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the chance to apply for a doctoral degree and to work with him, which was a great
experience. I appreciate his support throughout the whole time and thank him for
always having an open ear regarding any concerns. I would also like to express my
gratitude to Prof. Dr. Thomas Speck, with whom I have had the pleasure to collaborate
very closely and who has always taken time to give me helpful advices. Special thanks
goes to my colleagues Matthias Kohl, Tobias Glanz, Nicolas Höft and Andreas Kaiser
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Abstract

In this work the phase separation of active fluids is investigated analytically and nu-
merically. For a proper comparison with hard spheres in experiments, in particular the
experiment performed by the 2. Physikalisches Institut at the University of Stuttgart,
particles interaction is modeled by the Weeks-Chandler-Andersen pair potential. The
spherical particles are also assumed to be restricted to a plane while their direction of
propulsion is uncorrelated. Although particles interact purely repulsive, contradictorily
to systems in equilibrium, this system exhibits phase separation caused by the activity,
where the steady state consists of one large dense cluster surrounded by a dilute phase.

The first chapter provides an introduction to soft active matter. The second chapter
revisits theoretical basics needed for the following chapters which present the results of
this dissertation.

In Chap. 3, starting from the Smoluchowski equation, a microscopic theory is derived
which describes the system near homogeneity and leads to an effective swimming speed
of the particles which is solely determined by a new defined quantity, the so-called force
imbalance coefficient. An instability analysis predicts a threshold for the force imbalance
coefficient, determining the onset of a density instability in the system. The phase
separation observed in simulations is then quantified to estimate the critical velocity of
the onset of the phase separation. These values do indeed correspond to a force imbalance
coefficient being at the theoretically predicted boundary of the unstable region of the
system. Besides a comparison to the experimental data obtained by the 2. Physikalisches
Institut at the University of Stuttgart also the robustness of the microscopic theory is
shown by performing computer simulations of three further pair potentials.

In Chap. 4 the theory is extended to gain a deeper insight into the large-scale behavior of
the phase separation process. Eventually, this leads to an effective free energy functional
which is valid for a homogeneous non-equilibrium system at the onset of an instability.
The evolution equation for the rescaled density implying the existence of such a free
energy functional is recognized as the Cahn-Hilliard equation which is typically employed
to study phase separation in equilibrium. For this effective Cahn-Hilliard description
the spinodal is constructed and shows excellent agreement with the numerically obtained
phase diagram of the non-equilibrium simulations. In addition, by analytically analyzing
the evolution of the amplitude of a density fluctuation, it is shown that the hysteresis of
the phase separation discovered in simulations is already qualitatively contained in the
effective Cahn-Hilliard description.

In Chap. 5 the interfacial tension of the interface separating the two phases is investi-
gated with two different concepts known from studies of equilibrium systems: via the
anisotropy of the pressure at the interface and the fluctuations of the interface. Surpris-
ingly, by taking into account the negative work spent on the solvent by the swimming
particles, both results coincide excellently.
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Zusammenfassung

Im Rahmen dieser Dissertationsschrift wird die Phasenseparation aktiver Fluide sowohl
analytisch als auch numerisch mit Hilfe von Computersimulationen untersucht. Um
eine möglichst hohe Vergleichbarkeit mit Experimenten zu erzielen, insbesondere dem
Experiment am 2. Physikalischen Institut der Universität Stuttgart, wird die Wechsel-
wirkung zwischen Teilchen entsprechend dem Weeks-Chandler-Andersen Paarpotential
modelliert. Darüber hinaus wird angenommen, dass sich Teilchen ausschlielich in zwei
Dimensionen bewegen können. Trotz rein repulsiver Wechselwirkung zeigt das Sys-
tem, im Widerspruch zu Systemen im Gleichgewicht, makroskopische Phasenseparation
welche durch den intrinsischen Antrieb der Teilchen verursacht wird.

Das erste Kapitel bietet eine Einführung in das Gebiet der aktiven weichen Materie.
Im Anschluss werden im zweiten Kapitel theoretische Konzepte erläutert, welche die
Grundlage für die folgenden Kapitel bilden.

Um die makroskopische Phasenseparation des aktiven Systems zu beschreiben wird
zunächst in Kapitel 3, ausgehend von der Smoluchowski-Gleichung, eine mikroskopische
Theorie hergeleitet welche ein homogenes System kurz vor der Phasenseparation be-
schreibt. Die Theorie führt auf einen Ausdruck für die effektive Schwimmgeschwindigkeit
der Teilchen, welche durch einen neu definierten Parameter bestimmt wird, dem Kräfte-
Ungleichgewicht-Koeffizienten. Eine Stabilitätsanalyse führt auf einen Schwellenwert für
diesen Koeffizienten, sodass sich ein System mit einem höheren Wert instabil gegenüber
geringen Dichtefluktuationen verhält, was letztendlich zur Phasenseparation führt. An-
schließend wird mit Hilfe von Computersimulationen die kritische Geschwindigkeit für
die Phasenseparation numerisch bestimmt und mit dem entsprechenden Kräfte-Ungleich-
gewicht-Koeffizienten verglichen, was exzellent mit der theoretischen Vorhersage über-
einstimmt. Zusätzlich werden die Simulationsergebnisse mit experimentellen Ergeb-
nissen aus dem 2. Physikalischen Institut der Universität Stuttgart verglichen. Um
die hergeleitete Theorie weiterhin zu überprüfen werden Computersimulationen mit drei
weiteren Wechselwirkungsmodellen durchgeführt und mit den Vorhersagen der mikro-
skopischen Theorie verglichen.

In Kapitel 4 wird die Theorie erweitert um das Verhalten auf großen Skalen näher zu
untersuchen. Dies führt auf ein Funktional für die effektive freie Energie des Systems im
Nichtgleichgewicht, jedoch nur gültig zu Beginn der Phasenseparation. Die Differential-
gleichung, die das zeitliche Verhalten der Dichte beschreibt und letztlich auf das Funk-
tional führt, ist bekannt als Cahn-Hilliard-Gleichung und wird üblicherweise angewandt
um die Phasenseparation im Gleichgewicht zu untersuchen. Ausgehend von dieser ef-
fektiven Beschreibung wird die Spinodale des Systems konstruiert und zeigt eine sehr
gute Übereinstimmung mit dem numerisch bestimmten Phasendiagramm. Außerdem
wird gezeigt, dass die numerisch beobachtete Hysterese bezüglich der Phasenseparation
ebenfalls durch die Cahn-Hilliard-Beschreibung hergeleitet werden kann.

In Kapitel 5 wird mit Hilfe von zwei unabhängigen Methoden die Oberflächenspannung
zwischen den Phasen untersucht: Über die Anisotropie des Druckes an der Phasen-
grenze sowie die Fluktuationen der Phasengrenze. Beachtet man darüber hinaus, dass
die Teilchen aufgrund ihrer persistenten Schwimmbewegung kontinuierlich Arbeit am
Dispersionsmedium verrichten, stimmen die beiden unabhängig berechneten Ergebnisse
hervorragend überein.
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Chapter 1

Introduction

In the ancient Greece, the philosopher Leucippus (5th century BC) and his pupil Dem-
ocritus (ca. 460 BC - ca. 370 BC) developed the philosophy atomism which got its name
from the Greek word atomon, i.e., uncuttable or indivisible. The philosophy states that
everything is composed of small indestructible building blocks (atoms) which coopera-
tively form the macroscopic visible matter in the world. Nowadays, thanks to pioneering
works like the publication of the periodic table in 1869 by Dmitri Mendeleev, the dis-
covery of the electron by J. J. Thomson in 1897 [6], the evidence of a positively charged
atomic nucleus by E. Rutherford in 1909 [7] and the discovery of the neutron by J.
Chadwick in 1932 [8], humankind knows that matter consists of atoms which are formed
by an electron cloud containing a several orders of magnitude smaller atomic nucleus
built out of protons and neutrons1.

Although everything is made of atoms, we know from our experiences in everyday life
that there are rather hard materials, like gold, wood or copper, which are not easy
to deform under normal conditions, i.e., room temperature. On the other hand there
are easily deformable materials, like liquids, plastic, toothpaste or rubber, whose shear
moduli are several orders of magnitude lower than those of hard materials. These easily
deformable systems are so-called soft matter systems and are treated exclusively in this
thesis. The size of the building blocks of soft matter systems fall into the mesoscopic
length scale, ranging from hundreds of nanometers to a few micrometers, allowing ex-
perimental physicists to study systems via light microscopy. Usually, the building blocks
(particles) are dispersed in a medium of much smaller particles, e.g., water molecules,
so that the dispersion medium can be treated as a continuum. Due to the lower limit
of the mesoscopic length scale quantum mechanical effects do not need to be taken into
account. The upper boundary of the mesoscopic length scale ensures that the system
can still be considered as soft since the total energy of the particles is comparable to the
energy scale of thermal fluctuations (Brownian motion). There are two main types of sus-

1Unlike the electron, which is an elementary particle, protons and neutrons are composed of even
smaller elementary particles, so-called quarks.
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pended particles: polymers which are chains consisting of smaller subunits (monomers)
and colloids which are arbitrary shaped particles like spheres, platelets or rods. Exam-
ples of soft matter in everyday life are beer foam (trapped gas pockets in liquid), hand
cremes (oil-in-water emulsions), blood (platelets-like thrombocytes dispersed in a liquid)
and liquid crystal displays (rod-like elongated particles ordering in a liquid due to an
electric field). The huge variety of systems offers various complex observable phases,
but whose description is desirable to be based on simple concepts. This breakthrough
was achieved by Pierre-Gilles de Gennes, who was awarded with the Nobel prize in 1991
”for discovering that methods developed for studying order phenomena in simple systems
can be generalized to more complex forms of matter, in particular to liquid crystals and
polymers”2.

The systems from everyday life mentioned above have a wide range of different com-
ponents and are therefore difficult to be analyzed numerically, analytically and experi-
mentally. Hence, physicists help themselves by employing quite simple model systems
which still capture the main aspects. One famous and often mentioned example is a
system of hard spheres suspended into a liquid. The spherical particles do not interact
with one another, but are also not able to interprenetate each other, just like billiard
balls. This was one of the first systems studied using computer simulations [9–11] of
less than a hundred particles. Also the famous experiment by Pusey and van Megen has
been performed to study the behavior of colloidal spheres made of polymethylmethacry-
late (PMMA) [12]. Almost two decades later this system is still topic of soft matter
research, so that experiments under the influence of microgravity in the space shuttle
Columbia and Discovery have been carried out [13]. To this day, the melting scenario
of the corresponding two-dimensional case of hard disks is not clear yet and highly
discussed [14]. Nonetheless, on which physicist do agree is the existence of a density
(entropically) driven liquid-solid phase transition being describable by an order param-
eter measuring the crystalline (hexagonal) structure, being showed in both computer
simulations and experiments. If the hard spheres additionally repel each other, e.g., due
to surface charges of equal sign, two new system parameters, the strength and range
of the repulsion, influence the liquid-solid phase transition. However, whether liquid or
solid, the phases are always homogeneous for a one component (monodisperse) system
of pure repulsive colloids.

This observation changes as soon as sufficiently strong attractive particle interactions
are introduced. The existence of such attractive interactions can arise from short ranged
van der Waals forces explained by the dipole-dipole interactions between the material
the particles are made of. One simple and famous concept is the Lennard-Jones potential
modeling the interaction between a pair of neutral particles [15]. Several studies have
shown, that particles will microscopically or macroscopically separate into dense and
dilute regions within the system if attraction is strong enough [16,17]. This phenomenon
is called phase separation, generally described by a certain order parameter, often the
local density, which is no longer distributed homogeneously throughout the system.

2”The Nobel Prize in Physics 1991”. Nobelprize.org. Nobel Media AB 2014. Web. 17 Nov 2014.
<http://www.nobelprize.org/nobel_prizes/physics/laureates/1991/>
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Figure 1.1: (a) Electron microscopy of the stomach bacterium Helicobacter Pylori, which
propels itself through the stomach mucus. The bar corresponds to 1µm.
Adapted from Ref. 20. (b) Sperm sample imaged by phase contrast mi-
croscopy. Adapted from Ref. 21. (c) Pedestrians in the shopping mall
CentrO Oberhausen, Germany. Photo taken by Rainer Freytag. (d) Flock
of starlings. Picture: Flickr.com by Ed Yourdon. (e) Swarm of fish. Pic-
ture (contrast/brightness slightly changed): Flickr.com by Lance McCord.
All pictures from Flickr.com have been used according to the Creative Com-
mons license.

The properties of the interface separating those phases, i.e., the interfacial tension and
stiffness [18, 19], is to this day subject of current research. An example for a phase
separating system from everyday life was in principle already mentioned: a hand creme
without an emulsion stabilizer would phase separate into oil-rich (water-poor) and oil-
poor (water-rich) regions. In an ordinary experiment at home a water-oil mixture will
always macroscopically phase separate due to gravity since common cooking oil has a
lower mass density than water and will be the upper phase. In the absence of gravity and
if one shakes the mixture, the oil breaks up into droplets which, if the oil concentration
is low enough, do not merge and illustrates the scenario of microscopic phase separation.

So far only systems in thermodynamic equilibrium have been considered, where there is
no macroscopic net flow of matter or energy within the system. Motivated through
microscopic biological systems like bacteria and spermatozoa (see Fig 1.1 (a), (b)),
but also macroscopic biological systems like humans, flock of birds and school of fish
(see Fig 1.1 (c)-(e)), particles are considered which can intrinsically propel themselves
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through the dispersion medium. The class of such suspensions of self-propelled particles
is referred to as soft active matter [22]. Under certain circumstances active systems
exhibit collective dynamics which are in principle already known from everyday life, like
the laning of pedestrians on busy streets or the swarming behavior of birds and fishes,
see Fig. 1.1(c)-(e). Again, theoretical physicists help themselves by introducing quite
simple models which still capture the essential physics of the more complex systems in
real life. The introduction of the Vicsek model in 1995 [23] was a pioneering work which
led to a wide field of theoretical models being studied for the last twenty years. There
exist approaches to theoretically describe motion of polarized animal groups [24,25]. In
experiments either actual bacteria, starlings or school of fish have been studied [26–29]
or artificial particles mimicking the swimming behavior have been crafted [30–32]. Since
energy is constantly pumped into the system so particles can maintain a certain veloc-
ity, active systems fall into the class of non-equilibrium systems where thermodynamical
concepts, like the Helmholtz free energy or the fundamental thermodynamic relations,
are not applicable a priori. Due to the relation to everyday life and the new class of
non-equilibrium systems, active matter is studied extensively, leading to a wealth of
new non-equilibrium phenomena like swarming, clustering and active turbulence. The
propulsive motion of particles can even lead to phase separation in monodisperse systems
of pure repulsive particles [2, 33, 34].

In this thesis the phase separation of self-propelled disks in two dimensions will be in-
vestigated from different perspectives. In chapter 2, theoretical concepts needed for
this work are revisited where amongst others the so-called Weeks-Chandler-Anderson
(WCA) model is introduced, which serves as a good approximation for hard disks due
to the excellent agreement with experiments. By numerically introducing an intrinsic
propulsion of the particles, one observes a phase transition from a homogeneous fluid
to a phase separated system containing one dense large cluster surrounded by a dilute
phase.
In the third chapter a microscopic theory is developed from first principles which de-
scribes the onset of such a phase separation and whose predictions are compared to
numerical results. Furthermore, the robustness of this phenomenon is shown by inves-
tigating three further pure repulsive particle models. In addition the numerical results
are compared to the experimental data of artificial light-activated swimmers in the ex-
periment of the 2. Physikalisches Institut at the University of Stuttgart.
In the fourth chapter the analytic theory is extended, leading to the existence of an ef-
fective free energy functional, which is normally only given for equilibrium systems. The
corresponding evolution equation for the density field is recognized as the Cahn-Hilliard
equation [35] and therefore maps the non-equilibrium system to an effective equilibrium
system. Based on this description parts of the phase diagram are constructed and com-
pared to numerical results as well as different phase separation scenarios are discussed
both numerically and in terms of the Cahn-Hilliard description.
In the last chapter the tension of the interface between the two phases is investigated in
detail. Motivated by the effective Cahn-Hilliard description of the system the validity of
equilibrium methods to calculate the interfacial tension of the interface is tested. On the
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one hand the interfacial tension, or stiffness, is estimated via the pressure anisotropy at
the interface. On the other hand the interfacial stiffness is calculated by analyzing the
fluctuations of the interface which coincides surprisingly well with the former method.



6 CHAPTER 1. INTRODUCTION
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Chapter 2

Theoretical basics

2.1 Brownian motion

In 1827, Robert Brown, a scottish botanist, extracted particles from pollen of plants,
suspended them into water and observed their behavior through a microscope. He no-
ticed a vibrating, jittering-like motion of the suspended particles, which could not be
caused by a living organism alone since he made the same observation for inorganic par-
ticles. In 1905, the german physicist Albert Einstein provided an analytical description
for this diffusive motion [36]. He showed that the spatial and temporal evolution of
the one dimensional particle density ρ(x, t) of N identical independently freely moving
particles suspended in a solvent obeys the diffusion equation

∂ρ

∂t
= D0

∂2ρ

∂x2
. (2.1)

The prefactor D0 denotes the bare diffusion coefficient of the freely moving particle with
its general expression

D0 =
kBT

λ
, (2.2)

where kB is the Boltzmann constant, T is the absolute Temperature and λ is the trans-
lational friction coefficient of the particle in the solvent. Under the initial condition
ρ(x, t = 0) = Nδ(x), where δ(x) is the Dirac delta function, the solution of Eq. (2.1) is
given by the Gaussian form

ρ(x, t) =
N√
4πD0t

e
− x2

4D0t . (2.3)

The first moment of this Gaussian distribution, which corresponds to the mean particle
position, is zero. The second moment, i.e., the mean squared displacement of particles
with respect to their initial position x(t = 0), is given by

〈(x(t)− x(0))2〉 = 2D0t. (2.4)
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Consequently, diffusion is described as a Gaussian stochastic process and is easily ap-
plicable to d spatial dimensions due to the uncorrelated movement in each dimension,
giving

〈r(t)〉 = 0, (2.5)

〈(r(t)− r(0))2〉 = 2dD0t. (2.6)

Throughout this work the ergodicity hypothesis is applied so that 〈.〉 denotes both the
time and ensemble average.

2.2 Langevin equation

In 1908, Paul Langevin, a french physicist, introduced the picture of a random force
f (r)(t) acting on the suspended particles, see Ref. 37 for a translation of his work. This
stochastic force models the coupling between the suspended particles and the solvent
molecules and is comparable to the so-called random walk [38,39]. The physical picture
is that the solvent molecules are much faster than the larger suspended particle. One
simple example is a sphere of 1µm radius being suspended into water at 20◦C. The
H2O molecules can be approximated with a diameter of dH2O = 2.75 · 10−10m and have
a self-diffusion coefficient of about Ds = 2.025 · 10−9m2/s [40], which is normalized to
the molecules diameter Ds/d

2
H2O

≃ 2.67 · 1010s−1. This is 12 orders of magnitude larger
than the diffusion coefficient of the suspended sphere normalized to its diameter and
implies that the collision frequency between solvent molecules and the suspended sphere
is so high, that time scales can be separated. Since one is interested in the time scale
of the suspended particles, the solvent is treated as a continuum which randomly kicks
against the suspended particle at a very high frequency. Of course this phenomeno-
logical derivation only works for particles which are sufficiently larger than the solvent
molecules. The equation of motion for particle i under that random force is written as

mr̈i = −λṙi + f
(r)
i (t). (2.7)

For a correct description of the diffusion process, it was found [41] that the stochastic
force obeys

〈f (r)i (t)〉 = 0 (2.8)

〈f (r)i (t)f
tr,(r)
j (t′)〉 = 2kBTλ✶δ(t− t′)δij, (2.9)

where the superscript tr denotes the vector transpose, δ(.) is the Dirac delta function
and δij is the Kronecker-Delta, indicating a temporal and spatial uncorrelated random
force. Throughout this work only colloidal suspensions are considered which consist of
suspended particles with their typical size being in the mesoscopic length scale ranging
from hundreds of nm to several µm. The ratio between inertial forces and viscous forces
in a suspension is characterized by the Reynolds number

Re =
ρsṽl

η
, (2.10)
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where ṽ is the typical relative velocity to the solvent (thermal velocity), l denotes the
typical length scale traveled (size of the particle), ρs is the mass density of the solvent and
η represents the dynamic viscosity of the solvent. An example for a realistic colloidal
system would be a set of particles being suspended into water at room temperature,
yielding Re ≪ 1, which is equivalent to a strong dominance of viscous forces. In that
case the inertia term in Eq. (2.7) can be neglected, i.e., mr̈i ≪ λṙi, and the Langevin
equation is reduced to the overdamped case

λṙi = f
(r)
i (t). (2.11)

Starting from Eq. (2.11) one can easily derive in d spatial dimensions

〈r(t)〉 = 0 (2.12)

〈(r(t)− r(0))2〉 = 2dD0t, (2.13)

which is the exact result given by the Einstein description in Sec. 2.1. If particles are
under the influence of an external potential V (r, t), e.g., gravity, the Langevin Eq. (2.11)
needs to be modified to

λṙi = −∇V (r, t) + f
(r)
i (t), (2.14)

where ∇ is the nabla operator. The aspect of particles interacting with one another will
be discussed in the following.

