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Zusammenfassung

In dieser Dissertation berechnen wir die äquivariante analytische Torsion eines
Hermiteschen Vektorbündels über einer hyperbolischen Riemannschen Fläche,
welches durch einen Automorphiefaktor beliebigen Gewichtes und Ranges ge-
gebenen ist. Wir drücken diese aus durch Werte einer geeigneten äquivarianten
Selberg-Zeta-Funktion und Ableitungen der Lerch’schen Phi-Funktion (Theo-
rem 1.3). Für Tensorpotenzen des kanonischen Geradenbündels beweisen wir
ein spezielleres Resultat (Korollar 1.4).

Der Beweis von Theorem 1.3 benutzt den Zusammenhang zwischen der Funk-
tionaldeterminante des Laplace-Operators auf automorphen Formen und einer
geeignet vervollständigten Selberg-Zeta-Funktion, den wir in Theorem 1.1 für
kokompakte Fuchssche Gruppen mit elliptischen Elementen bereitstellen. Des
weiteren verwenden wir ein Fouriertransformationsargument.

Als Nebenresultat berechnen wir auch die gewöhnliche analytische Torsion
sehr ampler Potenzen des kanonischen Geradenbündels (Korollar 1.12).

Mit Hilfe der Eichlerschen Theorie der indefiniten rationalen Quaternionen-
algebren können wir die äquivariante Selberg-Zeta-Funktion bezüglicher einer
Atkin-Lehner-Involution berechnen (Proposition 2.10). Mittels Modulinterpre-
tation und verallgemeinerter Chowla-Selberg-Formel (Theorem 2.14) gelingt
uns auch die Berechnung der Höhe des Fixpunktschemas einer Atkin-Lehner-
Involution (Proposition 2.13).

Setzt man die letzten beiden Resultate in die arithmetische Lefschetz-Fix-
punkt-Formel von Köhler und Roessler ein, so ergibt sich eine explizite For-
mel für die arithmetische Lefschetz-Spur einer Atkin-Lehner-Involution (Theo-
rem 0.1).

Schließlich weisen wir auf eine interessante Identität (Proposition 2.18) hin,
die man auf arithmetischen Flächen vom Geschlecht zwei erhält, indem man
den arithmetische Lefschetz-Fixpunkt-Satz mit dem arithmetischen Riemann-
Roch-Satz von Gillet und Soulé kombiniert.

Alle Ergebnisse über Shimura-Kurven werden anhand des Beispiels der Dis-
kriminante 26 veranschaulicht.
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Abstract

In this thesis, we compute the equivariant analytic torsion of a Hermitian vector
bundle over a hyperbolic Riemann surface given by a factor of automorphy of
arbitrary weight and rank in terms of an equivariant Selberg zeta function and
derivatives of Lerch’s Phi function (Theorem 1.3). We also specialise this result
to the case of powers of the canonical bundle (Corollary 1.4).

We accomplish this by comparing the functional determinant of the auto-
morphic Laplacian for a cocompact Fuchsian group with elliptic elements with
the completed Selberg zeta function (Theorem 1.1) and employing a Fourier
transform argument.

As a byproduct, we also compute the ordinary analytic torsion of very ample
powers of the canonical bundle (Corollary 1.12).

Using Eichler’s theory of indefinite rational quaternion algebras, we succeed
in computing the equivariant Selberg zeta function (Proposition 2.10) with re-
spect to an Atkin-Lehner involution acting on a compact Shimura curve. With
the help of the moduli interpretation and the generalised Chowla-Selberg for-
mula (Theorem 2.14), we also manage to compute the height of the fixed point
scheme of an Atkin-Lehner involution (Proposition 2.13).

Combined with these two results, the arithmetic Lefschetz fixed point for-
mula of Köhler and Roessler then yields an explicit formula for the arithmetic
Lefschetz trace of an Atkin-Lehner involution (Theorem 0.1).

Finally we point out a curious identity on arithmetic surfaces of genus two
(Proposition 2.18) that can be obtained from a simultaneous application of
the arithmetic Lefschetz fixed point theorem and the arithmetic Riemann-Roch
theorem of Gillet and Soulé.

All results about Shimura curves are illustrated by means of the example of
discriminant 26.
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Introduction

A Hermitian vector bundle E over a compact Hermitian manifold X has an
invariant T (E), its analytic torsion which was introduced by Ray and Singer
[34]. In the presence of an automorphism, i.e. a holomorphic isometry, g of E,
one also studies a variant Tg(E), the so-called equivariant torsion. As an object
in its own right, it was first defined by Köhler [22] although it had already
appeared implicitly in Ray’s paper [33]. Almost by definition, one has T = Tid

so the latter concept subsumes the former to which we shall refer as ordinary
torsion.

In Chapter 1 of this thesis, we compute equivariant torsion in the case where
X has dimension one, i.e. is a compact Riemann surface. We treat a very general
class of vector bundles on hyperbolic Riemann surfaces, i.e. on those of genus
h ≥ 2. Equivariant torsion on the projective line has been computed by Köhler
[22, Thm. 2], for ordinary analytic torsion on elliptic curves see [34, Thm. 4.1]
and lastly, for equivariant torsion of elliptic curves (or more generally Abelian
varieties) consult [25, Thm. 4.2].

The main results are Theorem 1.3 and Corollary 1.4 which compute equiv-
ariant torsion in terms of an equivariant Selberg zeta function (for this new
concept see Definition 5) and derivatives of Lerch’s Phi function. While Theo-
rem 1.3 applies to a general vector bundle given by a factor of automorphy of
arbitrary weight and rank, Corollary 1.4 is a specialisation to tensor powers of
the canonical line bundle.

Generalising results of Sarnak [36], we obtain intermediate results of in-
dependent interest about the functional determinant (Theorem 1.1) and the
reduced determinant (Corollary 1.2) of the automorphic Laplacian for a cocom-
pact Fuchsian group with elliptic elements.

As a byproduct we also compute the ordinary torsion of the line bundle of
k-differentials (Corollary 1.12), a result for which we have found no reference
but which is implicit in [11] except for the fine point arising from the fact that
the Kodaira Laplacian and the automorphic Laplacian differ by a factor of 2,
see Section 1.5.3.

For a more detailed overview of Chapter 1 see Section 1.1.
Chapter 2 contains applications of the results of Chapter 1, first and foremost

of Corollary 1.4.
Whereas the setting of Chapter 1 is entirely analytic, our interest in Chap-

ter 2 shifts towards arithmetic. The primary objects of study are no longer Rie-
mann surfaces (and on them Hermitian holomorphic vector bundles) but rather
arithmetic surfaces (and on them algebraic vector bundles equipped with a Her-
mitian structure). The contents of Chapter 1 fit into this broader framework as
being considerations at infinity, i.e. on the complex points of the schemes.

ix



Chapter 2 starts with specialised statements of the arithmetic Riemann-Roch
theorem of Gillet and Soulé and the arithmetic Lefschetz fixed point formula
of Köhler and Roessler. It is in the latter theorem where equivariant torsion
makes its appearance.

As we want to apply these two theorems to Shimura curves, Chapter 2 then
presents all the necessary material about quaternion algebras, Shimura curves
and Atkin-Lehner involutions.

The main original result of Chapter 2 is Proposition 2.10 which computes the
equivariant Selberg zeta function of a Shimura curve with respect to an Atkin-
Lehner involution. This proposition makes numerical approximations possible
whose quality we also discuss (Lemma 2.12).

We also compute the height of the fixed point scheme of an Atkin-Lehner
involution (Proposition 2.13). Then the arithmetic Lefschetz fixed point formula
yields the following neat result which may well be regarded as the climax of this
thesis:

Theorem 0.1 (The arithmetic Lefschetz trace of an Atkin-Lehner involution
on a Shimura curve). Consider a compact Shimura curve X = X (D,N) with
N square-free, and let n | D, n 6= 1. Then the arithmetic Lefschetz trace of ωk,
k ≥ 2, with respect to the Atkin-Lehner involution wn is given by

d̂eg(H0(X , ωk)+)− d̂eg(H0(X , ωk)−)

=
∑

t∈nN0

∏
p|D

n

(
1−

(
DF

p

)) ∑
m′|m

(m′, D
n )=1

∏
p|N

(
1 +

{
Λ′

p

})
A(n, t,Λ′)

modulo rational multiples of log(2). For every t of the outer sum, denote by DF

the discriminant of the quadratic field F := Q(
√

t2 − 4n) and define m ≥ 1 by
t2 − 4n = m2DF . Then for every m′ of the inner sum, let Λ′ be the order of
conductor m′ in F and let

{
Λ′

p

}
denote Eichler’s symbol (see Definition 10).

To define the term A(n, t,Λ′) in a unified manner, we let for any quadratic
order Λ

L̃(Λ, s) := |DΛ|s/2LΛ(s)

where DΛ denotes the discriminant of Λ. Furthermore, LΛ := ζΛ/ζ is the L-
function associated to Λ, i.e. the quotient of the zeta function of Λ by the
Riemann zeta function, the former being defined as

ζΛ(s) :=
∑
a⊂Λ

N(a)−s

with the sum extending over all Λ-ideals contained in Λ and N(a) denoting the
index [Λ: a].

Then for DΛ′ > 0 we let

A(n, t,Λ′) :=
1

log N

N−k

1− 1
N

2L̃′(Λ′, 0), N := (t +
√

t2 − 4n)2/(4n)

whereas for DΛ′ < 0, we set

A(n, t,Λ′) := h(Λ′)Aconst +
(−1)k

2

(
k − 1

2

)
(−L̃′(Λ′, 0))
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with h(Λ′) the ideal class number of Λ′ and Aconst the constant

Aconst :=
(−1)k

4

[ ∑
1≤j≤2k−2

(−1)j log(j)

− log
(π

2

)
− 1

2
log(2) + (2k − 1) (log(4π) + log(D))

]
.

It is tempting to conjecture that mutatis mutandis, a similar formula should
give the arithmetic Lefschetz trace of a general Hecke operator, and it should
pose no problem to derive it from an arithmetic Lefschetz fixed point theorem
for correspondences.

We then conclude Chapter 2 with a curious identity (Proposition 2.18) on
arithmetic surfaces of genus two where the arithmetic Riemann-Roch theorem
and the Lefschetz fixed point formula happen to be simultaneously applicable.

For a more detailed overview of Chapter 2 see Section 2.1.
Appendix A contains an alternative but less successful approach to calculat-

ing the height of the fixed point scheme using a projective model.
Finally, as the reader may want to experiment himself, Appendix B contains

the source code of the PARI script used for numerical computations of Selberg
zeta values along with some numerical tables.
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Chapter 1

Equivariant analytic torsion
on hyperbolic Riemann
surfaces

1.1 Overview

The setting of this chapter is purely analytic: We study Hermitian holomorphic
vector bundles over a compact Riemann surface of genus h ≥ 2.

Let us give an overview of the sections of Chapter 1.
In Section 1.2, we outline our approach to computing equivariant torsion

on Riemann surfaces in more detail, culminating in the statement of our main
results (Theorem 1.3 and Corollary 1.4). This section should serve as a guide
through the first chapter.

This is followed by Section 1.3 which contains everything we need about de-
terminants of operators, especially the three notions of zeta-regularised, reduced
and functional determinant and how they are interrelated.

Then, Section 1.4 reviews the definitions of ordinary and equivariant tor-
sion, shows the simplifications possible on a Riemann surface (Lemma 1.6) and
the basic relation between ordinary and equivariant torsion via finite Fourier
transformation (Lemma 1.7).

Next is Section 1.5 supplying all the material about the Selberg zeta function
of a cocompact Fuchsian group, especially Fischer’s completion factors along
with asymptotic formulae for their logarithms (Lemmas 1.10 and 1.11).

Last but not least, Section 1.6 contains all the proofs and some further
remarks.

1.2 Outline of approach

1.2.1 The Fourier transform argument

Due to the extremely simple Hodge theory of a Riemann surface, the ordinary
as well as the equivariant torsion of E depend only on �0, the degree 0 part of
the Kodaira Laplacian (Lemma 1.6).
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By Schwarz’s theorem, the automorphism group of a hyperbolic Riemann
surface X is finite. Hence the action of g on X is of finite order, say n. For
convenience, we shall assume that g acting on E is also of the same finite order
n. Then we can employ our key tool (Lemma 1.7) to reduce the problem to
computing the reduced determinants of the restrictions of �0 to the various
g∗-eigenspaces:

Tg(E) = −
∑
ξn=1

ξ log det′
(
�0|Eig(g∗,ξ)

)
. (1.1)

Here g∗ denotes the action of g on 0-forms with values in E which are of course
just the sections of E.

1.2.2 Hyperbolic uniformisation

So next I would like to explain how we can come to grips with the objects
occurring in (1.1).

A holomorphic vector bundle E on X can be lifted to the universal cover
of X which is the hyperbolic plane in our case. Since this lifted bundle can be
globally trivialised, E can actually always be thought of as given by a factor of
automorphy (cf. [19, Chap. I, §3]).

So from now on, we shall always think of the Riemann surface X as the
quotient of the hyperbolic upper half plane H by a cocompact Fuchsian group
Γ ⊂ SL2(R) containing −1 and acting without fixed points. The holomorphic
vector bundles E which we shall consider are those given by a holomorphic
factor of automorphy of weight 2k and rank d for Γ, which in particular covers
the case of arbitrary line bundles. There is a simple relation between weight
and degree:

deg(E) = dk(2h− 2), (1.2)

generalising the well-known fact that the canonical line bundle ω, i.e. the holo-
morphic cotangent bundle, has degree 2h − 2 and is given by the canonical
weight 2 scalar factor of automorphy. When E is equipped with the classical
Petersson metric, an elementary computation shows that its Kodaira Laplacian
in degree 0 is related to the usual automorphic Laplacian by

2�0 = −∆2k − k(1− k). (1.3)

Note that we adhere to the tradition of replacing the holomorphic factor of au-
tomorphy by the corresponding unitary one. This does not cause any problems
because the spaces of square-integrable automorphic forms for either factor are
isometric (see Section 1.5.2 for more on this).

As for the automorphism g, its action on the base X can be thought of as
an automorphism g̃ of H which normalises Γ. But what about the action of g
on E? Under the assumption that it is of the same order n as the action on
the base X, such an action is simply given by an extension of j to a factor of
automorphy j̃ for the group Γ̃ generated by g̃ and Γ. Note that while still being
cocompact, the enlarged group Γ̃ contains elliptic elements whenever g̃ has a
fixed point.

Now the ξ eigenspace of g∗ occurring in (1.1) is just the subspace of forms
automorphic with respect to a suitable factor of automorphy for Γ̃. Explicitly,
this factor of automorphy is ρξ ⊗ j̃ where ρξ is the unique scalar factor which is
trivial on Γ and satisfies ρξ(g̃) = ξ. Here bar denotes complex conjugation.
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1.2.3 Generalising Sarnak’s method

Thus, we are left with the problem of computing the reduced determinant of
the automorphic Laplacian for the cocompact, but not necessarily strictly hy-
perbolic Fuchsian group Γ̃.

For a cocompact Fuchsian group without elliptic elements, this problem has
been solved elegantly by Sarnak [36, Cor. 1]. The key idea is to use well-known
asymptotic expansions to express the functional determinant

D(s) := det (−∆2k − λ) , λ = s(1− s)

of the the automorphic Laplacian in terms of the Selberg zeta function Z (which
depends on j), an identity completion factor ΞI and an explicit constant eCI .
Then the reduced determinant can be computed from the functional determinant
by differentiating suitably often.

In this thesis, we generalise this approach to the case with elliptic elements.
All we need is an appropriate elliptic completion factor Ξell depending on j which
has been supplied by Fischer [14]. We thus obtain the following generalisation
of Sarnak’s result [36, Thm. 1]

Theorem 1.1 (Functional determinant of automorphic Laplacian). Let Γ be a
cocompact Fuchsian group (which may contain elliptic elements) and j a factor
of automorphy of weight 2k. Then the functional determinant of the Laplacian
−∆2k on j automorphic forms is given by

D(s) = Ξ(s) eCI+Cell for s ∈ C (1.4)

with Ξ := ΞI ·Ξell ·Z and explicit constants CI (independent of j, cf. (1.17) and
Cell (depending on j, cf. (1.20).

From this we deduce

Corollary 1.2 (Reduced determinant of automorphic Laplacian). In the sit-
uation of Theorem 1.1, the reduced determinant of −∆2k − k(1 − k) can be
computed as

det′(−∆2k − k(1− k)) =

{
eCI+Cell

N !(2k−1)N Ξ(N)(k), k 6= 1
2 ;

eCI+Cell

(2N)! Ξ(2N)( 1
2 ), k = 1

2

with N its kernel dimension. For k 6= 1
2 one may alternatively use

det′(−∆2k − k(1− k)) =
eCI+Cell

N !(1− 2k)N
Ξ(N)(1− k).

Note that the alternative formula comes from the symmetry of Ξ with respect
to s ↔ 1− s.

1.2.4 Computing equivariant torsion

Using the above corollary and Fourier transformation, we then obtain our main
result

3



Theorem 1.3 (Equivariant torsion on hyperbolic Riemann surfaces). Let Γ ⊂
SL2(R) be a strictly hyperbolic Fuchsian group containing −1 and g̃ an element
of SL2(R) normalising Γ. Let j be a holomorphic factor of automorphy for Γ
of weight 2k that can be extended to a factor of automorphy j̃ for the group Γ̃
generated by g̃ and Γ. Let E be the Hermitian holomorphic vector bundle given
by j together with the Petersson metric over the Riemann surface X = Γ\H and
let g be the automorphism of E induced by j̃. Then the equivariant torsion of E
can be computed as either of the two limits

Tg(E) =− lim
s→k,1−k

{
log Zg̃Γ(s)− tr

(
g∗|H0(X,E)

)
log
(
k(1− k)− s(1− s)

)
+
∑

p∈Xg

i tr(g|Ep)
2 sin(θ)

(
eθiΦ′(e2θi, 0, s + k)− e−θiΦ′(e−2θi, 0, s− k)

)}
+ log(2)κ.

Here Zg̃Γ is an appropriate equivariant Selberg zeta function depending on the
coset g̃Γ and j̃ (see Definition 5). The sum is over the fixed points p of the
action of g on X and the angle θ = θ(p) is such that e−2θi is the derivative of
g acting on X at p. Finally Φ′ denotes the derivative of Lerch’s Phi function
Φ(z, w, a) :=

∑
j≥0 zj(j + a)−w with respect to w and

κ :=
∑

p∈Xg

tr(g|Ep
)

|1− Tpg|2
− tr

(
g∗|H0(X,E)

)
.

For the case where both j and j̃ are the trivial scalar factor, we can give a
slightly more explicit result

Corollary 1.4 (Equivariant torsion of powers of the canonical line bundle on
a hyperbolic Riemann surface). Let g be an isometry of X and consider its
induced action on a power ωk of the canonical line bundle. Then we have

Tg(O) = Tg(ω) =− log Z ′g̃Γ(1)−
∑

p∈Xg

(
Re
(
F ′(e2θi, 0)

)
− cot(θ)Rrot(2θ)

)
+ log(2)κ

and for k ≥ 2

Tg(ωk) =− log Zg̃Γ(k)

−
∑

p∈Xg

(
sin((2k − 1)θ)

sin(θ)
Re
(
F ′(e2θi, 0)

)
− cos((2k − 1)θ)

sin(θ)
Rrot(2θ)

)

−
∑

p∈Xg

e−2θi(k−1)

1− e2θi

∑
1≤j≤2k−2

e2θi j log(j)

+ log(2)κ

with Rrot(2θ) being the imaginary part of F ′(e2θi, 0) whereby we mean the deriva-
tive at w = 0 of Jonquière’s function F (z, w) :=

∑
j≥1 zjj−w and all other no-

tation as in Theorem 1.3. Moreover, the real part of F ′(e2θi, 0) can be computed
in terms of the digamma function Ψ and Euler’s constant γEul as

Re
(
F ′(e2θi, 0)

)
= −1

4
Ψ
(

θ

π

)
− 1

4
Ψ
(

1− θ

π

)
− 1

2
log(2π)− 1

2
γEul.
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Remark. Note that Jonquière’s function is a specialisation of Lerch’s Phi func-
tion, namely F (z, w) = zΦ(z, w, 1).

Remark. For a further specialisation to the case of involutive g see Section 2.15.

1.3 Determinants of operators

For proofs and more information about the material of this section see [45]. Let
B be a self-adjoint operator bounded from below (think Laplacian!). From the
eigenvalues λ0 ≤ λ1 ≤ . . . of B (each repeated according to multiplicity) we
form the partition function of B

ΘB(t) :=
∞∑

j=0

e−tλj .

