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Tag der mündlichen Prüfung: im Januar 2007
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Abstract

This thesis regards electrostatic and magnetic interactions in soft matter. There are
three different parts.

First, we examine a strongly interacting binary mixture of superparamagnetic col-
loidal particles confined to a two-dimensional water-air interface. We employ liq-
uid integral equation theory and computer simulation to investigate this system.
This mixture exhibits, at equilibrium, a partial clustering. In the voids of a ma-
trix of unclustered big particles, small particles form subclusters that are topolog-
ically sponge-like accompanied by a characteristic small-wave vector peak in the
small-small structure factor. We investigate this pattern formation using tools from
integral geometry, namely the Euler characteristic. The clustering behavior is ulti-
mately a non-additive property of the system, stemming from the cross-interaction
that is less repulsive than the direct interactions. We confirm these theoretical find-
ings by confronting them to direct experimental data. Furthermore, we study the
simpler one-component system of superparamagnetic particles in a tilted magnetic
field. The particles align with the in-plane component of the magnetic field. The lo-
cal ordering of the particles becomes more inhomogeneous with increasing tilt angle.

Second, by simplifying proteins as spherical particles with non-spherical charge pat-
terns, we calculated their associated electrostatic potential. We derive analytical
expressions for the screened electrostatic potential caused by a charged spherical
colloid that contains point charges distributed in an arbitrary manner in its interior.
We consider two cases: that of uniform and discontinuous dielectric media. The so-
lution is based on an expansion of the electrostatic potentials on the various regions
of space in spherical harmonics involving spherical Bessel functions of the third kind.
Tetrahedral charge arrangements as well as a random charge distribution inside the
confining sphere are considered explicitly as representative examples.

Last, we investigate polyelectrolyte chains end-grafted to a planar surface in the
presence of multivalent counterions. Our theory is based on a variational free en-
ergy that is written as a sum of electrostatic, polymer, and entropic contributions.
We minimize the free energy with respect to the chain length and the number of
counterions in order to obtain the ground state. We observe a shrinking of the
chain length with increasing electrostatic attraction of the monomeric units finally
resulting into a collapsed state reminiscent of a first-order phase transition.





Zusammenfassung

Die vorliegende Doktorarbeit beschäftigt sich mit magnetischen und elektrostati-
schen Wechselwirkungen auf dem Gebiet der Weichen Matetrie. Die Doktorarbeit
beinhaltet im wesentlichen drei Hauptprojekte.

Zuerst haben wir die Wechselwirkung von Mischungen aus superparamagnetischen
Kolloiden unter dem Einfluß eines äußeren Magnetfeldes untersucht. Die Parti-
kel können sich in einer zweidimensionalen Ebene frei bewegen und das Feld ist
senkrecht zu dieser gerichtet. Die kleinen Teilchen formen Aggregate in den Zwi-
schenräumen der großen Teilchen. Dies konnte durch einen zusätzlichen Peak im
Strukturfaktor bei kleinen Wellenlängen beobachtet werden. Eine genaure Analyse
mit Hilfe der Eulercharakteristik zeigt, daßdie kleinen Teilchen ein schwammartiges
Muster bilden. Ein quantitativer Vergleich mit experimentellen Daten zeigt hervor-
ragende Übereinstimmung mit unseren theoretischen Resultaten. Weiterhin haben
wir das einkomponentige System bei geneigtem Magnetfeld untersucht. Die beob-
achtete Struktur ist in diesem Falle inhomogen und die Teilchen bevorzugen eine
Ausrichtung in Richtung der Projektion des Magetfeldes auf die Ebene.

In dem zweiten Projekt haben wir das elektrostatische Potential von Proteinen be-
rechnet, welche wir als sphärische Objekte mit einer nicht-sphärischen Ladungsver-
teilung modelliert haben. Wir konnten analytische Ausdrücke für das abgeschirmte
Potential eines sphärischen Kolloids mit asymmetrischer Ladungsverteilung ange-
ben. Die Lösung basiert auf einer Entwicklung des Potentials in sphärische Bessel-
funktionen der dritten Art. Tetraedische und zufällige Ladungsverteilungen dienen
als direkte Anwendung unserer theoretisch abgeleiteten Ergebnisse.

Zuletzt haben wir Polyelektrolytketten untersucht, welche mit einem Ende an einer
Wand befestigt sind. Die Gegenionen sind ausschießlich multivalent. Unsere Theorie
basiert auf der Minimierung der Freien Energie des Systems, welche aus polymeric,
elektrostatischen und entropischen Beiträgen besteht. Wir beobachten ein Schrump-
fen der Kettenlänge mit wachsender anziehender Wechselwirkung der Monomore.
Dies resultiert in einem Kollaps der Ketten, welcher an einen Phasenübergang er-
ster Ordung erinnert.
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Chapter 1

Introduction

The topic of the thesis at hand can be integrated into the overall context of soft mat-
ter [1–3]. The latter expression refers to a variety of different composites ranging
from proteins, polymers, micelles, microemulsions, surfactants, membranes, den-
drimers to colloids. These are all soft matter systems that have length scales be-
tween 1nm and several µm, categorizing them as complex fluids. Representative con-
stituents of these systems are molecular aggregates in contrast to atomic systems.
These are coarse-grained systems, and it is assumed the underlying microscopic ba-
sic units no longer play a crucial, physical role. Supposed we observe a system by
a microscope of 10 Angstrøm resolution. For a atomic (molecular) system whose
constituents have the spatial extent of just a few (less than 10) Angstrøm, the ma-
terial looks completely homogeneous. We encounter a totally different situation for
a soft matter system. In contrast to the former system its constituents are mostly
still visible and the structure appears inhomogeneously.
Coarse-graining can be visualized observing just major ingredients instead of real-
izing every detail. For example, imagine the situation that you attend a play and
that you got tickets for the first row. This location allows you to discern every
single move of the actors: their facial expressions, and gestures. You may get a
much better understanding of the story line by sitting close to the stage perceiving
the emotional expression of the protagonists. In this case, the details of the motion
in short length- and time-scales are relevant and the loss of discernment would be
tremendous by taking a back row seat and perceiving the actors just as a diffuse
ensemble. On the other hand, consider the opening of the Olympic Games. You do
not gain much by occupying first row seats. On the contrary, a much better overview
is captured by a more distant placement. You can enjoy that gala much more by
perceiving the athletes as a group representing their country. The interplay of these
national groups are more important than the movement of every single individual.
In this case, you are more interested in the shape and pattern formations of each
different group as a whole than in the movements of every single participant. The
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2 1. INTRODUCTION

time scale for a performer to move his limbs is irrelevant. You do not pay attention
to the athlete’s behavior as an individual but to the groups’ collective motion. The
same holds for the short time length scales. They do not matter in the order of a
human body dimension [4].
Soft matter systems exhibit a complexity of time and length scales. For example,
complex fluids may be composed of larger particles dissolved in a atomic or molecu-
lar solvent. The solvent particles are much smaller and much faster than the solute.
If you are just interested in the behavior of the larger (mesoscopic) aggregates, the
short time and length scales are irrelevant. Therefore, an adequate description of
the system might be to eliminate them. This elimination or coarse graining has its
roots at the McMillan-Mayer [5] theory of solutions and its formulation by Kirkwood
and Buff [6]. An application to colloids is given in a review article by van Megen
and Snook [7]. Coarse graining also introduces the concept of effective interactions
that encapsulates the atomic scale physics. A detailed, statistical derivation of these
concepts and their implications can be found in Ref. [8]. This procedure bridges the
gap between the microscopic and the mesoscopic regime, and the transition from
the latter to the macroscopic realm can be performed by standard tools of statistical
mechanics.
A decisive distinction of soft matter systems compared to their atomic or molecular
counterparts is their striking low shear modulus. This property allows us to de-
form soft matter materials easily by applying a relatively low shear stress whereas
molecular system substances such as metal bars require a substantial force to be
bent. The key for understanding of that phenomenon lies in the different length
scales of the crystal forming particles. The shear modulus scales with the ratio of
the typical energy involved and the inverse volume of the elementary cell. Assuming
the typical energy is of the order of the thermal energy for both, the complex as well
as the atomic (molecular) system, the difference of the length scales amounts to the
different softness of both systems. The size of ordinary molecules is typically of the
order of Angstrøm which is a factor 104 smaller than the particles in the soft matter
system, thus leading to shear modulus that is about 12 orders of magnitude smaller
than that of usual crystals. Therefore complex fluids are extremely soft and can be
destroyed by mechanical means very easily. This property which is intrinsic for the
aforementioned underlying length scale accounts for embracing all these materials
as soft matter. There are, of course, other states of matter than the solid one for
soft matter systems. In that cases the softness can be understood in terms of a very
low density of the system.
A remarkable aspect of soft matter lies in the fact that the interaction between
the particles can be tailored in a controlled way. While for atomic systems the in-
teraction between the particles is nature-given, mostly dictated by their electronic
structure, the interaction potential of colloidal particles can almost be chosen at
will, ranging from short ranged attraction to long ranged repulsion. That charac-
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teristic of soft matter systems renders them as perfect model systems to theory as
well as experiment. Thus, they represent an ideal test bed for verifying theoretical
models by direct experimental measurements. Soft matter systems can be studied
simultaneously by using three different complementary approaches

(i) Developing accurate model systems appears a major challenge from a theoret-
ical point of view. These model systems are further investigated by approved
theoretical tools such as density functional theory or liquid integral equation
theory. We especially make extensive use of the latter to explore the structure
of our systems to be investigated.

(i) Due to the mesoscopic range of the involved length scales, real space analysis
of the experimental setup turns out to be an excellent tool in understanding
complex fluids. In the course of this thesis we consistently check some of
our results to experimental data confirming the correctness of our theoretical
model.

(iii) Further insight can be gained by performing simulations to test the validity and
accuracy of the theory. To this end we have carried out Brownian dynamics
simulations.

Apart from a purely theoretical interest in soft matter there are many technical,
food technological, pharmaceutical and biological applications including paint, ink,
detergents, adhesives, drilling fluids, lubricants, milk, mayonnaise, blood, viruses,
drug delivery into cells, trans-cell-membrane transport, protein crystallization and
DNA recognition [1,9–12]. Due to the abundance of industrial products in daily life,
there is a urgent need for understanding the mechanism by which the mutual inter-
play of the particles influences the macroscopic properties of soft matter systems.
The thesis at hand deals primarily with colloidal dispersions. The term colloid has
been used up to now without further specification. In the literature the expression
colloidal dispersions often refers to soft matter systems synonymously. We under-
stand by colloidal dispersions mesoscopic solid particles with a stable core dissolved
in a molecular solvent. The term colloid has been introduced by Graham Thomas
in the year 1861 which marks the beginning of the systematic research on colloidal
systems. Graham observed two different kinds of solutions. He distinguished them
by the characteristic of the dissolved species to diffuse through a membrane. Gra-
ham named dissolved particles that did not diffuse through the membrane colloids.
The term colloid derives from the Greek words κòλλα (glue) and ὲıδos (kind) and
was coined by Graham as well. Nowadays colloids are strictly defined by their spa-
tial extent. We call a particle with size within a certain range from 1nm up to
several µm a colloid. A detailed knowledge of the internal degrees of freedom is not
needed. That does not mean that the chemical structure of the constituent atoms
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or molecules is irrelevant, but in order to describe a colloid we do not need the
microscopic arrangement of these constituents. Many properties of colloidal system
can be extracted without knowing the specific microscopic structure. Due to the
specific size range, colloidal particles exhibit thermal motion which is commonly
referred to as Brownian motion and was discovered by R. Brown in 1827. That
irregular motion comes about by random collisions of the solvent molecules with the
colloidal particles. Therefore colloidal particles are often referred to as Brownian
particles [3, 8, 13].
In this thesis the focus lies on the theoretical investigation of three different physi-
cal systems. The first project deals with superparamagnetic colloids in an external
magnetic field. In the second project, we extend the well-known DLVO theory to
asymmetric charge patterns. The last project investigates polyelectrolyte chains
end-grafted to a planar surface.
In the first project we analyze from a theoretical point of view the correlations
and structure of superparamagnetic colloids exposed to an external magnetic field.
Spherical colloids are confined by gravity to a water-air interface formed by a cylin-
drical drop suspended by surface tension in a top-sealed ring. Their movement
takes place almost exclusively in that planar surface and the setup can therefore
be regarded as a nearly ideal two-dimensional system. The external magnetic field
induces magnetic dipoles onto the particles along its direction, whose strength can
be controlled by the amplitude of the external field. By tilting that field starting
from a alignment perpendicular to the surface, the mutual interplay between the
colloids can be tuned from a purely repulsive interaction to an attractive one ap-
pearing beyond a certain threshold angle. The particles are superparamagnetic due
to their doping with Fe2O3, i.e. for a sufficient strong field the magnetic moments
align perfectly along the external magnetic field and any thermal fluctuations can
be neglected. The colloids’ movements can be observed in the experiment by video
microscopy allowing thereby to confront our theoretical findings with direct experi-
mental data.
The above described system has been extensively studied under a variety of theo-
retical and experimental aspects different from those we address to.
The one-component system of almost monodisperse particles has been extensively
studied in the past by Maret and coworkers. The experimental setup has been
used to determine elastic moduli of two-dimensional colloidal crystals [14, 15] and
has turned out to be an ideal check for verifying th KTHNY theory [16]. The
measurement of Young’s modulus is in perfect agreement with the theoretical pre-
diction. Furthermore the successive transition from the solid to the liquid phase
with an intermediate hexatic phase has been observed experimentally by tilting the
external field [17–19]. That melting transition has been analyzed on the basis of
long-time behavior of a modified Lindemann parameter and the bond-angular cor-
relation function [20]. The system has been proven apt to study the influence of



5

hydrodynamic interactions on self-diffusion. The diffusion is enhanced by explicitly
including hydrodynamic interactions [21, 22]. Only recently two-component mix-
tures were investigated. The amorphous solid state of the system has been studied
lately [23]. The close similarity of the partial pair-distribution functions, mean-
square displacements as well as self-intermediate scattering functions with those of
3d glass formers indicates that our 2d colloidal system at hand can be considered
as a typical glass former [24,25].
Additionally static and diffusional properties of the strongly asymmetric binary
mixture have been investigated by theory and experiment. By tilting the external
field a non-isotropic interaction between the particles is induced leading to unusual
features in the partial pair distribution functions, and to significantly enhanced
tracer-diffusion [26]. Combining theoretical and experimental work, it is found that
the anisotropy of the mean-square displacement behaves non-monotonically as a
function of the tilt angle and does not correlate with the structural anisotropy of
the crystal [27]. On the theoretical level, a phase diagram at zero temperature has
been calculated by varying the tilt angle, the colloidal density, and the strength of
the magnetic field. A host of stable crystal lattices has been found [28].
Despite of all these earlier findings, there is a richness of features for the system at
hand yet to be explored. We are especially interested in the structural behavior of
the binary mixture by varying the field strength, the susceptibility ratio as well as
density ratio of the two species. Due to the negative non-additivity of the mixture,
we expect a partial clustering of the species of lower susceptibility. A very colorful
situation helps to understand that phenomenon. Imagine a certain number of hu-
man beings and mice enclosed together in a locked room. The small mice are scared
to death from the much bigger human beings that themselves dislike the animals.
Due to the innate aloof demeanor of the human beings to their own species, they
try to keep away from each other as far as possible. The mice fearing the human
beings much more than their fellows try to maximize the distance to the men by
huddling together in smaller groups.
When dealing with the real physical system, we face a similar situation. The parti-
cles with lower susceptibility form cluster in the voids of the matrix of the unclus-
tered particles with higher susceptibility. Our motivation for studying the cluster
behavior of binary mixtures is twofold. First, any realistic sample consists of several
components and hence considering a binary mixture is an important step towards a
control of composite materials. Second, and more fundamentally, mixtures exhibit
much richer behavior than their one-component counterparts in general. Thus, there
is need to explore whether and how the scenario of equilibrium clustering occurs in
two-component systems. The cluster formation of colloidal systems has recently
attracted great deal of interest. The work of Likos et al. [29] on purely repulsive soft
spheres marks a milestone in soft matter physics. For the first time stable cluster
solids have been observed by means of a density functional theory and advanced
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Monte Carlo simulations. That scientific achievement has evoked great attention in
the scientific world [30] as well as in the broad public [31]. For further reference on
clusters, we direct the reader to chapter 3.
The second coherent part of that thesis focuses on the modeling of the electrostatic
interaction of proteins by colloidal spheres with asymmetric charge patterns.
Proteins are biological macromolecules. They are assembled from a sequence of
amino acids with DNA and RNA as their most prominent representatives and play
a crucial role in all biological processes of our body. They assume a variety of diverse
functions in bodily activities such as the regulation of cellular processes, immune
protection against diseases, enzymatic catalysis, growth control, cell differentiation,
transport and storage of other substances. Thus, there is a profound interest in
understanding of the mechanisms by which proteins interact with each other.
For the sake of simplicity, we model the proteins as globular objects with a cer-
tain charge distribution. The Derjaguin-Verwey-Landau-Overbeek (DLVO) theory
proves as a reliable concept to incorporate electrostatic interactions for colloidal
dispersions. Charged colloids dispersed in a fluid solvent repel each other. Due to
the presence of the free ions, the pair-interaction potential is not a pure Coulomb
repulsion, but screened to some extent by the ions. A negatively charged macroion
expels oppositely charged ions while ions with positive charge are attracted to it.
By that mechanism a charge distribution is formed around the colloidal particle, the
so-called double layer, which partly screens the bare charge. The asymptotic form
of the pair-interaction for large distances, where the potential energy is not too
large, is a screened Coulomb potential, or equivalently, a Yukawa potential taking
the form exp(−κr)/r. κ−1 is the so-called screening length and measures the ex-
tent of the aforementioned double layer. For larger potential energies the potential
is a much more complicated function of the distance. The DLVO theory includes
van der Waals as well as electrostatic interaction contributions to the overall poten-
tial [13]. The assumption in DLVO theory of a uniformly distributed surface charge
is reasonable on the colloidal scale in view of highly charged colloids resulting from
typical surface charges of up to an elementary charge per nm2. This is no longer true
when one turns to the nanometer scale relevant for most biomolecules. Therefore,
we extend the DLVO theory to asymmetric charge patterns holding for particles on
length scales smaller than the mesoscopic one. We perform the derivation of the
potential in the realm of linearized Poisson-Boltzmann theory.
The third project deals with polyelectrolyte brushes. When a polymer chain with
ionizable groups is immersed in a polar solvent, these groups dissociate into the
solvent. They leave behind an equally, but oppositely charged backbone which is
called polyelectrolyte (PE). A PE brush consists of a high density of charged poly-
mers grafted on a planar or curved surface. The end-grafting is achieved either by
covalently binding end groups or block copolymers. The high grafting density guar-
antees a strong interaction between neighboring chains.
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Because of their technological applications, such as enhanced stabilization against
colloidal flocculation, PE brushes have attracted a great deal of attention by the-
ory [32–41] as well as by experiment [42–45]. Charge stabilization turns out to be
quite sensitive to dissolved salts or other electrolytes and can lead to a break-down
of the stabilization effect in these cases. Therefore, there is an increasing interest in
steric stabilization sustained by PE brushes.
Recently a collapse transition of spherical PE brushes in the presence of multivalent
counterions has been found by experiment and simulation [46]. Initiated by this
finding, we investigate theoretically PE brushes end-grafted to a planar surface in
the presence of multivalent counterions. Our theory is based on a variational free
energy consisting of electrostatic, polymer, and entropic contributions. While the
polymer and entropic contributions are identical to the case of neutral chains, the
electrostatic interaction poses an intricate and complex problem. We address it by
the use of Poisson-Boltzmann theory. The existence of multivalent counterions in-
duces an attraction between neighboring chains. This bridging effect is described by
a simple mean-field term. We observe a shrinking of the chain length with increasing
electrostatic attraction of the monomeric units resulting finally into a collapsed state
reminiscent of a first-order phase transition in agreement with previous results [47].

The rest of the thesis is organized as follows: in chapter 2 we introduce the model
of superparamagnetic particles in a magnetic external field. Standard tools for the
further investigation of the system, specifically liquid integral equation theory and
Brownian dynamics simulations are presented. The external field is aligned perpen-
dicular to the confining surface. A first application to the one-component system is
performed, primarily to get familiar with the system as well as the tools and check
their accuracy.
In chapter 3 we extend the methods presented in the preceding section to the two-
component system and compare our findings to experimental results. The clustering
of species is found by theory, simulation as well as experiment and is further inves-
tigated by a topological analysis.
In chapter 4 we tilt the external field with respect to the confining plane and explore
correlations between the particles by means of the radial distribution function.
In chapter 5 we calculate the electrostatic potential around colloidal spheres with
non-spherical charge patterns in the regime of linearized Poisson-Boltzmann theory.
In chapter 6 we theoretically investigate the collapse transition of end-grafted PE
brushes in the presence of multi-valent counterions.
Chapter 7 gives a brief summary of the main accomplishments and discusses possible
extensions of this work for future investigations.
We present each chapter in a more or less self-contained manner facilitating the
reader to focus on specific sections without additional knowledge of the other parts.
Therefore, we precede each chapter with a general introductory part. The theoreti-



8 1. INTRODUCTION

cal model for the superparamagnetic particles is however presented once and for all
in chapter 2.



