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Summary

This thesis contains an analysis of freezing and melting processes in two-dimensional binary
colloidal mixtures of superparamagnetic particles. The analysis is divided into four parts,
which are constituted by independent scientific journal articles. These have been published
in the years 2013 and 2014 following a peer-review process.

The first part of this work is dedicated to the study of two-dimensional melting in the
presence of quenched disorder. This study is based on video-microscopy data of super-
paramagnetic colloidal particles and computer simulations of repulsive dipoles. Quenched
disorder is introduced in this approach by pinning a fraction of the particles to an un-
derlying substrate, by which a matrix of frozen-in obstacles is formed. The occurrence
of the Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) scenario is confirmed and an
intermediate hexatic phase is observed. While the fluid-hexatic transition remains largely
unaffected by disorder, the hexatic-solid transition shifts to lower temperatures with in-
creasing disorder. This results in a significantly broadened stability range of the hexatic
phase. Characteristics of first order transitions are not observed.

In the second part of this work, the formation of fluctuating orientational clusters and
topological defects is studied in the context of the KTHNY-like melting scenario under
quenched disorder. Statistical properties of these clusters as well as the development of
defects are assessed as a function of system temperature and disorder strength. Thus,
evidence is provided that the disorder-induced widening of the hexatic phase can be traced
back to the distinct characteristics of clusters and defects along the melting transitions.
The third part of this work contains a review of the crystallization effects and the melting
mechanism in systems with an immobilized particle species.

In the fourth part of this work, the shear-induced destabilization of an equimolar two-
dimensional binary model crystal is explored. The two particle species exhibit a high
interaction asymmetry such that the initial crystal has an intersecting square sublattice of
the two constituents. The combination of shear and thermal fluctuations is found to induce
a characteristic hierarchical breaking scenario where initially, the more strongly coupled
particles are thermally distorted, paving the way for the weakly coupled particles to escape
from their cages. This in turn leads to mobile defects which may finally merge, prolifer-
ating a cascade of defects, which triggers the final breakage of the crystal. This scenario
is in marked contrast to the breakage of one-component crystals close to melting. These
results are verifiable in real-space experiments of superparamagnetic colloidal mixtures at
a pending air-water interface in an external magnetic field where the shear can be induced
by an external laser field.
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Zusammenfassung

Diese Dissertationsschrift enthélt eine Analyse von Gefrier- und Schmelzprozessen in zwei-
dimensionalen, binidren Kolloidgemischen aus superparamagnetischen Teilchen. Die Un-
tersuchung ist in vier Teile gegliedert, die in Form von eigensténdigen wissenschaftlichen
Fachartikeln vorliegen. Diese wurden nach Durchlaufen eines Peer-Review Verfahrens in
den Jahren 2013 und 2014 verdffentlicht.

Der erste Teil dieser Arbeit ist der Untersuchung des zweidimensionalen Schmelzprozesses
in der Gegenwart von topologischer Unordnung gewidmet. Diese Untersuchung basiert auf
Videomikroskopiedaten von superparamagnetischen Kolloiden und Computersimulationen
von repulsiven Dipolen. Topologische Unordnung wird durch das Haften einzelner Teilchen
an einem unterliegenden Substrat hervorgerufen, wodurch ein Arrangement von eingefrore-
nen Hindernissen entsteht.

Das Auftreten des Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) Szenarios wird
bestétigt und eine zwischenliegende hexatische Phase beobachtet. Wahrend der fliissig-
hexatisch Phaseniibergang kaum durch Unordnung beeinflusst wird, verschiebt sich der
hexatisch-fest Ubergang mit steigender Unordnung in Richtung tieferer Temperaturen.
Dies bedingt einen deutlich verbreiterten Stabilitdtsbereich der hexatischen Phase. Merk-
male eines Phaseniibergangs erster Ordnung werden nicht beobachtet.

Im zweiten Teil dieser Arbeit wird die Entstehung fluktuierender Orientierungscluster und
topologischer Defekte vor dem Hintergrund des KTHNY Schmelzszenarios in der Gegen-
wart von Unordnung untersucht. Statistische Merkmale dieser Cluster sowie die Entste-
hung von topologischen Defekten werden in Abhéngigkeit der Systemtemperatur und der
Starke der Unordnung untersucht. Somit wird der Nachweis erbracht, dass die durch Un-
ordnung hervorgerufene Verbreiterung der hexatischen Phase auf die Eigenschaften von
Orientierungsclustern und topologischen Defekten widhrend des Schmelzprozesses zuriick-
gefiihrt werden kann.

Der dritte Teil dieser Arbeit enthélt einen zusammenfassenden Riickblick iiber die Kristalli-
sationseffekte und den Schmelzmechanismus in Systemen mit einer eingefrorenen Teilchen-
spezies.

Im vierten Teil dieser Arbeit wird das Schmelzen eines dquimolaren, zweidimensionalen,
bindren Modellkristalls unter Scherung analysiert. Die zwei Partikelspezies weisen eine
starke Asymmetrie hinsichtlich ihrer Wechselwirkung auf, so dass die Kristallstruktur an-
fangs zwei versetzten, quadratischen Gittern entspricht, die von den beiden Spezies gebildet
werden. Die Kombination aus Scherung und thermischer Fluktuation erzeugt ein charak-
teristisches, hierarchiches Bruchszenario, in dem die stirker wechselwirkenden Teilchen
zunéchst thermisch abgelenkt werden und dadurch die Bewegung des eingeschlossenen,
schwicher wechselwirkenden Teilchens fort von seinem Gitterplatz begiinstigen.

Dies wiederum fithrt zu der Entstehung beweglicher Defekte, die sich schlieklich verbinden
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und eine Kaskade von Defekten hervorrufen, durch die der Kristall zu Bruch geht. Dieser
Vorgang weist deutliche Unterschiede zum Bruch eines einkomponentigen Kristalls in der
N#he des Schmelzpunktes auf. Diese Ergebnisse sind verifizierbar im Rahmen von Experi-
menten mit superparamagnetischen kolloidalen Gemischen in einer hingenden Luft-Wasser
Grenzfliche, die einem externen magnetischen Feld ausgesetzt sind. Die Scherung kann
mithilfe von einem externen Laserfeld erzeugt werden.



Preface

Arguably, the most well-known instance of freezing is the solidification of water into ice
upon decreasing temperature: The brittle surface of a frozen lake comes to mind or the
layer of frost covering windshields on a winter’s morning. Despite its ubiquity, the peculiar
changes inherent in this freezing process are bound to astonish the observer. After all,
the visible crystalline structure of ice, its palpable rigidity and the occasional formation of
cracks in the material are in striking contrast to the apparent shapelessness and smooth
elusiveness of water. It is intriguing to ask what intricate mechanism mediates the transi-
tion from the one state into the other. In fact, there is not a single mechanism governing
the transformation from a liquid into a solid - or the reverse way. Instead, the broad
array of settings in which such transitions may be observed entails multiple, qualitatively
different freezing and melting mechanisms. Thus, the freezing of a liquid under bulk con-
ditions is qualitatively different from freezing at a surface or in the presence of impurities.
Fluidization and solidification may also be induced by mechanical conditions to which a
material is subjected, and further freezing and melting mechanisms follow from that. In
this preface, an account on freezing and melting processes shall be given, which have been
adressed in physical studies throughout the past decades. In particular, the pivotal impact
of colloid science on our current understanding of freezing and melting mechanics shall be
highlighted and important cornerstones of this understanding will be portrayed. Thus, the
results presented in the journal articles constituting this work will be embedded into the
scope of current research.

Reflecting the different states of matter, the ancient greek philosopher Plato was lead
to assume that all materials - in specific, the mystical classical elements, on which Plato
focussed his considerations - are composed of polyhedrally shaped, elemental particles,
which are referred to as the platonic solids [1]. Based on the geometric properties of these
alleged building blocks of matter, Plato deduced a coarse explanation for the properties of
matter as perceived in everyday occurrences, i.e., the rigidity or flexibility, the roughness
or softness of a material [1]. While plato’s contemplation may fall short of today’s scientific
insight, it does serve as an example for humankind’s long-standing desire to understand
the laws controlling the states of matter, and for the prevailing of the idea that microscopic
features far from human perception determine the macroscopic properties of a material as
perceived by the human sensorium.

On the macroscopic scale, a powerful and exhaustive means to characterize and under-
stand phase transitions such as freezing and melting has been provided in modern times
within the laws of thermodynamics and statistical mechanics [2,3]. Utilizing macroscopic
observables to reflect the state of a bulk material such as pressure, volume or entropy,
thermodynamics allow to analyze changes in the state of a material with respect to energy,
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temperature, work or heat exchange. While the analysis of individual particle dynamics is
bypassed in this approach, thermodynamics have enabled the vast expansion of technical
applications exploiting the macroscopic laws governing phase transitions. The success of
this approach may be witnessed in prominent applications such as combustion engines,
cooling circuits or most kinds of power plants [4].

Nonetheless, the microscopic processes governing phase transitions have been the subject of
sustained scientific interest. In particular, this is true for freezing and melting. During the
past decades, numerous phenomena which revolve around the solidification or fluidization
of matter induced, e.g., by temperature or mechanical strain have been vitally discussed
with respect to the microscopic mechanisms governing these transitions. Starting from
analytical theories, the development of microscopic descriptions of these phenomena has
been crucially propelled by the availability of suitable model systems, which enable the de-
duction of particle-resolved information. In addition to the development of sophisticated
experimental setups and methods, this also includes the investigation of physical model
systems via computer simulations.

Throughout the past decades, the scope of computer simulations has substantially ex-
panded as the capability of computing equipment has grown exponentially [5]. Thus, the
analysis of phase transitions on the microscopic scale, i.e., via the observation of individual
particle trajectories, did not only enhance the understanding of freezing and melting on a
fundamental level. Moreover, the diagnosis of microscopic defects, which, in general, me-
diate freezing and melting on a microscopic level, provides a connection between collective
patterns of particle rearrangement and macroscopic transitions, which continues to bring
forth significant implications for material science and engineering [6].

Naturally, the direct observation of microscopic particle motion is strictly limited by the
laws of quantum mechanics, which, irrespective of the probing device, prohibit the simul-
taneous measurement of location and impetus of a particle at an arbitrary precision [7].
Thus, the necessity of a model system arises, which, while hosting a wealth of fundamental
processes, can be accessed by direct probing methods at the “atomic” resolution of indi-
vidual particles [8]. In this sense, a class of particularly favorable model systems for the
microscopic investigation of phase transitions is found in the field of soft condensed matter
or, in short, soft matter [9]. These include polymeric solutions, gels, foams, surfactants or
liquid crystals. The unique set of properties unifying this versatile class of materials and
enabling their model properties for both fundamental research and material science shall
be illustrated by focussing on a further example of soft matter, that is, colloidal suspen-
sions [10, 11].

Colloidal suspensions are composed of two constituents: The solvent particles, which form
a solvent medium, and the much larger colloidal particles, which form a dispersed phase
within the solvent. While the solvent particles are characterized by a structural size com-
parable to the typical diameter of an atom, i.e., on the scale of one Angstrom (A =
10~'%m), colloidal particles typically have sizes ranging from nano- to micrometers (10~
10=%m). Thus, colloidal particles can be directly observed by optical methods, e.g. confocal
microscopy [12], confocal laser scanning microscopy [13| or fluorescence microscopy |14].
Based on these direct observation techniques, a profound analysis of colloidal systems on
the particle-scale can be obtained via digital processing of video microscopy data [15]. Ad-
ditionally, structural properties of colloidal samples may be deduced by scattering methods

10



such as small-angle x-ray scattering, neutron scattering [16] or light scattering [17], which
require the sample material to have structural features larger than the wavelength of the
radiation used to probe the material.

The separation of length scales present in colloidal suspensions also implies a separation
of time scales, which is reflected by the typical diffusion time of the two constituents. The
diffusive timescale of solvent particles corresponds to picoseconds (10™%s). The dynamics
of the colloidal particles, on the other hand, is governed by Brownian motion, i.e., ther-
mally induced and randomly directed kicks of the solvent particles adding up to a random
displacement. The diffusive timescale is defined by the Brownian time, during which a
colloidal particle diffuses over an area comparable to the square of its characteristic lin-
ear extension — for colloids, the Brownian time may well be in the range of microseconds
to seconds, which enables real-time monitoring of the particle motion in experimental se-
tups and the assessment of structural transitions within the time windows accessible to
experimental observation. Typically, the energy scale of the interaction between colloidal
particles is comparable to the thermal energy at room temperature.

Thus, the existence of a mesoscopic structural constituent, which is separated from the sol-
vent medium by several orders of magnitude with respect to the length- and timescales and
only indirectly affected by the innate dynamics of the solvent medium allows to monitor
phase transitions of the dispersed phase at particle resolution by means of direct obser-
vation. In many cases, the discoveries made in such mesoscopic model systems are of
fundamental character and apply to atomic systems, too [18].

The use of colloidal suspensions as a model system is promoted by the fact that experimen-
tally, the interaction between the colloidal particles can be tailored to conform to different
requirements. By utilizing a wide array of chemical synthetization techniques, colloidal
particles can be prepared in various geometrical shapes, such as disks, polygonal platelets,
rods, spherocylinders, spherocubes,; cubes or spheres [9]. In many cases, seminal discov-
eries on microscopic mechanisms could be disclosed by studying the fundamental case in
which the colloidal particles interact solely via the hard repulsion imposed by the principle
of volume exclusion (e.g., “hard spheres”) [19]. By adding non-absorbent polymeric chains
to the solvent, depletion forces induce an entropic attraction between the colloidal par-
ticles [20]. When utilizing charged colloids, the electrical charge of the particles and the
screening length of the interaction can be controlled by adding salt to the suspension [11].
Further possibilities to control colloidal suspensions arise from the application of external
fields [21]: Colloidal particles doted with iron oxide become susceptible to external mag-
netic fields [8,22,23]. Thus, aligned dipole moments can be induced, leading to long-ranged,
soft repulsive interactions, which can be externally tuned and controlled in real-time via
the magnetic field [22,24-27|. Optical tweezers allow to pinpoint colloidal particles to a
given position [28-30], manufacture particle arrangements [31] or drag individual particles
through a dense suspension [32]. Collective flow can be induced in suspension of colloidal
particles via electric [33,34], magnetic [23], or light fields [35]. Utilizing these possibilities
for the synthesis and external control of colloidal suspensions, the structural properties
of colloidal liquids and solids can be experimentally accessed and the transition between
these stages can be steered and monitored in detail.

With soft condensed matter, the interplay between the particles constituting a solid is
typically very weak compared to atomic solids [9]. Accordingly, samples of soft matter are
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very easily deformed by external forces, which is expressed by small values of the Young’s
modulus and the shear modulus [9]. Considering their rheological properties, the materials
summarized in the field of soft matter frequently exhibit viscoelastic behavior: The ma-
terial response to mechanical stress is typically elastic, i.e., solid-like on short timescales
but exhibits flowing, fluid-like behavior on long timescales. Thus, even very small external
forces may alter the rheologic response and eventually deform samples of soft matter. Col-
loidal suspensions have been widely employed to sample and analyze rheological properties
such as the yielding of viscous complex fluids, ageing and vitrification of amorphous media,
thinning and thickening of flowing suspensions or the propagation of structural distortions
within strained materials [36].

Many intriguing phenomena can be explored in binary colloidal mixtures, which are com-
posed of two particle species and exhibit a rich base behavior under equilibrium and non-
equilibrium conditions [37,38]|. Examples include heterogeneous crystallization [39], demix-
ing and layering effects under sedimentation [40-43|, shaking [44, 45| or driven flow [46].
Additionally, binary mixtures play a vital role as a model system for vitreous media [47,48]
or setups with frozen-in disorder [49,50].

A broad array of particle-resolved computer simulation techniques has been employed
to model and analyze the behavior of colloidal suspensions, such as Monte Carlo sim-
ulations [51-54], Molecular dynamics simulations [54, 55| or Brownian dynamics simu-
lations [56,57]. Computer simulation techniques have undergone continuous development
throughout the past decades and many innovative numerical approaches have been devised
to assess the dynamical and statical properties of large colloidal systems on the particle
scale [58]. Up to the day, new, more efficient simulation approaches building on existing
models are being developed in order to expand the system sizes and time scales accessible
in computer simulations [59]. In many cases, the data deduced from computer simulations
is crucial for the interpretation of phase transitions and the underlying mechanisms [60] —
in the field of colloids, the interplay between experiments and computer simulations has
proven to be particularly fruitful [11].

It may be remarked here that in addition to its fundamentally intriguing qualities from
the standpoint of science, the class of materials denoted as soft matter is also highly ubig-
uitous. Not only does this apply to comparably recent, artificial examples like polymeric
compound materials, cosmetic products like toothpaste, shaving cream or shower gel, paint
or liquid crystals as utilized in contemporary digital displays [61]. Moreover, examples of
soft matter include food products like milk or honey, elemental materials like clay, glue, ink
or wax [61] but also very fundamental biological structures such as proteins, membranes
or even lifeforms such as bacteria or cells [62,63].

Freezing and melting have been explored in experimental studies on colloidal dispersions
and computer simulations modeling the many-body dynamics of colloids. Intriguingly,
freezing and melting occur in a wide variety of situations and may be triggered, e.g., by
changes in temperature or pressure, but may also be induced by mechanical strain or the
presence of structural distortions. In general, the microscopic mechanism governing freez-
ing and melting depends on the spatial topology and the external stimuli inducing the
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transition, but also on the nature of the interaction which governs the arrangement of
particles.

In three-dimensional space (3D), freezing can be described as a phase transition of first
order. Thereby, the liquid releases large amounts of latent heat while maintaining a con-
stant temperature close to the melting point [64]|. During this process, localized crystalline
regions emerge within the liquid. The formation of these nuclei of the solid phase can
either occur in the bulk material, in which case it is denoted as homogeneous nucleation,
or at the surface of container walls or impurities, in which case one refers to heteroge-
neous nucleation. The growth of crystalline nuclei into super-critical clusters triggers the
expansion of the crystalline phase throughout the remaining liquid regions. The initial
phase-coexistence between liquid and solid regions within the material is a distinct feature
of a first order phase transition, which can be commonly witnessed in the freezing of water
and in the reversal of this process. When the material is heated and cooled in a thermal
loop, hysteresis may be observed with respect to the transition temperature when the tran-
sition is of first order. According to a dated definition, a phase transition of first order is
identified by a discontinuity in the first derivative of the thermodynamic free energy with
respect to a thermodynamic variable [64]. A qualitatively different type of transformation
is the comtinuous phase transition, which is also denoted as phase transition of second
order. Typical features of such a transition are a divergence of the correlation length and
the susceptibility of the order parameter close to the phase transition [65].

In spite of its apparent simplicity when compared to the three-dimensional case, freezing
in two spatial dimensions (2D) has eluded an explanation for a long time '. This elusive-
ness originates in a fundamental difference between two- and three-dimensional crystals
with respect to the persistence of their order. This difference can be illustrated in terms
of the XY model, where freely rotatable two-dimensional spins are arranged on a lattice
of arbitrary dimension [67]. In this model, one may consider a disturbance of the spin
direction which propagates through the lattice in a wave-like fashion. When for small
angular differences, the interaction between neighboring spins is assumed to be harmonic,
the energy of the wave corresponds to L¢/(27/L)?, where L denotes the linear extension
and d the dimension of the system [66]. Thus, in the thermodynamic limit, the occurrence
of such wave-like distortions is energetically favorable in one dimension and impossible in
three dimension. Accordingly, the three-dimensional solid exhibits long-range order, where
the correlation of the spin directions decays to a finite nonzero value even at long dis-
tances. Conversely, no ordered phase exists in the one-dimensional XY model [67]. In the
Mermin-Wagner theorem [68], it was shown in detail that in two dimensions, the presence
of wave-like distortions prohibits long-range order in this lattice model. Instead, the solid
phase is characterized by gquasi long-range order, where the spin-spin correlation function
decays algebraically to zero.

Building on this principle, Kosterlitz and Thouless derived a methodology for the de-
scription of ordering transitions in 2D lattice systems such as 2D superfluids [69], type II

LA detailed account of the origins of the KTHNY melting scenario and the scientific controversy revolving
around it is given in K. J. Strandburg, Rev. Mod. Phys. 60, 161 (1988) [66]. Following the general
outline depicted in this review, a brief summary of the development of the KTHNY melting scenario
shall be given at this point.
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superconductors [70,71] or XY models [71]. Key to their description is the identification
of topological defects, i.e. spin vortices, which mediate the transition from an ordered into
a disordered state [72,73|. In the ordered state, oppositely “charged” vortices prevail in
pairs such that the topological disturbance induced by the vortices is effectively “screened”
over long distances [72,73]. Even in the crystalline phase, these bound pairs may sponta-
neously emerge due to thermal excitation. A disordered state is entered when the defect
pairs unbind into isolated topological defects which then affect the long-range order of the
system. Kosterlitz and Thouless determined an expression for the free energy related to
the unbinding of a defect pair into a set of isolated topological defects and thus predicted
the transition temperature above which a disordered phase emerges [73|. Utilizing renor-
malization group theory, the picture of two-dimensional melting presented by Kosterlitz
and Thouless also implies a continuous transition from the ordered into the disordered
phase [72].

When considering a 3D crystal in an off-lattice approach, the density-density correlation
function corresponds to a series of J-peaks which characterizes the long-range positional
order [74]. In analogy to the previous discussion of the XY model, positional order cannot
be sustained in a 2D solid due to long-wavelength fluctuations as predicted by a general-
ization of the Mermin-Wagner theorem to the continuous case, which was brought forth
by Mermin in 1968 |75]. Instead, the density-density correlation function exhibits an alge-
braic decay to zero and one refers to quasi long-range positional order [75]|. Simultaneously,
Mermin indicated that a 2D crystal may be characterized by a qualitatively different kind
of order, which is denoted as “bond orientational order” |75,76]. Instead of focussing on
the lattice positions of the particles constituting the solid, this type of order accounts for
the angles between an arbitrary reference axis and the lines connecting two neighboring
particles (i.e, the “bonds”). In a 2D crystal, these angles are correlated over arbitrarily
long distances and one refers to long-range bond orientational order. Equivalently, bond
orientational order may also be expressed via the correlation of the bond orientational or-
der parameter, which, for a given particle, comprises the local values of the angles between
neighbor bonds and reference axis.

The further progress of the theory of freezing and melting in two dimensions was driven by
the subsequent works of Halperin and Nelson |77,78| and, independently, Young [79], who
presented an approach to off-lattice freezing and melting transitions based on the concept
of defect-unbinding proposed by Kosterlitz and Thouless. In this case, the transition from
an ordered into a disordered phase is driven by the unbinding of dislocations. This topo-
logical defect can be described as a deviation from the periodic crystalline structure due
to the local insertion of an additional lattice line [67]. In the vicinity of a dislocation, a
circular loop along the lattice segments cannot be closed - the missing segment completing
the loop is quantified by the magnitude and direction of the Burgers vector [67]. Thus,
the Burgers vector characterizes the topological distortion induced by the presence of a
dislocation in a crystalline lattice and may be seen analogous to the “charges” of vortical
defects in the lattice model [66]. An alternative illustration of dislocations may be pro-
vided by utilizing Voronoi tesselation [80]. This geometric construction derives a partition
of space into cells based on a distribution of particles. The Voronoi cell attributed to a
given particle is composed of all points which are closer to the respective particle than to
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any other particles (in the special case of three dimensions, the Voronoi cell is also known
as the Wigner-Seitz cell [67]). This concept introduces the notion of neighborhood, as the
number of edges, or faces, respectively, of the Voronoi cell corresponds to the number of
nearest neighbors of a given particle. In the common example of a triangular crystal in
two dimensions, every particle has six nearest neighbors. A dislocation is composed of two
particles, one of which has five and one of which has seven nearest neighbors.

Similar to the case discussed by Kosterlitz and Thouless, Halperin, Nelson and Young pro-
posed that bound dislocation pairs with opposite Burgers vector emerge in the crystalline
state following thermal excitation [66,77-79]. Due to a similar screening effect as discussed
above, the long-range orientational order of the 2D crystal persists in the presence of such
bound dislocation pairs. Above the temperature T}, the dislocation pairs dissociate into
unbound defects. The presence of isolated dislocations destroys the positional order, i.e.,
the density-density correlation function decays exponentially to zero. However, orienta-
tional order remains quasi long-range, that is, the bond orientational correlation function
exhibits an algebraic decay [67].

