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Chapter 1

Introduction

The core of computer science is to find efficient ways to solve various prob-
lems with the help of computers. These problems arise in highly diverse
fields of mathematics, computer science, physics, and so on. From a prac-
tical point of view, the challenge of computer science is to fit complex real-
world objects into suitable representations for the computer, so that the
data can then be processed in an automated way. In contrast, one mission
of theoretical computer science—and in particular of complexity theory—is
to categorize each single problem according to its structural properties, i.e.,
to determine how hard it is to actually come up with a valid solution. Here,
we will focus on the second question and examine the hardness of interesting
graph problems of practical importance.

The classification of problems according to their computational com-
plexity is done via complexity classes. Each such class is defined by two
major entities. First, we need an algorithmic model which processes the in-
put data for the problem in a well-defined way. Based on this device, we can
then define a complexity measure; problems hard to solve will use up more
of this resource than their easy counterparts. Each complexity class thus
defined contains all problems which can be solved by this machine within
the limits of a specified bound on the complexity measure.

The most important resource is time.1 How long will it take until our
algorithmic device is finished with processing the input data? Another im-
portant question is what time bound will be called “efficient,” or in other
words, what time period from the start of the computation until the output
of a solution will be acceptable for us. During the 1960’s, Cobham [Cob64]
and Edmonds [Edm65] came up with the idea to call all problems efficiently

1After all, time equals money and money is important.

1



2 CHAPTER 1. INTRODUCTION

solvable for which an algorithm produces a valid solution within polynomial
time relative to the size of the input. The complexity class P was born,
and with the work of Hartmanis and Stearns [HS65], the formal notions
of complexity classes and measures were introduced. The multitape Tur-
ing machine was chosen as the algorithmic device, combining the simple,
elegant, and beautiful presentation of computation with robustness when
compared to other models. One particularly important complexity measure
defined was the computation time of the Turing machine relative to the
size of the input. Adapting the diagonalization techniques used by Turing,
Gödel, Church, and others in recursive function theory (in particular, in
order to prove the undecidability of the Halting Problem [Tur36] and other
problems), Hartmanis and Stearns established the first true hierarchy of
complexity classes [HS65]. This formal framework initiated a rich research
stream on structural complexity theory, the study of the relationships be-
tween different complexity classes. For an overview of the exciting starting
years of computational complexity and a comprehensive list of references to
the first results in structural complexity, see [Ste90].

Due to the practical importance of the class P, it was attempted to prove
membership in this fundamental class for various computational problems.
Unfortunately, many interesting problems of practical importance do not
seem to lie within the class P; their complex structure rendered all efforts
to design efficient algorithms for them unsuccessful.2 This dissatisfying situ-
ation triggered the research with the focus on a complexity class beyond P:
the class of problems solvable in nondeterministic polynomial time, NP.
Many of the apparantly infeasible problems are contained in NP. They all
share the characteristic that, given a potential solution to the problem, it
can be verified in polynomial time whether this guessed solution indeed is
a valid solution. A small example illustrates this concept.

Suppose we are given graph G = (V, E), consisting of a set of vertices V
and a set of edges E, where each edge connects two vertices of V . The task
to legally color the vertices of G is a well-known and thoroughly studied
graph-theoretical problem. A coloring is a mapping from the vertices to the
positive integers, which represent distinct colors. A coloring is said to be
legal if no two vertices sharing an edge are of the same color. In Figure 1.1,
a legal coloring of a graph with five vertices is shown.

In the formal definition of the coloring problem, the input consists of a
graph G and a positive integer k, and we need to determine if G can legally

2Garey and Johnson later called these problems “intractable” [GJ79].
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Figure 1.1: An example for the coloring problem

be colored using at most k colors.3 It is easy to see that the colorability
problem lies within the class NP. Given G and a coloring of at most k
colors, it can efficiently be verified that any two vertices sharing an edge are
mapped to different colors.

Clearly, P ⊆ NP. This evidently leads to the question of whether there

are sets that belong to NP, but not to P. This is the famous P
?
= NP

question that has fascinated researchers all over the world for over 30 years.
During the early 1970’s, it was discovered that one could classify the hardest
sets of a complexity class by the concept of reducibility. Given two sets A
and B, a polynomial-time many-one reduction f is a transformation of
all inputs x ∈ Σ∗ such that x ∈ A if and only if f(x) ∈ B. If such
a reduction between A and B exists, we write A≤p

m B. Neglecting the
polynomial factor induced by reduction f , the set A is not harder to decide
than the set B, since any algorithm for B straightforwardly yields a method
to decide problem A in essentially the same time. If, for any complexity
class C, C ≤p

m B for all sets C ∈ C, we call the set B “hard” (more precisely,
≤p

m-hard) for the class C. If simultaneously B ∈ C, we call the set B
“complete” (more precisely, ≤p

m-complete) for C. Relating these notions to

the P
?
= NP question, if P 6= NP then no NP-complete problem can be

solved in polynomial time. On the other hand, if there is a (deterministic)

3We are concerned only with the decision version of the computational problem instead
of the corresponding search variant. Note that for an NP-complete problem, the search
version can efficiently be reduced to the decision version.
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polynomial-time algorithm for any NP-complete problem, then P = NP.

A major breakthrough came with the discovery of the first natural NP-
complete problem by Cook [Coo71]. We note that an analogous result was
independently obtained by Levin [Lev73]. By a very clever proof, Cook
showed how to reduce an arbitrary set in NP to the satisfiability problem,
which asks for a given boolean formula ϕ if there exists a truth assign-
ment satisfying ϕ. Based on Cook’s results and the transitivity of the
polynomial-time many-one reducibility, Karp showed dozens of problems
NP-complete [Kar72]. Until today, literally thousands of problems have
been classified as being NP-complete, including the colorability problem for
all k ≥ 3, see [Kar72]; as mentioned above, for no such problem can there
exist a polynomial-time algorithm unless P = NP.

The domatic number problem is yet another important NP-complete
problem that apparantly cannot be solved efficiently. This problem is the
central topic of this thesis: Given any graph G = (V, E) and a positive
integer k, is it possible to partition the vertex set V into k vertex disjoint
dominating sets? A dominating set D is a subset D ⊆ V such that every
vertex v ∈ V − D has a neighbor in D. The decision problem k-DNP con-
tains all graphs that can be partitioned into k disjoint dominating sets, and
by δ(G) we denote the maximum number of vertex disjoint dominating sets
of graph G.

The domatic number problem has been studied in various contexts. It
was first defined by Cockayne and Hedetniemi [CH77]. In their paper, they
answer the question of how many edges are needed for a graph with n
vertices to contain d = δ(G) dominating sets. Their research was motivated
by the fact that the domatic number problem is related to the problem of
finding transmitting groups in a communication network. Suppose we are
given a network of n cities which are connected via communication channels.
A transmitting group is a subset of the cities that is able to communicate
with every city in the network. Thus, it is nothing other than a dominating
set, and the maximum number of disjoint transmitting groups is the domatic
number of the graph modelled by the n cities.

Another real-world scenario where the domatic number problem arises
is the allocation of resources in a computer network. Let a network of n
facilities capable of storing information be given, where an edge between
two nodes represents the fact that these nodes can share their information.
If every vertex can store only a limited amount of information, there is a
bound on the number of resources that can be supported. In the special
case that every facility can only store one single resource, the maximum
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number of resources that can be stored and accessed by every single node
of the network equals the domatic number of the graph.

These two scenarios show that the domatic number is of great practi-
cal importance. However, for all k ≥ 3 the set k-DNP was shown to be
NP-complete [GJ79]. An elegant reduction from the colorability problem
to 3-DNP is due to Kaplan and Shamir [KS94]. Their polynomial-time many-
one reduction will play a crucial role in Theorem 3.1, one of the main
results in this thesis. Kaplan and Shamir also prove that k-DNP is NP-
complete when restricted to certain families of perfect graphs, including
bipartite and chordal graphs. In contrast, k-DNP has been shown to be
solvable in polynomial time for any strongly chordal graph G, where it
holds that δ(G) = min-deg(G) + 1,4 see [Far84]. Another type of graphs
for which the domatic number problem is efficiently solvable are the proper
circular-arc graphs, whereas the problem remains NP-complete for general
circular-arc graphs [Bon85]. Another important result for the domatic num-
ber problem is due to Feige et al. [FHKS03]. They give an (1 + o(1)) lnn
approximation algorithm and additionally show that this might be the best
bound possible, since an (1 − ε) ln n approximation algorithm would imply
that NP ⊆ DTIME(nlog n log n).

Coming back to structural complexity theory and leaving the already
complex structure of NP and its sets, we advance to problems presumably
lying beyond this complexity class. In their pathbreaking paper [MS72],
Meyer and Stockmeyer analyzed natural problems with the intention to
show the amazing computational hardness that can occur apart from the
artificial sets that previously were constructed with diagonalization tech-
niques by Hartmanis and Stearns [HS65]. Intriguingly, Meyer and Stock-
meyer showed that any exponential-space computation can be reduced to
the problem of determining whether two regular expressions with squaring
are not equivalent. While this issue is appealing by itself, they also examined
the problem of identifying boolean formulas for which no shorter, equivalent
formula exists.5 Let this set of boolean formulas be called MINIMAL. Meyer
and Stockmeyer showed that the complement of this set, MINIMAL, can be
decided by an NP machine having access to an NP oracle,6 so it is contained

4The term min-deg(G) denotes the minimum degree of graph G, i.e., the minimum
number of neighbors taken over all vertices of G.

5Two boolean formulas ϕ1 and ϕ2 over the same variable set X = {x1, x2, . . . , xn}
are called equivalent if they evaluate to the same value for each of the 2n different truth
assignments.

6An informal description of an oracle Turing machine is given in Section 2.2.
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in NPNP. This suggests a hierarchy beyond NP that builds on nondetermin-
istic polynomial-time reductions [MS72], and the polynomial hierarchy PH
was born. As shown by Meyer and Stockmeyer [MS72], equality of any two
distinct levels of the polynomial hierarchy implies a collapse of the entire
hierarchy to this very level.

The exact complexity of MINIMAL is still unknown. Meyer and Stock-
meyer did not provide a lower bound in their original paper [MS72]. It was
later proven that MINIMAL is coNP-hard by E. Hemaspaandra and Wech-
sung [HW97], where the class coNP consists of all languages that are com-
plements of sets in NP. This is still the best lower bound known until today.
Consider a slight variant of the set MINIMAL: the set MEE-DNF contains all
pairs 〈ϕ, k〉 of boolean formulas ϕ in disjunctive normal form and positive
integers k such that there exists a boolean formula φ with at most k vari-
ables that is equivalent to ϕ. Umans showed that this problem is complete
for Σp

2, the second level of the polynomial hierarchy [Uma98]. Extending
the input to boolean formulas that need not to be in disjunctive normal
form, define the problem MEE, which is trivially contained in Σp

2. This set
was proven to be Θp

2-hard by E. Hemaspaandra and Wechsung, see [HW02].
The complexity class Θp

2 can be characterized in many ways. It was first
introduced by Papadimitriou and Zachos [PZ83] under the name PNP[O(log)],
the class of sets decidable by a deterministic polynomial-time Turing ma-
chine being allowed to make a logarithmic number (with respect to the input
size) of queries to an NP oracle set. One further characterization of Θp

2 is
given by the class PNP

|| , which contains all sets decidable by a deterministic

polynomial-time Turing machine being allowed to make parallel (i.e., non-
adaptive) queries to an NP oracle set. The result PNP[O(log)] = PNP

|| was

independently obtained by L. Hemaspaandra [Hem87, Hem89] and Köbler,
Schöning, and Wagner [KSW87].

Many problems have been proven to be complete for levels in the poly-
nomial hierarchy. Section 3.4 of this thesis proves variants of the domatic
number problem to be complete for PNP

|| . Wagner [Wag87] provided a set of
tools to show completeness for this complexity class and the classes of the
boolean hierarchy over NP, which will be discussed in the next paragraph.
For further information about complete problems in the higher levels of the
polynomial hierarchy, we refer to the two compendiums by Schaefer and
Umans [SU02a, SU02b].

Another complexity class (and, based on it, an entire hierarchy of classes)
was introduced to capture the complexity of problems that most likely can-
not be decided by any NP Turing machine. To start with an example, the
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set SAT-UNSAT contains all pairs (ϕ1, ϕ2) of boolean formulas such that ϕ1

is satisfiable, whereas ϕ2 is not. SAT-UNSAT is contained in the class DP,
which was introduced by Papadimitriou and Yannakakis [PY84] as the class
of differences of any two sets in NP.7 The class DP can alternatively be
formulated so as to contain all sets that are intersections of an NP and
a coNP set. Papadimitriou and Yannakakis identified many problems that
lie within DP, including critical and unique solution problems. Additionally
they accomplished to prove some of them complete for DP. They noted that
completeness proofs for DP—especially the ones for the critical problems—
are quite hard to achieve. More DP-completeness results were obtained by
Cai and Meyer for the minimal three uncolorability problem [CM87], and
by Papadimitriou and Wolfe for minimal unsatisfiability and the traveling
salesman facet problem [PW88].

When defining the complexity class DP in [PY84], it was evident to Pa-
padimitriou and Yannakakis that it lies between NP and PNP, the class of
sets decidable by a deterministic polynomial-time Turing machine having
access to an NP oracle set. The class PNP is the second level of the polyno-
mial hierarchy. Cai et al. generalized the class DP by defining the boolean
hierarchy over NP [CGH+88, CGH+89]. The union of all complexity classes
of the boolean hierarchy over NP is called BH(NP).8 Similar to the polyno-
mial hierarchy, it was shown that the boolean hierarchy over NP collapses if
any two of its levels coincide. Wagner [Wag87] provided a set of conditions
sufficient to prove completeness in each of the levels of BH(NP); more-
over, he unified many different characterizations of the class PNP

|| mentioned

above, and introduced the name Θp
2 for it [Wag90]. Note that BH(NP) ⊆ Θp

2.
Kadin showed that a collapse of the boolean hierarchy over NP implies a
collapse of the polynomial hierarchy to its third level [Kad88]. The currently
strongest collapse result connecting the boolean hierarchy over NP with the
polynomial hierarchy was independently achieved by E. and L. Hemaspaan-
dra and Hempel [HHH98], and Reith and Wagner [RW01]. They show for
each k > 0 and i > 0 that from the assumption BHk(Σ

p
i ) = coBHk(Σ

p
i ), it

follows that PH = BHk(Σ
p
i )∆BHk−1(Σ

p
i+1), where ∆ symbolizes the com-

plex symmetric difference of complexity classes. More relationships between
these two hierarchies can be found in [CK96].

Last but not least, we will be dealing with exact and randomized al-
gorithms for optimization problems running in exponential time. By “ex-

7In the original paper, the class DP was written DP.
8Note that boolean hierarchies can be defined over arbitrary set rings, not only over

the class NP.
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act” we mean that the computation ends with a correct answer, unlike for
approximation algorithms. The research on exponential-time algorithms
has increased substantially during the last years. While at first it may
seem not overly useful to search for algorithms running in exponential time,
exponential-time algorithms that are better than the trivial exponential-
time algorithm do have a very good motivation from a practical point of
view. Consider an algorithm with a time bound of 2n. It might be feasible
to run this method for inputs of small size, and improving the time bound
even further to, let’s say,

√
2

n
, one is able to run the advanced algorithm on

inputs twice as large within the same time and still come up with a solution.
Furthermore, the analysis of the methods obtained may have a huge impact
when designing efficient algorithms for other problems. Interesting surveys
on this subject can be found in [Sch05, Woe03]. For many more details on
exponential-time algorithms, we refer to Section 5.1 in Chapter 5, as well
as to the survey by Riege and Rothe [RR06c].

Coming to the notion of randomized algorithms, these probabilistic
methods first occured during the 1970’s when Solovay and Strassen [SS77]
as well as Miller and Rabin [Mil76, Rab80] were driven by the search to
find fast algorithms for detecting the primality of integers. Prime numbers
are of great importance in a variety of practical applications, especially in
cryptography. Since no efficient deterministic algorithms were known to
construct large prime numbers, it was acceptable to use methods for this
task with a one-sided error, i.e., there was no guarantee on the primality
of the output. By successively repeating this procedure, the error rate can
be made negligibly small, say below the probability that a hardware failure
produces an erroneous output. Although the primality problem has later
been proven to be solvable in deterministic polynomial time [AKS04], which
is a milestone result in theoretical computer science, randomized primality
tests are still more useful in practice due to their better time bounds. Ran-
domized algorithms have also been constructed for NP-complete problems,
for example the colorability [BE05] and the k-SAT problem [Sch99].

We will now give an overview of the structure of this thesis.

In Chapter 2, all relevant definitions for this thesis are provided. Most
importantly, the notions of complexity class, polynomial-time many-one
reducibility as well as the definition of the polynomial hierarchy and the
boolean hierarchy over NP are given.

Chapter 3 introduces the domatic number problem, which is the core
decision problem analyzed in this thesis. This is a classical graph problem
that is one of the standard NP-complete problems, see [GJS76]. One of the
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proofs of NP-hardness is witnessed by a clever polynomial-time many-one
reduction from 3-COLOR to 3-DNP due to Kaplan and Shamir [KS94]. The
properties of this reduction will be useful for Theorem 3.1, which is one
of the main results in this thesis and proves the DP-hardness of k-DNP for
all k ≥ 5. The proof of this theorem and interesting open questions are
discussed in Section 3.2. Even harder problems are studied in Section 3.3,
when we analyze the complexity to determine if the domatic number of any
graph equals one of k given integers. This problem is shown to be complete
for the 2kth level of the boolean hierarchy over NP. In Section 3.4, variants
of the domatic number problem and their computational complexity are
studied. It is shown that these variants are complete for the class PNP

|| .

All these results have been published in [RR06b]; a preliminary version has
appeared as [RR04].

Chapter 4 introduces a notation defined by Heggernes and Telle to char-
acterize graph problems where the vertex set needs to be partitioned into
generalized dominating sets [HT98]. These partitioning problems are de-
scribed by two parameters, and after establishing the definitions in Sec-
tion 4.1, the NP-completeness results of Heggernes and Telle for various
parameters are listed in Section 4.2. Defining the exact versions of the gen-
eralized partitioning problems, completeness results for the class DP are
obtained for three specific pairs of parameters in Section 4.3. Section 4.4
summarizes all results obtained in this thesis about the computational com-
plexity of the exact versions of partitioning problems; they have been pub-
lished in [RR06b] as well. In the same paper, the authors additionally show
that exact versions of the conveyor flow shop problem are complete for levels
in the boolean hierarchy over NP. This problem, which arises in real-world
applications in the wholesale business, where warehouses are supplied with
goods from a central storehouse, was introduced and intensely studied by
Espelage and Wanke [EW00].

In Chapter 5, the last chapter of this thesis, exponential-time algorithms
are presented which solve the domatic number problem exactly. Section 5.1
gives an overview of the diverse field of exponential-time algorithms. During
the last few years, great progress has been made in the design and runtime
analysis of these methods. The first algorithm solving the three domatic
number problem in time below the trivial 3n barrier, which is due to Riege
and Rothe [RR05], is presented in Section 5.3. Further progress is made by
adopting a technique dubbed “measure and conquer,” which was studied
intensely by Fomin, Kratsch, and Grandoni [FGK05a]. The technique goes
back to an idea by Eppstein [Epp04]. Combining the result of Fomin et al.
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on an algorithm listing all minimal dominating sets of a given graph with an
algorithm for the satisfiability problem by Yamamoto [Yam05], an algorithm
with the currently best bound to solve the special case of the three domatic
number problem is developed in Section 5.4; this result has been published
in [RRSY06a] and it was presented in [RRSY06b]. Chapter 5 concludes with
Section 5.6, where one deterministic and two randomized algorithms for the
domatic number problem—restricted to graphs with bounded degree—are
constructed. These results can be found in [RR05].



Chapter 2

Notations

2.1 Sets and Languages

Denote the set of nonnegative integers by N = {0, 1, 2, . . .} and denote the
set of positive integers by N

+ = {1, 2, . . .}. Fix the alphabet Σ = {0, 1}. All
our computations will be done over Σ∗, which is the set of strings over Σ
with finite length. For any string x ∈ Σ∗ with length n, we denote by |x|
the length of x. A set L ⊆ Σ∗ over strings in Σ∗ will be called language
or problem. The cardinality of L is defined by ||L||; it is the number of
elements in the set L.

For any two languages A and B, define the following set operations:

• the union of A and B: A ∪ B = {x ∈ Σ∗ | x ∈ A ∨ x ∈ B},

• the intersection of A and B: A ∩ B = {x ∈ Σ∗ | x ∈ A ∧ x ∈ B},

• the complement of A: A = {x ∈ Σ∗ | x /∈ A},

where ∨ denotes the logical OR-operation and ∧ the logical AND-operation.

2.2 Machines and Reducibilities

The core of complexity theory is to determine the precise computational
complexity of a given language L, that is, how hard it is for an algorithm
to decide for a given input x if x ∈ L. First we have to settle the question
what we mean by the term algorithm. An algorithm takes as input a string x
over Σ, and by applying a fixed finite number of rules and methods, it either
terminates by accepting x, rejecting x, or never halting at all. Optionally

11
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the algorithm may output a string y = f(x) depending on input x. Instead
of deciding a language L, the algorithm computes a function in this case.
Most of the time we will be speaking of deciding algorithms.

There are three characteristics which define the computational complex-
ity of a given language L. First, one has to specify the algorithmic model
which will be used to solve L. Our standard model of computation is the
Turing machine (TM), which was named due to its inventor Alan Tur-
ing [Tur36]. The precise formal definition of the TM can be found in var-
ious textbooks about complexity theory, see [Pap94, HMU01, Rot05], we
will only give a short description. A Turing machine M consists of an input
tape, one or more working tapes, and a finite number of states. Each tape is
divided into an infinite number of tape cells, which can each hold one sym-
bol of the input alphabet. In addition there is a head attached to each tape
that points on the tape cell that is currently being read. The tape cells on
the working tape(s) can be overwritten. The heart of every Turing machine
is its finite transition table, which maps its current state and the symbols
being read on its tapes to another state, possibly overwriting the symbols
being read on the working tapes. All heads can then move accordingly one
position to the left, to the right, or not at all. A configuration of M is well-
defined by the current state, the strings on the tapes, and the positions of
the heads on the tapes. Given as input a string x ∈ Σ∗ over the finite input
alphabet Σ, the computation of M on input x, in short M(x), is a sequence
of configurations starting with string x = x1x2 . . . xn on the input tape and
the read-only head on the first symbol x1. All other tapes are empty at the
beginning of the computation. The first state is the uniquely defined initial
state z0.