Chapter 2

One-component
Superparamagnetic Colloids

In this chapter we introduce the model for two-dimensional superparamagnetic col-
loids exposed to an external magnetic field. We shortly review the basics of liquid
integral equation theory. Then, we compare results obtained by that theory to those
of Brownian dynamics simulations. The good agreement between Brownian dynam-
ics simulation and the Rogers-Young closure singles out the latter as an appropriate
tool for the further investigation of the system at hand.

2.1 The theoretical model

We consider a two-dimensional system of superparamagnetic colloidal particles that
are confined to a planar water-air interface and exposed to an external magnetic
field perpendicular to the interface (see fig. (2.1)). The magnetic field induces a
magnetic dipole moment onto the particles, resulting into an effective repulsion
between all parallely oriented dipole moments, which scales with the inverse cube
of the particle distance. This system enables a direct comparison between theories
and computer simulations based on a pairwise dipole-dipole interaction potential
and renders these suspensions into an ideal model system [21], allowing thereby to
additionally confront the theoretical findings with direct experimental data.
More specifically, we consider a two-dimensional system of N colloidal particles in
a plane of surface area A. With ρ = N/A denoting the area density of the particles,
we introduce the average interparticle distance a ≡ 1/

√
ρ as a characteristic length

scale of the system. The motion of the particles is confined by a water-air interface
wherein they can move freely. We expose the system to an external static magnetic
field B0 that induces on each particle a magnetic moment m. We restrict ourselves
to the case of a magnetic field perpendicular to the plane. The particles are assumed

9
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air

B
water

Figure 2.1: Sketch of the set-up. Superparamagnetic particles are confined to an
air-water interface. The external magnetic field acting perpendicular to the surface
induces a magnetic moment onto each particle.

to be superparamagnetic, i.e., the magnetic dipole of each particle aligns perfectly
with the external field and any fluctuations due to thermal motion can be neglected.
Thus, it holds

m = χB0, (2.1)

whereas the proportionality constant χ is the particles’ magnetic susceptibility. For
the system at hand, the dipole-dipole interaction between two particles with dipole
moments mi = χB0 and coordinates ri, i = 1, 2, respectively, reads as [28, 48]1

u(r1, r2) =
(χB0)

2

|r1 − r2|3 (1− 3 sin2 ω cos2 θ), (2.2)

where ω is the angle between the field and the normal vector of the confining plane
and θ the angle between mi and the direction of the connecting vector, (r1 − r2).
For the case at hand (perpendicular field), we have ω = 0 and θ = π/2, thus eq.
(2.2) simplifies into

u(r) =
(χB0)

2

r3
, (2.3)

where r = |r1−r2|. For the purely repulsive potential at hand, the system is thermo-
dynamically stable on the basis of the dipole-dipole interaction alone; an additional,
short-range repulsion is not necessary to stabilize the system at the relevant exper-
imental densities, as the typical interparticle distances are large enough (compared

1Eq. (2.2) above holds for two permanent magnetic dipoles. For two induced magnetic dipoles,
the expression must be multiplied by a factor 1/2. We ignore this factor because it only leads to
a trivial rescaling of the coupling strength Γ, see, e.g., Ref. [28].
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to their physical size) and only the dipole-dipole interaction is felt.2 Comparisons
with experimental results [27, 49] fully support the above modeling of the interac-
tions and confirm its realistic character. The particles are thus treated as point-like.
Using the aforementioned length scale a, we introduce the dimensionless coupling
strength Γ, defined as

Γ = β
(χB0)

2

a3
, (2.4)

where β = 1/(kBT ), with kB being Boltzmann’s constant and T being the tem-
perature. Clearly, Γ expresses the ratio of the kinetic versus the typical potential
energy of a particle and allows for the distinction of the weak (Γ . 1), intermediate
(Γ ∼= 1) and strong (Γ > 1) regimes. Rescaling the particle coordinates with the
interparticle distance, ri → xi ≡ ri/a and using eqs. (2.1) and (2.4), we can re-write
the interaction potential, eq. (2.3), in the form:

βu(x) =
Γ

x3
, (2.5)

with x = |x1 − x2|. All structural and thermodynamic properties of such a system
depend solely on the coupling strength Γ and not separately on temperature and
density.
The system at hand presents a host of novel features: it is a two-dimensional system,
it has clearly defined interactions between all its constituent particles, which take
a simple form and are steered by a single and readily tunable external field; it is
experimentally realizable and allows direct comparison with theory; and, finally, it
is apt to direct visual observation. A detailed description of the experimental setup
and references for further reading are given in chapter 3.

2.2 Basics of liquid integral equation theory

The overall goal of liquid integral equation theory is the determination of the pair
structure of a uniform fluid. The following concepts presented in this section hold
strictly only for homogeneous, isotropic and one-component systems. The one-
particle density operator is defined as

ρ̂(r) =
N∑
i=1

δ(r− ri). (2.6)

2The argument applies as long as the field does not deviate from the vertical direction by more
than, roughly, 30◦. In the contrary, dipole-dipole attractions that lead to chain formation arise
and a short-range steric repulsion is necessary to stabilize the system [28].
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The one-particle density can be expressed by the canonical ensemble average of the
one-particle density operator

ρ = 〈ρ̂〉 =
N

Ω
. (2.7)

Thus, for a homogeneous and isotropic system the density ρ can be written as the
ratio of particle number of the system and its volume Ω.
For theses system the two-particle density ρ(2)(r1, r2) is merely a function of the
distance |r1 − r2| of two particles

ρ(2)(r1, r2) =

〈
N∑
i=1

N∑

i6=j=1

δ(r1 − xi)δ(r2 − xj)

〉
. (2.8)

The product ρ(2)(|r1 − r2|)dr1dr2 is proportional to the probability of finding one
particle in the volume [r1, r1 + dr1] and the other in the volume [r2, r2 + dr2], irre-
spective of the positions of the remaining particles and irrespective of all momenta.
The radial distribution function g(r) plays a central role in physics of classical fluids
and it is defined in terms of the two-particle density

ρ(2)(|r1 − r2|) = ρ2g(|r1 − r2|). (2.9)

It measures the extent to which the structure of the fluid deviates from complete
randomness. Alternatively, it predicts the conditional probability of a particle at
a distance r if an other particle is located at the origin. Its fundamental impor-
tance attributes not only to describe pair correlations, but also allows to calculate
macroscopic thermodynamic properties such as the internal energy of the fluid or
its pressure. Finally, the determination of the pair structure of a uniform fluid
amounts to the calculation of the radial distribution function (rdf) g(r) and the
direct correlation function (dcf) c(r). By introducing the total correlation function
h(r) = g(r) − 1, the former two quantities are connected via the Ornstein-Zernike
(OZ) relation [50]

h(r) = c(r) + ρ

∫
dr′c(|r− r′|)h(r′). (2.10)

The OZ relation is exact and couples two unknown functions via an integral equa-
tion. The physical interpretation of that relation can easily be understood. The
total correlations between the positions of two particles is the sum of their direct
correlation, due to their mutual interaction, and of indirect correlations mediated
by other neighboring particles. These indirect correlations, involving one or several
’intermediate’ particles, are embodied in the convolution term in eq. (2.10), which
can be rewritten formally as

h = c+ ρc ∗ c+ ρ2c ∗ c ∗ c+ . . . (2.11)
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At very low density the influence of the ’intermediate’ particles can be neglected,
so that h(r) ' c(r), as implied by eq. (2.10) in the limit ρ → 0. In this limit h(r)
reduces to the Mayer function c0(r)

c0(r) = exp[−βu(r)]− 1, (2.12)

whereas u(r) denotes the pair potential. The key assumption is that the range of
c(r) remains the same, i.e., equal to the range of −βu(r) at all densities, while
the range of the total correlation function h(r) may increase dramatically near the
critical point [52].
A second equation is required in order to determine these both unknown function
g(r) and c(r). The radial distribution function can be expressed in terms of the
direct correlation function, as

g(r) = exp[−βu(r) + g(r)− 1− c(r) +B(r)], (2.13)

with B(r) being the so-called bridge function. By introducing certain approxima-
tions for the bridge function, we supply an additional, approximate equation to the
OZ relation. The former equation is called closure. Closures are approximate rela-
tions which arise from exact diagrammatic expansions of g(r) in terms of c(r), but
with certain classes of diagrams ignored. The system is now fully determined and
both the rdf as well as the dcf can be obtained by solving the two coupled equations
numerically. By setting the bridge function equal to zero, we obtain the so called
hypernetted chain (HNC) closure. This closures has proven to yield good results for
long-ranged pair potentials in three dimensions. The Percus-Yevick (PY) closure
arises by choosing the following expression for the bridge function

BPY = −[g(r)− c(r)] + 1 + ln[g(r)− c(r)]. (2.14)

The PY closure furnishes accurate results for short-range interactions (such as the
hard-sphere potential) in three dimensions. Once g(r) is known, another interesting
and important quantity to describe the structure of the system is the structure
factor. It simply can be expressed by means of the Fourier transform of the total
correlation function h̃(k):

S(k) = 1 + ρh̃(k). (2.15)

For isotropic systems, the structure factor is just a function of the absolute value of
the wave vector k.
It is strictly defined as the autocorrelation function of the Fourier components of
the density ρ(r)

S(k) =
1

N
〈ρ̂kρ̂−k〉, (2.16)
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with

ρ̂k =

∫
dr exp(−ik · r)ρ̂(r). (2.17)

Eq. (2.15) can easily be verified by rearranging eq. (2.16) [51].
The structure factor S(k) turns out to be a paramount quantity of interest because
it allows to access experimental data due to its direct measurement in scattering
experiments. The scattering intensity is proportional to S(k) bestowing an excel-
lent opportunity to compare theory and experiment. Moreover, the structure factor
offers a path to thermodynamics, as its k = 0 value is proportional to the isothermal
compressibility χT of the system

S(k = 0) = ρkBTχT. (2.18)

The Ornstein-Zernike relation, supplied with a closure, allows to calculate g(r),
c(r) and S(k) for a fixed pair potential u(r) and given thermodynamic conditions.
Various other thermodynamic quantities can be gained by the knowledge of the
radial distribution function. These quantities can be written as integrals over this
function. Exemplary, we indicate the pressure

P = kBTρ− π

2
ρ2

∫ ∞

0

dr r2∂u(r)

∂r
g(r) (2.19)

and the internal energy

U

N
= kBT + πρ

∫ ∞

0

dr ru(r)g(r). (2.20)

The free energy F can then be determined by thermodynamic integration of P (the
pressure route) or of U (the energy route) as given in eqs. (2.19) and (2.20). A third
possibility makes use of eq. (2.18) and the relation

χT =

(
Ω
∂2F

∂Ω2

)−1

. (2.21)

This constitutes the so-called fluctuation route.
If the closures were exact, all the three different routes would yield the same free
energy. Due to the inherent approximation of closures, we obtain different free
energies by each route. This problem is called thermodynamic inconsistency [8].
The thermodynamic inconsistency is addressed by modifying the closure relation.
One or several parameters are included in the closure relation which can be tuned
in order to achieve thermodynamic consistency. The Rogers-Young closure makes
use of that concept and reads as

g(r) = exp[−βv(r)]
[
1 +

exp[γ(r)f(r)]− 1

f(r)

]
, (2.22)
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with γ(r) = c(r) − h(r) and f(r) = 1 − exp(−αr). The additional parameter α is
varied until the free energy of the virial and the compressibility route coincide. For
α = 0 the RY closure reduces to the PY closure and for α→∞ the HNC closure is
recovered. Usually the RY closure does not only match the free energies of the two
different routes, but also improves the accuracy of the pair structure.
For convenience it proves easier to match the two different compressibilities κvir

T and
κfl
T instead of the corresponding free energies. The latter is given according to eq.

(2.18)
ρkBκ

fl
T = S(k = 0; ρ, α) (2.23)

where we have explicitly written the density and α dependence. The virial route
instead uses the following thermodynamic definition

ρkBκ
vir
T =

[
∂(βP )

∂ρ

]−1

(2.24)

where P is the pressure of the fluid given in eq. (2.19). Pertaining to this equation,
g(r) attains a explicit α dependence and an implicit one via the density. Combining
eqs. (2.19) and (2.24) we obtain

[
ρkBTκ

vir
T

]−1 ' 1 + 3πΓ

∫ ∞

0

dx
g(r; Γ, α)

x2
(2.25)

+
9π

4
Γ2

∫ ∞

0

dx
1

x2

∂g(x; Γ, α)

∂Γ

+
3π

4
Γ

∫ ∞

0

dx
1

x

∂g(x; Γ, α)

∂α

whereas the last term in eq. (2.25) arises from the ρ-dependence of the self-consistency
parameter α. It can be neglected because it is smaller than the other terms by orders
of magnitude.
In order to calculate the direct correlation function c(r), we proceed in an iterative
fashion as follows [53]:

1. Make an initial guess for c(r) and introduce an iteration index i. At this point
we have i = 0 but we call in general the value of the function c(r) at the i-th
iteration ci(r). For i = 0, start with the Mayer function c0(r) as given in eq.
(2.12) and make sure the density is low enough.

2. Fourier transform ci(r) in order to obtain c̃i(k).

3. Use the Ornstein-Zernike relation to get γ̃i(k).

4. Apply the inverse Fourier transform to that function in order to get its values
in real space.
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5. Use a closure to obtain a function that could be now the next step in the
iteration business but it turns out to be numerically unstable to employ it at
the next iteration step. So, let us call the result of the closure at this stage
cnew
i (r).

6. Mix the old and new result

ci+1(r) = αcnew
i (r) + (1− α)ci(r), (2.26)

with the mixing parameter 0 < α < 1.

7. Check whether the convergence criterion for c(r) is fulfilled. For a positive
answer, you are done and you can proceed anew by gradually increasing the
density starting with the converged ci(r) of the previous cycle. For a negative
answer, set i+ 1 → i and return to step 2.

There is a variety of possibilities to implement the convergence criterion. We rely
on the following one

|ci+1(r)− ci(r)| < ε (2.27)

for all r. The Rogers-Young closure can easily be incorporated into the iterative
scheme above by the following steps

1. Choose some value α (start usually from α = 1) and calculate g(r; ρ, α),
S(k, ρ, α) as well as g(r; ρ+ε, α), where ε is a small number, typically ε = 10−2.

2. Calculate κfl
T from eq. (2.23).

3. Calculate numerically the density derivative of g(r) as

∂g(r; ρ, α)

∂ρ
' g(r; ρ+ ε, α)− g(r; ρ, α)

ε
. (2.28)

4. Use eq. (2.25) to calculate κvir
T .

5. Form the difference κfl
T − κvir

T . If it is smaller than some tolerance, you are
done. If not, choose now another α′ = α+ δ and go to step 1. You can apply
then the Newton-Raphson procedure to converge to the sought-for value α∗
that satisfies thermodynamic consistency.
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Figure 2.2: The radial distribution functions for the one-component system at (a)
Γ = 1.44 and (b) Γ = 8.2. The Brownian dynamics (BD) results are compared to
the hypernetted chain (HNC) and Rogers-Young (RY) closures.

2.3 Results

In this section, we present results for the structure for the one-component two-
dimensional system of super-paramagnetic colloids exposed to a perpendicular, static
external magnetic field. To corroborate the (approximate) results of the numerical
solutions of the liquid integral equation theory derived in section 2.2, we also have
performed extensive Brownian Dynamics (BD) computer simulations [54]. We em-
ployed a square box with periodic boundary conditions.3 We varied the size of the
simulation box in order to check carefully for finite-size effects. Typically, we found
about 2000 particles to be sufficient for the latter to be negligible. The timestep for
the integration of the overdamped Langevin equation of motion was ∆t = 10−4ρD,
where D is the short-time diffusion constant of the particles. A total of 10 000
timesteps were used to equilibrate the system and during further 106 timesteps
statistics was gathered. In fig. (2.2), typical results for the g(r) at strong coupling,
Γ = 1.44 and Γ = 8.2, are shown. It is somewhat surprising that the agreement be-
tween HNC and BD is rather poor; based on experience for long-range interactions
in three dimensions, one might have expected a better agreement. Apparently, space
dimensionality is relevant. As the HNC implicitly contains elements of a ‘mean-field
picture’ [56], it is plausible to assert that its quality worsens as d diminishes. The
Rogers-Young closure provides much better agreement, although also in this case the

3We underline that the dipole-dipole interaction in two dimensions is integrable and that is
why we do not have to use more sophisticated schemes to treat this interaction, as it is common
in three dimensions [55].
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amount of correlation is slightly underestimated. The agreement between the RY
closure and the simulation worsens somewhat as the coupling grows but it should
be kept in mind that at Γ ∼= 10 the system crystallizes [57], thus for Γ = 8.2 we
are already dealing with a strongly correlated fluid. As far as experiments are con-
cerned, we refer the reader to Ref. [21] where nearly identical results for g(r) have
been obtained by video microscopy.

2.4 Conclusions

In this chapter, we have derived the basic tools for investigating superparamagnetic
colloids in two dimensions. The RY closure turned out to be in good agreement
with BD results to describe the fluid structure. Therefore, we will use that closure
for the two-component system in the next chapter.



Chapter 3

Binary Mixtures of
Superparamagnetic Colloids

Strongly interacting binary mixtures of superparamagnetic colloidal particles con-
fined to a two-dimensional water-air interface are examined by integral equation
theory, computer simulation and experiment. In this chapter we investigate the
structural behavior of two-component mixtures of such particles. The interparticle
interactions are tunable through the application of a magnetic field perpendicular
to the air-water surface. Further, they can be influenced by the choice of the rel-
ative magnetic susceptibilities of the two colloidal species. For all susceptibility
ratios studied, no macroscopic phase separation takes place; the fluid phase remains
macroscopically homogeneous but microphase structuring occurs: The interactions
with the large particles lead to a clustering of the smaller particles. We combine
structural information in reciprocal space together with morphological measures in
real space to characterize the ordering of the two species in the binary mixture.
The mixture exhibits a partial clustering in equilibrium: in the voids of the matrix
of unclustered big particles, the small particles form subclusters with a sponge-like
topology which is accompanied by a characteristic small-wave vector peak in the
small-small structure factor. This partial clustering is a general phenomenon occur-
ring for strongly coupled negatively non-additive mixtures.

3.1 Introduction

Super-paramagnetic colloidal particles that are confined by gravity on the two-
dimensional water-air interface of a pendant droplet are excellent realizations of
strictly two-dimensional (2d) classical many-body systems; Refs. [58, 59] provide
recent reviews on the new physics in these 2d systems. An external magnetic
field, directed perpendicularly to the droplet surface, induces magnetic moments

19
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on these particles that align themselves parallel to the applied field. Due to the
super-paramagnetic character of the particles, thermal fluctuations of the magnetic
moment around the preferred direction are negligible, thus the magnetic moments of
the particles are fixed in the direction prescribed by the external field. The strength
of the induced dipole moment, on the other hand, can conveniently be tuned by
the magnitude of the external magnetic field. This leads to an effective repulsion
between the spheres through their induced parallel dipole moments.
While a one-component system of almost monodisperse particles has been exten-
sively studied both for the fluid and for the crystalline phases [14–20, 27, 28, 57, 60]
only recently have two-component mixtures of such systems been investigated [26,61].
It is of particular interest here to tune, via control of the the susceptibility asym-
metry, the so-called non-additivity of the mutual interaction potentials between the
species of the mixture. For positive non-additivity, macroscopic phase separation
may take place [62,63] whereas, for negative values of the same, microphase separa-
tion and clustering of the particle species in domains within the fluid might occur
- qualitatively similar to results obtained in three spatial dimensions and effective
one-component systems [64–70]. A wide variety of systems displaying circular and
striped pattern formation have been analyzed such as magnetic garnets, Langmuir
monolayers and thin films of adsorbates [71, 72]. Stable cluster formation has been
observed in systems interacting via the competition between a short-ranged attrac-
tion and a long-ranged repulsion [73] and it can occur even in the complete absence of
attractions, provided that the repulsive potential is bounded and decays sufficiently
rapidly to zero at large interparticle distances [74]. The competition between a short-
ranged Lennard-Jones-like and a long-ranged repulsive Yukawa potential leads to a
cluster formation that has been proven by ground-state energy calculations [75].
This system even exhibits a gel phase driven by the inherent self-generated cluster
polydispersity [76]. Also nanoparticles deposited at the air-water interface show
spontaneous patterning in a cluster-like structure [77].
In this chapter, we investigate the liquid structure and local ordering in a 2d binary
mixture interacting via dipole-dipole repulsions. We use integral equation theories
and computer simulations that compare very well with each other and confront our
theoretical findings with direct experimental data. Macrophase separation (demix-
ing) does not take place for any combination of physical parameters, a property that
can be traced back to the fact that the non-additivity parameter of the interactions
is negative irrespective of the value of the magnetic susceptibility ratio. Instead,
microphase structuring with a partial clustering of the species with lower interac-
tion strength takes place, with a sponge-like structure emerging. Partial structure
factors and a morphological characterization of the particle positions obtained in
computer simulations and employing the Euler characteristic [78, 79] are used to
characterize the ordering of the two species in the uniform mixture. This partial
clustering has been confirmed experimentally. We compare structure factors, parti-
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cle snapshots and the Euler characteristic obtained by simulation to the equivalent
quantities obtained by experiment.
The rest of this chapter is organized as follows: in sec. 3.2 we extend our one-
component model to the two-component case and briefly describe the experimental
realization. The integral equation theory for the mixture is concisely presented in
sec. 3.3. Results for the partial structure factors are presented in sec. 3.4 and the
morphological analysis in sec. 3.5. In sec. 3.5 we compare our theoretical findings to
the experimental data. Finally, in sec. 3.7 we summarize and draw our conclusions.
Some technical details on fast two-dimensional Fourier transforms are relegated to
Appendix A and mathematical material on the derivation of the Euler characteristic
on a square lattice is presented in Appendix B.

