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Published by permission of the

Faculty of Mathematics and Natural Sciences at

Heinrich Heine University Düsseldorf

Supervisior: Jun. Prof. Dr. Gunnar Schröder
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De novo protein backbone modeling with low-resolution density maps

by Zhe Wang

The field of structural biology and in particular the method of 3-D electron cry-

omicroscopy (cryoEM) is developing quickly. More and more macromolecules or

complexes of macromolecules are investigated and their structure determined by

cryoEM. In recent years, a large number of these large structures were determined

to subnanometer resolutions (3.5-10 Å). Since the number of subnanometer reso-

lution density maps obtained by cryo-EM is steadily increasing, methods for the

interpretation of these data are highly demanded.

To address this, we have developed a method that can build up the protein back-

bone structure from an intermediate resolution density map without any prior

information from crystal structures or homology models. The method is based

on a combinatorial optimization algorithm, the Lin-Kernighan heuristic, which is

used for solving the Euclidean traveling salesman problem. Meanwhile, the search

of models with the Lin-Kernighan heuristic is biased with additional restraints

including secondary structure, statistical potential restraints and density based

restraints. With this we generate ensembles of backbone traces, from which most

likely traces, which fit best into the density map, are extracted and can be used

to build up full atomic models.

In this work, the method was first extensively tested with an exemplified structure

of the protein calmodulin. Later on, six structures were selected from three classes

defined by the CATH classification for further tests.

The success of the method depends on the resolution of the density map. For the

all-α-helix class, a resolution of 8 Å is sufficient to determine the correct backbone

topology. For the all-β-sheet class, a resolution of 4.5 Å is necessary. For the

mixed α − β class, a resolution of 6 Å was sufficient for our test cases to obtain

the correct protein topology. The final backbone traces were then obtained after

structure refinement with secondary structure distance restraints using the real-

space refinement program DireX.



De-novo Proteinstrukturmodellierung mit Hilfe von Dichtekarten

by Zhe Wang

In der Strukturbiologie werden im Laufe der Zeit immer mehr Makromoleküle

und Proteinkomplexe untersucht und deren Strukturen bestimmt. Zur Ermit-

tlung der Strukturen sehr grosser Komplexe konnte bereits in vielen Fällen die

3D Cryo-Elektronenmikroskopie (Cryo-EM) erfolgreich eingesetzt werden. In den

letzten Jahren konnten viele große Strukturen mit Auflösungen im Subnanometer-

Bereich (3.5-10 Å) bestimmt werden. Da die Anzahl an Cryo-EM-Dichtekarten mit

Subnanometer-Auflösungen stetig wächst, sind Methoden für deren Interpretation

stark gefragt.

Wir haben eine Methode entwickelt, die, mit Hilfe einer niedrig-aufgelösten Dichte-

karte, die Struktur des Proteinrückgrates ohne die Verwendung von Kristallstruk-

turen oder Homologiemodellen aufbauen kann. Die Methode basiert auf der Lin-

Kernighan Heuristik, einem kombinatorischen Optimierungsalgorithmus welcher

verwendet wird, um das Problem des Handlungsreisenden (traveling salesman

problem) zu lösen. Die Suche mit der Lin-Kernighan-Heuristik wird zusätzlich

durch Terme basierend auf den Sekundärstrukturelementen, statistischen Poten-

tialen und der Dichte beeinflusst. Mit diesem Algorithmus wird ein Ensemble von

Proteinrückgraten erstellt. Das Rückgrat, welches am besten in die Dichtekarte

passt, kann anschließend als Grundlage zur Generierung von atomaren Modellen

verwendet werden.

Unsere Methode wurde zunächst an einer beispielhaften Struktur des Proteins

Calmodulin getestet. Anschließend wurde unser Test-Datensatz durch sechs Struk-

turen aus den drei verschiedenen CATH Klassen erweitert. Für jede der Strukturen

wurde eine künstliche Dichtekarte generiert. Der Erfolg der Methode ist abhängig

von der Auflösung der Dichte. Für α-helikale Strukturen reicht eine Auflösung

von 8 Å, für β-Faltblatt Strukturen ist eine Auflösung von 4.5 Å notwendig, und

für Strukturen mit gemischten Sekundärstrukturelementen liefert unsere Meth-

ode auch bei einer Auflösung von 6 Å die korrekte Topologie. Die endgültigen

Proteinrückgrate werden anschließend mit dem Programm DireX bezüglich ihrer

Sekundärstrukturgeometrie verfeinert.
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CHAPTER 1

Introduction

1.1 Structural Biology of Proteins

Structural biology is a branch of biology that focuses on the structure determi-

nation of macromolecules. The aim of structural biology is to get an exhaustive

understanding of the three-dimensional information of the macromolecules so as to

extend this knowledge to understand the functions of different macromolecules and

the mechanism of their reactions in the cell. These objects that structural biologist

are interested in range from proteins and molecular complexes to organelles.

To determine the structures of those different objects, a variety of techniques are

being used for different length scales. These methods generally measure a large

number of identical molecules simultaneously. Researchers try to use them to

study the native states of these objects and investigate their quantity, location

and dynamical information.

Among all the objects that are associated with structural biology, the protein is

one of the most attractive and fundamental objects for structural biologists. As

proteins are the most essential fragments that are involved in the processes that

happen within the cells. Some have catalytic ability during the metabolic processes

and some are in charge of maintaining the structural or mechanical function, at the

1
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same time cell signaling, immune responses are all closely connected with protein

functions.

Proteins contain a certain number of amino acids which are encoded in genes.

The genes in DNA are firstly transcribed into messenger RNA (mRNA) and the

mRNA is loaded onto the ribosome. Every three nucleotides on the mRNA will

pair with the anticodon on transfer RNA (tRNA) which carry one amino acid

each. A peptide bond is formed between every two amino acid by losing a water

molecule. This synthesis process from mRNA to protein in the ribosome is called

translation. At the time the protein is synthesised, it also folds into certain three

dimensional structure and the protein will be transported to its designated location

to function.

1.1.1 Protein Structure

The protein is the fundamental unit of all the biological process happened in the

cell during the metabolic process. Understanding the protein structure is the key

aspect to know the molecular mechanisms as the three dimensional information for

the protein determines how they will interact with other molecules. The protein

structure can be classified into four levels.

• Primary structure:

The primary structure of protein refers to the polypeptide chain of amino

acids. It can be seen as the one dimensional information of the protein.

Expect giving the type of amino acid and the number of amino acid, it also

shows two terminals of the chain: carboxyl terminus (C-terminus) and the

amino terminus (N-terminus).

As the amino acid form the protein sequence, they also build up the basic

structural unit of the protein, i.e. the bond distances and the dihedral angles

make up the shape of the protein as shown in Fig. 1.1 There are three basic

dihedral angles called φ that control the distance between C′-C′, ψ which

control the N-N distance and the ω controls the Cα-Cα distance.
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Figure 1.1: Backbone and dihedral angles of protein.

• Secondary structure: Protein can form some regular patterns locally

which are called secondary structure. They are stabilized by hydrogen bonds

between the amino and carbonyl groups and also the neighbouring unit. In

general, there are two main types of secondary structures: α-helix and β-

sheets. The α-helix is the most common helix shown as A in Fig. 1.2 The

backbone in the helix follows a helical path. For each turn in the helix,

there are 3.6 amino acids. Another common secondary structure is the β-

sheet shown as B in Fig. 1.2 which is occur less often than the α-helix. Its

amino acids consecutively connected and extend nearly straight to form a

β-sheet. The inter and outer hydrogen bonds of the β-sheet form the β-sheet

structure.

• Tertiary structure:

This level of the structure always refers to the three dimensional structure

of protein. The interaction of side chains within the protein contribute to

the force that form the tertiary structure of the protein. It defines the three

dimensional coordinate information. The tertiary structure information re-

veals out most of the protein functionality.

• Quaternary structure:

The quaternary structure defines how several polypeptide chains form a

multi-subunit three dimensional complex. This multiple subunits proteins
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Figure 1.2: Secondary structure element.

have multiple functions like enzymes different parts may have different func-

tions.
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1.2 Protein Structure Determination

Nowadays, the number of sequences have been stored in the UniProt [1] is about

86 Mio, however, the number of structures that have been determined and saved

in the Protein Data Bank [2] is 102158. The huge gap between these two numbers

attracted a lot of attentions from researchers who dedicate their work to structure

determination.

The history of protein structure research is accompanied by important discoveries,

a new era of rapid progress began when the very first high resolution protein struc-

tures was determined: first the oxygen storage protein myoglobin (1958 by John

Kendrew) and then the more complicated oxygen-transporting protein hemoglobin

(1959 by Max Perutz). In contrast to DNA structures, the first determined protein

structures show great irregularities; two structures having various different shapes

and different properties. These enormous variations between protein structures

show how the molecules can play many different roles in biology and also guided

researchers to exploring new directions in the following decades.

In the 1960s, structure determination by X-ray diffraction was used to develop

crystallographic electron microscopy that allowed scientists to solve more complex

structures [3].

The Protein Data Bank (PDB), which acts as a global database to store 3-D pro-

tein structures, has been set up in 1971 as a consequence of the quickly growing

number of determined protein structures. Around this time, nuclear magnetic res-

onance (NMR) spectroscopy was developed as an alternative method to determine

protein structures [4, 5]. It uses proteins in solution rather than in a crystallized

form and is therefore able to capture the structure in a closer to native state than

in crystallography.

Furthermore, the development of clone gene technologies made the production of

large amounts of proteins possible further speeding up the growth of structural
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information in the PDB. In the beginning of 1980s, researchers started using elec-

tron cryomicroscopy (CryoEM or cryo-electron microscopy) to determine protein

structures [3, 6, 7]. The 1990s welcomed the structural genomics era, during which

thousands of structures were rapidly determined with high-throughput and syn-

chrotron X-ray sources.

Besides experimental structure determination, computational methods such as ab

initio methods like global energy optimization with a proper energy function, ho-

mology modeling and fold recognition are all widely used today. However, such

methods still are not yet reliable enough and therefore far from replacing ex-

perimental structure determination and they are often used together with the

experimental method to complement each other.

1.2.1 X-ray Crystallography

By far, X-ray crystallography (XRC) is the most dominant technique for solving

protein structures. As it shows in the PDB, more than 90,000 structures are

determined by XRC which is 88.6% of total structures stored in the database.

To pursue the atomic resolution of protein structure, X-ray crystallography is

always recognized as the most efficient method. In XRC, the purified and crys-

tallized protein is exposed to the intense X-ray beam. The crystallized protein

diffracts the X-ray beam into different directions which is captured by the screen

as several characteristic pattern of spots. After collecting a large amount of pat-

terns by rotating the crystal in the beam, a Fourier-transform method is applied

over the patterns to complete the real-space electron density map.

Normally, the recorded pattern only contains the intensity information of the

diffracted radiation without any phase information. This is referred to as ”Phase-

problem” in crystallography. To complement this problem, some experiments

(e.g., like isomorphous replacement [8] or anomalous dispersion [9]) can be used

to determine the missing phase information. In some cases where some similar
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crystal structures have been solved previously, phase information can be derived

by molecular replacement [10].

Although XRC is a well matured technique to determine protein structures, there

are still limitations. As the final quality of the result highly depends on the condi-

tion of the crystals, the crystals is the pivot for the final result. The crystallization

process depends on lots of conditions like temperature, pH and buffer concentra-

tions which may result in proteins in non-native states.

1.2.2 Electron Microscopy

Electron microscopy (EM) is the third mainstream technique for protein structure

determination. There are 0.8% in the PDB come from this category, however it

recently became a more attractive and powerful tool in structural biology area as

it yields structures with increasing resolution for macromolecules.

The electron beam as a illumination source will go through the biological sample

to obtain images of the sample. Different views of the images are taken to achieve

the 3D density map.

In contrast to XRC and NMR that can produce atomic level data, EM data does

not allow yet to reach the atomic information.
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1.3 Cryo Electron Microscopy

Cryo electron microscopy (CryoEM) is a type of electron microscopy in which a

biological sample can be easily frozen by either liquid nitrogen or ethane to study

their near-native state. CryoEM is becoming more and more popular in structural

biology not only for its flexibility to stain or fix the sample but also for its big span

in resolution and size. That covers the range provided by XRC and NMR. There-

fore CryoEM is not only a complementary tool to study macromolecules which

have difficulty in crystallizing or beyond the size limitation of NMR spectroscopy.

In the beginning, the homogeneous sample which contained in the buffer is spread

over the EM grid that is covered by a holy carbon. This carbon film is quickly

frozen by plunging into the liquid ethane which suddenly form a layer of vitreous

ice that is embedding the particles. These particles were assumed to be randomly

distributed of orientations. This step prevents the water from crystallizing, that

may cause damage to the sample. The EM grid is then inserted into the microscope

and imaged with electrons at liquid nitrogen temperature. All 2D images are taken

in the low dose electron conditions which is 20e− − 25e−/Å
2
, so that without

causing significant damage to the sample, the signal-to-noise ratio (SNR) is kept

in a low state. The 2D images are recorded on film or digital camera such as a

charged-coupled device (CCD) or CMOS detector. By recording the 2D images,

CryoEM does not have to face the phase problem as XRC.

1.3.1 Single Particle Analysis

The 2D images record a large collection of projections of the same molecule cor-

responding to different projection orientations. In order to reconstruct a 3D

molecule, it is necessary to have an informative data set which typically ranges

from 104 to 105 projections which are selected from several micrographs. They are

centered and normalized.



Chapter 1. Introduction 9

Once particles are picked, they need to be aligned and classified for the recon-

struction. The alignment is done via placing the particle into similar orientation.

By doing this, the relationship between particles, i.e. the orientation of particles

can be used later when making a three dimensional model. Then similar particles

are grouped that also separate images that are different. The aligned particles

are averaged to achieve higher SNR. After the alignment, the angular information

from it can be used for the backprojection [11] procedure that construct 2D images

into 3D shape.

The alignment, backprojection and refinement are combined and implemented

iteratively for a certain number of rounds until the 3D reconstruction converges

to a unimprovable state. The 3D reconstruction is then used for further model

building. The interpretation of the density map in this step is crucial for biological

information to be concluded.

All the density maps that obtained from CryoEM experiments are stored in Elec-

tron Microscopy Data Bank (EMDB) [12].

1.3.2 Limitations of CryoEM

CryoEM has developed dramatically in the last decades especially as a tremendous

upswing technology progress in microscope, imaging and computing. The quality

of the structure determined by CryoEM is increasing fast. Though, limitations

still exist.

The main limitation is that the sample can not be exposed under the beam for long

time which may cause sample damage. Because of this, the resolution is limited in

the end. Also, to avoid this sample damage, the intensity of the beam is also kept

at low dose of electrons. At the same time, biological samples mostly comprised

of carbon, hydrogen, oxygen and nitrogen which show weak electron scattering.

