

2.4 Numerical procedure

To obtain the weight functions and hence the weighted densities in planar
geometry for platelets, we integrate over the in-plane coordinates x, y in Eqs.
(2.10)-(2.12), assuming azimuthal symmetry such that the density distribu-
tion only depends on z and θ, see Sec. VII of Ref. [38] for explicit results.
Our numerical implementation of Eq. (2.6) uses free minimisation, i.e. no a

priori form of ρ(z, θ) is assumed. For practical reasons, we add a second
hard wall, such that the walls are located at z = 0 and z = L, with typically
L/R = 51, which is large enough to prevent significant capillary effects and
on the other hand keeps the numerical effort reasonable. An equidistant grid
in the z direction with 20 grid points per particle radius R is used. The
angle θ is discredited on a non-equidistant grid with 20 grid points in the
interval [0; π/2]. This adds up to a total of ≈ 2 · 104 grid points. The nu-
merical minimisation is performed using molecular dynamics-type simulated
annealing [55–57]. Our convergence criterion relies on the norm ε defined as
the maximum of the standard euclidean vector norm for the difference of the
numerical “vector” ρ(z, θ = const) between two minimisation steps, and we
take ε < 10−6 as the threshold. For low values of the scaled chemical po-
tential µ∗, and hence far away from the coexistence region, ∼ 102 steps were
sufficient to obtain convergence. At higher values of µ∗, close to its value at
IN coexistence, up to ∼ 105 steps were necessary to obtain convergence.

We next define some order quantities widely used when investigating in-
homogeneous systems. The first one is the orientation-averaged density pro-
file, which measures the density of platelet midpoints at position z, and is
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obtained from the full density profile as

ρ(z) =

π/2
∫

0

dθ sin(θ)ρ(z, θ). (2.24)

To assess the degree of local nematic order we use the nematic order param-
eter profile, defined as

S(z) = [ρ(z)]−1

π/2
∫

0

dθ sin(θ)ρ(z, θ)P2(cos θ), (2.25)

where P2(x) = (3x2 − 1)/2 is the second order Legendre polynomial. The
normalisation is such that S = 0 indicates isotropic states, while S = 1
indicates parallel alignment of particles i.e. the nematic state.



Chapter 3

Platelets in bulk and at a single
hard wall

In this chapter we investigate the behaviour of hard platelets in bulk, where
we calculate the IN transition and the equation of state, and at a single
hard wall. In the later case, we are interested in the question whether the
nematic phase of the platelets wets the hard wall or not. We compare our
results obtained by FMT with that from Monte Carlo (MC) computer sim-
ulations, which were performed by M. Dijkstra from Utrecht University and
with theoretical calculations for the Onsager limit, which were done by R.
van Roij, also from Utrecht University. A short account of this work has
been published as part of Ref. [58].

3.1 Bulk properties of hard platelets

For the bulk IN transition we obtain from FMT the value of the chemical
potential at coexistence, density of the isotropic and the nematic phase, and
order parameter in the isotropic and the nematic phase, as µ∗

coex = 5.004,
ρIR

3 = 0.419, ρNR3 = 0.469, SN = 0.531, SI = 0.045, respectively. These
values differ slightly from those of the bulk treatment reported in [38], where
no z-dependence was resolved and hence higher angular resolution with 100
grid points could be used, resulting in [38] ρIR

3 = 0.418, ρNR3 = 0.460, SN =
0.492, SI = 0. Both data sets are in good agreement with the simulation
results [7], which are ρIR

3 = 0.460, ρNR3 = 0.498 and SN = 0.45 − 0.55.
Second order virial theory gives ρIR

3 = 0.667, ρNR3 = 0.849 and SN = 0.78,
hence it correctly predicts a first order transition, but overestimates both the
density jump and the order parameter at coexistence. Fig. 3.1a shows the

13



14 CHAPTER 3. BULK AND SINGLE HARD WALL

order parameter as a function of the density to illustrate these results. In
Fig. 3.1b we plot the equation of state, i.e. the pressure P as a function of
the scaled bulk density ρR3. For comparison, we plot the equation of state
obtained from isobaric MC simulations using very long runs of up to 106

cycles for a system of 500 particles. Fig. 3.1b shows that these simulation
results are consistent with simulation results from earlier studies [6,59,60] and
are very well reproduced by the FMT approach. Onsager theory again gives
only qualitatively accurate results. In the isotropic phase, it underestimates
the pressure, while in the nematic phase it overestimates the pressure, which
is due to the too large coexistence densities leading to too large a density in
the coexisting nematic phase. Note also that the slope dP/dρ as predicted
by the Onsager functional is smaller than that of the FMT functional in the
nematic phase.

3.2 Free isotropic-nematic interface

At bulk IN coexistence a planar interface that separates the isotropic and
nematic phases will be stable. The behaviour of such an inhomogeneous sys-
tems is conveniently analysed using the orientation averaged density profile
ρ(z) as defined in (2.24) and the nematic order parameter profile, defined in
(2.25).

We first investigate properties of the free IN interface as obtained from
FMT. Fig. 3.2a shows the density profile across the interface for perpen-
dicular alignment of the nematic director with the surface, i.e. such that
the platelets tend to lie flat against the free IN interface. The preference
for homeotropic anchoring was consistently found by experimental investiga-
tions [58] and for the Zwanzig model [37]. The interface is smooth and crosses
over monotonically between the densities of the coexisting phases, without
any signs of oscillations. We have analysed the asymptotic decay of the den-
sity profile into either bulk phase in detail. We expect that for z → −∞,
i.e. on the nematic side of the interface |ρ(z) − ρN | ∝ exp(−|z/ξρ

N |), while
for z → ∞, i.e. on the isotropic side |ρ(z) − ρI | ∝ exp(−|z/ξρ

I |), where ξρ
I

and ξρ
N are the correlation lengths in the coexisting I and N phases, respec-

tively, and the upper index is a reminder of their relationship to ρ(z). We
hence plot in the insets of Fig. 3.2a ln |ρ(z) − ρI | on the isotropic side and
ln |ρ(z) − ρN | on the nematic side of the interface as a function of z. The
observed linear dependence confirms the expectation, and from the slopes we
obtain ξρ

I /R = 1.32 and ξρ
N/R = 1.35. Results for ρ(z) for Onsager theory

(provided by R. van Roij, Utrecht university) are shown in Fig. 3.2b and
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Figure 3.1: a) Nematic order parameter S and bulk density ρR3 at coexis-
tence as obtained from FMT (big stars), MC simulations (big squares) and
Onsager theory (closed circles). Also shown is S as a function of ρR3 in
the nematic phase from FMT (full line) and MC simulation (small squares,
to distinguish from the big squares indicating the IN transition). b) Scaled
pressure PR3/kBT as a function of the bulk density ρR3 as obtained from
FMT (full line), MC simulations (black squares) and Onsager theory (dashed
line). Also shown are the MC simulation results of Ref. [6] (open circles) and
those obtained from sedimentation profiles, see Ref. [60] (dotted line). The
small open and closed circles indicate the theoretical results for the isotropic
and nematic coexisting phases, respectively.
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will be discussed below. Fig. 3.2c shows the corresponding order parame-
ter profile as obtained from FMT. Again we have analysed the asymptotic
decay of the profile and find that the order parameter decays for z → −∞
as |S(z) − SN | ∝ exp(−|z/ξS

N |), where ξS
N/R = 1.33, and for z → ∞ as

|S(z) − SI | ∝ exp(−|z/ξS
I |) where ξS

I = 1.28, see the inset of Fig. 3.2b. We
expect that ξρ

I = ξS
I and ξρ

N = ξS
N , and indeed find this to good accuracy

to be fulfilled, which demonstrates the internal consistency of our calcula-
tions. The fact that ρ(z) and S(z) decay monotonically on either side of
the interface is in contrast to what is found in Onsager theory, where indeed
weak oscillations are apparent on the isotropic side of the interface. We will
discuss the relationship of the asymptotic decay at the free IN interface with
that at a wall in more detail in Sec. 3.3.

Results from Onsager theory are plotted in Figs. 3.2b (density ρ(z)) and d
(order parameter S(z)). In contrast to the latter, we find weak oscillations at
the isotropic side of the free IN-interface in the density and order-parameter
profiles. These oscillations are clearly visible in the insets on the nematic
side of Fig. 3.2 b and d, where we plot ρ(z) and S(z) on a logarithmic scale.
For more details see the discussion below in Sec. 3.3.

To illustrate the properties of the free IN interface further, we plot in Fig.
3.3 ρ(z, θ = const) as a function of z/R for seven different values of θ. We
find that for θ → π/2 the density in the nematic phase is lower than in the
isotropic phase, which is due to the ordering in the nematic phase around
the nematic director at θ = 0; this causes lower densities around θ = π/2.
Furthermore, the inset of Fig. 3.3 shows ρ(z = const, θ) as a function of θ
for three different values of z/R, where z/R = −10 is on the nematic side,
z/R = 10 is on the isotropic side of the interface, and z = 0 is at the Gibbs
dividing surface. The cross-over from a nematic to an isotropic orientation
distribution is clearly visible.