Henceforth we will make two assumptions: first we assume that the above se-
ries converges for all t > 0 and second we suppose that there are asymptotic
expansions

ΘB(t) =
n∑

k=−1

cktk + O
(
tn+1

)
, t ↘ 0 (1.5)

for all n ≥ −1. Then we fix a > −λ0 and consider the following sum

∞∑
j=0

(λj + a)−w
.

By the above assumptions on ΘB , this sum converges for Re(w) � 0 and it can
be continued to a meromorphic function ζB(w, a), the shifted zeta function of
B, on the whole complex plane which is regular at w = 0. We write ζB(w) for
the unshifted zeta function ζB(w, 0) of B.

Definition 1 (Three kinds of determinants). Let B be an operator as above.

1. If B > 0 we define the (zeta-regularised) determinant of B to be

det(B) := exp(−ζ ′B(0)),

prime denoting the derivative with respect to w.

2. If B ≥ 0 we define the reduced determinant of B as the determinant of
the restriction B′ of B to the orthogonal complement of its kernel, i.e.

det′(B) := det(B′), B′ = B|ker(B)⊥ .

3. In any case, the functional determinant of B is defined as the analytic
continuation of

λ 7→ exp(−ζ ′B(0,−λ)), λ < λ0.

We denote it by det(B − λ).
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Since ζB(w,−λ) is the unshifted zeta function of the operator B−λ, our no-
tation for the functional determinant makes sense. When we take logarithms of
determinants we shall always use the branches occurring in the above definition.
We collect the following facts

Proposition 1.5 (Properties of the functional determinant). Let B be an op-
erator as above.

1. The functional determinant of B is an entire function of order 1 with
zeroes exactly at the eigenvalues of B, multiplicities agreeing.

2. Its logarithm obeys the following asymptotics for λ → −∞:

log det(B − λ) = c−1

(
log(−λ)− 1

)
λ + c0 log(−λ) + o(1).

3. Suppose B ≥ µ0 for some real number µ0. Then the reduced determinant
of the non-negative operator B − µ0 can be computed from the functional
determinant of B as follows

det′(B − µ0) = lim
λ→µ0

det(B − λ)
(µ0 − λ)N

where N is the multiplicity of µ0 (which is zero unless µ0 = λ0). More
generally, the logarithms satisfy

log det′(B − µ0) = lim
λ→µ0

(log det(B − λ)−N log(µ0 − λ)) .

4. Moreover let α > 0. Then the reduced determinant of the rescaled operator
α(B − µ0) obeys

log det′(α(B − µ0)) = log det′(B − µ0) + log(α)(c0 + µ0c−1 −N).

Proof. The first two statements are proved in [45, Sect. 4 & 5]. As for the third
statement, note that

∞∑
j=N

(λj − µ0)
−w

is the zeta function of the operator (B − µ0)′. Using this, the logarithmic
statement is easily proved, the other version follows by exponentiation.

To prove the fourth statement, let B1 = B − µ0 and note the elementary
fact that

log det′(αB1) = log det′(B1) + log(α)ζB′
1
(0)

for any non-negative operator B1. Then we apply the trace identity [45, Eq.
(3.3)] to the positive operator B′

1 to obtain

ζB′
1
(0) = c0(B′

1).

Now N is the dimension of the kernel of B1, hence ΘB′
1

= ΘB1 −N as functions
and therefore c0(B′

1) = c0(B1) −N . Finally c0(B1) = c0 + µ0c−1 is clear from
comparing coefficients of t0 in

ΘB1(t) = eµ0tΘB(t) = (1 + µ0t + . . . )(c1t
−1 + c0 + . . . ).
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1.4 Review of ordinary and equivariant analytic
torsion

1.4.1 Analytic torsion

Let X be a compact Hermitian manifold and E a Hermitian vector bundle on
X.

First let us briefly and informally recall the general definition of the analytic
torsion of E: We start off by considering differential forms of type (0, q) on X
with values in E. In each degree q, the square-integrable forms form a Hilbert
space Hq with respect to the L2 product furnished by the Hermitian metrics
on E and X. For each q, the Kodaira Laplacian �q is a compact self-adjoint
non-negative operator in Hq with a spectrum satisfying the requirements of
Section 1.3. The analytic torsion of E is then a peculiarly weighted sum of the
logarithms of the reduced determinants of the �q’s:

T (E) :=
∑
q>0

(−1)qq log det′(�q).

1.4.2 Equivariant torsion

Now if E has an automorphism g, we may also consider equivariant analytic
torsion, equivariant torsion for short. This hinges on the fact that g induces a
linear operator g∗q in Hq. We define the following equivariant zeta function

ζq,g(w) :=
∑

λ∈spec(�q)
λ>0

tr(g∗q |Eig(�q, λ))λ−w. (1.6)

It enjoys the same properties as the zeta function of an operator considered in
Section 1.3. Hence we can take the derivative at w = 0 of its meromorphic
continuation and sum as in (1.4.1) to give the definition of the equivariant
torsion of E:

Tg(E) := −
∑
q>0

(−1)qq ζ ′q,g(0). (1.7)

Since tr(id |Eig(�q, λ)) is the multiplicity of λ as an eigenvalue of �q, we have

Tid(E) = T (E).

1.4.3 Torsion on Riemann surfaces

As mentioned in the Section 1.1, everything simplifies in dimension one:

Lemma 1.6 (Torsion on Riemann surfaces). Let X be a Riemann surface with
a Hermitian vector bundle E having an automorphism g. Then the equivariant
torsion of E can be computed as

Tg(E) =
d

dw
ζ0,g(w)

∣∣∣∣
w=0

,

in particular
T (E) = − log det′(�0).
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Proof. By definition

Tg(E) =
d

dw
ζ1,g(w)

∣∣∣∣
w=0

.

But we even have ζ1,g = ζ0,g because ∂̄ gives an isomorphism ker(�0)⊥ →
ker(�1)⊥ intertwining �0 with �1 as well as g∗0 with g∗1 . The latter statement
is true because g is a holomorphic isometry of E.

1.4.4 Fourier transformation

For simplicity, we state the following lemma only in the dimension one case:

Lemma 1.7 (Fourier transform). Let X be a compact Riemann surface with a
Hermitian vector bundle E having an automorphism g of finite order n. Denote
by g∗ the action of g on sections of E. Then the equivariant torsion of E can
be computed as

Tg(E) = −
∑
ξn=1

ξ log det′
(
�0|Eig(g∗,ξ)

)
where the sum is over all n-th roots of unity.

Proof. As with Lemma 1.6, the statement holds already on the level of zeta
functions. This is true because �0 and g∗ commute and can therefore be simul-
taneously diagonalised:

ker(�0)⊥ =
⊕
ξn=1

⊕
λ∈spec(�0)

λ>0

Eig(g∗, ξ) ∩ Eig(�0, λ).

Remark. When g acts on X without fixed points, Lemma 1.7 yields a neat
formula expressing the equivariant torsion of E in terms of ordinary torsions of
vector bundles over the quotient manifold 〈g〉\X

Tg(E) =
∑
ξn=1

ξ T (〈g〉\E ⊗ L
∗
ξ)

with suitable line bundles Lξ. This formula appears in [24, Proof of Lemma
3.3]. In this thesis, we shall however be interested in the case where g does have
fixed points. In this case, a geometric interpretation would require the notion
of orbifolds, a subject we shall not delve into. For more on this we refer the
reader to [29].

1.5 Completion factors for
the Selberg zeta function

The main reference for this section is Fischer’s monograph [14]. In particular,
we use most of his notation.
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1.5.1 Preliminaries

Let us begin with cocompact Fuchsian groups containing −1. Apart from ±1,
such a group Γ contains hyperbolic elements P and elliptic elements R charac-
terised by |trP | > 2 and |trR| < 2 respectively. Conjugating by elements of
SL2(R), we can bring them into normal forms ±DN and Rθ with

DN :=
(

N1/2

N−1/2

)
, N = N(P ) > 1

and

Rθ :=
(

cos θ − sin θ
sin θ cos θ

)
, 0 < θ = θ(R) < 2π, θ 6= π

respectively. Centralisers can represented as

Z(P ) = {±Pm
0 | m ∈ Z}

and
Z(R) = {Rm

0 | m = 1, . . . , 2ν}

respectively. The elements P0 and R0 are the associated primitive elements.
The hyperbolic primitive element P0 is the unique element of the centraliser
conjugate to a matrix +DN0 such that P or −P is a positive power of P0. The
elliptic primitive element R0 is the element of the centraliser conjugative to Rθ

with minimal positive θ. Note that an elliptic element belongs to Z(R) if and
only if it has the same fixed point in H as R. Furthermore, we remark that ν is
the projective order of Z(R) since we assume −1 ∈ Γ.

Following Fischer, we consider unitary factors of automorphy for Γ of the
form j = j2k χ with

j2k(S, z) :=
(

cz + d

|cz + d|

)2k

, z ∈ H, S =
(

a b
c d

)
∈ SL2(R) (1.8)

and χ a so-called unitary multiplier system for Γ of weight 2k and rank d, i.e.
a map from Γ to the unitary matrices of rank d satisfying the two conditions

χ(−1) = e−πi2k
1d,

χ(ST ) =
j2k(S, T (z))j2k(T, z)

j2k(ST, z)
χ(S)χ(T ).

We assume that the power in (1.8) is defined by the choice of −π < arg ≤
π. Then the first condition on χ ensures that j(−1) = 1d which is obviously
necessary in order for j to define a vector bundle over Γ\H. The second condition
on χ makes sure that j is indeed a factor of automorphy, i.e.

j(ST, z) = j(S, T (z))j(T, z).

Now the Laplacian on j-automorphic forms has an explicit formula (which we
will take as a definition), namely

∆2k := y2

(
∂2

∂x2
+

∂2

∂y2

)
− 2kiy

∂

∂x
. (1.9)
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Note that this formula really only depends on the weight 2k of j. It is a self-
adjoint operator on the Hilbert space of square-integrable j-automorphic func-
tions, i.e. on the measurable functions f from the upper half plane H to Cd

satisfying f(γ(z)) = j(γ, z)f(z) and (f, f) < ∞ with

(f, g) :=
∫
F
〈f(z), g(z)〉 dvol(z) (1.10)

for any choice of fundamental domain F for Γ. Here dvol = y−2dxdy is the
hyperbolic volume element.

1.5.2 The holomorphic vector bundles

The above factor of automorphy j is obviously not holomorphic, hence it does
not define a holomorphic bundle in a natural manner. Our real interest is in the
holomorphic vector bundle E defined by the holomorphic factor of automorphy
(cz + d)2kχ and equipped with the classical Petersson metric

(f, g)Pet :=
∫
F
〈f(z), g(z)〉y2k dvol(z). (1.11)

However, comparing (1.11) with (1.10) and remembering Im(cz+d) = Im(z)/|cz+
d|2, we see that f 7→ fy−k furnishes an isometry of the respective Hilbert spaces.

What is more, let us see if formula (1.2) for the degree of E makes any
sense: The Petersson metric has matrix H = y2k

1d in the obvious holomorphic
trivialisation over a fundamental domain. The first Chern form of the Chern
connection is

i

2π
tr
(
∂̄
(
∂H ·H−1

))
=

i

2π
tr
(

∂̄

(
−i

2
2ky−1dz1d

))
=

i

2π
tr
(

i

2
−i

2
(−2k)y−2dz̄ ∧ dz1d

)
=

dk

2π
dvol(z).

Now Gauß-Bonnet says
∫

X
dvol = −2πχ(X) = 2π(2h−2), which proves formula

(1.2).
Remark. By Weil’s theorem [46], all indecomposable Hermitian holomorphic
vector bundles can be obtained from the above construction.

1.5.3 Comparing the Kodaira Laplacian and the automor-
phic Laplacian

Let us also verify relation (1.3) between the Kodaira Laplacian �0 on E and
the automorphic Laplacian ∆2k. For degree reasons, the Kodaira Laplacian in
degree zero is just ∂̄∗1 ∂̄0. Hence, the Hodge ∗ formula for the adjoint of ∂̄ from
[48, Chap. V, Prop. 2.4] shows that −�0 is the composition

A0,0(E) ∂̄0−→ A0,1(E) ∗̄−→ A1,0(E∗) ∂̄1−→ A1,1(E∗) ∗̄−→ A0,0(E). (1.12)

Since the above trivialisation is holomorphic, the first and third map in (1.12)
simply take the form f 7→ ∂f

∂z̄ dz̄ and gt dz 7→ ∂gt

∂z̄ dz̄ ∧ dz, (t denoting transpose)
respectively. As for the second map in (1.12), note that is defined by requiring

f1 dz̄ ∧ ∗̄(f2 dz̄) != f t
1 ·H · f2 |dz̄|2 dvol(z) = f t

1 · f2 y2k 2y2 y−2−i

2
dz̄ ∧ dz,

10



from which we can read it off as f dz̄ 7→ −iy2kf
t
dz. As for the last map in

(1.12), it is defined by requiring

gt
1 dz̄ ∧ dz ∧ ∗̄(gt

2 dz̄ ∧ dz) != gt
1 ·H−1 · g2 |dz̄ ∧ dz|2 dvol(z)

= gt
1 · g2 y−2k 4y4 y−2−i

2
dz̄ ∧ dz

from which we read it off as gt dz̄∧dz 7→ −2iy2−2kg. Putting everything together
we get

�0f = 2iy2−2k ∂

∂z̄

(
−iy2k

∂f

∂z̄

)
= −2y2−2k ∂

∂z

(
y2k ∂f

∂z̄

)
. (1.13)

Remark 1.1. For k = 0, this formula computes the Kodaira Laplacian of the
trivial bundle as −2y2∂2/∂z∂z̄ which is half the well-known formula for the
Laplacian on functions – exactly as one expects on a Kähler manifold!

What is more, the above computations are for the most natural choice of
metric on the tangent bundle, namely y−2

(
dx2 + dy2

)
which has constant cur-

vature −1. Equation (1.13) shows that if this metric is rescaled by a constant
α > 0, the Laplacian is multiplied by 1/α, cf. [3, (1.161c)] whereas changing
the metric on the vector bundle E by a constant does nothing.

Finally we remark that in their seminal paper [34], Ray and Singer inad-
vertently use the spectrum of the de Rham Laplacian instead of the Kodaira
Laplacian when computing analytic torsion on tori (see the definitions of the
eigenvalue λm,n and eigenfunction φm,n on p. 166 (loc. cit.) and use that when
C is equipped with the standard metric, the Kodaira Laplacian is −2∂2/∂z∂z̄,
cf. [18, p.83]).

Now we complete the verification of (1.3) by computing the operator corre-
sponding to (1.13) under f 7→ y−kf :

− 2y2−k ∂

∂z

(
y2k ∂

∂z̄

(
y−kf

))
= −2y2−k ∂

∂z

(
i

2
(−k)yk−1f + yk ∂f

∂z̄

)
=

1
2
k(k − 1)f + iky

(
∂f

∂z
+

∂f

∂z̄

)
− 2y2 ∂2f

∂z∂z̄︸ ︷︷ ︸
− 1

2∆2kf

.

1.5.4 The Selberg zeta function

Now we define the Selberg zeta function:

Definition 2 (Selberg zeta function). The Selberg zeta function Z(s) = Z(s, j)
of Γ with respect to j is the exponential of

log Z(s) :=
∑
{P0}Γ

∞∑
m=0

tr log
(
1d − χ(P0)N(P0)−s−m

)
(1.14)

where the sum is over all primitive hyperbolic conjugacy classes.

The above sum is known to converge locally uniformly on Re(s) > 1 and
exponentiation gives the more familiar product formula for Z. Furthermore, it
is also classical that log Z(s) = o(1) as s →∞.
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Lemma 1.8 (Alternative formula for the logarithm of Selberg zeta). The log-
arithm of the Selberg zeta function is also given by

log Z(s) = −
∑
{P}Γ
tr P>2

trχ(P )
log N(P0)
log N(P )

N(P )−s

1−N(P )−1
, Re(s) > 1. (1.15)

Proof. Write P as Pm
0 and use the standard properties χ(Pm

0 ) = χ(P0)m and
N(Pm

0 ) = N(P0)m of the multiplier system and the Selberg norm. Then you
can easily reduce the formula to (1.14) using the geometric and the logarithm
series.

Remark. The series in the lemma is better suited for Fourier transformation
because of the trχ(P ) term.

In the next two subsections, we shall recall Fischer’s completion factors ΞI

and Ξell for the Selberg zeta function. They are invaluable because of

Proposition 1.9 (The completed Selberg zeta function). The completed Selberg
zeta function

Ξ := Z · ΞI · Ξell

is an entire function of finite order. Furthermore, it has the same divisor as the
functional determinant D(s) of the automorphic Laplacian.

Proof. The first statement is [14, Lemma 3.2.3]. For the second statement, we
know from [14, Section 3.1] that Ξ is an entire function satisfying

Ξ(1− s) = Ξ(s)

with zeroes at exactly those s for which λ = s(1− s) is an eigenvalue of −∆2k.
Multiplicities agree except for s = 1

2 where the multiplicity of the zero is twice
the multiplicity of the eigenvalue.

Note that main ingredient in the proof of Theorem 1.1 will be asymptotic
formulae for the logarithms of the completion factors.

1.5.5 The identity completion factor

We start with Fischer’s identity completion factor.

Definition 3 (Identity completion factor for the Selberg zeta function). The
identity completion factor ΞI is the exponential of log Ξ+

I + log Ξ−I where

log Ξ±I (s) :=
d vol(Γ)

2π

(
1
2 log(2π)s + 1

2s(1− s)

+
(

1
2 ± k

)
log Γ(s± k) + log Γ2(s± k + 1)

)
.

Here vol(Γ) is the volume of the quotient Γ\H and Γ2 is the double Gamma
function, i.e. the reciprocal of the Barnes G function which is the unique mero-
morphic function satisfying

G(z + 1) = Γ(z)G(z), G(1) = 1, G is C∞ on R≥1 with (log G)′′′ ≥ 0.
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Note that vol(Γ) is the hyperbolic volume of a fundamental domain in H
for the Fuchsian group Γ which is classically computed from the genus and the
orders of the fixed points. In particular, if Γ is strictly hyperbolic it equals −2π
times the Euler characteristic, i.e. vol(Γ)/2π = 2h− 2.

As for the double Gamma function, the Weierstraß canonical product for
the Barnes G function is classical, hence we might also take

1
Γ2(z + 1)

= (2π)z/2e−((1+γ)z2+z)/2
∞∏

k=1

((
1 +

z

k

)k

e−z+ z2
2k

)
as a definition. For more about this function see [45, Appendix] and [8].

Lemma 1.10 (Asymptotics of identity factor). For s →∞ we have

log ΞI(s) = −CI +
d vol(Γ)

2π

[
1
2

(
log
(
s(s− 1)

)
− 1
)

s(1− s) (1.16)

+
(

k2

2 − 1
6

)
log
(
s(s− 1)

)]
+ o(1)

with an explicit constant

CI :=
d vol(Γ)

2π

(
− 1

4 −
1
2 log(2π) + 2ζ ′(−1)

)
. (1.17)

Proof. One can prove the lemma using asymptotic formulae for Γ and Γ2, which
is not difficult but tedious. Therefore, we prefer to reduce the statement to a
lemma in Fischer’s book [14, Lemma 3.4.1]. Plugging the relation ζ ′(−1) =
1
12 − logA between the derivative of Riemann zeta and Kinkelin’s constant into
the definition of the constant CI we get

−CI =
d vol(Γ)

2π

(
1
12 + 1

2 log(2π) + 2 logA
)

which certainly agrees with Fischer’s result. Now let s = σ + 1
2 and replace

s(s − 1) by σ2 − 1
4 in (1.16) and use log

(
σ2 − 1

4

)
= 2 log(σ) − 1

4σ−2 + O(σ−4)
to compute

1
2

(
log
(
σ2 − 1

4

)
− 1
) (

1
4 − σ2

)
+
(

k2

2 − 1
6

)
log
(
σ2 − 1

4

)
=
(
log(σ)− 1

8σ−2 − 1
2

) (
1
4 − σ2

)
+
(
k2 − 1

3

)
log(σ) + o(1)

= −σ2 log(σ) + 1
2σ2 +

(
k2 − 1

12

)
log(σ) + o(1)

which again agrees perfectly with Fischer’s result.

Remark. The reader might know the multiple Gamma function defined by Γn =
G

(−1)n−1

n where G1 = Γ and for n ≥ 2, Gn is the unique (cf. [43, Prop. 2.8])
meromorphic function which is smooth on R≥1 with non-negative (n + 1)st
logarithmic derivative and satisfies

Gn(z + 1) = Gn−1(z)Gn(z), Gn(1) = 1.