This results in the low SNR of the images, so that the image contrast is also low

and useful structural features may be blurred or difficult to identify.
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As the grid will be frozen rapidly, the best case would be using thin sample so that

it cools in a short time and stays in the native state. The movement of the sample

which caused by either mechanical or electron beam induced effect also limits the

resolution.
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1.4 Low Resolution

1.4.1 Resolution

Definition of Resolution

In general, the density map resolution is a measurement to quantify the resolvabil-

ity, i.e. at which level the structural information can be extracted. High resolution

data can provide the information about atomic details while low-resolution data

show structural details only at the secondary or even only tertiary structure level.

XRC and CryoEM use different definitions of resolution:

In XRC, from the diffraction pattern, which depends on the type of crystal struc-

ture, the furthest resolvable peak in it defines the resolution (i.e., the pattern in

which the atoms are arranged).

In CryoEM, the SNR of the Fourier components defined the resolution. For this

the 2D projections are split into odd and even data sets, for which reconstructions

are calculated and compared at different frequency shells in Fourier space [13] inde-

pendently. Then the resolution is calculated based on the Fourier shell correlation

(FSC) [14] as shown in Eq. (1.1)

FSC(|s|) =
∑

i |F i
1| |F i

2| cos(φi
1 − φi

2)√∑
i |F i

1|2
∑

i |F i
2|2

(1.1)

in which i stands for the set of points found at spatial frequency s in the 3D Fourier

transforms of the two reconstructions, F i
1 and F

i
2 are the Fourier coefficients of the

odd and even data set, φi
1 and φ

i
2 are their corresponds phases. The most popular

usage of the FSC is a cutoff at 0.5 [15, 16]. This Fourier correlation coefficient

corresponding to the resolution of the density map.
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Limitation of Resolution

In XRC, to reach high resolution the molecules have to arrange in a highly ordered

fashion in the crystal. Considering the difficulty of different size of molecules, small

ones are much easier to crystallize than larger ones, which typically show a higher

degree of internal heterogeneity and flexibility. The diffraction data collected in

the end is actually an average of all the repeating units, minor differences in the

unit cell lead to high resolution peaks in the diffraction pattern to become very

weak.

Therefore, in that case, the final electron density map does not contain adequate

structural features such as sidechain positions, loop structures or missing density

of domains.

Different from XRC, CryoEM typically yields low-resolution (>3.5Å) data. The

reason of low-resolution is also from the molecule heterogeneity and flexibility

as in XRC. The reason of conformational heterogeneity in the assemblies is the

fluctuations of the structure around the native state. Comparing with XRC, single

particles from CryoEM are imaged independent of their flexibility and it has been

proven helpful in determining macromolecular assembly structures at resolutions

lower than 5 Å [17, 18].

During the processes of reconstruction, the assembly of particles in different con-

formations and functional states are averaged. The variations between particles

will be averaged out which yields a blurred density and leads to a limited resolu-

tion. However, the variations contain a lot information about the conformational

variability, but to extract is information is a challenge in computational work.

To solve this problem, different sorting algorithms, either supervised or unsuper-

vised, are used [19]. By classifying 2D images into various conformational states

which are then reconstructed individually higher resolution density maps can be

obtained. The algorithms designed in this active field of research still have much

more space for improvement.
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Visualizing the effect of resolution

Fig. 1.3 depicts the density maps of calmodulin at different resolutions Calmodulin

is a calcium-binding messenger protein; it exists in most organisms and plays an

important role in transducing calcium signals that functions in processes such as

inflammation, metabolism and immune response.

Figure 1.3: The structure of calmodulin shown at different resolu-
tions. From left to right, 4 Å, 8 Å, 16 Å, 32 Å.

From the left, that has the highest resolution of 4 Å at which most of the residues

can be visualized. The density becomes fuzzier with decreasing resolution. The

rightmost structure (Fig. 1.3) only shows the global shape of the structure.

As the resolution in XRC and CryoEM are defined differently, it may be conclude

that an XRC map contains more information at the same nominal resolution;

however, a comparison study [20] showed that the 7.5 Å E.coli 50S subunit from

CryoEM looks better than 7.8 Å Thermus thermophilus 70S ribosomal from XRC,

which is likely due to the fact that CryoEM also provides phase information.

Low resolution data

Nowadays, at high resolution (<3.5 Å) useful atomic models can be built from

XRC which means sometimes that atomic detail information can be obtained from

the electron density with even sub-atomic precision (like the hydrogen bonds).
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To investigate the detailed information of the protein, high resolution is needed,

however to get high resolution data for all systems is not possible, especially as

the complexity of the testing structures is increasing and thus the probability of

generating low resolution structures (>3.5 Å) is also getting higher. This rapidly

increasing amount of low resolution data giving an important source of biological

information. In the early days, these low resolution data were often ignored as they

are not that informative as higher resolution ones. However as structural biologist

are trying to solve more complicated and larger complexes, low-resolution data are

more and more considered as a important to provide useful biological informations.

As a consequence of this, the amount of structures determined at low resolution has

dramatically increased in recent years. This can been seen from the low resolution

structures deposited in the PDB (shown in Fig. 1.4). 55.6% of all structures

stay in the intermediate resolution which is between 3.5 to 10 Å. In recent years,

the developments in both experimental and computational techniques profit the

determination of low resolution structures. It makes the interpretation of low

resolution data increasingly feasible.



Chapter 1. Introduction 15

2002 2004 2006 2008 2010 2012 2014

10
0

20
0

30
0

40
0

50
0

60
0

70
0

Year

M
ap

 r
el

ea
se

d

0.9%

21.1%

22.4%

16.9%

38.7%

Resolution distribution of released maps

> 60    Å
20 60 Å
10 20 Å
 5 10  Å
 3.5 5 Å

Figure 1.4: Low resolution statistic. The number of new structures de-
posited each year in the Protein Data Bank which have a resolution worse than
3.5 Å plot as the red curve. The pie chart illustrate the numerical proportion
of different resolution groups.

1.5 Interpretation of Low Resolution Data

As the number of low resolution-data is increasing quickly, building models from

low-resolution data gets much more attention than ever before. Different resolu-

tions correspond to different levels of information content. For different amounts

of structural information, people developed various methods to solve the model.

For low-resolution data, obtained from CryoEM, is typically in the range from

about 6 to 20 Å. Normally, at such a low resolution, it is not possible to build the
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atomic structures directly. In those cases, the data is normally interpreted by using

high-resolution structures determined by either XRC or NMR [21]. Originally,

the high-resolution structures are docked into the density map manually. As the

method is developing, it comes to two classes of fitting techniques: one is rigid

body fitting that places the high-resolution structure as a rigid template and search

the best fit within the volume; the other one is flexible fitting where different levels

of flexibility are applied to the high-resolution structures to fit into the density.

1.5.1 Rigid Body Fitting

In this method, people are trying to optimize the six dimensional parameters

which are translation of three directions (x,y,z) and rotations of three angles.

Two important factors in this method are the evaluating scoring function and the

search space in the density map. EMfit [22, 23] is one of the earliest programs

doing rigid body fitting. By analyzing the symmetry information, it searches in a

predetermined interval to refine the positions. Situs [24, 25] uses a positional vector

to represent the local density by which a fast density comparison can be made

without superimposing the density maps explicitly. Gmfit uses a coarse-grained

model to represent the density map which improves the fitting procedure [26].

The EM map and atomic structures are represented as a Gaussian mixture which

shows the shape of a density map. MultiFit [27, 28] uses a divide-and-conquer

approach for searching the space to fit multiple domains into the density. When

fitting multiple proteins into the density, segmenting the map first is very helpful

to identify the location of each individual component.

As the resolution of the map is improving, conformational change between the

target and the known XRC structure become large, and a basic rigid body fitting

is not sufficient to interpret the density map. Therefore, more flexibility is needed

for the fitting.
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1.5.2 Flexible Fitting

A protein itself is a flexible molecule. During its functioning in the reaction, it

undergoes conformational changes. In this class of fitting methods, different levels

of flexibilities are considered to sample different conformation states. Flexible

fitting has been proven to be helpful in understanding conformational changes at

a near atomic level of detail.

Several programs have been used to introduce the flexibility. The traditional

molecular dynamic (MD) simulation is used to handle the protein flexibility. Molec-

ular dynamics flexible fitting (MDFF) [29, 30] is a method based on MD simula-

tion. Starting from the traditional MD force field, it added two new terms: one

gives the force for moving the protein to the density map and the other term tries

to maintain the secondary structure. The combination of real-space refinement

and molecular dynamics simulations have been used to fit the structures into the

density map (RSRef/X-PLOR:RMSD) [31, 32] Different from MD-based meth-

ods, Flex-EM [33, 34] uses coarse-grained optimization combined with the conju-

gate gradients minimization (CG) and simulated annealing molecular dynamics to

achieve flexible fitting.

Normal Model Flexible Fitting (NMFF) [35, 36] and NORMA [37] have used low

frequency normal modes (NMA) [38–40] analysis, particularly on Elastic Network

Models (ENM) [41] to follow the dynamic components in the context of density

map. NMA is used to identify flexible regions and the principal motion directions

of atoms or residues. ENM can use a coarse-grained model and applies a har-

monic potential on atomic distances to explore a large conformational space [42].

The combination of comparative modeling (based on alternative alignments and

loop conformations) and structure refinement was used to improve the sequence

alignment and obtain better homology models [43].

Except using dynamics calculations for protein flexibility, S-flexifit [44] derives the

structure variations from the protein in the same superfamily according to the
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CATH protein structure classification database and uses this information for the

flexibility.

Besides using high-resolution structures as a starting point, homology models could

also be used to fit into the density map. When the high-resolution structures could

not be used directly, then the homology model could be used as a complementary

way to refine a structure [45, 46]. Recently, the deformable elastic network (DEN)

refinement [47] has been introduced to fit models into density maps, allowing large

deformations in the atomic structure model [48]. The DEN defines springs between

randomly chosen atom pairs that have a distance value that falls into an interval

between 3 and 15 Å, using a reference model (i.e. a high resolution structures) as

a template. During the refinement the target distances of these DEN restraints

change according to two types of forces: 1) restoring forces which pull the restraints

towards a reference model, and 2) trailing forces which follow the current struc-

ture as it is being pulled into the density map, which controls how the reference

structures move by following the motion of the structures. The DEN restraints

are therefore able to balance forces from the reference model and from the density

map. The DEN approach was implemented into the program DireX [47], which

combines robust real-space refinement with an efficient conformational sampling

algorithm.

1.5.3 De Novo Model Building

The resolution of the map determines what kind of method can be used to inter-

pret the density map. Table 1.1 gives an overview of the correspondence among

resolution range, structural information content and the method that can be used

for interpreting the density maps.
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Resolution(Å) Visible features in the density Map Method for model
building

>10 Shape of the tertiary structures Rigid body fitting
10–7 Domains and α-helices Flexible fitting
7–5 α-helices and β-sheets Flexible fitting
5–4 Possible to trace main chain with prior

information. Large stretches of α-
helical region will increase the success
rate. Small molecules will be visi-
ble and gross interpretations can be
made in certain cases (e.g. ADP versus
ATP). Some side chains may be visible.

Refinement is possible
with secondary-
structure restraints.
Reasonable R/Rfree
values and geometry
can be achieved.

4-3.5 Main-chain trace more reliable. β-
Sheets can be built with more confi-
dence. Conformational flexibility can
be assessed. More side chains visible.
When two or more states are crystal-
lized, conformational changes in side-
chain positions may be visible.

Standard refinement
techniques can be
applied

3.5-0.5 Fold information,clear loop regions and
sidechains

De novo method can
be applied

Table 1.1: Effect of resolution on density map interpretation and modeling
approaches

When the resolution of the map is less than 15 Å, then density map defines only

the general shape of the protein without any details. Therefore, no information

for the residue or atom level can be used, rigid body fitting would be recommend.

As the resolution goes higher, more structural information can be derived from

the map such as the domain, secondary structure and even the residue content.

For those cases, flexible fitting can be applied.

When the resolution is high enough (<3.5 Å), it is not necessary to use a initial

model or known structures, rather, a de novo method can be used to build an

atomic model, i.e. based on the density map alone. There are some programs

from XRC that works on de novo modeling such as ARP/wARP package [49–51]

, SOLVE/RESOLVE [52] and TEXTAL [53]. These methods are mainly aim at

the resolution range smaller than 3.5 Å. However, as the size of testing molecule

is increasing, most of the resolution stay in the low-resolution range. From which,

secondary structure can be seen and in some near atomic resolution (3.8-4.5 Å)
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maps side-chains can barely be seen. For this resolution group, de novo modeling

of protein structures is often combined with the analysis of secondary structure

features from the density map such as SSEHunter [54], SSELearner [55], SSE-

Tracer [56] and VolTrac [57]. It identifies the secondary structure segments ac-

cording to the geometric shape of the map. By matching the sequence secondary

structure information onto the density segments, a secondary structure based back-

bone can be build [58–60], which can be further optimized with other programs

like Rosetta [61]. Gorgon [62] is a program using pattern matching and geometry

processing algorithms to model protein structures. However, without an accurate

SSE identification, a possibly wrong structure is built. This type of modeling can

be time consuming as it requires intensive human interactive manual work. Path-

walker [63] is a program doing de novo backbone tracing program which is based

on the algorithm for solving the Travelling Salesman Problem (TSP) and trying

to find out the right backbone connection. However, this work quite depends on

the TSP solver which only tries to find out the shortest path. Additionally, an

assumption of known location of C and N terminus has to be made before hand.

During the model building process, manual work is still greatly involved.



CHAPTER 2

Method

2.1 Density Maps

2.1.1 Density Maps Simulation

For testing purpose of our method, the calmodulin structure (PDBID:1S26) was

selected for analysis. Only chain D was kept by deleting all the calcium atoms.

The remaining model has 143 amino acids and contains both helices and sheets

both. This atomic calmodulin structure is used as our target structure for testing

purposes. With this structure, 5 groups of noisy density maps were simulated at

4, 5, 6, 7, 8 Å (1 Å/pixel) resolution respectively with Direx [47].

2.1.2 Map Filtering

To each of these five maps, a filter was applied. The filtering was implemented in

Fourier space by using a low-pass filter at a certain resolution. That is similar to

use a Gaussian filter on each grid point in real space. The rationale behind this

is the implementation in the Fourier space is much faster and how much the map

is filtered can be easily and numerically determined. The aim of this approach

21



Chapter 2. Method 22

is to smoothen the density map, and at the same time by filtering, some high-

frequency noise can be deleted. This would approximate a realistic experimental

map showing the general shape of the protein but with some of the side chain

information eliminated from the map. The smoothed map is helpful for placing

our pseudo Cα atoms in the later step.

2.1.3 Map Normalization

To make all the input density maps comparable, we normalize the input density

map to a uniform scale. The normalization was implemented according to

ρnorm =
ρdens − μ

σ
(2.1)

in which ρdens is the density value, μ is the mean value of all the density and σ is

the variance of the density map. After the normalization, different density maps

with different value ranges were scaled so that they are comparable.

2.1.4 Calmodulin Test Result

For the calmodulin test, 5 groups of maps with resolutions ranging from 4 to 8

Å were generated. Fig. 2.1 A shows for example the 6 Å simulated density map.

