
Numerical Treatment of Nonlinear
Semidefinite Programs

Inaugural-Dissertation

zur
Erlangung des Doktorgrades der

Mathematisch-Naturwissenschaftlichen Fakultät

der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Christoph Helmut Vogelbusch

aus Ratingen

Dezember 2006

Aus dem Institut für Mathematik der

Heinrich-Heine-Universität Düsseldorf

Gedruckt mit der Genehmigung der

Mathematisch-Naturwissenschaftlichen Fakultät der

Heinrich-Heine-Universität Düsseldorf

Referent: Prof. Dr. Florian Jarre

Koreferent: Prof. Dr. Helmut Ratschek

Tag der mündlichen Prüfung: 31.01.2007

Zusammenfassung

Die Dissertation Numerical Treatment of Nonlinear Semidefinite Programs diskutiert zwei
Algorithmen zum Lösen von nichtlinearen, nicht konvexen semidefiniten Programmen
(SDPs).

Ausgangspunkt für die Forschungen waren mathematische Probleme, die bei der Schalt-
kreissimulation1 auftreten. Für diese als nichtlineare SDPs formulierbaren Probleme ex-
istierte kein brauchbarer Löser.

Ein nichtlineares SDP wird in dieser Dissertation gegeben durch

min{ C •X | F (X) = 0, X ∈ S+ }

Hierbei sind C,X ∈ Sn symmetrische Matrizen und F : Sn → Rm eine nichtlineare
Abbildung. C • X ist das Standard-Rn×n-Skalarprodukt, gegeben durch die Spur des
Produkts CTX,

C •X := tr(CTX).

Die Menge Sn
+ ist der Teilkegel der reellen Matrizen in Rn×n, der die symmetrischen

Matrizen mit nicht negativen Eigenwerten umfasst. Weiter bezeichnen wir mit Sn
++ den

Kegel der symmetrischen Matrizen, deren Eigenwerte positiv sind.
Eine Semidefinitheitsbedingung lässt sich über die Unterdeterminanten auch als nicht-

lineare Bedingung schreiben. Eine Berücksichtigung solcher nichtlinearen Nebenbeding-
ungen führt allerdings zu entarteten Problemen und ist nicht effizient lösbar. In [St05]
beschreibt Stingl eine alternative Methode zum Lösen nichtlinearer SDPs, die zur gleichen
Zeit wie diese Dissertation entstand. Die Methode in [St05] basiert auf einem modifizierten
Barriereansatz und wurde ebenfalls implementiert. In der Praxis werden daher Algorith-
men verwendet, die die Semidefinitheitsbedingung als Kegelbedingung berücksichtigen.

Der erste hier vorgestellte Ansatz solche Probleme effizient zu lösen ist das SSP (“Se-
quential Semidefinite Programs”) Verfahren. Dieses Verfahren lehnt sich an das SQP Ver-
fahren an, das die Lösung nichtlinearer Programme durch das sequentielle Lösen quadratis-
cher Programme der Form

min
∆X

{ C •∆X +
1
2
B[∆X, ∆X] | F (X) + DF (X)[∆X] = 0, X + ∆X ∈ S+ }

annähert. Beim SSP Verfahren wird die Lösung eines nichtlinearen semidefiniten Pro-
gramms durch eine Folge von linearen SDPs angenähert. Erste analytische Ergebnisse
bescheinigen dem SSP Verfahren die gleichen theoretischen Konvergenz Ergebnisse wie
dem SQP Verfahren. Diese Analysen verwenden für die linearisierten Probleme die exakte
Hessematrix der Lagrangefunktion. Leider gibt es für die daraus entstehenden approxima-
tiven Probleme nur dann effiziente Löser, wenn diese Matrix positiv semidefinit ist. Für
den SQP Fall gibt es unter milden Voraussetzungen positiv semidefinite Approximationen,
die auf den linearisierten Nebenbedingungen mit der Hessematrix der Lagrangefunktion
übereinstimmen.

1Unsere Beispiele wurden gestellt von den Lucent/Bell Laboratorien

In dieser Dissertation wird gezeigt, dass es solche positiv semidefiniten Approximationen
der Hessematrix der Lagrangefunktion im SSP Fall nicht immer gibt. Die Hessematrix
von nichtlinearen SDPs kann auf den linearisierten Nebenbedingungen negative Eigenwerte
haben. Der Grund hierfür ist, dass die Randkrümmung des semidefiniten Kegels nicht in
der Lagrangefunktion eingeht.

Weiter zeigen wir an Hand eines Beispiels, dass das SSP Verfahren für jede beschränkte
positiv semidefinite Approximation der Hessematrix nicht schneller als linear konvergieren
kann. Dies bildet einen überraschenden Kontrast zu dem SQP-Verfahren.

Im Rahmen dieser Dissertation wurde das SSP Verfahren auch implementiert, um die
Schaltkreis-Probleme zu lösen. Es zeigt sich, dass das SSP Verfahren eine gute globale
Konvergenz für die getesteten Probleme hat.

Im Kapitel über die SSP-Implementierung stellen wir eine neue Schrittweitenkontrolle
vor: die erweiterten Filter. Das SSP Verfahren hat für alle uns vorliegenden Beispiele mit
den erweiterten Filtern eine deutlich schnellere Konvergenz als eine Penalty-Linesearch
oder die standard Filter Methode. Eine besondere Eigenschaft dieser erweiterten Filter
ist, dass sie einen guten Indikator liefern, wann wir Nahe am Optimum sind, wann es also
sinnvoll wäre auf einen Löser mit schneller lokal Konvergenz zu wechseln.

Um die Stärken, die schnelle globale Konvergenz, des SSP Verfahrens zu nutzen und
Schwächen des SSP Verfahrens, die lineare lokale Konvergenz, zu vermeiden schlagen wir in
dieser Arbeit einen hybriden Löser vor. Dieser hybride Löser verwendet das SSP Verfahren
um dem Optimum nahe zu kommen und wechselt dann zu einen schnellen lokalen Löser.

Als schnellen lokalen Löser betrachten wir eine Innere-Punkte-Methode (IPM) .
Für diese IPM, wird zunächst ein zentraler Pfad in der Nähe der Optimal Lösung

definiert. Wir stellen einen Prädiktor-Korrektor Algorithmus vor, der diesem Pfad folgt.
Um beim Folgen dieses Pfades eine Abstiegsrichtung zu erhalten, muss die Summe

H+ F−1E

auf den linearisierten Nebenbedingungen positiv definit sein. Hierbei istH die Hessematrix
der Lagrangefunktion und F−1E ein Symmetrisierungsterm. Da der Term F−1E bereits
positiv definit ist, ist ein naheliegender Ansatz, eine positiv semidefinite Approximation
von H zu verwenden. Da die Suchschritte der IPM denen des SSP Verfahrens sehr ähneln,
folgt auch für das IPM bei einer positiv semidefiniten Approximation von H eine langsame
Konvergenz.

Wir zeigen, dass eine positiv definite Approximation von H + F−1E ∈ Sn
++ gefunden

werden kann, für die die quadratische Konvergenz erhalten bleibt, falls eine schwache
Barrierebedinung erfüllt ist.

Theoretisch wird für den Prädiktorschritt eine Approximation benötigt, die in nur
gewisse Richtungen positiv definit ist. Für eine generelle positiv definite Approxima-
tion, ergeben aber einige Vorteile. Da eine solche Approximation sowohl für Prädiktor-
als auch den Korretkorschritt verwendet werden kann, ist es möglich Rang-1 oder Rang-2
Updates für H+F−1E zu definieren. Diese können dann gegen eine solche positiv definite
Approximation von H + F−1E konvergieren und eine superlineare Konvergenz erreichen.
Zusätzlich ist die Dekomposition einer positiv definiten Matrix effizienter, da für diese das
Choleskiverfahren verwendet werden kann.

ii

Abstract

The dissertation Numerical Treatment of Nonlinear Semidefinite Programs discusses two
algorithms that solve nonlinear, nonconvex semidefinite programs (SDPs).

Basis for this thesis were problems that occur in circuit simulation2. A good model
for these problems are nonlinear SDPs. There was no suitable solver for such problems.
In [St05] Stingl describes another method for solving nonlinear SDPs that was developed
simultaneously to this thesis. The method in [St05] is based on a modified barrier approach
and also includes a numerical implementation.

We consider nonlinear SDPs of the form

min{ C •X | F (X) = 0, X ∈ S+ }

where C,X ∈ Sn are symmetric matrices and F : Sn → Rm is a nonlinear mapping. C •X
is the standard-Rn×n- scalar product, given by the trace of the product CTX,

C •X := tr(CTX).

The cone Sn
+ is the set of real matrices Rn×n, that are symmetric and only have non

negative eigenvalues. Sn
++ denotes the cone of symmetric matrices and have only positive

eigenvalues.
A semidefinite constraint can be reformulated as nonlinear inequality constraints for

the determinants of the principal submatrices. This formulation leads to degenerated
problems that are not efficiently solvable. In practical applications algorithms are used
that consider the semidefinite constraint directly as a cone constraint.

The first approach presented here is the SSP (“Sequential Semidefinite Programs”)
method. This method is similar to the SQP method. The SSP method solves nonlin-
ear SDPs by approximating them with a sequence of quadratic SDPs

min
∆X

{ C •∆X +
1
2
B[∆X, ∆X] | F (X) + DF (X)[∆X] = 0, X + ∆X ∈ S+ }.

It can be shown that the SSP method processes nearly the same theoretical convergence
properties as SQP methods. The analysis uses the exact Hessian for the linearized pro-
grams. Efficient solvers for these linearized programs only exist, if the approximation of
the Hessian of the Lagrangian is positive semidefinite. Under mild conditions there exist
positive semidefinite approximations that lead to fast convergence for the SQP approach.
These approximations are identical with the Hessian of the Lagrangian on the set that
satisfies the linearized constraints.

In this thesis we prove, that such approximations of the Hessian of the Lagrangian in
general do not exist for the SSP approach. The Hessian of the Lagrangian for nonlinear
SDPs can have negative eigenvalues on set that satisfies the linearized constraints. The
reason for this is that the curvature of the boundary of the semidefinite cone is not
represented in the Lagrangian.

2Numerical examples of such problems were given by Lucent/Bell Laboratories.

We use an example to prove that for the SSP approach we cannot expect more than
linear convergence for any choice of bounded semidefinite approximation of the Hessian
of the Lagrangian. This is a surprising contrast to the SQP approach.

For this dissertation the SSP approach has been implemented to solve the given prob-
lems. The implementation shows that the SSP approach has a good global convergence
speed for the given problems.

In the chapter “Implementation” we present a new step length control: the augmented
filter. For the given examples the SSP approach using the augmented filter had a much
faster convergence speed than with a penalty line search or the standard filter method.
A special property of the augmented filter method is that it provides a good indicator
for closeness to the optimum. This indicator can be used to switch to a fast local solver.
This allows us to define a hybrid solver. This hybrid solver uses the SSP approach for
the global convergence and then switches to a fast local solver when the current iterate is
close to the optimum.

We propose an interior point method (IPM) as fast local solver.

We first introduce a central path for this IPM close to the optimal solution. We then
present a predictor corrector algorithm, that follows this central path. To obtain a descent
direction from the predictor step the sum

H+ F−1E

has to be positive definite on the set that satisfies the linearized constraints. The matrix
H is the Hessian of the Lagrangian and F−1E is a term that comes from matrix sym-
metrization. The analysis shows that F−1E is positive definite. An obvious approach
would be to use a positive semidefinite approximation for H. Since the IPM and the SSP
method have both very similar search steps, using a positive semidefinite approximation
for H would again lead to slow convergence.

We show that a positive definite approximation for H + F−1E ∈ Sn
++ exists, that

preserves the quadratic convergence if a weak barrier condition is satisfied.

Theoretically this approximation for the predictor step only needs to be positive definite
along certain directions. A general positive definite approximation that leads to quadratic
convergence yields some advantages. This approximation can be used for the predictor as
well as for the corrector steps. It is possible to define a low rank update for H + F−1E .
This update can converge to such a positive definite approximation of H+F−1E and yield
superlinear convergence. The decomposition of the approximation matrix is the main
effort of the algorithm. A positive definite matrix can be decomposed using Cholesky’s
algorithm, thus make an implementation more efficient.

iv

Contents

1 Overview 1
1.1 Optimization classes and current approaches 1
1.2 Outline of this thesis . 2

2 Notations and Basics 4
2.1 Notations . 4

2.1.1 Naming conventions . 6
2.2 The class examined here . 6
2.3 Optimality conditions . 7

3 Basis of the SSP 9
3.1 The SQP approach . 9
3.2 The SSP and SLCP approach . 11

4 Linear Convergence for the SLCP Approach 14
4.1 An NLP and its conic reformulation . 15
4.2 Linear convergence with the projected Hessian 16
4.3 Superlinear convergence for unbounded B ∈ Sn

+ 17
4.4 Linear convergence for any choice of bounded B ∈ Sn

+ 19
4.5 Conclusion . 22

5 Implementation 23
5.1 A practical example . 23
5.2 The SLCP Algorithm . 25
5.3 Approximation of H . 26
5.4 Search Steps . 27
5.5 Step length control . 29
5.6 Augmented filter . 32
5.7 Stopping criteria . 33

5.7.1 Abort criteria . 33
5.7.2 No “improving” step . 34
5.7.3 The KKT conditions . 35

5.8 Speed ups for the reduced order model example 37
5.9 A hybrid solver . 40
5.10 A Matlab OOP implementation . 41

6 Interior point methods 43
6.1 About IPMs . 43
6.2 Notation and conventions . 43
6.3 Optimality conditions revised . 44
6.4 Formulations of Complementarity conditions 45
6.5 A central path . 46

Contents

7 An IPM algorithm for nonlinear SDPs 47
7.1 A predictor-corrector algorithm . 47

7.1.1 Comments on our IPM algorithm 48
7.2 System solving . 50
7.3 Tangential step . 51
7.4 Descent property . 52
7.5 The AHO symmetrization . 55

8 Superiority of the IPM over SSP method 57
8.1 Similarities to the SSP method . 57
8.2 Eigenvalues of “F−1E” for the Lorentz cone Q 59

8.2.1 Jordan algebras . 59
8.2.2 Jordan algebra for the Lorentz cone Q 61
8.2.3 A conical program over Q . 62
8.2.4 Limits of F−1E ’s eigenvalues towards (x∗, y∗, s∗) 64
8.2.5 Approximation of H from chapter 4 64

8.3 Eigenvalues of F−1E for semidefinite programs 67
8.3.1 Jordan algebra for the cone of semidefinite matrices Sn

+ 67
8.3.2 A condition that leeds to quadratic convergence 68
8.3.3 Applying the results . 71

9 Conclusion 73
9.1 On the SSP . 73
9.2 On the SSP-implementation . 73
9.3 On the IPM presented here . 74

vii

1 Overview

This thesis is written in such a way that most chapters can be read separately, in particular
the SSP and IPM results have their own introduction.

In this chapter we will discuss the landscape of optimization and relate it to the work
of this thesis. We summarize and discuss the results of this thesis. Finally, we present an
outline of this thesis.

Please note that this chapter does not introduce notations. These follow in the next
chapter.

1.1 Optimization classes and current approaches

The problem class focused on in this thesis has a linear objective function and nonlinear
constraints as well as positive semidefinite cone constraints. Such problems evolve natu-
rally from real world problems. The solver we present contains strategies that come from
the following classes.

A first very well known class is the class of unconstrained nonlinear programs. Especially
interesting is the minimization over three times continuously differentiable functions

min{ f(x) | x ∈ Rn } with f : Rn → R, f ∈ C3. (1.1)

A typical solver for such problems if f is convex is Newton’s algorithm1 for Df(x) = 0. The
IPM we present here is based upon Newtons algorithm and we will refer to the quadratic
convergence result several times. For non convex function we use variants of this algorithm
that use positive definite approximations of D2f(X) to generate descent directions. We
will show a similar descent property for our predictor step in section 7.4.

Another important optimization class is the class of linear programs. These have a
linear objective function and linear constraints and are typically restricted to the cone of
positive variables. One formulation of linear programs is

min{ cTx | Ax = b, x ∈ Rn
+ } with A ∈ Rm×n, b ∈ Rm, c ∈ Rn. (1.2)

A first method to find an exact solution is the simplex method (see [Da66]). This method
is typically fast in practical applications but has exponential convergence in worst case
scenarios and cannot be generalized to nonlinear or conic programs. Another method,
that is in opposite to the simplex method easy to generalize, is the interior point method
(IPM). IPM methods with very good theoretical properties and convergence results exist.
Mainly short-step methods were used for theoretical results while implementation were
made using predictor-corrector approaches. Today efficient IPM solvers are competitive
to the simplex method in the average case and better than the simplex method in worst
case scenarios. Polynomial lower bounds for the convergence rate of specific IPM solvers
are known.
1The general algorithm is to calculate a zero x∗ of a function g(x) by setting the next iterate xk+1 =

xk −Dg(x)−1g(x) starting a x0. The main result used here is local quadratic convergence towards x∗

for any function g ∈ C2 for that det Dg(x∗) 6= 0.

1.2. OUTLINE OF THIS THESIS

One generalization of linear programs are linear conic programs where the cone of posi-
tive real vectors is replaced by another convex cone. We focus here on linear semidefinite
programs (SDP) that are linear programs over variables from the cone of positive semidef-
inite (PSD) matrices Sn

+ ⊂ Sn = { X ∈ Rn×n | X = XT } of the form

min{ C •X | A[X] = b, X ∈ Sn
+ } with A : Sn → Rm (linear), C ∈ Sn, (1.3)

with C •X being the scalar product C •X = trace(CTX).
Typically such problems are solved by IPM that respect the semidefinite cone. Several

papers were published on SDPs as they arise naturally from practical interesting problems.
One well known paper on SDPs is [VB96] and a robust solver for linear conic programs
including SDPs is e.g. SeDuMi see [St99].

These IPMs are based on two properties of Sn
+. The first is the equivalence

X • S = 0, X, S ∈ Sn
+ ⇔ 1

2
(XS + SX) = 0, X, S ∈ Sn

+ (1.4)

and second is its convexity. We will discuss these properties in detail in chapter 6.
Another generalization of linear programs are constrained nonlinear programs. A typical

representative is

min{ cTx | F (x) = 0, x ∈ Rn
+ } with F : Rn → Rm, F ∈ C3, c ∈ Rn. (1.5)

A well known solver is the sequential quadratic programming (SQP) algorithm (see e.g.
[BT95]). The SQP algorithm generates a series of quadratic programs. These quadratic
subprograms can be solved by a conical linear program solver mentioned above, if the
quadratic term is positive semidefinite. We will show in chapter 4 that this condition can
be fatal for generalizations of the SQP algorithm.

The class we examine in this thesis is the class of nonlinear semidefinite programs of
the form

min{ C •X | F (X) = 0, X ∈ Sn
+ } with F : Sn → Rm, F ∈ C3, C ∈ Rn×n. (1.6)

This is a hybrid of the previous two classes, having nonlinear constraints as well as
PSD cone constraints. Please note that Rn

+ is a special case of Sn
+ where all non diagonal

elements are zero. The boundary manifolds of Sn
+ has a non zero curvature, while the

sub-cone Rn
+ has zero curvature manifolds.

Some papers have been published (see e.g. [CR04],[FJV06]) to solve nonlinear SDPs by
using a SQP like approach called SSP. The SSP approach creates sequence of quadratic
semidefinite programs, hence the name SSP. The cited papers prove quadratic convergence
under conditions that are too weak to solve the generated subproblems with existing linear
SDP solvers. We will analyze this algorithm for applicability. We also present and analyze
an algorithm that evolves by extending an IPM for linear SDPs to nonlinear SDPs.

1.2 Outline of this thesis

In the next chapter we introduce basic notations and tools. Then we introduce the idea
of the SSP solver in detail in chapter 3. Here we also introduce the sequential linear conic
programs (SLCP) solver that technically solves the same problems as the SSP, but with
reduced sizes for sub-cones of the semidefinite cone.

2

CHAPTER 1. OVERVIEW

One main result of this thesis is that in practical applications only linear convergence
for the SSP is guaranteed. We will present this result in chapter 4 by giving a counter-
example. On the other hand our implementation of the SSP algorithm shows fast global
convergence. In consequence we suggest a hybrid algorithm with a fast local algorithm.
We describe our implementation in chapter 5.

The second part of this thesis presents such a fast local algorithm. It is a IPM solver
for that we show local quadratic convergence. The central path of the IPM is defined in
chapter 6. In chapter 7 we presend an an algorithm that follows this central path. Finally,
in chapter 8 we discuss the local quadratic convergence.

3

2 Notations and Basics

In this chapter we will discuss the class of problems considered this thesis. We will start
by introducing notations and naming conventions. Then we will present the class in its
standard forms. Finally, we will introduce the optimality conditions for this class.

2.1 Notations

A matrix A ∈ Rn×n is called symmetric positive (semi-)definite if A = AT and its eigen-
values are all positive (or zero). We use Sn

+ for symmetric positive semidefinite matrices
and Sn

++ is the open cone of symmetric positive definite matrices.
We also use the following notation for semidefinite variables

X ∈ Sn
+ ⇔ X � 0. (2.1)

The notation � can be extended to be a half-order by defining

A � B ⇔ A−B � 0. (2.2)

In this sense we can write X � 0 for negative semidefinite variables.
For nonlinear functions, Cα denotes the class of functions that are α times continuously

differentiable. Domain and range of such a function are given separately. Typically we
focus on functions

F : Sn
+ → Rm, F ∈ C3 (2.3)

for the nonlinear constraints in (1.6).
Throughout this thesis we will use 〈·, ·〉 for the standard scalar product for vectors or

matrices. For an n × n matrix A let tr(A) denote the trace of A. The standard scalar
product for matrices is

〈A,B〉 = A •B = tr(ATB). (2.4)

If we want to point out that this is the scalar product of two matrices A,B ∈ Rn×n we
write A •B instead of 〈A,B〉. This notation is standard in semidefinite programming.

When applying a linear operator in semidefinite programming we use brackets [·]. For
variables x in a vector representation a linear operator A can be represented as a matrix.
But when a variable X is a matrix the operator A is typically represented by a set of
matrices Ai or Aij that is applied via a scalar product

A[X] =

A1 •X
...

Am •X

 or A[X] =

A11 •X . . . A1n •X
...

. . .
An1 •X Ann •X

 . (2.5)

Operators that apply to matrices are written with square brackets [·] e.g. DF (X)[∆X]
means the linear operator DF (X) is applied to ∆X, while DF (x)∆x is the application
that is equivalent to the matrix multiplication. For numerical computations the columns
of an n × n-matrix X are stacked on each other resulting in a vector x = vec(X) ∈ Rn2

.

CHAPTER 2. NOTATIONS AND BASICS

For such a x = vec(X) ∈ Rn2
the matrix A ∈ Rm×n2

is defined by the relation Ax = A[X]
to the operator A[]. For the scalar product C • X this notation leads to the standard
vector scalar product as tr(CTX) = cTx for the vector representation x = vec(X) and
c = vec(C). We will explicitly point out when we use this transformation to ease the
reading in this thesis.