3.2 Extension of the model and its experimental

realization

Generalizing the ideas of chapter 2, we now allow for a second component to be
present in the system (see fig. 3.1).

water

air

B

Figure 3.1: Schematic view of the setup: binary mixture of superparamagnetic
colloidal particles at an air-water interface in an external magnetic field B perpen-
dicular to the plane.

Each component is characterized by its partial density ρ1, ρ2 and its susceptibility
χ1, χ2, respectively. We model all particles as point-like but refer thereafter to
the particles having the larger susceptibility as the ‘big’ (species 1) and those with
smaller susceptibility as ‘small’ (species 2). In the experimental setup, the particles
acquire their superparamagnetic character through doping with Fe2O3. For a given
doping density, the bigger the particle is, the larger its susceptibility. Therefore,
in what follows, we refer to the particles having the larger susceptibility as the
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‘big’ particles, although the physical size of the colloids does not enter in the pair
potentials. Accordingly, we are now dealing with three different interactions:

βuij(x) =
Γij
x3
, i, j = 1, 2. (3.1)

In eq. (3.1) above, x stands for the distance between any two particles scaled over the
average interparticle distance between big particles, x ≡ r/a11, where a11 = 1/

√
ρ1.

Therefore, the expressions for the interaction strengths Γij are generalized to

Γij =
βχiχjB

2
0

a3
11

, i, j = 1, 2. (3.2)

The two-component system is completely characterized by three quantities: the
density ratio ρ2/ρ1, the susceptibility ratio χ2/χ1 and one of the three interaction
strengths, which we pick as Γ11 in what follows. We address in this chapter exclu-
sively an external magnetic field acting perpendicular to the confining plane.
The experimental system is fully described by the theoretical model introduced
above and is explained in detail elsewhere [17,21]. We use superparamagnetic parti-
cles [80] with susceptibilities χ1 = 6.2× 10−11 Am2/T and χ2 = 6.6× 10−12 Am2/T,
which are suspended in a free-hanging, flat water droplet attached to a top-sealed
glass ring (diameter 8 mm, see fig. 3.1). The particles are made from porous polystyrene
spheres that are doped with small Fe2O3 clusters to make them superparamagnetic
and are further sealed with an epoxy layer. Stabilization with sodium dodecyl sulfate
prevents the particles from aggregation. Due to high mass density (d1 = 1.3 kg/dm3,
d2 = 1.5 kg/dm3), both types of particles are pinned down to the water-air interface
by gravity and form an ideal, two-dimensional monolayer of binary dipoles. The
relatively small gravitational lengths of l1 = 8 nm and l2 = 62 nm for big and small
particles, respectively, compared to the particle diameters of 4.7µm and 2.8µm en-
sure an almost perfect realization of a 2d-system. The flatness of the interface can
be controlled in the range of less than 1µm. Inclination control of the whole setup
guarantees a nearly horizontal alignment of the flat surface, ruling out the occur-
rence of any density gradients in the sample. We control the interaction strengths
Γij between the dipoles by applying an external magnetic field up to 4 mT, per-
pendicular to the interface. The dipole interaction dominates all other interactions
in this colloidal system [21]. The sample was conserved for months and measure-
ments were taken for a duration of up to 24 hours. All necessary data were recorded
by video microscopy. Typically, about 1300 particles were observed in a box of
689µm × 505µm, with a total amount of 106 particles in the whole sample. The
density ratio ρ2/ρ1 was varied between 0.67 and 1. Local and statistical properties
of the sample are gathered at a rate of about 1 frame/second on all relevant time
and length scales.
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3.3 Multi-component liquid integral equation the-

ory

The extension from the one-component system to the multi-component system is
straightforward. Consider a two-component system consisting of N1, N2 particles
enclosed in a macroscopic area A and described by the three pair interactions uij(r),
i, j = 1, 2, r denoting the distance between any two particles. The pair structure is
fully determined by three correlation functions hij(r), i ≤ j = 1, 2; due to symmetry,
hij(r) = hji(r). The generalization of the OZ relation for multicomponent mixtures
reads as

H̃(k) = C̃(k) + C̃(k) ·D · H̃(k), (3.3)

where H̃(k) and C̃(k) are 2× 2 symmetric matrices with elements,

[H̃(k)]ij = h̃ij(k) and [C̃(k)]ij = c̃ij(k), (3.4)

and D is a 2× 2 diagonal matrix of the partial densities,

[D]ij = ρiδij. (3.5)

More specifically, the Ornstein-Zernike relation can be expressed for the two-component
case as

h̃ij(k) =
c̃ij(k)−∆ij/ρi

1 + ∆− E
, (3.6)

where ∆ = ρ1ρ2[c̃11(k)c̃22(k) − c̃212(k)] and E = ρ1c̃11(k) + ρ2c̃22(k). The linear
algebraic system (3.3) provides three independent equations with 6 unknown func-
tions h̃ij(k) and c̃ij(k). Therefore, three closure relations have to be supplied to
determine the unknown functions. Apart from the generalizations of the aforemen-
tioned HNC- and PY-closures, a particularly reliable relation is provided by the
Rogers-Young closure [81] that ‘interpolates’ between the two and has the form:

hij(r) = exp[−βuij(r)]
[
1 +

exp[γij(r)fij(r)]− 1

fij(r)

]
− 1, (3.7)

whereas γij(r) = hij(r) − cij(r) and the ’mixing functions’ fij(r) = 1 − exp(−αijr)
include tunable parameters αij that are chosen in order to enforce thermodynamic
consistency. This turns to be sufficient to bring about agreement with simulation and
experiment and it guarantees the equality between the total virial and fluctuation
compressibilities.1 The pressure takes now the form

βP = ρ− π

2
ρ2

2∑
i=1

2∑
j=1

xixj

∫ ∞

0

drr2∂βuij(r)

∂r
gij(r; ρ, ζ) (3.8)

1An alternative approach is to use all three αij ’s to match also the partial compressibilities [83].
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with ρ = ρ1 + ρ2 and xi = ρi/ρ. The compressibility can be calculated using eq.
(2.24), where xi (i = 1, 2) is kept constant. The compressibility can be written
as [82]

ρkBTχ
fl
T =

S11(0)S22(0)− S2
12(k)

x2S11(0) + x1S22(0)− 2
√
x1x2S12

(3.9)

for the specific case of a two-component mixture.
We rely on a single self-consistency parameter α ≡ αij. The parameter αij is deter-
mined by the requirement to achieve thermodynamic consistency, i.e., to match the
total virial and fluctuation compressibility. The three partial structure factors for
the two component system read as

Sij(k) = δij +
√
ρiρjh̃ij(k) (3.10)

In solving the two coupled integral equations, the OZ-relation and the closure, one
has to invoke an iterative procedure that requires the repeated calculation of convo-
lution integrals. These are evaluated most efficiently and rapidly in reciprocal space,
by invoking the tool of fast Fourier transforms. Although this procedure is straight-
forward in three dimensions, in which the Fourier transform of a spherosymmetric
function takes the form of a one-dimensional sine transformation, in two dimensions
things are more complicated. We have circumvented this problem by applying the
procedure of Caillol et al. [84]. A short account of the latter technique is given in
Appendix A.

3.4 Theoretical and simulation results

For the rest of this chapter, we turn our attention to the results of the much richer
two-component case. For all tested parameter combinations, the RY closure almost
perfectly matches the structural correlations predicted by the simulations. As a
representative result, we provide one parameter combination in fig. 3.2: it shows
excellent agreement between the simulation data and the RY closure whereas, as
could be anticipated from the one-component case, the HNC fails to be as accurate.
Excellent agreement with experimental structural data for a different parameter
combination will be shown later in this chapter. Therefore, in what follows, we
rely on the RY closure to analyze the pair structure of the fluid regime. We vary
the relevant system parameters, Γ11, ρ2/ρ1 and χ2/χ1 and discuss the concomitant
effects on the structural correlations.
Let us first increase the coupling strength, covering a range from Γ11 = 1.0 to
Γ11 = 9.0. Results for the radial distribution functions gij(r) are shown in fig. 3.3; for
all these values, the system remains fluid. At the same time, we keep the density and
susceptibility ratio fixed at ρ2/ρ1 = 0.5 and χ2/χ1 = 0.5. For increasing interaction
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Figure 3.2: The partial structure factors S11(k), S22(k), and S12(k) for the two-
component system. Computer simulation results obtained by Brownian dynamics
(BD) are compared to the HNC and RY closure. The parameter combinations here
read as Γ11 = 3.0, ρ2/ρ1 = 0.5 and χ2/χ1 = 0.5.

strength, the height of the main peak of all three distribution functions increases
steadily, whereas the peak position r, measured in units of a11, does not shift. The
result is physically reasonable: we can assume that Γ11 is increased by turning the
external field B0 stronger but otherwise leaving the particle numbers untouched.
Then, the typical interparticle distances within the first coordination shell remain
unchanged and only the degree of local ordering is affected, due to the increasingly
strong repulsions. Note also that the extent of the ‘correlation holes’ bij, i.e., the
small-r region for which gij(r) ∼= 0, differs between the three distribution functions.
Indeed, the ordering u22(r) < u12(r) < u11(r) leads to the inequalities b22 < b12 <
b11.
These features are reflected in the structure factors, shown in fig. 3.4. In reciprocal
space, the height of the principal peak position grows as the coupling increases.
At the same time, the structure factors reveal a striking feature that cannot be
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Figure 3.3: Partial radial distribution functions for the two-component system.
Varying the interaction strength Γ11, we keep the other parameters fixed: ρ2/ρ1 =
0.5 and χ2/χ1 = 0.5.

distinguished by looking at the real-space distribution functions alone: the structure
factor S22(k) shows a pre-peak at, roughly, kclus/

√
ρ1
∼= 3.5 that precedes the main

peak, located at kpart/
√
ρ1
∼= 8.5. The latter signals ordering with a length scale

λpart = 2π/(8.5
√
ρ1) ∼= 0.5/

√
ρ2, whereas the former points to the existence in the

system of spatial structures formed by the small particles that have a larger typical
length scale λclus

∼= 1.27/
√
ρ2. Note that λpart is smaller than the typical interparticle

distance a22 = 1/
√
ρ2 between the small particles by about a factor 2. This implies

that the latter are ‘squeezed together’ due to the influence of the big ones. Thus,
λpart corresponds to the small-small interparticle distance, whereas λclus > λpart

describes, as will be explicitly demonstrated shortly, the extent of clusters of tightly
squeezed small particles, nested in the voids formed by the big ones. The fact
that the kclus-pre-peak height is not particularly prominent, points to rather diffuse
clusters with an ill-defined boundary. Yet, their presence is clearly signaled by the
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Figure 3.4: The partial structure factors S11(k), S22(k), and S12(k) for the two-
component system. The interaction strength Γ11 is varied whereas the other param-
eters are kept fixed: ρ2/ρ1 = 0.5, χ2/χ1 = 0.5.

pre-peak, whose position (and hence the cluster size) is insensitive on the coupling.
We emphasize here that this is a novel phenomenon, which persists for a wide range
of parameter combinations. Of particular importance is the absence of any similar
feature in the big-big structure factor S11(k) and in the cross-structure factor S12(k).
The physical origin of this partial clustering can be traced to the particular form of
the interactions. A moderate amount of negative non-additivity (see below) as well
as the ordering u22(r) < u12(r) < u11(r) are necessary, which explains the fact that
partial clustering is absent both for additive hard-sphere mixtures [87] and for the
positively non-additive Asakura-Oosawa model [88], to mention some of the most
popular models of liquid-state and soft matter theory.

Let us now investigate the evolution of the structural characteristics when the other
two free parameters of the mixture are varied. In order to examine the influence
of the composition, we keep the coupling constant fixed at Γ11 = 3.0 and the sus-
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Figure 3.5: Partial structure factors for the two-component system. Here the
density ratio is varied and the other two parameters are fixed at Γ11 = 3.0 and
χ2/χ1 = 0.7.

ceptibility ratio at χ2/χ1 = 0.7. Subsequently, we vary the density ratio starting
from a majority of big particles and ending up with a majority of the small ones.
Results for the structure factors are shown in fig. 3.5. The height of the main peak
of the structure factor remains roughly unchanged for the big particles, however
its position moves clearly to the right as small particles are added. This points to
a tendency of the big particles to move closer upon addition of the small ones, a
feature explicitly confirmed by the evolution of their partial distribution function
g11(r), shown in fig. 3.6. The small particles require space for themselves and are
thus ‘pushing’ the big ones closer to each other; the interaction u11(r) is becoming
effectively softer, a feature also confirmed by the increase in the partial compress-
ibility χ1 = S11(k = 0)/(kBTρ1), see fig. 3.5. However, this partial compressibility
never diverges, thus no macrophase separation occurs. Therefore, the reordering
of the big particles in the presence of the small ones is more subtle: big particles
are coming closer together and they open up in this way space for the small ones.
The two regions of space, however, are closely intertwined with each other, as no
macrophase separation takes place.

Let us now turn our attention to S22(k) shown in fig. 3.5. The shift of the ‘particle
peak’ kpart to higher k-values upon increasing ρ2 simply describes the decreasing
interparticle separation between the small particles as their population grows. The
‘cluster prepeak’ kclus is also present, albeit weak, and its position remains unchanged
as ρ2 grows. The physical interpretation is that more and more small particles are
squeezed into the voids left by the big ones but the size of these voids (small-particle
clusters) is insensitive to ρ2. Note that for ρ2/ρ1 = 0.1 both the cluster prepeak
and the particle peak are weak, due to the low partial concentration. However, the
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Figure 3.6: The radial distribution function g11(r) of the big particles for the
parameter combination of fig. (3.5).

cluster prepeak survives also when the small particles are in the majority.

Finally, let us fix the coupling strength and the density ratio at Γ11 = 3.0 and ρ2/ρ1 =
0.5 and vary the susceptibility ratio. The corresponding structure factors can be
seen in fig. 3.7. For all investigated parameter combinations, the partial structure
factors remain finite for k = 0, therefore a fluid-fluid demixing is not expected for
the system at hand. Again, however, the cluster pre-peak in the structure factor
S22(k) is visible, whereas no such signature appears in S11(k). Note that for low
susceptibility ratio, χ2/χ1 = 0.1, the pre-peak is at least as pronounced as the
‘main’ peak: as the direct interaction scales as χ2

2 but the cross-interaction as χ1χ2,
the particle-particle correlations are weaker than the cluster ones. At the other
extreme, χ2/χ1 = 0.7, the prepeak is still present but clearly subdominant to the
main peak. Indeed, there are two trivial limits for the two-component system, when
it is looked upon through its dependence on the susceptibility ratio ξ ≡ χ2/χ1,
where 0 ≤ ξ ≤ 1. At ξ = 0, the small particles are ideal and experience no forces,
neither among themselves nor with the big particles. In this case, S22(k) = 1 and
we are dealing with a one-component system at Γ = Γ11. At the other extreme,
ξ = 1, the two species become identical and there is just one structure factor at a
rescaled coupling parameter Γ = Γ11(1 + α)3/2, where α ≡ ρ2/ρ1. Also in this case
there is no subclustering phenomenon. We expect, therefore, that the pre-peak in
S22(k) exists in some domain ξ ∈ [ξ1, ξ2] ⊂ [0, 1]. We were able to show that ξ1 is at
least as small as 0.1 and ξ2 at least as large as 0.7.
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Figure 3.7: Partial structure factors for the two-component system and their de-
pendence on the susceptibility ratio χ2/χ1. The other two parameters are fixed at
Γ11 = 3.0 and ρ2/ρ1 = 0.5.

A key quantity to understand the phenomena at hand is the so-called non-additivity
parameter ∆ [86], which can be derived from the interaction potentials uij(r) as fol-
lows. First, a mapping onto effective hard-disk diameters σij is performed according
to the Barker-Henderson procedure [51]:

σij =

∫
dr {1− exp[−uij(r)/kBT ]} . (3.11)

Then, ∆ is defined as
∆ = 2σ12 − (σ11 + σ22). (3.12)

The dependence of ∆̃ ≡ ∆/(σ11+σ22) on ξ is shown in fig. 3.8. Clearly, the case ξ = 0
leads to ∆̃ = −1, whereas ξ = 1 corresponds to ∆̃ = 0. The negativity of ∆̃ for all
ξ-values provides an explanation for the absence of macrophase separation because
it expresses the physical fact that the particles on average dislike the ‘opposite’
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Figure 3.8: The non-additivity parameter ∆ of the two-component magnetic mix-
ture [eq. (3.12)] against the susceptibility ratio χ2/χ1.

species less than they dislike their own. The negativity of ∆̃ together with the
property u22(r) < u12(r) < u11(r) for all r lies in the heart of the subclustering
phenomenon for the small particles. Indeed, by trying to create many contacts
between the small particles, the system is reducing its energy due to the first part
of the inequality above. At the same time, a full separation between big and small
is also unfavorable, since the big particles would then have mostly contacts with
each other, a feature that is disfavored by the second part of the inequality. The
system finds then the best compromise by creating irregular clusters of the small
particles, which are nested in the voids formed by the big ones. As the topology
and morphology of this mutual arrangement cannot be unambiguously determined
based on the reciprocal-space information alone, we proceed in the following section
with a complementary morphological analysis in real space.

3.5 Morphological analysis

A real-space perspective of the spatial arrangements of the two components is shown
in fig. 3.9, a typical simulation snapshot of the big and small particles, respectively,
for the parameter combination Γ11 = 3.0, χ2/χ1 = 0.5 and ρ2/ρ1 = 0.5. Here, the
total system contains 1200 big and 600 small particles. It can be seen that the big
particles have a semi-compact arrangement: whereas in most parts of the snapshot
they are close to each other, there exist also void regions in which the small particles
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perfectly fit. Note that the void sizes in the left part of fig. 3.9 are not visible in
reciprocal space: the only length scale featuring prominently as a peak in S11(k) is
the one corresponding to the typical interparticle separation. Since the big particles
have to make space for the voids, this scale is smaller than a11 (which is the typical
interparticle distance without small particles), hence the shift of the peak of S11(k)
at larger k-values can be observed in figs. 3.5 and 3.6.
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Figure 3.9: Simulation snapshot of the big particles (left panel) and the small
particles (right panel) for the following parameters: Γ11 = 3.0, ρ2/ρ1 = 0.5, χ2/χ1 =
0.5.