Noisy density maps were simulated with EMAN [64] based on the noise free density

maps which were generated by Direx [47]. Fig. 2.1 B shows the 6 Å noisy density

map.

Afterwards, we filtered the maps to a relatively lower resolution than the corre-

sponding original maps. For these 5 groups of noisy maps, we filter them all to 8

Å. Fig. 2.1 C, shows how much the maps are different from each other with the

same noise level but at different resolutions. Fig. 2.1 D shows all those maps after

normalization and filtering. After filtering to 8 Å, they all look very similar to

each other as they contain the same amount of the structure factor information.
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2.2.1 Travelling Salesman Problem and Lin-Kernighan Heuris-

tic

If a salesman is given a list of cities {c1, c2, · · · , cN} and the distances d(ci, cj)

between each pair {ci, cj} of cities, how could he visit each city exactly once

and return to the starting city with the shortest distance? This is the travelling

salesman problem (TSP). Our goal is to find an ordering δ of the cities that

minimizes the function

l(δ) =
n−1∑
i=1

dδ(i),δ(i+1) + dδ(n),δ(1) (2.2)

The final purpose is to find the shortest path with the best method δ. Nowadays,

as a combinatorial optimization problem, TSP has become more attractive espe-

cially as the computing ability dramatically increased during the last decades. It

becomes attractive not only because it is interesting but also for its availability for

a large amount of real world problems. It is highly applied to a variety of aspects,

besides working on searching for the shortest tour, it is also used on machine

scheduling [70], data analysis in psychology [71] and X-ray crystallography [72].

In biology, Korostensky et al [73] used TSP to compute a near optimal multiple

sequence alignment.

Although the problem is easy to state, coming to the solution is quit another level

of difficulty. TSP is a non deterministic polynomial time hard (NP-hard) problem,

it means the problem can not be solved in polynomial time. As the number of

cities increased, it is unlikely to guaranteed any efficient exact algorithm can be

used to find the optimal tours. These question make people put all efforts on

finding out an approximation algorithm instead of a exact optimization algorithm.

These algorithms normally compromised between running quickly and finding the

optimal tours but not doing both at the same time. The ’heuristic algorithms’

was designed to find the near optimal tours but relatively larger number of cities
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than the exact solutions. Among many different heuristic algorithms, the Lin-

Kernighan Heuristic algorithm [65] was one of the best which has a big influence

over the later algorithms design for TSP.

Lin-Kernighan Heuristic

Lin and Kernighan developed a heuristic algorithm in the 70s. It is a well known

method based on edge exchange procedures. In general case, k edges in a tour are

exchanged with k edges that were not in the tour. This procedure tries to shorten

the tour. The exchange procedures are referred to as k−opt procedures where k is

the number of edges exchanged at each step. Fig. 2.2 shows the case when k = 2.

The edge x1 and x2 are removed and replaced by y1 and y2. This 2− opt move is

the fundamental step of the whole Lin-Kernighan heuristic algorithm (LK). The

LK algorithm is a dynamic procedure which performs a series of 2 − opt moves.

The 2− opt moves are executed in a successive order. The edge which connected

from level i will be deleted in the next level i+ 1.

X1 

X2 X2 

X1 

Y1 Y2 

Figure 2.2: One step 2-opt move. The red circles represent the beads and
the connection curve between them describe the edge in between. Arrows are
pointing to the direction of the trace connection.

Here the basic classical Lin-Kernighan procedure is sketched in Fig. 2.3 and it

works according to the following description:
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1. For the visualization purpose, the initial random connection tour is shown

as a closed circle, as the real connection picture is difficult to distinguish the

ongoing changes. Panel (A) in Fig. 2.3 gives the exemplified circle connec-

tion. In this depiction, the lengths of the edges here are not indicating the

real lengths between points.

2. A random point t1 is selected as the starting position and x1 (red edge in

Figure 2.3) is one of the edges adjacent to t1. t2 is the other end of x1. From

t2, we delete the connection x1 and make another new edge y1 (blue edge

in Figure 2.3) which does not exist in the current tour and connected to t3.

And it also satisfies the equation g1 = (x1−y1) < 0. The tour was shortened

by this exchange.

3. However, the tour right now is not a closed path. To make a reasonable

new tour, the adjacent point t4 of t3 is selected which connected by edge x2.

There are two choices for t4, but to close up the tour only one choice can

build a full path, that is by connecting t4 and t1, which gives edge Elast. The

other choice would split the tour into two sections that would destroy the

connectivity of the entire path as shown in C of Fig. 2.3. At this point, by

substituting x2 with Elast (dotted line in panel B) of Fig. 2.3, the new cost

of the exchange is

Glast = x2 −Dlast (2.3)

By now, the whole process shows how the 2 − opt work as in Fig. 2.2. The

one step 2− opt cost is calculated by

G∗
2 = g1 +Glast (2.4)

No matter how we do the 2− opt exchanges, we have to make sure the G∗ is

always positive.

4. 2 − opt move is the basic step of the algorithm. Without stopping by two

exchanges, the algorithm goes on with further moves. Instead of connecting
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Figure 2.3: LKH. The four pictures shows the basic steps of LKH. Fig. A
shows the simplified three dimensonal random connected points as a 2-D circle.
Fig.B shows the 2-opt in which connections t1t2 and t3t4 are replaced by t2t3
and t4t1. Fig. C shows the 3-opt. In case that 2-opt does not improve the path,
instead of closing t4t1, LKH try to do a further step of exchange by connect
t4t5. Afterwards, finish by closing t6t1. Fig. D show the 4-opt which is similar
to the 3-opt procedures.

Elast in step 2, we try to get another point t5 on the tour. It connects to t4

by edge y2 (the new blue line in panel C of Fig. 2.3). The edge x3 from t5

reaches another adjacent point t6. Similar as in step 2, the connection of x3

is removed and substituted by the connection from t6 to t1, which is the new

Elast.

5. Now by completing the new second exchange (x2 → y2) and the closing up

exchange (x3 → Elast), the one step 3− opt has been done. The cost of the

second exchange can be calculated by this equation:

g2 = x2 − y2 (2.5)
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The cost of the closing tour exchange is calculated by:

Glast = x3 −Dlast (2.6)

The overall cost of one step 3− opt is calculated from:

G∗
3 = G2 +Glast (2.7)

, in which G2 = g1 + g2

As long as G∗
3 is greater than zero, the algorithm implements one step 3−opt

move accordingly.

6. The above procedures describe the 2− opt and 3− opt moves. Those are the

two basic steps of the LK algorithm. However, from here on, we can keep

on running the same moves further. That expands the whole algorithm to

the k − opt move procedure, which means the number of exchanges are not

defined before but determined during the implementation of the algorithm.

Deducing from the above procedure, the entire procedure has to satisfy the

criterion

G∗
i = (Gi−1 +Glast) > 0 (2.8)

, in which Gi−1 =
∑i−1

n=1 gi, which also has to be positive. The rational

idea behind this is that if a sequence of numbers has a positive sum, there

is a cyclic permutation of these numbers so that every partial sum is also

positive [66]. This positive gain criterion makes the algorithm know when

to stop and work efficiently.

2.2.2 Modifications of LKH

In our backbone tracing case, we first build a bead model as described in Section 3.1

already. However, there is no information on the connection among those beads.
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To find out the right trace, we have to figure out how these beads are connected

to each other. If we think of each of those beads as a single city or point, then

we can directly map the protein backbone tracing problem to the TSP. Based on

this, we decide to use the LK algorithm to solve the tracing problem. As we are

trying to solve a protein trace, which is not the same as the TSP, we did some

modifications on the original LK algorithm that makes the algorithm fit to our

purpose. In this paragraph, we introduce what modifications we made on the

original LK algorithm.

1. Modified Lin Kernighan (MLK)

Firstly, we reserve the basic k − opt, and the LK procedures as it states in

the previous part. That controls the changes of the whole tracing algorithm

during the optimization. However, as the k value is increasing (k >= 3),

there are cases that the moves are infeasible, that means the move results

in a disconnected tour. In this situation, the original algorithm temporarily

allows the infeasible move, and then makes the reconnection in the later

exchange. To consider those infeasible moves, all the non repetitive ways

of connections have to be counted. If k edges are broken in a tour, there

are (k − 1)!2k−1 ways to make the reconnections to form a valid tour [74],

however not all of them are considered [75]. For example, if k = 3 which

means break 3 edges, so in total 8 cases can be built but only 4 of them

actually contain all new connections. Similarly for 4− opt moves, among all

the 48 different ways of reconnections, there are 25 tours that contain only

new edges. As the k value is increasing, more infeasible moves have to be

considered. Dealing with the infeasible moves dramatically complicates the

original LK algorithm.

To avoid those infeasible moves, we decided to use the modified LK method,

which was introduced in 90s by King and Andrew [76]. The main idea is to

try to avoid the infeasible moves by extension of the 2 − opt LK method.

The following description shows the main procedures:
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Figure 2.4: MLK. The MLK choose a better path from the two symmetric
connections as shown in A and B. The accepted better connection is shown in
blue and the dotted line shows the ignored connection which is used as the base
for the next round of 2-opt.

• When we do the 2 − opt moves, we need to choose two edges to break

at the same time reconnect the other two edges as described in the

Lin-Kernighan Heuristic of item 1 to 3. The newly built edges can be

seen in a symmetric way as depicted in Fig. 2.4. We start from the

first connection xm which is recognized as the base edge. Then we can

get the other two points and three edges ym, zm and xm+1. The new

named zm is similar as the Elast in the original 2 − opt method. From

a of Fig. 2.4, one can clearly see the symmetry between ym and zm.

• Based on this symmetry property, we calculate which would make the

most gainful exchange either between xm and ym or xm and zm. If there

is no gain for either of them, we need to reselect other starting points.

If there is one gain better than the other one, then we perform the basic
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2− opt move by deleting the base and connect ym or zm depending on

which is more fruitful. At the same time, xm+1 is also added and the left

one of ym or zm becomes the new base for the next iteration m = m+1.

2.4 B illustrated how the aforementioned procedures work out without

generating any infeasible moves intermediately. On the left of that, A

shows how it looks with the normal LK, how can we get that result

with the infeasible move.

2. Longest Edge Identification

The original LK algorithm deals with the TSP. In the TSP, the salesman have

to leave from one city and come back to the same city in the end, that means

the path which is travelled by the salesman is a closed path. In our case, we

are processing the protein backbone, which normally have two termini one

is the N-terminus and the other is C-terminus. They are disconnected in the

protein structure. Additionally, in the real Cα backbone of one protein, the

longest connection always exists between these two termini. We implemented

a step that is embedded in the LK procedure so that during the optimization

the connection between the these two termini, that should not exist can be

distinguished automatically.

In Section 3.1, while placing the beads, we simulated one more bead than the

right number of the amino acid in the protein sequence. This bead is called

a phantom bead, because we do not really give a real position for that bead

in the space. It exists as a non-real atom. We only assign connections to it.

In the starting step, we define both lengths of the edges that connect to the

phantom bead as 0. The purpose of doing this is that in the optimization

procedure the longest edge will tend to be connected with the phantom bead,

as when this happens both connections to the phantom will be considered as

0 and it shortens the path most comparing with other phantom connections.

After the optimization, we can delete the edges that are connected to the

phantom bead and get the shortest path of the rest without returning back

to the starting bead. By this step, the final result just matches the Cα
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backbone structure which without the longest connection between C and N

terminus.

2.2.3 Monte Carlo Optimization

The Monte Carlo method is defined as a branch of computational algorithms that

is based on using random numbers, for the solution of numerical results. In general,

the random numbers are independent random variables uniformly distributed over

the unit interval [0, 1]. The MC method taking into account the uncertainty of

models and determine the probability of different outcomes.

The MC method has become a powerful and commonly used technique for an-

alyzing complex problems. It has been frequently applied to various fields from

physical sciences, engineering to financial business. Among them, one powerful

and popular application is in optimization. The problem is trying to find the

extrema, which is either minima or maxima of functions. The early MC method

implemented in computer was developed by Metropolis in the 50s.

In the classic Metropolis method, one configuration is created by the previous

state with a transition probability which determined by the energy difference of

two states. Different states follows a MC time step. The time dependent behavior

according to a master equation in equilibrium condition is given by

Pn(t)Wn→m = Pm(t)Wm→n, (2.9)

in which Pn(t) is the probability of state n at time t, and Wn→m means the tran-

sition rate for n→ m. The probability of nth state can be expressed by

Pn(t) = e−En/kBT/Z (2.10)

Because the partition function Z is typically not easily accessible, the probability

can not be calculated directly. However, if the nth state come from m state , the
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relative probability is proportional to the probability of the states, which means

the denominator can be ignored, only considering the energy difference of two

states

ΔE = En − Em. (2.11)

The main implementation of Metropolis algorithm can be described by a simple

recipe:

Metropolis Monte Carlo scheme

1. Choose a starting state A

2. Make a change from state A to state B, calculate the energy difference ΔE =

EB − EA by doing this change

3. If ΔE < 0, accept the change. Make B as a starting state and go to step (2)

4. Generate a random number p such that 0 < p < 1

5. If ΔE > 0 and p < exp(−ΔE/kBT ), accept the change and do as (3),

otherwise keep the state A and go to step (2)

• Simulated Annealing (SA)

During the Metropolis optimization, it may take quite a long time to converge

or be stuck in a local minimum state especially for those problems which have

a great amount of degrees of freedom. The efficiency becomes a key issue

in the optimization. We choose this simulated annealing method to improve

the efficiency.

Annealing is a technique commonly used in material science, that involves

heating and cooling the material to change the structure so as to change
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physical properties. This procedure is also a manner in which crystals often

reach the state of minimum energy. If the temperature is high, molecules

move freely. Reversely, at low temperature, molecules are tending to be

stable as frozen. By slowly cooling the material, the system tend to move

towards the minimum energy state.

Simulated Annealing has analogy concept with thermodynamics in material

science. It is introduced by Kirkpatrick et al. [77] as a method used for the

global optimization problem, especially for those where the global optimum

is hidden among many local extrema. It is a modification based on the

Metropolis algorithm.

The method starts at a relatively high temperature, which means the al-

gorithm accepts worse solutions more often than the same it would at low

temperature. As the temperature is decreased, more unsuitable solutions

will be rejected so that when the temperature is low enough, only the good

solutions will be accepted. This procedure lets the algorithm to have the

ability to jump out of a minimum and then moving to another area which

could be closer to optimum result. This cooling makes the optimization

process to work more efficiently.

As the simulated annealing is implemented on the basis of the Metropo-

lis algorithm, the biggest difference is that in the method with simulated

annealing the temperature parameter is decreasing gradually and is not as

constant as it is in the Metropolis algorithm. Considering the detailed mod-

ification according to the Methropolis algorithm procedure shown in the box

above, we only need to make a small change like the following

Modification of SA on Metropolis Algorithm

. . . accept the change and lower the temperature,. . .

To make use of the simulated annealing MC method, the whole system have to

satisfy the following four elements:
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• Initialization: The starting model stays in a certain state and can be fur-

ther improved for a good answer.