Thus, a novel intermediate phase between the 2D solid and fluid phase has been character-
ized, in which quasi long-range orientational order persists without positional order. This
anisotropic fluid phase was christened the hexatic phase. At the transition temperature
T; > T,,, isolated dislocations unbind into pairs of disclinations, which are constituted
by single five- or sevenfolded defects, upon which positional and orientational order are
destroyed and the system enters the disordered, i.e. fluid phase. In this phase, both ori-
entational and positional order exhibit short range behavior and decay exponentially to
zero. The theory devised by Halperin, Nelson and Young predicts that both the transition
from the solid to the hexatic phase as well as the subsequent transformation from the
hexatic into the isotropic fluid phase take place in a continuous manner, i.e., are of second
order [66]. Intriguingly, the authors also establish a connection between the existence of
the newly found anisotropic fluid phase and distinct alterations of the mechanical prop-
erties during melting. This is expressed by Frank’s constant K4, which represents the
modulus of rotational stiffness [74]. While this magnitude is infinite in the translationally
ordered solid and zero in the isotropic fluid phase, it assumes a finite, nonzero value in the
hexatic phase [66]. Halperin and Nelson have also conducted a formal comparison of the
Hamiltonian governing the screened interaction of free dislocations in the hexatic phase
and the Hamiltonian employed by Kosterlitz and Thouless to express the interaction of
vortices in their treatment of the XY model. Via this comparison, a prediction has been
made concerning the behavior of Frank’s constant at the transition from the hexatic to the
isotropic fluid phase, according to which K 4 assumes the value 72/m as T; is approached
from below and then jumps discontinuously to zero at higher temperatures |[66]. The mi-
croscopic description of the two-dimensional melting process provided by these efforts has
come to be known as the Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) theory.
Besides the KTHNY melting scenario, in which 2D melting is depicted as a sequence of
two continuous phase transitions, further theoretical approaches to 2D melting emerged
which predict a single melting transition of first order in the fashion of a 3D crystal. These
competing theories include a disordering transition mediated by grain boundaries or a
simultaneous occurrence of the two-step defect unbinding proposed in the KTHNY sce-
nario [66,81-84|.
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The emergence of the KTHNY theory has stimulated a multitude of experimental and com-
puter simulation studies of the two-dimensional melting process. A detailed account of the
early works probing the two-stage melting scenario may be followed in Refs. [60,76,85,86].
Despite the vast number of studies which revolve around the topic of 2D melting, up to
the day, the predictions of the KTHNY theory could not be confirmed as a universally
applicable principle, and neither could the theory be consistently refuted [66]. Rather
than extending to all examples of 2D solids known, the validity of the KTHNY theory
is evidently dependent on the type of interaction by which the system of interest is gov-
erned |87|. In particular, the fundamental case of a 2D hard disk solid played the role of
an empirical test-bed, which, continuously revisited over decades, produced a wealth of
controversial findings with respect to the validity of the KTHNY theory 2. Early evidence
for a first-order transition in a hard disk system was reported in a computer simulation
study by Strandburg et al. in 1984 [88]. Through continuous refinement and expansion
of the computer simulation approach in the subsequent years, further indications for this
first-order transition surfaced [89,90]. In 1995, these indications were manifested by a
rigorous numerical analysis of the finite-size scaling of the bond orientational order pa-
rameter [60]. Simultaneously, a study based on density functional theory suggested the
fundamental impossibility of a hexatic phase in a hard disk fluid [91]. In an extensive
computer simulation study conducted in 1998 by Jaster [92]|, the analysis of orientational
order in a 2D hard disk system indicated a scaling behavior consistent with the two-stage
melting scenario. Additionally, the occurrence of a one-stage continuous transition could
be excluded [92]. In 2011, that is, close to 40 years after the initial work by Kosterlitz
and Thouless, a large-scale computer simulation study conducted by Bernard and Krauth
unraveled crucial details of the melting of a 2D hard disk solid [59]. This recent work is in
favor of a two-stage melting process with a continuous solid-hexatic transition and a first
order hexatic-fluid transition - a result which was obtained through long-term computation
and a profound analysis of the particle-resolved data obtained thereby.

As opposed to hard disks, 2D solids governed by soft, long-range repulsion have proven to
be a model system in which the predictions of the KTHNY theory could be confirmed with-
out ambiguity. Early experimental observations of a two stage melting process were made
in colloidal systems with coulombic interactions [15] as well as in colloidal lattice systems
with magnetic interactions [93,94]. In 1997, Zahn et al. proposed a novel experimental
realization of a planar colloidal monolayer, which is achieved by dispersing superparam-
agnetic polysterene beads in a hanging water droplet [24]. Due to gravity, the particles
sediment until they reach the air/water-interface, where further downward motion is hin-
dered by the surface tension of the water droplet. Thus, a very stable confinement of the
particles into a nearly perfect monolayer is achieved, where the vertical deviation of the
particles within the layer is below 1% of their diameter [8]. The superparamagnetic prop-
erties of the colloidal particles used in this setup originate from a doting with FeoOg iron
oxide [8]. Via the application of an external magnetic field with field lines perpendicular
to the plane of confinement, parallely aligned dipole moments are induced to the particles.

2For an exhaustive review of the computer simulation studies which seminally contributed to the under-
standing of 2D hard disk melting, see H. Weber and D. Marx and K. Binder, Phys. Rev. B 51,14636
(1995) [60]. Following the scope of this review, a brief summary of these works is given here.
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The parallel alignment of dipoles then leads to a purely repulsive, long-range interaction
which scales with the inverse cube of the particle separation [22]. Intriguingly, the strength
of the particle interaction can be externally tuned by altering the magnetic field strength.
Thus, the system can be effectively heated or cooled, which enables to track the melting
process while securing a thermal relaxation of the monolayer at every particular tempera-
ture step [8].

Probing this colloidal model system with video microscopy, the predictions of the KTHNY
could be fully confirmed by monitoring the distinct degree of orientational and translational
ordering predicted for the solid, hexatic and isotropic fluid phase [25,95]. The colloidal
samples utilized in these studies contained ~ 10° particles. Furthermore, this experimen-
tal setup enabled the detailed confirmation of the predicted behavior of Frank’s constant
K 4, thus providing very explicit evidence for the validity of the KTHNY scenario [74].
Also, a dynamical criterion for the distinction of the three phases based on the Lindemann
parameter was deduced from these observations |95]. Also, numerical assessments of the
two-dimensional melting in systems with dipolar interactions supported the validity of the
KTHNY scenario [96].

Apart from probing the KTHNY melting scenario, the experimental setup depicted above
was also employed to sample the behavior of binary mixtures of colloidal particles with dif-
ferent magnetic susceptibilities when exposed to rapid quenching. Thereby, a pronounced
increase of the magnetic field was conducted after the mixture reached thermal relax-
ation, equivalent to a strong decrease of temperature which is quasi-instantaneous with
respect to the diffusive timescale of the particles [97]. The subsequent formation of lo-
calized crystalline regions exhibited both triangular crystallites, which are composed of
only one species, as well as crystallites which correspond to a checkerboard pattern, where
both particle species are arranged in a square lattices and the two lattices are shifted rel-
atively [97]. In further experiments and computer simulations [98,99|, the formation of
crystalline patches in the suspended monolayer after a quench was monitored using a clus-
ter criterion. Thereby, the nucleation mechanism governing the growth of polycrystalline
regions could be distinguished from the two-step melting process observed in Ref. [95].
While the KTHNY scenario was unambiguously confirmed for soft, long-range repulsive
potentials, numerous studies consistently suggested the invalidity of the theory for the case
of hard disks. For soft, short-range repulsive interactions, however, results in favor of the
KTHNY scenario were reported [100] as well as observations contradicting the theory of a
two-stage continuous melting process [101,102]. Only recently, a large-scale computer sim-
ulation study systematically probed the dependence of the interaction range on the melting
process in systems with repulsive interactions of the shape ~ r~™ [103,104]. The results
suggest that for n > 6, the melting process corresponds to the scenario associated with the
melting of a hard disk solid and the hexatic-fluid phase transition is in fact of first order,
in agreement with the hard-disk scenario discussed in Ref. [59]. For exponents n < 6,
however, the predictions of the KTHNY melting theory have been recovered [103, 104].
The effect of potential softness on first order signatures in the hexatic-fluid transition was
also addressed in Ref. [105].

A further question concerning the scope of the KTHNY theory was tackled in a computer
simulation study by Gribova et. al. [106], where the melting process in a monolayer of
soft repulsive particles was compared to stacks of multiple particle layers. Via a thorough

17



Preface

finite-size analysis building on methods established in Refs. [60, 88], it could be shown
that even slight deviations from a 2D confinement inhibit the occurrence of the hexatic
phase [106]. Recent experimental studies in magnetized monolayers [107] or single-layer
complex plasmas [108] have further expanded the current knowledge of 2D melting.

Melting in a pure, planar confinement is, however, a phenomenon rarely witnessed in
nature. More commonly, 2D melting occurs in the presence of a substrate. This might be
embodied by the surface of a solid, to which the melting agent adsorbs. A vital example
of such realizations of two-dimensional confinement is adsorbtion to graphene sheets [109].
Typically, the underlying surface will exhibit some roughness, thus introducing a certain
degree of disorder. This may be caused by randomly distributed indentations or bumps,
as well as other repellent or attractive obstacles. The presence of such immobile obstacles
is denoted as quenched, i.e. frozen-in disorder. Numerous experimental setups may be
named in which the presence of such immobile defects crucially affects the phase behavior.
Among these are type II superconductors, where magnetic vortices are formed in the pres-
ence of a magnetic field. The range of technical applications of type II superconductors is
affected by the pinning of magnetic flux lines due to structural defects [110-112]. Also, the
presence of quenched defects places a crucial role in the phase behavior of liquid crystal
films [113], synthetic and biological Langmuir-Blodgett films [114,115] or two-dimensional
protein crystals [116].

The presence of frozen-in obstacles affects the pure, uniform background of the melting
process which is presumed in the KTHNY treatment. Soon after the initial proposition
of the KTHNY scenario, Nelson et al. conducted a renormalization group analysis of how
weak disorder affects the 2D melting scenario [117,118]. Thereby, a bead-spring model
was considered, where a periodic arrangement of beads is interspersed with larger beads,
and neighboring beads are connected with springs. The large obstacles do not interrupt
the periodic arrangement of beads but induce a local dilation of the lattice. The authors
argued that the presence of such quenched impurities obstructs the stability of the solid
phase as they break up thermally excited dislocation pairs, and triggers a disorder-induced
melting of the solid into the hexatic phase. Thus, the temperature 7;,, which marks the
transition from the solid to the hexatic phase, was predicted to shift to lower values with
increasing degrees of disorder. Also, it was suggested in [117] that above a critical degree
of disorder, no solid phase can be established at all. As opposed to the strong influ-
ence of quenched disorder on the solid-hexatic transition, only a slight dependence of the
hexatic-fluid transition temperature 7T; on disorder follows from the analysis conducted in
Ref. [117]. Overall, the influence of quenched disorder was predicted to induce a broaden-
ing of the stability range of the hexatic phase at the expense of the stability of the solid
phase. This initial treatment of 2D melting in the presence of weak disorder also implied a
reentrant transition from the solid to the hexatic phase upon cooling for finite, subcritical
degrees of disorder [117]. The implication of a reentrant melting transition was initially
supported by a further analysis of the effect of quenched impurities based on continuum
elastic theory [119].

In computer simulation studies subsequently conducted by Shi and Berlinsky [120], the
formation of topological defects in the presence of an underlying random pinning potential
has been analyzed and the defect patterns emerging in the cases of high and low pinning
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disorder have been discussed. The authors observed a melting transition which is mainly
attributed to the formation of extended grain boundaries in the presence of high disor-
der, which crucially affects the particle dynamics and promotes collective hopping [120].
Thus, early particle-resolved observations of the disorder-induced melting transition was
provided.

Further contemporary studies disputed the widening of the hexatic phase and proposed
that the hexatic phase is suppressed in the presence of sufficiently strong disorder, which
melts the hexatic into an isotropic fluid [121]. In a later work by Cha and Fertig, a con-
tinuum elastic theory analysis of the 2D melting process was conducted in the presence
of a slowly varying random potential, which was supported by additional computer simu-
lation data [122]|. In their treatment, the authors indicated a flaw in the renormalization
group analysis conducted in [117]|. This flaw is related to the fugacity expansion commonly
applied in renormalization group theory. In the case of 2D melting in the presence of im-
purities, the fugacity expression is employed to assign a thermal probability to the event
that a given lattice site is occupied by a dislocation [122]. However, the common expansion
in the fugacity, which formally simplifies this expression, is forbidden here. This is due to
the range of values of the dislocation-disorder energy entering in the fugacity, which, in
some rare cases, might cause the simplified term to diverge while the original expression
would approach zero instead. This formally overstated the probability for a dislocation to
be created in the presence of disorder and promoted the prediction of a reentrant melting
transition at low temperatures in the presence of arbitrarily small disorder. This concept
was thoroughly revised by Cha and Fertig, who pointed out that in the presence of weak
disorder, the solid remains stable at low temperatures [122]. However, they confirmed the
existence of a critical degree of disorder above which melting of the solid is induced. Addi-
tionally, the impact of disorder on the solid-hexatic transition temperature T,, predicted
in [117] was recovered in [122]. While a profound understanding of the disorder-induced
melting of a solid into a translationally disordered state was provided in [122], the stability
range of the hexatic phase was not resolved in this work.

The findings of Cha and Fertig were probed by a numerical study on superparamagnetic
colloidal particles, which interact with a planar substrate featuring attractive potential
wells [123]. In this work, the temperature-induced melting of the 2D solid in the absence
of quenched disorder was compared to the disorder-induced melting at zero temperature.
Thus, two different melting procedures could be resolved and compared on a microscopic
level. The authors observed that with disorder-induced melting, increasing random disor-
der induces the creation of dislocation pairs and thereby enables the release of strain [123].
Thus, evidence was provided for the prediction that crystalline order can be maintained
at zero temperature in the presence of finite quenched disorder while increased numbers
of quenched impurities will trigger a disorder-induced melting. This is opposed to the
temperature-induced melting process, where, as predicted in the classic KTHNY picture,
the unbinding of dislocation pairs, which are already present in the crystalline phase trig-
gers the disordering transition, as could be observed on a particle-resolved level [123]. In
accordance with the scope of Ref. [122], the numerical study presented in Ref. [123] did
not contain a specific diagnosis of the hexatic phase and its stability range but merely
differentiated between the ordered and disordered state.
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Simultaneously, first experimental realizations of two-dimensional colloidal systems featur-
ing quenched disorder emerged and were employed to probe the influence of disorder on
the melting scenario. In [93], a monolayer of dipolar colloidal particles has been realized
by confining the colloids between two glass plates, where repulsive dipolar interactions are
induced via the application of an external magnetic field. A small fraction of the particles
has a larger diameter than the remaining, monodisperse particles and is stuck between the
glass plates. These immobilized particles constitute frozen-in obstacles. The authors did
not report on the occurrence of the hexatic fluid phase but rather pointed out that the solid
phase, which was observed at high magnetic field strengths, relaxates into a stage denoted
as hexatic glass [93]. This phase was found to bear the structural properties of the hexatic
fluid phase but emerged from the solid phase without a change of temperature or magnetic
field strength, respectively. Instead, the structural crossover into a translationally disor-
dered state was attributed to the pinning of dislocations to the immobilized obstacles [93].
When decreasing the magnetic field strength, however, a disclination-unbinding mechanism
was observed and the melting into the isotropic fluid phase was found to conform to the
pure 2D melting scenario [93].

Substantial insight into the influence of quenched disorder on the structural properties of
2D solids was also provided by Pertsinidis et al., who studied a suspension of charged col-
loidal particles confined between a quartz bottom plate and a cover slip |34]. In this setup,
quenched disorder has been introduced by roughening the surface of the quartz container
wall by utilizing an ion-etching technique [34]. The roughened structure then induces a
random pinning potential. In order to measure the influence of different degrees of disorder
on the topological order of the 2D solid, structural features were etched into the surface on
three distinct heights [34]. Thus, by reducing the separation of the two container walls, the
degree of structural disorder induced by the random potential landscape could be altered
in situ [34]. Thereby, the authors were able to experimentally verify that an increase of
random disorder gradually deteriorates the translational and orientational order of the 2D
solid and induces a transition into the hexatic phase. With a further increase of random
disorder, the hexatic phase was observed to transform into an isotropic fluid phase [34].
The authors also probed the depinning of particles in a random potential landscape under
the application of an external driving field and exposed that the dynamic properties of the
depinning transition suggest a coexistence between solid and fluid regions in the mono-
layer [34].

In an experimental study on 2D colloidal system conducted by Yunker et al. [100], the tran-
sition of a crystal into a glass due to quenched disorder has been studied. The colloidal
particles utilized therein interact via a short-range repulsion similar to that of hard spheres
and quenched disorder has been introduced by inserting smaller particles into the mixture.
The authors have thoroughly assessed the properties of the crystal-glass transition by mon-
itoring the bond order parameter susceptibility and the number of dislocations. Through
this analysis, it could be concluded that the disorder-induced crystal-glass transition re-
sembles the crystal-fluid transition in terms of the structural transformation. Additionally,
the authors reported a significant alteration of the particle dynamics reflected by a strong
increase of the dynamic correlation length during the crystal-glass transition [100]. The
disorder-induced transition of a crystal into a glass was also addressed in Refs. [124-127].
In an experimental assessment of the melting of Argon monolayers on graphene films, it
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could be shown that the insertion of impurities alters the melting process from first order
to second order and introduces a state reminiscent of the hexatic phase [128]. In further
computer simulation studies, additional dynamical effects in two-dimensional systems in
the presence of topological distortions have been reported. These include subdiffusive be-
havior in the presence of weak random disorder [129], as well as smectic flow and directional
mode locking upon depinning in a periodic array of pinning sites [130,131]

Despite the fact that the 2D melting process and the influence of quenched disorder on
its occurrence have been evaluated and analyzed in various experimental and simulation
studies, none of these works specifically tested the predictions stated by Nelson and co-
workers [117,118] concerning the stability range of the hexatic phase in the presence of
quenched disorder. In the article “Two-dimensional melting under quenched disorder” [132],
which constitutes the first part of this work, an experiment is presented to probe this
predicton and to resolve the stability range of the hexatic phase for varying degrees of
quenched disorder. Superparamagnetic colloidal particles are confined to the bottom of
a glass container by gravity. As in Refs. [95,97], the application of an external magnetic
field perpendicular to this surface induces parallel dipole moments, leading to soft, long
range repulsion between the colloidal particles. When the colloidal particles sediment to
the glass plate, a fraction of the particle is pinned to the surface. This pinning is caused by
van der Waals attractions and chemical interactions [132]. The randomly arranged pinned
particles constitute a frozen-in array of obstacles. Intriguingly, in this setup, the particle
interaction is the same for the obstacle particles as for the freely dispersed colloids. Thus,
a second species of particles is constituted and a binary mixture of mobile and immobile,
i.e., pinned particles can be explored.

As depicted above, the corresponding reference case of pure 2D melting could be realized
by confining the particles to the surface of a hanging droplet, a setup which unambiguously
confirmed the predictions of the KTHNY scenario [74,95|. By probing different regions of
the sample with varying pinning fractions, the influence of pinning disorder is monitored
systematically in [132]. Particle trajectories are recorded using video microscopy, which al-
lows for a particle-resolved analysis of dynamical and statical properties. Starting from an
equilibrated crystalline state, the melting process is monitored by incrementally reducing
the strength of the external magnetic field, which corresponds to an effective heating of
the system [132]. The system is allowed to equilibrate for 24 hours before trajectories are
recorded. Thus, the decay characteristics of the bond-orientational order correlation func-
tion are probed in every sample region at every distinct temperature step. Additionally,
particle-resolved computer simulations of the melting process in the presence of randomly
pinned particles are conducted. These enable an extended sampling of pinning disorder
and contribute static and dynamic particle information, from which the characteristics of
the two-step melting process can be deduced.

For each parameter combination of pinning fraction and magnetic field strenght, that is,
inverse temperature probed in the experiment and the computer simulation, the occurrence
of liquid, hexatic and solid phase is compiled into a phase diagram. In this phase diagram,
the broadening of the stability range of the hexatic phase is clearly reflected. Specifically,
the hexatic-solid transition shifts to lower temperature in setups with increased pinning
disorder while at the same time, the fluid-hexatic transition is only weakly affected. This
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behavior corresponds precisely to the predictions stated by Nelson in [117], and the data
obtained in computer simulation and experiment are in good agreement. Furthermore,
spatiotemporal fluctuations of the bond orientational order are observed close to the phase
transitions, pointing towards continuous transitions [132]. Qualitatively, these heteroge-
neous patterns of orientational order conform to observations reported for an impurity-free
two-dimensional Lennard-Jones system [133]. Also, several finite size scaling methods,
which were previously established and applied e.g. in Refs. [60,106], support the find-
ing that the melting process observed in the presence of pinning disorder consists of two
continuous phase transitions [132]. Based on the findings of |74|, where the behavior of
Frank’s constant K4 was specifically verified, the scaling of K4 is monitored for different
fractions of pinning disorder. This analysis reflects the shift of the transition temperature
T, at which K 4 diverges.

Furthermore, intriguing dynamic properties of the particles in the vicinity of pinned ob-
stacles are found: In the fluid phase, these particles exhibit slower dynamics than the
remaining particles, which are sufficiently apart from obstacles. In the solid phase, this
behavior is inverted, and the particles in the vicinity of pinning sites exhibit increased
dynamics when compared to the particles in regions unaffected by disorder, which might
point towards an increased probability of defect unbinding in the proximity of pinned par-
ticles in the solid phase as discussed in [117,122].

The second part of this work is constituted by the article “Fluctuations of orientational
order and clustering in a two-dimensional colloidal system under quenched disorder” [134].
Therein, an extended analysis of the experimental and simulation data of the 2D melting
process in the presence of pinning disorder is presented. The widening of the hexatic phase
discussed in [132] can, by this analysis, be attributed to the formation of bond orienta-
tional clusters, the emergence of which is inhibited in the presence of disorder. These bond
orientational clusters are topologically connected regions with uniform bond orientation
order, which appear in the isotropic liquid phase and merge into larger regions throughout
the hexatic phase. By visualizing these clusters, it is possible to monitor the continuous
formation of crystalline order throughout the hexatic phase [134]. These orientational
clusters undergo strong spatio-temporal fluctuations on time scales beyond the orienta-
tional correlation time [134|. Thus, orientational cluster can be readily distinguished from
polycrystalline regions or crystal nuclei which would indicate a phase transition of first
order [106]. By stating cluster criteria similar to those suggested in Ref. [98], orientational
clusters are detected in both experimental and simulation data and are thoroughly evalu-
ated. Specifically, cluster densities, average cluster sizes and the population of noncluster
particles are assessed as a function of system temperature and disorder strength [134]. It
is found that the presence of pinning disorder impedes the merging of clusters. Instead,
in the presence of pinning, a multitude of comparably small clusters prevails over a broad
temperature range. At low temperatures, the probability for a particle to be included in a
cluster is reduced if it is located in the vicinity of a pinned particles. At high temperatures,
this probability is increased and clusters preferentially emerge in the proximity of pinning
sites. This corresponds to similar findings with respect to the particle dynamics in the
vicinity of pinning sites observed in [132].

Also, the occurrence of the KTHNY melting scenario is supported by a further finite-size
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scaling analysis and a distinct diagnosis of the topological defects based on Voronoi tesse-
lation, i.e., bound and isolated dislocations as well as single disclinations [134]. Overall,
this combined approach of computer simulation and experiment supports the two-step
melting scenario in the presence of quenched disorder. The widening of the hexatic phase
with increasing disorder can be traced back to the characteristic properties of orientational
clusters and their formation and growth during the melting transition [134].

The investigation of the two-dimensional melting process via superparamagnetic particles
presented in Refs. [132,134] and previous works |25, 97| is reviewed in the article “Two-
dimensional colloidal mixtures in magnetic and gravitational fields” [135], which constitutes
the third part of this work. In this review, results on the sedimentation behavior of mixed
colloidal suspensions under time-dependent gravity are alos discussed, which have been
originally stated in [45].

Within the KTHNY melting theory, it has been established that the formation and un-
binding of dislocations mediates the structural transition from a crystal into a liquid and
that the presence of topological defects, i.e., bound or isolated dislocations as well as discli-
nations, alters the mechanical properties of a material in a distinct way - as an example, it
has been pointed out that the presence of isolated dislocations induces a finite rotational
stiffness |74]. In a wider sense, the creation and diffusion of defects governs the transfor-
mation of crystalline solids in a broad range of scenarios where the material responds to
external stimuli. Apart from temperature- or substrate-induced transitions, this is par-
ticularly true for the application of mechanical stress, which may induce material fatigue,
deformation, or fluidization of a solid [136]. The stability of crystalline solids under stress
may also be compromised by the formation and propagation of microcracks [136,137]. In
many technical applications, precise knowledge of the material response to stress and a
profound understanding of the underlying microscopic deformation mechanisms is imper-
ative. Examples include aeroplane wings, which endure heavy strain but may be severely
compromised by the presence of microscopic fissures [138,139]. Also, the biomechanical
process of bone fracture is governed by the formation and dissipation of cracks starting
from an initial microscopic disruption [140,141]. In all of these situations, the formation
and motion of topological defects is key to the understanding of the structural transition
a crystalline solid undergoes [136,142,143)].