For these multiple Gamma functions, there exist asymptotic formulae general-
ising Stirling’s formula for Γ and the corresponding formula for the Barnes G
function, see [8] for more on that.
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1.5.6 The elliptic completion factor

Last but not least we introduce Fischer’s elliptic completion factor:

Definition 4 (Elliptic completion factor for the Selberg zeta function). The el-
liptic completion factor Ξell(s) = Ξell(s, j) of Γ with respect to j is the exponential
of log Ξell = log Ξ+

ell + log Ξ−ell where

log Ξ±ell :=
∑
{R}Γ

0<θ<π

eiθ2k trχ(R)
±ie±θi

2 sin(θ)
1
ν

ν−1∑
`=0

e±2θi` log Γ
(

s± k + `

ν

)
. (1.18)

Remark. This is not the actual definition Fischer gives in [14, Cor. 2.3.5] but
rather its less refined ancestor concealed in [14, Prop. 2.3.4]. Again, (1.18) is
attractive for us because the trχ(R) term makes it ideal for Fourier transfor-
mation.

We finish this section with another asymptotic lemma

Lemma 1.11 (Asymptotics of elliptic factor). For s →∞ we have

log Ξell(s) = A log
(
s(s− 1)

)
− Cell + o(1)

with explicit constants A and Cell = C+
ell + C−

ell given by

A :=
∑
{R}Γ

0<θ<π

eiθ2k trχ(R)
1

4ν sin2(θ)
, (1.19)

C±
ell :=

∑
{R}Γ

0<θ<π

eiθ2k trχ(R)
±ie±θi

2 sin(θ)
log(ν)

ν2

ν−1∑
`=0

e±2θi``. (1.20)

Proof. By Stirling’s formula we know that as s →∞

log Γ
(

s + k + `

ν

)
= log

√
2π

+
(

s + k + `

ν
− 1

2

)
log
(

s + k + `

ν

)
− s + k + `

ν
+ o(1).

Into this we plug the expansion

log
(

s + k + `

ν

)
= log (s + k + `)− log(ν) = log(s) +

k + `

s
− log(ν) + O(s−2)

and obtain
ν−1∑
`=0

e2θi` log Γ
(

s + k + `

ν

)
=

ν−1∑
`=0

e2θi`

(
`

ν
log(s)− `

ν
log(ν)

)
+ o(1)

because terms independent of ` drop out. Now you can read off C±
ell. For A

keep in mind that log(s) = 1
2 log

(
s(s− 1)

)
+ o(1) and

1
ν

ν−1∑
`=0

e2θi`` =
1

e2θi − 1
=

e−θi

2i sin(θ)
. (1.21)

14



Remark. The reason why we don’t use (1.21) to simplify C±
ell will become clear

when we prove Theorem 1.3 in Section 1.6.4.

1.6 Proofs and remarks

1.6.1 Proof of Theorem 1.1

We want to apply the first and second part of Proposition 1.5 to the case B =
−∆2k, λ = s(1 − s) in order to conclude that the functional determinant D(s)
is an entire function of finite order with

log D(s) = c−1

(
log(s(s− 1))− 1

)
s(1− s) + c0 log(s(s− 1)) + o(1), s →∞.

(1.22)
For then by Proposition 1.9, D(s) and the completed Selberg zeta function
Ξ(s) are entire functions of finite order with the same zeroes of the same mul-
tiplicities, hence their logarithms only differ by a polynomial in s. We remark
that this polynomial is actually a polynomial in s(1 − s) since both functions
are symmetric under s ↔ 1 − s. Anyway, Theorem 1.1 is then obvious from
comparing (1.22) with the asymptotic expansions for log Z (classical), log ΞI

(Lemma 1.10) and log Ξell (Lemma 1.11).

Remark 1.2. The above proof actually gives the equality

log D = log Ξ + CI + Cell.

of the logarithms we agreed to choose.

For this we need to prove that the heat kernel of −∆2k has an asymptotic ex-
pansion of the form (1.5). If Γ is strictly hyperbolic, this is a classical statement
about heat kernels on the manifold X = Γ\H. If there are elliptic elements,
there are two ways to reduce the proof to the strictly hyperbolic situation.

First we may examine the elliptic contribution to the Selberg trace formula
[37, Eq. (3.2), p. 74] when we plug in h(r) = e−t(r2+1/4) to compute the heat
trace. For example, if j is flat, i.e. k = 0, the elliptic contribution is a finite
linear combination of integrals of the form∫ ∞

−∞

e−2θr

1 + e−2πr
e−t(r2+1/4) dr, 0 < θ < π.

Using the exponential series, we see that this actually has a expansion as re-
quired in (1.5) with vanishing c−1.

A more elegant alternative is to use the classical theorem that Γ has a strictly
hyperbolic subgroup Γ0 of finite index. If j0 denotes the restriction of j to this
subgroup, the domain of the j-automorphic Laplacian injects into the domain
of the j0-automorphic Laplacian. Why is this so? First of all, any function f
on H automorphic with respect j is trivially automorphic with respect to the
restriction j0. Furthermore, from a fundamental domain F for Γ one obtains a
fundamental domain (up to a null set) for Γ0 in the usual fashion, namely by
choosing representatives γ1, . . . , γr for the Γ0 cosets in Γ and letting

F0 =
r⋃

j=1

γjF .
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Now if f is square integrable over F and automorphic with respect to j, a
straightforward computation shows that it is also square-integrable over F0:∫

F0

|f(z)|2 dvol(z) =
r∑

j=1

∫
F
|f(γj(z))|2 dvol(z)

=
r∑

j=1

∫
F
|j(γj , z)f(z)|2 dvol(z)

=
r∑

j=1

∫
F
|f(z)|2 dvol(z)

where dvol denotes the hyperbolic measure on H and the last step uses the fact
that j is unitary. The above injection of domains obviously respects the Laplace
eigenspace decomposition. Hence we see, that the j-automorphic Laplacian has
the same eigenvalues as the j0-automorphic Laplacian just with possibly smaller
multiplicities and we’ve again reduced the problem to the strictly hyperbolic
case.

1.6.2 Proof of Corollary 1.2

Now Corollary 1.2 about the reduced determinant of the automorphic Laplacian
is proved easily applying the third formula of Proposition 1.5 to the case B =
−∆2k and µ0 = k(1− k). This is possible because the Kodaira Laplacian �0 is
known to be non-negative so that the basic identity (1.3) implies

−∆2k ≥ k(1− k).

We obtain

det′(−∆2k − k(1− k)) = lim
s→k,1−k

D(s)
(k(1− k)− s(1− s))N

.

For k 6= 1
2 all derivatives of the denominator at s = k or s = 1−k up order N−1

vanish and the Nth derivative is N !(2k− 1)N or N !(1− 2k)N , respectively. For
k = 1

2 the denominator factors as
(
s− 1

2

)2N . If we now express D(s) in terms
of Ξ(s) via Theorem 1.1, the corollary follows from L’Hôpital’s rule.

Remark. Combining the logarithmic version of the third part of Proposition 1.5
with Remark 1.2, we get the slightly stronger result

log det′(−∆2k − k(1− k)) = CI + Cell (1.23)

+ lim
s→k,1−k

{
log Ξ(s)−N log

(
k(1− k)− s(1− s)

)}
.

1.6.3 A byproduct: Computing ordinary torsion

Note that for torsion-free Γ, equation (1.23) almost computes the ordinary tor-
sion of the vector bundle E over the Riemann surface X = Γ\H given by j. The
only little mistake one makes is that the operator −∆2k − k(1 − k) is actually
twice the Kodaira Laplacian �0. But this is easily amended: By the second
statement of Proposition 1.5, the expansion coefficients of Θ−∆2k

can also be
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read off from the expansion of the functional determinant. In the torsion-free
case, the only relevant contribution comes from log ΞI. Thus Lemma 1.10 tells
us that

c−1(−∆2k) =
d vol(X)

4π
, c0(−∆2k) =

d vol(X)
2π

(
k2

2
− 1

6

)
.

Now we use the fourth part of Proposition 1.5 to compute the torsion of E as
follows

T (E) = − log det′
(

1
2 (−∆2k − k(1− k))

)
= − log det′ (−∆2k − k(1− k)) + log(2)(c0 + k(1− k)c−1 −N)

= − log det′ (−∆2k − k(1− k)) + log(2)
(

d vol(X)
2π

(
k

2
− 1

6

)
−N

)
(1.24)

The terms on the right all have a simple topological interpretation: By Hodge
theory we may view N as the dimension of the cohomology H0(X, E). Plugging
in vol(X)/2π = 2h−2 = −χ(X) as well as d = rk(E) and dk(2h−2) = deg(E),
we ultimately arrive at

T (E) = − log det′ (−∆2k − k(1− k))

+ log(2)
(

rk(E)
χ(X)

6
+

deg(E)
2

− dim(H0(X, E))
)

So we conclude that equation (1.23) indeed computes the torsion of E up
to a topological correction term. Evaluating the limit in (1.23) in the case
E = ωk, k ≥ 2, we obtain the following explicit formula for the ordinary torsion
of k-differentials:

Corollary 1.12 (Analytic torsion of very ample powers of the canonical bun-
dle). Let Γ be a strictly hyperbolic Fuchsian group. Then the ordinary torsion
of the line bundle of k-differentials, k ≥ 2, on the Riemann surface X = Γ\H
can be computed as follows

T (ωk) = − log Z(k)− V

(
2ζ ′(−1)−

(
k − 1

2

)2

+
(

k − 1
2

)
log(2π)

)

− V
2k−2∑
j=1

(
j −

(
k − 1

2

))
log(j)

+ log(2)
(
−V

(
k

2
− 1

3

))
with V := vol(X)/(2π) = −χ(X) and the last term on the right being the metric
correction term.

Remark. In Section 2.6 we apply this formula to quadratic differentials, i.e. the
case k = 2.
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Proof. When we combine (1.24) with (1.23), choose the limit s → k and plug
in the definitions of CI (see Lemma 1.10) and log ΞI (see Definition 3), we get

T (ωk) = − log Z(k)− V

(
−1

4
− 1

2
log(2π) + 2ζ ′(−1)

)
︸ ︷︷ ︸

CI

(1.25)

− V

(
k log(2π) + k(1− k) +

(
1
2

+ k

)
log Γ(2k) + log Γ2(2k + 1)

)
− lim

s→k

{
V

(
1
2
− k

)
log Γ(s− k)−N log

(
k(1− k)− s(1− s)

)}
+ log(2)

(
V

(
k

2
− 1

6

)
−N

)
︸ ︷︷ ︸
metric correction term

Since there are no elliptic or parabolic elements, we know V = −χ(X) = 2h−2,
h being the genus of X. Moreover, recall that in that case by Riemann-Roch,
N = dim(H0(X, ωk)) = deg(ωk) − h + 1 = k(2h − 2) − h + 1 =

(
k − 1

2

)
V so

that the third line simplifies to give V
(
k − 1

2

)
times

lim
s→k

{
log Γ(s− k) + log

(
k(1− k)− s(1− s)

)}
= lim

s→k
log
(

k(1− k)− s(1− s)
s− k

)
= log(2k − 1)

where we have used Γ(s) ∼ 1
s as s → 0 and L’Hôpital’s rule. Next we tackle the

two Gamma terms from the second line in (1.25) using the rule log Γ2(n + 1) =∑n
j=1 j log(j)− n log(n!):(

1
2

+ k

)
log Γ(2k) + log Γ2(2k + 1)

=
(

1
2

+ k

)
log((2k − 1)!) +

2k∑
j=1

(j − 2k) log(j)

=
2k−1∑
j=1

(
j −

(
k − 1

2

))
log(j)

Then we finish the proof by noting that the summand for j = 2k − 1 cancels
with the contribution of the limit term from the third line.

1.6.4 Proof of Theorem 1.3

The eigenspace interpretation

First we verify the eigenspace interpretation given at the end of Section 1.2.2.
We take an element in the domain of the Laplacian ∆2k, i.e. a square-integrable
section of the vector bundle E over the Riemann surface X = Γ\H. In our
interpretation, this is a measurable function f on the upper half plane H with
values in Cd, square-integrable over any fundamental domain F for Γ, such that

f(γ(z)) = j(γ, z)f(z), γ ∈ Γ.
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Next we ask: Exactly when is f an eigenvector with eigenvalue ξ for the action
g∗ on the sections of E? By the very definition of this action, this means in our
automorphic interpretation that

j̃(g̃, g̃−1(z))f(g̃−1(z)) = ξ f(z),

which is equivalent to
f(g̃(z)) = ξ j̃(g̃, z)f(z).

So g∗f = ξf iff f is automorphic with respect to the factor ρξ ⊗ j̃ defined on
the extended group Γ̃ in Section 1.2.2. Since Γ is of finite index n in Γ̃, the
same proof as in Section 1.6.1 shows that for such an f the square-integrability
conditions with respect to Γ and Γ̃ are equivalent.

Plan of attack

In Section 1.6.3 we have seen what correction in computing torsion is necessary
because −∆2k − k(1 − k) is twice the Kodaira Laplacian. We combine this
with the Fourier transform formula of Lemma 1.7 and the above eigenspace
interpretation to conclude that the equivariant torsion of E is given by

Tg(E) = −
∑
ξn=1

ξ log det′
(
−∆2k(ξ)− k(1− k)

)
+ log(2)

∑
ξn=1

ξ
(
c0(ξ) + k(1− k)c−1(ξ)−N(ξ)

)
︸ ︷︷ ︸

correction term

(1.26)

where ∆2k(ξ) denotes the Laplacian on ρξ ⊗ j̃-automorphic forms and cj(ξ)
and N(ξ) its heat kernel expansion constants and kernel dimension respectively.
The hard part is the first sum that we shall tackle first. By (1.23), i.e. the
logarithmic version of Corollary 1.2, we know that it can be computed as minus
the limit of

∑
ξn=1

ξ

(
CI + Cell(ξ)

+ log Z(ξ)(s) + log ΞI(s) + log Ξell(ξ)(s)−N(ξ) log
(
k(1− k)− s(1− s)

))
(1.27)

as s → k or s → 1 − k. We immediately see that the two identity terms drop
out because they don’t depend on ξ. It is also clear that the Fourier transform
of N(ξ) is the trace of the action of the automorphism g on the kernel of �0,
i.e. by Hodge theory ∑

ξn=1

ξN(ξ) = tr
(
g∗|H0(X,E)

)
. (1.28)

The other terms, the hyperbolic and the elliptic contribution, need a bit more
explaining. This is done in the next two subsections. The proof of Theorem 1.3
is then completed in the last subsection where we compute the correction term.
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The hyperbolic contribution

So let us consider the hyperbolic part of (1.27). Since j = j2kχ extends to a
factor of automorphy j̃ on the extended group Γ̃ iff χ extends to a multiplier
χ̃ for this group such that j̃ = j2kχ̃, it makes sense to form the Selberg zeta
function for χ̃. Using Lemma 1.8, we compute the hyperbolic part of (1.27) as

−
∑
ξn=1

ξ
∑
{P̃}Γ̃
tr P̃>2

ρξ(P̃ ) tr χ̃(P̃ )
log N(P̃0)
log N(P̃ )

N(P̃ )−s

1−N(P̃ )−1
. (1.29)

Since g̃ normalises Γ, every element P̃ of the enlarged group Γ̃ (along with all
its Γ̃ conjugates) belongs to a unique coset g̃`Γ, 0 ≤ ` ≤ n − 1. We call this `
the g-exponent of P̃ . By the definition of ρξ, we have

ρξ(P̃ ) = ξ
`
.

Hence in the above Fourier transform only those P̃ with g-exponent 1 survive
since ∑

ξn=1

ξξ
`
=

{
n, ` = 1
0, otherwise.

(1.30)

So suppose from now on that P̃ has g-exponent 1, i.e. P̃ ∈ g̃Γ. The first thing
to note is that its conjugacy class with respect to Γ̃ is actually not larger than
the one with respect to the smaller group Γ. This follows from the fact that
conjugation by g̃ can just as well be realised using the element P̃−1g̃ of Γ:

g̃−1P̃ g̃ =
(
P̃−1g̃

)−1

P̃
(
P̃−1g̃

)
.

Next consider P̃0 ∈ Γ̃, the primitive hyperbolic element associated to P̃ ∈ Γ̃.
Since P̃ is a power of P̃0, the g-exponent of P̃0 is necessarily prime to n. If P0

denotes the smallest positive power of P̃0 that belongs to the smaller group Γ,
we thus have P0 = P̃n

0 . Hence the centraliser of P̃ in the smaller group Γ is
given by

ZΓ(P̃ ) = {±Pm
0 | m ∈ Z}

and it has index n in ZΓ̃(P̃ ). In particular, we have for the Selberg norms

N(P̃0) =
1
n

N(P0).

This cancels nicely with (1.30) so that (1.29) equals log Zg̃Γ(s) which we define
as follows:

Definition 5 (Equivariant Selberg zeta function). The equivariant Selberg zeta
function with respect to j̃ = j2kχ̃ and g̃ is defined as the exponential of

log Zg̃Γ(s) := −
∑

{P̃}Γ⊂g̃Γ

tr P̃>2

tr χ̃(P̃ )
log N(P0)
log N(P̃ )

N(P̃ )−s

1−N(P̃ )−1
. (1.31)

20



The elliptic contribution

This section contains the most interesting part of the proof. We use the defini-
tion of log Ξ±ell from (1.18) and the explicit formula for C±

ell from Lemma 1.11 to
obtain by the same reasoning about g-exponents as before that the total elliptic
contribution equals E+(s) + E−(s) with

E±(s) := n
∑

{R̃}Γ⊂g̃Γ
0<θ<π

eiθ2k tr χ̃(R̃)
±ie±θi

2 sin(θ)
×

× 1
n

n−1∑
`=0

e±2θi`

(
log Γ

(
s± k + `

n

)
+

` log(n)
n

)
.

The only delicate point one has to note is that ν(R̃) = n because Γ is assumed
strictly hyperbolic. The inner sum can now be expressed via the derivative at
0 of Lerch’s Phi function:

Lemma 1.13. For an n-th root of unity e2θi and a ∈ R \ {0,−1,−2, . . . } we
have

Φ′(e2θi, 0, a) =
n−1∑
`=0

e2θi`

(
log Γ

(
a + `

n

)
+

`

n
log(n)

)
.

Proof. First of all, recall that the value and derivative of the slightly simpler
Hurwitz zeta function ζ(w, a) =

∑
j≥0 (j + a)−w at w = 0 are classically known:

ζ(0, a) = 1
2 − a, ζ ′(0, a) = log Γ(a)− log

(√
2π
)

. (1.32)

So all we need to do is express Lerch’s Phi in terms of Hurwitz’ zeta:

Φ(e2θi, w, a) =
∞∑

p=0

n−1∑
`=0

e2θi(pn+`)

(pn + ` + a)w

=
n−1∑
`=0

e2θi` 1
nw

∞∑
p=0

1(
p + `+a

n

)w
=

n−1∑
`=0

e2θi` 1
nw

ζ

(
w,

` + a

n

)
.

Taking the derivative at w = 0 we obtain

Φ′(e2θi, 0, a) =
n−1∑
`=0

e2θi`

(
ζ ′
(

0,
` + a

n

)
− log(n) ζ

(
0,

` + a

n

))
.

Now we plug in the classical facts from (1.32) and watch the terms that don’t
depend on ` disappear.

This leaves us with the much more compact formula

E±(s) =
∑

{R̃}Γ⊂g̃Γ
0<θ<π

eiθ2k tr χ̃(R̃)
±ie±θi

2 sin(θ)
Φ′(e±2θi, 0, s± k) (1.33)
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which already looks a lot like the corresponding term in the statement of The-
orem 1.3 and completes the computational part of its proof.

The rest of this section is devoted to checking interpretations. Let us first
explain why the sum in (1.33) really ranges over the set Xg of fixed points of
the action of g on the Riemann surface X. Consider the map which sends an
elliptic element R̃ in the coset g̃Γ to its unique fixed point z0(R̃) in the upper
half plane H. For any T ∈ Γ the conjugate TR̃T−1 has a fixed point which is
equivalent mod Γ. To be precise, we have

z0

(
TR̃T−1

)
= T (z0(R̃)).

Hence we get a well-defined map from the Γ conjugacy classes in the coset g̃Γ
to X. The image is exactly Xg because a point z mod Γ of X = Γ\H is a fixed
point of the action induced by g̃ iff there exists S ∈ Γ such that

g̃(z) = S(z),

i.e. iff z = z0(S−1g̃). Now what about injectivity? Suppose

z0(R̃1) ≡ z0(R̃2) mod Γ.