Coming back to the computational complexity of a given language L, the
second characteristic that needs to be specified is the acceptance mode for
the used algorithmic device, i.e., to precisely define what conditions have to
occur during the computation such that the Turing machine accepts input
x ∈ Σ∗. Here, we distinguish between deterministic and nondeterministic
Turing machines (DTM, and NTM respectively). In the deterministic case,
each configuration has at most one well-defined successor configuration,
whereas the transition table of a nondeterministic Turing machine may map
one configuration to more than one successor configuration. For a DTM M ,
we say that M accepts input x, if the computation of M on input x ends in
an accepting configuration, i.e., reaches a well-defined accepting state zy.

In contrast to the DTM, the computation of a NTM M on input x may
branch into more than one successor configuration in every step. Therefore,
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the computation of M on any input x is best described by the concept of
the computation tree, where each node represents one configuration that is
reachable from the initial configuration in a finite number of steps. The
root node of the tree represents the initial configuration, and every node in
the tree has as its child nodes its successor configurations. A computation
path of M is a subset of the computation tree, where the subset includes
the root node and a following sequence of configurations which correspond
to a path in the computation tree. We say that M accepts x if at least one
path in the computation tree of M ends in the accepting state zy.

For any language L, a deterministic Turing machine M accepts L if
each string x is accepted by M if and only if x ∈ L. Equivalently, we say
that set L is decided by M . Analogously to the deterministic case, we say
that the nondeterministic Turing machine M accepts language L if for each
string x ∈ L, there exists at least one accepting path in the computation
tree of M on input x.

Probability is yet another mode of acceptance for a TM that we will
need in Section 5.6. Here, we will only briefly describe the acceptance mode
of a probabilistic (randomized) Turing machine. During the computation,
a probabilistic TM may take randomized choices, i.e., flip a coin (randomly
choose between 0 and 1), and carry on with the computation depending
on the outcome of the choice. The computation of a probabilistic TM on
input x can then be seen as in the nondeterministic case; a computation
tree reflects the randomized computation. Beginning with the initial con-
figuration as the root node, the computation tree branches in each node
(=configuration) where a random choice is made (in two or even more child
nodes). Given a certain probability distribution on each random choice that
can be made, the probability to reach a leaf (=end of computation) in the
computation tree can then be calculated. A probabilistic TM M accepts in-
put x if the probability to reach an accepting configuration exceeds a certain
value, for example for 1/2. For the complete formal definition of probabilis-
tic computation on Turing machines, we refer the reader to [Gil77].

Another variant to this computational model is the concept of oracle
Turing machines. Such a TM M , be it deterministic or nondeterministic,
additionally receives a device called oracle, which consists of a set L ∈ Σ∗

and a special query tape. We mark that M may use L as an oracle set
by writing ML. During the computation of ML on input x, machine M
may enter a special marked state z?. Suppose y is the current string on the
query tape. In the next step of the computation, M enters state zyes if it
is y ∈ L, and zno if y /∈ L. The query tape is erased and the computation
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continues as defined by the finite transition table of M . The crucial point
is that deciding if y belongs to set L took exactly one step. Hence, using
complex sets L as oracles, M may itself be able to decide significantly more
complex sets than without the help of L.

Last but not least, the computational complexity of language L crucially
depends on the complexity measure used. The two most basic measures in
complexity theory are time and space, i.e., how many steps M needs to end
the computation on input x, and how many tape cells are used during the
course of the algorithm, respectively.

A DTM M is a deterministic polynomial-time bound Turing machine,
or in short DPTM, if there exists a fixed polynomial p ∈ poly, such that
for each input x, the computation halts after at most p(|x|) steps. In the
nondeterministic case, given a NTM M , every computation path in the
computation tree of M on input x has to be of length at most p(|x|) for M .
Then we call M a nondeterministic polynomial-time bound Turing machine,
or in short NPTM. In this thesis, we will only consider worst-case complex-
ity, which is based on the definition of the O-notation. For a given function
f : N → N, the function class O(f) contains all functions g which grow
aymptotically slower than f , neglecting constant factors and finitely many
exceptions:

O(f) = {g : N → N | (∃c > 0)(∃n0 ∈ N)(∀n ≥ n0)[g(n) ≤ c · f(n)]}.

In the worst-case complexity model, the function t which serves as a time
or space bound needs to be sharp for all but a finite amount of inputs. The
computation M(x) is allowed to take at most t(n) steps (tape cells) for
every x with |x| = n.

Instead of using polynomials to bound the time (space) used in the
computation of M(x), other function families might serve as a limit to the
number of steps (tape cells) of the computation. In the next section, we will
define complexity classes (i.e., classes of sets) that can be solved with an
algorithmic device given a certain acceptance mode and specifying a bound
on the complexity measure. Finding an algorithm to decide a language L
only indicates an upper bound on the computational complexity of L. To
precisely capture how hard it is to solve L, that is, to provide a lower bound
complexity class, we need the notion of reducibility.

Definition 2.1 Let FP be the family of total functions mapping from Σ∗

to Σ∗ that can be computed in polynomial time with respect to the input
size. For two sets A and B, we say that A is polynomial-time many-one
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reducible to B if there exists a polynomial-time function f ∈ FP such that
the equivalence

x ∈ A ⇐⇒ f(x) ∈ B (2.1)

holds for all x ∈ Σ∗. If such a reduction exists, we write A≤p
m B.

The above definition is extremely useful when comparing the computa-
tional complexity of two different problems A and B. Given an algorithm for
set B and a polynomial-time many-one reduction f certifying that A≤p

m B,
we can decide language A in the following way. On input x, first compute f
on input x. Afterwards, decide if f(x) ∈ B through Equation (2.1). This
way we decided A, adding only a polynomial amount of effort to the com-
putational complexity to solve B. This explains the phrase set A is reduced
to B. Given that A represents a computational complexity above deter-
ministic polynomial time, reduction f is a certificate for a lower bound on
the complexity of B. We can constitute that problem B is at least as hard
to solve than A, since any algorithm solving B straightforwardly leads to
another (though slightly more complicated) method deciding A. The next
section will introduce the concept of complexity classes, where computa-
tional problems of similar structure are categorized.

2.3 Complexity Classes and Hierarchies

In complexity theory, complexity classes and hierarchies are used to classify
the various and diverse problems which occur and need to be solved in com-
puter science. The class P contains all languages which can be recognized
by a DTM in polynomial-time. In 1965, Edmonds was the first to charac-
terize P as the class containing problems that can be solved in “feasible”
time [Edm65]. The nondeterministic analog of P is the class NP, which
contains every set which can be decided by a NTM working in polynomial
time. Clearly, it holds that P ⊆ NP, for each deterministic TM is a special
case of a nondeterministic TM. This leads to the most significant question
of complexity theory, whether P equals NP or if they differ, i.e., if P is a
proper subset of NP. This issue has not been solved until today. Another
class is given by coNP, the set of languages L where the complement set L
is a member of NP.

Both, P and NP, are complexity classes, that is, both are sets of lan-
guages. For a complexity class C and a set B ⊆ Σ∗, we now define the
notions of hardness and completeness.
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Definition 2.2 Let C be a complexity class, and let language B be given.
The set B is said to be ≤p

m -hard for the class C, if for each A ∈ C, it
holds that A≤p

m B. We simply write B is C-hard, since all reductions in
this thesis are polynomial-time many-one reductions ≤p

m . The set B is
called ≤p

m -complete for the class C, if the following two conditions hold:

• B ∈ C, and

• B is ≤p
m -hard for C.

Again we simply write B is C-complete. The complexity class C is closed
under the reducibility ≤p

m if and only if for any two sets A and B, if B ∈ C
and A≤p

m B, it follows A ∈ C. In short, we write class C is ≤p
m -closed.

We have found a simple—yet ingenious—way to prove if two complexity
classes are equal to one another. Suppose that for two given complexity
classes C and D, it is known that C ⊆ D. For example, this applies to the
two classes P and NP defined above. Assuming that C is closed under ≤p

m -
reductions, it now suffices to show that B is contained in C for merely
one D-complete problem to prove that C = D! In the case of the P vs NP
question, it would suffice to construct a polynomial-time algorithm for one
NP-complete problem to solve this matter once and for all.

Many problems have been categorized to be solvable in deterministic
polynomial time. Many other natural problems arising in the real world
have been shown to be NP-complete. Still, during more than 30 years of
research, starting with the first results on NP-completeness by Cook and
Karp [Coo71, Kar72], no algorithm working in polynomial time has been
found for an NP-complete problem, which might be an indicator that P
does not equal NP.

For the following complexity classes to be defined, we need to introduce
the notion of computation relative to a complexity class C. Remember the
informal description of an oracle Turing machine in Section 2.2.

Definition 2.3 The complexity class PA consists of all sets L which can
be decided by a DPTM with access to an oracle A ∈ Σ∗. The class NPA

contains all languages L which can be decided by an NPTM with access to
oracle A. Generalizing the notion of computation relative to oracles for any
class C, we define the complexity classes

PC =
⋃

A∈C

PA and NPC =
⋃

A∈C

NPA.
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Given a family of functions F , the complexity class PA[F ] (NPA[F ]) consists
of all languages decidable by a DPTM (an NPTM) having access to the
oracle set A, where the number of queries is bound by a function f ∈ F ,
i.e., at most f(|x|) queries can be made to oracle A on any input x.

Apparently, Turing machines are able to decide a wider class of problems
when having access to an oracle. While still no efficient algorithm could be
found for the hardest problems in NP, the NP-complete sets, there are even
languages which are beyond NP and seemingly much harder to solve. To
capture the computational complexity of sets beyond NP, we will define
two hierarchies of complexity classes. At first, we mention the polynomial
hierarchy, which has been introduced by Meyer and Stockmeyer [MS72].
They studied the problem of finding an equivalent expression ϕ′ of size less
than or equal to an integer k for a given boolean formula ϕ. Two boolean
formulas ϕ and ϕ′ over the same variable set X are called equivalent if each
truth assignment t : X → {0, 1} evaluates to the same value for ϕ and ϕ′;
see Definition 2.9 for the notion of boolean formulas. Meyer and Stockmeyer
noticed that this problem is coNP-hard, but they failed to prove membership
in coNP. For they found this language solvable with a coNP machine having
access to an NP oracle, they introduced a hierarchy of classes which capture
the complexity of problems which seem to lie beyond NP and coNP.

Definition 2.4 The polynomial hierarchy is inductively defined as follows:

∆p
0 = Σp

0 = Πp
0 = P,

∆p
k+1 = PΣp

k ,

Σp
k+1 = NPΣp

k ,

Πp
k+1 = coNPΣp

k ,

PH =
⋃

k≥0

Σp
k.

As a special case, we define the class Θp
2 = PNP[log], which contains all

problems decidable by an oracle DPTM having access to a set A ∈ NP,
where at most a logarithmic number of queries can be made.

Figure 2.1, which is taken from [RR06a], illustrates the inclusion struc-
ture of the polynomial hierarchy. A line between two complexity classes
denotes the fact that the lower class is a subset of the higher class.
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Σp
2 ∪ Πp

2

Σp
2 ∩ Πp

2

NPNP = Σp
2 Πp

2 = coNPNP

NP = Σp
1

NP ∩ coNP

NP ∪ coNP

Πp
1 = coNP

P = Σp
0 = Πp

0 = ∆p
0 = Θp

1

Θp
2 = PNP[O(log)]

PH

Σp
3 ∩ Πp

3

...
...

∆p
2 = PNP

Θp
3 = PNPNP[O(log)]

∆p
3 = PNPNP

Figure 2.1: The polynomial hierarchy

Hierarchies of complexity classes describe the subtle differences between
computational complexities of various problems that occur in computer sci-
ence. Another such hierarchy is the boolean hierarchy over NP, which lies
within the polynomial hierarchy and hence represents an even finer measure
of differences in computational complexity. This hierarchy was introduced
by Cai et al. [CGH+88, CGH+89]. Before defining the boolean hierarchy
over NP, which plays a major role in this thesis, we need to introduce some
operations on complexity classes.

The complex intersection and the complex union of complexity classes C
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and D is defined as

C ∧ D = {A ∩ B | A ∈ C and B ∈ D},
C ∨ D = {A ∪ B | A ∈ C and B ∈ D}.

This definition is not to be mistaken by the intersection and union between
sets A and B, see Section 2.1. We are now ready to define another hierarchy
of complexity classes.

Definition 2.5 The boolean hierarchy over NP is inductively defined as
follows:

BH0(NP) = P,

BH1(NP) = NP,

BH2(NP) = NP ∧ coNP,

BHk(NP) = BHk−2(NP) ∨ BH2(NP) for k ≥ 3, and

BH(NP) =
⋃

k≥1

BHk(NP).

Figure 2.2, which is taken from [RR06a], illustrates the inclusion struc-
ture of the boolean hierarchy over NP. Note that BH(NP) lies within the
class PNP[O(log)], which fits in between the first and second level of the poly-
nomial hierarchy, see Figure 2.1.

For the second level k = 2, the class NP ∧ coNP is also referred to by
the name DP, the difference of any NP sets. It can be rewritten as

DP = {A − B | A, B ∈ NP}.

Many interesting problems lie within the class DP. Here, we will list a few
of them:

• Unique problems: Given problem A, is it true that there exists exactly
one solution to this problem?

• Critical problems: Given problem A with input x, is it true that there
exists a solution to x, but removing one property of x leads to an
instance without a solution?

• Exact problems: Given an optimization problem with parameter p(x)
for input x and a positive integer k, is it true that p(x) exactly
equals k?
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P = BH0(NP)

coNP = coBH1(NP)

coDP = coBH2(NP)

coBH3(NP) BH3(NP)

BH2(NP) = DP

BH1(NP) = NP

...
...

Θp
2 = PNP[O(log)]

BH(NP) = PNP[O(1)]

Figure 2.2: The boolean hierarchy over NP

The last item will be investigated for a couple of optimization problems,
i.e., maximum or minimum problems, in Chapters 3 and 4. For a survey
about many diverse complete problems in the boolean hierarchy over NP,
we refer to [RR06a].

2.4 Boolean Formulas and Graphs

Many problems proven to be NP-complete are derived from questions con-
cerning graphs or boolean formulas as input. In fact, the first problem shown
to be NP-complete was the satisfiabilty problem. This major breakthrough
was achieved by Cook [Coo71], and independently by Levin [Lev73]. The
definitions to follow in this section will provide the basis to the decision
problems described in Section 2.5.

Definition 2.6 A boolean formula in conjunctive normal form (CNF) is a
pair ϕ = ϕ(X, C), where X = {x1, x2, . . . , xn} is a set of boolean variables,
and C is a conjunction of clauses over literals from X. A literal is either
a variable xi ∈ X or its negation xi, 1 ≤ i ≤ n. A truth assignment is a
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mapping t : X → {0, 1} from the variable set X to the values 0 (false) and 1
(true). Truth assignment t satisfies literal xi if t(xi) = 1, and it satisfies the
negated literal xi if t(xi) = 0. We say that truth assignment t satisfies the
boolean formula ϕ(X, C) if every clause in C contains at least one literal
that is satisfied by t. A boolean formula ϕ = ϕ(X, C) is said to be in k-CNF
if each clause in C contains at most k literals.

Next we introduce some graph-theoretical notation. In this thesis, only
simple, undirected graphs without self-loops are considered. That is, there
is no edge of the form {u, u} and at most one edge {u, v} for each pair of
vertices u, v ∈ V .

Definition 2.7 A graph G = (V, E) consists of V = {v1, v2, . . . , vn}, its set
of vertices, and E = {{vi, vj} | 1 ≤ i < j ≤ n}, its set of edges, where each
edge connects two vertices of V . Two vertices sharing an edge are called
adjacent. For any vertex v ∈ V , the open neighborhood N(v) includes all
vertices adjacent to v, that is N(v) = {u ∈ V | {u, v} ∈ E}. The closed
neighborhood of v in G is defined by N [v] = N(v)∪{v}. We call v ∈ V an
isolated vertex if N [v] = {v}, i.e., v is not connected to any other vertex
in V . The degree of vertex v in G is denoted by degG(v). If G is clear from
the context, we omit the subscript and simply write deg(v). The maximum
degree of G is defined by max-deg(G) = maxv∈V deg(v), and the minimum
degree of G is defined by min-deg(G) = minv∈V deg(v), respectively. We call
a graph k-regular if and only if deg(v) = k for each vertex v ∈ V .

For some of the results to follow, we will need to define basic operations
that can be applied to graphs.

Definition 2.8 For two given graphs G1 = (V1, E1) and G2 = (V2, E2)
with disjoint vertex sets, we define the disjoint union by G1 ∪ G2 = (V, E)
with V = V1 ∪ V2 and E = E1 ∪ E2. The join operation on G1 and G2 is
denoted by G1 ⊕ G2 = (V, E) with

V = V1 ∪ V2, and

E = E1 ∪ E2 ∪ {{u, v} | u ∈ V1 and v ∈ V2}.

For any subset V ′ of the vertex set V , the subgraph induced by V ′ is defined
by G[V ′] = (V ′, E ′) with edge set E ′ = {{u, v} ∈ E | u ∈ V ′ ∧ v ∈ V ′}.
In the complement graph of G, called G, each pair of vertices u, v ∈ V is
connected by an edge if and only if they were not adjacent in G. Thus, it
is G = (V, E ′) with edge set E ′ = {{u, v} | {u, v} /∈ E}.
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Given these basic definitions, we are now able to define interesting prob-
lems that contain formulas or graphs which properties are subject to various
different (and especially computationally hard to recognize) restrictions.

2.5 Decision Problems and Their Variants

A large portion of the NP-complete sets are derived from problems on
boolean formulas and graphs. In applications arising in the real world,
especially the family of graph problems appears quite often. However, we
start by defining one of the classic NP-complete problems and its variants.

Definition 2.9 For a given boolean formula ϕ = ϕ(X, C), the satisfiability
problem SAT asks whether there exists a satisfying truth assignment t with
t : X → {0, 1} for ϕ. For any k ≥ 2, define k-SAT to be the set containing
all satisfiable formulas ϕ with at most k literals in each clause c ∈ C.
Additionally, define the not-all-equal satisfiability problem NAE-3-SAT as the
set of boolean formulas ϕ = ϕ(X, C) such that all clauses contain exactly
three literals, and for which there exists a satisfying truth assignment t such
that in each clause c ∈ C, not all literals are mapped to the value 1 (true)
under t. In other words, each clause must contain at least one true literal,
and each clause must contain at least one false literal under assignment t.
The set 1-3-SAT consists of those boolean formulas ϕ = ϕ(X, C) in 3-CNF
for which there exists a truth assignment t such that each clause c ∈ C is
comprised of exactly one literal that is satisfied under assignment t.

The satisfiability problem was the first language proven to be complete
for NP by Cook [Coo71]. He also showed that k-SAT is NP-complete for
all k ≥ 3. In Contrast, the set 2-SAT is decidable in polynomial time,
Papadimitriou constructed an O(n2) algorithm for it [Pap91]. Actually, the
set 2-SAT is complete for the complexity class NL, see [JLL76]. The class NL
includes all sets that are decidable by a nondeterministic Turing machine
in logarithmic space. Note that NL ⊆ P. It is not known whether this is a
proper inclusion, i.e., if it holds that NL ⊂ P. The restriction NAE-3-SAT of
the satisfiability problem was proven to be NP-complete by Schaefer [Sch78],
who also showed that 1-3-SAT is ≤p

m -complete for NP. This problem even
remains NP-complete when the input is restricted to formulas containing
only positive literals in all clauses.

Definition 2.10 For a graph G = (V, E), an independent set I is a subset
of the vertex set V such that no two vertices of I are adjacent. An indepen-
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dent set I of G with maximum cardinality is called maximum independent
set. In contrast, the set I is said to be a maximal independent set, if there
exists no superset I ′ ⊃ I such that I ′ is an independent set. Note that a
maximum independent set is always maximal, whereas the converse need not
to be true.

For any positive integer k ∈ N, define the maximum independent set
problem INDSET to be the set containing all graphs G = (V, E) with a
maximum independent set I ⊆ V of cardinality ||I|| ≥ k. This classic
graph problem was among the 20 examples proven to be NP-complete by
Karp [Kar72]. Actually, he constructed a reduction from SAT to CLIQUE,
but it is easily verified that for any graph G = (V, E), each set I ⊆ V
is a maximum independent set of G if and only if I is a clique in the
complement graph G. A clique is a subset V ′ of the vertex set such that for
any two vertices u, v ∈ V ′, it holds that {u, v} ∈ E. Based on the definition
of independent set, another interesting challenge is to partition the vertex
set V of a graph G into the maximum number of such independent sets.

Definition 2.11 Let graph G = (V, E) be given. A k-coloring of G is a
mapping f : V → {1, 2, . . . , k}. The values from 1 to k are also called color
classes. A k-coloring is called legal if no two adjacent vertices are mapped
to the same color class. Graph G is said to be k-colorable if there exists
a legal k-coloring for G. Define for any graph G = (V, E) the chromatic
number χ(G) as the minimum number k such that G is k-colorable. Equiv-
alently, a graph G is k-colorable if its vertex set V can be partitioned into k
independent sets.

Coloring of a graph G is a minimization problem, as any graph G with a
legal k-coloring simultaneously is k+1-colorable. For any positive integer k,
define k-COLOR to be the problem to decide whether a given graph G is
colorable with k colors:

k-COLOR = {G | G is a graph and χ(G) ≤ k}.

The set k-COLOR was proven to be complete for the class NP for all k ≥ 3 by
Karp [Kar72]. It lies within P for k = 2, since a graph is colorable with two
colors if and only if it is bipartite, which can be recognized in polynomial
time.1

1A graph G = (V, E) is called bipartite if its vertex set V can be partitioned into two
disjoint sets V1 and V2 such that each edge has one endpoint in V1 and one endpoint
in V2.
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Definition 2.12 For any graph G = (V, E), a subset D ⊆ V of the vertex
set is called dominating set if every vertex u ∈ V −D is adjacent to at least
one vertex v ∈ D. In other words, a set D is dominating if N [D] = V . A
minimum dominating set D of G is a dominating set of G with the smallest
cardinality, i.e., there exists no dominating set D′ of G with ||D′|| < ||D||.
For a dominating set D of G, we say that vertex v ∈ V is dominated by D
if it holds N [v] ∩ D 6= ∅. Note that each vertex v ∈ V dominates itself by
definition. In contrast to a minimum dominating set, a minimal dominating
set D of G is a dominating set D ⊆ V such that no proper subset D′ ⊂ D
is a dominating set of G. A minimum dominating set is always a minimal
dominating set, whereas the converse need not to be true.

Analogously to the question of colorability for any graph G, where the
property (independence) of a subset of the vertex set of G induces a parti-
tioning problem (k-COLOR), the dominating sets directly lead to the parti-
tioning domatic number problem.

Definition 2.13 Define for graph G = (V, E) the domatic number δ(G)
to be the maximum number of vertex disjoint dominating sets of G. For a
positive integer k ∈ N, the decision problem k-DNP contains all graphs G
with δ(G) ≥ k:

k-DNP = {G | G is a graph and δ(G) ≥ k}.