We explore in the following the repercussions of the interfacial properties
of the free IN interface on the adsorption behaviour of platelets at a hard
wall.

3.3 Behaviour of platelets at a hard wall

The hard wall constitutes a basic yet realistic model for a substrate, e.g.
a container wall, that a colloidal dispersion is exposed to. Although only
constituting a hard core constraint (see Eq. (2.1) for the precise definition
of the external potential), the hard wall induces coupling of orientation and
translation degrees of freedom, i.e. the restriction in available orientations de-
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Figure 3.2: a) Density profile ρ(z)R3 across the free IN interface as obtained
from FMT. The insets show ln |(ρ(z)R3)−ρI,NR3|. b) Density profile ρ(z)R3

across the free IN interface as obtained from Onsager theory. The insets show
ln |(ρ(z)R3) − ρI,NR3|. c) Order parameter profile S(z) across the free IN
interface from FMT. The insets show ln |(S(z))− SI,N |. d) Order parameter
profile S(z) across the free IN interface from Onsager theory. The insets
show ln |(S(z)) − SI,N |.
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pends on the distance of the particle to the wall. Fig. 3.4a shows orientation-
averaged density profiles, ρ(z)R3 as defined in Eq. (2.24), obtained from FMT
for a range of chemical potentials approaching bulk IN coexistence. For low
values of µ∗, and correspondingly low values of the bulk density, ρR3, a pro-
nounced “correlation hole” is apparent near the wall [35]. This originates
from the reduction in available configurations due to overlap of the platelet
with the wall. At z = R there is a sharp cusp, followed by weak oscillations
for larger distances z. Quite unexpectedly but consistent with the monotonic
decay at the free IN interface these oscillations disappear upon increasing µ∗.
A further shoulder appears very close to the wall, z ∼ 0.5R, which develops
into an independent peak that grows in size and becomes eventually larger
than the cusp at z = R. A pronounced wetting film grows upon approach-
ing bulk IN coexistence. The film decays from a plateau with a value that
is very similar to the density of the coexisting nematic phase smoothly to
the value of the isotropic bulk. To demonstrate the similarity between the
wetting film at the hard wall and the free IN interface, we superimpose the
density profile of the free IN interface in Fig. 3.4a. We show results from On-
sager theory in Fig. 3.4b, where we have plotted density profiles for different
bulk densities ρ(z)R3. The profiles for small bulk densities are very similar
to those obtained from FMT. With increasing density, a nematic wetting
layer develops. While the behaviour close to the wall agrees with that found
in FMT, we find the wetting films are more pronounced compared to FMT
and MC simulations. This is consistent with the larger density jump at the
IN-transition.

In order to test the theoretical results M. Dijkstra has carried out NV T
MC simulations using very large system sizes of up to N = 7 · 104 hard
platelets confined between two planar hard walls. As the interfacial tension
between the isotropic and nematic phase is very low, we needed large (lateral)
wall areas in order to stabilise the nematic film against thermal fluctuations.
Moreover large wall separations were needed to prevent capillary nematiza-
tion. The density profiles resulting from the MC simulations are shown in
Fig. 3.4c. Note that the bulk values of the density profiles are different from
those considered in the DFT calculations. The density profiles from MC sim-
ulations confirm the existence of a correlation hole close to the wall and the
cusp at z = R for low densities. With increasing density, this peak vanishes
and is replaced by a peak at z ∼ 0.5R, in agreement with FMT results. The
growing wetting film is somewhat more diffuse than that found by FMT.
We attribute this to the presence of additional (capillary wave) fluctuations
in the simulations that are not captured in either DFT. We investigate the
asymptotic decay of correlations in more detail below.
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In Fig. 3.5a we show the order parameter profiles at the hard wall from
FMT for the same statepoints as considered in Fig. 3.4a. Upon approaching
the wall S(z → 0) approaches unity, as a platelet with small separation
from the wall must be well aligned with the wall to avoid overlap. For low
bulk densities there is a minimum of S(z) near z ∼ 2R. Strikingly, upon
increasing the chemical potential a growing zone of nematic order is found.
This confirms that indeed the film of high density possesses nematic order.
Fig. 3.5b shows order parameter profiles at the hard wall as obtained from
Onsager theory for the same bulk densities as considered in Fig. 3.4b. Again
results from FMT and Onsager are very similar for small densities. A strong
pronounced nematic wetting layer is found for bulk densities close to IN
coexistence. Corresponding results from MC simulations are shown in Fig.
3.5c. Although the MC data contain some statistical noise and the minimum
in S(z) is not found in the simulations, the overall agreement to the FMT
results is striking.

Fig. 3.6 shows the asymptotic behaviour of ρ(z) for large distances from
the wall for three different (bulk) densities as obtained from FMT (a), On-
sager (b) and MC simulations (c). To scrutinise the behaviour we plot
ln |ρ(z)R3 − ρR3|, which allows to observe oscillations with small amplitude
more easily than a linear plot does. Note that at zeros of |ρ(z)R3 − ρR3|
its logarithm is −∞. For numerical reasons, the curves in Fig. 3.6 display
only a finite negative minimum value; these (relatively) deep local minima
correspond to the zeros of ρ(z). While the first minimum is due to the ini-
tial increase of the density from the wall, the subsequent minima stem from
oscillations of the density profile ρ(z) that extend into the bulk. Hence the
monotonic decay of the upper profiles in Fig. 3.6a indicates that the oscil-
lations disappear upon increasing density. This finding is supported by the
MC simulations, although in Fig. 3.6c for z/R > 3.5 the statistical errors
are considerable. In contrast to this scenario, Onsager theory predicts os-
cillations over the full range of densities in the isotropic phase, as can be
seen in Fig. 3.6b. The oscillations move away from the wall with increasing
density, but do not disappear. In Fig. 3.7a and b we show the results for the
order parameter S(z) obtained from FMT (corresponding to Fig. 3.6a) and
Onsager theory (corresponding to Fig. 3.6b), respectively. Again, we find
disappearance of oscillations for higher densities from FMT, while Onsager
theory shows oscillations over the full range of densities.

The nature of the wetting scenario can be analysed in more detail by
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Figure 3.4: a) Density profiles from FMT as a function of the distance
from the wall, ρ(z)R3, for values of the scaled (bulk) density ρR3 =
0.186, 0.343, 0.393, 0.416, 0.4182, 0.4184 (from bottom to top). The dot-
ted line is the profile across the free IN interface. Bulk isotropic and
nematic coexistence densities are indicated by the open and closed cir-
cles. b) Density profiles from Onsager theory as a function of the dis-
tance from the wall, ρ(z)R3, for values of the scaled (bulk) density ρR3 =
0.187, 0.411, 0.579, 0.657, 0.663, 0.665 (from bottom to top). Bulk isotropic
and nematic coexistence densities are indicated by the open and closed circles.
c) Density profiles as a function of the distance from the wall, ρ(z)R3, from
MC simulations, for bulk densities ρR3 = 0.125, 0.25, 0.38, 0.45, 0.46, 0.475
(from bottom to top). Bulk isotropic and nematic coexistence densities are
indicated by the open and closed circles.
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Figure 3.5: a) Nematic order parameter profile from FMT, S(z), as a function
of the distance from the hard wall for the same values of ρR3 as in Fig. 3.4a.
The dotted line shows S(z) across the free IN interface. b) Order parameter
profiles from Onsager theory, as a function of the distance from the wall.
Plotted are results for the same bulk densities as in Fig. 3.4b. c) Nematic
order parameter profile, S(z), from MC simulations as a function of the
distance from the hard wall, for the same values of ρR3 as in Fig. 3.4c.
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Figure 3.6: a) Variation of ln |ρ(z)R3 − ρR3| with z/R for the same values
of (bulk) density as in Fig. 3.4a, as obtained from FMT. b) Same as a), but
from Onsager theory for the (bulk) densities of Fig. 3.4b. c) Same as a) and
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considering the adsorption, either obtained from ρ(z) or from S(z), via

Γρ =

∞
∫

0

dz[ρ(z) − ρ(∞)], ΓS =

∞
∫

0

dz[S(z) − S(∞)]. (3.1)

In Fig. 3.8a we have plotted Γρ as obtained from FMT as a function of the
scaled density ρR3 in the isotropic and nematic phases. The adsorption is
negative for low densities and has a minimum at ρR3 ≈ 0.2. For ρR3 > 0.3
we find positive values of Γρ, and eventually a sharp increase as ρ approaches
its value in the coexistent isotropic phase. This hints of complete wetting
of the wall by the nematic phase. In the nematic phase, the adsorption
decreases monotonically as a function of ρR3. This can be explained with
increasing nematic ordering in the bulk and hence a loss of structure close
to the wall. The film thickness is defined via dρ = Γρ/(ρNR3 − ρIR

3) or
dS = ΓS/(SN − SI). The inset of Fig. 3.8a shows dρ and dS as a function
of − ln(∆µ∗/µ∗

coex), with ∆µ∗ = −(µ∗ − µ∗
coex). From the fact that we find a

linear depence we conclude that the nematic phase wets the wall completely,
i.e. that the film thickness diverges as bulk coexistence is approached as

dρ = ξρ
N ln(∆µ∗/µ∗

coex) + const, dS = ξS
N ln(∆µ∗/µ∗

coex) + const, (3.2)

which is indeed appropriate for complete wetting in the present case of short-
ranged interparticle forces. We find ξρ

N/R = 1.32 and ξS
N/R = 1.22. While

the agreement with the data from the decay of the free IN-interface for ξρ is
very good, the above given value for ξS is slightly smaller than that from the
free IN-interface. This can be explained with the larger numerical sensitivity
of the order parameter S.