• Modification: A set of random changes are allowed over the initial con-

figuration, potentially this change may generate all possible configurations

while the temperature is decreasing.

• Function: A function gives out how good a certain configuration is after

the change. Optimization of the output of the function is also the goal of

the procedure.

• Cooling: It tells how the annealing procedure works. What should be the

starting hot temperature, how much it should be lowered and when to stop

has to be included here.
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2.3 Refinement

All models of proteins contain errors. For experimentally determined models, these

errors originate from errors in the data and its interpretation. For computation-

ally predicted models, error arise from inaccurate energy function and insufficient

sampling. In structural biology, no matter experimental or computational data,

the models from those methods contain noise which generate structures with er-

rors in different levels. To reduce these error, a general refinement procedure is

needed. Nowadays, a number of methods exists for protein structure refinement.

For structures produced by XRC or CryoEM, there are two different ways for the

refinement:

• Force field driven refinement with experimental information;

• Rigid fitting refinement.

Force field refinement uses restraints for example for bonds and torsion angles

restrains over the structures. The starting model for these methods do not have

to be a high resolution structure, however, as the conformational change between

starting model and the target is large, each small step in the molecular dynamic

simulations will burden the computation.

The rigid body fitting is based on an existing structure. Splitted domains of

this structure will be fitted independently. The rigid body fitting conserves the

secondary structure information but of course does not allow the reasonable de-

formation changes within the domain.

For a better refinement, we can use an intermediate between both of these methods

to refine the structure flexibly as introduced Section 1.5.2. However, since often

the number of parameters (atomic coordinates) is much larger than the number of

experimental observables, overfitting may happen during the fitting. To avoid over-

fitting, we choose DireX for model refinement, which can perform a good flexible

fitting at the same time avoid the over-fitting problem by employing deformable

elastic network (DEN) restraints.
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2.3.1 Refinement with DireX

DireX is a real-space refinement program, which avoids over-fitting by refining

only those degrees of freedom for which the density map actually provides in-

formation. To refine a starting model into the density map, DireX uses a very

efficient geometry- based conformational sampling algorithm to yield ensembles of

structures which are biased by different restraints on chemical bond, bond angles

and planarity. Additionally, forces are that derived from the difference between

target density and the calculated model density, which moves the atoms into the

target density. Instead of controlling the degree of freedom of information from

the density map and the initial structure manually, Direx adapts the restraints to

the forces generated by the density map automatically.

Figure 2.5: Workflow of the DireX. Diagram showing the refinement algo-
rithm in DireX
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Fig. 2.5 shows the general workflow. During the DireX refinement, three main

forces are used that drive the conformational changes and eventually refine the

starting structure into the density map:

• a conformational sampling algorithm which generates a random walk,

• a stochastic gradient of electron density map that moves the model into the

density map,

• distance restraints within the secondary structure elements.

These three forces are described in the following three sections.

2.3.1.1 Conformational Sampling Algorithm

The CONCOORD algorithm [24] is used as the basis for the conformational sam-

pling algorithm. From the starting structure, it generates a large number of dis-

tance restraints which are represented as allowed distance ranges and all the pro-

duced structures have to obey these distance ranges. There are two groups of

distance restraints included in CONCOORD:

• bonded restraints: bond lengths, angles and planarity which keep correct

stereo-chemistry of the structure

• nonbonded restraints: van-der-Waals restraints which avoid overlapping and

also define an upper limit for the allowed conformational change.

Bonded restraints are generated from the starting structure and are kept constant

afterwards. Nonbonded restraints are updated at every structure generation cycle.

The number of CONCOORD restraints is usually about ten times larger than the

number of atoms.

Afterwards, the coordinates of the structure are randomly perturbed by applying

a Gaussian distribution function with a width of 0.5 Å. Then atom pairs which
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violate the corresponding distance interval will be moved along their inter-atomic

vector to a distance that is randomly picked from the allowed interval.

Distance corrections are repeated until all distances fulfill the allowed interval or

the maximum number of cycles is reached (typically 500). Once the structure

does not converge within 500 iterations, a new round of correction will restart

with the same CONCOORD restraints but different random perturbations. As the

perturbation in the beginning is relatively small, a new structure can be generated

within 5 to 50 correction cycles and the new structure will be used as the starting

point to calculate new CONCOORD restraints.

2.3.1.2 Forces from Density Maps

In addition to the conformational sampling, to refine a structure into the density

map, forces from the maps are required. The forces are derived from the com-

parison between the target density map, ρexp(�x), and a density map, ρmodel(�x),

computed from the current coordinates of the model.

In the beginning of each structure generation cycle, a density map from the cur-

rent model is calculated by Fourier transform. Then ρexp(�x) and ρmodel(�x) are

normalized to have a mean value of zero and a standard deviation of one, which

are ρ̃exp(�x) and ρ̃model(�x). During the refinement, the model map ρ̃model(�x) is

becoming as similar to the experimental target density map as possible.

In principle, computing the gradient of the density map overlap directly and move

the atoms accordingly would work, however experimental density maps contain

a large amount of noise, DireX use stochastic gradient algorithm which is more

robust against noise effect than the standard gradient approach.

Firstly, the density difference is calculated by

ρ̃diff (�x) = ρ̃exp(�x)− ρ̃model(�x). (2.12)
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Atoms tend to move into regions with high density difference, where the model does

not produce enough density and out of regions with low density difference, where

the model has too much density. The value of ρ̃diff (�x) calculation is performed

before the coordinate perturbation and kept fixed during the correction cycles. In

each correction cycle, atoms are moved by adding a vector:

�gi = v(sc)
1

12

12∑
j=1

ρdiff (�rj)
�rj − �xi
|�rj − �xi| (2.13)

�rj gives a random position chosen from an isotropic Gaussian function with a width

of 1 Å around �xi. v(sc) is a scaling factor which depends on the correction-cycle

step sc. It decrease linearly from 1 to 0 within the first 40 steps, which converges

the structure generation.

2.3.1.3 Secondary Structure Distance Restraints

Secondary structure information showing the three dimensional form of the pro-

tein. In the secondary structure, the most popular two types are α-helices and

β-sheets which are defined by the hydrogen bonds showing highly regular pat-

terns in the protein. These structural patterns are usually more stable and more

conserved in the protein.

In considering this, restraints are applied over the secondary structure elements

(SSE) during the refinement, which improves the refinement result via producing

more regular secondary structure segments. A factor wsse (a value between 0 and

1) is multiplied the secondary structure restraints which controls the strength of

the restraints. Additionally, the secondary structure restraints are deformable

by tuning a factor to change its deformability. During the DireX refinement,

the secondary structural information was read in from a independent file which

contains all the distance restraints as shown in Appendix E.
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To generate the secondary structure restraints file, a secondary structure prediction

software is needed to collect the secondary structure compositions from the pri-

mary protein sequence information. There are many of programs like PSIpred [78],

SAM [79, 80], PORTER [81], PROF [82] and SABLE [83]. Here we use PSIpred

for secondary structure prediction. Then the distances restraints for those SSEs

are generated by using the standard secondary structure distance information as

shown in Appendix A.
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2.4 Assessment of path

To assess the quality of the trace, we used and compared several parameters to

measure the agreement between the tour we got and the target structure.

2.4.1 Density Map Correlation

The first one is the map correlation between the simulated model density map and

the target density map. This correlation is a rough estimation of the correlation

as for the bead model we only simulated the density over the pseudo Cα atoms

,however the correlation was calculated against the full atom target map. Despite

of that, the map correlation value provides a good measure of how well the model

fits to the density map. The map correlation between two maps are calculated by:

c.c. =

∑
ρ1ρ2√∑
ρ21

∑
ρ22

(2.14)

ρ1 and ρ2 represents the data sets of two density maps.

2.4.2 Root Mean Square Deviation:

The most widely used measure to compare two structures is the root mean square

deviation (RMSD). The RMSD is a measure that calculates the positional differ-

ence of corresponding atoms after a proper superposition procedure which is done

by a least squares quadratic (LSQ) fit. It is calculated as:

RMSD =

√√√√ 1

N

N∑
i=1

(‖ Xi −Xj ‖)2 (2.15)

in which N is the number of equivalent atoms and the Xi and Xj are the corre-

sponding pairs of atoms.
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This value quantifies how similar the model is compared with the target structure.

The lower the value is the more similar the compared two sets of atoms are. This

value gives a good impression of the quality of a model. Although the RMSD gives

a good approximation of the quality of model, minor local drift would result in a

large variation in the score.

2.4.3 Topology Score

The topology score is a parameter to measure the topological similarity between

model and target. This term is based on the directionality of the aligned sequences.

It is a score from CLICK [84]. Its value ranges between 0 and 1, where 0 means

two structures are have no similarity topologically and 1 means that the structures

are topologically identical.

Within CLICK, the alignment was done independently from the topology between

the model and the target structure. The important point for the topology score is

that conformational variations would not have a big impact on the topology score.
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Results

3.1 Placing Pseudo-Cα Atoms

The goal of this work is to determine the backbone trace of a protein using a

low-resolution density map and the known amino acid sequence. For this, we first

place generic beads (point masses) into the density map, where the number of

beads is chosen equal to the number of amino acids. Each bead is assigned the

mass of an average amino acid.

At the same time, a density map that approximates the mass distribution of the

protein was generated from the beads. This simulated density map was used to

calculated the map correlation during the pre-bead refinement. Fig. 3.5 depicts

the pseudoatom representation in the calmodulin protein.

Our simulated Cα atoms were located according to two criteria: density and dis-

tance.

3.1.1 Choice of the Density Threshold

We characterize the surface as a set of grid points with density value ρ1, so that

the volume corresponding to the density values that are larger than ρ1 is close to

44
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the volume of the protein. The calculation of the volume of the protein was based

on an empirical value 1.21 Å
3
/Da [85], which represents the average volume that

a general protein occupies.

As we know the protein sequence, we can calculate the mass of the protein. Then

the whole volume of the protein can be calculated by this equation:

Volprotein =
n∑

i=0

M i
aa × 1.21. (3.1)

The M i
aa represent the mass of a certain amino acid in the sequence. The whole

density map values were sorted from high to low value. From this sorted density

map, we can use indices to find out the corresponding threshold. The index

corresponding to the expected threshold was calculated from

Indexthreshold1 = Volprotein/Volvoxel, (3.2)

in which Volvoxel = voxelsize3. With Indexthreshold1 , we can find out the corre-

sponding density value ρthreshold1 from the sorted density histogram, as shown in

schematic Fig. 3.1.

The isosurface (ρthreshold1) which correspond to the index (Indexthreshold1) identifies

the volume of the full atomic structure and it is the lower boundary of the shape

of the protein volume. However, regarding the structure of the backbone, there is

no side chain information included as shown in Fig. 1.1. The backbone volume can

be approximated by the mass of the backbone. After the amino acids forming the

peptide chain, each amino acid can be represented by a simplified and repetitive

molecular formula unit NC2OH2 which is shown in the blue box in Fig. 3.2.

The volume of the backbone can be calculated from

Volbackbone = n ∗MNC2OH2 × 1.21. (3.3)
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in which n represents the number of amino acids in the sequence and theMNC2OH2

gives the molecular weight of the repeating unit -NC2OH2- in the peptide chain.

The index that corresponds to the backbone threshold can be calculated with

Indexthreshold2 = Volbackbone/Volvoxel. From Fig. 3.1, the ρthreshold2 can be found

with the Indexthreshold2 value. This ρthreshold2 yields an upper bound of the back-

bone volume. The value between ρthreshold1 and ρthreshold2 became the threshold

interval. Theoretically, all the values inside this interval can be used as the thresh-

old for locating the beads in the density. Although, the upper bound threshold

encloses the whole backbone structure, the beads should not stay on the surface.

To make the bead model more compact, the threshold was chosen as a value which

has 10% more density volume than the upper bound ρthreshold2 .

When locating the bead in the density, this calculated threshold is used as the

outer border of the map, which means we do not choose any point that has a

value smaller than this threshold as a potential bead position. So that we keep

our beads in or at the threshold which is assumed to be the surface of the backbone

density.

3.1.2 Distance

In addition to considering the threshold, we also use distance as another criterion

to place the beads. After we determined the threshold, the density grid points

with a density value larger than the threshold forms the protein space. This space

defines the region that our beads will occupy. There is an empirical observation

from hundreds of protein structures showing that the distances between Cα and

Cα atoms are ranging from 3.5–4.2 Å. Based on these values, we randomly place

beads into the density map while making sure that there is not any pair distance

closer than 3.5 Å. And then a rough checking procedure was performed, which finds

and deletes those beads that have no neighbours within a radius of 4.2 Å. Those

beads will be complemented by new beads, for which except using the threshold

and the distance criteria, an additional map correlation procedure (Section 3.1.3)
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was also considered, which results in a bead model that has bond lengths of at

least 3.5 Å, at the same time for each bead there will be at least another bead

within a distance of 4.2 Å.

3.1.3 Map Correlation Refinement

While placing the beads into the density, we calculate simulated CryoEM maps

by putting a three-dimensional Gaussian function centered at each bead position

and integrating all these functions for each grid point at the same time to get the

bead density function [35, 36]. This density function was calculated according to

this equation:

ρsim(i, j, k) =
1

(
√

2π/3σu)3

N∑
n=1

∫
Vijk

exp

{
− 3

2σ2

[
(x− xn)

2

+ (y − yn)
2 + (z − zn)

2
]}

dxdydz (3.4)

where ρ(i, j, k) is the simulated density of voxel (i, j, k), σ is one-half the map

resolution [86], u is the grid spacing(the edge length of the cubic voxel), N

is the total number of beads, and Vijk = u3 stands for the volume of a unit

voxel,(xn, yn, zn) = (n, n, n)× u are the Cartesian coordinates of atom n.

The resolution of this simulated density map does not exactly correspond to the

resolution of the CryoEM experiments. A map filtering step as described in Sec-

tion 2.1.2 was applied to this initially simulated density map, after which we get

the expected resolution. Previous studies [35, 36] with coarse-grained models have

shown that the details of how the maps were simulated do not affect the perfor-

mance.

With the target density map ρexp(i, j, k) and the filtered map ρsim(i, j, k), the

correlation coefficient between two maps is defined as
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c.c. =

∑
ijk ρ

exp(i, j, k)ρsim(i, j, k)√∑
ijk ρ

exp(i, j, k)2
∑

ijk ρ
sim(i, j, k)2

(3.5)

A pre-refinement procedure for the bead model was shown in Fig. 3.3. There

were some beads removed from the original bead model because of violation of the

distance criterion. While adding the new beads to complete the model, apart from

using the threshold and distance rule, the correlation between the simulated map

of the bead model and the target map is also considered. The new bead position

has to satisfy the threshold and distance criteria, at the same time it also has to

fulfill that the new model with the added beads has a better map correlation than

the initial model otherwise the new beads would be relocated into the initial model.

In the end, only the bead model that has better map correlation is accepted. This

model will be used for the following steps.

3.1.4 Calmodulin Test Result

Threshold

The threshold here is used to define the border of the bead model and also the

surface of the protein. As there are multiple ways to define these volumes which

correspond to different constants [85, 87–91], here the one 1.21 Å
3
/Da [85] is one of

the most classic and frequently used value. It was calculated based on the volume

that residues occupy in folded proteins.