2.3 Smoluchowski equation

2.3.1 Particles in an external potential

In this section, the derivation of the Smoluchowski equation is shown, which can also be
followed in Ref. 42. For free particles, Fick’s first law [43] yields

j = −D0∇ρ, (2.15)

where j is the particle flux. The second law of Fick is a combination of the first one and
the continuity equation

∂ρ

∂t
= −∇j, (2.16)

leading to the diffusion equation (2.1) derived by Einstein (if ∇D0 = 0 which is as-
sumed throughout the whole work). However, particles in an external potential V (r, t)
experience an additional velocity drift −∇V/λ and Fick’s first law changes to

j = −D0∇ρ− ρ
1

λ
∇V. (2.17)

By linking Eq. (2.16) and Eq. (2.17) one gets

∂tρ = µ0kBT∆ρ+ µ0∇(ρ∇V ), (2.18)
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where ∆ = ∇2 is the Laplace operator, µ0 = 1/λ the mobility of a free particle and the

notation ∂(n)/∂x(n) ≡ ∂
(n)
x is introduced. Since particles are not interacting one can go

back to the probability density function Ψ(r, t) of one particle, where Ψ(r, t)dr is the
probability to find the particle at time t within the volume element dr centered around
its position r. Scaling this for N non-interacting particles yields the relation

ρ(r, t) = NΨ(r, t). (2.19)

Plugging this result into Eq. (2.18) leads to the Smoluchowski equation of non-interacting
particles in an external potential

∂tΨ = µ0[kBT∆Ψ+∇(Ψ∇V )], (2.20)

which is sometimes also mistakenly referred to as the Fokker-Planck equation, a rather
general description for the temporal evolution of a probability function.

2.3.2 Interacting particles

For N interacting particles the Smoluchowski equation needs to be adjusted. It is clear,
that the probability function does now also depend on the set of the particles degrees
of freedom. For particle interactions solely depending on the particle positions, this is
written as {ri} ≡ {r1, . . . , rN}, giving Ψ = Ψ({ri}, t), which is now the joint probability
density function of finding a system at a certain particle configuration at time t. Be-
sides the interaction between particles, which is usually modeled via a pairwise particle
potential, one also needs to take care of hydrodynamic effects, since the movement of a
particle creates a flow field around itself, which may have an influence on other particles
in the suspension. Assuming conservative forces, the total force acting on a particle j
can be written as

Fj = −∇jU({rj}, t), (2.21)

where U({rj}, t) is the total potential energy including both particle interactions and
external forces, and ∇j denotes the gradient with respect to rj. This force acting on
the particle j leads to a motion and consequently induces a flow of the solvent, which
may move another particle i. This hydrodynamic effect is generally included by a linear
coupling between the forces acting on all particles (labeled by the index j) and the actual
velocity of particle i, i.e.,

vi =
N∑

j=1

Lij({ri})Fj = −
N∑

j=1

Lij({ri})∇jU. (2.22)

One should note, that the sum does also include the index i which corresponds to the
hydrodynamic friction of the particle itself. The coefficients Lij are the entries of the
symmetric positive definite mobility matrix, which determines the particle mobility due
to the spatial configuration. It also includes the effect of the particle itself, i.e., the
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scalar mobility of a free particle Lii = µ0. Consequently, the scalar free mobility µ0 in
the previous equations needs to be replaced by the concept of the mobility matrix. Thus
the total flux is now given by the sum of each single particle flux and reads

j = −
N∑

i=1

[
N∑

j=1

kBTLij∇jρ− ρ

(
N∑

j=1

Lij∇jU

)]

. (2.23)

The quantity ρ is referred to as the one-particle density since it is connected to the
probability density of finding any particle, arbitrary labeled as 1, at a volume dr1 cen-
tered around r1 at time t. Accordingly, the two-particle density is connected to the joint
probability density function of finding one arbitrary particle at position r1 under the
condition that another arbitrary particle is at position r2, both at the same time t. This
relation can be generalized by the n-particle density

ρn(r1, . . . , rn) =
N !

(N − n)!

∫

drn+1 . . . drN Ψ (2.24)

with N !/(N − n)! being a combinatorial factor arising from the number of possibilities
of successively picking n particles out of an ensemble of N indistinguishable particles.
Combining the continuity equation (2.16) with Eq. (2.23) one gets the Smoluchowski
equation for interacting particles

∂tΨ =
N∑

i,j=1

∇iLij [kBT∇jΨ+ (∇jU)Ψ] , (2.25)

where i, j = 1 is the notation for a double sum over indices i and j. This expression
describes the diffusion of the joint probability density function Ψ({ri}, t) in phase space
including the drift velocities in phase space due to the total force acting on the particles.

2.4 Particle model

In this section, the model for the self-propelled particles considered in this work is
introduced. The goal of the particle model is to be as simple as possible, but yet being
able to capture the essential phenomena observed in experiments of self-propelled spheres
in a quasi two-dimensional setup [1,44,45]. In particular the experiment in Ref. 1 served
as reference, i.e., a pair potential had to be found so that the equilibrium structure
obtained in the experiment coincides with results from computer simulations. A brief
description of the concept of Brownian dynamics computer simulations will be given
later in Sec. 2.5.

2.4.1 Experimental realization

Here, the experiment of Ref. 1 is presented briefly, while the author stresses that the
experiment has been performed by the research group of C. Bechinger at the Univer-
sity of Stuttgart (2. Physikalisches Institut). The main experimental work was done
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by I. Buttinoni. There are also other publications, which classify this novel technique
of self-propelled light-actived particles in detail [31, 46]. In case of the experiment in
Ref. 1, the suspension consists of so-called Janus particles, which in general are colloids
consisting of two surfaces with different physical properties, which is the reason these
particles are named after the roman god Janus of beginnings and transitions who was
illustrated with two faces. In this particular experiment, spherical particles are pre-
pared from SiO2 beads with radius R ≃ 2.13µm where one hemisphere is coated with
graphite. In principle the particles could have been coated with any other sufficient light
absorbing material, e.g., gold, but graphite has been used to minimize attractive forces,
i.e., van-der-Waals forces, also called Hamaker forces. The particles are suspended into
a water-2,6-lutidine mixture (28 mass% lutidine), which is homogeneous below its crit-
ical temperature of approximatively 34◦C. The experiments have been performed in a
400µm×400µm cavity with a height of about 6µm, so that particle motion can be con-
sidered as quasi two dimensional, while particles are able to rotate in three dimensions.
The experiments have been performed at room temperature where the solvent is homo-
geneous, so that the system is at equilibrium and can generally be described with the
Smoluchowski Eq. (2.25). If the suspension is illuminated by a widened laser beam of
wavelength 532nm particles start to move and the system is constantly driven out of
equilibrium. The underlying mechanism is diffusiophoresis, caused by the absorbed light
at the graphite side of the sphere, so that the solvent is locally heated above the critical
temperature at one side of the particle. Therefore water and lutidine start to separate,
leading to a density gradient around the particle, which causes the sphere to move along
its symmetry axis and successfully mimics a self-propelled particle.

2.4.2 Particle interaction

Motivated through this experimental setup the simplest possible particle model considers
N spheres at constant temperature T with all particle centers being restricted to the
same plane, which means particles are theoretically modeled as self-propelled disks in
the xy-plane. In addition, for the sake of simplicity, hydrodynamic interactions are
neglected, leading to a very simple expression for the mobility matrix entries Lij = µ0δij.
Furthermore a possible polydispersity is neglected, i.e., all spheres are modeled with a
mutual radius R, so that their translational friction coefficient at small Reynolds number
is given by the Stokes’ law

µ−10 = λ = 6πηR. (2.26)

At first, the Smoluchowski equation reduces to

∂tΨ =
N∑

i=1

µ0∇i[kBT∇i +∇iU ]Ψ. (2.27)

Essential is, that one can demonstrate that this expression is equivalent to the over-
damped Langevin equation [41]

λṙi = −∇iU({ri}, t) + f
(r)
i (t), (2.28)
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where in comparison to Eq. (2.14) the external potential V has been replaced by the
total potential U . The interaction between particles is modeled by an isotropic pairwise
potential u(rij), which only depends on the interparticle distance rij ≡ |rij| with rij ≡
rj − ri. For a proper comparison with the experiment in Ref. 1, the experimentalist
I. Buttinoni has measured the pair correlation function

g(r) =
1

Nρ

∑

i,j=1
i 6=j

δ(r− (ri − rj)) (2.29)

in an equilibrated passive suspension. By projecting the particle position on the plane
perpendicular to the direction gravity is acting, the area packing fraction has been
approximated to φ = NπR2/A ≃ 0.37, where N is the total number of particles in
the monitored area A. In order to do the same in simulations and compare numerical
and experimental results, one first needs to think of a suitable pair potential. Since the
suspension is confined in a cell with an approximate height of 6µm, spheres are not
fully restricted to two dimensions and, when approaching each other, they might move
in z-direction. That effect might not be so much pronounced if there is enough space for
both, i.e., if the interparticle distance rij > 2R. Projecting this behavior onto the xy-
plane leads to the picture of disks which are able to overlap a bit, but try to prevent such
an event, i.e., repel each other if an overlap occurs. In addition, one could claim that
particles may attract each other due to van-der-Waals forces exerted by the material of
the particles. These two properties can be achieved by employing the following potential

u(r) =

{

ǫuLJ(r) + uLJ(2R)(λa − ǫ) (r 6 2R)

λauLJ(r) (r > 2R),
(2.30)

where the expression

ǫuLJ(r) = 4ǫ

[(σ

r

)12

−
(σ

r

)6
]

(2.31)

is the Lennard-Jones potential [15, 47]. Here, the parameter λa is the strength of the
attraction, i.e., the depth of the attractive part of the potential (r > 2R). For distances
r 6 2R the potential always exhibits a repulsive core, namely the WCA (Weeks-
Chandler-Andersen) potential [48]. The parameters ǫ = 100kBT and σ/(2R) = 2−1/6 ≃
0.891 have been fixed throughout the whole work. Fig. 2.1 shows the corresponding pair
potentials for a pure repulsive (λa = 0) and a slightly attractive system (λa = 0.5kBT )
and the comparison with the experimental data. Apparently, the pair potential with
the slightly attractive tail of depth λa = 0.5kBT shows somewhat better agreement with
the experimental data for small distances than the pure repulsive potential. Nonetheless
throughout this work only the WCA potential (λa = 0) has been used to show that
the observed phenomena do not arise from attractive pair interactions, but are an effect
solely induced by the activity of the system.
Since particles are restricted to the xy-plane, gravity, which is considered to act perpen-
dicular to this plane, is irrelevant. Other possible external forces like interaction between
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Figure 2.1: (a) Pair correlation function g(r) at packing fraction φ = 0.37 for the ex-
periment (circles) and simulations considering the pair potential given by
Eq. (2.30) with λa = 0 (blue) and λa = 0.5kBT (red). (b) Pair potentials
according to λa = 0 (blue) and λa = 0.5kBT (red).

particles and the cell walls are neglected as well, giving the total potential energy which
solely depends on the spatial configuration, i.e.,

U({ri}) =
N∑

i=1

N∑

j>i

u(|rij|). (2.32)

2.4.3 Propulsion mechanism

The propulsion of particles is also modeled as simple as possible, so the possibility of
the particles to rotate in three dimensions has been neglected intentionally to achieve
the most minimalistic model. In addition it is desirable to show that the observed
phenomena in the experiment are not an effect of the quasi-two dimensional setup.
Hence each particle is assigned an orientational vector, which is restricted to the xy-
plane and is written as

e =

(
cosϕ
sinϕ

)

, (2.33)

where ϕ is the angle enclosed between the vector e and the x-axis. Each particle pos-
sesses the same constant intrinsic velocity v0 propelling itself into the direction of its
orientational vector. The orientation of each particle undergoes free diffusion with rota-
tional diffusion coefficient Dr according to

〈ϕ̇i(t)〉 = 0 (2.34)

〈ϕ̇i(t)ϕ̇j(t
′)〉 = 2Drδ(t− t′)δij. (2.35)
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In consistency with real systems, the rotational diffusion is hydrodynamically coupled
to the translational diffusion, yielding the Stokes-Einstein-Debye relation [49, 50]

D0

Dr

=
4

3
R2. (2.36)

Finally, the overdamped Langevin equation of the particle model of this work is

ṙi = µ0[−∇iU + f
(r)
i (t)] + v0ei. (2.37)

In Ref. 46 it is shown, that the experimental data is in accordance with this model of
active Brownian motion.
According to Eq. (2.37) the Smoluchowski description needs to be extended to the model
of self-propelled disks. The first step is that the joint probability density function now
depends also on the set of particle orientations due to the additional degree of freedom,
i.e., Ψ = Ψ({ri}, {ϕi}, t). Since the orientation does not depend on the spatial configu-
ration, the joint probability density function Ψ({ri}, {ϕi}, t) may also be written as the
product of the spatial and orientational probability density at time t, i.e.,

Ψ({ri}, {ϕi}, t) = Ψr({ri}, t)Ψϕ({ϕi}, t), (2.38)

where Ψr and Ψϕ are the spatial and orientational joint probability density functions
respectively. By including the velocity drift v0ei arising from the propulsion of particle
i the evolution of the spatial part is written as

∂tΨr =
N∑

i=1

µ0∇i[kBT∇i +∇iU − µ−10 v0ei]Ψr. (2.39)

Since the particle model lacks any interaction between the particle orientations the
orientational joint probability density function follows

∂tΨϕ =
N∑

i=1

Dr∂
2
ϕi
Ψϕ, (2.40)

which is a pure diffusive behavior. Furthermore

∂tΨ = Ψr∂tΨϕ +Ψϕ∂tΨr (2.41)

leads to

∂tΨ = Ψr

N∑

i=1

Dr∂
2
ϕi
Ψϕ +Ψϕ

N∑

i=1

µ0∇i[kBT∇i +∇iU − µ−10 v0ei]Ψr (2.42)

=
N∑

i=1

Dr∂
2
ϕi
ΨϕΨr +

N∑

i=1

µ0∇i[kBT∇i +∇iU − µ−10 v0ei]ΨrΨϕ (2.43)

=
N∑

i=1

Dr∂
2
ϕi
Ψ+

N∑

i=1

µ0∇i[kBT∇i +∇iU − µ−10 v0ei]Ψ, (2.44)

which is the Smoluchowski equation of this particle model and is equivalent to the
description given by Eq. (2.37).
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Figure 2.2: Sketch of the employed periodic boundary conditions. Particles represented
by a dark blue circle are in the actual simulation box (middle), while light
blue circles correspond to copies of the particles to approximate an infinite
system.

2.5 Brownian dynamics simulation

This section shortly presents the simulation technique used throughout the whole work.
The idea behind the algorithm of Brownian dynamics simulations is to use the Langevin
Eq. (2.37) with a single realization of the stochastic force for each time step [51,52]. By
integrating the equation of motion with a finite time step ∆t, one assumes that this time
step is sufficiently small to consider the force −∇iU acting on particle i to be constant
during the time interval [t, t+∆t]. Consequently, the algorithm is given by

ri(t+∆t) = ri(t) + ∆t[−µ0∇iU + v0ei] + ∆rG. (2.45)

Instead of the Gaussian force f (r)(t), the algorithm contains a Gaussian displacement
vector ∆rG, where, in accordance with the stochastic properties of f (r)(t), in each time
step each component is chosen from a Gaussian distribution with zero mean and vari-
ance 2D0∆t. The technical realization of the Gaussian distributed numbers has been
implemented using the Box-Muller algorithm given in Refs. 53, 54, which generates two
Gaussian distributed numbers in each run. The short time dynamics of Eq. (2.45) is
diffusive with the diffusion coefficient D0 of a free particle. Due to particle interactions
and the propulsion of particles this is not the case for long times. In general for d spatial
dimensions one can define a long time diffusion coefficient

D = lim
t→∞

1

2d

d

dt
〈[r(t)− r(0)]2〉. (2.46)

In order to approximate an infinite system periodic boundary conditions have been
employed by duplicating the actual simulation box of size Lx×Ly in all spatial directions
(see Fig. 2.2). The packing fraction of the system is given by φ = NπR2/(LxLy) = ρπR2.
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2.5.1 Reduced units and time step

For more general results physical quantities, if not stated otherwise (only the case in
Sec. 3.3.4), are normalized to typical units of the system: energy is given in units of the
thermal energy kBT and length is measured in units of the particle diameter 2R. The
unit of time is the typical Brownian time τB = (2R)2/D0 which corresponds to the time
a free particle needs to achieve a mean squared displacement of (2R)2, often illustrated
as the time the free particle needs to explore an area of size (2R)2. In these units the
reduced propelling speed of a system is equivalent to the Péclet number

Pe =
2Rv0
D0

, (2.47)

which characterizes the ratio of the rate of advection due to activity and the rate of
diffusion due to thermal motion. If not mentioned explicitly, all simulations have been
carried out with a time step ∆t = 10−5τB if Pe < 120 and ∆t/2 for Pe > 120.

2.6 Virial pressure

The pressure of a three dimensional system is known as the ratio of force per unit area,
like the force which enclosed gas atoms exert on the walls of the container. In this
work solely two dimensional systems are treated, hence the pressure is force per unit
length. In order to extract the pressure out of particle resolved computer simulations
one calculates the virial pressure [51]

p =
N

Ωd

kBT +
1

dΩd

N∑

i=1

〈rifi〉 (2.48)

with fi being the force acting on particle i and Ωd the space in d spatial dimensions. In
the following, according to the systems considered in this work, these values are fixed
to d = 2 and Ωd = A where A = LxLy is the area of the simulation box. Restricting
Eq. (2.48) to pairwise interparticle forces one can derive

p = ρkBT +
1

2A

N∑

i=1

N∑

j>i

〈rijfij〉 (2.49)

with the global surface density ρ = N/A, the connection vector rij = rj − ri and the
force fij acting on particle j due to the presence of particle i. One can also consider the
pressure tensor

¯̄p = ¯̄pid + ¯̄p(i) (2.50)
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with the pressure tensor ¯̄pid known from the corresponding ideal gas and the part ¯̄p(i)

due to particle interactions. These tensors are written as

¯̄pid = ρkBT [ex ⊗ ey], (2.51)

¯̄p(i) =
1

A

N∑

i=1

N∑

j>i

〈rij ⊗ fij〉, (2.52)

where ⊗ is the dyadic product or also called outer product. The scalar pressure given
by Eq. (2.49) is then obtained by the average of the diagonal elements

p =
1

2
Tr(¯̄p) (2.53)

with Tr(¯̄p) being the trace of the 2× 2 matrix representing the tensor ¯̄p. This allows to
regard the directional pressure arising from diagonal terms

pxx = ρkBT +
1

A

N∑

i=1

N∑

j>i

〈xijfx,ij〉, (2.54)

pyy = ρkBT +
1

A

N∑

i=1

N∑

j>i

〈yijfy,ij〉, (2.55)

where rij = (xij, yij) and fij = (fx,ij, fy,ij). These expressions only describe the pressure
components originated from a force acting on a line segment perpendicular to the force
and do not care about pressure arising from a shear stress like pxy. In the bulk of a
phase, i.e., far away from any influences like enclosing walls or interfaces, the shear
stresses vanish and the pressure is isotropic leading to pxx = pyy.

2.7 Phase coexistence

If systems consist of two phases, like liquid water and vapor in a closed container,
one speaks of phase coexistence. The stable coexistence of two phases A and B in
thermodynamic equilibrium requires equal temperatures

TA = TB (2.56)

and mechanical equilibrium normal to the separating surface (interface)

PA,N = PB,N (2.57)

since the forces normal to the contact surface must cancel out each other for the interface
to be stable. In the bulk, sufficiently far away from the interface, the pressure has to be
isotropic again, leading to the bulk pressure relation

PA = PB. (2.58)



2.7. PHASE COEXISTENCE 19

��������

�������	


�������

�����

������

�

�

Figure 2.3: Thought experiment adapted from Ref. 55. The system consists of a vapor
and liquid phase. There exists an opening at the vapor phase with piston 1
being located far away from the interface. The piston 2 expanding through
both phases is movable so that both pistons can be moved simultaneously
such that the total volume/area of the system does not change.

Since the chemical potential µ(p, T ) is a function of pressure and temperature one gets
the condition

µA = µB (2.59)

where the chemical potential is given through the free Helmholtz energy F as µ = ∂F/∂N
at constant temperature and volume, see also introduction of Chap. 4.