In addition, we consider Young’s equation for the contact angle ϑ at which
the free IN interface hits the wall,

cos ϑ =
γWI − γWN

γIN
, (3.3)

where γWN , γWI and γIN are the interfacial tensions between the wall and
the nematic phase, between the wall and the isotropic phase, and between
the isotropic and the nematic phase respectively. Result for the tensions are
obtained from the general definition of the interfacial tension γ of a planar
interface,

γ = (Ωinh + pV )/A (3.4)

where Ωinh is the grand potential of the inhomogeneous system with the
interface, p is the bulk pressure, V is the system volume and A is the lateral
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system area (perpendicular to the z-axis). Within DFT Ωinh is obtained from
inserting the equilibrium result for ρ(z, θ) into Eq. (2.4), i.e. Ωinh = Ω̃[ρ(z, θ)].
Within FMT we find γWNR2/kBT = 0.3327, and γWIR

2/kBT = 0.3391, and
γINR2/kBT = 0.006656 (see Sec. 3.2) from Eq. (3.4), which yields cos ϑ ≈
0.96. Because γIN is obtained from two numerical similar quantities via (3.4),
the resulting value has a relatively large numerical uncertainty. Keeping this
in mind when using γIN in (3.3), the result cos ϑ ≈ 0.96 is consistent with
ϑ = 0.

In the simulations thermodynamic integration is used to determine the
free energy difference of a bulk system and a system with a wall. The hard
wall is approximated by a finite barrier, such that a zero barrier height corre-
sponds to a bulk system and an infinite barrier height to a system with a hard
wall [61,62]. This yields the wall tensions γWI and γWN and one obtains γIN

via (3.3) assuming ϑ = 0, i.e. the occurrence of complete wetting. The results
are γINR2/kBT = 0.015 from MC simulations and γINR2/kBT = 0.051 from
Onsager theory.

In Fig. 3.8b we have plotted the wall interfacial tension γR2/kBT as a
function of the density far away from the wall ρ = ρ(∞). At low densities,
ρR3 . 0.3, we find very good agreement between results from either DFT
and the simulations, as well as with the tension obtained from SPT [2], given
by

γ/kBT = πρR/4 + πρ2R4/2. (3.5)

This SPT result fails, however, to reproduce the maximum of γ below bulk
coexistence. There is very good agreement between the location of this max-
imum (ρR3 ' 0.4) in FMT and MC, whereas Onsager theory locates it far off
at ρR3 ' 0.6. The non-monotonic behaviour is accompanied by the growth
of the nematic wetting layer, which leads to a reduction of the interfacial
tension. In the nematic phase γ decreases as a function of ρR3, which we can
trace back to the increasing nematic order in bulk. The decay predicted by
FMT is stronger than that found in the simulations. Although the Onsager
functional overestimates the behaviour in the coexistence region significantly,
it gives qualitatively similar behaviour.

3.4 Conclusions

In conclusion we have used FMT density functional theory to investigate
the free IN interface and the wetting behaviour of hard platelets at a hard
wall and compared our results with those obtained from MC simulations
and Onsager theory. In our bulk calculations, we find that FMT describes
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Figure 3.8: a) Adsorption ΓρR
2 as a function of the density ρR3, as obtained

from FMT. The vertical lines indicate the isotropic and nematic coexistence
density. The divergence of Γρ is a signature of complete wetting of the
wall. The inset shows FMT results for the thickness dρ (upper line) and
dS (lower line) of the nematic wetting film, as defined in the main text, as
a function of − ln(∆µ∗/µcoex). b) Interface tension γ at a hard wall as a
function of the scaled bulk density ρR3, as obtained from FMT (long dashed
line), Onsager theory (short dashed line), scaled particle theory (dotted line)
and MC simulations (full line). The open and filled circles represent the
values at bulk isotropic and nematic coexistence statepoints, respectively, as
obtained from FMT, simulations and Onsager theory.
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quantities that characterise the IN transition, like the coexistence densities
and order parameter at coexistence, very well. The values for the density
jump and the order parameter at coexistence are in good agreement with
the simulation data. The equation of state in both the isotropic and in the
nematic phase agree nicely as obtained from MC simulations and the FMT.

Furthermore, we have investigated the free IN interface in detail. With
FMT, we find monotonic decay on either side of the interface. This finding
is supported by the simulations, where no oscillations at the hard wall are
found for higher densities. Because the asymptotic decay of the hard wall
profiles close to the coexistence region is equivalent to that of the free IN
interface, this confirms our FMT findings.

Both FMT and simulations predict complete wetting of the hard wall by
the nematic phase upon approaching bulk IN coexistence from the isotropic
side. For FMT, we have confirmed the complete wetting scenario by analysing
the divergence of the adsorption due to the formation of the nematic wetting
film and by using Young’s equation, which gives cos ϑ = 1 within the numer-
ical accuracy. Quite surprisingly, FMT and simulations predict disappearing
of oscillations of the density profile for higher (bulk) densities.

Comparing the structure of the density profiles obtained from FMT with
those from MC simulations, we find extensive similarities. The most eye-
catching difference is the decay of the profiles to the bulk value which is
somewhat more diffuse in the simulations. We attribute this to the influence
of capillary fluctuations on the wetting film, which are not accounted for in
the FMT [63, 64]. Finally, we investigated the wall-isotropic interfacial ten-
sion with different approaches. The FMT predictions are in close agreement
with the simulation data.

Onsager theory gives a qualitatively correct picture. It predicts the IN
transition correctly as a first order transition and gives the correct shape of
the curves describing the equation of state. Quantitatively, it overestimates
the density jump and the order parameter of the IN transition. The pressure
in the isotropic phase is underestimated, while the predictions for the nematic
phase are too large due to the overestimation of the density jump. This also
holds for the interfacial tension. Onsager theory overestimates the value of
the wall interfacial tension, but the qualitative behaviour is similar. In the
wetting scenario, it gives complete wetting of the wall as also predicted by
FMT and simulations. Contrary to the latter, it predicts oscillations for the
hard wall profiles over the full range of (isotropic) densities as well as for the
isotropic side of the free IN interface.

Possible future investigations are capillary effects due to small wall-wall
separation, capillary waves on the wetting film [63,64] or the influence of an
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external potential. Another interesting point of investigation is the effect of
softness of the wall-fluid potential [65].
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Chapter 4

Platelets in magnetic and
gravitational fields

So far we have investigated hard platelets in bulk, studied the free IN interface
and found that the nematic phase wets a hard wall, which can be viewed as
an external field with infinite field strength. In the current chapter, we
will investigate hard platelets under the influence of finite external fields.
In section 4.1 we study the influence of a magnetic field, while in section
4.2 the effect of a gravitational field is investigated. Section 4.3 deals with
the simultaneous presence of a magnetic and a gravitational field. This is
motivated by recent experiments on gibbsite platelets [66]

4.1 Influence of a magnetic field on the isotropic-

nematic phase transition

That external fields have an influence on the physical properties of matter
is at least known since the work of Kerr [67]: the electro-optical Kerr effect
describes the birefringence of materials in strong electric fields. This effect
is strongly pronounced in liquids as well as in crystals and is due to a re-
alignment of charge carriers in the medium to the external field. However,
effects due to electric and / or magnetic fields are not restricted to specific
materials. For suspended nonspherical colloidal particles, the electric and
diamagnetic susceptibility will in general differ along the different axes of
the particles. This dielectric or diamagnetic anisotropy causes an interaction
between the colloids and the external field. As we will show below in detail,
the magnetic energy depends on the angle between the external field and the
particle symmetry axis. From this fact it is intuitively clear that a magnetic
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and / or electric field will have an influence on the orientational distribution
of such nonspherical colloids. This may not only change the location of liquid
crystal phase transitions like the IN transition for example, but also lead to
effects in the isotropic phase, e.g. field induced birefringence, which can be
measured in experiments using polarised light [15, 68]. Refs. [69, 70] report
investigations of the physical properties of goethite nanorods. The authors
observe an alignment of the rods parallel to the direction of a magnetic field
for small field strengths and perpendicular to the field for large field strengths
both in the isotropic and in the nematic phase. Alignment of particles to an
external field was also observed for suspensions of fd -viruses, which are rod-
like in shape [71,72]. The necessary field strength to observe a certain degree
of alignment is higher than in the case of the goethite nanorods due to the
lower diamagnetic anisotropy of the fd -viruses. For platelike particles, a
magnetic field-induced effect was found in [73, 74]. Ref. [73] investigates the
nucleation mode of platelets of uniaxial ferromagnets in arbitrarily oriented
external magnetic fields. In Ref. [74], the authors consider ageing single
crystals of Fe-N alloy at various temperatures in external magnetic fields.
They find orienting effects which they attribute to the interplay between the
magnetisation of an iron matrix and the anisotropic magnetisation.