For calmodulin, we have the sequence information (Appendix C) and the cor-

responding weight can be calculated according to the element weight. In this

143 amino acids sequence, the overall weight is 16.15 kDa so that the volume

of the atomic structure is 19541.6 Å
3
. With this volume, from our simulated

density map in which each cubic space has a volume of 1 Å
3
, the corresponding

Indexthreshold1 = 19542 can be calculated. By using this index, the ρthreshold2 can

be identified in the sorted density plot, that is 1.295. This value pair index and
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to make the beads positions close to the backbone structure, a higher threshold

than the upper boundary can be more efficient.

Figure 3.4: Calmodulin density threshold. The green dot represents
the ρthreshold2 and Indexthreshold2 pair and the black dot is the ρthreshold1 and
Indexthreshold1 pair. The corresponding density maps are depicted below the
legend dot.

Distance

The empirical average distance between Cα atoms is around 3.78 Å which is a

statistic result from several protein structures from the Protein Data Bank. How-

ever, if this value is strongly enforced while putting the beads, the model in the

end will be too compact. To allow for more freedom, we used a distance interval

between 3.5 to 4.2 Å, which make the bead have more spaces to fit into the map

especially for low resolution data and it corresponding well to our energy function

in the later steps.
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The distance interval has a similar effect as choosing a slightly higher density

threshold. There is a potential relation between the threshold and the average

distance between beads. While choose larger threshold which means smaller den-

sity map scale, the smaller distance we have to use to pack the right number of

beads inside the density and vice verse.

Map correlation

Initially, the density map simulated from the bead model was calculated by Eq. (3.4)

at high resolution so that it can be further filtered to a expected lower resolution.

Here we always generated the map with σ = 0.5, which means the simulated map

has a resolution of 1.45 Å (according to the Rayleigh criterion). Then the map

was filtered to 8 Å, the same as our target map.

After locating the beads with the threshold, the initial bead model has a map

correlation of 0.9593, as considering the distance criterion, there were 41 beads

deleted. While adding new beads, the final better bead model has a correlation of

0.978. The final bead model and the density map are shown in Fig. 3.5.

Although the bead model we get is not exactly the true backbone structure, the

beads well represent the shape of the density map. Before tracing the backbone,

we try to keep the topology of the beads as close as possible to the target map.The

bead model will be further refined in the later steps.
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Figure 3.5: Bead model in density map. The bead model (green) is
enclosed by the density map at 3.3 density threshold. The target backbone is
shown as a yellow trace inside the map.

3.2 The Lin-Kernighan Heuristic using Pseudo-

Cα Atoms

3.2.1 Monte-Carlo for Protein Backbone Tracing

In our case, to trace the backbone, for the beads we have already located, there

are a great amount of configurations we can search in the space. Among all these

different configurations, a lot of local minima exist. To identify the optimum one
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is getting more difficult especially as the number of beads is increasing. To help

the optimization procedure, we decided to use the SA method described above as

the main optimization frame. At the same time, it combines with LK algorithm

making two heuristic together, resulting in a more flexible and powerful method.

As we use the SA method for our backbone tracing, our bead model system has to

fit into the SA four necessary requirements shown previously. Our tracing problem

fit as the following way:

• Initialization: All the beads are randomly ordered and connected. Each

bead is connected with other two beads that are arranged one as the previous

and the other as the next. The starting tour becomes a one direction oriented

tour.

• Modification: Here we do the changes by 2− opt, 3− opt and the k − opt

moves which have been introduced in Section 2.2.2.

• Function: The function here which we aim to minimize is a hybrid energy

that combines with several different energy terms. It can be written as:

Etotal = αElk + βEsse + γEmj + δEdens, (3.6)

in which the Elk is a term used to describe the energy change of the LK

procedure, Esse is a term for the secondary structure energy change, Emj is

a term representing the residue-residue interaction energy called Miyazawa-

Jernigan energy as described below and the Edens is a term describing the

electron density energy change during the optimization. The parameters

combined with these energy are the weighting factors which balance the in-

formation between each other. All these energy terms are further introduced

in the next section.

• Cooling: Our annealing strategy needs some tests before execution. We

randomly generate some tours which give an estimate of the range of values

ΔE. From there, we choose a T value significantly larger than the largest
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ΔE. The temperature will be decreased by 1 or 10 percent from the previous

step depending on different situations. If the energy landscape is relatively

smooth, then we can drop the temperature quickly which also makes the

structure converge fast. Otherwise, we have to slowly lower the temperature

to let them have time and higher chance to jump out of the local minima.

3.2.2 Energy Function

As we have described in Section 2.2, the original LK algorithm is trying to search

the shortest path among all the cities (Cα-positions), then we can easily figure

out that the function need to be minimized is just the total length of a journey.

However, coming back to the backbone tracing problem, we not only need to

search through a large amount of tours to get the correct one which might not

be the shortest of all, but also have to take the protein structure information into

account so that we finally find out the optimum result of backbone but not only the

shortest path. We use those protein structure information to balance the searching

procedure. The purpose of designing this energy function is to quantitatively show

the optimization result. At the same time, each step of the modification will be

directly illustrated by the energy in that state.

The entire energy function can be split into three parts:

Etotal = αElk + βEsse︸ ︷︷ ︸
structure based

+

sequence based︷ ︸︸ ︷
γEmj + δEdens︸ ︷︷ ︸

density based

.

The corresponding functionality is shown with the formula.

• Structure Based:

That means all terms in this group are structure related. Elk focuses on

the local structural information and Esse emphasize more on the protein

secondary structural information.
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Elk: This is a term representing the energy of the LK procedure and it is

written as:

Elk =
n−1∑
i=1

(di,i+1 − daverage)
2 (3.7)

in which i is a index for the beads that currently taken into account, di,i+1 is

the Euclidean distance between two consecutive beads and the daverage is the

average distance between the beads in the current path. It can be calculated

by

daverage =

∑n−1
i=1 di,i+1

n− 1
. (3.8)

The LK energy is a harmonic potential which can be viewed as a distance

restraint between two connected beads. It is the most important energy term

among all the four and the amount of information Elk contributes to Etotal is

weighted by the parameter α as shown in Eq. (3.6). When suppressing all the

other energy, the meaning of minimizing the total energy is ”shorten” this

harmonic potential for the tour and aiming to identify the best structure by

finding out the tour with the lowest potential energy. As the optimization

is running, the daverage is decreasing and the Elk is also converging. This

energy change is attached with the LK procedure that is either 2 − opt or

3− opt moves as we described before.

Esse: This group describes the secondary structure energy of the tour. The

energy is calculated as

Esse =
∑
k

Nk−1∑
i=1

Nk∑
j=i+1

(di,j − dseqij )2 (3.9)

in which di,j is the distance between two beads within the same secondary

structure element and dseqij is the reference distance of the corresponding

Cα atoms in the secondary structure. For each secondary structure in the

sequence (sum over k), the distance between each pair of atoms (di,j) is com-

pared to its reference distance dseqij . The whole energy term is a summation

of two parts one is the helix energy Ehelix and the other is the β-sheet energy

Ebeta. The amount that Esse contributes to the Etotal is controlled by the
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weighting factor β as shown in Eq. (3.6). Those two parts in Esse are cal-

culated in the harmonic potential way by using the reference distance. This

reference distance was introduced by Frederic M.Richards [92]. It was used as

a template to compare with a particular secondary structure type of a model

structure to assign the right secondary structure in the model. The concrete

distances that were used in this work are listed in Appendix A. The table

contains standard Cα-Cα distances information of most secondary structure

types like α-helix, β-sheet and it also has Cα-Cα distances information of

neighbouring β-sheet.

Similar to the LK energy, Esse is also a harmonic potential, which restraint

the secondary structure elements but not the neighbouring two beads. The

optimization procedure will try to converge all the connections within a

local region which is supposed to be the corresponding secondary structure

region.

• Sequence Based:

There is only one term in this group called Emj. The sequence based energy

is meant to include sequence information. The primary sequence information

is usually known when studying a particular protein. At the same time, the

sequence information can be combined with the structure of the bead model

to understand the contact potentials.

Emj: This energy is a term describing the information about the preference

of residue pairs to be within a certain range. The letter ”mj” represents

the inter-residue contact potential calculation method which was introduced

by Miyazawa and Jernigan [93, 94]. They developed a method called quasi-

chemical approximation to estimate the inter-residue contact energies from

a large amount of observed residue-residue contacts (within 6.5 Å) that exist

in crystal structures. This empirical energy function also takes the solvent

effects implicitly into account. Our sequence based energy can make use of

this empirical energy and is calculated by:
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Emj =
∑
i<j

M(ai, aj)Dij (3.10)

in which M(ai, aj) is the Miyazawa-Jernigan (MJ) contact energy [95] be-

tween ai and aj and the energy information is shown in the Table 3.1. This

statistical potential tells how much one amino acid favors the contact with

the other one. Dij is the contact matrix element. It is often used when

describing proteins at a coarse-grained residue level to evaluate the total

conformational energy. The contact was defined according to the Miyazawa-

Jernigan potential: if two amino acids are within 6.5 Å, Dij is 1, otherwise

Dij is 0. Here in our model, the pseudo Cα-Cα distance is considered as

the corresponding amino acid distance. The contribution of the MJ con-

tact energy to the total energy is balanced by the parameter γ as shown in

Eq. (3.6).

Although the Emj was calculated on the base of the sequence information,

it also has to use the structural frame of the beads. The energy term Emj

restraints the connections between beads within a certain range by using

the MJ contact energy. Each time we optimize the connection, we need to

reassign the sequence twice, once from the starting bead to the end and the

other one assign in the opposite direction. The one that has lower energy

potential will be considered for further optimization during the process.

• Density Based:

We have included the structure-based and sequence-based terms for the

whole energy calculation. Those are using information either from the pro-

tein sequence or from the bead structure. None of them is using the density

map information, which provides a lot of useful structural information about

the protein. We therefore devised the last energy term

Edens: The Edens describes the interaction between any pairs of connected

beads, which is defined by the density map information. It is given by the

following formula:



Chapter 3. Results 59

C
Y
S

M
E
T

P
H
E

IL
E

L
E
U

V
A
L

T
R
P

T
Y
R

A
L
A

G
L
Y

T
H
R

S
E
R

G
L
N

A
S
N

G
L
U

A
S
P

H
IS

A
R
G

L
Y
S

P
R
O

P
R
O

-0
.1
8

-0
.1
3

-0
.1
9
-0
.0
5
-0
.1
2
-0
.0
5

-0
.3
7

-0
.2
5

0.
15

0.
02

0.
13

0.
20

0.
17

0.
18

0.
37

0.
33

0.
01

0.
17

0.
47

0.
11

L
Y
S

0.
33

0.
29

0.
19

0.
24

0.
22

0.
29

0.
09

-0
.0
5

0.
41

0.
29

0.
33

0.
36

0.
28

0.
22

-0
.0
6

-0
.0
1

0.
38

0.
66

0.
76

A
R
G

0.
08

0.
03

-0
.0
5

0.
00

-0
.0
4

0.
08

-0
.2
1

-0
.2
5

0.
24

0.
09

0.
11

0.
16

0.
09

0.
10

-0
.2
2

-0
.2
4

0.
05

0.
19

H
IS

-0
.3
6

-0
.2
9

-0
.3
4
-0
.1
3
-0
.1
8
-0
.0
6

-0
.3
7

-0
.3
0

0.
07

0.
00

-0
.0
3

0.
04

0.
15

0.
00

0.
00

-0
.1
0
-0
.4
0

A
S
P

0.
12

0.
30

0.
18

0.
22

0.
27

0.
36

0.
07

-0
.0
7

0.
27

0.
11

0.
11

0.
10

0.
24

0.
02

0.
44

0.
29

G
L
U

0.
20

0.
12

0.
14

0.
17

0.
17

0.
26

-0
.0
0

-0
.0
8

0.
38

0.
32

0.
16

0.
18

0.
27

0.
12

0.
46

A
S
N

-0
.0
1

0.
04

-0
.0
1

0.
14

0.
04

0.
12

-0
.1
0

-0
.1
1

0.
15

-0
.0
1

0.
04

0.
09

0.
06

-0
.0
6

G
L
N

-0
.0
7

-0
.0
6

-0
.1
1
-0
.0
1
-0
.0
4

0.
08

-0
.0
2

-0
.1
4

0.
22

0.
13

0.
12

0.
22

0.
20

S
E
R

-0
.1
3

0.
05

-0
.1
2

0.
03

-0
.0
2

0.
04

-0
.0
1

-0
.0
8

0.
10

-0
.0
1

0.
04

0.
05

T
H
R

-0
.1
5

-0
.1
1

-0
.1
5
-0
.1
5
-0
.1
5
-0
.0
7

-0
.0
2

-0
.0
9

0.
04

-0
.0
4

0.
03

G
L
Y

-0
.3
1

-0
.1
7

-0
.1
9
-0
.1
3
-0
.1
6
-0
.1
5

-0
.2
5

-0
.2
2

-0
.0
8
-0
.2
9

A
L
A

-0
.3
3

-0
.2
7

-0
.3
6
-0
.3
7
-0
.3
8
-0
.3
2

-0
.2
7

-0
.2
0

-0
.1
2

T
Y
R

-0
.3
9

-0
.5
6

-0
.5
8
-0
.4
9
-0
.5
5
-0
.3
8

-0
.4
9

-0
.4
5

T
R
P

-0
.6
6

-0
.7
3

-0
.6
8
-0
.6
0
-0
.6
2
-0
.5
1

-0
.6
4

V
A
L

-0
.5
9

-0
.5
1

-0
.6
7
-0
.6
7
-0
.7
4
-0
.6
5

L
E
U

-0
.6
5

-0
.7
0

-0
.8
0
-0
.8
1
-0
.8
4

IL
E

-0
.6
4

-0
.6
6

-0
.7
3
-0
.7
4

P
H
E

-0
.6
7

-0
.8
3

-0
.8
8

M
E
T

-0
.6
1

-0
.7
0

C
Y
S

-1
.1
9

Table 3.1: Contact energies derived from protein crystal structures.
The smaller the score, the more frequent is the contact observed in the Protein
Data Bank.
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Einter =

⎧⎪⎨⎪⎩
1 ρinter > ρcutoff

0 ρinter <= ρcutoff

(3.11)

Edens = 1−
∑n−1

i=1 Einter(i)

n− 1
(3.12)

in Eq. (3.13) the ρinter is the density interpolated along the connection be-

tween two beads. The value was interpolated by the method of trilinear

interpolation which is shown in the Appendix. B. Einter is the density en-

ergy term assigned to that corresponding pair of beads. If the interpolated

density value is greater than the ρcutoff , then the density energy is set to 1,

otherwise it is equal to 0. The ρcutoff is set as the same value as the threshold

when locating the beads. The energy here only represents the binary energy

of a certain point which either informative or none. The virtual energy Edens

that used to describing the edge is calculated by Eq. (3.14) which gives the

average value of the interpolated points subtracted by 1. The amount of

information it provides to the Etotal is weighted by the factor δ as shown in

Eq. (3.6).

