
Incorporating Relational Data into
the Semantic Web

Inaugural-Dissertation

zur

Erlangung des Doktorgrades der

Mathematisch-Naturwissenschaftlichen Fakultät

der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Cristian Pérez de Laborda Schwankhart

aus Bilbao, Spanien

August 2006

Aus dem Institut für Informatik

der Mathematisch-Naturwissenschaftlichen Fakultät

Gedruckt mit der Genehmigung der

Mathematisch-Naturwissenschaftlichen Fakultät der

Heinrich-Heine-Universität Düsseldorf

Referent: Prof. Dr. Stefan Conrad

Koreferent: Prof. Dr.-Ing. Kai-Uwe Sattler (TU Ilmenau)

Tag der mündlichen Prüfung: 21.11.2006

“[The Semantic Web] is about the data which currently is in rela-
tional databases, XML documents, spreadsheets, and proprietary for-
mat data files, and all of which would be useful to have access to as
one huge database.” [Upd05]

Tim Berners-Lee
Director of the W3C

Acknowledgements

This thesis is the result of three and a half years of work as a research and teaching
assistant at the Databases and Information Systems group at the University of
Düsseldorf. I have to express my gratitude to all the people who made this work
possible.

First of all, I like to express my warmest thanks to my supervisor Prof. Dr.
Stefan Conrad for giving me the opportunity to join his research group and for
encouraging me to realize my ideas on the Semantic Web. I also like to thank
the second reviewer of this thesis Prof. Dr.-Ing. Kai-Uwe Sattler for his interest
in my work and the time for reading and commenting this thesis.

This work would not have been possible without the cooperation and support
of my colleagues and friends at the Institute of Computer Science, who created
a wonderful atmosphere. I thank Dr. Christopher Popfinger, my longtime fel-
low student for the joint studies, research, and activities performed during the
last years in Düsseldorf and Munich. I also thank Dr. Evguenia Altareva, espe-
cially for her patience in sharing an office with me. Additionally, I extend my
compliments to Johanna Vompras, Tobias Riege, Christian Lochert, and all the
remaining people who helped me to have a great time here in Düsseldorf doing
no research.

Guido Königstein and Marga Potthoff supported the realization of this the-
sis through their background help. I would probably have failed without them
because of technical or administrative barriers.

I am also grateful to all the students who helped to mature and realize my
ideas through their work and questions, especially to Yves Thielan, Matthäus
Zloch, and Przemys law Dzikowski.

Last but not least, I want to dedicate this thesis to my whole family,
especially to my parents, who continuously supported and encouraged me from
the very beginning. I would not have achieved anything without them.

Düsseldorf, August 2006 Cristian Pérez de Laborda Schwankhart

iv Acknowledgements

Abstract

The aim of the Semantic Web as promoted by the World Wide Web Consortium
is to enable software agents to access distributed information and to apply infer-
ence rules, so that new knowledge can be deduced. Nevertheless, since the vast
majority of data is still modeled and stored in relational databases, this infor-
mation is out of reach for most Semantic Web applications. Consequently, local
users usually create their own manual relational to semantic mappings or convert
it in a manual, time-consuming, and error-prone process into a corresponding
Semantic Web representation.

In this thesis we present Relational.OWL, a technique to automatically con-
vert a relational database into a Semantic Web representation, enabling Seman-
tic Web applications to access data actually stored in relational databases using
their own built-in functionality. Since the Relational.OWL representation of the
database does not result in objects containing real semantics, we additionally
show how to create mappings from the relational model to a target ontology
using an arbitrary closed RDF query language.

Using current Semantic Web techniques, a formerly relational data item, once
converted to its Semantic Web representation, can neither be identified unam-
biguously, nor be backtracked to its original storage location in the relational
database. We hence introduce the novel URI scheme db for identifying not only
databases, but also their schema and data components like tables or columns,
giving us the possibility to specify the exact and identifying storage location of
any data item in its original data source.

Since sharing information in distributed environments like the Semantic Web
often leads to recurring problems, we finally present the Link Pattern Catalog as a
modeling guideline for problems appearing during the design and implementation
of such information sharing environments.

vi Abstract

Contents

1 Motivation 1
1.1 Contributions . 3
1.2 Outline . 4

2 Background 7
2.1 Relational Databases . 7

2.1.1 Relational Model . 8
2.1.1.1 Relational Data Model 8
2.1.1.2 Relational Algebra 9

2.1.2 SQL . 11
2.2 The Semantic Web . 16

2.2.1 Introduction . 16
2.2.2 Semantic Web Technologies 17

2.2.2.1 RDF . 17
2.2.2.2 OWL Web Ontology Language 22
2.2.2.3 RDF Query Languages 23

3 Bridging the Semantic Gap 27
3.1 Relational.OWL . 28

3.1.1 Motivation . 29
3.1.1.1 Data for the Semantic Web 29
3.1.1.2 Relational.OWL as an Exchange Format 30
3.1.1.3 Peer-to-Peer Databases 32

3.1.2 Relevant Metadata . 34
3.1.3 The Relational.OWL Ontology 35
3.1.4 Schema Representation . 37
3.1.5 Data Representation . 38
3.1.6 Data Overhead in the Data Exchange Process 40