The mutual arrangement and the nesting of the irregular clusters of small particles
in the voids of the big ones is made manifest in fig. 3.10, where we show big and
small particles together. It is evident that small particles cluster in the holes formed
by the ‘sponge-like’ structure of the big ones. Yet, an inspection with the bare eye
is dangerous and it can lead to erroneous results. It is pertinent that we quantify
the morphology of the mixture and for this purpose we employ in what follows a
robust measure borrowed by integral geometry, namely a topological invariant of
the pattern formed by the particles, the Euler characteristic X [78,79].
The Euler characteristic is first defined for any closed, bounded, and convex set
(closed body) K in an d-dimensional space Ed with a regular boundary. We denote
the set of all such bodies as K. For such bodies, X is defined as

X(K) =

{
1, for convex K ∈ K ⊂ Ed, K 6= ∅,
0, for K = ∅. (3.13)

The definition can be extended to bodies with irregular boundaries (such as polygons
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Figure 3.10: Simulation snapshot of big particles and small particles together, for
the parameter combination of fig. (3.9).

in two dimensions) by considering the smooth ε-parallel body, Kε, consisting of the
union of K and all points within a distance ≤ ε from the boundary of K [78]. By
expanding the d-dimensional volume of Kε, in powers of ε, the Euler characteristic
of the irregular body is then proportional to the coefficient of the power εd. It has
precisely the same value, 1 for convex bodies and 0 for the empty set, as given by
eq. (3.13) above for bodies with a smooth boundary. Further, the definition of X
can be extended to non-convex shapes containing an arbitrary number of holes and
belonging to the set R of subsets of Ed that are constructed from finite unions and
intersections of convex bodies including the empty set ∅ (clearly, K ⊂ R). The
extension of X to such sets follows from the property of sub-additivity:

X(A ∪B) = X(A) +X(B)−X(A ∩B), (3.14)

for any A, B ∈ R. Notice that the Euler characteristic of the union of two sets
A and B is the sum of the individual ones minus the Euler characteristic of the
intersection.2

The morphological analysis of the spatial pattern formed by the particles was car-
ried out as follows. The particle positions of any snapshot were marked and covering

2In fact, the Euler characteristic is just one of the d+1 Minkowski functionals [78,79] of a body
embedded in d-dimensional Euclidean space, and all share the sub-additivity property; in three
dimensions, the four Minkowski functionals are the volume, exposed area, integral mean curvature
and Euler characteristic X; in two dimensions, they are the covered area, exposed line length and,
again, X. For the volume, area and length the sub-additivity property is evident.
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circles of varying radii R0 were superimposed on the position of each particle. The
circles were filled, resulting thereby in a spatial black-and-white pattern whose ap-
pearance depends on R0 as well as on the original particle positions. Interpreting
the black parts as ‘full’ and the white parts as ‘empty’, the pattern consists, for any
choice of R0, of a number of mutually disconnected components D(R0) as well as a
number of holes H(R0). The Euler characteristic X(R0) is an integer number and
in two dimensions it is simply expressed as:3

X(R0) = D(R0)−H(R0). (3.15)

For instance, X = 1 for a circle but X = 0 for a ring, X = −1 for an eight-shaped
union of two rings and so on. For the system at hand, we have at small R0 as
many mutually disconnected components as particles, D = N , there are no holes
(H = 0) and hence X/N = 1. For very large covering radii, the whole pattern is
black, D = 1, H = 0 and X/N → 0 for N → ∞. Information on the topology of
the mixture is gained by the behavior of the X/N vs. R0-curve at intermediate R0

values.
The recognition of disconnected components and holes may appear straightforward
at first yet it is a challenging problem of image analysis and processing. The problem
can be simplified by digitizing the image created by the covering circles. To this
end, we have imposed a fine quadratic grid on the picture, with lattice constant
l = 0.05R0. Any quadratic pixel was assigned the value ‘empty’ or ‘full’ according
to the following criterion: if the center of a pixel is closer to the center of any circle
than the radius of the latter, the pixel is ‘full’; otherwise, it is ‘empty’. We assign
now ‘Ising-like spin variables’ u(i, j) that live on the dual lattice, characterized by
a binary ‘emptiness variable’, u(i, j) = 1 if the pixel at which u(i, j) is centered
is empty and u(i, j) = 0 if it is full. Here, i, j are integer indices sequentially
labeling the lattice sites in the horizontal and vertical directions, respectively; i, j =
1, 2, . . . , L in an L × L square lattice. The digitized image generates therefore a
morphological lattice model and the Euler characteristic X[u] of each configuration
[u] = {u(i, j)}, i, j = 1, 2, . . . , L, can be calculated locally and involves up to four-
spin interactions only. It is given by the expression:

X[u] =
∑

i

∑
j {−u(i, j) + u(i, j) [u(i+ 1, j) + u(i, j + 1)]

−u(i, j)u(i+ 1, j)u(i, j + 1)u(i+ 1, j + 1)} (3.16)

The double sum runs over all lattice sites. Periodic boundary conditions were em-
ployed for the pixels at the borderlines of the L × L-square. For a sketch of the

3We emphasize the space dimensionality because in three dimensions the situation is different:
although X remains an integer, it has there the form X = D + C − T , where C is the number of
cavities (as in a hollow sphere) and T the number of tunnels (holes). Note also that our definition
of X differs by the one used in other contexts by a trivial factor 2.
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Figure 3.11: The expectation value of the Euler characteristic (per particle) plotted
against the covering radius for a binary mixture of 1200 big and 600 small particles
and for the parameters Γ11 = 3.0 and χ2/χ1 = 0.5. The results are averaged over
several simulation snapshots. For comparison, the corresponding curves of the ideal
gas and a one-component system are also shown.

derivation of eq. (3.16) above, we refer the reader to Appendix 3.5 and for a more
general discussion to the Appendix of Ref. [78]. The analysis was carried out for a
large number of simulation snapshots and the expectation value 〈X〉/N was calcu-
lated as a function of R0.

4

Results of this procedure are shown in fig. 3.14 for a particular parameter combina-
tion (Γ11 = 3.0, χ2/χ1 = 0.5, and ρ2/ρ1 = 0.5) for which the structural data featured
a cluster prepeak at S22(k). The quantity shown is always 〈X〉/N , where N is the
number of big or small particles, depending on the curve. A useful comparison is
provided by considering also the same curves drawn for an one-component system at
the same Γ11-value as well as for an ideal gas. Comparing the Euler characteristic-
curve of the small particles with that of the ideal gas, we see that the former decays
to zero much slower than the latter; and the most negative part of the former occurs
for larger covering radii than that of the latter. Ideal particles form ‘clusters’ just
by accident, as a result of the Poisson process of their insertion in the plane. In-
teracting particles form clusters in order to optimize the free energy of the mixture.
The latter are thus larger and hence a larger covering radius is necessary to create
holes between them.

4Note that the quantity 〈X〉 is extensive, a property that qualifies the latter to be used as a
‘topological order parameter’ in morphological models [78].
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Figure 3.12: Partial structure factors S11(k) for the big particles and S22(k) for
the small particles. Experimental results (EXP) are compared to theoretical ones
(RY) for the parameters: Γ11 = 4.05, ρ2/ρ1 = 0.89, χ2/χ1 = 0.1.

The position of the most negative value of 〈X〉/N for the small particles occurs at
R0
√
ρ1
∼= 1 and can be identified with half the typical cluster size, λclus/2. Thus

λclus
√
ρ1
∼= 2, a value agreeing well with the structural data extracted from fig. 3.4.

There, the estimate λclus
√
ρ2
∼= 1.27 was made, thus λclus

√
ρ1
∼= 1.8 for the density

ratio at hand. The morphological estimate is based on the consideration that, when
the covering circles attain a value equal to half the cluster size, covering patches from
neighboring clusters overlap, leaving one or more holes in the space in between. And
since every hole contributes −1 to the Euler characteristic, the minimum of 〈X〉 is
expected for such values of R0. Closing now these holes requires a much larger
cover radius than in the ideal gas system wherein particles are more or less evenly
dispersed over the whole area.

The 〈X〉/N vs. R0 curves for the big particles reveal that the gaps between them
are smaller than for the one-component case. This is consistent with the fact that
the big particles are rearranging and open small voids in which the small ones are
accommodated. In addition, the most negative value of 〈X〉/N is achieved for the
one-component system. This is also reasonable, since the large voids that open up
for the small particles constitute a single hole and thus drive 〈X〉/N less negative
than the many smaller holes present in the absence of the voids. The 〈X〉 vs. R0

curves of the big and the small particles have very different shapes; there is no way
to scale one on top of the other. This reveals also from the morphological point of
view the very different spatial arrangements of the two species in the presence of
one another.
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Figure 3.13: Snapshots of the binary magnetic mixture from experiment and
simulation for the parameter combination Γ11 = 4.05, ρ2/ρ1 = 0.89, χ2/χ1 = 0.1.
The big particles are denoted gray and the small ones black. Clockwise from the
upper left panel: experiment, simulation (both species), simulation (small particles
only) and simulation (big particles only).

3.6 Comparison: experiment vs. theory

A comparison between the theoretical and experimental structure factors is shown
in fig. 3.12, pertaining to susceptibility ratio χ2/χ1 = 0.1 and corresponding to the
real experimental situation. The representative results are shown here for density
ratio ρ2/ρ1 = 0.89 and coupling constant Γ11 = 4.05. Very good agreement between
theory and experiment is achieved, supporting the modeling of the system by means
of dipolar interactions exclusively; evidently, all other residual forces in the colloidal
suspension are much weaker and can be neglected. A pre-peak is seen in the small-
particle structure factor S22(k), whose height is comparable with that of the second
peak due to the small value of χ2. Indeed, as the second peak arises from pure
small-small interactions, its height is suppressed since the latter scale as χ2

2. The
prepeak trivially disappears in both limits χ2/χ1 → 0 and χ2/χ1 → 1.

Further evidence of the subclustering phenomenon is provided by real-space data.
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Figure 3.14: (a) Euler characteristic per particle, 〈X〉/N , as obtained from sim-
ulation for Γ11 = 3.0, ρ2/ρ1 = 0.5, χ2/χ1 = 0.5; (b) Comparison of the theoretical
(black lines) and experimental (gray lines) results for the same quantity for the pa-
rameters Γ11 = 4.05, ρ2/ρ1 = 0.89, χ2/χ1 = 0.1. Solid lines: big particles; dashed
lines: small particles.

In fig. 3.13 we show experimental and simulation snapshots of the system under
consideration. We observe a cluster structure of the smaller particles that perfectly
fits in the voids shaped by the big particles. To better quantify the morphology
of the spatial patterns, we employ tools from integral geometry, and in particular
the Euler characteristic X, which describes the topology of the pattern [78] and has
been introduced in the last section.

In fig. 3.14(a), we show the X-curves of the two components of a binary mixture,
compared to a one-component and an ideal gas system. The underlying snapshots
are taken from simulation data. The Euler characteristic of the small component
tends to zero much more slowly than the ideal gas curve. For the ideal gas, the
particles are more or less evenly spread over the area, so the vacant space between the
particles can be filled much faster than in the two-component case where the inter-
aggregate space between the small particles is larger. A comparison between the
big component and the one-component system reveals that the Euler characteristic
of the former becomes less negative and tends to zero much more slowly due to
the larger voids caused by the aggregation of the small component. Fig. 3.14(b)
refers to the parameter combination of the experimental sample. There, the 〈X〉/N
vs. R0-curves from simulation and experiment are compared, showing very good
agreement. The pre-peak position in fig. 3.12(b) points to a typical cluster size
λcl
√
ρ1
∼= 1.26 which agrees well with the position of the most negative value of

〈X2〉 from fig. 3.14(b) and is consistent with the large holes left there when the
covering circle radius R0

∼= λcl/2. The partial clustering is caused by the interplay
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between the successively stronger repulsive interactions u22(r) < u12(r) < u11(r),
which preclude macrophase separation and favor the nesting of small particles in
the voids of the big ones.

3.7 Conclusions

We have investigated partial cluster formation in a two-component colloidal model
system characterized by simple dipole-dipole interactions. The system is experimen-
tally accessible and our results have been confirmed by measurements for specific
parameter combinations. The small-particle clusters do not form well-separated,
monodisperse domains with a well-defined geometrical shape, such as those seen for
interactions with a short-range attraction and a long-range repulsion [67]. They are
rather diffuse, possess a percolating, sponge-like topology, with a significant number
of holes. We have analyzed this phenomenon in terms of the non-additivity parame-
ter of the mixture and we put forward the assertion that it is a general property for
all mixtures with ∆ < 0, whose interactions are purely repulsive and additionally
obey the inequalities u22(r) < u12(r) < u11(r).
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Chapter 4

Superparamagnetic Colloids with
Anisotropic Interaction

In this chapter we outline the formalism of liquid integral equation theory for
anisotropic interaction in two dimensions. We apply this theory to one-component
superparamagnetic particles exposed to a tilted magnetic field. Inhomogeneous local
ordering of the particles is observed for different in-plane directions. The anisotropy
of the interaction as well as of the liquid structure is increased by increasing the
tilt angle. Furthermore, the particles favor an alignment in direction of the in-plane
component of the magnetic field.

4.1 Theory

We consider a two-dimensional system of N colloidal particles in a plane of surface
area A. With ρ = N/A denoting the system’s density we define the characteristic
length as a ≡ 1/

√
ρ. The particles are exposed to an external magnetic field B

that can be tilted with respect to the two-dimensional plane. This external field
induces a magnetic moment mi onto each particle. The colloids are assumed to be
superparamagnetic, i.e., the magnetic moment of each particle aligns perfectly with
the external field

m = χB0, (4.1)

with the proportionality constant χ being the particle’s susceptibility. For strong
fields, this assumption proves to be reasonable and valid. The colloids are of finite
extent with a hard core radius σ. The particles interact with each other via a
dipole-dipole pair potential, valid for point-like magnetic dipoles,

udd(r,mi,mj) =
mi ·mj − 3(mi · n̂)(mj · n̂)

r3
, (4.2)

41
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Figure 4.1: A schematic view of two superparamagnetic colloids to a plane exposed
to a tilted external magnetic field B: (a) side view; (b) top view.

for distances larger than or equal to their hard core radius; n̂ is the unit vector
connecting the centers of a pair of discs. For distances smaller than the hard core
radius the interaction is described by a hard core repulsion. Using the aforemen-
tioned length scale a, we introduce the so-called coupling strength, a dimensionless
parameter that reads as

Γ = β
(χB0)

2

a3
, (4.3)

where β = 1/(kBT ), with kB being Boltzmann’s constant and T being the absolute
temperature. Rescaling the particle coordinates with the interparticle distance,
ri → xi ≡ ri/a, and using eqs. (4.1) and (4.3), we can re-write the dipole-dipole
interaction potential, eq. (4.2), as

βu(x) =
Γ

x3
(1− 3 cos2 φ cos2 θR), (4.4)

with x = |x1 − x2| and cos θR = r ·B‖/(rB‖), B‖ is the in-plane component of the
magnetic field. φ denotes the angle between the magnetic field and its projection to
the confining plane.

4.2 Liquid integral equation theory for anisotropic

interactions

The radial distribution function g(r), or equivalently the indirect correlation function

h(r) = g(r)− 1 (4.5)

is a quantity of central interest for classical fluids in equilibrium. The radial distri-
bution function measures the extent to which the structure of a fluid deviates from
complete randomness and expresses the ordering of the rest of the system around a



4.2. Liquid integral equation theory for anisotropic interactions 43

given particle of the liquid. It plays a key role in liquid theory because some impor-
tant thermodynamic properties, such as the internal energy of the system, can be
written as integrals over g(r).

4.2.1 Basics

The liquid integral equation theory consists of the Ornstein-Zernike (OZ) relation

h(r) = c(r) + ρ

∫
dr′h(r− r′)c(r′) (4.6)

coupled with a closure relation. We have settled for the hypernetted chain closure
(HNC) for reasons to become clear in what follows. The HNC can be written in the
form

c(r) = h(r)− ln g(r)− βu(r), (4.7)

with c(r) denoting the direct correlation function and βu(r) the pair interaction
potential as explained above. The eqs. (4.6) and (4.7) cannot be solved analytically,
but a solution can be obtained numerically by an iterative scheme. For convenience
we introduce the function

γ(r) = h(r)− c(r) (4.8)

in order to cast the OZ relation in the following form

γ(r) = ρ

∫
dr′[γ(r− r′) + c(r− r′)]c(r′). (4.9)

For potentials with a hard core part, h(r) and c(r) are separately discontinuous at the
hard core radius. The incorporated function γ(r) is devoid of that discontinuity, and
therefore a strictly continuous function. Nevertheless, solving eqs. (4.7) and (4.9) is
very difficult because each function depends on four variables and the integration
in eq. (4.9) goes over all the four position and angular coordinates. In order to
simplify and solve the equations, we expand the correlation function into a basis set
of orthogonal functions. This expansion leads to an easily tractable form of the OZ
equation. Then, it is possible to expand the HNC closure analytically to all orders
in the same basis set, hence allowing a solution of eq. (4.7) and (4.9).

4.2.2 Expansion

In order to reduce the complexity of solving the two coupled integral equations,
we expand all correlation functions into a set of orthogonal functions. Because we
are working in a two-dimensional system, the complex exponential function seems
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a natural choice for an orthogonal basis set. Exemplary, we just show the direct
correlation function as a representative for all correlation functions

c(r) =
∑
m

cm(r) exp(−imθR) (4.10)

with θR denoting the angle between r and the x-axis aligned along B‖ as introduced
in sec. 4.1 and identifying r ≡ (r, θR). Due to symmetry, this expansion can be
rewritten as

c(r) = c0(r) +
∑

|m|6=0

c|m|(r) cos(mθR) (4.11)

with

c|m|(r) =





1
π

π∫
0

dθR c(r) for m = 0

2
π

π∫
0

dθR c(r) cos(mθR) for m 6= 0

whereas m has to be an even number.
The interaction potential can be expanded in the same basis set as the correlation
functions and is fully determined by the first two coefficients with the remaining
terms vanishing:

βu0(r) = β
(χB0)

2

r3

(
1− 3

2
cos2 φ

)
, (4.12)

βu2(r) = −β 3

2

(χB0)
2

r3
cos2 φ. (4.13)

Solving eqs. (4.7) and (4.9) simultaneously requires the expansion of the HNC closure
in the same set of basis functions as all the other correlation functions. At first sight,
it seems that the logarithmic term in eq. (4.7) causes trouble, but this problem has
been overcome in a surprisingly simple manner by Fries and Patey [89].
Partial differentiation of eq. (4.7) with respect to r yields

∂c(r, θR)

∂r
= −h(r, θR)

∂W (r, θR)

∂r
− β

∂u(r, θ)

∂r
, (4.14)

with introducingW (r, θR) ≡ −γ(r, θ)+βu(r, θR) as the dimensionless angle-dependent
potential of mean force. Now, since c(r, θR) → −βu(r, θR) as r →∞, it is clear that

∫ ∞

r

dr′
∂c(r′, θR)

∂r′
= [c(r = ∞, θR)− c(r, θR)] = −c(r, θR). (4.15)



4.2. Liquid integral equation theory for anisotropic interactions 45

Combining eqs. (4.14) and (4.15), the HNC closure reads as

c(r, θR) =

∫ ∞

r

dr′h(r′, θR)
∂W (r′, θR)

∂r′
− βu(r, θR). (4.16)

The advantage of writing the HNC closure like this amounts to the analytical expan-
sion of the binary product −h(r, θR)[∂W (r, θR)/∂r] in the common basis set. After
some algebra, we obtain

c(r, θR) =
∑
m

m∑
n=0

In,m−n(r) exp(−imθR)− β
∑
m

um(r) exp(−imθR), (4.17)

with

Im,n(r) =

∫ ∞

r

dr′hm(r′, θR)
∂Wn(r

′, θR)

∂r′
. (4.18)

For distances smaller than the hard core radius σ the radial distribution function is
zero, hence the direct correlation function can be calculated by means of eq. (4.8)
as

c(r, θ) = −1− γ(r, θR) for r < σ (4.19)

4.2.3 Fourier transform

The OZ relation can be significantly simplified by expanding the correlation function
in a basis set of orthogonal functions. In solving the two coupled integral equations,
the OZ and the HNC closure invoke an iterative procedure that requires the repeated
calculation of convolution integrals. These are evaluated most efficiently and rapidly
in reciprocal space. Therefore we first transform the OZ relation to reciprocal space
in order to render the convolution integral into a simple product. Then, we plug the
expansion of correlation functions in reciprocal space into the OZ relation.
We define the Fourier transform for an arbitrary, physically smooth function f(r)
in 2d as follows

f(r) =
1

(2π)2

∫
dk f̃(k) exp(−ikr) (4.20)

and its inverse

f̃(k) =

∫
dr f(r) exp(ikr). (4.21)

Then, the OZ relation (4.9) can be written in Fourier space as
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γ̃(k) = ρc̃(k)[γ̃(k) + c̃(k)]. (4.22)

The correlation functions in reciprocal space are obtained by applying the Fourier
transform (4.20) to the corresponding ones in real space. Exemplary, we show the
direct correlation function

c̃(k) =

∫
dr c(r) exp(ikr). (4.23)

The expansion in Fourier space can be written as

c̃(k) =
∑
m

c̃m(k) exp(−imθK) (4.24)

with

c̃m(k) = 2πim
∫ ∞

0

dr rcm(r)Jm(kr). (4.25)

Here, θK in Fourier space is the equivalent to θR in real space and Jm(r) is the m-th
order Bessel function of the first kind. Conversely, the coefficients of the expansion
in reciprocal space are obtained by a simple Hankel transform of the coefficient in
real space. Thus, it holds

cm(r) = (2π)−1im
∫ ∞

0

dk kc̃m(k)Jm(kr). (4.26)