The way to set up the density energy is shown in Fig. 3.6. In both of A and B,

the red circles represent the beads that we placed into the density (depicted

by the curved blue lines), so when the density values are always above the

cutoff, the Einter will be 1. The blue and green circles which evenly distant

(1Å) and distributed between them are the interpolated points along the

vector of these two beads. In panel A, it is shown that when the interpolated

points are staying outside the density, the Edens =
5
7
and panel B shows when

all beads stay in the density map then Edens = 0. The more interpolated

points are outside the density map, the higher the density energy will be.

This energy value is always in the interval [0, 1).

The density energy restraint are used to restraint the connections with higher
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Figure 3.6: Density restraints. The red circles represents the beads located
in the density (blue curves) and the blue and green beads represents the in-
terpolated points along the corresponding vector between the red circles. The
number on top of the beads are the Einter values.

density energy. Fig. 3.7 exemplifies the effect of applying the density re-

straints. State A has a higher density potential, with applying the density

restraints during the optimization, it tends to choose those connections with

lower density potential which fits better into the density map.

Figure 3.7: Effect of Density restraints. The red circles represent the
beads. Dotted lines are the connections that cross the density map and the
solid lines are the connections that stay inside the density map.
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3.2.3 Calmodulin Test Result

• LKH Test with Correct Cα-Positions

2-opt Move Only

To test the ability of the LK algorithm to generate the correct path with

a collection of pseudoatoms, we take the Cα atoms from the calmodulin

crystal structure and use this correct Cα atoms as a first test model. As all

the Cα-atoms stay in the right positions, in the energy function Eq. (3.6),

we only use the LK term and set all the other terms to zero. That means

only the LK algorithm has an effect during the optimization procedure. To

test the LK algorithm, 2 − opt move was used as the fundamental step, we

try to use 2− opt move alone to solve the trace.

With the derived perfect Cα positions, we make 200 independent optimiza-

tion runs. For each single test, 5 million iterations of optimization was

implemented and all starting structures had the same initial connections.

From all the 200 tests, we chose the structure with the lowest energy. The

energy of these assemble of structures range from 0.000414 to 1.947 with a

mean value of 0.897 and variance at 0.165 and the RMSD value between 0

and 16.846 with mean value at 11.213 and variance at 10.29.

According to the 200 tests, all the tests can find out the correct trace, how-

ever in each test the hit rate is about only 1.5% that means about 3 of

200 can reach the target energy which calculated from the perfect backbone

trace. Comparing with the target structure, the topology score is 1 and

RMSD value is 0 that means these traces are identical to the target. On

average, it took 2.097s for one test run and the typical energy and RMSD

change was shown in Fig. 3.8. The plot shows the optimization processes in

which correct trace was figured out. The energy decreases gradually, how-

ever, the RMSD value has larger fluctuations comparing with the energy

change. 2-opt move can optimize fast and the energy converges also quickly.
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Although the 2-opt alone can find the optimum structure in the end, the

efficiency is still low even for the perfect Cα positions. As the starting models

have the same connections for all the 40000 runs, there is not adequate

randomness and the sampling result is not sufficiently general.
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Figure 3.8: Energy and RMSD change during the path optimization.
The left Y axis shows the energy value (red) and the right Y axis gives the
RMSD value.

3.2.3.1 Further Optimization

The 2-opt move itself can find the correct backbone trace in a short time.

However limitations still exist. In the 2-opt move, even though everything

was completed based on the perfect Cα positions, the successful rate to get

the right trace is still low and the majority of solutions are distant from the

correct structure. Additionally, each single test run starts with the same

connection which also limited the sampling space.
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All these limitations because the structures got trapped in local minima

which are difficult to jump out of to reach the global minimum. It is schemat-

ically shown in Fig. 3.9, the configuration A was stuck in the local minima

state which is still far away from the global optimum configuration B. To

make the entire optimization processes work more efficient, we add a few

more points from which we could get some improvements to our algorithm.

Figure 3.9: Schematic energy landscape. A is the staring energy state
which jumping to the intermediate state and then converge to the global mini-
mum state B.

Random restart

2-opt move alone can converge fast, however in the 200 structures, most

of them (98%) drop directly to a local minimum and get stuck there. To

improve the probability of reaching the global minimum, we add some ran-

domness to the starting model.

The most direct way to improve the optimization procedure is to repeat

the processes with a new random start. In this case, all the local minima

results are independent and this random start makes it possible to reach a

lower energy state of all the local minima distributions. The random restart

methods works well for searching the optimum result, however as the size

of the system is increasing there is also a large number of local minima, it
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becomes more difficult to find the optimum as the probability of finding it

by this random sampling is getting lower and lower [96]. Regarding the size

of proteins, most of the protein sequences has a length less than 300 amino

acids, so random restart is worthful to be tried out.

For each single bead, each test run was started with random connections.

With the random restart method, each search starts from a different energy

state so that test runs are independent from each other and multiple trials

would increase the chance to reach the lower energy state.
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Figure 3.10: Energy convergence by random restart. Energy conver-
gence of five typical successful runs with random restart. Each different color
of the curve correspond to different starting energy state.

In the next step, the 2-opt move was combined with the random restart The

same tests as for 2-opt alone were performed. With random restart, each

single test took 2.456s which is slightly longer than 2-opt method. However,

among all the 200 runs result, the successful hit rate increased to 4.5% which

is about 9 correct structures. The energy distribution of these two tests are

shown in Fig. 3.11. The energy distribution from the method with random

restart is slightly shifted towards lower values. It shows that more structures

converged to a lower energy states than the structures from 2-opt alone. The
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to undo the perturbation. If it does, then the procedure will return back to

the local minimum state from where it just came. The easiest way would

be making some exchanges to perturb. However, if the perturbation is too

strong which means a large number of exchanges, it will behave similar as the

random restart in which better solution may be found with low probability.

If the perturbation strength is too small like the basic 2− opt move, then it

will easily move back to the local minima which will limit the search efficiency

for the global minima structure.

As the optimization procedure always consists of structured sequential changes,

the perturbation should better not be applied in a sequential way, because

the aim is to transform a local optimum into a good start for further op-

timization. The original LK paper [65] introduced the first non-sequential

exchange which is a 4 − opt move as shown in Fig. 3.12, the left figure de-

picts the 4 − opt move in the real way and the right one shows it in the

circle way. This perturbation procedure can be seen as two 2 − opt moves,

however different from the 2− opt move, the first step breaks the connection

and the second step reconnects from other location to make a full path. The

perturbation is generated randomly.

Figure 3.12: 4 − opt perturbation. The dotted lines were deleted and re-
placed by the solid blue lines. The right panel shows the circle style of the left
path and dotted red line are deleted and replaced by the solid blue lines.
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This perturbation can not be undone by the 2 − opt, 3 − opt or LK and

it can change the topology dramatically by the two set distant exchanges.

Additionally, this change does not increase the length of the tour that much

so it still in a good state.

To test the method combined with perturbation, we also made the same runs

as before. Differently from before, as the structure reaches a minimum after

a given number of iterations, non-global minima structures will be perturbed

and a further optimization is done without any random restart. If random

restart would be reused here, then the perturbation effect would be killed.

After adding the perturbation method, each single run took about 3.135s

which is a bit longer than before. However the success rate increased dra-

matically from 4.5% to 24.5%, the mean value of the energy distribution was

0.359 with a variance of 0.082. In Fig. 3.13, the plot shows perturbation ef-

fect on the perfect Cα positions. Most of the energy values shifted to the left

which means a number of higher energy models were optimized to a lower

energy states. With the perturbation, the energy would jump up to a higher

energy level and was further optimized from there. Panel B exemplifies the

energy change of one successful run with perturbation. After perturbation,

the energy quickly dropped and converged to the global minimum state.

MC-SA

Perturbation plays a positive role during the optimization process, however, a

success rate of 24.5% is low still. The reason for this is that the configuration

space of the tours is large and an exhaustive search would result in a low

probability to hit the correct one.

The aforementioned MC-SA (Section 2.2.3) is a method used for the global

optimization problem. It is trying to make a good approximation to the

global optimum while searching in a large space. It can find an optimum or

near optimum solution within a reasonable time range.
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Figure 3.14: Tracing with perfect Cα positions. The left panel shows
the starting model with random connections (in red). The optimized model
(yellow) is shown on the right panel.

• LKH Test with Bead Model

The LKH algorithm works well with the perfect Cα positions. However, in

the real case, the beads can not be placed exactly at the right Cα positions

especially for the low resolution data, so we have to test the algorithm with

our unprecise bead model. With the aforementioned bead placing method,

we also generate 200 bead models and for each of them the same LKH test

as for perfect Cα model was performed. For each model we make 200 runs,

among all those structures, we pick out the one with the lowest energy. The

value of Etotal was ranging from 0.321 to 0.666, with a mean value of 0.398

and variance of 0.004. The corresponding RMSD values calculated between

the lowest energy model and our target model was ranging from 5.6 to 16.47

Å, with a mean value at 9.26 Å and standard deviation at 6.58 Å
2
. In

Fig. 3.15, the pair value of RMSD and total energy of one protein model

was plotted. There is a correlation between the RMSD value and the total

energy in which here is only the LK energy and its value is 0.428. The model

which has the lowest RMSD value 5.6 corresponding to the total energy 0.399

which is close to the lowest energy.
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Figure 3.15: RMSD and total energy correlation. The black dots show
the value pair of RMSD and total energy. The red line gives the correlation
between them. The model with the best RMSD value was highlighted as red
dot.

From all the optimized trace models, we choose the one with the lowest

RMSD value to check the detailed information of the structure. The topology

score is 1 which means topologically the ”best” model is correct as our target.

However, if we look into the detail of the structure as shown in Fig. 3.16,

irregular connections still exist. In Fig. 3.16, the Panel A shows the best

model and the target structure together with coloring method corresponding

to the order of the residue. The topology match can be checked from the

color coding. Two major wrong connections from two different domains are

listed in panel B and C. The green ribbon showing the correct trace and the

black one represents our resulting model. Those are the main affections of

the quality of the final result.
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• Structure based—Secondary structure energy

Secondary structure introduced in Section 1.1.1, as the very first level of

protein structure which offers the three dimensional information, it can be

used to provide useful geometry information.

We designed a structural based secondary structure energy term:

Esse =
∑
k

Nk−1∑
i=1

Nk∑
j=i+1

(di,j − dseqij )2

The energy calculation is based on the fluctuations between the pairwise

atom distances belonging to the same secondary structure element (SSE),

with respect to the reference values. Then this energy term is normalized by

the total number of atom pairs appearing in the energy.

To get the secondary structure information, the result can be directly calcu-

lated with DSSP [97] if crystal structure is available. Otherwise, there are

a several tools such as PSI-pred [78], JPRED [98], PREDATOR [99] and

YASSPP [100] etc. The best modern SSE prediction method is reported to

reach about 80% accuracy. With such a high accuracy, model building with

the prediction information would be very helpful.

For our calmodulin test, we use PSI-pred to predict the SSE information

from the sequence. The predicted result can be see from Appendix D and

it is almost the same as the DSSP result if we only consider the helix and

β-sheet information.

SSE energy tests first was implemented with the bead model alone, then we

take out the one with the lowest energy which only contains the Esse that

means the configuration contains the secondary structure that is closest to

the target structure. We made a topology comparison between the lowest

energy model and the target structure as shown in Fig. 3.17. This model has

a RMSD value of 24.4 Å as most of connections were broken and reconnected

with distant bead. Although the structure seems messed up entirely as shown
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in Fig. 3.17 A, if we check the detail information especially the secondary

structure, several local sections of the model are optimized well and match

to the corresponding target secondary structure. From the target sequence

(Appendix D), eight segments of secondary structure were identified by the

prediction and 5 fractions of them were figured out after optimization. The

distortions of the SSE in the optimized model came from the unprecise bead

positions.

� �

�

�

Figure 3.17: Effect of SSE energy. The A panel shows the optimized model
(red) and the target (green). In B, three helices with the number corresponding
to the number in A.

As the SSE energy alone has a beneficial effect in sampling the structures

which have better SSE, so we combine it with the basic LK energy and inves-

tigate how they work together. To check that, for the two weighting factors

α and β in Eq. (3.6), we chose two sets of different values and test with

the bead model. As shown in Fig. 3.18, the best RMSD value approached

when using larger α and smaller β. The LK energy dominates the optimiza-

tion procedure and SSE energy would have an effect for localizing secondary

structure regions. High weight for the SSE alone would not converge to a

good structure. The best result was obtained with α = 1.0 and β = 0.1.
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calculation time of the first point so that the efficiency of this procedure is

lower.

• Sequence Based—Miyazawa Jernigan Energy

As the SSE energy term depends strongly on the secondary structure predic-

tion, in cases when those predictions of SSE is not accurate, the optimization

process could be easily guided to the wrong direction. In that case, using

the SSE energy term is not recommended.

For this reason, we designed the SSE free energy term which is a sequence

based energy. Sequence based energy, just as the name implies, is an energy

term based on the sequence content which is the primary information of the

protein. Although it is also based on a structure frame, it is independent of

any regular structure patterns. Our energy function was designed as:

Emj =
∑
i<j

M(ai, aj)Dij

The energy calculation is based on the MJ contact energy Eq. (3.2.2). This

energy shows how well certain amino acid pairs favor the interaction within

a certain distance.

An initial test was performed only using the MJ energy term. The model

with lowest MJ energy -46.07 was picked and is shown in Fig. 3.19, most

of the connections seem rather random. It looks a bit similar to the SSE

energy result, however, the SSE energy effects are gone and substituted with

local connections mostly. As shown in Fig. 3.19, most of connections are

converged to a local area and the those long connections which span over

two domains as in the starting model in Fig. 3.14 do not exist anymore.

However, the right topology of a protein structure is still away from that.

If we put the density map together with the models, clearly there are some

connections cross through the density and leave most of the bonds outside

the map.
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independent of any sequence or structure information. It can be calculated

as:

Einter =

⎧⎪⎨⎪⎩
1 ρinter > ρcutoff

0 ρinter <= ρcutoff

(3.13)

Edens = 1−
∑n−1

i=1 Einter(i)

n− 1
(3.14)

It is weighted by a factor δ as shown in Eq. (3.6). This energy term pro-

vides a pseudo—energy between pairs of beads. For this calculation, several

pseudo—grid points are interpolated by the trilinear interpolation method.

Afterwards, the pseudo—energy would be accumulated to represent the en-

ergy for the connection between two beads.

By importing the density map, we aim at removing the wrong connections

that should not show up where there is no density between the beads. To set

this up, we have to define a certain region so that the beads can recognize

where the density information needs to be considered. For that, we specify

a density threshold and the way to calculate this threshold is introduced

in Section 3.1.1. As in the other tests, the density energy term was first

implemented alone to analyze its effect and the density threshold for the 8

Å calmodulin map is Section 3.1. The optimized bead model and the target

were shown in Fig. 3.21.