3.2 Relational.OWL and RDF Query Languages 41
3.2.1 Relational.OWL and RDQL 42

3.2.1.1 Selection . 43
3.2.1.2 Projection . 44
3.2.1.3 Set Union . 45

viii CONTENTS

3.2.1.4 Set Difference . 45
3.2.1.5 Cartesian Product 46
3.2.1.6 (Equi-)Join . 47
3.2.1.7 Discussion . 48

3.2.2 Relational.OWL and SPARQL 49
3.2.2.1 Selection . 49
3.2.2.2 Projection . 50
3.2.2.3 Set Union . 51
3.2.2.4 Set Difference . 52
3.2.2.5 Cartesian Product 53
3.2.2.6 (Equi-)Join . 54
3.2.2.7 Discussion . 55

3.3 Relational to Semantic Mapping 56
3.3.1 Requirements . 56
3.3.2 Definitions . 57
3.3.3 Mapping Process . 58
3.3.4 Characteristics . 59
3.3.5 Classification . 60
3.3.6 Sample Mapping . 61
3.3.7 Evaluation . 62

3.4 Related Work . 63
3.5 Discussion and Future Work . 65

4 A Novel URI for Databases 67
4.1 Motivation . 67
4.2 Challenges Designing an Identifier 69
4.3 Model . 70
4.4 Example . 72

4.4.1 XML Data Exchange . 73
4.4.2 Relational.OWL Representation of a Database 74

4.5 Related Work . 77
4.6 Discussion and Future Work . 77

5 Applications 79
5.1 Relational.OWL Implementations 79

5.1.1 Relational.OWL Application 80
5.1.1.1 Introduction . 80
5.1.1.2 Usage . 81

5.1.2 Relational.OWL with XSLT and XQuery 84
5.1.2.1 Introduction . 84
5.1.2.2 Implementation 85

5.2 RDQuery . 86
5.2.1 Introduction . 86

Contents ix

5.2.2 Query Translation . 87
5.2.3 Usage . 89

5.3 D́ıgame . 90
5.3.1 Motivation . 90
5.3.2 D́ıgame Architecture . 92

5.3.2.1 Basic Functionality 92
5.3.2.2 Components of the Architecture 94

5.3.3 Characteristics . 96
5.3.4 D́ıgame System Design 99
5.3.5 Related Work . 100
5.3.6 Discussion and Future Work 102

6 Link Patterns 105
6.1 Introduction . 105
6.2 The Data Link Modeling Language (DLML) 106

6.2.1 Motivation . 106
6.2.2 Components . 107
6.2.3 Example . 109

6.3 Link Patterns . 110
6.3.1 Elements of a Link Pattern 110
6.3.2 Classification . 111
6.3.3 Usage . 112

6.4 Link Pattern Catalog . 113
6.4.1 Elementary Link Patterns 114
6.4.2 Data Independent Link Patterns 115
6.4.3 Data Sensitive Link Patterns 116

6.5 Example . 118
6.6 Related Work . 120
6.7 Discussion and Future Work . 120

7 Conclusion 123

Bibliography 125

List of Figures 144

List of Tables 145

x Contents

Chapter 1

Motivation

With billions of static pages, the World Wide Web (WWW) is probably the
largest information repository of the world. To this, we have to add the data
of the deep or hidden web [Ber00], i.e. information usually stored in relational
databases, made accessible through online forms or dynamic web pages. As
a result, finding the right pages becomes a challenging task, which has to be
mastered by anybody searching for specific information on the Web. Although
search engine algorithms become better and better, the user still faces a massive
information overload, where he has to decide on his own, which information is
relevant and which is not. A search engine is only able to assist the user during
this time-consuming process, since most of data stored on web servers, although
being machine readable, is not machine understandable.

Realizing this situation, the World Wide Web Consortium (W3C) with Tim
Berners-Lee as its director, started to promote their vision of the Semantic Web
(cf. [BL98b, BLHL01, BLM02]). This next generation Web provides software
agents machine processable and understandable data. As a consequence, software
agents process and interpret such information on their own and are able to identify
relevant data. Depending on the intended functionality, those agents can either
present the collected information to a user or deduce new knowledge on their own
using inference rules.

Since its very beginning in the late 1990ies, the Semantic Web and its knowl-
edge representation techniques have produced big impacts in several research
fields, ranging from Peer-to-Peer (P2P) systems over Life Sciences to the anno-
tation of multimedia data.

Peer-to-Peer Systems: The characteristic feature of a P2P-based system is
the extensive autonomy of the participating nodes. This autonomy does
not only affect the connectivity to the net, but also data storage, data
representation, and exchange formats. Indeed, interacting nodes need a
common language, i.e. exchange format, on which they can rely, neverthe-

2 1. Motivation

less, it is not guaranteed that both peers interpret the same information
equally.

Due to the short availability of potentially any peer, the negotiation of data
and meta data representation formats, including the exchange protocol, be-
comes a challenging task. An exchange format, which can be understood
instantly by all exchange partners would be more useful. Based on a com-
mon semantic data representation, participants on P2P systems can map
their data to commonly available concepts, enabling the remaining peers to
know which information is stored on which peers, how to create mappings
among these storage locations, and how to access it using a common query
language (cf. e.g. [SS06], Section 3.1.1.3, and Section 5.3).