For vector valued functions F (x) we distinguish between DF (x) and ∇F (x). We use
DF (x) when we use it as a linear operator to apply a multiplication from the right hand
side, like DF (x)[∆x] = DF (x)∆x. The notation ∇F (x) simply means the transpose of the
derivative such that ∇F (x) = DF (x)T and is just used for convenience.

Definition 2.1.1. A cone K ⊂ Rn is called selfdual if the dual cone

KD := { x ∈ Rn | 〈x, y〉 ≥ 0, ∀y ∈ K } (2.6)

and the cone itself coincide K = KD.

The cone Sn
+ is a convex, selfdual cone. A proof for the selfduality is well known as

Féjer’s Theorem (see e.g. [HJ85]). In linear programs the selfduality is used to define a
primal dual starting point problem. Here the selfduality reflects in the convenience that
the dual cone variable has the same properties as the primal variable.

In section 8.3.1 we will show some properties on the more general scale of Jordan
Algebras1. We will also show that Sn

+ is a set of squares over a specific Jordan Algebra.
This property allows us to formulate a stronger complementarity condition.

The cone Sn
+ also includes two other important cones that are treated separately often

throughout this thesis. The first is the Lorentz cone also known as quadratic cone2 Q
that is defined by

Q :=
{ (

x0

x̄

)
∈ Rn+1

∣∣∣∣ x0 ≥ ‖x̄‖2
}

. (2.7)

The relation (
x0

x̄

)
∈ Qn+1 ⇔


x0 x̄1 . . . x̄n

x̄1 x0

...
. . .

x̄n x0

 ∈ Sn+1
+ (2.8)

between Q and Sn
+ is easy to verify.

On the other hand if we force all non diagonal entries of a Matrix X � 0 to be zero Sn
+

is equivalent to Xii ∈ R+.
The cone of positive variables is selfdual by definition. The following result is well

known, we give a short proof.

Proposition 2.1.2. The Lorentz cone is selfdual.

Proof. Let a ∈ Rn with
aTb ≥ 0 ∀b ∈ Q. (2.9)

As Q includes

b̃ :=
(
‖ā‖
−ā

)
(2.10)

we have
0 ≤ aTb̃ = a0‖ā‖ − āTā = ‖ā‖(a0 − ‖ā‖) (2.11)

1For details on Jordan Algebras see [WSV00]
2also called second order cone and ice cream cone

5

2.2. THE CLASS EXAMINED HERE

thus ‖ā‖ ≤ a0 and a ∈ Q. On the other hand when we have a ∈ Q and any b ∈ Q it
follows

a0b0 + āTb̄ ≥ a0b0 − ‖ā‖‖b̄‖ ≥ a0b0 − a0b0 = 0. (2.12)

2.1.1 Naming conventions

If not stated separately we use the following naming conventions thoughout this thesis.
When minimizing with respect to a variable x or X we often omit the name of the

variable and write shortly min{ . . . } in place of

min
x
{ . . . } or min

X
{ . . . }. (2.13)

A small letter x denotes a vector and a capital letter X is used to indicate a matrix. The
same applies for s and S respectively. s and S are used as dual cone variable. The dual
variable for the equality constraints is the vector y. We assume X and S to be symmetric.

Linear constraints are typically represented by Ax = b and A[X] = b respectively. Non-
linear constraints are notated as F (x) = 0 and F (X) = 0 respectively. Conic constraints
come as X ∈ Sn

+ or X � 0 or in the general case x ∈ K and X ∈ K respectively. K usually
denotes a cartesian product of R+, Q and Sn

+.
For the theoretical analysis we focus on a single iterate, thus we omit the iteration index

k. Thus we write x for the current iterate, ∆x for the current step and x+ for the next
iterate. We apply the naming convention to the other variables such as s and y as well.

If we describe a complete algorithm we use x(k), s(k) etc. for the current iterate and
k − 1 or k + 1 for the previous and next respectively.

With L(x, y, s) and L(X, y, S) respectively we denote the Lagrangian of the optimization
problem a section is currently focussing on. We also use

g(x, y, s) := DxL(x, y, s), g(X, y, S) := DXL(X, y, S),

H(x, y, s) := D2
xxL(x, y, s), H(X, y, S) := D2

XXL(X, y, S).

For the augmented Lagrangian we use Λ(x, y, s) and Λ(X, y, S) respectively. Its derivatives
are

g+(x, y, s) := DxΛ(x, y, s), g+(X, y, S) := DXΛ(X, y, S),

H+(x, y, s) := D2
xxΛ(x, y, s), H+(X, y, S) := D2

XXΛ(X, y, S).

As we fixed the names of A and F (X), etc. we often omit the argument. Thus we write
F instead of F (X) or F (X(k)). This short notation will always be pointed out explicitely.

2.2 The class examined here

In this thesis we present a solver for nonlinear semidefinite programs (SDP). Nonlinear
semidefinite programs have nonlinear equality constraints as well as positive semidefinite
(PSD) cone constraints.

In some real-world problems PSD conditions occur naturally. Many constraints such
as classes of polynomial inequality constraints can be reformulated as PSD constraints.
A nonlinear formulation of a PSD cone constraint would be very CPU time expensive as
well as bare several other problems. Keeping the PSD cone constraints in linear program
has proven to be very efficient as the PSD cone is convex.

6

CHAPTER 2. NOTATIONS AND BASICS

There are different formulations for SDPs. We keep consistency by using one problem-
formulation and its generalizations throughout this thesis.

The nonlinear SDP version is

min{ C •X | F (X) = 0, X ∈ Sn
+ } (2.14)

it is a generalization of the following linear SDPs

min{ C •X | A[X] = b, X ∈ Sn
+ }, (2.15)

which is a generalization of the standard form for linear programs

min{ cTx | Ax = b, x ≥ 0 }. (2.16)

As we stated in section 2.1 the semidefinite cone also contains the quadratic cone, the
cone of positive vectors, as well as free variables. The results for the algorithms presented
in this thesis can easily be generalized to X ∈ K with K being a cartesian product of the
cones mentioned above. We obtain the generalized problem

min{ c(x) | F (x) = 0, x ∈ K } or min{ cTx | F (x) = 0, x ∈ K }. (2.17)

For the SQP approach this cone condition is simply shifted to the subproblems and
taken into account by the linear conic solvers, such as SeDuMi (see [St99]). SeDuMi
supports a cartesian product of these cones.

For the IPM presented in this thesis these cones have to respect specifically only two
properties. First for the complementary condition, where every cone has its special multi-
plication and one-element. These multiplications and one-elements come from the Jordan
Algebra for which the specified cones are sets of squares. We will cover Jordan Algebras in
sections 8.2.2 and 8.3.1. Second we have to consider the cone specifically for the maximal
step length, namely to guarantee that we do not hit or pass the boundary of the cone.

2.3 Optimality conditions

Throughout this thesis we use the Karush Kuhn Tucker (KKT) first order optimality
conditions. We consider the conic program

min
x
{ c(x) | F (x) = 0, x ∈ K }, (2.18)

which is the most general form we use in this thesis. Under standard assumptions (exis-
tence of a solution and the MFCQ condition) an optimal solution (x∗, y∗, s∗) exists and
fullfills the KKT conditions (see [JS03]) in the optimum, i.e.

x∗ ∈ K,

s∗ := −Dc(x∗)− y∗TDF (x∗) ∈ KD,

F (x∗) = 0,

〈s∗, x∗〉 = 0.

(2.19)

Let L(x, y, s) be the Lagrangian of (2.18)

L(x, y, s) := c(x) + yTDF (x) + 〈x, s〉. (2.20)

7

2.3. OPTIMALITY CONDITIONS

The KKT conditions include the original cone constraint x ∈ K and the first order condi-
tion for a critical point of the Lagrangian

−Dc(x)− yTDF (x) ∈ KD ⇔
g(x, y, s) := DxL(x, y, s) = Dc(x) + yTDF (x) + s = 0, s ∈ KD. (2.21)

The equation F (x) = 0 of the KKT conditions is the nonlinear constraint from (2.18).
The last condition in 2.19 is the complementarity condition, stating that there always
exists a primal dual pair x ∈ K, s ∈ KD that is orthogonal.

These optimality conditions are the basis, for both the SSP approach and the IPM
approach for solving nonlinear SDPs. The conditions x ∈ K and −Dc(x)−yTDF (x) ∈ KD

are not respected by Newton type algorithms. The SSP method generates quadratic
subproblems that are similar to Newton steps, but include the cone condition. The IPM
introduces a relaxation to the last equation 〈s, x〉 = 0 to force the search step to point to
a cone-feasible point.

8

3 Basis of the SSP

The SSP algorithm solves nonlinear non convex semidefinite programs. It is a generaliza-
tion of the sequential quadratic programming (SQP) algorithm.

In the following we will introduce the SQP algorithm on which the SSP algorithm is
based. Then we will present current work on the SSP method followed by our research in
the next chapter.

3.1 The SQP approach

The SQP algorithm (see [BT95]) solves nonlinear programs of the form

min
x
{ cTx | F (x) = 0, x ∈ Rn

+ }. (3.1)

With c ∈ Rn and F (x) : Rn → Rm a nonlinear C3 function1.
The Lagrangian for (3.1) is

L(x, y, s) := cTx + yTF (x) + 〈x, s〉. (3.2)

An optimal pair (x∗, y∗, s∗) of problem (3.1) satisfies the following conditions equivalent
to the first order optimality (KKT) conditions

g(x∗, y∗, s∗) := DxL(x∗, y∗, s∗) = c + DF (x∗)Ty∗ + s∗ = 0,

F (x∗) = 0,

S∗x∗ = 0,

s∗, x∗ ∈ Rn
+,

(3.3)

with S∗ = Diag(s∗) being a square matrix with s∗ on its diagonal. Note that s∗i x
∗
i = 0

for 1 ≤ i ≤ n since s∗ ≥ 0, x∗ ≥ 0 elementwise and 〈s∗, x∗〉 = 0. Thus the conditions

S∗x∗ = 0, s∗ ≥ 0, x∗ ≥ 0

are equivalent to the conditions

〈x∗, s∗〉 = 0, s∗ ≥ 0, x∗ ≥ 0

as used in the KKT conditions. The KKT conditions consist of the following conditions:
x∗ is a feasible point, (x∗, y∗, s∗) is a critical point of the Lagrangian, s∗ is in the dual
cone and the primal/dual cone variables x∗, s∗ are orthogonal to each other 〈s∗, x∗〉 = 0.

For these conditions the dimension of the variables as well as the dimension of the
equality constraints are 2n + m.

Dropping the cone conditions x ∈ Rn
+, s ∈ Rn

+ one could use Newton’s algorithm or a
variant to find a solution of (3.3), but this could lead to an infeasible solution, with xi < 0
or si < 0.
1The condition f ∈ C3 is stronger than in [BT95].

3.1. THE SQP APPROACH

To respect the cone constraints the SQP algorithm defines a sequence of quadratic
“sub”problems to solve (3.1) thus the name sequential quadratic programming. For a
given iterate x these subproblems have the form

min
∆x
{ cT∆x +

1
2
∆xTB∆x | F (x) + DF (x)∆x = 0, x + ∆x ∈ Rn

+ }. (3.4)

The symmetrical n × n matrix B is an approximation of the Hessian of the Lagrangian.
We omit the index when we focus on a single subproblem and the variable is associated to
the current k-th iterate. We add the subscript + (such as x+) if we associate this variable
with the next iterate k + 1. A letter ∆ in front of the variable is used for the current step
thus ∆x = x+ − x.

Using these notations the Lagrangian for subproblem (3.4) is given by

L̃(∆x, y+, s+) := cT∆x +
1
2
∆xTB∆x + yT

+(F (x) + DF (x)∆x) + 〈x + ∆x, s+〉, (3.5)

which we can use to formulate the modified KKT conditions for (3.4)

∇L̃∆x(∆x, y+, s+) = c + B∆x + DF (x)Ty+ + s+ = 0,

F (x) + DF (x)∆x = 0,

S+(x + ∆x) = 0,

x + ∆x, s+ ∈ Rn
+.

(3.6)

By defining ∆s := s+−s as well as ∆y := y+−y and setting B = H(x, y, s) := DxxL(x, y, z)
it can be shown that the solution (∆x,∆y, ∆s) is almost a Newton step for (3.3).

SQP step: Newton step:

c + B∆x + DF (x)Ty + s+ = 0 c + B∆x + DF (x)T(∆y + y) + ∆s + s = 0
F (x) + DF (x)∆x = 0 F (x) + DF (x)∆x = 0

S+(x + ∆x) = 0 S(∆x + x) + ∆Sx = 0
x + ∆x, s+ ∈ Rn

+

(3.7)

The noticeable differences are that the SQP solution includes the quadratic term ∆S∆x
and respects the cone conditions x, s ∈ Rn

+. If the active indices are guessed correctly for
the Newton step, then these steps are identical. Note that for such a step ∆S∆x = 0.

It is well known that the SQP approach with B = H(x, y, s) converges quadratically
(see [JS03]). The idea behind the proof is, that if the iterate is close enough to the optimal
solution, the active set is the optimal set. Thus the SQP steps are Newton steps. When
the cone Rn

+ is replaced with some more general non polyhedral cone, this line of reasoning
needs significant modifications.

The SQP algorithm is shown is algorithm 1. The stopping criterion is typically precision
based depending on e.g. derivatives of the KKT conditions as described in section 5.7.

If B is positive definite then there exists a symmetric square root
√

B with
√

B
2

=
B. Note that in practical applications instead of a symmetric square root a Cholesky
decomposition is used. Using this square root we can replace the quadratic objective
function by a linear objective function and an extra variable and an additional quadratic
cone constraint (see sections 4 and 5.4 for details). Today there exist several efficient
solvers for such problems such as SeDuMi [SeWWW] and SDPT3 [TTT03]. On the
other hand if B is not positive semidefinite finding the global minimum is a NP complete

10

CHAPTER 3. BASIS OF THE SSP

Algorithm 1 The SQP-Algorithm
let (x(0), y(0), s(0)) be a given starting point and k = 0
let B(0) ≈ H(x(0), y(0), s(0)) be an approximation of the Hessian of the Lagrangian
while not [stopping criterion] do

calculate a Kuhn-Tucker point (∆x, y, s) for

min
∆x(k)

{
cT∆x(k) +

1
2
∆x(k)TB(k)∆x(k)

∣∣∣∣ F (x(k))+DF (x(k))∆x(k) =0,
x(k)+∆x(k) ∈ Rn

+

}
set the next iterate x(k+1) = x(k) + ∆x, y(k+1) = y and s(k+1) = s
update B(k+1) ≈ H(x(k+1), y(k+1), s(k+1)) (e.g. BFGS update)
set k = k + 1

end while

problem. There exist solvers that yield good approximation to a local minimum , but
these are not generalized for conic programs. Thus if H is not positive semidefinite a
damped BFGS approach or the Hessian of an augmented Lagrangian is used to generate
a positive semidefinite B. For these approximations still superlinear convergence holds
(convergence for damped BFGS see [Po78], for the augmented Lagrangian [BS00]).

3.2 The SSP and SLCP approach

One approach to solve nonlinear SDPs is to extend the SQP algorithm. The SQP algorithm
solves a nonlinear program by a series of approximating simpler programs that preserve
the R+ cone condition. Solvers for the simpler programs are e.g. interior point methods
(IPMs).

IPMs have been developed for different classes including linear semidefinite programs
such as

min{ C •X | A[X] = b, X ∈ Sn
+ }. (3.8)

Recall that the quadratic cone Q is a partial cone of the PSD cone. For a positive
semidefinite B the quadratic term can be represented by a variable in the quadratic coneQ.
Thus we can reformulate the quadratic semidefinite subprogram into a linear semidefinite
program. To reduce variable size, implementations such as SeDuMi [SeWWW] support
the PSD subcones Rn

+ and Q directly.
In the SQP approach the Rn

+ cone conditions are shifted to the subproblems. In the
sequential semidefinite programming (SSP) approach the positive semidefinite cone Sn

+

constraints are shifted to the subproblems. Thus the sequential semidefinite programs
are now generated by linearizing the nonlinear constraints and preserving the conic con-
straints. The objective function of the subproblem for both cases (SQP and SSP) include
a quadratic term that is either the Hessian of the Lagrangian or an approximation.

This means that we can solve nonlinear semidefinite problems such as

min{ C •X | F (X) = 0, X ∈ Sn
+ } (3.9)

by solving sequential programs of the form

min
∆x
{ C •∆X +

1
2
B[∆X, ∆X] | F (X) + DF (X)[∆X] = 0, X + ∆X � 0 }. (3.10)

11

3.2. THE SSP AND SLCP APPROACH

With a similar argument as in the last section it has been shown (see e.g. [CR04],
[FJV06]) that the SSP approach, converges quadratically if the optimal solution X∗ sat-
isfies a nondegenerate condition and B = H(X, y, S) holds. Analogously to the SQP
approach the quadratic condition of the SSP subproblem can be respected easily if B is
symmetric positive semidefinite. For such a B ∈ PSD we use solvers for linear SDPs as
stated in previous paragraphs. We go into more detail on the subproblem generation at
the beginning of the next chapter and in section 5.4 where we discuss the implementation.

Theoretically the SSP approach can be generalized to any cone K for that quadratic
programs are easy to solve. In the following we will present the SSP as well as the
more general case of sequential conic linear programming (SLCP). While in theory the
semidefinite cone includes the quadratic cone and cone of positive variables, these are
supported explicitly by solver implementation to gain lower variable dimensions. Thus
for theoretical analysis we consider sequential semidefinite programs (SSP). For examples
and the discussion of the implementation we consider sequential linear conic programs
(SLCP) to ease the reading and gain efficiency.

For a general cone K this leads to the following problem

min
x
{ cTx | F (x) = 0, x ∈ K }, (3.11)

with the associated subproblems

min
∆x
{ cT∆x +

1
2
∆xB∆x | F (x) + DF (x)∆x = 0, x + ∆x ∈ K }. (3.12)

Recall the comparison (3.7) between SQP steps and Newton steps. The situation is similar
here, but we have the cone K instead of the Rn

+ and the multiplication that is derived
from the orthogonality of the vectors is different for every K. But it basically comes down
to a single quadratic term that makes the difference between the steps once the iterate is
close enough to an optimal point. If the cone is a quadratic set over a Jordan algebra,
such as the SDP cone, this multiplication is the multiplication from that Jordan algebra:

X, S ∈ Sn
+, X • S = 0 ⇔ 1

2
(XS + SX) = 0 (3.13)(

x0

x̄

)
,

(
s0

s̄

)
∈ Q, xTs = 0 ⇔

(
x0s0 + x̄Ts̄
x0s̄ + s0x̄

)
= 0 (3.14)

x, s ∈ R+, xTs = 0 ⇔ Sx = 0 with S = diag(S) (3.15)

The cones that occur in real-world problems are mostly Q or Sn
+. We focus especially on

the PSD cone Sn
+ for two reasons. One reason is of course that variables of the quadratic

cone can be written as positive semidefinite variables. The other reason is that nonlinear
SDP occur naturally in problems from reduced circuit simulation that were part of the
motivation for this thesis.

A difference between the quadratic cone/positive semidefinite cone and Rn
+ is that the

boundaries of first ones have a non zero curvature. Thus for the SQP all curvature infor-
mations are represented by the Hessian of the Lagrangian. The SSP has some curvature
information preserved in its conic constraints. The curvature of the conic constraint’s
boundary is not represented by the Lagrangian. Thus it cannot be assumed that the Hes-
sian of this Lagrangian is positive semidefinite on the active set. On the other hand we
have to use positive semidefinite approximations to solve the subproblems with existing
solvers. In our analysis in the next chapter we take in account that it is necessary to have a
positive semidefinite approximation B for the Hessian in oder to be able to find a solution
of the SSP subproblem. We will show that this assumption leads to linear convergence.

12

CHAPTER 3. BASIS OF THE SSP

For the SLCP algorithm 2 given here we already expect B to be positive semidefinite
and thus have easy to solve subproblems.

Algorithm 2 The SLCP-Algorithm
let (x(0), y(0), s(0)) be a given starting point and k = 0
let B(0) ≈ H(x(0), y(0), s(0)) be an approximation of the Hessian of the Lagrangian
while not [stopping criterion] do

calculate a Kuhn-Tucker point (∆x, y, s) for

min
∆xk,z0,z̄

cT∆xk + z0

∣∣∣∣∣∣
F (x(k))+DF (x(k))∆x(k) =0, x(k)+∆x(k) ∈ K√

B(k)∆x(k) = z̄
1
2
‖z̄‖22 ≤ z0


set the next iterate x(k+1) = x(k) + ∆x, y(k+1) = y and s(k+1) = s
update B(k+1) ≈ H(x(k+1), y(k+1), s(k+1)), B(k+1) ∈ Sn

+

set k = k + 1
end while

13

4 Linear Convergence for the SLCP
Approach

This chapter contains results from a joint work with F. Jarre and M. Diehl. The results
have been published in [DJV06]. The SQP as well as the SSP/SLCP method presented in
section 3.2 solve difficult nonlinear programs by solving a series of simpler subproblems.
These subproblems are quadratic programs with linear constraints and in case of the
SSP/SLCP additionally with some conical constraints.

If the quadratic term is positive semidefinite then the subproblem is efficiently solvable.
Recall that for such a quadratic term B one could define a matrix

√
B with

√
B

2
= B. This

allows a reformulation of the problem (3.12) as a linear program with conic constraints

min
∆x,z0,z̄


Dc(x)∆x + z0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

F (x) + DF (x)∆x = 0,
√

B∆x− z̄ = 0,

x + ∆x ∈ K 1
2 (1 + z0)
1
2 (1− z0)

z̄

 ∈ Q


, (4.1)

hence the name sequential linear conical program (SLCP).
In order to see that those programs are equivalent consider

1
2
(1 + z0)2 ≥

1
2
(1− z0)2 + ‖z̄‖22 ⇔ z0 ≥

1
2
‖z̄‖22 (4.2)

and
∆xTB∆x = (

√
B∆x)T(

√
B∆x) = z̄Tz̄ = ‖z̄‖22. (4.3)

Thus minimizing z0 leads to

z0 =
1
2
∆xTB∆x. (4.4)

While having a positive semidefinite approximation is necessary for efficient solving, it
can destroy superlinear convergence. For necessary and sufficient second order optimality
conditions for linear semidefinite progams we refer to [BS00]. For nonlinear programs over
Rn

+ the second order optimality condition uses the Hessian of the Lagrangian. For non
polyhedral conic programs an additional term is necessary that represents the curvature of
the cones boundary. This is because the Lagrangian represents the curvature of the nonlin-
ear constraint only, but not the conic constraint’s curvature. In consequence, the Hessian
of the Lagrangian (e.g. for semidefinite programs) is not necessarily positive semidefinite
on the active set. Thus for some problems the positive semidefinite approximations B(k)

can’t satisfy the following necessary condition for superlinear convergence

lim
k→∞

‖(B(k) −H(x(k), y(k), s(k)))∆x(k)‖
∆x(k)

= 0. (4.5)

CHAPTER 4. LINEAR CONVERGENCE FOR THE SLCP APPROACH

Using the following example we will prove that the SLCP method cannot generally
converge faster than linearly when a bounded positive semidefinite approximation B is
used.