2.7.1 Line tension

For a further insight into the properties of the interface separating two phases the thought
experiment mentioned in Ref. 55 is applied to two dimensions, see Fig. 2.3. The piston
1 is considered to be located far away from the interface such that the pressure acting
on it is equal to the isotropic pressure p. Now, the reversible process is considered where
both pistons are moved simultaneously while the total area A of the system remains
unchanged. The total work done contains two contributions, each from every piston,

dW = −pdA+ dx

∫

pT (y)dy. (2.60)

The second term in Eq. (2.60) is given by piston 2 where the inhomogeneous density along
the y-direction implies the pressure pT tangential to the interface which also depends on
the position y, i.e., the distance to the interface. By applying dA = lydx =

∫
dydx the

upper Eq. (2.60) is rewritten as

dW = −dx
∫

[p− pT (y)]dy. (2.61)
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For a system at thermodynamic equilibrium and constant temperature, volume and
number of molecules, the total work done is equal to the change of free Helmholtz energy
dF = −dW , which is also connected to the line tension γ via dF = γdx. Substituting
Eq. (2.61) into this relation one obtains

γ =

∫

[p− pT (y)]dy (2.62)

which quantifies the energy needed to create an interface of unity length for a system at
thermodynamic equilibrium.
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Chapter 3

Phase separation

In the past decades the phenomena of self-propelled particles have gained enormous inter-
est in the field of soft matter. There have been studies on the single particle level [56–60]
as well as experimental and theoretical work on the rich collective behavior of systems
of interacting self-propelled particles. In the early stages, motivated from biological
systems of colonies of elongated bacteria [29, 61, 62], suspensions of active rod-like par-
ticles have been studied in experiments with artificial swimmers [63–65]. The several
driving mechanisms of those artificial active particles are based on chemical reactions,
chemical gradients, diffusiophoresis, gravitation, thermophoresis, magnetic or electric
fields [30,66–70] and have also been analyzed theoretically [71–76]. Due to the effective
alignment of rod-like particles, see Fig. 3.1(a), active systems provide a broad spectrum
of collective behavior such as laning, swarming, clustering, swirling, active turbulence
and phase separation [77–88] which has also been shown for systems containing an arti-
ficial alignment of particles [23, 89–96]. In addition other types of asymmetric particles
have been studied, resulting in a wide variety of collective dynamics [97–100] but also

(a) (b)

t = t0

t > t0

Figure 3.1: Illustration of (a) the effective alignment of rod-like particles and (b) the
uncorrelated motion of spherical particles due to isotropic interaction. The
lower configuration is before the collision while the upper one is after the
particles collided. The arrows indicate the swimming direction.
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Figure 3.2: Simulation snapshot of a phase separated system containing N = 4900 spher-
ical particles at area packing fraction φ = 0.4 and Péclet number Pe = 80.
Particles do interact with one another according to the model introduced
in Sec. 2.4. The circles are just an approximate sketch of the particles to
illustrate the phase separation and do not correspond to the actual size.

surprising results on the single particle level [101]. Besides different mixtures [102, 103]
also the structural and transport properties of confined active suspensions, or more gen-
eral swimmers in the presence of obstacles, have been studied not only for self-propelled
rods [104–108] and ellipsoidal particles [109, 110], but also for active spherical par-
ticles [46, 111–124]. Even deformable self-propelled particles have been discussed in
detail [125–130].
However, the study of active spherical rigid particles have attracted a lot of attention
of several research groups due to the equilibrium analog of hard spheres and the fact
that in case of negligible hydrodynamic interactions the propelling direction of spher-
ical particles is uncorrelated and not determined by anisotropic volume exclusion or
other alignment mechanisms, see Fig. 3.1(b). In analogy to active rods, non biological
spherical swimmers have been crafted [45, 69, 131], but also novel types of light-actived
swimmers, briefly introduced in Sec. 2.4.1, have been developed [31,32,44,46]. Although
lacking any orientational interactions, these systems do also exhibit collective behavior
like clustering and phase separation, cf. Fig. 3.2, in both experiments [1, 44, 45] and
theoretical works [2, 33, 34, 132–141, 141–144]. Also the influence on the freezing and
glass transition due to activity has been studied [145–149].
This section discusses the phase separation of such swimmers without alignment mech-
anism and is based on publications 1 and 2. An analytical description for the particle
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model introduced in Sec. 2.4 is derived from first principles, where an equation of mo-
tion for the one-particle density is found. In addition the description yields an effective
swimming speed where the slowdown due to nearby particles is absorbed into one single
parameter, the so-called force imbalance coefficient, which depends on the pair potential
employed and the anisotropic pair correlation function. Furthermore the effective hy-
drodynamic equations for the density and orientational field are derived. Subsequently,
a linear stability analysis is performed, leading to a prediction for the system to be-
come unstable for certain values of the force imbalance coefficient. It is also shown that
a simple scaling argument adiabatically enslaves the orientational field to the density
field, yielding the same results as the linear stability analysis. After a discussion of these
results, a comparison to Brownian dynamics simulations is shown. The numerical data
is also compared to the experiment performed by the research group of C. Bechinger at
the University of Stuttgart (2. Physikalisches Institut).

3.1 Analytical description

The purpose of the analytical description is to provide a theoretical framework derived
from first principles, which describes and possibly predicts the onset of the phase separa-
tion observed in simulations, see Fig. 3.2. In other words, one starts at the microscopic
level of the system, which is given by the Smoluchowski equation derived in Sec. 2.4.3,
i.e.,

∂tΨ =
N∑

i=1

µ0∇i[∇iU − µ−10 v0ei + kBT∇i]Ψ +
N∑

i=1

Dr∂
2
ϕi
Ψ. (3.1)

3.1.1 One-particle density

The first step is to derive an evolution equation for the one-particle probability density
function Ψ1(r1, ϕ1, t), with Ψ1dr1 being the probability to find a particle, arbitrary
labeled with the index 1, at time t in the volume dr1 around position r1 with orientation
ϕ1 regardless of the configuration of the remainingN−1 particles. The considered system
contains indistinguishable particles of one single species unlike systems of oppositely
driven particles [150, 151], oppositely charged particles [152] or a binary mixture of
self-propelled particles [153]. Consequently, Ψ1 should have the same form no matter
which particle is considered. Therefore the subscript of r1, ϕ1 can be dropped and a
randomly tagged particle at position r with orientation ϕ is considered, while without
loss of generality the remaining particles are numbered from 2 to N . Then, the tagged
particle probability density Ψ1(r, ϕ, t) is given by integrating the joint probability density
function over all possible configurations of the remaining particles, yielding

Ψ1(r, ϕ, t) =

∫

dr2 . . . drN

∫

dϕ2 . . . dϕN Ψ({ri}, {ϕi}, t), (3.2)
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where positions are integrated over the total space and the angular integration goes from
0 to 2π. Performing this integration in Eq (3.1). and already applying the reduced units
mentioned in Sec. 2.5, i.e., kBT = 1 and µ0 = 1, Eq. (3.1) becomes

∂tΨ1 = −∇ · [Fm + v0eΨ1 −∇Ψ1] +Dr∂
2
ϕΨ1, (3.3)

where the first term in the squared brackets

Fm =

∫

dr2 . . . drN

∫

dϕ2 . . . dϕN (−∇1U)Ψ (3.4)

is the mean force acting on the tagged particle due to pair interactions. The subscript of
∇1 is only used to distinguish from the variables being integrated and will be dropped
later. The second term in Eq. (3.3) is calculated via the fact that the integration over
any particle except the tagged one vanishes. Explicitly the calculation is

N∑

i=1

∫

dr2 . . . drN

∫

dϕ2 . . . dϕN ∇i(Ψv0ei) (3.5)

=
N∑

i=1

v0

∫

dr2 . . . drN

∫

dϕ2 . . . dϕN (ei∇iΨ+Ψ∇iei
︸ ︷︷ ︸

=0

) (3.6)

=v0e1∇1Ψ1 +
N∑

i=2

v0

∫

dr2 . . . dri−1dri+1 . . . drN
︸ ︷︷ ︸

=dr3...drN for i=2

∫

dϕ2 . . . dϕN ei [Ψ]ri→∞
ri→−∞

(3.7)

=v0e1∇1Ψ1, (3.8)

where the subscript for ∇1 and e1 is dropped after the calculation. The squared brackets
in Eq. (3.7) indicate that Ψ is evaluated at xi, yi → ±∞, which needs to vanish in any
case, otherwise it would not be able to normalize the function. The third term of
Eq. (3.3) is calculated in a similar way with the same argument regarding the behavior
of Ψ towards infinity. The last term of Eq. (3.3) is given by the following calculation

N∑

i=1

Dr

∫

dr2 . . . drN

∫

dϕ2 . . . dϕN ∂2
ϕi
Ψ (3.9)

=Dr∂
2
ϕ1
Ψ1 +Dr

N∑

i=2

∫

dr2 . . . drN

∫

dϕ2 . . . ϕi−1ϕi+1 . . . dϕN
︸ ︷︷ ︸

=dϕ3...dϕN for i=2

[∂ϕi
Ψ]ϕi=2π

ϕi=0 (3.10)

=Dr∂
2
ϕ1
Ψ1, (3.11)

where one has used that Ψ and all its derivatives are 2π-periodic functions with respect
to ϕi. Again, to finally obtain the fourth term of Eq. (3.3) the subscript of ϕ1 is dropped.
The next step is now to rewrite Eq. (3.3) in terms of the one-particle density ρ1(r, ϕ, t),
which is done by a simple multiplication with N , more precisely

ρn(r1, . . . , rn, ϕ1, . . . , ϕn, t) =
N !

(N − n)!

∫

drn+1 . . . drN

∫

dϕn+1 . . . dϕN Ψ. (3.12)



3.1. ANALYTICAL DESCRIPTION 25

Eq. (3.3) now reads

∂tρ1 = −∇ · [F+ v0eρ1 −∇ρ1] +Dr∂
2
ϕρ1, (3.13)

with

F = N

∫

dr2 . . . drN

∫

dϕ2 . . . dϕN (−∇1U)Ψ. (3.14)

The quantity −∇1U can be expressed as

−∇1U = −
N∑

j=2

u′(|rj − r1|)
rj − r1

|rj − r1|
· (−1) (3.15)

= −
N∑

j=2

u′(|r1 − rj|)
r1 − rj

|r1 − rj|
, (3.16)

where u′(r) denotes the derivative of u(r) with respect to the argument. After dropping
the subscript, Eq. (3.14) is given by

F = −N
∫

dr2 . . . drN

∫

dϕ2 . . . dϕN

(
N∑

j=2

u′(|rj − r|) r− rj

|r− rj|

)

Ψ. (3.17)

The sum is now written as N−1 separate integrals, where in each the particle interacting
with the tagged particle is labeled as particle 2, which is allowed since particles are
indistinguishable. The position and orientation of this arbitrary particle is now written
as r′ and ϕ′ to avoid further confusion, which leads to

F = −N(N − 1)

∫

dr′dr3 . . . drN

∫

dϕ′dϕ3 . . . dϕN u′(|r− r′|) r− r′

|r− r′|Ψ. (3.18)

Again, the subscript does not imply fixed particle indices, but serve to distinguish be-
tween the variables being integrated. According to Eq. (3.12) the quantity F is written
in terms of a two-particle density

F = −
∫

dr′
∫

dϕ′ u′(|r′ − r|) r− r′

|r− r′|ρ2(r, r
′, ϕ, ϕ′, t) (3.19)

= −
∫

dr′ u′(|r′ − r|) r− r′

|r− r′| ρ̃2(r, r
′, ϕ, t). (3.20)

In the last step it has already been integrated over the orientational degree of freedom of a
particle at r′ so that ρ̃2(r, r

′, ϕ, t) is the two-particle density of finding a particle at time t
at position r′ with arbitrary orientation, while the tagged particle is at r with orientation
ϕ. One could now go back to the Smoluchowski equation and integrate it over the degrees
of freedom ofN−2 particles, which would then give a connection between the two particle
density and the three particle density. This systematic coupled chain of equations is
called the BBGKY (Bogoliubov-Born-Green-Kirkwood-Yvon) hierarchy [154–159].
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Figure 3.3: Sketch of the reference frame for the function g(|r− r′|, θ|∢(r−r′,e), t).

At this part of the derivation an approximate closure for the coupled chain of equations
needs to be found. Generally, the pair correlation function is the normalized two particle
density, yielding

ρ2(r, r
′, t) = ρ1(r, t)ρ1(r

′, t)g(r, r′, t). (3.21)

Applying this relation and extending it to orientational degrees of freedom, but with
only the orientation of one particle being relevant, one gets

ρ̃2(r, r
′, ϕ, t) = ρ1(r, ϕ, t)ρ1(r

′, t)g(r, r′, ϕ, t). (3.22)

As mentioned before, the goal is to develop a theoretical framework for the onset of the
phase separation. Hence the quantity ρ̃2 can be approximated by treating it as being
evaluated in a homogeneous system and Eq. (3.22) is approximated as

ρ̃2(r, r
′, ϕ, t) ≃ ρ1(r, ϕ, t)ρg(|r− r′|, θ|∢(r−r′,e), t), (3.23)

where ρ is the homogeneous density of the suspension regardless of the particle orienta-
tion. In addition the reference frame has changed such that ϕ is considered to be fixed
along a given axis, but r′ is moved accordingly, so that θ is the angle enclosed by the
connection vector r′ − r (pointing away from the tagged particle) and the orientation
e of the tagged particle, see Fig. 3.3. Furthermore two assumptions are made: time
dependency is neglected (initially homogeneous suspension) and it is assumed that the
pair correlation function depends only on relative and not absolute particle positions.
Thereby the projection eF on the orientation of the tagged particle is written as

eF = −ρζρ1 (3.24)

with

ζ =

∫ ∞

0

dr r[−u′(r)]
∫ 2π

0

dθ cosθ g(r, θ). (3.25)

The quantity eF can be seen as the force exerted on the tagged particle because it is
persistently propelling against other particles, which is the reason why ζ will be referred
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as the force imbalance coefficient. So far the specific form of the pair potential u(r) has
not been taken into account. If the specific function of the pair potential is known, the
first integral in Eq. (3.25) can be calculated analytically or approximated numerically.
For a fixed pair potential ζ is mainly determined by the degree of anisotropy of the pair
correlation function. It is also noteworthy that the calculations above do not give an
analytical closed theory to fully characterize the system, but rather provide the desired
theoretical framework, where the pair correlation function is needed as an input, which
will be obtained via computer simulations.
The next step is to assume that the vectors e and ∇ρ1 are linear independent, which
is quite reasonable considering that other particles also propel themselves while one
given particle moves through the suspension. As a result the particles orientation is
rarely exactly parallel or antiparallel to the density gradient. Then the vector F can be
decomposed in terms of the non orthogonal basis given by e and ∇ρ1, i.e.,

F = (eF)e+ (1−D)∇ρ1, (3.26)

where D is technically given by

D = 1− F
∇ρ1 − e(e∇ρ1)

|∇ρ1|2
. (3.27)

Finally, by putting Eqs. (3.24) and (3.26) into Eq. (3.13) one obtains the evolution
equation for the one-particle density of an interacting system of self-propelled particles

∂tρ1 = −∇[(v0 − ρζ)e−D∇]ρ1 +Dr∂
2
ϕρ1. (3.28)

In equilibrium the particles do not propel themselves (v0 = 0) and the suspension is
homogeneous, implying ζ = 0. Consequently, to be consistent with the description of the
equilibrium system, disregarding the rather complex form of Eq. (3.27), the coefficient
D is associated with the long time diffusion coefficient of the corresponding passive
suspension.

3.1.2 Effective swimming speed

By introducing an effective swimming speed

v = v0 − ρζ, (3.29)

one can rewrite Eq. (3.28) into

∂tρ1 = −∇[ve−D∇]ρ1 +Dr∂
2
ϕρ1, (3.30)

where all particle interactions are completely absorbed into the effective swimming speed
v and the long time diffusion coefficient D. This implies a mapping to non-interacting
particles with an intrinsic swimming speed equal to v (instead of v0) and a bare diffusion
coefficient D (instead of D0). The long-time diffusion coefficient Dlt of such an effective
system can be derived by the corresponding Langevin equation and is given by

Dlt = lim
t→∞

1

4

d

dt
〈[r(t)− r(0)]2〉 = D +

v2

2Dr

. (3.31)
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3.2 Linear stability analysis

The key towards an analytical description of the phase separation dynamics is to study
the stability of the system with respect to small density fluctuations, which, if the system
is unstable, grow and are responsible for a phase separation scenario. The approach is
to derive an evolution equation for the local density ρ(r, t) of the suspension. Then,
the local density is considered to be homogeneous, but with a small deviation, i.e.,
ρ(r, t) = ρ+ δρ(r, t), where the temporal evolution of the perturbation δρ is analyzed.

3.2.1 Effective hydrodynamic equations

First, from Eq. (3.30) a more familiar description is derived, which are effective hydro-
dynamic equations coupling the density and orientational field of the suspension, see
also Refs. 160, 161. The density field is given by integrating ρ1 over the orientational
degree of freedom, i.e.,

ρ(r, t) =

∫ 2π

0

dϕρ1(r, ϕ, t), (3.32)

while the orientational field is the first moment of the orientation, yielding

p(r, t) =

∫ 2π

0

dϕ eρ1(r, ϕ, t). (3.33)

By performing these integrations in Eq. (3.30) one gets for the density field the following
differential equation

∂tρ = −∇ · [vp−D∇ρ], (3.34)

while for the orientational field one have at first to treat terms involving

eeT =
1

2
1+

1

2

(
cos 2ϕ sin 2ϕ
sin 2ϕ −cos 2ϕ

)

. (3.35)

In order to obtain a closure the second harmonic terms are dropped. Later in this
section it will be shown, that only instabilities on large length scales are able to cause
the instability and since the system is initially considered to be near the homogeneous
solution, the term with the second harmonics can be neglected by imagining averaging
over all orientations in a large area, yielding the second term in Eq. (3.35) to become
zero. The evolution equation of the orientational field then reads

∂tp = −1

2
∇(vρ) +D∇2p−Drp. (3.36)
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3.2.2 Perturbation of the homogeneous suspension

The homogeneous solutions of the coupled Eqs. (3.34) and (3.36) are given by ρ = ρ
and p = 0 with ρ being the homogeneous density. Now, small perturbation fields of
this solutions are considered, i.e., ρ(r, t) = ρ + δρ(r, t) and p(r, t) = δp(r, t). In order
to analyze the temporal evolution of these perturbations, the force imbalance coefficient
ζ is treated as a controllable parameter independent of the density. In addition, it is
reasonable to assume that the effective swimming speed depends on the local density,
whose expression is still needed to close the equations1. That expression has been ap-
proximated by simply replacing the homogeneous density ρ in v = v0−ρζ with the local
density ρ, which is obviously contradictory regarding the previous results, but not a too
big mistake regarding small deviations δρ. In the following, the expression v denotes
the global effective swimming speed v = v0 − ρζ, while the expression vl = v0 − ρζ
is the approximated local swimming speed depending on the local density ρ(r, t). The
expression vlρ is then given by

vlρ = (v0 − ζρ)ρ = vρ+ wδρ+O(δρ2) (3.37)

with w = v0 − 2ρζ and O(δρ2) indicating terms of second order in δρ being neglected
in the following. Finally, the temporal evolution of the perturbations is given by setting
ρ = ρ+ δρ, p = δp and v = vl in Eqs. (3.34) and (3.36), which is written as

∂tδρ = −∇[vlδp−D∇δρ], (3.38)

∂tδp = −1

2
∇(vρ+ wδρ)

︸ ︷︷ ︸

=− 1

2
w∇δρ

+D∇2δp−Drδp. (3.39)

By neglecting nonlinear terms of the perturbations, Eqs. (3.38) and (3.39) are given by

∂tδρ = −∇[vδp−D∇δρ], (3.40)

∂tδp = −1

2
w∇δρ+D∇2δp−Drδp. (3.41)

Note that the only difference is v instead of vl on the right hand side of Eq. (3.40). Now
the spatial Fourier transforms of δρ and δp are considered. In d spatial dimensions the
Fourier transform of a function f(r, t) is given by

f̃(q, t) =
1

(2π)d/2

∫

drf(r, t)eiqr (3.42)

where q is the d-dimensional wave vector in Fourier space. The inverse Fourier transform
then reads

f(r, t) =
1

(2π)d/2

∫

dqf̃(q, t)e−iqr. (3.43)

1It has been shown generally, that density dependent local mobility can cause phase separation in case
of run-and-tumble bacteria [132, 134], which can be mapped to the here employed system of active
Brownian particles [162].
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By defining the vector z = (δρ̃, δp̃x, δp̃y), where δp̃α is the Fourier transform of the
component α of δp, Eqs. (3.40) and (3.41) are written as