The field-induced alignment of the particles leads to preordering in the
“isotropic” phase; the phase is paranematic rather than isotropic. A relevant
question is what effect this preordering has on the IN transition. This was
investigated within the Onsager theory for thin hard rods in Ref. [75]. The
authors find that above a certain strength of the external field the first-order
IN transition vanishes in a critical point. An extension to thick rods was given
in Ref. [76] using the Parsons-Lee functional [77–79]. Here, a dependence of
the critical field strength on the width to length ratio of the rods was found.
Ref. [80] is about the phase behaviour of hard rods in an orienting external
field. In Ref. [81] the authors calculate the phase coexistence curve for rods
and platelets for a negative anisotropic polarizability (susceptibility) on the
basis of Onsager theory and find a tricritical point. As can be expected from
the difficulties to describe the IN transition of platelets in bulk quantitatively
correct, this is only qualitatively correct in the case of platelets.

Here we consider a system of hard platelets under the influence of an
external magnetic field. The orientation of the platelet is denoted by the
angle θ between the platelet orientation ω, as introduced in chapter 2, see
Fig. 2.1. Additionally, we assume a magnetic field pointing along the z-
direction. The induced magnetisation m in the coordinate system spanned
by the platelet orientation ω and e⊥ (see Fig. 4.1), is given by

m = χmH, (4.1)
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where χm is the magnetic susceptibility and H is the magnetic field strength.
With H = B − 4πM with B being the magnetic induction we find

m =
χm

1 + 4πχm
B ≈ χmB (for |χm| � 1). (4.2)

In the following we will refer to B as the magnetic field. Due to the fact that
χm differs along the different axis of the platelet, we write

m = χ‖B‖ω + χ⊥B⊥e⊥, (4.3)

and the magnetic energy per particle is given by

Umagn = −1

2
m ·B. (4.4)

With B = ωB‖ + e⊥B⊥ this yields

Umagn = −1

2
m · B

= −1

2

(

χ‖B
2
‖ + χ⊥B2

⊥

)

= −1

2

(

χ‖cos2θ B2 + χ⊥(1 − cos2θ)B2
)

= −1

2

(

(χ‖ − χ⊥)B2cos2θ
)

− 1

2
χ⊥B2.

(4.5)

We next define ∆χ as
∆χ ≡ χ‖ − χ⊥, (4.6)

so that we can rewrite (4.5) as

Umagn = −1

2
∆χB2cos2θ, (4.7)

where the non-orientation dependent term was neglected. Thus, Umagn is
a function of the angle θ between the platelet orientation and the z-axis.
The platelets in any case favor the alignment that costs the lowest magnetic
energy. If ∆χ is positive, the platelets will hence align with their normals par-
allel to the field, a negative value of ∆χ leads to a perpendicular alignment.
Recall that at the (bulk) IN transition symmetry breaking takes place. In
the isotropic phase, no preferred symmetry axis exists while in the nematic
phase the platelets are oriented preferentially along the nematic director.
Applying planar geometry, this is chosen to be the z-axis, and the phase is
uniaxial because of invariance under rotation around the z-axis. In a mag-
netic field with positive ∆χ, where parallel alignment to the field is observed,
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ω

Figure 4.1: Hard platelet with a magnetic field B orientated parallel to the
z-axis. R is the radius of the platelet, ω denotes the platelet orientation and
θ is the angle between ω and the z-axis. e⊥ is a unit vector perpendicular
to ω.

a) b)
,zB

ω
ω

Figure 4.2: Typical orientations of hard platelets in a magnetic field B, with
orientation of the nematic director (a) parallel and (b) perpendicular to the
field direction. In (a), the symmetry is uniaxial, in (b) biaxial.

the nematic phase remains uniaxial, see Fig. 4.2a. For negative ∆χ and per-
pendicular alignment the nematic phase will become biaxial due to rotations
of the platelet around the direction of B, see Fig. 4.2b.

We next discuss the case with B⊥ z and ∆χ < 0 and hence ω⊥B (cor-
responding to Fig. 4.2b). To avoid the biaxiality occurring in this case, one
could let the magnetic field B rotate around an axis parallel to the z-axis with
a periodic time smaller than the relaxation time of the platelets [68]. The
platelets would then have to align parallel to the z-axis to be perpendicular
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to B at any time.

Our numerical implementation of the FMT functional in planar geome-
try cannot describe biaxiality, so we restrict ourselves to cases of uniaxial
symmetry. In planar geometry uniaxial symmetry means that the platelets
in the nematic phase preferentially orient with their normal parallel to the
z-axis and hence the order parameter S > 0. Thus, we can describe the
above discussed situation with a magnetic field B rotating around an axis
parallel to the z-axis. Alternatively we could treat the situation of ∆χ > 0
and B ‖ z.

We define V0 = −(1/2)∆χB2 and use an external potential acting on the
platelets given by

Vext(θ) = V0 sin2(θ). (4.8)

This sin2(θ) dependence is reached with an orientation of B perpendicular
to the z-axis and the rotation of B around the z-axis, as described above.
We have investigated V0/kBT < 0.01, which corresponds at a temperature
T ≈ 300K to a value of ∆χ ≈ −1 · 10−22J/T 2 and a magnetic field strength
of B < 8T . Due to the rotation of the field the effective field strength is
only 4T . The results for density ρ and order parameter S at the IN transi-
tion are shown in Fig. 4.3. Fig. 4.3a shows the variation of the paranematic
and nematic coexistence densities (horizontal axis) as a function of the field
parameter V0 (vertical axis). The transition is shifted to lower densities,
whereby the density jump decreases slightly with increasing field strength.
Further increasing V0/kBT , the density jump becomes significantly smaller.
Above a value V0 = 0.02kBT the isotropic coexistence density starts to in-

crease again, while the nematic coexistence density continues to decrease.
The binodal ends in a critical point at ρ = 0.423 and V0 = 0.045. For larger
values of V0/kBT , there is no phase transition observable anymore. The
chemical potential at coexistence, which we plot in the inset of Fig. 4.3a,
decreases monotonically and almost linearly with V0. In Fig. 4.3b we plot
the value of the order parameter S at coexistence in the paranematic and
nematic phases. We observe S > 0 in the paranematic phase due to the
influence of the magnetic field, so the term “paranematic” is correct. The
value of S in the paranematic phase at coexistence increases monotonically
with increasing field strength, while the value in the nematic phase decreases.
We attribute this to the shift of the IN-transition to lower densities which
are connected with a lower order parameter, see Fig. 3.1a. Remarkably this
effect overcompensates the ordering effect caused by the external field.
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Figure 4.3: a) Isotropic (left graph) and nematic (right graph) coexistence
densities (horizontal axis) and the field parameter V0/kBT (vertical axis). P
and N denote the paranematic and nematic phases, respectively. The critical
point at ρ = 0.423 and V0 = 0.045 is indicated by the closed circle. b) Same
as a), but for the order parameter S in the isotropic and nematic phase. The
inset shows the chemical potential µ∗

coex as a function of the field parameter
V0/kBT .
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4.2 Sedimentation of hard platelets

Gravity acting on colloidal suspensions leads to sedimentation of the colloidal
particles. The first investigation was done by Perrin [82] in 1910. The sedi-
mentation profiles can be used to get information about the equation of state,
P (ρ) [83]. For platelets, this was done by simulations in Ref. [60]. Sedimenta-
tion profiles of charged colloids are investigated in [84]. Ref. [85] investigates
gravity induced liquid crystal phase transitions of colloidal platelets with
MC-simulations.

DFT has been used as an ideal tool to treat the influence of gravity on
colloidal suspensions: Ref. [86] investigates the competition between sedi-
mentation and phase coexistence of binary systems under gravity. Ref. [87]
uses DFT and computer simulations to investigate sedimentation equilibria
of colloid-polymer mixtures within the Asakura-Osawa-Vrij model. Ref. [88]
is about the colloidal brazil-nut effect in charged binary colloidal suspensions
and investigates this effect by DFT and computer simulations. The authors
find that heavy colloidal particles sediment on the top of the lighter ones,
provided that their mass per charge is smaller than that of the lighter ones.