4.1 An NLP and its conic reformulation

In this section we will present a nonlinear program (NLP) and its conic reformulation.
This nonlinear program satisfies the strong second order conditions for local optimality.
Thus a damped BFGS-SQP approach would converge superlinearly.

Consider the NLP

min
{
−x2

1 − (x2 − 1)2
∣∣∣ ‖x̂‖22 ≤ 1, x̂ =

(
x1

x2

)
∈ R2

}
. (4.6)

Let L̂ be the Lagrangian of problem (4.6)

L̂(x1, x2, y) := −x2
1 − (x2 − 1)2 + y(x2

1 + x2
2)− 1. (4.7)

Problem (4.6) has the optimal solution (0,−1)T with corresponding multiplier y = 2. This
solution satisfies the strong second order sufficiency conditions

∀ξ ∈ S, ξT

(
2 0
0 2

)
ξ > 0, with S := { ξ ∈ R2 | (0,−2)ξ = 0, ξ 6= 0 }. (4.8)

Let K be the second order cone in three dimensions, i.e.

K :=
{

(x0, x1, x2)T ∈ R3 | x0 ≥
√

x2
1 + x2

2

}
.

We extend the vector

x̂ =
(

x1

x2

)
∈ R2 to x =

x0

x1

x2

 ∈ R3.

With this definitions, problem (4.6) allows an equivalent conic reformulation

min{c(x) | F (x) = 0, x ∈ K} (4.9)

where c : R3 → R is defined by

x 7→ c(x) = −x2
1 − (x2 − 1)2

and F : R3 → R is defined by
x 7→ F (x) = x0 − 1.

The Lagrangian L of (4.9) with Lagrangian multiplier y ∈ R and the dual variable s ∈ R3

is given by
L(x, y, s) := c(x)− yF (x)− 〈s, x〉,

where s lies in the dual cone KD,
KD = K.

15

4.2. LINEAR CONVERGENCE WITH THE PROJECTED HESSIAN

The gradient g of L with respect to x is given by

g(x, y, s) := ∇xL(x, y, s) = ∇c(x)−

y
0
0

− s

=

 −y −s0

−2x1 −s1

−2(x2 − 1) −s2


and the Hessian with respect to x is given by

H(x, y) := D2
xL(x, y, s) = Dx(∇c(x))

=

0 0 0
0 −2 0
0 0 −2

 .

The global minimizer is

x∗ =

 1
0
−1

 ,

with multipliers

s∗ =

s0

s1

s2

 =

4
0
4

 and y∗ = −4

satisfying g(x∗, y∗, s∗) = 0. Observe that the Hessian H(x, y) is negative semidefinite and
independent of x, y.

4.2 Linear convergence with the projected Hessian

In the following we analyze the local convergence properties of a basic SLCP algorithm.
To simplify the notation we define

c(k) := ∇c(x(k)).

The algorithm approximates the solution by the iterates x(k+1) = x(k) + ∆x(k), where
∆x(k) solves the approximation

min
{

c(k)T∆x +
1
2
∆xTB(k)∆x

∣∣∣ DF (x)(x(k))[∆x] = −F (x)(x(k)) x(k) + ∆x ∈ K
}

(4.10)
of the conic problem (4.9). Here, B(k) is an approximation of the Hessian H(x(k), y(k)) of
L. Because H is constant and no other part of the above conic problem depends on y(k),
we need not regard multiplier iterates here.

Note that the linear equality constraint in (4.10) implies x
(k+1)
0 = x

(k)
0 + ∆x

(k)
0 = 1.

Thus we can assume that x
(k)
0 is fixed to 1 for all k > 0 and simplify (4.10) by replacing

the cone K with the inequality constraint:

min
{(

−2x1

−2(x2 − 1)

)
∆x +

1
2
∆xTB∆x

∣∣∣ ‖x + ∆x‖2 ≤ 1
}

.

16

CHAPTER 4. LINEAR CONVERGENCE FOR THE SLCP APPROACH

For simplicity of notation, we omit the iteration index k. We denote the projections on
the (x1, x2)-space of the exact Hessian H and its approximation B by H and B.

If the exact Hessian B = H is used we obtain the nonconvex problem

min

{(
−2x1

−2(x2 − 1)

)T

∆x +
1
2
∆xT

(
−2 0
0 −2

)
∆x

∣∣∣ ‖x + ∆x‖2 ≤ 1

}
. (4.11)

This subproblem is equivalent to the initial nonlinear program (4.6) and has thus the same
optimal solution as the initial problem.

The idea of SQP-type algorithms is that they approximate the solution of a hard to solve
problem with a sequence of easier to solve subproblems. However, nonconvex quadratic
conic problems are about as difficult to solve as general nonlinear conic problems. Given
efficient software packages like SeDuMi [SeWWW] or SDPT3 [TTT03], that solve convex
conic programs, we search for a suitable approximation B of H. This approximation has
to be positive semidefinite to reformulate the subproblems as a linear conic problems and
it should yield rapid convergence.

The Hessian of the Lagrangian in (4.11) is H = −2I. The orthogonal projection of H
onto the cone of positive semidefinite matrices is simply given by B = 0.

We first consider the choice B = 0, for which the optimal solution is always on the
boundary of the cone. We start close to the optimal solution at the point(

x1

x2

)
=
(

sin(α)
− cos(α)

)
where

0 < α � 1. (4.12)

Without loss of generality we will keep this choice of α also in sections 4.3 and 4.4. The
case −1 � α < 0 can be treated analogously.

For B = 0 and α as in (4.12) the conic SLCP subproblem is equivalent to

min

{(
−2 sin(α)

2 (1 + cos(α))

)T

(x + ∆x)
∣∣∣ ‖x + ∆x‖2 ≤ 1

}
. (4.13)

The solution of (4.13) is given by

x + ∆x =
(

sin
(

α
2

)
− cos

(
α
2

)) .

Hence, the (local) convergence for B = 0 is linear, with a convergence rate of 1
2 . As

indicated in the next section this result does not imply linear convergence for all choices
of positive semidefinite B.

4.3 Superlinear convergence for unbounded B ∈ Sn
+

It is well known (see e.g. [Ja03]) that the orthogonal projection of the Hessian as used in
Section 4.2 is not affine invariant. Other semidefinite approximations of H, for example
the Hessian of the augmented Lagrangian, may be better suitable to obtain rapid local
convergence of a SQP-type method.

17

4.3. SUPERLINEAR CONVERGENCE FOR UNBOUNDED B ∈ SN
+

In fact, as we will show in this section, we can present a sequence of positive semidefinite
matrices B(k) for which the iterates x(k) generated by solution of the SLCP subproblem

min
{

cT∆x +
1
2
∆xTB∆x

∣∣∣ ‖x + ∆x‖2 ≤ 1
}

(4.14)

converge quadratically to (0,−1)T. The SLCP subproblems based on the matrices B(k)

presented here have unique solutions on the boundary of the constraint set of (4.14). Thus
we use again

x(α) =
(

x1(α)
x2(α)

)
=
(

sin(α)
− cos(α)

)
(4.15)

and prove the quadratic convergence with respect to α as defined in (4.12) .
For B = 0 the result of the previous section states that the search step ∆x = v is

approximately equal to

v :=
(

sin
(

α
2

)
− cos

(
α
2

))− (sin(α)
− cos(α)

)
≈ α

2

(
−1
− 3

4α

)
. (4.16)

The method is locally superlinearly convergent, if and only if this direction is perturbed
to ∆x ≈ v∗ with

v∗ := x∗ − x(α) =
(

0
−1

)
−
(

sin(α)
− cos(α)

)
≈ α

(
−1
− 1

2α

)
. (4.17)

In Figure 4.1 the steps v and v∗ are visualized.

∢
∢


2

c

v∗

v

−c
x0

x

Figure 4.1: Visualization of the SLCP subproblem.

Note that the direction v∗ leading to the optimal solution x∗ = x(0) is orthogonal to
the vector c. Hence c is the direction we have to penalize, but it is also the gradient of
the objective function of (4.14) at ∆x = 0. In consequence, the SLCP subproblems (4.14)
using

B :=
1
α4

vv∗T =
1
α4

ccT (4.18)

do not necessarily produce superlinearly convergent steps. Let N be the null space of B.
For B as in (4.18) the space of optimal solutions of (4.14) is the intersection of the feasible
set and

V := N − α4c

16
+O(α6). (4.19)

18

CHAPTER 4. LINEAR CONVERGENCE FOR THE SLCP APPROACH

The affine space x(α)+V includes a point on the boundary of the constraint set of (4.14)
of the form x(α) +

(
v∗ +O(α3)

)
. In the following we denote with v∗ as a point “close” to

the optimum.
In order to obtain an unique optimal solution for each SLCP subproblem we use a

rotation with a small angle β > 0 of the vector c to form a matrix Bβ . We define

rotβ :=
(

cos(β) − sin(β)
sin(β) cos(β)

)
, cβ := rotβc, and Bβ :=

1
α4

cβcT
β .

Note that for β ∈ (0, α
4) the objective value of (4.14) can be improved in a direction

orthogonal to the penalty direction cβ . This implies that the optimal solution of (4.14)
is a unique point on the boundary of the constraint set of (4.14). For β = 0 we have the
case of (4.18) while for β = α

4 we obtain the same SLCP iterates as for B = 0.
In the following we assume β ∈ (0, α

4) and consider the problem

min
{

cT∆x +
1
2
∆xTBβ∆x

∣∣∣ ‖x + ∆x‖2 ≤ 1
}

. (4.20)

Recall that v∗ is in the null space N of B and x(α) + v∗ lies on the boundary of the
constraint set of (4.14).

Let Nβ be the null space of Bβ and let v∗β be the unique solution of (4.20). Note that
the angle between Nβ and the objective function c is less than the angle of the null space
N = Nβ=0 of B and c. Therefore, as in (4.19), the vector v∗β lies on the boundary of the
constraint set of (4.20) and is O(α4)-“close” to points of the null space Nβ of Bβ .

The null space Nβ intersects the boundary of the constraint set of (4.20) twice. Let ṽ∗β
be the intersection that is close to v∗. Then ṽ∗β satisfies

ṽ∗β = v∗β +O(α3)

and is given by

ṽ∗β =
(

sin(2β)− sin(α)
cos(2β) + cos(α)

)
= x(2β)− x(α).

Thus, for a sequence β(k) the points

x(α(k)+1) = x(2β(k)) +O(α(k)3)

converge superlinearly to x(0), if and only if the angles β(k) converge superlinearly to zero,
too.

Summarizing, the method is quadratically convergent if we choose β(k) = α(k)2

2 and
accordingly cβ(k) as well as B(k) := 1

α(k)4 cβ(k)cT
β(k) with α(k) := arcsin(xk

1).
The main advantage of the augmented Lagrangian over other penalty functions is the

fact that under standard assumptions a finite value for the barrier parameter is sufficient
to guarantee exactness. In the above analysis, however, the matrices Bk are unbounded.
In the next section we show that we cannot obtain superlinear convergence when B(k) is
bounded.

4.4 Linear convergence for any choice of bounded B ∈ Sn
+

In the following theorem we will show that we cannot gain more than linear convergence
when we bound our series of positive semidefinite approximations.

19

4.4. LINEAR CONVERGENCE FOR ANY CHOICE OF BOUNDED B ∈ SN
+

Theorem 4.4.1. Suppose we solve problem (4.6) with the SLCP method where the Hes-
sian approximations are given by any globally bounded sequence of positive semidefinite
matrices. Then it is not possible to have a faster than linear convergence.

Proof. We assume from now on that the positive semidefinite matrix B̆ = B̆(k) for
the SLCP subproblem (4.10) is bounded independently of k, ‖B̆‖2 ≤ M , and prove
by contradiction that for any such B̆ the rate of convergence can not be better than
α(k+1) = α(k)

2 +O(α(k)2).
We denote the solution of the SLCP subproblem (4.10) by v̆ and use v∗ as defined in

(4.17) for the vector to the global optimum of (4.6).
If x + v̆ is not on the unit circle, i.e., the boundary of the feasible set, it follows that

B̆v̆ = −c. Since v̆ → 0 and ‖c‖2 → 4 this implies ‖B̆‖2 → ∞ in contradiction to our
assumption ‖B̆‖2 ≤ M . Thus we can assume without loss of generality that x + v̆ is on
the unit circle and use again the notation

x(α) =
(

sin(α)
− cos(α)

)
with α as in (4.12).

Let x(α) be the k-th iterate and let x(γ) be the k+1-st iterate, thus we have v̆ =
x(γ)− x(α). We assume for contradiction that

0 ≤ γ ≤ α

2
− εα +O(α2)

with 0 < ε ≤ 1
2 independent of α (The SLCP -method is quadratically convergent if and

only if ε = 1
2). As in (4.16) the optimal solution of the linear SLCP subproblem (4.10)

using B = 0 is denoted by v.
As v̆ is the optimal solution of the SLCP subproblem (4.10) using B = B̆, the objective

value of v is greater than the objective value of v̆:

cTv + 1
2vTB̆v ≥ cTv̆ + 1

2 v̆TB̆v̆

⇔ cT(v − v̆) ≥ 1
2 (v̆ − v)TB̆(v̆ − v) + vTB̆(v̆ − v)

. (4.21)

In the following we will evaluate the terms of (4.21) up to O(α4) to show that (4.21)
cannot be true.

First we analyze the linear term on the left hand side of (4.21) and obtain from Figure 4.2

cT(v − v̆) = −‖c‖2‖v − v̆‖2 cos
(π

2
− α

4
+

γ

2

)
= −‖c‖2‖v − v̆‖2 sin

(α

4
− γ

2

)
= −‖c‖22 sin

(α

4
− γ

2

)
sin
(α

4
− γ

2

)
= −8 sin2

(α

4
− γ

2

)
+O(α4)

≤ −2ε2α2 +O(α4).

For the evaluation of the right hand side of (4.21) note that

1
2
(v̆ − v)B̆(v̆ − v) ≥ 0

20

CHAPTER 4. LINEAR CONVERGENCE FOR THE SLCP APPROACH

∢

∢

∢

2

v

v⊥

v−v

c

v∗

v

−c

∢

2
−

2

∢−

4


2

Figure 4.2: Angles and vectors used in the proof.

since B̆ is positive semidefinite.
Denote by v⊥ the orthogonal complement of v with norm ‖v‖2 = ‖v⊥‖2 that is obtained

by a clockwise rotation of v by 90◦. To evaluate the last term of the right hand side of
(4.21) note again by Figure 4.2 that

v̆ − v =
‖v̆ − v‖2
‖v‖2

v cos
(α

2
− γ

2

)
+
‖v̆ − v‖2
‖v‖2

v⊥ sin
(α

2
− γ

2

)
.

Thus we have

vTB̆(v̆ − v)
= ‖v̆−v‖2

‖v‖2 cos
(

α
2 −

γ
2

)
vTB̆v + ‖v̆−v‖2

‖v‖2 sin
(

α
2 −

γ
2

)
vTB̆v⊥

≥ 0 − sin
(

α
2 −

γ
2

)
‖v̆ − v‖2‖B̆‖2‖v⊥‖2

≥ − sin
(

α
2

)
2 sin

(
α
4

)
M2 sin

(
α
4

)
= −M

8 α3 +O(α5).

From (4.21) it would therefore follow that

−2ε2α2 +O(α4) ≥ cT(v − v̆)
≥ 1

2 (v − v̆)B̆(v − v̆) + vTB̆v̆ ≥ −M
8 α3 +O(α5)

i.e, −2ε2α2 + O(α3) ≥ 0, which is not true for α sufficiently small and fixed ε > 0.
Therefore, the assumption of faster than linear convergence is led to a contradiction.

21

4.5. CONCLUSION

4.5 Conclusion

This result shows that the SSP/SLCP approach is not suitable for local convergence.
In practical applications however it can be seen that it is very useful for fast global
convergence. We will present details about our implementation of the SLCP method in
the next chapter. To overcome the local convergence problem we will discuss how to build
a hybrid solver in section 5.9. This solver switches between a solver for global and one for
local convergence. The difficult part is to guess when to switch to the local solver.

In chapter 7 we will present an algorithm that does have quadratic local convergence.
As solver for fast global convergence we suggest the SSP/SLCP solver.

22

5 Implementation

We have implemented an SLCP solver. In numerical experiments the implementation
displays fast global convergence, even though we’ve proven unattractive local convergence
properties for the SSP algorithm in the last chapter.

Our focus while implementing was on practical results for given problems. We investi-
gated into optimizing the different elements of our SLCP solver. This chapter sums up
the results of our experiments, including the choices of search steps and a discussion on
step length controls. In this chapter we also present a new approach we call “augmented
filter”.

In the next section we present an example with an important application. Then we show
the algorithm and its extensions. We then continue with a special kind of step control,
the filters, and our extension to it. Finally, we give a perspective on an hybrid algorithm
that switches to a different solver for a faster local convergence. Such a solver is presented
in the following chapters.

A problem that is rarely discussed in mathematical papers is the implementation of
nonlinear problem solvers. Existing solver are often either hard to read, have a complicated
input format or are restricted to a small problem class. We conclude this chapter by
giving a few details about our solver. We describe how problems as mentioned above can
be avoided by using Matlab’s object oriented programming technique.

5.1 A practical example

In circuit board simulation a data model is generated by using a Lanczos process (see e.g.
[BF00],[BF01], [Fr03]). Due to the truncated precision of such a process the generated
reduced problem typically is not conform with the law of conservation of energy. In [FJ04]
system (5.1) has been introduced. This system can be used to verify whether the law of
conservation of energy is respected.

As part of this thesis, a SSP solver has been used to create a perturbation for a re-
duced order model approximation, such that the perturbed data set respects the law of
conservation of energy.

The data model is given by the matrices B1, B2 ∈ Rn×m and G, C ∈ Rn×n. In real
applications these matrices are low dimensional approximations of a higher dimensional
model. The law of conservation of energy is given if a matrix X exists such that

XTB1 = B2,

GTX + XTG � 0,

XTC � 0,

XTC = CTX.

(5.1)

5.1. A PRACTICAL EXAMPLE

This can be easily verified with the linear SDP

min

−λI

∣∣∣∣∣∣∣∣∣∣
XTB1 = B2,

XTG + GTX � λI,

XTC + CTX � λI,

XTC − CTX = 0,

X ∈ Rn×n

 . (5.2)

If the solution is λ ≥ 0 then we know that the data respects the law of conservation of
energy.

The problem with formulation (5.2) is that for certain combinations of B1, B2 (5.2) has
a nearly degenerate feasible set depending on C,G or even no feasible point at all. Nearly
dengenerated means that the solver cannot distinguish it from a problem with no feasible
point for numerical reasons. A nearly degenerate feasible set results in a slow convergence
and a lack of accuracy. For our nonlinear formulation we need so solve similar problems,
where the lack of a solution for the linear problem forced the algorithm to stop even
though there is a solution for the nonlinear problem.

To avoid these problems we used another formulation of (5.2), namely

min

‖S‖
2
2

∣∣∣∣∣∣∣∣∣∣
XTB1 + S = B2,

XTG + GTX � 0,

XTC + CTX � 0,

XTC − CTX = 0,

X ∈ Rn×n

 . (5.3)

Equivalent to (5.2) where λ = 0 indicates whether the law of conservation of energy is
respected or not S = 0 indicates this here. An advantage of this formulation is, that
we always have at least the feasible point S = B2, X = 0. In practical applications this
approach seems to be faster and more accurate to solve. The disadvantage of this approach
is, that it is desirable to find a λ ≥ ε > 0 for (5.2). It is possible to add such a restriction
for ε > 0 to (5.3) by replacing the second and third condition with

XTG + GTX � εI (5.4)

XTC + CTX � εI, (5.5)

but this approach requires a a priori election of the unknown quantity ε.
The problem with this modification is that we again might not have a feasible point or

have a nearly degenerate feasible set. In our approach we solve the problem for ε = 0 up
to a high precision and try to increase ε until either ε is reasonably “large” or no solution
exists.

At this point we can verify whether the reduced order model approximation respects the
law of conservation of energy or not. We want to find an approximation that does. This
approximation should be “close” to the original one. We therefore introduce perturbations
PG, PC and try to find a pair Ĝ = G + PG, Ĉ = C + PC for that the solution of (5.3) is
S = 0.

Introducing these perturbations we get the following nonlinear semidefinite program

min

s0

∣∣∣∣∣∣∣∣∣∣
XTB1 + S −B2 = 0,

XT(G + PG) + (G + PG)TX − ZG = 0,

XT(C + PC) + (C + PC)TX − ZC = 0,

XT(C + PC)− (C + PC)TX = 0,

X, PG, PC ∈ Rn×n,

ZG, ZC � 0,(
s0

S

)
∈ Q

 . (5.6)

24

CHAPTER 5. IMPLEMENTATION

To solve general problems fast we implemented the SLCP algorithm that supports the
same set of cones as SeDuMi. We will list these cones in the next section. The algorithm is
kept very flexible. Intense numerical test led to an efficient steplength control and search
step formulations. We present specific speedups for the reduced order model problem in
section 5.8.

5.2 The SLCP Algorithm

In this section we present the SLCP algorithm. The elements of this algorithm will be
discussed throughout the next section. Chapter 3 presents the SLCP algorithm regarding
theoretical aspects. Our focus in these sections is on the implementations side of the
SLCP algorithm.

We use SeDuMi (see [St99] or [SeWWW] for details) as solver for the subproblems.
Besides being known as a robust solver for conical linear programs, SeDuMi has other
properties that are very useful to us. First of all it has a straightforward standard form

min
{

cTx |Ax = b, x ∈ K
}

. (5.7)

Second the cone K includes the most common cones. More precisely any Cartesian product
of the following cones

RKf free variables,

RKl
+ positive variables,

QKq1 × · · · × QKqi quadratic cone variables,

QRKr1 × · · · × QRKrj rotated quadratic cone variables,

SKs1
+ × · · · × SKsk

+ positive semidefinite cone variables.

(5.8)

The quadratic cone is the cone of vectors

Qn+1 3
(

x0

x̄

)
x0 ∈ R+

x̄ ∈ Rn with x0 ≥ ‖x̄‖2. (5.9)

The rotated quadratic cone is the cone of vectors

QRn+2 3

x0

x1

x̄

 x0, x1 ∈ R
x̄ ∈ Rn with x0x1 ≥

1
2
‖x̄‖22, x0 + x1 ≥ 0. (5.10)

It is called rotated quadratic cone as a vector

x0

x1

x̄

 ∈ QRn+2 can be easily transformed

to be a vector of the quadratic cone

x0x1 ≥
1
2
‖x̄‖22, x0 + x1 ≥ 0

⇔ 1
2
(x0 + x1)2 ≥

∥∥∥∥(1√
2
(x0 − x1)

x̄

)∥∥∥∥2

2

1√
2
(x0 + x1) ≥ 0

⇔

 1√
2
(x0 + x1)

1√
2
(x0 − x1)

x̄

 ∈ Qn+2.