We see that the coefficients of the expansion in Fourier and real space are connected
by a simple Hankel transform. In the appendix, we show a strict derivation of the
interconnection between the coefficients in real and Fourier space.
We want to point out explicitly that the angle θR in the real space expansion and
the angle θK in the reciprocal space expansion are different. In each system, it
is the in-plane angle between the in-plane magnetic field and the r- and k-vector,
respectively.
The problem of calculating the Hankel transform of m-th order

f̃(k) = 2πim
∫ ∞

0

dr rf(r)Jm(kr), (4.27)

can be reduced to the 0-th order Hankel transform,

f̃(k) = 2πim
∫ ∞

0

dr rf(r)J0(kr). (4.28)

Lado developped a numerically accurate algorithm for that procedure [93] and for
the calculation of the 0-th order Hankel transform in an efficient way [90]. For the
reduction, we need two recurrence relations for the Bessel functions [91],
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d

dx

[
Jm−1(x)

xm−1

]
= −Jm(x)

xm−1
, (4.29)

d

dx
[xmJm−1(x)] = xmJm−2(x). (4.30)

Exploiting the first recurrence relation, eq. (4.29), in eq. (4.27) and an integration
by parts leads to the following expression with f(k) vanishing sufficiently rapidly at
infinity:

f̃(k) =
1

k

∫ ∞

0

dr
d

dr
[rmf(r)]

Jm−1(kr)

rm−1
. (4.31)

We set f(r) ≡ f (m)(r) and define a new function f (m−2)(r) such that

d

dr

[
rmf (m)(r)

]
= r2m−2 d

dr

[
f (m−2)(r)

rm−2

]
. (4.32)

Plugging eq. (4.32) into eq. (4.31) leads to

f̃(k) =
1

k

∫ ∞

0

drr2m−2 d

dr

[
f (m−2)(r)

rm−2

]
Jm−1(kr)

rm−1
(4.33)

=

∫ ∞

0

dr
1

r

d

dr

[
f (m−2)(r)

rm−2

] ∫ r

0

dxxmJm−2(kx)

= −
∫ ∞

0

drrf (m−2)(r)Jm−2(kr),

where in the first step we used the second recurrence relation, eq. (4.29), and in the
next step we integrated by parts.
Finally, we have to identify the function f (m−2)(r) from f (m)(r). Therefore, we
integrate eq. (4.32)

∫ ∞

r

dr′
d

dr′
[
(r′)mf (m)(r′)

]
=

∫ ∞

r

dr′(r′)2m−2 d

dr′

[
f (m−2)(r′)
(r′)m−2

]
. (4.34)

Performing the integration yields

f (m−2)(r) = f (m) − 2(m− 1)rm−2

∫ ∞

r

dr′
1

(r′)m−1
f (m)(r′). (4.35)

We apply repetitively this ’step-down’ operation until we reach

f (0)(r) = f (2) − 2

∫ ∞

r

dr′
1

r′
f (2)(r′). (4.36)
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Then, we transform f (0)(r) by a 0th-order Hankel transform [90].
Similarly, it can be shown that for the inverse m-th order Hankel transform the
following scheme holds:

(1) First, we transform the original function f̃(k) ≡ f̃ (0)(k) by a simple 0-th order
Hankel transform in order to obtain f (0)(r).

(2) Then, we apply the following expression repetitively until the desired order of
m is reached

f (m)(r) = f (m−2)(r)− 2(m− 1)

rm

∫ r

0

dx xm−1f (m−2)(x). (4.37)

The latter integral as well as the integral in eq. (4.35) can be calculated using a
simple trapezoidal rule.
Because the direct correlation function c(r) behaves asymptotically as the potential,

c(r) ∼ −βu(r) ∼ 1

r3
, (r →∞), (4.38)

the long-range nature of the correlation function may adversely affect the Fourier
transform due to a necessary truncation of the former one at a finite cut-off value.
We can bypass that problem by subtracting a function with equal long-range be-
havior and an analytically known Hankel transform. The Fourier transform of that
difference does not entail any difficulties and the Hankel transform of the subtracted
function is added back in reciprocal space.
For the coefficient c0(r), we subtract

βuLR,0(r;α) =
Γ

r3

[
1− exp(−αr)

(
1 + αr +

1

2
α2r2

)]
(4.39)

=
1

2
Γα3

∫ 1

0

dxx2 exp(−αrx),

with the analytical Hankel transform

β̃uLR,0(k;α) = πΓ0

[
2k2 + α2

√
k2 + α2

− 2k

]
. (4.40)

For the coefficient c2(r), the following function proves to be apt:

βuLR,2(r;α) =
Γ

r3

[
1− exp(−αr)

(
1 + αr +

1

2
α2r2 +

1

6
α3r3

)]
(4.41)

=
1

6
Γα4r

∫ 1

0

dxx3 exp(−αrx),
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whose Hankel transform reads as

β̃uLR,2(k;α) = −π
3
Γk2

(
2

k
− 3α2 + 2k2

(α2 + k2)3/2

)
(4.42)

The parameter α can freely be chosen.
It is worth noting to treat the discontinuity in c(r) carefully by doing the Fourier
transform. We apply the Dirichlet condition at this position to guarantee correct
results. This condition says that for a function with a discontinuity at r0 the Fourier
transform at this position is just the Fourier transform of the mean value of the lower
and upper value.

4.2.4 Ornstein-Zernike relation

Our initial goal was to cast the Ornstein-Zernike relation in a numerically tractable
form. First, we broke up its integral in a simple product by passing over to Fourier
space. Then, we outlined the series expansion in Fourier space. The final step
comprises plugging the series expansion in reciprocal space, eq. (4.24), into the
Fourier transformed Ornstein-Zernike relation, eq. (4.22), yielding the following
result:

γ̃p(k) = ρ
∑
m

c̃m(k)γ̃(p−m) + c̃m(k)c̃(p−m). (4.43)

Restricting to a limited numberM of coefficients in the series expansion, the Ornstein-
Zernike relation provides a M ×M linear algebraic system which can be solved by
standard numerical algorithms.

4.2.5 Algorithm

The elements developed above are necessary ingredients in analyzing the two coupled
integral equations (4.6) and (4.7). The whole procedure to solve these equations is
best presented in summary form. One iteration for calculating the cm(r) consists of
the following steps:

1. Subtract from the coefficients c0(r) and c2(r) the functions

βuLR,0(r;α) =
Γ0

r3

[
1− exp(−αr)

(
1 + αr +

1

2
α2r2

)]
(4.44)

and
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βuLR,2(r; alpha) =
Γ0

r3

[
1− exp(−αr)

(
1 + αr +

1

2
α2r2 +

1

6
α3r3

)]
, (4.45)

respectively.

2. Lower the coefficients cm(r) to get

c(m−2)(r) = c(m) − 2(m− 1)rm−2

∫ ∞

r

dr′
1

r′m−1 c
(m)(r′) (4.46)

starting from c
(l)
m (r) ≡ cm(r) and ending up with c

(0)
m (r).

3. Convert c
(0)
m (r) by a 0-th order Hankel transform due to the procedure outlined

in ref [90] to get c̃m(k). Be aware of the discontinuity at the hard core radius
and apply the Dirichlet condition described at the end of section 4.2.3.

4. Add the analytically calculated Hankel transforms

β̃uLR,0(k;α) = πΓ0

[
2k2 + α2

√
k2 + α2

− 2k

]
(4.47)

and

β̃uLR,2(k;α) = −π
3
Γ2k

2

(
2

k
− 3α2 + 2k2

(α2 + k2)3/2

)
(4.48)

back to the coefficients c0(k) and c2(k).

5. Plug cm(k) into the Ornstein-Zernike relation

γ̃p(k) = ρ
∑
m

c̃m(k)γ̃(p−m) + c̃m(k)c̃(p−m) (4.49)

to get γ̃m(k) ≡ γ̃
(0)
m (k).

6. Apply to these the inverse 0-th order Hankel transform to get the γ
(0)
m (r)

7. Raise these according to:

γ(m)(r) = γ(m−2)(r)− 2(m− 1)

rm

∫ r

0

dxxm−1γ(m−2)(x). (4.50)
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8. Plug these into

c(r, θR) =

∫ ∞

r

dr′h(r′, θR)
∂W (r′, θR)

∂r′
− βu(r, θR). (4.51)

for distances larger than oder equal to the hard core diameter and

c(r, θR) = −1− γ(r, θR) (4.52)

for distances smaller than that diameter. For the derivative in the first equa-
tion, we apply a 7-point derivative scheme for unevenly spaced notes [92].

This iterative scheme is repeated until convergence for cm(r) is achieved. To guar-
antee convergence, we mix the new cm(r) with the result of the former iterative
step

cnew(r) = ζcnew(r) + (1− ζ)cold(r). (4.53)

The so-called mixing parameter 0 < ζ < 1 is chosen empirically to assure conver-
gence. The whole iterative scheme is best started with the Mayer function f(r)

f(r) = exp(−βu(r))− 1 (4.54)

which is exact in the zero density limit. We recommend starting the above scheme
with a small density and proceeding through the outlined steps until convergence is
reached, and then we slightly increase the density, repeat the iterative scheme again
and then further increase the density until the desired density is obtained.
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Figure 4.2: The radial distribution function for different tilt and in-plane angles
(a) φ = 60◦, θR = 0◦, (b) φ = 75◦, θR = 30◦, and (c) φ = 85◦, θR = 60◦.

4.3 Results

We numerically solve the two coupled integral equations (eqs. (4.6) and (4.7)), ac-
cording to the theory outlined in the previous section.
First, we increase the interaction strength Γ for a host of arbitrary parameter com-
binations of the tilt angle φ and the in-plane angle θR. The results are shown in
fig. 4.2. For the same parameters the peak heights increase with increasing inter-
action strength while the peak positions remain nearly unchanged. This behavior
is physically plausible: we can assume that the interaction strength is increased by
turning the magnetic field B0 stronger while the number of particles remains un-
changed. Therefore, the typical interparticle distance is not altered, but the degree
of local ordering is affected, leading to a more pronounced liquid structure.

Now, we are interested in the local ordering of the particles for different in-plane
directions while keeping the interaction strength and the tilt angle fixed. The re-
sults are shown in fig. 4.3 for different fixed tilt angles. In contrast to the case of
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Figure 4.3: The radial distribution function for fixed Γ = 5.0 and different tilt
angles (a) φ = 60◦, (b) φ = 75◦, and (c) φ = 85◦.

a perpendicular field, the radial distribution functions for different in-plane angles
do not coincide anymore. This effect is clearly traced back to the anisotropy of the
interaction induced by the tilted magnetic field. We realize for all tilt angles that
the local structure is most pronounced in direction of the in-plane component of
the external field. The dipole-dipole interaction favors fully aligned moment, i.e.,
head-to-tail configuration, in agreement with previous results [28]. Furthermore, the
deviation among the different local radial distribution functions increases with in-
creasing tilt angle. The differences are most obviously observed for φ = 60◦ whereas
for φ = 85◦ we barely recognize any significant distinctions. We can understand this
by the growth of anisotropy with larger tilt angles.

Now, we explicitly compare different tilt angles φ for fixed interaction strength
and fixed in-plane angles θR. We present the results in fig. 4.4 for different fixed
in-plane angles. Only for the in-plane direction of the magnetic field the structure is
more pronounced the more the field is tilted. While always working in the repulsive
regime, the repulsion between head-to-tail configurations become weaker, leading to
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Figure 4.4: The radial distribution function for fixed Γ = 5.0 and different in-plane
angles (a) θR = 0◦, (b) θR = 30◦, and (c) θR = 60◦.

a stronger alignment among the particles in the field in-plane direction. This does
not hold true for any other in-plane direction and therefore no predictions of the
heights of the different local ordering can be made.

4.4 Conclusions

In this chapter, we have derived the formalism of integral equation theory for an
anisotropic interaction. We have expanded all correlation functions in a set of or-
thogonal functions to cast the integral equation in a numerically accessible form.
The cumbersome task of a two-dimensional, fast Fourier transform has been tackled
by the introduction of Hankel transforms of higher orders. These could be in turn
reduced to easily calculable 0th-order Hankel transforms.
Due to the anisotropy of the interaction with tilted magnetic field, the local ordering
of the particles becomes inhomogeneous. The local structure of the liquid turns more
inhomogeneous with increasing tilt angle. An alignment of particles in direction of
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the in-plane component of the magnetic field is observed.
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Chapter 5

Proteins

In this chapter we calculate the electrostatic potential of proteins by assuming them
as spherical particles with non-spherical charge patterns. We derive analytical ex-
pressions for the screened electrostatic potential caused by a charged spherical colloid
that contains point charges distributed in an arbitrary manner in its interior. We
consider both the cases of uniform and discontinuous dielectric constants. The solu-
tion is based on an expansion of the electrostatic potentials on the various regions of
space in spherical harmonics involving spherical Bessel functions of the third kind.
Tetrahedral charge arrangements as well as a random charge distribution inside the
confining sphere are considered explicitly as representative examples.

5.1 Introduction

Electrostatic interactions play a crucial role in determining the structure and stabil-
ity of colloidal dispersions or biomolecular aggregates [50]. In the much studied case
of aqueous dispersions of micron-sized spherical colloidal particles, the traditional
Derjaguin-Landau-Verwey-Overbeek (DLVO) [94] description is based on the explicit
assumption of a spherically symmetric charge distribution carried by the particles.
According to Gauss’ law such a distribution is equivalent to having the total charge
of the particle located at its centre, implying a purely radial effective interaction
between colloidal particles which is usually calculated within Poisson-Boltzmann,
or linearized Poisson-Boltzmann (LPB) theory. The fact that microscopic co- and
counterions cannot penetrate the spherical polyions is incorporated in a simple ge-
ometric factor in the DLVO potential, equivalent to enhancing the bare charge Ze
of the polyions to an effective charge Zeff > Z [94]. The assumption of a uniformly
distributed surface charge is reasonable on the colloidal scale in view of the high
values of Z resulting from typical surface charges of up to an elementary charge per
nm2. This is no longer true when one goes down to the nanometer scale relevant for

57
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most biomolecules. We shall be more specifically concerned with globular proteins,
which will be modeled by spherical particles carrying typically of the order of 10
charged sites distributed in a non spherically symmetric pattern over the particle
volume. The ultimate goal of our work is to determine the screened Coulomb in-
teraction between two globular proteins carrying arbitrary discrete charge patterns
in the presence of co- and counterions, taking proper account of excluded volume
effects and of dielectric discontinuities. These calculations will still be carried out
within the framework of the “primitive model”, i.e., the aqueous solvent will be
considered to be a mere dielectric continuum. Discrete solvent effects can have a
dramatic influence on effective interactions between charged proteins [95], but recent
Molecular Dynamics simulations clearly show that switching from continuous to dis-
crete charge patterns in model spherical proteins already leads to highly significant
differences between the resulting screened Coulomb interactions reflected, e.g., in
different concentration dependences of the calculated second virial coefficients [96].

Screened electrostatic interactions between non-spherically symmetric charged par-
ticles have been calculated recently for the case of charged platelets [97,98]. There,
however, due to the infinitely thin shape of the platelets, the charge on the colloids
is immediately exposed to the solvent and no ‘finite-size corrections’ to the effective
potential are necessary. As to spherical particles, much work has been devoted to,
among others, the interaction between a protein and a charged sphere [99], a planar
surface and a charged sphere [100], as well as between two proteins characterised
by surface patchiness [101]. Sometimes the protein charge pattern can be approxi-
mated by a simple dipole [102], leading to analytical expressions for the multipolar
expansion of the protein-protein interaction. Very recently, the same problem has
been studied by means of Monte Carlo computer simulations [103].

The present chapter focuses on the first steps towards the above goal, namely a
systematic calculation of the screened electrostatic potential around a single spher-
ical particle carrying an arbitrary number of positively or negatively charged sites
distributed in a non-spherically symmetric discrete pattern inside the particle. The
calculation is carried out within the LPB approximation, which allows for fully an-
alytic results and is better justified than in the case of a single site carrying the
total charge Ze of the particle, since the latter is divided into n well-separated sites
carrying each only an elementary charge.

5.2 Debye-Hückel theory for a symmetric charge

distribution

We shortly review the major steps in deriving the Debye-Hückel theory for a sym-
metric charge distribution of a spherical particle. A realistic situation represents
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a globular colloid dispersed in a fluid solvent and supplied with a symmetric neg-
ative charge distribution homogeneously smeared over its surface. Due to Gauss’
law the total charge Q of the colloid can be assumed to be located into the cen-
ter of the sphere. The negatively charged sphere expels the negative ions of the
solvent (’coions’) while the ions with positive charge (’counterions’) feel attracted.
In this way, a charge distribution is formed around the macromelecular particle,
the so-called double layer, which partly screens the bare charge. The situation is
visualized in fig. 5.1.
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Figure 5.1: Plot of a colloid with a negative charge in its center. The monovalent
counter- and coions form a double layer around the macromolecular entity screening
the bare charge.

The Poisson equation is well-known from classical electrodynamics and relates the
electrostatic potential Φ(r) to the charge distribution ρ(r) spread throughout the
space

∇2Φ(r) = −4πρ(r)/ε. (5.1)

The subsequent derivation is carried out in the framework of the primitive model.
Therefore the dielectric constant ε accounts for the electrostatic solvent effects.
Within Poisson-Boltzmann theory, the distribution of the counter- and coions is
assumed to follow the Boltzmann equation

ni(r) = n0
i exp(−zieΦ(r)/kBT ) (5.2)
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where n0
i is the number of ions of type i per unit volume in the bulk solution far

from the colloid , kB is the Boltzmann constant, T is the absolute temperature, zi
the valency of the adequate ion species and e the elementary charge. For the sake
of simplification we assume zi = z+ = −z− = z. Combining the Poisson equation
(5.1) with the Boltzmann equation (5.2) leads to the Poisson-Boltzmann equation

∇2Φ(r) = −4π
1

ε
ze

∑
i

n0
i exp(−zeΦ(r)/kBT ). (5.3)

It is a second-order nonlinear differential equation which cannot be solved analyti-
cally for a spherical geometry. However, by expanding the exponential to first order,
an analytical solution can be obtained in the limits of this approximation. But before
doing so, we write the Laplacian explicitly in spherical coordinates for eq. (5.3)

1

r2

d

dr

(
r2 dΦ(r)

dr

)
=

8πze
∑

i n
0
i

ε
sinh[zeΦ(r)/kBT ]. (5.4)

Due to symmetry, all angle dependent derivatives of the Laplacian drop out. We
linearize the equation (5.4) to cast it in an analytically tractable form

1

r2

d

dr

(
r2 dΦ(r)

dr

)
= κ2Φ(r) (5.5)

with

κ =

(
8πz2e2

∑
i n

0
i

εkBT

)1/2

(5.6)

the so-called inverse screening length. Its inverse is often referred to as the spatial
extent of the double layer. The approximation holds true as long as zeΦ(r) ¿
kBT . The resulting differential equation can be solved analytically and yields the
physically reasonable solution

Φ(r) = α
exp(−κr)

r
. (5.7)

The yet unknown constant α is determined by imposing electroneutrality onto the
system

−Q =

∫ ∞

a

dr 4πr2ze
∑
i

ni(r) (5.8)

furnishing

α =
Q

ε

exp(κa)

1 + κa
. (5.9)
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Finally, the potential of a symmetric charge distribution reads in the framework of
linearized Poisson-Boltzmann theory, or equivalently Debye-Hückel theory, as

Φ(r) =
Q

ε

exp(κa)

1 + κa

exp(−κr)
r

. (5.10)

We point out once again that the last equation was derived under the condition of a
symmetric charge distribution. It does not encompass asymmetric charge arrange-
ments. That brings us to the next section.

5.3 Debye-Hückel theory for a asymmetric charge

distribution

5.3.1 Posing the electrostatic problem

Consider a spherical particle (the “protein”) of radius R carrying n discrete charged
sites unevenly distributed over the volume of the particle, and surrounded by ν
species of co- and counterions each of radius Rα and carrying charge Zαe (1 ≤ α ≤
ν). For the sake of simplicity, all Rα will be assumed to be equal (Rα = R̄). Due
to the superposition principle in a linearised theory, the total potential Φ(r) around
the protein will be the sum of the potentials generated by each of the n charged
sites. Hence it is sufficient to solve the electrostatic problem for a single site, say α,
carrying charge Zαe. The situation is schematically represented in fig. 5.2.
The position r′ of site α is characterised by the polar coordinates (r′, θ′, φ′) with
respect to a laboratory-fixed set of axes, while the potential Φ(r) is to be calculated
at a point r = (r, θ, φ). We distinguish between three concentric regions of space
around the protein. Region I (r < R) corresponds to the interior of the protein,
of dielectric permittivity ε1. Region II (R < r < σ) is the spherical shell of radius
σ = R + R̄ from which the centres of the microions are excluded due to their
finite radius (they are of course also excluded from region I); a permittivity ε2 is
associated with that region, reflecting the fact that the implicit solvent’s permittivity
is expected to be significantly reduced in the immediate vicinity of the protein
surface (ε2 < ε, where ε is the bulk permittivity of the solvent). Finally region
III (σ < r) contains all microions, and a permittivity ε3 = ε is associated with it.
The electrostatic potential Φ(r) satisfies the following partial differential equations
within the three regions:

1. Region I only contains the point charge Zαe at r′, so that Φ(r) satisfies Pois-
son’s equation:

∇2ΦI
α(r) = −4π

ε1
Zαeδ(r− r′). (5.11)
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Figure 5.2: Two-dimensional plot of a model protein surrounded by the solvent
and the counterions. The big sphere denotes the protein with a charge at r′ and θ′

inside. The smaller spheres are the counter- and co-ions.