∂tz(q, t) = −A(q)z(q, t), (3.44)

whose solution is

z(q, t) = e−Atz(q, 0). (3.45)

Here the 3× 3 coefficient matrix has been introduced, which is given by

A(q) =





Dq2 ivqx ivqy
1
2
iwqx Dq2 +Dr 0

1
2
iwqy 0 Dq2 +Dr



 . (3.46)

If one of the eigenvalues of A is negative, small density perturbations would not only
grow exponentially, cf. Eq. (3.45), but also unbounded, which is actually an artifact of
the linearization, since the coupling to higher nonlinear orders leads to a saturation of
the instability. However, the three eigenvalues of A are given by

λ0 = Dq2 +Dr (3.47)

λ± = Dq2 +
Dr

2
±
√

D2
r

4
− 1

2
vwq2, (3.48)

where the diffusion coefficients D and Dr are positive, so that the only possible negative
eigenvalue is λ−. At this step, very small wave vectors are considered, i.e., D2

r/4 ≫
vwq2/2, which is true for q → 0 corresponding to an instability on large length scales
and was already used to neglect the second harmonics in Eq. (3.35). After approximating
the square root for q → 0 the relevant eigenvalue reads

λ− ≈
(

D +
vw

2Dr

)

q2, (3.49)

which is negative if D + vw/(2Dr) < 0. Since ζ has been treated as an controllable
parameter this condition is solved in terms of ζ, which yields an unstable behavior
(λ− < 0) for ζ− 6 ζ 6 ζ+, where the boundaries are given by

ρζ± =
3

4
v0 ±

1

4

√

v20 − v2∗ (3.50)

with

v∗ = 4
√

DDr. (3.51)

Eq. (3.50) provides a possible prediction for what values of ζ the system will be unstable.
In addition, ζ is a real value, so that v0 > v∗ needs to be fulfilled. Therefore v∗ is the
minimal (not the critical) intrinsic velocity needed for the instability to occur.
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3.2.3 Scaling argument

In this section a more demonstrative derivation of Eq. (3.50) is provided. Starting with
the effective hydrodynamic Eqs. (3.34) and (3.36), the effective swimming speed is again
approximated to be locally dependent on the density according to

vl = v0 − ζρ, (3.52)

yielding

∂tρ = −∇ · [vlp−D∇ρ] (3.53)

∂tp = −1

2
∇(vlρ) +D∇2p−Drp. (3.54)

Instead of performing a linear stability analysis in Fourier space, two assumptions are
now made regarding the length and time scales of the instability. First, in accordance
with the previous assumption q → 0, the limit of large length scales is considered as well
as times much longer than the reorientation time 1/Dr of a particle. Hence, Eq. (3.54)
simplifies to

p ≈ − 1

2Dr

∇(vlρ) = −
v0 − 2ρζ

2Dr

∇ρ, (3.55)

where the orientational field is adiabatically enslaved to the density field. Plugging this
result into Eq. (3.53) yields the diffusion equation

∂tρ = ∇
[

D +
(v0 − ζρ)(v0 − 2ρζ)

2Dr

]

∇ρ = ∇D∇ρ, (3.56)

where one can define the local diffusion coefficient

D(ρ) =
[

D +
(v0 − ζρ)(v0 − 2ρζ)

2Dr

]

. (3.57)

For negative values the suspension is unstable, since particles accumulate at denser
regions. Consequently, an initial homogeneous suspension needs to fulfill D(ρ) < 0 to
be unstable, which gives the already derived instability region ζ− 6 ζ 6 ζ+ presented in
Eq. (3.50) with

ρζ± =
3

4
v0 ±

1

4

√

v20 − v2∗. (3.58)

3.2.4 Discussion

In this section the results and its consequences of the previous analysis are presented
qualitatively. First, the minimal velocity for the instability to occur is considered to be
fixed, assuming the arbitrary reduced value v∗ = 1. The instability region can now be
plotted in the v0 − ρζ plane, which is seen in Fig. 3.4. The previous analysis predicts
an unstable system for values of ρζ within the blue-filled area in Fig. 3.4. The dashed
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Figure 3.4: ρζ plotted as a function of the reduced intrinsic swimming speed v0 at fixed
v∗ = 1. The blue-filled area is the instability region according to Eq. (3.58),
while the dashed lines correspond to the asymptotes ρζ = v0/2 and ρζ = v0.

lines in Fig. 3.4 are the asymptotes of this area, i.e., ρζ = v0/2 and ρζ = v0 respectively.
Recalling the expression of the effective swimming speed

v = v0 − ρζ, (3.59)

one can see, that values beyond the upper dashed line (ρζ > v0) are unphysical, since this
would result in a slowdown being stronger than the intrinsic speed itself and the particle
would propel in the opposite direction (v < 0). Another point is that the instability only
occurs if the slowdown is sufficiently strong. This provides the microscopic picture of
particles trapping each other due to the persistence of their self-propulsion, which leads
to an unstable system if other particles join these trapped particles before they can
reorient and leave the aggregate. This picture is also reflected in the evolution equation
of the density field and the adiabatic coupling between orientational field and density
field, i.e,

∂tρ = −∇ · [vlp−D∇ρ], (3.60)

p = − 1

2Dr

∇(vlρ). (3.61)

Putting those equations together yields

∂tρ = −∇ · [− vl
2Dr

∇(vlρ)−D∇ρ], (3.62)

which is a diffusion equation with the two competing fluxes pointing in directions
−∇(vlρ) and −∇ρ. As sketched in Fig. 3.5, the flux −∇ρ always points to the di-
lute region of the system, favoring stability. The direction of the flux −∇(vlρ) cannot
be specified in general. Assuming the local velocity vl of the particles outside a dense
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Figure 3.5: Sketch of the two competing fluxes −∇(vlρ) (red) and −∇ρ according to
Eq. (3.62). The area enclosed by the dashed line indicates a denser region
than on the outside. It is assumed that the product vlρ is smaller in the
denser region than in the dilute surrounding, causing the vector −∇(vlρ)
(red) to point in the oppsite direction of −∇ρ (blue).
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Figure 3.6: Sketch of the self-trapping mechanism where for a stable suspension particles
need to reorient before further particles can join the cluster. If reorientation
is too slow this would lead to a phase separated system.

region (area enclosed by the dashed line) does not differ a lot from those in the dense
region, this flux would also point to the dilute region and stabilize the system. But if
particles are slowed down a lot due to the interparticle collisions, the particles in the
dilute region are significantly faster. Then the product vlρ is lower in the dense region,
yielding a flux which points towards the dense aggregate, i.e., particles accumulate at
dense regions until steady state (a finite cluster size) is reached. In addition Eq. (3.62)
shows that the flux which might favor phase separation scales as vl/Dr, while the diffu-
sion part scales as expected linearly with D. This demonstrates the competition between
timescales, where particles at first collide and form an initial cluster. If they do not leave
the cluster too quick due to reorientation or translational diffusion, i.e., Dr and D are
sufficiently small, surrounding particles might join the initial cluster, see also Ref. 34
for kinetic rate equations based on this physical picture. In the following this effect is
referred as self-trapping mechanism of particles and is sketched in Fig. 3.6.
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Figure 3.7: DDr plotted as a function of the reduced intrinsic swimming speed v0 at fixed
ρζ = 1. The blue-filled area is the instability region according to Eq. (3.58),
while the dashed lines correspond to ζρ = v0/2 and ζρ = v0. The gray filled
area corresponds to physical forbidden data points.

However, the force imbalance coefficient ζ is a rather abstract quantity based on the
structure of the suspension. Another approach is to fix ρζ, again ρζ = 1 is chosen arbi-
trary, and plot the instability region in the v0−DDr plane, see Fig. 3.7. One should note
that ρζ = 1 has been fixed, so that the system is considered as already self-propelled and
values v0 < ρζ are unphysical (v < 0 not allowed). Therefore only values to the right
of the left dashed line are considered in Fig. 3.7. The quantity DDr is now connected
to more demonstrative quantities, i.e., one could claim that DDr grows as temperature
increases while it decreases as the system gets denser. The specific functional relation is
not needed for a qualitative discussion. At T = 0 the minimal velocity for an unstable
system is zero, resulting in a suspension, which is unstable for very low propulsion speeds.
Again, this is reflected in the competition of timescales, where no diffusion is present to
compete against the persistence motion. In addition, Fig. 3.7 shows a reentrant behav-
ior, which is not so much reflected in Fig. 3.4. If the particles propulsion is too strong,
the system gets stable again, which is at first glance surprising since very fast particles
have a large persistence length and translational diffusion is of course not dominant.
The explanation is that particles which are very fast compared to the velocities arising
from particle interactions do not block each other anymore, or at least the blocking is
not sufficiently strong, i.e., colliding particles are just pushed away very quickly. Fig. 3.7
also shows that there is a maximum value of DDr, equivalent to a minimal density, for
which the system can become unstable in the first place. The form of the blue-filled area
also indicates, that for dilute systems, i.e. higher DDr, a stronger propulsion is needed
to achieve an unstable system, but a lower swimming speed to reenter the stable regime.
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Figure 3.8: Mean relative size P of the largest cluster in the system as a function of free
propelling speed v0 at packing fractions φ = 0.4 and φ = 0.5. The squares
correspond to results from simulation runs, which are connected by straight
lines.

3.3 Numerical results

3.3.1 Quantifying the phase transition

The calculations above are now compared to the results of Brownian dynamics sim-
ulations with N = 4900 particles in a quadratic simulation box at packing fractions
φ > 0.36 (lower packing fractions are discussed in Chap. 4) and various propelling
speeds v0. Starting from the passive suspension at equilibrium (randomly distributed
orientations), the propulsion has been turned on and the suspension first relaxed for
tr = 100 into steady state before data has been collected for another simulation time
ts = 100. As mentioned before, for sufficiently strong propelling speeds, one observes
phase separation into one large dense cluster surrounded by a dilute fluid phase. First of
all, for a proper comparison with the analytical results, an appropriate order parameter
needs to be defined which characterizes this transition. A good quantity is certainly the
mean relative size (strength) of the largest cluster in the system. Particles are considered
to be in the same cluster if they overlap (rij < 2R), so that

P =
〈Nc〉
N

(3.63)

is the mean relative size of the largest cluster in the system, where Nc is the number
of particles in the largest cluster. In App. A.1 a finite size analysis based on the order
parameter P is performed to show that the system size N = 4900 is sufficiently large
to study the properties of the steady state. Fig. 3.8 shows a continuous increase of the
order parameter P , which is an indication of a second order phase transition. One should
note that the denser system at φ = 0.5 phase separates at lower propelling speeds than
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Figure 3.9: Plot of PS(v0)S
β/ν on a logarithmic scale as a function of S1/νǫ, which results

in a collapse into the universal scaling function P̃ by applying the critical
exponents of the 2d Ising model β = 1/8 and ν = 1 for packing fractions
φ = 0.4 (� , vc = 50) and φ = 0.5 (H , vc = 38).

the system at φ = 0.4, which confirms the previous statement that dense systems need a
lower propelling speed to get unstable. In accordance with the analytical results, but not
plotted here, it has been observed that for this particular simulation protocol (starting
as a homogeneous equilibrium suspension) a minimal density is necessary for which the
order parameter P shows indication of a phase transition in the first place. The details
of the phase transition to a phase separated system turned out to be more complex than
it appears at first glance and are discussed extensively in Chap. 4. Nevertheless it is
necessary to somehow define a critical velocity for this transition. Motivated from the
continuous increase of P , which has the appearance of a second order phase transition,
a finite size analysis has been performed, where also the system sizes S =

√
N = 40 and

S =
√
N = 50 are considered. Defining ǫ = v0/vc − 1 as the relative deviation from the

critical velocity, finite size scaling predicts [163]

PS(v0) = S−β/νP̃ (S1/νǫ), (3.64)

where S is the characteristic size of the system (here
√
N), PS(v0) the order parameter

as a function of v0 for the system size S and P̃ is a universal scaling function [164].
Hence, by applying the critical exponents of a given universality class2 and plotting the
product PS(v0)S

β/ν as a function of S1/νǫ, the curves for all system sizes should collapse
on one curve: the universal scaling function P̃ . This procedure is performed for each
packing fraction and each system size, resulting in 6 graphs, where for each packing
fraction (3 graphs) the value of the critical velocity vc is tuned to optimize the collapse
behavior. The best collapse has been achieved for the critical exponents of the 2d Ising

2university classes serve to classify phase transitions where close to the critical point the physical
quantities scale according to power laws with critical exponents. See Ref. 165 for a detailed review
on universality classes
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Figure 3.10: Anistropic pair correlaction function g(r, θ) in the xy-plane at intrinsic
swimming speed v0 = 20 and packing fraction φ = 0.5. The white cir-
cle indicates the shape of the particle and the white arrow its orientation.
The pair correlation function is colored according to its value, showing that
particles accumulate in the direction of propulsion, leaving a lack of parti-
cles behind the reference particle.

model [166] β = 1/8 and ν = 1 and critical velocities vc = 38 and vc = 50 respectively
for the packing fractions φ = 0.5 and φ = 0.4, see Fig. 3.9. It is noteworthy to point out
that there is no theoretical basis of applying the two-dimensional Ising model and that
the collapse is somehow better for v0 < vc. This finite size analysis should only be seen
as a method to give an estimation of the critical propelling velocities vc.

3.3.2 Force imbalance coefficient

Now, the force imbalance coefficient ζ is calculated by evaluating the integrals in Eq. (3.25).
In Fig. 3.10 an example for g(r, θ) is shown, where the highest probability to find parti-
cles is in the direction of propulsion, which is reasonable since the particle is slowed down
due to collisions appearing in the direction of its persistent motion. However, the values
calculated for ζ are now compared to the boundaries ζ± of an unstable system, which
is illustrated in Fig. 3.11. The previously estimated critical velocities vc of the finite
size analysis are represented by the vertical dashed lines and do indeed coincide quite
well with the values of v0 where the measured slowdown ρζ crosses the lower dashed
line and enters the instability region. In addition, by measuring the long-time diffusion
coefficient of the passive suspension, the free swimming speed v0 is normalized to the
minimal velocity v∗ necessary for an unstable system. This illustrates that v∗ can indeed
be seen as a minimal velocity but not as a critical velocity since the system gets unstable
for swimming speeds which are about one order of magnitude larger.
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Figure 3.11: Reduced force imbalance coefficient ζ as a function of the free swimming
speed v0 normalized to the minimal velocity v∗ necessary for an unstable
system at packing fractions φ = 0.4 and φ = 0.5. The vertical red and green
dashed lines correspond to the critical velocities vc = 50 (� , φ = 0.4) and
vc = 38 (H , φ = 0.5) estimated by the finite size analysis in Section 3.3.1.
The two other dashed lines are the asymptotes of the values ζ±, which
enclose the instability region.

3.3.3 Long-time diffusion

In Sec. 3.1.2 the effective long-time diffusion coefficient has been introduced

Dlt = lim
t→∞

1

4

d

dt
〈[r(t)− r(0)]2〉 = D +

v2

2Dr

. (3.65)

As mentioned before, this implies that the interacting system with intrinsic swimming
speed v0 can be mapped to a free particle by interchanging v0 ↔ v and D0 ↔ D. In
Fig. 3.12 this is tested by measuring the long time diffusion coefficient and comparing
it to the analytical prediction. For sufficiently low values of the effective swimming
speed v the mapping of Eq. (3.65) holds, while it breaks down as soon as the effective
swimming speed saturates and only the long-time diffusion keeps growing. These values
correspond to a phase separated suspension and show that the mapping only holds for
stable suspensions. The fact that the long-time diffusion coefficient still grows shows
that particles are constantly exchanged between the two phases.

3.3.4 Further pair potentials and reentrant behavior

In this section it is demonstrated that the phase separation is a generic phenomenon
and also appears for other pure repulsive pair potentials. The previous numerical results
do not show the expected reentrant behavior from a phase separated suspension to a
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Figure 3.12: Long-time diffusion coefficient Dlt as a function of the effective swimming
speed v at packing fractions φ = 0.4 and φ = 0.5. The dashed line cor-
responds to the approximation Dlt ≈ v2/(2Dr) since v2/(2Dr) ≫ D for
sufficiently large v.
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Figure 3.13: Magnitude of the force f(r) = |u′(r)| acting on a pair of particles as a
function of distance r for the four potentials WCA from Sec. 2.4, (Y), (H)
and (GCM). The inset shows the behavior for interparticle distances around
r = 1.
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stable fluid as the swimming speed increases. This has not been simulated since this
transition would occur at a very high Péclet number due to the very strong (ǫ = 100) and
steep (∝ r−12) pair potential, which requires very small time steps for the integration,
resulting in a too long computational time to achieve reasonable results in steady state.
In order to show this phenomenon three further pair potentials are employed: harmonic
interaction (H) if particles overlap

u(r) =

{

ǫ
(

r
2R
− 1

)2
(r 6 2R)

0 (r > 2R),
(3.66)

the Gaussian core model (GCM) [167,168]

u(r) = ǫe−(r/(2R))2 , (3.67)

and a Yukawa potential (Y) known from the DLVO theory [169,170]

u(r) = ǫ
e−κ(r−2R)−2R

r
(3.68)

with inverse screening length κ = 5(2R)−1. In Fig. 3.13 the four different pair poten-
tials are compared in terms of the magnitude of the force f(r) = |u′(r)| acting between
particles at center-to-center distance r. Indeed, one observes that the WCA potential is
significantly stronger than the three potentials mentioned above, while the pair interac-
tion modeled by (Y) and (GCM) is more long ranged and particles do repel each other
beyond overlap, see inset of Fig. 3.13.
Another goal besides showing that phase separation is generic, is also to demonstrate the
temperature dependence of the phase transition, which has been illustrated in Fig. 3.7,
especially the reentrant behavior into a stable suspension. Therefore the temperature T
is treated as a controllable parameter and only in this section the units for physical quan-
tities change, yielding the interaction strength ǫ as the unit of energy and (2R)2/(µ0ǫ) as
the unit of time, while 2R is still the unit of length. In these units, Brownian dynamics
simulations have been performed with a time step ∆t = 0.05. Consequently, this sec-
tion decouples completely from the particle model introduced in Sec. 2.4, in particular
because the rotational diffusion coefficient is treated as a controllable parameter and
is fixed to Dr = 3 · 10−5 instead of using the Stokes-Einstein-Debye relation. Starting
from an equilibrated passive fluid with randomly distributed particle orientations, the
swimming motion of the particles is turned on and after a relaxation time of tr = 100000,
data has been collected for a total simulation time t = 250000.
Similar to the WCA model, N = 4900 particles have been simulated at various swim-
ming speeds v0 < 1 and packing fractions: (H) φ = 0.7, (GCM) φ = 0.091 and (Y)
φ = 0.2. Here it is indeed important to point out that the numerical values for v0 might
appear small, but needs to be seen relatively to both the potential strength f(r) and
diffusion. At first, the systems are simulated at kBT = 0, where Fig. 3.14(a) shows the
behavior of the static structure factor

S(q) =
1

N

∣

∣

∣

∣

∣

N
∑

i=1

e−iqri

∣

∣

∣

∣

∣

(3.69)
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at the considered free swimming speeds with q being the wave vector. One observes
a diverging behavior for q → 0, indicating density fluctuations at large length scales,
but also non-diverging graphs are shown, which correspond to a stable system. In
Fig. 3.14(b) the force imbalance coefficient ζ is plotted as a function of the free swimming
speed v0. Since for T = 0 particles do not diffuse, i.e., D = 0, the minimal velocity for
the instability to occur is v∗ = 0, which is the reason that for all three systems the first
measured point at v0 = 0.01 already corresponds to a phase separated system where
the static structure factor diverges (closed symbols). In accordance to the WCA model,
there surely exists a critical velocity for the phase transition, but its numerical value
in these units is very low and determining its value is not the goal of this section. For
larger swimming speeds all three systems show a reentrant behavior where the measured
force imbalance coefficient leaves the unstable region, which coincides quite well with
measuring a non-diverging static structure factor (open symbols). In Fig. 3.14(c) and (d)
two snapshots of the simulation box of the harmonic system (H) are provided, which show
the corresponding states of a phase separated and a homogeneous fluid after reentering
the stable region. Particles are colored according to their persistence of motion quantified
by

αi =
ei(t) · [ri(t+∆t) + ri(t)]

v0∆t
, (3.70)

which is 1 for a freely moving swimmer at T = 0 and −1 if a particle is being pushed in
the opposite direction of its propulsion during the lag time ∆t. This parameter reveals
that particles within a cluster are mostly not able to keep their persistence motion due
to the self-trapping mechanism in the dense aggregate, while the swimmers in the dilute
region and stable suspension move quite persistent.
Now the system (H) is also considered at kBT = 0.01 to qualitatively verify the conse-
quences of Fig. 3.7, claiming that if DDr increases, one needs a larger propelling force
v0 to achieve phase separation (already shown for the WCA model), but also that the
velocity for reentering the stable region is reduced, which has not been investigated
yet. Fig. 3.15 shows density maps of systems at kBT = 0 and kBT = 0.01 at various
swimming speeds. The first observation is that, as expected, the system at kBT = 0
is unstable for v0 = 0.01 and the system at kBT = 0.01 is stable at the same intrinsic
swimming speed, but phases separate at v0 = 0.05. Another observation is that the edge
of the cluster is more fuzzy for kBT = 0.01, which is due to the translational diffusion
of the particles. If a propelling speed of v0 = 0.2 is considered, the system at zero tem-
perature is still phase separated, while the system at kBT = 0.01 is quite homogeneous,
which is a qualitative confirmation for the behavior of the critical velocity for reentering
a stable region in the phase diagram.