The strength of gravity can be quantified by the gravitational length ξg,
defined as

ξg = kBT/mg, (4.9)

where g is the gravitational acceleration and m is the buoyancy mass of one
particle. We consider the case of a fixed total number of particles in the
system. This accords to usual experimental conditions. The total number of
particles per unit area A in a system of length L is obtained from the density
profiles as

N

A
=

L
∫

0

dz ρ(z). (4.10)

In order to obtain density profiles ρ(z), we start with the grand potential,
which reads

βΩ̃([ρ]) =

L
∫

0

dz

∫

dθρ(z, θ)
(

ln(ρ(z, θ)Λ3) − 1
)

+ βFexc[ρ(z, θ)]

+ β

L
∫

0

dz

∫

dθρ(z, θ)[Vext(z, θ) − µ].

(4.11)

In the case of an ideal gas, Fexc[ρ] = 0, we find after the minimisation proce-
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dure given in Eq. (2.2) the well known barometric law,

ρ(z) ∼ exp(−z/ξg). (4.12)

For a gravitational field the external potential is given by

Vext(z) = mgz. (4.13)

Thus, Vext depends only on z, and we can define a z-dependent function u(z)
as

u(z) := Vext(z) − µ = [mgz − µ]. (4.14)

u(z) can be viewed as a local chemical potential, which serves as an input
quantity to the (z-dependent) FMT. The FMT includes nonlocal correlations
as can be seen by the occurrence of convolutions in the weighted densities (see
subsection 2.3.1). The z-independent part µ of the local chemical potential
is a free parameter which we use to ensure N/A = const. for different values
of R/ξg. N/A can be obtained from the density profiles via Eq. (4.10).

We display the results of our calculations in Fig. 4.4. One hard wall is
located at z = 0, a second wall is situated at z = 100R. Fig. 4.4a shows the
density profile ρ(z) as a function of the height z/R. Plotted are results for
different values of the field strength R/ξg for N/A = const. We find that the
density at the bottom of the system increases with increasing values of R/ξg,
whereas the density in the upper regions decreases. This can be explained
with the fact that increasing R/ξg means that the buoyancy mass m has to
increase. This leads to an accumulation of particles at the bottom and due to
the constraint N/A = const to a decreasing number of particles in the upper
regions. In Fig. 4.4b we plot the results for the local order parameter S(z).
In agreement with the observed increase of the density we find increasing
values of S(z) at the bottom for increasing R/ξg. The decrease of S(z) in
the upper region is weaker than for ρ(z). This might be explained by the
already low absolute value of S(z) in the upper part already for R/ξg = 0.01.

4.3 Sedimentation of hard platelets in a mag-

netic field

The effects of simultaneous presence of a magnetic and gravitational field
have been investigated in Refs. [89, 90]. Ref [89] studies experimentally the
microstructure of magnetite colloids exposed to a magnetic field, and Ref. [90]
is about the preparation and sedimentation behaviour of magnetite-covered
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Figure 4.4: a) Density profile ρ(z) as a function of the distance from the
wall at z = 0 from z-dependent FMT for different values of the inverse
gravitational length R/ξg. A second wall is located at z = L = 100R with
the system length L. b) Same as a), but for the order parameter profile S(z).
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clay particles. The authors study the sedimentation behaviour in absence or
presence of an external magnetic field.

We next consider a magnetic field (as described in section 4.1) in addition
to gravity. Again we assume that the magnetic field rotates around the z-
axis to avoid biaxiality as discussed above, see Fig. 4.5 for a sketch of the
system. In experiment, the rotation has the function to anneal the sample
additionally to orienting the particles. A further effect is a rid of defects
within the sample due to the rotation. We will treat this system with two
different approaches, i) a local density approximation DFT (LDA) and ii) the
full z-dependent FMT used in the previous sections. In the LDA, we solve
the (bulk) Euler-Lagrange equations for each height z of the system with
the local chemical u(z). Thus, LDA is not able to describe for example hard
wall effects correctly and is appropriate only for cases where slowly varying
density profiles can be expected. We compare the LDA results with those
obtained from the full z-dependent FMT. For a constant gravitational field

z

N

P

B

g

ω

Figure 4.5: Probe with hard platelet fluid, paranematic (P) in the upper
part, nematic (N) in the lower part. The magnetic field B is rotating around
the z-axis to avoid biaxial ordering of the platelets.

and a magnetic field which depends only on the angle θ between the platelet
normal and the magnetic field, the external potential Vext is given by

Vext(z, θ) = −(1/2)∆χB2 sin2(θ) + mgz. (4.15)

With the abbreviation V0 = −(1/2)∆χB2 we can write

Vext(z, θ) − µ = V0 sin2(θ) + [mgz − µ] . (4.16)

Thus, Vext is the sum of a θ-dependent part V0 sin2(θ) and a z-dependent part
u(z) = [mgz − µ]. In the LDA we solve the bulk Euler-Lagrange equations
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for u(z) independently at each height z of the system. The z-dependent
FMT takes the function u(z) as an input quantity and includes nonlocal
correlations as discussed in the previous section. In both cases the chemical
potential µ is a free parameter which has to be chosen to ensure N = const
for different values of V0. N is again obtained from the density profiles via
Eq. (4.10).

The density profiles from LDA are shown in Fig. 4.6. Plotted is the den-
sity profile ρ(z) against the scaled height z/ξg. In Fig. 4.6a the profiles are
plotted for fixed scaled chemical potential µ∗ for a range of values of V0/kBT .
In this case, the total number of particles N/A increases with increasing
V0/kBT due to the aligning effect of the magnetic field. Fig. 4.6b shows the
density profiles ρ(z) against the scaled system length z/L for L/ξg = 1. The
chemical potential µ∗ for a given value of V0 is chosen to ensure N/A = const.
for all values of V0. Surprisingly we find that the density for larger values
of V0 decreases at the bottom of the system, z/L < 0.5. We attribute this
to preordering effects in the paranematic phase and subsequently increasing
density in the upper part of the system. Due to the constant total number
of particles, the density has to decrease at the bottom of the system. The
order parameter profiles S(z) are plotted in Fig. 4.7a and b. Fig. 4.7a shows
the profiles for the same fixed chemical potential µ∗ as in Fig. 4.6a. We find
an increasing nematic order in the paranematic phase with increasing mag-
netic field strength. In Fig. 4.7b the order parameter profiles for a constant
total number of particles are plotted. The value of the order parameter at
the bottom of the system remains nearly constant upon increasing the field
strength. This might be explained with the decreasing density found at the
bottom discussed above (see Fig. 4.6b) and hence decreasing nematic order
Finally, we show the product ρ(z)S(z). This product is interesting because
it is proportional to the retardation of polarised light which is sent through
a tube with colloidal platelets. Thus, it can be measured experimentally [68]
and could enable an experimental test of our results. ρ(z)S(z) becomes
lower at the bottom of the system for increasing field strength, as would be
expected from the behaviour of ρ(z) and S(z). Fig. 4.9 shows the results
from the full z-dependent FMT calculation. Here we use z/R as a scaled
height coordinate. The field strength is measured by R/ξg, which is fixed to
R/ξg = 0.01. Again, a hard wall is located at z/R = 0 and z/R = 100. The
chemical potential µ∗ is chosen to ensure N/A = const for all values of V0.

Comparing the results from LDA and FMT, one finds remarkable differ-
ences. Within the z-dependent FMT we find ordering effects at both hard
walls and density oscillations at the upper wall, see Fig. 4.9a. In contrast
to this, the LDA profiles are monotonic. This could be expected due to the
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Figure 4.6: a) Density profile ρ(z) as a function of the scaled height z/ξg

from LDA for different field parameters V0. b) same as a), but for height
scaled with the system length L for different field parameters V0. Here, the
chemical potential µ∗ is chosen to ensure N = const for all values of V0.
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Figure 4.7: a) Same as Fig. 4.6a, but for the order parameter profile S(z)
from LDA for different field parameters V0. b) Same as Fig. 4.6b for the
order parameter profile S(z), from LDA.
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Figure 4.8: Product of density profile and order parameter profile, ρ(z)S(z)
from LDA as a function of the height scaled with the system length L.

fact that LDA is a local theory which treats each height z of the system in-
dependently from each other. This also explains why the LDA results show
a discontinuous jump for the density and order parameter below the critical
value of V0, while the nonlocal FMT obtains a continuous crossover from
the isotropic to the nematic phase. Nevertheless the LDA-DFT describes
the unexpected properties like the decrease of density at the bottom with
increasing field strength correctly.
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Figure 4.9: a) Density profile ρ(z) as a function of the distance from the wall
at z = 0 from z-dependent FMT for different values of the field parameter
V0. A second wall is located at z = L = 100R with the system length L.
The inverse gravitational length is fixed to R/ξg = 0.01. b) Same as a), but
for the order parameter profile S(z).
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Chapter 5

Capillary nematization of hard
platelets

In section 3, we investigated a system of (infinitely thin) hard platelets ad-
sorbed against a single planar hard wall. Due to the complete wetting sce-
nario with thick wetting films, new effects can be expected when two parallel
walls are considered and moved close together. In section 5.1 we give an
introduction to relevant phenomena occurring in strong geometrical confine-
ment. We investigate these effects for a system of infinitely thin hard platelets
in section 5.2. We compare our findings with those for infinitely thin rods
between hard walls.