2. Region II is free of charges, so that Φ(r) satisfies Laplace’s equation in that
region:

∇2ΦII
α (r) = 0. (5.12)

3. Region III contains the microions which, within mean-field theory, are assumed
to follow Boltzmann distributions:

ρβ(r) = ρ
(0)
β exp

(
−ZβeΦα(r)

ε3kBT

)

' ρ
(0)
β [1− ZβeΦα(r)/ε3kBT ] (5.13)

where ρ
(0)
β is the bulk density of species β, and the linearisation is rigorously

justified only provided |ZβeΦα(r)/ε3kBT | < 1 for r > σ.

The total charge density due to the microions being ρ(r) =
∑

β Zβeρβ(r),
global charge neutrality (

∑
β Zβe = 0) then implies that Φα(r) satisfies the

following Helmholtz (or LPB) equation in region III:

∇2ΦIII
α (r)− κ2ΦIII

α (r) = 0, (5.14)

where κ2 = 4πe2
∑

β ρ
(0)
β Z2

β/ε3kBT is the square of the inverse Debye screening
length.
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In spherical polar coordinates, the solution of Poisson’s equation (5.11) is the su-
perposition of the Coulomb potential due to charge Zαe at r′ and of the general
solution of Laplace’s equation for (r < R), i.e.:

ΦI
α(r) ≡ ΦI

α(r, θ, φ) =
∞∑

l=0

l∑

m=−l

(
Almr

l +
Blm

rl+1
+
Zαe

ε1

4π

2l + 1

rl<
rl+1
>

Y ∗
lm(θ′, φ′)

)
Ylm(θ, φ).

(5.15)
where r> (r<) is the larger (smaller) of r and r′, and the Ylm are the usual spherical
harmonics. The general solution of Laplace’s equation (5.12) in region II reads:

ΦII
α (r) =

∞∑

l=0

l∑

m=−l

(
Clmr

l +Dlmr
−(l+1)

)
Ylm(θ, φ), (5.16)

while the general solution of the Helmholtz equation (5.14) in region III may be
expressed in terms of the modified spherical Bessel functions Il+1/2(z) and Kl+1/2(z)
of the third kind, as:

ΦIII
α (r) =

∞∑

l=0

l∑

m=−l

1√
r

(
ElmIl+1/2(κr) + FlmKl+1/2(κr)

)
Ylm(θ, φ). (5.17)

Note that Il+1/2(z) →∞ and Kl+1/2(z) → 0 as z →∞. Moreover, Kl+1/2(z)/
√
z ∼

e−z/z as z → ∞ [91], so that for large separations the electrostatic potential de-
creases towards zero in a Yukawa-like manner.
In eqs. (5.15)-(5.17) above, {Alm}, {Blm}, {Clm}, {Dlm}, {Elm} and {Flm} are sets
of coefficients, whose values must be determined by implementing the appropriate
boundary conditions between regions I, II and III. These boundary conditions on
the spherical surfaces are the following:

1. The potential must remain finite at the origin:

ΦI
α(r = 0) <∞⇒ Blm = 0 (5.18)

2. The potential must vanish at infinity:

lim
r→∞

ΦIII
α (r) = 0 ⇒ Elm = 0 (5.19)

3. In the absence of surface charges, the normal component of the displacement
field and the tangential component of the electric field must be continuous at
the interface separating regions I and II, i.e. at r = R; if n̂ denotes the unit
normal to the sphere of radius R centered at the origin:

n̂ · (DII −DI) |r=R = 0 (5.20)

n̂× (EII − EI) |r=R = 0 (5.21)
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In terms of the potential Φα(r) in the two regions, eq. (5.20) may be re-
expressed as:

ε2
∂ΦII

α (r)

∂r

∣∣∣∣
r=R

= ε1
∂ΦI

α(r)

∂r

∣∣∣∣
r=R

(5.22)

Similarly, eq. (5.21) may be re-expressed in terms of the partial derivatives of
ΦI
α(r) and ΦII

α (r) with respect to the polar and azimuthal coordinates θ and
φ. However these derivatives affect only the spherical harmonics and produce
sets of linearly independent functions. Therefore, the θ and φ-derivatives lead
to the same relations for the coefficients Alm, Clm and Dlm, and only the
θ-derivatives will be required to express the boundary condition (5.21):

∂ΦII
α (r)

∂θ

∣∣∣∣
r=R

=
∂ΦI

α(r)

∂θ

∣∣∣∣
r=R

(5.23)

4) Similar boundary conditions hold at the interface between regions II and III,
i.e., at r = σ:

ε3
∂ΦIII

α (r)

∂r

∣∣∣∣
r=σ

= ε2
∂ΦII

α (r)

∂r

∣∣∣∣
r=σ

(5.24)

∂ΦIII
α (r)

∂θ

∣∣∣∣
r=σ

=
∂ΦII

α (r)

∂θ

∣∣∣∣
r=σ

(5.25)

5.3.2 Solving the electrostatic problem

General solution

The explicit solution of the potential Φα(r) is obtained by substituting the boundary
conditions (5.18), (5.19), (5.22)-(5.25) in the general solution (5.15), (5.16) and
(5.17) appropriate for the three regions I, II and III. We consider two cases: case A,
where all three permittivities are assumed to be the same, i.e., ε1 = ε2 = ε3 = ε, and
case B where ε1 6= ε2 6= ε3 6= ε1. The implementation of the boundary conditions in
the latter case is most easily achieved by the introduction of image charges associated
with the co- and counterion charge distribution. The case of a single charge in the
neighbourhood of a dielectric sphere was recently studied analytically [104]. The
present work considers the situation of a many-body solution. It is easily verified
that in the case ε1 = ε2 6= ε3, the length scale R drops out of all expressions, and
becomes hence irrelevant.

It proves convenient to introduce the following dimensionless ratios: δ = R/σ < 1
and ζ = r′/R < 1, the relative permittivities ε21 = ε2/ε1, ε31 = ε3/ε1 and ε32 = ε3/ε2,
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as well as the following quantity:

(2l + 1)Bl(ε1, ε2, ε3, δ) =
1√
κσ
Kl+1/2(κσ)

[
(l + 1) δl (1− ε21) + δ−(l+1) [l + (l + 1) ε21]

]

+
1√
κσ

[
lKl+1/2(κσ)− (κσ)Kl+3/2(κσ)

]×

×
[
(ε32 − ε31) δ

l −
(
ε32 + ε31

l + 1

l

)
δ−(l+1)

]
. (5.26)

Moreover, let n′ and n be the unit vectors pointing to the source and the observation
points, r′ and r, respectively. The full solution of the electrostatic problem is then
given by:

Case I (ε1 = ε2 = ε3 = ε)

For r ≤ σ:

Φα(r) =
Zαe

εσ

[
σ

|r− r′| −
κσ

1 + κσ
+

∞∑

l=1

(
r′

σ

)l ( r
σ

)l Kl−1/2(κσ)

Kl+3/2(κσ)
Pl(n

′ · n)

]
. (5.27)

For r ≥ σ:

Φα(r) =
Zαe

εσ

[
exp [−κ(r − σ)]

1 + κσ

σ

r
+

∞∑

l=1

(2l + 1)

(
r′

σ

)l Kl+1/2(κr)

Kl+3/2(κσ)

1

κσ

√
σ

r
Pl(n

′ · n)

]
.

(5.28)

Case II (ε1 6= ε2 6= ε3 6= ε1)

Φα(r) =





Zαe
ε1

1
|r−r′| + A

(α)
0 +

∞∑
l=1

A
(α)
l rlPl(n

′ · n) for 0 ≤ r ≤ R
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(α)
0 +

D
(α)
0

r
+

∞∑
l=1

(
C

(α)
l rl +D

(α)
l r−(l+1)

)
Pl(n

′ · n) for R ≤ r ≤ σ

F
(α)
0

exp(−κr)
r

+
∞∑
l=1

F
(α)
l

Kl+1/2(κr)√
κr

Pl(n
′ · n) for σ ≤ r

(5.29)

where Pl(n
′ ·n) denotes the Legendre polynomial of order l and the coefficients A

(α)
l ,

C
(α)
l , D

(α)
l and F

(α)
l are given by:
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A
(α)
0 =

Zαe

ε1R

(
1

ε21

− 1

)
+
Zαe

ε2σ

[
1

ε32(1 + κσ)
− 1

]
(5.30)

C
(α)
0 =

Zαe

ε2σ

[
1

ε32(1 + κσ)
− 1

]
(5.31)

D
(α)
0 =

Zαe

ε2
(5.32)

F
(α)
0 =

Zαe

ε3

exp (κσ)

1 + κσ
, (5.33)

while for l 6= 0:

A
(α)
l =

Zαe

ε1R

(
ζ

R

)l

(5.34)

×
{
Kl+1/2(κσ)[(l + 1)δl + lδ−(l+1)] + ε32[lKl+1/2(κσ)− (κσ)Kl+3/2(κσ)](δl − δ−(l+1))

l
√
κσBl − 1

}

C
(α)
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Zαe

ε1R
(2l + 1)σ−lζ l

(l + 1)Kl+1/2(κσ) + ε32[lKl+1/2(κσ)− (κσ)Kl+3/2(κσ)]

l
√
κσBl

(5.35)

D
(α)
l =

Zαe

ε1R
σl+1ζ l

lKl+1/2(κσ)− ε32[lKl+1/2(κσ)− (κσ)Kl+3/2(κσ)]

l
√
κσBl (5.36)

F
(α)
l =

Zαe

ε1R
(2l + 1)

ζ l

lBl . (5.37)

Note that in deriving eqs. (5.27)-(5.37), summations over the azimuthal index m
involving products of the spherical harmonics Y ∗

lm(θ′, φ′)Ylm(θ, φ) have been carried
out explicitly by making use of the addition theorem [48]

l∑

m=−l
Y ∗
lm(θ′, φ′)Ylm(θ, φ) =

2l + 1

4π
Pl(n

′ · n). (5.38)

We further remark that in the limit where the charge Zαe is at the centre of the
spherical protein (r′ = 0), spherical symmetry is recovered, i.e., all contributions for
l ≥ 1 vanish, and it is immediately seen from the above results that the electrostatic
potential reduces, for r > σ, to the familiar DLVO form:
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Φ0(r) =
Ze

ε3(1 + κσ)

e−κ(r−σ)

r
. (5.39)

This holds in both cases A and B, i.e., irrespective of the presence or absence of
dielectric discontinuities. The latter do, however, significantly affect the form of the
potential Φα(r) as soon as the charge Zαe moves away from the centre.

The far field

The strong anisotropy of the electrostatic field persists all the way to the far field
limit, κr À 1. To demonstrate this, we now focus on the case in which all permittiv-
ities are equal, eq. (5.28). We consider a single embedded charge in the colloid and
hence, without loss of generality, we can choose n′ to lie on the z-axis, in which case
n′ ·n = cos θ. The asymptotic behaviour of the field for κr À 1 can be now analyzed
by making use of the general property of the spherical Bessel functions [91]:

Kl+1/2(z)√
z

=

√
π

2

exp (−z)
z

(
1 +O(z−1)

)
. (5.40)

Keeping only the dominant term for z ≡ κr À 1 in eq. (5.40) and substituting back
in eq. (5.28), we obtain for the far-field the expression:

Φα(r) ∼= Zαe

ε

exp(−κr)
r

[
exp(κσ)

1 + κσ
+

√
π

2

1

(κσ)3/2

∞∑

l=1

(2l + 1)ηl
Pl(cos θ)

Kl+3/2(κσ)

]
, (5.41)

where η = r′/σ. As can be seen from eq. (5.41) above, the far-field maintains the
form of a screened electrostatic (Yukawa) potential with the Debye screening length
κ−1 setting the length scale. However, the ‘charge renormalization factor’ acquires
an explicit angle-dependence that persists to arbitrarily large distances. This angle-
dependence is expressed by the term in the square brackets in eq. (5.41), which we
call f(θ).

In fig. 5.3 we show results for the function f(θ) for several values of η. A very strong
anisotropy is apparent, with f(θ) varying by as much as a factor 5, depending on
whether the far field is considered in the direction of the embedded charge (θ = 0)
or opposite to it (θ = π). The same conclusions hold also for the case of unequal
permittivities but here we limit ourselves to the simpler case where no dielectric dis-
continuity is present. Finally, we note that if one performs an angular average of the
far-field expression, eq. (5.41), then all l 6= 0-terms vanish by virtue of the orthogo-
nality of the Legendre polynomials and the isotropic limit is recovered. However, in
a proper statistical-mechanical treatment of the problem, it is not the potential that
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Figure 5.3: The function f(θ) [term in square brackets in eq. (5.41)] that expresses
the angle-dependence of the far field due to a single charge embedded in a spherical
colloid. Results for three different eccentricities of the embedded charge, η = 0.9,
0.8 and 0.7 are shown, together with the result valid for a charge in the centre of
the colloid (dotted line, η = 0). The value of the screening parameter is chosen to
be κσ = 1.

must be angularly averaged but rather the Boltzmann factor. In other words, one
can define a spherically symmetric effective potential Ψα(r) through the relation

exp[−βΨα(r)] =
1

4π

∫
dΩ exp[−βΦα(r)], (5.42)

where Ω denotes the solid angle in 3 spatial dimensions and β = (kBT )−1. As can be
seen from eq. (5.41), in this case the l 6= 0-terms will contribute in the integration
and the effective interaction potential Ψα(r) does not coincide with that from a
single charge embedded at the centre of the colloidal particle.

5.3.3 Results for specific charge patterns

The results of section 5.3.2 will now be illustrated for some specific charge patterns.
For each such pattern the total electrostatic potential Φ(r) outside the protein sphere
is the sum of the individual contributions Φα(r) from each of the n sites:

Φ(r) =
n∑

α=1

Φα(r) (5.43)
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Figure 5.4: Three dimensional representation of a tetrahedron, depicting the quan-
tities relevant to the physical problem at hand.

We present numerical implementations of eqs. (5.28) and (5.29) corresponding to
case A with ε1 = ε2 = ε3 = ε = 80 (dielectric permittivity of water under normal
conditions), and to case B, where we chose ε1 = ε2 = 2 and ε3 = ε = 80. The
following three charge distributions will be considered: (1) a neutral tetrahedral
distribution of two positive and two negative charges at 4 vertices of a regular
tetrahedron, the geometric centroid of which coincides with the centre of the sphere;
(2) a tetrahedral distribution with four identical charges at the four vertices; (3) a
random distribution of 10 charges. The corresponding results are presented and
discussed in the following three subsections.

Neutral tetrahedron

The tetrahedral charge distribution is schematically shown in fig. 5.4. For this
charge arrangement, we construct a system of Cartesian coordinates as follows.
The origin of the axes is positioned at the geometrical centre of the tetrahedron.
The z-axis runs along the direction connecting the origin with the charge located
at the vertex t4, whereas the x-axis runs parallel to the direction of the segment
c in fig. 5.4. The orientation of the y-axis is then determined by the right-hand
rule. A three-dimensional representation of the tetrahedral arrangement within the
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Figure 5.5: Three dimensional representation of a spherical protein carrying a
tetrahedral charge distribution inside. The chosen orientation of the Cartesian axes
is also shown.

confining sphere, showing also the Cartesian coordinates, is plotted in fig. 5.5. Let
a be the edge size of the regular tetrahedron, b the distance from its centre to any
of its vertices and v the distance from its centre to any of its faces. Moreover, let c
be the distance from a vertex to the centre of any of the faces in which this vertex
participates, and d the distance from the centre of a face to the opposite edge, as
shown in fig. 5.4. All these distances can be expressed in terms of a, namely

b =
a
√

6

4
; v =

a
√

6

12
; c =

a
√

3

3
; d =

a
√

3

6
.

In what follows, we refer to b as the eccentricity of the charge distribution.
The positions of the four vertices, ti, i = 1, 2, 3, 4, are given in Cartesian and spher-
ical polar coordinates by the relations:

t1 = (c, 0,−v) = (b, arccos[−1/3], 0);

t2 = (−d,−a/2,−v) = (b, arccos[−1/3], 4π/3);

t3 = (−d,+a/2,−v) = (b, arccos[−1/3], 2π/3);

t4 = (0, 0, b) = (b, 0, 0).
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Figure 5.6: The screened electrostatic potential Φ(r) of a neutral tetrahedron in
region III, at fixed azimuthal angle φ = 0, and for ε1 = ε2 6= ε3. The potential is
shown as a function of (a) the distance r and (b) the polar angle θ. The eccentricity
is b = 0.5σ in both cases.
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Figure 5.7: Same as fig. 5.6 but now as a function of the azimuthal angle φ at
fixed polar angle θ = π/2. (a) ε1 = ε2 = ε3; (b) ε1 = ε2 6= ε3 in units of Ze/σ. The
eccentricity is b = 0.5σ.

First we place at each of the vertices t1 and t2 a positive charge Ze and at the
vertices t3 and t4 opposite charges, −Ze, and we calculate the screened electrostatic
potential outside the sphere of radius R. The net charge is zero but all charges of the
vertices have the same magnitude Z. Since we focus explicitly on the case ε1 = ε2,
R drops out and only the length scales b and σ remain in the final expressions.
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Figure 5.8: Same as fig. 5.7 but for eccentricity b = 0.8σ.

Explicit calculations were carried out for b = 0.5σ and 0.8σ. The convergence
of the series (5.28) and (5.29) in Legendre polynomials depends on the ratio b/σ,
and is slower as this ratio increases. Results for the reduced potential Φ∗(r) =
Φ(r)/(Ze/σ) are plotted as functions of θ, φ or r in figs. 5.6, 5.7 and 5.8. The
anisotropy of the potential is seen to be strong, and to increase with the ratio b/σ, as
expected. At the equatorial plane of the sphere (θ = π/2, see fig. 5.7), a significant
substructure develops, pointing to the possibility of preferentially ‘trapping’ test
ions at particular positions and orientations of the asymmetrically charged sphere.
Although the overall shape of the potential is not affected by going from case A
(ε1 = ε2 = ε3) to case B (ε1 = ε2 < ε3), the amplitudes increase significantly in
the latter case. A significant enhancement of the structure and amplitudes is also
observed when the charges are positioned farther away from the centre, as can be
readily seen by comparing figs. 5.8, pertinent to b = 0.8σ, with fig. 5.7 corresponding
to the case b = 0.5σ.

Charged Tetrahedron

We consider next a tetrahedral distribution similar to the former one, except that
all four charges are now of equal sign, thus adding up to a total charge 4Ze. Re-
sults under conditions similar to the neutral case, are shown in figs. 5.9 and 5.10.
Note once more the development of a significant angular substructure as well as the
periodicity with an angle φ0 = 2π/3 for the case depicted in fig. 5.10. This arises
from the symmetric arrangement of the three equal charges at the vertices of the
equilateral triangle that forms one of the faces of the tetrahedron.
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Figure 5.9: The screened electrostatic potential Φ(r) in region III, arising from a
tetrahedron carrying four equal positive charges at its vertices, and for ε1 = ε2 6= ε3.
The azimuthal angle is fixed at φ = 0. The potential is shown as a function of (a)
the distance r and (b) the polar angle θ. The eccentricity is b = 0.5σ in both cases.
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Figure 5.10: The screened electrostatic potential Φ(r) of a charged tetrahedron at
θ = π/2 and for ε1 = ε2 6= ε3. The potential is shown in region III and as a function
of the azimuthal angle φ. The eccentricity is b = 0.5σ.