3.3.5 Experimental results

Since the particle model is motivated by the experiment performed by the 2. Physika-
lisches Institut at the University of Stuttgart, which has been explained in Sec. 2.4.1,
it is essential to compare numerical and experimental results. Fig. 3.16(a) shows the
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Figure 3.14: (a) Double-logarithmic plot of the static structure factor S(|q| = q) as a
function of the magnitude q of the wave vector for the three systems (H),
(GCM) and (Y). (b) Reduced force imbalance coefficient ζ as a function
of propelling speed v0. Closed symbols correspond to a diverging structure
factor for q → 0, while open symbols represent a non-diverging static struc-
ture factor, indicating a stable homogeneous system. (c) Snapshot of the
simulation box of the system (H) at v0 = 0.2 and (d) v0 = 0.5. Particles
are colored according to their persistence of motion given by the parameter
αi in Eq. (3.70).
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Figure 3.15: Snapshots of the density field ρ(r) of the simulation box for system (H) at
kBT = 0 and kBT = 0.01 for v0 = 0.01, 0.05, 0.1, 0.2. In order to create the
density field, the simulation box has been divided into 100×100 cells of side
length l. Then, a single particle i is considered to have a density distribution
given by the normalized radial Gaussian function e−(r−ri)

2/(2σ2)/2πσ2 with
σ = l/

√
2. For the considered packing fraction φ = 0.7, this yields a typical

width of the Gaussian function, which is comparable to the diameter 2R
of the particle. Finally, the superposition of the density distributions of all
particles are integrated in each cell and divided by the cell area l2, yielding
the density in each cell. Here, the cells are colored according to their density
normalized to the homogeneous density ρ ≈ 0.891.

relative size of the largest cluster in the system for both numerical and experimental
data. However, like observable in Fig. 3.16(c), the experimental system does not show
one single cluster like the simulation. This is simply due to the quasi-two dimensionality
of the experimental setup, where colliding particles try to evade into the z-direction
leading to clusters which are three dimensional objects. These clusters are very slow
due to hydrodynamic effects near to the cells walls and are not able to join into one
single cluster within the experimental time window. In order to continue it is assumed
that the steady state is one single cluster and to calculate its size all clusters larger
than N/10 have been added up where N is the number of particles in the monitored
area. For φ = 0.36 the critical velocity of the phase transition is in excellent agreement
with the numerical result. On the other hand the experimental system shows a clear
clustering transition at lower packing fractions which has not been observed in computer
simulations. One reason for that could be the lack of hydrodynamic interactions between
particles in the numerical model3.
The theoretical explanation for the mechanism responsible for the clustering leading to

3Later, a quasi-two dimensional study [171] has shown that including hydrodynamic interactions
(squirmer model [172–174]) reveals clustering at smaller packing fractions than simulations neglect-
ing hydrodynamic interactions.
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Figure 3.16: (a) Strength P of the largest cluster in the system as a function of physical
propelling speed (lower x-axis) and Péclet number (upper x-axis). The
closed symbols connected by a straight line are numerical results, while
the open symbols correspond to experimental data. (b) Snapshot of the
simulation box at φ = 0.5 and Pe = 100 where red particles correspond to
swimmers being part of the largest cluster. (c) Experimental snapshot at
φ ≃ 0.25 and v ≃ 1, 45µm/s.
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Figure 3.17: Consecutive close-ups of a cluster observed in the experiment. The red
arrows indicate the particle orientation which has been able to detect by
resolving the graphite cap of the particle and mostly point inward the clus-
ter. In addition, the particle indicated by the black arrow at t = 0 s will
leave the cluster, while it is replaced by another particle, which demon-
strates that particle are interchanged between the two phases. (b) Sketch
of the self-trapping mechanism where for a stable suspension particles need
to reorient before further particles can join the cluster.

phase separation is that particles trap (block) each other due to the persistent propulsion,
which has to be validated at least qualitatively in the experiment. Fig. 3.17(a) shows the
orientational configuration of a cluster observed in the experiment, clearly showing that
particles point inward the small cluster and thus block other particles trying to leave
the cluster. Another aspect shown in Fig. 3.17(a) is that a particle at the edge of the
cluster leaves the cluster due to reorientation, but is then replaced by another particle
coming from the dilute region of the system. This qualitatively confirms the numerical
result that particles are interchanged between the phases, leading to a growing long-
time diffusion coefficient Dlt as the free propelling speed v0 increases while the effective
swimming speed v saturates (cf. Fig. 3.12).

3.4 Conclusion

In conclusion, a theoretical framework has been derived from first principles, which
describes the onset of the instability leading to a phase separation in active systems re-
stricted to two dimensions where hydrodynamic interactions have been neglected. The
calculation yields an equation of motion for the one-particle density with an effective
swimming speed v = v0 − ρζ which includes both the intrinsic propulsion speed v0 and
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the slowdown due to particle interactions represented by the so-called force imbalance
coefficient ζ. After deriving the temporal evolution equations for the density field and
orientational field, small perturbations from the homogeneous solution are considered
whose behavior is analyzed via a linear stability analysis. This yields a region determined
by the value of ζ where the system is unstable regarding small density perturbations.
The analysis has been supported by Brownian dynamics simulations which show a tran-
sition from a homogeneous suspension to a phase separated system containing one big
dense cluster surrounded by a dilute gas phase. After quantifying this transition with
an appropriate order parameter, the prediction for an unstable system via the force
imbalance coefficient ζ coincides quite well with the critical velocities of the transition
estimated via a finite size scaling analysis considering the critical exponents of the two
dimensional Ising model.
In order to demonstrate that this is a generic phenomenon, three further pair poten-
tials have been applied where the temperature is treated as a controllable parameter.
At T = 0 the prediction of the onset of the instability in terms of the force imbalance
coefficient is confirmed but also a reentrance into the stable regime for higher propelling
forces is observed which is supported by a non-diverging behavior of the static structure
factor for q → 0. For T > 0 diffusion is present, causing a stronger critical propulsion
speed necessary for the instability to set in, but also a lower propulsion for which the
suspension reenters into the stable state, which has also been reported by the developed
theory.
The comparison to the experimental setup introduced in Sec. 2.4.1 shows excellent agree-
ment regarding the critical propulsion speed at packing fraction φ = 0.36, which is
remarkable considering the minimal model applied. However, in the experiment the
suspension does also evolve clusters at lower densities. The self-trapping mechanism
and the particle interchange between the phases has been confirmed qualitatively in the
experiment by identifying the graphite hemisphere, i.e., the orientation of the particles.
There is still a lot of work left to fully understand the phase separation of active pure
repulsive particles. One goal is to understand why experiments show clustering behavior
at lower densities than simulations based on the minimal model introduced in Sec. 2.4.
The key to this problem might be the behavior of self-propelled particles near walls [114],
but more important the inclusion of hydrodynamic interactions between particles and
also hydrodynamic interactions between particles and the walls of the confining cell.
This has already been studied considering the squirmer model [171]. But the scientific
community is still debating, if the squirmer model, which prescribes the solvent velocity
on the particles surface, is appropriate to model for example diffusiophoretic swimmers.
Nevertheless, the role of dimensionality [175] is also an important point since simulations
considering a two dimensional fluid instead of a quasi-2d setup show a suppression of
the phase separation if hydrodynamic interactions are present [176]. Also mixtures of
active and passive particles have recently been studied [177] and do certainly deserve
more attention in the context of phase separation. From the experimental point of view
it would be desirable to study three dimensional systems, since it has already been done
numerically [141, 175]. A more interesting point for experimentalists is to quantify how
artificial swimmers behave within a cluster due to shared fuel consumption, e.g., over-
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lapping demixing zones in the experiment of publication 1. From the numerical point
of view, it would be desirable to avoid simulations to improve time efficiency. This
could be done by applying an appropriate closure for the BBGKY hierarchy mentioned
in Sec. 3.1.1 and calculate the two dimensional pair correlation function directly via
a numerical algorithm without being forced to simulate a sufficiently large system. A
similar work has already been done for a binary mixture of particles driven in opposite
directions [150] where the triplet correlation function has been approximated via the
Kirkwood superposition approximation [178]. If this is extended to the system consid-
ered in this work, a numerical program would be achievable which only needs the pair
potential u(r), the free propulsion speed v0 and the packing fraction φ as input and then
calculates whether the suspension is stable or not in a much more quicker way than a
simulation could ever do.
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Chapter 4

Effective Cahn-Hilliard description

In equilibrium phase separation has been studied in detail for about 50-60 years and is
quite well understood [179,180]. It has been shown that only attractive interactions can
lead to phase separation in monodisperse systems at equilibrium. This can be explained
introducing the free (Helmholtz) energy F = U−TS of the system with U being the total
internal energy (potential energy), T the temperature and S the entropy of the system.
Any realistic particle pair potential should fulfill u(r → ∞) = 0 and thus u(r) > 0 for
any r in case of a pure repulsive potential, yielding U > 0 for any spatial configuration. A
system always tries to minimize its free energy and therefore tries to maximize its entropy
S. Since the entropy is a quantity measuring the number of different possibilities to
realize one specific system configuration, an inhomogeneous system is always unfavored
by the entropy part and in case of pure repulsive particles even by the internal energy.
A very famous example is the model of hard spheres, comparable to billiard balls, which
do not interact, but particles are also not able to interprenetate each other. This yields
U = 0 for all allowed configurations so that the phases of such a system are always
homogeneous and purely determined by the entropy S, i.e., the density of the system,
which leaves the temperature T as a scaling parameter [181]. This picture changes
if attractive interactions are present which are strong enough to overcome the entropy
part of the free energy and lead to an inhomogeneous or macroscopically phase separated
system. In this case, the mechanism behind the phase separation is well understood in
terms of the free energy F as a function of the density. Below1 the critical temperature Tc

it is assumed that this function exhibits two minima, see Fig. 4.1, which of course favors
phase separation to minimize the total free energy. A system with an initial density
lying within the region of negative curvature corresponds to the scenario of spinodal
decomposition, where the system is unstable against smallest density fluctuations and
immediately starts to separate into two phases of different densities. The values of these
densities are determined by the well-known common tangent construction, which is the

1In principle, there also exist mixtures of different composites which start to phase separate above a
lower critical solution temperature (LCST). However, for one component systems phase separating
into regions of different densities, this is not the case.
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Figure 4.1: (a) Sketch of the free energy F as a function of density ρ for a system at
temperature T = Tc and T = T1 < Tc. The red points corresponds to
the critical point. Between the two inflection points (green) the curvature
is negative, corresponding to the scenario of spinodal decomposition. The
common tangent (dashed line) is constructed so that it is the lowest straight
line steadily connecting the two parts of the energy with positive curvature.
The blue points are these connection points, marking the meta-stable regime.
(b) Phase-diagram in the ρ−T plane, where the procedure illustrated in (a)
needs to be performed for each temperature. Then the colored points are
marked along the corresponding temperature, here shown by the dotted lines.
Following this, the spinodal regime and a meta-stable regime is constructed.
Above the critical temperature the system always is homogeneous and stable.
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lowest straight line steadily connecting the two parts of positive curvature, see Fig. 4.1.
This construction is necessary for the curvature to stay positive since

−p =
∂F

∂V

∣
∣
∣
∣
T,N

(4.1)

where the vertical line with indices denotes the derivative at constant temperature and
constant particle number. If the common tangent construction is not performed the
negative curvature would lead to a pressure increase if the volume V increases, which is
clearly unphysical. One should also note that in a phase separated system, the densities
of the two phases do not correspond to the actual minima, but are the connecting points
of the common tangent on the free energy function and form the boundary of the meta-
stable region, i.e., the binodal. At constant temperature (equal temperature for both
phases) these points correspond to a constant (equal) chemical potential

µ =
∂F

∂N

∣
∣
∣
∣
T,V

(4.2)

and equal bulk pressure of the two phases. The meta-stable region is characterized by
the fact, that a system lying within that region needs a sufficiently large fluctuation,
demonstrative an activation energy, to start phase separation. This is in direct contrast
to the region of spinodal decomposition where phase separation starts spontaneously.
Any system with its initial density being on the common tangent does eventually sep-
arate into two phases with their sizes being in accordance to the lever rule: a system
being initially on the common tangent near the left minima will phase separate into a
very large dilute phase and a very small dense phase. At sufficient high temperatures
T > Tc, the free energy has always positive curvature, i.e., only one minimum, and the
system is stable and always homogeneous, see Fig. 4.1 for an illustrative summary of
the construction of the phase diagram. The temperature Tc at which the free energy
changes to only having one minima is the critical temperature at which the two phases
have equal density. The behavior of suspensions near the critical point is a highly de-
bated topic being investigated by many different approaches [182–184].
Unfortunately, for self-propelled systems, which are constantly driven out of equilibrium,
such a construction is not possible due to the lack of a definition for the free energy. But,
considering the phase separation scenario, it would be a striking achievement to find an
equilibrium system with attractive interactions, which shows equivalent behavior like the
non-equilibrium self-propelled repulsive system. There exist several phenomenological
approaches for such an effective mapping [133,185–190], but not derived from first prin-
ciples and not all being able to be written in the form of a free energy functional F [ρ(r)].
This is desirable since in equilibrium the density functional theory (DFT), which has
been developed during the 1960’s and 1970’s [191–194], can derive all thermodynamic
properties of a system only by the knowledge of such an free energy functional. Even
the dynamical density functional theory (DDFT) [195] could be applicable to analyze
the temporal evolution of the local density according to

kBT

D
∂tρ = ∇ρ∇δF

δρ
, (4.3)
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where δF/δρ represents the functional derivative of F with respect to the density field
ρ(r, t). The existence of an effective free energy functional would open a completely new
access to self-propelled systems.
This chapter is mainly based on publication 3. In the first part, a mean-field description
leading to an effective free energy is derived from first principles, which holds near the
transition line where phase separation sets in spontaneously. The evolution equation for
the density perturbation which implies the existence of an effective free energy function
is recognized as the Cahn-Hilliard equation. In consistency with the effective Cahn-
Hilliard description, the instability line (a possible spinodal) is constructed in the phase
diagram and compared to numerical results. In addition computer simulations reveal
that systems below a critical density show indication of a discontinuous transition and
a significant hysteresis. This behavior may correspond to the scenario of a meta-stable
region illustrated in Fig. 4.1 and is also shown to be already contained in the effective
Cahn-Hilliard description. Finally, a possible binodal is obtained from the coexisting
densities measured in computer simulations and compared to the spinodal constructed
out of the theory.

4.1 Effective free energy functional

The analysis starts with the effective hydrodynamic equations for the density field ρ(r, t)
and the orientational field p(r, t) derived in Sec. 3.2.1, i.e.,

∂tρ = −∇ · [vp−D∇ρ], (4.4)

∂tp = −1

2
∇(vρ) +D∇2p−Drp. (4.5)

Again, in analogy to Sec. 3.2.2, the equations are simplified by replacing v with the
local effective swimming speed vl = v0 − ρζ, while the force imbalance coefficient ζ is
treated as a controllable parameter independent of the density. In addition, to simplify
the equations, 1/Dr is chosen as the unit of time and

√

D/Dr as the unit of length (only
for the presentation of the coupled equations) and both fields are renormalized with the
homogeneous density, giving ρ → ρ(1 + δρ) and p → ρp. Altogether this yields the
dimensionless set of equations

∂tδρ = −α∇ · p+∇2δρ+ 4ξ∇ · (pδρ) (4.6)

∂tp = −β∇δρ+∇2p− p+ 4ξδρ∇δρ, (4.7)

with the dimensionless coefficients

ξ =
ρζ

v∗
, α = 4

(
v0
v∗
− ξ

)

, β = 2

(
v0
v∗
− 2ξ

)

, (4.8)

where v∗ = 4
√
DDr is again the minimal velocity needed for an instability. By neglecting

the nonlinear terms in Eqs. (4.6) and (4.7), given respectively by the last term, and
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considering the Fourier transforms δρ̃ and θ of δρ and ∇ · p respectively, i.e.,

(δρ̃, θ) =
1

(2π)3/2

∫

dr e−iqr
∫

dt e−iωt(δρ,∇ · p), (4.9)

one rewrites Eqs. (4.6) and (4.7) in Fourier space, yielding

iωδρ̃ = −αθ − q2δρ̃ (4.10)

iωθ = βq2δρ̃− q2θ − θ. (4.11)

Solving this set of equations for ω gives

ω = i(q2 +
1

2
)± 1

2

√

4αβq2 − 1. (4.12)

Again, the temporal evolution of the density perturbation δρ is the point of interest and
is known from the Fourier transform of δρ̃. That implies δρ ∼ eiωt, while ∼ does not
denote proportionality, but rather a general dependency. Now the dispersion relation
σ(q) = iω can be defined, which quantifies the growth rate of the density perturbation
as a function of the magnitude q of the wave vector and is given by

σ±(q) = −
1

2
− q2 ± 1

2

√

1− 4αβq2. (4.13)

If σ(q) > 0, a small density perturbation grows exponentially, which is only possible for
the plus sign in Eq. (4.13). Similar to the previous chapter, small wave vectors (large
length scales) are considered, which allows to approximate the square root according to√
1− x ≈ 1− x/2 for x≪ 1. Altogether the relevant growth rate is written as

σ(q) ≡ σ+(q) = −
1

2
− q2 +

1

2

√

1− 4αβq2 ≈ −(1 + αβ)q2, (4.14)

yielding 1+αβ < 0 as condition for an unstable suspension. So the onset of the instability
is given by 1+αβ = 0, which yields in combination with Eq. (4.8) the condition for the
reduced imbalance coefficient

ξ± =
3

4

v0
v∗
± 1

4

√
(
v0
v∗

)2

− 1. (4.15)

Since nonlinear terms have been neglected this is equivalent to the result obtained in
Sec. 3.2.2. However, as discussed, values above ξ+ are unphysical (v < 0), so that,
coming from a stable system, the onset of the instability is given by the minus sign in
Eq. (4.15), i.e.,

ξc =
3

4

vc
v∗
− 1

4

√
(
vc
v∗

)2

− 1, (4.16)

where ξc and vc are the critical values of the reduced force imbalance coefficient and free
swimming speed on the transition line.
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The crucial point of this chapter is considering an initial perturbation of the critical
velocity, i.e., v0 = vc(1 + ǫ) with ǫ > 0, which corresponds to a small quench of depth
ǫ into the instability region coming from the transition line where v0 = vc and ξ = ξc.
According to the exact relation of Eq. (4.14), the wave vector qc for which the growth
rate of an initial density perturbation is maximal, i.e., the wave vector dominating an
initial instability, is given by

qc =
1

2

√

(αβ)−1 − αβ. (4.17)

Now the coefficients α and β are considered as functions of the free swimming speed v0.
According to this, α(v0) and β(v0) are expanded near the transition line in linear order
of ǫ, i.e,

α = α(v0 = vc) + (v0 − vc)
∂α

∂v0

∣
∣
∣
∣
v0=vc

+ . . . (4.18)

= α0 + ǫα1 + . . . (4.19)

with α0 ≡ α(v0 = vc) and α1 ≡ vc
∂α
∂v0

∣
∣
∣
v0=vc

, while the expansion for β is obtained in an

analogous way. According to Eq. (4.17), the critical wave vector is now given by

qc =
1

2

√

1

(α0 + ǫα1)(β0 + ǫβ1)
− (α0 + ǫα1)(β0 + ǫβ1) (4.20)

=
1

2

√
1

α0β0 + ǫα0β1 + ǫα1β0 + ǫ2α1β1

− α0β0 + ǫα0β1 + ǫα1β0 + ǫ2α1β1 (4.21)

O(ǫ)≃ 1

2

√
1

ǫσ1 − 1
− ǫσ1 + 1 (4.22)

≃ 1

2

√
−2ǫσ1 ∝

√
ǫ, (4.23)

where α0β0 = −1 and the approximation (1 − x)−1 ≈ 1 + x for x ≪ 1 and x > 0 has
been used, σ1 ≡ α0β1 + α1β0 < 0 has been defined and only linear terms in ǫ have been
considered. Inserting the α and β expansions into Eq. (4.14), the growth rate of the
critical wave vector reads

σ(qc) ≈ −(1 + αβ)q2c (4.24)

O(ǫ)≃ −ǫσ1q
2
c ∝ ǫ2. (4.25)

Following these scaling laws for the critical wave vector the length and the time scale
are rescaled with 1/

√
ǫ and 1/ǫ2 respectively, yielding ∂t → ǫ2∂t and ∇ → √

ǫ∇. In
addition, similar to the coefficients α and β, the fields δρ(r, t) and p(r, t) are expanded
in integer powers of ǫ (approximated near the transition line), but truncated at second
order, i.e.,

δρ = ǫc+ ǫ2c(2) + . . . , (4.26)

p =
√
ǫ[ǫp(1) + ǫ2p(2) + . . . ], (4.27)
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while the orientational field is additionally scaled with 1/
√
ǫ to avoid fractions in the

exponents of ǫ for the evolution equation of the density field. The fields c, c(2),p(1),p(2)

describe the perturbation of the homogeneous solutions for the density field and orienta-
tional field, but are connected with the corresponding order in the expansion of the total
perturbation fields δρ and p. Plugging in the expansions for δρ,p, α, β into Eqs. (4.6)
and (4.7), the coupled evolution equations yield

ǫ3∂tc+ ǫ4∂tc
(2) =− α0ǫ

2∇ · p(1) − α0ǫ
3∇ · p(2) − α1ǫ

3∇ · p(1) − α1ǫ
4∇ · p(2) + ǫ2∇2c

+ ǫ3∇2c(2) + 4ξcǫ∇ · [ǫ2p(1)c+ ǫ3p(1)c(2) + ǫ3p(2)c+ ǫ4p(2)c(2)]
(4.28)

and

ǫ3∂tp
(1) + ǫ4∂tp

(2) =− ǫβ0∇c− ǫ2β0∇c(2) − ǫ2β1∇c− ǫ3β1∇c(2) + ǫ2∇2p(1)

+ ǫ3∇2p(2) − ǫp(1) − ǫ2p(2)

+ 4ξc[ǫ
2c∇c+ ǫ3c∇c(2) + ǫ3c(2)∇c+ ǫ4c(2)∇c(2)].