As shown in Fig. 3.21, similar as the MJ energy result, all the connections

are fined into the local regions and differently, there is no connection which

span over the undefined density area. The final model contains only the

connections that are inside the density.

To check how the DENS energy Edens works in combination with the main

LK energy, we made the tests with the two terms together. The factors α

and δ, were set to the same value as for the SSE and MJ energy terms , as

described above. The best RMSD value was 6.8 Å its final energy was 1.165
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3.3 Refinement

All the previous sections described the methods we used for the tracing algo-

rithm. To further improve the resulting model, we need to do a refinement of

the connected beads. There are mainly two parts where we can consider to do

refinement: One is the bead positions refinement and the other is the refinement

after the optimization which is the final refinement.

3.3.1 Bead Refinement

The bead refinement here is different from that in Section 3.1.3 which focuses

on refining the beads to better positions. The bead refinement here emphasizes

more on refining the beads on the whole energy landscape and making the entire

arrangement of the beads easier for the tracing algorithm.

Here we move the beads into the spatial central axis of the corresponding density

segment by using Direx which was introduced in Section 2.3.1. Here the map

values were scaled by

ρdens = ρdens − αρcurrentmap. (3.15)

The bead model was refined to the scaled map ρdens. By this, the beads tend to

move to the center of the density map and it ended with the beads lined up in the

density. However, this refinement step would not consider the distance restraint

we added in Section 3.1, that means even some beads may even clash together .

We use the real absolute distance difference instead of harmonic potential for the

LK energy term. This makes the LK optimization the same as the TSP.

The rational idea behind this method is that by implementing this refinement the

lined beads would have a smoother energy landscape than it has before. This

makes it much easier for the optimization to find the optimum result.
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3.3.2 Final Refinement

The previous sections introduced all the optimization procedures, after that we

pick out the best structure from the ensemble of tours. However the best tour

may not have the best Cα backbone, because the bead positions are not perfect

and some local areas are not in the correct topology state either. To improve the

geometry of the tour, we need to perform one more refinement step.

We refined the optimized tour with Direx which is combined with the secondary

structure restraints. The distance information for the secondary structure re-

straints is the same as the distances used for the energy term Esse, as is shown

in Appendix A. This refinement is based on the secondary structure assignment

for which we use the program DSSP [97]. The assigned secondary structure infor-

mation is combined with the distance information and used in Direx refinement.

All the distances within the helices and β-sheets are restrained by the standard

distances.

This final refinement focuses on the topology refinement locally by applying the

secondary structure information. The structure after this final refinement has a

correct topology which fits better to the density map than it does before.

3.3.3 Calmodulin Test Result

3.3.3.1 Bead Refinement

In our calmodulin test, we use the beads generation method described in Sec-

tion 3.1. Afterwards, the beads were refined by DireX according to the method

introduced in Section 2.3. The Direx refinement here was aiming to move the

beads to a relative higher density region. By setting the perturbation factor to a

large value of 0.3, DireX would allow the bead to make a large movements which

are then corrected by the CONCOORD restraints . At the same time, the density

difference factor α in Eq. (3.15) was set to 0.3. After 10 of steps DireX refinement,
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fit with the MJ energy and the secondary structure energy anymore. Therefore

during the optimization procedure, only the LK energy term was used. After

tracing with our algorithm, the random beads were threaded with a trace which

has the shortest connections as shown in Fig. 3.24 C. The RMSD value dropped

from 24.4 Å to 4.7 Å comparing with the target backbone structure. The topology

score between the best trace and the target protein backbone is 1, which means

they were topologically identical.

3.3.3.2 Final Refinement

From the aforementioned results, the beads after being processed by LK optimiza-

tion alone and processed by DireX refinement first and then LK optimization are

both topologically correct. However neither of them had the correct backbone

structure, especially for the model after the bead refinement in which the tracing

result was just a single string like structure. None of them showing a proper pro-

tein structure as shown in Fig. 3.25 B and C and model B and C had a RMSD

value of 4.6 Å and 4.7 Å respectively.

The aim of the final refinement is trying to refine the bead model as close as possi-

ble to the target structure based on the correct topology. The inaccurate positions

of the beads is responsible for the model distance from the target structure, which

does not show a proper protein structure. The final refinement accomplishes this

by refining the bead positions with DireX.

To refine a model closer to the target, the secondary structure information is very

useful for DireX. The secondary structure was predicted by PSIpred using the

primary protein sequence (Appendix C) as the only input. The predicted result

shows which segment in the protein belonged to which secondary structure element

as shown in Appendix D. Based on the predicted secondary structure information

and the standard Cα-Cα distances shown in Appendix A, a file containing the

distance restraints for all the secondary structure elements were produced and

formatted as shown in Appendix E. It was used as the distance restraints input

file for the DireX refinement.
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Figure 3.25: Comparison of optimized model and target. Panel A shows
the target backbone structure (green); Panel B is the model after optimization
with entire energy function (red); Panel C shows the model from DireX refined
first and then optimized result (red).

Figure 3.26: Comparison of refined models with target. Panel A shows
the target backbone structure (green) and the refined model (red) from model
B in Fig. 3.25; Panel B shows the target (green) and the refined model (red)
from model C in Fig. 3.25.
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Our DireX refinement was implemented on both model B and C as shown in

Fig. 3.25 with the same set of secondary structure restraints. The refined result

was shown in Fig. 3.26. The RMSD value between the two structures in A of

Fig. 3.26 is 2.97 Å and in B of Fig. 3.26 was 3.29 Å. The RMSD values were

improved by 1.612 and 1.416 Å respectively. The map correlation is 0.93 and 0.937

for the two models. Structurally, both of them became better and the secondary

structure elements showing the right pattern and stay closer to the target.
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3.4 Optimization Protocol

In the previous chapter, we introduced all the methods that have been used in our

tracing algorithm. To test our algorithm with different systems, we generalized

the protocol. It includes three parts: initialization, optimization and refinement.

The whole process is depicted in Fig. 3.27.

In general, the initialization step contains the procedures to process the map and

generate the beads. The refinement step includes the refinement of the beads which

is implemented before the optimization and the final refinement of the topology

happens after the optimization. The optimization is the core algorithm which

is the combination of LK and MC-SA as we described in the method part. In

Fig. 3.27, these three different sections are highlighted in different colors.

Initially, the input density map is processed and then each bead which represent

one amino acid is placed into the processed density map. Afterwards, the bead

locations are refined either slightly or more aggressively to the central axis of

the density segments. Refined beads are directed as input for the LK-MC-SA

optimization. After a certain number of optimization steps, one optimum result is

picked out of the ensemble of structures. This optimum structure is further refined

using the predicted secondary structure information with Direx.
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Figure 3.27: Tracing Protocol. The yellow background stands for the initial-
ization,blue color highlight the refinement and the gray means the optimization
procedure. The density map is shown in gray and stylized as transparent and
balls inside represent the beads.
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3.5 More Test Cases

As a test model, calmodulin has been used for tests in different situations. How-

ever, to demonstrate that our protocol can be widely applied, we did several ad-

ditional tests with other proteins. For these tests, we chose our target structures

according to the protein classification defined by CATH [101]. In CATH, protein

structures are classified by their secondary structure composition. The three main

groups are structures that mainly contain α-helix, β-sheet and a mixture of α-helix

and β-sheet mixed.

According to the CATH classification, we selected 6 structures in total, 2 for each

class. The results of each part are shown in the following sections.

3.5.1 α-Helical Structures

In this category, the two structures we selected from the PDB were 1AEP (PDBID)

and 4GOW (PDBID). 1AEP is an apolipoprotein which isolated from the African

migratory locust Locusta migratoria [102]. It consists of five long α-helices con-

nected by short loops. The target structure was determined by XRC to a resolution

of 2.5 Å. 4GOW is also a calmodulin which is in charge of regulating voltage-gated

potassium channels. It was determined by X-ray crystallography at the resolution

of 2.6 Å [103]. Both 1AEP and 4GOW are composed of α-helical elements. In con-

trast to 1AEP, 4GOW has a structure with short helices which are closely packed

to each other. Comparing with our calmodulin test model, 4GOW is a binding

protein which does not contain the short β-sheet segment as in the test structure.

Additionally, in the structure of 4GOW, there is a small gap between residue 78

to 81 while are missing, which is also visible in the original density map. Both

target structures are shown in Fig. 3.28.

For both of these two helical structures, we simulated their density map at a res-

olution of 8 Å as shown in Fig. 3.28. With the density map, the corresponding

backbone density threshold could be calculated as described in Section 3.1.1. The
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Figure 3.28: α-helical targets. Panel A shows the 1AEP target structure
(green); Panel B shows the 4GOW target structure (purple). The red dashed
line in B marks the gap between residue 78 and 81.

density threshold for 1AEP and 4GOW were 2.41 and 2.53 respectively. Corre-

sponding bead models were generated using these values and the bead models are

shown in Fig. 3.29.

Figure 3.29: Bead models for α-helical structures. Panel A shows the
bead model (red balls) for 1AEP and the target backbone trace (green); Panel
B shows the bead model (red balls) for 4GOW and the target backbone trace
(green).
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of Fig. 3.31. After refinement, both of the models had distinguishable α-helices

showing up when imposing the α-helical distance restraints. Although both models

improved after DireX refinement, there was still a considerable shift between the

trace and the correct backbone structure, which means the bead positions were

not correctly assigned inside the density map.

3.5.2 β-Sheet Structures

For the β-sheet tests, the two structures we selected from the PDB were 1DC9

(PDBID) and 3EMM (PDBID). 1DC9 is a rat intestinal fatty acid binding protein

which contains a β-barrel fold. The original protein has 131 amino acids and to

make it fit into the β-sheet group we shorten the sequence to 98 amino acid. The

structure was determined by XRC at the resolution of 2.1 Å [104]. 3EMM is

a protein from a Arabidopsis thaliana gene, it is a heme binding protein. The

structure was also determined by XRC at the resolution of 1.36 Å [105]. To fit

the structure into the β-sheet group, the 160 amino acid original sequence was

shorten to 143. Both target structures contains mostly β-sheet except for a few

turn regions which connect the β- sheets. The structures are shown in Fig. 3.32.

As introduced in Table 1.1, β-sheets can be built reliably at a resolution higher

than 4Å. For the 5 Å resolution maps, the density for the parallel β-sheets may

have severe overlap, which may lead to artifacts while placing the beads. To

make the β-sheet density relatively clear and distinguishable between parallel β-

sheets, we simulated the density map for both structures at the resolution of 4.5

Å, which is not a good resolution for β-sheets structure but it is still possible to

trace the backbone. Both maps were shown together with their target structures

in Fig. 3.32.

The beads were supposed to be put over the backbone density. However, the

density threshold we chose would also including some side chain density so that

beads might be located in some big side chain density blobs. For those beads, we
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Figure 3.32: β-sheet targets. Panel A shows the target structure of 1DC9
(pink); Panel B shows the 3EMM target structure (cyan). Both targets were
stay inside their corresponding 4.5 Å simulated density maps.

checked with Chimera [106] and manually moved them from the side chain regions

to the main chain area. Both bead models are shown in Fig. 3.33.

Figure 3.33: β-sheet bead models. Panel A shows the bead structure of
1DC9 (red) and the target backbone (green); Panel B shows the 3EMM bead
model (red) and its target backbone (green).

During the optimization with the LK energy alone, the typical wrong connection

as seen in the α-helical tests happen more frequently in the β-sheet tests. There
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be determined easily. The backbone trace was shown after deleting the three

additional beads.

After adding the restraints, the beads could be connected straightly following the

β-sheet density as the connections between neighbouring sheets have lower chance

to be chosen comparing with the connections lying inside the density. The RMSD

value for 1DC9 and 3EMM decreased from 17.1 Å and 20.4 Å to 3.7 Å and 4.3

Å respectively. At the same time both backbone models have the topology score

as 1. After DireX refinement with the SSE restraints (Appendix G), the RMSD

values dropped to 3.1 Å and 4.2 Å.

Comparing with the α-helical tests, β-sheets group did not have a better improve-

ment according to the RMSD change. The main reason is the side chain density

would have a side effect on moving the bead during the refinement especially for

the map at resolution of 4.5 Å. At the same time, as the distance restraints i are

rigid, some beads came out of the density as there was not enough density to fit

all beads.

3.5.3 α and β Structures

To further demonstrate the performance of our tracing algorithm, in addition to

α-helical and β-sheet tests, we also examined our methods with the α-helix and

β-sheet mixed structures. Two structures 201L (PDBID) and 3QDD (PDBID)

were selected from the PDB. 201L is a T4 lysozyme protein in charge of breaking

bacterial cell walls. The 2.0 Å structure was determined by XRC method [107]. It

contains 155 amino acids with 62% helical elements and 9% β-sheet. 3QDD is a

protein functioning as an inhibitor of heat shock protein 90. The structure which

has 203 amino acids was determined by XRC at the resolution of 1.79 Å [108]. 39%

of the structure are composed by helical structure and 20% are β-sheets. Both

structures are shown in Fig. 3.35.
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Figure 3.35: α and β mixed targets. Panel A shows the target structure
of 201L (blue); Panel B shows the target structure of 3QDD (purple).

As these structures are α-helix and β-sheet mixed, the resolution of the simulated

density maps should be a compromise between only α-helical structure and only

β-sheet. Otherwise, the β-sheet density would be tangle together. For this reason,

we simulated the density map at 6 Å as shown in Fig. 3.35.

With the sequence information (Appendix F), the threshold for 201L and 3QDD

were determined at 2.9 and 2.41 respectively. In the same way as we did for the

other tests, beads were placed according to their corresponding threshold and the

number of beads was set to the number of amino acids in the sequences. Bead

models are shown in Fig. 3.36.

With the random connections, the starting bead models for the two structures

had RMSD values as 22.1 Å and 21.0 Å respectively. The correct topology was

determined by running through the tracing algorithm as shown in A of Fig. 3.37.

After optimization, the RMSD values dropped to 4.6 Å and 8.9 Å for 201L and

3QDD separately. DireX refinement further decreased the corresponding RMSD

values to 3.2 Å and 3.8 Å.

Although the shift problem as in the other tests also happened here, as each seg-

ment of the secondary structure was not as long as the other tests, the shift effect
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Figure 3.36: Beads model for α and β mixed structures. Panel A shows
the bead model (red balls) and the target structure of 201L (green); Panel B
shows the bead model (red balls) and the target structure of 3QDD (green).

was less significant than in the previous α-helical and β-sheet tests. Additionally,

at 6 Å any misleading side chain density is affecting the tracing less.





CHAPTER 4

Discussion

CryoEM has been widely used as a powerful tool to determine protein structures

especially for large complexes. However, because protein complexes often show

a significant conformational heterogeneity, the final resolution is limited. As the

number of low resolution data is increasing dramatically, interpretation of these

is still a considerable problem. Currently, most methods focus on rigidly or flex-

ibly fitting the known crystal structure or homology models in the density maps.

Nowadays, the challenge is how to model a protein structure from low-resolution

data without any reference structures.