The mechanical response of a solid is typically elastic, i.e., reversible, when a small stress
is applied [144]. If the stress is removed, the solid will return to its previous state and
the topological order of the particles constituting the crystal remains unaltered. When
a high stress is applied, the mechanical response crosses over to plastic, i.e., irreversible
deformation [145,146]. The structural changes occuring during plastic deformation are not
restored when the stress is removed. On the microscopic scale, plastic deformation in a
crystal is typically driven by numerous, correlated instances of topologic rearrangement,
which are referred to as a plastic events - for example, these may correspond to bond
breaking [147,148| or discrete slip events [149].

The specific value of stress at which the mechanical response of a solid crosses over from
elastic to plastic deformation is known as the yield point [144].

In general, a material which is solid in the absence of mechanical stress will exhibit flowing
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behavior once an applied stress exceeds the yield point, leading towards a deterioration of
the crystalline structure through fluidization or cracking [145, 146, 150]. Conversely, the
mechanical response of a liquid ideally corresponds to plastic deformation, i.e., lowing even
when the applied stress is very small [144]. Thus, ideally, when a liquid is deformed due to
weak mechanical stress and the stress is removed, the liquid will remain in the deformed
state irrespective of how small a deformation occurred [144].

However, when studying the behavior of flowing matter, which is done in the field of rheol-
ogy [144], many phenomena emerge which require a broadening of the distinction between
liquid and solid. For example, many fluid substances are known to respond elastically to
an increase of stress or the sudden removal of stress - some fluids will resist weak stress
or will gradually recover after the stress has been removed [48]. In this case, one refers to
viscoelastic behavior [144]. On the other hand, various solids do exhibit slow and gradual
plastic deformation even below the yield point. An example of such viscoplastic behavior
is creep flow [151,152].

When performing rheological studies, a material is examined in a predefined loading sce-
nario in order to determine material properties such as rigidity, viscosity or the yield
behavior. A typical setup which is of high relevance for many technical applications is
the study of a material under Couette shear flow [144]. Thereby, a sample is considered
between two boundary plates which move relatively with a prescribed velocity, such that
the strain in the sample increases at a linear rate with increasing distance from the bottom
layer and is homogeneous within a layer parallel to the boundary [144]. Another funda-
mental loading scenario is Poisseuille flow, which corresponds to the flow of a material
which is pumped through a tube [46,144|. Experimentally, these flowing properties of a
given medium are studied using a range of technical appliances known as rheometers, in
which a specific flow profile can be maintained.

Under the influence of strong shear flow, the order of crystalline materials may be destroyed
and one refers to shear-induced melting [150,153-158]. In light scattering experiments on
colloids, it has been observed that the presence of shear flow triggers the melting of a crys-
tal even at temperatures and densities which, under equilibrium conditons, correspond to
the stability of the crystalline phase [154,159]. The shear-induced melting process observed
in [159] consists of several stages which emerge with increasing shear rates. After an initial
formation of discrete, sliding layers in the material, these expand into mobile bands upon
increasing shear rate [153,159|. Ultimately, the entire system assumes a flowing state [159].
In a numerical assessment of the shear-induced melting of soft-sphere crystals, which fol-
lowed the initial observation of shear-induced melting in experiments, it has been suggested
that the viscoelastic behavior of many fluids may, in general, be explicable in terms of a
shear-induced phase transition [153]. Recent experimental studies on soft colloidal crystals
have resolved the shear-induced melting of one-component crystals on the particle level
by utilizing confocal microscopy [150,158]. Thereby, shear flow was found to enhance
the mobility of particles, thus contributing to the 'thermal’ dissociation of the crystalline
structure. Additionally, the authors have proposed a measure for the cumulative effect of
shear flow and thermal motion, implying a melting criterion in the manner of the classical
Lindemann criterion [160]. The latter is employed to predict the stability of an equilib-
rium crystal based on the particle fluctuations [95]. In a further experimental study on the
melting of colloidal suspensions under shear it has been established that qualitatively, the
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melting process induced by shear flow differs strongly from equilibrium melting, which is
reflected by large-scale fluctuations of the order parameter and the emergence of crystalline
domains in the material after the onset of shear-induced melting [150]. Conversely, shear
flow may induce ordering phenomena, too, such as the formation of crystalline clusters in
isotropic suspensions [150] or the alignment of a crystalline layer with respect to the di-
rection of shear [161]. For weak shear flow, coexistence of a strained crystal and a sheared
melt can be observed [162].

Adding to the insight obtained by studying the fluidization of solids in simple shear flow,
perturbation methods like microrheology [32]| or nanoindentation [163] allow to deduce flow
properties of a material. In microrheology, the motion of a tracer particle is utilized to
probe the rheologic response of the surrounding medium [164]. In indentation measure-
ments, a sample is locally perturbed with a point-like tip, which induces cracking and local
fluidization [18].

A fundamental understanding of the plastic deformation of crystalline solids can be ob-
tained by studying the formation and propagation of dislocations. Over decades, numerous
studies have expanded our understanding of the interaction of dislocations, their individual
and collective motion as well as the local accumulation of defects during plastic deforma-
tion [145,149,164-171|. Experimental and numerical studies have explored the spatially
and temporarily heterogeneous patterns of dislocation formation, which accompany plas-
tic deformation in a crystal and addressed the scale-free flow inherent to defect dynam-
ics [18,149,172-174].

A fundamental framework for the investigation of crystalline plasticity based on topo-
logical defects is the plastic response of a perfect one-component crystal. Building on
theoretical models for the dissipation of dislocations in a one-component crystal, acoustic
emission experiments on macroscopic ice crystals have elucidated the plasticity of crys-
talline solids [172,174,175]. In these experiments, the avalanche-like propagation of dislo-
cations through a macroscopic sample of ice is detected acoustically [149]|. Furthermore,
discrete dislocation dynamics computer simulations have been applied to study the plas-
tic deformation of single-crystals. These allow to model the collective arrangement of
dislocations [169,172,176,177]. Thus, the numeric treatment of crystalline plasticity via
mean-field models [178| could be extended to a discrete treatment of defects.

Further large-scale computer simulations based on this technique have captured the for-
mation and annihilation of dislocation loops in the vicinity of a crack tip [173]. Through a
comparison of atomistic simulations and mesoscale dislocation dynamics simulations, the
microscopic dynamics of the topological defects could be directly related to the mesoscopic
deformation of the material subject to mechanical perturbation [173]. Experimentally, sim-
ilar findings have been provided by a study of colloidal crystals, where the perturbation
induced during the indentation of a crystalline colloidal layer with a needle tip has been
analyzed via laser diffraction microscopy [18]. The formation of dislocations in the initially
defect-free sample in the vicinity of the indentation could thus be resolved on the parti-
cle scale [18]. Via continuum modeling, the authors characterized the defect nucleation
rate in the colloidal crystal based on thermal fluctuation of the particles and the applied
strain, deriving relations, which, intriguingly, are also applicable to atomic crystals [18].
Further experimental studies assessed the plastic deformation of crystalline materials by
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tracking structural slip events, which are mediated by the gliding of dislocations [149,172].
In Ref. [149], these 'discrete slip events’ where directly monitored via transmission electron
microscopy in measurement of nickel microcrystals under shear. Thereby, it has been shown
that the spatial extension of slip events spans many length scales and that the dislocation
system in fact exhibits scale-free behavior [149], as was previously suggested in computer
simulation studies and theoretical models of dislocation propagation [178,179]. These
findings support the view that the plastic response of one-component, single-crystals is a
highly heterogeneous process, which, qualitatively, often resembles plate tectonics rather
than fluid flow, as pointed out in Ref. [149]|. The deformation process is mediated by struc-
tural deteriorations on various length- and time-scales, which occur in an avalanche-like
pattern [149,172].

However, this avalanche-like propagation of dislocations is more controversial when con-
sidering polycrystalline materials, in which multiple crystalline domains are separated by
grain boundaries [148,174|. In an experimental study on polycrystalline ice samples with
grain sizes distributed over many length scales, it was found that the scale-free gliding
motion of dislocations can only partly be retrieved when the propagation of defects is im-
peded by grain boundaries [174]. While the size of dislocation avalanches was found to be
governed by the scaling of the crystal grains, supercritical effects may induce the forma-
tion of secondary avalanches in adjacent crystalline domains [174]. These effects were also
supported by Monte Carlo computer simulations [174].

Computer simulation studies on polycrystals under shear have further suggested that, be-
sides the avalanche-like diffusion of dislocations, the plastic deformation is also driven by
the cooperative sliding motion of particles along grain boundaries [147,148|. This collec-
tive motion is accompanied by large stress drops, indicating the release of stored elastic
energy [147]. As a model system for the study of 2D polycrystalline samples, binary mix-
tures of softly repulsive particles with varying compositions are employed in Refs. [147,148].
Thereby, the composition of the two particle species has been tailored in order to inhibit
full crystallization and promote the formation multiple polycrystalline domains [147,148].

It may be noted here that the formation and diffusion of dislocations in a one-component
crystal is not only crucial for irreversible deformations, but also governs relaxation pro-
cesses in the presence of small stress. The patterns of collective motion governing the
elastic response of a triangular crystal to internal stress were recently probed experimen-
tally in a 2D soft colloidal crystal [164]. In this setup, individual crystal particles were
excited with an optical tweezer, and the subsequent collective response of the surround-
ing particles was precisely analyzed using bright field microscopy. Evaluating the particle
trajectories, cooperative patterns of particle motion could be identified, which correspond
to the propagation of dissociated vacany-interstitial pairs or the intermittent formation
of grain boundaries [164]. Notably, these collective patterns of motion do not introduce
lasting structural defects but mediate the relaxation of the crystal into an undisturbed
state. Intriguingly, these patterns qualitatively correspond to the response of the colloidal
crystal to thermally induced perturbations [164].

While the study of crystalline plasticity typically revolves around the observation and
analysis of well-defined topological defects, in general, no such object can be readily de-
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termined when investigating the plasticity of amorphous materials [180]. During the past
decades, numerous experimental and computer simulation studies have addressed the rhe-
ological response of amorphous materials such as foams [157], emulsions [181] metallic
glasses [182], polymer solutions [65] or colloidal suspensions [183], which may assume dis-
ordered, vitreous states. In general, these examples of soft matter behave like a solid and
respond elastically when a small shear stress is applied but start flowing when the applied
stress exceeds a yield value [184,185].

In the field of rheology, these materials are also denoted as “yield stress fluids” [186] or “soft
glassy materials” [185]. Rheologic studies on the properties of these media under shear flow
have detected a broad range of intriguing properties - these include nonlinear effects like
shear-thickening or shear-thinning, where the viscosity of the flowing material decreases
or increases, respectively, with increasing shear rate [187,188|. Such flow properties are in
distinct contrast to the behavior of ideal, i.e., Newtonian fluids where the viscosity is not
a function of the shear rate and one refers to non-Newtonian fluids in this case. Common
examples of non-Newtonian fluids include shear-thickenig cornstarch solutions [189], which
solidify when a strong external force is rapidly applied. The hardening of shear-thickening
fluids upon a sudden perturbation is also exploited in the ongoing development of novel
protective gear [190]. An everyday-life example of a shear-thinning fluid is ketchup, which,
due to the insertion of xantham gum during the manufacturing process, flows more eas-
ily when squeezed through the bottleneck [191]. Many more complex fluids like paints or
pastes exhibit shear-thinning properties and flow smoothly when they are pressed, smeared
or stirred [190]. Also, shear-thinning polymer fluids are commonly employed as a drilling
fluid [192]. Throughout the past decades, the non-Newtonian flow properties of complex
fluids have been addressed in numerous experiments [36]. Building on the continuous
progress of theoretcal models and algorithmic approaches [193,194|, numerous computer
simulation studies [55,56,193,195 199] have further elucidated the non-linear flow proper-
ties of complex fluids.

Another class of intriguing phenomena which have been thoroughly studied in the context
of amorphous plasticity are dynamic heterogeneities in the sheared medium, i.e., shear
banding or localization [36,47,200]. With shear localization, the medium subject to shear
flow separates into coexisting regions of higher and lower shear rate or may even contain
regions which do not move at all [47]. The formation of concentrated flow regions is almost
ubiquitous in sheared complex fluids with mesoscopic structural features which may jam
into soft, disordered states [36,201]. Thus, shear bands have been observed in granular
media, pastes, foams and emulsions but also colloidal suspensions under shear [201-204].
As pointed out in Refs. [47,185,205 209], these dynamic heterogeneities arise due to the
interplay of the slow dynamics inherent to amorphous materials and the imposed dynamics
of the external shear flow. Varnik et al. thoroughly assessed the emergence of shear local-
ization in a computer simulation study of a model amorphous solid under shear flow [47].
The amorphous solid discussed in [47] is a glass-forming, 80:20 binary mixture consisting
of 4800 particles, which interact via the Lennard-Jones potential. The sample is located
between two boundary walls, one of which moves at a prescribed velocity, whereby Couette
shear flow is imposed. The authors observed that, for low shear rates, the system is divided
into a sheared region, in which the velocity of the particles in the direction of shear increases
linearly, and an arrested region, in which the particles are largely unaffected by shear and
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do not move noticeably in the direction of shear. With equal probability, the sheared re-
gion may be adjacent to the moving, upper boundary or the resting, lower boundary, as
was concluded from multiple repetitions of the computer simulation and conforms to the
assumption that the boundaries are interchangeable due to galilean invariance [47]. Above
a certain value of the wall-imposed shear rate, the shear band covers the entire system [47].
At this particular value of the shear rate, the shear stress corresponds to the yield stress.
This suggests a multivalued region in the shear stress vs. shear rate curve below the yield
point, where shear-banding prevails [47].

Further numerical studies have addressed the emergence of spatiotemporal heterogeneities
such as shear banding in the shear response of amorphous media [186,210]. As deduced
from particle-resolved computer simulations conducted by Chaudhuri et al., shear-banding
in amorphous media is, in general, not a permanent state, although very long-lived spa-
tial heterogeneities may arise depending on the applied shear rate and the interaction
potential of the jammed particles [211]. Specifically, attractive forces between the particles
were found to promote the formation of long-lived heterogeneities [211]. The emergence
of shear bands is also highly dependent on the age of the sample, as was established in
Ref. |212|. Furthermore, shear bands may be induced by the spatial confinement of the
flowing medium [213] and can also be affected by impurities, as was found in experiments
on binary amorphous metals with embedded nanocrystals [214].

A lot of effort has been made to characterize the nature of plasticity in amorphous media
in terms of the local structural rearrangement, thus providing a means to formally ad-
dress plastic effects like spatiotemporal flow heterogeneities, shear bands or avalanche-like
deformations in disordered materials in spite of the lack of distinguishable topological de-
fects 3. An initial approach for the characterization of plastic deformation in amorphous
materials was presented by Maeda and Takeuchi in their computer simulation study of a
metallic glass under shear [182]. Through a particle-resolved analysis of the deformation
process, Maeda and Takeuchi were able to identify spherical regions in which the plastic
deformation is localized. In these regions, which span several atomic distances, the parti-
cles are displaced according to a distinct, quadrupolar pattern of motion by which strain
energy is released [182|. Similar findings were reported in experiments on soap bubbles
conducted in [215], which suggested that plastic deformation is mediated by the rearrange-
ment of particles within a localized region in an amorphous material. Such deformation
patterns in foams where formally defined as “T1” events, which correspond to a localized,
irreversible exchange of topological neighborhood relations in a dense arrangement of par-
ticles [181,216,217| and constitute an example for elemental plastic events in amorphous
media. From the observation of localized plastic events, the concept of “shear transfor-
mation zones” was derived [218,219], which also entered in the description of flow hetero-
geneities and strain localization [220]. Building on this concept, Maloney and Lemaitre
have addressed the spatial structure of plastic deformation in sheared, athermal glasses by
computer simulations [180]. They have identified a distinct real-space structure of plastic

3An elaborate review of the formal description of plastic events in amorphous media is presented in C.
E. Maloney and A. Lemaitre, Phys. Rev. E 74, 016118 (2006) [180]. Following the outline depicted
therein, a brief summary of the works contributing to this description shall be given at this point.
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events which corresponds to a quadrupolar rearrangement pattern [180]. Furthermore, the
authors found that the plastic deformation can be separated into localized shear transfor-
mations, which accumulate into “slip lines” spanning the entire system [180]. Intriguingly,
these findings are largely unaffected by the details of the particle interaction [180]. In a
similar computer simulation approach, Tanguy et al. have assessed the spatially hetero-
geneous plastic response of a model amorphous material in athermal flow [221]. In some
analogy to [180], they have identified quadrupolar rearrangement patterns as well as vor-
tical rearrangements. The alignment of such large-scale plastic events was found to induce
the formation of shear bands in the material [221].

The structural rearrangements governing plastic deformation in thermal amorphous mate-
rials under shear were probed experimentally in [222], where a sheared colloidal glass was
monitored by direct real-space observation. The authors identified discrete shear trans-
formation zones and measured the local dedistribution of strain in the vicinity of plastic
events. Also, the authors detected a spatial correlation between shear transformation
zones, which interact via a long-range elastic stress field [222]. According to these findings,
plastic events in the flowing material induce further structural transformations in their
vicinity.

Further crucial insight into the underlying mechanism of plasticity in sheared amorphous
materials was recently provided by Mandal, Varnik and coworkers |223,224]. Through
computer simulation and experiment, they assessed the dynamical fluctuations arising in
a sheared, thermal colloidal glass on a single-particle level, reflecting the dynamic impact
of plastic events [223]|. Also, the authors evaluated the dynamical correlations of particle
fluctuations in the sheared material, as expressed, e.g., by the dynamic four-point correla-
tion, which decays according to a power-law behavior [224]. Intriguingly, this correlation
exhibits a spatially anisotropic shape when shear deformation dominates the thermal dy-
namics of the particles [223].

Combined, these studies have provided an increased understanding of the plastic defor-
mation of amorphous materials, where the mesoscopic response is governed by localized
plastic events on the particle scale. Although these events do not correspond to a distinct
topology and cannot be captured in terms of point-defects, they are reflected in distinct
patterns of particle motion and structural rearrangement. Intriguingly, these localized
patterns of deformation also induce anisotropic redistributions of the shear stress [221] or
correspond to a local alteration of the potential energy landscape [180], the pressure [182]
or the contact force distribution [181,225] and may be traced by anisotropic dynamical
correlations [223].

As summarized above, the plastic deformation of one-component crystalline solids and
polycrystalline solids can be described and analyzed in terms of the formation and dif-
fusion of well-defined topological defects. Throughout many years, the initial theoretical
predictions and models on crystalline plasticity have been amended by large-scale com-
puter simulations and elaborate experimental setups, providing a very exhaustive under-
standing of the connection between microscopic rearrangements and meso- or macroscopic
material response. Also, the plastic deformation of amorphous solids has been thoroughly
researched during the past decades. Many intriguing, non-Newtonian phenomena inherent
to soft glassy materials such as the viscoplastic behavior of complex fluids with a finite yield
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stress, nonlinear rheologic response like shear-thinning or -thickening and the emergence
of spatial heterogeneities in the flow profile can be explained in terms of a microscopic
understanding of amorphous plasticity, which was obtained by theoretical modeling and
particle-resolved observation in computer simulations and experiments. Despite the ab-
sence of well-defined point defects, plastic events in amorphous media can be traced by
distinct, localized patterns of particle motion, anisotropic stress redistributions in their
vicinity and a spatial correlation of plastic events. While a complete, unified theoretical
explanation of soft glassy rheology is still lacking, a broad range of phenomena emerging
in the flow behavior of amorphous media is well understood.

Many solids which are encountered in nature or are manufactured artificially do, however,
belong to a further distinction of solid materials, namely multicomponent crystals. While
these are essentially crystals and exhibit the inherent high degree of translational and ori-
entational order discussed above, the regular crystalline lattice is composed of more than
one particular constituent, which may be of atomic, molecular or ionic nature [67]. Mixed
crystals are ubiquitous in nature: The vast variety of stable chemical compounds of two or
more chemical elements entails an array of crystalline structures, which are determined by
the stoichiometry of the chemical compounds, the nature of the component binding - e.g.
covalent, ionic or metallic binding - and the geometric packing of the components resulting
from different sizes or interactions asymmetries [226]. Common examples of multicom-
ponent crystals are inorganic compounds like sodium chloride or zinc sulfide, which are
typically found in the form of solid minerals. Large portions of the earth’s rocky surface
consist of organic crystalline compound materials like calcium carbonate - porous networks
of mixed crystalline organic materials may host reservoirs of shale gas and have attracted
substantial scientifc and economic interest [227|. In the field of biology, the crystalline part
of bone tissue, hydroxylapatite, may be named as a biological example for multicomponent
crystalline materials [140,204]. In general, organic compounds are a crucial contingency
for life on planet earth, as carbon-based chemical compounds predominantly define the
building-blocks of all known lifeforms. Specifically, this covers all instances of carbohy-
drates, e.g., cellulose. Furthermore, mixed crystals do also play a very prominent role in
the engineering of artificial materials, such as metallic alloys [152,228 235]. During the
manufacturing process of metallic alloys, particles of one metallic element may be replaced
by another element at some lattice sites and one refers to a substitutional alloy - examples
include bronze or brass [236]. Also, alloys may host inclusions or precipitates of a several
elements [230].

In all of these instances, the stability of multicomponent crystals may be compromised by
mechanical stress - in various applications, shear deformation poses an elementary source
of strain and it is therefore imperative to acquire a precise understanding of the behavior
of mixed crystals under shear. So far, only very little is known about the shear-induced
breaking process for mixed crystals. Specifically, a description of the early stage of the
deformation process, i.e., the transition from elastic to plastic deformation under stress,
is lacking. While the onset of plasticity has been elucidated for one-component crystals,
polycrystals and amorphous materials during the past decades, only little effort has been
devoted to the characterization of the shear-induced formation of structural defects in a
mutlicomponent crystal, which ultimately triggers the macroscopic breakage of the mate-
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rial. Colloids have proven to be an ideal model system for the observation of structural
transitions on the particle scale and pose a favorable testing bed for the investigation of
compound plasticity, as they allow to acquire particle-resolved data of the particle rear-
rangement during the deformation process and grant the accessibility of the problem in
versatile experimental setups.

In the article “How does a thermal binary crystal break under shear?” [237|, which consti-
tutes the fourth part of this work, the shear-induced breaking of a binary, two-dimensional
model crystal is explored in a computer simulation approach. The binary model crystal at
hand is composed of equal numbers of particles from two particle species denoted as species
A and B. The crystal particles are arranged in such a way that each species forms a square
sublattice while the two sublattices are shifted relatively by half a lattice constant in each
spatial direction. The resulting checkerboard pattern is known as the S(AB) structure [37].
This crystalline pattern is abundant in nature and may be encountered in granulates [238],
ionic crystals [38,239] or dipolar colloidal suspensions [39,97,99]. The particle interaction
is modeled corresponding to the soft, long-range repulsion of superparamagnetic particles,
which are confined to a plane with induced dipole moments perpendicular to that plane.
This setup can be recalled from experiments utilizing superparamagnetic colloidal parti-
cles to explore the two-dimensional melting scenario [74,95]| or ultrafast quenching [97] and
has been depicted above. The two species A and B have a high interaction asymmetry
- corresponding to different magnetic susceptibilities in the experimental setup - with the
A-particles being the more strongly coupled species.

Utilizing Brownian dynamics computer simulations, the onset of shear deformation in an
initially pure, defect-free sample of the S(AB) binary model crystal is analyzed. The super-
position of shear flow and thermal flucutations is found to induce an intriguing interplay
between the two particle species, which indicates a hierarchical breaking scenario. The
strained unit cell, in which a single, weakly coupled B particle is encased by four strongly
coupled A particles, is further distorted by thermal fluctuations of either particle species.
Specifically, aligned displacements of the A particles may distort the potential energy land-
scape encountered by the B particle in such a way that a pathway leading out of the unit
cell is paved. The likelihood of this event is found to depend on the orientation of the
crystalline lattice with respect to the direction of shear, and various distinct deformation
modes are pointed out in [237] which induce the formation of such pathways in the energy
landscape - following these, the thermally excited B particle can escape the distorted unit
cell. This corresponds to an elemental plastic event in the binary crystal and induces the
creation of a vacancy/interstitial pair in the material. An interstitial defect is constituted
by two B particles occupying the same lattice site while a vacancy is, in the case of the
S(AB) crystal, formed by four A particles encasing an empty B lattice site.