(4.29)

Now, the equations are investigated from lowest to highest order in ǫ step by step, while
the different orders are treated independently (multiple-scale analysis). In principle, the
critical force imbalance coefficient ξc in Eqs. (4.28) and (4.29) needs to be replaced by
its expansion in powers of ǫ, i.e., ξ = ξc + ǫξ1. But in the following only orders of ǫ are
considered which would not include the coefficient ξ1, allowing one to directly replace
its expansion by the lowest order term ξc in both equations. Collecting the lowest order
terms in Eq. (4.28) (order ǫ2) yields

0 = −α0∇p(1) +∇2c, (4.30)

while the terms in linear order of ǫ in Eq. (4.29) give

p(1) = −β0∇c. (4.31)

Combining Eqs. (4.30) and (4.31) leads to

(1 + α0β0)∇2c = 0, (4.32)

which reproduces the condition of the linear stability analysis given in Eq. (4.14), which
has been derived considering the very onset of the instability at v0 = vc, i.e., ǫ = 0, and
is therefore a consistent result. Gathering terms of the next order in Eqs. (4.28) (ǫ3)
and (4.29) (ǫ2) reads respectively

∂tc = −α0∇ · p(2) − α1∇ · p(1) +∇2c(2) + 4ξc∇ · (cp(1)) (4.33)

0 = −β0∇c(2) − β1∇c+∇2p(1) − p(2) + 4ξcc∇c. (4.34)

Solving Eq. (4.34) for p(2) and plugging this result into Eq. (4.33) one notices, that the
terms consisting c(2) cancel out and one gets

∂tc = α0β1∇2c− α0∇ · (∇2p(1))− 4α0ξc∇ · (c∇c)− α1∇ · p(1) + 4ξc∇ · (cp(1)). (4.35)
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Plugging in the result given by Eq. (4.31) into Eq. (4.35) gives

∂tc = σ1∇2c−∇4c− 2g∇ · (c∇c) = ∇2 δF
δc

, (4.36)

where g ≡ 2ξc(α0 + β0) > 0 has been defined and the free energy functional F [c] is
introduced, which is written as

F [c] =
∫

dr







1

2
|∇c|2 + 1

2
σ1c

2 − 1

3
gc3

︸ ︷︷ ︸

f(c)







(4.37)

and δF/δc is the functional derivative with respect to c. Eq. (4.36) is recognized as the
well-known Cahn-Hilliard equation [35] typically being used to study phase separation in
equilibrium. The first term in the integral of the free energy functional is the contribution
due to local inhomogeneities while

f(c) =
1

2
σ1c

2 − 1

3
gc3 (4.38)

is the free energy density of the homogeneous system with the corresponding density,
also called bulk free energy. The existence of the free energy functional according to
Eq. (4.36) is the main result of this chapter. In App. A.2 a proof is shown that Eq. (4.36)
can indeed be derived from the free energy functional F [c]. The very first observation
of the bulk free energy given by Eq. (4.38) is the absence of the customary stabilizing
c4 term. Physically, it is necessary to ensure f(c)→∞ for c→ ±∞, which hinders the
suspension to collapse into one single point of infinite density. Practically, the collapse is
forbidden due to volume exclusion, which is theoretically modeled by the divergence of
the pair potential. Since the expansion has been performed on a coarse grained level on
length scales, which are much larger compared to the typical particle size, the repelling
nature of the particles is not included, which is the reason for the missing stabilization
term. In App. A.3 a lower order expansion is presented where also fractional orders of
ǫ are included. It is shown, that, in the vicinity of the critical speed vc = v∗, the bulk
free energy takes the general form

f(c) =
1

2
σ1c

2 +
1

4
κc4 (4.39)

with κ > 0 being the positive coefficient of the stabilizing term. This form is commonly
known as the symmetric Ginzburg-Landau free energy density [196].

4.1.1 Free energy coefficients

The free energy density f(c) given by equation Eq. (4.38) contains two coefficients, σ1

and g. The latter one has already been defined as g ≡ 2ξc(α0 + β0) and can also be
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rewritten as

g(u) = 2ξc(α0 + β0) (4.40)

= 4ξc(3u− 4ξc) (4.41)

= 1− u2 + 3u
√
u2 − 1 (4.42)

> 0 (4.43)

where u = vc/v∗ is the reduced critical velocity. Since v∗ = 4
√
DDr, the coefficient g can

be directly calculated in simulations by measuring D, the long-time diffusion coefficient
of the corresponding passive suspension. The analytical expression of the remaining
coefficient is given by

σ1(u) = α0β1 + α1β0 (4.44)

= −2 + 2g(u)[1− uγ(u)], (4.45)

with the dimensionless parameter γ defined as

γ ≡ v∗
ξc

∂ξ

∂v0

∣
∣
∣
∣
v0=vc

, (4.46)

which is the relative slope of the force imbalance coefficient at the onset of the instability.
Unfortunately, the numerical calculation of this coefficient is very difficult so that one
rather needs to think of an appropriate approximation as it will be done in Sec. 4.2.2.

4.2 Phase diagram

4.2.1 Numerical results

In computer simulations the phase separation scenario is described by the order parame-
ter P , the mean relative size of the largest cluster in the system. A system is considered
to be phase separated if P > 0.1. The resulting phase diagram is not too sensitive to
the choice of threshold, see App. A.4. A crystalline suspension has been identified by
evaluating the six-fold order parameter

Ψ6 =

〈∣
∣
∣
∣
∣

1

N

N∑

i=1

q6(i)

∣
∣
∣
∣
∣

2〉

, (4.47)

where

q6(i) =
1

6

∑

j∈N (i)

e6iθij (4.48)

with N (i) are the six nearest neighbors of particle i and θij is the angle enclosed between
the connection vector rij and an arbitrary fixed axis. This order parameter is 1 for a
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perfect hexagonal crystal, while it is 0 for a spatially unordered suspension. According
to previous studies for self-propelled particles [145] but also for an equilibrium Yukawa
system [197], Ψ6 ≃ 0.45 is chosen as a threshold to a crystalline (solid) suspension.
An additional criterion is that the suspension has to be homogeneous, so that a phase
separated suspension with a large and highly crystalline (but very dynamic) dense phase
is not identified as a homogeneous hexagonal crystal. Altogether this yields φf ≃ 0.74
as the freezing point of the suspensions. The complete phase diagram is shown later in
Fig. 4.4 together with an analytical estimation of the instability line. The data points
in this phase diagram have been carried out with the same simulation setup used in
Chap. 3 (N = 4900 particles, relaxation time tr = 100 starting from equilibrated passive
fluid).

4.2.2 Instability line construction

The goal of this section is to demonstrate the construction of the instability line, in equi-
librium referred to as the spinodal, starting from the effective Cahn-Hilliard-description.
First, to be consistent with the theory developed, the effective free energy density missing
the stabilizing c4 term is considered

f(c) =
1

2
σ1c

2 − 1

3
gc3. (4.49)

In Fig. 4.2(a) the bulk free energy f(c) is sketched in the instability region, where σ1 < 0
holds, with and without the repelling nature of the particles. Also a possible common
tangent construction is shown. However, only values c < 0 are considered since the
expression Eq. (4.49) does only provide a minimum for that region. Nevertheless, this is
sufficient to construct the instability line at densities considered in the computer simula-
tions. Assuming a point (φ1, v1) is known being exactly on the instability line, increasing
the swimming speed to v2 = v1(1 + ǫ), the theory predicts phase separation according
to the bulk free energy density f(c), see Fig. 4.2(a). The density corresponding to the
inflection point of the bulk free energy should be on the instability line (spinodal) as well
as the known point (φ1, v1). The inflection point of f(c) is given by c∗ = σ1/(2g). The
corresponding global density is ρ∗ = ρ1(1+ δρ∗) with ρ1 being the density corresponding
to φ1 and the estimation up to linear order δρ∗ = ǫc∗. Now, in terms of packing fraction,
another point on the instability line is known, given by φ2 = φ∗ = φ1(1 + ǫc∗), see
Fig. 4.2(b). This expression is now rewritten by inserting ǫ = v2/v1−1 and c∗ = σ1/(2g)
yielding

φ2 = φ1

(

1 +

(
v2
v1
− 1

)
σ1

2g

)

(4.50)

⇔φ2 − φ1

v2 − v1
=

φ1

v1

σ1

2g
. (4.51)
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Figure 4.2: (a) Sketch of the free energy density f(c) as a function of the rescaled density
perturbation c. The solid line corresponds to the free energy density includ-
ing repulsion of the particles, while the dashed line shows the result from the
ǫ expansion which does not take particle repulsion into account. The black
dashed line shows a sketch of the common tangent construction at the points
c±. (b) Demonstration of the derivation of Eq. (4.52) where from a known
point (φ1, v1) the swimming speed is slightly increased to v2 = v1(1 + ǫ) to
estimate the packing fraction φ2 of the new inflection point of f(c). The blue
area represents the instability region.

By considering the limit v2 → v1, one obtains the differential equation

dφ

dv0
=

φ

v0

σ1

2g
, (4.52)

which is formally equal to the Clausius-Clapeyron equation and quantifies the slope
along the instability line without ever including the stabilizing c4 term or a second
minimum of the bulk free energy density. The only condition is that one arbitrary
point on the instability line is known. In order to proceed and solve the differential
equation above, the free energy coefficients g and σ1 need to be known analytically as
a function of φ and v0. As already discussed in Sec. 4.1.1 the coefficient g is given by
g(u) = 1− u2 + 3u

√
u2 − 1 where u = vc/v∗ is a function of both the critical swimming

speed vc on the instability line and the packing fraction φ since v∗ = 4
√
DDr is density

dependent. In Fig. 4.3 the measured long-time coefficients D of the passive suspension
are shown as a function of the relevant packing fractions. A quadratic fit has been
performed, yielding

D(φ) ≃ −0.76φ2 − 0.34φ+ 0.72. (4.53)

The fit is obviously poor in the dilute limit due to the fact that D(φ → 0) = 0.72 6=
D0 = 1. Also for dense systems the fit leads to unphysical negative values. Nevertheless,
for intermediate densities this analytical expression is used to solve Eq. (4.52), which
requires expressions for the coefficients g (known analytically, easy to calculate) and
σ1. The coefficient σ1 is highly difficult to be estimated in simulations based on its
analytical expression Eq. (4.45). Therefore it is approximated based on the observation,
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Figure 4.3: Long-time diffusion coefficient D of the passive suspension measured in simu-
lations as a function of the packing fraction φ (squares) fitted by a quadratic
function (solid line).

that there is a minimal packing fraction φ∗ for which the suspension spontaneously
phase separates starting from the homogeneous state. According to this, the coefficient
σ1 needs to change its sign from positive to negative at this density. This is implemented
in the most minimalistic way, i.e., a linear relation σ1 ∝ (φ∗ − φ), where φ∗ = 0.29 and
the proportionality factor are fitting parameters. As known point on the instability
line (φ = 0.7, v0 = 35) is chosen so that the instability line can now be calculated
from v0 = 35 until v0 = 200 according to the differential equation (4.52). As a result
one observes the instability line shown in Fig. 4.4 which coincides superbly with the
numerically obtained data points.

4.3 Nature of the phase transition

4.3.1 Numerical evidence

So far numerical results have only been presented for systems with packing fractions
φ > 0.36, showing a continuous increase of the mean relative size P of the largest cluster
as the intrinsic swimming speed v0 increases. For lower densities this behavior changes to
a discontinuous jump of the order parameter P at significant higher propelling speeds,
see solid lines in Fig. 4.5(b). This behavior may be explained in terms of the meta-
stable region between the binodal and spinodal, where the system needs a sufficiently
large fluctuation to start the phase separation process. Apparently, for smaller propelling
speeds v0 < 180 at φ = 0.3 the probability of such a fluctuation is too low to be observed
in the finite time window. For sufficiently high propelling speeds at φ = 0.3 a critical
fluctuation emerges (sometimes after the relaxation time during the data collection)
which is then followed by macroscopic phase separation. Hence, the order parameter
has not been averaged over the whole time of data collecting, but from the steady
state of the phase separated system. The steady state has been identified by the mean
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Figure 4.4: Phase diagram in the φ−v0 plane where each data point is extracted out of a
simulation starting from an equilibrated passive fluid. The circles correspond
to not phase separated suspensions with P < 0.1, while the squared symbols
represent systems with P > 0.1. The squares are colored according to the
value of the order parameter P . The blue triangles correspond to homoge-
neous crystalline suspensions identified by the order parameter Ψ6 > 0.45
defined in Eq. (4.47). The solid line is the instability line estimated via
Eq. (4.52) with the starting point φ = 0.7 and v0 = 35.
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Figure 4.5: (a) Snapshot of an example start configuration for the hysteresis simulation
protocol mentioned in the text. This is a sketch of the configuration so that
the circles do not represent the actual size of the particles. (b) Mean relative
size P of the largest cluster in the system for packing fractions φ = 0.3 (blue)
and φ = 0.4 (green) as a function of the intrinsic swimming speed v0. The
open symbols correspond to simulations starting in the equilibrated passive
suspension and are connected by solid straight lines. The filled symbols are
data points obtained via simulations with the hysteresis simulation protocol,
where the suspension artificially contains a cluster of size N/2 before it starts
to relax into steady state. The filled symbols are connected via dashed
straight lines.
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relative size P of the largest cluster, which shows fluctuations around its mean value
but no further growth over a considerably time window. Due to the high propelling
speed v0 needed to achieve such a critical fluctuation, the dense cluster in steady state
is quite big which is then represented by a sudden jump of the order parameter P ,
see open symbols in Fig. 4.5(b). However, if the number of particles is increased, e.g.,
N = 40000, the probability for a critical fluctuation does increase and one observes
phase separation on shorter time scales. In Fig. 4.6 the temporal evolution of a system
with N = 40000 particles is shown for packing fractions φ = 0.3 and φ = 0.4, which
respectively correspond to systems developing phase separation in the meta-stable regime
and in the region of spontaneous nucleation. The most significant visual difference is the
development of several clusters which merge as time goes by for φ = 0.4 (spontaneous
nucleation), while for φ = 0.3 only one critical fluctuation starts the phase separation into
one single growing cluster until its size saturates. For a proper analysis of the different
scenarios without the computational effort of simulating large system sizes for each set of
parameters, an additional simulation protocol has been used: the system does not relax
into steady state starting from the equilibrated fluid, but is provided with an artificially
placed nucleus of size N/2 as start configuration. The remaining N/2 particles are placed
randomly but non-overlapping around the nucleus, see Fig. 4.5(a). The orientation of
all N particles are randomly distributed. Then, the intrinsic swimming speed is turned
on and the system relaxes into steady state. The comparison to the simulations starting
as an equilibrated passive fluid reveals a wide hysteresis for φ = 0.3 while for φ = 0.4 no
hysteresis is observable, see Fig. 4.5(b). This again fortifies that the phase separation
process of this non-equilibrium system shows similarities of an equilibrium (attractive)
system explained by the concept of a binodal and spinodal.

4.3.2 Bifurcation diagrams

This section shows that the numerically observed hysteresis is in principle already con-
tained in the analytically derived effective Cahn-Hilliard description of the system. Start-
ing from the evolution equation for the density fluctuations

∂tc = σ1∇2c−∇4c− 2g∇ · (c∇c) (4.54)

= ∇2[σ1c− gc2 −∇2c] (4.55)

the existence of a stabilizing c4 term in the bulk free energy density is postulated to take
into account the repulsion between particles. The Cahn-Hilliard Equation is then given
by

∂tc = ∇2[σ1c− gc2 + κc3 −∇2c] (4.56)

with κ > 0 being the strength of the stabilizing term. Considering only linear terms of
c in Fourier space, one obtains the dispersion relation

σ̃(q) = −σ1q
2 − q4, (4.57)
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Figure 4.6: Phase separation dynamics for a system consisting of N = 40000 particles
at φ = 0.3 (left column) and φ = 0.4 (right column). The three different
times t = 3 (first row), t = 42 (second row) and t = 100 (third row) show
the temporal evolution of spontaneously formed clusters which merge slowly
for φ = 0.4, while the system at φ = 0.3 phase separates starting from one
critical fluctuation leading to one single cluster which grows until saturation
is reached. Particles are colored according to their q6 value (Eq. (4.48)) where
red particles correspond to q6 = 0 and blue particles to q6 = 1 indicating
that clusters are highly crystalline but still very dynamic.
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Figure 4.7: Sketch of the dispersion relation σ̃(q) for σ1 < 0 and σ1 > 0 as a function of
the magnitude q of the wave vector.

which quantifies the growth rate of the wave vector q with magnitude q in the limit of
linear stability. The growth rate reaches its maximum for q2c = −σ1/2 and is zero for
q20 = −σ1 if σ1 < 0. For σ1 > 0 the growth rate is negative for any value of q, which
means that the suspension is linearly stable, see Fig. 4.7.
Starting from q0 with σ1 < 0, the suspension is now considered to be slightly quenched
either into the positive or negative region of the growth rate, i.e., q2 = q20 − λqǫ

2 with
λq characterizing the quench depth and its sign the quench direction. The growth rate
then follows

σ̃(q) = −σ1(q
2
0 − λqǫ

2)− q40 + 2q20λqǫ
2 − λ2

qǫ
4 (4.58)

= q20λqǫ
2 − λ2

qǫ
4. (4.59)

Based on this result an even slower time scale s = ǫ2t is introduced and together with
σ1 = −q2 − λqǫ

2 the Cahn-Hilliard Eq. (4.56) reads

ǫ2∂sc = Lc+∇2[−λqǫ
2c− gc2 + κc3], (4.60)

while the self-adjoint operator L = −q2∇2−∇4 contains the terms being linear in both
c and ǫ. In the next step the density field is expanded according to

c(r, s) = ǫc1(r, s) + ǫ2c2(r, s) + · · · . (4.61)

Now, in analogy to Ref. 198, the amplitude equation for so-called roll solutions is derived.
The unstable mode of a density fluctuation may saturate due to the coupling to nonlinear
terms into a state which is spatially periodic, see Ref. 199 for a detailed review on
instabilities. Therefore, the density fields in the expansion are considered to have the
form

c1(r, s) = a(s)eiqr + c.c. (4.62)

c2(r, s) = b(s)e2iqr + c.c. (4.63)

... (4.64)
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where a, b, . . . are complex amplitudes and c.c. denotes the complex conjugate. Similar
to the previous multiple-scale analysis, Eq. (4.60) is now considered in orders of ǫ step
by step. To linear order in ǫ one gets

Lc1 = 0, (4.65)

leading to an unbounded growth of the amplitude, which practically saturates due to
the coupling to higher order terms. To quadratic order, one obtains

0 = Lc2 − g∇2c21 (4.66)

leading to

0 = −12q4b+ 4gq2a2 (4.67)

q 6=0⇔ b =
g

3q2
a2. (4.68)

To order ǫ3, Eq. (4.60) reads

∂sc1 = Lc3 +∇2[−λqc1 − 2g(c1c2) + κc31], (4.69)

which is multiplied by e−iqr and then integrated over an area A with an edge length being
positive integers of 2π/q. Hence, only terms with an initial dependence eiqr contribute to
the integration while the rest vanishes due to translational invariance regarding integers
of 2π/q. Eq. (4.69) then becomes

∂sa = q2λqa+ 2gq2a∗b− 2κq2a∗a2 (4.70)

= q2λqa+
2

3

(

g2 − 9

2
κq2
)

|a|2a (4.71)

which is the desirable amplitude equation, where a∗ denotes the complex conjugate of
the amplitude a and |a|2 = aa∗. For the magnitude of the amplitude one finds

∂s|a| =
∂

∂s
(aa∗)1/2 (4.72)

=
1

2|a|(a∂sa
∗ + (∂sa)a

∗) (4.73)

= q2λq|a|+
2

3
(g2 − g2∗)|a|3 (4.74)

with g2∗ =
9
2
κq2. A stationary solution is given by the fixed point where the right hand

side of Eq. (4.74) vanishes, i.e., ∂s|a| = 0. The derivative of the right hand side of
Eq. (4.74) with respect to |a| is given by S = q2λq + 2(g2 − g2∗)|a|2 and determines the
stability of a fixed point solution, i.e., unstable for S > 0 and stable otherwise. The
stationary solutions are given by

|a| = 0, |a|2 =
3
2
q2λq

g2∗ − g2
=

λq

3κ

1

1− (g/g∗)2
. (4.75)
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Figure 4.8: Bifurcation diagrams for (a) g < g∗ and (b) g > g∗ in form of a sketch of the
magnitude |a| of the amplitude as a function of the quench depth λq. The
solid lines indicate stable solutions for the amplitude while the dashed lines
represent unstable solutions.