Multimedia Data: Searching for specific pictures in huge image banks is a dif-
ficult tasks. On the one hand, these pictures have to be annotated manually
with corresponding keywords, which on the other hand have to be used by
the user to explicitly find this specific image. Typically, different annotators
use different terms for describing the same thing, e.g. a skyscraper could
be annotated using the term real estate or by building, depending on the
vocabulary or the background of the annotating person.

With this kind of keyword-based annotation, the Semantic Web can support
content-based image retrieval. Using ontologies as shared terminologies for
the annotation of images, the semantics of a picture is not only described,
but made comparable and interpretable (cf. e.g. [SDWW01, HSWW03]).

Life Sciences: Being a data intensive research field, the so-called Life Sciences
have soon recognized the possibilities resulting from the combination of
their research area with knowledge representation techniques as supported
by the Semantic Web. Similar to the annotation of multimedia data, large
companies or organizations like Pfizer, or the National Cancer Institute
(NCI) hope to integrate existing research information using the Semantic
Web to improve the knowledge management within their institution (cf.
[HdCD+05, DRR+06]). Additionally, health care centers in the US already
have introduced clinical decision support systems, which based on Semantic
Web techniques like inference rules and ontologies, compute clinical guide-
lines to support the patient care (cf. e.g. [KMH06]).

Despite the vision of a Semantic Web [BLHL01] and many efforts helping to
realize it in the diverse application fields described above, the current Semantic
Web still lacks of enough semantic data. Most information is still modeled and
stored in relational databases and thus out of reach for many Semantic Web
applications. Hence, the relational data has to be converted in a manual, error-
prone, and time-consuming process or be mapped to the semantic models using
system-specific mapping applications.

1.1 Contributions 3

As a consequence, a technology to map relational data to the Semantic Web is
required, which enables the user to create arbitrary mappings to Semantic Web
ontologies, without having to adopt a novel mapping language. Additionally,
this mapping technique should take the characteristics of relational databases
into account, particularly data and schema evolution, i.e. enable users to access
the databases transparently using Semantic Web techniques, without having to
repeat the data translation process every time a modification occurs. Using such
a technique, a user is rapidly able to provide Semantic Web applications with
semantic rich data, which is actually stored in a relational database.

1.1 Contributions

Mainly situated in the gap between the relational and the semantic representa-
tion of data, this thesis comprises several relevant contributions for realizing the
Semantic Web. To give the reader a synopsis of these contributions, they are
summarized in this section.

• The main contribution of this thesis is the presentation of a two-tiered map-
ping technique from relational data to the Semantic Web. With the Rela-
tional.OWL representation of a relational database, we have introduced the
only data and schema extraction technique, which automatically transforms
the schema of any relational database into an ontology. The data stored in
that specific database is then represented as an instance of this ontology.
For most Semantic Web applications, such a representation is enough, since
their aim is not to perform advanced reasoning tasks with this data, but to
have a simple access. Nevertheless, we show how to extend our technique,
mapping the Relational.OWL representation of the database to a target
ontology with any Semantic Web query language, as long as it is closed
within RDF.

• A further contribution of this thesis is a detailed analysis of the RDF query
languages RDQL and SPARQL with respect to their expressiveness. Hav-
ing no formal foundations, these languages are compared pragmatically
with the main operations of the relational algebra. During our analysis we
observed, that the main problem of RDQL is the absence of closeness, i.e.
the result set of a query is not a valid RDF expression any more. SPARQL,
the successor of RDQL, although being closed within RDF still has some
drawbacks concerning its expressiveness. Nevertheless, SPARQL is already
a big step towards the standardization of an RDF query language.

• Whenever relational data is mapped to Semantic Web objects, the informa-
tion concerning the location in the original database gets lost. Nevertheless,
it is essential to backtrack a resource to its original location for identification

4 1. Motivation

matters, whenever reasoning tasks have to be performed. In this thesis we
hence suggest the novel URI scheme db for identifying not only databases,
but also their schema and data components like tables or columns. It is
the only URI scheme, which combines the flexibility of the Semantic Web
with the advantages of a global unique identifer and as far as we are aware,
besides [BL98a] the only approach which addresses the problem of a global
URI for databases at all.

• A further contribution of this thesis is the introduction of the Link Pattern
Catalog as a modeling guideline for recurring problems appearing during
the design or description of novel information and knowledge platforms.
The Link Pattern Catalog consists of prototypes or solutions for recurring
problems and therewith supports developers to model, describe, and under-
stand complex information sharing environments like the Semantic Web.
Furthermore the Link Patterns provide a common vocabulary for design
and communication purposes, enabling developers to exchange successfully
implemented solutions. For this purpose we additionally introduce the Data
Link Modeling Language, a language for describing and modeling virtually
any kind of data flows in information and knowledge sharing environments.

1.2 Outline

The outline of this thesis is as follows. In the next chapter we survey the back-
ground required for this thesis with a short introduction to the relational data
model and the Semantic Web.

In Chapter 3 we present our technique to map relational data to the Semantic
Web, which consists of two main steps. First, the Relational.OWL representation
of a relational database is introduced, on which a consequent mapping to a specific
target ontology can be created using any closed RDF query language.

Chapter 4 introduces the novel URI scheme db for relational databases, which
is especially suitable for identifying the exact location of a data item in a relational
database, but may be extended to support database of any data model.