As opposed to the dislocations encounterd in one-component crystals, this topologic defect
pair is very persistent and cannot be easily annihilated in this case. The presence of such
a stable defect pair initiates a new stage of the deformation process: Being highly mobile,
the interstitial defect diffuses throughout the crystalline lattice, where it stimulates the
formation of further defects. The local lattice distortion induced in the vicinity of the
traveling defect facilitates the escape of further B particles from their strained unit cell.
In contrast, vacancies are strongly localized but are found to merge into larger, mechani-

31



Preface

cally unstable structures as more and more defects are proliferated and the global strain
increases. Eventually, these defects form a band which spans the entire system - this band
may be aligned parallel to the direction of shear or perpendicular to it. Intriguingly, the
location of such a disordered region is crucially determined by the early occurrence of sta-
ble topological defects and can, in many cases, be directly traced back to an initial plastic
event by which a stable vacancy was induced. Once a disordered band emerges, a meso-
scopic breakage of the crystal can be observed, which is reflected by opposing nonaffine
displacements on either side of the band. The presence of a persistent, disordered region in
the sample allows for the release of strain via a nonaffine slip-motion of the entire crystal,
which corresponds to a particle displacement on the order of one lattice constant. After
this deformation, the particles in the disordered band rearrange such that the unstrained
crystalline pattern is mostly restored. However, due to the stoichiometric composition of
the unit cell, no complete restoration of the crystalline lattice can be achieved and typically,
embedded defects remain. If the shear deformation is continued and strain increases, these
defects predominantly determine the emergence of further band-like disordered regions.
This shear-induced breaking process of a thermalized binary crystal is in distinct contrast
to the plastic deformation of a one-component crystal. In the latter case, the material
responds to internal and external perturbations via the spontaneous formation and anni-
hilation of dislocations which, during their comparably short lifetime, initiate collective
patterns of motion to release stress [164]. In contrast, the superposition of shear and ther-
mal fluctuations induces persistent defects in the binary crystal which may have lifetimes
of many Brownian times [237]. These defects cannot be easily annihilated and crucially
determine the breaking of the crystal by merging into extended disordered regions, the like
of which ar not observed in the plastic response of one-component crystals. The distinct
creation pattern of vacancy /interstitial pairs is identified as an elemental plastic event,
which, in the sheared, thermalized mixture crystal can be clearly distinguished from the
destabilization of the crystal upon heating [237]. Reference computer simulations of the
temperature-induced destabilization of the S(AB) crystal and the plastic deformation of a
triangular crystal of species A under shear have been performed in [237] and support the
finding that the shear-induced breaking of the S(AB) crystal poses a qualitatively different
scenario.

However, the shear-induced deformation of the binary crystal observed in [237| bears a re-
markable resemblance with the plasticity of amorphous media. Specifically, plastic events
in the binary model crystal are found to induce a stress redistribution in their vicinity
according to an anisotropic, fourfold pattern. This redistribution pattern qualitatively
corresponds to recent findings in amorphous dispersions of polydisperse hard spheres un-
der shear [240| and flowing emulsions close to the jamming point [181]. Additionally, an
evaluation of the plastic events recorded in the simulation of the binary crystal under shear
reveals a non-vanishing spatial correlation of plastic events. This correlation is most pro-
nounced along the direction of shear and perpendicular to it, reflecting the emergence of
defect bands in these directions as observed in the computer simulations. This observa-
tion conforms to recent findings on the plasticity of amorphous solids [223,224], where an
anisotropic spatial correlation of plastic events has been detected in computer simulations
and experiments, agreeing with earlier theoretical predictions stated in Ref. [218].

These observations imply that the plastic response of a multicomponent crystal qualita-
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tively resembles the plastic response of soft glassy materials in many aspects. In fact, the
local creation of persistent structural defects which merge into expanded disordered re-
gions corresponds to a local “amorphization” of the crystal - the stoichiometric constraints
impeding the annihilation of defects render these defective bands into vitreous regions, the
presence of which enables a mesoscopic rearrangement of the crystal via large nonaffine
displacements.

These results provide novel insights relevant for the study of solid plasticity: While crys-
talline and amorphous media are generally understood as qualitatively different materials
with respect to the mechanisms governing plastic deformation in the presence of shear,
this qualitative difference does not fully apply when a multicomponent crystal is consid-
ered. Even in the simple case of an equimolar binary crystal, the plastic response strongly
deviates from the dislocation-mediated plasticity of a one-component crystal and exhibits
characteristics of vitreous media.

The scientific efforts of the past decades have substantially raised our understanding of
freezing and melting processes. In particular, the case of two-dimensional melting has in-
cited a vital debate which promoted the insight that changes in the system geometry or the
particle interaction qualitatively affect the mechanism by which freezing and melting is gov-
erned. The thesis at hand contains an examination of the two-dimensional melting process
in the presence of frozen-in obstacles - via a particle-resolved analysis of data obtained by
computer simulation and experiments on superparamagnetic colloidal particles, the contro-
versial KTHNY melting scenario could be confirmed in the presence of quenched disorder
and the long-standing theoretical prediction of a broadening of the hexatic phase [117] has
been explicitly shown. It would be interesting to expand this examination to the case of
long-range quenched potentials, which Nelson considered in his original treatment of melt-
ing in the presence of quenched disorder [117]. Also, a systematic study of further types of
disorder would increase our understanding of disorder-induced melting - this may include
short-range disorder or disorder which is not frozen-in on the timescale of the observation.
Addressing the shear-induced destabilization of a binary model crystal via computer sim-
ulations, a novel shear-induced melting mechanism has been detected, which, intrigu-
ingly, is in marked contrast to the melting of a one-component crstal. Moreover, the
shear-induced breaking process of the binary model crystal implies a qualitative similar-
ity between the plastic response of mixed crystals and that of vitreous materials. The
results presented in [237] can be verified in experimental setups similar to those proposed
in [74,95,97,98, 132, 134], where superparamagnetic particles are suspended in a hanging
droplet or dipersed on a planar surface in an external magnetic field. Couette shear flow
can be imposed by an external laser field |28|. Through real-space imaging techniques like
confocal microscopy, the hierarchical breaking scenario predicted in [237] could be verified
on the particle scale. It would be promising to address shear-induced breaking at small
damping as could be explored in computer simulations and experiments on dusty plas-
mas [11,146]. In order to systematically study the plastic response of multicomponent
crystals, more interaction asymmetries, composition ratios and model potentials need to
be explored. The study of the shear-induced breaking of binary crystals could also be
explored in 3D, where a wealth of binary colloidal crystals can be assessed [241].
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We study the influence of quenched disorder on the two-dimensional melting behavior of super-
paramagnetic colloidal particles, using both video microscopy and computer simulations of repulsive
parallel dipoles. Quenched disorder is introduced by pinning a fraction of the particles to an underlying
substrate. We confirm the occurrence of the Kosterlitz-Thouless-Halperin-Nelson-Young scenario and
observe an intermediate hexatic phase. While the fluid-hexatic transition remains largely unaffected by
disorder, the hexatic-solid transition shifts to lower temperatures with increasing disorder. This results in a
significantly broadened stability range of the hexatic phase. In addition, we observe spatiotemporal critical
(like) fluctuations, which are consistent with the continuous character of the phase transitions.
Characteristics of first-order transitions are not observed.

DOI: 10.1103/PhysRevLett.111.098301

Since the seminal work of Kosterlitz, Thouless [1,2],
Halperin, Nelson, and Young (KTHNY) [3-5] it has been
known that melting in two spatial dimensions can be
qualitatively different from three-dimensional bulk melt-
ing. While the latter is typically a phase transition of first
order, a two-stage scenario with an intervening hexatic
phase can emerge in two-dimensional systems, which is
separated from the isotropic fluid and solid phase by two
continuous transitions [6]. The KTHNY melting scenario
further predicts that, in two dimensions, the melting pro-
cess is mediated by the unbinding of thermally activated
topological defects. In particular, the emergence of the
hexatic phase is related to the dissociation of dislocation
pairs into isolated dislocations [2,7]. These break transla-
tional symmetry, leading to a vanishing shear modulus.
However, the orientational symmetry remains quasi long
range and the modulus of rotational stiffness, Frank’s
constant K, attains a nonvanishing value [4]. It has been
shown that the KTHNY scenario is realized for soft long-
range pairwise potentials scaling with the inverse cube of
the particle separation [8,9]. In fact, video microscopy
experiments with superparamagnetic colloidal particles
pending at a two-dimensional air-water interface and
exposed to an external magnetic field perpendicular to
the interface have confirmed the KTHNY scenario in detail
[10—-12]. Further reports on soft repulsive particles in two
dimensions are in favor of the KTHNY scenario [13-15]
while in systems with very short-ranged or hard-core par-
ticle interactions, first-order characteristics were found for
both transitions [16,17]. Here, we investigate whether the
continuous melting including critical fluctuations persists
in the presence of quenched disorder or whether first-order
signatures emerge instead [18].

Pure 2D bulk systems are rare in nature; planar confine-
ment is typically realized by adsorption on an interface,
such that crystallization usually occurs on solid substrates
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(examples include graphene sheets, see Ref. [19]) which
introduce quenched (i.e., frozen-in) disorder due to some
roughness. The same holds for flux lines pinned by impu-
rities [20-23], which leads to large critical fields in type II
superconductors. Defects may also affect the phase behav-
ior of freely suspended liquid crystal films [24], of syn-
thetic [25] and biological [26] Langmuir Blodgett films, or
even 2D protein crystals [27]. Based on a topological
defect analysis for weak disorder, Nelson and co-workers
[28,29] have predicted that the KTHNY scenario persists
with a widening of the hexatic stability range for increasing
strength of quenched disorder. This notion was questioned
in subsequent theoretical studies [30]. More recent experi-
mental efforts [31-34], simulations [35-37], and theories
[38] have markedly increased our understanding of two-
dimensional melting under disorder, but the occurrence of
the hexatic phase was never resolved in all of these studies.
Therefore, the above-mentioned predictions of Nelson and
co-workers [28,29] have never been tested by experiment
or simulations.

In this Letter, we propose an experiment on superpar-
amagnetic colloids on a glass substrate on which a small
fraction of the particles is pinned, inducing quenched dis-
order. Clearly, as a reference, the KTHNY scenario occurs
for the pure case without any disorder on a pinning-free air-
water interface [10,12]. We can now systematically study
the melting scenario in detail for different fractions of
pinned particles. In our experiments, we confirm the
KTHNY scenario and the predictions by Nelson and co-
workers [28,29] under disorder. The stability range of the
hexatic phase widens upon increasing disorder as opposed
to the prediction of Ref. [30]. We also perform two-
dimensional computer simulations for parallel dipoles
and find good agreement with our experimental data.
Extracting an “‘effective” K,, we recover the scaling of
the elasticity modulus in the presence of disorder. Thereby,

© 2013 American Physical Society



PRL 111, 098301 (2013)

PHYSICAL REVIEW LETTERS

week ending
30 AUGUST 2013

we provide evidence that melting in the presence of dis-
order is governed by the same defect-mediated process
predicted and confirmed for pure systems. Furthermore,
we observe heterogeneous orientational order close to the
melting temperature but a long-time analysis reveals that
such heterogeneities fluctuate strongly on time scales
larger than the orientational correlation time indicating
critical behavior.

The experimental system consists of superparamagnetic
colloidal particles which are confined in two dimensions
and subject to quenched disorder embodied by a random
distribution of fixed particles. The colloidal suspension is
kept at room temperature and an external magnetic field H
applied perpendicular to the particle layer induces a repul-
sive dipole-dipole potential V(r) = wo(xH)?/r?, where y
denotes the magnetic susceptibility [39] and r the particle
distance. The phase behavior is studied by tuning the
interaction strength via the external magnetic field, quan-
tified by the dimensionless interaction parameter

[ = Molmn)2(xH)* "

kgT '
with the 2D particle density n and the thermal energy k7.
The particles have a diameter d = 4.5 um and the mass
density 1.7 kg/dm?. The suspension is sealed within a cell
consisting of two parallel cover slips glued together via a
hollow cylindrical glass spacer of 5 mm diameter. By
gravity, the particles sediment and form a monolayer on
the bottom glass plate, where a short-time lateral diffusion
constant of D = 0.0295 um?/s is observed. Because of
van-der-Waals interactions and chemical reactions
between colloids and the glass surface, a small amount of
particles pin to the substrate. This distribution is slowly
altered by thermal tearing or the creation of new pinning
connections, but the pinned particles are fixed on the time
scale of our measurements. We exemplify three different
sample regions with varying pinning strengths ranging
from approximately 0.5% to 0.8%. The colloidal ensemble
is melted from an equilibrated crystalline state by decreas-
ing H in small steps. After each step, the system is allowed
to equilibrate for at least 24 hours before particle trajecto-
ries are recorded via video microscopy [40] for 2.7 hours,
which equals = 5075.

Complementary, computer simulations are carried out in
the NAT ensemble, with A denoting the area of the system.
The total particle number is fixed to N = 16000 and peri-
odic boundary conditions are applied. Each pinning
strength is sampled with at least 15 statistically indepen-
dent configurations of obstacles, which are achieved by
pinning randomly selected particles in a fluid configuration
of hard disks at a packing fraction of 0.25%. Within
statistical precision, this realization of pinning corresponds
to the distribution of pinned particles observed in the
experiment. Using the standard Metropolis Monte Carlo
(MC) algorithm, a full freezing and melting cycle is

conducted for each particular setup at which the initially
chosen particles remain pinned. After incrementing I' o
1/T, the system is equilibrated for 5 X 105 MC sweeps
before recording data. While Monte Carlo methods are
known to converge rapidly towards static equilibrium
states, the underlying phase-space sampling provides a
suitable means to study dynamic properties, as well [41].
For each parameter set of temperature and pinning
strength, the observables obtained by MC simulations are
averaged over all sample realizations of disorder.

The KTHNY theory predicts a two-step melting process,
in which the isotropic fluid and solid phase are separated
by an intermediate hexatic phase. While translational order
is only short range in the hexatic phase, orientational order
persists. More precisely, it switches from long range in the
solid over quasi long range in the hexatic phase to short
range in the isotropic fluid. The characteristic range of
orientational order in the different phases can be quantified
in terms of the correlation gg(r,7) of the bond order
parameter

1 4
Yo = — D, @

J k

where the sum goes over all n; nearest neighbors of particle
J» and 6 is the angle of the kth bond in respect to a certain
reference axis. Mapping the characteristic ranges of the
spatial orientational order on the time domain, we can
study the dynamical orientational correlation gq(f) =
(Yg(1)P6(0)), which, analogously to the spatial correla-
tion, decays exponentially in the isotropic fluid, and alge-
braically in the hexatic phase, and approaches a constant
value in the solid [42]. This quantity is well suited to
characterize the melting process, as discussed in
Refs. [8,9] and successfully employed experimentally in
Ref. [10].

Figure 1 shows g¢(#) for both, experiment (0.48% pin-
ning) and simulation (0.5%). The time axis is reduced to
the Brownian time scale 75 = (d/2)?/D. After a short-
time decay due to Brownian motion, the characteristic
behavior of the solid, the hexatic (linear decay in the log-
log plot), and isotropic fluid is clearly distinguishable at
long times. To confirm the characteristic decay behavior,
ge(?) is fitted with a second-order polynomial fit on a
double-logarithmic scale: In(ge(2)) = a + b1n(t/75) +
cln?(t/7y), with dimensionless coefficients a, b, and c.
Solid, hexatic, and isotropic fluid phases are characterized
by the relative contribution of positive or negative curva-
ture, expressed by c/|b|. We define an upper and a lower
threshold value for c¢/|b| to distinguish between the nega-
tively curved exponential decay of g4(¢) in the isotropic
fluid, positive curvature in the solid, and a linear course in
between, reflecting the hexatic phase (for further details
and an evaluation of the spatial bond order correlation
function see the Supplemental Material [43]).
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FIG. 1 (color online). Temporal bond orientational correlation
function g¢(z) in the presence of quenched disorder plotted
versus reduced time 7/75 on a double-logarithmic scale. The
fraction of pinned particles is 0.48% in the experiment and 0.5%
in the simulation. Exemplary curves are shown for the isotropic
fluid [green (light gray)], hexatic [red (black)], and solid [blue
(dark gray)] phase, where experimental data are drawn with solid
lines, and computer simulations with dashed lines.

To illustrate the critical behavior at the transition points,
we determine the orientational correlation time £, and an
“effective” Frank’s constant K4, characterizing the elastic
response of topological defects to torsion in the presence of
pinned particles (see Fig. 2). The parameters are extracted
from exponential fits ~e~"/¢ in the isotropic fluid and
algebraic fits ~#7/2 in the hexatic phase, where the ori-
entational exponent ng = 18kzT /7K, is inversely propor-
tional to Frank’s constant. In the isotropic fluid, K, is zero
due to the appearance of isolated disclinations. The
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FIG. 2 (color online). (a) Orientational correlation time &, and
(b) Frank’s constant K,, for different concentrations of pinned
particles. Filled symbols represent experimental data, open sym-
bols simulation. The meaning of the symbols is the same in (a)
and (b); lines are guides to the eye. While ¢; is almost not
affected by different pinning strengths, K, is clearly lowered
with increasing pinning.

corresponding stress field ‘“‘absorbs™ external torsion by
diffusion and/or rotation. Approaching the hexatic-
isotropic fluid transition at the temperature ;! =~
0.0148, ¢, diverges, and K, jumps to the finite value
72/r. In the hexatic phase, K4 remains constant due to
the presence of quasi—long-range orientational order: a
torsion would mediate a separation of dislocations into
isolated disclinations, inducing a change in the strain field
at a finite stress response. Approaching the solid-hexatic
transition, the elastic response to a torsion increases due
to the decreasing number of isolated dislocations.
Simultaneously, K, diverges. Our data indicate that, in
the presence of disorder, the divergent behavior of
Frank’s constant spreads. More precisely, K, increases at
lower temperatures for higher pinning strengths, which
means that the hexatic-solid transition temperature
I',,! strongly depends on disorder, as proposed in
Refs. [28,29,35]. Furthermore, this implies the reduction
of torsional stiffness at a fixed temperature: in the presence
of pinned particles, the response to a torsional stimulus
becomes more elastic.

To emphasize the consequences of these distinct char-
acteristics at the transitions on the phase behavior of the
system, the two-step melting process is mapped to the
parameter plane of temperature and pinning strength.
Figure 3 shows the resulting phase diagram. In the cooling
and heating cycle of the simulations no hysteresis was
found, as is typical for continuous transitions—see the
Supplemental Material [43] for details and additional
evaluation of our data indicating the continuous nature of
the phase transition. The hexatic-isotropic fluid transition
is found to remain largely unaffected by pinning; the
transition temperature I';’! is barely shifted by disorder.
In contrast, the hexatic-solid phase boundary is strongly
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FIG. 3 (color online). Phase diagram indicating the solid [blue
(dark gray)], hexatic [red (light gray)] and isotropic fluid [green
(medium gray)] phase in the parameter space of temperature o
I'"! and pinning strength. Full symbols represent experimental
data, while open symbols correspond to simulation results.
Letters indicate the location of snapshots in Fig. 4.
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influenced. The transition temperature is shifted signifi-
cantly towards lower values for increasing numbers of
pinned particles. This can be explained qualitatively con-
sidering the influence of pinned sites on the distinct sym-
metries: a pinned particle causes a strain field in its vicinity
and therefore shifts particles to release the created stress.
Orientational order can be recovered, since particles are
able to adjust the orientational field ¢ to their local
environment by slight displacements. However, the
hexatic-solid transition is governed by a significant change
in translational order. If pinned particles are displaced from
their ideal lattice position, a positional lack can only be
restored by bending lattice lines. Moreover, the shear
modulus is zero in the isotropic fluid and hexatic phase,
which disburdens the conservation of order by adjusting
the strain. As a result, the stability range of the hexatic
phase widens with increasing disorder, which is in accor-
dance with theoretical predictions [28,29]. In addition, this
effect seems to become more crucial for higher disorder
strengths, resulting in a curved behavior of the hexatic-
solid phase boundary. This suggests the existence of a
critical disorder strength, above which the system is not
able to form an ordered state [35], but rather becomes an
amorphous solid in the form of a hexatic glass [31,33],
depending on the range of quenched disorder [38].

To determine the dynamics of the orientational order in
space, we illustrate the magnitude and spatial distribution
of the orientational order parameter (| ¢/¢|),, averaged over
a finite time window of = 5073 [see Figs. 4(a)—4(c)]. In the
solid phase, orientational order is homogeneous and per-
sistent in time. It is only locally reduced by thermally
activated, short living dislocation pairs. In the hexatic
and isotropic fluid phase, the magnitudes of (||,
decrease and are subject to a strongly heterogeneous spa-
tial pattern on various length scales. This behavior can
equally be observed in computer simulation snapshots
(see the Supplemental Material [43]). Similar heterogene-
ities were reported for an impurity-free two-dimensional
Lennard-Jones system [44]. The observed heterogeneities
of the orientational order field close to I'; are spatiotem-
poral and reflect criticallike fluctuations at the hexatic-
isotropic fluid transition, thus confirming our finding that
this transition is continuous [see movie 1 and 2 in
the Supplemental Material [43] covering a time window
two decades larger (up to = 400073) compared to
Figs. 4(a)—4(c)].

To exhibit the proximate effects of the pinned sites, we
compare the spatial dynamics of particles in the vicinity of
and far away from pinning centers for an intermediate
pinning strength [see Fig. 4(d)]. While in the isotropic fluid
the mean square displacement is decreased near pinning, it
is increased in the solid. The inhibited dynamics in the
disordered phase can be explained by the confining char-
acter of the pinned sites. Conversely, the local dynamics in
the solid seems to be increased near pinning. This might be

solid fluid

’-

FIG. 4 (color online). (a)-(c) Snapshots of the experimental
system at 0.48% pinning, showing the local orientational order
parameter (| 4|), averaged over = 5075 in the different phases
[(@ ' =0.0117, (b) T =0.0143, (c) I'"! = 0.0154]. The
field of view is 450 X 450 um. Voronoi cells are color coded
according to the bar on the left. (d) Mean square displacement
(MSD) calculated for particles within a distance of 84 around
pinning sites (region I in the inset) and more than 24d away from
them (region II). Temperatures correspond to (a)—(c).

related to an increased probability of dislocation pair
unbinding induced by quenched disorder [28,35]. The
crossover lies in the hexatic phase at I'"! = 0.0144, close
to the solid-hexatic phase transition, which supports our
finding that this transition is more affected by quenched
disorder than the hexatic-isotropic liquid one.

In conclusion, we investigated the melting transition of
2D crystals under quenched disorder in the form of pinning
sites. Analyzing the dynamics of the orientational correla-
tion, we probed the disorder vs temperature phase diagram
and determined the orientational correlation time and
Frank’s constant. Both show divergent behavior at the
corresponding phase transition, confirming the continuous
melting character of the KTHNY scenario. While the
hexatic-isotropic fluid transition is rather unaffected by
pinning, the transition from the solid to the hexatic phase
is strongly influenced, resulting in a significant broadening
of the hexatic phase. In addition, we observed spatiotem-
poral dynamical heterogeneities of the orientational order
parameter (see the movies in the Supplemental Material
[43]), marking critical(like) fluctuations, whereas first-
order characteristics are not observed. In comparison to
the bulk, the local dynamics of particles in the vicinity of
pinned sites is decreased in the isotropic liquid, which is
not directly reflected by a localization of the fluctuations of
the order parameter (see the movies in the Supplemental
Material [43]). The further investigation of 2D systems
with this kind of weak quenched disorder might reveal
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the role of critical fluctuations in the disorder-mediated
melting process and also opens the field of hexatic mem-
branes with adatoms or molecules. Using weak random
potentials or (quasi)crystalline structures, commensurable
and incommensurable crystal transitions come into focus,
and for strong disorder, crystal to amorphous solid transi-
tions can be investigated.
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We have detected a typing error in Eq. (1) of our Letter. A prefactor of 1/4z was missing in the definition of the
interaction strength I".
Equation (1) should correctly read

oy H) (an)?

r
47kaT

(1

The same prefactor has to be included in the preceding definition of the repulsive dipole-dipole potential, which correctly
reads V(r) = uo(yH)?*/4nr.
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1 Time-averaged orientational order

Fig. 4 of the main article shows the analysis for the experimental data. Figure 1 shows
the same analysis performed for simulations. There is very good agreement between
experiment and simulations.

hexanc fluid

256 1024
/7

Figure 1: (a~c): Same as Figure 4 in the main paper but now for the simulations. Snap-
shots of the simulation system at 0.5% pinning, showing the local orienta-
tional order parameter (|i)g|), averaged over ~ 70 7 in the different phases
(a: T71 =0.01429, b: T~! = 0.01471, c: T~ = 0.01563, ). The field of view
corresponds to 450um x 450um. Voronoi cells are color-coded according to the
bar on the left. (d): Mean square displacement (MSD) calculated for particles
within a distance of 8d around pinning sites (region I in inset) and more than
24d away from them (region II). The temperatures for solid, hexatic and fluid
phase correspond to (a-c).