5.1 Introduction

Situations with strong geometric confinement have been considered for differ-
ent types of liquid crystals and of colloidal particles using theory, simulation
and experiments. Capillary condensation was found for simple liquids [91,92]
and capillary nematization for thermotropic liquid crystals [93, 94]. Capil-

lary nematization is characterised by a shift of the IN transition to a lower
chemical potential or equivalent lower (bulk) densities. Thus, it represents
a similar case to the more general phenomenon of capillary condensation,
which is the shift of the vapour-liquid transition in a slit or pore. Ref. [95]
investigates hard rods confined by two parallel hard walls using integral equa-
tions and computer simulations . The authors examine the dependence of
the free energy on the separation of the walls and speculate that capillary
nematization should occur. Refs. [26,27] find capillary nematization for biax-
ial hard rods within the Zwanzig model, and Ref. [28] confirms these results
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with MC simulations. Ref. [96] investigates a confined soft ellipsoid fluid with
DFT, and in ref. [97] computer simulations of long thin hard rods in a quasi-
two-dimensional planar geometry are performed. In Refs. [98,99], a detailed
discussion of hard rods in a capillary with walls acting on the centres of the
rods and an additional external potential can be found. The authors find
capillary nematization as well as capillary smectization. The latter describes
a shift of the nematic-smectic phase transition to lower chemical potentials
upon confining the system. Much less work has been devoted to systems of
confined hard platelet fluids. In Ref. [36] the authors investigate the wetting
and capillary nematization behaviour of binary hard-platelet and hard-rod
fluids using the Zwanzig model. They obtain density profiles and find a cap-
illary critical point upon decreasing the wall separation. Here we treat the
same phenomena but for a pure platelet fluid using a model with continuous
orientations.

5.2 Results

We next investigate capillary effects for the case of hard platelets. For reasons
of comparison, we also treat the case of rods and compare our findings in the
following section.

Recall that the free IN interface and the wetting profiles of platelets at
a single hard wall decay smoothly to their bulk values, see e.g. Fig. 3.2a
and b of chapter 3. The bulk values of density and the order parameter are
reached at a distance from the wall of ≈ 10R. From this fact one can expect
that geometrical confinement will have an effect on the phase transition for
even large wall-to-wall separations. Our goal is to determine the values of
the isotropic and nematic densities, order parameter as well as the chemical
potential at coexistence as a function of the wall separation.

The separation between both walls is denoted by H, and the relative
capillary width is defined as h = H/R, thus bulk corresponds to h = ∞. We
next define spatial averaged quantities 〈ρ〉 and 〈S〉 to compare our results
for different values of h,

〈ρ〉 =
1

H

H
∫

0

dz ρ(z), (5.1)

and

〈S〉 =
1

H

H
∫

0

dz S(z). (5.2)
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In Fig. 5.1a we plot the results for the coexistence densities as obtained for
platelets. The results for the order parameter follow in Fig. 5.2a. For
increasing 1/h (and thus decreasing capillary width) we at first observe in-
creasing isotropic and nematic coexistence densities, although the chemical
potential µ∗ at coexistence is shifted to lower values, see the inset of Fig. 5.1a.
This increase of the average density can be explained with the adsorption-
layer at the wall which contributes strongly to 〈ρ〉 for small h. With further
increasing 1/h the isotropic coexistence density initially continues to increase,
but the slope decreases. We attribute this to the shift of the IN transition
to lower chemical potentials, which is an effect in the opposite direction to
the density increase due to the adsorption layer. The nematic coexistence
density has a maximum at 1/h = 0.041 or H = 2.44R and starts to decrease
again beyond this point. The binodal ends in a critical point at 1/h = 0.086
or H = 11.6R. The behaviour of the order parameter 〈S〉 confirms these re-
sults, see Fig. 5.2a. The isotropic coexistence value increases with increasing
1/h, until the critical point is reached. For the nematic coexistence curve we
also find the maximum at 1/h = 0.41 or H = 2.44.

We compare our results for the chemical potential at capillary coexistence
with those obtained from the Kelvin equation. The Kelvin equation has been
tested for simple fluids in slit pores [91,92] and for a lattice model of the IN
transition [100] and is given by

∆µ =
2γINR2

h(ρN − ρI)
, (5.3)

where ∆µ = µbulk
coex − µcap

coex is the change of the chemical potential at coexis-
tence due to the capillary of width h, and γIN is the IN interfacial tension
for complete wetting. With the value γINR2/kBT = 0.006656 obtained in
chapter 3 and ρNR3 − ρIR

3 = 0.05 we can calculate ∆µ as a function of
h. The results are plotted in the inset of Fig. 5.1a. The predictions of the
Kelvin equation for the capillary coexistence chemical potential are in good
agreement with the results from the calculations for 1/h = 0.043 (which cor-
responds to a capillary width of h = 23.1) but become increasingly poor for
larger values of 1/h. This could be expected as the Kelvin equation is valid
only for h � 1.

In Fig. 5.3a we plot examples of the isotropic and nematic density profiles
ρ(z) and order parameter profiles S(z) at coexistence for capillary widths of
h = 23.1, 18.1, 13.0, 12.0. The density in the middle of the capillary increases

from h = 23.1 to h = 13 from ρ = 0.418 to ρ = 0.42, although the chemical
potential at coexistence decreases. This can be explained with the fact that
for h = 13 the wetting films from both walls ”see” each other and so shift
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Figure 5.1: a) Variation of the isotropic and nematic coexistence densities
(horizontal axis) with the inverse capillary width 1/h (vertical axis) as ob-
tained for platelets. The density 〈ρ〉 is defined via Eq. (5.1). The critical
point at 〈ρ〉 = 0.457 and 1/h = 0.086 is indicated by the closed circle.The
inset shows the decrease of the chemical potential µ∗

coex due to the walls as
obtained from FMT (full line) and from the Kelvin equation (dotted line).
b) Same as a), but as obtained for rods. The density 〈c∗〉 is defined via Eq.
(5.5). The critical point at 〈c∗〉 = 4.07 and 1/h = 0.373 is indicated by the
closed circle.



5.2. RESULTS 51

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  0.1  0.2  0.3  0.4  0.5  0.6

1/
h

<S>

(a)

I N

 0

 0.1

 0.2

 0.3

 0.4

 0  0.2  0.4  0.6  0.8  1

1/
h

<S>

(b)

I N

Figure 5.2: a) Variation of the values of the average order parameter 〈S〉,
defined in Eq. (5.2), for the isotropic and . nematic profile (horizontal axis)
with the inverse capillary width (vertical axis) as obtained for platelets. b),
Same as a), but as obtained for rods. The average order parameter is defined
via Eq.(5.6).



52 CHAPTER 5. CAPILLARY NEMATIZATION

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  2  4  6  8  10  12  14  16  18  20  22

ρ(
z)

R
3

z/R

a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  4  8  12  16  20

S(
z)

z/R

b)
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of the walls for h = 23.1, 18.1, 13.0, 12.0 as obtained for platelets. Plotted
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the density to a higher value. The isotropic and nematic order parameter
profiles S(z), which we plot in Fig. 5.3b for the same values of h as the density
profiles,, are similar to those from chapter 3 for a single wall, compare Fig.
3.5a. Here however capillary effects are clearly visible for h = 13 and h = 12,
see Fig. 5.3b: the value of the order parameter for the isotropic coexistence
profile in the middle of the capillary is with S > 0.15 significantly larger
than zero. It is even larger than the value of S = 0.045 which found with
the z-dependent FMT in chapter 3 due to numerical reasons. The nematic
profile at the middle of the capillary is with S = 0.4 lower than that of the
bulk coexistence value, consistent with the shift of the chemical potential to
lower values.

We next investigate the capillary behaviour of rods. Although this calcu-
lation was already done [98, 99] for a hard wall acting on the centres of the
rods with an additional potential, we perform this calculation again to com-
pare the results for platelets and rods as obtained from our FMT functional.

In particular, we compute the isotropic-nematic phase transition in a
capillary constituted by two walls acting on the centre of the hard rods:

Vext(z, θ) =

{

∞ z < 0, z > H

0 0 ≤ z ≤ H
(5.4)

Due to the fact that the external potential only depends on the spatial coor-
dinate z, the resulting density profiles are uniaxial. Again planar geometry
is assumed, where the only spatial coordinate is z and the remaining angle θ
is that between the orientation ω and the z-axis, see Fig. 5.4 for a sketch.