The applications presented in Chapter 5 build up on the techniques described
in the previous chapters. First, we introduce two different applications, which
extract the data and schema information of a relational database and converts
it to its Relational.OWL representation. Thereafter, we introduce RDQuery, a
wrapper system which enables Semantic Web applications to access and query
data actually stored in relational databases using their own built-in functionality,
translating SPARQL and RDQL queries into SQL. The last application presented
in this chapter is D́ıgame, an architecture for a P2P database, which achieves
a reasonable tradeoff between autonomy and information sharing among both,

1.2 Outline 5

permanently available and volatile data sources using a Relational.OWL-based
data representation.

Finally, Chapter 6 introduces the Link Pattern Catalog as a modeling guide-
line for recurring problems appearing during the design or description of novel
information and knowledge platforms. Chapter 7 concludes this thesis.

6 1. Motivation

Chapter 2

Background

Relational databases and the Semantic Web, in particular RDF as its main data
representation format, are two different approaches for modeling and storing
data permanently. Developed for the Web, RDF aims to collect information
located on different sources for performing processing and reasoning tasks. Rela-
tional databases in contrast are created usually for specific tasks or applications,
hence data already modeled in a remote node is often modeled again in the local
database, resulting in a huge amount of data redundancy.

In this chapter we provide some background on relational databases and the
Semantic Web. We first introduce relational databases (Section 2.1) and their
data model (Section 2.1.1.1). Thereupon we present two different ways to ac-
cess data stored in such databases, using the relational algebra with its basic
operations (Section 2.1.1.2) and the Structured Query Language SQL in Section
2.1.2. Instead of giving a complete introduction to SQL, we present some of its
advanced techniques which make SQL the unrivaled leader of query languages.

After describing the relational way to represent data, we introduce the Se-
mantic Web (Section 2.2) and some of its techniques (Section 2.2.2), including
RDF, RDF Schema, the Web Ontology Language OWL, and its query languages
RDQL and SPARQL.

2.1 Relational Databases

With his initial work on the relational model [Cod70] and several subsequent
publications [Cod72, Cod79], Edgar F. Codd revolutionized data storage and
access fundamentally. Until then, storing data in database systems always meant
to adapt the data to either the hierarchical or the network based models (cf.
[Bac69, TF76, Bla98]). With the relational model, the database designer was no
longer forced to adapt the structure of his data to these models, but was able to
design the database more freely. A further disadvantage of those early database
systems was the lack of a strict separation between the logical database model

8 2. Background

and its actual physical implementation, resulting in several difficulties querying
the data, ordering the results, or optimizing data access using index structures.
The presentation of the relational model was a big step forward to eliminate these
disadvantages (cf. [Cod70, GMUW02]).

Nevertheless, the relational data model would certainly not have reached
its current popularity without a powerful query language. First introduced as
SEQUEL [CB74], SQL soon became the de-facto standard for querying and ma-
nipulating relational databases in a structured way. It is remarkable, that the
initial version of SEQUEL already supported the aggregation of data, grouping
of data, or nested queries. These operations are often not even implemented in
modern query languages (cf. Section 3.2). Recently the International Standards
Organization (ISO) and the International Electrotechnical Commission (IEC)
have published jointly the 2003 version of SQL [Int03b], which is divided in sev-
eral parts (1-4, 9-11, 13, and 14) with a total of more than 3000 pages. SQL now
provides besides the well-known query, update and data definition functionality,
the possibility to include Java methods, XML, or external data in an SQL query.

Even modern database models like the object-oriented [SM96] or XML [SW00]
did not succeed in replacing the relational model, but remain a niche technology
virtually absorbed by modern relational databases (e.g. [STZ+99]).

Nowadays, the relational model is realized in numerous commercial and non-
commercial database management systems and is recognized to be technically
mature, hence frequently used exclusively because of its sophisticated query per-
formance (e.g. [KCPA01], [PH03]). Currently there is an uncountable amount of
relational database instances implemented around the world, ranging from small
system specific databases to huge data banks with terabytes of data (cf. [Han98]).

2.1.1 Relational Model

In this section we give a short introduction to the relational data model and to
its corresponding algebra. The introduction is based on [Cod70, Cha76, Cod79,
LL95, SKS98, NE01].

2.1.1.1 Relational Data Model

Based on the mathematical concept of relations, the relational data model regards
a database as a set of relations or tables. In turn, each relation R consists of a
collection of attributes A1, A2, ...An, also stated as columns. Consequently, a
relation R of degree n is a subset of the Cartesian product A1× A2 × ... × An

with the following properties:

• Each row is a distinct n-tuple element of R.
• Each value in a tuple is atomic, i.e. it is neither composite nor multivalued.

2.1 Relational Databases 9

• The order of attributes and rows are irrelevant. Please note, that the work
of Codd is inconsistent in this point, since he claims in [Cod70] the order of
the attributes to be important, and in [Cod79] he specifies the order to be
insignificant. Following the implementation in current relational databases,
we hence regard the order of the attributes to be irrelevant.

• Both, relations and columns are labeled by names.

In Figure 2.1, a sample relation with four attributes and three rows is
given. The relation is called Address and contains the attribute names ID,
Street, ZIP , and City. Stated in the commonly used notation, our rela-
tion is Address(ID, Street, ZIP, City) and contains as its values tuples like
t =< 2, UnterdenLinden, 10117, Berlin >.