Now two cases have to be distinguished where g∗ is the relevant threshold. For g < g∗
and λq < 0, only the solution |a| = 0 is found, which is stable because S < 0. This
scenario corresponds to a homogeneous system since the amplitude of the density per-
turbation field is |a| = 0. If λq > 0 and still g < g∗, both solutions in Eq. (4.75) become
possible, but the trivial one |a| = 0 is unstable (S > 0) while the solution |a| ∝

√
λq is

stable (S < 0). This behavior is known as supercritical bifurcation and corresponds to
a continuous phase transition, in this case from the homogeneous system to a density
perturbation field with finite amplitude, i.e., a phase separated system. The transition
is illustrated in Fig. 4.8(a) where all solutions for the amplitude |a| are plotted as a
function of the quench λq. If g > g∗ and λq < 0 both solutions are possible with |a| = 0
being stable and |a| ∝

√
−λq being unstable. Surprisingly, for λq > 0 only the un-

stable solution |a| = 0 is found, indicating a lack of a stable periodic roll solution, see
Fig. 4.8(b). In case of a general differential equation, also negative values of the variable
of interest (here the amplitude) are allowed, so that the graphs in Fig. 4.8 have to be
mirrored with respect to the x-axis, resulting in the name pitchfork bifurcations due to
their characteristic form.
For a better understanding of what happens at g > g∗ and λq > 0 where no stable solu-
tion seems to exist, one needs to expand the parameter g2 around g2∗, i.e.,g

2 = g2∗(1 + ǫ2).
For the sake of simplicity the detailed math is not provided. In principle one needs to
follow the previous method with a time scale ǫ4t (see second term on right hand side
of Eq. (4.59)) to fifth order in ǫ, see also Refs. 198, 200. Finally, the condition for the
complex amplitude a has the general form

∂sa = Aa+B|a|2a− C|a|4a (4.76)

with A,B,C being real constants and C > 0 ensuring stabilization. In analogy to the
previous approach, the evolution equation for the magnitude of the amplitude is derived,
yielding

∂s|a| = A|a|+B|a|3 − C|a|5, (4.77)



68 CHAPTER 4. EFFECTIVE CAHN-HILLIARD DESCRIPTION

|a
|

λq = 0

λq

Figure 4.9: Bifurcation diagram of the subcritical behavior according to Eq. (4.77). The
solid lines denote stable roll solutions while the dashed lines represent un-
stable solutions. The red arrows sketch the hysteresis loop when increas-
ing/decreasing the quench parameter λq.

with the sign of S̃ = A + 3B|a|2 − 5C|a|4 determining the stability of the stationary
solution. Comparing Eq. (4.77) with Eq. (4.74) and applying λq > 0 and g > g∗ which
is the scenario of interest, one quickly identifies A,B > 0. In order to achieve a stable
solution, the condition S̃ < 0 needs to be fulfilled, which is the case for the stationary
solution

|a| =

√
√
√
√ 3B

10C
+

√
(

3B

10C

)2

+ A. (4.78)

The corresponding bifurcation diagram is sketched in Fig. 4.9, where it is illustrated
that the transition from zero to large amplitude happens in a big jump. This scenario is
called subcritical bifurcation and corresponds to the discontinuous transition observed
in simulations. In addition, the hysteresis behavior discovered in simulations can also
be seen in Fig. 4.9 denoted by the red arrows. As λq decreases from large amplitude, it
drops down to zero at a lower value of λq than it jumps from zero to large amplitude
as λq increases. Unfortunately these results do not hold a quantitative comparison
with numerical data, but are rather a demonstration of the capability of the theoretical
description.

4.4 Numerical coexistence curve

This section presents the numerical estimation of the coexistence curve, in terms of phase
separation in equilibrium also referred as binodal. Practically, this is done by measuring
the densities of the two coexisting phases of a phase separated system. These densities
correspond to the two points where the double tangent is steadily attached to the free
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Figure 4.10: Finite size transitions for an almost quadratic simulation box with aspect
ratio Lx/Ly = 1.2. While the density increases the phase separated system
shows a dense droplet, a slab configuration and finally a gas bubble.

energy function. In accordance with studies in equilibrium [201, 202] a rectangular box
of size Lx × Ly is applied with Lx > Ly. The numerical data has been carried out by
computer simulations ofN = 10000 particles where a dense slab consisting allN particles
has been used as start configuration with randomly distributed particle orientations.
Again, after a relaxation time tr = 100 data has been collected. Due to the box geometry
one can observe the typical finite size transitions, i.e., a dense droplet, to a slab which is
spanned along the shorter length of the systems and finally to a gas bubble, see Fig. 4.10
for snapshots.
The choice of rectangular box geometry favor the formation of a slab, which has the
advantage that it is easy to calculate a density profile ρ(x) as a function of x, simply by
dividing the simulation box into small slices (bins) and measuring the density in each
bin. In addition the profile is shifted in the x-direction so that the slab is located around
Lx/2 while the center of mass is fixed to the bin at Lx/2. What is not represented by the
averaged density profiles are the instantaneous fluctuations not only at the interface, but
also within the slab where fluctuations can create holes, see Fig. 4.11(a), (b). However,
on average the density within the slab is constant and then smoothly decays to the dilute
density. The region of that density decay is the interface of the two phases and will be
analyzed in Chap. 5. The density profile can be expressed as its mean field functional
form [35]

ρ(x) =
1

2
(ρ+ + ρ−) +

1

2
(ρ+ − ρ−)tanh

(
x− x0

2w

)

(4.79)

with ρ± being the bulk densities of the dense (+) and dilute (−) phase, x0 the position
of the interface and w the width of the interface. As shown in Fig. 4.11(c), the measured
density profile is symmetric with respect to the position x = Lx/2 while the slab gets
denser and the interface width smaller as propelling speed increases. Due to the sym-
metry of the system, the function in Eq. (4.79) is fitted to the left and to the right half
of the box showing excellent agreement with the measured profile, see Fig.4.11(d). As a
first approximation the resulting fit parameters of each half are treated independently.
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Figure 4.11: Snapshots of a phase separated system with box geometry Lx/Ly = 2 where
a dense slab is surrounded by the dilute gas phase without (a) and with (b)
fluctuations not only regarding the interface but also the inner region of the
slab. (c) Density profiles ρ(x) as a function of x for systems at average pack-
ing fraction φ = 0.5 and intrinsic swimming speeds v0 = 80, 100, 130, 150.
The arrow indicates the direction of increasing propulsion, i.e., the higher
the swimming speed the higher is the density of the dense slab. (d) Fit
according to Eq. (4.79) for the left and right half of the system (solid line)
and the measured average density profile (open circles) at overall packing
fraction φ = 0.5 and v0 = 100.
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The coexisting packing fractions φ± = ρ±π/4 for a certain swimming velocity v0 are
then obtained by the average of the two values and are plotted into the φ − v0-plane
of the phase diagram to construct the coexistence curve, see Fig. 4.12. In addition a
second (upper) x-axis is introduced, which shows the effective packing fraction φeff of
an equivalent hard sphere system. This is calculated using the concept of the effective
hard sphere diameter [203–206] given by the equality

∫ ∞

0

fHS(r)dr =

∫ ∞

0

fWCA(r)dr (4.80)

with the Mayer f-function

fname(uname(r)) = e−uname/(kBT ) − 1. (4.81)

The left hand side of Eq. (4.80) yields −deff, the negative diameter of the equivalent hard
spheres (HS). By numerically evaluating the right hand side one gets deff ≃ 0.984 for the
WCA potential employed. One should note that this expression is given in units of 2R,
which is at the same time the distance for which the WCA potential drops to 0. Due to
the softness of the potential an equivalent hard sphere system has an effective diameter
somewhat lower than the potential cutoff. The concept of the effective hard sphere
diameter works quite well since scaling the estimated freezing point φ

(HS)
f ≃ 0.705 of a

real hard sphere system [207,208] with the effective diameter deff ≃ 0.984 of the employed
WCA system, gives φ ≃ 0.73 which is in quite good agreement with the numerically
estimated freezing point φf ≃ 0.74 where Ψ6 ≃ 0.45. This concept demonstrates how
closely packed the dense phase is in terms of a hard sphere system. Fig. 4.12 does also
show the possible spinodal constructed via Eq. (4.52) derived from the Cahn-Hilliard
description. It can easily be seen that for φ > 0.3 the meta-stable region, i.e., the gap
between the coexistence curve and instability line (respectively binodal and spinodal in
equilibrium), is not resolved very well by this representation which may be due to the
approximations made in the Cahn-Hilliard theory. Nonetheless, for φ 6 0.3 there is a
significant gap between the coexistence curve and the instability line from the Cahn-
Hilliard theory, which explains the sudden jump of the order parameter for φ = 0.3 as
the instability line is crossed at v0 = 180. As discussed, for lower swimming speeds the
system is in the meta-stable region, where for a homogeneous active fluid the probability
of a critical nucleation within the time window and size of the simulation is so low, that
no phase separation is observed, leading to a significant hysteresis when an artificially
constructed nucleus is provided.

4.5 Conclusion

In summary, starting from the effective hydrodynamic equations given in Sec. 3.2.1, a
Cahn-Hilliard description of the system has been derived by considering a quench of
depth ǫ > 0 from the critical velocity on the instability line into the unstable regime of
the system, i.e., v0 = vc(1 + ǫ). By expanding the physical quantities in integer orders
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Figure 4.12: Numerically constructed coexistence curve in the φ− v0-plane of the phase
diagram according to the coexisting densities obtained from the fit function
given by Eq. (4.79). The error bars are estimated by the standard deviation
obtained from 5 independent simulation runs. The solid line represents the
instability line (spinodal) constructed from the Cahn-Hilliard description in
Sec. 4.2.2. The lower x-axis represents the packing fraction calculated with
the particle diameter defined as the cutoff distance of the WCA potential,
see Sec. 2.4. The densest possible packing of this definition is given by the
dashed vertical line. The upper x-axis shows the effective packing fraction
calculated by applying the effective diameter according to Eq. (4.80), which
is lower than the previous definition due to the softness of the pair potential.
The dotted line is the densest packing fraction of disks with the effective
diameter.
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of ǫ, an effective free energy functional has been deduced where only the density pertur-
bation field c (in linear order of ǫ) has to be taken into account for the bulk free energy.
Due to the chosen integer orders of the expansion, the customary stabilizing c4 term is
missing, but is shown to be derivable by expanding the density field in fractional orders
of ǫ, yielding an expression which considers even smaller length scales and therefore
resolves the repelling nature of the particles represented by the well-known symmetric
Ginzburg-Landau free energy density.
Nonetheless, starting from the bulk free energy missing the stabilizing term, the in-
stability line of this system has been constructed, showing excellent agreement with
the transition line obtained from computer simulations. Next, the nature of the phase
transition has been discussed in detail due to the observation of a discontinuous jump
of the order parameter P at sufficiently low density, while for denser systems a con-
tinuous increase is observed at much lower propelling speeds. Applying an additional
simulation protocol, where the system is provided with a cluster of size N/2, a sig-
nificant hysteresis is observed in case of the discontinuous transition while there is no
difference at higher densities. It is shown that this behavior is already contained in
the effective Cahn-Hilliard description. By including a stabilizing term κc4 in the bulk
free energy density and analyzing the temporal evolution of the amplitudes of so-called
roll solutions, bifurcation diagrams have been sketched where the hysteresis behavior is
illustrated qualitatively. Besides the construction of a possible spinodal from the the-
ory, a possible binodal has been constructed by measuring the coexistence densities at
different v0. All previous observations, like the behavior of the order parameter P at
different densities, are qualitatively consistent with the phase diagram constructed.
Although the work presented in this chapter is for sure a big step towards an entire
understanding of the phase separation process, the scientific community is still at the
very beginning of a complete theoretical framework for active phase separation. The
effective Cahn-Hilliard description is valid near the critical velocity vc. If fractional
powers of ǫ are included, the theory is restricted to the vicinity of the minimal possible
critical velocity v = v∗. However, simulations have shown that practically vc ≫ v∗,
which instantly rises the demand of an effective free energy functional which is valid for
any choice of parameters. Another point is the analytical construction of the possible
spinodal which could be improved by a better approximation for the coefficient σ. In
addition, by finding an analytical expression for the long-time diffusion coefficient of
the passive suspension at higher densities, one could obtain the remaining part of the
instability line (φ > 0.7). Also the choice of the order parameter may need to be recon-
sidered since the denser the system gets the less swimming speed v0 is needed to obtain a
huge network of overlapping particles, i.e., a large cluster. Unfortunately this monotonic
behavior is not in agreement with the picture of a spinodal, which is expected to change
its slope at the critical point an follow the form of the binodal. As a result, the mean
size of the largest cluster in the system may only serve as a good order parameter for
systems below the density of a possible critical point. Since the active suspension has
been effectively mapped to an equilibrium system, another approach may be to apply
methods already used to analyze phase separation in equilibrium like it has recently been
done in Refs. 209,210. One aspect is without any doubt the applicability of equilibrium



74 CHAPTER 4. EFFECTIVE CAHN-HILLIARD DESCRIPTION

concepts considering the physical properties of the interface between the two coexisting
phases and is the topic of the next chapter.
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Chapter 5

Interfacial tension

The description and investigation of interfaces separating two phases have been subject
of several equilibrium studies both theoretically [16, 201] and in experiments [211, 212].
One key aspect is the interfacial tension γ, quantifying the energy needed to create in-
terfaces at equilibrium. For phase separating active suspensions which are intrinsically
out of equilibrium, there is a lack of concept to calculate the interfacial tension.
Motivated by the effective Cahn-Hilliard description in the previous chapter and a re-
cently suggested mechanical swim pressure [213, 214], this chapter, based on publica-
tion 5, discusses the applicability of equilibrium concepts for calculating the interfacial
tension of active suspensions. Again, the particle model introduced in Sec. 2.4 with
N = 10000 particles serves as approximation of a quasi two-dimensional setup. In order
to favor the formation of a dense slab (instead of a spherical dense cluster) the simula-
tion box is rectangular with Lx > Ly such that the slab spans along the shorter system
length. Again, the start configuration of the system is a slab consisting all N particles
which then relaxes for tr = 100 before data is collected. After revisiting the active pres-
sure introduced in Ref. 213, simulations have been performed of particles being confined
in the x-direction by flat short range repulsive walls. As a result, the applicability of the
active pressure is investigated by comparing it to the mechanical pressure exerted on
the walls. Afterwards, extensive simulations without walls are performed to numerically
measure the pressure profile along the x-direction which then leads to the line tension of
the interface, see Eq. (2.62) in Sec. 2.7.1. Furthermore a fluctuation route is presented,
connecting the mean squared interfacial width with the line tension of the interface
for a system at equilibrium. This connection is then applied to the active system and
compared to the determination via the pressure anisotropy at the interface.
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5.1 Virial route

5.1.1 Active pressure tensor

As already discussed in Sec. 2.6 the pressure due to particle interactions is calculated
via the virial expression

¯̄p(i) =
1

A

N∑

i=1

N∑

j>i

〈rij ⊗ fij〉. (5.1)

Due to the formation of a dense slab along the y-direction the system is translational
invariant in that direction while symmetry is broken in the x-direction. This is the
reason why the pressure tensor needs to be a function of x and is calculated by dividing
the simulation box in slices along the x-direction with equal area As. The pressure tensor
due to particle interactions is then given by

¯̄p(i)(x) =
1

2A
〈rij ⊗ fij〉x (5.2)

where the brackets 〈.〉x denote the average over time and pair of particles where at least
one particle is in the considered slab at position x. The total virial of such a pair is then
equally distributed to each particle which justifies the factor 1

2
.

Recently the idea of a mechanical pressure due to the self-propulsion motion of the
particles has been discussed in Ref. 213. The approach is to consider the basic form of
the virial, i.e., ri ⊗ fi, with absolute particle position ri and force fi acting on particle i.
The active swimming pressure tensor is postulated to be given as

¯̄p(a) =
1

A

N∑

i=1

〈ri ⊗ f
(s)
i 〉 (5.3)

with f
(s)
i being the swim force of particle i. The authors of Ref. 213 provide the following

picture: the swim force is the force required to prevent the propulsion of a particle. In
the particle model and reduced units employed in this work this force is given by

f
(s)
i = v0ei, (5.4)

yielding the active pressure tensor

¯̄p(a) =
v0
A

N∑

i=1

〈ri ⊗ ei〉, (5.5)

which correlates the particle position with its orientation. The total pressure of the
system now reads

¯̄p = ¯̄pid + ¯̄p(i) + ¯̄p(a), (5.6)
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while the active scalar pressure is given by [213]

p(a) = Tr

(
¯̄p(a)

2

)

=
v0
2A

N∑

i=1

riei. (5.7)

Assuming non-interacting swimmers (ideal gas, ṙi = v0ei + µ0f
(r)
i ) the scalar active

pressure is calculated as

p
(a)
id =

v0
2A

N∑

i=1

∫ t

−∞

dt′〈ei(t)ṙi(t′)〉 =
1

2Dr

ρv20 (5.8)

where the correlation 〈e(t)e(t′)〉 = e−Dr|t−t′| has been used. One clearly sees the depen-
dency on the previous history of each particle which is an important point. In analogy
to Eq. (5.2) the profile in x-direction is obtained by the expression

¯̄p(a)(x) =
v0
A
〈ri ⊗ ei〉x. (5.9)

This expression considers particles being in a slice at position x at time t and does not
care about the previous history which is necessary for the correct pressure, see Eq, (5.8).
Therefore the correlation between the x-position and projected orientation cosϕ is not
measured by the expression Eq. (5.9), but rather the mean orientation within a slice
which is zero in a bulk phase and clearly not a physical pressure. Since the system
is only sliced in the x-direction, the history regarding movement in y-direction is not
neglected, so that p

(a)
yy (x) provides the virial active pressure in the y-direction. The

interaction part ¯̄p(i) solely depends on interparticle distances, allowing to calculate both
directional pressure terms p

(i)
xx(x) and p

(i)
yy(x) as a function of the x-direction. However,

hydrostatic equilibrium dictates
∇ · ¯̄p = 0, (5.10)

implying a diagonal tensor. Furthermore, mechanical equilibrium demands a constant
total normal pressure pN = pxx throughout the whole box, otherwise the slab would not
be stable. As explained, the total normal pressure can not be measured via the virial,
but is needed to calculate the line tension. One solution to that, which is done in the
following, is to obtain the total normal pressure via the total tangential pressure pT in
the bulk phase where the pressure is isotropic, i.e., pN = pT holds.