Random charge distribution

Charge patterns in proteins are generally far from regular. For that reason we present
in this section results for a random distribution of ten charges ±e. The coordinates
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Figure 5.11: Three dimensional representation of a randomly generated charge
distribution. The dark spheres denote positive charges and the light spheres negative
ones.

and signs of those 10 charges were generated randomly inside the protein sphere.
The polar coordinates of the 10 charges and their signs are listed in table 5.1, and
the resulting charge distribution is pictured in the 3d representation of fig. 5.11.
Representative plots of the resulting potential Φ(r) are shown in figs. 5.12 and 5.13.
The variations of the potential are seen to differ considerably from those calculated
for tetrahedral charge distributions.

r′α/σ θ′α φ′α sign
1 0.458 0.941 1.83 +
2 0.126 2.87 1.37 +
3 0.490 0.381 6.19 −
4 0.139 1.12 5.05 −
5 0.864 2.26 5.14 +
6 0.763 0.355 3.39 +
7 0.709 2.92 2.08 −
8 0.183 1.67 1.62 −
9 0.500 0.0166 4.01 +

10 0.345 1.66 5.76 +

Table 5.1: Spherical polar coordinates of 10 charges whose positions and algebraic
signs have been generated randomly.
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Figure 5.12: The screened electrostatic potential Φ(r) in region III, arising from
the random charge distribution of Table 5.1 at φ = 0, and for ε1 = ε2 6= ε3. The
potential is shown as a function of (a) the distance r and (b) the polar angle θ.
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Figure 5.13: Same as fig. 5.12 but now at fixed polar angle θ = π/2 and as a
function of the azimuthal angle φ.
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5.3.4 Conclusions

We have shown how the standard DLVO theory for the potential around a spherical
particle carrying a spherically symmetric charge distribution can be generalised to
arbitrary discrete charge patterns within LPB theory. The total potential generated
by an arbitrary charge distribution in the presence of co- and counterions is simply
the sum of the contributions from each charged site within the sphere. The present
chapter provides a general expansion of the potential in spherical harmonics, which
may be applied to any distribution of discrete charges within the particle. Since
each charge in the pattern is screened individually the linearisation of Poisson-
Boltzmann theory is better justified because the charge associated with each site
is small (typically an elementary charge).
The potentials which we have calculated are strongly anisotropic and very sensitive
to details of the protein charge pattern. Contrary to the case of a spherically sym-
metric charge distribution of the particle, the potential generated by a non-spherical,
discrete distribution of sites depends on the relative dielectric permittivities of the
particle, the spherical exclusion zone around the particle, and the bulk solvent.
The anisotropy of the potential extends to the far field region, contrary to näıve
expectations.



Chapter 6

Multivalent
Counterion-condensation-induced
Collapse of End-grafted
Polyelectrolyte Chains

We address in this chapter to the situation of polyelectrolyte chains with charging
fraction f = 1 and end-grafted to a planar surface in the presence of multivalent
counterions. Our theory is based on a variational free energy that is written as a
sum of electrostatic, polymer, and entropic contributions. Using Poisson-Boltzmann
theory for the electrostatics and a mean-field term for the occurring bridging effect,
we minimize the free energy with respect to the chain length and the number of
counterions. The shrinking of the chain length with increasing electrostatic attrac-
tion of the monomeric units finally results into a collapsed state reminiscent of a
first-order phase transition.

6.1 Introduction

Polyelectrolytes (PEs) are polymer chains with ionizable groups. Immersed in a
polar solvent, these groups dissociate into the solvent leaving behind an equally,
but oppositely charged backbone. PEs have recently attracted a great deal of inter-
est [105–107] due to numerous biological and technological applications. Proteins
and DNA are the most prominent representatives of PEs in the realm of biology. PEs
play a key role in the context of hydrosolubility and solution thickening. Sulfonated
polystyrene and polyacrylic acid, two other PEs, find application in diapers as su-
perabsorbers. Attached to a surface, PEs prevent colloids from flocculation [108].
Furthermore, they can be used in surface modification for adhesion and lubrication

77
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problems.
In this chapter, we discuss the particular case of polyelectrolytes end-grafted to a
planar solid surface. While charge stabilization prevents colloids from flocculation
and aggregation, this methods turns out to be extremely sensitive to dissolved salts
or other electrolytes. The addition of even small salt concentrations leads to a strong
screening effect of the repulsive Coulombic interactions and a final break-down of
the stabilization. Therefore, there is an increasing demand of investigating steric
methods to stabilize colloidal dispersions against flocculation which are less sensitive
to Debye screening. Steric stabilization is achieved by attaching a brush of flexi-
ble polymers to each particle enhancing their stability against flocculation [33,109].
Therefore, there is a growing interest in the theoretical understanding of end-grafted
polymers.
The end-grafting from solution onto an impenetrable substrate may be experimen-
tally achieved by the use of block copolymers exploiting their amphilic character.
The block copolymer is assembled by one block avoiding the solvent and therefore
sticking to the wall whereas the other block is well-solvated and extends to the sol-
vent. Alternately, polymer chains can be tethered onto a substrate by chemically
active end groups which covalently bind to the surface.
PE chains end-grafted to a surface have been extensively studied by theory [33–41]
as well as by experiment [42–45]. In contrast to neutral brushes, PE chains entail
the electrostatic Coulomb force which is theoretically more difficult to handle. Pi-
oneering work has been done by de Gennes [110] and Alexander [111], providing
simple scaling laws for neutral end-grafted polymer chains. They show that the
chains are strongly stretched at high grafting densities when immersed in a good
solvent. The same holds true even for a poor solvent [112,113]. These findings have
been confirmed by low-angle neutron scattering [114–116]. This stretching behavior
is mainly due to the short-ranged excluded volume effect.
The effect of counterion condensation has been predicted by Oosawa [117] in 1971
and numerically confirmed for rigid rods [118] as well as for flexible polymers in so-
lution [119,120]. The counterion condensation of highly charged PEs has been inves-
tigated in dilute and semidilute solution [121]. Simple scaling arguments are used to
predict the chain collapse below a critical temperature. Based on the Alexander-de-
Gennes approximation [111] and using mean-field Poisson-Boltzmann (PB) theory
for the electrostatics, the weak- and strong-charging regimes have been investigated
by scaling arguments [33]. For strongly charged brushes the chain length L is given
by balancing the chain elasticity and the counterion osmotic pressure, satisfying
L ∼ N , where N is the degree of polymerization. Also using a step function profile
and PB theory, the PE brush collapse has been studied by means of a free en-
ergy minimization [38]. The brush is seen to shrink with decreasing solvent quality.
For weak charging the collapse occurs continuously below the θ-point whereas a
first-order transition to the collapsed state has been found for a moderate charging



6.2. Review 79

fraction.
Mean-field PB theory neglects counterions fluctuations. A Debye-Hückel free en-
ergy [47] and a field theory [126] have been proposed in order to account for this
fluctuation effect. Both theories find a first-order phase transition from the highly
charged regime to the collapsed state.
In this chapter, we address to the collapse of end-grafted PE chains in the presence
of multivalent counterions encouraged by a multivalent counter-ion-induced collapse
of star-branched PEs observed in experiment and computer simulations [46]. Our
theory is based on a variational free energy. The latter is written as a sum of electro-
static, polymer, and entropic contributions. The incorporation of the cumbersome
long-ranged Coulomb interaction is tackled by a simple mean-field term. The multi-
valence of the counterions induces an attractive interaction between adjacent chains,
the so-called bridging effect. We incorporate this additional effect by a simple mean-
field term. The free energy is then minimized with respect to the different species of
counterions and the chain length with the state of minimal energy being the physical
stable one.
The rest of the chapter is organized as follows: in sec. 6.2 we review the PB theory
of a charged interface in equilibrium with oppositely charged counterions (sec. 6.2.1)
and then calculate the free energy of that system (sec. 6.2.2). Counterions explor-
ing the exterior of the PE brush region can be assumed to discern the interior as
a charged surface at position z = L and therefore can be described in mean-field
PB theory. Then we discuss the free energy of neutral polymers in sec. 6.3.1 and
of polyelectrolytes in sec. 6.3.2. Sec. 6.4 contains a brief description of the simu-
lated annealing algorithm used to minimize the free energy. In sec. 6.5, the results
are presented and discussed. Finally, we draw our conclusions in sec. 6.6. As the
free energy involves some delicate calculations, we present this technical part in
Appendix D and in Appendix E.

6.2 Review

6.2.1 Poisson-Boltzmann theory around a single interface

We consider a single planar interface at position z in contact with a polar solvent
as depicted in fig. 6.1. The surface has an uniform, fixed charge density

σ = σ0δ(z). (6.1)

We assume that the neutralizing monovalent counterions are arranged in the solvent
according to the Boltzmann distribution. At this point, we specialize to the case of
no added electrolyte and neglect the contribution of water ionization to the Debye
screening. The Poisson-Boltzmann equation is the mean-field description of the
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σ0

Figure 6.1: An interface with charge density σ0 in equilibrium with oppositely
charge counterions.

spatial counterion distribution. It is obtained by combining Poisson’s equation of
electrostatics

divD(r) = 4πeρ(r) (6.2)

where D(r) is the electric displacement, with the Boltzmann weighting for the coun-
terion density, i.e.,

ρ(r) = ρ0e
−eΨ(r)/T (6.3)

where ρ0 is a constant determined by global charge neutrality
∫

dr ρ0e
−eΨ/T =

∫
dr σ (6.4)

and Ψ(r) is the potential at point r. It is convenient to use dimensionless variables:
ψ ≡ eΨ/T for the potential and z ≡ x/λ for the length scale where x is the perpen-
dicular distance from the surface into the solvent and λ is the Gouy-Chapman length
which will be determined later. In terms of these variables, the Poisson-Boltzmann
equation is

d2ψ

dz2
= −4πl[ρ0e

−ψ − σ0δ(z)] (6.5)

with the Bjerrum length l given by l = e2/(εT ) where e is the electronic charge, ε is
the dielectric constant of the solvent, and T is the temperature in energy units. This
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second-order nonlinear differential equation is solved by the counterion distribution

ρ(z) = [2πl(z + λ)2]−1. (6.6)

Note that the counterions are effectively localized within a distance λ from the
charged surface. Indeed, it is useful to consider the counterions as an ideal gas
confined to a sheath of thickness of the order of the Gouy-Chapman length.
The Gouy-Chapman length can be easily derived by imposing the charge neutrality
constraint, yielding

λ =
1

σ0πl
. (6.7)

Using eq. (6.6), the electrostatic potential can be written as

ψ(z) = 2 ln[(z + λ)
√

2πlρ0]. (6.8)

Note that the electric field which is given by E(r) = −∇ψ(r) decays to zero as
z →∞.

6.2.2 Free energy around a single interface

In this section, we calculate the free energy of a system consisting of fixed charges and
mobile counterions of number densities ρf(r) and ρ(r), respectively. The derivation
is quite general and does not restrict to a special spatial geometry. Assuming the
counterions as a dilute, ideal gas, the free energy can be written as

F

T
=

∫
dr ρ(r)[ln[ρ(r)v0]− 1] +

e2

2ε

∫
dr dr′

ρ(r)ρ(r′)
|r− r′|

−e
2

ε

∫
dr dr′

ρ(r)ρf(r
′)

|r− r′| +
e2

2ε

∫
dr dr′

ρf(r)ρf(r
′)

|r− r′| , (6.9)

with v0 being the volume per counterion. The first terms in eq. (6.9) accounts for
the entropic countribution of the counterions, the second term is repulsion among
the counterions, the third is the attraction between counterions and fixed charges,
and the last terms is the repulsion of the fixed charges.
Charge conservation implies

∫
dr ρ(r) = −

∫
dr ρf(r). (6.10)

For convenience, we define the potentials

ψ(r) =

∫
dr′

ρ(r′)
|r− r′| , (6.11)

ψf(r) =

∫
dr′

ρf(r
′)

|r− r′| . (6.12)
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Now, we minimze the grand potential G under the constraint of charge conservation
with respect to ρ(r)

G

T
=
F

T
− µ

∫
drρ(r), (6.13)

yielding

ρ(r) = ρ0 exp(−lψt) (6.14)

where ρ0 ≡ eµ/v0 and ψt ≡ ψ + ψf . We substitute this result, eq. (6.14), back into
the free energy, eq. (6.9), and we obtain1

F

T
=

1

2

∫
dr[ρ(r) + ρf(r)][ln(ρ(r)v0)− 1]. (6.15)

Now, we are able to calculate the free energy of a charged interface in equilibrium
with Boltzmann distributed counterions. The interface may have the charge density
ρf = σ0δ(z) and the counterion distribution ρ(r) is given by eq. (6.6) as derived in
the former section. Plugging these two equations into the free energy expression,
eq. (6.15), we obtain2

F

T
=
d2σ0

2

[
ln

[π
2
lσ2

0v0

]
− 2

]
, (6.16)

where d is a unit length. The last equation describes the free energy of a charged
surface with surrounding counterions which obey a Boltzmann distribution. The
free energy contains the electrostatic contributions among counterions themselves
and the interaction between the surface and the counterions. The entropy of the
counterions is assumed to be that of an ideal gas.

6.3 Theory

6.3.1 Neutral polymers

In order to elucidate the role of polymer elasticity, we briefly review the situation
of neutral polymers end-grafted to a planar surface. The geometry is sketched in
fig. 6.2. For simplicity, we consider monodisperse polymers of degree of polymeriza-
tion N . They are end-grafted to a planar surface with a fixed mean grafting density
d−2. The solvent quality is described in terms of the Flory-Huggins free energy per
unit volume [127]

Fa3

T
=

1

2
τφ2

m +
1

6
wφ3

m + · · · (6.17)

1For a detailed calculation see Appendix D.
2For a detailed calculation see Appendix E.
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Figure 6.2: Neutral polymer chains end-grafted to a planar surface with grafting
spacing d and brush thickness L

where a denotes the monomer dimension; τ is the dimensionless excluded-volume
parameter, which is positive for good solvents and negative for poor solvents; φm is
the polymer volume fraction; and w is the third virial coefficient which is typically
positive and of order unity. It is related to the chain flexibility and may thus
be varied by chemical modification of the polymer (change of side groups etc.).
We explicitly emphasize the missing of the linear terms in the virial expansion in
eq. (6.17). This term is related to the translational entropy of the chains which are
end-grafted in our case.
The chains are extended in the form of a brush of thickness L. They are balanced
by the excluded volume interaction trying to swell the chain and their elasticity
tending to shrink their extent. If a Gaussian polymer has an end-to-end distance
L, it stores the elastic energy (1/2)kL. The constant k assumes the role of a spring
constant, and is given for a random walk chain by k = T/(Na2). Apparently, this
contribution tries to decrease the thickness of the polymer brush. In mean-field
theory, the osmotic pressure is given by [128]

P = φm

(
dF

dφm

)
− F =

T

a3

(
1

2
τφ2

m +
1

3
wφ3

m + · · ·
)

(6.18)

Provided that all of the grafted chains are stretched to an identical length L, static
equilibrium is governed by

P =
kL

d2
(6.19)
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Figure 6.3: End-grafted PE chains in the presence of multivalent counterions with
mean grafting spacing d and brush thickness L. The interface bears a surface charge
σ0 and the free counterions can move freely within the Gouy-Chapman layer of length
λ.

If the monomers are uniformly distributed through the brush region, φm = Nma
3/(Ld2),

several regimes can be distinguished depending on the magnitude of τ relative to w
and the entropic elasticity.

6.3.2 Polyelectrolytes

Now, we turn to the case of PE chains end-grafted to a planar surface. When
immersed in a polar solvent, e.g. water, the ionizable groups dissociate into the sol-
vent, leaving behind a charged polymer in coexistence with its dissolved counterions.
The counterions are partitioned into three different states: Nt trapped counterions:
these are confined to move freely within the brush. Nc condensed counterions: they
are recombined along the polymer chain. Finally, Nf free counterions: these are
allowed to explore the whole region outside the brush. They are located in the re-
gion L < z < L + λ. The numbers of the three different counterion species cannot
independently varied, in fact they obey the overall charge neutrality constraint

Nm = zNc + zNt + zNf (6.20)

with z denoting the valence of the counterions.
Each monomer unit is assumed to bear a ionizable group, therefore rendering the
system to the highly charged regime. The monomer units are strictly monovalent
while the counterions are allowed to be multivalent. The geometry is depicted in



6.3. Theory 85

fig. 6.3 for counterions of valency two. Recombined multivalent counterions can
attract the oppositely charged monomer units of another chain. This occurrence is
referred to as bridging effect.
The free energy of that system can be written in mean-field theory as:

Fa3

T
=

1

2
τφ2

m +
1

6
wφ3

m +
1

2

L

Nma2

a3

Ld2
+ φt(ln[φt]− 1)

+

(
φm

z
− φc

)
ln

[
φm

z
− φc

φm

]
+ φc ln

[
φc

φm

]
− εφc

−gφc(φm − φc) +
Nfa

3

2d2

(
ln

[
π

2
N2

f

l

d

(a
d

)3
]
− 2

)
. (6.21)

We recover the second and third virial terms as well as the elasticity term as the
first three contribution to the free energy in eq. (6.21). These terms have been ex-
tensively discussed in sec. 6.3.1 in the context of neutral polymer chains.
The following three terms represent the entropic contributions stemming from the
different species of counterions. Assuming that the trapped and condensed counte-
rions are uniformly distributed over the brush region, their volume fraction can be
written as φt = Nta

3/(Ld2) and φc = Nca
3/(Ld2), respectively. Since the trapped

counterions can move freely within the brush, an ideal entropic contribution can
be assigned to them. The terms φc ln [φc/φm] and (φm/z − φc) ln [φm/z − φc/φm]
are associated to the entropy of the counterions in the bound and unbound state,
respectively.
The last three terms in eq. (6.21) account for the electrostatic interaction. The exact
treatment of the Coulomb interaction between condensed counterions and monomers
is an intricate challenge and analytically as well as numerically difficult to handle.
Therefore, we address this task in a simple mean-field approach by the term −εφc for
accounting for an energy win by recombination. The value of ε governs the degree of
the interaction between counterions and monomers. Large ε-values favor a stronger
binding of the counterions to the monomers and lead to an earlier collapsed state
due to the resulting lack of repulsion between the monomer units.
In the presence of multivalent counterions a bridging between the different chains
may occur. This effect leads to a further decrease of the free energy and is analyt-
ically incorporated by the mean-field term −gφc(φm − φc) with g being a constant
controlling the strength of the bridging. A strong bridging, i.e., large g, should lead
to an earlier collapse compared to lower g-values.
The last term in eq. (6.21) represents the electrostatic and entropic contribution
of the free counterions. They discern the interior of the brush region as a charged
surface with the dividing plane at z = L and the charge density σ = Nf/d

2. Using
the results of sec. 6.2.1 and sec. 6.2.2, we get the specific form of the last term in
eq. (6.21).
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Using the introduced step-function profiles of the counterions confined to the brush
and inserting the charge neutrality constraint, the free energy γ per unit area be-
comes

γd2

T
=

1

2
τN2

m

a

L

(a
d

)2

+
1

6
wN3

m

( a
L

)2 (a
d

)4

+
1

2Nm

(
L

a

)2

+Nt

(
ln

[
Nt

a

L

(a
d

)2
]
− 1

)
+Nc ln

[
Nc

Nm

]

+

(
Nm

z
−Nc

)
ln

[
1

z
− Nc

Nm

]
− εNc − gNc(1−Nc)

a

L

(a
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)2

+
Nm/z −Nc −Nt

2

(
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Nm

z
−Nc −Nt

)2
π

2

(a
d

)3 l

d

]
− 2

)
.(6.22)

Minimizing eq. (6.22) with respect to the number of trapped counterions yields

Nt =

(
Nm

z
−Nc

)
/

(
1 +

√
d

l

2

π

a

d

a

L

)
. (6.23)

This result can be plugged in turn in the free energy expression eq. (6.22) to eliminate
Nt. The free energy has now been cast into a numerically amenable form depending
only on two unkowns, namely the number of condensed counterions Nc and the chain
length L.

6.4 Tools: simulated annealing

The task of multidimensional minimization poses an intricate and complex problem.
If there is no initial guess close to the solution available, every conventional, downhill
algorithm may get stuck in a local minimum and it is not capable of finding the
global one. In this section, we review the basic principles of the simulated annealing
(SA) algorithm. It avoids getting trapped in a local minimum by allowing once in
a while uphill steps as well. Rather than presenting a detailed mathematical and
numerical analysis, we exhibit its underlying principles by establishing a connection
to statistical physics and refer the reader to the literature [122–124] for a more
rigorous analysis.
Annealing is the physical process of heating up a solid until it melts, followed by
cooling it down until it crystallizes into a state with a perfect lattice. Practice shows
that the cooling must be done carefully in order not to get trapped in locally optimal
structures with crystal imperfections.
The optimization problem can be understood as a many-body system which ground
state can be found by the Metropolis algorithm [125] that can be used to provide an
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efficient simulation of a collection of atoms in equilibrium at a given temperature.
In each step of this algorithm, an atom is given a random displacement and the
resulting change in the free energy is computed. If the energy after the displacement
is lower than the energy before, the displacement is accepted and the configuration
with the displaced atom is the starting point for the next step. If the energy is
higher after the displacement, the new configuration will be accepted with a certain
probability dictated by the Boltzmann weight. By repeating these basic steps and
slowly decreasing the temperature, the system gravitates towards its ground state
of lowest energy.
In the realm of combinatorial optimization, the function to be minimized, usually
called the cost function or objective function, corresponds to the energy. Using
the cost function instead of the energy and defining a configuration by a set of
its parameters, a population of configurations can be easily generated at a fixed
temperature. In that case the temperature serves as a control parameter and is
measured in units of the cost function. The minimization proceeds as follows: the
system is ‘melted’ at a high effective temperature and then carefully ‘cooled down’.
At each temperature equilibrium is established by the procedure described above for
the many-body system. The possibilty of uphill steps with a Boltzmann probability
avoids the cost function to get stuck in a local minimum. Note that the lower the
temperature of the sytem is, the less likely is any significant uphill step. Finally,
the function reaches its ground state. Precondition for finding the global minimum
is a sufficiently slow cooling process. It can be shown that the algorithm finds
asymptotically the global minimum. Due to finite computional time, there is no
guarantee that the algorithm finally succeeds, but a sufficently slow cooling has
been proven to furnish good results.
We have used the SA algorithm to minimize the free energy, eq. (6.22). To ensure
that we did not miss the global minimum due to the asymptotic constraint, we have
plotted the free energy for a couple of test parameters. No more than two minima
could be observed in these cases. Since these both minima are of almost identical
magnitude close to the phase transition, we computed the free energy for both in
that region and directly compared them to each other.