2 Description of the movies

To illustrate the fluctuations of the order parameter near the hexatic-isotropic liquid and
hexatic-solid phase transition, we calculate the time evolution of the magnitude of the

local bond order parameter |1g| = ‘ni Yok eiﬁgﬂv‘ for both, experiment and simulation
J

for long time runs. Like in Fig. 4, a-c in the main text and Fig. 1 of the supp. mat.
particles are represented by their Voronoi cells and pinned sites are marked with crosses.
The Voronoi cells are color-coded with the magnitude of the local bond-order paramater
(|v6|), averaged for a finite time window. This time window was chosen to be shorter
than the orientational correlation time at the hexatic-isotropic liquid transition to an-
alyze the present local order. This was repeated for a duration much longer than the
orientational correlation time at the given temperature. A movie (with linear time scale)
was constructed from the images. As can be seen in the movies for both, experiment and
simulation, the local bond order field shows heterogeneities in space and time. This can
be interpreted as critical(-like) fluctuations of the orientational order field. Patterns of
similar magnitude do not persist in time as expected for systems with phase equilibria,
nor do they move due to possible grain boundary dynamics. The patterns clearly emerge
and disappear on various time and length scales, marking a continuous (or second order)
phase transition. In addition, the fluctuations seem to be slightly enhanced in regions
with increased pinning which might point to a dependency of critical fluctuations on
quenched disorder.

e Movie 1: Experimental data recorded at I'"! = 0.01447 and 0.48% pinning, cover-
ing a time frame of ~ 40807 ~ 8 days. (|1s|), was averaged over ~ 42 7p.

e Movie 2: Simulation data recorded at I'"! = 0.0146 and 0.5% pinning, covering a
time frame of ~ 27007g. (|vs|); was averaged over ~ 70 7p.

3 Polynomial fit criterion

In order to quantify the characteristic decay properties of gg(t) in the solid, hexatic
and fluid phase, the linearly equidistant gg(t) data points are fitted with a second order
polynomial fit on a double-logarithmic scale. This is achieved by calculating the least
square parabola

In(ge(t)) = a+b In(t/75) + c In*(t/75) (1)

with dimensionless coefficients a, b and ¢ for the set of values (In(t/75),In(gs(t))). To
characterize solid, hexatic and fluid phase, the relative contribution of curvature is con-
sidered, expressed by the ratio ¢/|b|. In the fluid phase, g¢(t) decays exponentially, and
the polynomial fit (1) exhibits negative curvature, ¢/|b| < 0. In the solid phase, gg(t)
approaches a constant value such that the data is best approximated by a positively
curved polynomial, ¢/|b| > 0. Since the algebraic decay of g¢(t) corresponds to a linear
decay in the log-log plot, the relative contribution of curvature vanishes, ¢/|b| ~ 0. We
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Figure 2: Exemplary gg(t) curves recorded in experiment & simulation (symbols) for the
solid (blue squares), hexatic (red triangles) and isotropic fluid phase (green
circles) fitted with the second order polynomial fit (1) (solid lines). The ef-
fective temperature I'"! and relative contribution of curvature c/|b| are stated
below the plot. The fraction of pinned particles is 0.48% in the experiment
and 0.5% in the simulation.

define a lower and an upper threshold, ¢/|b| = £0.07 to map all gg(t) curves recorded to
the three phases (see Table 1).

phase  gs(t) c/|b|

solid constant > 0.07
hexatic algebraic decay —0.07 < ¢/]b] <0.07
fluid exponential decay < —0.07

Table 1: Characterization of solid, hexatic and fluid phase via the relative curvature
contribution in Eq. (1).

For an equivalent treatment of experimental and simulation data, we consider the
time-window 0.6 < t/75 < 5 and shift the origin to ty/75 = 0.6 to ensure b < 0, see
Fig. 2. The phase diagram depicted in Fig. 3 of the main article is obtained with
these settings. To test our approach for longer times, the polynomial fit is extended to
t/7p = 400 for the simulation data (Fig. 3), at which all properties of the phase diagram
are recovered (see Fig. 4).

As a further consistency check, we applied the polynomial fit criterion to correlation
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Figure 3: Second order polynomial fit applied to exemplary simulation data for times
0.6 <t/tp <5 (left) and 5 < t/75 < 400 (right).

function data recorded in Ref. [1] .The envelope of the local maxima of g¢(r) was fitted
in the range 0.5 < r/o < 64. In doing so, our approach was found to recover the

distinction drawn in [1] between curves corresponding to the fluid, hexatic and solid
phase (see Fig. 1 therein).
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Figure 4: Phase diagram with simulation data fitted in the time-range 0.6 < t/75 < 5
(left) or 5 < t/7p < 400 (right). Open symbols represent simulation data,
while full symbols correspond to experimental results. The latter are not
altered and are shown for comparison only. The phase diagram does not change
significantly if the parameters are varied, covering a large range of values.

[1] N. Gribova, A. Arnold, T. Schilling, and C. Holm, J. Chem. Phys. 135, 054514 (2011).



4 Further evidence of the continuous nature of the melting
process

A full cooling and heating cycle was conducted in the computer simulations. At each

temperature step, the mean specific energy (U) was calculated. The results are depicted

in Fig. 5. The cooling and heating branches collapse, which indicates a continuous
phase transition. In order to distinguish between the observed widening of the hex-
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Figure 5: Mean specific energy (U) for cooling (open circles) and heating (full diamonds).
The pinning fraction is 0.5%. The temperature range corresponding to the
intermediate hexatic phase is indicated in red.

atic phase with increasing disorder and the signature of a polycrystalline structure, we
examine a polycrystalline reference system by quenching an isotropic bulk fluid to the
deep solid phase in the computer simulation. The resulting configuration consists of
several crystalline regions with different orientations, which are sharply separated by
grain boundaries, see Fig. 6. In comparison, a snapshot of the system with pinning
in the hexatic phase exhibits no grain boundaries and apart from the spatio-temporal
fluctuations discussed in the main article, there is globally homogeneous orientational
order (Fig. 6). Furthermore, we monitor the probability distribution of the squared
value of the orientational order parameter 147 on various length scales. As discussed
in [1], a monomodal distribution is expected in the absence of polycrystallinity. Our
results are shown in Fig. 7 and clearly indicate a single peak in the distribution. While
in the isotropic fluid phase, the distribution diverges at ¢)2, = 0 (Fig. 7 (a)), the lo-
cation of the peak shifts to intermediate values at the isotropic — hexatic transition
(b) and approaches higher values as the system is cooled further (c¢). For the pinning
system, the distribution is clearly monomodal, while the distribution is bimodal for the
polycrystalline reference system, see Fig. 7 (d).

To provide further evidence for the continuous nature of the phase transition, we con-
duct a finite-size scaling analysis of the fluctuation of the translational and orientational
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Figure 6: Left, Middle: Computer simulation snapshots showing the orientation of the
local director g ; relative to the global director 4pg. The colorcode corresponds
to the bar on the left and is based on the normalized scalar product 1 ; -
Y6/ (|v6,i||16]). Five- and sevenfolded defects are shown in black or white,
respectively. Left: Pure bulk system after a quench from I' = 60 to I' =
200. Middle: System with 0.5% pinning in the hexatic phase (I' = 69.5)
Crosses indicate the positions of pinned particles. Right: Spatial and temporal
correlation functions gg(r) (top) and gg(t) (bottom) calculated for the quenched
polycrystalline system (red dashed curve). As a reference, typical computer
simulation curves from the hexatic phase are shown for the system with 0.5%
pinning (green solid / dotted curve).
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Figure 7: Probability distribution of 92, calculated for subcells of sidelength L (stated
as a fraction of the total box length). (a-c) System with pinning, (d) Quenched
polycrystalline configuration (shown in Fig. 6).
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Figure 8: Top: Susceptibility xgz, of the orientational order parameter as defined in [2]
versus effective temperature calculated for subcells of sidelength L (stated as
a fraction of the total box length). The dashed line corresponds to T; derived
from the analysis of gg(t). Bottom: Susceptibility x7r of the translational
order parameter. The solid line corresponds to 715, derived from the analysis
of g¢(t). Data is shown for computer simulations, the pinning fraction is 0.5%.

order parameters ¥y and g, respectively. Therefore, we consider the translational and
orientational susceptibilities xrz and xgr, as defined in Ref. [2], Our results are shown
in Fig. 8. The susceptibility ygr, diverges at the value of T; estimated by the analysis
of g(t). At a lower temperature close to the estimated value of T,, xrr undergoes a
reasonable increase, then decreases for large systems once again pointing to a possible
divergence for L — oco. The maximum in the susceptibility y77 occurs at higher cou-
pling than that of x¢z (for L = 1/2). The existence of two distinct temperatures for the
divergent behavior of xgr and yrr indicates the two-step melting process. Further, it
has to be pointed out that finding a proper reciprocal lattice vector G is essential for a
reliable analysis of the translational order parameter {7, its correlation, and suscepti-
bility. For statistically independent ensembles, G will change and should be calculated
separately for every ensemble. This has been done in our analysis, we determined the
lattice vector that maximizes Y for every ensemble. However, this becomes increas-
ingly difficult approaching the hexatic phase due to the increasing dislocation densities.
Furthermore, in the hexatic phase the reciprocal lattice vector is no longer defined since
the translational order is short range and no lattice exists.

[2] Y. Han, N. Y. Ha, A. M. Alsayed, A. G. Yodh, Phys. Rev. E 77, 041406 (2008).



5 Spatial correlation functions

In addition to the analysis of the temporal correlation function gg(t) stated in the main
article, the spatial correlation function g¢(r) = (¢§(r)16(0)) is discussed here. Figure
5 shows exemplary curves for gg(r) in the isotropic fluid, hexatic and solid phase for
experimental and simulation data. The decay behavior in the different phases is clearly
distinguishable. While in the isotropic fluid gg(r) decays exponentially, it has an al-
gebraic signature in the hexatic phase, and approaches a constant value in the solid,
excluding the possibility of polycrystallinity. Consistent with Poisson statistics, there is
an accumulation of pinned particles in the lower left corner of the experimental sample,
see Fig. 10. This induces a small distortion of the lattice in the lower left corner leading
to the weak decay of the experimental curve in the solid phase at I' = 119.5. Since
the orientational correlation in the time domain is robust to such distortions it is better
suited to identify the transition temperature.

1

gs(M)

0.1

10 (/d 100

Figure 9: Spatial correlation function gg(r) of the bond order parameter in the pres-
ence of quenched disorder plotted versus reduced distance r/d on a double-
logarithmic scale. The fraction of pinned particles is 0.48% in the experiment
and 0.5% in the simulation. Exemplary curves are shown for the isotropic
fluid (green), hexatic (red), and solid (blue) phase, where experimental data
is drawn with solid, computer simulations with dashed lines.



Figure 10: Snapshot of the system at I' = 119.5 illustrating the defect distribution.
Particles with six nearest neighbors are colored gray, fivefold coordinated sites
red, sevenfold green, and particles with more than seven or less than 5 nearest
neighbors are colored blue. Pinned particles are marked with crosses. The
lower left of the field of view shows a small distortion due to an accumulation
of pinned particles in the experiment.
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Fluctuations of orientational order and clustering in a two-dimensional colloidal system under
quenched disorder
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Using both video microscopy of superparamagnetic colloidal particles confined in two dimensions and
corresponding computer simulations of repulsive parallel dipoles, we study the formation of fluctuating
orientational clusters and topological defects in the context of the KTHNY-like melting scenario under quenched
disorder. We analyze cluster densities, average cluster sizes, and the population of noncluster particles, as well
as the development of defects, as a function of the system temperature and disorder strength. In addition,
the probability distribution of clustering and orientational order is presented. We find that the well-known
disorder-induced widening of the hexatic phase can be traced back to the distinct development characteristics of
clusters and defects along the melting transitions from the solid phase to the hexatic phase to the isotropic fluid.

DOI: 10.1103/PhysRevE.88.062305

I. INTRODUCTION

The controversy about the microscopic process controlling
melting in two dimensions has lasted for several decades.
According to the widely accepted theory by Kosterlitz,
Thouless, Halperin, Nelson, and Young (KTHNY) [1-5],
two-dimensional (2D) melting is a sequence of two continuous
phase transitions. The solid and isotropic fluid phases are
separated by an intermediate anisotropic fluid phase with
quasi-long-range sixfold orientational order, called the hexatic
phase. The KTHNY scenario further suggests that the two
continuous transitions are driven by the dissociation of
thermally activated topological defects [2,5]. Given the sixfold
symmetry of a triangular lattice, a dislocation constitutes a
topological defect which consists of a pair of particles with
five and seven nearest neighbors, respectively. Following the
predictions of the KTHNY theory, dislocations are bound into
neutral pairs in the solid phase, and orientational order is
long-range; i.e., the orientational correlation function attains
a finite value. As pointed out by Mermin [6], the translational
order of the crystalline state is only quasi-long-range due to
long-wavelength fluctuations. Mediated by the unbinding of
dislocation pairs into isolated dislocations, the transition to the
hexatic phase takes place at a temperature 7,, [4]. Although
translational order is destroyed by the presence of isolated
dislocations, orientational order persists in the hexatic phase
on a quasi-long-range scale [3,4]. Thus, in the hexatic phase,
the orientational correlation function decays algebraically as
a function of the separation distance. The transition from the
hexatic to the isotropic fluid phase at the temperature 7; > T,
is marked by the unbinding of dislocations into single five- and
sevenfold point defects, which are referred to as disclinations.
In the isotropic fluid, orientational order vanishes and the
orientational correlation function decays exponentially.

Alternative approaches to melting in two dimensions have
been conceived where the melting process is modeled as
a single first-order transition [7,8]. However, throughout
numerous experimental and simulation studies, the KTHNY
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theory could not be consistently verified or refuted [9].
Instead, evidence was found that the melting process strongly
depends on the pair interaction of the system at hand [10].
While systems governed by very short-range or hard-core
interactions are reported to exhibit coexisting phases [11-13],
thus contradicting the notion of a continuous transition,
reports on soft repulsive particles in two dimensions favor
the KTHNY scenario [14-16]. For particles interacting via
long-range dipolar interactions scaling with the inverse cube
of the particle separation, the KTHNY scenario has been
unambiguously confirmed [17-19]. Video-microscopy exper-
iments on superparamagnetic colloidal particles pending at an
air-water interface, where an external magnetic field induces
dipolar moments perpendicular to the surface, have verified the
predictions of the KTHNY scenario in detail [20,21], including
the elastic properties related to the mechanism of defect
unbinding [22]. Furthermore, this setup was studied after a
quench by instantaneously increasing the external magnetic
field [23-25]. Thereby, crystallization occurred without any
evidence of the hexatic phase. Instead, the local formation
of crystallites, which gradually merged into larger crystalline
patches, leads to a polycrystalline state [23].

According to theoretical predictions by Nelson and cowork-
ers, the two-stage melting scenario persists in the presence
of weak disorder [26,27], and the stability range of the
hexatic phase widens with increasing disorder. While 7; is
predicted to be largely unaffected by disorder, 7,, decreases
with increasing disorder until, eventually, no crystalline state
can be established [26]. While the original work suggested
a reentrant melting at low temperatures in the presence of
disorder [26], later works revised this idea and a final prediction
of the stability range of the ordered (i.e., solid) phase in
the temperature-disorder plane was stated in [28]. Further
numerical studies confirmed the topography of the ordered-
disordered phase diagram [29], albeit the hexatic phase was not
resolved. Experimental realizations of colloidal systems under
quenched disorder were explored, where quenched disorder
was embodied by larger particles dispersed in an array of
smaller particles. Thereby, the solid phase exhibited the prop-
erties of an hexatic glass [30]. Static and dynamic properties
of the crystalline state in the presence of a random pinning

©2013 American Physical Society
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potential were studied in [31]. Additionally, the properties
of a disorder-induced glass transition have been thoroughly
accounted for [32—34]. Recent studies on experimental model
systems like magnetized monolayers [35] or single-layer
complex plasmas [36] have increased our understanding of
the 2D crystallization process.

In a previous work [37], we proposed an experiment on
superparamagnetic colloidal particles on a substrate, where
quenched disorder is realized by randomly pinning particles to
the substrate. Probing different regions of the sample with
varying fractions of pinned particles, the melting process
was analyzed for various degrees of disorder. Thus, the
specific dependency of the transition temperatures 7; and
T,, on disorder predicted in [26] and [27] was verified
and a broadening of the hexatic phase could be observed.
Furthermore, computer simulations on parallel dipoles in
two dimensions were conducted, which exhibited very good
agreement with the experimental data.

In this paper, we extend our previous findings on the
disorder-induced melting process [37] with a detailed analysis
of orientational clusters which show strong fluctuations in
time. The development of these clusters is discussed globally
and locally as a function of the induced disorder in the
form of particle pinning. Dealing with fluctuations on various
length scales in continuous 2D melting, this is an essential
part of understanding the conservation of the continuous
nature of the transitions in the presence of weak induced
disorder. In the isotropic liquid phase, the emergence of small
clusters corresponds to strongly fluctuating patches of high
orientational order, which gradually merge into bigger clusters
at lower temperatures. The emergence of a single cluster
spanning the entire system occurs close to the isotropic —
hexatic transition. As discussed in [37], the orientational order
parameter exhibits spatiotemporal critical(-like) fluctuations
close to the isotropic-hexatic transition and throughout the
hexatic phase. In the coarsened picture of orientational
clusters, these fluctuations correspond to regions excluded
from clusters. Albeit the description of orientational clusters is
formally similar to the analysis of heterogeneous crystallites in
a quenched colloidal system as explored in [23], orientational
clusters are not invoked by a quench of the system but rather
exhibit the nature of the continuous transition. As we observe
in computer simulations and experiment, the number and
size of these clusters display characteristic properties in the
isotropic fluid, hexatic fluid, and solid phase. Analyzing setups
with varying degrees of quenched disorder, the broadening
of the hexatic phase can be traced back to inhibited cluster
formation. As indicated by a comparison of our results to bulk
reference simulations, the formation of orientational clusters
is not induced by the presence of pinned particles but can be
observed in a pure system as well. The analysis of the density
of topological defects indicates that the widened stability range
of the hexatic phase reported in [37] is in fact associated
with an increased abundance of isolated dislocations. This
is consistent with the KTHNY scenario, which predicts that
isolated dislocations emerge in the hexatic phase and that
quenched disorder triggers the unbinding of dislocation pairs.
Additionally, we present further analysis of our experimental
and numerical data supporting the continuous nature of the
isotropic-hexatic phase transition.

PHYSICAL REVIEW E 88, 062305 (2013)

The paper is organized as follows: In Sec. II, we describe
the experiment. The simulation technique is reported in
Sec. III. Section I'V contains a description of our methods and
introduces the definition of clusters. Our analysis of cluster
formation and the finite-size behavior of global orientational
order is given in Sec. V. Topological defects are analyzed in
Sec. VI. Finally, Sec. VII provides the conclusion.

II. EXPERIMENTAL SETUP

We study a suspension of superparamagnetic colloidal
particles in two dimensions. Confined within a cylindrical
glass cell of 5-mm diameter, the particles sediment due to
gravity and form a monolayer on the bottom glass plate.
Quenched disorder is imposed by the pinning of a small
amount of particles which are attached to the glass substrate
due to van der Waals interactions and chemical reactions. The
particles have a diameter of d = 4.5 um and a mass density
of 1.7kg/dm>. The short-time lateral diffusion constant on
the glass substrate is D = 0.0295 um?/s and the Brownian
time scale corresponds to Tz = (d/2)?/D = 170 s. Although
thermal tearing or the creation of new pinning connections
does alter the distribution of obstacles, the pinned parti-
cles remain fixed on the time scale of our measurements
(=60 tp). Applying an external magnetic field H perpen-
dicular to the substrate plane, dipole moments are induced.
Due to the parallel alignment of dipoles, the pair interaction
scales with the inverse cube of the particle separation. The
pair interaction strength can be readily expressed by the
dimensionless parameter [38]

_ o (xH)

= o 1
dradkgT M

where a is the mean particle distance, x denotes the magnetic
susceptibility, and kT is the thermal energy. The definition
a = (rn)~"/? allows us to calculate the dipolar distance
dependence of the pair potential from the 2D particle number
density n (including a geometrical prefactor). By changing
the magnetic field, the system can be effectively “heated”
or “cooled” homogeneously. We study the melting process
in three sample regions with varying pinning fractions,
ranging from approx. 0.5% to 0.8%. While the entire system
comprises >10° particles, each monitored region contains
A5 x 10? particles. The colloidal ensemble is melted from an
equilibrated crystalline state by decreasing H in small steps.
After each step, the system is allowed to equilibrate for at least
24 h before particle trajectories are recorded for 2.7 h via video
microscopy [39].

III. SIMULATION

Additionally, we perform computer simulations of point-
like superparamagnetic particles in two dimensions which
interact via the purely repulsive pair potential of parallel
dipoles. Standard metropolis Monte Carlo (MC) simulations
were conducted on the NAT ensemble, with A denoting the
area of the square simulation cell. The particle number was
fixed at N = 16000 and periodic boundary conditions were
applied. Particle interactions are calculated via the truncated
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where the cutoff radius r./a = 10 is chosen. The initial state
of the simulation is obtained by successively attempting to
place particles at random positions within the simulation cell,
while the minimum distance between particles is restricted
to r;; > a. The resulting configurations corresponds to an
isotropic liquid of hard disks with a packing fraction of 0.25%.
Quenched disorder is introduced by pinning arandomly chosen
subset of particles to their initial position and rendering them
immobile for the entire simulation run. Within statistical
accuracy, this procedure models the distribution of pinning
sites observed in the experiment. Each particular pinning
fraction is sampled with at least 15 statistically independent
distributions of pinned particles. Although typically MC
methods are employed to study static properties in equilibrium
states, the underlying phase-space sampling provides a suitable
means for studying dynamic processes too [40]. To estimate
the Brownian time scale in terms of MC sweeps (i.e., attempted
moves per particle), the diffusion of particles is observed in
a dilute bulk suspension. Thus, we find that the experimental
Brownian time 7 corresponds to ~36 MC sweeps. Starting in
the isotropic fluid phase (I'"! = 0.0167), a full freezing and
melting cycle is conducted for each pinning configuration.
Note that during this process, the particular distribution of
pinned particles remains fixed. At each step of I', the system is
equilibrated for up to 5 x 10°> MC sweeps (=13 800 73), after
which data are acquired over 10> MC sweeps. For each pinning
fraction explored, the observables obtained at a given value of
I" are averaged over all sample realizations of disorder. As a
reference, the same freezing and melting cycle is conducted
for a pure bulk system, where all particles are mobile.

IV. METHODS

Sixfold orientational order can be expressed in terms of the
bond order parameter

1
Ve, j = - Ze 69/k7 3)

J k=1

where the sum goes over all n; nearest neighbors of particle
J» and 6 is the angle of the kth bond with respect to a
certain reference axis. For a particle embedded in a perfect
hexagonal crystal at zero temperature, the magnitude of ¢ is
1. It decreases as the neighbor particles deviate from their ideal
lattice positions, e.g., almost vanishes for a five- or sevenfold
coordinated defect. Here, nearest neighbors of a particle are
determined via the Voronoi construction. In order to analyze
orientational clusters and fluctuations of the order parameter,
we consider the local time-averaged director W ;,

1 t
We,i (1) = ™ / Ve.i(t)dt'. “4)
t Ji—A,

For both experiment and simulation, the averages are con-
ducted over a time frame A, /tp > 50. Furthermore, the global
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0

FIG. 1. (Color online) Simulation snapshots illustrating orien-
tational clusters close to the fluid — hexatic transition (I'"! =
0.0149). The field of view corresponds to 450 x 450 um (7%
of the simulation cell). (a) Voronoi cells color-coded based on the
time-averaged local orientational order parameter W¢(z). Colors are
specified by the bar at the left. Crosses indicate the positions of pinned
particles. (b) Orientational director field, where the complex number
W ;(2) is shown as a 2D vector, the size of which corresponds to the
magnitude of W ;(7). Outlines of clusters are indicated in black.

time-averaged director Wy is defined by

1 N
Wo(r) = = D Wei(0). ©)
i=1

Orientational clusters are determined via two criteria. First, for
aparticle to be included in a cluster at time 7, the time-averaged
order parameter has to meet the criterion

|We.i(1)] = 0.5. (6)

If particle i is included in a cluster, so may be a neighboring
particle j, if it meets criterion (6) and the sixfold director has
a common orientation. Therefore, we consider the angle ¢;;
between the real projection of We (1), We (1) and impose the
limit

We i - We,

cos(¢pi) =
@) = (s 1Ws, ]

> 0.984. @)

The application of these two criteria is illustrated in Fig. 1.