Address ID Street ZIP City
1 Universitätsstr. 40225 Düsseldorf
2 Unter den Linden 10117 Berlin
3 Königsallee 40212 Düsseldorf

Figure 2.1: A relation with four attributes and three rows

2.1.1.2 Relational Algebra

The relational algebra is a query language for relational databases, i.e. a language
in which a user can request specific information from a database. The result of
such a request is again a relation, originated from one or more tables stored in
the queried database, i.e. the relational algebra is a closed language. Since the
result of querying relations is again a relation, we can produce chains of relational
algebra operations, forming a relational algebra expression (cf. [NE01]).

The operations used to query a relational database defined within the rela-
tional algebra can be divided into three groups. The first group consists of the
basic or fundamental operations, the second group of the composed operations,
which can be stated in terms of the basic operations, and finally the third group
of additional operations which are not based on the fundamental operations.

In this section, we give a short overview of the basic relational algebra opera-
tions and refer to [Cod79, SKS98, NE01, LL95] for a more detailed introduction.
This section is based on [LL95] and hence adopts its notation. With Rm we
denote the set of all m-ary relations, i.e. a relation R ∈ Rm has m attributes,
denoted by AR = {AR1 , ..., ARm}. An attribute sequence (ARs1

, ..., ARsn
) of R is

a tuple with ARsi
∈ AR, si ∈ {1, ...,m}, si 6= sj with i 6= j. Finally, the concate-

nation of the tuples q = (q1, ...qn) ∈ Q and r = (r1, ...rn) ∈ R of two relations
Q ∈ Rn and R ∈ Rm is labeled with q ◦ r = (q1, ..., qn, r1, ..., rm).

10 2. Background

Selection: The selection operation σ is defined as a function Rm → Rm, which
restricts the resulting relation to contain only those tuples R ∈ Rm, which
satisfy a given constraint Θ : R → {true, false}. A selection hence is
defined as being σΘ(R) := {r ∈ R | Θ(r)}. Applying it to the example in
Figure 2.1, a selection could be to filter the tuples to those having “Berlin”
as the value of their City attribute, i.e. σCity=′Berlin′(Address). The result
of this operation is given in Figure 2.2. Following the definition of the θ-
Select in [Cod79], the selection can contain the operators <,≤,≥, =, >, 6=,
depending on the applicability to the corresponding attributes.

ID Street ZIP City
2 Unter den Linden 10117 Berlin

Figure 2.2: Result of the σCity=′Berlin′(Address) operation

Projection: To project (π<attribute list>(R)) means to drop all the attributes
from the relation R, which are not specified in the < attribute list >,
i.e. π is a Rm → Rn function with (n ≤ m) and a list of attributes X =
(ARs1

, ..., ARsn
) ∈ AR, defined as πX(R) := {(rs1 , ..., rsn) | (r1, ..., rm) ∈ R}.

Applying this to our example in Figure 2.1, the operation πCity(Address) re-
sults in a relation containing the following two tuples: (Düsseldorf, Berlin).
The additional Düsseldorf entry was removed, since all duplicate tuples
have to be eliminated.

Set Union: Unlike the selection and projection operations, the set union ∪ has
to be operated on two union-compatible relations (cf. [Cod79]), i.e. it is a
function Rm ×Rm → Rm, which collects all the tuples from the specified
relations in a new one. Given Q,R ∈ Rm and equal attribute sets for Q
and R, the set union is defined as Q ∪ R := {q|q ∈ Q ∨ q ∈ R}. Since
the resulting relation is again regarded as a set, tuples contained in both
relations are included only once.

Set Difference: Similar to the set union, the set difference− requires two union-
compatible relations as input, i.e. it is a Rm ×Rm → Rm function. Given
two relations Q, R ∈ Rm with identical attribute sets, the set difference is
defined as Q − R := {q | q ∈ Q ∧ q /∈ R}. This means, that the resulting
relation contains all tuples from Q, which are not part of R.

Cartesian Product: The Cartesian product × of two relations unifies them
into a new relation, containing the complete set of attributes from the two
original relations, i.e. it is a functionRm×Rn → Rm+n. Given two relations
Q ∈ Rm, R ∈ Rn with a disjoint set of attributes, the Cartesian product
is defined as Q × R := {q ◦ r | q ∈ Q, r ∈ R}. The values of the resulting

2.1 Relational Databases 11

relation are hence a combination of all tuples of the first relation with all
tuples of the second relation. Do the original relations contain attributes
with the same name, they are first renamed, adding an additional prefix to
denote the name of the relation, this attribute came from.

2.1.2 SQL

In this section we point out the complexity, which the Structured Query Lan-
guage (SQL) has gained throughout the years, from its beginnings as SEQUEL
[CB74] to its current standardization as SQL 2003 [Int03b]. We hence do not
give the usual kind of introduction to the basic functionality of SQL, but focus
on the functionality, which makes SQL a sophisticated query language, especially
comparing it with those discussed in Section 3.2. Since we only can describe
a small subset of the huge amount of possibilities given by SQL, we refer to
[SKS98, NE01, LL95, Mai83, Dat00]) and especially to [GMUW02], on which
this overview is based, for a more detailed introduction to the Structured Query
Language (SQL).