5.1.2 Mechanical pressure

In this section it is shown that the proposed active swimming pressure does correspond
to the actual mechanical pressure. In order to show this, periodic boundary conditions
are employed in the y-direction while two confining short-ranged repulsive walls are
located at x = 0 and x = Lx. The advantage is that the total normal pressure can di-
rectly be measured by the force exerted on the wall of length Ly. Due to the persistent
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Figure 5.1: Suspension confined between two walls at x = 0 and x = Lx at swimming
speed v0 = 100 and packing fraction φ = 0.5. (a) Snapshot of the system
showing the accumulation of particles at both walls. (b) Density profile
ρ(x) along the x-direction where the oscillations clearly show layering effects
near the walls. (c) Pressure profiles along the x-direction. The two arrows
indicate the pressure measured directly on the walls while the dashed yellow
line shows the average. The lower black dashed line corresponds to zero
pressure.
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Figure 5.2: System at periodic boundary conditions in both directions at swimming
speed v0 = 100 and packing fraction φ = 0.5. (a) Pressure profiles along the

x-direction of the system. (b) Total tangential pressure pT = ρ + p
(i)
yy + p

(a)
yy

along the x-direction. The dashed black line indicates the total (constant)
normal pressure pN ≃ 282 and has been obtained by averaging the values
of horizontal fits in the intervals [0 : 20], [75 : 95], [160 : Lx]. The error bars
correspond to the root mean squared residuals of each fit. The graphs have
been obtained by averaging the profiles of 100 independent simulations.

propulsion of the particle against the walls and layering effects (cf. the oscillations in
Fig. 5.1(b)) the pressure measured is not the actual bulk pressure, but serves as a suffi-
cient approximation. Fig. 5.1(a) shows that particles do accumulate at both walls. The
phase separation favors the formation of a larger slab at one wall while the accumulation
at the other wall is due to the persistent motion of the particles. Fig 5.1(c) shows the
various pressure profiles along the x-direction and the directly measured pressure on the
walls. Here, the ideal gas part ¯̄pid is neglected since its contribution is comparable to the
typical error of the active pressure. One observes that the directly measured pressure
on the walls does actually coincide with the tangential active pressure in the dilute bulk
phase. The pressure due to particle interactions practically drops to zero in the dilute
regime, which shows that the virial expression for the active pressure does indeed pro-
vide an intensive pressure fulfilling pN ≈ pT in bulk. One should also note that, likewise
the interaction part of the pressure in the dilute phase, the swimming pressure averages
to zero in the dense phase since particles hinder each other to propel persistently. The
total pressure is then mainly dominated by the repulsive pair interactions.

5.1.3 Active interfacial tension

After the virial expression for the active swimming pressure has been shown to be con-
sistent with the directly measured mechanical pressure, this section deals with the cal-
culation of the interfacial tension. Now, periodic boundary conditions are applied in
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both spatial directions and a rectangular simulation box with aspect ratio Lx/Ly = 2 is
considered. The interfacial tension is obtained according to

γ =
1

2

∫ Lx

0

[pN − pT (x)]dx, (5.11)

where a factor 1
2
is employed due to the existence of two interfaces. Fig. 5.2(a) shows

the three pressure profiles along the x-direction. It is noteworthy that the interaction
pressure is isotropic throughout the whole simulation box. It basically follows the density
profile and is always positive due to the pure repulsive interaction (low pressure in dilute
region, high pressure in dense region). Therefore the anisotropy of the total pressure at
the interface is completely caused by the active nature of the system. One observes that
the active pressure first increases at the interface which is a wall effect. The particles
accumulate at the interface, which functions as a flexible wall, while particles are still
able to propel parallel to the interface almost as persistently as they do in the dilute
phase. Finally, since there is a higher density near the interface, the tangential swimming
pressure is larger than in the dilute bulk phase. As density increases while entering the
dense slab particles hinder each other to propel persistently, resulting in a decrease
of the tangential swimming pressure. Fig. 5.2(b) shows the total tangential pressure

pT = ρ+ p
(i)
yy + p

(a)
yy along the x-direction. The constant total normal pressure pN is now

obtained by averaging the values of horizontal fits in regions which are as far away from
the interface as the system size allows, yielding pN ≃ 282. It is noteworthy, that in
contrast to phase separated equilibrium systems the total tangential pressure is higher
at the interface than in the bulk phases. As a result one obtains a negative interfacial
tension

γ =
1

2

∫ Lx

0

[pN − pT (x)]dx ≃ −842. (5.12)

This result is completely counterintuitive regarding the equilibrium picture of the inter-
facial tension. It would imply that the system can lower its free energy by creating inter-
faces which is not consistent with the observation of a stable slab. Also the order of mag-
nitude is rather high compared to two-dimensional Lennard-Jones interfaces [215–218]
where γ ∼ 1. In Sec. 5.3 the sign and order of magnitude will be discussed in detail and
will also be compared to the result given by the following method.

5.2 Fluctuation route

For the sake of generality it is desirable to have another approach to estimate the interfa-
cial tension, hopefully being comparable to the previously calculated value. This section
does discuss such an approach via the fluctuations of the interface which is similar to
the capillary wave theory [219–223].
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Figure 5.3: Sketch of an instantaneous interface without overhangs, which is then de-
scribable by a function h(y). The mid point of the slab is represented by the
dashed line located at x0.

5.2.1 Derivation

The instantaneous interface is considered to have no overhangs and be describable as a
function h(y) which measures the deviation from the mid point of the density profile,
see Fig. 5.3 for a sketch. This function may be decomposed into Fourier modes

h(y) =
∑

q

hqe
iqy (5.13)

with

hq =
1

Ly

∫ Ly

0

dy h(y)e−iqy. (5.14)

The magnitude of the wave vector q is given by (positive and negative) integers of 2π/Ly.
The interfacial width due to fluctuations is given by averaging over different interface
configurations and integrating along the y-direction

w2 =
1

Ly

∫ Ly

0

dy〈[h(y)]2〉 =
∑

q

〈|hq|2〉. (5.15)

For a system at thermodynamic equilibrium the excess free energy due to the existence
of a phase interface is given by Ei = γl where l is the interface length. In case of vapor-
liquid phase separation in equilibrium, the interfacial tension γ is equal to the interfacial
stiffness κ. For not too rough (slowly varying) interfaces the total interface length reads

l =

∫ Ly

0

dy
√

1 + [h′(y)]2 (5.16)

≈
∫ Ly

0

dy

(

1 +
1

2
[h′(y)]2

)

(5.17)

= Ly +
1

2
Ly

∑

q

q2|hq|2. (5.18)
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In equilibrium the equipartition theorem assigns each fluctuation mode an average energy
of kBT/2, yielding

〈|hq|2〉 =
1

κLyq2
. (5.19)

By plugging Eq. (5.19) into Eq. (5.15)

w2 = w2
0 +

2

κLy

∑

q>0

1

q2
(5.20)

is obtained, where w2
0 is the fluctuation due to the q = 0 mode which is bounded due to

periodic boundary conditions. Employing q = 2πn/Ly with n > 1 (n ∈ N) and the sum

∞∑

n=1

1

n2
=

π2

6
(5.21)

leads to

w2 = w2
0 +

Ly

12κ
. (5.22)

It is now assumed that this relation still holds for the active system in non-equilibrium,
but in general with a stiffness κ 6= γ. Furthermore it is necessary to point out that,
regarding one single configuration, the dense phase is highly polycrystalline with a lot of
point and line defects, see also Fig. 4.6. However, the crystalline order of such an active
dense phase is only stable over a short time scale. That is why, in contrast to stable
crystals being in coexistence with another phase in equilibrium [19], the active phase
separation is basically comparable to vapor-liquid coexistence such that the interfacial
stiffness does not depend on the crystalline orientation.

5.2.2 Active interfacial tension

In order to calculate the stiffness according to Eq. (5.22) the function

ρ(x) =
1

2
(ρ+ + ρ−) +

1

2
(ρ+ − ρ−)tanh

(
x− x0

2w

)

(5.23)

is recalled, describing the mean field functional form of the density profile where w
measures the interfacial width. Since the mean field form is not able to distinguish
between the q = 0 mode and the undulations (capillary waves), the parameter w in
Eq. (5.23) is equal to the total width given by Eq. (5.22). First, it is essential to ensure
that one is considering systems in a regime where the interfacial width does not depend
on the box dimension Lx. Fig. 5.4(a) shows the values of w (obtained by the fit) for
self-propelled particles with v0 = 100 at fixed Ly = 90 as a function of Lx while the
number of particles has been varied such that all data points correspond to a packing
fraction φ = 0.5. One indeed observes within statistical errors a constant interfacial
width. As a next step Lx = 200 is fixed while Ly is varied, also at fixed packing fraction
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Figure 5.4: Self-propelled system at v0 = 100 and constant φ = 0.5. The interfacial width
has been obtained according to Eq. (5.23) by averaging over 10 independent
simulation runs. (a) Interfacial width w at fixed Ly = 90 as a function of Lx.
The dashed line shows a horizontal fit. (b) The squared interfacial width
w2 at fixed Lx = 200 as a function of Ly. The dashed line corresponds to
a linear fit. The error bars denote the standard deviation given by the 10
independent runs.

φ = 0.5, see Fig. 5.4(b). In accordance with Eq. (5.22) a linear fit is applied showing
quite good agreement with the data points although for larger Ly the estimated error is
relatively large. The linear fit yields an interfacial stiffness

κ =
1

12 · 0.32 ≃ 0.26. (5.24)

The magnitude of order of this result is comparable to equilibrium studies [216], but
seems to be contrary to the large negative interfacial tension obtained in Sec 5.1.3 which
is discussed in the following.

5.3 Housekeeping work

For the active system it is necessary to recall that particles maintain a fixed velocity
v0 which means that particles constantly spent a “housekeeping” work W < 0 on the
surrounding fluid. An energy scale for this work is the hydrodynamic force times the
persistence length lp = v0/Dr. Accordingly, the work spent on the solvent per particle
is W/N = −v20/Dr (recall µ0 = 1 in reduced units). If the amount of work γ gained by
increasing the interface is lower than the energy pumped into the system by the active
motion the interface (and therefore the slab) is stable. Scaling the interfacial tension
with this housekeeping work one gets an interfacial stiffness κ = −γDr/v

2
0 ≃ 0.25 which

is in excellent agreement with the value obtained via the interface fluctuations. Since
the fluctuation route is derived from a passive suspensions and just mapped onto the
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active system the “housekeeping” work W is already incorporated. This is different for
the virial route which considers an explicit swimming pressure leading to the negative
interfacial tension.

5.4 Conclusion

In summary it has been shown that the mechanical interfacial tension in active sus-
pensions is negative. In contrast to equilibrium systems this energy can not be “used”
by the system to lower its free energy, but is part of the work constantly spent by the
active particles on the surrounding solvent. If the mechanical derived interfacial tension
is normalized to that negative work one finds a value which conincides impressively well
with the interfacial stiffness determined by the concept of interface fluctuations, i.e.,
capillary waves.
For active bulk phases thermodynamic concepts known from equilibrium seem
to work [133,209,224] as well as the effective Cahn-Hilliard description derived in Chap. 4.
However, the inclusion of a negative tension into these concepts will be a future challeng-
ing task which will hopefully give a deeper general insight into the effective description
of non-equilibrium systems. An essential question needed to be solved is whether fluc-
tuations of active suspensions can be described by an equivalent equilibrium system or
if that concept only works for mean-field descriptions. Furthermore it is desirable to
consider even larger systems (N > 105) where the width of the two phases is several
orders of magnitude larger than the persistent length of the particles. This would en-
sure that particles reorient several times before reaching the next periodic copy of the
slab, leading to the actual bulk pressure which is measured. This is illustrated by the
following picture: imagine (periodically copied) slabs separated by a dilute phase of
width lp. The particles entering the dilute phase do not reorient until they reach the
next slab. Consequently, the collision frequency with particles coming from the other
slab, which also do not reorient in the dilute phase, is increased significantly, leading to
a lower active pressure than it would be measured in bulk where there is no preferred
orientation. Beside performing the analysis of the interfacial tension/stiffness for larger
systems one should also consider larger propelling speeds since in this work only the
case v0 = 100 is discussed. Although the results should not change qualitatively these
aspects are postponed to future works.
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Chapter A

Appendix

A.1 Finite size analysis of the phase transition

In order to justify the choice of the system size N = 4900 the behavior of the mean rela-
tive size P of the largest cluster in the system is studied for system sizes N = 1600, 2500
being below and N = 40000 being way above the system size N = 4900 used in the main
simulations. However, for the large system, the coarsening dynamics change: since clus-
ters form spontaneously there are several more clusters in the larger system. Due to the
system size, steady state (one large cluster) for intermediate intrinsic swimming speeds
v0 is not reached even after simulating for t = 300, see Fig. A.1(c). For larger swimming
speeds, steady state is reached within the relaxation time tr = 100, see Fig. A.1(d). For
a proper analysis, the simulation protocol stays the same also for the large system, i.e.,
tr = 100 relaxation time starting from the equilibrated passive suspension followed by
data collecting for ts = 100, while for the large system also the largest and smallest size
of the biggest cluster is tracked to obtain error bars, yielding a better comparability with
the smaller systems, see Fig. A.2. The numerical data demonstrates that the onset of
the clustering occurs at approximatively the same speed. In addition, although different
coarsening dynamics are present, the steady state at sufficiently large swimming speeds,
here v0 = 120, is the same for N = 4900 as it is for N = 40000 particles. This shows that
increasing the system size (N > 4900) does not change the properties of the steady state
and therefore fortifies simulations of N = 4900 particles to avoid huge computational
times.
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(a) v0 = 80, t = 4 (b) v0 = 80, t = 90 (c) v0 = 80, t = 300 (d) v0 = 120, t = 100
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Figure A.1: Simulation snapshots of the system containing N = 40000 particles at area
fraction φ = 0.4. The snapshots (a)-(c) are at intrinsic propelling speed
v0 = 80 and recorded at times t = 4, t = 90 and t = 300 after the propulsion
has been turned on starting from the passive equilibrium suspension. The
snapshot (d) is at swimming speed v0 = 120 where the system reached the
steady state of one big cluster after t = 100. Particles are colored according
to their local bond orientational order, measured by the parameter q6 given
by Eq. (4.48) in Sec. 4.2.1

.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  40  80  120

P

v0

� = 0.4

N = 1600

N = 2500

N = 4900

N = 40000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  40  80  120

P

v0

� = 0.5

N = 1600

N = 2500

N = 4900

Figure A.2: Mean relative size of the largest cluster in the system as a function of intrinsic
propelling speed v0 at area fractions φ = 0.4 (left) and φ = 0.5 (right) and
system sizesN = 1600, N = 2500, N = 4900 andN = 40000. The error bars
for the N = 40000 system correspond to the largest and smallest measured
size of the order parameter P.



A.2. FREE ENERGY FUNCTIONAL 87

A.2 Free energy functional

Here the relation

∂tc = σ1∇2c−∇4c− 2g∇ · (c∇c) = ∇2 δF
δc

(A.1)

is shown to be valid with

F [c] =
∫

dr

[
1

2
|∇c|2 + f(c)

]

(A.2)

where

f(c) =
1

2
σ1c

2 − 1

3
gc3 (A.3)

is the effective bulk free energy density. First, the functional derivative is performed

δF
δc(r)

=

∫ [
δ

δc(r)

1

2
|∇c(r′)|2 + δ

δc(r)

1

2
σ1c

2(r′)− δ

δc(r)

1

3
gc3(r′)

]

dr′ (A.4)

=

∫ [

(∇c)∇δc(r′)

δc(r)
+ σ1c

δc(r′)

δc(r)
− gc2

δc(r′)

δc(r)

]

dr′. (A.5)

Using the identity δc(r′)
δc(r)

= δ(r′ − r), where δ(r) is the Dirac-function, one gets

δF
δc(r)

=

∫ [

(∇c)∇δ(r′ − r)

]

dr′ + σ1c(r)− gc2(r) (A.6)

=

[

∇c δ(r′ − r)

]∞

−∞
︸ ︷︷ ︸

=0

−
∫ [

∇2c δ(r′ − r)

]

dr′ + σ1c(r)− gc3(r) (A.7)

= −∇2c(r) + σ1c(r)− gc2(r). (A.8)

As the last step the Nabla operator is applied twice, giving

∇2 δF
δc

= −∇4c+ σ1∇2c− g∇2c2 (A.9)

= −∇4c+ σ1∇2c− 2g∇(c∇c), (A.10)

which coincides with the statement in Eq. (A.1).

A.3 Lower order expansion

In order to obtain a stabilizing c4 term in the free energy density one needs to include
fractional orders of ǫ in the expansion, i.e.,

δρ = ǫ1/2c+ ǫc1 + ǫ3/2c3/2 (A.11)

p =
√
ǫ[ǫ1/2p1 + ǫp3/2 + ǫ3/2p2] (A.12)
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where the orientational field is again additionally scaled with 1/
√
ǫ as it is done in the

main text. The coefficients α, β, ξ are defined as

ξ =
ρζ

v∗
, α = 4

(
v0
v∗
− ξ

)

, β = 2

(
v0
v∗
− 2ξ

)

(A.13)

and are therefore treated to be analytical functions in v0. Accordingly, their expansion
lacks fractional powers of ǫ, i.e., the expansions until the relevant order read

α = α0 + ǫα1, (A.14)

β = β0 + ǫβ1, (A.15)

ξ = ξc + ǫξ1. (A.16)

Starting again at the set of equations

∂tδρ = −α∇ · p+∇2δρ+ 4ξ∇ · (pδρ), (A.17)

∂tp = −β∇δρ+∇2p− p+ 4ξδρ∇δρ (A.18)

and plugging in the above expansions for δρ,p, α, β, ξ together with the time and length
scales being rescaled with 1/ǫ2 and 1/

√
ǫ respectively, one obtains to lowest order (ǫ3/2

in Eq. (A.17) and ǫ in Eq. (A.18))

0 = −α0∇ · p1 +∇2c, (A.19)

0 = −β0∇c− p1. (A.20)

Solving the second equation for p1 yields

p1 = −β0∇c (A.21)

and plugging this result into the first one, the linear stability condition

1 + α0β0 = 0 (A.22)

is recovered. The next order (ǫ2 in Eq. (A.17) and ǫ3/2 in Eq. (A.18)) gives

0 = −α0∇ · p3/2 +∇2c1 + 4ξc∇ · (p1c), (A.23)

0 = −β0∇c1 + 4ξcc∇c− p3/2. (A.24)

Solving Eq. (A.24) for p3/2 one obtains

p3/2 = −β0∇c1 + 4ξcc∇c. (A.25)

Inserting this result into Eq. (A.23), using Eq. (A.21) and α0β0 = −1 one derives the
condition

0 = 4ξc(α0 + β0)∇ · (c∇c). (A.26)

There are two scenarios for which Eq. (A.26) is fulfilled: the first one corresponds to
c = 0 where density fluctuations of order ǫ1/2 vanish. This route has been followed in
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Sec. 4.1 and is reasonable under the assumption vc ≫ v∗ which has been confirmed by
computer simulations, see Fig. 3.11. However, the second scenario is

α0 + β0 = 6
vc
v∗
− 8ξc = 0, (A.27)

which is true for vc = v∗ and reduces the applicability of this lower order expansion
to this special case. The free energy coefficients are then simply given by g = 0 and
σ1 = −2. The set of equations in the next higher order (ǫ5/2 in Eq. (A.17) and ǫ2 in
Eq. (A.18)) reads

∂tc = −α0∇ · p2 − α1∇ · p1 +∇2c3/2 + 4ξc∇ · (c1p1 + cp3/2), (A.28)

0 = −β0∇c3/2 − β1∇c+∇2p1 − p2 + 4ξc(c∇c1 + c1∇c). (A.29)

Similar to the previous steps, the second equation is solved for p2 while the derived ex-
pressions for p1 and p3/2 are used. By considering the conditions Eqs. (A.22) and (A.27)
one gets

∂tc = σ1∇2c−∇4c+ (4ξc)
2∇ · (c2∇c). (A.30)

In analogy to App. A.2 one shows that this implies a free energy functional with free
energy density

1

2
|∇c|2 + fGL(c) =

1

2
|∇c|2 + 1

2
σ1c

2 +
4

3
ξ2c c

4, (A.31)

commonly known as the symmetric Ginzburg-Landau free energy density.
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A.4 Numerical phase diagrams for different threshold

choices
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Figure A.3: Phase diagrams in the φ − v0 plane: the data points in (a), (b) and (c)
are extracted out of the same simulation runs starting from an equilibrated
passive fluid. The circles correspond to suspensions below the threshold
(a) P < 0.1 (b) P < 0.2 and (c) P < 0.02, while the squared symbols
represent systems which are considered as phase separated with (a) P > 0.1
(b) P > 0.2 and (c) P > 0.02. The squares are colored according to the value
of the order parameter P . The solid line is the instability line estimated via
Eq. (4.52) with the starting point φ = 0.7 and v0 = 35.

Fig. A.3 demonstrates the minor sensitivity of the choice of threshold of the order pa-
rameter P from which a system is considered as phase separated. While the threshold
changes from P > 0.1 to P > 0.2 and even one order of magnitude lower to P > 0.02, the
numerical data points still show quite good agreement with the instability line obtained
from the construction via the Cahn-Hilliard description.
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