V. CLUSTER ANALYSIS

Applying the criteria introduced in the previous section to
the data recorded in computer simulation and experiment, the
formation of clusters is examined within the two-step melting
process. Therefore, the reduced transition temperatures I';” !
and I',,! are inherited from our previous study [37], where
the KTHNY melting scenario was confirmed for the system at
hand. In the same work, it was shown that there is a broadening
of the hexatic phase for increased pinning fractions (see Fig. 2).
While T';” lis hardly affected, I",, I shifts from ~0.0146 to
~0.0144 as the pinning fraction is increased from 0.1% to
0.5%. These findings are based on an analysis of the spatial
and dynamic bond order correlation function. Furthermore,
we analyzed the orientational correlation time & and an
“effective” Frank’s constant K4, which is the modulus of
torsional stiffness in the presence of pinned particles. Our data
indicate that in the presence of disorder, the divergent behavior
of Frank’s constant is shifted to lower temperatures for higher
pinning strengths [37]. Since the divergence of K4 coincides
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FIG. 2. (Color online) Phase diagram indicating the solid [blue
(dark gray)], hexatic fluid [red (medium gray)], and isotropic fluid
[yellow (light gray)] phases in the parameter space of the temperature
o«I'~! and pinning strength. Filled symbols represent experimental
data, while open symbols correspond to simulation results [37].

with the hexatic — solid transition, this implies a strong
dependency of T,, on disorder, as proposed in Refs. [26]-
[28]. In the following, we revisit the continuous, disorder-
induced melting scenario in the context of the development
and characteristics of orientational clusters and examine how
the latter are influenced by pinning. Figure 3 illustrates the
formation of clusters in two exemplary systems with pinning
fractions of 0.1% and 0.5%, respectively. Snapshots are shown
at three distinct temperature steps, which, for a pinning fraction
of 0.1%, cover all three phases. In the isotropic fluid phase
close to I';” ! [Figs. 3(a) and 3(d)], a substantial number of
separate clusters can be observed. However, the orientation of

0.1 %

'
[y

0.5 %

1= 0.0148

1= 0.0147
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these clusters is strongly heterogeneous. In the hexatic phase
[Figs. 3(b) and 3(e)], the formerly separated clusters have
merged into a large cluster with a homogeneous orientation.
Note that, in general, the formation of a uniform cluster does
not necessarily collapse with the isotropic — hexatic transition
point and is highly dependent on the cluster criteria stated in
Sec. IV.

As reported in [37], orientational order undergoes spa-
tiotemporal fluctuations throughout the hexatic phase. These
critical-like fluctuations occur on time scales beyond the
orientational correlation time and are consistent with the
continuous nature of the phase transition. In terms of ori-
entational clustering, these fluctuating regions correspond to
particles not included in clusters. For further clarification,
computer simulation snapshots illustrating the time evolution
of clusters on different time scales are shown in Fig. 4. We
find the temperature range in which these spatiotemporal
patterns occur to depend strongly on the pinning fraction. At
I'~! 2 0.0146, the fluctuations have subsided in the system
with a pinning fraction of 0.1% [Fig. 3(c)], while there are
still substantial fluctuations in the system with a pinning
fraction of 0.5% [Fig. 3(f)]. Starting from this qualitative
observation, we systematically study the co-occurrence of
orientational clusters and disordered, fluctuating regions by
tracking several quantities related to the formation of clusters
versus the effective temperature I'~! for various pinning
fractions. First, we measure the abundance of clusters at
each specific temperature step. Therefore, the number of
clusters is averaged over an observation window of ~10tp
for the experimental data and >2000 tp for the simulation
data. In the computer simulation, the result is additionally

1= 0.0146

FIG. 3. (Color online) Simulation snapshots of exemplary configurations for pinning fractions 0.1% (a—c) and 0.5% (d—f). Voronoi cells are

shown for particles included in clusters. The color-code corresponds to the bar at the left, based on the normalized product W ;

W /(| We,i || Ws ).

Crosses indicate the positions of pinned particles. At I' = 0.0148, both systems are in the isotropic fluid phase; the transition to the hexatic
phase occurs at I' = 0.0147. At I' = 0.0146, the system with less pinning enters the solid phase (c), while the system with a higher pinning

fraction remains in the hexatic phase (f) and fluctuations persist.
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FIG. 4. (Color online) Fluctuating clusters in the hexatic phase
(I'"' =0.0147, 0.5% pinning). (a) Cluster configurations at three
time steps: # [black], #p + 3575 [medium blue (gray)], and 7y + 707p
[light blue (light gray)]. Voronoi cells are shown for particles included
in a cluster. (b) Cluster configurations at three time steps: #; [black],
t; + 7007 [medium blue (gray)], and 7, + 14007 [light blue (light
gray)]. Snapshots are from the computer simulation.

averaged over all realizations of disorder for a specific pinning
fraction. Our results are shown in Fig. 5; note that in order
to account for the different system sizes in experiment and
simulation, the cluster number is normalized with respect to
the average total particle number (N). For both experiment and
simulation, we observe that in the fluid phase, the number of
clusters N¢ is high. Close to the isotropic — hexatic transition
temperature I';” "2 0.0147, the number decreases sharply and
saturates towards small values close to 1 throughout the hexatic
phase. Correspondingly, the normalized number of clusters
approaches 0. This behavior corresponds to the observation of
cluster formation in Fig. 3. Additionally, our results capture
the influence of pinning disorder on the abundance of clusters:
The number of clusters observed at a pinning fraction of 0.5%
systematically exceeds the one observed at 0.1% pinning over
a broad, intermediate temperature interval, which coincides

0.008
8(1)30 =B solid hexatic fluid |
. ‘o iCinn
0.3% —&-—
0.5% -—-v--

0.006 | 0.48% —«—
0.84% —eo—
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0.002 |-e° e
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e A
0.002 | 0 itig,,,,gg@e/ﬁ)

0.0142 0.0144 Q.0146 0,0148
| —&_ y
o ML

0.011 0.012 0.013
-

0.015

0.016

FIG. 5. (Color online) Average of the normalized number of
orientational clusters (Nc¢)/(N) versus the effective temperature for
different pinning strengths. Experimental data are plotted with filled
symbols, while open symbols represent numerical data. Lines are
guides for the eye. The temperature range of the hexatic phase for
0.1% pinning is highlighted in red (medium gray); the widening of
the hexatic phase at 0.5% pinning is illustrated in light red (light
gray). Inset: Closeup of the average cluster number.
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FIG. 6. (Color online) Top: Average ratio {oc) of particles outside
of clusters versus effective temperature. Inset: Closeup of the behavior
in the hexatic phase. Bottom: Average size (A¢)/(N) of clusters stated
as a fraction of the average total particle number. Experimental data
are plotted with filled symbols; open symbols represent numerical
data. Lines are guides for the eye. As in Fig. 5, the temperature
range of the hexatic phase is highlighted in red (gray) for two distinct
pinning fractions.

with the widened temperature range of the hexatic phase. This
picture is supported by the analysis of fluctuating disordered
regions, i.e., regions excluded from clusters. We track the
average number density of particles which are excluded
from clusters versus the effective temperature, at which the
averaging routine depicted above is applied. For every time
step, the number of particles excluded from clusters is detected
and divided by the total number of particles. The resulting
number density p¢ is averaged over all time steps in the
observation window. Our results are shown in Fig. 6 (top).
We find that the ratio of particles excluded from clusters is
close to 1 in the isotropic fluid, drops sharply around I';” l
and approaches O at lower temperatures. In agreement with
the previous discussion, an increase in the pinning fraction
results in a weaker decay of this ratio below I';” 1; ie., a
given ratio of excluded particles is maintained over a broader
temperature interval than in the case of lower disorder. Again,
this temperature interval collapses with the broadened regime
of the hexatic phase reported in [37].

As the third quantity, the average size of clusters is shown
in Fig. 6 (bottom) for various pinning fractions. The average
number of particles included in a single cluster is stated as a
fraction of the average total particle number (N). This analysis
indicates that the formation of clusters spanning the entire
system is inhibited by pinning disorder. Instead, the division
of the system into a multitude of clusters persists over a broader
temperature interval such that, on average, clusters are smaller.
Note that for the experimental data, there is less averaging and
the average size of clusters fluctuates strongly. However, the
qualitative influence of pinning disorder is captured by both
experimental and numerical data. The qualitative resemblance
of cluster formation in the pure case and in the presence of
disorder implies that the emergence of fluctuating orientational
clusters is intrinsic to the two-stage melting scenario, not just
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0.014
F_l

FIG. 7. (Color online) Left: Computer simulation snapshot illus-
trating the subdivision into regions close to (I) and far from (II)
pinned particles. Right: Instantaneous value of the order parameter
Ve in regions I and II versus the effective temperature I'~!. Lines
correspond to computer simulation data (pinning fraction, 0.5%);
experimental data are represented by symbols (crosses, region I;
circles, region II; pinning fraction, 0.48%).

0.012

an effect introduced by the presence of pinned particles. As
reported in [37], an increase in the pinning fraction induces
a shift of 7,, towards lower values. Here, this behavior is
reflected by the inhibited formation of orientational clusters.

For a closer investigation of the impact of pinning disorder
on the formation of orientational clusters, we introduce
a subdivision of the system into three regions. Region I
represents the vicinity of pinned particles and comprises
all particles within a radius of 8d around a pinning site
(including the pinned particles themself). Region II contains
all particles which are more than 24d away from the closest
pinning center, thus being presumably unaffected by pinning
disorder. Particles contained in neither region I nor region
IT are neglected for the purpose of the following analysis.
The subdivision of the system according to these criteria is
illustrated in Fig. 7 (left). We analyze the magnitude of the
instantaneous bond orientational order parameter /¢ in regions
I and 11, respectively. Our results are shown in Fig. 7 (right).
A general trend can be observed: On average, orientational
order is reduced in the vicinity of pinned particles (region
I) compared to distant particles (region II). This effect is
especially pronounced in the hexatic and solid phase. No
significance can be detected in the isotropic fluid phase, which
is expected to be caused by the intrinsic large degree of disorder
in an isotropic system.

As afurther step, we consider the conditional probability for
a particle being part of a cluster, given the fact that the particle
belongs to region I or II, respectively (Fig. 8). Thereby, we
observe that in the isotropic fluid, particles in region I are
in fact slightly more likely to be included in a cluster than
particles in region II. Thus, the emergence of small clusters at
T > T; occurs preferentially in the vicinity of pinned particles.
However, this behavior is inverted at lower temperatures. In
the hexatic and solid phase, where single clusters cover large
parts of the system, particles in the neighborhood of pinning
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FIG. 8. (Color online) Conditional probability that a particle
belongs to a cluster given that it is located in region I (triangles)
or region II (squares) versus effective temperature I'"!. Data were
obtained with computer simulations; the pinning fraction corresponds
to 0.5%. Lines are guides for the eye. The temperature range of the
hexatic phase is highlighted in light red (gray).

sites are significantly less likely to be part of a cluster. Thus,
at low temperatures, pinned particles inhibit the formation of
clusters by deteriorating orientational order in their vicinity,
while they stabilize orientational order at high temperatures.
This result is in good agreement with a previous analysis of
the dynamic properties of particles in regions I and II [37].
Thereby, it was found that the long-term dynamics of particles
close to pinning sites is inhibited in the fluid phase, while in the
solid phase, particles in region I exhibit increased dynamics
compared to those in region II. Interestingly, increased or
decreased dynamics are correlated to low or high orientational
order, respectively.

In order to verify the continuous nature of the phase
transition, we calculate the probability distribution p(¥?) of
the squared order parameter \Ili We perform a finite-size
analysis by considering various subcell sizes, L = 1/2, 1/4,
1/8, and 1/16, where L states the side length of a subcell
as a fraction of the side length of the total system. For
a continuous phase transition, we expect the probability
distribution to exhibit a single peak for all temperatures and
on all length scales. Our results are shown in Fig. 9 and are in
agreement with the continuous nature of the melting process.
The probability distribution of p(¥?) is shown for a broader
range of temperatures for the fixed subcell size L = 1/4 in
Fig. 10.

VI. DEFECT ANALYSIS

Following the KTHNY theory, the 2D melting process is
driven by the unbinding of topological defects. Specifically,
bound dislocation pairs break into isolated dislocations above
T, marking the solid — hexatic transition. Above T;,
dislocations dissociate into single disclinations. The existence
of isolated dislocations (i.e., pairs of five- and sevenfold
defects) leads to quasi-long-range orientational order and is the
fingerprint of the hexatic phase. We approach the hexatic phase
by tracking the density of defects, in particular, the number
of isolated dislocations. Numerically, isolated dislocations
are identified as a fivefold and a sevenfold defect particle
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FIG. 9. (Color online) Finite-size analysis of the probability
distribution of W} calculated for subcells of side length L (stated
as a fraction of the total box length). Curves are shown for computer
simulation data; the pinning fraction corresponds to 0.5%. (a)
I'~! = 0.0148: isotropic fluid phase, where the peak of the probability
distribution is located at \Di =0.(b) I'"! =0.0147: fluid — hexatic
transition, where the peak shifts to intermediate values of \Ilz. (c)
I'~! = 0.0146: hexatic phase.

which are Voronoi neighbors, and additionally, both have
exactly one defect particle in their neighborhood (which is the
respective counterpart). Thus, we exclude entangled chains,
grain boundaries, and agglomerations of defect particles.
However, as discussed in [14], this definition does not exclude
close but nonadjacent pairs of dislocations, which, for a
sufficiently large Burgers circuit, yield a O Burgers vector.
Furthermore, the application of periodic boundary conditions
affects the counting of defect particles [ 14]. Since these sources
of miscounting affect all our data, a qualitative comparison
between defect densities at different pinning fractions is still
valid. Additionally, we track the density of bound dislocations,
which are as well defined in a way that excludes entanglements
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FIG. 10. (Color online) Probability distribution of W7 for simula-
tion (left) and experiment (right) for L = 1/4 (stated as a fraction of
the total system dimension). During the crossover from isotropic
to hexatic fluid, the location of the peak shifts from v2 =0 to
intermediate values. The distribution has a single distinct peak,
indicating a continuous transition. The pinning fraction is 0.5% in
the simulation and 0.48% in the experiment.
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FIG. 11. (Color online) Defect density (Ngs)/(N) versus effec-
tive temperature. The number of particles forming bound dislocations
(squares), isolated dislocations (triangles), or single five- or sevenfold
disclinations (circles) is stated as a fraction of the total particle
number. Data correspond to computer simulations with pinning
fraction 0.1% [open (blue) symbols] and 0.5% (filled black full
symbols). Lines are guides for the eye. The common temperature
range of the hexatic phase for both pinning fractions is highlighted
in red (medium gray). For 0.5% pinning, the widened range of the
hexatic phase is shown in light red (light gray). Inset: Closeup on the
defect density in the (widened) hexatic phase.

and agglomerations of defects. Therefore, we track adjacent
pairs of dislocations with no additional defect particles in
the Voronoi neighborhood. Finally, single disclinations are
tracked, where five- and sevenfold disclinations are treated
alike. Figure 11 depicts the recorded defect densities in the
computer simulation for two pinning fractions versus the
effective temperature. The densities stated are calculated as
the total number of particles involved in topological defects of
the given kind, Ngef, divided by the total number of particles
N. For example, 1 isolated dislocation among 100 particles
yields a density of 0.02, and 1 bound dislocation among 100
particles yields 0.04. In some analogy to findings reported
in [14], we observe that not only single disclinations, but
also (isolated) dislocations are abundant in the isotropic fluid
phase as well. Below the transition temperature to the hexatic
regime, the density of both single disclinations and isolated
dislocations decays, while the density of bound dislocations
rises, indicating the formation of bound dislocation pairs.
We find that increasing the fraction of pinned particles from
0.1% to 0.5% leads to a slight systematic increase in all the
defect densities, which reflects the fact that pinned particles
severly impair translational order. Since, in general, pinned
particles are not placed at ideal lattice positions, additional
defects have to be introduced in order to accommodate them
in a crystal. Furthermore, increasing the fraction of pinned
particles has a pronounced effect on the density of isolated
dislocations. While for a pinning fraction of 0.1%, the density
of isolated dislocations drops sharply at I'"! = 0.0146, a
comparably high density of isolated dislocations is maintained
over a broader temperature interval for a pinning fraction of
0.5%. Corresponding to previous findings, this temperature
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range coincides with the widened range of the hexatic phase
reported in [37]. Thus, the increased density of isolated
dislocations at higher pinning fractions reflects our previous
finding of a broadened hexatic phase on the level of topologic
defects.

VII. CONCLUSIONS

We have presented a detailed analysis of the formation
and dynamics of orientational clusters and the development
of topological defects in the context of the disorder-induced
melting scenario in two dimensions. Our results are obtained
for superparamagnetic colloids whose repulsion strength
can be tuned by an external magnetic field. The colloids
are confined at a water-substrate interface where quenched
disorder is realized by substrate-induced particle pinning. In
addition, corresponding computer simulations of 2D parallel
dipoles have been performed. We find that the formation of
orientational clusters is intrinsically adapted for the two-stage
melting scenario and strongly dependent on the strength
of quenched disorder. While the solid is characterized by
single cluster formation and large cluster sizes, the cluster
density and the number of particles outside of clusters increase
sharply in the hexatic phase and saturate in the isotropic fluid.
The average cluster size decreases continuously towards the
hexatic-isotropic transition and drops to 0 in the isotropic fluid.
Throughout the melting process (especially at the solid-hexatic
transition), quenched disorder favors the formation of multiple
clusters and, equivalently, reduces the average cluster size,
but simultaneously the number of particles which do not
belong to a cluster increases. This reduces the orientational
correlation in space and time due to cluster fluctuations and
is directly reflected in the local probability analysis where
we detected a reduced cluster formation in the proximity
of pinned particles in the solid phase, while clusters are
preferentially formed close to pinned particles in the isotropic
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fluid. In this context, the widening of the hexatic phase
due to quenched disorder is directly coupled to the distinct
(disorder-dependent) characteristics of orientational cluster
formation. The development of topological defects shows a
similar effect; especially the creation of isolated dislocations
is strongly increased by quenched disorder at the solid-hexatic
transition.

Future works should address the effect of long-range
quenched potentials, which were originally discussed by
Nelson [26], and short-range disorder, e.g., fluctuations of
quenched external potentials on the scale of particle diameters
[32]. This could be explored via various kinds of external
potentials on different length scales, from strong pinning via
light fields [41] to weak attractive interactions on precisely
structured substrates. Alternatively, density functional theory
[42—44] or the phase-field crystal model [45] could be a
starting point to describe the hexatic phase [46—48], which
could, in principle, be formulated also for quenched disorder
[49,50]. The behavior of an externally disturbed system
under nonequilibrium conditions, e.g., temperature quenches,
should be of interest: Concerning the competition between
critical fluctuations and first-order characteristics, complex
nonequilibrium relaxation dynamics might be induced by
quenched disorder. In the absence of disorder, such systems
were studied in both one-component [25] and two-component
[24] systems and revealed interesting properties. Last, but not
least, other types of disorder should be explored systematically,
including rough disordered substrates and disorder which is
not quenched on the time scale of the measurements.
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Abstract. This mini-review is concerned with two-dimensional colloidal
mixtures exposed to various kinds of external fields. By a magnetic
field perpendicular to the plane, dipole moments are induced in para-
magnetic particles which give rise to repulsive interactions leading to
complex crystalline alloys in the composition-asymmetry diagram. A
quench in the magnetic field induces complex crystal nucleation scenar-
ios. If exposed to a gravitational field, these mixtures exhibit a brazil—
nut effect and show a boundary layering which is explained in terms
of a depletion bubble picture. The latter persists for time-dependent
gravity (“colloidal shaking”). Finally, we summarize crystallization ef-
fects when the second species is frozen in a disordered matrix which
provides obstacles for the crystallizing component.

1 Introduction

When colloids are confined to interfaces [1-3], almost perfect two-dimensional systems
can be realized [4-6]. The key idea is to consider a pending water droplet at a glass
plate which is filled with superparamagnetic particles, see also [7]. Due to gravity
the particles sediment down until they meet the air-water interface. Since the surface
tension of the air-water interface is high, the particles do not penetrate through the
interface as this would create additional interfacial area. Consequently, the particles
are confined to the interface by a combination of gravity acting downwards and in-
terfacial free energy keeping them upwards. Since the water droplet containing the
colloidal particles is macroscopic, its air-water interface is flat on a micron scale typ-
ical for an interparticle spacing between the colloids.

This set-up can be combined with an external magnetic field B, which induces
magnetic dipole moments in the particles, m o B. This in turn results in a dipole-
dipole interaction between the particles. All dipole moments are along the magnetic
field direction. If the external magnetic field is perpendicular to the interface, there
is a repulsive interaction between the particles which can be described by a pairwise
potential scaling as the inverse cube of the distance [8]. The prefactor scales with
the square of the magnetic dipole moment, i.e., with the square of the magnetic field
strength B. By tuning the magnetic field B, one can thus readily change the in-
teraction strength. For inverse power-law interactions, this corresponds formally to a
change of temperature or density. The experimental set-up is typically combined with
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B Glass cell in side view

Microscope

Objective

Fig. 1. Schematic view of the set-up: binary mixture of superparamagnetic colloidal particles
at an air-water interface in an external magnetic field B perpendicular to the plane. From
Ref. [22].

video-microscopy in order to visualize the individual particle trajectories. A schematic
view for the set-up in case of a binary suspension is shown in Fig. 1.

In the last decades, progress has been achieved for one-component and two-
component systems which is outlined as follows: for one-component systems, the
Kosterlitz—Thouless—Halperin—Nelson—Young scenario was confirmed on this strictly
two-dimensional system [9]. Moreover, it was verified that Young’s modulus ap-
proaches 167 at the melting temperature [10] as predicted by the theory. The mod-
ulus of orientational stiffness was measured in the hexatic phase at the fluid-hexatic
transition and found to be in agreement with theory, too [11]. Since the creation of
disclinations and dislocations is crucial for the melting scenario, the pair interaction
of dislocations has been determined in these two-dimensional crystals [12]. Finally,
the crystal phonon dispersion relations [13] have been determined and found to be
in full quantitative agreement with theoretical calculations [14]. For the crystalliza-
tion behavior [15], dynamical density functional theory was developed and applied to
magnetic particles [16,17].

If the external magnetic field is tilted relative to the surface normal, anisotropic
dipole-dipole interactions between the particles result. The zero-temperature phase
diagram was calculated by lattice sums [8] revealing a wealth of anisotropic stable
solid lattices in agreement with experimental data. The Lindemann parameters in the
anisotropic crystals were determined in good agreement between experiment and the-
ory [18]. The melting of the anisotropic crystals is again mediated by defects [19] as in
the isotropic case and the resulting intermediate phase can be called “smectic-like”.

Two-component (binary) systems with big and small magnetic dipole moments
represent ideal glass formers in two spatial dimensions [20]. Several structural and
dynamical features of these mixtures have been explored including the long-time self
diffusion [21] and the partial clustering of the small particles at moderate interaction
strengths [22]. The latter is revealed by an unusual peak in the partial structure factor
of the small-small pair correlations.

In this paper, we review more recent progress obtained by theory and simulation
for two-dimensional colloidal binary mixtures in magnetic and gravitational fields
and compare the results to experimental studies [7]. The mini-review is organized
as follows: in Sect. 2 we start with bulk phase behavior of binary dipolar mixtures.
Real-space experimental data for the partial pair correlations are compared to simu-
lations for a binary mixture and good agreement is found. Moreover the equilibrium
phase diagram is discussed and an ultrafast quench to cool down the system is de-
scribed. Then effects of confinement are presented briefly, too. In Sect. 3 the combina-
tion of a magnetic field and perpendicular in-plane gravity is studied and a colloidal
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brazil-nut effect is found and explained in terms of a simple effective Archimedian
theory. Finally, in Sect. 4, we consider binary mixtures of mobile and immobile par-
ticles and explore the freezing transition in this system with quenched disorder. We
conclude in Sect. 5.

2 Crystallization of two-dimensional colloidal mixtures in
magnetic fields

A binary mixture of super-paramagnetic colloidal particles pending at an air-water
interface is an excellent realization of a 2D classical many-body system [20-23]. An
external magnetic field B perpendicular to the interface induces parallel dipole mo-
ments ma and mpg in particles A and B, respectively, resulting in an effective repulsive
interaction which scales as the inverse cube of the distance r within the monolayer.
By defining the magnetic susceptibilities per particle A and B as xa g = ma /B,
we obtain the pair potential,
2
Vas(r) = xaXoog- (1)

Note that only for low B the induced dipole moment is linearly proportional to
the external field, and then y, is field-independent. In this case, for a fixed relative
composition xp and susceptibility ratio m = mp/ma = xB/xa, all static quantities
depend solely on the coupling parameter [24],

2 g2
XA
=~~~ 2

where kgT is the thermal energy and Ap = (nA)_l/ 2 is the mean distance between
particles A [25], with na denoting the partial number density of A-particles.

2.1 Fluid pair structure

Structural correlations of binary mixtures have been studied in great detail [21,26-28].
Figure 2 shows a recent comparison between experimental and simulation data for the
three partial pair correlation functions gaa(r), gag(r), and ggg(r) [26]. Except for a
fine substructure in ggp(r), there is very good overall agreement. Higher-order struc-
tural correlations, e.g., particles with a square-like and triangular-like surrounding
have also been studied [26,29]. These building blocks are essential for understanding
the onset of glass formation.