(5.11)

25

5.3. APPROXIMATION OF H

We used the rotated quadratic cone to convert a quadratic program into a linear conic
program, when we introduced the SLCP (sequential linear conic program) algorithm.

Instead of writing a sequential semidefinite programming (SSP) algorithm, we used the
supported cones of SeDuMi to implement the slightly more general SLCP algorithm. Of
course all the supported cones lie in Sn

+, but supporting these cones directly allows much
smaller program sizes.

As a result of using SeDuMi our algorithm solves problems of the form

min
{

cTx | F (x) = 0, x ∈ K
}

(5.12)

where K is the cartesian product of any SeDuMi cones from (5.8).

Algorithm 3 The SLCP-Implementation-Algorithm
let (x(0), y(0), s(0)) be a given starting point and k = 0
let B(0) ≈ H(x(0), y(0), s(0)) be an approximation of the Hessian of the Lagrangian
while [stopping criterion] (see section 5.7) do

[create conical linear program] (see section 5.4)
retrieve search step (∆x, y, s), by solving the conical program with SeDuMi
generate next iterate (x(k+1), y(k+1), s(k+1)) via [line search/filter] (see section 5.5)
[post corrections]
[B update] B(k+1) ≈ H(x(k+1), y(k+1), s(k+1)) (see section 5.3)
set k = k + 1

end while

Here we present an algorithm that focuses on the implementation, while the general
concept of the SLCP algorithm was introduced in section (3.2). Algorithm 3 includes
typical elements such as step length control and a problem specific intervention point
called post correction.

The post correction lets us use additional knowledge about a specific problem to speedup
the convergence. We used this post correction e.g. for the reduced order model problem.
As the nonlinear reduced order model problem evolves from a linear problem we solved
such a much smaller linear problem to generate a feasible point from the current non fea-
sible iterate. This modification led to a significant speedup in our numerical experiments.
For some examples that converged very slow this speedup leads to convergence within a
few steps. We will go into more detail about the reduced order model problem in section
5.8.

In the following specific elements of the algorithm are described in more detail.

5.3 Approximation of H
To obtain a real square root of B(k) we need B(k) to be positive semidefinite.

The Hessian of the augmented Lagrangian

Λr(x, y, s) := cTx +
r

2

m∑
i=1

(Fi(x) +
yi

r
)2 − 1

2r
yTy

+
r

2
[
s

r
− x]+ • [

s

r
− x]+ −sTs

2r
.

(5.13)

is one possible choice for such an approximation B(k). The operator [·]+ is the orthogonal
projection onto the cone K.

26

CHAPTER 5. IMPLEMENTATION

A weakness of this approximation is while Λr is convexified with an increasing r the
radius of quadratic convergence decreases. Additionally this parameter r has to be esti-
mated.

The magnitude of such a projection is O(n3). It is possible to save the additional time of
calculating and projecting the Hessian of the augmented Lagrangian Λr and just project
the Hessian of the Lagrangian L.

Cheaper approaches are quasi Newton update strategies for the approximation of the
Hessian that are typically O(n2). A well known update is the BFGS update. While the
BFGS update does not guarantee to keep the approximations B(k) positive semidefinite a
simple variant called damped BFGS update does. The damped BFGS update still leads
to super linear convergence of the SQP approach (see [Po78]). Another benefit of this
update is that it can be applied directly to the square root of B(k).

Numerical experiments show that using a BFGS approach often slows down the conver-
gence. Since the additional subproblems are more difficult to solve than a projection it is
cheapter to use the Hessian of the Lagrangian an project it, if the Hessian is calculatable
in a reasonable time.

If the Hessian is hard to calculate an efficient variant might be to alternate both in the
following way. Let QDQT = H(k) be the eigenvalue decomposition of the Hessian of the
Lagrangian and let di be the eigenvalues of H(k). Instead of using a projection onto the
cone of positive semidefinite matrices we make the matrix slightly positive. Let ε > 0 be
a small constant. We then set

B(k) := QD++QT ∈ S++ with D++
ii = max(ε, di). (5.14)

For the next few iterates we apply a quasi Newton update to the square root of B(k) such
as the BFGS update. After a few iterations we start again with a positive semidefinite
“projection” of the Hessian.

With this approach the convergence is fast and its calculation is cheap.

5.4 Search Steps

Again for abbreviation we will omit all iteration indices k. Recall that the search step is
the solution ∆x of the subproblem

min
∆x
{ cT∆x +

1
2
∆xB∆x | F (x) + DF (x)∆x = 0, x + ∆x ∈ K }. (5.15)

Let n be the dimension of x and m be the dimension of F (x). Thus (3.12/5.15) has n
variables, namely ∆x, and m linear constraints, F (x) + DF (x)∆x = 0.

To find an optimum for problem (5.15) with a solver for conical linear programs, we
use that a positive semidefinite approximation B of H has a square root

√
B. Using this

squareroot
√

B we formulate problem (5.16) that is equivalent to (3.12/5.15).

min
∆x,z0,z̄

 cT∆x + z0

∣∣∣∣∣∣∣∣
DF (x)∆x = −F (x),
√

B∆x− z̄ = 0,

x + ∆x ∈ K,z0

1
z̄

 ∈ QR

 (5.16)

This increases the number of variables to 2n + 1 and the linear constraints to m + n.

27

5.4. SEARCH STEPS

SeDuMi only allows variable conic constraints, thus (5.16) can not be solved with Se-
DuMi directly. We therefore introduce a new variable x+ = x + ∆x and z1 = 1 and get
the conical linear program

min
∆x,x+,z0,z1z̄


cT∆x + z0

∣∣∣∣∣∣∣∣∣∣∣

DF (x)∆x = −F (x),
√

B∆x− z̄ = 0,

x+ −∆x = x,

z1 = 1,

x+ ∈ K,

∆x ∈ Rn,z0

z1

z̄

 ∈ QR


. (5.17)

The dimensions of (5.17) are 3n+2 variables and m+2n+1 non-conic constraints. When
x is close to the optimal solution of (3.11) then the correction ∆x of (5.17) is small and
avoids cancellation in errors. Thus this formulation yields high accuracy for ∆x. If a
high accuracy is unnecessary e.g. when we are far away from the solution, the following
equivalent problem1 can be solved faster as it has a reduced dimension, but with a lower
accuracy as a trade off.

Instead of having x+ and ∆x we set ∆x = x+ − x and define the problem

min
x+,z0,z1z̄

 cTx+ + z0

∣∣∣∣∣∣∣∣
DF (x)x+ = −F (x) + DF (x)x,
√

Bx+ − z̄ =
√

Bx,

z1 = 1,

x+ ∈ K,z0

z1

z̄

 ∈ QR

 . (5.18)

This formulation has reduced dimensions of 2n + 2 variables and m + n + 1 non-conical
constraints. To analyze the accuracy difference of (5.17) and (5.18) we focus on the
linearized constraint

(5.17) (5.18)
DF (x)∆x = −F (x) DF (x)x+ = −F (x) + DF (x)x.

(5.19)

For problem (5.17), the accuracy of ∆x is about the machine precision. For problem
(5.18) where we calculate ∆x = x+ − x on the other hand we have an accuracy that is
the division of the machine accuracy multiplied by the magnitude of x+ divided by the
magnitude of ∆x. The subproblem solver does not yield results with machine accuracy,
but a few digits less. Thus it is crucial to switch to the solver with high accuracy when
the iterate is close to x∗, if an accurate approximation of x∗ is needed. In our numerical
experiments the search step resulting from (5.17) showed a faster convergence very close
to x∗.

The formulation (5.17) that yields high accuracy can easily be reformulated to use a
trust region r for ∆x without any noticeable loss of speed

min
∆x,x+,z0,z1z̄


cT∆x + z0

∣∣∣∣∣∣∣∣∣∣∣∣∣

DF (x)∆x = −F (x),
√

B∆x− z̄ = 0,

x+ −∆x = x,

z1 = 1,

∆x0 = r,

x+ ∈ K,(
∆x0

∆x

)
∈ Q,z0

z1

z̄

 ∈ QR


. (5.20)

This approach uses a trust region and has a high accuracy. The only disadvantage is an
increase in dimension compared to (5.18) since problem (5.20) has 3n + 3 variables and
m + 2n + 2 linear constraints.
1It is equivalent concerning ∆x = x+ − x, but has a different target value

28

CHAPTER 5. IMPLEMENTATION

Redundant equality constraints can theoretically be removed using a QR decomposition.
In practical applications it turns out that this often leads to a increased computation time
for solving the subproblem as SeDuMi needs more IPM steps. Structure and order of
constraints have a significant influence on the speed of the algorithm even for a robust
solver like SeDuMi. For instance in (5.3) the term XTC is forced to be symmetric. Yet
using XTC + CTX � 0 leads to a faster overall convergence than XTC � 0.

For our examples we use mainly two search steps. The algorithm starts using (5.18)
and switches to (5.20) for more accuracy. The decision for a switch between these search
steps is made by the step length control. Typically this is done when the penalty line
search or the filter does make only a minimal step. In this case the solver switches from
the fast (5.18) to a high accuracy search step (5.17/5.20).

5.5 Step length control

For our examples the search step is a crucial part for fast convergence. On one hand
small steps lead to a slow convergence, on the other hand too large steps lead to a strong
violation of the restriction F (x) = 0 which again leads to a slow convergence. With the
right step length it is possible to use steps just as long such that the constraint violation
does not lead to slow convergence.

Line search

A first idea to determine an efficient step length is a penalty line search. A penalty line
search does a line search over a merit function p(x). Often p(x) is a weighted sum of the
objective function cT∆x and a penalty term ‖F (x)‖. In our implementation we used

p(x) := cTx + M‖F (x)‖ (5.21)

where M ≈ ζ‖y‖ for a constant ζ.
Using such a merit function p(x) an efficient step length is an approximation of

λ∗ := argminλ{ p(x + λ∆x), λ ∈ [ε, 1]} (5.22)

using ε > 0 to guarantee a minimal step.
The KKT conditions seem naturally to induce a merit function. In practical applications

it shows that such a merit function is not suitable for the reasons to follow. When using
a KKT conditions based merit function three factors have to be considered. First the
violation of the derivative of the Lagrangian g = 0, second the violation of the nonlinear
constraints F (X) = 0 and third the complementarity 〈X, S〉. By construction the cone
constraint violation of the primal variable can be assumed to be zero. The cone constraint
violation for the dual variable has to be measured, too. It is not enough to measure the
complementarity. It is difficult to weigh all three terms correctly to get a fast convergence.

It is numerically impossible to find a global minimum of (5.22) unless F (x) satisfies a
certain smoothness property. Typically we are interested in finding at least an approxima-
tion to a local minimum. On one hand F (x) might be expensive to evaluate on the other
evaluating F (x) is typically by far cheaper than to solve an additional SLCP-subproblem.
Thus the question is how to gain a “useful” step with as little evaluations as possible. In
this implementation chapter this “usefulness” of a line search is determined by the global
convergence, especially the global convergence we experienced with the reduced order
model examples that motivated this work.

29

5.5. STEP LENGTH CONTROL

An alternative that is often used and easy to implement is the Armijo line search. Let
j = 0..J and ρ be a constant typically ρ ∈ [0.75, 0.95] and ρJ ≈ ε. Using the Armijo
line search a local “minimum” is found by evaluating the points λ = ρj until p(x + λ∆x)
increases. This is only a rough approximation of a local minimum, but as M is also only an
estimated parameter there is no reason to be more precise for λ than for M . For an F (X)
that is expensive to obtain the parameter ρ can be reduced. This line search also tends
to yield longer steps than other line searches. Additionally one can enforce a monotony
condition p(x) > p(x + λ∆x) to avoid local minima that are worse approximations than
the current iterate.

For most of our examples the convergence using a line search irrespective of the estimator
we tried is slow. The method generated very short steps, when F (x) got too large. Next
we adaptively adjusted M not only according to y but also to F (x). This increased the
convergence speed a little bit.

As the violation of the constraints seemed to be the main problem for the slow conver-
gence a quadratic correction step was introduced into the line search. For a step x + ∆x
we define the following minimization problem for the line search parameter

ξ∗ := argmin{ ‖ξ‖ | F (x + ∆x) + DF (x)ξ = 0 }. (5.23)

With ξ+ we do a line search along

x+(λ) = x + λ∆x + λ2ξ∗ with λ ∈ [0, 1]. (5.24)

We also experimented with using DF (x+∆x) instead of DF (x). Using DF (x) avoids an ad-
ditional calculation of DF and it has proven in practical applications to yield more efficient
steps, for our examples. With the quadratic correction again only a small convergence
improvement was noticeable.

Filter

A very different class of step length controls are filters. The filter approach is a heuris-
tic approach that seems unsatisfactory, but yields good convergence results in practical
applications. Moreover, theoretical analyses of various filter approaches have established
global convergence properties to stationary points (see e.g. [FLT02]). They can easily be
introduced using the SLCP subproblem with a trust region. A filter is a set Σ that holds
pairs of objective values and constraint violations measures for a subset {xki} for the past
iterates x(k)

Σ :=
{ (

cTxki , ‖F (xki)‖
) }

. (5.25)

Let 0 < α � 1 and 0 < β � 1 be two constants. In the standard filter approach a new
step x+ = x + ∆x is accepted if for every ki one of the following conditions is fullfilled

a) cTx+ + αF (x+) ≤ cTxki

b) F (x+) ≤ βF (x)ki .
(5.26)

In other words a step is accepted if either the reduction of the objective function is longer
by a factor α than the increase of the constraint violation or if the constraint violation
decreases at least by a factor β.

If a new point is accepted then

• x+ is the new iterate x(k+1),

30

CHAPTER 5. IMPLEMENTATION

• the trust region r is adapted (either through an estimation or set to a multiple of
the current trust region or the length of the step),

• x+ is added to the filter,

• and all surplus filter elements xkj
are removed, that is all xji

for which

cTx+ + αF (x+) ≤ cTxkj and F (x+) ≤ βF (xkj). (5.27)

holds

On the other hand, if the element is not accepted

• the trust region r is reduced (e.g. by a fixed factor),

• the search step ∆x+ is dropped,

• and the iterate stays the same x(k+1) = x(k).

Figure 5.1 shows a filter and its acceptable area. One can also see the points of the
filter sets and some points that are obsolete to the filter, when the point x+ is added.

cT
x

||F(x)||

filter area

acceptable area

obsolete points

active filter points

∡




Figure 5.1: A filter.

Recall that our main problem for fast convergence seemed to be getting short steps
once the non-conic constraint violation was too large. Filters now allow us to limit that
violation by defining a start set. The start set contains the pair (cTx0, ‖F (x0)‖) for the
starting point x0 and for some γ > ‖F (x0)‖

a constraint violation limiting pair (−∞, γ). (5.28)

With this initial filter set, βγ is the largest acceptable nonlinear constraint violation.
By using the filter approach a faster convergence is achieved. The downside of filters

is that some search steps are dropped even though the calculation of a search step is the

31

5.6. AUGMENTED FILTER

most CPU time expensive part. In the following chapter we will present an augmented
filter approach. This approach does not drop any search step and still it yields convergence
in even less steps. Additionally it supports another way of guessing the closeness to the
optimal solution.

5.6 Augmented filter

In the last section we have introduced various step length controls. It turns out that the
filter method was superior over the line search approach for the NLCPs (nonlinear conic
programs) we tested with our algorithm.

On one hand the calculation of a search step is the most expensive part of the algorithm.
On the other hand every search step either reduces the constraint violation or the objective
value or both, except for the inaccuracy of the search step due to floating point rounding
errors. Thus dropping a search step is undesirable.

A simple but effective alternative to avoid this is, to use this search step with a reduced
step length. Hence the traditional trust region concept is modified in such a fashion that
a search step resulting from a trust region problem is subject to a “filter line search”. We
could use a penalty line search, but there is no guarantee that the resulting step would
be acceptable. Moreover such a line search would possibly destroy our convergence speed
gain. Therfore we use the longest step that is acceptable for the filter.

Finding an acceptable reduced step can be done with an Armijo-like “line search”mean-
ing the longest step of x + ρi∆x that is accepted by the filter is used.

To further improve efficiency we treat search directions with cT∆x > 0 differently. For
such a direction we search for a local minimum of ‖F (x + λ∆x)‖. We use an “inverse”
Amjijo line search that tests the points x + λmin

ρi ∆x for i = 0 .. logρ λmin.
A line search for cT∆x ≤ 0 is shown in figure 5.2.
If α and β are sufficiently small we can find such a step, assuming our search step

calculation does not suffer too severely from rounding errors.
In practical applications α and β might not always be small enough. If we cannot find

an acceptable reduced step we first change our subproblem formulation to a more accurate
one. If we already use the most accurate subproblem formulation we go a minimal step
and reduce first α and if necessary then β accordingly. Note that reducing α and β does
not render any filter elements obsolete. We experienced that the reduction of α and β is
only necessary if the iterate is very close to the optimum. Note that the parameters α
and β are less important in the augmented filter approach. In the standard trust region
approach α and β directly influence wether a step is dropped and thus influence the trust
region parameter. In the augmented filter approach α and β only influence which step
length is accepted.

This filter approach does not depend on a trust region. Thus we can use the cheaper
search step (5.18) that is less accurate. If the reduced step is very small (e.g. less than
25% of the search step’s length) then it is appropriate to switch to a high accuracy search
step either with or without a trust region.

If a trust region is used a simple but effective way to determine a trust region size r is
to set it a little larger than the last step, r = ϑ‖x(k+1) − x(k)‖ with for instance ϑ = 3

2 .
It turns out that for a large ϑ almost never a full step in the filter line search is done,
but always a very large one. We observe that almost all iterates lie close to the border of
the constraint violation limit until there is no feasible point for the subproblem that still
decreased the objective value. Thereafter the filter will only accept points that decrease
the constraint violation.

32

CHAPTER 5. IMPLEMENTATION

cT
x

||F(x)||

filter area

acceptable area

reduction of
acceptable area

increase of
filter area

Figure 5.2: A reduced step that is accepted by the filter.

The convergence of an SLCP algorithm using such a filter is shown in Figure 5.3. The
algorithm starts with a feasible point. Initially the constraint violation increases while
the objective function is reduced. In iterations 8 to 11 the constraint violation is reduced
again, in iteration 10 the objective value increases slightly. This figure shows a hard to
solve example we used for testing. The first implementation with a penalty line search
took over 60 iterations.

This behavior of iteration 8 to 11 could be observed in all of our problems and we
suggest this as a switching characteristic for a hybrid solver in section 5.9.

Another shortcoming of the standard filter method is, that the limitation γ of the
constraint violation from (5.28) is problem dependent and has to be guessed for each
NLCP. Such a γ does not always arise naturally from the problem itself. An easy solution
is to add a constraint limiting pair (−∞, γ) in a later iteration.

In our numerical experiments a large constraint violation resulted in a short acceptable
step, compared to the step length of the calculated search step. Therefore we add a
constraint violation limiting pair (−∞, γ) to the filter based on the constraint violation of
the last iterate, e.g. γ = 1

2‖F (x(k−1))‖. Note that when ‖F (x(k))‖ is large the next steps
can increase the objective value.

5.7 Stopping criteria

5.7.1 Abort criteria

For some problems a subproblem might not have any feasible point or the solver cannot
find a feasible point. As we said before SeDuMi is a very robust solver, but a nearly

33

5.7. STOPPING CRITERIA

cT
x

iterations2 4 6 8 14 16 18 20

||F
(x
)|
|

2 4 6 8 14 16 18 20iterations

Figure 5.3: Convergence of an SLCP algorithm using an augmented filter.

degenerated feasible set often results in an increased computation time for SeDuMi and
in a less accurate solution or premature stopping. There are different ways to deal with
such a problem.

One way is to abort the overall solution process. For the reduced order model problem
this abort indicated to us that a less degenerated formulation should be found. In section
5.1 we presented such a reformulation.

Another way is to drop the last step and to add a constraint violation limiting pair. If
a line search instead of a filter is used then the penalty parameter M is adjusted.

Another abort criterion is the iteration count. This is typically introduced to abort in
cases of a program or problem design error. For an hybrid-algorithm an iteration count
threshold can be useful to switch between the solvers. For more details on an hybrid solver
see section 5.9

5.7.2 No“improving” step

Let x(k), x(k+1) be two consecutive iterates of the SLCP algorithm. A step x(k+1) − x(k)

is called an improving step if

cT(x(k+1) − x(k)) < 0 or F (x(k+1)) < F (x(k)). (5.29)

is satisfied.
One might think of an improving step as a step that is acceptable for a filter for small

enough filter parameters α and β.

34

CHAPTER 5. IMPLEMENTATION

The high accuracy search step formulation is used if the direction of the last search step
could not be used to find an improving step. If the high accuracy search step formulation
was used then the program is aborted.

This criterion is very helpful, because it simply stops when “we cannot do any better”.
This avoids cycling, especially when other stopping criteria like the KKT stopping criterion
from section 5.7.3 cannot be satisfied in the course of the algorithm.

One way to implement this stopping criterion is, to stop, when the step is not accepted
by the filter even for very small values αmin and βmin.

5.7.3 The KKT conditions

The KKT optimality conditions is the classical candidate for a stopping criterion.
Let (x∗, y∗) be an optimal pair for (5.12). Recall the KKT conditions from section 2.3

see (2.19)

x∗ ∈ K,

s∗ := −Dc(x∗)− y∗TDF (x∗) ∈ KD,

F (x∗) = 0,

〈s∗, x∗〉 = 0.

Let (x, y) = (x(k), y(k)) be the k-th iterate of the SLCP algorithm. For this pair (x, y) we
define s := −cT−yTDF (x). If (x, y) is not the optimal pair (x∗, y∗) then (under Robinson’s
constraint qualification) we know that one of the conditions (2.19) for (x(k), y(k), s(k)) is
violated.

We can assume that x(k) ∈ K is satisfied, which is trivially true if any j < k satisfies
xj ∈ K. The other conditions might be violated and violation measures will be discussed
in the following.

Violation of F (x) = 0

F (x) might be a set of functions that might be differently scaled. Thus we consider the
violation of each Fj(x) = 0 separately. To measure the violation we define

Fmax
j := max{ |Fj(x(i))|, i ∈ 0, .., k } (5.30)

and a scaled violation measure

F̃j(x) :=
Fj(x)
Fmax

j

. (5.31)

The overall violation of the non-conic constraints is measured by either average con-
straint violation, a weighted Euclidean constraint violation or the maximum constraint
violation, i.e. by

1
m
‖F̃ (x)‖1 or

1√
m
‖F̃ (x)‖2 or ‖F̃ (x)‖∞. (5.32)

Since we want all constraint violations to be equally small we used ‖F̃ (x)‖∞ for most
examples.

Violation of s ∈ KD

Let x be the Cartesian product of xj . The vectors xj lie in the following cones

see (5.8) Rn, Rn
+, Qn+1, QRn+2, Sn

+.