Can we deduce that {R̃1}Γ = {R̃2}Γ? Not quite but almost. If z1 and z2 are
the fixed points in H of R̃1 and R̃2 respectively, chose S ∈ Γ with S(z1) = z2.
Then z1 is also the fixed point of S−1R̃2S. But then R̃1 and S−1R̃2S are two
elliptic elements of the Fuchsian group Γ̃ with the same fixed point. This means
that they are powers 6= ±1 of the same primitive elliptic element. But exactly
two of these powers have g-exponent 1 and they are the negatives of each other
whence

{R̃1}Γ = ±{R̃2}Γ.

The restriction 0 < θ < π in (1.33) removes this ambiguity making it really a
sum over the fixed point set Xg.

Next we check the interpretation of e−2θi as the derivative at the fixed point.
This is a straightforward calculation: By lifting, the derivative of the automor-
phism at p = z0 mod Γ on X, z0 = z0(R̃), is the derivative of R̃ at z in H.
Choosing S ∈ SL2(R) with S(i) = z we get S−1R̃S = Rθ, θ = θ(R̃). So we may
assume z0 = i and R̃ = Rθ. But then

d

dz

(
cos θz − sin θ

sin θz + cos θ

)
z=i

= (sin θi + cos θ)−2 = e−2θi.

At last, we need to check that eiθ2k tr χ̃(R̃) is indeed the trace of the ac-
tion of g restricted to the fibre of Ep over the fixed point p = z0 mod Γ. In
our automorphic interpretation, this is action is given by the endomorphism
j̃(R̃, z0) = j2k(R̃, z0)χ̃(R̃) of Cd. Therefore the proof is complete if we can
show that j2k(R̃, z0) equals j2k(Rθ, i) because the latter can be computed from
the definition as eiθ2k. To that end, recall Petersson’s additive factor system
w(M,S) by which we can express the extent to which j2k fails to be a factor of
automorphy:

j2k(M,S(z))j2k(S, z)
j2k(MS, z)

= exp(2πi 2k w(M,S)), M, S ∈ SL2(R).
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From [14, Formula (1.3.8)a on p. 18] we know that it satisfies

w(R̃, S) = w(S, Rθ), R̃ = SRθS
−1.

Using this in the previous formula at z = i we get

j2k(R̃, S(i))j2k(S, i)
j2k(R̃S, i)

=
j2k(S, Rθ(i))j2k(Rθ, i)

j2k(SRθ, i)
,

which after cancellation leaves us with the desired equality.

The correction term

We can now easily compute the correction term in (1.26). We use Lemmas 1.10
and 1.11 to determine c−1(ξ) and c0(ξ). In doing so, we see that the identity
contributions don’t depend on ξ and therefore get killed when summing over all
n-th roots of unity ξ, which leaves us with A = A(ξ) from Lemma 1.11 as the
only relevant constant. Hence the correction term reduces to

log(2)
∑
ξn=1

ξ
(
A(ξ)−N(ξ)

)
.

Using the explicit formula (1.19) for the constant A from Lemma 1.10 and the
usual g-exponent considerations, we get∑

ξn=1

ξA(ξ) =
∑
{R̃}Γ

0<θ<π

eiθ2k tr χ̃(R̃)
1

4 sin2(θ)
.

Remembering (1.28) and the identifications proved in the previous section, the
correction term is clearly

log(2)

∑
p∈Xg

tr(g|Ep
)

|1− Tpg|2
− tr

(
g∗|H0(X,E)

) (1.34)

because 4 sin2(θ) = |1− e±2θi|2.

1.6.5 Proof of Corollary 1.4

Let us write L for ωk in this proof. To compute Tg(L), we apply Theorem 1.3
in the case where k ≥ 0 is an integer and both χ and χ̃ are the trivial scalar
multiplier. The elliptic contribution to Tg(L) is then simply minus the limit of

∑
p∈Xg

ieθi2k

2 sin(θ)
(
eθiΦ′(e2θi, 0, s + k)− e−θiΦ′(e−2θi, 0, s− k)

)
(1.35)

as s → k or as s → 1− k.
Let us begin with the case k = 0 in which L is simply the trivial line bundle

on X. Note that by Lemma 1.6, this covers the case k = 1 as well. In the case
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k = 0 it is most convenient to take the limit s → 1 of (1.35) because this simply
gives the finite term∑

p∈Xg

i

2 sin(θ)
(
e−θiF ′(e2θi, 0)− eθiF ′(e−2θi, 0)

)
By the fact that F ′(e−2θi, 0) is the complex conjugate of F ′(e2θi, 0), this equals∑

p∈Xg

i

2 sin(θ)
2iIm

(
e−θiF ′(e2θi, 0)

)
=
∑

p∈Xg

(
Re
(
F ′(e2θi, 0)

)
− cot(θ)Im

(
F ′(e2θi, 0)

))
.

When L is the trivial line bundle, H0(X, L) is just the one-dimensional space of
constant functions on X on which our automorphism clearly acts with eigenvalue
1. Hence the other two terms in Theorem 1.3 are just

log Zg̃Γ(s)− log
(
s(s− 1)

)
whose limit as s → 1 is log Z ′g̃Γ(1) by L’Hôpital’s rule.

Now we proceed to the case k ≥ 2. This time, the obvious limit s → k will
do. Then we know that log Zg̃Γ(s) has the finite limit log Zg̃Γ(k) since its series
representation (1.31) converges for Re(s) > 1. As for the elliptic terms, we start
with an elementary lemma

Lemma 1.14. Let a ≥ 0 be an integer. Then as s → a

Φ′(z, 0, s) ∼

{
− log(s) + F ′(z, 0), a = 0
z−a

(
F ′(z, 0) +

∑
1≤j≤a−1 zj log(j)

)
, a ≥ 1.

Proof. For a = 0 take the derivative at w = 0 of the trivial identity

Φ(z, w, s) = s−w + zΦ(z, w, s + 1)

and remember that zΦ(z, w, 1) = F (z, w). For a ≥ 1 do the same to the equally
trivial equation

Φ(z, w, a) = z−a
∑
j≥a

zjj−w = z−a

(
F (z, w)−

∑
1≤j≤a−1

zjj−w

)
.

By this lemma, (1.35) equals

∑
p∈Xg

ieθi2k

2 sin(θ)

(
eθie2θi(−2k)

(
F ′(e2θi, 0) +

∑
1≤j≤2k−1

e2θi j log(j)
)

−e−θi
(
− log(s− k) + F ′(e−2θi, 0)

))
+ o(1)
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as s → k. By ieθi/2 sin(θ) = e2θi/(1 − e2θi) and ie−θi/2 sin(θ) = 1/(1 − e2θi),
this in turn becomes∑

p∈Xg

i

2 sin(θ)
2iIm

(
eθi(1−2k)F ′(e2θi, 0)

)
+
∑

p∈Xg

e−2θi(k−1)

1− e2θi

∑
1≤j≤2k−2

e2θi j log(j)

+
∑

p∈Xg

eθi2k

1− e2θi

(
log(s− k) + log(2k − 1)

)
+ o(1).

At a fixed point, e−2θi and eθi2k are the actions of the automorphism on the
tangent bundle and on L respectively. From the Lefschetz trace formula we
deduce that ∑

p∈Xg

eθi2k

1− e2θi
= tr

(
g∗|H0(X,L)

)
,

using the fact that L is very ample. Putting everything together, we get that
as s → k, (1.35) equals∑

p∈Xg

(
sin((2k − 1)θ)

sin(θ)
Re
(
F ′(e2θi, 0)

)
− cos((2k − 1)θ)

sin(θ)
Im
(
F ′(e2θi, 0)

))

+
∑

p∈Xg

e−2θi(k−1)

1− e2θi

∑
1≤j≤2k−2

e2θi j log(j)

+ tr
(
g∗|H0(X,L)

) (
log(s− k) + log(2k − 1)

)
+ o(1).

Again we see by L’Hôpital’s rule that as s → k, the last line cancels nicely with
the singular term

− tr
(
g∗|H0(X,L)

)
log
(
k(1− k)− s(1− s)

)
from Theorem 1.3.

Now all that is left to prove is the assertion about the real part of F ′(e2θi, 0).
For this we apply [23, Lemma 13] to see that for 0 < θ < π, the value of the
meromorphic continuation of

∑
j∈Z
j 6=0

e2θij log
(
j2
)

|j|2w
, Re(w) >

1
2

at w = 0 equals

2 log(2π) + 2γEuler + Ψ
(

θ

π

)
+ Ψ

(
1− θ

π

)
.

Then we finish by noting that the above series equals −4Re
(
F ′(e2θi, 2w)

)
.
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Chapter 2

Arithmetic applications

2.1 Overview

The setting of this chapter is now arithmetic: We study Hermitian algebraic
vector bundles over an arithmetic surface.

Let us give an overview of the sections of Chapter 2.
Section 2.2 is devoted to the exposition of two general arithmetic theorems:

The arithmetic Riemann-Roch theorem of Gillet and Soulé (Theorem 2.1) and
the arithmetic Lefschetz fixed point formula of Köhler and Roessler (Theo-
rem 2.2). While both theorems hold in very general settings, we shall only need
them for powers ωk of the canonical bundle on arithmetic surfaces over the inte-
gers. Modesty commands that we only outline how to obtain the specialisations
we need from the general theorems.

The first theorem links the arithmetic degree of the cohomology (cf. Defi-
nition 6) of ωk to its ordinary torsion and the height of the arithmetic surface
(cf. Definition 7) while the second, provided an action of the group scheme of
n-th roots unity, establishes a relation between the arithmetic Lefschetz trace
(cf. Definition 8) of ωk on the one hand and its equivariant torsion and the
arithmetic height of the fixed point scheme (cf. Definition 9) on the other hand.

We also explain how a weaker result can be obtained if we are only given
an action of the constant group scheme Z/(n) (Remark 2.1) and state this
weaker result in the n = 2 case (Corollary 2.16) as it will be needed in the final
Section 2.6.

The following Section 2.3 is but an interlude. It contains all the classical
definitions and facts from the theory of indefinite rational quaternion algebras
needed for our treatment of Shimura curves, especially the notion of an Eichler
order along with Eichler’s formula for the number of optimal embeddings of
a quadratic order into a given Eichler order (Proposition 2.3). It is in this
section where we start illustrating all the formulae and facts by computing a
concrete example (henceforth referred to as the Main Example), namely that of
discriminant D = 26 and level N = 1.

Then ensues the rather long Section 2.4 covering compact Shimura curves
X (D,N). To emphasise the importance of this class of examples, we start off
by giving a fascinating formula for their arithmetic height (Theorem 2.4) in the
case N = 1.
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Then using the terminology of the preceding Section 2.3, we can easily define
Shimura curves as the quotient of the upper half plane by the Fuchsian group
obtained by embedding the norm 1 units of an Eichler order into the real 2× 2
matrices. This is followed by the well-known formulae for the genus (Theo-
rem 2.5) and the number of elliptic cycles (Theorem 2.6) of a Shimura curve,
which enables us to compute its volume by the Riemann-Hurwitz formula (2.9).

We then discuss the automorphisms of a Shimura curve, concentrating on
Atkin-Lehner involutions, especially on those corresponding to divisors n of the
discriminant D. The most important observation is that such an Atkin-Lehner
involution is induced by the action of any element of the Eichler order having
norm n (Remark 2.2).

Next we show how to count conjugacy classes of given norm and trace us-
ing Eichler’s optimal embeddings formula (Corollary 2.7). This result result
can be further simplified when the norm divides the discriminant D (Corol-
lary 2.8), which in turn enables us to explicitly evaluate Selberg zeta functions,
both classical and equivariant (Proposition 2.10). We do this numerically in
our Main Example and discuss the quality of such approximations in general
(Lemma 2.12).

Then we finish Section 2.4 by computing the height of the fixed point scheme
of an Atkin-Lehner involution (Proposition 2.13) which reduces the problem to
an application of the generalised Chowla-Selberg formula (Theorem 2.14).

In Section 2.5 we specialise our computation of equivariant torsion of k-
differentials (Corollary 2.15) and the arithmetic Lefschetz fixed point formula
(Corollary 2.16) to the case of an involution. Then we apply these results to
Atkin-Lehner involutions on Shimura curves, using our computations of the
equivariant Selberg zeta function and of the height of the fixed point scheme to
obtain the explicit formula for the arithmetic Lefschetz trace of k-differentials
stated in Theorem 0.1.

The last Section 2.6 contains the finale grande: We consider quadratic dif-
ferentials on an arithmetic surface of genus two and the hyperelliptic involution
and observe that in this case, the arithmetic degree and the arithmetic Lef-
schetz trace, i.e. the left hand sides of the two arithmetic theorems, are equal.
This gives a curious relationship between ordinary torsion and the height of
the surface on the one hand and equivariant torsion and the height of the fixed
point scheme on the other (Proposition 2.18). All terms involved in this curious
identity have been computed explicitly in our Main Example.

2.2 Two arithmetic theorems

2.2.1 Introduction to the setting

The main references for this section are [39] and [24]. For a readable survey
see [40]. Let us now suppose that we are given an arithmetic surface X over
a regular arithmetic ring D. By arithmetic surface we mean a regular scheme
X of absolute Krull dimension 2 whose map of definition f : X → Spec(D) is
projective and flat. For an explanation of regular arithmetic rings see [24, Sect.
4]. For simplicity we shall henceforth assume D = Z although analogous results
can be obtained in the more general case. We shall write X = X (C) for the
Riemann surface consisting of the complex points of X . Furthermore, if E is a
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Hermitian vector bundle over X , we denote by E the corresponding Hermitian
bundle over X. A typical example for X will be an integral model X (D,N) of
a Shimura curve (for details see Section 2.4), for E we will usually take integral
powers of the canonical bundle ω, the latter being equipped with the usual
Petersson metric.

From now on, denote by d̂eg : ĈH
1
(Spec(Z))

∼=−→ R the arithmetic degree
map. A Hermitian structure on a finitely generated Z-module V is by defini-
tion a Hermitian metric on V ⊗ C. Such a Hermitian Z-module V defines an
element of K̂0(Spec(Z)), its first arithmetic Chern class ĉ1(V ) is an element of

ĈH
1
(Spec(Z)) and its degree can be easily calculated as

d̂eg
(
ĉ1(V )

)
= − log

(
covol(Vfree)

#Vtors

)
where Vtors and Vfree denote the torsion and free part of V , respectively. By
the choice of a Kähler form on X, we can equip the harmonic q-forms on X
with values in E with an L2 metric. Via Hodge theory this gives a metric
on Hq(X, E), hence we have a Hermitian structure on the sheaf cohomology
Hq(X , E) and denote the resulting Hermitian Z-module by Hq(X , E). We make
the following

Definition 6 (Arithmetic degree of cohomology). The arithmetic degree of the
cohomology of E is the alternating sum

d̂eg(H ·(X , E)) :=
∑
q≥0

(−1)qd̂eg
(
ĉ1

(
Hq(X , E)

))
.

That said, since X is of relative dimension 1 over Spec(Z), the induced map

f∗ of arithmetic Chow groups takes ĈH
2
(X ) to ĈH

1
(Spec(Z)). We apply this

map to the square of the first Chern class of the canonical bundle ω of X . Up
to taking the arithmetic degree, this is the height of the surface X :

Definition 7 (Height of arithmetic surface). Let X be an arithmetic surface as
above. Then its height hω(X ) with respect to the canonical bundle is defined as

hω(X ) := d̂eg
(
f∗ĉ1(ω)2

)
.

2.2.2 The arithmetic Riemann-Roch theorem

Now assume that ω = Tf
∗

and consider E = ωk, k ∈ Z. Then the arithmetic
degree of the cohomology is related to the height of the surface and the ordinary
torsion via the arithmetic Riemann-Roch theorem (see [15] and compare also
[13]):

Theorem 2.1 (Gillet-Soulé). We have the following equality of real numbers

d̂eg(H ·(X , ωk)) =
1
2
T (ωk)−1

2

(
2ζ ′(−1)− 1

12

)
χ(X)+

1
12
(
6k2 − 6k + 1

)
hω(X );

here χ(X) :=
∫

X
c1(TX) is the Euler characteristic of X, by ζ ′ we denote the

derivative of Riemann’s zeta function and T is the ordinary analytic torsion of
a Hermitian vector bundle (cf. Section 1.4.1).
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Proof. From [15, 4.2.3] we take

d̂eg(H ·(X , E)) =
1
2
T (E)−1

2

∫
X

Td(TX)R(TX)ch(E)+d̂eg
(
f∗
(
T̂d(Tf)ĉh(E)

))
(2.1)

which is valid for any vector bundle E . Since the characteristic classes in the
integrand are

Td(TX) = 1 + . . .

R(TX) =
(
2ζ ′(−1) + ζ(−1)

)
c1(TX) + . . .

ch(E) = rk(E) + . . . ,

the middle term on the right is just − 1
2

∫
X

(
2ζ ′(−1) + ζ(−1)

)
c1(TX) whenever

E is a line bundle.
As for the last term on the right, it suffices to show that the degree 2 part of

the product T̂d(Tf)ĉh(ωk) equals
(

k2

2 − k
2 + 1

12

)
ĉ1(ω)2. But this is clear from

the well-known expansions

T̂d(Tf) = 1 +
1
2
ĉ1(Tf) +

1
12

ĉ1(Tf)2 + . . .

= 1− 1
2
ĉ1(ω) +

1
12

ĉ1(ω)2 + . . .

ĉh(ωk) = 1 + kĉ1(ω) +
k2

2
ĉ1(ω)2 + . . .

2.2.3 The arithmetic Lefschetz fixed point formula

The right arithmetic setting of an equivariant situation is the following: Suppose
that the group scheme µn of n-th roots of unity acts on the scheme X in such
a fashion that over C, the automorphism g corresponds to a primitive root of
unity ζ. Then the cohomology decomposes with respect to µn as

H ·(X , E) =
⊕

`∈Z/(n)

H ·(X , E)` (2.2)

and we make the following

Definition 8 (Arithmetic Lefschetz trace). We define the arithmetic Lefschetz
trace of E as ∑

`∈Z/(n)

ζ`d̂eg(H ·(X , E)`).

Clearly for n = 1, the arithmetic Lefschetz trace reduces to the the arithmetic
degree of cohomology. Next we decompose the restriction of E to the fixed point
scheme Xµn

as
E|Xµn

=
⊕

`∈Z/(n)

E`.

Now we make the following
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Definition 9 (Height of the fixed point scheme). The height of the fixed point
scheme with respect to the `-part of the canonical bundle is given by

hω`
(Xµn

) := d̂eg (fµn
∗ ĉ1(ω`))

where fµn : Xµn
→ Z is the defining map of the fixed point scheme.

Morally, this is the height of the sum of the fixed point schemes at which
g acts as ζ` on ω. Now as before, we specialise to the case E = ωk, k ∈ Z.
Then these “fixed point heights” are related to the arithmetic Lefschetz trace
via the equivariant torsion just as the height of the entire surface is related to
the arithmetic degree of the cohomology via ordinary torsion:

Theorem 2.2 (Köhler-Roessler, [24, Thm. 7.14]). We have the following equal-
ity of real numbers

∑
`∈Z/(n)

ζ`d̂eg(H ·(X , ωk)`) =
1
2
Tg(ωk)

+
∑

p∈Xg

e2θik

1− e2θi
iRrot(2θ) +

∑
`∈Z/(n)

` 6=0

ζk`

1− ζ`

(
ζ`

1− ζ`
+ k

)
hω`

(Xµn
);

here Rrot(2θ) is the imaginary part of F ′(e2θi, 0) whereby we mean the derivative
at w = 0 of Jonquière’s function F (z, w) :=

∑
j≥1 zjj−w and Tg denotes the

equivariant analytic torsion of a Hermitian vector bundle (cf. Section 1.4.2).

Proof. In [24, Thm. 7.14] we find a statement completely analogous to (2.1),
namely

∑
`∈Z/(n)

ζ`d̂eg(H ·(X , E)`) =
1
2
Tg(E)

− 1
2

∫
Xg

Tdg(TX)Rg(TX)chg(E) + d̂eg
(
fµn
∗
(
T̂dµn

(Tf)ĉhµn
(E)
))

. (2.3)

with appropriate characteristic classes: The ordinary classes Tdg, Rg, chg live
on the fixed point manifold Xg = Xµn(C) whereas the arithmetic classes T̂dµn ,
ĉhµn are objects on the fixed point scheme Xµn . On the right hand side, the
integral over the 0-dimensional fixed point set Xg is simply the sum over the
fixed points of the product of the degree 0-parts of the characteristic classes.
From [24, p. 348] we know that

chg(E)|p = tr(g|Ep) + . . . and Tdg(TX)|p =
1

1− (Tpg)−1 + . . .

where Tpg = e−2θ(p)i is the differential at p of the action of g on X. Straight
from its definition [24, Def. 3.5], we see that the Bismut equivariant R-class
satisfies

Rg(TX)|p = F ′(Tpg, 0)− F ′(1/Tpg, 0) + . . .