Data Manipulation: Contrary to the relational algebra, where data can only
be queried, SQL enables the user to modify the data he queries either
through inserting new data into the database, deleting some data, or mod-
ifying the data he queries in the relational database. The three keywords,
with which a corresponding SQL instruction is initiated are INSERT, DELETE,
and UPDATE. Most readers will most likely be familiar with this basic func-
tionality of SQL, but taking the novel query languages for the Semantic
Web into account, which in part do not support any data modification, this
functionality becomes not as basic, as it seems at the first glance.

A tuple (r1, ...rm) is inserted into a relation R with attributes {AR1 , ..., ARm}
with the following SQL command

INSERT INTO R(AR1 , ..., ARm) VALUES (r1, ...rm);

It is not required to provide the attribute names, if all the data values
are given in the required order, i.e. the order, the attributes were specified
during the creation of the table.

To delete one or several tuples from a relation is very similar to selecting
them, i.e. we use the same condition as if we would select them, but use the
DELETE FROM keyword instead of a SELECT. Deleting some attributes from
a relation R hence looks like

DELETE FROM R WHERE <condition>;

The last of the three data manipulation operands is used to modify data
already stored in a relational database. Following the data deletion, we

12 2. Background

again require a condition, specifying all the tuples of a relation, which
shall be modified. Additionally, we have to provide the new values for the
attributes to change. This is done using the SET keyword. Updating the
tuples of a relation R matching the condition < condition > with the new
values specified in < assign− new − values >, hence looks like

UPDATE R SET <assign− new − values> WHERE <condition>,

whereas < assign− new − values > is a chain of attribute/value pairs.

Subqueries: Partly introduced in the first version of SEQUEL [CB74], the pos-
sibility to use nested queries, enables the user to specify arbitrary complex
queries. There are basically two different types of subqueries, depending
on the place where they are stated: in the FROM or in the WHERE clause of
the query.

If a nested query is specified in the WHERE clause of a query, the subquery is
calculated dynamically and compared to the specified attribute. A typical
example could be to retrieve all the persons from a salary database, which
gain more money than the average employee, i.e.

SELECT *

FROM employee

WHERE salary > (SELECT AVG(salary)

FROM employee);

Of course, such comparisons are only possible, if the inner query returns a
single value. Otherwise, we would still be able to check, if the value of the
attribute is included in the set of values returned by the inner query. This
is done using the IN or NOT IN keywords instead of the usual relational
operator, > in our example.

If the result of a query shall not be compared with a single value of a
relation, but be used as a virtual table, the subquery has to be specified
in the FROM clause of the outer query. Since we have to assign the inner
relation a virtual table name, its result can be referenced from anywhere in
the outer query, e.g.

SELECT *

FROM employee, (SELECT ID, Street, City

FROM Address

WHERE City=’Berlin’) berl

WHERE salary > (SELECT AVG(salary)

FROM employee)

AND employee.addressid=berl.ID;

2.1 Relational Databases 13

The sample query contains two subqueries and retrieves all the employees,
who earn more than the average salary and live in Berlin.

Management of External Data: Since the first publication of the SQL/MED
standard in SQL 2001 [Int01], users and applications are no longer restricted
to access data stored in the local database system. Instead, introducing the
DATALINK data type and the possibility to wrap remote systems, SQL/MED
enables users to access or manage data stored in foreign (database) systems.
The following short introduction is based on the 2000 version of SQL/MED
described in [MMJ+01a]. For a more detailed specification of all the (cur-
rent) possibilities provided by SQL/MED, we refer to [Int03d].

Throughout the years, database users already stored the path to external
data files in their relational databases. This information was usually placed
in a VARCHAR attribute, so applications could retrieve the information of the
location of the file using SQL. A similar approach is followed by SQL/MED
introducing the new data type DATALINK, which shall be used instead of the
simple VARCHAR datatype to store the path to an external data file in the
database. Depending on the actual implementation of the datalinker, i.e.
the component responsible for the communication between the database
and the local file system, using the DATALINK data type entails several
advantages over the usage of a classical VARCHAR attribute, e.g. file recovery,
access control management through tokens, or referential integrity checks,
i.e. the corresponding value in the database is deleted whenever the local
file is deleted or vice versa. The following example shows, how to create a
table containing a DATALINK object without any referential integrity checks,
i.e. the database system does not check, if the path to the file stored in that
attribute, actually exists:

CREATE TABLE employee (

ID INTEGER,

name VARCHAR(255),

picture DATALINK

NO LINK CONTROL);

To provide the users and applications the possibility to query data stored in
remote data sources, SQL/MED introduces a special wrapping mechanism.
Being able to process only relational data, data in non-relational databases
has to be represented as if it would be relational, to become queryable using
SQL. As a result, we first have to instantiate a source specific data wrapper
using a corresponding SQL statement on the local database:

CREATE FOREIGN DATA WRAPPER wrapper-name [...];

14 2. Background

This wrapper is responsible for providing the relational view over the data
source. After having created the wrapper, we have to create an instance of
the remote server in our own database and link it with the corresponding
data wrapper. This is done with the statement

CREATE SERVER server-name

[...]

FOREIGN DATA WRAPPER wrapper-name

[....];

The last step is to provide access to the remote tables to local applications
using the following statement

CREATE FOREIGN TABLE ft

[(col-def, coll-def,....)]