2.2 Equilibrium bulk phase diagram

At zero temperature (i.e., for I' = c0), the state of the binary system is completely
determined by the susceptibility ratio 7 (varying in the range 0 < /m < 1) and the
relative composition zp of species B (with smaller dipole moment). A wealth of differ-
ent stable phases occur. The topology of the phase diagram is getting more complex
with increasing asymmetry [30], see also [31,32]. For small asymmetries 7 and in-
termediate compositions xg, the system splits into triangular A;B and ABs phases.
Experiments with colloidal dipolar mixtures, which were performed for a strong asym-
metry of m ~ 0.1, confirmed the predicted crystalline structures [28], however, only
in the form of small crystalline patches. Recent results were also obtained for the
phonon band structure [33] and crystal structures in tilted magnetic fields [34]. For
another application to colloid polymer mixtures see [35].
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Fig. 2. Partial radial pair distribution functions gaa(r), ggs(r), and gap(r). Experimen-
tal data (EXP) are compared to Monte Carlo simulation results (MC) for three different
dimensionless coupling strengths I'. (a) I' = 4.9, (b) I = 38.9, and (c) I' = 82.9. The relative
composition of B-particles is fixed at 2 = 0.29. From Ref. [26].

2.3 Ultrafast quenching

By suddenly increasing the magnetic field, the system can be quenched on a time
scale which is much smaller than single particle motion [36]. Since magnetic field
strength corresponds formally to an inverse temperature, an ultrafast temperature
quench can be realized experimentally, which is very difficult for molecular systems.
Analyzing the particle configuration after a rapid quench reveals some local crystalline
patches in the glass [28,30]. These patches correspond to the thermodynamic bulk
crystal [37], demonstrating an interplay between vitrification and crystallization [38—
41]. Experimental snapshots just after the quench and well after the quench are
shown in Fig. 3. Within the allotted time, the binary mixture does not find its true
ground state but shows patches with local square and triangular order. The fraction of
particles with this local order grows with time, see Fig. 3, and there is good agreement
between Brownian dynamics simulations and real-space experiments [27].

2.4 Crystallization at system boundaries

Similar quenches for magnetic mixtures were studied by Brownian dynamics simula-
tions near a structured wall [42] which is modeled by fixed particles on an alternating
binary equimolar square lattice cut along the (10) direction. This wall favors local
crystallites which pick up the square symmetry of the substrate. The equilibrium
state is an alternating square lattice which coincides exactly with that imposed by
the external wall. After the quench, it is found that the number and structure of crys-
tallites near the walls strongly depend on the wall pattern. Even though local square
structures are favored energetically and the equilibrium state is an alternating square
lattice, the number of triangular crystallites close to the wall which has outermost
fixed small particles is significantly higher than in the unconfined case. This effect is
not contained in classical nucleation theory.
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Fig. 3. (a) Fraction of B-particles belonging to a crystalline square surrounding (see inset)
and (b) fraction of A-particles belonging to a crystalline triangular surrounding (see inset)
versus reduced time after an ultrafast quench. The lines are experimental data while the
symbols (*) are data from Brownian dynamics simulations. Two experimental snapshots for
a time just after the quench (left configuration) and a later time (right configuration) are
shown. Big particles are shown in blue if they belong to a triangular surrounding and in red
if they belong to a square surrounding. All other big particles are shown in white. Few big
particles belonging to both triangular and square surroundings are shown in pink. The small
particles are shown in green if they belong to a square center of big particles, otherwise they
appear in yellow. Also included are simulation data for an instantaneous “steepest descent”
quench (A) and for a linear increase of the field (+). The relative composition of the small
particles is zg = 0.4. For a more detailed explanation of the parameters, see [27]. From
Ref. [27].

3 Two-dimensional colloidal mixtures in magnetic fields and
under gravity

Exposing the binary magnetic mixture described in Sect. 2 to an in-plane homoge-
neous gravitational force perpendicular to the magnetic field B leads to interesting
newly emerging phenomena. Experimentally, this gravitational force can be realized
by tilting the hanging droplet. The two components A, B of the mixture differ in
both mass M and magnetic susceptibility x, where A is chosen as the heavier and
more strongly coupled species. Thus, the system is characterized by the dipolar ratio
m = mgp/ma and the mass ratio M Mg /Ma with 0 < m, M < 1. First, the case
of a static gravitational field was studied by Monte Carlo computer smlulatlons and
mean—field density functional theory. Second, the binary magnetic mixture was ex-
amined in the nonequilibrium situation of oscillatory gravity, which is a simple model
of colloidal shaking. Thereby, Brownian dynamics simulations and dynamic density
functional theory were used to study the dynamic response of the system [43].
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Fig. 4. Separation line between the occurrence of the colloidal brazil-nut effect and the
absence of this effect in the parameter space of dipolar ratio /m and mass ratio M. Monte
Carlo simulation data (contoured white squares), density functional data (full black circles)
and the transition line implied by the depletion bubble picture (contoured circles) are shown.
For other parameters, see Ref. [43]. From Ref. [43].

3.1 Static gravity: Colloidal brazil-nut effect

Monte Carlo (MC) simulations were performed for various mass ratios 0 < M < 1,
while the dipolar ratio was fixed to m = 0.1 according to recent experimental sam-
ples [27,28]. Thereby, a very distinct behavior of the sedimenting mixture could be
observed. While for very asymmetric masses, the lighter B-particles are on top of the
heavier A-particles as expected, the behavior is reversed for intermediate B-particle
masses: here, the heavier A-particles are on top of the lighter B-particles. At first
glance, this opposite trend is counterintuitive. In some analogy to granulate matter,
it is called the (colloidal) brazil-nut effect [44].

The mechanism behind this effect can be explained using an intuitive picture: due
to their strong repulsive interaction, particles of species A create a depletion zone of
less repulsive particles around them reminiscent of a bubble. Applying Archimedes’
principle effectively to this bubble, an A-particle can be lifted in a fluid background
of B-particles. This “depletion bubble” mechanism results in the brazil-nut effect,
where the heavier A-particles float on top of the lighter B-particles. _

By systematically scanning the entire parameter space 0 < m < 1,0 < M <1, the
line separating the brazil-nut effect from the ordinary behavior (no brazil-nut effect)
was mapped, see Fig. 4. Density functional theory predictions are in good agreement
with the MC simulation results, predicting the same trends and the same slope of
the separation line in the parameter space of mass and dipolar ratio. Additionally,
the intuitive depletion bubble picture provides a simple theory for the separation line
based on an effective buoyancy criterion, which is included in Fig. 4 and reproduces
the simulation data pretty well.

The depletion bubble picture also implies a layering of A-particles close to the
hard bottom wall of the confining container (at y = 0), which is demonstrated by an
actual simulation snapshot shown in Fig. 5. This effect is due to an effective attrac-
tion of an A-particle towards the hard container bottom wall: if a single A-particle is
fixed at a given distance from the bottom wall, its depletion bubble is reduced since
the void space is cut by the hard wall, see the sketch in Fig. 6. Since the A-particle
is point-like, it can approach the wall very closely. Note that in Fig. 6, particles are
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Fig. 5. Simulation snapshot for m = 0.1, M =05 showing the marked-off bottom layer
of heavy A-particles (large red spheres) at y = 0 beneath the fluid of light B-particles
(small green spheres). The arrow indicates the direction of gravity, —y. From Ref. [43].

Fig. 6. Schematic illustration of the metastable trapping of A-particles at y = 0, leading to
the formation of a boundary layer. A-particles are represented by large red spheres, while
B-particles are depicted as smaller green spheres. Note that particles are represented as
spheres with a finite radius for clarity only while in the computer simulation, point particles
are considered. The solid line indicates y = 0, while the orientation is analogous to Fig. 5.
The depletion zone surrounding A-particles is indicated by a dashed outline. From Ref. [43].

represented as spheres with finite radii for clarity, and the center of the sphere cor-
responds to the position of the point particle. In the computer simulation, the hard
wall is implemented by systematically rejecting particle moves beyond the wall, such
that the position of the point particle (i.e., the center of the spheres in Fig. 6) is
restricted to y > 0. Experimentally, this wall could be realized by a lithographic wall
on a substrate or by an array of tweezers. If the A-particle is close to the wall, the
void space is half of the full circle in the bulk (situations I and III in Fig. 6). If the
height y of the A-particles increases, the depletion bubble area grows, which causes
two opposing effects: first, in order to increase the depletion bubble area, work against
the osmotic pressure of the fluid B-particles is necessary, which leads to an effective
attraction of the particle to the wall. Second, the effective buoyancy of the bubble
containing the A-particle leads to a repulsive force with respect to the wall.

3.2 Time-dependent gravity

Furthermore, the binary magnetic mixture was examined under time-dependent grav-
ity, where the gravitational potential was conveniently modeled as a stepwise constant
function of time. In particular, the case of a non-zero time-average of the gravity
was considered. Brownian dynamics (BD) simulations and dynamic density func-
tional theory (DDFT) were used to study the dynamic response of the system. In an
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Fig. 8. Time-evolution of the reduced mean A-particle height ha(t) versus reduced time
t/7 for different shaking periods Tp. The parameters are m = 0.1, M = 0.24. From Ref. [43].

experimental setup, the case of a time-dependent in-plane gravitational force could
be realized by periodically tilting the hanging droplet in opposite directions.

The relaxation of an initially homogeneous (but interacting) fluid of A- and B-
particles towards its periodic steady state can be monitored by observing the in-
stantaneous ensemble-averaged total potential energy Epo; of the system [27]. This
quantity is shown in Fig. 7, indicating that only few oscillations are needed to get into
the steady behavior. Due to the homogeneous starting configuration, the energy os-
cillation amplitude increases with time. DDFT describes all trends correctly and also
provides reasonable data for the potential energies and the associated relaxation time.

The dynamical response of the whole system can be probed by examining the
time-dependent averaged height of each particle species as shown for species A in
Fig. 8. Upon shaking, the boundary layer of the A-particles persists. Comparing the
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Fig. 9. Phase diagram indicating solid (blue), hexatic (red), and fluid (green) phase in
the parameter space of temperature o 1/T" and pinning strength, which corresponds to the
percentage of immobile particles. Full symbols represent experimental data, while contoured
points correspond to simulation results. The snapshots show the orientational order in the
experimental (a-c) and simulated system (d-f). Only a small section of the system is shown.
Voronoi cells are color-coded based on the value of the time-averaged orientational order
parameter (|is]), according to the color bar on the left. Crosses indicate the position of
immobile particles. From Ref. [45].

computer simulation results to the density profiles predicted by DDFT in more detail,
the persistence of the boundary layer is contained by both methods.

4 Quenched disorder: Mixtures of mobile and immobile
magnetic colloids

Recently, the influence of quenched disorder on the two-dimensional freezing behavior
was studied by using both video-microscopy of superparamagnetic confined colloidal
particles and computer simulations of two-dimensional repulsive parallel dipoles [45].
A fraction of the particles was pinned to a substrate providing quenched disorder.
Similar to the set-up depicted in Sect. 1, the interaction strength was controlled by an
external magnetic field, giving rise to parallel dipolar interactions. In the pure case of a
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one component system, the Kosterlitz—Thouless—Halperin—Nelson—Young (KTHNY)
[46,47] scenario was unambiguously confirmed [11,48]. It predicts a two-stage melting
scenario with an intervening hexatic phase which is separated from the fluid and solid
phases by two continuous transitions [49], where the melting process is mediated by
the unbinding of thermally activated topological defects. In particular, the emergence
of the hexatic phase is related to the dissociation of dislocation pairs into isolated
dislocations [50]. These break translational symmetry, leading to a vanishing shear
modulus. However, the orientational symmetry remains quasi-long-range and the
modulus of rotational stiffness, Frank’s constant K 4, attains a nonvanishing value.

By systematically increasing the fraction of pinned particles, the freezing process
was studied in the presence of disorder. The occurrence of the KTHNY scenario
with an intermediate hexatic phase was confirmed even for a system with quenched
disorder. The hexatic phase was detected by analyzing the temporal correlation gg(t)
of the bond order parameter [51]. It decays exponentially with time in the fluid and
algebraically in the hexatic phase, while it reaches a constant value in the solid. The
data obtained by Monte Carlo computer simulation and experiment were mapped to
the parameter plane of temperature and pinning strength to obtain a phase diagram
(Fig. 9) in which the transition lines for the solid-hexatic and hexatic-fluid transition
are resolved. While the fluid-hexatic transition remains largely unaffected by disorder,
the hexatic-solid transition shifts towards lower temperatures for increasing disorder
resulting in a significantly broadened stability range of the hexatic phase.

Extracting an “effective” K 4, the scaling of the elasticity modulus was recovered
in the presence of disorder. Thereby, evidence was found that melting in the presence
of disorder is governed by the same defect-mediated process predicted and confirmed
for pure systems.

5 Conclusions

In conclusion, binary mixtures of superparamagnetic colloids at a pending air-water
interface are excellent model systems to explore freezing and glass formation in two-
dimensional systems, also at one-dimensional interfaces and with quenched disorder. It
is evident that in the future more complex problems can be solved including the effect
of linear shear flow [52] and the correct incorporation of hydrodynamic interactions
between the colloidal particles, which affect the non-equilibrium microstructure. The
latter was recently incorporated in a strictly two-dimensional system for nonequi-
librium band formation in oscillatory-driven mixtures [53]. It is important to note
that hydrodynamic interactions in the quasi-two-dimensional monolayer are different
from those in a bulk suspension [54], where during sedimentation, the displaced fluid
can flow back “above” the particle monolayer. Also, the long-time dynamics of fluid
demixing in nonadditive systems would be an interesting system, which has also been
explored in a complex plasma [55].

Tilting the plane may lead to brazil-nut effects in equilibrium. But a time-
dependent tilt can also result in transient laning of the two particle species. Lane
formation was first found in computer simulations [56,57] and more recent simulations
in two dimensions have shown that laning is a continuous transition [58]. Moreover,
a microscopic theory for laning was constructed based on the Smoluchowski equa-
tion [59].

Magnetic particles can be confined to cavities of various shapes [60,61]. It would
be interesting to study the freezing and glass transition in finite systems contained
in cavities [62,63]. This would provide an interesting link to complex plasmas where
particle clusters in harmonic confinement are studied intensely [1]. Another relevant
topic is the transport through channels [64].
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The particles can also be exposed to a periodic laser-optical field allowing for new
crystalline structures in equilibrium [65]. Finally, magnetic particles can be made
active [66]. Two-dimensional swimmers were realized in this way and recent theo-
retical predictions for the trajectory statistics in the bulk [67] were confirmed [68].
Furthermore, self-propelled particles in shear flow [69] and active crystals [70,71]
were studied. Recently, the theoretical predictions for circle swimmers were experi-
mentally verified by measuring the trajectories of colloidal particles self-propelled by
self-diffusiophoresis triggered by external light fields [72]. Moreover, kinetic clustering
of these self-propelled particles was found [73].

We thank P. Keim, G. Maret, F. Ebert, and S. Deutschléander for the fruitful collaboration.
This work was supported by the DFG within SFB TR6 (project C3).
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When exposed to strong shearing, the particles in a crystal will rearrange and ultimately, the crystal
will break by forming large nonaffine defects. Even for the initial stage of this process, only little
effort has been devoted to the understanding of the breaking process on the scale of the individual
particle size for thermalized mixed crystals. Here, we explore the shear-induced breaking for an
equimolar two-dimensional binary model crystal with a high interaction asymmetry between the
two different species such that the initial crystal has an intersecting square sublattice of the two
constituents. Using Brownian dynamics computer simulations, we show that the combination of
shear and thermal fluctuations leads to a characteristic hierarchical breaking scenario where initially,
the more strongly coupled particles are thermally distorted, paving the way for the weakly coupled
particles to escape from their cage. This in turn leads to mobile defects which may finally merge,
proliferating a cascade of defects, which triggers the final breakage of the crystal. This scenario
is in marked contrast to the breakage of one-component crystals close to melting. Moreover, we
explore the orientational dependence of the initial shear direction relative to the crystal orientation
and compare this to the usual melting scenario without shear. Our results are verifiable in real-space
experiments of superparamagnetic colloidal mixtures at a pending air-water interface in an external
magnetic field where the shear can be induced by an external laser field. © 2014 AIP Publishing

@ CrossMark
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I. INTRODUCTION

The stability of crystalline solids with respect to me-
chanical stress is a crucial property for the understanding
of effects such as microcrack formation and propagation,’
which have numerous applications ranging from aeronau-
tic engineering®> to the biomechanics of bone fracture.*>
Thereby, shear deformation constitutes an elementary source
of strain. Colloids pose an ideal model system for study-
ing distortions on the particle scale® and allow to ac-
cess the microscopic processes governing structural changes
via experiment’>’> and computer simulation.>*=? For one-
component systems, the plastic deformation of a strained
solid is well-explored and a connection between meso-
scopic deformation and atomistic rearrangements has been
established.’*3® Many real solids, however, are multicom-
ponent materials. Examples include metallic alloys**~’ and
crystalline organic networks.*®%° Therefore, it is important
to study the behavior of mixture crystals under strong shear.
Even for the initial stage of the shear-induced breaking pro-
cess of crystals, only little effort has been devoted so far
to understanding the underlying mechanism on the particle-
resolved scale for thermalized mixed crystals.

Here, we explore the shear-induced breaking of an
equimolar two-dimensional binary model crystal with a high
interaction asymmetry between the two different species such
that the initial crystal has an intersecting square sublattice
of the two constituents. Using Brownian dynamics computer
simulations, we show that the combination of shear and ther-
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mal fluctuations leads to a characteristic hierarchical break-
ing scenario. In the strained unit cell, aligned displacements
of the more strongly coupled particle species open up path-
ways for the motion of the weakly interacting particle species,
thus enabling the creation of vacancy/interstitial pairs. These
pathways correspond to a characteristic distortion of the en-
ergy landscape encountered by the weakly coupled species
and depend on the crystal orientation with respect to the di-
rection of shear. The microscopic mechanism inducing defect
formation under shear can be distinguished from the mech-
anism governing defect formation when the crystal is heated
instead of sheared. Our results imply that the location of spon-
taneously created defects triggers the mesoscopic deforma-
tion of the crystal, i.e., the formation of cracks, which is
in striking contrast to the behavior of one-component crys-
tals near melting.® Furthermore, the breakage of the ther-
mal binary crystal resembles the plastic deformation of amor-
phous materials,”®> where, due to the absence of distinct
topological defects, plastic deformation is mediated by local-
ized patterns of nonaffine motion®>%* and can be traced by
the inherent stress signature and spatial correlation of plas-
tic events®%7 or contact force distributions.’® Our results
are verifiable in real-space experiments of superparamagnetic
colloidal mixtures at a pending air-water interface in an exter-
nal magnetic field,*~’* where the shear can be induced by an
external laser field.

The paper is organized as follows: in Sec. II, we describe
the binary model crystal. The simulation technique is depicted
in Sec. III. Section IV contains a description of our diagnos-
tics and analysis of defects. In Sec. V, we discuss our re-
sults for two different shear directions relative to the crystal

© 2014 AIP Publishing LLC



224505-2 T. Horn and H. Léwen

orientation. We also compare our findings to the melting of
the crystal in the absence of shear and to the shear response
of a one-component crystal. Additionally, we discuss simi-
larities to the plastic deformation of amorphous media. We
conclude in Sec. VL

Il. MODEL

We study the shear deformation of a two-dimensional
colloidal crystal composed of two species of point-like parti-
cles denoted as species A and B. The particles interact via the
purely repulsive pair potential of parallel dipoles and are char-
acterized by different dipole moments m, and my, where the
dipolar ratio mp/m, is fixed to 0.1 as in previous studies.”’"*
Thus, particle species A denotes the more strongly coupled
particles. The crystal contains equal numbers of the two par-
ticle species, i.e., N = N, + Ny with a fixed relative compo-
sition X = N,/(N, + Ng) = 0.5. In the absence of shear, the
binary crystal lattice corresponds to the S(AB) pattern speci-
fied in Ref. 75, where each particle species forms a quadratic
lattice with spacing a = 1/,/n, with n, denoting the num-
ber density of A particles. The lattices of species A and B are
shifted relatively by 0.5a along each lattice direction, form-
ing a checkerboard structure, see Fig. 1. As elaborated in
Ref. 75, the S(AB) lattice is stable for a composition ratio
of X = 0.5 and a dipolar ratio of 0.1. This structure is very
persistent in two dimensional mixtures and was found for
granulates’® and ionic crystals, as well.””-”® In previous ex-
periments, two-dimensional suspensions were studied by con-
fining superparamagnetic colloidal particles to the air-water
interface of a hanging water droplet'%717%39 or to a planar
glass substrate.”-8!:32 Parallely aligned dipole moments are
induced by applying an external magnetic field H perpendic-
ular to the plane of confinement.

Conveniently, the pair interaction strength can be ex-
pressed by the dimensionless parameter

_ o(XaH)?

_ , 1
dwadk,T )

where 1, is the vacuum permeability, x, denotes the mag-
netic susceptibility of particle species A, kg7 is the thermal

a
A
az B
a;
y
X a=0° o = 45°

FIG. 1. Schematic representation of the S(AB) lattice with a checkerboard
structure of A and B particles. A(B) particles are shown as blue open (red
full) circles. The sublattices of both species have a lattice constant a while
the two lattices are shifted relatively by 0.5a along the lattice vectors a;,
a,. The direction of shear flow coincides with the x-axis. The angle between
a,; and the x-axis is denoted as «. We consider the cases @ = 0° (left) and
o = 45° (right).
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energy, and a is the lattice constant as specified above. By
altering the magnetic field, the colloidal suspension can be
effectively “heated” or “cooled” homogeneously.

Accordingly, the species-dependent pair interaction po-
tential is given in units of k;T by

U;ry=Tmm;(r)”> i=AB, @

where r denotes the particle separation in units of the lattice
constant a. Unless otherwise stated, the interaction strength is
set to I' = 44 such that crystalline order is maintained in the
absence of shear flow.®?

lll. BROWNIAN DYNAMICS SIMULATION

We perform Brownian dynamics (BD) computer simula-
tions of N = 2048 pointlike superparamagnetic particles. The
ratio of diffusion constants Dg/D, is fixed to 1.7 correspond-
ing to the physical diameter ratio of comparable experimental
samples.”' The Brownian time of A particles, T, = a?/D, is
employed as a unit of time, distances are given in units of
the lattice constant a. The particles are initially placed on an
S(AB) lattice as described in Sec. II, which covers the entire
simulation area L, x L, = 32a x 32a. Couette shear flow is
imposed in x-direction at a fixed shear rate y7z = 10~> and
Lees-Edwards boundary conditions are applied according to
the shear flow.3* The equation of motion governing the parti-
cle propagation is given by

D.
x(t +81) = x(1) + ﬁF()‘)(St + /2D, 8tR™,
B
+ v (y)ét,
D.
y(t + 8t) = y(t) + k—’TFWt + /2D, 8tRY,
B

i=A,B,

where F denotes the force resulting from the particle inter-
action and R®, RY are randomly distributed numbers with
mean 0 and standard deviation 1. The incremental timestep is
set to 8/t = 1073, Forces are truncated and shifted accord-
ing to

_ m. (L — 1
Ej<r>=[o3rmlm"(’4 B g

where the cutoff is set to r./a = 8. Simulations are performed
over a time range of t = 2007 ; equaling a total strain window
of y =yt =0.2, while configurations are recorded every
1072t g- The shear deformation process of the binary S(AB)
crystal is analyzed for two different crystal orientations with
respect to the direction of shear. In the first setup, the crystal is
aligned in such a way that the crystal axis a, collapses with the
direction of shear, @ = /(a,, e,) = 0°. In the second setup,
the crystal is rotated such that « = 45°, see Figure 1. Note that
in this setup, we chose N=2304and L, = L y= 24 - \/2a in
order to accommodate the rotated crystal. Each case is sam-
pled with 64 statistically independent simulation runs. In each
run, the initial pure, defect-free crystalline lattice is allowed
to relax for 107 ; before shear is applied. Note that due to the
focus on a defect-free initial state, we discard runs in which
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topological defects emerge during the initial relaxation phase.
This was the case in approximately 8% of the simulation runs.

IV. DIAGNOSTICS AND ANALYSIS OF DEFECTS

In order to track structural distortions over various stages
of the deformation process, we devise a cluster criterion,
by which topological distortions are detected based on the
Voronoi tesselation of a particular configuration. We consider
only clusters which are constituted exclusively by A or B par-
ticles, respectively. In a perfect S(AB) lattice, every A particle
has four A neighbors, each of which shares two B neighbors
with the original particle. Neighboring A particles form a clus-
ter if they share less than two neighbors of species B. In the
ideal S(AB) lattice, every B particle is enclosed by four neigh-
bors of the opposite species. Neighboring B particles form a
cluster if each of them has less than four A neighbors. To grant
the proper representation of interstitials, where two B particles
occupy the same lattice site, a B particle is also counted as part
of the cluster if it has four A neighbors but is within a criti-
cal distance to a B particle with less than four A neighbors.®
For both particle species, clusters are discarded if they contain
less than two particles. For clarity, the definition of A and B
clusters stated above is exemplified in Fig. 2. The clusters de-
fined by these criteria pose elementary topological distortions
of the S(AB) lattice. Specifically, the local appearance of A
and B clusters constitutes a primary plastic event which com-
promises the crystalline structure and may irreversibly distort
the crystal by evolving into a stable vacancy/interstitial pair,
see Fig. 3.

