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Chapter 1

Introduction

The search for deviations from Newtonian gravity started in the 1970s. Its first theoret-

ical motivation came from the attempt to determine if the universality of free fall is a

fundamental principle as assumed in General Relativity [1, 2]. Moreover, the works of a

number of authors suggested that a deviation from Newton’s inverse-square law could be

interpreted as the signature of new middle-range interactions mediated by light particles,

that had not yet been observed (see for ex. [3]). These predictions gave rise to a first

generation of experiments aiming to test gravity at laboratory distances. One of them,

performed by Long, had great resonance, since he claimed to have detected an anom-

alous distance dependence of gravity over the distance range of 4 to 30 cm [4]. Several

new laboratory experiments were set up to test these revolutionary results, but none of

them could find any evidence of a non-Newtonian force [5, 6, 7, 8, 9, 10, 11, 12, 13]. Nev-

ertheless the interest for experimental gravity at laboratory distances did not decline.

A few years later Fischbach showed in a reanalysis of the Eötvos’ experiment that the

experimental knowledge of gravity at that time was still compatible with the existence

of a macroscopic force, that could have a strength comparable to gravity [14]. The the-

oretical activity in this field grew further in the 90s, when it was clear that these kinds

of experiments opened up the possibility to test some predictions of superstring-based

models [15, 16, 17]. This provided the impetus for a second generation of experimental

tests of the gravitation law at distances smaller than one millimeter [18, 19]. In the most

sensitive among them, performed by Adelberger et al., gravity was detected for the first

time at distances as small as 200 µm, but no deviations from Newton’s Law were found

[20].

In this work we present an experiment performed at the University of Düsseldorf to

detect and test gravity in the submillimeter range with a high Q mechanical oscillator.

1



2 1. Introduction

This dissertation has the following structure. In the next chapter the theoretical moti-

vations for our experiment are discussed. A string-based model, relying on the existence

of spatial extra dimensions and their influence on gravity, is reviewed. Some other the-

oretical proposals are briefly introduced and their experimental relevance is discussed.

Next, the constraints from recent laboratory experiments are presented. For the sake

of completeness the limits to the existence of a non-Newtonian force derived from high

energy and astrophysical experiments are shortly presented. In Chapter 3, after having

introduced the principle on which our experiment relies, a theoretical description of its

major components is given. Particular attention is paid to the sensor, a silicon torsional

oscillator, and to its Brownian motion, which is the fundamental limit to the sensitivity

of our apparatus. The second part of the thesis is devoted to a detailed description and

characterization of the experiment. In Chapter 4 an extensive description of the proce-

dure for the microfabrication of the silicon torsional oscillator is given. The properties

of this resonant structure are then presented and compared to the results published by

other authors [21, 22]. A detailed experimental characterization of the Brownian noise

of such oscillators, as well as the first implementation, to our knowledge, of their laser

control, is provided. Finally, the possibility of using a metal oscillator as a possible al-

ternative to single-crystal sensors is investigated. Chapter 5 describes the gravitational

excitation scheme we developed. The results of numerical simulations performed to op-

timize the dimensions of the source mass are also given. Next, a detailed description of

the experimental apparatus and of the data acquisition routine is outlined in Chapter

6. Great attention is also paid to the crucial alignment and positioning procedure of

the oscillator and the source masses. The experimental results are then presented in

Chapter 7. Their compatibility with the theoretical expectation is investigated through

various consistency checks and the use of three different sets of source masses. Limits to

the existence of a new gravity-like force derived from the experimental results presented

here are then compared to the present best limits to be found in literature [19]. Further

improvement to the present setup are also suggested. Finally, a new experiment is pro-

posed in Chapter 8, which is designed to improve the present best limits in the distance

range between 0.1 and 100 µm.



Chapter 2

Theoretical background

In the picture of the world given to us by modern theoretical physics there are two

fundamental energy scales. The electroweak scale mEW ∼ 103 GeV and the Planck scale
MPl = G−1/2 ∼ 1019 GeV (here it is assumed that ~ = c = 1). The existence of this

large energy gap, also known as the hierarchy problem, has no explanation in the frame

of the Standard Model, the most successful theory, to date, in high energy physics1.

The attempts to solve the hierarchy problem have so far been based on two different

theoretical approaches. Theories based on Supersymmetry, whose existence has not yet

been experimentally proven, lead to the solution of this problem [23]. An alternative

approach is based on the change of the geometry of space-time. This technique was

applied for the first time in the 1920s by T. Kaluza and O. Klein [24, 25], who tried

to unify gravity and electromagnetism postulating the existence of an additional spatial

dimension2. The need for a higher dimensional space—time as a condition to formulate

a more fundamental theory (often referred to as unified theory) was rediscovered about

half a century later in the framework of the string-based model, that are considered to be

very good candidate for overcoming the inadequacies of the Standard Model3. Generally,

the existence of the extra dimensions, with a size R, of the order of the Planck length

(R ∼ 1
MPl
∼10−35 m), is assumed. Because of their extension, there is no experimental

method suited to test this assumption. Nevertheless, there have been new prospects for

1The Standard Model, in spite of its good agreement with the experimental results is far from being
a complete theory. It contains a number of arbitrary parameters like, for example, the masses of known
particles, the electric charge of the electron, the number of particle generations.

2The introduction of time-like extra dimensions would affect deeply well tested physics laws (e.g. no
defined dynamics [26]).

3At present Superstring theory is neither complete nor a single theory, but rather a collection of
different theories. It has been recently shown that they are aspect of a single theory, known as M-theory
[27].

3



4 2. Theoretical background

proving the existence of spatial extra dimensions. Some theoretical models suggest that

the extra dimensions, or at least some of them, could be larger than the Planck scale and

could even be of macroscopic size. This modified geometry of the space-time significantly

affects the nature of gravity, which is expected to have a power law deviating from the

inverse-square law at distances comparable to the size of the extra dimensions. The

following sections are mainly devoted to the description of two models that predict the

existence of extra spatial dimensions, and significantly modify Newton’s law. Moreover,

a review of some other modern theories, predicting the existence of deviations from the

Newtonian gravitational law, will be given. In the last section we will briefly review the

most significant experiments performed to test the previously cited theoretical models.

In doing so we will focus our attention only on the most recent ones (a detailed review

of experiments performed before 1998 can be found in two books by Fischbach [28], and

by Chen and Cook [29]).

2.1 Compactified large extra dimensions

Superstring theory can be consistently formulated only in a nine-dimensional space. The

contradiction between this statement and the number of observable dimensions is solved

by postulating that the extra dimensions are very small, as small as the Planck length,

which cannot be probed by any experiment. Based on these ideas, Arkani-Hamed,

Dimopoulos, and Dvali developed a model, where at least some of the extra dimensions

are much larger than the Planck scale [15, 16, 17]. In this section we will show how this

prediction affects gravity.

In this scenario the world, as we know it, can be pictured as a 3-dimensional subspace

(often referred to as brane), which is embedded in a higher-dimensional space. One

special property of the brane is that all the Standard Model fields are confined on it. This

can be seen as a consequence of the fact that particles are described by the vibrational

modes of one-dimensional strings that can be open or closed. Open strings (e.g. photons)

have their ends attached to the brane, while closed strings (e.g. gravitons) can move

in the complete (3+n)-dimensional space, where n is the number of extra dimensions4.

Since Newton’s Law is a natural result of the dimensionality of space, it is to be expected

that gravity’s power law is changed by the existence of the extra dimensions. A well-

known property of a 3-d space is that the integral of the gravitational field over a closed

4 It has been shown that electrical charge cannot exist in the extra dimensions. It is a consequence of
the fact that photons are confined on the 3-dimensional brane and no single charge can exist in a part
of the space which is not accessible to the electric field [15].



2. Theoretical background 5

surface is a constant (Gauss’ Theorem). Let us assume the validity of this property also

in a space with 3+n dimensions. The gravitational field exerted by a mass M on a test

mass m then obeys the following equation

F = −G(4+n)
Mm

r2+n
, (2.1)

where G(4+n)5 is the generalized gravitational constant in the higher-dimensional

space. This result shows that the presence of the extra dimensions dramatically changes

gravity. If one imagines that the extra dimensions have an infinite extension, Eq. (2.1)

has to be valid at any distance, which contradicts the results of gravity measurements

at terrestrial and planetary distances [28].

Figure 2.1: a) Model of a 2-d space consisting of an ordinary dimension (in the picture it
is represented by a line, which contains the Standard Model fields, masses and charges)
and one large extra dimension that is curled up and has the radius R. b) The image
method: the compactified dimension is unrolled. The resulting flat space has a 2πR
periodicity. (Picture adapted from Ref. [30].)

Following the proposal of Arkani-Hamed, Dimopoulos and Dvali, we will assume now

that the extra dimensions are curled up and have a radius R, as shown in Fig. 2.1(a) for

the subspace made of one ‘normal dimension’ of infinite extension, plus an extra compact

dimension. In order to investigate the effect of the size of R on gravity, it is convenient

to use the method of the images. Two masses, M and m, are at the distance r and rest

both on the 3-d brane (in the picture it is represented by a line). Unrolling the extra

5The subscript (4 + n) takes into account the existence of one time dimension.
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dimension on a plane of infinite extension, one gets a space with a 2πR periodicity as

shown in Fig. 2.1(b). The interaction of the mass M with m and its images is then

given by

F (r) = −
X
k∈Zn

G(4+n)
Mm

(r2 +
nP
i=1
(2πRki)2)

n+2
2

rs
r2 +

nP
i=1
(2πRki)2

. (2.2)

If we assume now that the distance between the masses is much smaller than the

radius of the extra dimensions (r << R), the contributions due to image masses are

much smaller than the term for ki = 0 (which corresponds to the direct attraction

between the two real objects) and Eq. (2.2) reduces to Eq. (2.1).

In the limit r >> R the distance between the masses is so large that the distribution

of the images can be approximated by a continuum and Eq. (2.2) becomes

F (r) ' −G(4+n)Mm

Z +∞

−∞
dnkG(4+n)

r

(r2 +
nP
i=1
(2πRki)2)

n+2
2

(2.3)

= −G(4+n)
Mm

r2

µ
1

2πR

¶n Z +∞

−∞
dnx

1µ
1 +

nP
i=1

x2i

¶n+3
2

= −G(4+n)
Cn

Rn

Mm

r2
,

where

Cn =
1

(2π)n

n Z +∞

−∞
dnx

1µ
1 +

nP
i=1

x2i

¶n+3
2

(2.4)

is a constant.

If r ∼ R, it can be shown that the gravitational force has the following form

F = −G(4+n)
Mm

r2

h
1 + α(1 +

r

λ
)e−

r
λ

i
, (2.5)

where α and λ depend on the fundamental constants n and R, and on the topology of

the space6. Assuming a toroidal compactification, for example, it is found that α = 2n

and λ = R, while α = n+ 1 and λ = R/
√
n in the case of a spherical compactification.

Using Eq. (2.3) and M2
Pl(4)

, it can be found that7

M2
Pl(4)

∼ Rn
³
M2

Pl(4+n)

´n+2
, (2.6)

6This correction is often referred to as the Yukawa correction.
7The exponent of MPl(4+n) is chosen in such a way that M

2
Pl(4)

and MPl(4+n) have the same physical
dimensions.
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where M2
Pl(4+n)

is (4+n)-dimensional Planck constant, which corresponds to the en-

ergy scale at which gravity is unified with the Standard Model fields. The authors of this

model assume then that the unification takes place at the electroweak scale (∼1 TeV)
in the (4+n)-dimensional space. Using Eq. (2.6), it is possible to calculate values for R

as a function of the number of extra dimensions, n, as shown in Table I.

Table I. Size of the compactification radius vs number of extra dimensions.

n 1 2 3 4 5 6

R (m) ∼1013 ∼10−3 ∼10−8 ∼10−11 ∼10−13 ∼10−14
While the scenario with one large extra dimension is ruled out by gravity measure-

ments at planetary distances, for n ≥ 2 the existence of the extra dimensions cannot
be excluded. This is a consequence of our poor experimental knowledge of gravity at

distances smaller than 1 mm [28]. Taking this into account, gravity measurement at

laboratory distances gives us, in principle, the possibility to prove the existence of extra

dimensions.

The solution to the hierarchy problem proposed by Arkani-Hamed, Dimopoulos and

Dvali can be summarized as followed:

Assuming the electroweak scale as the only fundamental energy scale in a space with

compactified extra dimensions, gravity is expected to be stronger than experiments show;

the apparent weakness of gravity is due to the fact that it is diluted in the extra dimen-

sions.

Actually, this is not a complete solution to the hierarchy problem, because a new

fundamental scale, R, is incorporated into the theory. Nevertheless this approach gives

the possibility, for the first time, to perform a test of some predictions of superstring

theory at low energies.

2.2 Warped extra dimensions

An alternative perspective has been proposed by Randall and Sundrum [31]. In this

model, space is made of two 3d-branes connected by a warped extra dimension. The

metric of this non-factorizable space is given by

ds2 = e−2πkyηµνdx
µdxν + πrdy2, (2.7)

where k is a constant of the order of the Planck scale and describes the curvature of

the extra dimension (e−2πky is referred as to warp factor), xµ is the coordinate of the
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known 4-dimensional space, r is the size of the extra dimension, and 0 ≤ y ≤ 1 is the
coordinate of the warped extra dimension. The brane at y = 0 is known as Planck brane,

while the other, at y = 1, is the brane where the Standard Model fields are confined.

Gravity is concentrated ("quasilocalized") on the Planck brane and its strength decreases

exponentially as it propagates through the extra dimension. Because of the warp factor,

it reaches the experimentally measured strength on the second brane. This condition

is fulfilled if kr ∼ 10, and since k ∼ 1018 GeV, the extra dimension is much smaller

(∼ 10−33 m) than in the model with large extra dimensions.
The solution of the hierarchy problem given by Randall and Sundrum is the following:

The source of the large hierarchy between the observed Planck and the weak scale is

the warp factor.

In analogy to the previous model, also in this case the proposed solution still contains

two different scales: the electroweak scale and the size of the extra dimension.

Under the assumption of a very small k (∼ 0.1 mm), Chung et al. showed that

experimental tests of Newtonian gravity could distinguish this scenario from the model by

Arkani-Hamed, Dimopoulos, and Dvali, since the correction to the newtonian potential

has, in the Randall-Sundrum scenario, the following form

V (r) = −GMm

r

µ
1 +

2

3k2r2

¶
, (2.8)

for krÀ 1 [32].

2.3 Predictions from other theories

The scientific value of the experimental tests of Newton’s Law is not limited to the search

for extra dimensions. In this section we will briefly review some other modern theories

that predict the existence of new fields that couple to mass.

Several string-based models require the existence of gravitationally-coupled scalars,

known as moduli. These particles are massless at the Planck scale and they obtain

a mass as a consequence of Supersymmetry breaking. Assuming that supersymmetry

breaking takes place at low energy, for example in the range (H)1/2 = 1-10 TeV, the

mass of the moduli is given by

m ∼= H

MPl
∼ 10−4 − 10−6eV. (2.9)

This mass corresponds to a Compton wavelength in the range of 1 mm to 10 µm and

is the source of deviations from Newton’s Law at this distance range [33].
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Antoniadis, Dimopoulos and Dvali proposed a theory in which supersymmetry break-

ing takes place at the electroweak scale in the presence of one extra dimension [34]. A

modulus, known as radius modulus, is associated with the size of the large compact di-

mension of the order of the weak scale (∼ 10−19 m). This scalar field is essentially given
by the logarithm of the radius of the large extra dimension and its strength is expected

to be 1/3 of gravity at sub-mm distances.

Another modulus that couples to mass is the dilaton [35]. Veneziano and Taylor [36]

calculated that it can lead to a force with a strength 2000 times larger than gravity.