SERVER server-name

[generic-options];

After having successfully established such a linkage between the local
database and the remote data source, the foreign table can be queried as if
it would be a local one. In the following example, we use the remote table
just created to join it with a local one:

SELECT *

FROM ft, lt

WHERE rt.ID=lt.ID;

SQL/XML: With SQL/XML [Int03c], the SQL standard leaves the relational
world and enters the world of semi-structured data. The SQL/XML stan-
dard has three main topics, describing how to map relational data and
schema components into XML and XML Schema, how to map SQL data
types to XML data types, and how to use the newly introduced data type
XML and its corresponding functions. Please note, that with SQL 2003, the
SQL/XML data model was replaced by that of XQuery, introducing several
subtypes for XML (cf. [EM04]). In this section we focus on the 2002 version
of the standard, particularly on the XML data type, since it is more adequate
for providing a first overview of the basic SQL/XML functionalities than
the newer and at the same time more complex version of the standard.

The XML data type was introduced for enabling database users and ap-
plications to store, access, and query semi-structured data in relational
databases. Such attributes may contain valid XML documents, forests
of documents, text nodes, or mixed content (cf. [EM02]). Additionally,
a database implementing the SQL/XML standard also provides the fol-
lowing functions to produce XML from the data stored in that database:

2.1 Relational Databases 15

XMLELEMENT, XMLFOREST, XMLGEN, XMLCONCAT, and XMLAGG. In this section
we present only some of these functions, a more detailed introduction is
provided in [EM02, Tür03].

The XMLELEMENT function creates XML elements and allows two different
arguments to be specified: the name and the content of the element to
be created. The second argument, specifying the content of the element,
may contain further, nested elements, text, or XML attributes using the
XMLATTRIBUTES function, Based on the sample database from Figure 2.1,
we are thus able to specify the following SQL query:

SELECT XMLELEMENT(NAME "Address",

XMLATTRIBUTES (a.id),

XMLELEMENT(NAME "ZIP",

a.ZIP)) AS output

FROM Address a;

After processing the query, the database returns a relation which contains
the corresponding XML values as its tuples:

output
<Address ID="1"><ZIP>40225</ZIP></Address>

<Address ID="2"><ZIP>10117</ZIP></Address>

<Address ID="3"><ZIP>40212</ZIP></Address>

The XMLGEN function creates, similar to XQuery and XSLT, XML docu-
ments from an XML skeleton, binding free variables to the responses of the
query. The result of the following SQL query is hence the same as the result
of the XMLELEMENT query specified above:

SELECT XMLGEN(’<Address ID="{$ID}">
<ZIP>"{$ZIP}"</ZIP>

</Address>’,

a.ID,

a.ZIP) AS output

FROM Address a;

SQL/XML provides three more functions for the translation of relational
data into XML. The XMLFOREST function, which returns a forest of XML
elements, the XMLCONCAT function, which also produces a forest of elements,
concatenating the elements supplied as arguments, and finally the XMLAGG

function, which creates a forest of XML elements aggregating XML values.

16 2. Background

2.2 The Semantic Web

After having introduced the relational data model, and its query languages SQL
and the relational algebra, we now focus on the Semantic Web. First, we explain
the basic idea of the Semantic Web in Section 2.2.1. Thereupon, we go into
more details, presenting RDF and OWL as the most relevant Semantic Web
technologies, followed by a small introduction to some of their query languages
in Section 2.2.2.

2.2.1 Introduction

With billions of static Web pages, the World Wide Web (WWW) in its current
state is probably the largest information repository of the world. To this, we
have to add the data of the deep or hidden web [Ber00], i.e. information usually
stored in relational databases, made accessible through online forms or dynamic
web pages. As a result, finding the right pages becomes a challenging task,
which has to be mastered by anybody searching for specific information on the
Web. Although search engine algorithms become better and better, the user still
faces a massive information overload, where he has to decide on his own, which
information is relevant and which is not. A search engine is only able to assist
the user during this time-consuming process, since most of data stored on web
servers, although being machine readable, is not machine understandable.

Realizing this situation, several approaches arose to automatically extract rel-
evant information from web pages and thus help machines to understand them.
Nevertheless, such knowledge extraction techniques (cf. [CDF+98, Fre98]) still
provide faulty results, unacceptable in most scenarios with autonomously acting
software agents applying inference rules and deducing additional knowledge, es-
pecially in life science scenarios, where the resulting information may be decisive
for the therapy of a patient (cf. [KMH06]).

A different approach is followed by the so-called Semantic Web. In this next
generation Web, software agents are not only able to process the data on a web
site, but can understand its content and automatically deduce new knowledge
using inference rules. For this purpose, each web page containing (relevant)
information has to be annotated with additional meta data for being processable
and interpretable by the corresponding software agents. Since the additional
meta data has to be added manually, the drawback of this approach is obvious,
since the whole annotation process is time-consuming and error-prone.

Currently there are two competing approaches in trying to realize the Seman-
tic Web: Topic Maps and RDF, promoted by the International Organization for
Standardization (ISO) and the World Wide Web Consortium (W3C) respectively.
The first approach models knowledge using Topics as their central concept, en-
riched with Topic Names, Topic Occurrences, Associations, etc. More information
concerning Topic Maps can be found in [Int03a, WM02, Pep00].