It is easy to see that δ(G) ≤ min-deg(G) + 1, since each vertex can only
be dominated by itself and each of its neighbors. Also, we note that every
graph G = (V, E) without isolated vertices has a domatic number of at
least two. For example, construct two vertex disjoint dominating sets by
choosing one maximal independent set I and the remaining vertices in the
set V − I.

Fact 2.1 The set 2-DNP lies within P.

The domatic number problem is NP-complete for all k ≥ 3 as noted
by Garey and Johnson [GJ79]. Lemma 3.1 in the next chapter gives as
a constructive proof for this claim a polynomial-time many-one reduction
that will also be used to prove the DP-completeness of the exact version of
the domatic number problem in Section 3.2.



Chapter 3

The Domatic Number Problem

3.1 Overview

The domatic number problem is a graph partitioning problem. The un-
derlying dominating sets which build up this partition have been studied
intensely over the last decades. The minimum dominating set problem, in
short DOMSET, asks for a given graph G and a positive integer k if there exists
a dominating set of G of size at most k. It was noted to be complete for NP
by Garey and Johnson [GJ79]. The proof on the NP-hardness of DOMSET,
which is witnessed by a reduction from 3-SAT, is described in full detail
in [HHS98b]. More than a thousand papers have been published on the
topic of domination in graphs. Most results have been merged in the two
excellent surveys by Haynes, Hedetniemi, and Slater [HHS98b, HHS98a].
Still, results on the partitioning domatic number problem are scarce. In
this thesis, we will try to solve diverse questions regarding the domatic
number problem to gain a better understanding of this natural problem
arising in real-world scenarios.

The domatic number problem k-DNP was noted to be NP-complete by
Garey and Johnson [GJ79], notwithstanding that they do not give an ex-
plicit polynomial-time many-one reduction to prove NP-hardness. The fol-
lowing result due to Kaplan and Shamir [KS94] catches up on this flaw.
Their reduction from 3-COLOR proves that k-DNP is NP-complete for k ≥ 3.
They additionally show that the problem remains NP-hard even when the
input is restricted to split graphs.

Lemma 3.1 The problem k-DNP is NP-complete for k ≥ 3.

Proof. At first it will be proven that k-DNP is NP-complete for k = 3.
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Extending the proof for all k > 3 is straightforward. The set k-DNP is
included in NP by the following simple algorithm. Nondeterministically
put each vertex v ∈ V in one of the sets V1, V2, . . . , Vk of the partition.
Afterwards, verify for 1 ≤ i ≤ k that each Vi is a dominating set of G. This
can be done in polynomial time.

To prove that 3-DNP is NP-hard, we will present a reduction from the
NP-complete set 3-COLOR by Kaplan and Shamir [KS94]. Assume without
loss of generality that the input graph G contains no isolated vertices and is
not colorable with two colors. The polynomial-time many-one reduction g
constructs a graph G′ = (V ′, E ′) from the input graph G = (V, E) as follows:

V ′ = V ∪
⋃

{vi,vj}∈E

{ui,j},

E ′ =
⋃

{vi,vj}∈E

({vi, ui,j} ∪ {ui,j, vj})
⋃

vi,vj∈V,1≤i<j≤n

{vi, vj}.

The vertex set V ′ includes all vertices of V , and for each edge {vi, vj} ∈ E,
one vertex ui,j is added to V ′. The vertex ui,j is connected to vi and vj via
two edges. Finally, all original vertices from V are connected pairwise to
form a clique of size n.

We will prove the following implications:

G ∈ 3-COLOR =⇒ δ(G′) = 3, (3.1)

G /∈ 3-COLOR =⇒ δ(G′) = 2. (3.2)

Then, G is colorable with three colors if and only if G′ can be partitioned
into three disjoint dominating sets.

Notice that 2 ≤ δ(G′) ≤ 3 follows from the two facts that G contains no
isolated vertices and the degree of each induced edge vertix ui,j equals two.
Now suppose χ(G) = 3, and let f : V → {1, 2, 3} be the mapping for this
three-coloring. Define the three nonempty sets

Vi = {v ∈ V | f(v) = i}.

We will construct three dominating sets D1, D2, and D3 for graph G′ as
follows. For 1 ≤ i ≤ 3, define the sets

Di = Vi ∪ {ui,j | vi /∈ Vi and vj /∈ Vi}.

Clearly, since each of the three color classes Vi is nonempty and the original
vertices in V form a clique in G′, each Di, 1 ≤ i ≤ 3, dominates V in G′.
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Every triangle {vi, ui,j, vj} contains exactly one member of each set Di,
therefore the set {ui,j | {vi, vj} ∈ E} is dominated three times as well. It
follows that δ(G) = 3, and implication (3.1) is proven.

To show that implication (3.2) holds, assume that it is δ(G′) = 3 and let
D1, D2, and D3 be the three disjoint dominating sets of G′. Then, a legal
three-coloring for the vertices v ∈ V of G is given by f(v) = i for v ∈ Di.
Note that two adjacent vertices vi, vj ∈ V will not receive the same color,
since the vertices of the triangle {vi, ui,j, vj} must belong to three different
dominating sets.

To see that k-DNP is NP-complete for k ≥ 4, a polynomial-time many-
one reduction f from k-DNP to (k + 1)-DNP is given by adding to any graph
G = (V, E) an additional vertex u, and connecting u to every vertex v ∈ V .
For the generated graph G′ = G ⊕ {u} it holds that δ(G′) = δ(G) + 1.

Note that the resulting graph G′ = g(G) is a split graph, i.e., its vertex
set V ′ can be partitioned into a clique C and an independent set I. Here,
it is C = V and I = {uvi,vj

| {vi, vj} ∈ E}.

3.2 Exact Version of the Domatic Number

Problem

Starting from an NP-complete problem A, one can define numerous variants
of problem A with different computational complexities. For example we
may restrict the input to problem A to certain subsets. On the one hand,
the problem might be easier to solve, as is the case with the domatic number
problem when only strongly chordal graphs are considered as input [Far84].
On the other hand, the complexity might stay the same, as is the case with
determining the domatic number of chordal graphs [KS94].

Another way to change a problem is to make restrictions to the solution
space. For instance, we want to be able identify all boolean formulas that
are satisfiable but have only one unique solution, i.e., there exists only one
distinct satisfying truth assignment. This set is called UNIQUE-SAT. Another
interesting problem is given by the set of all graphs G that cannot be colored
legally with three colors, but removing any vertex causes G to become three-
colorable. This problem is known by the name MINIMAL-3-UNCOLOR.

Problems of the kind that the input has (has not) a certain property, but
deleting or adding any element of the input removes (adds) the property
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are called critical problems. Critical and unique solution problems are good
candidates for DP-completeness, since they are easily shown to be contained
in DP. But it is much more difficult to produce a proof to show the DP-
hardness of critical problems. As was already noted by Papadimitriou and
Yannakakis: “This difficulty seems to reflect the extremely delicate and
deep structure of critical problems—too delicate to sustain any of the known
reduction methods” [PY84].

Getting back to the two DP-problems above, the precise complexity of
the set UNIQUE-SAT is still unknown until today, whilst DP-completeness of
the problem MINIMAL-3-UNCOLOR has been proven by Cai and Meyer [CM87].

The focus of this thesis lies on exact optimization problems, that means
that we are interested in the exact value of a certain property. In contrast to
that, the question for NP-complete optimization problems usually contains
a one-sided bound. For instance, in the case of the decision version of the
domatic number problem it is asked whether the domatic number of a given
graph and a positive integer k is at least as high as k. Next we will define
the exact domatic number problem.

Definition 3.1 Let Mk be a set of k positive integers. Define the exact
domatic number problem by

Exact-Mk-DNP = {G | G is a graph and δ(G) ∈ Mk}.

When it is k = 1 and M1 = {t}, we simply write Exact-t-DNP instead
of Exact-{t}-DNP.

The question is how hard it is to solve the exact domatic number problem,
i.e., for which of the various number of complexity classes it has to be
classified. In the case of Exact-t-DNP, one might suppose that this problem
is NP-complete. Actually, reduction f from Lemma 3.1 proves that this
problem is NP-hard, but what about the upper complexity bound of the
set Exact-t-DNP? For a given graph G, its domatic number number δ(G) has
to be determined precisely. A naive nondeterministic algorithm working in
polynomial time is able to guess a partition into t vertex disjoint dominating
sets, therefore the algorithm is able to decide if δ(G) ≥ t. But to show that
it holds δ(G) < t + 1, all possible partitions into t + 1 dominating sets have
to be taken into account, and it is not clear how to achieve this with a
nondeterministic Turing machine in polynomial time.

Looking back at Chapter 2, Definition 2.5 of the class DP is the solution
to precisely determine the complexity of the exact domatic number problem,
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and in fact of many other exact optimization problems in general. Recall
that DP is defined as the class of sets which can be written as the intersection
of two sets A ∈ NP and B ∈ coNP. Define the exact domatic number
problem as Exact-k-DNP = A ∩ B by the sets

A = {G | G is a graph and δ(G) ≥ t},
B = {G | G is a graph and δ(G) ≥ t + 1}.

Clearly, it holds that A ∈ NP and B ∈ NP. The same argument can be used
to prove membership in the higher levels of the boolean hierarchy over NP
for the problems Exact-Mk-DNP.

Fact 3.1 For any positive integer t, it is Exact-t-DNP ∈ DP. For the general
case k ≥ 1, it is Exact-Mk-DNP ∈ BH2k(NP).

It leaves to show that this classification is “sharp,” i.e., that the exact
domatic number problem Exact-Mk-DNP is hard for BH2k(NP). Wagner
provided a set of conditions sufficient to proof hardness in the levels of the
boolean hierarchy over NP [Wag87]. The next lemma states one of those
conditions which will be usefull to prove the upcoming Theorem 3.1.

Lemma 3.2 Let A be some NP-complete problem, let B be an arbitrary
problem, and let k ≥ 1 be fixed. If there exists a polynomial-time computable
function f such that the equivalence

||{i | xi ∈ A}|| is odd ⇐⇒ f(x1, x2, . . . , x2k) ∈ B (3.3)

is true for all strings x1, x2, . . . , x2k ∈ Σ∗ satisfying xj+1 ∈ A implies xj ∈ A
for each j with 1 ≤ j ≤ 2k, then B is BH2k(NP)-hard.

For the special case k = 1, it suffices to verify the equivalence

(x1 ∈ A ∧ x2 /∈ A) ⇐⇒ f(x1, x2) ∈ B (3.4)

for some function f ∈ FP to prove the DP-hardness of the set B.
With the help of Lemma 3.2, various exact optimization problems were

proven complete for classes contained the boolean hierarchy over NP. For
example, the exact versions of the independent set problem and the col-
orability problem—when defined analogously to Definition 3.1—have been
shown to be complete for BH2k(NP) in [Wag87]. Interestingly in the same
paper, it was proven that the problem Exact-t-COLOR is DP-complete for
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all values t ≥ 7. Note that for the case t = 3, it is Exact-3-COLOR = A ∩ B
with

A = {G | G is a graph and χ(G) ≤ 3},
B = {G | G is a graph and χ(G) ≤ 2}.

It is A ∈ NP, whereas the set B lies in P, as every bipartite graph is
colorable with two colors, and bipartiteness can be recognized in polynomial
time. Hence, Exact-3-COLOR is contained in NP and cannot be complete
for DP unless the boolean hierarchy over NP collapses to its second level.
In [Wag87], the question was raised how small the number t can be chosen
such that Exact-t-COLOR remains DP-complete. In particular, what is the
complexity of Exact-t-COLOR for t ∈ {4, 5, 6}? The question was solved
by Rothe in [Rot03] with Lemma 3.2 and by combining two reductions to
the problem 3-COLOR, more precisely the standard reduction f from 3-SAT
to 3-COLOR by Garey and Johnson [GJS76] and a clever reduction g from
Guruswami and Khanna [GK00] from INDSET to 3-COLOR with the nice
property that

G ∈ INDSET ⇐⇒ χ(g(G)) = 3,

G /∈ INDSET ⇐⇒ χ(g(G)) = 5.

Rothe obtained the result that Exact-t-COLOR is DP-complete for all val-
ues t ≥ 4 [Rot03]. We will state his result in Subsection 4.3.2, where ad-
ditionally Rothe’s results concerning the more generalized versions of exact
colorability problems will be discussed.

The following Theorem is due to Riege and Rothe [RR06b]. It deter-
mines the precise complexity of Exact-t-DNP for all t ≥ 5.

Theorem 3.1 The problem Exact-t-DNP is DP-complete for t ≥ 5.

Proof. According to Fact 3.1, the set Exact-t-DNP is contained in the
class DP = NP ∧ coNP for all t ∈ N.

It suffices to prove the DP-hardness of Exact-t-DNP for t = 5, see also the
remark at the end of the proof of Lemma 3.1 as how to extend DP-hardness
to all values t > 5. We will make use of Lemma 3.2 with k = 1, 3-COLOR as
the NP-complete set A and Exact-5-DNP being set B of this lemma. We will
construct a polynomial-time many-one reduction f satisfying Equation (3.4)
as follows.

Fix any two graphs G1 and G2 and without loss of generality, assume that
both graphs do not contain isolated vertices and are not colorable with two
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colors. Also, if G2 ∈ 3-COLOR, then so is G1. At first, we apply reduction g
of Lemma 3.1 to both graphs G1 and G2 to generate two graphs H1 = g(G1)
and H2 = g(G2). The final step in our reduction f will be to construct a
graph H = f(G1, G2) such that

δ(H) = δ(H1) + δ(H2). (3.5)

This will be the hardest task to accomplish, and Equation (3.5) will straight-
forwardly lead to the equivalence

G1 ∈ 3-COLOR and G2 6∈ 3-COLOR

⇐⇒ δ(H1) = 3 and δ(H2) = 2

⇐⇒ δ(H) = δ(H1) + δ(H2) = 5

⇐⇒ f(G1, G2) = H ∈ Exact-5-DNP,

which according to Lemma 3.2 proves the DP-hardness of Exact-5-DNP.
It remains to prove Equation (3.5). Recall that the polynomial-time

many-one reduction g from Lemma 3.1 maps graph G = (V, E) to a graph
H = g(G) such that each edge e = {vi, vj} induces a triangle by adding
vertex ui,j and connecting it to both endpoints of edge e. Additionally
all original vertices in the vertex set V of G are connected such that they
form a clique. Now fix two triangles T1 = {vq, uq,r, vr} in H1 = g(G1)
and T2 = {vs, us,t, vt} in H2 = g(G2). Insert six new vertices a1, a2, . . . , a6

and connect them to the triangles via the gadget shown in Figure 3.1. Each
pair of triangles from H1 and H2 is connected by one disjoint copy of the
gadget in Figure 3.1, which completes the description of reduction f . Note
that f is polynomial-time computable. Figure 3.1 is taken from [RR06b].

There are three cases to distinguish where we will have to prove the
claim δ(H) = δ(H1) + δ(H2) of Equation (3.5). In each case it holds that
δ(H) ≤ 6, since each of the inserted gadget vertices is adjacent to ex-
actly five vertices. Let D1, D2, . . .Dδ(H1) be the dominating sets of H1 and
Dδ(H1)+1, Dδ(H1)+2, . . . , Dδ(H1)+δ(H2) be the dominating sets of H2.

Case 1: [δ(H1) = δ(H2) = 3] As mentioned above, it is δ(H) ≤ 6.
We will construct six vertex disjoint dominating sets D̂1, D̂2, . . . , D̂6

of graph H to prove δ(H) = 6. Consider one dominating set Dj of H1

with 1 ≤ j ≤ 3. We will extend this set so as to yield a dominating set
for the entire graph H . Fix a triangle T1 = {vq, uq,r, vr} in H1 = g(G1).
Exactly one of the three vertices of triangle T1 belongs to each of
the three dominating sets. Suppose for D1, it is D1 ∩ T1 = uq,r.
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vr

vq

vt

vs

us,t

T2T1

a4 a5 a6

a1 a2 a3

uq,r

Figure 3.1: Gadget connecting two triangles T1 and T2

All other cases are treated analogously. Now consider one triangle
T2 = {vs, us,t, vt} of H2 = g(G2) and the gadget connecting T1 and T2.
Let’s call the additional vertices aT2

1 , aT2
2 , . . . , aT2

6 . Exactly one of the
additional vertices is not adjacent to uq,r, this is aT2

2 , see Figure 3.1.
We will add this vertex to D1, so define

D̂1 = D1 ∩ {aT2
2 | T2 is a triangle of H2}.

This set is a dominating set for graph H . The graph H1 was dominated
by D1 beforehand. Every gadget vertex ai is dominated by D̂1 since
the only vertex not adjacent to uq,r is added to D̂1. And finally every
vertex of H2 is contained in a triangle T2. Therefore, as vertex aT2

2 is
adjacent to all vertices of the triangle T2, graph H2 is dominated by
the set D̂1 as well.

With the same argument, the dominating sets Dj of H2,4 ≤ j ≤ 6,

can be extended to dominating sets D̂j for graph H . The sets D̂j are
pairwise vertex disjoint for 1 ≤ j ≤ 6 by construction, hence it holds
that δ(H) = δ(H1) + δ(H2) = 6.

Case 2: [δ(H1) = 3 and δ(H2) = 2] With the same argument as in the
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first case, the dominating sets D1, D2, . . . , D5 of H1 and H2 can be
extended to dominating sets D̂1, D̂2, . . . , D̂5 of H . So 5 ≤ δ(H) ≤ 6.
Assume that δ(H) = 6, and let E1, E2, . . . , E6 be the six vertex disjoint
dominating sets for H . Fix a triangle T1 = {vq, uq,r, vr} of H1. Look
at Figure 3.1 with gadget vertex a4, which has a degree of five and is
adjacent to all three vertices of T1. This implicates that the vertices of
T1 pairwise belong to different dominating sets, for example vq ∈ E1,
uq,r ∈ E2, and vr ∈ E3. All other cases can be treated analogously.

Fixing a triangle T2 = {vs, us,t, vt} of H2 and by a symmetric argu-
ment, the vertices of T2 must be members of three different dominat-
ing sets. None of these three sets can be E1, E2, or E3, as then
one of the gadget vertices a1, a2, . . . , a6 would have two neighbors
of the same dominating set, therefore contradicting the assumption
that δ(H) = 6. So the only way (except renaming the dominating
sets) to assign the vertices of T2 to the dominating sets Ei is vs ∈ E4,
us,t ∈ E5, and vt ∈ E6. This is true for each triangle T2 of H2, hence
each of the three vertex disjoint sets E4, E5, and E6 are dominating
sets for H2. This is a contradiction to δ(H2) = 2 and we can conclude
that δ(H) = δ(H1) + δ(H2) = 5.

Case 3: [δ(H1) = δ(H2) = 2] Just as in the first two cases, the four
dominating sets D1, D2, D3, and D4 can be extended to vertex dis-
joint dominating sets D̂1, D̂2, D̂3, and D̂4 of the entire graph H . And
analogously to Case 2, it can be shown that δ(H) = 6 cannot hold.
It remains to prove δ(H) 6= 5. Suppose otherwise, so the vertices
of H can be partitioned into five dominating sets E1, E2, . . . , E5. For
a contradiction, fix again the triangles T1 = {vq, uq,r, vr} of H1 and
T2 = {vs, us,t, vt} of H2 as in Figure 3.1.

First we show that neither T1 nor T2 can have two vertices belonging
to the same dominating set. Assume that for T1, the vertices vq and vr

belong to the same set, say E1, and uq,r is in the set E2. All other
cases can be treated analogously. None of the vertices in triangle
T2 can belong to set E1 or E2, as at least one of the vertices a4, a5,
and a6 would then be adjacent to four vertices from E1 and E2, leaving
only two more choices for the vertices in the closed neighborhood
not yet added to a dominating set. This contradicts our assumption
that δ(H) = 5. Also, the vertices in T2 have to belong to three different
dominating sets, otherwise vertex a2 which is adjacent to vq ∈ E1 and
vr ∈ E1 cannot be dominated by five dominating sets. It follows
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that ||V (T2) ∩ E3|| = 1, ||V (T2) ∩ E4|| = 1, and ||V (T2) ∩ E5|| = 1.
This is true for each of the triangles T2 of H2, therefore we found a
vertex disjoint partition of H2 into three dominating sets. This is a
contradiction to δ(H2) = 2. Hence, it is δ(H) = δ(H1) + δ(H2) = 4.

The fourth case “δ(H1) = 2 and δ(H2) = 3” cannot occur since we
have restricted the input such that from G2 ∈ 3-COLOR, it follows that
G1 ∈ 3-COLOR. It is δ(H) = δ(H1) + δ(H2) and thus we have proven
Equation (3.5) and hereby Theorem 3.1.

The set Exact-2-DNP is coNP-complete since for any graph G the prop-
erty δ(G) ≥ 2 can be checked in polynomial time, see Fact 2.1. The proof
of coNP-hardness is given by reduction f from Lemma 3.1. Therefore, the
set Exact-2-DNP cannot be DP-hard unless the boolean hierarchy over NP
collapses to its first level.

The exact complexity of Exact-t-DNP is still an open question for the
two cases t = 3 and t = 4.

Corollary 3.1 The problem Exact-2-DNP cannot be DP-complete unless the
boolean hierarchy over NP collapses to its second level.

It is still an open question if the set Exact-t-DNP is DP-complete for
the cases t = 3 and t = 4. In the case of the colorability problem, the
precise cutoff point between NP- and DP-completeness was resolved by
Rothe [Rot03], as Exact-3-COLOR is NP-complete and Exact-t-COLOR is DP-
complete for all t ≥ 4, see Theorem 4.3. To close the gap in the case
of the domatic number problem in a similar way, two issues would still
need to be resolved. First, as was the case with the colorability problem,
a polynomial-time many-one reduction h to the domatic number problem
needs to be constructed with the property that

a ∈ A =⇒ δ(h(a)) = 4,

a /∈ A =⇒ δ(h(a)) = 2,

where A is some arbitrary NP-complete set. Second, some way to construct
a graph H with the property δ(H) = max{δ(H1), δ(H2)} has to be found.
Let the reduction accomplishing this task be denoted by f . Then, given two
instances a1 and a2 of A with the property that if a2 ∈ A, so is a1, we could
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use reduction g from Lemma 3.1 and the hypothetic reduction h mentioned
above so that

a1 ∈ A and a2 6∈ A

⇐⇒ δ(g(a1)) = 3 and δ(h(a2)) = 2

⇐⇒ δ(f(H1, H2)) = max{δ(H1), δ(H2)} = 3

with H1 = g(a1) and H2 = h(a2)

⇐⇒ f(H1, H2) = H ∈ Exact-3-DNP.