= 2iRrot(−2θ(p)) + . . .
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Now use that Rrot is an odd function.
As for the last term on the right of (2.3), note that Xµn

is of relative dimen-
sion 0 over Spec(Z), hence we only need to show that the degree 1 part of the
product T̂dµn

(Tf)ĉhµn
(ωk) equals

∑
`∈Z/(n)

` 6=0

ζk`

1−ζ`

(
ζ`

1−ζ` + k
)

ĉ1(ω`). But this

is clear from the expansions [24, p. 348]

T̂dµn
(Tf) =

∏
`∈Z/(n)

` 6=0

1
(1− ζ−`)rk(Tf`)

−
∑

`∈Z/(n)
` 6=0

1
1− ζ−`

ĉ1(Tf `)
ζ` − 1

+ . . .

=
∏

`∈Z/(n)
` 6=0

1
(1− ζ`)rk(ω)

+
∑

`∈Z/(n)
` 6=0

ζ`

(1− ζ`)2
ĉ1(ω) + . . . ,

ĉhµn(Lk
) =

∑
`∈Z/(n)

ζk`
(
rk((Lk

)k`) + ĉ1((L
k
)k`) + . . .

)
=

∑
`∈Z/(n)

ζk`
(
rk(L`) + k ĉ1(L`) + . . .

)
,

the latter of which holds for any Hermitian line bundle L.

Remark 2.1. If we only have an action of the constant group scheme Z/(n), all
hope is not lost: By restricting to a suitable subset U of Spec(D) as in [25, Ch.
2], we can still get a µn action. The price we have to pay is that Theorem 2.2
only holds in a certain quotient of R. For example, if D = Z and p1, . . . , pr are
the primes dividing n, we may choose U = Spec(Z) \ {p1, . . . , pr} because over
U , a µn action is the same thing as a Z/(n) action (see [25, Lem. 2.2]). But then

d̂eg identifies ĈH
1
(U) with R/

(
Q log(p1) + · · · + Q log(pr)

)
and Theorem 2.2

holds in the quotient R/
(
Q(ζ) log(p1) + · · ·+ Q(ζ) log(pr)

)
.

2.3 Indefinite rational quaternion algebras

This section contains all the theory about quaternion algebras that we shall need
to define and work with Shimura curves and their Atkin-Lehner involutions. Our
main reference is the monograph [1] to whose notation we shall adhere as closely
as possible.

2.3.1 Basic definitions

We start with an integer D > 1 which we assume to be square-free with an
even number of prime factors. Then, up to isomorphism, there exists a unique
quaternion algebra H over Q with discriminant DH = D. This means that H is
a central simple Q-algebra of dimension 4 and D is the product of those rational
primes p which ramify in H, i.e. H ⊗Qp is a division algebra, and H does not
ramify at the place ∞, i.e. H ⊗ R is isomorphic to the matrix algebra M2(R).
This last condition says that H is indefinite which refers to the character of its
norm which we shall define below.

For the sake of concreteness, we may think of H as given by a Q-basis
{1, i, j, ij} and relations i2 = a, j2 = b and ij = −ji with rational a, b 6= 0.
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Then we write H =
(
a,b
Q
)

and DH is related to a and b via the Hilbert symbol,
more precisely, we have for the Hilbert symbol (a, b)p = −1 iff p ramifies in(
a,b
Q
)
.

Main Example. Let us verify that the quaternion algebra
(
2,13

Q
)

has discriminant
26. To see how the Hilbert symbol may be computed see [5, Thm. 1.6.7]. First
of all, we have (2, 13)p = 1 for any prime p 6= 2, 13. Thus ramification is only
possible at the places 2, 13 and ∞. Now (2, 13)2 = (−1)(13

2−1)/8 = −1 and
(2, 13)13 is Legendre’s symbol

(
2
13

)
which equals −1. Now we are done because

the total number of ramified places (finite and infinite) is always even.

We can be even more concrete: Supposing wlog a > 0, we can embed
(
a,b
Q
)

into M2(Q(
√

a)) by

1 7→
(

1
1

)
, i 7→

(√
a

−
√

a

)
, j 7→

(
1

b

)
,

which in particular yields an isomorphism Φ: H ⊗ R → M2(R).
Lastly, if H =

(
a,b
Q
)
, we can define an involutive anti-automorphism called

conjugation by the formula familiar from Hamilton’s quaternions, i.e. 1̄ = 1,
ī = −i and j̄ = −j. Then, the reduced norm and trace are given by nm(α) = αᾱ
and tr(α) = α + ᾱ such that via Φ, they simply correspond to the determinant
and trace.

Notation. For an integer n we let

O(n) := {α ∈ O | nm(α) = n}.

Main Example. In the above example, we have

nm(x + yi + zj + tij) = x2 − 2y2 − 13z2 + 26t2

which is indeed an indefinite quadratic form.

2.3.2 Eichler orders

An order O in H is a full Z-lattice in H which is also a subring. Choosing a
Z-basis {v1, v2, v3, v4} of O, we can define or compute its discriminant by

DO =
√
|det(tr(vivj))|.

Then DH | DO with equality iff O is maximal. An Eichler order is by definition
the intersection of two maximal orders. Its level NO is simply given by

DO = DHNO.

It turns out that gcd(DH , NO) = 1 for Eichler orders and conversely, given
an N coprime to DH , there exists an Eichler order of level N . Furthermore,
there is an easy-to-check sufficient condition for O to be Eichler, namely the
square-freeness of the quotient DO/DH .

In our situation over Q, any two Eichler orders of the same level (in particular
any two maximal orders) are H-conjugate so that given coprime numbers D and
N with D square-free, we simply write O(D,N) for any Eichler order of level
N in the quaternion algebra with discriminant D.
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Example. Consider O = Z[1, i, (1 + j)/2, (i + ij)/2] in H =
(
a,b
Q
)

with coprime
integers a and b. By elementary means, one checks that O is closed under
multiplication, hence an order. To compute its reduced discriminant we form
the matrix

tr(1) tr(i) tr((1 + j)/2) tr((i + ij)/2)
tr(i) tr(i2) tr(i(1 + j)/2) tr(i(i + ij)/2)

tr((1 + j)/2) tr((1 + j)i/2) tr((1 + j)2/4) tr((1 + j)(i + ij)/4)
tr((i + ij)/2) tr((i + ij)i/2) tr((i + ij)(1 + j)/4) tr((i + ij)2/4)


Its determinant is ∣∣∣∣∣∣∣∣

2 0 2 0
0 2a 0 a
1 0 b+1

2 0
0 a 0 a(1−b)

2

∣∣∣∣∣∣∣∣ = −a2b2

so that O is maximal iff the discriminant of H =
(
a,b
Q
)

equals ab.

Main Example. For D = 26 we now have an explicit maximal order O =
Z[1, i, (1 + j)/2, (i + ij)/2] in H =

(
2,13

Q
)
.

2.3.3 Counting optimal embeddings à la Eichler

Let F be a maximal commutative subalgebra of H. Then F is of dimension 2
over Q and by our assumption D > 1 we know that H is a skew-field, hence
F is actually a field. Conversely given a quadratic field F , it can be embedded
into H iff none of the primes which ramify in H split in F . If DF denotes
the discriminant of F , this condition can be expressed using the (extended)
Legendre symbol (

DF

p

)
6= 1 for all p | DH . (2.4)

Recall that if F = Q(
√

d) with integer square-free d 6= 0, 1, the discriminant of
F is given by

DF =

{
d, d ≡ 1 mod 4,

4d, d ≡ 2, 3 mod 4,
(2.5)

which by definition equals the discriminant of the maximal order ΛF = Z[1, ωd]
where

ωd =

{
1+
√

d
2 , d ≡ 1 mod 4√
d, d ≡ 2, 3 mod 4

.

More generally, recall that any order Λ of F is of the form Λ(d, m) := Z[1,m ωd]
for a unique integer m ≥ 1 called its conductor. Furthermore, the discriminant
of this order is DΛ = m2DF .

Now given an embedding ϕ : F → H, the preimage Λ = ϕ−1(O) of the
Eichler order O is an order in F and we say that ϕ is an optimal embedding of
Λ into O. Conversely, given Λ = Λ(d, m) ⊂ F (and assuming that F can be
embedded into H), one may ask whether Λ can be optimally embedded into O.
There is a necessary condition, namely that its conductor and the discriminant
of the quaternion algebra be coprime, i.e.

(m,DH) = 1. (2.6)
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For O maximal, i.e. N = 1, this condition is also sufficient.
But there is an even better statement: One can precisely count the number

of optimal embeddings up to conjugation by the norm 1 elements O(1). The
theorem can be stated elegantly for square-free N using Eichler’s symbol which
we define now:

Definition 10 (Eichler’s symbol over the rationals). Let Λ be the quadratic
order of discriminant DΛ. Then Eichler’s symbol

{
Λ
p

}
is set to 1 if Λ is not

maximal at p. Otherwise it is defined to equal the (extended) Legendre symbol(
DΛ
p

)
.

Remark. Note that Λ(d, m) is maximal at p iff p does not divide its conductor
m and in this case

(
DΛ
p

)
=
(
m2DF

p

)
=
(
DF

p

)
. Hence the fully explicit formula

{
Λ(d, m)

p

}
=

{
1, p | m,(
DF

p

)
, otherwise.

(2.7)

Proposition 2.3 (Counting optimal embeddings). Let O be an Eichler order
of square-free level N in an indefinite rational quaternion algebra H of discrim-
inant DH . Let Λ be a quadratic order, denote its class number by h(Λ) and
define

(2)Λ :=

{
1, Λ contains a unit of norm − 1,

2, otherwise.

Then the number of optimal embeddings of Λ into O up to conjugation by O(1)

is given by

(2)Λh(Λ)
∏

p|DH

(
1−

{
Λ
p

})∏
p|N

(
1 +

{
Λ
p

})
.

Proof. We apply the first formula of [44, Cor. 5.12] to the ground field Q (which
has class number h = 1) and obtain the number of optimal embeddings modulo
all units O× as the last three factors. Then apply [44, Cor. 5.13] with G = O(1)

to get the extra factor
[nm(O×) : nm(Λ×)].

This index equals (2)Λ because it is classically known that O always contains a
unit of norm −1.

Remark. From this proposition, we recover the above conditions (2.4) and (2.6)
whose sufficiency in the case of maximal O is also clear.

Remark. Proposition 4.23 of [1] seems to get the relation between the embed-
dings modulo O(1) and O× wrong.

Remark. The ideal class number of Λ = Λ(d, m) can be computed from the class
number h(F ) of the quadratic field F by means of Dirichlet’s formula

h(Λ) =
h(F )

[Λ×F : Λ×]
m
∏
p|m

(
1−

(
DF

p

)
1
p

)
.
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Example 2.1. Let us take a maximal order O and consider the two imaginary
orders containing non-trivial roots of unity, namely Λ(−1, 1) and Λ(−3, 1). It
is well-known that

Λ(−1, 1)× = {±1,±
√
−1},

Λ(−3, 1)× = {±1,±1
2
± 1

2
√
−3}.

They are both maximal (i.e. m = 1) and their discriminants are −4 and −3
respectively. Their class numbers both equal 1. Since the norm is a positive
definite binary quadratic form on any imaginary order, we have (2)Λ = 2 so
that the number of embeddings modulo O(1) is

2
∏

p|DH

(
1−

(
−4
p

))
and 2

∏
p|DH

(
1−

(
−3
p

))
, (2.8)

respectively.

Main Example. For DH = 26, there are no optimal embeddings of either order
because

(−4
13

)
=
(−3

13

)
= 1.

2.4 Compact Shimura curves

In this section, we recall the compact Shimura curves X(D,N) of discriminant
D and level N . As is well-known, the Shimura curve is compact iff D > 1
and within that class of curves, our primary interest shall be in the level 1 case
(N = 1). The original reference is [38] from which the existence of a canonical
model X (D,N) is known, cf. also [27, Prop 1.1(ii)]. The advantage of Shimura
curves is that all terms in Theorems 2.1 and 2.2 can be computed explicitly. For
example, the height of the arithmetic surface X (D, 1) is known, see [27, Thm.
0.5 & Cor. 11.2] for an unconditional result and [7, Eq. (6.8) and Thm. 6.9]
for the case when the Shimura curve can be embedded into a Hilbert modular
surface.

Theorem 2.4 (Kudla-Rapoport-Yang, Bruinier-Burgos-Kühn). The height of
the arithmetic surface associated to the Shimura curve X (D, 1) with respect to
the canonical bundle ω̂ equipped with the renormalised Petersson metric |dz|2 =
e−2C(4πy)2, is

hω̂(X (D, 1)) = −2ζD(−1)

2C − 2
ζ ′(−1)
ζ(−1)

− 1 +
1
2

∑
p|D

p + 1
p− 1

log(p)

 .

where ζ denotes Riemann’s zeta function and ζD is Riemann’s zeta function
with the Euler factors for p | D removed, i.e. ζD(s) := ζ(s)

∏
p|D(1− p−s).

Remark. Explicitly, we get

ζD(−1) = ζ(−1)
∏
p|D

(1− p) = − 1
12

∏
p|D

(p− 1),

the last equality holding because D has an even number of prime divisors.
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To match [7] with [27], one needs to take into account that modular forms
of weight k on a Hilbert modular surface restrict to modular forms of weight
k + k = 2k on an embedded Shimura curve and, of course, the fact that the
Hodge bundle appearing in [27] is isomorphic with the canonical bundle, i.e. the
bundle of modular forms of weight 2 (see [27, Sec. III.3] and also [26, Sec. 3]).

What is more, Brunier et al. use the normalisation dxdy/(4πy2) for the
volume form, [7, Cor. 3.9,ii)], so that their Shimura curve volume is −ζD(−1),
note the sign mistake in [27, Chap. I, (0.20)] and compare Section 2.4.2 below.

It might be helpful to remark that setting C = 0 in the above theorem pro-
duces the renormalisation of Petersson’s metric used by Bruinier et al., compare
[7, Def. 2.4] and [27, Chap. III, (3.6)]. In the latter equation, note that a factor
of 4 has been forgotten.

Main Example. For D = 26, we get

hω̂(X (26, 1)) = 2
(

2C + 24ζ ′(−1)− 1 +
3
2

log(2) +
7
12

log(13)
)

.

Let us now recall the definition of the Shimura curve X(D,N).

2.4.1 The Fuchsian groups defining Shimura curves

Now given an Eichler order O = O(D,N), the Shimura curve X = X(D,N)
can be defined in a straightforward manner as the quotient X = Γ\H of the
hyperbolic plane H = {x + iy | y > 0} by the subgroup

Γ = Γ(D,N) := Φ(O(1))

of SL2(R) obtained by embedding the norm 1 units of O via Φ. It is well-known
that this Γ is discrete and has finite covolume, i.e. is a Fuchsian group of the
first kind.

Furthermore, it is equally classical that Γ is cocompact iff D > 1. For some
concrete fundamental domains for the above Fuchsian groups see the beautiful
paper [21].

2.4.2 The volume and the genus of a Shimura curve

First of all, there is an explicit arithmetic formula for the (suitably normalised)
volume of the Shimura curve

Theorem 2.5 (Arithmetic volume of Shimura curve). The volume V (D,N)
of the Shimura curve X(D,N) with respect to the metric dxdy/(2πy2) can be
computed as

V (D,N) =
N

6

∏
p|D

(p− 1)
∏
p|N

(
1 +

1
p

)
.

Proof. Use the formula from [44, p. 120 bottom] with N = N0.

Main Example. In our favourite example DH = 26, the formula gives V (26, 1) =
2.
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Then secondly, for any cocompact Fuchsian group Γ of the first kind we
have the Riemann-Hurwitz formula which allows to compute the genus h of the
quotient X = Γ\H from the arithmetic volume V and the numbers of elliptic
cycles eq of order q, q = 2, . . .

V = 2h− 2 +
∑
q≥2

(1− 1/q)eq ⇔ h =
1
2

V + 2−
∑
q≥2

(1− 1/q)eq

 . (2.9)

For a proof of this formula, see [30, Theorem 2.4.3].
In order for this formula to be useful, we need to get a hand on the numbers

eq:

Theorem 2.6 (Elliptic cycles of Shimura curves). To begin with, eq = 0 for
q > 3. Then e2 = 0 if 4 | N and e3 = 0 if 9 | N . Otherwise

e2 =
∏

p|DH

(
1−

(
−4
p

))∏
p|N

(
1 +

(
−4
p

))

e3 =
∏

p|DH

(
1−

(
−3
p

))∏
p|N

(
1 +

(
−3
p

))
.

Proof. Apply the formula given in [44, Chap. IV, Sec. 3A] to the case N =
N0.

Remark. Note the similarity with the formulae (2.8) for the number of embed-
dings of Λ(−1, 1) and Λ(−3, 1). This is not accidental as will become clearer
soon.

Main Example. The genus of X(26, 1) equals 1
2 (2+2) = 2 as there are no elliptic

cycles at all (cf. Example 2.1). In particular, like any curve of genus 2, X(26, 1)
is automatically hyperelliptic. An amusing way to convince oneself of the last
fact is to use the inequality 2h+2 ≤ n ≤ h3−h for the number n of Weierstraß
points together with the fact that a Riemann surface is hyperelliptic iff n is
minimal.

2.4.3 Automorphisms of Shimura curves: The normaliser
and the Atkin-Lehner group

For a very readable account of the following, see [17, Sec. 1.2] for the classical
modular case. For genuine Shimura curves cf. [35].

We are interested in the group A of automorphisms of the Shimura curve
X = X(D,N).

Clearly, elements of the normaliser N (Γ) of Γ = Γ(D,N) in SL2(R) operate
on the coset space X as automorphisms so B := N (Γ)/Γ is in general a subgroup
of A.

However, if Γ is strictly hyperbolic so that H → X is the (unramified!)
universal cover and Γ is in fact the fundamental group of the Shimura curve,
then it is equally obvious that in fact A = B.

Next, for every exact divisor n of DN we can find an element wn of N (Γ)
called the Atkin-Lehner involution associated to n. Modulo Γ, these satisfy
wn = 1 iff n = 1 and wnwn′ = wnn′/(n,n′). Hence we obtain a subgroup W of
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B called the Atkin-Lehner group which is isomorphic to (Z/2Z)r where r is the
number of prime divisors of DN .

As before, W is in general only a subgroup of B. For example, if DH = 1
and Γ is the classical modular group Γ0(N) and 4 | N or 9 | N there are extra
elements

Sq =
(

q 1
q

)
, q a suitable power of 2 or 3,

of the normaliser N (Γ0(N)) which are not of Atkin-Lehner type.
So the whole picture is A ⊇ B ⊇ W , and all inclusions may be strict.
Now, D being square-free, n | D implies n ‖ D and to give the corresponding

Atkin-Lehner involution is particularly easy: Just pick any quaternion α in O
which is of norm n. Then

wn := n−1/2Φ(α)

will do.

Remark 2.2. This is equivalent to saying that

wnΓ = n−1/2Φ(O(n)),

so we may think of the coset wnΓ as just the elements of O of norm n. In
particular, Γ-conjugacy classes in wnΓ correspond bijectively to O(1)-conjugacy
classes in O(n).

Remark. By its very definition, for p | D the Atkin-Lehner involution wn is
nothing but the Hecke operator Tp introduced by Eichler, e.g. see [12, p.93
bottom]. Hecke operators in general are not maps but only correspondences,
i.e. one-to-many, but interestingly, these Tp for p | D are one-to-one.

Main Example. In our primary example, DH = 26, N = 1, with O as above,
let us find an element α of norm 26, i.e.

α = x1+yi+ z(1+ j)/2+ t(i+ ij)/2 = (x+ z/2)1+(y + t/2)i+(z/2)j +(t/2)ij

with (x + z/2)2 − 2(y + t/2)2 − 13(z/2)2 + 26(t/2)2 = 26. An obvious solution
is t = 2, y = −1, x = z = 0, i.e. α = ij. Hence we get

w26 =
1√
26

Φ(ij) =
1√
26

(√
2

−
√

2

)(
1

13

)
=
(

1/
√

13
−
√

13

)
.