ω

L

z

Θ

Figure 5.4: Rod with length L, the orientation is denoted by ω, and θ is the
angle between ω and the z-axis.

We next define the dimensionless density c by c(z, θ) = π
4
L2Dρ(z, θ) and

the orientation-averaged density profile c∗(z) =
π/2
∫

0

dθ sin(θ)c(z, θ). The cap-
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illary width is again measured by h = H/L, and we define analogously to
the platelets the spatial averaged density and order parameter via

〈c∗〉 =
1

H

H
∫

0

dz ρ(z), (5.5)

and

〈S〉 =
1

H

H
∫

0

dz S(z). (5.6)

Fig. 5.1b and Fig. 5.2b show the results of the calculations. We find the
isotropic and nematic coexistence densities to increase with increasing 1/h.
While this increase holds for the isotropic density until the critical point is
reached, the nematic density starts to decrease beyond a maximum at 1/h =
0.16. The binodal ends in a critical point at 1/h = 0.372. The behaviour
of the order parameter 〈S〉 differs slightly. The isotropic coexistence value
decreases monotonically as the density, but the nematic coexistence curve
shows no maximum.

Again we apply the Kelvin equation (5.3) to calculate the shift of the
chemical potential. The results are plotted in the inset of Fig. 5.1a. We find
good agreement with the data obtained from FMT for small 1/h, for 1/h
closer to the critical point the predictions become increasingly poor.

Profiles of the density c(z) and the order parameter S(z) for a capillary
width of h = 9, 5, 3 are plotted in Fig. 5.5 a and b. In the centre of the cap-
illary the bulk values of the density and order parameter are almost reached
for h = 9 and also h = 5. We find the maximum of the density profile ρ(z)
directly at the wall, see Fig. 5.5a. In contrast to this, the maximum of the
order parameter profile S(z) surprisingly lies not directly at the wall, see
Fig. 5.5b. When looking at the profiles for h = 3, relatively close to the
critical point at h = 2.68, one finds that the capillary effects are now more
pronounced. In the centre of the capillary is the value of the order param-
eter significantly larger than zero. As observed for h = 5 and h = 9, the
maximum of the density lies at the wall, while the maximum of the order
parameter is shifted away from the wall.

For 1/h > 0 we found that the value of the isotropic order parameter
profile is larger than zero in increasing large regions of the capillary. Despite
this fact we continued to call this phase “isotropic” because the preordering
we find here is different from that in the paranematic phase in section 4.1.
There global preordering was found, whereas here we find 〈S〉 > 0 even for
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Figure 5.5: a) Density profile c∗(z) as a function of the distance from one
of the walls for h = 9, 5, 3 as obtained for rods. Plotted are the isotropic
(full line) and nematic (dashed line) coexistence profiles. The coexistence
chemical potential decreases from µ∗ = 7.72 at h = 9.0 to µ∗ = 7.56 at
h = 3.0 b) Same as a), but for the order parameter profile S(z).
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profiles where still S(z) = 0 in the middle of the capillary (see profile for
h = 9.0 in Fig. 5.5b), which is due to the effect of the adsorption layer.

5.3 Conclusions

Comparing the results found for the capillary nematization of platelets and
rods, one finds remarkable differences. The most eye-catching difference is
the value of 1/h at which the critical point is reached. For platelets, we find it
at a capillary width of H = 11.6R, for rods at H = 2.67L. Because the length
L of a rod has to be compared to the diameter D of a plate instead of the
radius R, we have to compare H = 5.8D for platelets and H = 2.67L for rods.
Thus, the critical capillary width at the critical point for platelets is twice as
large as that for rods. We compare this to the correlation lengths which are
ξI/D = 0.66 (at the isotropic side of the free IN interface) and ξN/D = 0.675
(at the nematic side of the interface) for platelets and ξI/L = 0.335 and
ξN/L = 0.332 for rods [101]: the correlation length for platelets is about
twice the correlation length of the rods. Thus, a larger correlation length
leads to a larger capillary width at the critical point, which is intuitively
clear from the fact that a larger correlation length means that the wetting
profiles from both walls ”see” each other at even larger distances.

Comparing ∆µ at the critical point, we find ∆µ = 0.25 for rods and
∆µ = 0.06 for platelets. Recalling Eq. (5.3), we see that ∆µ is proportional
to the IN interfacial tension γIN and inverse proportional to the IN density
jump ρI − ρN . The interfacial tension γIN = 0.006656R2 or γIN = 0.0266D2

for platelets is much smaller than that found for rods, which is given by γIN =
0.16LD. This is partially compensated by the density jump (ρN − ρI = 0.9
for rods and ρN − ρI = 0.05 for platelets), leading together to a smaller shift
for platelets.



Chapter 6

Platelets and rods with finite
thickness

So far, we have investigated the behaviour of infinitely thin hard platelets and
rods. In nature and hence in experiments, the particles under consideration
will have a finite thickness [10–14,68]. For this reason, a theory which is able
to predict the phase behaviour of thick anisotropic particles is desirable. In
this chapter, we will extend the FMT approaches for rods and platelets used
in the previous chapters in order to describe finite thickness. As a test case,
we will compute the bulk IN phase transition. In order to do this, we have to
add additional contributions to the excess free energy functional. We expect
that this is only a first step towards such a theory.

6.1 Introduction

The literature on anisotropic particles with finite thickness is vast. Ref. [102]
investigates the phase behaviour of hard rods. The authors use computer
simulations and obtain the complete phase diagram for different values of
L/D. In Ref. [14,18] the IN transition and the equation of state of cut spheres
is computed using MC simulations. Cut spheres are of similar shape as
platelets, in particular they are spheres where - symmetric around the equator
- spherical caps have been removed. There are several theoretical approaches
to treat rods with finite thickness. In Ref. [103], the authors investigate
a fluid of perfectly aligned rigid cylinders for radius a and length l with a
scaled particle ansatz. A DFT approach is used in Ref. [51] which interpolates
between the Rosenfeld [48–50] and the Onsager functional [5]. Results for the
IN transition of hard rods and ellipsoids are obtained. The authors conclude
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that their results are comparable with those from the Parsons-Lee functional
[77–79]. The latter theory is based on a mapping of higher virial coefficients
to those of the hard sphere system. Parsons-Lee theory predicts the location
of the IN transition accurately for a wide range of shape anisotropies [104,
105], but yields unrealistic density profiles when applied to inhomogeneous
situations[]. Other approaches were proposed by Poniewierski and Holyst
[106–109] and Somoza and Tarazona [110–112]. In Ref [80] a complex phase
diagram of rods is presented, and in Ref. [113] the authors investigate the
smectic, nematic and isotropic phases in a mixture of thin and thick hard
rods.

6.2 Results for platelets and rods

We now consider platelets with finite thickness. Such a platelet is charac-
terised by the radius R and the thickness L, see Fig. 6.1.

R

L

Figure 6.1: A platelet of radius R and thickness L.

To treat thick platelets, we have to modify the expression for the free
energy density Φ given in Eq. (2.9), which is suitable for platelets with van-
ishing thickness. Additional weight functions are required, in particular we
need weight functions which describe the volume of a platelet. In Eq. (2.9),
this weight function vanishes due to the vanishing thickness. We combine the
free energy density given by Eq. (2.9) with the Rosenfeld functional [48–50]
and obtain

Φ = Φ1 + Φ2 + Φ3

= −n0 ln(1 − n3) +
nDD

1 nD
2

1 − n3

+
nD

2 nDDD
2 nD

2

24π(1 − n3)2
,

(6.1)
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where the additional weighted densities [38] are given by

w0(r, ω) =
1

2πR
δ(R − |r|)δ(r · ω), (6.2)

w3(r, ω) = 2LΘ(R − |r|)δ(r · ω). (6.3)

w3 describes the volume of a thick platelet of Radius R and thickness L. w0

corresponds to the Euler characteristic. The new weighted densities n0, and
n3 are given by

n0(r, ω) = w0(r, ω) ∗ ρ(r, ω), (6.4)

n3(r) =

∫

dω

4π
w3(r, ω) ∗ ρ(r, ω). (6.5)

We use the thickness-to-radius ratio L/R as a dimensionless parameter, where
L/R = 0 corresponds to infinitely thin hard platelets.

In Fig. 6.2 we show results for the equation of state P (ρ) for L/R =
0.0, 0.1, 0.2 in the isotropic phase. The results for L/R = 0.0 stem from FMT
and for comparison we plot the results from a fifth order virial expansion [6].
The authors compute the virial coefficients up to the fifth order using a
diagram technique [114]. For L/R = 0.1 and L/R = 0.2 we plot results
from FMT and a fit function to MC simulation results of cut spheres [19].
We find that FMT overestimates the pressure in the isotropic phase for high
densities. The virial expansion as well as the fit parameters contain negative
coefficients which lead to a damping of the slope at increasing densities, which
is not reproduced by FMT.