In Theorem 3.1, the graph operation needed to show the completeness
of Exact-5-DNP for the class DP was to add the domatic number of the two
graphs H1 and H2. This was relatively easy to accomplish by the triangle
structure of the generated graphs H1 and H2. This might not be the case
when combining two different reduction methods. Note that addition and
taking the minimum of chromatic numbers χ(G1) and χ(G2) of two given
graphs G1 and G2 is achieved by the basic graph operations join G1⊕G2 and
disjoint union G1∪G2. The exact computational complexity of Exact-3-DNP
and Exact-4-DNP therefore remains an interesting open question.

3.3 The Higher Levels of BH(NP)

The last section focused on Exact-Mk-DNP, the exact domatic number prob-
lem for the special case k = 1. In the following, we will generalize the result
from Theorem 3.1 for all k ≥ 1.

Theorem 3.2 For fixed k ≥ 1, the problem Exact-Mk-DNP is complete
for BH2k(NP) for the set Mk = {4k + 1, 4k + 3, . . . , 6k − 1}.

Proof. Similar to the proof for membership of Exact-t-DNP in DP, divide
the problem Exact-Mk-DNP into k subproblems

Exact-Mk-DNP =
⋃

t∈Mk

Exact-t-DNP,

which can then be rewritten as

Exact-t-DNP = {G | δ(G) ≥ t} ∩ {G | δ(G) < t + 1}.

For any given graph G = (V, E), the set {G | δ(G) ≥ t} is a member of NP
by an algorithm which nondeterministically branches into every possible
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partition of vertex set V into t sets and then verifying for each guess, if each
of the t sets is a dominating set of G. The second set is clearly contained
in coNP, and as it is

BH2k(NP) =
k

∨

i=1

(NP ∧ coNP)

by definition, the set Exact-Mk-DNP is contained in BH2k(NP).

It leaves to proof that the set Exact-Mk-DNP is hard for BH2k(NP).
This proof is a straightforward generalization of the proof of Theorem 3.1,
where the DP-hardness of Exact-5-DNP was shown. We will make use of
Lemma 3.2 with the NP-complete problem 3-COLOR being set A and the
problem Exact-Mk-DNP representing set B. Let the graphs G1, G2, . . . , G2k

be given with the property that Gi+1 ∈ 3-COLOR implies Gi ∈ 3-COLOR for
each i with 1 ≤ i < 2k. Again we may assume without loss of generality
that all graphs Gi, 1 ≤ i ≤ 2k, do not contain isolated vertices, and that
3 ≤ χ(Gi) ≤ 4, since two-colorable graphs can be recognized in polynomial
time. For each i with 1 ≤ i ≤ 2k, we apply reduction g from Lemma 3.1 to
obtain 2k graphs Hi = f(Gi). Since Equations (3.1) and (3.2) are satisfied,
it follows for each i with 1 ≤ i < 2k that δ(Hi+1) = 3 implies δ(Hi) = 3.

Remember the construction from Theorem 3.1, where we added six gad-
get vertices ai for each pair of triangles T1 and T2 from the two graphs H1

and H2. We extend this construction by adding 6k additional gadget ver-
tices a1, a2, . . . , a6k for each sequence of triangles T1, T2, . . . , T2k, where each
Ti belongs to graph Hi for 1 ≤ i ≤ 2k. Associate for each i with 1 ≤ i ≤ 2k
the three gadget vertices a1+3(i−1), a2+3(i−1), and a3+3(i−1) with the trian-
gle Ti. For 1 ≤ j ≤ 2k and j 6= i connect triangle Ti to triangle Tj via
the three gadget vertices a1+3(i−1), a2+3(i−1), and a3+3(i−1) with the same
pattern as T1 is connected to T2 in Figure 3.1 via the gadget vertices a1, a2,
and a3. This completes the construction, and we call the resulting graph
H = f(H1, H2, . . . , H2k). Note that f is computable in polynomial time.

For each ai with 1 ≤ i ≤ 6k it is deg(ai) = 6k − 1, since it is connected
to every vertex in the triangles Tj , 1 ≤ j ≤ 2k except one. Hence, it holds
that δ(H) ≤ 6k. With an analogous argument to the one in Theorem 3.1, it
can be proven that δ(H) =

∑2k
i=1 δ(Hi). Due to the fact that this argument

is rather lengthy when it is extended to the general case of Exact-Mk-DNP,
we omit the proof that is presented in full detail in [RR06b]. Thus, we can
conclude directly that it holds
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||{i | Gi ∈ 3-COLOR}|| is odd

⇐⇒ (∃i : 1 ≤ i ≤ k)

[

χ(G1) = · · · = χ(G2i−1) = 3 and
χ(G2i) = · · · = χ(G2k) = 4

]

⇐⇒ (∃i : 1 ≤ i ≤ k)

[

δ(H1) = · · · = δ(H2i−1) = 3 and
δ(H2i) = · · · = δ(H2k) = 2

]

⇐⇒ (∃i : 1 ≤ i ≤ k)

[

δ(H) =
∑2k

j=1 δ(Hj)

= 3(2i − 1) + 2(2k − 2i + 1)

]

⇐⇒ (∃i : 1 ≤ i ≤ k) [ δ(H) = 4k + 2i − 1 ]

⇐⇒ δ(H) ∈ {4k + 1, 4k + 3, . . . , 6k − 1}
⇐⇒ f(G1, G2, . . . , G2k) = H ∈ Exact-Mk-DNP.

Equation (3.3) from Lemma 3.2 is satisfied and thus Exact-Mk-DNP is com-
plete for BH2k(NP).

Note that the case k = 1 resembles Theorem 3.1, where it was shown
that Exact-5-DNP is complete for the class DP = BH2(NP).

3.4 Harder Questions on Domination

In Section 3.1, it was shown that t-DNP is NP-complete for t ≥ 3. In
Section 3.2, it was shown that Exact-t-DNP is DP-complete for t ≥ 5, and
rising even higher in the boolean hierarchy over NP, it was proven that
the set Exact-Mk-DNP is complete for BH2k(NP). If the boolean hierarchy
over NP does not collapse, i.e., if for each level i with i ≥ 0 it is BHi(NP)
properly contained in BHi+1(NP), every follow-up problem was a little bit
harder to solve than the previous one. This section deals with even harder
questions concerned about the domatic number of graphs. The following
definition introduces problems that stand slightly higher above BH(NP),
the boolean closure over NP.

Definition 3.2 We define the following variants of the domatic number
problem:

DNP− Odd = {G | G is a graph such that δ(G) is odd},
DNP− Equ = {(G, H) | G and H are graphs such that δ(G) = δ(H)},
DNP− Geq = {(G, H) | G and H are graphs such that δ(G) ≥ δ(H)}.
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The following Theorem is due to Wagner [Wag87]. It gives a sufficient
condition proving the PNP

|| -hardness of a given problem B. The given con-
dition is similar to the one given in Lemma 3.2, except that the value for
the integer k is not fixed.

Lemma 3.3 Let A be some NP-complete problem, and B be an arbitrary
problem. If there exists a polynomial-time computable function f such that
the equivalence

||{i | xi ∈ A}|| is odd ⇔ f(x1, x2, . . . , x2k) ∈ B (3.6)

is true for each k ≥ 1 and for all strings x1, x2, . . . , x2k ∈ Σ∗ satisfying
that for each j with 1 ≤ j ≤ 2k, xj+1 ∈ A implies xj ∈ A, then B is hard
for PNP

|| .

With the help of this lemma, the variants of many NP-complete opti-
mization problems were proven to be PNP

|| -hard, for example the problem of

determining whether the chromatic number of a graph G is odd [Wag87], or
deciding the winner of Young elections [RSV03], and the winner of Carroll
elections [HHR97a, HHR97b].

Theorem 3.3 The problems DNP− Odd, DNP− Equ, and DNP− Geq each
are PNP

|| -complete.

Proof. Each problem is easily seen to be a member of PNP
|| . Given as an

oracle the NP set k-DNP, the domatic number of any graph G with n vertices
can be determined exactly by n parallel queries to this set. 1 We will now
prove the PNP

|| -hardness of the three problems given above. For DNP− Odd,
this follows immediately from the reduction in the proof of Theorem 3.2, as
the resulting graph H is odd if and only if an odd number of input graphs Gi

with 1 ≤ i ≤ 2k is three-colorable. Applying Lemma 3.6, this shows that
the set DNP− Odd is PNP

|| -hard.

We now show that DNP− Equ is PNP
|| -hard. This result immediately

yields PNP
|| -hardness of the set DNP− Geq. Apply Lemma 3.6 with A being

the NP-complete problem 3-COLOR and B being the set DNP− Equ. Fix k ≥ 1

1As PNP
|| = PNP[O(log)], the corresponding algorithm using a DTM with the oracle NP

set k-DNP can determine the domatic number of any graph by binary search in polynomial
time.
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and 2k graphs G1, G2, . . . , G2k satisfying that if Gi+1 is three-colorable, so
is Gi, where 1 ≤ i < 2k. We can rewrite Equation (3.6) as

||{i | xi ∈ A}|| is even ⇔ f(x1, x2, . . . , x2k) ∈ B, (3.7)

since the class PNP
|| with its basis polynomial-time DTM is closed under

complement.
We will construct a polynomial-time many-one reduction f satisfying

Equation (3.7) as follows. Recall the construction from Theorem 3.2, where
the first step was to apply reduction g from Lemma 3.1 on the input
graphs Gi with 1 ≤ i ≤ 2k to generate graphs Hi = g(Gi) satisfying
the implications (3.1) and (3.2). Let × denote the associative operation
on graphs that was defined in detail in the proof of Theorem 3.2 and was
used to sum up the domatic numbers of the given graphs. Note that the
triangle structure resulting from reduction g could be utilized to obtain such
an operation. We define two graphs:

Godd = H1 × H3 × · · · × H2k−1,

Geven = H2 × H4 × · · · × H2k.

It remains to prove both directions from Equation (3.7). From left to right
we have

||{i | Gi ∈ 3-COLOR}|| is even

=⇒ (∀i : 1 ≤ i ≤ k) [δ(H2i−1) = δ(H2i)]

=⇒
∑

1≤i≤k

δ(H2i−1) =
∑

1≤i≤k

δ(H2i)

=⇒ δ(Godd) = δ(Geven)

=⇒ 〈Godd, Geven〉 = f(G1, G2, . . . , G2k) ∈ DNP− Equ.

From right to left we have:

||{i | Gi ∈ 3-COLOR}|| is odd

=⇒ (∃i : 1 ≤ i ≤ k)

[

δ(H2i−1) = 3 ∧ δ(H2i) = 2 and
δ(H2j−1) = δ(H2j) for j 6= i

]

=⇒ −1 +
∑

1≤i≤k

δ(H2i−1) =
∑

1≤i≤k

δ(H2i)

=⇒ δ(Godd) − 1 = δ(Geven)

=⇒ 〈Godd, Geven〉 = f(G1, G2, . . . , G2k) /∈ DNP− Equ.
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Lemma 3.6 implies that DNP− Equ is PNP
|| -complete.

The same reduction also shows that DNP− Geq is PNP
|| -hard, thus the

set DNP− Geq is PNP
|| -complete.



Chapter 4

Generalized Dominating Sets

4.1 A General Framework

Graph partitioning problems appear in various forms and variants. To cap-
ture a large number of partitioning problems with one simple definition (in
our particular case partitioning into dominating sets), Heggernes and Telle
introduced a general notion in their paper “Partioning Graphs into Gener-
alized Dominating Sets” [HT98]. Each set of the partition is characterized
by two parameters σ and ρ, which restrict the number of vertices in the
neighborhood of each vertex. As the problems to be defined are optimiza-
tion problems (either maximum or mimimum), we are able to define exact
versions of such generalized dominating sets. The complexity of the exact
versions will be the topic of the next section.

Adopting the definitions by Heggernes and Telle [HT98], we now define
the notions of (σ, ρ)-sets and (k, σ, ρ)-partitions.

Definition 4.1 Let G = (V, E) be a given graph, let σ ⊆ N and ρ ⊆ N be
given sets, and let k be a positive integer.

• A subset V ′ ⊆ V of the vertices of G is said to be a (σ, ρ)-set if and
only if for each v ∈ V ′, ||N(v) ∩ V ′|| ∈ σ, and for each v 6∈ V ′, it
is ||N(v) ∩ V ′|| ∈ ρ.

• A (k, σ, ρ)-partition of G is a partition of V into k pairwise disjoint
subsets V1, V2, . . . , Vk with V = ∪k

i=1Vi such that for each i the set Vi

is a (σ, ρ)-set, where 1 ≤ i ≤ k.

41
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• Define the problem

(k, σ, ρ)-Partition

= {G | G is a graph that has a (k, σ, ρ)-partition}.

The values of particular interest for the parameters σ and ρ are the sets
{0}, {0, 1}, {1}, N, and N

+, however the value ρ = {0} is not considered.
Note that for each σ, problem (k, σ, {0})-Partition is restricted to graphs
G = (V, E) such that the vertex set V can be partitioned into k disjoint
cliques V1, V2, . . . , Vk of size i + 1, where i ∈ σ. This property can be
recognized in polynomial time for any value of k and σ, thus these problems
are easy to solve and need not to be examined any further.

4.2 NP-Completeness Results

In Definition 4.1, restrict parameter σ to the sets {0}, {0, 1}, {1}, N, and N
+,

and restrict parameter ρ to the sets {0, 1}, {1}, N, and N
+. For many of

the 5 · 4 = 20 possible combinations, Heggernes and Telle provide the ex-
act bound where the corresponding problem (k, σ, ρ)-Partition switches
from being efficiently solvable to intractability [HT98]. That is, they deter-
mine the precise value k for which the set (k, σ, ρ)-Partition is complete
for NP, but the set (k − 1, σ, ρ)-Partition is solvable within polynomial
time. Table 4.1 gives an overview of their (and previously known) results.

ρ N N
+ {1} {0, 1}

σ
N ∞− 3+ 2 ∞−

N
+ ∞− 2+ 2 ∞−

{1} 2− 2 3 3−

{0, 1} 2− 2 3 3−

{0} 3− 3 4 4−

Table 4.1: NP-completeness for the problems (k, σ, ρ)-Partition

Recall Definition 2.13 of the domatic number problem, which is a par-
titioning problem as well. For a given graph G = (V, E), each dominating
set D of G has to satisfy the condition that every vertex v ∈ V −D has to
be adjacent to at least one vertex in D. That is, ||N [v]∩D|| ≥ 1 which can
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be rephrased to ||N(v) ∩ D|| ∈ N
+, as it is v ∈ V − D. Since no constraint

exists regarding the neighborhood of vertices v ∈ D, k-DNP is nothing else
than problem (k, N, N+)-Partition. As we know from Lemma 3.1, the do-
matic number problem k-DNP is NP-complete for all k ≥ 3, whereas Fact 2.1
states that 2-DNP lies in P. Therefore, the corresponding entry in Table 4.1
is “3” for σ = N and ρ = N

+.

A value of ∞ in Table 4.1 means that this problem is efficiently solvable
for all values of k. The marks “+” and “−” on some problems can be
explained after the following definition.

Definition 4.2 Let k be a positive integer and σ and ρ be sets chosen
among {0}, {1}, {0, 1}, N, and N

+. We say that (k, σ, ρ)-Partition is
a minimum problem if and only if

(k, σ, ρ)-Partition ⊆ (k + 1, σ, ρ)-Partition

for each k ≥ 1, and we say that (k, σ, ρ)-Partition is a maximum problem
if and only if

(k + 1, σ, ρ)-Partition ⊆ (k, σ, ρ)-Partition

for each k ≥ 1.

The problems in Table 4.1 that are marked by a “+” are maximum prob-
lems, and the problems that are marked by a “−” are minimum problems
in the above sense. The following fact states this property, and it will be
verified by the subsequent short proof.

Fact 4.1 The following facts are true for the set (k, σ, ρ)-Partition:

• For each positive integer k, for each σ ∈ {N, N+, {0}, {0, 1}, {1}}, and
for each ρ ∈ {N, {0, 1}}, it holds that

(k, σ, ρ)-Partition ⊆ (k + 1, σ, ρ)-Partition.

• For each positive integer k and for each σ ∈ {N, N+}, it holds that

(k + 1, σ, N+)-Partition ⊆ (k, σ, N+)-Partition.
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Proof. To see that all sets (k, σ, ρ)-Partition with ρ = N are minimum
problems, note that we obtain a (k + 1, σ, N)-partition from a (k, σ, N)-
partition by simply adding the empty set Vk+1 = ∅. The proof for the
case ρ = {0, 1} is analogous.

To prove that the (k, σ, ρ)-Partition problems with σ ∈ {N, N+} and
ρ = N

+ are maximum problems, note that once we have found a par-
tition into k + 1 pairwise disjoint (σ, N+)-sets V1, V2, . . . , Vk+1, the sets
V1, V2, . . . , Vk−1, V

′
k with V ′

k = Vk ∪ Vk+1 remain (σ, N+)-sets as well and
thus form a (k, σ, N+)-partition.

The entries in Table 4.1 that are marked neither by a “+” nor by a “−”
are neither maximum nor minimum problems in the sense defined above.
That is, it does neither hold that

(k + 1, σ, ρ)-Partition ⊆ (k, σ, ρ)-Partition,

nor does it hold that

(k, σ, ρ)-Partition ⊆ (k + 1, σ, ρ)-Partition,

since for each k ≥ 1, there exist graphs G such that G is a member of
the set (k, σ, ρ)-Partition but G is not contained in (`, σ, ρ)-Partition for
any ` ≥ 1 with ` 6= k. We will give specific examples for graphs with these
properties in three of the cases which are unmarked in Table 4.1.

For example, consider the set (k, {1}, {1})-Partition. By definition,
this problem contains all graphs G = (V, E) that can be partitioned into k
subsets V1, V2, . . . , Vk such that, for each i, if v ∈ Vi then ||N(v) ∩ Vi|| = 1,
and if v 6∈ Vi then ||N(v) ∩ Vi|| = 1. It follows that every graph in the
set (k, {1}, {1})-Partition must be k-regular; that is, every vertex has
degree k, see Definition 2.7. Hence, for all k ≥ 1, (k, {1}, {1})-Partition
and (k + 1, {1}, {1})-Partition are disjoint, so neither

(k, {1}, {1})-Partition ⊆ (k + 1, {1}, {1})-Partition, nor

(k + 1, {1}, {1})-Partition ⊆ (k, {1}, {1})-Partition.

The complete graph Kn with n vertices connects each pair of vertices
with an edge, that is, every pair of vertices is adjacent. Looking at prob-
lem (k, {0}, N+)-Partition, graph Kn is in (n, {0}, N+)-Partition but
not in (k, {0}, N+)-Partition for any k ≥ 1 with k 6= n. Almost the
same argument applies to the case σ = N and ρ = {1}, except that
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now Kn is contained in (k, N, {1})-Partition for k ∈ {1, n} but not in
(`, N, {1})-Partition for any ` ≥ 1 with ` 6∈ {1, n}. Similar arguments
work in the other cases.

As we are interested in the exact versions of the generalized dominating
set problems, we will focus our attention on (k, σ, ρ)-Partition problems
that are minimum or maximum problems in the above sense. The chal-
lenge for each graph G is to find the exact cutoff point k such that it
holds G ∈ (k, σ, ρ)-Partition but G 6∈ (k + 1, σ, ρ)-Partition in the max-
imum case, and G ∈ (k, σ, ρ)-Partition but G 6∈ (k − 1, σ, ρ)-Partition
in the minimum case respectively.

4.3 Exact Partitioning Problems

First we will formally define the exact versions of the generalized dominating
set problems.

Definition 4.3 Let σ and ρ be sets chosen among N, N
+, {0}, {0, 1},

and {1}, and let k be a positive integer. We define the exact version of
the problem (k, σ, ρ)-Partition by

Exact-(k, σ, ρ)-Partition

= (k, σ, ρ)-Partition ∩ (k − 1, σ, ρ)-Partition

if k ≥ 2 and (k, σ, ρ)-Partition is a minimum problem and

Exact-(k, σ, ρ)-Partition

= (k, σ, ρ)-Partition ∩ (k + 1, σ, ρ)-Partition

if k ≥ 1 and (k, σ, ρ)-Partition is a maximum problem.

For instance, (k, N, N+)-Partition is equal to k-DNP, which is a max-
imization problem. Its exact version Exact-t-DNP was dealt with in the
previous section. In contrast, the problem (k, {0}, N)-Partition is equal to
the minimization k-colorability problem, where graph G needs to be parti-
tioned into k vertex disjoint independent sets. The computational complex-
ity of the problem Exact-(k, {0}, N)-Partition was determined precisely by
Rothe [Rot03], who proved the DP-completeness for all values k ≥ 4. Since
the problem Exact-(k, {0}, N)-Partition lies within NP for k ≤ 3, the ex-
act version of the colorability problem cannot be DP-complete for k ≤ 3
unless the boolean hierarchy over NP collapses.
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The following fact points out DP membership for all problems which can
be defined in the exact sense as in Definition 4.3. To prove completeness for
the class DP, it then remains to show that each of these problems is DP-
hard, which will be established for three more sets in this section.

Fact 4.2 Let σ and ρ be sets chosen among N, N
+, {0}, {0, 1}, and {1},

let k be a positive integer, and let (k, σ, ρ)-Partition be a maximum or
minimum problem. Then, Exact-(k, σ, ρ)-Partition is contained in DP.

4.3.1 The Case σ = N
+ and ρ = N

+

In contrast to the domatic number problem, every set of a partition of a
given graph G into (N+, N+)-sets V1, V2, . . . , Vk must not only be a domi-
nating set of G, but Vi additionally has to dominate itself in the sense that
each vertex u ∈ Vi has to be adjacent to another vertex v ∈ Vi. Clearly
the set (k, N+, N+)-Partition is a maximum problem, see Fact 4.1. Anal-
ogously to the definition of the domatic number δ(G) of a graph G, see
Definition 2.13, we will introduce a parameter for the maximum number of
(N+, N+)-sets into which a given graph G can be partitioned.

Definition 4.4 For every graph G, we define the maximum value k for
which G has a (k, N+, N+)-partition as follows:

γ(G) = max{k ∈ N
+ | G ∈ (k, N+, N+)-Partition}.

Theorem 4.1 The problem Exact-(k, N+, N+)-Partition is DP-complete
for each k ≥ 3.

Proof. By Fact 4.2, the set Exact-(k, N+, N+)-Partition is a member of
the class DP, therefore it leaves to show that Exact-(k, N+, N+)-Partition
is DP-hard for k ≥ 3.