35

5.7. STOPPING CRITERIA

Let accordingly s be the Cartesian product of sj .
All cones listed above are selfdual, except for R which has {0} as dual cone.
Let ŝj be the orthogonal projection onto the dual cone containing xj . A good measure

of the conic constraint violation σj is

σj :=
‖sj − ŝj‖2
‖sj‖2

. (5.33)

Orthogonal Projections

The orthogonal projection of sj onto Rnj

+ is trivially

ŝj := max (sj , 0) :=

 max ((sj)1, 0)
...

max
(
(sj)nj , 0

)
 . (5.34)

The orthogonal projection of sj =
(

(sj)0
s̄j

)
onto Qnj+1 is

ŝj =



sj for (sj)0 ≥ ‖s̄j‖
τ ‖s̄j‖
τ (s̄j)1

...
τ (s̄j)nj

 else
with τ :=

(
(sj)0
2 ‖s̄j‖

+
1
2

)
. (5.35)

For the projection onto QRnj+1 let s̃j be the rotated vector of sj

see (5.11) s̃j :=

 1√
2
(sj0 + sj1)

1√
2
(sj0 − sj1)

s̄j

 .

Note that ·̃ is a mapping from sj ∈ QRnj+2 to s̃j ∈ Qnj+2. This mapping is unitary as it
is a rotation. Thus the projections for sj ∈ QRnj+2 are the same as for s̃j ∈ Qnj+2.

For the projection onto Sn
+ we assume that sj is a symmetric matrix. Let QDQT = sj

be the eigenvalue decomposition of sj with D = Diag(d) and di the eigenvalues of sj .
Further let d+ and D+ = Diag(d+) respectively have the entries max(di, 0). With these
definitions the orthogonal projection s̃j of sj is

s̃j := QD+QT. (5.36)

Overall norm of σj

Recall the overall measure of the violations of Fj = 0. Analogously let σ be the vector
(σj)j . Again we can measure the overall cone violation using

1
m
‖σ̃‖1 or

1√
m
‖σ̃‖2 or ‖σ̃‖∞. (5.37)

Again we used the ∞-norm for our examples.

36

CHAPTER 5. IMPLEMENTATION

Violation of the complementarity

The complementarity is given by

〈s, x〉 = 0, x ∈ K, s ∈ KD. (5.38)

Recall x and s are cartesian products of

see (5.8) Rn respectively {0}, Rn
+, Qn+1, QRn+2, Sn

+.

Let again be xj and sj be the components of the cartesian product of x and s respectively.
We already consider the cone constraint violation, here we discuss how to measure the
orthogonality of xj and sj .

Note that for Rn, {0}, Rn
+, Qn+1, QRn+2 the standard scalar product is 〈sj , xj〉 =

sT
j xj . We can use the same scalar product for xj , sj ∈ Sn

+ by using the vector representa-
tion vec(xj) and vec(sj) since

xj • sj = vec(xj)T vec(sj). (5.39)

Again we get one measure xT
j sj for each j and have to consider a overall norm. Since

all scalar products are the same an alternative is measure xTs.
To normalize our measure we use sTx

‖s‖2‖x‖2 and analogously for the separate measure xj

and sj .

Final remarks on the KKT condition based stopping criterion

For most examples we let the SSP approach calculate until the accuracy can no longer
be improved, i.e. until the search step given cannot be used for an “improving” step (see
section 5.7.2). We use the KKT conditions afterwards to check how accurate the result is.

Examples for which a high accuracy is unnecessary use the KKT condition as a stopping
criterion. Even though the measurements mentioned are scaled based on the problem’s
data, it might be useful to introduce weights for the different measurements.

As mentioned before a line search based on the KKT conditions is problematic as it has
local minima with ‖F (X)‖ > 0.

5.8 Speed ups for the reduced order model example

The reduced order model example from section 5.1 is one important application of the
algorithms presented in this thesis. In this section we will describe in more detail how
this specific problem is solved and how we speed up the convergence.

Recall that the reduced order model problem is given by

see (5.6) min

s0

∣∣∣∣∣∣∣∣∣∣
XTB1 + S −B2 = 0,

XT(G + PG) + (G + PG)TX − ZG = 0,

XT(C + PC) + (C + PC)TX − ZC = 0,

XT(C + PC)− (C + PC)TX = 0,

X, PG, PC ∈ Rn×n,

ZG, ZC � 0,(
s0

S

)
∈ Q

 .

Let n be the dimension of the matrices X, G, C, ZG, ZC ∈ Rn×n. Let m < n, B1, B2 ∈
Rm×n. And let l be the number of free entries of PC and PG. For the symmetric conditions

37

5.8. SPEED UPS FOR THE REDUCED ORDER MODEL EXAMPLE

of (5.6)

XT(G + PG) + (G + PG)TX − ZG = 0,

XT(C + PC) + (C + PC)TX − ZC = 0
(5.40)

only 1
2n(n + 1) conditions are necessary for each equation and for

XT(C + PC)− (C + PC)TX = 0 (5.41)

only 1
2n(n− 1) conditions are necessary. Moreover, due to details in the implementation

of SeDuMi, it turns out that not omitting the redundant symmetric conditions of XT(C +
PC)− (C + PC)TX = 0 leads to a faster convergence of SeDuMi.

With this formulation the nonlinear program has

3n2 + nm + 2l + 1 variables and
nm + n(n + 1) + n(n− 1) constraints.

(5.42)

Please recall that when solving the SLCP subproblem with high accuracy (5.17/5.20) we
have

3(3n2 + nm + 2l + 3) + 2[+1] variables and

(nm + n(n + 1) + n(n− 1)) + 2(3n2 + nm + 2l + 1)[+2] constraints.
(5.43)

That is more than 9n2 variables and more than 8n2 equality constraints.
For problems that occur in practical applications we have up to n = 40. This results

in a matrix A of the linear constraints of the subproblem with a dimension larger than
14400 × 12800. Thus storing only the already set up matrix for the subproblem would
take 1,5GB of RAM if we wouldn’t use a sparse matrix format. Note that even though
C,G, PC and PG are not sparse, A is sparse, thus these problems can be calculated on a
personal computer.

Please note that the linear reduced order model problem 5.3 only needs

3n2 + nm + 1 variables and
nm + n(n + 1) + n(n− 1) conditions.

(5.44)

This means that calculating a linear problem is considerably cheaper compared with the
generated SLCP subproblem. In the following we will show how to use this fact.

We gain such a linear reduced order model problem, by fixing the perturbations PC

and PG. Thus we can determine a X, ZC and ZG by solving the linear reduced order
model problem such that we have a feasible point for the nonlinear program. So the
first approach is to increase the rate of convergence by projecting the new iterate onto
the feasible set after each step. This is done by solving an additional linear SDP. This
increased the rate of convergence drastically, the necessary SLCP steps reduced from over
50 steps to less than 10 steps. Theoretically, this modification could lead to some form of
cycling, but it never happened for our data.

Projecting after each step only works if

XT(G + PG) + (G + PG)TX − ZG = 0,

XT(C + PC) + (C + PC)TX − ZC = 0,
(5.45)

38

CHAPTER 5. IMPLEMENTATION

but what we need in the end is to satisfy

XT(G + PG) + (G + PG)TX − ZG = λεI,

XT(C + PC) + (C + PC)TX − ZC = λεI.
(5.46)

We achieved this by including this projection onto the feasible set in our filter-line search.
If the objective function ∆s0 satisfies ∆s0 ≤ 0 we used the longest step, that still had a
solution. These linear SDPs are much cheaper to solve than the subproblems from the
nonlinear problem. Nevertheless we aim to solve only few of them. We decided to reduce
the Armijo factor ρ to solve less linear SDPs.

Calculating initial values is easy as PC = PG = 0 are good initial values, so we only
have to solve the simple linear program once and get a feasible starting point. Often this
starting point is close close to the optimum.

For problems that had a singular C the process typically converged to a non singular
solution C +PC . The convergence is very slow until a matrix PC was found such that the
matrix C + PC is non singular. Once such a PC is found the solver converges within a
few steps. To avoid the slow convergence part, we chose the initial matrix PC such that
we have a non singular sum C + PC . This led to fast convergence for such examples2.

As a small restricted perturbation is desired we replaced

PC , PG ∈ Rn×n with
(

pC

PC

)
,

(
pG

PG

)
∈ Qn2+1 (5.47)

and used pC , pG to restrict the maximal allowed violation. The approach for an initial
matrix PC with C + PC non singular however might be infeasible for this condition. We
use the following approach to overcome this problem.

Running the SLCP algorithm with the infeasible PC can lead to an unsolvable subprob-
lem. If this subproblem is solvable still a necessary reduced step could result in a point
that was infeasible again. A solution is to start with an appropriate pC and reduce it over
time until the desired perturbation limit is reached.

Let p̂C be such a desireable perturbation limit. If a penalty term %‖pC− p̂C‖ is included
in the target function3, then steps are preferred, that reduce the perturbation size to the
wanted amount.

To conclude this section we present and discuss some results shown in table 5.1. The
tabel lists the dimensions n of the reduced order model problem, as well as the NLSDP
variable size N(n) and the number of nonlinear constraints M(n). The number of SSP
steps is listed under ”iter”, while CPU time lists the number of minutes it took to compute
the example. The results presented are all based on examples with a non singular C.
With the trick mentioned above singular ones take about 2 to 4 additional steps, if an
appropriate starting point PC is found. Of course we can construct examples, where the
initial starting point satisfies ‖PC‖ � pC , and the algorithm takes a lot more iterates.
This situation did not occur in the practical relevant cases in our examples.

As mentioned before the time SeDuMi takes for solving a subproblem depends on dif-
ferent factors, including the degree of degeneracy of the feasible set. A few examples
stand out in table 5.1 by using more CPU time, while having smaller dimensions with
only few SLCP steps, see examples n = 24 and n = 32. SeDuMi takes more CPU as
the occurring subproblems have an almost degenerated feasible set. Table 5.1 does only
include examples up to n = 35, due to a lack of memory in our computer.
2The solution of the circuit design problem, however, typically is singular.
3This term can either be included temporarily until we replace pC with p̂C or its weight % has to be

increased over time.

39

5.9. A HYBRID SOLVER

n M(n) N(n) iter CPU time n M(n) N(n) iter CPU time
8 118 285 5 3.71 22 783 1713 4 416.31
9 146 348 5 4.43 23 853 1862 5 151.33

10 177 417 7 8.06 24 926 2013 6 683.54
11 211 492 5 7.18 25 1002 2176 3 145.60
12 248 573 8 16.05 26 1081 2337 5 612.22
13 288 660 4 10.88 27 1163 2508 7 518.92
14 331 753 6 20.77 28 1248 2685 5 789.41
15 377 852 7 30.12 29 1336 2868 4 475.52
16 426 957 6 34.38 30 1427 3057 7 4213.50
17 478 1068 5 37.40 31 1521 3252 4 784.34
18 533 1185 10 91.17 32 1618 3455 6 4659.64
19 591 1308 4 47.61 33 1718 3660 5 1130.44
20 652 1437 5 83.66 34 1821 3877 2 630.53
21 716 1572 4 289.48 35 1927 4092 6 1799.36

Table 5.1: Numerical results for the reduced order model example.

5.9 A hybrid solver

The SLCP method only guarantees linear convergence while the global convergence is
fast. Consider again figure 5.3. The second half of the steps where used to gain a high
accuracy. This was a typical result with the problems we tested. Note that these steps
are the most time consuming part, because we have to use the high accuracy search step
formulation that has a larger problem dimension for the last few steps. A quadratically
convergent solver would take much less steps. Moreover the solver we present here con-
sumes much less CPU time. Note that the behavior of increasing objective function and
decreasing constraint violation is a good indication for closeness to the optimum. Using
the augmented filter approach this behavior can be observed for all of our test cases.

In nonlinear programming, the convergence path can be indefinitively long for an ad-
equate4 constraint F (x). It seems from practical experiments that the SLCP approach
gets close to an optimal solution quickly. Once we have a point close to the optimum the
local convergence property of the algorithm is crucial.

Using the indicator that we get by the augmented filter or based on the KKT conditions
one can formulate a hybrid solver. This hybrid solver uses one algorithm to get close to
the optimum, that we will call “global solver” and another to gain accuracy that we will
call “local solver”. The hybrid solver can even decide to switch back to the global solver
when the closeness estimate increases again.

While the SLCP algorithm qualifies as a “global solver” we want to propose an interior
point method (IPM) as a “local solver”. The combination of these two solvers is especially
interesting, as they are based on similar primal and dual data. Using the SLCP method
we get a dual equality constraint variable from SeDuMi and can then easily calculate the
dual conic constraint variable. All we have to do is to shift these slightly inside the cone5

and compute an IPM step without having to solve any additional starting point problem.
In the following chapters we will discuss such a primal dual IPM method. We especially

focus on the conditions that guarantee local quadratic convergence.

4e.g. for bounded problems without a finite optimal solution
5This might increase the equality constraint violation

40

CHAPTER 5. IMPLEMENTATION

5.10 A Matlab OOP implementation

In this section we want to add a few technical details about the implementation. As we
focused on usable results for the reduced order model problem, we did not implement one
step length control and one search step, but experimented with many different, that can be
specified together with the given nonlinear program. So in this chapter we want to describe
our approach. Our aim was to maintain maximal flexibility and easy extendability.

The basis for our approach was the object oriented programming (OOP) support pro-
vided by Matlab.

The OOP feature to combine functions and data was used to define an abstract class
for the objects to be solved. As we solved problems of the class

see (5.12) min
{

cTx | F (x) = 0, x ∈ K
}

we build an abstract class called NLCP (nonlinear conic program6).
This abstract class already included a numerical derivative DF (x) and a numerical

Hessian of the Lagrangian H. Thus an inherited class does not need an implementation
of these functions for first tests. Once the analytical derivatives are implemented, this
class allows to verify the analytical derivatives based on its numerical derivatives. This
class includes a void function F (x) for problems without any nonlinear constraints and a
placeholder function “Postcorrection(x)” that can be overloaded if necessary.

The main benefit of OOP for us is that we defined every element of the algorithm as
a class. Thus the solver has objects for getting a search step, an H update, for a step
length control and a stopping criterion. Then again these classes can have other classes
they depend on such as a line search has a separate classes for different merit functions.
In a trust region approach the search step can even come with its own line search.

When the SLCP solver is called the solver gets the problem object and can be given
additional objects for step length control, etc. The solver automatically adds the default
choices for elements that are not given, e.g. the “calculate H and update it with BFGS”
hybrid from section 5.3 update for the H-update and the augmented filter approach as
a step length control. For a problem where the second derivative is cheap to calculate a
H-update could be given, that gives back a projection of the exact Hessian H(x, y) onto
the cone of positive semidefinite matrices, in every iteration.

Another strong benefit of the OOP implementation is that the solver is as readable as
the algorithm itself, as it only calls the abstract functions without knowing how the single
elements are handled or implemented. We will even use this same solver to implement
our IPM in the future as it mainly has different search steps. So all we need to do is
automatically choose between centering and predictor steps. We could even comunicate
with the step length control to use different merit functions depending on the search step
being a centering or predictor step.

The main difference between our solver and the SLCP algorithm is that our solver is
already hybrid. So far we switch between two different search steps that have different
accuracies.

As we had practical results in mind we tried different combinations of search steps and
step length controls etc. Table 5.10 shows the main classes implemented for our solver.
The stopping criteria are not listed. We used the standard stopping criteria from section
5.7 and the KKT conditions. Additionally every element such as step length control or the
search step subproblems can force the loop to quit. This is useful if the given direction
given can not be used for an “improving” step (see section 5.7.2) or if SeDuMi could

6For supported cones see (5.8).

41

5.10. A MATLAB OOP IMPLEMENTATION

not solve the subproblem. In the second case a problem description allows the solver to
continue by e.g. using the other search step given to the hybrid solver. This means that
the solver switches to a more accurate search step once the fast search step can not be
used for an “improving” step.

Element Type Description
search step SD formulation using only x(k+1) (low accuracy)

SD formulation using ∆x and x(k+1)

SD with Trust Region
SD with weighted constraint violation
SD with x(k+1) and reduced size (through svd)

Step Length Control Armijo Line Search
Armijo Line Search with quadratic correction
Golden Section Line Search
Filter approach
augmented Filter approach

H-Update exact H (with projection)
H+ of the augmented Lagrangian
BFGS Update
damped BFGS Update
hybrid damped BFGS Update

merit functions ‖F (x + ∆x)‖+ McT∆x
KKT merit function (see sections 5.7.3 and 5.5)

Additionally to the OOP approach for a general solver, we implemented a detailed
messaging system. This messaging system allowed us to get different level of details to the
screen as well to different files. Information that is not printed is collected or calculated,
this is in opposite to other solutions that divert the output into “/dev/null” or similar.
The output can be formated accordingly to the needs of the reader. It might be organized
in blocks for each iterate, which is used when a lot of output is given. Or it is organized
as a table for a quick overview of the algorithm’s development over time. While for a
normal useage a minimal screen output is enough, a more detailed output allowed us to
easily choose the right components for all the different problems we solved and helped us
finding bugs quickly.

For debugging the common convergence characteristics are shown on screen while all
additional information is split up into several files for in depth analysis.

This messaging system also handles the plotting output. This plotting system can be
adjusted to the information needed and supports multiple plots as well as collecting plots
in a few windows. It supports tasks like continues per-iterate drawing that is used for the
development comparison of target function value and constraint violation. Additionally
line searches and filter can draw their own plots for each iteration, on request or under
predefined circumstances. Additional informational plots are drawn for iterates that lead
to an abort of the algorithm.

The plots in this thesis were created by the solver itself.

42

6 Interior point methods

In this section we present the basics of IPMs needed in the following chapters. We start
with some general notations and continue with the optimality conditions and the basic
idea of IPMs like the one presented here.

We conclude this chapter by presenting a central path. In the next chapter we present
an algorithm that is following this central path.

6.1 About IPMs

When interior point methods (IPMs) for linear programs where first introduced in 1984
by Karmarkar (see [Ka84]) they had to compete with the simplex method. The simplex
method solved linear programs by moving along the edges from corner to corner checking
whether there was an edge left that led to a corner with a smaller objective value. The
simplex method was acceptably efficient in practical applications, but had an O(n!) worst
case complexity.

The IPM introduced by Karmarkar takes γ
√

n log 1
ε steps to archive an accuracy of ε.

From Khachian it has been known (see [Kh79]) that the exact solution can be constructed
from a sufficiently close approximation of the optimal solution when the data is given
by rational numbers. The convergence of IPMs is obviously superior to the worst case
of the simplex method, but Karmarkar’s approach had to be modified before it became
practically relevant.

Efficient IPM implementations are competitive to the simplex method. One well known
and often used algorithm is Mehrotra’s long step predictor-corrector approach (see [Me92]
and [LMS92]). Today it is still a matter discussion whether the simplex or an IPM
implementation is “better” for linear programs.

As the IPM approach is not based on the special structure of linear programs, but on
the structure of the optimality conditions, the IPM approach can easily be generalized to
other problem classes. The IPM approach has been generalized for example for different
cones. These cones include the quadratic cone as well the cone of positive semidefinite
(PSD) matrices, as used in semidefinite programs (SDP).

In this thesis we further generalize the IPM for linear SDP to an approach for nonlinear
(non convex) SDPs.

6.2 Notation and conventions

We typically consider a nonlinear semidefinite program (NLSDP) of the form

min { C •X | F (X) = 0, X � 0} (6.1)

or a more general form
min

{
cTx | F (x) = 0, x ∈ K

}
where the cone K is either the cone of positive variables Rn

+, the quadratic cone Q, the
cone of positive semidefinite matrices Sn

+, or any cartesian product of these.

6.3. OPTIMALITY CONDITIONS REVISED

During the next chapters we use the following notations and conventions. Large letters
indicate matrices for variables e.g. C, X or vector valued functions for mappings like
F (X). We assume that these matrices are of dimension n such that C,X ∈ Rn×n. Note
that linear operators that are applied to n × n-matrices like A : Rn×n → Rn×n can
be written as N × N matrices with N = n2. When we later discuss the complexity
of operations we call O(n2), O(n3) negligible while the important operations are either
O(N2) or O(N3). The operations of the latter are the one that determine the speed of
the overall solver. The nonlinear constraint F (X) ∈ C3 is typically F : Rn×n → Rm.

Throughout this thesis we assume that every positive definite matrix is also symmetric.
If we refer to non symmetric positive semidefinite matrices we point this out specifically.

We typically consider points that are close to a local solution (X∗, y∗, S∗) and assume
that the problem is not degenerate.

6.3 Optimality conditions revised

In section 2.3 the aspects of the KKT optimality conditions that we needed for the SSP
approach are discussed. Now we add some aspects that we need for our IPM.

Recall the Lagrangian for (6.1)

L(X, y, S) := C •X − yTF (X)− S •X. (6.2)

as well as its first derivative with respect to X that we need for the KKT conditions

g(X, y, S) := DXL(X, y, S) = C −DF (X)∗y − S. (6.3)

We also need its second derivative for later analysis

H(X, y, S) := DXXL(X, y, S) = −D2
X(yTF (X)). (6.4)

As discussed before, an optimal solution is a feasible critical point for the Lagrangian
that satisfies a complementarity condition.

Let (X∗, S∗, y∗) be a primal-dual pair of optimal solutions of (6.1). The KKT conditions
then are

g(X∗, y∗, S∗) = 0,

F (X∗) = 0,

X∗ • S∗ = 0,

X∗, S∗ ∈ Sn
+.

(6.5)

Leaving the cone conditions aside the system (6.5) has less equations than variables. It is
well known that from X∗, S∗ ∈ Sn

+ and X∗ • S∗ = 0 follows X∗S∗ = 0. Exchanging the
condition X∗ • S∗ = 0 with X∗S∗ = 0 leads to a system that has as many equations as
variables. We need this to get a well-determined linearization for our relaxation.

The property X∗S∗ = 0 has been used to define the class of MZ-symmetrizations

SP (XS) :=
1
2

(
PXSP−1 +

(
PXSP−1

)T)
. (6.6)

A reason to use these different symmetrizations is that using such a symmetrization the
solutions ∆X, ∆S for the linearized relaxed system (6.12) are symmetric.

One element of this class is the AHO symmetrization, it has P = I. We focus on this
symmetrization as it has necessary properties for our IPM, that we discuss in chapter 8.

44

CHAPTER 6. INTERIOR POINT METHODS

In practical applications of linear SDPs many other symmetrizations have been considered
for their decomposition properties. It turned out that these are not suitable for the IPM
presented here.

The AHO symmetrization 1
2 (XS + SX) = 0 is also the multiplication of a Jordan

algebra over symmetric matrices S. The cone of positive semidefinite matrices Sn
+ is the

space of squares over this algebra. This allows us to analyze certain properties in the
space of Jordan algebras. Other cones such as the quadratic cone or the cone of positive
variables can also be considered as set of squares over Jordan algebras. More details about
the Jordan algebra over Q and Sn

+ are given in sections 8.2.2 and 8.3.1 respectively.
Using a MZ-symmetrization (6.5) is equivalent to

g(X∗, y∗, S∗) = 0
F (X∗) = 0

SP (X∗S∗) = 0
X∗, S∗ ∈ Sn

+.