In order to quantify the lifespan of defects and lo-
cal distortions, a cluster C detected in configuration N
=@}, .. rﬁA, e, .., rgB) is considered identical to the cluster
C’ detected in the preceding configuration N — 1 if at least
one of the particles constituting C’ is conserved in C, no other
cluster in the current configuration N contains more particles
from C’ than C and more particles in C originate from C’ than
from any other previous cluster. Thus, we account for fluctu-

FIG. 2. Computer simulation snapshots exemplifying the definition of clus-
ters based on Voronoi tesselation. A(B) particles are represented by open (full)
circles. (Left) Neighboring A particles a, b, and ¢ each share one neighbor of
particle species B and thus form a cluster. Also, B particles d and e form a
cluster. Note that particles e has less than four neighbors of species A while
particle d has four A neighbors here but is considered part of the cluster due to
the subthreshold distance to cluster particle e. Voronoi cells of A(B) particles
are colored in shades of blue (red). (Right) Resulting cluster configuration,
where Voronoi cells of A(B) particles forming a cluster are colored in blue
(red).

J. Chem. Phys. 141, 224505 (2014)
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FIG. 3. Computer simulation snapshots illustrating the formation of a tem-
porary (a) and a persistent (b) cluster pair at the time £, due to thermal fluc-
tuations. From left to right, each row corresponds to a series of snapshots
recorded in intervals of 10727 - The two events shown were recorded in dif-
ferent simulation runs and are uncorrelated. The representation of particles
and clusters corresponds to Fig. 2. As a guide to the eye, bonds between ad-
jacent A particles are shown if the separation is less than 1.2a.

ations in the cluster size and composition, cluster recombina-
tions or splits while keeping track of both localized and mo-
bile structural deformations. Since the time interval between
two successively recorded configurations is 10727 ,, this value
is set as the lifespan of a cluster which spontaneously emerges
and vanishes again in the next configuration recorded.

Based on this cluster description, a pattern is established
to capture spontaneous attempts to create vacancy/interstitial
pairs. These events are detected if they bear the following sig-
nature: In configuration A, a cluster C, is detected compris-
ing three or more particles of species A. Additionally, a cluster
Cj is detected which is composed of at least two B particles.
In the last recorded configuration ' — 1, C, and Cj did not
exist and none of the particles constituting C, and Cg were
part of any cluster. Additionally, in configuration A/ — 1, at
least one of the B particles in C; was a Voronoi neighbor of at
least 3 of the A particles forming C,. This particle is denoted
the trigger particle.

The stress induced by the shear flow in x-direction is ex-

pressed via the stress tensor component axy:”f’

11
O =571 2 2 Ftipx “
oy i

where Fl; denotes the y-component of the dipolar force be-

tween particles i and j and Ty (xij) is the (lateral) distance be-
tween the particles in units of the lattice constant a.

V. RESULTS
A. Shear aligned with lattice direction

In the following, we depict the shear deformation process
observed for the case « = 0°, i.e., for the shear aligned with
the lattice direction.

In the initial stage of the deformation process, the crys-
tal responds elastically to the applied shear and particle
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motion is governed by a uniform affine motion corresponding
to the imposed solvent flow. Locally, we observe the forma-
tion of short-lived clusters with lifespans of the order 10727 5.
Particle-scale observations suggest that these events are in-
duced by thermal fluctuations of the A particle species: De-
viating from their co-sheared lattice site, single A particles
temporarily distort the unit cell symmetry, thus allowing the
enclosed B particle to extend its motion into the vacated area
and to form a cluster with the B particle of the neighboring
unit cell. Simultaneously, the remaining three A particles con-
stituting the original unit cell shift into an unstable triangular
arrangement, and a cluster is formed. Starting from a local
configuration without any noticeable distortion, these struc-
tural disruptions emerge and disappear within a few 10727 ,.
After this time, the original shape of the unit cell is restored.
An exemplary sequence of simulation snapshots illustrating
a temporary cluster creation due to thermal fluctuations is
shown in Fig. 3(a).

The second stage of the deformation process is initiated
by the creation of a stable pair of clusters with a lifespan of the
order 7. Qualitatively, the particle motion leading to a per-
sistent defect corresponds to the same pattern depicted above.
In addition to the formation of a triangular cluster of A par-
ticles, the enclosed B particle is pushed entirely out of the
unit cell, enabling the formation of a vacancy/interstitial pair,
i.e., a cluster of four A particles which assume a quadratic
arrangement around a vacated B lattice site and a cluster in-
cluding two B particles which occupy the same lattice site
(Fig. 3(b)). The B particle cluster created in this process
quickly diffuses through the crystal lattice, as the particles
constituting the cluster are frequently interchanged. This pro-
cess is mediated by B particles pushing and replacing each
other at the lattice sites touched by the travelling cluster. The
diffusive motion of the interstitial cluster does not exhibit a
preferential direction and involves frequent reversals of the
moving direction, see Fig. 4. Additionally, the travelling in-
terstitial triggers the spontaneous creation of further clusters
at the lattice sites it touches. In contrast, location and particle

FIG. 4. Trajectory of a single B particle cluster from creation at ¢t = ¢ (red
arrow) to annihilation at # = #; (black arrow). The cluster emerges in the sec-
ond stage of the deformation process, i.e., after a stable vacancy/interstitial
pair was formed. The colorcode corresponds to the lifetime of the cluster. Cir-
cles (triangles) indicate the location of subsequent A(B) cluster appearances
within the lifetime of the travelling cluster.

J. Chem. Phys. 141, 224505 (2014)

constellation of the A particle cluster formed in this event are
comparably stable.

The third stage of the deformation process starts with the
formation of a larger cluster of A particles. Being unstable
with respect to shear deformation, an elongated cluster of A
particles poses a preferential site for a break as it allows for a
local rearrangement of the crystal lattice on either side of the
cluster. Once such an elongated cluster emerges, it quickly
grows into a band spanning the entire system, which enables
inhomogeneous, nonaffine particle displacements on the or-
der of the lattice constant. This pattern of motion resembles a
shear band®"-*=°! but may also exhibit vortical properties as
reported in Refs. 52, 58, and 59. Thus, the crystal is globally
rearranged and a less strained state is restored. Intriguingly,
particles in the proximity of the break are rearranged dur-
ing the cluster formation until eventually, the original S(AB)
structure can be recovered for most particles, although typi-
cally, some topological defects remain. The deformation pro-
cess depicted here is illustrated by computer simulation snap-
shots and a map of the cumulative nonaffine displacement in
x-direction in Fig. 5. The spontaneous emergence of short-
lived clusters can be observed at several positions as indi-
cated by black crosses in Fig. 5 (right). Stable clusters emerge
at /Ty ~ 50 (white symbols), leading to structural defects
which persist over many 7. The lifespan of stable clusters
can be traced by straight lines in Fig. 5 (right). At #/; ~ 100,
we observe a strongly heterogeneous behavior of the cumula-
tive displacement in x-direction with respect to the y-position
of particles: Above a certain y-position, particles undergo a
pronounced nonaffine displacement in the direction of shear
(bright area in Fig. 5 [right]). The nonaffine cumulative x-
displacement of particles below this y-position is oppositely
directed (dark area in Fig. 5 [right]). This pattern of nonaffine
motion reflects the breakage of the crystal and is accompanied
by the creation and annihilation of large numbers of clusters
as the crystal rearranges. The location of the break coincides
with the location of the first set of stable defects. Note that
the orientation of the break does not necessarily collapse with
the direction of shear. We observe a vertical breakage of the
crystal with a similar probability.

Since the emergence of a stable vacancy/interstitial pair
in the course of a thermal clustering event crucially influences
the macroscopic breakage of the crystal, we thoroughly assess
the properties of these events. In order to do so, we evaluate
all events up to and including the first event which induces a
cluster with a lifetime exceeding 0.57 5, which corresponds to
a total number of 1002 recorded events. Thus, we focus on
the onset of deformation in a strained crystalline state with no
embedded topological defects, i.e., the first stage of the defor-
mation process. We observe that within statistical accuracy,
events are homogeneously distributed over the entire system
area and no preferential location can be distinguished.

As the absolute strain y grows, the probability of clus-
tering events increases, see Fig. 6. We derive a measure for
the crystal stability with respect to shear by monitoring the
integrated probability for the creation of a long-lived cluster
up to a given time. This magnitude is almost unity for times
larger than #/t 5 ~ 80, corresponding to an absolute strain of
y & 0.08. This reflects the fact that in all of our simulation
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FIG. 5. (Left) Simulation snapshots illustrating the deformation process for the case &« = 0°. All snapshots originate from the same simulation run. Repre-
sentation of particles and clusters corresponds to Fig. 2. As a guide to the eye, three individual A particles are shown in red, yellow, and cyan, respectively.
(a) Creation of stable cluster pair, (b) extension of an A cluster in x-direction, (c) local rearrangement induced by interplay of A and B clusters, (d) formation
of an extended, disordered cluster strip, and (e) crystal rearrangement on either side of the strip. (f) and (g) Restoration of S(AB) structure after nonaffine
displacement on either side of strip (note shift of tagged particles). (Right) Map of cumulative displacement in x-direction in the co-sheared frame. The data
were averaged over the initial x-coordinate. Colors are specified by the bar on the right. Black crosses indicate time and y-coordinate of short-lived clustering
events. The appearance of A(B) clusters with a lifetime >0.57  is indicated with white full circles (triangles), straight cyan (pink) lines connect sites of creation
and annihilation. A yellow line indicates the lifespan of the cluster traced in Fig. 4. Times corresponding to snapshots (a)—(g) in left panel are indicated on the

time axis.

runs, a stable cluster has emerged up to this time, initiating
the second stage of the crystal deformation.

On a microscopic level, the collective particle motion
leading to clustering exhibits a vast variety of patterns. In or-
der to assess the common microscopic mechanism governing
these events, we monitor the average distribution of particles
at the site of an event at three different times: 10~z be-
fore the event, 10727 g before the event, and at the time of
the event. The resulting density distributions of A and B par-
ticles are shown in Fig. 7. It is apparent from these distribu-
tions that events are permitted by a specific distortion of the
unit cell, which originates from a superposition of two inde-
pendent deformations. First, the unit cell is strained due to a
shear deformation along the x-direction, which collapses with
the lattice vector a;. Second, the unit cell is distorted by a
further shear deformation of the A particles along the second
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FIG. 6. Relative probability p(7) for an event to occur at time ¢ for « = 0°
(blue solid line) and « = 45° (yellow dashed line). The cumulative probability
P(¢) for the appearance of stable defect up to the time ¢ is included for o = 0°
(light blue dashed line) and @ = 45° (red dashed line). For comparison, the
absolute strain is given at the upper horizontal axis. The evaluation is based
on a total number of 1002 (706) recorded events for « = 0° (45°).

lattice direction, a,. This corresponds to a collective sliding
motion of the A particles on one side of the unit cell along
the second crystal axis, while the remaining A particles col-
lectively move into the opposite direction.

Following this observation, we derive the average A
particle positions from the density distributions depicted in
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FIG.7. a = 0°. (a)~(c) Averaged densities (0,), (0p) of A and B particles at
the site of an event at £, for times (a) t — #, = —0.17, (b) t — 1, = —0.017,
(c) t — 1, = 0. Colors correspond to {p,(x, y)) — {pp(x, y)) and are specified
by the bar on the right. Diamonds indicate the average position of A particles.
(d)—(f) Potential energy of a B particle in the vicinity of A-particles located at
the average positions in situations (a)—(c). Colors are specified by the bar at
the bottom. Potential energy is given with respect to the mean position of the
B particle. (g)—(i) Averaged densities preceding a cluster creation when the
crystal is heated to I' = 37 and no shear flow is imposed (y 75 = 0).
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FIG. 8. Potential energy of the trigger particle with respect to the closest
energy minimum for an event at ¢ = 7, (highlighted region) for « = 0°. The
blue solid curve corresponds to the average over all temporary events while
the red dashed curve represents the average over all persistent events.

Fig. 7 (top) and map the potential energy landscape encoun-
tered by a single B particle in the vicinity of four A particles
at the specified positions, see Fig. 7 (middle). In the reference
state at 107, before the event, the average unit cell is only
slightly sheared. There is a nearly quadratic energy well in
the center of the unit cell to which the B particle is confined.
Due to the subsequent deformation of the unit cell, the size of
this potential energy well is reduced as it assumes a thin, tilted
shape. Consequently, the B particle is confined to a diagonally
elongated region at 10~27 , before the event. In the following
timestep, only a narrow potential energy well remains inside
the unit cell due to the further distortion of the unit cell. Af-
ter the previous diagonal deflection of the B particle, it is now
pushed away from the center as the local energy minimum is
displaced along four possible pathways.

From this shifted position, the B particle may escape the
unit cell due to thermal motion. To verify the thermal activa-
tion of this event, we calculate the potential energy of the B
particle with respect to the nearest potential energy minimum.
Indeed, the occurrence of an event is accompanied by a dis-
tinct peak of the potential energy on the order of ~2k,T. Fur-
thermore, we observe that the creation of a persistent cluster
is related to a significantly larger peak in the potential energy
of the trigger particle than the creation of a temporary cluster,
see Fig. 8.

Thus, the investigation of particle density profiles at the
location of events implies an intuitive picture for the forma-
tion of clusters from the strained crystalline state, which is
permitted by two independent deformations of the unit cell:
The global shear deformation and an aligned sliding motion
of A particles along the lattice direction a,, which does not
collapse with the direction of shear. In order to verify this ex-
planation, we perform a set of reference simulations in which
a single B particle is placed in a distorted unit cell of four A
particles. The distortion of the unit cell is expressed by the
two independent parameters y and A: The parameter y cor-
responds to the unit cell strain in the direction of shear, while
A quantifies the aligned deflection of the A particles along

J. Chem. Phys. 141, 224505 (2014)
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FIG. 9. Reference simulation for « = 0°, where a B particle is initially
trapped in a distorted unit cell formed by four A particles, see text. The distor-
tion is specified by y (shear deformation) and A (deflection along the lattice
vector a,, highlighted in dark red in the central column). Resulting unit cells
are shown and fields are colorcoded according to the escape probability of a B
particle within a runtime of 1 7 (left) or 1000 7 ; (right), based on 1000 sam-
ples per parameter combination. Escape probabilities below 0.1% are shown
in light blue. The parameter combination matching the average particle posi-
tions in Fig. 7(c) is framed in red.

the lattice direction a,, see Fig. 9. For each parameter com-
bination, the B particle trajectory is tracked for 175 while the
A particles remain pinned to their distorted lattice positions.
Each parameter combination is sampled with 1000 runs. Af-
terwards, we determine the ratio of runs in which the B parti-
cle escaped the unit cell. Our results are shown in Fig. 9. We
find that, starting from a strained state, an additional deflec-
tion of the A particles indeed leads to an increased probability
for the B particle to escape the unit cell. The parameter com-
bination of ¥ and A which best matches the average particle
positions derived from the A particle density distribution is
highlighted in Fig. 9. In fact, this point in the y — A plane
coincides with the crossover from zero to a finite value of the
escape probability of the B particle. This crossover is persis-
tent if we extend the runtime of the simulation to 10007 5, as
shown in Fig. 9.

B. Shear unaligned with lattice direction

In order to assess the dependence of the shear response
on the direction of shear flow with respect to the crystal ori-
entation, we repeat the analysis for the case o = 45°.

In comparison to o = 0°, we notice a more pronounced
increase of the event probability with increasing strain. Like-
wise, the integrated probability for the creation of a stable
cluster up to a given time reaches unity at a time #/75 ~ 70
(y = 0.07), see Fig. 6. This points to a reduced stability of the
crystal with respect to shear deformation when the unit cell is
rotated with respect to the direction of shear.

Furthermore, we analyze the particle interplay leading to
an event for @ = 45°. Our results are shown in Fig. 10. As op-
posed to the previous case, the averaged density distributions
do not point to a single deformation mode but rather depict
the superposition of two distinct deformation modes, which
correspond to sliding motions of the A particles along either
lattice vector, a; or a,. Since neither of the two lattice di-
rections collapses with the direction of shear, sliding motions
along both directions distort the unit cell in an equivalent way.
To support this interpretation, shifted unit cells are included
in Fig. 10, which are deformed according to either of the two
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FIG. 10. @ = 45°. (a)-(c) Averaged local densities (p,), (pg) of A and B
particles at the site of an event at ¢, for times (a) t — #, = —0.17, (b) ¢
— 1y = —0.017y, (¢) 1 — 1, = 0. Colors correspond to {p,(x, y)) — (pg(x,
y)) and are specified by the bar on the right. Diamonds indicate the average
position of A particles. For clarity, two distinct deformations of the unit cell
are included in panel (b). (d) Potential energy of a B particle in the vicinity of
A-particles located at the average positions in situation (a). Panels (e) and (f)
correspond to the unit cell outlines shown in (b). Colors are specified by the
bar at the bottom. Potential energy is given with respect to the mean position
of the B particle.

modes. The potential energy landscape exhibits two pathways
for the B particle for each deformation mode. The superposi-
tion of these pathways can be recovered in the average den-
sity distribution of B particles, which exhibits a cross-shaped
maximum at 10~27 , before the event.

As with the case « = 0°, we perform additional simu-
lations to sample the escape probability of a single B parti-
cle enclosed in a distorted unit cell, where the distortion is
expressed by the parameters y and A, see Fig. 11. The pa-
rameter combinations corresponding to the distorted unit cells
shown in Fig. 10 are highlighted in the diagram and are close
to the crossover to a finite escape probability.

C. Comparison with different deformation scenarios

We compare the pattern of defect formation observed in
the sheared binary crystal to the creation of defects when the

— 100%
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0.1
1 50%

h 0.1%

FIG. 11. Escape probability of a B particle from a distorted unit cell for o
= 45°. The distortion is specified by y (shear deformation) and A (deflec-
tion along the lattice vectors a, [left] or a, [right], highlighted in dark red in
the central column). Resulting unit cells are shown and fields are colorcoded
according to the escape probability of a B particle within a runtime of 17,
based on 1000 samples per parameter combination. Escape probabilities be-
low 0.1% are shown in light blue. The parameter combinations matching the
cells shown in Fig. 7(b) are framed.

-0.1
-0.2
-0.3

J. Chem. Phys. 141, 224505 (2014)

0 50 100 150 200
titg

FIG. 12. Typical deformation process for the one-component crystal under
shear. Colorcode corresponds to cumulative displacement in x-direction in
the co-sheared frame. White circles indicate clusters with a lifetime above
0.1t 5, straight cyan lines connect sites of creation and annihilation. Short-
lived clusters with a lifetime below 0.1t are indicated by red dots.

crystal is heated to I' = 37 and no shear flow is imposed
(y = 0). Our results are included in Fig. 7 and indicate a qual-
itatively different mechanism with respect to the individual
particle motion. Here, the crystalline structure cannot be at-
tributed to an aligned deflection of the A-particles but rather
stems from a diffusion of the particles away from the unit cell
center.

Furthermore, we qualitatively compare the deformation
process of the sheared binary crystal to the shear deformation
of a one-component crystal near melting. The crystal is con-
stituted by N = 2304 dipolar particles of species A which are
arranged in a triangular lattice spanning the simulation area
L. x L, = 48a x 41.57a. The inverse temperature is set to
I' = 20 and the shear rate is fixed at y = 10~ as before.
For the one-component crystal, the structural rearrangement
needed to release the strain is enabled by the spontaneous
creation of (isolated) dislocation pairs along the tearing di-
rection. As opposed to the binary crystal, these topological
defects can be spontaneously created to accommodate rear-
rangements of the adjacent particles. Thus, the onset of plas-
ticity is not determined by the presence of persistent topolog-
ical defects, as is the case with the binary crystal. Similarly,
the defects are quickly annihilated once the crystal rearranged
into a less strained configuration. Thus, the defects observed
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FIG. 13. Averaged stress signature of events recorded for ¢ = 0° and
o = 45°. The colorcode corresponds to the stress increase with respect to
the previous configuration for particles at a given distance to the trigger par-
ticle at x,,,y,. The fourfold pattern qualitatively corresponds to recent find-
ings for polydisperse hard spheres under shear®® and flowing emulsions near
jamming.®”
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FIG. 14. Spatial correlation of A cluster appearances for « = 0° (left) and
o = 45° (right). The colorcode corresponds to the probability for a cluster
to emerge at a particular relative position x — x,, y — y, with respect to
a previous cluster creation at x;,, y,. Colors are specified by the bar at the
bottom.

in the sheared one-component crystal are mostly short-lived
with a lifetime well below 0.1t and the deformation of the
crystal does not entail an extended amorphous region. We ob-
serve that defects appear more frequently than in the strained
binary crystal. For a qualitative comparison, we devise a sim-
plified cluster criterion for the one-component crystal, where
neighboring particles form a cluster if they each have either
five or seven nearest neighbors, thus distorting the sixfold
symmetry of the ideal lattice. Thereby, we cover isolated and
bound dislocations as well as entangled chains. Figure 12 de-
picts the creation and annihilation of clusters.

Recent studies on the plastic deformation of amorphous
media have explicitly demonstrated a characteristic stress sig-
nature and spatial correlation of plastic events,~%7-%2 corre-
sponding to earlier theoretical predictions.”® Encouraged by
these findings, we assess the local stress signature of clus-
ter creation events, which play the role of plastic events in
the breaking of the S(AB) crystal. Intriguingly, our results are
in qualitative agreement with the stress signature observed
in an amorphous system of polydisperse hard spheres un-
der shear®® and in flowing emulsions near jamming,%’ see
Fig. 13. Additionally, we probe the spatial correlation of clus-
ter appearances and recover a non-vanishing spatial correla-
tion along two distinct directions, which are aligned parallel
and perpendicular to the direction of shear flow, respectively,
see Fig. 14. This finding is in agreement with the observation
that the S(AB) crystal may develop cracks in the lateral or ver-
tical direction, as discussed above. A similar spatial correla-
tion of defect creation sites was not observed for the reference
case of a sheared one-component crystal.

VL. CONCLUSIONS

We have analyzed the shear-induced breaking of a ther-
mal binary model crystal on the particle-scale level using
Brownian dynamics computer simulations. Thus, we have es-
tablished that the macroscopic breakage of the crystal orig-
inates in the spontaneous creation of defects in the initially
defect-free crystal. The defects are visualized by a cluster cri-
terion. Our observations suggest that the emergence of defects

J. Chem. Phys. 141, 224505 (2014)

is induced by a characteristic hierarchical interplay of the two
particle species. In the strained crystal, aligned fluctuations
of the more strongly interacting A particles along the strained
lattice directions distort the potential energy landscape and
induce plastic events, where the B particles are pushed out
of the unit cell. The likelihood of these events is increased
if the shear direction is not aligned with the crystal orienta-
tion. Further plastic events are triggered by vacancy diffu-
sion until eventually, small clusters merge into an extended
disordered region and initiate the macroscopic breakage of
the crystal, during which pronounced nonaffine displacements
are observed. This breaking scenario is in distinct contrast to
the shear response of a one-component crystal near melting,
where stress is released via the spontaneous creation and an-
nihilation of dislocation pairs without spatially extended or
persistent regions of structural disorder. Furthermore, on a mi-
croscopic level, the breaking of the binary crystal under shear
can be clearly distinguished from the melting of the crystal in
the absence of shear.

Our observations suggest that various properties which
are intrinsic to the plasticity of amorphous materials can be
found in the breaking of a binary crystal, where the escape
of B particles from their cages induces a local loss of struc-
ture and allows for nonaffine rearrangements in the manner of
an amorphous material. These properties include a fourfold
stress signature of plastic events and a distinct, anisotropic
spatial correlation of plastic events with respect to the shear
direction. Thus, our results shed new light on the study of
solid plasticity, where crystalline and amorphous solids pose
qualitatively different scenarios. Our results imply that in the
case of a multicomponent crystal — even in the simple case
of a binary crystal — this qualitative difference does not fully
apply due to a local amorphization of the crystal in the break-
ing zone.

Our predictions can be verified in binary suspensions of
superparamagnetic colloidal particles at a pending air-water
interface in an external magnetic field.'%"8%-% The shear can
be imposed by a laser beam. For the future, one should explore
more situations of shear-induced breaking. In particular, the
case of small damping will be interesting as this is relevant
for the melting of a dusty plasma crystal under shear (have a
look at our book for references). Moreover, more interaction
asymmetries, composition ratios and model potentials need to
be explored. Last, the case of three spatial dimensions would
be interesting where a wealth of binary colloidal crystals are
possible.”
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