In strong interaction, non-perturbative effects induce the violation of parity (P) and

charge conjugation-parity (CP), which has not yet been observed. Peccei and Quinn

developed a model in which a light-mass boson, the axion, mediates a short-range mass-

mass interaction. The present upper bounds to the CP violation, derived from mea-

surements of the neutron electric dipole moment, do not rule out the existence of an

axion-mediated interaction with a strength of about one thousandth of that of gravity

at distances of the order of 200 µm [37, 38, 39, 40].

In the frame of loop quantum gravity, G. G. Kirilin and I. B. Khriplovich [41] cal-

culated the correction to the Newton potential due to two-graviton interaction between

two masses m1 and m2 obtaining:

V (r) = −G(4)
m1m2

r
(1 +

763

30π

G(4)~
c3r2

). (2.10)

The correction in this case is about 1060 times smaller than gravity at a distance of

0.1 mm, still far beyond the present sensitivity of experimental tests.

2.4 Laboratory tests

Since the first gravitational measurement by H. Cavendish, the torsion pendulum has

played a central role in experimental gravitational physics [42]. This device is one of

the most sensitive force sensors that has been developed so far. In most experiments its

sensitivity is limited by the seismic noise background because of its sub-Hz resonance

frequency. A modern version of this experiment was performed by Adelberger and

coworkers in 2001 with the aim to detect the deviation from Newton’s Law predicted by

the large extra dimensions model [20]. The torsion pendulum consists of a 1 mm thick

aluminium anulus (radius approx. 50 mm), provided with an array of ten equally spaced

holes, while the source mass consists of two copper disks provided with a similar array of

holes. The source mass is rotated with a frequency of about 10−4 Hz. This experiment
presents two interesting features. The detection of the torque is performed at the tenth
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harmonic of the source mass rotation frequency in order to reduce the influence of the

vibrations associated with the torque drive. Moreover, adjusting the relative position

of the two disks in the source mass stack, it is possible to cancel the torque due to the

Newtonian background. Any signal measured under this condition would come from

a non Newtonian interaction. This experiment attained a torque sensitivity of 10−16

Nm and made it possible for the first time to detect gravity at distances as small as

210 µm. However, no deviations from the expected Newtonian signal were observed. A

lower bound of 4 TeV for the unification energy (see Eq. (2.6)) was set. Because of low

frequency seismic noise, the gap between the test masses could not be reduced further.

An alternative experimental approach was suggested by J. Price [18]. Since the

sensing element is, in this case, a mechanical oscillator with a frequency in the kHz

range, the sensitivity of the experiment is not limited by seismic noise, but by Brownian

noise. A torsional oscillator made of tungsten and having an area of 1 cm2, a thickness

of about 250 µm, and a resonance frequency of about 1 kHz, is used to detect the

gravitational field produced by a 305 µm thick tungsten plate driven at the oscillator

resonance frequency. A thin conducting shield is set between the test masses in order to

eliminate possible electrostatic disturbances. To date the existence of new fields with a

strength 3 times larger than gravity at the distance of 108 µm has been ruled out [43].

A low temperature version of this experiment is planned to improve the sensitivity to

non-Newtonian forces.

Another high frequency experiment was performed by A. Kapitulnik and coworkers.

In this case a microfabricated cantilever (250 µm in length, 50 µm in width, and 0.335

µm thick) with a 50 µm gold cube mounted on its top is used as a resonant sensor. The

source mass consists of an array of alternating parallel strips of gold and silicon, that

are periodically moved in the direction orthogonal to their long side. In this way a mass

modulation in front of the sensor is produced. The sensor and the source masses are

separated by a 3 µm thick electrostatic shield, while the gap between the masses is 20

µm. The present sensitivity of this experiment is limited by an unknown disturbance,

which is three times larger than the thermal noise level.

Bounds to the existence of non-Newtonian mass-coupled fields can be set also by

experiments aiming to measure the Casimir and van der Waals interaction [44, 45]. Fig.

2.2 shows a comparison between the limits derived from the Casimir force measurement

by Lamoreaux [46] and from the others works presented in this section.
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Figure 2.2: Upper limits to the strength of a non Newtonian interaction of the form
given by Eq. 2.5. The region above the curves is excluded by the experiments [11, 20,
43, 46, 47]. (Picture adapted from Ref. [47].)
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2.5 Constraints from high energy physics, astrophysics and
cosmology

Measuring gravity at laboratory distances is not the only way to test the theories pre-

sented in this chapter. Limits on the radii of the extra dimensions can be set via high

energy experiments. For example, in the collision of a proton and an antiproton some en-

ergy can escape into the bulk (extra dimensions) in the form of gravitons. The present

limit to the unification energy derived from collider measurement is of 1.1 TeV [48].

Measurements of the missing energy in positronium decay at LHC should provide better

constraints to the size of the extra dimensions [17].

The present best limits are derivable from astrophysical and cosmological obser-

vations. An example is the anomalous cooling of supernovae due to the emission of

gravitons into the extra dimensions [49]. The observation based on the neutrinos from

supernova SN1987A measured by the Kamiokande experiment [50] put some constraints

on the size of the extra dimensions. In the case of two extra dimensions R ≤ 7.1·10−7m
is obtained, while for n = 3 R ≤ 8.5 ·10−10 m. The lower limit for the unification energy
is 30 TeV.



Chapter 3

Principle of the experiment

Experimental tests of Newton’s law at laboratory distances can enable us to gain an

insight into the fundaments of physics and, as shown in the previous chapter, to shed light

on the hierarchy problem. This ambitious goal can be reached, in such an experiment,

only by continually reducing the distance between the test masses, for example below 1

mm. In order to measure gravity at this distance range the dimensions of the test masses

cannot be arbitrarily large, since the accuracy of their alignment depends on their size.

To a first approximation, their typical dimension should be comparable to the distance

scale that is going to be probed [43]. In 1798 Cavendish measured the gravitational

attraction of masses put at a distance of 0.1 m [51]. His apparatus had a force sensitivity

of about 10−5 N. Modern experiments designed to measure gravity at distances of the
order of 10−4 m need typically to be able to measure a force as small as 10−14 N, which
corresponds to the order of magnitude of the force that the Sun would exert on a mass

of 1 kg at the distance of 10 light years. This comparison gives an idea of how measuring

gravitation at small distances can be challenging. In order to overcome this problem,

it is crucial to place as much mass as possible within the required distance. We will

show that this can be achieved by choosing a planar geometry for the test masses. In

fact, an infinite plane slab offers the advantage of producing a gravitational field whose

strength does not depend on the separation (Newtonian null source) [28]. This limit

can be reproduced, at a good approximation level, in the laboratory by choosing masses

with an extension much larger than their mutual separation. In this configuration their

gravitational interaction is given by

FG = −2πGρ1ρ2L2D2, (3.1)

13



14 3. Principle of the experiment

where ρ1 and ρ2 are the densities of the masses, L
2 is their area, and D is their thickness.

Eq. (3.1) is valid in the limit D << L, in which the edge effects can be neglected.

Any deviation from Newton’s law would then introduce a distance dependence of the

measured force. A Yukawa type interaction as in Eq. (2.5) would have the form

FY = −2παλ2Gρ1ρ2L2
³
1− e−D/λ

´
e−d/λ ≈ −2παλ2Gρ1ρ2L2e−d/λ, (3.2)

where d is the separation between the two plates. Calculating the ratio between Eq.

(3.1) and Eq. (3.2), it yields

FY
FG

' α

µ
λ

D

¶2
e−d/λ. (3.3)

Assuming α ∼ 1 and d ∼ λ, the relative strength of the correction term to gravity is

reduced by the the factor
¡
λ
D

¢2
. Whereas the whole mass generates the gravitational

attraction, the Yukawa correction is mainly due to a slice of mass with a thickness of the

order of λ. In the light of this consideration, the planar geometry proves to be the one

that maximizes the non-Newtonian interaction as shown in Fig. 3.1. It follows from these

considerations that the best configuration to search for non-Newtonian components of

gravity is given by two planar test masses with a thickness of the order of the gap between

them. Moreover, if the gap is much smaller than the square root of the masses’ surface

the Newtonian background does not depend on their mutual distance. Therefore, every

distance dependence of the observed force has to be due to a non-Newtonian component,

if all other possible interactions are accurately shielded.

In principle it is possible to implement this geometry in a Cavendish-like experiment,

i.e. a thin plate, attached to a fine wire, placed in front of a second planar mass used as a

source of static gravitational field. The sensitivity of this apparatus would be limited by

seismic noise, since it is extremely difficult to attenuate vibrations at low frequencies (the

frequency of such a pendulum would not exceed 1 Hz). Moreover, stray gravitational

force due to objects nearby would represent a further disturbance, which cannot be

shielded. An alternative approach is to perform an a.c. measurement in which one

mass is part of an oscillator with resonance frequency in the kHz-range, where effective

vibration isolation is achievable and stray gravitational signals are unlikely. Moreover

the amplitude response of the oscillator is not affected by disturbances at frequencies far

away from the resonance. In this case the sensitivity of the apparatus is limited by the

Brownian (thermal) noise of the sensor. The history of dynamic measurement of gravity

started with an experiment performed at the University of Maryland in 1967 by Sinsky,

who used a resonant bar, designed to detect gravitational waves, as a detector for an
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Figure 3.1: Comparison between two possible geometries for the test masses: the planar
and the spherical geometry. Since only a λ-thick slice of each mass contributes to the
Yukawa correction term, a larger effect can be measured using planar masses instead of
spheres, as in the classic experiment by Cavendish.

a.c. gravitational field [52]. Price was the first to suggest to use an ac gravitational

experiment based on the use of planar masses to detect deviations from Newton’s Law

[18].

Our experiment combines the advantages of a flat geometry with the increased sen-

sitivity of a resonant detection. The sensitive element is a harmonic oscillator with

resonance frequency, νR, that can be pictured as a thin plate attached to a spring,

whereas the excitation is provided by a plate parallel to the sensor driven at the sensor’s

resonance frequency. Measuring the sensor’s amplitude response for different values of

the distance sensor-source mass, it is possible to infer the nature of the excitation force.

Assuming that all external disturbances are eliminated, the fundamental limit to the

sensitivity of this experiment is given by Brownian noise. In the following we will show

that in this regime the sensitivity to a non-Newtonian force of the type given by Eq.

(2.5) scales like A−1(Q ·∆t)−1/2, where Q is the mechanical quality factor of the sensor,

A its sensitive area, and ∆t the integration time. A consequence of this is that the use

of a sensor with a high Q-factor is convenient. To date, the highest quality factors have

been achieved by single-crystal silicon oscillators (' 105). Assuming an integration time
of 1000 s, the thermal noise force of such a sensor is of the order of 10−14 N in vacuum
and at room temperature (see Section 3.2). This value also corresponds to the minimum
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detectable force, that can further be improved by increasing the integration time. Fig.

3.2 shows the goal sensitivity of our experiment compared to previously published works.

Figure 3.2: Expected sensitivity of our experiment compared to the existing limits. The
parameter of this simulation Q = 105, ∆t =1 day.

In the following sections we will outline the harmonic oscillator’s theory, in order to

determine the parameters that define the sensitivity of the experiment. Moreover, two

fundamental noise sources, Brownian and shot noise, will be reviewed and experimental

strategies to reduce their influence on the measurement will be presented.

3.1 Mechanical harmonic oscillator

The sensing element in our experiment is a mechanical torsional oscillator. The equation

of motion of a torsional oscillator is given byµ
I
d2

dt2
+ β

d

dt
+Dsp

¶
ϑ = 0, (3.4)

where I = 2mr2/3 is the moment of inertia around the torsion axis, r is the half width

of the oscillator, and β is the friction coefficient. The general solution of this equation
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is an exponential decaying harmonic oscillation

ϑ(t) = ϑoe
−γ
2
t cos(ωdt+Ψ), (3.5)

which is characterized by a damping coefficient γ = β/I, by the oscillator decay frequency

ωd =
q

Dsp

I − γ2

4 , and by the integration constants ϑ0 and Ψ. The amplitude of the

periodic motion typical of the undamped case is now decreased by the exponential factor.

This decay can be characterized by defining the (amplitude) damping time τ = 2/γ. For

weakly damped systems (γ/ωd << 1), as the one used in our experiment, it is possible

to approximate ωd ≈ ωR =
q

Dsp

I .

The resonant efficiency of the oscillator is specified in terms of the quality factor Q,

which is defined by

Q = 2π
total elastic energy
energy loss per cycle

. (3.6)

In the case of weak damping, it is possible to show that the relationship Q ≈ ωR/γ =

πνRτ holds.

If the oscillator is driven by a time-dependent torque of the form Γ(t) = Γ0 cos(ωt)

the steady state response is given by

ϑ(t) = Θ(ω) cos(ωt+ δ(ω)) (3.7)

with Θ(ω) = Γ0

I (ω2R−ω2)2+(βωI )2
, and tan δ(ω) = βω

I(ω2−ω2R)
. In the approximation of

weak damping the line shape Θ(ω) can be written in a simpler form, assuming that it

vanishes for all the frequencies except for a small range around the resonance frequency.

It is then possible to approximate ω by ωR and the term (ω2R − ω2) by 2ωR(ωR − ω)

obtaining

Θ2(ω) =
M2
0

4I2ω2R

1

(ωR − ω)2 + (γ2 )
2
, (3.8)

which has the form of a Lorentian function. Since the full width of the curve at half

maximum can be easily calculated to be ∆ω = γ, the quality factor can be expressed as

Q = ωR/∆ω. At resonance (ω = ωR) Eq. 3.8 becomes

Θ2(ωR) = Q2
M2
0

D2
sp

. (3.9)

This result shows that the resonant response of the oscillator to an external pertur-

bation is proportional to the amplitude force and the proportionality coefficient is given

by the ratio of quality factor over spring constant. In order to measure weak forces, it

then is necessary to maxime this ratio, i.e. using a mechanical oscillator with a high
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quality factor and as small as possible spring constant. Whereas the first condition is

compatible with the measurement strategy of this work, reducing the spring constant,

i.e. the resonance frequency, makes the implementation of the vibration isolation more

difficult and for this reason will be not considered.

In order to be able to predict the mechanical losses in a vibrating oscillator, it is

necessary to distinguish between ideal and real solids. In the first case mechanical vi-

brations produce a process which is fully reversible from the thermodynamical point of

view. On the other side, considering an imperfect crystal or an amorphous body the

situation changes drammatically. While the solid is vibrating, a part of its mechanical

energy is used to rearrange its lattice imperfections. Several different mechanims con-

tribute to dissipation in solid state matter. In this section, we will focus our attention

on just one of them, the thermoelastic dissipation, which will be used in the forthcoming

chapters to characterize the sensor used in this experiment. In a solid, vibrations are

accompanied by changes in its volume (compression or decompression) producing spatial

inomogeneous temperature changes, that cause energy dissipation [53]. As an example,

the quality factor of a longitudinally oscillating bar, in which thermoelastic dissipation

is the main source of loss, is given by [54]

Q = ς
C2

κTαΛ2ωρV
, (3.10)

where ς is a numerical constant, ω is the vibrational angular frequency, T is the bar’s

temperature, ρ is the density of the bar’s material, C is the specific heat capacity, Λ is

the thermal expansion coefficient, κ is the thermal conductivity, and V is the volume

of the bar. Eq. (3.10) is valid for frequecies of up to 10 GHz. In contrast, the energy

of a pure shear vibration is not dissipated by this process, because no volume change

takes place during this kind of vibration. This is the case of a torsion pendulum, where

no contraction or expansion is involved in the oscillation. Considering this fact, the

optimum sensor for weak force measurement should be a torsional oscillator made of a

single crystal material, which shows low dislocation damping.