(6.7)

6.4 Formulations of Complementarity conditions

In the case of the cone of positive variables K = Rn
+ it is obvious that for an optimal

solution (x∗, y∗, s∗) of (6.2) either x∗i = 0 or s∗i = 0 or both for every 1 ≤ i ≤ n.
A similar complementarity for the quadratic cone is shown in section 8.2.2 in proposition

8.2.3. The following proposition shows the complementarity condition for the positive
semidefinite cone as mentioned in the last section.

Proposition 6.4.1. Let X, S ∈ Sn
+ if X • S = 0 holds then it follows XS = 0.

Proof. As we have
0 = X • S = tr(XS) = tr(SX) (6.8)

we know that tr(1
2 (XS + SX)) = 0. From proposition 8.2.2 we know that the Jordan-

product of two semidefinite matrices is again a semidefinite matrix. 1
2 (XS + SX) is a

Jordan multiplication for which the positive semidefinite matrices are the space of squares,
thus 1

2 (XS + SX) � 0. The trace of such a symmetric positive semidefinite matrix A is
always the sum of its eigenvalues. This can be seen from the eigenvalue decomposition
QDQT = A implying that tr(QDQT) = tr(QTQD) = tr(D). It follows that XS + SX =
0.

Using the eigenvalue decomposition QXDXQT
X = X we have

0 = XS + SX ⇔ DXQT
XSQX + QT

XSQXDX = 0. (6.9)

Let λi be the eigenvalues of DX then we have

0 = (λi + λj)(QT
XSQX)i,j (6.10)

so either (λi + λj) = 0 (thus λi = 0 and λj = 0) or (QT
XSQX)i,j = 0. Thus it follows

0 = DXQT
XSQX ⇔ 0 = QXDXQT

XS = XS. (6.11)

Note that in contrast to linear programming the solution in nonlinear programming
does not necessarily converge towards a strict complementary solution.

45

6.5. A CENTRAL PATH

6.5 A central path

As we mentioned before, applying the Newton approach to the equality constraints of
(6.7) might lead to an infeasible solution. In IPMs for convex programs a central path
depending on µ is defined. For each µ > 0 we gain a solution that is in the inner of the
primal and dual cone. The limit of these solutions for µ → 0 is a solution of (6.5).

We can use the symmetrized form (6.7) to formulate a central path close to a local
solution

g(X, y, S) = 0,

F (X) = 0,

SP (XS) = µI,

X, S ∈ Sn
+.

(6.12)

Note that the identity matrix I is also the identity of the Jordan algebra over positive
matrices with the cone Sn

+ as set of squares. For the Jordan algebra that has the quadratic
cone Q as set of squares the identity is the vector (1, 0, .., 0)T.

Let (Xµ, Sµ, yµ) be a point on the central path, thus solutions of (6.12). If a limit for
µ → 0 exists then this limit is a solution to problem (6.7) since (6.12) is continuous with
respect to µ.

For linear SDPs all conditions except for the complementarity are satisfied after one
full Newton step. Thus the only characteristic needed is ”points on the central path”. For
nonlinear SDP we need different characteristics as no condition is satisfied trivially after
one step.

We call solutions of (6.12) points on the central path. While we refer to solutions of
(6.12) that violate F (X) = 0 as points on an infeasible central path. We write (infeasible)
in brackets when it is unimportant whether F (X) = 0 is satisfied or not. Finally, we
call the condition SP (XS) = µI relaxed complementarity and solutions X, S relaxed
complimentary points.

46

7 An IPM algorithm for nonlinear SDPs

In the last chapter we described the central path of our IPM. In this chapter we present
and discuss an IPM algorithm that follows this path.

A first theoretical algorithm based on Newtons method converges towards the central
path. After every Newton step the relaxation factor µ is reduced as much as possible
without leaving the neighborhood of quadratic convergence. This type of algorithm is
called short step algorithm and has been used to analyze convergence properties of convex
programs (see e.g. [JS03]). The short step algorithm has only theoretical relevance,
especially for the following two properties. For the short step algorithm for linear programs
it is well known that it takes 6

√
n log nµ0

ε steps to reach a precision of ε. Where n is the
dimension of the variable and µ0 a relaxation factor for the first iterate of the IPM such
that the starting point is in the radius of quadratic convergence for Newtons algorithm.
The second property is that the short step algorithm for linear programs converges towards
a strictly complementary solution.

A second approach is the predictor-corrector approach. It consists of two alternating
step types. The first one is a predictor step that is a step “parallel” to the central path
towards µ = 0. The second one consists of a series of centering steps, that converge
towards the central path for a fixed µ. Such algorithms for linear programming and linear
semidefinite programming have proven to be fast in practical applications.

As we focus on practical results we describe and analyze a predictor-corrector approach
in this chapter.

When we talk about local quadratic convergence we focus on convergence towards the
central path, introduced in the last chapter. These “centering steps” are very similar to
the steps from the SSP/SLCP approach, except that they must maintain strict feasibility
with respect to the cone constraints. We discuss their similarity in section 8.1. In the
next chapter we present a major difference between these steps, that allows a superior
convergence of the centering steps over the SSP steps.

7.1 A predictor-corrector algorithm

In this section we first present our predictor-corrector algorithm. Subsequently we discuss
the separate elements of the algorithm and the necessary conditions that have to be
satisfied.

Let (Xk, yk, Sk) be the current iterate. Throughout the rest of this chapter we use the
following abbreviations

Fk := F (Xk),
DFk := DF (Xk),

gk := g(Xk, yk, Sk),
Hk := H(Xk, yk, Sk),
Ek : Xk 7→ SP (XkSk),
Fk : Sk 7→ SP (XkSk).

(7.1)

7.1. A PREDICTOR-CORRECTOR ALGORITHM

We again assume that F ∈ C3. As the objective function is only represented in the
Lagrangian, the following approach can be used for a linear objective function C •X as
well as a nonlinear objective function C(X) with C ∈ C3.

The predictor-corrector IPM discussed in this thesis is presented in algorithm 4 and
discussed in the following section.

7.1.1 Comments on our IPM algorithm

About line 1: We assume that a starting point is given. For linear programs phase one
problems exist that find a feasible point to start with. For nonlinear programs it is
difficult to define such a phase one problem. Nonlinear programs might have multiple
local minima. A suitable starting point might be crucial to converge towards a solution
that is acceptable for the given application. For the reduced order model problem from
section 5.1 we wanted to find a perturbation that is close to zero. Thus a starting point
was naturally given by that fact.

The quantity µ0 is given by the starting point via µ0 := 1
nX0•S0. It might be necessary

to start with a few centering steps, if the starting point is not close enough to the feasible
central path.

About line 2: To gain an approximation that is close to the optimal solution µ has to be
smaller than a certain threshold. In this case the stopping criteria are the same as in sec-
tion 5.7. For the “improving” step from section 5.7.2 the violation of the complementarity
should now also be considered. This can be done by using the measurement

‖X • S‖
‖X‖‖S‖

. (7.2)

We also show that H + F−1E has to be invertible. While H � 0 would yield solutions
for the IPM-step it would also lead to a similar convergence as the SSP.

About line 6: If the used step length control suggests a very short step it might be useful
to return to step 4 and to calculate it for a µ > 0. As we see in section 7.2 such problems
are cheap to solve as we can use the same decompositions and all operations to be done
are O(N2). While µ = 0 was a good choice for linear programs, it might not be for some
non-linear programs.

About line 10: This distance is measured by the KKT conditions as presented in section
5.7.3. The only difference is the complementarity, where not X • S is measured, but

1
µ

(‖SP (XS)− µI‖) . (7.3)

About lines 11 to 13: In section 7.2 we discuss the complexity for solving such a system
of equations. Here we just want to point out again that solving a system anew where
only the right hand side changed is very cheap. Thus we can use the corrector to re-
duce the quadratic error for the complementarity with minimal effort. This corrector
was introduced with Mehrotra’s predictor-corrector approach [Me92, LMS92]. While for
Mehrotra’s algorithm one centering and corrector step was enough, we might need more
steps in our problem depending on the nonlinear constraint F (X) = 0 and the distance to
the feasible central path. Technically the corrector steps might only be needed when the
violations ‖F (X)‖ are very small and ‖SP (XS) − µI‖ is large. In practical applications
we suggest for most NLSDP to use them for all centering steps as they are “almost” for
free and might save an additional centering step.

Note that in practical applications it might be efficient to introduce a line search for
the result from the corrector step. When the violation of the nonlinear constraint is larger

48

CHAPTER 7. AN IPM ALGORITHM FOR NONLINEAR SDPS

Algorithm 4 A nonlinear semidefinite predictor-corrector IPM approach
1: let (x0, y0, s0) be a given starting point, k = 0
2: while not [stopping criterion] do
3: predictor step:
4: solve Hk DF ∗k −I

DFk

Ek Fk

∆Xk

∆yk

∆Sk

 =

 −gk

−Fk

−SP (XkSk)


5: calculate longest possible step λmax := min{λX , λS} with

Xk + λ∆Xk � 0, Sk + λ∆Sk � 0

6: [steplength control]: find suitable steplength λ < cλmax (with 0.8 < c < 0.98)
7: predicted step:

Xk0 := Xk + λ∆Xk, yk0 := yk + λ∆yk, Sk0 := Sk + λ∆Sk

8: µk+1 = 1
nXk0 • Sk0 , set i = 0

9: centering/corrector step(s):
10: while [too large distance to central path] do
11: calculate (theoretical) centering stepHki DF ∗ki

−I
DFki

Eki Fki

∆X̃ki

∆ỹki

∆S̃ki

 =

 −gki

−Fki

µk+1I − SP (XkiSki)


12: use centering step for corrector stepHki DF ∗ki

−I
DFki

Eki
Fki

∆Xki

∆yki

∆Ski

 =

 −gki

−Fki

µk+1I − SP (XkiSki)− SP (∆X̃ki∆S̃ki)


13: corrected step

Xki+1 := Xki + ∆Xki , yki+1 := yki + ∆yki , Ski+1 := Ski + ∆Ski

14: set i = i + 1
15: end while
16: Xk+1 := Xki

, yk+1 := yki
, Sk+1 := Ski

17: set k = k + 1
18: end while

49

7.2. SYSTEM SOLVING

than for the complementarity an additional line search for the centering step makes sense,
especially when the nonlinear constraint has a strong curvature. This line search ensures
that the corrector is calculated for a point that is possibly close to the step that will be
used.

7.2 System solving

In algorithm 4 all systems have the same structure and only differ on the right hand side.
In this section we discuss the complexity for solving such a system.

We consider a vector representation c = vec(C), x = vec(X) and s = vec(S) introduced
in section 2.1 to ease the reading of the following equations. For these vector the operators
DF and H can be represented as matrices.

The systems from algorithm 4 in vector notation are of the form H DF ∗ −I
DF 0 0
E 0 F

∆x
∆y
∆s

 =

r1

r2

r3

 . (7.4)

It is easy to recalculate that the solution of equation (7.4) is

∆s = F−1(r3 − E∆x)

∆x = (H+ F−1E)−1(r1 −DFT∆y + F−1r3)

∆y = −(DF (H+ F−1E)−1DFT)−1(r2 −DF (H+ F−1E)−1(r1 + F−1r3)).

(7.5)

While matrix multiplications and sums are relatively cheap the main effort is inverting
matrices and decomposing matrices combined with back solving respectively.

As we show in section 8.3.1 inverting F is done easily if we know the eigenvalues and
eigenvectors of X which are very cheap to calculate. In section 7.4 we show that we get
a descent direction if H + F−1E has positive eigenvalues on the tangential cone of the
nonlinear constraints. We give an equivalent barrier-formulation convergence condition
in section 8.3.2. We also show that a strong condition, like H � 0 as in section 4 leads
to slow convergence again. We further show that an approximation that satisfies such a
condition is unnecessary for solving the system efficiently.

We show in the next chapter that quadratic convergence can be achieved even if we
force H+F−1E � 0. Having H+F−1E � 0 would additionally allow us to use a Cholesky
decomposition. In practical applications a rank one update (similar to the BFGS update)
for H + F−1E will be used. As neither H + F−1E nor H is used directly to solve system
(7.4) the cheapest way is to use an update that directly updates the inverse. It is still an
open question how to define a suitable low rank update.

As inverting F is cheap and H + F−1E is typically replaced with some form of a low
rank update the main main effort is decomposing DF (H + F−1E)−1DFT. For A with
maximal rank and H+ F−1E � 0 a Cholesky decomposition can be used.

A first comparison between the nonlinear SDPs presented here and the equivalent linear
SDPs shows that the complexity for solving the IPM systems has the same magnitude.
The complexity of the algorithm’s global convergence is much harder to compare, since
the convergence of nonlinear problems depends strongly on the curvature of the nonlinear
equations. This curvature can influence the convergence towards the central path also it
limits the steplength of the predictor step as this depends on the violations of the equality
constraints.

50

CHAPTER 7. AN IPM ALGORITHM FOR NONLINEAR SDPS

Note if we use the Hessian of the Lagrangian forHki
we have a normal Newton approach

for the “centering steps”. Since X ∈ S+ is invertible, F is invertible. If H + F−1E is
invertible and DF (x) has maximal rank then equation (7.5) has a solution. Thus under
these conditions we get the quadratic convergence from Newton’s approach.

7.3 Tangential step

In this section we motivate, that it is appropriate to follow a perturbed central path with
a tangential step as predictor step.

For abbreviation we define

z :=

X
y
S

 , Φ(z) :=

 g
F

SP (XS)

 . (7.6)

For the tangential direction on the central path we consider dependence of z on µ
through

Φ(z) !=

 0
0
µI

 . (7.7)

Note that the tangential step does not necessarily start on the central path, but only close
to it. Thus it would not be a “tangential” step, but a mixture of a step towards the central
path and parallel to it. This step is

∆z(µ) := DΦ(z)−1
( 0

0
µ̃I

− Φ(z)
)

= DΦ(z)−1
( −g

−F
µ̃I − SP (XS)

) (7.8)

with µ̃ = µ + ∆µ and 0 > ∆µ > −µ.
This“tangential”direction is targeting at the central path. Using the target direction for

a predictor step shows a slow convergence in linear programming examples. We describe
in the following the tangential direction to a perturbed central path that leads to better
results in practical applications.

Again we omit the iteration index and define for the k-th iteration

Q :=
1
µ̂
SP (X̂Ŝ). (7.9)

Let µ̂ := µ(k), X̂ := X(k) and Ŝ := S(k) be fixed. For µ → 0 we get an alternative path
to the optimal solution of the original NLSDP, given by the solutions z of

Φ(z) !=

 0
0

µQ(z, µ)

 . (7.10)

A Newton step for (7.10) is given by

∆z(µ) := DΦ(z)−1
( −g(z)

−F (z)
µ̃
µ̂SP (X̂Ŝ)− SP (XS)

). (7.11)

51

7.4. DESCENT PROPERTY

As we want to examine a tangential step we consider µ̃ = 0 and set µ̂ = µk, X̂ = Xk

and Ŝ = Sk, which defines the tangential step

∆zk := DΦ(zk)−1
( −g(zk)

−F (zk)
∆µk

µk
SP (XkSk)

). (7.12)

We can reduce µ after each step by a fixed factor ν, thus set µk+1 := νµk. It yet has to
be shown how small ν can be such that we don’t leave the area of quadratic convergence
for the centering steps. In linear programming typically µ is reduced by a percentile of
95% meaning ν = 0.05 which is currently used as a heuristic value for linear SDPs. For
nonlinear SDPs we might have to reduce µ much less depending on the curvature of F (X)
as larger steps might lead to a strong violation of F (X) = 0. An implementation will
show wether µ = 0 is appropriate to predict a step.

For the convergence of the tangential step we simply need

µk+1Qk(zk, µk) = νµk
1
µk

SP (XkSk) = νk+1µ0SP (XkSk) k→∞−→ 0. (7.13)

This is obvious, if ‖SP (XkSk)‖ is bounded. If we use sufficiently many centering steps
to converge towards the central path we keep ‖SP (XkSk)‖ small, as we have SP (XS) = µI
on the central path. Thus, for an implementation the main concern is the size of µ as
mentioned above.

Figure 7.1 illustrates the position of tangential and perturbed tangential direction. Both
steps are illustrated for µ > 0. The step that is using the direction that is tangential to
the perturbed path, targets closer towards the optimal solution. This behavior is known
for linear SDPs and is the reason why this predictor step was introduced.

central path perturbed
central path

perturbed
tangential
direction

„tangential“ direction
towards the central
path

z
k

Figure 7.1: Comparison of tangential steps

7.4 Descent property

We consider a single iterate k and omit the index k for abbreviation. Let H = H(X, y, S),
g = g(X, y, S), F = F (X), DF = DF (X), E∆X = SP (∆XS), and F∆S = SP (X∆S).

52

CHAPTER 7. AN IPM ALGORITHM FOR NONLINEAR SDPS

Note that H, E , F and DF are operators Rn×n → Rn×n and Rn×n → Rm respectively.
To ease the reading we omit the braces [·]. This notation is very similar to the vector
representation in section 7.2.

We consider a single step (see (7.4)) for (X, y, S) H DF ∗ −I
DF 0 0
E 0 F

∆X
∆y
∆S

 =

 −g
−F

µI − SP (XS)

 . (7.14)

For further abbreviation we define R := µI − SP (XS) and write the solution of (7.14)
as

∆S = F−1(R− E∆X),

∆X = (H+ F−1E)−1(−g −DF ∗∆y + F−1R),

∆y = (DF (H+ F−1E)−1DF ∗)−1(F −DF (H+ F−1E)−1(g −F−1R)).

(7.15)

Note that
F−1R = F−1µI −F−1SP (XS) = µX−1 − S (7.16)

and recall
g(X, y, S) = C −DF (X)∗y − S. (7.17)

Thus (7.15) is equivalent to

∆S = µX−1 − S −F−1E∆X,

∆X = (H+ F−1E)−1(−c + DF ∗y −DF ∗∆y + µX−1),

∆y = (DF (H+ F−1E)−1DF ∗)−1(F −DF (H+ F−1E)−1(c−DF ∗y − µX−1)).

(7.18)

The following theorem gives a necessary condition to yield a descent direction, when µ
is reduced.

Theorem 7.4.1. Let X, S be a feasible relaxed complementary pair, thus F (X) = 0,
X, S ∈ S+ with SP (XS) = µ̄I > 0. Let c be not orthogonal to the nullspace of DF
and DF have maximal rank. We consider the solution ∆X of (7.14), with µ = 0. If
(H̃ + F−1E) � 0 then the solution ∆X is a descent direction for the objective function,
thus C •∆X < 0.

Proof. From the assumptions we have X, S with

F (X) = 0,

SP (XS) = µ̄I,

S � 0,

X � 0.

(7.19)

We show that ∆X from (7.14) with µ = 0 is a descent direction by showing C •X < 0.
We examine

∆y = (DF (H+ F−1E)−1DF ∗)−1(−DF (H+ F−1E)−1(g −F−1(−µ̄I)),

C •∆X = tr(CT(H+ F−1E)−1(−g −DF ∗∆y + F−1(−µ̄I)))
(7.20)

As SP is linear and SP (XS) = µ̄I it follows F−1(−µ̄I) = −S.

53

7.4. DESCENT PROPERTY

For abbreviation we define M := (H+ F−1E).

C •∆X = tr(− CTM−1(I −DF ∗(DFM−1DF ∗)−1DFM−1)C

+ CTM−1
(
I −DF ∗(DFM−1DF ∗)−1DFM−1

)
(S + F−1(−µ̄I)︸ ︷︷ ︸

=0 (see (7.16))

+ CTM−1 (DF ∗y −DF ∗(DFM−1DF ∗)−1(DFM−1DF ∗)y))︸ ︷︷ ︸
=0

(7.21)

The matrix M is by definition (symmetric) positive definite. Thus it has a (symmetric)
positive definite root M

1
2 .

Let ΠR be the orthogonal projection onto the range R(M− 1
2 DF ∗) and ΠN be the or-

thogonal projection onto the nullspace N(DFM− 1
2). For ΠR we have

ΠR = M− 1
2 DF ∗(DFM−1DF ∗)−1DFM− 1

2 . (7.22)

Thus we can write (7.21) as

C •∆X =tr(−CTM− 1
2 (I −ΠR)︸ ︷︷ ︸

=ΠN

M− 1
2 C) ≤ 0.

(7.23)

We show by contradiction C •X < 0. We now assume

tr(−CTM− 1
2 ΠNM− 1

2 C) = 0. (7.24)

It follows1 ΠNM− 1
2 C = 0 which is equivalent to M− 1

2 C being orthogonal to the nullspace
of DFM− 1

2 . Thus we have

∀Ξ ∈ Rn×n, with DFM− 1
2 [Ξ] = 0 ⇒ tr(CTM− 1

2 Ξ) = 0

⇔ ∀Ξ ∈ Rn×n, with DF [Ξ] = 0 ⇒ tr(CTΞ) = 0.
(7.25)

This is a contradiction to the assumption that C is not orthogonal to the nullspace of DF
thus we have

tr(−CTM− 1
2 ΠNM− 1

2 C) < 0. (7.26)

Note since (7.18) is continuous in X and S, an area around feasible complementary
points exists for that ∆X is still a descent direction for the objective function.

Theorem 7.4.1 has one major assumptions H+ F−1E � 0.
It is well known that for the family of MZ-symmetrizations F−1E satisfies

〈F−1E(X), X〉 > 0, for X 6= 0, (7.27)

but it is not necessarily symmetric. In the next section we show that the AHO sym-
metrization satisfies F−1E ∈ Sn

++ on the central path.
Using a positive semidefinite approximation to H would guarantee H+F−1E � 0. This

assumption led to the linear convergence for the SSP. For the IPM presented here the
centering steps suffer from a similar problem for µ → 0 as we show in section 8.1.

1For A ∈ Sn
+, x ∈ Rn are equivalent A2x = 0 ⇔ Ax = 0 ⇔ xTATAx = 0. The first equation follows

from the singular value decomposition A = QDQT and A2 = QDQTQDQT = QD2QT.

54

CHAPTER 7. AN IPM ALGORITHM FOR NONLINEAR SDPS

In section 8.3.2 we show that under weak assumptions on the central path H+F−1E is
positive definite on the tangential cone2. We further show that there exists a convexified
approximation of H+F−1E that we can use to gain quadratic convergence. It is an open
question wether there is a cheap low rank update for H+F−1E that leads to superlinear
convergence.

7.5 The AHO symmetrization

The AHO symmetrization is the symmetrization SP (XS) with P = I

SI(XS) =
1
2
(XS + SX) (7.28)

For a fixed matrix X we define

LX(S) = XS + SX. (7.29)

For the following propositions the matrices X are assumed to be symmetric. In our
application these matrices are positive semidefinite. The operator LX(S) is the AHO
symmetrization except for the constant 1

2 , i.e. it is a Jordan multiplication over symmetric
matrices. Some results from the following propositions can be shown on a more general
Jordan multiplication basis. These results will be discussed in sections 8.2.1 and 8.3.1.