Note that incidentally, w2
26 =

(
−1

−1

)
= 1 exactly, not just modulo Γ. It

was proved by Ogg [32, Thm. 7] that w26 is in fact the hyperelliptic involution
of X(26, 1). We shall reprove this fact by showing that w26 has 2g +2 = 6 fixed
points (which are then – more or less by definition – the Weierstraß points).

2.4.4 Counting elliptic and hyperbolic Γ-conjugacy classes

Next we want to count Γ-conjugacy classes in wnΓ when n | DH . Since w1Γ = Γ,
this subsumes the problem of counting Γ-conjugacy classes in Γ itself. From
Remark 2.2, we know that we can equally well count O(1)-conjugacy classes in
O(n). The solution to the problem is to enumerate these conjugacy classes by
their traces and to prove that for any fixed trace t ∈ Z, there are only a finite
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number m = m(n, t) of them, i.e. setting O(n,t) := {α ∈ O(n) | tr(α) = t} we
have decompositions

O(n) =
∐
t∈Z

O(n,t) =
∐
t∈Z

m(n,t)∐
j=1

{αj}O(1) .

We will see that the formulae of Section 2.3.3 can be used to compute m(n, t).
So let α ∈ O be an element of norm n and trace t, i.e. α ∈ O(n,t). Since it

is a root of its minimal polynomial P = Pα

P (X) = X2 − tX + n, (2.10)

the map X 7→ α furnishes an embedding ϕ into H of the algebra Q[X]/(P (X)).
According to the discriminant DP = t2−4n of P , we can distinguish four cases:

Q[X]/(P (X)) =


Q, DP a perfect square
Q⊕Q, DP = 0
Q(
√

DP ), DP > 0 not a perfect square
Q(
√

DP ), DP < 0

Since the square of the trace of n−1/2Φ(α) is t2/n, these cases correspond to the
latter element being equal to ±I, parabolic, hyperbolic and elliptic in SL2(R),
respectively. Since we are only interested in the hyperbolic and the elliptic case,
assume that

√
t2 − 4n /∈ Q so that Q[X]/(P (X)) is a quadratic field F = Q(

√
d),

d a square-free integer 6= 0, 1, and write ξ (instead of X) for the element of F
with ϕ(ξ) = α.

Next, we decompose the polynomial discriminant as DP = m2DF and d is
related to DF via (2.5). Since ϕ preserves norm and trace, it is clear that ξ is
integral in F . Furthermore, it generates the order Λ = Λ(d, m) of conductor
m in F . Now consider the order Λ′ = ϕ−1(O) of F optimally embedded by ϕ.
Then obviously Λ′ ⊇ Λ which is the case iff the conductor m′ of Λ′ divides the
conductor m of Λ.

To cut a long story short, if
√

t2 − 4n /∈ Q, then to every element α of
O(n,t), there corresponds an embedding of the splitting field F of P = Pα which
is optimal for some order Λ′ containing the roots of P .

Furthermore, this correspondence is one-to-one and equivariant with respect
to O(1) which acts by conjugation both on O(n,t) and on the embeddings.

Hence from Proposition 2.3 we obtain

Corollary 2.7 (Conjugacy classes of given norm and trace). Let O be an Eichler
order of square-free level N . Suppose

√
t2 − 4n /∈ Q and write t2 − 4n = m2DF

with F = Q(
√

t2 − 4n). Then the number of O(1)-conjugacy classes in O of
norm n and trace t is given by

m(n, t) =
∑

m′|m
(m′,DH)=1
Λ′=Λ(d,m′)

(2)Λ′h(Λ′)
∏

p|DH

(
1−

(
DF

p

))∏
p|N

(
1 +

{
Λ′

p

})
. (2.11)

Proof. Use formula (2.7) to see that 1 −
{

Λ′

p

}
gives 0 for some p | DH unless

(m′, DH) = 1, which proves formula (2.11).
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Remark. In the hyperbolic case, (2)Λ′h(Λ′) is simply the narrow class number
of Λ′.
Remark. The calculation of conjugacy classes in SL2(Z) (i.e. the case DH =
N = n = 1 of Corollary 2.7) in [44, p. 96] seems to contain a mistake: The (2)Λ′
factor is pulled out of the sum over all orders containing a given one, suggesting
(2)Λ(d,m′) = (2)Λ(d,1) in general. But this is wrong. For instance, take d = 5 and
m′ = 3. The maximal order Λ(5, 1) is Z[1, ω5] with ω5 = 1+

√
5

2 . Its fundamental
unit is in fact ω5 which has norm −1. However, the fundamental unit of Λ(5, 3)
equals 2 + 3ω5 which has norm 1.
Remark. Note that we can now easily deduce Theorem 2.6 for maximal O. Just
apply the corollary to the case N = n = 1 and t2 − 4 < 0. This leaves the two
possibilities t = 0 and t = ±1. In the first case we have t2− 4 = −4 = DQ(

√
−1),

in the second t2 − 4 = −3 = DQ(
√
−3). So in both cases we have m = 1 and

hence only one summand (namely m′ = 1) in formula (2.11). As we have seen in
Example 2.1, both above fields have class number one and as imaginary fields,
they never contain units of norm −1, i.e. (2)Λ′ = 2. So we get

m(1, 0) = 2
∏

p|DH

(
1−

(
−4
p

))

m(1,±1) = 2
∏

p|DH

(
1−

(
−3
p

))
.

But we know that to every elliptic cycle of order 2 (resp. 3), there correspond
two (resp. four) elliptic conjugacy classes in Γ ∼= O(1). Hence e2 = m(1, 0)/2
and e3 = (m(1, 1) + m(1,−1))/4, which is exactly what Theorem 2.6 says.

If the norm divides the quaternion algebra discriminant, we can evaluate
some Legendre symbols to get an even simpler formula

Corollary 2.8. Suppose in the situation of Corollary 2.7 that n | DH . Then
m(n, t) = 0 if n - t. If n | t, we have

m(n, t) =
∑

m′|m
(m′,

DH
n )=1

Λ′=Λ(d,m′)

(2)Λ′h(Λ′)
∏

p|DH
n

(
1−

(
DF

p

))∏
p|N

(
1 +

{
Λ′

p

})

and t2 − 4n was not a perfect square.

Proof. The whole simplification hinges on the fact that (m,n) = 1 for the
conductor m defined by t2 − 4n = m2DF , which follows from the elementary
Lemma 2.9 below. For then, the relaxation from the condition (m′, DH) = 1 on
m′ to the milder condition (m′, DH

n ) = 1 is clear and we can compute for p | n(
DF

p

)
=
(

m2DF

p

)
=
(

t2 − 4n

p

)
=
(

t2

p

)
=

{
0, p | t
1, p - t.

Since n is square-free, we know that n - t iff there is a prime dividing n but not
t and we obtain ∏

p|n

(
1−

(
DF

p

))
=

{
1, n | t
0, n - t.
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The last statement is clear if a prime p > 2 divides n because then letting t = kn
shows that (kn)2 − 4n is divisible by p but not by p2. For the remaining cases
n = 1 and n = 2, suppose t2 − 4n = m2 with m ≥ 1. Then one discusses
(t + m)(t−m) = 4n by elementary means.

Lemma 2.9. Let t, n, m and D be integers with t2 − 4n = m2D and D ≡ 0, 1
mod 4. Then p ‖ n implies p - m.

Proof. Let us do p > 2 first. Suppose p divides both m and n. Then t2 =
4n + m2D ≡ 0 mod p, hence t2 ≡ 0 mod p2. But then 4n = t2 − m2D ≡ 0
mod p2, which can’t happen if p divides n exactly.

For p = 2, it is clear that m must be odd if t is odd because in that case,
t2 − 4n is odd. So suppose t and m are even and divide the whole equation by
4 to get t′2 − 2n′ = D′ where t′ = t/2, n′ = n/2 and D′ = D(m/2)2. Then n′ is
odd, hence 2n′ ≡ 2 mod 4. But t′2,D′ ≡ 0, 1 mod 4, so we have a contradiction
modulo 4.

Main Example. As an application of Corollary 2.8, let us go back to our favourite
Shimura curve X(26, 1) and compute the numbers of all elliptic conjugacy classes
of norms n | DH :

n t with n | t, DP m h(DF )
(
DF

2

) (
DF

13

)
m(n, t)

|t| < 2
√

n

1 0 −4 1 1 0 1 0
±1 −3 1 1 −1 1 0

2 0 −8 1 1 0 −1 4
±2 −4 1 1 0 1 0

13 0 −52 1 2 0 0 4
26 0 −104 1 6 0 0 12

Since two conjugacy classes correspond to one fixed point, we conclude that w2

and w13 both have two fixed points whereas w26 has six fixed points. Since
6 = 2h + 2, we have seen that w26 is indeed the hyperelliptic involution.

2.4.5 Equivariant Selberg zeta functions for Atkin-Lehner
involutions

To make Corollary 2.15 fully explicit for an Atkin-Lehner involution wn acting
on k-differentials, k ≥ 2, on a Shimura curve X(D, 1) we use Corollary 2.8 to
evaluate the equivariant Selberg zeta function:

Proposition 2.10 (Equivariant Selberg zeta functions for Atkin-Lehner in-
volutions). Let Γ = Γ(D,N) with N square-free, and let wn, n | D, be an
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Atkin-Lehner involution. Then for Re(s) > 1, we have

ZwnΓ(s) = −
∑

t∈nN0
t2−4n>0

∏
p|D

n

(
1−

(
DF

p

))
4

log N

N−s

1− 1
N

×

×
∑

m′|m
(m′, D

n )=1

∏
p|N

(
1 +

{
Λ′

p

})
h(Λ′) log(εΛ′).

For every t of the outer sum, we set N := (t +
√

t2 − 4n)2/(4n), denote by DF

the discriminant of the quadratic field F := Q(
√

t2 − 4n) and define m ≥ 1 by
t2 − 4n = m2DF . Then for every m′ of the inner sum, let Λ′ be the order
of conductor m′ in F with class number h(Λ′) and fundamental unit εΛ′ . For
Eichler’s symbol

{
Λ′

p

}
see (2.7).

Remark. Note that the case n = 1 covers the problem of evaluating the ordinary
Selberg zeta function because w1Γ = Γ.

Proof. By Definition 5, the equivariant Selberg zeta function is given as

ZwnΓ(s) = −
∑ log N(P0)

log N(P̃ )
N(P̃ )−s

1−N(P̃ )−1
,

the sum extending over all hyperbolic conjugacy classes {P̃}Γ in the coset wnΓ
of positive trace and N denoting the Selberg norm of P̃ and the corresponding
primitive element P0, respectively.

We now apply Proposition 2.3 to make the above sum completely explicit.
Any conjugacy class {P̃}Γ in wnΓ corresponds to a unique conjugacy class

{α}O(1) in O(n) via P̃ = n−1/2Φ(α) and we can enumerate the latter according
to their traces.

Then the Selberg norm N(P̃ ) only depends on the trace t of α. Since Φ(α)
and α have the same characteristic polynomial, namely X2 − tX + n, Φ(α)
has eigenvalues (t ±

√
t2 − 4n)/2 so that the eigenvalues of P̃ are clearly (t ±√

t2 − 4n)/(2
√

n). For t > 0, the eigenvalue of greater of modulus is the one
with the plus sign, therefore

N(P̃ ) =

(
t +

√
t2 − 4n

2
√

n

)2

.

The Selberg norm N(P0) is slightly more delicate. Suppose {α}O(1) corre-
sponds to an embedding ϕ : F → H and let Λ′ = ϕ−1(O) be the order of F for
which this embedding is optimal. Then N(P0) depends on Λ′ as follows:

Since α /∈ Q, its centraliser in H is the quadratic subfield it generates, i.e.
ϕ(F ). Hence its centraliser in O equals ϕ(F ) ∩ O which is isomorphic to Λ′

by ϕ. Furthermore since ϕ preserves norms, it identifies the norm 1 units Λ′(1)

with ϕ(F )∩O(1) which is the centraliser of α in O(1). Now the structure of the
former is explicitly known in terms of the fundamental unit ε = εΛ′ :

Λ′(1) = {±ηm | m ∈ Z}
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where

η = ηΛ′ =

{
ε2, if nm(ε) = −1;
ε, if nm(ε) = 1.

Moreover, η (which is sometimes called the proper fundamental unit) is usually
computed from the minimal solution of Pell’s equation x2 −D′y2 = 4 with D′

the discriminant of Λ′: If (x0, y0) is the solution with x0, y0 > 0 and y0 as small
as possible, then η = (x0 + y0

√
D′)/2.

Now η has norm 1 and trace x0 > 0. Since clearly P0 = Φ(ϕ(η)), the same
is true for P0. Therefore, the same reasoning as for N(P̃ ) above shows

N(P0) =

(
x0 +

√
x2

0 − 4
2

)2

.

By Pell’s equation, x2
0 − 4 = y2

0D′, which finally gives N(P0) = η2.
Noting that (2)Λ′ log(η2

Λ′) = 4 log(εΛ′), we are done.

Remark. Similar computations can be found in [2] and [41].

Remark. For several ways to express the product h(Λ′) log(εΛ′) in terms of L-
function values see Lemma 2.11 below. But beware that all these formulae,
though aesthetically pleasing, are unfortunately useless for computational pur-
poses if D′ is large.

Lemma 2.11. Let Λ be the order of conductor m in a real quadratic field F .
Then the product of its class number and its regulator satisfies

h(Λ) log εΛ =
1
2

√
DΛL(DΛ, 1)

=
1
2
m
√

DF

∏
p|m

(
1−

(
DF

p

)
1
p

)
L(DF , 1)

= m
∏
p|m

(
1−

(
DF

p

)
1
p

)DF−1∑
`=1

(
DF

`

)
log Γ

(
`

DF

)

where DΛ = m2DF is the discriminant of Λ and L(D, s) =
∑∞

n=1

(
D
n

)
n−s for

any discriminant D.

Proof. All these identities can already be found in Landau’s classical monograph
[28]. As for the first equality, we have

2h(Λ) log εΛ = hnar(Λ) log ηΛ =
√

DΛL(DΛ, 1)

by [28, Satz 209]. The second equality is [28, Satz 214].
For the third equality, we take from [28, Satz 217] the formula

L(DF , 1) = − 1√
DF

DF−1∑
`=1

(
DF

`

)
log sin

(
π`

DF

)
and apply the multiplication formula for the Gamma function.
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2.4.6 Numerical aspects

The preceding corollary can be used to approximate Zwn(k) numerically. To
make an educated guess for the quality of approximation, we give an easy lemma

Lemma 2.12. In the situation of Corollary 2.10, let

H :=
∑
m′

∏
p|N

(
1 +

{
Λ′

p

})
h(Λ′) log(εΛ′)

and

M := sup
t

∑
m′ h(Λ′) log(εΛ′)/ log(N)

t/n
.

Then the following tail estimate holds∣∣∣∣∣∣−4
∑
t>T

∏
p|D

n

(
1−

(
DF

p

))
H

log N

N−k

1− 1
N

∣∣∣∣∣∣ < 4 · 2rMC

nk

1
(2k − 2)L2k−2

where r is the number of primes dividing DN/n, L := bT/nc and

C :=
N(T )−k/(1− 1/N(T ))

(t2/n)−k
.

Remark. For T � 0, the second constant C is ≈ 1.0, hence negligible.

Proof. The modulus of the tail equals

4
∑
t>T

∏
p|D

n

(
1−

(
DF

p

))
H

log N

N−k

1− 1
N

≤ 4 · 2rMC
∑
t>T

t

n

(
t2

n

)−k

where we use the fact that N−k/(1 − 1/N) ↘ (t2/n)−k as t → ∞. By letting
` = t/n and L = bT/nc, this is certainly less than or equal to

4 · 2rMC
∞∑

`=L+1

`
(
`2n
)−k

=
4 · 2rMC

nk

∞∑
`=L+1

1
`2k−1

≤ 4 · 2rMC

nk

∫ ∞

L

1
x2k−1

dx.

Main Example. In our main example X(26, 1), we sum over t ≤ T = 520 000 000
using a simple PARI [42] script (see Appendix B for the source code) to get the
approximation

Zw26Γ(2) ≈ −4
∑
t≤T

H

log N

N−2

1− 1
N

= −0.017 760 240 104 545 08 . . .
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and observe numerically that the bound M = 4 is sharp (and attained very
early at the third term t = 78). So by Lemma 2.12, we get an error bound of

16
262

1
2 · 20 000 0002

=
1

338
· 10−14 ≈ 3 · 10−17.

telling us that all but the last two digits are correct.
As for the ordinary case, summing over t ≤ T = 80 000 000, we obtain for

Z = Zw1Γ

Z(2) ≈ −0.125 879 797 776 281 50

with M = 1/8 (attained again early at t = 8). So by Lemma 2.12, we get an
error bound of

4 · 22

8
1

2 · 80 000 0002
= 1.5625 · 10−16,

and again, all but the last two digits are correct.

2.4.7 The height of the fixed point scheme of an Atkin-
Lehner involution

In this section, we set about computing the height of the fixed point scheme
Xwn of an Atkin-Lehner involution wn, n | D = DH , n 6= 1, on a Shimura curve
X = X (D,N), N square-free. The key observation – which is probably perfectly
obvious to the specialist – is that in the moduli interpretation, this fixed point
scheme consists of Abelian surfaces with extra complex multiplication (CM).

Let us explain this in more detail for the case N = 1 (fixing a level structure
would only obscure things): The Shimura curve is then the coarse moduli space
of Abelian surfaces together with a fixed action of O. It consists of pairs (A, i)
where A is an Abelian variety of dimension 2 and i a fixed embedding of O into
End(A).

More concretely, X (C) parametrises complex Abelian surfaces with a fixed
action by O: To every z ∈ H we associate Az which is the quotient of C2 by a
lattice Lz associated to z as follows

Az := C2/Lz, Lz := {Φ(u) ·
(

z
1

)
| u ∈ O}.

Then the definition of iz is the obvious one (u ∈ O acts as left multiplication
by Φ(u)), and it is classical that (Az, iz) is isomorphic to (Az′ , iz′) iff z and z′

are equivalent modulo the Fuchsian group Γ = Γ(D, 1).
Now it is clear what the complex points Xwn(C) are. They are the Γ-orbits

of points z0 ∈ H that are fixed by Φ(α) for an element α of O of norm n and
trace t such that t2 − 4n < 0.

Next we observe that Az0 has an extra endomorphism x commuting with
O and satisfying x2 − tx + n = 0, namely we can take the R-linear map M 7→
M ·Φ(α) from M2(R) to itself given by right multiplication and transport it to

C2 via the R-linear isomorphism M 7→ M ·
(

z0

1

)
to get x. In short: x maps

M ·
(

z0

1

)
7→ M · Φ(α) ·

(
z0

1

)
. Then x is clearly an R-linear endomorphism of

C2 mapping the lattice Lz0 into itself while commuting with the fixed action
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iz0 of O because the latter action is by left multiplication. When Φ(α) fixes z0

as a Möbius transformation, x is in fact multiplication by the non-zero complex

number ξ for which Φ(α) ·
(

z0

1

)
= ξ

(
z0

1

)
as can be easily verified:

M · Φ(α) ·
(

z0

1

)
= M ·

(
ξz0

ξ

)
= ξM ·

(
z0

1

)
.

Now since α has minimal polynomial X2 − tX + n = 0 (cf. (2.10)), we have
x2 − tx + n = ξ2 − tξ + n = 0.

Let us immediately check this in our

Main Example. For α = ij we get

Φ(α) =
( √

2
−13

√
2

)
which clearly has determinant 26, trace 0 and fixed point z0 = i/

√
13 in the

upper half plane. Then( √
2

−13
√

2

)
·
(

i/
√

13
1

)
=
( √

2
−i
√

26

)
,

and we read off ξ = −i
√

26 which clearly satisfies ξ2 = −26.

Now let Λ′ be the maximal quadratic suborder of End(Az0) containing x.
Then Az0 has CM exactly by Λ′ and this order is isomorphic with the maximal
quadratic suborder of O containing α. By Section 2.4.4, we know exactly how
many fixed points wn has and which order they have CM by: Namely take
t divisible by n such that t2 − 4n < 0 and set t2 − 4n = m2DF with F =
Q(
√

t2 − 4n). Then for each m′ | m with (m′, DH

n ) = 1 there are

h(Λ′)
∏

p|DH
n

(
1−

(
DF

p

))

many fixed points z0 (modulo Γ) with CM exactly by the order Λ′ of conductor
m′ in F , and all fixed points are obtained this way. Recall that two conjugacy
classes correspond to one fixed point, cf. Section 2.4.4. We also remark that
a level structure N > 1 would simply give rise to extra factors with Eichler
symbols.

Now we claim that Az0 has to split as a product of elliptic curves E1 × E2

because
End(Az0) ⊃ O × Λ′.