Other loss mechanims due to the environment are to be considered. If the oscillator

vibrates in a gaseous medium, it generates a sound wave, which removes part of its

energy. The quality factor of such an oscillator depends on the gas pressure p, on the
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temperature T as follows1

Q ∼ T 1/2

p
(3.11)

under the assumption that the mean free path of the gas molecules is much shorter

than the wavelength of the sound waves in the gas. In the case of oscillators with a

resonance frequency of the order of 10 kHz, Eq. (3.11) is valid for pressure larger than

10−2 mbar, while mechanical loss due to gas friction becomes very small, often smaller
than thermoelastic dissipation, at lower pressure. Further dissipation effects can arise

from surface defects and absorbed molecules (e.g. water and organic compounds), whose

presence introduces many different relaxation processes [53].

3.2 Internal Brownian noise of an elastic body

One of the first measurements of the Brownian motion of a mechanical oscillator goes

back to Gerlach in 1927, who measured the rotational Brownian noise of a small mirror

attached to a very fine wire [56]. A theoretical analysis of this phenomenon was then

provided by Uhlenbeck and Goudsmith in 1929 [57]. A deeper understanding of the

origin of Brownian noise was developed by Nyquist, who pointed out the existence of a

connection between stochastic motion and the internal mechanical loss of the material

[58]. A further generalization of this concept was given by Callen and Welton, through

the Fluctuation-Dissipation Theorem [59].

In the last decade the relevance of mechanical oscillators for precision measurement

of weak forces grew steadily [60]. The detection of the Casimir force [61], 3-d microscopy

with sub-nm resolution [62], attogram mass detection [63] are some of the most recent

examples of the results achieved by the use of mechanical oscillators in high precision

experiments. Particularly challenging applications of ultrasensitive force sensors are tests

of Newton’s law at short distances [10, 20, 43, 47, 64, 65] and optical measurement of

small displacements [66, 67]. In many cases, Brownian noise of the detector represents

the desirable ultimate limit to their sensitivity. A review of the measurement and data

analysis strategies, developed to improve the sensitivity of these detectors, can be found

in the work by Ritter et al. [42].

1R. Buser calculated the exact pressure dependence for another torsional structure, which is given by
[55]

Q =

√
2π

4

ωρh

p

RgasT

M
,

where h is the thickness of the oscillator, M its mass, and Rgas is the ideal gas constant.
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A simple model can describe the angular fluctuations of a torsional oscillator due to

Brownian noise, and is suitable for characterizing the sensitivity of a variety of precision

experiments, e.g. weak force sensors and gravitational wave detection [68].

The equation of motion of a harmonic torsional oscillator driven by Brownian noise

is

Iϑ̈+ βϑ̇+Dspϑ = Γ (t) , (3.12)

where I is the moment of inertia around the torsion axis, ϑ is the angular deflection

of the oscillator, β is the damping coefficient, Dsp is the spring constant, and Γ is a

fluctuating torque. Eq. (3.12) is a generalization of the Langevin equation for a simple

harmonic oscillator. We assume that Γ (t) has the following properties:

i) zero mean value,

ii) its variance is a constant in time: Γ2 (t) = const.,

iii) its values at two different times are uncorrelated.

The angular fluctuations of an oscillator excited by such a stochastic torque do

not obey exactly the statistics of pure random noise. This is a consequence of the

correlations introduced by the oscillator. If the oscillator’s deflection at time t0 is ϑ(t0),

the probability distribution of its angle at a later time t is given by [69]

P [ϑ(t) | ϑ(t0)] = ϑ(t)

ϑ2(1− e−2t/τ )
I0

Ã
ϑ(t)ϑ(t0)e

−t/τ

ϑ2(1− e−2t/τ )

!
exp

"
−ϑ

2(t) + ϑ20(t)e
−t/τ

2ϑ2(1− e−2t/τ )

#
,

(3.13)

where τ = 2I/β is the mechanical relaxation time of the oscillator, ϑ2 is the mean

square of the oscillation amplitude, and I0 is the modified Bessel function.

If the oscillator is excited by an external harmonic torque at the oscillator’s resonance

frequency, Γ = Γ0 sin (ωRt), the minimum detectable torque amplitude can be derived

using Eq. (3.13) and is given by [69, 70, 71]

(Γ0)min = π

r
IkBT

τ∆t
= π

s
IkBTωR
2Q∆t

, (3.14)

if the measurement time ∆t is smaller than the oscillator relaxation time τ . Here, the Q-

factor has been introduced through τ = 2Q/ωR. The improvement of torque sensitivity

with increasing measurement time can easily be pictured. During the measurement

time the response of the oscillator to the external force increases steadily due to the

phenomenon of resonance, whereas the response due to Brownian noise fluctuates. This

is the regime in which, for instance, the most sensitive torsion pendulums, that have

relaxation times of the order of 106 ÷ 109 s, operate [71]. A detailed analysis of the

sensitivity of torsion pendulums can be found in the book by Chen and Cook [29].
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Increasing the measurement time beyond ∆t = τ does not lead directly to an im-

proved torque sensitivity unless an appropriate data analysis is performed [42, 29]. Fol-

lowing Uhlenbeck and Goudsmit [57], it is necessary to develop the measured angular

displacement in a Fourier series like ϑ (t) =
P

k ϑk (t), where the index k = 0...∞ corre-

sponds to the frequency ωk = 2πk/∆t. We first consider the oscillator motion in absence

of external torque. The term of the series at the oscillator’s resonance frequency is the

one of interest. Its mean square depends on the measurement time as follows [68]

ϑ2k =
8kBTQ

Iω3R∆t
. (3.15)

Each quadrature amplitude of ϑk0 then also averages to zero, as (∆t)−1/2 for ∆t À
4Q/ωR. A similar result can be obtained applying Nyquist’s theorem [68]. The potential

energy of the oscillator, in absence of external excitation, can be calculated from Eq.

(3.15) and, as shown in Ref. [57], is constant and independent of the observation time

as expected from the equipartion theorem.

The signal-to-noise ratio is defined as the ratio between the corresponding steady-

state oscillator amplitude and the Brownian noise amplitude given by Eq. (3.15). Setting

this ratio equal to unity yields the minimum detectable torque in the case ∆tÀ τ ,

(Γ0)min =

s
4kBTIωR

Q∆t
. (3.16)

Thus, the minimum detectable torque decreases with the square root of the measure-

ment duration. The validity of this analysis is limited to the case of noise with white

spectrum. An example of weak (gravitational) force detection using detection of the

oscillator amplitude at the resonance frequency is given in ref. [10].

It is interesting to consider the statistical properties of the oscillator’s response. In the

following analysis we assume that the deflection of the oscillator at resonance frequency

is measured by a lock-in technique. This yields the slowly varying amplitude r(t), and

phase ψ(t) of the oscillator’s response ϑ(t) = r(t)cos(ωRt − ψ(t)). The quadrature

amplitudes X(t) = r(t) cosψ(t) and Y (t) = r(t) sinψ(t) are calculated. In steady-state,

the probability distribution function for these two quantities is given by W (X,Y ) =

W (X)W (Y ), where [72]

W (X) =

µ
Iω2R
2πkBT

¶1
2

exp

µ
− Iω2R
2kBT

X2

¶
. (3.17)

From Eq. (3.17) it follows that both quadratures have vanishing mean value, while their

variance is equal to kBT/Iω2R, as expected from the equipartion theorem.
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3.3 Sensitivity requirements of the detection system

Besides Brownian noise, there is another fundamental phenomenon that could affect the

sensitivity of the experiment described here: laser shot noise. In this section we will

describe the conditions that have to be fulfilled in order to avoid that the use of a simple

optical detector, similar to those used for atomic force microscopy [73], could degrade the

accuracy of our measurements. In this setup a laser beam is directed onto a cantilever

and is reflected to a split photodiode. The angle variation due to the deflection of the

device shifts the position of the laser beam on the photodetector. This position can

be measured monitoring the difference photocurrent of the two illuminated areas. The

use of a split photodiode instead of a normal photodetector enhances the sensitivity of

this system, because in this case variations of the optical power on the detector area do

not produce any signal (common mode rejection). The ultimate limit for this detection

scheme is (when all other noise are negligible) the quantum (shot) noise of the used laser

light. The shot noise current in both photodetector areas is uncorrelated so that it does

not subtract to zero. The quantum noise is a result of the Poisson statistics of the laser

photon number n with
√
< ∆2n > =

√
< n >. The quantum noise power for a fixed

laser power can be obtained by using the relation

P =< n >
~c
λt

(3.18)

and is given by
√
< ∆2P > = PN =

r
hc

λ

√
< P > (3.19)

where λ is the wavelength of the laser light. It has to be noted that PN is expressed in

W/
√
Hz. For the sake of simplicity, the spatial distribution of optical power impinging

on the photodetector is assumed to be rectangular. The beam has a gaussian distrib-

ution in reality, but the detector cannot distinguish between gaussian and rectangular

distribution if each area is illuminated by 50% of the total laser intensity. Under this

approximation the optical power density per unit length in the illuminated area results

in being constant and is given by

< P (l) >=
< P >

2w
l, (3.20)

where w is the width of the rectangular beam profile, which is roughly the waist of a

gaussian laser beam. A shift of the illuminating beam causes an inequal distribution of

the power between the sensor areas. The difference average power can be expressed as

< P− >=< PR > − < PL >=
< P >

w
lR − < P >

w
lL =

< P >

w
δl. (3.21)
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In order to determine the minimum detectable displacement of the laser beam δlmin,

the ratio of this quantity to the shot noise PN has to be equal to 1. The result of this

calculation is given by

δlmin = w

r
hc

λ

1√
< P >

. (3.22)

For a sensor, such as the one presented in this work, an angular motion makes the

laser beam move on the photodiode surface. Assuming that there is a distance z between

the sensor and the photodetector, the minimum detectable angular displacement is

δφmin =
δlmin
z

. (3.23)

This quantity is proportional to the width of the laser beam (see Eq. (3.22)). For

gaussian beam the waist is a function of the position and can be expressed as

w(z) = w0

s
1 +

µ
λz

πw0

¶
(3.24)

where the width at the waist is w0 = λ/πθ and θ is the divergence angle of the beam.

For large distances (far field) the expression reduces to

w∞ =
λz

πw0
. (3.25)

Using these expressions, the minimum detectable angular motion becomes

δφmin =
w(z)

z

r
hc

λ

1√
< P >

. (3.26)

In the near-field approximation the optimum place to position the detector is the

focus of the beam, where w = w0. Assuming the spot size being U , it is easy to obtain

δφmin =
2

πU

√
hcλ

1√
< P >

. (3.27)

On the other hand, using the far-field approximation it turns out that

δφmin =
1

πw0

√
hcλ

1√
< P >

. (3.28)

From these results, it follows that the sensitivity of the setup does not depend on

the distance between sensor and photodetector, i.e. there is nothing like an optical lever

arm.



24 3. Principle of the experiment



Chapter 4

The double-paddle oscillator

Single-crystal mechanical oscillators have proven to be a powerful tool for different ap-

plications, such as magnetic force microscopy [74], the characterization of thin films at

low temperature [75], the study of metallic films at high temperature [76], torque mag-

netometry [77], and the investigation of quantum effects [67]. The key property is the

very small damping (high quality factor) of these oscillators. In 1978 McGuigan and

coworkers [78] measured a quality factor of about 2·109 for a longitudinal mode of a
single-crystal silicon cylinder of mass 4.9 kg at 3.5 K. This result stimulated further

efforts to improve the mechanical performances of microfabricated structures. An im-

portant development in this field was the double paddle oscillator (DPO) by Kleiman

and coworkers [79]. A further improvement in the quality factor of single-crystal oscilla-

tors was obtained by Pohl and coworkers at Cornell University, who produced and used

DPOs to study elastic properties of thin metal films [75]. A typical DPO is shown in

Fig. 4.1. Six different eigenmodes of this type of oscillator have been experimentally

identified in the frequency range between 0.1 and 6 kHz [22]. One of them, an anti-

symmetric torsion mode, exhibits very small losses and its mechanical properties do not

appear to be influenced by aging. Its quality factor was found to be about 3 · 105 at
300 K and on the order of 8 · 107 at 4 K [80]. The difference between this result and

the values reported by McGuigan and coworkers suggests that there could still be room

for further improvements of the DPOs. Moreover recent studies of the thermoelastic

effect in single crystal micromechanical oscillators [81] have confirmed that the internal

friction observed below 60 K cannot be explained in terms of thermoelastic losses.

In the present chapter we report on the fabrication of DPOs using a different pro-

cedure from the standard one used in the previously cited works. We evaluate our

fabrication method with respect to the oscillators’ performance. Particular attention is

25
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paid to the measurement of the Brownian noise of a DPO. Next, we also show actua-

tion of DPOs by means of a laser beam and control of their torsional constant. Optical

actuation of resonant microstructures has previously been applied by different groups

[82]. To our best knowledge this technique has not yet been reported for DPOs, and is a

natural candidate for applications, in which an actuation method is required, that does

not need any metallic coating on the DPO, unlike the electrostatic excitation method.

4.1 Theoretical background

As shown in Fig. 4.1, a DPO consists of two paddles, denoted by head and wings, that

are connected by a torsion rod, the neck.

Figure 4.1: Dimension of the DPOs used in this work.

The wings are connected to the base, the foot, by another torsion rod, the leg. This

system can be modeled as a coupled oscillator consisting of two masses (head and wings)

and of two springs (neck and leg). Since each spring can be twisted or bent in different

directions, several vibration modes exist. In the present work we will restrict attention

to an antisymmetric torsion mode, known in literature as AS2 [22]. It consists of a twist

of the neck around its length and a synchronous oscillation of the wings around an axis
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orthogonal to the DPO symmetry axis. The oscillations of head and wings are out of

phase [83], as shown in Fig. 4.2. This mode is particularly interesting because of its

very low internal losses.

Figure 4.2: Model plots of the first eight oscillation modes of a DPO resulting from
FEM calculations. The last mode is the one of interest here. The displacements are
exaggerated to make the sketches intelligible. (Courtesy of C. L. Spiel.)

The resonance frequency of the mode AS2 is given, to first approximation, by [84]

ν0 =

√
3

π

s
S

c3d
t2s
Φ

ρf 0
e (4.1)

where c is the full width of the oscillator head, ts the oscillator thickness, f 0 = f + b−
(h + l + m) the neck length, e the neck width, d the height of oscillator head, g the

shear modulus of silicon for a wafer with a (100) orientation, and Φ is a parameter, that

depends weakly on the ratio ts/e and is of the order of unity. The shear modulus of

silicon around the torsion axis of the DPO, <110> direction, is S = 61.7 GPa at room

temperaure [85]. In our calculations Φ is equal to 0.25 [86].



28 4. The double-paddle oscillator

4.2 Material and technology

The unit cell of silicon crystal is of the type F.C.C. (face centered cubic) with two atoms

in the positions (0, 0, 0) and (1/4, 1/4, 1/4). The resulting crystal structure is diamond-

like with a lattice constant a = 5.43 Å. Crystal planes are characterised by the Miller

indices, that describe vectors normal to the crystal plane in question, e.g. (100), while

the crystallographic directions are indicated by <...>, e.g. <100>. The knowledge of

the crystallographic directions is of great importance, since the etch rates of the used

etchant depend on this.

There are different procedures to grow silicon single crystals. In the Czochralski

method, polycrystalline silicon is melted by high-frequency heating in a crucible and

heated up to 1440 ◦C to destroy crystallization seeds. Then the temperature is stabilized
at about 1425 ◦C (sightly above the melting point). A single crystal is immersed in the
melt and then slowly pulled upwards so that the solid-liquid interface is just above

the level of liquid silicon. This is the most common method to obtain large dimension

wafers (up to 300 mm in diameter), but it is not suited to the production of high

purity material. In spite of the fact that the procedure is performed in high vacuum

conditions, the melt can be contaminated by impurities contained in the crucible (typical

resistivity is the range between 50 Ω·cm and 0,01 Ωcm). An alternative technique is

the so-called float-zone crystal growth. In this scheme a circular rod of polycrystalline

silicon is converted into single crystal material by zone melting starting from a plane

in which a crystallization seed is contained. Crystals grown according to this method

have resistivities, which exceeds 1 kΩ·cm. A high resistivity is a sign of a good crystal
structure, because it corresponds to a low level of dopant (impurities), that degrade

the mechanical quality of the crystal. Insufficient control of the growth parameter is

responsible for the presence of crystal lattice defects, such as point defects (interstitial,

substitutional, selfinterstitial and vacancies) and dislocations [87]. The silicon wafers

used in the present work were grown according to this second method.