6.5 Results and Discussion

In this section, we discuss the numerical results of the theory presented in the
previous paragraph. We consider PE chains with a fixed charging fraction f = 1.
They contain N = 1000 monomeric units each and they are end-grafted to a planar
surface with chain concentration d−2 with d = 10a and a being the typical monomer
extent. The charge of the PE chains is neutralized by counterions which we allow
to have a fixed valency z. We assume a θ-solvent, i.e., the short-ranged excluded-
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Figure 6.4: Scaled chain length L/a versus the parameter ε (a) for valency z = 2
and (b) for valency z = 3 for different values of the bridging parameter g.

volume repulsion between the monomers is not taken into account.
We minimize the free energy, eq. (6.22), with respect to the chain length L and the
number of condensed counterions. The state with the lowest free energy affirms the
physically stable one with an associated chain length and counterion distribution.
The results for counterion valencies z = 2 and z = 3 are shown in fig. 6.4. We show
the scaled chain length L/a in dependence of parameter ε controlling the strength
of the recombination between monomers and counterions. These results have been
calculated for different g-values controlling the bridging effect. The bridging effect
does not occur for g = 0 and becomes stronger for increasing g.
In the absence of condensed counterions, i.e., ε = 0, the chains are stretched into a
rod-like shape. In that case all monomers are charged and adjacent monomeric units
try to keep away from each other as far as possible resulting in an extended state.
But only for the monovalent situation the chain length is given by its maximum
value L ' Na. For multivalent counterions, the osmotic pressure of the counterions
is lower and therefore the chains are less stretched. We provide a simple scaling
argument for that situation. The elasticity force is given by

fel =
L

Nma2d2
, (6.24)

and the osmotic pressure is

fos =
Nm

zd2L
. (6.25)

The balance of these both terms leads to:

L ' Na√
z
, (6.26)
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Figure 6.5: Number of condensed counterions versus the parameter ε (a) for valency
z = 2 and (b) for valency z = 3 for different values of the bridging parameter g.

resulting in a shrinking of the chain length with increasing counterion valency.
Indeed, the scaling approximation for the chain length furnishes L/a ' 707 and
L/a ' 577 for z = 2 and z = 3, respectively. These results are in perfect agree-
ment the numerical findings in fig. 6.4(a) and fig. 6.4(b). The conformation of the
PE chains is mainly determined by the competition between the counterion entropy
and the electrostatic interaction between counterions and monomers. The system
tries to preserve local charge neutrality at the expense of mixing of counterions which
is increased if they can explore larger volumes. A stronger interaction between the
opposite charges, i.e., a larger ε value, leads to a larger number of condensed coun-
terions as can be seen in fig. 6.5. The number of condensed counterions is plotted
versus ε for two different valencies. For non-zero g-values the curve jumps disconti-
nously at exactly the same ε as it does in the plot of the chain length. Finally, the
number of condensed counterions saturates at Nm/z.
By increasing the number of condensed counterions the chains becomes less charged
and their length does shrink. Just for the case without bridging, i.e., g = 0, the
brush collapses in a continuous way. Without bridging the brush does not totally
collapse, but rather levels off to a finite, non-zero value. This value is dictated by
the balance of the third virial term,

F3rd

T
=

1

6
w
N3

m

d6L2
, (6.27)

and the elasticity energy of the chain,

Fel

T
=

L2

Nma2d2
, (6.28)

resulting in:

L = w4Nm

√
a

d
. (6.29)
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Substituting the corresponding numerical values into the latter equation amounts
to a chain length of order 102 which is in agreement with the values in fig. 6.4.
In the presence of bridging, the collapse occurs discontinuously reminiscent of a
first-order phase transition. The brush length jumps abruptly to a lower value. Re-
combined multivalent counterions attract oppositely charged monomers enhancing
the shrinking of the chain length and finally leading to the collapse. We observe an
earlier brush collapse for increasing g, i.e., a stronger attraction between adjacent
chains. But the collapse appears nearly independent of the investigated valencies.

6.6 Conclusions

We have shown in this chapter that for highly charged PE chains end-grafted to a
planar surface a chain collapse is observed in the presence of multivalent counterions.
The phase transition is first-order and in agreement with previous results [47].



Chapter 7

Summary and Outlook

The thesis at hand contributes to elucidate the role of magnetic and electrostatic in-
teractions in the realm of soft condensed matter. We specifically focused on colloidal
particles and polyelectrolyte chains. Thereby, we direct our attention to three dif-
ferent systems: superparamagnetic particles in two dimensions, colloids with asym-
metric charge distributions, and polyelectrolyte chains end-grafted to a planar wall.

The main focus of this works lies on the investigation of mixtures of two-dimensional
superparamagnetic particles exposed to an external magnetic field directed perpen-
dicular to the plane [130]. We have analyzed the fluid structure by liquid integral
equation theory and Brownian dynamics simulation. We observed a clustering of
the smaller particles in the voids of the bigger ones. We were able to characterize the
pattern formation by tools from integral geometry, namely the Euler characteristic.
The clusters turned out to be rather diffuse and possess a percolating sponge-like
topology with a significant number of holes. The clustering behavior can be traced
back to the non-additivity of the system, i.e., the cross-interaction is less repul-
sive than the sum of the two direct interactions. We could confront our theoretical
findings to direct space experimental data and we found a perfect agreement with
them [49].

The one-component system of the superparamagnetic particles has been studied un-
der the influence of a tilted magnetic field [131]. The particles align themselves into
the direction of the in-plane component of the magnetic field. The local ordering
of the particles becomes more inhomogeneous with increasing tilt angle. As a di-
rect extension of this work, the two-component case with tilted magnetic field and
the consequential pattern formation might be investigated. More generally for this
project, it would be interesting to study the viscosity and the propagation of light
in partially clustered structures in order to extract their specific material proper-
ties. It is further tempting to shock-freeze the clustered structure and use it as a
bicontinuous device of controlled, random nano-porosity.

The second part of this work deals with colloidal particles of asymmetric charge

91



92 7. SUMMARY AND OUTLOOK

pattern [132]. We were able to extend the classic DLVO theory strictly holding
for a spherosymmetric charge distribution to the case of a single colloid with an
elementary charge displaced from its center. Solving linearized Poisson-Boltzmann
theory, we have derived analytical expressions for the electrostatic potential around
the particle. Special charge arrangements have been considered explicitly as repre-
sentative examples. Due to the superposition principles, our results may be applied
to any distribution of discrete charges within the colloid. The next step will be to
calculate the microion-averaged, effective pair potential between two proteins carry-
ing identical charge patterns, as a function of the distance between the two proteins,
and the mutual orientation of their charge patterns. The fulfillment of this task will
be the subject of future work.
The third project revolves around polyelectrolyte chains end-grafted to a planar
surface in the presence of multivalent counterions [133]. We explicitly address to
the attraction of neighboring chains mediated by the rebinding of the multivalent
counterions while treating the electrostatics in mean-field Poisson-Boltzmann theory.
The free energy consisting of polymeric, entropic and electrostatic contributions is
minimized in order to characterize the state of the system. We find a transition from
the extended to the collapsed state reminiscent of a first-order phase transition. Our
results are expected to be relevant to ongoing experimental studies of PE brushes.
In the future, we will extend our framework to the case of two opposing surfaces
with end-grafted PE chains. An approach similar to this work is applicable and may
lead to further insight of colloid stabilization by end-grafted PE chains.



Appendix A

Two-dimensional Fourier
Transform

In this appendix, we derive an algorithm, following Caillol et al. [84], to calculate
the Fourier transform (FT) in two dimensions accurately and fast. In contrast to
the three-dimensional case, the occurring integrals cannot easily be reduced to a
simple one-dimensional integral. We define the 2d FT in polar coordinates for a
radial symmetric function f(r) as follows

f̃(k) =

∫ 2π

0

dϕ

∫ ∞

0

dr r exp[ikr cos(ϕ)]f(r). (A.1)

Taking into account the following definition of the Bessel transform of zero order:

J0(z) =
1

2π

∫ 2π

0

dφ exp(±iz cosϕ), (A.2)

we can rewrite equation (A.1) by using the relation (A.2):

f̃(k) = 2π

∫ ∞

0

dr rJ0(kr)f(r), (A.3)

which is called the Hankel transform. The task of calculating the 2d Fourier trans-
form now has formally reduced to the calculation of the Hankel transform.
First, we introduce new variables which are connected to the old ones by the follow-
ing relation

r = exp(ρ)

k = exp(K) (A.4)

Passing over to the new coordinates, equation (A.3) reads as:
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f̃(exp[K]) = exp(−K)

∫ ∞

−∞
dρ exp(ρ)f(exp[ρ]) exp(ρ+K)J0(exp[ρ+K]). (A.5)

The right-hand side of equation (A.5) can be rewritten as a convolution type integral:

f̃(exp[K]) = 4π exp(−K)Re

∫ ∞

0

dt Φ(t)M(t) exp(iKt), (A.6)

where

Φ(t) =
1

2π

∫ ∞

−∞
dρ exp(ρ)f(exp[ρ]) exp(itρ) (A.7)

and

M(t) =
1

2π

∫ ∞

−∞
dρ exp(ρ)J0(exp[ρ]) exp(−itρ). (A.8)

The latter integral M(t) can be calculated analytically, see [84].

We split the integral Φ(t) into two parts and shift the boundaries of the second part:

Φ(t) =
1

2π

∫ ρm

−∞
dρ exp(ρ)f(exp[ρ]) exp(itρ) +

1

2π
exp(itρm)

∫ ∞

0

dρ exp(ρ+ ρm)f(exp[ρ+ ρm]) exp(itρ). (A.9)

For |ρm| sufficiently large (ρm < 0), we can assume that f is constant for ρ < ρm.
Therefore, the first integral on the the right-hand side of equation (A.9), Φ1(t), can
be calculated analytically, yielding:

Φ1(t) =
1

2π
exp(ρm)f(exp[ρm])

exp(itρm)

1 + it
. (A.10)

The second integral on the right-hand side of equation (A.9) can be calculated by a
fast Fourier transform (FFT) technique.
In conclusion, we could rewrite the Hankel transform eq. (A.1) by means of a simple
coordinate transform (eq. (A.4)) into a convolution type integral eq. (A.5). Trans-
forming to Fourier space, it decomposes into the product of two integrals, eqs. (A.7)
and (A.8). One of them can be calculated analytically, whereas the other can be
calculated by a FFT. Going back to real space by the inverse FFT yields the desired
Hankel transform.



Appendix B

The Euler Characteristic for
Quadratic Lattices

Consider a quadratic lattice (lattice constant l) for which some elementary plaque-
ttes (pixels, i.e., squares of edge length l) are occupied and some are empty. The
resulting spatial pattern is represented by the configuration [u] = {u(i, j)} of the
main text, with u(i, j) = 0 (1) denoting a full (empty) site. In principle, the result-
ing Euler characteristic of the pattern can be calculated by employing the property
of sub-additivity, eq. (3.14). There are three types of closed sets participating in
the pattern, coded as follows: 2-cells (square plaquettes), 1-cells (edges of length l)
and 0-cells (points). Due to the discrete geometry, 2-cells can only intersect on 1-
or 0-cells and 1-cells only on 0-cells. We denote the Euler characteristic of a D-cell,
D ≤ d = 2, (D is the topological dimension of the cell) as XD. Evidently, it holds
XD = 1 for all three cells described above.

In calculating X[u] via eq. (3.14), track of all intersections must be kept. In order
to simplify the calculation and completely avoid intersections, we now introduce
the open cell C̆ of any closed cell C, defined as C̆ = C \ ∂C, where ∂C is the
boundary of C. For example, every closed square can be figured as the union of the
disjoint collection of its interior, its open edges and its point vertices, whereby there
is no distinction between open and close points. The Euler characteristic of an open
convex cell X̆D is given by [78]:

X̆D = (−1)D. (B.1)

Thus, X̆2 = 1 for an open square, X̆1 = −1 for an open edge and X̆0 = 1 for the
vertices. Since a closed square is the disjoint union of the open interior, the four
open edges and the four vertices, the above considerations together with eq. (3.14)
consistently give

X2 = 1 + 4× (−1) + 4× 1 = 1, (B.2)

95



96 B. THE EULER CHARACTERISTIC FOR QUADRATIC LATTICES

whereas for a closed line segment (edge), which can be seen as the union of the open
segment and the two endpoints, we again consistently obtain

X1 = −1 + 2× 1 = 1. (B.3)

Evidently, the computational advantage of working with open sets on a discrete
lattice is that all intersections vanish and the sub-additivity of eq. (3.14) becomes
strict additivity. Let, therefore, ND[u] be the number of open D-cells present in any
configuration [u]. Eqs. (3.14) and (B.1) above imply that the Euler characteristic
X[u] is a linear superposition:

X[u] =
2∑

D=0

X̆DND[u] = N0[u]−N1[u] +N2[u]. (B.4)

It is straightforward to show that the quantities ND[u] are given by the expressions:

N2[u] =
∑
i

∑
j

[1− u(i, j)] ; (B.5)

N1[u] =
∑
i

∑
j

{2− u(i, j) [u(i+ 1, j) + u(i, j + 1)]} ; (B.6)

N0[u] =
∑
i

∑
j

[1− u(i, j)u(i+ 1, j)u(i, j + 1)u(i+ 1, j + 1)] . (B.7)

Eq. (3.16) of the main text immediately follows from eqs. (B.4)-(B.7) above.



Appendix C

Hankel Transform of the
Expansion Coefficient

In the this appendix, we show a strict derivation of the interconnection between
the coefficients of the series expansion in real and reciprocal space. Performing the
Fourier transform of the direct correlation function c(r) leads to the following lines:

c̃(k) =

∫
d2r c(r) exp(ikr) (C.1)

=

∫
d2r

∑
m

cm(r) exp(−imθR) exp[ikr cos(θR − θK)]

=
∑
m

∫ ∞

0

drrcm(r)

∫ 2π

0

dθR exp[−im(θR − θK)] exp[ikr cos(θR − θK)] exp(−imθK)

=
∑
m

exp(−imθK)

∫ ∞

0

dr rcm(r)

∫ 2π

0

dθR exp[−im(θR − θK)] exp[ikr cos(θR − θK)]

︸ ︷︷ ︸
I(kr)

.

We put x ≡ θR − θK , and substitute

I(kr) =

∫ 2π−θK

−θK

dx exp(−imx) exp(ikr cosx), (C.2)

using the 2π-periodicity of the integrand, we write

I(kr) =

∫ 2π

0

dx exp(−imx) exp(ikr cosx) ≡ 2πimJm(kr). (C.3)

Then, we can write the Fourier transform as:
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c̃(k) =
∑
m

exp(−imθK)2πim
∫ ∞

0

drrcm(r)Jm(kr) (C.4)

=
∑
m

c̃m(k) exp(−imθK)

with

c̃m(k) = 2πim
∫ ∞

0

drrcm(r)Jm(kr). (C.5)

Similarly, we obtain

cm(r) = (2π)−1im
∫ ∞

0

dkkc̃m(k)Jm(kr). (C.6)

The coefficients in real and reciprocal space can be transformed into each other by
a simple Hankel transform of 0th-order.



Appendix D

Free Energy Calculation - Part I

Here, we explicitly show the calculation for substituting eq. (6.14) into eq. (6.9):

F

T
=

∫
drρ(r)[ln[ρ(r)v0]− 1] +

1

2
ρ(r)lψ(r) + ρ(r)lψf(r)− 1

2
ρf(r)lψf(r)

=

∫
drρ(r)[ln[ρ(r)v0]− 1] +

1

2
ρ(r)l[ψ(r) + ψf(r)]− 1

2
ρf(r)lψ(r)

−1

2
ρf(r)lψf(r)

=

∫
drρ(r)[ln[ρ(r)v0]− 1]− 1

2
ρ(r) ln

[
ρ(r)

ρ0

]
− 1

2
ρf(r)l[ψ(r) + ψf(r)]

=

∫
drρ(r)[ln[ρ(r)v0]− 1]− 1

2
ρ(r) ln[ρ(r)v0] +

1

2
ρ(r) ln[eµ]

+
1

2
ρf(r) ln

[
ρ(r)

ρ0

]

=

∫
drρ(r)[ln[ρ(r)v0]− 1]− 1

2
ρ(r) ln[ρ(r)v0] +

1

2
ρ(r)µ

+
1

2
ρf(r) ln

[
ρ(r)

ρ0

]
− 1

2
ρf(r)µ

=
1

2

∫
dr[ρ(r) + ρf(r)][ln[ρ(r)v0]− 1],

where we have used in the last two lines the constraint of charge neutrality, eq. (6.10).
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Appendix E

Free Energy Calculation - Part II

We explicitly plug the charge density ρf = σ0δ(z) of the interface and the counterion
distribution eq. (6.6) into the free energy, eq. (6.15):

F

T
=

1

2

∫
drρf(r)[ln[ρ(r)v0]− 1]

︸ ︷︷ ︸
FI/T

+
1

2

∫
drρ(r)[ln[ρ(r)v0]− 1]

︸ ︷︷ ︸
FII/T

We calculate the first part

FI

T
=

1

2

∫
drρf(r)[ln[ρ(r)v0]− 1]

=
d2

2

∫ ∞

0

dzσ0δ(z)

[
ln

[
1

2πl

v0

(z + λ)2

]
− 1

]

=
d2

2

(
σ0

2
ln

[
1

2πl

v0

λ2

]
− σ0

2

)

=
d2

4

(
ln

[π
2
lv0σ

2
0

]
− 1

)

The calculation of the second part is straightforward, too

FII

T
=

1

2

∫
drρ(r)[ln[ρ(r)v0]− 1]

=
d2

2

∫ ∞

0

dz
1

2πl

1

(z + λ)2

[
ln

[
1

2πl

v0

(z + λ)2

]
− 1

]
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We substitute x =
√

2πl(z + λ)

FII

T
=

d2

2

∫ ∞

√
2πlλ

dz
1√
2πl

1

x2

[
ln

[
1

x2

]
− 1

]

=
d2

2

1√
2πl

[
3

x
− ln

[
v0
x2

]

x

]∞

√
2πlλ

= −d
2

2

1√
2πl

[
3√
2πlλ

− ln
[

v0
2πlλ2

]
√

2πlλ

]

=
d2

2

1√
2πl

[
πlσ0 ln

[π
2
lσ2

0

]
− 3πlσ0

]

=
d2

4
σ0

[
ln

[π
2
lσ2

0

]
− 3

]

We obtain the total free energy by combining the both parts

F

T
=
FI

T
+
FII

T
=
d2

4
σ0

[
2 ln

[π
2
lσ2

0v0

]
− 4

]

⇒ F

T
=
d2

2
σ0

[
ln

[π
2
lσ2

0v0

]
− 2

]
.



Bibliography

[1] R. J. Hunter, Foundations of Colloid Science, vol.I, (Clarendon Press, Oxford,
1986).

[2] S. A. Safran and N. A. Clark, eds., Physics of Complex and Supermolecular
Fluids (Wiley Interscience, New York, 1987).

[3] W. B. Russel, D. A. Saville, and W. R. Schowalter, Colloidal Dispersions
(Cambridge University Press, Cambridge, 1989).
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[59] H. Löwen, J. Phys.: Condensed Matter 13, R415 (2001).

[60] V. A. Froltsov, C. N. Likos, and H. Löwen, J. Phys.: Condens. Matter 16,
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bei keiner anderen Institution eingereicht. Ich habe bisher keine erfolglosen Promo-
tionsversuche unternommen.

Düsseldorf, den 01.12.2006

(Norman Hoffmann)