In this thesis work, we developed a method to build protein backbone models

without knowing any three dimensional information for the low-resolution density

maps. More specifically, the Lin-Kernighan heuristic algorithm, which is used for

solving the Euclidean traveling salesman problem, is used as the main optimization

algorithm. In addition, several modifications to the LKH algorithm were developed

to increase the searching efficiency and a pseudo energy function which acts as a

potential restraints is used to bias the searching process. At the end, from an

ensemble of generated backbone traces, the best fitting ones are extracted.

To determine out the backbone from scratch in the density map, the most intuitive

idea is to identify the characteristic atoms in the density map like Cα-atoms. Here,

we proposed an automated way which is based on the sequence compositions to

102
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determine a density threshold that captures the shape of the protein density. With

the density threshold, pseudo Cα-atoms are placed on the basis of two criteria:

distances and density fit. The placed pseudo Cα-atoms are viewed as a good

descriptor of the overall shape of the density and the protein. However, obtaining

accurate density threshold that define the proper region for protein volume is a

subjective problem. Here we present a method that can automatically determine

a density threshold by using the sequence information. The advantage of our

method here is that it does not require any visual check and therefore can be

used automatically in the program. In addition, by tuning the distance criterion,

pseudo Cα-atoms can be flexibly located within a distance range. An optional

map correlation refinement process can be used to improve the positions of the

pseudo Cα-atoms. Although the pseudo Cα-atoms are not the same each time,

they are still always similar and it would not affect the further investigation.

Given a density map and its corresponding pseudo Cα-atoms, how to make proper

connections between the atoms is the key question. We proposed a method which

is based on LKH that is used for solving the TSP. However, because the back-

bone tracing problem is not a TSP exactly, we added some modifications to the

original algorithm (referred to as MLK), in particular the longest edge identifica-

tion. Meanwhile, to increase the efficiency of the whole algorithm, Monte Carlo

sampling and simulate annealing processes are combined with the LKH. For each

of the optimization steps, random restart, structure heating and perturbation are

also implemented to improve the efficiency.

A calmodulin structure (1S26:PDBID) which is an α and β mixed structure was

chosen as a model to test the whole algorithm. In initial tests implemented with

perfect Cα-atoms, the correct backbone structure can be determined easily. During

the search for the correct trace, models might be trapped in local minima energy

states. By adding the modifications, the starting atom and the ending atom

can be identified directly. The MC-SA and other optimization steps dramatically

increase the success rate of finding the correct trace. The rational idea behind

these methods is to help the structures, which are trapped in local minima, to

escape from these minima.
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Although the algorithm works well with the perfect Cα-atoms, when it comes

to the pseudo Cα-model which means the positions of the atoms are very likely

staying at a inaccurate position, the results are not as accurate any more. The

correct topology still can be determined but the local geometry is not as good as

a normal trace. The reason for this is that the pseudo Cα atoms may not be well

distributed. After searching, beads that close to each other between which there

should not be any bond are connected. That destroy the local geometry and may

even the whole topology.

To address that, we add other three groups of restraints. The first is the struc-

ture based secondary structure restraints which are generated by the predicted

secondary structure information from the sequence. The second is the sequence

based Miyazawa-Jernigan restraint. It is a statistic potential which is defined by

the preferences of amino acids to be in contact. The last one is the density based

restraint which enforces that connections between each pair of pseudo atoms lies

within the density.

By using each of these restraints alone, none of them can yield a correct structure

at the end. However, each of them has their own effect. The secondary structure

restraints has the effect of localizing the secondary structure like pattern in the

protein and the density restraints tend to make connections which stay inside

the density. The MJ restraint is quite depending on the sequence assignment.

It prefers local connections over longer ones but different from density restraints

the connections may intersect with the density. During the optimization, the LK

energy is the dominant ”force” to make the change, its energy term also plays the

main role in the whole energy function. To get a good result, the weighting factor

for LK energy is always large and the weight for the density energy is similar,

but the SSE energy and the MJ energy factors should have small values. Different

restraints have different effects on the models and they bias the searching procedure

in different ways. The resulting models therefore depend on the type of restraints

used. Even though the restraints improve the tracing result, the running time

with all energy terms relatively long. As in each optimization step, the sequence

needs to be reassigned twice to the trace one from the starting to the end and also



Chapter 4. Discussion 105

in the reverse way, because which end of the trace is the first residue is unknown.

In cases where the structure is highly symmetric, it would be hard to determine

the right assignment of the first residue.

Even though the traces often have the correct topology, their local structure is

typically not correct. Therefore structure refinement is needed. From the sec-

ondary structure prediction, a list of secondary structure distance restraints was

generated and used as input for DireX refinement. With DireX refinement, the

backbone traces were further improved and moved closer to the target structures.

Further more, 6 test cases were chosen with different second structure content:

α-helix only, β-sheet only and α and β mixed groups as defined by CATH clas-

sification. Their corresponding density maps were simulated at 8, 4.5 and 6 Å

resolution, respectively. For all the six targets, the correct backbone traces were

found. In the α-helical tests, even small gaps can be correctly connected by our

method. The most problematic test cases were those from the β-sheet group. The

resolution to see well separated β-strands is around 4.5 Å. At such resolution, some

beads might be placed and refined into side chain density. But beads located at

the side chain density can easily end up being connected with beads belonging

to the neighbouring β-strands, which causes intersecting connections and spoil

the topology. Similarly, high density (large) side chains may pull beads from the

main-chain density into the side chain area during the refinement.

After refinement, all the traces get better in secondary structure and move closer to

the target structure. However, the final structures are slightly shifted with respect

to the target in all test cases. As the distances restraints used for refinement are

rather rigid, there can be easily a shift after the refinement if the beads do not

register at the right positions.

Except for the calmodulin tests, all the other examples were tested with noise-

free density maps. The logical next step we need to do is to test our method on

noisy density maps or real experimental data. In addition, we could improve our

bead generation method by better placing the beads, for example by identifying

suppressing the side chain density, especially for the β-sheet structures.



By now, our optimal models were picked by calculating the RMSD to the known

target structure. Although the total energy has a correlation with the RMSD

value, sometimes the lowest energy structure does not have the smallest RMSD

or is even far away from the best RMSD structure. Therefore, our hybrid energy

value can not be used as a golden standard to evaluate the trace. A better method

is required to validate the traces and to efficiently pick the optimal trace from the

ensemble of generated traces.

After picking the best generated Cα backbone trace, the next step is to complete

the atomic model by adding side-chains to the backbone trace. At low- or inter-

mediate resolution (worse than 4 Å) this task is still quite challenging and beyond

the scope of this thesis. If the quality of the backbone structure is very high,

side chains can be placed quite reliably. However, backbone traces obtained from

low-resolution density maps, as discussed in this thesis, are typically relatively

inaccurate, which makes side-chain placement a big challenge.



APPENDIX A

Reference Distances of Cα Atoms

Table A.1: Reference Structure Distances of Cα atoms in α-helix

α-helix

1 0.00 3.75 5.36 5.02 6.11 8.53 9.75 10.43 12.18 14.09

2 15.15 16.32 18.19 19.77 20.85 22.33 24.13 25.49 26.70 28.36

3 30.01 31.27 32.65 34.35 35.84 37.11 38.64 40.30 41.67 43.06

4 44.64 46.20 47.52 48.97 50.61 52.07 53.41 54.95 56.55 57.93

5 59.33 60.93 62.45 63.81 65.29 66.89 68.33 69.72 71.27 72.82

β-sheet

1 0.00 3.75 6.47 9.89 12.94

2 16.28 19.40 22.72 25.87 29.17

3 32.34 35.62 38.81 42.09 45.28

4 48.55 51.74 55.01 58.21 61.48
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APPENDIX B

Trilinear Interpolation

Trilinear interpolation is a method based on linear interpolation but extended to

3D data. In the three dimensional space, trilinear interpolation approximates the

value of an intermediate point (x, y, z) which stay inside the local cubic. It is

frequently used in computer graphics, numerical analysis especially when it has a

volumertric dataset.

The value at each vertex can be denoted by V000, V001, V010 . . .V111. The value at a

certain position (x, y, z) within the cube will be denoted Vxyz and can be calculated

by:

Vxyz = V000(1− x)(1− y)(1− z)

+ V100x(1− y)(1− z)

+ V010(1− x)y(1− z)

+ V001(1− x)(1− y)z

+ V101x(1− y)z

+ V011(1− x)yz

+ V110xy(1− z)

+ V111xyz
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APPENDIX C

Calmodulin Sequence in Fasta Format

>Calmodulin.pdb (#0) chain D/5-147

TEEQIAEFKE AFSLFDKDGD GTITTKELGT VMRSLGQNPT

EAELQDMINE VDADGNGTID FPEFLTMMAR KMKDTDSEEE

IREAFRVFDK DGNGYISAAE LRHVMTNLGE KLTDEEVDEM

IREADIDGDG QVNYEEFVQM MTA
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APPENDIX D

SSE Prediction of Calmodulin

Our SSE information is give by an ASCII text file, with the number of lines equal to

the number of amino acids. Each line defines in which kind of secondary structure

the correspondent atom is. The possible value are H (helix), E (beta strand), C

(coil) and N (not specified)

Here to make it readable, we simplify the line by line form into one line format.

SSE:

CHHHHHHHHHHHCCCCCCCCCCCCHHHHHHHHHHCCCCCCHHHHHHHHHH

HHCCCCCCCCHHHHHHHHHHHCCCCCCHHHHHHHHHCCCCCCCCEEEHHH

HHHHHHHCCCCCCHHHHHHHHHHHCCCCCCEEEHHHHHHHHCC
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APPENDIX E

Secondary Structure Restraints File Template

With the predicated secondary structure result, the distance between each pair

of atoms within the secondary structure elements will be wrote to a secondary

structure restraint file. The file contents are exemplified as the following template:

566

1 2 3.80 1.0 1.0

2 3 3.80 1.0 1.0

3 4 3.80 1.0 1.0

4 5 3.80 1.0 1.0

5 6 3.80 1.0 1.0

6 7 3.80 1.0 1.0

7 8 3.80 1.0 1.0

First line gives the number of restraints in total of this file.

column 1: first atom id

column 2: second atom id

column 3: defined distance in Å

column 4: weight of restraint, that will be multplied with a strength factor

column 5: No meaning yet, but have to be present
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APPENDIX F

Sequences for Further Tests

α-helical group:

>1AEP
NIAEAVQQLN HTIVNAAHEL HETLGLPTPD EALNLLTEQA

NAFKTKIAEV TTSLKQEAEK HQGSVAEQLN AFARNLNNSI

HDAATSLNLQ DQLNSLQSAL TNVGHQWQDI ATKTQASAQE

AWAPVQSALQ EAAEKTKEAA ANLQNSIQSA VQK

>4GOW
QLTEEQIAEF KEAFSLFDKD GDGTITTKEL GTVMRSLGQN

PTEAELQDMI NEVDADGNGT IDFPEFLTMM ARKMKDSEEE

IREAFRVFDK DGNGYISAAE LRHVMTNLGE KLTDEEVDEM

IREADIDGDG QVNYEEFVQM MT

β-sheet group:

>1DC9
DNLKLTITQE GNKFTVKESS NFRNIDNVFE LGVDFAYSLA

DGTELTGTWT MEGNKLVGKF KRVDNGKELI AVREISGNEL

IQTYTYEGVE AKRIFKKE

>3EMM
GTWRGQGEGE YPTIPSFRYG EEIRFSHSGK PVIAYTQKTW

KLESGAPMHA ESGYFRPRPD GSIEVVIAQS TGLVEVQKGT

YNVDEQSIKL KSDLVGNASK VKEISREFEL VDGKLSYVVR

MSTTTNPLQP HLKAILDKL
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Appendix H. Sequences for Further Tests 113

α-helix and β-sheet mixed group:

>201L
MNIFEMLRID EGLRLKIYKD TEGYYTIGIG HLLTKSPSLN

AAKSELDKAI GRNTNGVITK DEAEKLFNQD VDAAVRGILR

NAKLKPVYDS LDAVRRAALI NMVFQMGETG VAGFTNSLRM

LQQKRWDEAA VNLAKSRWYN QTPNRAKRVI TTFRT

>3QDD

QAEIAQLMSL IINTFYSNKE IFLRELISNS SDALDKIRYE

SLTDPSKLDS GKELHINLIP NKQDRTLTIV DTGIGMTKAD

LINNLGTIAK SGTKAFMEAL QAGADISMIG QFGVGFYSAY

LVAEKVTVIT KHNDDEQYAW ESSAGGSFTV RTDTGEPMGR

GTKVILHLKE DQTEYLEERR IKEIVKKHSQ FIGYPITLFV

EKE



APPENDIX G

SSE Prediction Results for Further Tests

The format is the same as we introduced for the calmodulin. To make it readable,

we compressed multiple lines into one line.

α-helical group:

1AEP:

NHHHHHHHHHHHHHHHHHHHCCCCCCCNTTHHHHHHHHHHHHHHHHHHHH

HHHHHHHHCCCCCHHHHHHHHHHHHHHHCCCCCCNNCCHHHHHHHHHHHH

HHHHHHHHHHHHHHHHCCCCCCCCCHHHHHHHHHHHHHHHHHHHHHHHHC

CCC

4GOW:

NNNHHHHHHHHHHHHHHCCCCCCEECHHHHHHHHHHCCNNNNHHHHHHHH

HHHNCCNCCNEEHHHHHHHHHHCNNNNNHHHHHHHHHHNCCNCCNENHHH

HHHHHHHHCNNNNHHHHHHHHHHHNCCNCCCENHHHHHHHHN

β-sheet group:

1DC9:
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Appendix I. SSE Prediction Results for Further Tests 115

NNNEEEEEEECCEEEEEEECCCCEEEEEEECCCCEEEECCCCNEEEEEEE

EECCEEEEEEEECCCNNEEEEEEEEECCEEEEEEEECCEEEEEEEENN

3EMM:

NEEEEEEEEEECCEEEEEEEEEEEEENNCCCNEEEEEEEENCCCNNEEEE

EEEEEEENCCCEEEEEEEECCCNEEEEEEEEECCCCEEEEEEEEEECNCC

EEEEEEEEEEECCEEEEEEEEEECCCNCEEEEEEEEEEN

α-helix and β-sheet mixed group:

201L:

NNHHHHHHHHHNNEEEEEENCCNNEEEECCEEEECNCNHHHHHHHHHNNN

NCNNCCENNHHHHHHHHHHHHHHHHHHHHHNCCCHHHHHHCNHHHHHHHH

HHHHHHHHHHHHCNHHHHHHHHCCNHHHHHHHHCCCHHHHHCHHHHHHHH

HHHHN

3QDD:

NHHHHHHHHHHHHCNNCNCCHHHHHHHHHHHHHHHHHHHHHHHNHHHHCC

NNNNNEEEEEECCCCEEEEEENCNNNNHHHHHHHHHHHHHHHHHHHHHHH

HCCNNHHHHHHHCNHHHHHHHCEEEEEEEEENCCCNEEEEEENCCCNNEE

EENNCCNNCCEEEEEEEENHHHHHHHCHHHHHHHHHHHNCCNCCNEEENN

NNN
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