This is clear because the endomorphism ring of a simple Abelian variety is an
order in a skew-field, hence without zero divisors. Furthermore, it is clear that
E1 and E2 have CM by the order Λ′ as well. Again, we check this by pedestrian
calculations in our

Main Example. Using the basis 1, i, (j+1)/2 and i(j+1)/2 of O we compute the
period matrix Π =

(
λ1 λ2 λ3 λ4

)
of Ai/

√
13 with respect to the standard
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basis of C2:

λ1 =
(

1
1

)
·
(

i/
√

13
1

)
=
(

i/
√

13
1

)
λ2 =

(√
2

−
√

2

)
·
(

i/
√

13
1

)
=
(

i
√

2/
√

13
−
√

2

)
λ3 =

(
1/2 1/2
13/2 1/2

)
·
(

i/
√

13
1

)
=
(

(i/
√

13 + 1)/2
(i
√

13 + 1)/2

)
λ4 =

(√
2

−
√

2

)
· λ3 =

(
(i/
√

13 + 1)/
√

2
−(i

√
13 + 1)/

√
2

)

Now we set λ′2 = λ2 − 2λ4 =
(
−
√

2
i
√

26

)
, λ′3 = λ3 − 7λ1 =

(
(−i

√
13 + 1)/2

(i
√

13− 13)/2

)
and observe that λ′2 = i

√
26λ1, λ4 = i

√
2/
√

13λ′3 so that the period matrix of
Ai/

√
13 with respect to the basis λ1, λ′3 of C2 is(

1 i
√

26 0 0
0 0 1 i

√
2/
√

13

)
.

If the reader finds these computations a bit too ad-hoc we refer him to [4,
Sect. 10.6] for a systematic treatment. In any case, we now know that Ai/

√
13

is isomorphic to E(i
√

26) × E(i
√

2/
√

13). Here we use the standard notation
E(τ) = C/Λτ , Λτ = Z + τZ. It is trivial to check (again) with one’s bare
hands that multiplication by

√
−26 preserves Λi

√
26 and Λi

√
2/
√

13 which again
shows that both elliptic curves have CM by the maximal order Z +

√
−26Z of

Q(
√
−26). However they are not isomorphic as one checks by computing their

j-invariants.

Now it is a simple matter to prove

Proposition 2.13 (Height of fixed point scheme of Atkin-Lehner involution).
For n | DH , n 6= 1, the height of the fixed point scheme Xwn of the Atkin-Lehner
involution wn acting on X (D,N) is given by

hω̂(Xwn) =
∑

t∈nN0
t2−4n<0

∏
p|DH

n

(
1−

(
DF

p

)) ∑
m′|m

(m′,
DH

n )=1

∏
p|N

(
1 +

{
Λ′

p

})
h(Λ′)×

× (C + log(DH) + 2hgeom(EΛ′)) . (2.12)

For every t of the outer sum, denote by DF the discriminant of the quadratic
field F := Q(

√
t2 − 4n) and define m ≥ 1 by t2 − 4n = m2DF . Then for every

m′ of the inner sum, let Λ′ be the order of conductor m′ in F with class number
h(Λ′). For Eichler’s symbol

{
Λ′

p

}
see (2.7). Furthermore ω̂ is the canonical

bundle equipped with the renormalised Petersson metric |dz|2 = e−2C(4πy)2 as
in Theorem 2.4 and hgeom(EΛ′) is the geometric height of an elliptic curve with
CM by Λ′ as defined in the proof below.

Proof. By base change to a suitable number field K we have as divisors

Xwn = P1 + · · ·+ PM
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such that P1(C), . . . ,PM (C) are the complex fixed points Xwn(C). Thus we have
to compute hω̂(P0) for a summand P0 of the right hand side. By definition

h(ω,e−2C(4πy)2)(P0) := − 1
2[K : Q]

∑
σ : K→C

log |fσ(z0)dz|2

= C − 1
2[K : Q]

∑
σ : K→C

log
(
(4πy0)2|fσ(z0)|2

)
with fσ(z0)dz the image under σ of a generator of ωP0 and y0 the imaginary
part of z0, P0(C) = Γz0. We want to compare this to the geometric height of
the Abelian surface A0 corresponding to P0, cf. [10, Sec. 1.2]. By enlarging
K if necessary we may assume A0 has semi-stable reduction over K. Then by
definition

hgeom(A0) := − 1
2[K : Q]

∑
σ : K→C

log

(
1

(2π)2

∫
A0(C)

|ασ ∧ ᾱσ|

)

where ασ is the image under σ of a Neron differential α, i.e. a generator of
Λ2(LieA0)∗. Since over C, the Kodaira-Spencer isomorphism ωP0

∼= Λ2(LieA0)∗

takes the form dz 7→ 2πidw1 ∧ 2πidw2 with w1, w2 the standard coordinates
of C2 ∼= LieA0(C), we can use ασ = −(2π)2fσ(z0)dw1 ∧ dw2 and compute the
integral on the right hand side as

(2π)4|fσ(z0)|2
∫

C2/Lz0

|dw1 ∧ dw2 ∧ dw̄1 ∧ dw̄2|.

Letting wj = uj + ivj , j = 1, 2, the integrand equals 4du1 ∧ dv1 ∧ du2 ∧ dv2.

Pulling it back to M2(R) along
(

a b
c d

)
7→
(

a b
c d

)
·
(

z0

1

)
, we get (2y0)2da ∧

db ∧ dc ∧ dd. Hence∫
C2/Lz0

|dw1 ∧ dw2 ∧ dw̄1 ∧ dw̄2| = (2y0)2 vol(M2(R)/Φ(O)) = (2y0DH)2

as O has discriminant DH . Putting everything together we obtain

hgeom(A0) = − 1
2[K : Q]

∑
σ : K→C

log
(
(4πy0DH)2|fσ(z0)|2

)
and thus

h(ω,e−2C(4πy)2)(P0) = C + log(DH) + hgeom(A0).

Now we have seen that A0 is a product E1 × E2 of elliptic curves with CM by
some Λ′ (depending on the parameters t and m′ of the fixed point). Obviously,
we can also construct α as α1 ∧α2 from Neron differentials α1 on E1 and α2 on
E2, which proves hgeom(A0) = hgeom(E1) + hgeom(E2).

The generalised Chowla-Selberg formula stated below shows that the geo-
metric heights of elliptic curves with the same CM agree.

The above proposition is best combined with the following result due to
Kaneko [20] and Nakkajima, Taguchi [31]:

49



Theorem 2.14 (Generalised Chowla-Selberg formula). Let EΛ be an elliptic
curve with CM exactly by the order Λ of conductor m (and discriminant DΛ =
m2DF ) in an imaginary quadratic number field F . Then its geometric height is
given by

hgeom(EΛ) = −1
2

(
log(

√
|DΛ|) +

L′Λ(0)
LΛ(0)

)
. (2.13)

Here, LΛ := ζΛ/ζ is the L-function associated to Λ, i.e. the quotient of the zeta
function of Λ by the Riemann zeta function, the former being defined as

ζΛ(s) :=
∑
a⊂Λ

N(a)−s

with the sum extending over all Λ-ideals contained in Λ and N(a) denoting the
index [Λ: a].

Furthermore, we have explicitly

L′Λ(0)
LΛ(0)

= − log |DF |+
w(F )
2h(F )

|DF |−1∑
`=1

(
DF

`

)
log Γ

(
`

|DF |

)
(2.14)

− 2 log(m) +
∑
p|m

e(p) log(p);

here w(F ) denotes as usual the number of roots of unity of F and

e(p) :=
(1− p−n)(1−

(
DF

p

)
)

(1− p−1)(p−
(
DF

p

)
)
, pn ‖ m.

Remark. For the case of maximal Λ, i.e. m = 1, ζΛ is the Dedekind zeta function
ζF of F and LΛ is the usual L-function L(DF , s) :=

∑∞
n=1

(
DF

n

)
n−s associated

to the primitive Dirichlet character
(
DF

·
)
.

But be warned : For non-maximal Λ, LΛ is neither the L function associated
to the non-primitive Dirichlet character

(
DΛ
·
)

nor the L-function associated to
a discriminant as in [49, Eq. (7)]!

What is more for maximal Λ, the second line on the right hand side of (2.14)
vanishes and the connoisseur will easily recognise the resulting formula as the
classical Chowla-Selberg formula, stated for example in [10, Rem. 1.5].

Sketch of proof. The proof of the generalised formula proceeds in three main
steps: First one has to make the arithmetic observation that (see [31, Lemma
3])

−2hgeom(EΛ) = log

(√
|DΛ|
2π

)
+

1
12h(Λ)

∑
a∈Cl(Λ)

log(F (a))

where the sum is over the ideal class group of Λ and F := ∆(a)∆(a−1).
The second step is an application of Kronecker’s Grenzformel: Arguing

as in [47, Chap. IX, §4], one sees that ζΛ(0) = −h(Λ)/w(Λ) and ζ ′Λ(0) =
−1/12w(Λ)

∑
a∈Cl(Λ) log(F (a)). These identities prove

−2hgeom(EΛ) = log

(√
|DΛ|
2π

)
+

ζ ′Λ(0)
ζΛ(0)

,
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whence (2.13).
The third step is to apply the proposition in [20] which states that ζΛ =

ζF

∏
p|m εm,p with

εm,p(s) :=
(1− u)(1−

(
DF

p

)
u)− pn−1u2n(1− pu)(

(
DF

p

)
− pu)

1− pu2
, u = p−s

where pn ‖ m. Using this and the classical fact that ζF (s) = ζ(s)L(DF , s), we
can compute

L′Λ(0)
LΛ(0)

=
L′(DF , 0)
L(DF , 0)

+
∑
p|m

ε′m,p(0)
εm,p(0)

.

Then by the classical Chowla-Selberg formula, the logarithmic derivative of
L(DF , s) at s = 0 gives the first term on the right hand side of (2.14) and
pedestrian computations show that

ε′m,p(0)
εm,p(0)

= e(p) log(p)− 2n log(p).

Remark. Recall that w(F ) = 2 unless DF = −3, −4, see Example 2.1.
Remark. When O contains no elements of norm n and non-zero trace, the com-
bination of Proposition 2.13 and Theorem 2.14 can be obtained from a result
of Kudla, Rapoport and Yang about the height of CM divisors on a Shimura
curve [26, Cor. 10.12]. A minor point is that their degree of the fixed point
divisor is twice ours, which is due to the fact that they work on a stack. A ma-
jor point arises when their result is transferred from the Hodge bundle to the
canonical bundle via the Kodaira-Spencer isomorphism: This transfer causes
the appearance of the term log(DH) on the right hand side of (2.12).
Main Example. For the height of the fixed point scheme of the Atkin-Lehner
involution w26 acting on X (26, 1) we get

hω̂(Xw26) = 6

(
C + log(26) +

1
2

log(104)− 1
6

103∑
`=1

(
−104

`

)
log Γ

(
`

104

))
since Q(

√
−104) contains w = 2 roots of unity and class number h = 6.

Remark. For an alternative approach to calculating the height of the fixed point
scheme see Appendix A where we indicate how to compute heights using a
projective model of the arithmetic surface. However let us be frank and admit
that for this alternative to be numerically useful, one would need to compute
explicitly the uniformisation map from the upper half plane to the Riemann
surface X (C).

2.5 Specialising to involutions

2.5.1 Equivariant torsion of k-differentials with respect to
an involution

As a further specialisation of Corollary 1.4, let us compute the equivariant
torsion of the line bundle ωk of k-differentials with respect to an involution, e.g.
an Atkin-Lehner involution on a Shimura curve.
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Corollary 2.15 (Equivariant torsion of k-differentials with respect to an invo-
lution). Let k ≥ 2 be an integer and g an involution on X = Γ\H. Then

Tg(ωk) =− log Zg̃Γ(k)

−#Xg (−1)k

2

log
(π

2

)
−

∑
1≤j≤2k−2

(−1)j log(j)


+ log(2)

(
−#Xg (−1)k

4

)
,

the last term on the right being the metric correction term.

Proof. An involution acts as −1 on ω at all fixed points, i.e. all θ’s are equal to
π/2.

Clearly sin
(
(2k−1)π/2

)
/ sin(π/2) = cos

(
(k−1)π

)
= (−1)k−1. Furthermore

F ′(−1, 0) is real since F (−1, w) is for w > 0. Therefore Rrot(π) = 0. The easiest
way to compute the derivative of F (−1, w) is to express it in terms of Riemann’s
zeta function as ζ(w)(21−w − 1). We thus obtain F ′(−1, 0) = − 1

2 log(π/2).
The next term in Corollary 1.4 is simply

#Xg (−1)k−1

2

∑
1≤j≤2k−2

(−1)j log(j).

And finally, the metric correction term from (1.34) gives

log(2)

∑
p∈Xg

tr(g|ωk
p
)

|1− Tpg|2
− tr

(
g∗|H0(X,ωk)

)
= log(2) #Xg

(
(−1)k

4
− (−1)k

2

)
.

The last equation uses the Lefschetz trace formula for the very ample line bundle
ωk.

2.5.2 The arithmetic Lefschetz fixed point formula for an
involution

Combining Theorem 2.2 with Remark 2.1, we get the following

Corollary 2.16 (The arithmetic Lefschetz trace formula for an involution). Let
the arithmetic surface X carry an action by the constant group scheme Z/(2)
with fixed point scheme X g and denote by g the induced involution on X (C). As
usual, denote degree 0 by + and degree 1 by −. Then

d̂eg(H ·(X , ωk)+)− d̂eg(H ·(X , ωk)−) =
1
2
Tg(ωk) +

(−1)k

2

(
k − 1

2

)
hω(X g)

modulo rational multiples of log(2).
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2.5.3 Computing the arithmetic Lefschetz trace for a gen-
eral involution

Putting together Corollary 2.16 and Corollary 2.15 we obtain

Proposition 2.17 (The arithmetic Lefschetz trace formula for an involution).
Let the arithmetic surface X carry an action by the constant group scheme Z/(2)
with fixed point scheme X g and denote by g the induced involution on X (C). As
usual, denote degree 0 by + and degree 1 by −. Then we have for k ≥ 2

d̂eg(H0(X , ωk)+)− d̂eg(H0(X , ωk)−) = −1
2

log Zg̃Γ(k)

− 1
2
#Xg (−1)k

2

log
(π

2

)
−

∑
1≤j≤2k−2

(−1)j log(j)


+

1
2

log(2)
(
−#Xg (−1)k

4

)
+

(−1)k

2

(
k − 1

2

)
hω(X g)

modulo rational multiples of log(2).

2.5.4 Proof of Theorem 0.1

Now to prove Theorem 0.1, there is not much left to do: We apply the above
Proposition 2.17 to the case of an Atkin-Lehner involution acting on a Shimura
curve, i.e. X = X (DH , 1) and g = wn. Then the Selberg zeta value ZwnΓ(k)
has been computed in Proposition 2.10. Furthermore, the height hω(Xwn) of
the fixed point scheme of wn is found via Proposition 2.13 and the generalised
Chowla-Selberg formula (Theorem 2.14).

Then we only need to compute the derivative at s = 0 of the function L̃(Λ, s)
in the real and in the imaginary case:

For DΛ > 0 we have LΛ(0) = 0, L′Λ(0) = 1
2LΛ(1) = h(Λ) log(εΛ) and, hence

in this case
d

ds

∣∣∣∣
s=0

(
|DΛ|s/2LΛ(s)

)
= h(Λ) log(εΛ).

On the other hand, if DΛ < 0 we have LΛ(0) = 2h(Λ)/w(Λ) with w(Λ) the
number of roots of unity contained in Λ. But since n 6= 1, we know DΛ can’t
equal −3 or −4 so that w(Λ) = 2. Hence in this case

d

ds

∣∣∣∣
s=0

(
|DΛ|s/2LΛ(s)

)
=
(
log
(√

|DΛ|
)

LΛ(0) + L′Λ(0)
)

= h(Λ)
(

log
(√

|DΛ|
)

+
L′Λ(0)
LΛ(0)

)
.

Thus, the proof of Theorem 0.1 is complete.
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2.6 Combining the theorems of Gillet-Soulé
and Köhler-Roessler

Now suppose we are in the extraordinary situation that the cohomology decom-
position (2.2) consists of one summand only. Loosely speaking, this means that
the action of the automorphism on the cohomology is constant.

Then the left hand sides of the arithmetic Riemann-Roch theorem (Theo-
rem 2.1) and the arithmetic Lefschetz fixed point formula (Theorem 2.2) are
equal, which gives an interesting relationship between the height of the arith-
metic surface and the heights of the fixed point schemes involving both equiv-
ariant and ordinary torsion.

2.6.1 A curious identity on arithmetic surfaces of genus
two

Let us explicate this for the case of an involution and a very ample power of the
canonical bundle. We make the following observation:

Observation. Let X be an arithmetic surface equipped with an involution. Sup-
pose for k ≥ 2

H0(X , ωk) = H0(X , ωk)+ or H0(X , ωk) = H0(X , ωk)−. (2.15)

Then the first alternative holds, X has genus two, k = 2 and the involution is
the hyperelliptic involution.

Thus in this rare case, we obtain the following curious identity

Proposition 2.18 (Quadratic differentials on arithmetic surface of genus two).
Consider an arithmetic surface X of genus two with its hyperelliptic involution.
Let W be the divisor of Weierstraß points and denote by g the hyperelliptic
involution on X (C). Then

1
2
T (ω2) + 2ζ ′(−1)− 1

12
+

13
12

hω(X ) =
1
2
Tg(ω2) +

3
4
hω(W) (2.16)

modulo rational multiples of log(2). Here ζ ′ is the derivative of Riemann’s zeta
function and T , Tg denote ordinary and equivariant torsion, respectively. If the
Fuchsian group Γ with X (C) = Γ\H is strictly hyperbolic, we can write more
concretely

−1
2

log Z(2)+
9
4
− 8

3
log(2)− 1

12
+

13
12

hω(X ) = −1
2

log Zg̃Γ(2)+
9
4

log(2)+
3
4
hω(W)

(2.17)
modulo rational multiples of log(2) where Z, Zg̃Γ are the ordinary and equivari-
ant Selberg zeta function, respectively.

Proof of Proposition. It is clear that the fixed point scheme of the hyperelliptic
involution is W so the right hand side of (2.16) is just the right hand side of
Corollary 2.16. As the Euler characteristic of X = X (C) equals −2, the left
hand side of (2.16) is exactly the right hand side of Theorem 2.1.
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The torsion terms can be computed in terms of Selberg zeta functions with
the aid of Corollary 1.12 (applicable as stated only when the Fuchsian group Γ
is cocompact without elliptic elements!) as

1
2
T (ω2) =− 1

2
log Z(2)− 1

2
· 2

(
2ζ ′(−1)−

(
3
2

)2

+
3
2

log(2π) +
1
2

log(2)

)

+
1
2

log(2)
(
−2 · 2

3

)
=− 1

2
log Z(2)− 2ζ ′(−1)− 3

2
log(π) +

9
4
− 8

3
log(2)

and by Corollary 2.15 as

1
2
Tg(ω2) = −1

2
log Zg̃Γ(2)− 1

2
· 6 · 1

2

(
log
(π

2

)
− log(2)

)
+

1
2

log(2)
(
−6 · 1

4

)
= −1

2
log Zg̃Γ(2)− 3

2
log(π) +

9
4

log(2).

Plugging this into (2.16), the ζ ′(−1) and log(π) terms cancel nicely and (2.17)
is proved.

Proof of Observation. Obviously for (2.15) to hold, the action of the involution
on the holomorphic 1-differentials must be constant because two holomorphic
differentials η± with g∗η± = ±η± would give rise to holomorphic k-differentials
ηk
+ and ηk−1

+ η− on which the involution acts as ±1 respectively. The next point
is: if the action on H0(X, ω) was constant and equal to +1, this would contradict
the Lefschetz trace formula by which we know

tr
(
g∗|H0(X,ω)

)
=
∑

p∈Xg

−1
1− (−1)

+ tr
(
g∗|H0(X,O)

)
= −#Xg

2
+ 1 ≤ 0.

So the involution g has to act as −1 on H0(X, ω). But then since H0(X, ω) has
dimension equal to the genus h of X, the above computation shows that g has
2h + 2 fixed points, i.e. g is hyperelliptic. Now we invoke the Lefschetz formula
again, to see that for k ≥ 2

tr
(
g∗|H0(X,ωk)

)
=
∑

p∈Xg

(−1)k

1− (−1)
=

(−1)k(2h + 2)
2

.