First we show that Exact-(k, N+, N+)-Partition can easily be reduced
to Exact-(k + 1, N+, N+)-Partition, thus it suffices to prove the theorem
for the case k = 3. The following polynomial-time many-one reduction g
maps an input graph G to G′ = g(G) such that γ(G′) = γ(G) + 1. Given
G = (V, E), define two vertex disjoint graphs G1 = G ⊕ x = (V1, E1)
and G2 = G ⊕ y = (V2, E2), where x and y are additional vertices that
are connected to every other vertex representing graph G. We conclude
reduction g by setting G′ = (V ′, E ′) with

V ′ = V1 ∪ V2,

E ′ = E1 ∪ E2 ∪ {x, y}.
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It is easy to see that γ(G) = k implies γ(G′) ≥ γ(G)+1 = k +1. Given the
(N+, N+)-sets D1, D2, . . . , Dk for graph G, keep all vertices in V ′ originating
from graph G in the same sets Di, 1 ≤ i ≤ k, which are all vertices in V1

except x, and all vertices in V2 except y, respectively. Then define the set
Dk+1 = {x, y}, which is a (N+, N+)-set for G′ as well. To show that it
holds γ(G′) ≤ γ(G) + 1, suppose that γ(G′) = γ(G) + 2 = k + 2 by the
(N+, N+)-sets D1, D2, . . . , Dk+2. Let x ∈ Di for i ∈ {1, 2, . . . k+2}. Looking
at the subgraph G′[V1−{x}] = G, put all vertices belonging to the set Di to
another (N+, N+)-set Dj with j ∈ {1, 2, . . . k+2} and j 6= i. This yields k+1
vertex disjoint sets of G which are (N+, N+)-sets. This is a contradiction to
the assumption γ(G) = k.

Having established this easy chain of reductions, we now return to the
main proof and show that Exact-(k, N+, N+)-Partition is DP-hard for the
value k = 3. In their paper [HT98], Heggernes and Telle presented a reduc-
tion from the problem NAE-3-SAT to the problem (2, N+, N+)-Partition to
prove the latter problem NP-complete, see Definition 2.9 for the description
of the NP-complete problem NAE-3-SAT. We will use a slight modification
of this reduction to prove the claim of Theorem 4.1. As input, let two
boolean formulas ϕ1 = (X, Ĉ) and ϕ2 = (Y, D̂) be given with disjoint vari-
able sets X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yr}. The clause sets are
defined by Ĉ = {c1, c2, . . . , cm} and D̂ = {d1, d2, . . . , ds}. Without loss of
generality, we assume that each of the two variable sets has cardinality at
least two, and that every literal appears in at least one clause. Otherwise
we can either add additional variables to the set, or in the second case, for
each literal li not appearing in any clause, we can add (li ∨ li) to the clause
set without altering membership in NAE-3-SAT for ϕ1 or ϕ2.

For any clause c = (l1∨l2∨l3), define č = (l1∨l2∨l3), where l1, l2, and l3,
respectively, denotes the negation of the literal l1, l2, and l3. Note that for
the same truth assignment t, clause c is satisfied in the not-all-equal sense
under t if and only if assignment t satisfies č in the same sense. Therefore,
when we define the clause sets Č = {č1, č2, . . . , čm} and Ď = {ď1, ď2, . . . , ďs},
as well as C = Ĉ ∪ Č and D = D̂ ∪ Ď, we can conclude that:

(X, C) ∈ NAE-3-SAT ⇐⇒ (X, Ĉ) ∈ NAE-3-SAT

⇐⇒ (X, Č) ∈ NAE-3-SAT

and

(Y, D) ∈ NAE-3-SAT ⇐⇒ (Y, D̂) ∈ NAE-3-SAT

⇐⇒ (Y, Ď) ∈ NAE-3-SAT.
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Again we apply Lemma 3.2 with k = 1 being fixed, with NAE-3-SAT
being the NP-complete problem A, and with Exact-(3, N+, N+)-Partition
being the set B from this lemma. Let two boolean formulas ϕ1 and ϕ2 be
given such that ϕ2 ∈ NAE-3-SAT implies ϕ1 ∈ NAE-3-SAT. We will construct
a polynomial-time many-one reduction f which maps the two boolean for-
mulas ϕ1 and ϕ2 to a graph G = f(ϕ1, ϕ2) with the property:

(ϕ1 ∈ NAE-3-SAT ∧ ϕ2 6∈ NAE-3-SAT) ⇐⇒ γ(G) = 3. (4.1)

We will describe reduction f in the following. At first we will extend
the two formulas ϕ1 = (X, Ĉ) and ϕ2 = (Y, D̂) as in the construction
given above by introducing the “negated” clauses and hereby doubling the
clause sets Ĉ and D̂ by adding Č and Ď. We get ϕ′

1 = (X, Ĉ ∪ Č) and
ϕ′

2 = (Y, D̂ ∪ Ď). Next, we create an 8-clique A with vertices a1, a2, . . . , a8

for ϕ′
1 and an eight clique B with vertices b1, b2, . . . , b8 for ϕ′

2. Let the vari-
able sets of the formulas be X = {x1, x2, . . . , xn}, and Y = {y1, y2, . . . , yr}
respectively. The clause sets C = Ĉ ∪ Č and D = D̂ ∪ Ď consist of
ĉ1, ĉ2, . . . , ĉm, č1, č2, . . . , čm, and d̂1, d̂2, . . . , d̂s, ď1, ď2, . . . , ďs respectively. For
each i with 1 ≤ i ≤ n, two vertices xi and xi are created for the variable xi.
For each j, 1 ≤ j ≤ r, two vertices, yj and yj are created for the variable
yj. We connect xi and xi to the two vertices a1 and a2 of A, also each of
the vertices yj and yj is connected to the two vertices b1 and b2 of B. For
each pair of variables {xi, yj}, we create one vertex ui,j that is connected
to the four vertices xi, xi, yj, and yj , thereby adding n · r more vertices to
the construction. Finally, we create one vertex for each clause in C and D,
thus the vertices ĉi and č with 1 ≤ i ≤ m, and d̂j and ďj with 1 ≤ j ≤ s
are created for each clause in C and D. We connect each of these clause
vertices to the vertices representing the literals it contains. Analogously to
the literal vertices, each of the clause vertices ĉi and či with 1 ≤ i ≤ m is
connected to a1 and a2, and each of the clause vertices d̂j and ďj, 1 ≤ j ≤ s,
is connected to b1 and b2. This completes the construction of the graph
G = f(ϕ1, ϕ2).

Figure 4.1, which is taken from [RR06b], shows the graph G resulting
from the reduction f applied to the two formulas

ϕ1 = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) and

ϕ2 = (y1 ∨ y2 ∨ y3) ∧ (y1 ∨ y2 ∨ y3).

Note that γ(G) ≤ 4, since the degree of each ui,j is four. We have three
cases to distinguish, as was the case in the proof for the DP-completeness
of the exact domatic number problem in Theorem 3.1.
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Figure 4.1: Graph G = f(ϕ1, ϕ2)

Case 1: [ϕ1 ∈ NAE-3-SAT and ϕ2 ∈ NAE-3-SAT] Since γ(G) ≤ 4 as
noted above, it suffices to construct four (N+, N+)-sets for G to prove
that γ(G) = 4. Let t be a truth assignment for ϕ1, and let t′ be a
truth assignment for ϕ2, satisfying the corresponding formulas in the
not-all-equal sense. Our partition into four (N+, N+)-sets V1, V2, V3,
and V4 goes as follows:

V1 = Ĉ ∪ Č ∪ {a5, a6} ∪ {b1, b3}
∪ {x | x is a literal over X and t(x) = true},

V2 = {ui,j | (1 ≤ i ≤ n − 1 ∧ j = 1) ∨ (i = n ∧ 2 ≤ j ≤ r)}
∪{a7, a8} ∪ {b2, b4}
∪{x | x is a literal over X and t(x) = false},

V3 = D̂ ∪ Ď ∪ {a1, a3} ∪ {b5, b6}
∪ {y | y is a literal over Y and t̃(y) = true},

V4 = {ui,j | (i = n ∧ j = r) ∨ (1 ≤ i ≤ n − 1 ∧ 2 ≤ j ≤ r)}
∪{a2, a4} ∪ {b7, b8}
∪{y | y is a literal over Y and t̃(y) = false}.

Thus, γ(G) ≥ 4. As noted above, this implies γ(G) = 4 in this case.

Case 2: [ϕ1 ∈ NAE-3-SAT and ϕ2 /∈ NAE-3-SAT] Let t be a truth assign-
ment satisfying ϕ1. Just as in Case 1, we can partition G into three
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(N+, N+)-sets V1, V2, and V3 as follows to prove γ(G) ≥ 3:

V1 = Ĉ ∪ Č ∪ {a5, a6} ∪ {b1, b3}
∪ {x | x is a literal over X and t(x) = true},

V2 = {ui,j | 1 ≤ i ≤ n ∧ 1 ≤ j ≤ r} ∪ {a7, a8} ∪ {b2, b4}
∪ {x | x is a literal over X and t(x) = false},

V3 = D̂ ∪ Ď ∪ {a1, a2, a3, a4} ∪ {b5, b6, b7, b8}
∪ {y | y is a literal over Y }.

Thus, 3 ≤ γ(G) ≤ 4. To show that γ(G) = 3, suppose that it
holds γ(G) = 4, and let the partition of G into four (N+, N+)-sets
be given by U1, U2, U3, and U4. Vertex u1,1 is adjacent to exactly four
vertices, namely to x1, x1, y1, and y1. These four vertices must then
be in four distinct sets of the partition. Without loss of generality,
suppose that x1 ∈ U1, x1 ∈ U2, y1 ∈ U3, and y1 ∈ U4. For each j
with 2 ≤ j ≤ r, the vertices yj and yj are connected to x1 and x1 via
vertex u1,j, so it follows that either yj ∈ U3 and yj ∈ U4, or yj ∈ U4

and yj ∈ U3.

Every clause vertex d̂j, 1 ≤ j ≤ r, is connected only to the vertices
representing its literals and to the vertices b1 and b2, which there-
fore must be in the sets U1 and U2, respectively. Thus, every clause
vertex d̂j is connected to at least one literal vertex in U3 and to at
least one literal vertex in U4. This describes a valid truth assignment
for ϕ2 in the not-all-equal sense. This is a contradiction to the case
assumption that ϕ2 /∈ NAE-3-SAT.

Case 3: [ϕ1 6∈ NAE-3-SAT and ϕ2 6∈ NAE-3-SAT] Analogously to the
above two cases, we give a partition of G into two (N+, N+)-sets to
show that γ(G) ≥ 2:

V1 = {ui,j | 1 ≤ i ≤ n ∧ 1 ≤ j ≤ r} ∪ {xi | 1 ≤ i ≤ n}
∪ {yj | 1 ≤ j ≤ r} ∪ {a1, a3, a5, a7} ∪ {b1, b3, b5, b7},

V2 = Ĉ ∪ Č ∪ D̂ ∪ Ď ∪ {xi | 1 ≤ i ≤ n} ∪ {yj | 1 ≤ j ≤ r}
∪ {a2, a4, a6, a7} ∪ {b2, b4, b6, b8}.

It follows that 2 ≤ γ(G) ≤ 4. By the same argument as in the
second case, we can show that γ(G) 6= 4. To prove that it even holds
that γ(G) < 3, suppose that γ(G) = 3, and let the partition of G
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into three (N+, N+)- sets be given by U1, U2, and U3. Without loss of
generality, assume that the vertices x1 and x1 belong to distinct sets
Ui. Otherwise, following the argumentation in the second case, each
yj and yj must belong to distinct sets Ua and Ub, with a 6= b, since
u1,j is only adjacent to the vertices x1, x1, yj, and yj. This would lead
to a symmetric argument, thus suppose it is x1 ∈ U1 and x1 ∈ U2.

It follows that for each j with 1 ≤ j ≤ r, at least one of yj or yj has
to be in U3. We will pick one subcase and prove that it cannot hold
that γ(G) = 3. All other subcases can be treated analogously. We
will restrict our attention to the case that both vertices yj and yj are
in U3. It follows that

(∀i : 1 ≤ i ≤ n) [(xi ∈ U1 ∧ xi ∈ U2) ∨ (xi ∈ U2 ∧ xi ∈ U1)]. (4.2)

Since it is ϕ1 6∈ NAE-3-SAT, there exists at least one clause ĉi ∈ Ĉ for
each truth assignment t for ϕ1 such that ĉi = (l1 ∨ l2 ∨ l3) and the
literals l1, l2, and l3 are either simultaneously true or simultaneously
false under t. The same is true for the corresponding negated clause či,
since it contains the negations of the literals l1, l2, and l3, and all three
truth values are flipped under t. In other words, it is t(l1) = 1− t(l1),
t(l2) = 1 − t(l2), and t(l3) = 1 − t(l3). Since the corresponding clause
vertex ĉi is adjacent to l1, l2, l3, a1, and a2, it follows that l1, l2, and l3
are in the same set of the partition, say in U1. Thus it follows that
either a1 ∈ U2 and a2 ∈ U3, or a1 ∈ U3 and a2 ∈ U2. Similarly, since
the clause vertex či is adjacent to l1, l2, l3, a1, and a2, the vertices l1,
l2, l3 are in the same set of the partition that must be distinct from
U1. Let U2, say, be this set. It follows that either a1 ∈ U1 and a2 ∈ U3,
or a1 ∈ U3 and a2 ∈ U1, which is a contradiction.

Each of the remaining subcases can be reduced to the case in Equa-
tion (4.2), and the above contradiction follows. Hence we can con-
clude γ(G) = 2.

By construction the case “ϕ1 6∈ NAE-3-SAT and ϕ2 ∈ NAE-3-SAT” can-
not occur, since this would contradict that ϕ2 ∈ NAE-3-SAT implies ϕ1 ∈
NAE-3-SAT. Thus, the case distinction is complete and we obtain:

||{i | ϕi ∈ NAE-3-SAT}|| is odd

⇐⇒ ϕ1 ∈ NAE-3-SAT ∧ ϕ2 6∈ NAE-3-SAT

⇐⇒ γ(G) = 3,
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which proves the correctness of Equation (4.1) and thereby fulfilling Equa-
tion (3.3) of Lemma 3.2. This completes our proof of DP-completeness of
the set Exact-(3, N+, N+)-Partition.

As was the case with the exact domatic number problem, we can give
a bound where Exact-(k, N+, N+)-Partition cannot be DP-complete un-
less the boolean hierarchy over NP collapses. Again, we fail to determine a
precise cutoff point where the exact version of the maximum problem mi-
grates from DP-completeness to coNP-membership. Still, we observe that
the set Exact-(1, N+, N+)-Partition is in coNP (and even coNP-complete)
and therefore cannot be DP-complete unless the boolean hierarchy over NP
collapses to its first level.

Theorem 4.2 Exact-(1, N+, N+)-Partition is coNP-complete.

Proof. Exact-(1, N+, N+)-Partition is in coNP, as it can be written as
the join of one set in P and one set in coNP

Exact-(1, N+, N+)-Partition = A ∩ B,

where A = (1, N+, N+)-Partition is decidable in polynomial time and thus
in P, and the set B = (2, N+, N+)-Partition is a member of NP by simply
nondeterministically guessing a partition into two (N+, N+)-sets. Notice
that the coNP-hardness of Exact-(1, N+, N+)-Partition is established by
the original reduction from NAE-3-SAT to (2, N+, N+)-Partition presented
by Heggernes and Telle [HT98].

In the next subsections of this chapter, we will analyze the minimum
problems Exact-(k, σ, N)-Partition, where σ is chosen among the sets
{N, N+, {0}, {0, 1}, {1}}. Depending on the value of k ≥ 2, we ask how
hard it is to decide whether a given graph G has a (k, σ, N)-partition but
not a (k − 1, σ, N)-partition.

4.3.2 The Case σ = {0} and ρ = N

The case σ = {0} corresponds to the k-colorability problem. Given as input
a graph G = (V, E), we need to find a partition into the minimum number
of independent sets. Strengthening the result obtained by Wagner [Wag87],
Rothe obtained the following DP-completeness result for the exact version
of the colorability problem [Rot03].
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Theorem 4.3 The problem Exact-k-COLOR is DP-complete for k ≥ 4.

Generalizing this result, Rothe [Rot03] further obtained completeness
results in the boolean hierarchy over NP for the sets Exact-Mk-COLOR, where
for a given graph G and k positive integers contained in the set Mk, the
question is whether χ(G) is equal to one of the values in Mk.

Theorem 4.4 For fixed k ≥ 1 and Mk = {3k + 1, 3k + 3, . . . , 5k − 1}, the
problem Exact-Mk-COLOR is BH2k(NP)-complete.

4.3.3 The Cases σ ∈ {N, N+} and ρ = N

As noted by Heggernes and Telle [HT98], the corresponding minimiza-
tion problems (k, N, N)-Partition and (k, N+, N)-Partition are solvable
in polynomial time for each k ≥ 1, which outright implies that the exact
versions Exact-(k, N, N)-Partition and Exact-(k, N+, N)-Partition lie in
the class P as well.

4.3.4 The Case σ = {0, 1} and ρ = N

We will first define a parameter for every graph G that equals the minimum
number of ({0, 1}, N)-sets into which graph G can be partitioned.

Definition 4.5 For every graph G, define the minimum value of k for
which G has a (k, {0, 1}, N)-partition as follows:

α(G) = min{k ∈ N
+ | G ∈ (k, {0, 1}, N)-Partition}.

Theorem 4.5 For each k ≥ 5, the set Exact-(k, {0, 1}, N)-Partition is
complete for DP.

Proof. By Fact 4.2, Exact-(k, {0, 1}, N)-Partition is contained in DP
for all k ≥ 1. To prove that Exact-(k, {0, 1}, N)-Partition is DP-hard
for all k ≥ 5, it suffices to prove DP-hardness for the case k = 5. A
polynomial-time many-one reduction g from Exact-(k, {0, 1}, N)-Partition
to Exact-(k + 1, {0, 1}, N)-Partition is easily given by simply adding a ver-
tex v to the input graph G = (V, E) and connecting it to every other vertex
in V . If we call the resulting graph G′ = g(G), it is α(G′) = α(G) + 1.
To prove DP-hardness of the set Exact-(5, {0, 1}, N)-Partition, we again
apply Wagner’s Lemma 3.2 with k = 1 being fixed, with 1-3-SAT being
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the NP-complete problem A, and with Exact-(5, {0, 1}, N)-Partition be-
ing the set B from this lemma. The NP-complete problem 1-3-SAT was
described in Definition 2.9 of Chapter 2. Instead of the standard reduction
by Schaefer [Sch78], we will make use of a polynomial-time many-one reduc-
tion f from 1-3-SAT to the problem (2, {0, 1}, N)-Partition by Heggernes
and Telle [HT98]. The reduction f has the following properties for a given
boolean formula ϕ:

ϕ ∈ 1-3-SAT =⇒ α(f(ϕ)) = 2 (4.3)

ϕ 6∈ 1-3-SAT =⇒ α(f(ϕ)) = 3. (4.4)

We will give a short description of reduction f , which we will use to prove
the claim of Theorem 4.5. Let the boolean formula ϕ = ϕ(X, C) over
the variable set X = {x1, x2, . . . , xn} be given. Recalling the remark after
Definition 2.9, we may assume that all literals in each of the clauses in C are
positive, thus C can be seen as a collection S = {S1, S2, . . . , Sm} of m sets
containing exactly three elements over the variable set X. The polynomial-
time many-one reduction f from the set 1-3-SAT to (2, {0, 1}, N)-Partition
that maps boolean formula ϕ to a graph G = f(ϕ) goes as follows.

First, a 4-clique containing the vertices t1, t2, t3, and s is created. Then,
for each set Si = {xi, yi, zi}, there is a 4-clique Ci in G induced by the
vertices xi, yi, zi, and ai. For each literal x, there is an edge ex in G.
Remember that ϕ contains only positive literals. For each Si in which x
occurs, both endpoints of ex are connected to the vertex xi in the clause Ci

corresponding to x ∈ Si. Finally, each clause element Ci is connected to
vertex s by an edge between s and ai. This completes the description
of reduction f . Figure 4.2 shows the graph G which resulted from the
transformation of formula ϕ = (x ∨ y ∨ z) ∧ (v ∨w ∨ x) ∧ (u ∨ w ∨ z) when
applied to reduction f . The figure is taken from [RR06b].

Reduction f is the basis for our construction to prove DP-hardness of
Exact-(5, {0, 1}, N)-Partition. The property of our reduction g is

(ϕ1 ∈ 1-3-SAT ∧ ϕ2 6∈ 1-3-SAT) ⇐⇒ α(g(ϕ1, ϕ2)) = 5 (4.5)

for any two given boolean formulas ϕ1 and ϕ2 such that ϕ2 ∈ 1-3-SAT implies
that ϕ1 ∈ 1-3-SAT. Once Equation (4.5) is fulfilled, we can apply Lemma 3.2
to prove that Exact-(5, {0, 1}, N)-Partition is DP-hard.

Reduction g is derived from the presented reduction f as follows. Given
the two boolean formulas ϕ1 and ϕ2 with disjoint variable sets, let G1,1

and G1,2 be two disjoint copies of the graph f(ϕ1), and let G2,1 and G2,2
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Figure 4.2: Reduction f from 1-3-SAT to the set (2, {0, 1}, N)-Partition

be two disjoint copies of the graph f(ϕ2). For i ∈ {1, 2}, we can then
define Gi to be the disjoint union of Gi,1 and Gi,2. As the final step, we
define the graph G = g(ϕ1, ϕ2) to be the join of the graphs G1 and G2; see
Definition 2.8 in Chapter 2. Summing up, we obtain

g(ϕ1, ϕ2) = G = G1 ⊕ G2 = (G1,1 ∪ G1,2) ⊕ (G2,1 ∪ G2,2).

For illustration, see Figure 4.3 which shows the graph G = g(ϕ1, ϕ2)
resulting from reduction g applied to the formulas

ϕ1 = (x ∨ y ∨ z) ∧ (v ∨ w ∨ x) ∧ (u ∨ w ∨ z) and

ϕ2 = (c ∨ d ∨ e) ∧ (e ∨ f ∨ g) ∧ (g ∨ h ∨ i) ∧ (i ∨ j ∨ c).

The figure is taken from [RR06b].
Let a = α(G1,1) = α(G1,2) and b = α(G2,1) = α(G2,2). For the two

graphs G1 and G2 resulting from the disjoint union, it holds that α(G1) = a
and α(G2) = b. Clearly, if we use the same partition on G = G1 ⊕ G2

as on G1 and G2, we can conclude that α(G) ≤ a + b. As we obtain 8-
cliques from joining pairs of 4-cliques, it must the case that α(G) ≥ 4,
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Figure 4.3: Reduction graph G = g(ϕ1, ϕ2) from Theorem 4.5

since the vertices in each 8-clique have to be partitioned into four different
({0, 1}, N)-sets.

Our goal is to prove that α(G) = α(G1) + α(G2) = a + b. Let ` = α(G).
Suppose that ` < a + b. We have to distinguish three cases:

Case 1: [a = b = 2] Statement ` < 4 contradicts property ` ≥ 4 of G,
and we are done.