4.2.1 Fabrication technique

The DPO design we implemented is similar to the one developed by Pohl and coworkers

[22]. Its dimensions are shown in Fig. 4.1. The procedure decribed in this section was

developed by the author of this work in the clean room facilities of the group of Prof.

D. Jäger at the University of Duisburg-Essen.

The oscillators were fabricated from a 300 µm (or 500 µm) thick, float zone re-

fined, double-side polished, <100> oriented, and p-doped silicon wafer, with a room-
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temperature specific resistance larger than 10 kΩ·cm. On each side a 80 nm thick silicon
nitride layer (deep-etch-stop layer) had been thermally grown [88]. The process flow,

described in this section, is summarized in Fig. 4.3 and in Table II.

photoresist

primer

silicon nitride

silicon

Step 1 - 3

Step 4 - 7

Step 8 - 10

Step 11 - 12

Step 13

Step 14 - 15

Step 16 - 17

Figure 4.3: DPO fabrication procedure.
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Table II. Steps used for microfabricating the DPOs.

Fabrication Process
1 Wafer cleaving

2 Sample cleaning

3 Annealing at 230 ◦C for 30 minutes
4 Coating with primer (AR 300-80)

5 Annealing at 170 ◦C for 3 minutes
6 Coating with photoresist (AR 4040)

7 Annealing at 95 ◦C for 3.5 minutes
8 Photolithography

9 Development (AR 3035)

10 Annealing at 110 ◦C for 10 minutes
11 Stripping of silicon nitride in H3PO4 at 140 ◦C
12 Probe cleaning

13 Photoresist removal

14 KOH etching at 99 ◦C
15 Probe cleaning

16 Silicon nitride removal in HF

17 Structure cleaning

The wafer was laid on a clean room wipe and a small notch was scratched with a

diamond scriber in the direction parallel to the crystal axis <100>. The scriber tip was

then put in the notch and pressed firmly. In this way the wafer was split into more

samples, each having an edge parallel to the crystal direction <100> [89]. For cleaning,

the sample was then immersed in boiling acetone and afterwards in boiling propanol for

a few minutes. After blow-drying with nitrogen, the sample was put on a hot plate at

230◦C and at ambient pressure for 30 minutes (dehydration bake), in order to eliminate
solvent residuals, that could degrade the quality of the sample surface.

The following steps (6-10 in Table II) were performed in a class 10 yellow clean

room, in which the UV light was filtered out (photoresists are very sensitive to short

wavelenghts) and less than 10 particles larger than 0.5 microns were present in each

cubic foot of air space. It was essential that during this procedure the relative humidity

was at least 35% and the temperature was kept constant within 1 ◦C. This condition,
guaranteed by the air conditioning of the clean room, was monitored for the whole

duration of the fabrication. Since most photoresists have bad adhesion on silicon nitride,

a primer (Allresist, AR 300-80) was spun on each side of the sample at a spinning speed
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of 4000 rpm. These thin layers were annealed at 170 ◦C for 3 minutes. Next, a positive
photoresist (Allresist, AR 4040) was spun on both sides. The thickness of each layer was

1.4 µm. Baking at 95◦C for 3.5 minutes was required in order to temper the photoresist.
To reproduce the oscillator pattern on the photoresist layer, the sample was then put in

contact with a chrome coated glass mask1, on which the shape of the oscillator had been

previously printed via scanning laser lithography. In order to minimize the mechanical

losses of the DPO, it was important to align the sample carefully, so that the crystal

axis <110> was parallel to the symmetry axis of the DPO [22]. The sample was then

exposed for 12 s to light from a mercury short-arc lamp, which produced a radiation in

the wavelength range between 350 and 550 nm. The intensity required for the exposure

of the resist layer was 70 mJ/cm2. After developing in a 60% solution (by weight) of

AR 3035 (Allresist) for 4 minutes, the sample was rinsed, blow-dried and annealed at

110◦C for 10 minutes (postbake). The bare silicon nitride was then stripped in a H3PO4
solution (concentration 85% by weight) at 140◦C. Under these conditions an etch rate of
about 1 nm/min was measured. At this point, the nitride layer had been etched except

in the area corresponding to the oscillator. In order to eliminate the residual photoresist,

the sample was then put in boiling N-methylpyrrolidone (NMP) for about 15 minutes.

The silicon etching was then performed in a KOH solution (30% concentration by weight)

at 99◦C. Since the KOH etch rate in the <100> direction is much higher than in the

<111> direction, holes in a silicon wafer with surface orientation (100) can be easily

etched. The measured etch rate was about 3 µm/min. Next, the silicon nitride layer on

the free standing structure was removed by HF solution (concentration 20% by volume)

for five minutes. The oscillator was then rinsed and blow-dried. The total time required

to fabricate a DPO was about 5 hours. Two oscillators of different thicknesses, produced

following the aforementioned procedure, are shown in Fig. 4.4. As it takes longer to

etch the thicker oscillators, the etch-stop can be damaged. This is the reason why the

DPO in Fig. 4.4(b) shows slightly irregular edges.

1Observing the sample at the mask aligner, it was possible to see that the photoresist, because of
its viscosity, formed a bulge at the border of the plate. In this case, since the mask contact with the
sample was not perfect, the image fidelity was reduced. This was a crucial problem for the reproduction
of micrometer-sized structures. In our procedure it did not represent a major problem because of the
macroscopic size of our structure.
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Figure 4.4: (a) 300 µm thick DPO; (b) 500 µm thick DPO

4.3 Measurements and results

4.3.1 Oscillator characterization

Since any coupling of the oscillator to the external environment would introduce me-

chanical losses, fastening it without degrading its mechanical properties is crucial. As

suggested in Ref.[83], a small displacement during the oscillation takes place in the upper

part of the foot. For this reason, in our setup only the lower half of the oscillator foot

was carefully glued with Stycast 1260 on an aluminium holder2, as shown in Fig. 4.4(b).

The oscillator holder was mounted onto a piezoelectric transducer resting on a passive

vibration isolation system to reduce the influence of seismic noise. This setup was op-

erated in a high vacuum chamber (typical pressure 10−6 mbar and room temperature).

In order to characterize the mechanical properties of the DPOs, an optical detection

system, similar to the one described in the previous chapter, was set up. A He-Ne laser

beam (0.9 mW optical power) was reflected by the DPO onto a split photodiode, which

generated a photocurrent proportional to the amplitude of the angular displacement of

the oscillator. This setup could detect a laser beam displacement of the order of 10−11

m in a bandwidth of 1 Hz. As a comparison, the mininum detectable angular motion

due to shot noise of the laser, as from Eq. (3.28), was 2·10−12 m. The measured signal,
2We also experimented with an alternative clamping method for the DPOs. In this case the foot was

clamped between two metallic plates. Both techniques were found to be comparable.
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Figure 4.5: (a) Spectrum of a 300 µm thick oscillator driven by white vibrational noise;
(b) Dependence of the resonance frequency on the temperature.

usp, could then converted into the DPO’s angular displacement ϑ, using the following

relation

ϑ =
usp
2lΩ

, (4.2)

where l is the distance between the DPO and the split photodiode, and Ω is the

sensitivity of the split photodiode. In this work, l is equal to (64.4±2.0) cm and Ω to

(167.0±0.2) kV/m.
An electrical heater, mounted on the DPO support, enabled us to control the oscil-

lator temperature. The temperature could be stabilized using an analog PID-controller.

The measured temperature instability (in vacuum) was smaller than 10 mK over several

hours.

Applying a white noise voltage source, it was possible to record the spectrum of a

300 µm thick DPO, shown in Fig. 4.5(a), in which, besides the AS2, three other modes

can be clearly recognised. Following the abbreviation introduced by Spiel in Fig. 4.2,

they should be the FL1, AS1, and CL3. While the AS2 can be identified by its high

quality factors, the others have to be characterized directly, for example via scanning

laser vibrometry [90]. It was not possible to perform this kind of measurement in our

laboratory.

The resonance frequency (and consequently the spring constant) is a function of the

temperature of the oscillator. The temperature dependence of the resonance frequency

was measured, as shown in Fig. 4.5(b). The frequency-temperature coefficient, obtained

from a linear fit, was found to be -169 mHz/K for a 300 µm thick oscillator.
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In order to determine the quality factor of the mode AS2, the oscillator was driven at

resonance by the piezoelectric transducer. The excitation was then turned off. Using a

lock-in amplifier the amplitude decay was measured. The result of a typical measurement

is shown in Fig. 4.6(a). The experimental data was fitted by a single exponential

function with a ring-down time τ = 23 s, which corresponds to Q =7.7·105 (oscillator
thickness 500 µm, see Fig. 4.4). Fig. 4.6(b) shows the resonance curve of the same DPO

fitted to a Lorenz function with a width at 2−1/2 of its maximum amplitude of 0.013

Hz. This value corresponds to a quality factor of 8·105 in accordance with the ring-
down measurement. In every case, the measured Q-factor exceeds any measurement

previously reported in literature. Houston et al. [81] have developed a model in which

the quality factor of the mode AS2 is calculated assuming that the internal friction is

due to the thermoelastic losses associated with a vibrational flexural component of this

mode. Under this assumption the quality factor is given by

Q =

·
p1
EΛ2T

csp

ωRδ

1 + (ωRδ)
2

¸−1
, (4.3)

where p1 is the modal participation factor and is equal to the ratio of vibrational

flexural energy relative to total modal energy, E is the Young’s modulus, Λ is the thermal

expansion coefficient, csp the specific heat, ωR is the angular frequency of the mode AS2,

and δ the thermal relaxation time is given by

δ =
t2csp
π2κ

(4.4)

with κ as the thermal conductivity. Substituting the material properties of silicon

[91] in Eq. (4.3) and using Eq. (4.1), it is easy to show that the quality factor of the mode

AS2 scales as t−3s (ts, DPO’s thickness) and is about 2·105 for a 300 µm thick DPO. This
value fits with our results for the thin oscillators. For the thicker oscillators the measured

values are significantly higher than expected from Eq. (4.3). A possible explanation is a

strong reduction in the modal participation factor with increasing thickness, a reasonable

assumption, which overcompensates the factor t−3s .

Table III summarizes the results of the characterization of different oscillators. The

discrepancies between the calculated and measured resonance frequency are due to vari-

ations in the fabrication process (for example photoresist underetching due to different

duration of the etching steps.) The quality factors were measured several times and

they increased in the first days after the oscillators had been put under high vacuum

conditions. This was probably due to a thin water layer on the DPOs surface, that

slowly evaporated. The average increase was found to be of the order of 5% for all the

tested oscillators.
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Table III. Experimental characterization of different DPOs. The theoretical resonance fre-

quencies are derived from Eq. (4.1).

Oscillator 1 2 3 4 5

Thickness (µm) 300 300 500 500 500

Measured res. freq. (kHz) 5.9 5.2 8.6 8.9 10.6

Calculated res. freq. (kHz) 5.3 5.3 8.9 8.9 8.9

Q factor at 300 K and 10−6 mbar 1.9·105 1.3·105 2.6·105 3.0·105 7.7·105

A few oscillators, that were not been tested in our laboratory, were provided for the

group of Prof. Samwer (University of Göttingen) to be used for measuring the internal

friction in thin metallic and organic films in the range of temperature between 300 and

650 K [76].

Concerning the dissipation of the mode AS2, the oscillator produced with our man-

ufacturing procedure, proved to be, at least, comparable to others reported in literature

[21, 22]. In one case (oscillator #5) the quality factor achieved is, to our best knowledge,

the highest demonstrated so far at room temperature. Fig. 4.7 shows a comparison of

our best results with others previously published [21, 22].

Figure 4.6: (a) Ringdown of the mode AS2 for a 500 µm DPO with a time constant of
23 s at room temperature, which corresponds to a Q factor of 7.7·105.(b) Spectrum of
the same vibration mode due to thermal noise excitation (white noise).
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4.3.2 Brownian noise of a DPO

Experimentally separating Brownian noise from other kinds of noise affecting a mechan-

ical oscillator is a not trivial task. We will show how the use of the techniques and

statistical tools presented in the previous chapter made the detection of Brownian noise

and its characterization possible. In order to achieve this result, the DPO (#1 from

previous section) was mounted on a passive vibration isolation. The measurements ana-

lyzed below were taken in several consecutive runs for a total of 3.4·105 s. The detection
of the oscillator’s angular displacement was perfomed by a digital dual-phase lock-in

amplifier, with a local oscillator frequency set to allow measurement of the quadratures

X(t) and Y (t). The bandwidth of the lock-in amplifier was set equal to 0.8 Hz (corre-

sponding to a lock-in time constant of τL = 0.3 s) and the data was acquired at a rate

of 1Hz. A run was divided into blocks and each block consisted of the following steps.

First, the oscillator response was detected over 600s, while an external excitation was

applied. The external excitation was then switched off and after waiting 100 s, necessary

for the oscillator to reach equilibrium, a measurement without excitation was taken over

600 s. Then, the (slowly drifting) resonance frequency was determined by exciting the

DPO with a fixed voltage at few different frequencies and fitting the measured ampli-

tude to a Lorentz curve. Once this procedure was completed, the resonant excitation

was modified, if necessary, and the next block started.

In order to determine the influence of the detection system noise, the quadrature

X(t) and Y (t) were also measured in absence of external excitation and with the fre-

quency of the local oscillator’s frequency tuned 1 Hz below the DPO resonance. These

measurements were performed in a single run with a duration of 2·105 s. The pressure
in the vacuum vessel was constantly monitored throughout the complete duration of the

measurement, since its variation could have changed the Q-factor of the DPO.

In order to characterize the measured oscillator deflection noise, we first analyzed the

data taken in absence of external excitation. This data was considered as obtained all in

a single measurement without dead time between the single runs [97]. Fig. 4.8 displays

the statistic of the X quadrature for two different acquisition times, 2500 s and 1.7·105
s. In both cases the experimental data was fitted to Eq. (3.17),with the exponents

as fit parameters. The plots of the fit residuals show how the agreement with theory

improves for increasing measurement time, as expected. Also, the noise of the detection

system was found to be approximately 50 times smaller than the thermal noise of the

DPO, using the procedure described above. Assuming the statistics to be indeed due to

Brownian noise, from the fits it is possible to obtain the torsion constant of the oscillator,



4. The double-paddle oscillator 37

D = (8.04± 0.06) · 10−2Nm.
The torsion constant can also be approximately calculated from the oscillator’s di-

mensions and is given by [84]

Dsp = ξ
ab3

c
S, (4.5)

where ξ is a parameter depending on the geometry of the oscillator, equal to 0.25 in our

case, S is the shear modulus of silicon, a is the full width of the oscillator’s head and is

equal to 6.85 mm, b is the thickness, and c = 1.09mm is the neck width. The calculated

torsion constant is D = 7.7 · 10−2Nm, in good agreement with the value obtained from
the noise data. This confirms that the observed noise is Brownian noise.

In order to determine the torque sensitivity of the sensor, a small harmonic excitation

was applied to the oscillator, as previously described. This was implemented by applying

a small a.c. voltage at the sensor’s resonance frequency to the piezoceramic actuator

mounted on the vibration isolation system. The excitation voltage was generated by a

frequency synthesizer phase-locked to the local oscillator used for the lock-in detection.