Proposition 7.5.1. If A,B ∈ Sn can be simultaneously diagonalized, then LA and LB

commute.

Proof. Let A = QDAQT and QDBQT be the eigenvalue decompositions of A and B.
Then A and B commute, as the diagonal matrices DA and DB commute

AB = QDAQTQDBQT = QDADBQT = QDBDAQT = QDBQTQDAQT = BA. (7.30)

Thus we have

LA(LB(X)) = LA(BX + XB) = ABX + BXA + AXB + XBA =
BAX + AXB + BXA + XAB = LB(AX + XA)

= LB(LA(X)).
(7.31)

Proposition 7.5.2. If A,B ∈ Sn
+ can be simultaneously diagonalized, then LA and L−1

B

commute.

Proof. We have

LA(L−1
B (X)) = L−1

B (LB(LA(L−1
B (X))))

= L−1
B (LA(LB(L−1

B (X)))) = L−1
B (LA(X)).

(7.32)

Proposition 7.5.3. If X is symmetric, LX is symmetric.
2The tangential cone will be introduced in section 8.3.2, roughly it is the set of directions ∆X with

DF [∆X] = 0

55

7.5. THE AHO SYMMETRIZATION

Proof. We have

〈LX(A), B〉 = 〈XA,B〉+ 〈AX, B〉
= Tr((XA)TB) + Tr((AX)TB)

= Tr(ATXB) + Tr(XATB)

= Tr(AT(XB)) + Tr(AT(BX))
= 〈A,XB〉+ 〈A,BX〉 = 〈A,LX(B)〉.

(7.33)

Corollary 7.5.4. L−1
X LS is symmetric, if X and S are symmetric and can be simultane-

ously diagonalized.

Proof. This follows directly from L−1
X and LS commuting and each being symmetric:

L−1
X LS = LSL−1

X = L∗SL−∗X = (L−1
X LS)∗. (7.34)

Proposition 7.5.5. Relaxed complementary matrices X and S can be simultaneously
diagonalized.

Proof. We have

SP (XS) = µI

⇔XS = µI
(7.35)

and thus for X = QDXQT

XS = µI

⇔ DXQTSQ = µI

⇔ QTSQ = µD−1
X .

(7.36)

Let DS be the diagonal matrix DS := QTSQ, then we have S = QDSQT.

Finally we have the necessary condition F−1E = (F−1E)T for relaxed complementary
points X, S, for the AHO symmetrization.

Corollary 7.5.6. For relaxed complementary points X, S the operator F−1E is symmet-
ric, when using the AHO symmetrization.

Proof. On the central path X and S can be simultaneously diagonalized. Thus the result
follows from (7.5.4).

In consequence we now know that for relaxed complementary points F−1E + H is
symmetric which is a major condition of theorem 7.4.1.

56

8 Superiority of the IPM over SSP
method

In chapter 4 it can be seen that the condition H � 0 is too strong to guarantee quadratic
convergence for the SSP case. In this chapter we analyze wether the same problem holds for
the IPM case. Finally, we present a weaker condition that leads to quadratic convergence.

We start in the next section by showing the similarities of the IPM’s centering steps
to the SSP steps. We have seen in section 7.2 and 7.4 that the condition H + F−1E � 0
is sufficient in order to solve the occurring systems and to have a descent direction. We
show in section 8.2.5 for the quadratic cone there exists an approximation to H such that
H + F−1E � 0 and that is identical to H on the central path in all directions of the
linearized feasible set. We illustrate this result on the counter-example from chapter 4 for
which the SSP had linear convergence.

Finally, we generalize the results for the cone of semidefinite matrices.

8.1 Similarities to the SSP method

Again we consider a nonlinear semidefinite program (NLSP) of the form

see (6.1). min
{

C •X
∣∣ F (X) = 0, X ∈ Sn

+

}
.

For a given iterate X̃ we define the SSP subproblem

min{ C •∆X +
1
2
H[∆X, ∆X] | DF (X̃)[∆X] = −F (X̃), X̃ + ∆X ∈ Sn

+ }, (8.1)

where H := H(X̃, ỹ, S̃) is again the Hessian of the Lagrangian of (6.1).
We further define X := ∆X + X̃ and get a program that is equivalent to (8.1)

min{ C •X −H[X̃,X] +
1
2
H[X, X] | F (X̃) + DF (X̃)[X − X̃] = 0, X ∈ Sn

+ }. (8.2)

As we are looking at a fixed subproblem we abbreviate F := F (X̃) and DF := DF (X̃).
The Lagrangian for problem (8.2) is

LSSP (X, y, S) := C •X −H[X̃,X] +
1
2
H[X, X] + (F + DF [X − X̃])Ty + X • S,

gSSP (X, y, S) := DXLSSP (X, y, S) = C +H[∆X] + DF ∗y + S,
(8.3)

and the optimality conditions are

C +H[∆X] + DF ∗y + S = 0
DF [∆X] = −F

1
2
(XS + SX) = 0

X, S ∈ Sn
+.

(8.4)

8.1. SIMILARITIES TO THE SSP METHOD

As shown in chapter 4 the SSP-method may show only linear convergence when a positive
semidefinite approximation of H is used.

We now want to compare this to a centering step of an IPM for (6.1). We use the IPM
presented in chapter 6 and expand (7.14) to

H[∆X] + DF ∗∆y + ∆S = −C −DF ∗ỹ − S̃,

DF [∆X] = −F,

F∆X + E∆S = µI − SP (X̃S̃).

(8.5)

Apart from equation (8.5) the iterates generated by our IPM satisfy the conic constraints.
Thus we have

C +H[∆X] + DF ∗y + S = 0,

DF [∆X] = −F,

SP (XS) = µI + SP (∆X∆S),
X, S ∈ Sn

++ ⊂ Sn
+.

(8.6)

The difference between (8.4) and (8.6) is the term µI + SP (∆X∆S) in the last equation.
Due to the linearization the quadratic term SP (∆X∆S) is not included and the relaxation
term µI is added. Ignoring the quadratic term, for µ → 0 the centering steps converge
towards the steps of the SSP method that can be linearly convergent for any bounded
choice of a positive definite H approximation.

In the following we show for the example from chapter 4, that the IPM presented here,
cannot have more than linear convergence if a positive semidefinite approximation of H
is used.

Linear convergence for any positive semidefinite approximation of H

To abbreviate the notation we define

z :=

x
y
s

 , Φ(z) :=

 g
F

2SP (XS)− µI

 . (8.7)

We consider the Newton algorithm for Φ(·) with the solution z∗ that fullfills Φ(z∗) = 0.
For a given iterate zk we define

∆z := −DΦ(zk)−1Φ(zk). (8.8)

The Newton step is
zk+1 := zk + ∆z. (8.9)

For the Newton algorithm local quadratic convergence is known.
When DΦ(zk) is now replaced with an approximation we can still achieve quadratic or at

least super linear convergence. One well known criterion, that is equivalent to superlinear
convergence (see e.g [JS03]) for a given approximation Ψk of DΦ(zk), is

lim
k

‖(Ψk −DΦ(zk))∆z‖
‖∆z‖

= 0

⇔ lim
k

‖zk+1 − z∗‖
‖zk − z∗‖

= 0.

(8.10)

58

CHAPTER 8. SUPERIORITY OF THE IPM OVER SSP METHOD

Let H̃ be any bounded positive semidefinite approximation of H. H̃ is a submatrix of
Ψk. For the difference between the Hessian of the Lagrangian H and an approximation
H̃ we have

H̃ − H �

0 0 0
0 2 0
0 0 2

 . (8.11)

The set of constraints Z is

Z := { x = (x0, x1, x2) ∈ R3 | x0 = 1, x ∈ Q } (8.12)

and all steps within that cone are of the form (0, ∗, ∗).
It follows for those steps ∆xk

lim
k→∞,∆xk∈Z

‖(H̃ − H)∆xk‖
‖∆xk‖

≥ 2. (8.13)

Since H is a submatrix of Ψk that applies to ∆x we have

2 ≤ ‖(H̃ − H)∆xk‖
‖∆xk‖

≤ ‖(Ψk −DΦ(zk))∆z‖
‖∆z‖

. (8.14)

It follows that the IPM cannot converge faster than linearly for this example if a positive
semidefinite approximation is used.

But while the SSP method needs to have a positive semidefinite H to have appropriately
fast solvable subproblems, we show in the next section that we can have a much weaker
condition for H when using an IPM. This weaker condition still guarantees invertibility
and the descent property.

8.2 Eigenvalues of “F−1E” for the Lorentz cone Q
8.2.1 Jordan algebras

In the following we use Jordan algebras to analyze certain properties of the quadratic cone
and the semidefinite cone.

A Jordan algebra is an algebra over a n-dimensional vector space V with a multiplication
· × · that maps V 2 → V : (x, y) → x × y. This mapping is bilinear, thus for x, y, z ∈ V
and a, b ∈ R it satisfies:

(ax + by)× z = a(x× z) + b(y × z),
x× (ay + bz) = a(x× y) + b(x× z).

(8.15)

Additionally this multiplication is commutative

x× y = y × x (8.16)

and satisfies
x× (x2 × y) = x2 × (x× y) with x2 = x× x. (8.17)

Note that a Jordan algebra is not necessarily associative.
The reason why we focus on Jordan algebras is that they allow us to analyze the

symmetrization in our IPM on a more general scope. The cones discussed in this paper
Rn, Q, and Sn

+ are all sets of squares over specific Jordan algebras.

59

8.2. EIGENVALUES OF “F−1E” FOR THE LORENTZ CONE Q

For a first example we consider the Jordan algebra over the vector space Rn defined by
the multiplication

x× y =

x0y0

...
xnyn

 . (8.18)

The unit element of this algebra is the vector

IR+ =

1
...
1

 . (8.19)

It is easy to see that the cone of squares over this algebra is Rn
+.

For a more interesting Jordan algebra over Rn+1 let x be composed of x0 ∈ R and
x̄ ∈ Rn such that

x =
(

x0

x̄

)
. (8.20)

The multiplication · × · is defined by

a× b :=
(

aTb
a0b̄ + b0ā

)
(8.21)

and the identity IQ is given by

IQ :=


1
0
...
0

 . (8.22)

In the following paragraphs we cite some results that we need later, for proofs we refer
to [WSV00].

The Quadratic cone Q is the set of squares of this Jordan algebra.

Proposition 8.2.1. The Jordan-product of two vectors a, b ∈ Q is again in Q.

A final important Jordan algebra is over the vector space of symmetric matrices Sn

defined by the multiplication

X × S =
1
2
(XS + SX) (8.23)

with the matrix identity

ISn
+

=

1 0
. . .

0 1

 (8.24)

as identity element.
The cone of positive semidefinite matrices Sn

+ is the set of squares of this Jordan algebra.

Proposition 8.2.2. The Jordan-product of two positive semidefinite matrices is a semi-
definite matrice.

60

CHAPTER 8. SUPERIORITY OF THE IPM OVER SSP METHOD

8.2.2 Jordan algebra for the Lorentz cone Q

We consider the Jordan algebra on Rn+1, where we partition θ ∈ Rn+1 into θ =
(

θ0

θ̄

)
with θ0 ∈ R and θ̄ ∈ Rn. We then have the multiplication with its unit element

x× y =
(

xTy
x0ȳ + y0x̄

)
and IQ =


1
0
...
0

 . (8.25)

The Lorentz cone
Q := { a | a0 ≥ ‖ā‖ } (8.26)

is the cone that contains the squares of this algebra.
In the following we always assume a 6= 0.

Proposition 8.2.3. Let x, s ∈ Q from 〈x, s〉 = 0 follows x× s = 0.

Proof. We have

x× s =
(

xTs
x0s̄ + s0x̄

)
=
(

0
x0s̄ + s0x̄

)
. (8.27)

From proposition 8.2.1 we know that x × s ∈ Q. It follows 0 ≥ ‖x0s̄ + s0x̄‖2 thus
x0s̄ + s0x̄ = 0.

Proposition 8.2.4. For interior points a ∈ Q◦ of the Lorentz cone there exists an element
a† that satisfies

a† × a = IQ and a× a† = IQ. (8.28)

Proof. Recalculate

a† :=
1

a2
0 − ‖ā‖2


a0

−a1

...
−an

 . (8.29)

For the following propositions we define the operator

Ta[θ] := a× θ. (8.30)

Proposition 8.2.5. The linear operator Ta has the eigenvalues a0, a0 +‖ā‖ and a0−‖ā‖.

Proof. It is easy to calculate that the vectors(
‖ā‖
ā

)
and

(
−‖ā‖

ā

)
(8.31)

are eigenvectors of Ta with eigenvalues a0 + ‖ā‖ and a0 − ‖ā‖ respectively.

61

8.2. EIGENVALUES OF “F−1E” FOR THE LORENTZ CONE Q

All vectors orthogonal to this have the eigenvalue a0. Given the following basis this is
easy to see: 



0
−a2

a1

0
...
...
0


,



0
−a3

0
a1

0
...
0


, . . . ,



0
−an−1

0
...
0
a1

0


,



0
−an

0
...
...
0
a1




. (8.32)

(8.32) is a basis as long as a1 6= 0. If a1 = 0 one can build a similar basis as long as any
ai 6= 0. If all ai = 0 then the operator is the scalar multiplication with a0.

Corollary 8.2.6. It follows that T−1
a†

has the eigenvalues a2
0−‖ā‖

2

a0
, a0+‖ā‖ and a2

0−‖ā‖
2

a0+‖ā‖ .

Corollary 8.2.7. The eigenvalues of T−1
a†

Ta are a2
0 − ‖ā‖2, (a0 + ‖ā‖)2 and (a0 − ‖ā‖)2.

Proof. Please note that T−1
a†

and Ta have the same eigenspaces. This follows from

1
a2
0 − ‖ā‖2

(
−‖ā‖

ā

)
= −

(
‖ā†‖
ā†

)
and

1
a2
0 − ‖ā‖2

(
‖ā‖
ā

)
= −

(
−‖ā†‖

ā†

)
. (8.33)

Thus the result can easily be recalculated.

8.2.3 A conical program over Q
We consider the problem

min{ c(x) | F (x) = 0, x ∈ Q }. (8.34)

It has the Lagrangian

L(s, x, y) := c(x)− F (x)Ty − xTs,

g(s, x, y) := DxL(s, x, y) = Dc(x)−Dx(F (x)Ty)− s,

H(s, x, y) := D2
xL(s, x, y) = D2c(x)−D2

x(F (x)Ty).

(8.35)

Using proposition 8.2.3 it is easy to see that

g(s, x, y) = Dc(x) + Dx(F (x)Ty)− s = 0,

F (x) = 0,

x× s = 0,

x, s ∈ Q

(8.36)

is equivalent to the KKT conditions.
We use these conditions to define a central path

Dc(x) + Dx(F (x)Ty)− s = 0,

F (x) = 0,

x× s = µIQ,

x, s ∈ Q.

(8.37)

62

CHAPTER 8. SUPERIORITY OF THE IPM OVER SSP METHOD

For a step towards this central path we focus on the linearization and omit again the
parameters for abbreviation H −DF ∗ −I

DF
E F

∆x
∆y
∆s

 =

 −g
−F

µIQ − (x× s)

 (8.38)

where E and F being the matrices for the operations

Eθ := s× θ Fθ := x× θ. (8.39)

Comparing (8.38) with (7.14) shows that they are identical except for dimension and
different multiplications E∆x, F∆s. We show in this section that both have the same
properties

∀z ∈ N(DF) ⇒ zTF−1Ez ≥ 0 (8.40)
for relaxed complementary points (x, y, s). N(DF) is the null space of DF .

Please recall that all examinations about the SDP-IPM were done purely symbolical.
Thus all results of the PSD cone that did not use specific properties of the PSD cone
transfer for IPMs over the quadratic cone. In particular the descent property if we use
an approximation of H + F−1E that is again positive definite on the linearized equality
constraints. This guarantees invertibility of this approximation that we need for the
centering step.

As we had the same system to solve as in section 7.4 the solution (∆sT,∆xT,∆yT)T is
given by

∆s := F−1(µI − E∆x),

∆x := (H+ F−1E)−1(−g + F−1µI −DFT∆y),

∆y := (DF (H+ F−1E)−1DFT)−1(F + DF (H+ F−1E)−1(−g + F−1µI).

(8.41)

Analogously to the SDP descent property from section 7.4 we need

H+ F−1E � 0 (8.42)

for feasible relaxed complementary points.
In the following we examine F−1E to see which eigenvalues of H can be negative, so

that H+ F−1E is still positive definite.
On relaxed complementary points we have

x× s = µI ⇔ x = µs†. (8.43)

Recall the eigenvalues of F−1E given by corollary 8.2.7 in the last section.

Corollary 8.2.8. Necessary conditions for H+ F−1E � 0 are(
‖s̄‖
s̄

)T

H
(
‖s̄‖
s̄

)
> − 1

µ
(s0 + ‖s̄‖)2,(

‖x̄‖
x̄

)T

H
(
‖x̄‖
x̄

)
> − 1

µ
(s0 − ‖s̄‖)2,

∀z, z⊥
(
‖s̄‖
s̄

)
, z⊥

(
‖x̄‖
x̄

)
, zTHz > − 1

µ
(s2

0 − ‖s̄‖2).

(8.44)

Proof. With corollary 8.2.7 follows directly that the eigenvalues of F−1E are
1
µ

(s2
0 − ‖s̄‖2),

1
µ

(s0 + ‖s̄‖)2, and
1
µ

(s0 − ‖s̄‖)2. (8.45)

63

8.2. EIGENVALUES OF “F−1E” FOR THE LORENTZ CONE Q

8.2.4 Limits of F−1E’s eigenvalues towards (x∗, y∗, s∗)

In this section we assume that x∗ and s∗ lie on the boundary of the cone. For the case x∗

in the interior of the cone we could reduce the problem to a nonlinear program without
conic constraints. For s∗ in the interior we have the trivial case x∗ = 0.

Note that for the following propositions all variables xµ and sµ are dependent on µ. To
ease the reading we omit the index µ for xµ and sµ and simply write x and s.

Proposition 8.2.9. On relaxed complementary points we have 1
µ (s2

0 − ‖s̄‖2) = s0
x0

.

Proof. Let
η =

x0

s0
. (8.46)

Note that we know from x× s = µIQ

xTs = µ

and xi = −x0

s0
si for i ≥ 1.

(8.47)

This implies

µ = x0s0 +
n−1∑
i=1

xisi = ηs2
0 − η

n−1∑
i=1

s2
i = η(s2

0 − ‖s̄‖2). (8.48)

It follows that (s2
0 − ‖s̄‖2) = µ

η .

Proposition 8.2.10. The eigenvalue 1
µ (s0 − ‖s̄‖)2 of F−1E on relaxed complementary

points is converging to 0 for µ → 0.

Proof. We know that on relaxed complementary points

1
µ

(s2
0 − ‖s̄‖2) =

1
η

with η =
x0

s0
(8.49)

it follows
1
µ

(s0 − ‖s̄‖)2 =
1
µ

(s2
0 − ‖s̄‖2)

(s0 − ‖s̄‖)
(s0 + ‖s̄‖)

=
1
η

(s0 − ‖s̄‖)
(s0 + ‖s̄‖)

→ 0. (8.50)

Note that the last result is only true if s∗ 6= 0. For s∗ = 0 the result is trivially true.

Please note that the eigenvalue 1
µ (s2

0 + ‖s̄‖)2 converges to ∞ for µ → 0.

Corollary 8.2.11. Using corollary 8.2.8 a necessary condition for H+F−1E � 0 is that
in the optimum the matrix H is positive definite in direction x∗ and has larger eigenvalues
than − s∗0

x∗0
for all vectors orthogonal to x∗ and s∗.

8.2.5 Approximation of H from chapter 4

The Hessian of the example from chapter 4 does not satisfy the necessary condition from
corollary 8.2.11:

x∗ =

1
0
1

 H =

0 0 0
0 −2 0
0 0 −2

 . (8.51)

Recall that a positive approximation of H leads to linear convergence.

64

CHAPTER 8. SUPERIORITY OF THE IPM OVER SSP METHOD

In the example from chapter 4 we have H+F−1E 6� 0. In this section we show that for
this example a perturbed H̃ can be found that leads to quadratic convergence and thus
does not satisfy H̃ � 0, but H̃+ F−1E � 0.

After presenting the results for this example we continue by generalizing the results to
nonlinear SDP and give a general condition for the existence of such a perturbation.

Recall the example from chapter 4 given by

min
{
−x2

1 − (x2 − 1)2 | ‖x‖22 ≤ 1, x ∈ R2
}

⇔min
{
−x2

1 − (x2 − 1)2
∣∣∣ x0 − 1 = 0,

(
x0

x̄

)
∈ Q

}
.

(8.52)

with the Lagrangian

L(x, y, s) := −x2
1 − (x2 − 1)2 − y(x0 − 1)− xTs,

g(x, y, s) := DxL(x, y, s) =

 −y −s0

−2x1 −s1

−2(x2 − 1) −s2

 ,

H(x, y, s) := D2
xL(x, y, s) =

0 0 0
0 −2 0
0 0 −2

 .

(8.53)

The optimal solution (x∗, y∗, s∗) is

x∗ =

 1
0
−1

 , y∗ = −4, s∗ =

4
0
4

 . (8.54)

As x0 = 1 is fixed, the feasible set is the disc with radius one around (0, 0), considering
only the second and third vector entry.

We here present an indefinite H̃ for that the sum H̃+F−1E is positive definite and that
is equivalent to H on the set that satisfies the active constraint x0 − 1 = 0.

We define η ∈ [0, 1[implicitly by

µ = 2
(

1
1− η

− 1 + 3η − η2

)
. (8.55)

Please note that (8.55) is a monotone function of η, so that η is uniquely defined and for
a given η the point on the central path is

x =

 1
0

−1 + η

 , s =

 2(2−η)
1−η

0
4− 2η

 , y = −2(2− η)
1− η

. (8.56)

To gain quadratic convergence H̃ may not be changed in the direction ∆x within the
feasible set, that is H̃[∆x] ≡ H[∆x] for any

∆x =

 0
∆x1

∆x2

 . (8.57)

65

8.2. EIGENVALUES OF “F−1E” FOR THE LORENTZ CONE Q

We consider F−1E only for points that satisfy a relaxed complementarity that is

s =
µ

x2
0 − x2

1 − x2
2

 x0

−x1

−x2

 . (8.58)

To simplify the following results we sometimes use radial coordinates and set

x1 =
√

1− d sin(α)

x2 = −
√

1− d cos(α).
(8.59)

The scalar d satisfies d = 1− x2
1 − x2

2. The optimal solution of (8.52) is d = 0 and α = 0.
The lower right 2× 2 matrix of the sum H+ F−1E is

M :=

−2 + µ
(

1+x2
1−x22

(1−x2
1−x2

2)
2

)
2µx2x1

(1−x2
1−x2

2)
2

2µx2x1
(1−x2

1−x2
2)

2 −2 + µ
(

1−x2
1+x22

(1−x2
1−x2

2)
2

) (8.60)

and has the eigenvalues

λ1 = −2 +
µ

1− x2
1 − x2

2

, λ2 = −2 + µ
x2

1 + x2
2 + 1

1− 2x2
1 − 2x2

2 + (x2
1 + x2

2)2
. (8.61)

It is easy to see that λ1 > 0 if

d = (1− x1
1 − x2

2) >

√
µ

2
. (8.62)

Note that according to (8.55) and (8.56) for η close to 0 we have µ ≈ 6η. So (8.62) is true
for points close enough to the central path.