Case 2: [a = 2 and b = 3] Suppose that ` = 4 < 5 = a + b and the
partition of G into four ({0, 1}, N)-sets is given by V1, V2, V2, and V4.
Then, one of the four disjoint ({0, 1}, N)-sets consists of at least one
vertex u in G1 and one vertex v in G2 (Otherwise we would obtain a
partition of G1 into less than two ({0, 1}, N)-sets, or a partition of G2

into less than three ({0, 1}, N)-sets, which contradicts Equation (4.3).)
Without loss of generality, let this set be V1. Since it is σ = {0, 1},
and u is adjacent to every vertex in G2, and v is connected to every
vertex in G1, we conclude for the set V1 that V1 = {u, v}. Then, for
each of the 8-cliques in G, no valid partition into four ({0, 1}, N)-sets
is possible, which is a contradiction to ` < 5. It follows that ` = 5.

Case 3: [a = b = 3] By the same argument used in Case 2, ` = 4 cannot
hold. So suppose that ` = 5, and that this is witnessed by a partition
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of G into the five vertex disjoint ({0, 1}, N)-sets V1, . . . , V5. With the
same argument as in Case 2, one of the sets in the partition must
contain exactly one vertex u from G1 and exactly one vertex v from
G2. Let this set be V1 = {u, v}. The set V1 must be the only set of
the partition containing one vertex from G1 and one vertex from G2.
Suppose otherwise, and let without loss of generality V2 = {w, x} be
this set. Then, at least one of the 8-cliques in G does not contain
any vertex from {u, v, w, x}, but a partition of the clique into three
({0, 1}, N)-sets is not possible. Therefore, every of the four remaining
sets V2, V3, V4, and V5 can only have vertices from either G1 or G2.
It follows that either two of these sets cover all vertices in G1 except
for vertex u, or two of these sets cover all vertices in G2 except for
vertex v. Suppose the first case holds, since the second case can be
treated analogously. Since vertex u belongs to either G1,1 or G1,2, we
have found a partition of the graphs G1,1 or G1,2 into two ({0, 1}, N)-
sets. This contradicts our assumption a = α(G1,1) = α(G1,2) = 3.
Hence, it is ` = 6.

Case a = 3 and b = 2 cannot occur, since the input formulas ϕ1 and ϕ2

have the property that ϕ2 ∈ 1-3-SAT implies ϕ1 ∈ 1-3-SAT.
Thus we have proven α(G) = α(G1) + α(G2). Equation (4.5) is fulfilled

and we can conclude

||{i | Hi ∈ 1-3-SAT}|| is odd

⇐⇒ H1 ∈ 1-3-SAT ∧ H2 /∈ 1-3-SAT

⇐⇒ α(G1) = 2 ∧ α(G2) = 3

⇐⇒ α(G) = 5.

Equation (3.3) of Lemma 3.2 is satisfied, and thereby we have proven
the DP-completeness of Exact-(5, {0, 1}, N)-Partition.

In contrast to Theorem 4.5, Exact-(2, {0, 1}, N)-Partition is in NP (and
even NP-complete) and thus cannot be DP-complete unless the boolean
hierarchy over NP collapses.

Theorem 4.6 Exact-(2, {0, 1}, N)-Partition is NP-complete.

Proof. Exact-(2, {0, 1}, N)-Partition can be written as

Exact-(2, {0, 1}, N)-Partition = A ∩ B
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with A = (2, {0, 1}, N)-Partition being a member of the class NP and with
the set B = (1, {0, 1}, N)-Partition being solvable in polynomial time.
Thus, it is Exact-(2, {0, 1}, N)-Partition ∈ NP. The NP-hardness follows
immediately via the reduction f by Heggernes and Telle defined in the proof
of Theorem 4.5, see Figure 4.2:

ϕ ∈ 1-3-SAT ⇐⇒ f(ϕ) ∈ Exact-(2, {0, 1}, N)-Partition.

Thus, problem Exact-(2, {0, 1}, N)-Partition is NP-complete.

The exact complexity of Exact-(k, {0, 1}, N)-Partition is still unknown
for the values k ∈ {3, 4}, and just as with the exact domatic number prob-
lem, the settlement of this question poses an interesting open problem.

4.3.5 The Case σ = {1} and ρ = N

The DP-completeness proof for the subcase σ = {1} and ρ = N can be di-
rectly derived from Theorem 4.5 in the previous subsection. We will intro-
duce another parameter for any given graph G, characterizing the number
of ({1}, N)-sets.

Definition 4.6 For every graph G, define the minimum value k for which
G has a (k, {1}, N)-partition as follows:

β(G) = min{k ∈ N
+ | G ∈ (k, {1}, N)-Partition}.

Theorem 4.7 For each k ≥ 5, the set Exact-(k, {1}, N)-Partition is com-
plete for DP.

Proof. Clearly α(G) ≤ β(G) holds for all graphs G = (V, E), since
every partition of a graph G into ({1}, N)-sets induces a partition of G
into ({0, 1}, N)-sets. Conversely, we prove that it is α(G) ≥ β(G). It is
enough to do so for all graphs G = f(ϕ) resulting from any given boolean
formula ϕ of 1-3-SAT via the reduction f in Theorem 4.5.

Suppose ϕ ∈ 1-3-SAT. Let ϕ = ϕ(X, C). Then, we have α(G) = 2 by the
following partition into two ({1}, N)-sets V1 and V2. Let t be the satisfying
truth assignment of ϕ in the one-in-three satisfiability sense, meaning that
each clause contains exactly one literal which is set to true by t. Remember
that every clause of C contains only positive literals over the variable set X.
For every x ∈ X with t(x) = 1, put the endpoints of the edge ex into V1.
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For each y ∈ X with t(y) = 0, put the endpoints of the edge ey into V2.
Then, every 4-clique {ai, l1, l2, l3} corresponding to a clause ci = {l1, l2, l3}
with 1 ≤ i ≤ m contains exactly one vertex lj , 1 ≤ j ≤ 3, that is adjacent
to the endpoints of an edge ex contained in the set V1. Add the vertices lj
and ai to V2, and add the other two literal vertices lk with 1 ≤ k ≤ 3
and k 6= j to the set V1. Finally, vertex s is added to the set V1, as is
one arbritrary vertex tj with 1 ≤ j ≤ 3. The remaining vertices tk with
1 ≤ k ≤ 3 and k 6= j can then be added to the set V2. Using the same
partition, we even get two ({1}, N)-sets for graph G, since every vertex of G
has exactly one neighbor that is in the same set of the partition as the
vertex itself. Hence, it is β(G) = 2.

Now suppose that ϕ 6∈ 1-3-SAT, then it is α(G) = 3. We can then
partition G into three ({1}, N)-sets in the following way. V1 consists of the
vertices s and t1 plus the endpoints of each edge ex for x ∈ X. The set V2

consists of t2 and t3, every vertex ai for each clause ci ∈ C, 1 ≤ i ≤ m, and
one more arbitrary vertex in the 4-clique ci. The two remaining vertices in
each ci are then put into the set V3. Thus it follows that α(G) = β(G). The
rest of the proof is analogous to the proof of Theorem 4.5.

In contrast to Theorem 4.7, Exact-(2, {1}, N)-Partition is in NP (and
even NP-complete) and thus cannot be DP-complete unless the boolean hi-
erarchy over NP collapses to its first level. The proof follows straightforward
from the proofs of Theorems 4.6 and 4.7 and is omitted here.

Theorem 4.8 Exact-(2, {1}, N)-Partition is NP-complete.

4.4 Summary of Results

We will sum up the DP-completeness results obtained in Section 4.3 for
the exact versions of partitioning graphs into generalized dominating sets.
Entries marked with an asterisk are results from this thesis.

The numbers in Table 4.2 have the following meaning. A value of ∞
marks those problems Exact-(k, σ, ρ)-Partition which are solvable in poly-
nomial time for all values k ≥ 1. Each entry in Table 4.2 consisting of two
values i | j indicates that the corresponding minimum (maximum) problem
Exact-(k, σ, ρ)-Partition is DP-complete for all k ≥ j, and NP-complete
(coNP-complete) for the value k = i. That is, each entry j gives the best
value of k for which the problem Exact-(k, σ, ρ)-Partition is known to be
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ρ N N
+

σ
N ∞∗ 2 | 5∗

N
+ ∞∗ 1 | 3∗

{1} 2 | 5∗ −
{0, 1} 2 | 5∗ −
{0} 3 | 4 −

Table 4.2: DP-completeness for the problems Exact-(k, σ, ρ)-Partition

complete for DP. As we can see, these values are not yet optimal. For
example, Exact-(5, {1}, N)-Partition is known to be complete for DP and
Exact-(2, {1}, N)-Partition is known to be complete for NP. But what
about Exact-(t, {1}, N)-Partition in the two cases t = 3 and t = 4?

Furthermore for the exact domatic number problem, the generalized
version Exact-Mk-DNP could be proven BH2k(NP)-complete. Unfortunately,
the DP-completeness results obtained in Subsections 4.3.1, 4.3.4, and 4.3.5
cannot be generalized to the higher levels of the boolean hierarchy over NP.
Again, the problem lies within the fact that it seems to be hard to perform
basic mathematical operations on graph properties whenever it comes to
the subject of domination.

In the next chapter we will return our focus to the domatic number prob-
lem. The NP-completeness of k-DNP for all k ≥ 3 presumably negates the
existence of a polynomial-time algorithm for partitioning graphs into the
maximum number of vertex disjoint dominating sets—otherwise we could
conclude P = NP. Therefore, our goal will be to construct exponential-
time algorithms running significantly faster than the trivial brute-force al-
gorithms that cycle through each potential solution.



Chapter 5

Exact Exponential-Time
Algorithms

5.1 Overview

Many problems of practical importance have been proven NP-complete.
Therefore, no efficient algorithms computing solutions to these kind of prob-
lems can exist unless P 6= NP. Nevertheless, solutions need to be found in
practice in some way or another. Different strategies have been developed
to cope with NP-complete problems.

For example, it might suffice not to exactly solve the problem, but to ap-
proximate a valid result within a certain range. Consider set VERTEX-COVER,
where for a given graph G = (V, E) the minimum cardinality of a vertex
cover V ′ ⊆ V needs to be determined.1 It was proven to be NP-complete
by Karp [Kar72]. This problem is approximable by a factor of 1/2, meaning
that we will always find a vertex cover V ′′ with 1

2
· ||V ′′|| ≥ ||V ′||, where the

set V ′ is a vertex cover of minimum cardinality, see [GJ79]. Unfortunately
for most NP-complete problems A, it can be shown that no polynomial-time
approximation algorithm exists which performance ratio is better than 1−ε,
where ε is a fixed number. Even worse, in the case of the traveling salesman
problem, it is known that no polynomial-time algorithm can approximate
the optimum solution, i.e. the tour with minimum distance visiting all
cities, within a factor of 1 − ε for any number ε ∈ (0, 1), see [SG76]. Then
again, how do we approximate NP-complete non-optimization problems like
the satisfiability problem?

1A subset V ′ ⊆ V of the vertex set V of G is called a vertex cover of G, if at least
one endpoint of each edge e = {u, v} is contained in V ′.
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While most complexity classes are defined by worst-case complexity, i.e.,
the provided upper bound for the complexity measure is taken over all in-
puts of length n, one might wonder if there exist problems that are hard
to solve in the worst-case, but perform well on average. This intriguing
question initiated the study of average-case complexity. It was first defined
by Levin [Lev86]. Given an NP-complete problem and a probability distri-
bution on its inputs, Levin precisely defined when the problem is said to be
hard to solve on average. There are two immediate advantages arising from
this definition. First, any attempts to design algorithms that work fast on
average appear in another light considering a proof on average hardness has
been obtained. Second, in cryptographic applications, the average hardness
of mathematical computations contributes to the security of the used sys-
tem. On another note, problems that are NP-complete and easy to solve on
average include the colorability problem [Wil84] and the Hamiltonian Path
problem [GS87]. For more details on average-case complexity, we refer to
the survey by Ben-David et al. [BCGL92] and Wang [Wan97].

Another strategy to deal with NP-complete problems is to design algo-
rithms with a one-sided error. These are called randomized or probabilistic
algorithms. If the error rate is sufficiently small, i.e., strictly less than 1/2,
sequentially running this method over and over leads to an overall error
rate which is negligibly small. The primality problem PRIMES is probably
the most prominent example which is handled by probabilistic algorithms
in practice. Many important cryptographic applications depend on gener-
ating prime numbers, hence very fast methods to determine the primality
of a random number are preferable. PRIMES has recently been proven to
be solvable in deterministic polynomial time [AKS04]. This is an outstand-
ing result as the complexity of PRIMES has long been an open question.
Unfortunately, the running time of the algorithm serving as a witness for
PRIMES ∈ P is still far away from being practical. Thus, known probabilistic
methods like Miller-Rabin [Mil76, Rab80] and Solovay-Strassen [SS77] are
still in use. Concerning NP-complete problems, the one-sided error rate will
certainly be as high as (1 − c)n for some constant c ∈ (0, 1) on an input
of size n, thus the methods will need to be run sequentially an exponen-
tial number of times to lead to a marginally small overall error rate. Still,
most of the time the randomized algorithms yield slightly better running
times than their deterministic counterparts. In Section 5.6, two randomized
algorithms for 3-DNP when the input is restricted to graphs with bounded
maximum degree will be compared to an exact deterministic version.

Nevertheless, algorithms which might produce erroneous output are not



5.1. OVERVIEW 63

always desired, which leads us to the theory of exact exponential-time algo-
rithms, where exact means that the optimum solution (if it exists) will be
found every time the algorithm is executed. While at first glance exponen-
tial running times have to be avoided at any time, the design and analysis
of such algorithms might produce results of practical importance. Consider
an algorithm that has a worst-case time bound of Õ(2n).2 Even though this
algorithm might only be feasible for small inputs, suppose we can improve

this bound to Õ
(√

2
n
)

= Õ(1.4143n). This means that with the ad-

vanced method, we are able to handle inputs twice as large as before, as it

is
√

2
2n

= 2n. This difference can be a decisive factor in practice. Moreover,
efficient methods proposed for exponential-time algorithms might result in
better time bounds for other algorithms that already work in polynomial
time.

In recent years, quite a lot of different and interesting surveys have been
written on the subject of exponential-time algorithms. Woeginger lists sev-
eral NP-complete problems and exact exponential-time algorithms solving
them with the—until then—best known worst-case time bound [Woe03].
Also, interesting open questions are posted and commented. In [Sch05],
Schöning focuses on the satisfiability problem and gives details on the
progress which has been made throughout the past decades to improve the
worst-case time bounds for deterministic and randomized algorithms find-
ing a satisfying truth assignment. Fomin, Grandoni and Kratsch [FGK05a]
analyze a method called “measure and conquer,” which takes known simple
algorithms for exactly solving NP-complete problems and refining the run-
ning time analysis to obtain better worst-case time bounds. The “measure
and conquer” technique goes back to Eppstein [BE05, Epp04], who used it to
solve constraint satisfaction problems (CSP) and the problem 3-COLOR, which
is a special case of a CSP. Finally, the survey from Riege and Rothe [RR06c]
lists the progress made on deterministic and randomized algorithms solving
three NP-complete problems, including the domatic number problem. Some
of the algorithms for the domatic number problem are part of this thesis,
see Theorems 5.2, 5.4, 5.6, 5.7, and 5.9.

2We use the Õ-notation as it is common for exponential-time algorithms, since it
neglects polynomial factors. For a fixed polynomial p ∈ poly and a function g mapping
from N to N, it is f ∈ Õ(g) if f ∈ O(p · g). To see that this definition makes sense in the
exponential case, note that for an input of size n = 10000, the term n2 ·1.5n lies between
1.5027n and 1.5028n.
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5.2 Partitioning by Dynamic Programming

One of the first exponential-time algorithms to solve an NP-complete prob-
lem is due to Lawler [Law76]. With a dynamic programming approach, his
algorithm determines the chromatic number of any given graph G within a
time bound of Õ(2.4423n). His method builds on the following idea: of all
legal colorings of G mapping to χ(G) values, at least one set of the parti-
tion is a maximal independent set. To see why this is true, consider any
coloring f of G which maps the vertices to χ(G) independent sets, and pick
one specific independent set U with f(u) = i for all u ∈ U of this partition.
If U is not a maximal independent set, then there must exist a superset U ′

with U ⊂ U ′ such that U ′ is a maximal independent set. Change the previ-
ous coloring f to f ′ by mapping all vertices in U ′ to the value i, and leave
the rest of the coloring f untouched. Then, the partition resulting from f ′

into χ(G) independent sets contains the maximal independent set U ′.
This idea is used to dynamically compute the chromatic number of any

given graph G = (V, E). Suppose we want to determine the chromatic
number of a graph G[V ′] with V ′ ⊆ V , then we can use the following
formula

χ(G[V ′]) = 1 + min{χ(G[V ′ − V ′′])},
where the minimum is taken over all subsets V ′′ ⊂ V ′ such that V ′′ is a
maximal independent set. Using an array A[V ′] indexed with the 2n possi-
ble subsets V ′ ⊆ V , one can dynamically compute the chromatic numbers
of the graphs G[V ′] with increasing cardinality. Note that this results in an
algorithm using exponential space. The overall running time can be deter-
mined by poly(n) ·∑n

k=1

(

n
k

)

2k ∈ Õ(3n). Lawler uses two results from graph
theory to lower this bound even further. First, Moon and Moser [MM65]
showed that there are at most 3n/3 maximal independent sets for a graph
with n vertices, and second, Paull and Unger [PU59] proved that each of
these sets can be generated in time O(n2). Summing up, we end up with a
running time of

n
∑

k=1

(

n

k

)

k2 3k/3 ≤ n2 (1 + 31/3)n,

which leads to the algorithm computing the chromatic number of any given
graph G with n vertices in time Õ(2.4423n) by Lawler [Law76].

Theorem 5.1 There exists an algorithm computing the chromatic number
for any graph G with n vertices in time Õ(2.4423n) and exponential space.
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One drawback of Lawler’s method is that exponential space is needed
to store the chromatic numbers χ(G[V ′]) for the subsets V ′ ⊆ V . The same
dynamic programming method is used by Fomin, Grandoni, and Kratsch to
compute the domatic number of any graph [FGK05a]. This algorithm will
be presented in the next section.

5.3 Breaking the Trivial Barrier

We will focus our interest on the domatic number problem in the last sec-
tions of this thesis. Look at the decision version k-DNP of the domatic
number problem. Given a graph G = (V, E) and a positive integer k, the
question is whether there exists a partition into k dominating sets, i.e., if it
is δ(G) ≥ k. The naive way to answer this question is to sequentially skip
through every possible partition of V into k sets D1, D2, . . . , Dk and check
whether each of the sets Di is a dominating set of G for 1 ≤ i ≤ k. The
number of potential solutions, i.e., the number of different ways to partition
a set with n elements into k nonempty, disjoint subsets can be computed
by the Stirling numbers of the second kind

S2(n, k) =
1

k!

k−1
∑

i=0

(−1)i

(

k

i

)

(k − i)n,

which leads to a running time of Õ(kn).
For all k ≥ 4, an improvement of this worst-case time bound to decide

the set k-DNP can be made by the dynamic programming approach for the
colorability problem presented in the last section. This comes at the cost of
working in exponential space. For a graph G = (V, E) and a subset V ′ ⊆ V
of the vertex set, define by DN(G|V ′) the maximum number of vertex disjoint
subsets of V ′ such that each of these sets is a dominating set of G. Then,
similar to the colorability case, we can compute DN(G|V ′) if for all proper
subsets V ′′ ⊂ V ′ the values DN(G|V ′′) are known by

DN(G|V ′) = 1 + max{DN(G|V ′ − D)},
where the maximum is taken over all minimal dominating sets D ⊆ V ′.
When no assumptions about the number of minimal dominating sets can
be made, this straightforwardly leads to an algorithm with a running time
of

n
∑

k=0

(

n

k

)

2k = (1 + 2)n = 3n.
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Proposition 5.1 For any given graph G = (V, E) with n vertices, there
exists an exponential-space algorithm computing the domatic number δ(G)
in time Õ(3n).

Before turning to an algorithm extending and refining this idea even
further by Fomin et al. [FGPS05], we concentrate on the special case of 3-DNP
and the first algorithm breaking the natural 3n barrier, which is due to Riege
and Rothe [RR05]. Before we can describe their method to decide whether
it is δ(G) ≥ 3 for a graph G, we need to define the sets which will be used
in their algorithm to store all relevant data.

The general idea of the algorithm goes as follows. In the beginning of
the algorithm, three empty sets D1, D2, and D3 are initialized, which in
the successful case will end up being dominating sets of the input graph
G = (V, E). In each step, one vertex not yet assigned to any of these three
sets will be selected by a greedy strategy. The “usefulness” of a vertex in
the process of constructing the three dominating sets is strongly related to
its degree. Intuitively, the larger the degree of a vertex v ∈ V and therefore
the cardinality of N [v], the more vertices are potentially dominated by v
when it is added to one of the sets Di for 1 ≤ i ≤ 3. The technical notions
in the next definition try to capture this (local) measure precisely.

Definition 5.1 Let G = (V, E) be a graph with n vertices, then define
with P = (D1, D2, D3, R) the partition of V into four sets, D1, D2, D3,
and R. Our recursive algorithm will eventually construct three dominating
sets from the sets Di of V (if they exist), and the subset R ⊆ V collects the
remaining vertices not yet assigned at the current point in the computation
of the algorithm. With r = ||R|| we define the number of the remaining
vertices, then d = n − r is the number of vertices which have already been
assigned to some set Di. The area of G covered by partition P is defined
as areaP(G) =

∑3
i=1 ||N [Di]||. Note that areaP(G) = 3n if and only if D1,

D2, and D3 are dominating sets of G. By defining the surplus of graph G
as surplusP(G) = areaP(G) − 3d, we want to express the progress that the
algorithm has already made when it currently is in a recursive step with
partition P. To remember assignments to the sets D1, D2, and D3 that
did not lead to a valid solution, some of the vertices in R may be assigned
to three, not necessarily disjoint, auxiliary sets A1, A2, and A3. Define
A = (A1, A2, A3). For each vertex v ∈ R and for each i with 1 ≤ i ≤ 3,
define the gap of vertex v with respect to set Di by

gapP,A(v, i) =

{

||N [v]|| − ||{u ∈ N [v] | N [u] ∩ Di 6= ∅}|| if v /∈ Ai,
⊥ otherwise,
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where ⊥ is a special symbol that indicates that gapP,A(v, i) is undefined for
this v and i. (Our algorithm will make sure to properly handle the cases of
undefined gaps.)

Additionally, given P and A, define for all vertices v ∈ R:

maxgapP,A(v) = max{gapP,A(v, i) | 1 ≤ i ≤ 3},
mingapP,A(v) = min{gapP,A(v, i) | 1 ≤ i ≤ 3},

sumgapP,A(v) =

3
∑

i=1

gapP,A(v, i).