In Fig. 6.3 we plot the equation of state P (ρ) in the isotropic and nematic
phases for L/R = 0.0, 0.1, 0.2. The results were obtained by FMT and by
MC simulations (M. Dijkstra) for L/R = 0, see also Fig. 3.1b. For L/R = 0.1
and L/R = 0.2 we again use the fit function to MC simulations [19]. The
isotropic and nematic coexistence densities are indicated by the open and
closed circles, respectively. Comparing Fig. 6.3a, b and c, we find that FMT
predicts a shift of the IN transition to lower densities, whereby the density
jump ρN − ρI remains nearly constant. The MC simulation results indicate
no shift of the IN transition, but predict a decreasing density jump. The
pressure in the nematic phase is significantly underestimated by FMT for
L/R > 0.

In conclusion, the predictions from FMT are not in quantitative agree-
ment with the simulation results for L/R > 0. In the isotropic phase, the
decrease of the slope of P (ρ) obtained by the MC simulations is not catched
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Figure 6.2: a) Equation of state, P (ρ) for L/R = 0.0 as obtained from FMT
(full line) and a fifth-order virial expansion (dashed line). Shown are results
for the isotropic phase. b) same as a), but for L/R = 0.1 as obtained from
FMT (full line) and a fit function to MC simulations [19] (dashed line). c)
same as b) for L/R = 0.2.
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Figure 6.3: a) Equation of state, P (ρ) for L/R = 0.0 (a), L/R = 0.1 (b) and
L/R = 0.2 c) as obtained from FMT (full line) and MC simulations by M.
Dijkstra (dashed line,a) and a fit function to MC simulations, respectively [19]
(dashed line, b and c). Shown are results for the isotropic and nematic phase.
The isotropic and nematic coexistence densities are indicated by open and
closed circles, respectively.
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by FMT, what we explain with the fact that the fit functions to the MC sim-
ulations contain negative coefficients, which is not captured by FMT. In the
nematic phase, FMT predicts increasing pressure PR3/kBT for fixed bulk
density ρR3 as the MC simulations obtain, but significantly underestimates
this increase. Also the predictions for the location of the IN transition are
not in agreement with those from MC simulations.

We next consider hard rods with finite thickness. In the following, we refer
to a rod as to a cylinder of length L, which is capped with two hemispheres
of diameter D at the ends, see Fig. 6.4. In literature, the term spherocylinder

L

L+D

D

Figure 6.4: A rod (or spherocylinder) of length L and diameter D.

is often used for this kind of thick rods.

As in the case of platelets, we have to modify the free energy density Φ,
which is given by Eq. (2.18) for L/D = 0. Adding weight functions which
describe the volume of the platelet following [48–50], the free energy density
is now given by

Φ = Φ1 + Φ2 + Φ3

= −n0 ln(1 − n3) +
n1n

NN
2

1 − n3

+

+
nN

2 nNNN
2 nN

2

24π(1 − n3)2
,

(6.6)
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with the 3D weight functions wµ, µ = 0, 1, 3 and wNN
2 :

w0(r, ω) =
1

2
(δ(r + Lω/2) + δ(r− Lω/2)), (6.7)

w2(r, ω) = πD

L/2
∫

−L/2

dl δ(r + lω), (6.8)

w3(r, ω) =
πD2

4

L/2
∫

−L/2

dlδ(r + lω), (6.9)

and the weighted densities nµ, µ = 0, 2 and n3:

nν(r, ω) = wν(r, ω) ∗ ρ(r, ω) ν = 0, 2, (6.10)

n3(r) =

∫

dω

4π
w3(r, ω) ∗ ρ(r, ω), (6.11)

where L is the length of the cylinder and D the diameter of the hemispheres
at the end, see Fig. 6.4. We define the reduced density

ρ∗ = ρ/ρcp, (6.12)

where

ρcp = 2/(
√

2 +
√

(3)/(D/L)) (6.13)

is the close packing density of hard rods. We performed the calculations with
two different approaches, using i) Φ1 +Φ2 and ii) Φ1 +Φ2 +Φ3 from Eq. (6.6).
We refer to i) as FMT2 and to ii) as FMT3.

Figs. 6.5a,b show the results of the calculations for the isotropic-nematic
transition for D/L = 0.0, 0.05, 0.0667, 0.2. In Fig. 6.5a we plot the results
for the reduced density ρ∗ defined above, in Fig. 6.5b for the dimensionless
density c∗ as defined in section 5.2. The results from FMT2 and FMT3 func-
tionals are in better agreement with the simulation data than the predictions
of Onsager theory. The FMT3 functional underestimates the coexistence
densities compared to MC results, while the FMT2 functional overestimates
them. A different approach with similar results can be found in Ref. [51].
We have to conclude that the FMT3 functional shows no further enhance-
ment when compared to the results from FMT2. This is a kind of surprising,
because the truncation of Eq. (6.6) after the Φ2 term is a bit artificial.
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6.3 Conclusion

Our approach to treat finite thickness does not yield satisfying results for the
platelets nor for rods. We find in the case of platelets the correct tendency
for the equation of state, but the increase of the pressure due to the thickness
is underestimated. Also the prediction of the location of the IN transition is
not in agreement with the simulations. For rods, this prediction is in slightly
better agreement with the simulation results than for platelets, but still not
perfect. We conclude that a more profound modification of FMT is necessary
to treat finite thickness.
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Figure 6.5: a) Predictions for the reduced coexistence densities ρ∗ as a func-
tion of D/L. Plotted are results from Onsager, FMT2, FMT3 and MC
simulations [102], see the key for the symbols. The lower symbols denote in
each case the isotropic coexistence density, the upper symbols the nematic
coexistence density, respectively. For D/L = 0.2 no IN transition is found by
MC simulations [102]. b) Same as a), but for the scaled coexistence densities
c∗.
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Chapter 7

Summary and Outlook

In conclusion, we have investigated hard colloidal platelets in bulk and in
external fields with FMT. This FMT functional includes contributions to the
free energy that are of third order in density. For reasons of comparison, we
performed additional calculations for hard rods. We initially treated bulk
systems and find our FMT functional to describe the IN transition and the
equation of state very well compared to MC simulation results (performed by
M.Dijkstra, [115]). Next we have investigated the free IN interface and the
behaviour of platelets adsorbed against a single hard wall. For the free IN
interface we find the decay on the isotropic as well as on the nematic side to
be monotonic, which is in contrast to predictions from Onsager theory [115].
FMT also predicts complete wetting of the wall by the nematic phase, which
was confirmed by the MC simulations. Surprisingly, we find oscillations of the
wall density profile for small (bulk) densities which disappear with increasing
(bulk) density. This seems to be confirmed by the MC simulations, but a
final statement is not yet possible due to the strong thermal fluctuations of
the profiles obtained in the simulations.

Subsequently we have turned to finite external fields and treated platelets
supposed to a magnetic field, gravity and a simultaneous presence of both.
For a magnetic field, we find the density and order parameter jump at the
IN transition to become smaller and finally to end in a critical point for
strong magnetic fields. The simultaneous magnetic and gravitational field
was treated with a LDA approach and the full z-dependent FMT functional.
While the latter contains nonlocal correlations, these are not present in the
LDA approach. Consistently from both approaches we find a reduction of
density at the bottom of the system when increasing the field strength. Os-
cillations of the density profile at the upper wall found with the z-dependent
FMT are not catched by the LDA approach as can be expected from its local
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nature which yields monotonic results. We have also computed the product of
the density profile with the order parameter, which is of experimental interest
and thus could allow tests of our results, see below. Afterwards, we have in-
vestigated platelets in strong geometric confinement induced by two parallel
planar hard walls and find a capillary critical capillary width upon decreasing
the wall distance. For smaller distances no first order IN transition is found.
We compare our findings with a calculation of capillary nematization of hard
rods and find a remarkable larger critical capillary width for platelets. We
explain this with the correlation lengths at the isotropic and nematic side
of the free IN interface ξI and ξN , which are larger for platelets. In the last
chapter we have tested an extension of FMT to describe thick platelets and
rods. We have computed the dependence of the IN transition on the thick-
ness of the particles. We find that the predictions of the extended FMT for
rods are in better agreement with the simulation results than for platelets
and can be compared with those of a different approach [51]. Nevertheless
we have to conclude that the results are not satisfying for both platelets and
rods.

Possible future work could be devoted to answering the question of the
disappearance of the oscillations of the wall profile with increasing density.
This could be done by longer runs with MC simulations to reduce thermal
noise as well as with FMT calculations with larger z and θ resolution. A con-
nection to experiments could be done for our predictions of the sedimentation
profiles, especially the product of the density profile and that of the order
parameter: the retardation of light sent through a test tube with colloidal
particles is proportional to this product and can be measured experimen-
tally [66]. From our investigation of platelets and rods with finite thickness,
we have to conclude that a more profound modification of the FMT than
performed in this work is necessary to obtain quantitatively accurate results.
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