If this is to equal (−1)k dim(H0(X, ωk)) = (−1)k(2k − 1)(h − 1), we have to
solve h + 1 = (2k − 1)(h − 1) with integers h, k ≥ 2. This is equivalent to
1/(h− 1) = k − 1, whence we deduce h = k = 2.

So (2.15) can only hold for the hyperelliptic involution acting on quadratic
differentials over a genus two curve and then it has the form H0(X, ω2) =
H0(X, ω2)+.

Main Example. In our main example, we have computed all terms occurring in
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(2.17):

log Z(2) = −0.125 879 797 776 281 . . .

log Zw26Γ(2) = −0.017 760 240 104 545 . . .

hω(X (26, 1)) = 2
(

2 log(4π) + 24ζ ′(−1)− 1 +
3
2

log(2) +
7
12

log(13)
)

hω(Xw26) = 6

(
log(4π) + log(26) +

1
2

log(104)− 1
6

103∑
`=1

(
−104

`

)
log Γ

(
`

104

))

However, it seems hard to determine the rational multiple of log(2) that makes
(2.17) exact.

2.6.2 A plausibility check

To check whether (2.16) is plausible at all, we check how both sides transform
when the metric on ω is multiplied by e−2C . This means that the metric on
the tangent bundle is multiplied by e2C so that the Laplacian is divided by e2C ,
see Remark 1.1 in Section 1.5.3. Then use the metric correction term stated in
Corollary 1.12 and Lemma 2.19 below to see that the left hand side picks up

1
2
(2C)

(
−V

(
k

2
− 1

3

))
+

13
12

(2C)(−χ(X)) = C

(
−4

3
+

13
3

)
= 3C.

Here we used V = −χ(X) = 2. As for the right hand side, employ Corollary 2.15
and Lemma 2.19 below again to see that it changes by

1
2
(2C)

(
−#Xg (−1)k

4

)
+

3
4
C#Xg = C

(
−6

4

)
+ C

3
4
· 6 = 3C,

which is rather reassuring. Here we used #Xg = 6.

Lemma 2.19 (How heights transform under a constant rescaling of the metric).
Let ω be the canonical bundle on an arithmetic surface X equipped with some
metric h and let Z be a divisor. If the metric is rescaled by a constant factor
e−2C , heights transform as follows:

h(ω,e−2Ch)(Z) = h(ω,h)(Z) + C deg(Z(C))

h(ω,e−2Ch)(X ) = h(ω,h)(X )− 2C χ(X (C)).

Proof. First we state three basic formulae for arithmetic Chow groups: The
first and most fundamental formula shows how the arithmetic first Chern class
of a Hermitian line bundle (L, h) over an arithmetic variety Y changes when the
metric is rescaled

ĉ1(L, e−ϕh) = ĉ1(L, h) + c̃1(e−ϕh, h).

and the Bott-Chern class appearing can be calculated explicitly as

c̃1(e−ϕh, h) = [0, log
(

h

e−ϕh

)
] = [0, ϕ],

cf. [39, IV.3.3].
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Next suppose that Y is of relative dimension δ over Spec(Z). Then f∗ is a

map from ĈH
δ+1

(Y) to ĈH
1
(X ) and for a smooth form φ of type (δ, δ), we

have
f∗([0, φ]) = [0,

∫
Y(C)

φ].

The last fact we need is that the isomorphism d̂eg from ĈH
1(

Spec(Z)
)

to
R satisfies

d̂eg([0, x]) =
1
2
x.

Now denote by fX : X → Spec(Z) and fZ : Z → Spec(Z) the defining maps.
The transformation of the divisor height is straightforward

h(ω,e−2Ch)(Z) = d̂eg
(
fZ∗ ĉ1(ω, e−2Ch)

)
= h(ω,h)(Z) + d̂eg

(
fZ∗ ([0, 2C])

)
= h(ω,h)(Z) +

1
2

∫
Z(C)

2C.

As for the height of the arithmetic surface, we have

h(ω,e−2Ch)(X ) = d̂eg
(
f∗ĉ1(ω, e−2Ch)2

)
= h(ω,h)(X ) + 2d̂eg (f∗(ĉ1(ω, h) · [0, 2C])) + d̂eg

(
f∗([0, 2C]2)

)
.

By definition of the intersection pairing ĈH1(X )× ĈH1(X ) → ĈH2(X )

ĉ1(ω, h) · [0, 2C] = [0, c1(ω, h)2C] and [0, 2C]2 = 0.

Now recall that
∫
X (C)

c1(ω, h) gives minus the Euler characteristic of X (C) for
any choice of metric h.
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Appendix A

Projective heights of fixed
point schemes

For an involution, we indicate how to compute the height of the fixed point
scheme

hω(X g) = d̂eg (f∗ĉ1(ω|Xg ))

when given a model of X as a plane curve C of degree d whose singularities do
not meet the fixed point scheme.

In particular, letting X = X (C) and C = C(C), we then have a uniformising
map ι : X → P2(C) and ι(X) = C = {F = 0} with F a homogeneous polynomial
of degree d with integer coefficients and F is regular over ι(Xg).

Then applying the adjunction formula (see [18, p. 280]) locally, we get

ωX |Xg ∼= ι∗ (O(d− 3)|Cg ) .

However, it is clear that we can’t expect the Fubini-Study metric on O(d−3) to
pull back onto the Petersson metric on ω. Therefore, we would have to compute

ĉ1(ω|Xg , hPet) = ĉ1(ω|Xg , ι∗hFS) + c̃1(hPet, ι
∗hFS)

= ĉ1(O(d− 3)|Cg , hFS) +
∑

p∈Xg

log(ι∗hFS/hPet).

Remark. To carry out this computation numerically, one would need to compute
the uniformising map, or at least its derivative at the fixed points.

Henceforth, we shall always assume that the line bundles on projective space
are equipped with the Fubini-Study metric. By the linearity of the first arith-
metic Chern class, it suffices to compute ĉ1(O(1)|Cg ). By definition, this is the
height hO(1)

(Cg) of the fixed point scheme considered as a cycle of dimension 1

on P2 (with respect to the line bundle O(1)).
Next, we compute the fixed points P1, . . . PM in P2(C) and choose homo-

geneous coordinates Pm = (Xm, Ym, Zm) which are algebraic. Let K be the
number field generated by these 3M coordinates and OK its ring of integers.
Changing the base to S = Spec(OK), we get

Cg = P1 + · · ·+ PM
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as cycles of dimension 1 on P2 over S.
Therefore, the problem is reduced to computing the height (over S) of a

cycle attached to a rational point P = (X, Y, Z) in P2(K) for which there is a
classical recipe: Let I be the fractional ideal in K generated by X, Y and Z.
Then (see [6, (3.1.6)])

hS
O(1)

(P ) = − log(N (I)) +
∑

σ : K↪→C
log
√
|σ(X)|2 + |σ(Y )|2 + |σ(Z)|2

with σ running over all embeddings of K into C.
Lastly, there is the simple relation (see [6, (3.1.8)])

hO(1)
(Cg) =

1
[K : Q]

hS
O(1)

(Cg).

So putting everything together and writing Im for the fractional ideal gen-
erated by the coordinates of Pm, we obtain

hO(1)
(Cg) =

1
[K : Q]

M∑
m=1

{
− logN (Im) (A.1)

+
∑

σ

log
√
|σ(Xm)|2 + |σ(Ym)|2 + |σ(Zm)|2

}
.

When C is hyperelliptic, formula (A.1) can be simplified even further:

Lemma A.1. Consider a hyperelliptic plane curve of genus h

C : y2 = p(x)

where p(x) = adx
d + · · · + a0, d = 2h + 2, is irreducible over Q with integer

coefficients and distinct complex roots x1, . . . , xd. Then the height of the divisor
of Weierstraß points W is given by

hO(1)
(W) = log(|ad|) +

d∑
m=1

log
√
|xm|2 + 1.

Proof. As is well-known, (x, y) 7→ (x,−y) is the hyperelliptic involution and its
fixed points are the Weierstraß points.

Since p(x) has distinct roots x1, . . . , xd, C is singular only at infinity which
is luckily not a fixed point. Hence the above procedure works.

We choose Pm := (xm, 0, 1) as algebraic coordinates for the M = d fixed
points. Then the field K generated by these coordinates is simply the splitting
field Q(x1, . . . , xd) of the polynomial p.

Next we compute the norm of the principal ideal generated by xm

N (xmOK) =
∣∣NK/Q(xm)

∣∣ = |N (xm)|n/d =
∣∣∣∣a0

ad

∣∣∣∣n/d

.

Here, we have set n := [K : Q], and N (x) denotes the norm of an algebraic
number x which is (up to sign) the quotient of the lowest by the highest coef-
ficient of its minimal polynomial. We have also used the following relationship
between norms

NK/Q(x) = N (x)[K : Q]/[K(x) : Q], x ∈ K.
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For more on these facts, see [9, Props. 4.3.2, 4.6.15].
Hence we get

− logN (Im) =
n

d
log(|ad|)

for the fractional ideal Im generated by the coordinates xm, 0 and 1 of the fixed
point Pm. Plugging this into (A.1), we get

hO(1)
(W) =

1
n

d∑
m=1

{n

d
log(|ad|) +

∑
σ

log
√
|σ(xm)|2 + 1

}
.

Now remember that the Galois group of K acts transitively on x1, . . . , xd.

Main Example. From [16, Thm. 3.1] we know that X (26, 1) has a model as a
hyperelliptic plane curve of degree d = 2h + 2 = 6, namely

C : y2 = −2x6 + 19x4 − 24x2 − 169. (A.2)

The right hand side polynomial is irreducible over the rationals (as may be
checked using PARI [42]) and has distinct complex roots which we shall compute
explicitly by hand. By Lemma A.1 we know

ĉ1(O(3)|W) = 3
(
log(2) + log(|z1|+ 1) + log(|z2|+ 1) + log(|z3|+ 1)

)
where z1, z2, z3 are the complex roots of −2z3 + 19z2 − 24z − 169 (so that
x1,2 = ±√z1, x3,4 = ±√z2 and x5,6 = ±√z3 are the roots of p). We want to
compute them by means of Cardano’s formula which we recall for the reader’s
convenience:

az3 + bz2 + cz + d = 0

has the three solutions
z = − b

3a
+ S − Q

S

where Q := (3ac− b2)/(9a2), R := (9abc− 27a2d− 2b3)/(54a3), D := R2 + Q3

and S is any of the three choices for 3
√

R +
√

D.
We compute Q = −217/62, R = −6371/63 and D = 624278/66. Then we let

α = 6S = 3
√
−6371 + 624

√
78 = − 3

√
6371− 624

√
78 be the real root and take

ρ = (−1 + i
√

3)/2 the standard primitive third root of unity to obtain three
distinct non-zero roots

z1 =
1
6

(
19 + α +

217
α

)
, z2 =

1
6

(
19 + ρα +

217
ρα

)
, z3 =

1
6

(
19 + ρ̄α +

217
ρ̄α

)
.
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Appendix B

Numerical computations
using PARI

The following PARI script was used to compute ZwnΓ(D,1)(k) for k = 2, 3, 4 and
n | D := p1p2 with {p1, p2} ⊂ {2, 3, 5, 7, 11, 13}.

1 do_one( p, q ) =
2 {
3 P = matsize( p )[2]; \\ p = vector of primes dividing n
4 n = prod( j = 1, P, p[j] );
5

6 Q = matsize( q )[2]; \\ q = vector of primes
7 D_H = n * prod( j = 1, Q, q[j] ); \\ dividing D_H but not n
8

9 k = vector( K, X, X + 1.0 ); \\ vector of abscissae
10 logZ = vector( K, X, 0.0 ); \\ vector for Selberg zeta values
11

12 M = M_max = 0.0; t = t_max = 0; top = 0;
13

14 while( (t+n)^2 - 4*n <= 0, t += n );\\ skip non-hyperbolic classes
15

16 err = 1.0; \\ big enough to get loop started
17 until( log(err) / log(10) < - min_correct_digits - 2,
18 t += n;
19 D_P = t^2 - 4*n;
20

21 X = coredisc( D_P, 1 ); \\ flag 1 -> compute also conductor
22 D_F = X[1]; \\ D_F = fundamental discriminant
23 m = X[2]; \\ m = conductor
24

25 L = 1; \\ L <- product of Legendre factors
26 for( j = 1, Q,
27 L *= 1 - kronecker( D_F, q[j] );
28 if( L == 0, next(2) ); \\ loop to save time
29 while( m % q[j] == 0, m /= q[j] ); \\ only need conductors prime to D_H
30 );
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31

32 H = 0.0; \\ H <- sum of class numbers * regulators
33 fordiv( m, f, \\ f is called m prime elsewhere
34 Y = quadclassunit( f^2 * D_F,, [0.2,6] );
35 H += Y.no * Y.reg; \\ these ^^^^^^^ params -> correct under GRH
36 );
37

38 N = ( t + sqrt( D_P ) )^2 / ( 4*n ); \\ Selberg norm
39

40 logZ += - 4 * L * H * N^(-k) / ( (1 - 1/N) * log (N) ); \\ vector assignmt!
41

42 M = (H/log(N)) / (t/n); \\ M crucial for error estimate
43

44 if( M > M_max, M_max = M; t_max = t; top++ ); \\ check for new max of M
45

46 err = 4 * 2^Q * M_max / (n^k[1] * (2*k[1]-2) * (t/n)^(2*k[1]-2) );
47 ); \\ end of until loop
48

49 print( "D_H = " D_H ", n = " n );
50 print( "Summing traces <= T = " t ", we get" );
51 for( j = 1, K,
52 err = 4 * 2^Q * M_max / (n^k[j] * (2*k[j]-2) * (t/n)^(2*k[j]-2) );
53 correct_digits = - truncate( log(err) / log(10) ) - 2;
54 print1( "log Z(" truncate( k[j] ) ") = " logZ[j] ", " );
55 print( correct_digits " corr. digits after dec. pt." );
56 );
57 print( "M = " M_max " at t = " t_max " (" top " times topped)\n" );
58 } \\ end of do_one routine
59

60 do_all( p_1, p_2 ) =
61 {
62 do_one( [], [p_1,p_2] ); do_one( [p_1], [p_2] );
63 do_one( [p_2], [p_1] ); do_one( [p_1,p_2], [] );
64 \\ divisors of D_H = p_1*p_2 are n = 1, p_1, p_2, p_1*p_2
65 }
66

67 \\ MAIN ROUTINE
68 {
69 min_correct_digits = 9;
70 K = 3; \\ evaluate at 2, 3, 4
71 do_all(2, 3); do_all(2, 5); do_all(2, 7); do_all(2,11); do_all(2,13);
72 do_all(3, 5); do_all(3, 7); do_all(3,11); do_all(3,13); do_all(5, 7);
73 do_all(5,11); do_all(5,13); do_all(7,11); do_all(7,13); do_all(11,13);
74 }

Remark. The routine quadclassunit is a lot faster than the combination of
qfbclassno and quadunit that the ignorant author used first. But one has to
careful to use the right technical parameters as the default settings may produce
wrong results.

But maybe there is an even faster routine computing the product h log(ε)
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directly, possibly using fast evaluation of L-functions?

What is more, the above script makes the error smaller than 10−11 which
means that in general only the eleventh digit after the decimal point may be off
by one. Thus the ninth digit is only in danger if both the tenth and the eleventh
digit are 9 but we have checked by hand that this is never the case.

The results have been collected in the following tables. They are self-explanatory
except for the column T which contains the maximum trace up to which we have
summed.

D n T k = 2 k = 3 k = 4

6 1 316228 −0.125591678 −0.01580274908183 −0.0021968380692160191
6 2 316228 −0.157322438 −0.02478459418572 −0.0041960271625143010
6 3 447216 −0.062665336 −0.00515865179171 −0.0004852610848540636
6 6 447216 −0.415681214 −0.10599448105826 −0.0282037470519063222

10 1 316228 −0.080629596 −0.00901487984413 −0.0011786821522725556
10 2 365150 −0.181681775 −0.02658537272650 −0.0043180682256177927
10 5 516400 −0.960519119 −0.36115595782341 −0.1377861085500183505
10 10 632460 −0.158867150 −0.01902170279127 −0.0023913044828101134

14 1 316228 −0.137384163 −0.01660674687864 −0.0022539021914759397
14 2 365150 −0.026809042 −0.00127017891551 −0.0000720929015866234
14 7 632457 −0.457333130 −0.09244349483095 −0.0192033316359781992
14 14 632464 −0.066772774 −0.00522834062482 −0.0004342062404373176

22 1 316228 −0.021080660 −0.00077025539949 −0.0000319095099675158
22 2 365150 −0.178154642 −0.02650807737643 −0.0043164679854720146
22 11 730301 −0.122974269 −0.01298901636078 −0.0014478363170754283
22 22 1000010 −0.056084243 −0.00268051380998 −0.0001332335771642118

26 1 316228 −0.125879797 −0.01543159387586 −0.0021564087519445203
26 2 365150 −0.180943801 −0.02655489933059 −0.0043171723894725197
26 13 774605 −0.116537671 −0.01025722656461 −0.0009344663045081664
26 26 894452 −0.017760240 −0.00063053624578 −0.0000255431526260756

15 1 330291 −0.087118725 −0.00923275825023 −0.0011855304158093427
15 3 447222 −0.011407861 −0.00020441901168 −0.0000040790401864853
15 5 577355 −0.992237114 −0.36316473007915 −0.1379040869674464517
15 15 707115 −0.058238404 −0.00410809435009 −0.0003124107475408027
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D n T k = 2 k = 3 k = 4

21 1 346411 −0.130235211 −0.01635951480301 −0.0022447400978942404
21 3 447222 −0.114313669 −0.00990143674124 −0.0009522081879005435
21 7 707112 −0.236206157 −0.04647713986081 −0.0096111115453776933
21 21 894432 −0.029397204 −0.00130411460409 −0.0000662656115154705

33 1 346411 −0.022030960 −0.00068966529210 −0.0000246256098691480
33 3 447216 −0.095973896 −0.00926325369765 −0.0009286388676461442
33 11 774598 −0.125683790 −0.01307321357863 −0.0014501623031264408
33 33 1183248 −0.012696344 −0.00030594771322 −0.0000091924053404918

39 1 346413 −0.123483933 −0.01527454561957 −0.0021474649720382621
39 3 447219 −0.102511771 −0.00937841261919 −0.0009308395901712527
39 13 1095471 −0.012068410 −0.00020993050387 −0.0000040290229896053
39 39 1000038 −0.013287298 −0.00033088605576 −0.0000088314722455151

35 1 316228 −0.099837601 −0.01053403323049 −0.0012912724161243961
35 5 632460 −0.990820894 −0.36313810060870 −0.1379036927276806893
35 7 632464 −0.028344353 −0.00099284840539 −0.0000372500625910883
35 35 1083215 −0.009276100 −0.00023823094941 −0.0000070320122936089

55 1 330291 −0.013611373 −0.00033678553706 −0.0000094815254444691
55 5 632460 −0.012982837 −0.00024665975434 −0.0000052705057681940
55 11 894432 −0.122659689 −0.01297965575904 −0.0014477029895060156
55 55 1449140 −0.007468709 −0.00011626202587 −0.0000020988573976575

65 1 320846 −0.066379255 −0.00767724479387 −0.0010719291971478364
65 5 596285 −0.989234711 −0.36312920377268 −0.1379036436163598385
65 13 859352 −0.112554478 −0.01018342050202 −0.0009330756119956216
65 65 1460615 −0.005398929 −0.00006922347133 −0.0000010482355239827

77 1 346411 −0.012746620 −0.00038736248759 −0.0000154596596382693
77 7 730317 −0.446815628 −0.09198713012512 −0.0191852065595551182
77 11 894432 −0.067008072 −0.00664355587004 −0.0007276968225404603
77 77 1861937 −0.005120157 −0.00005963649281 −0.0000007751377959098

91 1 346413 −0.116013814 −0.01502020975190 −0.0021394690297008962
91 7 730303 −0.444851527 −0.09195266065587 −0.0191846252269337173
91 13 852813 −0.113556841 −0.01019319612530 −0.0009331651167337526
91 91 1600053 −0.002970482 −0.00002512517533 −0.0000002637636105598

143 1 346413 −0.030373961 −0.00103833534235 −0.0000397018593047755
143 11 846725 −0.014516256 −0.00026634543614 −0.0000056975250762962
143 13 1095484 −0.132143742 −0.01058122625262 −0.0009409952820360813
143 143 2277275 −0.001588078 −0.00000912655615 −0.0000000619742049972
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800 of Lecture Notes in Mathematics. Springer, Berlin, 1980.

[45] A. Voros. Spectral functions, special functions and the Selberg zeta func-
tion. Comm. Math. Phys., 110(3):439–465, 1987.
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