In order to determine the correspondence between voltage and torque, the excitation

was made large enough to produce an easily detectable deflection, which was converted

into a torque by multipling it with the experimentally determined spring constant. In

doing so, we made sure that the response of piezoceramic actuator was linear in the

range used. In the following we used an external excitation corresponding to a torque

Γ0 = 4.3 · 10−18Nm and its phase was chosen to be equal to the local oscillator phase.

According to the theory of Section 3.2, this torque should be detectable for intergration

times exceeding 1·104 s.
Fig. 4.9 shows the mean values of the X quadrature as a function of the averaging

time. Note that the mean of the lock-in measurements is the time average of the Fourier

amplitude of X at the DPO’s resonance frequency. In calculating these mean values we

assumed that the dead time between successive runs do not introduce any deviation,

in analogy to the case previously illustrated. Since each sample was taken over 0.3 s,

the "true" integration time corresponds to 5.1·104 s. The shown error bars are equal to
±3 standard deviations of the mean value, calculated from the individual data points.

The mean quadrature amplitude corresponds to, after subtracting the detection system

noise, an excitation torque of 4.4·10−18Nm, in good agreement with the expected level.
For comparison, the figure also displays the mean X quadrature in absence of me-

chanical excitation. As can be seen, the presence of an external excitation is masked

by noise for averaging times shorter than 7·103 s, whereas it is visible for longer averag-
ing, in accordance with the above estimate. Statistical testing was done to determine if
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the presence of the external signal resulted in a significant difference of the two sets of

data. The result of a t-test for 2.5·104 samples indicated that the mean quadratures are
statistically different with a significance level of 95%.

From the experimental data, we can estimate the minimum detectable torque as

follows. The full data set is divided into 20 equally long subsets. The standard devi-

ation of the subset mean values may be identified with the thermal amplitude noise,

1.3 · 10−12 rad. As criterion for the minimum detectable torque we consider the torque

equivalent to twice this deflection noise value, 1.3 · 10−18Nm. This holds for an inte-
gration time of 2.5·103 s. Extrapolation to an integration time of 5.1 ·104 s (the whole
data set length), yields 2.8 · 10−19Nm. The theoretical value for this quantity, from
Eq. (3.16) corrected by a factor 1/

√
2 for the case of detection of a single quadrature, is

1.3·10−18Nm, a factor 5 larger than the extrapolated experimental value. The origin of
this difference is unclear.

In conclusion, we have shown that it is possible to detect weak torques on the or-

der of few 10−18Nm by using a macroscopic single-crystal oscillator (sensitive area of

12.5mm2), which can easily be fabricated in clean-room facilities. Moreover, we have

experimentally reached the thermal-noise limited sensitivity of the detector. In particu-

lar, we showed that the measuremed noise level is in general agreement with Brownian

noise theory. Thus, our apparatus represents a suitable approach for the detection of

gravity-like new forces at short distances, a project studied in our laboratory. Moreover,

the sensor could also be employed for the detection of classical, e.g. magnetic forces.
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Figure 4.7: Comparison of the quality factors of different macroscopic mechanical
oscillators[22, 78, 92, 93, 94, 95, 96]. (Picture adapted from Ref. [21].)

Figure 4.8: Histograms of the oscillator’s X angular displacement quadrature measured
at resonance and in absence of external excitation for two different measurement dura-
tions: (a) 2.5·103 s and (b) 1.7·105 s. The continuous curves represent Gaussian fits. (c)
and (d) show the fit residuals.
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4.3.3 Optical actuation

In the past, DPOs were mainly excited by electrostatic techniques. These require a

metallic coating on the oscillator and the use of an electrode in the vacuum vessel [76].

In some applications, for example detection of small forces, optical actuation represents

a suitable alternative. Although already used for different kinds of microoscillators [82],

this approach has not previously been implemented for DPOs. The principle relies on

the modulation of the intensity of a laser beam impinging on the oscillator. If the

modulation is at the resonance frequency of the DPO, the periodic stress caused by the

temperature modulation can couple to the oscillator mode. We used a He-Ne laser (spot

size ∼ 1 mm2) to excite the DPO. The beam was positioned on the DPO’s wing or

neck. An acousto-optical modulator, driven at the DPO resonance frequency by a signal

generator, produced a sinusoidal amplitude modulation of the laser beam output power.

The modulation depth was nearly 100%.

In Fig. 4.10(a) the response of the DPO to a rectangular optical excitation signal

with a peak power of 10 µW is shown. Fig. 4.10(b) shows that the angular displacement

of the oscillator head is proportional to the average power and to the power modulation

amplitude of the laser beam. This measurement was for the laser beam impinging on

the DPO wing. However, the efficiency of the excitation depends strongly on which part

of the oscillator is illuminated. The strongest effect was measured when the laser beam

was put on the bridge connecting neck and wings of the oscillator. This dependence

allows, at least in principle, the use of previously calibrated DPOs as position sensitive

photodetectors or as power meters. By comparing the signal and noise levels in Fig.

4.10(a), we can estimate that the minimum detectable power for a 300 µm thick DPO is

10 nW in a bandwidth of 0.1 Hz. Its sensitivity could be enhanced through a strongly

absorbing coating on the DPO’s most sensitive area, which, where appropriate, could

be also chosen to widen the spectral range of the detector. Fig. 4.10(c) shows the effect

of two counter-propagating beams impinging on opposite sides of the oscillator (see also

Ref. 17). The angular oscillation amplitude of the DPO vanishes if the difference of the

average power of the laser beams is equal to zero.

A second optical excitation method has also been studied. In this case the laser

beam impinging on the oscillator had a constant average power, but its position was

modulated. This was obtained by mounting a mirror on a piezoceramic actuator driven

at the resonance frequency of the AS2 mode. The laser beam reflected by the oscillating

mirror onto the DPO causes a position dependent temperature modulation, which excites

the oscillator. The DPO oscillation amplitude as a function of the scan amplitude is
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shown in Fig. 4.11(a). The laser optical power in this case was 5 mW. The DPO

amplitude was found to be about 500 times larger than the thermal noise at room

temperature. Fig. 4.11(b) shows that the DPO amplitude is proportional to the optical

power of the laser beam used for the excitation.

The DPO can also be frequency-tuned by the laser. This was accomplished by illu-

minating the neck of the DPO with a laser beam, whose amplitude was not modulated.

As shown in Fig. 4.11(c) the resonance frequency of a 300 µm thick DPO is a linear

function of the laser beam average power. The measured frequency-power coefficient

is -50 Hz/W. The optical power required to shift the DPO resonance frequency by the

FWHM ∆ν = νR/Q = 0.03 Hz is 0.6 mW.

The laser excitation enabled us to characterize and control the DPOs. The use of

this technique can have major advantages in applications in which a remote excitation

system is required, for example in a high-temperature environment.
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4.4 Metal oscillators

Since our aim was to fabricate a sensor suitable for gravitational measurements, the

possibility of manufacturing a metal oscillator, i.e. with an higher density than silicon,

was investigated. Changing the material of the DPO, but not its geometry, affects the

minimum detectable Yukawa force, since it has the following dependance on the material

density and the Q factor (see for example Eq. (3.2))

α ∝ ρ−1Q−1/2. (4.6)

Three different materials were tested: brass, copper and bronze. The best results

were achieved with the copper oscillators. Their quality factor and resonance frequency

are reported in Table IV. The measured quality factor is about one order of magnitude

lower, compared to the one of the silicon oscillators. This was probably due to the

dislocation motion, an effect that is not present in single-crystal silicon. Moreover, the

measured quality factors showed the tendency to decrease over time. Such a phenomenon

was probably due to the depinning of dislocation induced by mechanical stress [79]. If

the damping is determined by the dislocation motion, it is possible that the change of Q

is due to a variation of the dislocations mobility. The performances of the metal DPOs

were not improved by thermal annealing at 300◦C.

Table IV. Resonance frequency and quality factor for three copper oscillators.

Material Resonance frequency (kHz) Q factor

Cu 2.0 8·103
Cu 1.9 1·104
Cu 1.8 1.5·104

Defining αSi and αCu as the minimum detectable Yukawa interaction for silicon and

copper DPOs, the ratio αSi/αCu is equal to about 1, . In conclusion, we have shown

that the use of the metal oscillators fabricated in our laboratory cannot improve the

sensitivity of our apparatus.
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Figure 4.9: The mean values of the oscillator’sX quadrature, measured with and without
a small external mechanical excitation (4.3·10−18Nm), as a function of integration time.
Each sample corresponds to 0.3 s measurement time. The shown error bars correspond
to ±3 standard deviations of the mean values of the individual lock-in readings.
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Figure 4.10: (a) Response of the oscillator to laser power modulation that was turned
on at t = 93 s and off at t = 195 s. The fluctuations in the signal amplitude occuring
when the laser is off, are due to Brownian noise of the oscillator. Lock-in time constant
was 0.3 s. (b) Optical excitation of a DPO by a laser beam modulated at the oscillator’s
resonance frequency. (c) Optical excitation of a DPO by two counterpropagating laser
beams, that impinge on the oscillator’s wing. ∆P is the difference in the optical power
of the beams.
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Figure 4.11: (a) Excitation of a DPO by a laser beam scanned on the region connecting
the wings to the leg. The laser power was 5 mW. (b) DPO excited by a position
modulated laser beam. Here the scan amplitude is constant (40 µm), but the laser
power is varied. (c) ∆vR is the shift of the resonance frequency induced by a cw laser
beam illuminating the neck of a 300 µm thick DPO.
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Chapter 5

Gravitational excitation

There are two possible ways to produce a gravitational torque modulation in front of the

sensor. In the first case the excitation is accomplished through position modulation of

a source mass along the direction orthogonal to the sensor surface. This approach, used

in other experiments [43], would have shown two main disadvantages, if implemented in

our setup. Firstly, the mass motion could have transferred momentum to the oscillator

through residual gas molecules excitation, even when the test masses had been operated

under vacuum conditions. Secondly, the mass motion would have generated vibrations

at resonance, that, if not appropriately damped, could have excited the sensor. An

alternative approach is given by a periodic movement of the source mass along a direction

parallel to the sensor’s surface.

We followed this second scheme implementing the source mass motion through a

rotating wheel made of a low density material, which held individual high density source

masses. A sketch of the oscillator/wheel setup is shown in Fig. 5.1.

Both faces of the wheel can be machined flat in order to minimize their interaction

with the residual molecules in the vacuum vessel. Moreover, the rotation frequency of

the wheel was reduced by the use of several masses mounted on it. In this way the

probability that the sensor was excited by the vibrations produced by the source masses

was reduced. This approach overcomes also the practical difficulty in finding an actuator

able to move a mass of the order of 10−2 g over a distance of some hundred micrometers
and at a frequency of about 6 kHz.

In this chapter we describe the excitation system, which was designed to produce

the resonant gravitational torque on the double-paddle oscillator. Using a numerical

simulation based on a routine written by H. Wenz1, it is shown how to optimize the

1M. Weingran obtained similar results with an independent simulation [98].
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Figure 5.1: View of the oscillator and source masses attached to the wheel, together
with half of the electrostatic shield (more details about this are given in Chapter 6).

dimensions of such an excitation system, in order to maximize the expected Newtonian

and Yukawa torques on the sensor.

5.1 Calculation of the Newtonian and Yukawa torques

In the following calculations Cartesian coordinates are used, in which the torsion axis of

the oscillator lies on the z axis, the long side of the DPO head is parallel to the y axis

and the x axis is orthogonal to the DPO. The gravitational and Yukawa torque produced

along the z direction by the elementary source mass dms on the oscillator mass dmo,

which is located at distance −→r o = (xo, yo, zo) from the torsion axis, is given by

dΓz = [xo (ys − yo)− yo (xs − xo)]× (5.1)

Gdmsdmo

Ã
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|−→r o −−→r s|3
+ α

µ
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where −→r s = (xs, ys, zs) is the distance of the elementary source mass dms from the

origin of the coordinates system. In order to calculate the total torque acting upon the

sensor the following six integrals are to be solved

Γz =

Z
Vo

Z
Vs

dΓz, (5.2)
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where Vo and Vs represent the oscillator and source mass volume respectively. Two

integrals were solved analytically [29], whereas the remaining four were calculated nu-

merically using the function NIntegrate in Mathematica, which is based on Riemann

sums that approximate the integral. In order to reduce the duration of the computation,

the second term in the difference in squared brackets of Eq. (5.1) was neglected. From

direct comparison between different calculations we estimated the error made under this

assumption to be of the order of one percent, which was acceptable, considering that

the experimental uncertainty on the wheel-distance was estimated to be larger than five

percent.

A series of simulations was performed to determine the optimum size and position

of the source masses on the wheel, under the assumption that their interaction is only

due to Newtonian gravity. In this calculation we used the dimensions given in Fig. 4.1

for the DPO, its density ρs = 2.3 · 103 kg/m3, the wheel radius Rw = 2.7 · 10−2 m, the
distance between the wheel center and a source mass center r = 2.375 · 10−2 m, and the
density of the source masses ρm = 20 · 103 kg/m3 (Pt alloy). The radius of the wheel
was chosen to be as large as possible while staying compatible with the dimensions of

the experiment. This choice is due to the experimental need to rotate the wheel at a

frequency which is not too large (below 500 Hz), in order to reduce the vibrational noise

due to the motor.

Fig. 5.2 shows the results of a simulation, in which the radius of the source masses

was varied between 1.5 and 4.5 mm. The maximum torque for an oscillator-wheel gap

of 0.1 mm is achieved when the radius is equal to 3 mm, which corresponds to about

half of the DPO’s head. As a following step, the thickness of the source masses was

varied in the range between 0.3 and 4.5 mm. We found that the Newtonian torque for

thicknesses of the order of 2 mm reaches about 80% of its maximum value, as illustrated

by Fig. 5.3. Setting the radius and thickness of the source masses equal to 2.5 and 2

mm respectively, we calculated the Newtonian torque as a function of time2 as shown

in Fig. 5.4. According to this result the time-dependence of the torque can be well

approximated by a harmonic function.

Assuming, now, the existence of a Yukawa-like correction to Newton’s gravity law, a

slice of the source masses of thickness λ (interaction range of the correction) is expected

to give the main contribution to the torque as illustrated in Chapter 3. This condition,

confirmed by our calculations as shown in Fig. 5.5, is fulfilled in our experiment by

2The chosen dimensions are slightly smaller than the ones maximizing the Newtonian torque (see
Fig. 5.3). When deciding upon the size of the source masses, we looked for a good compromise between
maximum efficiency of the experiment and high costs due to the platinum masses.
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the use of 2 mm thick source masses, since we focus attention on Yukawa-like forces

with an interaction range of the order of 1 mm or smaller. Fig. 5.6 shows the distance

dependence of the torque produced on the DPO by platinum or copper masses inserted

into an alumium wheel provided with 15 sources masses. As a reference the expected

Brownian noise level for an integration time of 600 s is shown. The torque produced by

a plastic wheel with the same geometry, but without inserted disks, is also shown. Even

if the momentum, in this case, is produced by the mass left after drilling the holes, our

routine still gave the correct results under the assumption that the holes had a negative

density. All three curves were fitted to exponential functions and it was found that their

amplitude was reduced by a factor e−1 over a distance of 1.29 mm.
Since our aim was to test the predictions of the model by Arkani-Hamed, Dimopou-

los and Dvali, we calculated, as an example, the Yukawa torque due to our excitation

system (platinum source masses) in the case of the existence of two extra dimensions

with a compactification radius of about 1 mm. In this case the non-Newtonian correc-

tion is expected to have an interaction range of the order of 1 mm and its amplitude,

α, is expected to be in the range between 1 and 10. Fig. 5.7 shows the results of this

simulation for α = 4 and λ = 1 mm. The fact, that the existence of a Yukawa-like correc-

tion would change the distance dependence of the measured torque, suggests a possible

strategy for our measurements. In fact, we could measure the distance dependence of

the torque exerted by the source masses and compare it with the theoretical curve. The

main advantage of this approach is that the distance dependence is not affected by the

experimental uncertainties of the density of the masses, but is only determined by the

geometry of the masses and by the analytical form of the interaction.
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Figure 5.2: Calculated gravitational torque due to a platinum disk (thickness 2 mm) on
the DPO as a function of the disk radius. Gap between oscillator and wheel: 100 µm.