For the second eigenvalue one again can use d := (1 − x1
1 − x2

2) and get a positive
eigenvalue λ2 for

0 < −2 +
µ(2− d)

−1 + d + (1− d)2
⇔ d < −µ

4
+

1
4

√
µ2 + 16µ. (8.63)

To see whether this is given close to the central path, we write this in terms of η and
get

d < η
(2− η)2

2(1− η)

(√
1 + 8

1− η

η(2− η)2
− 1

)
(8.64)

which is true for a small area around the central path, as this has a distance of η to the
boundary for any η ∈]0, 1[. Furthermore for η → 0 we have approximately d < const

√
η.

It follows that we can changeH for the first component to get a positive sumH+F−1E �
0 if we are close enough to points that satisfy the relaxed complementarity. Furthermore
for any feasible point (except (1, 0, 0)) we can choose a η and µ accordingly, such that we
are “close enough” to points that satisfy a relaxed complementarity.

Let

H̃ := H+ ∆H, ∆H :=

h 0 0
0 0 0
0 0 0

 . (8.65)

66

CHAPTER 8. SUPERIORITY OF THE IPM OVER SSP METHOD

We search for a number h so that H̃ + F−1E � 0. Depending on h,d and µ the matrix
H̃+ F−1E has the eigenvalues

λ1 := −2 +
µ

d

λ2 :=
1

2d2
((h− 2)d2 + 2µ(2− d) +

√
d4(h + 2)2 + 16µ2(1− d))

λ3 :=
1

2d2
((h− 2)d2 + 2µ(2− d)−

√
d4(h + 2)2 + 16µ2(1− d))

(8.66)

While λ1 is the same eigenvalue as in (8.61), λ2 and λ3 now depend on h and are positive
for

h > µ
4− 2d− µ

2µ− 2d2 − µd
. (8.67)

For such an h the solution λ2 has a zero, while λ3 has a zero of higher multiplicity.
If d = η which is given on the central path, then we have

h > 2
(7η − 5η2 − 2 + η3) ∗ (4− 4η + η2)

(13η − 7η2 + η3 − 8)(1− η)
(8.68)

which has no singularities for η ∈]0, 1[.
Thus for every η ∈]0, 1[we can find a h such that close to the central path H̃+F−1E � 0.

For this approximation of H we get the same steps as for the exact H.
Note that the condition x0 − 1 = 0 is satisfied after the first step. Thus the Newton

steps for the convexified H̃ are exactly the same as for the original Hessian H, thus we
have quadratic convergence. This of course follows from the constraints being linear. We
give a more general result for SDPs in section 8.3.2.

8.3 Eigenvalues of F−1E for semidefinite programs

8.3.1 Jordan algebra for the cone of semidefinite matrices Sn
+

In section 8.2.1 we introduced the Jordan algebra over the symmetric matrices Sn by
defining the multiplication · × ·

A×B :=
1
2
(AB + BA). (8.69)

The unit element of this algebra is the identity matrix

ISn
+

:=

1 0
. . .

0 1

 . (8.70)

The cone of positive semidefinite matrices Sn
+ is the set that contains the squares of this

algebra.

Proposition 8.3.1. Let A ∈ Sn
++ be an interior point of the positive semidefinite cone

then A−1 has the following property

A−1 ×A = ISn
+

and A×A−1 = ISn
+
. (8.71)

Proof. This result is trivial to recalculate.

67

8.3. EIGENVALUES OF F−1E FOR SEMIDEFINITE PROGRAMS

Let
LA[X] :=

1
2
(AX + XA) (8.72)

and let A = QDQT be the eigenvalue decomposition of A then we can write LA[X] write
as

L̃D[X̃] :=
1
2
Q(DX̃ + X̃D)QT = LA[X] with X̃ := QTXQ. (8.73)

This allows us to easily examine the eigenvalues and eigenvectors of LA.
We use LD if we want to examine L for a diagonal matrix D with diagonal elements di.
With ∆(i,j) we denote a n×n matrix that has all entries zero,except for the entry (i, j)

that one is 1.

Proposition 8.3.2. LD has the eigenvalues 1
2 (di + dj) for 1 ≤ i, j ≤ n with eigenvectors

∆(i,j).

Proof. This result is trivial to recalculate.

Corollary 8.3.3. Let A = QDQT be the eigenvalue decomposition of a matrix A ∈ S
then LA has the eigenvalues 1

2 (di + dj) for 1 ≤ i, j ≤ n and the eigenvectors Q∆(i,j)QT

Proof. Recall LA[X] = L̃D[X̃]:

LA[Q∆(i,j)QT] = L̃D[∆(i,j)] = QLD[∆(i,j)]QT =
1
2
(di + dj)Q∆(i,j)QT (8.74)

Theorem 8.3.4. Let S = QDQT be the eigenvalue decomposition of an IPM iterate
variable S ∈ S with di being the eigenvalues. For relaxed complementary points X = µS−1

the operator F−1E has the eigenvalues didj

µ for the eigenvectors Q∆(i,j)QT.

Proof. Recall F−1 = L−1
X = L−1

µS−1 . Thus F−1 has the eigenvalues 2
µ

didj

di+dj
for the eigen-

vectors Q∆(i,j)QT. Thus F−1E has the eigenvalues didj

µ with the eigenvectors Q∆(i,j)QT.

We assume we have a bounded strictly complementary pair X∗, S∗. Let di(µ) be the
eigenvalues of the solution Sµ on the central path. Those di(µ) that converge to 0 are
di(µ) ∈ O(µ) as long as the according eigenvalue for Xµ converges.

Let k be the number of eigenvalues of S that converge to 0, then F−1E has an eigenspace
of size k2 that converges to 0, an eigenspace of size 2((n − k)k) that converges toward
positive constants and an eigenspace of (n− k)2 that is unbounded. This follows directly
from the eigenvalues given in theorem 8.3.4 and di(µ) ∈ O(µ).

The curvature that is described by the eigenvalues of S is the one that makes H+F−1E
positive definite for the active set. In the next section we give a weak barrier problem
condition that is equivalent to H+ F−1E on the linearized equality constraints F (X).

8.3.2 A condition that leeds to quadratic convergence

We consider the nonlinear program

min{ C •X − µ ln(det(X)) |F (X) = 0 }. (8.75)

68

CHAPTER 8. SUPERIORITY OF THE IPM OVER SSP METHOD

The second derivative of −µ ln(det(X)) for relaxed complementary points XS0µI is
µF−1E . We show this result in corollary 8.3.7. Please note that (8.75) is similar to a
barrier problem for linear SDPs, but with nonlinear constraints. Since (8.75) is a hybrid
of the original problem and a barrier formulation one may expect that the minima of
(8.75) converge towards the minimum of (6.1).

The Lagrangian of (8.75) and its derivatives are

L̆(X, y) := C •X + F (X)∗y − µ ln(det(X)),

ğ(X, y) := DXL̆(X, y) = C + DF (X)∗y − µX−1,

H̆(X, y) := D2
XL̆(X, y) = D2

X(F (X)∗y)− µDX−1.

(8.76)

Corollary 8.3.5. The feasible critical points of (8.75) can be interpreted as points on the
central path of (6.1).

Proof. On the central path we have S = µX−1 and thus g(X, y, µX−1) = ğ(X, y) and for
both we have F (X) = 0.

Let ∆(i,j) be a square n× n matrix with all entries 0, except for the entry (i, j) that is
∆i,j = 1.

Note

0 = DI[H] = D(XX−1)[H] =

=H︷ ︸︸ ︷
DX[H]X−1 + XDX−1[H]

⇔ DX−1[H] = −X−1HX−1.

(8.77)

We can also write the operator DX−1 : Rn×n → Rn×n as

DX−1[H] = −
[
Ξ(i,j) •H

]
i,j

with Ξ(i,j) :=
[(

X−1
)
j,k

(
X−1

)
l,i

]
k,l

= X−T∆(j,i)X−T.
(8.78)

As we always assume X to be symmetric. We have Ξ(i,j) = X−1∆(j,i)X−1.

Proposition 8.3.6. Let X = QDQT be the eigenvalue decomposition of X, then the
eigenvalues of −DX−1 are 1

dkdl
for the eigenvectors Q∆(k,l)QT.

Proof. Note
(Q∆(k,l)QT)i,j = Qk,iQl,j . (8.79)

For the eigenvector Q∆(k,l)QT we have(
−DX−1[Q∆(k,l)QT]

)
i,j

= Tr(QD−1QT∆(j,i)QD−1QTQ∆(k,l)QT)

= Tr(QT∆(j,i)QD−1∆(k,l)D−1)

=
1

dkdl
Tr(QT∆(j,i)Q∆(k,l))

=
1

dkdl
Qk,iQl,j

=
1

dkdl
(Q∆(k,l)QT)i,j

(8.80)

69

8.3. EIGENVALUES OF F−1E FOR SEMIDEFINITE PROGRAMS

Corollary 8.3.7. For relaxed complementary points F−1E ≡ DX−1.

Proof. Recall the eigenvalues and eigenvectors of F−1E from theorem 8.3.4 and note that
S = µX−1 for relaxed complementary points.

Definition 8.3.8. Let Z be the feasible set of a minimization problem

min { f(X) | X ∈ Z } . (8.81)

We define the tangential cone T (Z, x̄) by

T (Z, X̄) :=
{

Z ∈ Rn×n | ∃{X(k)}k : λk ≥ 0, X(k) ∈ Z,

lim
k→∞

X(k) = X̄, lim
k→∞

λk(X(k) − X̄) = Z
}

. (8.82)

Note that if (8.75) satisfies Robinson’s regularity condition then the tangential cone at
a feasible point X̄ is

T ({X|F (X) = 0}, X̄) = { ∆X | DF (X̄)[∆X] = 0 }. (8.83)

Proposition 8.3.9. Let Z be the feasible set of (8.75). If a critical point (X̄µ, ȳµ) of
(8.75) is a minimum then the according point (X̄µ, ȳµ, µX̄−1

µ) on the central path of (6.1)
satisfies

∀∆X ∈ T (Z, X̄), (H+ F−1E)[∆X, ∆X] ≥ 0. (8.84)

Proof. This follows directly from the 2nd order necessary conditions of (8.75) and as X̄µ

is on the central path we have
H+ F−1E = H̆. (8.85)

Corollary 8.3.10. If the point of proposition 8.3.9 is a strict minimum then we have

∀∆X ∈ T (Z, X̄µ) \ {0}, (H+ F−1E)[∆X, ∆X] > 0. (8.86)

The following proposition is known as “Finsler’s Lemma” (see e.g. [JS03]):

Proposition 8.3.11. Let U ∈ Sn, let V ∈ Rm×n and let Υ := { s | V s = 0, s 6= 0 }. If
sTUs > 0 ∀s ∈ Υ then a ρ0 ≥ 0 exists such that U + ρV TV ∈ Sn

++ for all ρ ≥ ρ0.

Theorem 8.3.12. Let (Xµ, yµ, Sµ) be a point on the central path which satisfies condition
(8.86) strictly with Xµ = X̄µ and let µ be close enough to 0. Then a positive semidefinite
approximation of H + F−1E exists that can be used to calculate a centering step that
converges quadratically towards (Xµ, yµ, Sµ).

Proof. We consider the convergence from a point (X, y, S) towards the central path point
(Xµ, yµ, Sµ). The central path point (Xµ, yµ, Sµ) is a zero for g

F
(X × S)− µIQ

 . (8.87)

70

CHAPTER 8. SUPERIORITY OF THE IPM OVER SSP METHOD

We can use Newton’s approach to solve such a system and get quadratic convergence.
The system for these steps are H −DF ∗ −I

DF 0 0
E 0 F

∆X
∆y
∆S

 =

 −g
−F

µIQ − (X × S)

 . (8.88)

It is well known that we maintain quadratic convergence if we exchange H and DF with
H̄, DF̄ at the solution (X̄, ȳ, S̄). With these derivatives we get H̄ −DF̄ −I

DF̄ 0 0
E 0 F

∆X
∆y
∆S

 =

 −g
−F

µIQ − (X × S)

 . (8.89)

Note that for F = 0 we can add any perturbation ∆H to H̄ satisfying

∆H[∆X] = 0, for all x with, DF [∆X] = 0 (8.90)

and still get the same solution (∆X, ∆y, ∆S).
In other words we could use ∆H = ρDFTDF . Thus for F = 0 when can use proposition

8.3.11 to gain a positive semidefinite approximation H̄ := ∆H+H+F−1E of H+F−1E .
The condition F (Xk) = 0 is typically not satisfied, so we simply add −ρDFTF (Xk) to

the right hand and get the systemH̄+ ADF −DF̄ −I
DF̄
E F

∆X
∆y
∆S

 =

 −g − ρDFTF
−F

µIQ − (X × S)

 . (8.91)

This system has the same solution as the original system, thus converges quadratically.

8.3.3 Applying the results

In the following we discuss how to apply the result of quadratic convergence.
The proven quadratic convergence can not be used directly in practical applications as

we do not know the point on the central path and cannot get the Hessian for that unknown
point. Instead we can use the Hessian H and derivative DF at the current iterate.

It is only possible to convexify H + E−1F by adding ρDFTDF if we’re close enough to
the central path1. We also need that µ is small enough and we need to converge to a strict
minimum of (8.75).

Even though we focus on a local solver here, we might still be too far away from the
central path to convexify H+ E−1F by adding ρDFTDF . One alternative for such points
is to use the pseudo inverse2 for the “almost” convexified matrix H + E−1F + ρDFTDF .
Note that the pseudo inverse is exact on eigenspace where the eigenvalue is not too close
to zero. For the predictor step we can use the pseudo inverse of the projection of the sum
H+ E−1F .

Another alternative is first convexifying then getting a correction term as follows. Let
Φ(X, y, S) be a convexified approximation of H(X, y, S)+E−1F , e.g. using the eigenvalue
decomposition. From this we can get the approximation of H̃ as

H̃ := Φ(X, y, S)− E−1F (8.92)
1Note that that the main argument here is that we have a strict minimum and the eigenvalues depend

continuously on X, y, S and F ∈ C3.
2The pseudo inverse can be generated by “inverting” the diagonal of the eigenvalue decomposition. More

precisely the inverse elements on the diagonal are used if they are not too small, else zero is used.

71

8.3. EIGENVALUES OF F−1E FOR SEMIDEFINITE PROGRAMS

and define the perturbation ∆H as

∆H := H̃ − H(X, y, S). (8.93)

As we cannot expect to get a correction term ρDFTF as in the proof of theorem 8.3.12,
we try to get a least square approximation

A := argmin{ ‖ADF −∆H‖ }. (8.94)

We can do so by solving
ADFDFT = ∆HDFT. (8.95)

If DF has maximal rank we can use a Cholesky decomposition, if not we can use the
pseudo inverse.

An implementation has to show what the most efficient way is. Again we use the word
“efficient” as a measure for the overall CPU time for the given set of problems.

72

9 Conclusion

In this last chapter we summarize and discuss our results. This thesis focuses on a solver
for nonlinear SDPs.

9.1 On the SSP

The SSP algorithm has been analyzed before (see [FJV06], [CR04]), in this thesis we
discuss its relevance in practical applications. We focus on necessary aspects to implement
the algorithm. It turns out that in practical applications the SSP algorithm cannot yield
more than linear local convergence. The reason is that the Lagrangian does not respect
the curvature of the cone’s boundary. In consequence this curvature is not represented in
the KKT optimality conditions on which the SSP is based on.

An implementation however showed a nice global convergence behavior. Thus com-
bined with a solver that has a fast local convergence properties, like the IPM presented
in this thesis, we can define a hybrid algorithm.

9.2 On the SSP-implementation

We developed a SSP implementation to solve the given problems arising from industrial
applications. The implementation presents the following features:

1. We introduced a new step length control: The augmented filter. The augmented
filter like the filter is a purely heuristic approach that yields good results in practical
applications. The augmented filter has proven to be more efficient for our examples
than the standard filter approach. One reason is that it does not discard any search
step. Additionally it can be used as an indicator for a hybrid solver switch and it
can be used for a stopping criterion.

2. We have compared several different step length controls for our examples. We also
discussed different implementations for theoretically equivalent search steps that
have different practical properties. They differ in problem size, speed, and accuracy.

3. The implementation is build for readability and flexibility while being easy to handle.
It turned out that with the right output, weaknesses and bugs are easily revealed.
This solver may be considered as a solver construction kit, because it allows the
user to freely choose between different algorithms to calculate the search step, step
length control, and stopping criteria. It helps to easily determine the right elements
to use. The solver can be used instantly. Components, that are typically the best,
are chosen automatically. The solver detects when analytical derivations are missing
and replaces them by numerical derivatives.

9.3. ON THE IPM PRESENTED HERE

9.3 On the IPM presented here

We also presented an IPM algorithm for nonlinear SDPs. Different aspects had to be
considered, such as the descent property and the invertibility of H + F−1E . The results
show that there is a correlation between these conditions and a certain condition from a
barrier-like formulation.

We generated a matrix for that the invertibility is guaranteed. This matrix is positive
definite and thus is easier to decompose using the Cholesky factorization. While we pre-
sented this result as a condition for quadratic convergence, it has practical consequences:

1. Such an approximation can be used for a centering step as well as for a predictor
step. This allows us to define a short step algorithm. Short step algorithms are not
interesting for practical applications, but allow further analysis of nonlinear IPMs
using the central path presented here.

2. It allows analysis of (damped) low rank updates for H + F−1E . We showed that a
positive definite matrix exists for that we can maintain quadratic convergence. This
result contrasts the counter example of chapter 4. We can now formulate a low rank
update that converges against this matrix and yields superlinear convergence.

The matrix H+F−1E + ρDFTDF can be seen as a convexified version of H. While the
convexification of the directions orthogonal to DF reminds of the Hessian of the augmented
Lagrangian, the convexification in cone boundary direction is done by a barrier term. Note
this term does not exist at the optimal solution and the term F−1E is badly conditioned
close to it.

It turns out that the AHO symmetrization gives us the interesting term F−1E to de-
scribe the curvature of the cone. This term is the second derivative of a barrier term
when examining relaxed complementary points. Other symmetrizations might have sim-
ilar properties, but the most common ones do not yield symmetric operators on relaxed
complementary points.

Finally, an implementation will have to show whether the current results are good
enough to yield a fast convergence of an IPM approach in practical applications. Even
though we have quadratic convergence for the centering step, we might have a very small
radius of convergence for the given examples.

74

Bibliography

[Da66] G.B. Dantzig (1966):
Lineare Programmierung und Erweiterungen,
Springer, Berlin

[Po78] M.J.D. Powell (1978):
The convergence of variable metric methods for nonlinearly constrained opti-
mization calculations,
Nonlinear Programming p. 27–63, 3. Academic Press, New York

[Kh79] L.G. Khachiyan (1979):
A polynomial algorithm in linear programming,
Soviet Mathematics Doklady, 20 p.191–194

[Ka84] N. Karmarkar (1984):
A new polynomial-time algorithm for linear programming,
Combinatorica, 4, p. 373–395

[HJ85] R.A. Horn, C.R. Johnson (1985):
Matrix Analysis,
Cambridge University Press, New York

[Me92] S. Mehrotra (1992):
On the implementation of a primal-dual interior-point method,
SIAM J. Optimization, 2 p.575–601

[LMS92] I.J. Lustig, R.E. Marsten, D.F. Shanno (1992):
On implementing Mehrotra’s predictor-corrector interior-point method for lin-
ear programming,
SIAM J. Optimization, 2 p.435–449

[BT95] P.T. Boggs, J.W. Tolle (1995):
Sequential Quadratic Programming,
Acta Numerica, 4, pp.1–51

[VB96] L. Vandenberghe, S. Boyd (1996):
Semidefinite Programming,
Siam Review, 38(1), pp. 49–95

[St97] J.F. Sturm (1997):
Primal-Dual Interior Point Approach to Ssemidefinite Programming,
Thesis Publishers Amsterdam

[St99] J.F. Sturm (1999):
Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones,
Optimizational Methods Software 11–12, 625–653

Bibliography

[BF00] Z. Bai, R.W. Freund (2000):
Eigenvalue-based characterization and test for positive realness of scalar transfer
functions,
IEEE Trans. Automat. Control 45, pp 2396–2402

[BS00] J. F. Bonnans, A. Shapiro (2000):
Perturbation analysis of optimization problems,
Springer, New York

[WSV00] edited by H. Wolkowicz, R. Saigal, L. Vandenberghe (2000):
Handbook of Semidefinite Programming, pp 199–213,
Kluwer Academic Publishers

[BF01] Z. Bai, R.W. Freund (2001):
A partial Padé-via-Lanczos method for reduced-order modeling,
Linear Algebra Appl. 332–334, pp.139–164

[FLT02] R. Fletcher, S. Leyffer, Ph. L. Toint (2002):
On the global convergence of a filter-SQP algorithm,
SIAM J. Optimization, 13(1):44–59

[Fr03] R.W. Freund (2003):
Model reduction method based on Krylov subspaces,
Acta Number 12, pp- 267–319

[Ja03] F. Jarre (2003):
On an Approximation of the Hessian of the Lagrangian,
http://www.optimization-online.org/DB HTML/2003/12/800.html

[JS03] F. Jarre, J. Stoer (2003):
Mathematische Optimierung,
Springer

[TTT03] R.H Tutuncu, K.C. Toh, and M.J. Todd (2003):
Solving semidefinite-quadratic-linear programs using SDPT3,
Mathematical Programming Ser. B, 95 , pp. 189–217

[CR04] R. Correa, H. C. Ramirez (2004):
A Global Algorithm for Nonlinear Semidefinite Programming,
SIAM J. Optimization, Volume 15 Issue 1, pp. 303–318

[FJ04] R.W. Freund,F. Jarre (2004):
A sensitivity result for semidefinite programs,
Oper. Res. Lett. 32, pp 126–132

[St05] Michael Stingl (2005):
On the Solution of Nonlinear Semidefinite Programs by Augmented Lagrangian
Methods,
Dissertation at Friedrich-Alexander-Universität Erlangen-Nürnberg

[DJV06] M. Diehl, F. Jarre, C. H. Vogelbusch (2006):
Loss of superlinear convergence for an SSP-type method with conic constraint,
SIAM J. Optimization

76

Bibliography

[FJV06] R. Freund, F. Jarre, C. H. Vogelbusch (2006):
Nonlinear semidefinite programming: sensitivity, convergence, and an applica-
tion in passive reduced-order modeling,
Special Volume of Mathematical Programming Ser. B.

[SeWWW] J.F. Sturm, et al. (WWW):
SeDuMi: Let SeDuMi seduce you, too,
http://sedumi.mcmaster.ca/ — McMaster University

77