Given G, P, and A, define the maximum gap of G and the minimum
gap of G by taking the maximum and minimum gaps over all vertices in G
not yet assigned:

maxgapP,A(G) = max{maxgapP,A(v) | v ∈ R},
mingapP,A(G) = min{mingapP,A(v) | v ∈ R}.

Let P be given. A vertex u ∈ V is called an open neighbor of v ∈ V
if u ∈ N [v] and u has not been assigned to any set D1, D2, or D3 yet. A
potential dominating set Di, 1 ≤ i ≤ 3, is called an open set of v ∈ V if its
closed neighborhood does not include v, i.e., v is not dominated by Di. The
balance of v ∈ V is defined as the difference between the number of open
vertices and the number of open sets. Formally, define

openNeighborsP(v) = N [v] ∩ R,

openSetsP(v) = {i ∈ {1, 2, 3} | N [v] ∩ Di = ∅},
balanceP(v) = ||openNeighborsP(v)|| − ||openSetsP(v)||.

For a partition P, a critical vertex v ∈ V is a vertex with a balance equal to
zero and which is not dominated by all three potential dominating sets Di

where 1 ≤ i ≤ 3. More formally, vertex v ∈ V is critical if and only if it is
balanceP(v) ≤ 0 and ||openSetsP(v)|| > 0.

Once a vertex v ∈ V turns critical, that is balanceP(v) = 0, the vertices
remaining in N [v]∩R have to be pairwise assigned to different dominating
sets. Otherwise, balanceP(v) would turn negative and no valid partition
can be constructed in this case anymore. This limit on the choices left to be
made leads to a bound of the size of the recursion tree by a certain factor.
Thus, we end up with a worst-case running time—though only marginal—
below the trivial 3n barrier.
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Proposition 5.2 Let P = (D1, D2, D3, R) be the partition given in Defini-
tion 5.1, and let v ∈ V be a critical vertex for P. The only way to modify P
so as to contain three dominating sets is to assign all vertices u ∈ N [v]∩R
to distinct dominating sets Di.

The strategy of the algorithm is to recursively assign the remaining
vertices v ∈ R to the three potential dominating sets D1, D2, and D3. We
will always pick the vertex v with the highest maximum gap maxgapP,A(v)
for the current partition P and state of A. Once one choice to put v into a
set Di with 1 ≤ i ≤ 3 turns out to be wrong because of balanceP(u) < 0 for
some vertex u ∈ V , we remember this by assigning v to the set Ai. After
each step, all gaps can be dynamically recalculated within polynomial time.

The following Theorem due to Riege and Rothe [RR05] describes the
algorithm in detail and analyzes its running time.

Theorem 5.2 There exists an algorithm working in polynomial-space and
solving the problem 3-DNP in time Õ(2.9416n).

Proof. Let G = (V, E) be the given graph with n vertices. Since it
is δ(G) ≤ max-deg(G)+ 1, we may assume without loss of generality that it
holds max-deg(G) ≥ 2, since this property can be recognized in polynomial
time. The pseudo-code of our algorithm is given in detail in the appendix,
see Figures A.1, A.2, A.3, A.4, and A.5. All figures are slightly modified
versions from [RR05].

Figure A.1 describes the main body of the algorithm. For initialization,
we set P = (∅, ∅, ∅, V ), and A = (∅, ∅, ∅), so each potential dominating set
Di and each auxiliary set Ai, 1 ≤ i ≤ 3, is set to the empty set. Next,
the recursive function Dominate is called for the first time with graph G,
partition P = (D1, D2, D3, R) and the not necessarily vertex disjoint sets
A = (A1, A2, A3) as parameters. Note that if the first recursive call re-
turns without a result, i.e., without producing three dominating sets, our
algorithm will output a failure message.

Function Dominate from Figure A.2 is called with the parameters P
and A. This represents the situation where vertices from V −R have already
been assigned to the three potential dominating sets D1, D2, and D3, and
every v ∈ Ai for 1 ≤ i ≤ 3 indicates that during a previous assignment,
it turned out that v ∈ Di did not lead to a valid solution. At first, all
gaps for the vertices and the graph are recalculated with respect to the
current partition P and the sets in A, see function Recalculate-Gaps

from Figure A.4. Also, for each vertex v ∈ V , the values openNeighborsP(v),
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openSetsP(v), and balanceP(v) are computed. All of this can be done in
polynomial time.

If the sets D1, D2, and D3 are already dominating sets of G, the al-
gorithm detects this in polynomial time and terminates with the proper
output. For this, the remaining vertices v ∈ R can be added to any set Di,
so let’s say we return with the three dominating sets D1 ∪ R, D2, and D3.

If no proper partition into dominating sets has been found, function
Handle-Critical-Vertex which is called next, detects three more trivial
cases, see Figure A.5.

Case 1: It is balanceP(v) < 0 for some vertex v ∈ V . This means our
current potential dominating sets D1, D2, and D3 cannot be extended
to yield dominating sets of G, since v still needs to be dominated
by ||openSetsP(v)|| many sets, but only ||openNeighborsP(v)|| many
vertices in its closed neighborhood can be assigned to some set Di,
1 ≤ i ≤ 3. In this case we have run into a dead-end. We return to the
previous level of our recursion and mark the last choice of assigning u
into some set Di for 1 ≤ i ≤ 3 as wrong by adding u to the auxiliary
set Ai.

Case 2: One vertex v ∈ V is a member of two auxiliary sets Ai, Aj with
1 ≤ i < j ≤ 3. This means that v has been previously assigned
to the two sets Di and Dj , and both times the recursion returned
without being able to generate three dominating sets. Thus, the only
possible way to extend the current partition P so that it includes
three dominating sets of G is to assign v to the set Dk with 1 ≤ k ≤ 3
and k /∈ {i, j}.

Case 3: There exists a critical vertex v ∈ V . Thus it is balanceP(v) = 0
and openSetsP(v) > 0 and v is not yet dominated by all three poten-
tial dominating sets D1, D2, and D3 of the current partition P. We
randomly select one of the vertices in N [v] ∩ R, say u, and sequen-
tially try to add u to all sets Di with 1 ≤ i ≤ 3 and u /∈ Ai by calling
function Assign(G,P,A, u, i), which eventually recursively invokes
function Dominate, see Figure A.3. Note that especially all v ∈ V
with deg(v) = 2 and N [v] ∩ R 6= ∅ are critical right after the ini-
tialization, therefore the algorithm will start by assigning all vertices
contained in N [v] first.

If none of the three cases above occurs, the algorithm will greedily se-
lect the vertex v ∈ R with the highest maximum gap. If more than one
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vertex satisfies this condition, the vertex v ∈ R with the highest value
sumgapP,A(v) among the vertices with the highest maximum gap will be
selected. If this condition does not produce a unique vertex, we will choose
one vertex v ∈ R randomly from this set. The selected vertex v with
maxgapP,A(v) = gapP,A(v, i) will then be added to the set Di, 1 ≤ i ≤ 3.
This is done by calling Assign(G,P,A, u, i), which assigns vertex v to Di,
removes it from R, and recursively calls function Dominate. The purpose
of this selection method is that we want to raise the area of G covered by
partition P as fast as possible, for the algorithm terminates (with a pos-
itive result) whenever we reach areaP(G) = 3n. Note that we will never
choose to add a vertex v ∈ R to the set Di for 1 ≤ i ≤ 3 if v ∈ Ai, as
in this case gapP,A(v, i) is undefined. If the recursion fails and function
Assign(G,P,A, u, i) returns without a valid solution, we add vertex v to
the set Ai. The final step is to call Dominate(G,P,A) recursively with
the updated sets in A. If this call fails again, the recursion returns to its
previous level. The description of the algorithm is complete, and we will
now proof its correctness.

We first mention that whenever the algorithm outputs three sets D1, D2,
and D3, these three sets are indeed pairwise vertex disjoint dominating sets
of the graph G. Therefore, it remains to show that there exists a path in
the recursion tree of the algorithm that will find this specific partition. The
only drop-back occurs in Case 1 of function Handle-Critical-Vertex,
when there exists a vertex v ∈ V with balanceP(v) < 0 for the current
partition P = (D1, D2, D3, R). Thus, there is no way left to extend P
to a partition P ′ = (D′

1, D
′
2, D

′
3, ∅) with three dominating sets D′

1, D′
2,

and D′
3 of G and Di ⊆ D′

i for 1 ≤ i ≤ 3. Since the algorithm eventually
checks each possible partition of G, unless stopped by such a drop-back, a
partition of the vertex set V into three dominating sets will be found, if it
exists. Once the algorithm has skipped through all possible partitions and
no three dominating sets could be found, the first call of Dominate in the
main body will return without a result. Hence, the algorithm furthermore
produces the correct output in the negative case that no such partition
exists.

It leaves to estimate the running time of the algorithm. Recalculating
the gaps with function Recalculate-Gaps takes quadratic time in n,
the number of vertices of the input graph G. Also, each verification of the
three conditions in function Handle-Critical-Vertex can be checked by
simply looking up the values calculated by Recalculate-Gaps, as well as
the selection of a suitable vertex v ∈ R in the recursive function Dominate.
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Thus, in terms of the Õ-notation, the running time of the algorithm depends
solely on the number of recursive calls to function Dominate. For each
recursive step of the algorithm, define by T (m) the worst-case number of
calls to function Dominate of the algorithm that might still be needed to
finish the computation. Here, m is the number of potential dominating sets
left for all v ∈ R regarding the current partition P = (D1, D2, D3, R). After
initialization, the value of m is equal to 3n, as each vertex v ∈ V may be
a member of any of the three dominating sets to be constructed (if they
exist).

We will first concentrate on the case that function Dominate is called
recursively within function Handle-Critical-Vertex because a critical
vertex v ∈ V has been detected. Then it is balanceP(v) = 0 and we call
function Assign (and thus Dominate) for u ∈ N [v] ∩ R and each i with
1 ≤ i ≤ 3 and u /∈ Ai. Note that vertex v ∈ V will remain critical until all
vertices of N [v]∩R have been distributed among the potential dominating
sets D1, D2, and D3. Since openSetsP(v) ≤ 3, the worst-case running time
in this case occurs when openSetsP(v) = 3. By Proposition 5.2, all vertices
in N [v] ∩ R have to be pairwise assigned to different sets, and since there
are at most six combinations left to distribute the remaining three vertices,
we end up with T (m) ≤ 6T (m − 6) in the worst-case. The term m − 6 is
explained by the fact that at least two choices for each vertex in N [v] ∩ R
are possible, since otherwise function Handle-Critical-Vertex would
have ended up in Case 2 described above. With m = 3n, we can con-
clude that T (m) ≤ 6m/6 = 6n/2, i.e. T (m) ∈ Õ(2.4495n). This indicates
that once function Handle-Critical-Vertex makes the recursive call to
Dominate, we stay well below the running time stated in this Theorem.

The interesting case occurs whenever the recursive call originates within
Dominate itself after Handle-Critical-Vertex did not interrupt the
computation. Then, a vertex v ∈ R is selected with the highest maximum
gap for one i with 1 ≤ i ≤ 3. Two subcases might occur. If we do not
make any assumptions on the value gapP,A(v, i), the running time can be
bounded by the following calculation. On the one hand, the selected vertex
has not been added to any of the auxiliary sets A1, A2, and A3. The
first call to Dominate thus eliminates three possible sets for v. If this
call fails, v is added to Ai, so there is one less choice for v in the next
recursive call, making it T (m) ≤ T (m − 1). Summing up for this subcase,
it is T (m) ≤ T (m − 1) + T (m − 3). On the other hand, vertex v might
already belong to one set Aj with 1 ≤ j ≤ 3. Then, after the first call
to Dominate via function Assign, we eliminate two more choices for v.
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If this call fails—which will happen in the worst-case—v is added to the
set Ai, and Dominate is called recursively another time. Since in this
case v is already a member of two of the auxiliary sets, namely Ai and Aj,
function Handle-Critical-Vertex will detect v in its second if-clause
and deterministically call function Assign with the parameters v and k,
where k /∈ {i, j}. Again, we are left with two less choices for vertex v.
Summing up for the second subcase, we end up with T (m) ≤ 2T (m − 2).
Suppose that both subcases occur equally often, i.e., the algorithm considers
every vertex twice. Since this may happen in the worst-case, it follows that

T (m) ≤ 1

2
(T (m − 1) + T (m − 3)) +

1

2
(2T (m− 2)), (5.1)

where it is m = 3n. Thus, with this naive analysis we end up with a running
time of T (m) ∈ Õ(3n), and we have not been able to beat the trivial time
bound.

For an improvement, we have to make sure that the recursion tree of
the algorithm does not reach its full depth, i.e., not all vertices will be
considered twice. This is the case when Handle-Critical-Vertex is
called for a sufficiently large portion of the vertices. In other words, we try
to reach areaP(G) = 3n as fast as possible, since the algorithm finishes (with
the output of three dominating sets) once this level has been achieved. Note
that for every vertex v ∈ R that is added to one of the sets Di, 1 ≤ i ≤ 3, we
increase areaP(G) by gapP,A(v, i), and additionally we add (gapP,A(v, i)−3)
to surplusP(G), see Definition 5.1.

Since all vertices v ∈ V of degree two are critical and remain so until
all vertices in N [v] have been removed from R, they and their neighbors
can be handled in time Õ(2.4495n), as argued above. So assume that it
holds min-deg(G) ≥ 3. Then, after initialization, we can conclude that
it is maxgapP,A(G) = max-deg(G) + 1 > 3. If this condition holds for
3n/4 steps, we have reached areaP(G) = 3n, and the algorithm termi-
nates successfully. Thus, assume that at one point of the computation,
maxgapP,A(G) drops below four. We will exploit the fact that each level
maxgapP,A(G) = k can only hold for a certain portion of the remaining
vertices until the maximum gap of G decreases by at least one. First we
will analyze the trivial case when maxgapP,A(G) = 0.

Suppose maxgapP,A(G) = 0. Then, the recursion will stop immedi-
ately. Either we have found three disjoint dominating sets (in which case
the algorithm adds the vertices in R to D1 and halts), or at least one
vertex v ∈ V is not dominated by one of the sets Di of the current parti-
tion P, 1 ≤ i ≤ 3. In the second case, since there exist no positive gaps
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for any v ∈ R and i with 1 ≤ i ≤ 3, we are not able to extend P to
a partition into three disjoint dominating sets. This will be detected by
function Handle-Critical-Vertex, as it holds balanceP(v) < 0 for at
least one vertex v ∈ V . Thus, the algorithm will drop back one recursion
level. How many vertices may we expect to be left until we reach a level
with maxgapP,A(G) = 0? The following lemma will be helpful in estimating
the size of R at this point of the computation.

Lemma 5.1 Let G = (V, E) be a graph and let P = (D1, D2, D3, R) be a
partition as in Definition 5.1. Let the number of remaining vertices be given
by r = ||R||, and let maxgapP,A(G) = 3. Then it follows for at least r/64
vertices in R that function Dominate will not be called recursively by the
algorithm.

Proof of Lemma 5.1. Assume that maxgapP,A(G) = k and that it
is k > 0. This implies gapP,A(v, i) ≤ 3 for each v ∈ R and i, 1 ≤ i ≤ 3,
which leads to the bound

∑

v∈R sumgapP,A(v) ≤ 3kr. During the next
steps, each vertex selected for a set Di with gapP,A(v, i) = 3 decreases
at least k gaps of the vertices in R − {v} by one. Otherwise, function
Handle-Critical-Vertex would have found a critical vertex u ∈ N [v]
with N [u] ∩ R = {v}. If ||openSetsP(u)|| > 1, the algorithm drops back
within the recursion since condition balanceP(u) < 0 is satisfied. In the case
of ||openSetsP(u)|| = 1, the algorithm proceeds by adding v to the set Di

with i = openSetsP(u) automatically, without further branching of function
Dominate. Thus we may assume that if no critical vertex is detected,
selecting a vertex v ∈ R for some set Di decreases k gaps for vertices
in R−{v}, and also all gaps previously defined for v are now undefined. So
the lowest possible rate at which the gaps are decreased is directly related
to the current maximum gap of G.

Now let us suppose maxgapP,A(G) = 3 and sumgapP,A(G) = 9 for all
of the remaining vertices v ∈ R of the current partition P, since this is
the worst-case which can occur. Remember the comment from above, that
when selecting a vertex v for a set Di with gapP,A(v, i) = 3, 1 ≤ i ≤ 3,
at least three other gaps of vertices in R − {v} will be decreased by one.
Without the occurance of critical vertices, it will take at least r/4 selections
of vertices v ∈ R with sumgapP,A(v) = 9 until we reach sumgapP,A(v) < 9
for all remaining vertices v ∈ R. Another 1/4 of the 3r/4 vertices remaining
have to be added to the potential dominating sets until sumgapP,A(v) < 8
for all v ∈ R. Selecting another 1/4 of the 9r/16 vertices left in R, we
have reached maxgapP,A(G) = 2 and it is sumgapP,A(v) = 6 for all v ∈ R.
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This implies that every defined gap is equal to two. Summing up, we have
removed

1

4
· r +

1

4
· 3

4
r +

1

4
· 9

16
r =

37

64
r

vertices from the set R until maxgapP,A(G) = 2, under the condition that
a minimum number of gaps is reduced in each step, while simultaneously
trying to reduce the maximum summation gap in the fastest possible way.
This is the worst-case that can happen, i.e., level maxgapP,A(G) = 0 is
reached with as few vertices left in R as possible.

With the same argument, we can show that level maxgapP,A(G) = 2 can
hold for another 19r/64 vertices in R. It takes 7r/64 more vertices in R to
drop from maxgapP,A(G) = 1 to the stage maxgapP,A(G) = 0. This leaves
us with r/64 vertices in R which do not have to be processed recursively by
the algorithm. Lemma 5.1

Continuing the proof of Theorem 5.2, note that we assumed for the
input graph that min-deg(G) ≥ 3 at the start of the algorithm. As long as
condition maxgapP,A(G) > 3 is true, the surplus of G, which was initialized
with surplusP(G) = 0, is increasing. It will decrease whenever one of the
remaining vertices v ∈ R is added to one of the sets Di, 1 ≤ i ≤ 3, with
gapP,A(v, i) < 3. The surplus decreases by one for gapP,A(v, i) = 2, and it
decreases by two if it is gapP,A(v, i) = 1.

At one state of the algorithm, let S = surplusP(G) be the surplus col-
lected until we reached partition P with maxgapP,A(G) = 3. The worst-
case, i.e., the most number of recursive branching into function Dominate,
will occur when we even out the surplus completely at the end of one branch
of the recursion tree. For this to happen, there have to be at least r = ||R||
vertices left with

0 · 37r

64
+ 1 · 19r

64
+ 2 · 7r

64
= S,

and we get r ≥ 64S/33. As Lemma 5.1 states, a fraction of 1/64 of these
vertices will not be handled with recursive branching, which in this case is
at least S/33.

The remaining question to answer is how big the surplus might grow
and how many vertices are left in R once we reach a partition P such
that maxgapP,A(G) = 3. The worst-case, that is the lowest surplus with
as few vertices left in R as possible occurs when the input graph G sat-
isfies max-deg(G) = min-deg(G) = 3. The surplus S is increased by one
in each step when adding a vertex v ∈ R to a set Di, 1 ≤ i ≤ 3 with
gapP,A(v, i) = 4 until maxgapP,A(G) = 3. So selecting vertex v ∈ R with
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degree three for a set Di, the gap of the vertices u ∈ N(v) in its open
neighborhood and the gaps of the neighbors of every u might be decreased.
Summing up, at most 1+3+3·2 = 10 vertices decrease their gaps for some i
in this step of the computation. So it takes at least n/10 recursive branch-
ing steps for the algorithm to reach a partition P with mingapP,A(G) = 3
in the worst case. For the next branching steps, we cannot be sure that the
selected vertex v ∈ R with the highest maximum gap for a set Di satisfies
gapP,A(v, i) > 3. What we know is that the surplus S collected so far is at
least 3n/10, thus we obtain the two inequalities 64n/110 ≤ r ≤ 7n/10. The
first inequality tells us that for at least n/110 vertices remaining in R for
the current partition P, we never branch into two recursive calls of func-
tion Dominate. Setting m = 3(109n/110) in Equation (5.1), the overall
worst-case running time of the presented algorithm is Õ(2.9416n).

Note that the above algorithm uses polynomial space. Additionally to
solving the decision problem 3-DNP, our method always produces three ver-
tex disjoint dominating sets (if they exist). While the algorithm from The-
orem 5.2 marks the first step in breaking the trivial 3n brute-force method,
its running time lies only slightly below the trivial barrier. Much better
worst-case time bounds will be presented in the next section.

5.4 The Measure & Conquer Technique

Most exact exponential-time algorithms for NP-complete problems are of
recursive nature. Starting with an instance of the problem, in each step
they either try to simplify the given input directly or branch into two or
more cases which then have to handle smaller problem instances. In the
analysis of the worst-case running time of such algorithms, the number of
nodes in the search tree of the algorithm is upper bounded and measured
with respect to some parameter of the input, for example the number of
variables in the case of the satisfiability problem. One small example will
follow.

Take the NP-complete problem 3-SAT with input formula ϕ = ϕ(X, C)
over n variables. The trivial algorithm skipping through each possible as-
signment t and verifying if indeed t is a satisfying truth assignment runs
in time Õ(2n). A simple idea by Monien and Speckenmeyer improves
this bound considerably [MS85]. In each recursive step, randomly pick
a clause c = (l1, l2, l3). Now it suffices to recursively branch into the
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cases ϕ|l1=1, ϕ|l1=0,l2=1, and ϕ|l1=l2=0,l3=1.
3 Thus, the algorithm branches

into three cases. If the size of the boolean formula is measured by its num-
ber of variables, the algorithm therefore continues with boolean formulas
having one, two, and three less variables then before. This leads to the
recursion

T (n) ≤ T (n − 1) + T (n − 2) + T (n − 3),

where T (n) is the number of steps the algorithm has to make in the worst
case when handling input of size n. This recurrence can be dissolved to the
term T (n) = αn, where α = 1.8393 is the largest real root of the equation
α3−α2−α = 0. Starting with this approach and using another proposition
regarding autark partial assignments,4 Monien and Speckenmeyer [MS85]
were able to push the time bound of their exponential-time algorithm even
further to Õ(1.6181n).

Further refinements of the branching steps led to better time bounds,
at the cost of having to deal with a rather complicated worst-case analysis.
Eppstein lower bounded the progress of recursive algorithms with a whole
new approach [Epp03, Epp04]. Instead of designing more sophisticated
methods with dozens of subcases that can occur, Eppstein took well-known
simple backtracking procedures and improved their worst-case time bound
by a more careful choice of the measure of a problem instance. Surprisingly,
much better running times could be obtained by this new method. For
example, Beigel and Eppstein [BE05] constructed the currently fastest exact
algorithm for 3-COLOR that has a running time of Õ(1.3289n).