5.2 Experimental aspects

The wheel was made of a high strength aluminium alloy, while the source masses were

made of platinum or copper and filled the 15 equally spaced holes in the wheel. All

dimensions have already given in the previous section. Using metal attractors to gravi-

tationally excite a sensor was a natural choice in designing our experiment. It was not

only due to the characteristic high density of some metals, but also a consequence of their

low deformability under the mechanical stress induced by the wheel’s rotation (rotation

frequency ∼ 24000 rpm ∼ 400 Hz). Moreover, they can be machined to a high degree of
precision in an ordinary workshop. In manufacturing the source masses, great attention

was paid to the fact that both surfaces were flat, in order to minimize the interaction

with the residual gases in the chamber. In addition, we performed the following test to

prove the flatness of the wheel. A wheel without any inserted disks was mounted on

a test motor and rotated. It was illuminated by a light source from one side, while a

photodiode was put on the other side. The photodiode was adjusted so that its active

surface was partially covered by the shadow of the rotating wheels and its signal was

detected by a FFT analyzer. The same measurement was repeated once the disks were

inserted into the wheel. A modulation of the photodiode’s signal at the motor’s rotation
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Figure 5.3: Influence of the disk thickness on the gravitational torque. The gap between
oscillator and wheel is the same as in the previous case

Figure 5.4: Lower diagram: Gravitational torque as a function of time (Disks: radius
2.5 mm, thickness 2 mm.) The line is a sinusoidal fit. Upper diagram: Fit residuals.
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Figure 5.5: Calculated Yukawa torque as a function of the source mass thickness (simu-
lation parameters: α = 1, λ = 500 µm, gap 100 µm).

frequency was measured in both cases and its amplitude was not significantly changed

by the insertion of the source masses. This result showed that the source masses did

not introduce any change in the flatness of the wheel. The measured modulation can

be associated with a small wobbling of the wheel, that was measured later with another

method (see next chapter).

In the final setup the wheel was fixed on the axis of a small brushless DC-motor

(Faulhaber 2036), which was commercially available in two different versions for standard

and vacuum applications. We tested both motors in an auxiliary vacuum chamber (10−5

mbar) and we could observe that the standard version showed a shorter lifetime (noisy

bearings), but its outgassing was relatively small. Nevertheless, all the following results

where obtained using the vacuum-compatible motor, whereas a standard motor was

used for tests at normal pressure. Since non-uniform mass distribution in the wheel

could reduce the motor lifetime and increase the vibrational noise level, all wheels were

balanced after being fixed to a motor. Hereby excess mass was removed from the wheels’

back in order to preserve the flatness of the front side. For the first generation of wheels

this removal of mass was performed by an external company, whereas at a later stage

we were able to balance the wheels in our laboratory [98].

In order to provide an efficient excitation, the wheel rotation had to stay constant to

within the oscillator linewidth (∼ 35 mHz for a 300 µm thick oscillator). The frequency
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Figure 5.6: The gravitational torque due to three different attractors as a function of
the gap between sensor and source masses. The upper curve represents the newtonian
torque due to 15 platinum disks inserted into an aluminium wheel. Substituting them
with copper disks, the torque decreases (middle curve). The lowest curve corresponds
to the torque produced by a plastic wheel, whose holes are not filled. The three curves
are fitted to exponential functions. The expected Brownian noise level is shown for an
integration time of 600 s.
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Figure 5.7: If a Yukawa-like correction to Newton’s potential, due to two extra dimen-
sions, existed (here we assumed that the correction has the form given by Eq. (2.5)
α = 4 and λ = 1 mm.), it could in principle be detected by our experiment, since it
would change the distance dependence of the torque exerted on the oscillator.
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stabilization servo system (Faulhaber BD-3502) delivered with the motor was not able

to attain the level of stability required in our experiment. We could not find commercial

driving electronics to satisfy this requirement. As a consequence, we developed our

own stabilization system. In the first generation of this experiment the signal from a

tiny home-built light-gate mounted on the motor was read out by a frequency counter

(HP53181A) and sent to a computer, which controlled the motor’s frequency through a

LabView-based program developed by S. Schiller. In this way we achieved a linewidth

of the order of 50 mHz over a few hours.

A significant improvement was obtained using a microcontroller based driver unit

developed by M. Weingran [98], which was used in parallel to the commercial servo

system. This stabilization unit relied on the principle of a phase-locked loop (PLL). The

phase difference between a reference signal and the effective motor frequency, monitored

through a Hall sensor in the motor, was calculated and an appropriate correction voltage

was applied to the motor. Since the integration time span corresponded to many periods

of the reference signal, a small frequency difference resulted in a large change in the phase

of the signal. A disadvantage of this approach was that large frequency oscillations

(> 1 Hz) made the loop unstable and, in this case, it was necessary to turn off the

motor. Nevertheless, this was not a severe limitation to our experiment, since the typical

frequency instability of the motor was of the order of some ten millihertz over several

hours. A signal generator (SRS DS345, Stanford Research Systems) was used as a

reference for the PLL, which had an accuracy of ±5 ppm in the range between 20◦C
and 30◦C. It corresponds, for a frequency of 6 kHz, to an uncertainty of about 30 mHz,
which is comparable to the oscillator’s linewidth.

In order to improve the stability of the reference, the signal generator was fed in with

a 10 MHz signal from a function generator (Agilent E4422B) with an accuracy better

than 1 ppm. Fig. 5.8 shows the improved stability obtained using the 10 MHz reference.

Here, the PLL’s reference signal and the motor signal at 341 Hz were measured by a

FFT analyzer. The full width at half maximum of the motor was found to be smaller

than 1 mHz over 4000 s. The almost perfect overlap of the motor and reference curve in

Fig. 5.8 indicates that the measured frequency instability is due to the internal reference

of the spectrum analyzer used in this measurement.

The calculated root Allan variance of the motor and reference signal, a hydrogen

maser, is shown in Fig. 5.9 as a function of the integration time τ0. The Allan variance

of the motor signal scales like the inverse of the square root of the integration time

(∼ τ
−1/2
0 ) in the range from 10 s to 700 s, which is the typical dependence expected

for noise with white spectrum. The achieved instability is of the order of 4·10−9 for
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an averaging time of 700 s. Since the frequency counter used in these measurements

was not frequency locked to the hydrogen maser, the dependence of both curves on the

integration time shown in Fig. 5.9 could have been affected by the instability of the

internal reference of the frequency counter.

Figure 5.8: Spectrum of the motor signal (red) and of the reference frequency (exter-
nally controlled DS345 generator) used for stabilization (dashed black). For comparison,
the spectrum of a lower stability frequency (from a DS345 generator without external
reference) is also shown, in green.
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Figure 5.9: Root Allan variance of the motor signal (black) and of a hydrogen maser used
as a refence for the motor stabilization electronics (red). The fit shows that in the range
between 10 and 700 s the motor’s stability is limited by noise with white spectrum. Both
motor and maser signal show an instability, which could have been due to the internal
reference of the frequency counter used for this measurement.
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The Experiment

The present chapter is devoted to a review of the apparatus we set up to test gravity

with a DPO and the excitation system described in the previous chapters. Moreover,

particular attention is paid to describing the data acquisition and the alignment of the

test masses.

A view of the whole experiment, as it appeared during a typical measurement, is

given in Fig. 6.1. The sketch in Fig. 6.2 shows a cross section of the vacuum chambers

hosting the source and test masses. Our apparatus consisted of two stainless steel vacuum

vessels, which rested on an optical table (mass 1.5 tons) provided with four pneumatic

isolators having vertical frequency smaller than 1 Hz. The chamber on the left-hand

side was of a high vacuum type, in which pressures of the order of 10−6 mbar were
achieved using a turbo molecular pump (pumping speed 64 l/s). As shown in Fig. 6.2

this vessel contained the excitation system. This chamber was connected through two

tubes of different diameters to a second vacuum chamber. In the lower tube, having a

larger diameter, the motor-wheel system could be moved along the axis of the tube and

adjusted with respect to the DPO (5.9 kHz resonance frequency). The end of this tube

was closed by a thin metallic foil (brass, 25 µm thick) tightly stretched between two

stainless steel rings, and, since it was grounded, could be used as an electrostatic shield.

In the second connection between the vacuum vessels a valve was inserted, which allowed

us to create a differential vacuum between the chambers and to avoid deformation of

the thin electrostatic shield, due to pressure differences, during pumping down. The

second vessel, which contained the oscillator, was of an ultra-high vacuum type, where

a pressure of 1·10−7 mbar was produced by a second turbo molecular pump (pumping
speed 250 l/s). Both pumps were operated using oil free pre-pumps, in order to avoid

contamination and degradation of the DPO’s mechanical properties. Unscrewing the
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Figure 6.1: Side view of the apparatus.

ends of the two connections, it was possible to move the smaller chamber away from the

larger one. For this purpose the high vacuum chamber was mounted on a system of rails,

which allowed it to be moved with respect to the second vacuum vessel. This degree

of freedom was required in order to align the two test masses, as explained in the next

sections. Before describing each single component in more detail, we draw attention to

another advantage of this experimental design. In our system the center of mass of the

sensor-system could be kept far apart from that of the excitation system. In this way

vibrations generated by the motor had to propagate over a long distance before they

could reach the sensor. A disadvantage of this approach is that the relative adjustment

of the wheel and the DPO, as later explained, is made more difficult.

6.1 The sensor system

The sensor’s vacuum chamber was shaped like a cylinder with its main symmetry axis

parallel to the surface of the optical table. Four brackets were welded inside it and a

stainless steel plate was laid on them. A thin layer of elastomer was inserted between

each bracket and the plate in order to reduce the transmission of mechanical vibrations.

Brass weights (not shown in Fig. 6.2) were attached to the plate to lower its mechanical
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Figure 6.2: Cross section of the apparatus showing the major components of the ex-
periment. Both vacuum vessels were equipped with vacuum gauges (not visible in this
sketch). Dimensions of some components are not to scale.
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resonance frequencies below 3 kHz. An electroshaker and an accelerometer (sensitivity

10 V/g, PCB Corp.) were placed on it for diagnostics. A second stainless steel plate

was laid on the base plate, which was provided with three brass feet, shaped like upside

down cones. This geometry was chosen in order to minimize the contact area between

the two plates and to reduce the transmission of seismic noise to the upper stage. By

unscrewing the feet it was possible to change the height of the second plate over a range

of 8 mm. On this stage lay a passive vibration isolation consisting of two stainless

steel disks (diameter 20 cm, thickness 5 cm), that were separated by soft elastomer

springs. The springs were made of RTV 615, a material with a low Q-factor and well

suited to vacuum operation. RTV can be modeled easily into any shape, since it is

made by mixing two liquid components, that have to be then baked at 65◦C for about
5 hours. To further improve the vibration isolation we added some graphite powder

(6% by weight) to the liquid components [99], which increased the themoelastic losses in

the elastomer, improving its damping properties. On the top of the vibration isolation

system a precision alignment unit rested, which consisted of a linear stage, a tilt stage,

and a goniometer (OWIS GmbH). While the first stage was hand-driven, the other two

were motorized and driven by a computer. The resolution of the linear stage was 10

µm, while the minimum angular displacement due to both tilt stage and goniometer was

smaller than 0.1 mrad. An aluminium rod (diameter 1 cm, length 25 cm) connected the

oscillator holder to the alignment stage. Through the manual rotation of the rod around

its symmetry axis, the oscillator could be turned parallel to the electrostatic shield.

The oscillator was glued to an aluminium frame by using an epoxy (Stycast 1266) as

already described in Chapter 4. In order to make the DPO resonance frequency constant,

it is necessary to stabilize its temperature, as previously discussed. Therefore, a small

electrical heater was glued to the bottom of the holder and a temperature sensor (PT100)

was fixed near the DPO foot. The stabilization was achieved by a PID controller, which

kept the temperature constant within 10 mK, corresponding to a frequency uncertainty

of 2 mHz for the oscillator. In order to avoid that the cables connected to these elements

could come into contact with the DPO, they were kept as short as possible and soldered

to a connector, glued to one side of the holder, as shown in Fig. 6.3. The frame was also

provided with four contact sensors used to determine the distance of the oscillator from

the thin metallic membrane. They were connected to suited electronics, that mainly

consisted of a sensitive ohmmeter and produced an acoustic signal if at least one of

the contact sensors touched either the chamber or the electrostatic shield. Their cables

were also connected to the connector on the aluminium frame. The holder was then

mounted on a miniature linear stage (displacement range of 4.5 mm, OWIS GmbH),
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which was driven by a piezo motor. On the bottom of it, a second hand-driven linear

stage was connected, onto which an eddy-current sensor for distance measurements was

placed. The resolution of this sensor was better than 1 µm in the range between 0 and

2 mm. Its calibration was performed by mounting it on a hand-driven linear stage and

measuring the electrical signal generated at different distances from the electrostatic

shield. All cables connecting the oscillator’s holder to the external environment were

soldered to a connector fixed on the bottom plate of the vibration isolation system. For

this application, we chose thin and very flexible electrical wires, characterized by a low

transmission of mechanical vibrations in the kHz range and by very low outgassing under

vacuum operation. Once the chamber had been closed, the optical detection system was

mounted on its side, as shown in Fig. 6.1. It consisted of a He-Ne laser, whose beam

reflected by the DPO’s head was detected by a split photodiode [98] (see also Chapter

4). Due to mechanical relaxation, for example of the elastomer springs, the position

of the beam on the photodetector experienced a slow drift, which could influence the

amplitude of the detected signal. In order to eliminate this problem, the photodiode

was mounted on a motorized linear stage driven by a servo system, which moved the

photodiode in the appropriate direction to compensate for the drift. This motion was

performed over a time scale much longer than the vibration period of the DPO. Thus,

the actual detection at 6 kHz was not affected by the position stabilization. Moreover,

the temperature of the split photodiode was actively stabilized through a PID controller

similar to the one used for the DPO, in order to avoid that fluctuation of its temperature

could lead to variations in the sensitivity of the detection system.

6.2 The excitation system

The wheel and the motor were mounted in a holder equipped with four distance sensors,

similar to the ones used for the oscillator. They can be partially seen in Fig. 6.4. The

absence of contact with the chamber was monitored in a way similar to the one described

in the previous section. The motor holder consisted of two aluminium cylinders of

different dimensions. In the smaller one the motor was fitted, after being inserted into

four thin viton rings that had the double function of protecting the motor while being

inserted in the metal holder, and of reducing the amplitude of the vibration produced

by the rotating wheel. This cylinder was then put in the bigger one and fixed with six

aluminium screws, whose ends had been shaped like a tip in order to reduce the contact

area and to damp, in this way, mechanical vibrations. Finally, a frame holding the

distance sensors, made up of four micrometer screws, was mounted on the larger cylinder.



64 6. The Experiment

Figure 6.3: A view of the DPO mounted on its holder provided with distance sensors,
temperature stabilization system, and positioning stage.

The motor holder was fixed on a longer aluminium tube, which was clamped on the top

of the tower composed of the positioning systems and the vibration isolation (see Fig.

6.2). Also this tube was provided with a contact detector, whose output enabled us to

determine if the motor holder or the tube itself touched the vacuum chamber laterally.

All cables supplying the motor and the contact sensors were fed through the tube in

order to avoid that they could propagate vibrations bypassing the isolation system. The

positioning system consisted of two parts. The upper part integrated three hand-driven

tilt stages, used for making the wheel parallel to the sensor, whereas a computer-driven

linear stage allowed us to move the wheel in the direction parallel to the symmetry axis

of the holder with submicrometric resolution. The system described above rested on

a passive vibration isolation composed of three stainless steel stacks (diameter 25 cm,

thickness 8 cm) and elastomer springs, as in the case of the DPO. Particular attention

was paid to firmly fixing the electrical cables to the upper disk of the vibration isolation,

before their ends were connected to an vacuum feedthrough. In the motor chamber two

further sensors were integrated: a pressure gauge and an accelerometer (sensitivity 1
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V/g, PCB Corp.).

Figure 6.4: Side view of the motor holder, while being brought into contact with the
electrostatic shield.

6.3 Data acquisition

Fig. 6.5 schematically shows our apparatus and the devices used for the data acqui-

sition. For the sake of simplicity, the diagnostic units are not shown in the diagram.

They consisted, as previously described, of accelerometers, contact detectors with their

electronics, and an eddy current distance sensor. The signals were acquired through a

commercial analog to digital board (National Instruments) inserted into a personal com-

puter. The measured signal produced by the split photodiode was detected by a digital

lock-in amplifier (SRS 830, Stanford Research Systems) using, as a local oscillator, the

electrical signal generated by a Hall sensor mounted in the motor. Moreover, a spectrum

analyzer (SRS 780) was available to determine Q-factor and resonance frequency of the

DPO.

Since our goal was to perform measurements over a long integration time, it was

convenient to automate the measurement procedure. We wrote a routine using the

software LabView, which enabled us to perform a series of measurements independent

of operator supervision. The structure of this routine was the following: first, it was
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Figure 6.5: Schematic view of the apparatus

necessary to set the number of measurements n for each run, the repetition rate, and the

number of times the procedure had to be repeated. Once the program had been started,

it generated a file containing information about the status of the system, e.g. the distance

between wheel and electrostatic shield. In a second file the date and time corresponding

to the beginning of the measurement were recorded. Next, the lock-in amplifier, after

being initialized, measured the amplitude and phase of the Brownian motion of the DPO.

This data was stored in a single ASCII file. The motor was then turned on. Since it

took about one minute before the motor reached the goal frequency, the next step was

started only after the end of a two minute standby. At this point the motor frequency

was measured two times consecutively within 10 s by a frequency counter (HP53181A).

Both values were compared to the goal frequency. If the difference between the measured

and goal values was larger than a specified amount set by the user, the motor was turned

off and an error message was displayed. Otherwise, a new run of measurements with the

lock-in was started. During the measurements the data was stored in the buffer memory

of the lock-in amplifier, and only when the run was completed was it moved into a single

file. At the end of this measurement, after the motor had been stopped, a pause of 2

minutes was implemented in order to give the DPO the possibility to reach equilibrium.

While both data acquisition sessions (with and without gravitational excitation) were

carried out, the temperature of the oscillator was measured, and its values were saved
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to a file. It was crucial that during the measurement neither the oscillator nor the wheel

touched the electrostatic shield. To avoid this occurence the signals coming from the

contact sensors put on the motor’s and oscillator’s holders were constantly monitored.

If one of the sensors had touched the shield, the computer would have immediately

switched off the motor and stopped the measurement. The reaction time of this security

system was estimated to be shorter than one second.

Two other optional routines could be run within this program. The first one was

used to determine the resonance frequency of the oscillator. It required a frequency

generator and a device to excite the oscillator (e.g. the electroshaker mounted in the

DPO vacuum chamber). The parameters necessary to start the frequency search were

the start frequency νi, the frequency range ∆ν, and the number of measurements to

be performed N . Once this data was entered, the start frequency was given to the

frequency generator, which supplied the piezoceramic actuator with an a.c. voltage.

After a definite waiting time (four times longer than the oscillator ringdown time) the

amplitude of the oscillator motion was measured and its mean value over 10 s was

acquired. The same procedure was repeated at the frequency νi+1 = νi +∆ν/N . The

difference between the amplitude measured at this frequency and the previous one was

calculated. If it was positive, a new measurement was performed at νi+2 = νi+2∆ν/N ,

otherwise the program was stopped and the frequency νi+1 was returned as the new

resonance frequency.

The second routine performed a ringdown measurement to determine the Q-factor

of the oscillator. The DPO was excited by a piezoceramic actuator and after a certain

time the excitation was switched off. The decaying amplitude of the oscillator’s motion

was measured by a lock-in amplifier for two minutes. Finally, the data was fitted to an

exponential function and the quality factor was determined from the calculated ringdown

time, as was shown in Chapter 4.

6.4 Alignment

Making two masses of macroscopic extension parallel is quite a challenging task if they are

within a few hundred micrometers distance from each other. In our setup, the alignment

was made even more difficult by the need of the two separate vacuum chambers for

the DPO and the wheel, since during this procedure no optical access from the side was

available. Besides its influence on the measurement results, a poor alignment could make

the fast rotating wheel deform or even tear the electrostatic shield, causing the oscillator

to break. The four micrometric screws, mounted on both oscillator and motor holder,



68 6. The Experiment

had the function to prevent such a possibility.

In the following we will describe a standard procedure to make the wheel parallel to

the electrostatic shield at normal pressure. The motor holder was fixed on a separate

support, outside the vacuum chamber, with the wheel being parallel to the plane of the

optical table. The screws were adjusted so that all of them extended beyond the surface

of the wheel. A thin aluminium plate, appropriately flat machined, was put on the

screws’ tip. Using an optical stereoscopic microscope (magnifying power 60x) equipped

with a measuring scale in one of the oculars, it was possible to measure the width of the

gap between the plate and the surface of the wheel. In this way the width of the gap was

set to 0.1 mm and then the motor was put back in the vacuum chamber. First the wheel’s

chamber was connected to the DPO’s vessel. Then the wheel and the motor were moved

forward until one screw touched the electrostatic shield and produced an acoustical

signal. If it had been, for example, the bottom one on the left, the motor holder would

have been moved to the left until the right screw also touched the electrostatic shield.

By iteratively repeating this procedure, it was possible to make all screws touch the foil

at the same time, as in Fig. 6.4. Once this condition was achieved, the motor was moved

until the wheel was at a definite distance from the electrostatic shield. Since the motor

vibration could turn the micrometric screws, they were held in position from behind by

screws with a plastic tip, as shown in Fig. 6.4. As observed in a previous section the

motor tended to wobble when the wheel was rotated. To estimate the amplitude of this

motion a small mirror was glued to the back of the motor. A laser beam impinging on it

was reflected on a position-sensitive photodiode. In this way we observed that the gap

between wheel and foil was periodically modulated and the peak-to-peak amplitude of

this modulation was smaller than 5 µm.

An analogous alignment procedure was developed for the DPO. The major difference

to the previously described procedure was given by the full motorized positioning sys-

tems, that enabled us to verify the DPO’s alignment even when both vacuum chambers

were evacuated We took advantage of this to test the stability of DPO’s position after

pumping down. In comparison with normal pressure, a slight tilt of the oscillator was

observed in vacuum conditions, and the change it introduced in the shield-DPO distance

was about 10 µm. The origin of this effect is still not known. Anyway, the DPO was

re-aligned regularly after pumping down. No change in the wheel’s position was deter-

mined by optical measurement analogous to that described to detect the wobbling of the

wheel.

All contributions to the experimental uncertainty in the determination of the DPO-

wheel separation are summarized in Table V. The total error made on the measurement
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of the distance is of 42 µm in the alignment procedure, where the major contribution is

due to the measurement with the optical microscope.

Table V. Experimental errors for the measurement of the wheel-DPO distance

Uncertainty due to ∆ (µm)

Motor’s positioning 1

DPO’s positioning 1

Optical microscope 25

Micrometer screws (Motor) 5

Micrometer screws (DPO) 5

Contact sensor 5

Wheel’s wobbling (only during operations) <5
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Chapter 7

Experimental results

In this chapter we present the results of several runs of measurements performed using

three different types of source masses: copper, platinum, and plastic. Several consistency

check are also presented to determine the nature of the measured torque. Possible

changes to the present setup, that could improve the sensitivity of this experiment to

non-Newtonian forces, are also suggested. Lastly, constraints to the existence of a non-

Newtonian interaction with Yukawa distance dependence are derived and compared to

the present best limits.

7.1 Metal source masses

The distance dependence of the torque acting on the oscillator, when excited by copper

and platinum masses, is shown in Fig. 7.1.

Each data point corresponds to a measurement duration of 1200 s. For both sets

of source masses, the measured signal is notably larger than the expected Newtonian

torque (blue and black lines in Fig. 7.1). Both data sets of data were fitted to exponential

functions with the form η exp(−εd), where d is the distance between wheel and DPO. A
comparison of the fit parameters1 with the theoretical expectation is given in Table VI.

1The measured signal was converted into a torque value by using Eq. (3.9) and Eq. (4.2)

71



72 7. Experimental results

Figure 7.1: Torques measured with platinum and copper source masses compared to the
expected gravitational signals (blue and black lines). The experimental data was fitted
to exponential functions (solid red lines). Each data point was taken over 1200s

Table VI. Comparison between Newtonian theory and fit parameters

η (Nm) ε−1(mm)
Expected value for Cu masses (4.7±0.1)·10−17 1.288±0.002
Measured value for Cu masse (7.83±0.03)·10−15 0.82±0.07
Expected value for Pt masses (1.1±0.1)·10−17 1.288±0.002
Measured value for Pt masses (5.01±0.06)·10−15 0.54±0.05

Surprisingly enough, the response of the oscillator, due to excitation by the platinum

masses, about 45 times larger than the expected gravitational signal, is 1.6 times smaller

than in the case of copper masses. This fact, together with the deviation between

the expected and experimental distance dependence, rules out the possibility that the

measured signal had a gravitational origin. Moreover, if this effect had been due to

a non-Newtonian effect, it should have been detected in previous experiments [20, 43,

47]. In order to determine the nature of the unknown disturbance, which affected our

measurements, a series of tests and consistency checks were carried out. In the following

we report the results of these investigations.
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7.1.1 Non-resonant disturbance

The measured signal showed a strong dependence on the rotation frequency of the wheel.

Changing, for example, this frequency by 0.1 Hz, the amplitude of the measured signal

was drastically reduced. In light of this result we can conclude that the measured signal

was due to a resonant excitation.

7.1.2 Dependence of the signal on the DPO-photodiode distance

The results shown in Fig. 7.1 were obtained by varying the DPO’s position, whereas

the wheel was not moved. Therefore, it was coincevable that the distance dependence

of the measured signal could have been due to the changed vertical position of the

detection laser beam on the split photodiode. (A lateral misalignment was excluded by

the active control on this degree of freedom we had implemented, as explained in the

previous chapter.) To investigate this possibility, a run of measurements was performed,

in which only the wheel’s position was changed. The results were identical to the ones

previously presented. Also moving both sensor and test mass did not cause any change

in the distance dependence of the measured signal. As a further consistency check, we

used a second lock-in amplifier to detect the split photodiode’s signal at a frequency of

2 kHz. By repeating the complete measurement we could observe that this signal did

not show any change when the distance wheel-DPO was changed. This confirmed that

the measured effect was not due to deterioration of the laser beam alignment on the

photodiode.

7.1.3 Distance dependence of resonance frequency or Q-factor

A distance dependent torque, as shown in Fig. 7.1, could also have been due to a position

dependence of the resonance frequency and of the Q-factor of the DPO. Consequently, the

distance dependence of these two parameters was investigated by changing the width of

the gap between the DPO and the electrostatic shield. The resonance frequency showed

a stability of about 10−6 over a distance of 1 mm. The Q-factor was found to be constant
within 3% over the same distance range. We can conclude that neither a change of the

resonance frequency nor a change in the Q-factor could to be responsible for the effect

previously measured.
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7.1.4 Pressure dependence of the measured torque

It was conceivable that the residual gas molecules accelerated by the wheel’s motion

could transfer momentum to the electrostatic shield. This mechanical vibration could

have reached the DPO in different ways. The first test we performed to verify this

hypothesis was the following. We repeated the measurement presented in Fig. 7.1

at different pressure. The response of the DPO resulted in being independent of the

pressure in the vacuum chamber in the range 10−5-10−8 mbar. Nevertheless, we also
tried to measure a possible movement of the electrostatic shield. A small piece of polished

silicon wafer (dimensions 10×10 mm) was glued to the foils and used as a mirror, which
reflected a laser beam impinging on a split photodiode. No motion was detected either

at the DPO’s resonance frequency or at the motor rotation frequency. A final way of

excluding any excitation through residual gases was given by using electrostatic shields

with different thicknesses (0.025, 0.05, 0.1, 0.5 mm). The results of our measurements

showed that all shields behaved the same manner and their thickness had no influence

on the outcome of the experiment.

7.1.5 Electrical disturbances of the detection system

We performed several test measurements to determine whether the result could have

been due to an electrical pickup. No evidence supporting this hypothesis was found.

7.1.6 Influence of mechanical vibrations

Both accelerometers, in the oscillator and in the wheel chambers, did not detect any

accelereration at resonance frequency whilst the wheel was rotating. In addition, we

observed the detected torque to be very sensitive to the relative position of sensor and

source masses. With the center of the oscillator’s head about 3 mm higher than the

symmetry axis of the cylinder source mass, a strong reduction of about one order of

magnitude in the torque signal was measured. Based on these results, the excitation of

the DPO by vibrations produced by the motor could be excluded.

7.1.7 Excitation through higher harmonics

According to the results of the simulation presented in Chapter 5, it should be nearly

impossible to excite the DPO with a frequency lower than the one used in our experiment.

To verify this prediction, we reduced the motor rotation frequency by one half of its usual

value. In this case we were still able to detect a torque only four times smaller than the
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one shown in Fig. 7.1, whereas in the case of gravitational excitation a reduction by a

factor of 100 was expected. Moreover, it was found that it was possible to excite the

oscillator even by reducing the motor frequency to one third of its normal value. In this

case a torque 30 times smaller than the previous one was measured.

7.1.8 Electrostatic interaction of the test masses

In light of the large differences in the strength of gravitational and electromagnetic

forces it was conceivable that the measured torque could have an electrostatic origin.

This possibility was thoroughly investigated, as reported in this section.

As a result of our first tests, the nature of the measured torque did change if the

chamber or the oscillator’s electrical potential was changed. In general, applying a d.c.

potential (up to 10 V) to the DPO’s holder, which was grounded during operations, did

not cause any measurable change in the signal.

To test the effect of an a.c. voltage on the oscillator, we used a small copper electrode

(about half the size of an oscillator’s head) mounted in place of the motor. The electrode

was aligned to be at the height of the DPO’s head and to overlap one half of it. A resonant

a.c. potential was then applied to it. No excitation could be detected for voltages up to

10 V. This result proved that the thin metallic membrane between wheel and oscillator

provided a very effective shielding of electromagnetic fields. The importance of the

electrostatic shield was also confirmed by the fact that the DPO could be excited by

applying a resonant a.c. potential to the membrane. This effect was probably due to the

imperfect parallelism between the DPO and the electrostatic shield. In order to exclude

the possibility that the measured interaction was caused by surface potentials (patch

effect), the wheel was coated with a thin graphite layer (thickness <1 µm). No change

in the detected torque was observed, when the wheel was rotated.