Fomin, Grandoni, and Kratsch called Eppstein’s new method “measure
and conquer,” and they provided a new time bound for a known algorithm
solving the minimum dominating set problem [FGK05a]. For any graph G
with n vertices, they improve the bound of one and the same algorithm
from Õ(1.8026n) to Õ(1.5137n), only redefining the measure on the given
input. Instead of simply using n, the number of vertices in the given graph,

3Given a boolean formula ϕ = ϕ(X, C), we call t′ a partial truth assignment of the
variable set X if not all variables in X have been mapped to one of the values 0 and 1,
respectively. Then, by ϕ|t′ we denote the formula which results from applying the partial
assignment t′ to ϕ: every clause c ∈ C containing a literal l with t′(l) = 1 is eliminated,
since it is satisfied by t′. Also, each literal l with t′(l) is removed from each clause. If,
during such a step, we end up with an empty clause c, assignment t′ cannot be extended
to any satisfying truth assignment of ϕ. Otherwise, if we end up with an empty clause
set C = ∅, each extension of t′ is a satisfying truth assignment for ϕ.

4A partial assignment t′ of a boolean formula ϕ = ϕ(X, C) is called autark for ϕ, if
all clauses containing at least one literal set by t′ are satisfied by t′. Autarkness can be
recognized in polynomial time, and if ϕ is satisfiable, then so is ϕ|t′ .
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they define different weights for each vertex depending on the number of
its neighbors. Continuing this work, Fomin et al. bound the number of
minimal dominating sets for a graph with n vertices [FGPS05]. Their result
is stated in the following lemma.

Lemma 5.2 There exists an algorithm which, given as input a graph G
with n vertices, lists all minimal dominating sets of G in time Õ(1.7697n)
and in polynomial space.

Combining the dynamic programming approach by Lawler [Law76] and
the result from Lemma 5.2, Fomin et al. derive a method for computing the
domatic number of any given graph [FGPS05]. Unfortunately, their result
uses an array indexed by the 2n possible subsets of the vertex set, and thus
their algorithm works in exponential space.

Theorem 5.3 The domatic number of any given graph G with n vertices
can be computed in time Õ(2.8805n) and exponential space.

The article [FGK05b] by Fomin, Grandoni, and Kratsch resumes the
progress which has been made using “measure and conquer” over the last
years. Additionally, they discuss exponential lower bounds for algorithms.
These can be seen as an indicator of the distance between the running time
analysis and optimal results. Note that an exponential lower bound for an
algorithm solving an NP-complete problem does not imply that P 6= NP,
but rather yields a limit for the efficiency of that specific algorithm.

5.5 Improved Result for 3-DNP

The algorithm presented next exactly solves the problem 3-DNP in polyno-
mial space with the currently best time bound in the worst-case. The fol-
lowing result is due to Riege, Rothe, Spakowski, and Yamamoto [RRSY06a].

Theorem 5.4 There exists a polynomial space algorithm solving 3-DNP in
time Õ(2.6949n).

Proof. Consider as input graph a G = (V, E). Remember the remark
made previously that at least one partition into three dominating sets (if it
exists) contains at least one minimal dominating set. With the algorithm
from Lemma 5.2, we can generate all minimal dominating sets D of G
sequentially in polynomial space and time Õ(1.7697n).
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Given such a dominating set D ⊆ V , we are left with the challenge of
distributing the vertices v ∈ V −D among two sets D0 and D1 such that both
sets are dominating sets of G as well. This problem can be reformulated
as an instance to the NP-complete problem NAE-3-SAT as follows. For each
minimal dominating set D found, create a boolean formula ϕD = ϕD(X, C)
by defining

• the variable set X = {xv | v ∈ V − D},

• for each vertex v ∈ V , it is

Cv =







⋃

u∈N [V ],u/∈D

xu







.

Thus, the clause set is defined by C = {Cv | v ∈ V }.

First we prove that it holds

G ∈ 3-DNP

⇐⇒ ϕD ∈ NAE-3-SAT for some (5.2)

minimal dominating set D of G .

From the direction from left to right, suppose G ∈ 3-DNP. From the comment
above, one of the partitions of V into three dominating sets of G contains a
minimal dominating set D. Let the other two dominating sets of G be D0

and D1. For each vertex v ∈ V , the closed neighborhood N [v] must contain
one vertex from D0 and one vertex from D1. We obtain an satisfying truth
assignment t in the not-all-equal sense for ϕD by setting t(xv) = 0 for
each xv ∈ D0 and t(xv) = 1 for each xv ∈ D1.

From the direction from right to left, let ϕD ∈ NAE-3-SAT for some
minimal dominating set D via the satisfying truth assignment t in the not-
all-equal sense. We can construct two more dominating sets D0 and D1 of
graph G by setting

D0 = {v ∈ V − D | t(xv) = 0}, and

D1 = {v ∈ V − D | t(xv) = 1}.

Every clause must contain both true and false literals, therefore we con-
clude G ∈ 3-DNP by the three vertex disjoint dominating sets D, D0, and D1.
Thus, Equation (5.2) is true.
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It leaves to find a solution to the instance ϕD of the NP-complete prob-
lem NAE-3-SAT. Notice that ϕD consists of exactly n clauses, one for each
vertex v ∈ V . First we give an easy polynomial-time many-one reduc-
tion from NAE-3-SAT to SAT by doubling the number of clauses. This is
the fastest method known to the author to solve an instance of the NP-
complete NAE-3-SAT problem. For each clause Cv = (l1,∨ . . . , lk), add the
clause Cv = (l1,∨ . . . , lk), where li denotes the negation of the literal li.
Define the clause set C− = {Cv | v ∈ V }, then construct the boolean
formula ϕ′

D = ϕ′
D(X, C ∪ C−) which has the property

ϕD ∈ NAE-3-SAT ⇐⇒ ϕ′
D ∈ SAT.

Note that the number of literals in each clause is only bounded by the maxi-
mum degree of graph G, which might be as large as n−1. Therefore, we will
make use of an algorithm for the satisfiability problem where the running
time depends on the number of clauses instead of the number of variables,
as is the case with most known algorithms. The algorithm with the up-to-
date best known such time bound and working in polynomial space is due
to Yamamoto [Yam05]. Slightly modifying an algorithm by Hirsch [Hir00]
and refining the runtime analysis, Yamamoto provides an Õ(1.234m) time
bound, where m is the number of clauses of the boolean formula considered.
By construction, the formula ϕ′

D consists of exactly 2n clauses. Hence, the
overall running time of our algorithm deciding the set 3-DNP is

Õ(1.7697n · 1.2342n) = Õ(2.6949n).

The algorithm uses polynomial space, as both the method listing all min-
imal dominating sets and Yamamoto’s procedure to solve the satisfiability
problem run in polynomial space with respect to the input size.

A recent result by Björklund and Husfeldt beats the worst-case time
bound of Theorem 5.4 at the cost of working in exponential space [BH06].
They also give a polynomial-space algorithm, which curiously has the same
time bound as the algorithm of Fomin et al. [FGPS05].

Theorem 5.5 There exists an exponential-space algorithm for computing
the domatic number of a given graph that runs in time Õ(2n). There exists
a polynomial-space algorithm for this problem running in time Õ(2.8805n).
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Note that the related special case 3-COLOR of the colorability problem
can be solved much easier, i.e. in less time in the worst-case, than the three
domatic number problem. Analogously to 3-DNP, where the first step was
to find a suitable minimal dominating set, an algorithm deciding whether
a graph G = (V, E) is colorable with three colors might start with the first
set of the partition by listing all maximal independent sets. The difference
and advantage of the colorability problem compared to the domatic num-
ber problem lies within the fact that the remaining problem is solvable in
polynomial time. Given a maximal independent set I for G, it is χ(G) ≤ 3
if the graph G[V − I] is bipartite. Thus the exponential running time in
the Õ-notation solely depends on the first listing problem. Lawler [Law76]
noted this first and gave an Õ(1.4422n) algorithm for 3-COLOR, which is far
better than the fastest exact algorithm solving 3-DNP.

The apparent “hardness” of dominance when compared to independence
can be reflected in the related problems of finding a minimum dominating set
and a maximum independent set. While the best worst-case time bound for
the first mentioned problem currently lies at Õ(1.5137n), much faster exact
algorithms are known to solve the second problem, with the currently best
time bound of Õ(1.1889n). The first result for the minimum dominating
set problem is due to Fomin, Grandoni, and Kratsch [FGK05a]; the second
algorithm regarding the maximum independent set problem was constructed
by Robson [Rob01]. As mentioned before, the global property of dominance
may be the decisive factor for the higher time bounds, as for verifying that
a set D ⊆ V is dominating graph G, each vertex v ∈ V has to be checked.
In contrast, a set I ⊆ V is an independent set whenever no two vertices in
the set I share an edge, so this check can be restricted to the vertices in I.

5.6 Randomized Algorithms

The last section of this thesis deals with the domatic number problem with
a bound on the maximum degree of the input graphs. Naturally, there are
less potential solutions available to partition a graph into three dominating
sets for small values of the maximum degree. Theorem 5.6 and 5.7 are due
to Riege and Rothe [RR05], while Theorem 5.9 was obtained jointly with
Rothe, Spakowski, and Yamamoto [RRSY06a].

For the three domatic number problem, let G = (V, E) be the given
graph with maximum degree ∆ = max-deg(G). The case ∆ = 2 is trivially
solvable. Graphs with this property consist of components which are ei-
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ther isolated vertices, paths, or cycles, and each of these properties can be
recognized in polynomial time.

Proposition 5.3 For any graph G = (V, E) with maximum degree ∆ = 2,
there exists a partition of V into three vertex disjoint dominating sets if and
only if every component of G is a cycle of length k such that 3 divides k.

For the algorithms in Theorems 5.6 and 5.7, we use the notation from
Definition 5.1 of Section 5.3 to describe a snapshot within the algorithm.
For input graph G = (V, E), let P = (D1, D2, D3, R) be a partition of the
vertex set V during the process of the algorithms, where D1, D2, and D3

are the potential dominating sets which need to be constructed, and the
set R contains all remaining vertices which have not been assigned to one
of these three sets. We will not need the auxiliary sets A = (A1, A2, A3)
used in the description of the algorithm in Theorem 5.2. We will restrict
the input to connected graphs only, as each component can be recognized
and treated separately within the same time bounds.

Theorem 5.6 For a given graph G with maximum degree ∆, there exists a
deterministic algorithm solving 3-DNP in time Õ(d

n
∆ ), where

d =

∆−2
∑

a=0

[

(

∆

a

) ∆−a−1
∑

b=1

(

∆ − a

b

)

]

. (5.3)

Proof. We will construct an algorithm with the above worst-case running
time as follows. First, we pick a vertex v ∈ V at random and assign it to
the first potential dominating set D1. In each step, we check in polynomial
time whether the partition P = (D1, D2, D3, R) already consists of three
dominating sets. If this is not the case, a vertex v ∈ R is picked which is not
yet dominated by all three sets and such that there exists a vertex u ∈ N [v]
in its closed neighborhood which has already been assigned to one of the
sets Di, where 1 ≤ i ≤ 3. Clearly, it holds that 1 ≤ ||openSetsP(v)|| ≤ 2.

If balanceP(v) < 0, we drop back within the recursion. Otherwise, all
possible combinations to partition the vertices of N [v] ∩ R into the sets
D1, D2 and D3 are tried, except the ones that would lead to vertex v not
being dominated by all three sets. If no such partition leads to the goal
of constructing three dominating sets for G, we again drop back in the
recursion.

Now the question about the worst-case running time of the above algo-
rithm remains. The case with the most choices left occurs when we select
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a vertex v ∈ V with the property balanceP(v) ≥ 0, ||openSetsP(v)|| = 2,
and ||N [v] ∩ (D1 ∪ D2 ∪ D3)|| = 1. Suppose N [v] ∩ D1 = u, so vertex v is
already dominated by the set D1. We still have to assign at least one vertex
in N [v]∩R to the set D2, and at least one vertex in N [v]∩R to the set D3.
The lower the degree of vertex v in graph G, the less choices to partition
the remaining vertices in N [v]∩R are left. So having a small bound on the
maximum degree of graph G leads to better running times.

More precisely, for graph G with maximum degree ∆ = max-deg(G) and
for vertex v picked above, any number between 0 and ∆ − 2 of vertices in
N [v] ∩ R are allowed to be assigned to set D1. If we call this number a,
any number between 1 and ∆− a− 1 of vertices in N [v]∩R may be chosen
for the potential dominating set D2. After these two choices have been
made, assign the remaining vertices to the set D3. This calculation leads to
Equation (5.3), and since exactly ∆ vertices have been transferred from R
to the three potential dominating sets D1, D2, and D3, we end up with a
worst-case running time of Õ(d

n
∆ ).

The specific numbers are listed in Table 5.1 for graphs G with maximum
degree ∆, where 3 ≤ ∆ ≤ 9.

Next we present an algorithm using randomization to speed up the run-
ning time to find three vertex disjoint dominating sets. The procedure is
similar to the deterministic algorithm described above, with the difference
that when picking a vertex v ∈ V , not all vertices in N [v] ∩ R will be dis-
tributed among the sets Di with 1 ≤ i ≤ 3. Instead, one or two vertices will
be assigned to the open sets at random such that vertex v is dominated by
the three potential dominating sets after each probabilistic move.

Theorem 5.7 Let G be a given graph with maximum degree ∆. Define the
value d as in Equation (5.3) in Theorem 5.6. Then, for each constant c > 0,
there exists a randomized algorithm solving 3-DNP with error probability at
most e−c in time Õ(r

n
2 ), where it is

r =
d

3∆−2
. (5.4)

Proof. First we describe how the randomized algorithm works. Given is
a graph G = (V, E) with maximum degree max-deg(G) = ∆. Just as the
deterministic algorithm from Theorem 5.6, we start by randomly selecting
a vertex v ∈ V and assigning it to the potential dominating set D1 of the
partition P = (D1, D2, D3, R).
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In each following step, we select a vertex v ∈ V that is already dominated
by at least one but not all of the potential dominating sets D1, D2, and D3.
Therefore it is 1 ≤ ||openSetsP(v)|| ≤ 2. Distinguish the following two
cases. If ||openSetsP(v)|| = 1, it is N [v] ∩ Di = ∅ for one i with 1 ≤ i ≤ 3.
Randomly select a vertex from N [v] ∩ R and add it to the set Di. In the
other case where ||openSetsP(v)|| = 2, randomly select two vertices from
N [v] ∩ R, which will then be put into the two potential dominating sets
which previously did not contain a vertex from the closed neighborhood N [v]
of v. In this case, yet another probabilistic move has to be made as how to
distribute the two random vertices into the two open sets of v.

The success probability of the algorithm depends on the error rate in
each step of the algorithm. Suppose that G indeed can be partitioned into
three disjoint dominating sets. In each step, the highest error rate can
occur when ||N [v] ∩ (D1 ∪ D2 ∪ D3) = 1|| and deg(v) = ∆. We can restrict
ourselves to this case, as we only want to supply a worst-case bound. To
end up with a valid partition into three dominating sets, there are at most d
choices left to distribute the vertices in N [v] ∩ R among the sets D1, D2,
and D3. Here, the number d is from Equation (5.3), and how this number
is obtained is described in the proof of Theorem 5.6. After making our
random choices, we have ∆ − 2 vertices remaining in N [v] ∩ R, so we are
left with 3∆−2 possibilities for a partition. Thus, the success rate in each
step can be expressed by 3∆−2/d.

We will use the standard method to achieve an error rate below e−c

for each constant c > 0. This is done by repeating the above algorithm
for a certain number of rounds. The number of repetitions is equal to the
reciprocal of the success rate in each turn, which explains the value for r in
Equation (5.4). Since we process two vertices in each step of the algorithm,
we end up with a worst-case bound of Õ(rn/2).

The specific running times are listed in Table 5.1 for graphs G with
maximum degree ∆, where 3 ≤ ∆ ≤ 9.

The last algorithm of this chapter is derived from Schöning’s method
to solve constraint satisfaction problems, or CSP in short [Sch99]. Schöning
proved the following theorem.

Theorem 5.8 For each of the values a > 2, b ≥ 2, and any ε > 0, there
exists a polynomial-space algorithm for the problem (a, b)-CSP running in
time

Õ(a(1 − 1
b
) + ε).
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∆ 3 4 5 6 7 8 9

Thm. 5.4 2.695n 2.695n 2.695n 2.695n 2.695n 2.695n 2.695n

Thm. 5.6 2.290n 2.660n 2.826n 2.906n 2.948n 2.970n 2.983n

Thm. 5.7 2n 2.358n 2.583n 2.727n 2.820n 2.881n 2.922n

Thm. 5.9 2.251n 2.401n 2.501n 2.572n 2.626n 2.667n 2.701n

Table 5.1: Running times of the algorithms for bounded-degree graphs

This directly leads to the randomized algorithm for the domatic number
problem described below which is due to Riege, Rothe, Spakowski, and
Yamamoto [RRSY06a].

Theorem 5.9 Let G be a given graph with maximum degree ∆. Then, for
any ε > 0, there exists a randomized polynomial-space algorithm solving
problem 3-DNP with running time

Õ(3(1 − 1
∆+1

) + ε).

Proof. For a graph G = (V, E), we will formulate 3-DNP as a constraint
satisfaction problem F with n = ||V || variables which are restricted to three
values, and the constraints consist of at most ∆ + 1 variables. Denote by
D = {0, 1, 2} the domain of the CSP instance, then the construction of F
goes as follows:

• Define the variable set by X = {xv | v ∈ V }.

• For each vertex v ∈ V , define the constraints Cv,i, 1 ≤ i ≤ 3, by

Cv,i(xv, xw1 , xw2, . . . , xwN(v)
) = 1 ⇐⇒

at least one of xv, xw1, xw2 , . . . , xwN(v)
is set to the value i.

The order in each constraint, i.e., the number of variables it involves, is
restricted by ∆ + 1. Applying the algorithm of Theorem 5.8 with the
values a = 3 and b = ∆ + 1 we can solve this (a, b)-CSP instance in
time Õ(3(1 − 1

∆+1
) + ε). The specific running times are listed in Table 5.1

for graphs G with maximum degree ∆, where 3 ≤ ∆ ≤ 9.
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Some comments about the results displayed in Table 5.1 are in place.
First we will compare the running times for the algorithms that are de-
pendent on the maximum degree of the input graph to the algorithm from
Theorem 5.4, which running time is independent from the maximum de-
gree of the input graph and furthermore provides the best worst-case time
bound of any polynomial-space algorithm exactly solving 3-DNP as yet. The
deterministic algorithm from Theorem 5.6 outperforms the general approach
merely for the values ∆ = 3 and ∆ = 4. From this point of view, the proba-
bilistic algorithm from Theorem 5.9 performs best, since it beats the general
approach from Theorem 5.4 for the values ∆ with 3 ≤ ∆ ≤ 8, while the
randomized approach from Theorem 5.7 has the overall lowest bound for
two the cases ∆ = 3 and ∆ = 4.
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Appendix A

Pseudo-Code of the Algorithm
from Theorem 5.2

Algorithm for the Three Domatic Number Problem

Input: Graph G = (V, E) with vertex set V = {v1, v2, . . . , vn} and edge
set E

Output: Partition of V into three dominating sets D1, D2, D3 ⊆ V or
“failure”

if (min-deg(G) ≤ 1) output “failure” and halt;

Set each of D1, D2, D3, A1, A2, and A3 to the empty set;

Set R = V ;

Set P = (D1, D2, D3, R);

Set A = (A1, A2, A3);

Dominate(G,P,A); // Start recursion

output “failure” and halt;

Figure A.1: Algorithm for the Three Domatic Number Problem

87
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Function Dominate(G,P,A) { // P is a partition of graph G,

// A is a triple of auxiliary sets

Recalculate-Gaps(G,P,A);

if (each Di is a dominating set) {
D1 = D1 ∪ R;
output D1, D2, D3;

}
if ( not Handle-Critical-Vertex(G,P,A)) {

select vertex v ∈ R with
deg(v) ≥ 3 and maxgapP,A(v) = maxgapP,A(G) and
sumgapP,A(v) =

max{sumgapP,A(u) | u ∈ R ∧ maxgapP,A(u) = maxgapP,A(G)};
find i with gapP,A(v, i) = maxgapP,A(v);
Assign(G,P,A, v, i); // First recursive call
Ai = Ai ∪ {v}; // If recursion fails, put v in Ai and try again
Dominate(G,P,A); // Second recursive call

}
return;

}

Figure A.2: Recursive function to dominate graph G

Function Assign(G,P,A, v, i) {
Di = Di ∪ {v};
R = R − {v};
Dominate(G,P,A);

}

Figure A.3: Function to assign vertex v to set Di
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Function Recalculate-Gaps(G,P,A) { // P is a partition of G,

// A is a triple of auxiliary sets

for all (vertices v ∈ V ) {
if (vertex v ∈ R) {

for all (i = 1, 2, 3) {
if (v /∈ Ai) {

gapP,A(v, i) = ||N [v]|| − ||{u ∈ N [v] | (∃w ∈ N [u]) [w ∈ Di]}||;
} else { // ⊥ indicates that gapP,A(v, i) is undefined

gapP,A(v, i) = ⊥ ;
}

}
maxgapP,A(v) = maxi∈{1,2,3}{gapP,A(v, i)};
mingapP,A(v) = mini∈{1,2,3}{gapP,A(v, i)};
sumgapP,A(v) =

∑

i∈{1,2,3} gapP,A(v, i);

}
openNeighborsP(v) = {u ∈ N [v] | u ∈ R};
openSetsP(v) = {i ∈ {1, 2, 3} | v /∈ N [Di]};
balanceP(v) = ||openNeighborsP(v) − openSetsP(v)||;

}
maxgapP,A(G) = maxv∈R{maxgapP,A(v)};
mingapP,A(G) = minv∈R{mingapP,A(v)};

}

Figure A.4: Function to recalculate gaps after partition has changed
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Function boolean Handle-Critical-Vertex(G,P,A) {
for all (vertices v ∈ V ) {

if (balanceP(v) < 0) { // impossible to three dominate v with P
return true;

} else if (||{i ∈ {1, 2, 3} | v ∈ Ai}|| == 2) {
select i with v /∈ Ai; // one choice for v remaining
Assign(G,P,A, v, i);
return true;

} else if (balanceP(v) == 0 and ||openSetsP(v)|| > 0) {
select u ∈ N [v] ∩ R; // v is critical
for all (i with u /∈ Ai and v not dominated by Di){

Assign(G,P,A, u, i);
}
return true;

}
}
return false; // no critical vertices were found

}

Figure A.5: Function to handle the critical vertices
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