7.1.9 Influence of magnetic fields

The electrode, as mentioned in the previous section, was replaced by a small coil to test

if an a.c. magnetic field could interact with the sensor. In this case it was possible to

detect an excitation of the oscillator, when an a.c. resonant current flowed through the

coil. The amplitude of this motion was the same order of that shown in Fig. 7.1, when

the coil generated a field of about 100 mG at the distance of 0.5 mm from the DPO. In

contrast, the field modulation generated by the motor was found to have an amplitude

of only 10 mG at the resonance frequency of the DPO, whereas the amplitude was of 3

G at the motor rotation frequency (about 390 Hz). These B-field measurements were



76 7. Experimental results

performed using a Hall sensor with a sensitivity of 3.125 mV/G and a measuring range

of ±670 G. Since it was not possible to completely exclude the fact that the measured
torque on the DPO was due to the motor’s magnetic field, a careful investigation of

the motor’s magnetic properties was carried out. A motor similar to the one used in

the experiment was mounted on a traslation stage, which allowed us to move the motor

parallel and orthogonal to its axis. The Hall sensor was fixed in front of the motor.

The distance dependence of the B-field was then measured. The magnetic field on the

axis decreased exponentially and its amplitude was reduced to e−1 of its start value at a
distance of 1 mm from the initial position. We performed the same measurement, having

moved the Hall sensor laterally by 24 mm, which corresponded to the position of the

oscillator’s head during operations in the vacuum chamber. In this case the amplitude

of magnetic field was reduced by a factor of about ten and its distance dependence was

found to be linear (the slope was 50 mG/mm). To evaluate if the motor’s B-field really

had any influence on the oscillator, the motor axis was lengthened by 1 cm. Using this

modified setup, a complete run of measurement was performed. No significant difference

from the results in Fig. 7.1 could be determined. It is our opinion that this result

excludes any contribution of the motor’s magnetic field to the measured torque.

In our experiment we did not compensate in any way for the earth’s magnetic field,

which could have been modulated by the different magnetic permeability of copper,

aluminium, and platinum. To measure how large this modulation would have been, we

set up the following test apparatus. A permanent magnet with a field of 400 G was put

just behind the wheel at the same height as the source masses (platinum). The Hall

sensor was put at the same level, but on the other side of the wheel. The a.c. magnetic

field measured at 5921 kHz was of 16 G. Since the earth’s magnetic field is of the order

of 0.3 G, its modulation through the rotation of the wheel would have produced a field

with an amplitude of about 12 mG, which would have been about eight times too small

to excite the DPO.

A deeper insight into the nature of the measured torque could be gained through the

following test. A new aluminium wheel was machined, but no holes were drilled. It was

then mounted on the motor, aligned with the oscillator and then rotated at the resonance

frequency of the DPO. No torque due to the wheel was measured. This result confirmed

that the effect we previously measured, was due to the inhomogeity introduced by the

holes in the wheel. Next, 15 holes were drilled on the back of the wheel. They were

left closed by a thin aluminium layer (about 100 µm thick). In this way the front side

mantained the same geometry as in the previous test, but the missing mass produced

a resonant modulation of gravity, when the wheel was rotated. This wheel produced
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a torque on the DPO of the same order of magnitude as the one corresponding to the

platinum inserts in Fig. 7.1. Lastly, the holes were drilled through the wheel completely.

The measured torque did not change as compared with with the previous measurement.

In the light of these results, we can come to following conclusions. The effect we measured

was definitely due to the holes in the wheel. Since the holes were not filled with any

metal inserts, it is possible to exclude that the torque we measured was mainly the

result of electrical contact potentials. Moreover, the presence of platinum inserts did not

seem to have any effect on the total torque. This confirms that the contribution of the

modulation of the earth’s magnetic field can be ignored, since platinum is paramagnetic

and its magnetic permeability is about 10 times larger than in the case of aluminium.

Another phenomen that had to be taken into account in analyzing the results of our

experiment was the induction of electromagnetic fields by accelerations in metals, which

is a consequence of the electron inertia. The free electrons in the metal, pushed by the

centrifugal forces, could accumulate at the periphery of the disk, where the holes, or the

metal inserts, could make the charge distribution non uniform and cause the existence

of an a.c. magnetic field. Similar effects were detected by Barnett [100], Tolman and

Stewart [101] at the beginning of the last century. In a more modern experiment Beams

observed a small radial electrical potential gradient along a spinning aluminium rotor

[102]. Further investigations are required in order to test this hypothesis, since the

fields measured in the cited works were quite small. In conclusion, the results of the

measurements presented here confirm, in the author’s opinion, that metal masses in

gravitational experiments can give rise to disturbances, as already shown in a test of the

Equivalence Principle by Fairbank and Witteborn [103].

7.2 Plastic source mass

The hypothesis that the anomalous torque was due to the distribution of electrons in

the metal source masses could be tested by using an insulating material to make the

attractor. In choosing the material for this new source mass we focused our attention

on polymers. They offer the advantage of being machinable in an ordinary workshop

and that they can easily be procured. However, they have also two main disadvantages:

low density and low tensile strength. We chose Lexan, a polycarbonate resin, which

is characterized by a relatively high tensile strength (75 MPa) and has a densitiy of

1.2 g/cm3. The attractor’s geometry was the same as used in the previous cases, but

the holes were left open (no disks were inserted). Due to its low density, the wheel

had a much smaller momentum of inertia than the aluminium wheel. Since the motor
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stabilization loop had been designed for metal wheels, it was necessary to increase the

momentum of inertia of the new attractor. This was achieved by mounting a brass

ring on the back of the wheel. With this setup it was then possible to reach the same

frequency stability as already mentioned in Chapter 5.

In Fig. 7.2 the results of a measurement with the new attractor are presented.

The duration of the measurement for each data point was 13200 s. In this case the

measured torque resulted in still being larger than expected from our simulations, but

only two to five times, depending on the distance between DPO and wheel. The distance

dependence in this case is not exponential and no definitive explanation was found for

it. After performing these measurements, we could observe that a clear pattern having

the form of the wheel was visible on the electrostatic shield. This was probably due

to outgassing of Lexan and could be wiped off by using a clean room tissue. Since

neither the wheel nor the contact sensors touched the metallic foil (its surface did not

show any scratches and no contact was detected), we could exclude that the wheel

had touched the electrostatic shield while rotating. This might explain the anomalous

distance dependence of the measured torque: the molecules evaporating from the wheel

surface could have transferred momentum to the metallic membrane, which could have

excited the sensor mechanically or electrostatically (assuming a difference of potential

between DPO and electrostatic shield.) In order to avoid further contamination of the

vacuum chamber, we did not operate the plastic wheel any longer. Nevertheless, it is

opinion of the author that the result of this last measurement shows the advantages of

using a non-conductive material as a source mass, since the disturbance level relative to

gravity was decreased. We think that it should be possible to measure gravity with our

apparatus using a ceramic material for the source masses. A good candidate is zirconium

dioxide, also known as zirconia, stabilized with magnesium oxide. This material has a

densitiy of 5.74 g/cm3 (almost five times larger than in the case of Lexan), a tensile

strength larger than 300 MPa and can be machined with standard workshop tools.

Moreover, it is much better suited to vacuum conditions than polycarbonate resin.

Finally, the constraints on the existence of a non-Newtonian force, based on our

experimental results obtained with the plastic attractor, were compared with the previ-

ously cited experiment as shown in Fig. 7.3. Interestingly, all three experiments based

on the use of high frequency mechanical oscillators (Stanford, Colorado and ours) could

not provide as good results as the one performed at University of Washington, which was

performed using a torsion pendulum as a force sensor. In our opinion, this difference is

due to the fact that the use of kHz-oscillators in this kind of experiment is still relatively

new, whereas a great deal of work over the last two centuries has been done with torsion
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pendulums in gravitational physics.

Figure 7.2: Torque produced by a Lexan wheel on the DPO compared to the expected
gravitational signal. Each data point was taken over an integration time of 13200 s.
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Figure 7.3: Upper limits to the strength of a non-Newtonian interaction relative to
gravity from the experiment cited in Chapter 2 compared to our present results (red
line).



Chapter 8

Search for non Newtonian gravity
at ultra-short distance

As shown in Fig. 2.2, the existence of extra forces that couple to masses has been poorly

constrained in the distance range below 100 µm. The major difficulties in performing an

experiment at these distances are due to electrostatic and Casimir force. The impossibil-

ity to use a thin metallic plate as shielding, as done previously, requires the development

of new concepts. Inspired by a work by Krause and Fischbach [64], we propose a new

setup, that could improve the present limits in the range between 0.1 and 100 µm.

A view of the setup is shown in Fig. 8.1. The sensor is a torsional oscillator (labelled

3) similar to the one used in our experiment. The torsion axis is orthogonal to the

picture plane. The gravitational excitation is provided by two source oscillators of the

same type (labeled 1 and 2 in the picture), whose resonance frequencies are equal to

νR
1. All three oscillators are parallel. The source oscillators are aligned, while the test

oscillator is shifted by one half of its width on one side as shown in Fig. 8.1. The source

oscillators’ heads are coated with a s = 1 µm thick gold layer on the inner side. The test

oscillator is coated on one side with a s = 1 µm thick gold layer and on the other with 1

µm copper layer. The accesible part of the test oscillator is used to perform the optical

detection of its motion. We assume here that the gap between each pair of masses is the

same size.

The source masses are actuated sinusoidally in phase at the frequency νR, so that

1 It is essential that the three DPOs have the same resonance frequency. Since it is very difficult
to produce two oscillator with exactly the same geometry, their frequencies have to be tuned. This is
possible by illuminating each with a different laser beam with an optical power suited to get the required
νR (see Chapter 4).

81
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Figure 8.1: Proposed setup for testing gravity at ultra-short distance. a) Top view. Here
d0 is the gap width when all DPOs are at rest. b) 3D view

the gap width is given by

d (t) = d0 + d1 cos (2πνRt) , (8.1)

where d1 represents the modulation amplitude. This can be accomplished by optical

actuaction of the oscillators, as already demonstrated in Chapter 4.

The total torque acting on the sensor is then given by

Γtotal = Γgravitation + Γelectrostatic + Γcasimir =
L

2
× (8.2)h³

F gravity
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1 − F electrostatic

3
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F casimir
1 − F casimir
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where F gravitation

i , F electrostatic
i , and F casimir

i are the gravitational, electrostatic, and

Casimir forces exerted by the oscillators i = 1 and 3 respectively and L is half the width

of the DPO’s head. Under the assuption that L >> d, the gravitational torque, which is

due solely to the unequal films on oscillators 1 and 3, can be written in the simple form

Γgravitation = πGL2Hs2ρgold
¡
ρgold − ρcopper

¢
Here G is the gravitational constant, the product L times H is the sensor area (equal

to half of the DPO’s head), s is the thickness of the metal layer, ρgold and ρcopper are

densities of the gold and copper layers. Using the values given in Table VII, it results

that the gravitational torque Γgravitation is equal to 2.1·10−21 Nm.
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Table VII. Parameters for the proposed experiment.

s 1·10−6 m

d0 2·10−6 m

d1 1·10−6 m

ρgold 2·104 kg/m3

ρcopper 9·103 kg/m3

In order to suppress the electrostatic interaction due to charge excess on the metallic

layer, a technique can be used that was developed for the spinning test masses of the GP-

B satellite and relies on the use of photoemission effect [104]. The charges are removed

through UV laser light exposition of all the test masses. Moreover, in a recent work it

was shown that the use of metallic layers realized with plasma-enhanced chemical vapour

deposition reduces the effect of surface potentials [105]. Therefore, it should be possible

to make Γelectrostatic smaller than the gravitational torque using these two techniques.

If the metal layers were perfect mirrors, the Casimir force on the test oscillator would

be perfectly balanced. Metals can be approximated as perfect mirrors at wavelengths

larger than their plasma wavelengths, about 0.3 µm for copper and gold [106]. Therefore

if the gaps between the oscillators are larger than a few times the plasma wavelength, the

Casimir contributions of oscillator 1 and 3 should be equal and Γcasimir would vanish.

Other background effects, such as the gravitational attraction between the oscillator

mass (as opposed to the metal layer), the magnetic field generated by the acceleration of

the metal films (Tolman-Stewart effect), and the pressure dependent effects, are expected

to be perfectly compensated by the symmetry of the proposed setup.

Once all systematic effects are removed, the fundamental limit to the sensitivity of

this apparatus is given by thermal noise. For this reason it is convienent to perform the

experiment at liquid helium temperature, at which the quality factor of the oscillator

reaches values of the order of 108 [80]. The Langevin thermal torque (see Chapter 4) is

of the order of the gravitational torque for an integration time ∆t = 106 s.

Assuming that a Yukawa-type correction to the Newtonian potential existed, it would

act on the detector oscillator as a torque

Γyukawa = 2παGλ
2LHρgold

¡
ρgold − ρcopper

¢ ³
1− e−t/λ

´
e−d/λ

L

2

Setting equal to one the ratio between the Yukawa torque and the thermal noise

torque, we can express α as a function of the interaction range λ. The expected constraint

on a deviation from Newton’s law are plotted in Fig. 8.2, assuming ∆t = 106 s and Q =
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6·107. The comparison with the present best limits shows that the proposed experiment
could be able to strongly improve our knowledge of gravity in the distance range 0.1-100

µm.

Figure 8.2: Present limits to the existence of a new gravity-like force as compared to the
expected results from the proposed experiment.

8.1 Microfabrication of the test masses

In Fig. 8.3 a modified design of the DPOs, that could be used in the ultra-low distance

experiment, is shown. The oscillator and its frame are made from the same single-crystal

wafer. Two spacers (they could easily be made a using standard lift-off technique) are

mounted on the sides of each frame, that are designed to be placed on each other and

bonded to get the configuration of Fig. 8.1. The presence of the frame offers several

advantages. First, it allows us to increase the distance of the DPO from the clamping

points. As already mentioned, a part of its kinetic energy is contained in the upper part

of the foot, making the clamping of the foot critical, and probably limiting the quality

factor of the DPO. A second advantage is due to the sub-micrometric precision with

which it is possible to fabricate the spacers that define the gap between the test masses.

Moreover, the parallelism of the DPOs can also be extremely well controlled. In order



8. Search for non Newtonian gravity at ultra-short distance 85

to test the dependence of the measured force on the distance, it would be necessary to

produce more sets of this device with different gap widths between the test masses.

Figure 8.3: Left: The sensor DPO with its frame on which silicon nitride spacers are
grown. Right: The source mass DPO is shifted by half an oscillator’s head width to
make the configuration shown in Fig.8.1 possible.
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Chapter 9

Conclusions

In the present work we have shown that it is possible to set up a table-top experiment

suited to test the predictions of modern string-based gravitational theories. At the heart

of this setup there is the single-crystal double-paddle oscillator (DPO), which was used

for the first time, to the author’s best knowledge, to detect weak forces. We demonstrated

a simple and versatile microfabrication procedure, which enabled us to manufacture

oscillators with the highest measured quality factor, to date, at room temperature and

in vacuum. Moreover, optical excitation was experimentally achieved by illuminating

the DPO with a weak laser beam, whose amplitude was modulated at the oscillator’s

resonance frequency. This excitation method was used in the present work only for

diagnostic measurements.

The ultimate limit to the torque-sensitivity of a DPO is given by Brownian noise. A

characterization of this fundamental noise was given, and it was shown that its influence

can be reduced by increasing the duration of the measurements. A detection limit of

2·10−18 Nm in 5.4·104 s was demonstrated in the case of resonant excitation. For our
measurements, the excitation was provided by cylindrical source masses moving in front

of the oscillator. Due to the weakness of gravity compared to electromagnetic interaction,

the two vacuum chambers containing the DPO and the source masses were divided by

a thin conducting shield. Moreover, vibration isolation systems and a few sensors (e.g.

accelerometers and contact sensors) were also used to control the influence of external

background as vibrations.

Based on the results of our measurements, we can exclude the existence of a Yukawa-

like interaction of 20 times gravitational strength with an interaction range of 1mm. A

small disturbance (about 5 times stronger than gravity) affected the results of our mea-

surements. Further improvements can probably be obtained by using a high density
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non-conductive material for the test masses. Lastly, we showed the possibility of im-

proving the present knowledge of gravity by a few orders of magnitude using a novel

setup based on the optical excitation of DPOs at the liquid helium temperature.
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