2.2 The Semantic Web 17

A less complex data model was introduced by the W3C with the Resource
Description Framework (RDF). Having only three different concepts (Resources,
Properties, and Literals) and statements, which are easy to create and under-
stand, this Semantic Web language allows to model virtually anything related
to anything. Director of the W3C and named to be the inventor of the World
Wide Web, Tim Berners-Lee was one of the first persons to publish his idea of a
Semantic Web [BL98b, BLHL01, BLM02]. Following his idea of software agents
deducing knowledge from information stored on the Web, the W3C started with
RDF [MM04] an initiative to realize this idea.

Being stated as the next generation Web, the idea of the Semantic Web is
often misunderstood to be restricted to sharing information over the current Web.
Instead, these techniques can be applied to any application field, where knowledge
is shared and software agents shall perform reasoning tasks using inference rules.
Certainly the Semantic Web enables personal digital agents, as described by Tim
Berners-Lee et al. [BLHL01] to collect and evaluate relevant information over the
Web, but there are also several application fields not directly connected to the
current Web, including knowledge management, data integration [Av04, SL03],
or drug discovery tasks [SMQ06, Neu05].

2.2.2 Semantic Web Technologies

In this section we focus on the Semantic Web strategy followed by the World
Wide Web Consortium and its Director Tim Berners-Lee. For that purpose,
we describe the Resource Description Framework (RDF) and the Web Ontology
Language (OWL) as its core technologies. Additionally, we present sample RDF
query languages and describe how to use them to access information modeled
and stored using RDF.

2.2.2.1 RDF

The Resource Description Framework (RDF) [MM04] is the core technology re-
cently recommended by the W3C for realizing the idea of a Semantic Web. The
main advantage of RDF is its simple data model, which is absolutely domain-
independent and easy to understand by both, humans and machines. The user
is not restricted to specific concepts for modeling his view of a world, but may
create his own classes and instances, similar to how it is done in object-oriented
programming languages. Nevertheless, if each user models his own view of the
world, an automatic reasoning task performed by software agents becomes chal-
lenging. An agent may hardly identify a concept bus from one user to be identical
to a concept autobus from another user. Hence, it is advisable to use a commonly
available data model, or at least provide a mapping to existing models, for en-
abling software agents to realize such reasoning tasks. The following introduction

18 2. Background

to RDF is based on [Av04, MM04, Be004, BGM04], to which we refer for a more
detailed description.

RDF Model:
The main building blocks of RDF are statements, resources, and properties.
A statement is a triple consisting of a subject, a predicate, and an object,
similar to a sentence expressed in the English language (cf. [Av04]). The
subject, which is actually being described in the statement, is a resource,
i.e. a thing. The property, corresponding to the verb of the sentence is
always a predicate, whereas the object of the statement is again usually a
resource. In order to identify a single object or property within the Semantic
Web, each concept, but anonymous resources or blank nodes, has assigned
an Uniform Resource Identifier (URI) (cf. Section 4). Since it is difficult to
include a string representation into such a model, RDF introduces a further
concept: the literal. It represents a string value and may be used instead
of a resource as the object of a statement. It is not allowed to be used as a
subject.

After having introduced the main concepts of RDF, we can express the
following sentence in terms of RDF:

The creator of this thesis is Cristian Pérez de Laborda.

Choosing thesis to be the subject of our statement, has creator be-
comes the predicate, and Cristian Pérez de Laborda the object of
the RDF correspondent. For identifying the resources we are de-
scribing and for being able to refer them from external documents,
we introduce additional URIs. The URI of this thesis could be e.g.
http://diss.de/ebib/diss/file?dissid=1041 and for the property e.g.
http://purl.org/dc/elements/1.1/creator. The creator of the thesis
is only known by its name, i.e. we do not have an URI for his identification.
If we split the full name of the author into its components and represent
them using literals, the sentence given above results in an RDF graph as
depicted in Figure 2.3. The corresponding RDF graph contains three adja-
cent statements, one about the thesis itself and two about the blank node
representing the author of the thesis.

Besides the concepts presented above, RDF introduces some advanced con-
structs to allow the creation of more complex relationships between re-
sources. A bag for example is a resource, which contains an unordered set
of resources or literals. In contrast, the sequence contains an ordered list of
resources and literals. For a complete list of possible concepts and a more
detailed description of RDF, we again refer to [MM04, Av04].

2.2 The Semantic Web 19

Figure 2.3: A sample RDF graph

RDF Schema:
As already mentioned, RDF does not specify or impose any rules to the
domain of a given RDF statement. Hence, the user himself is responsible
to use the appropriated vocabulary required for his specific domain. This
vocabulary has to be specified using RDF Schema (RDFS) [BGM04].

Despite being able to relate two properties using an RDF predicate, we
cannot state anything about its semantics, i.e. the meaning of this state-
ment. Following the example of the object-oriented software design, RDF
Schema introduces the concepts of classes (rdfs:Class) and properties
(rdfs:Property). The class concept is used to define types of objects,
hence a resource as introduced above is an instance of an RDFS class. Fur-
thermore, RDFS allows the creation of new properties, which may then
be used as predicates in RDF triples. Similar to the creation of a class
using class-inheritance, existing and new properties can be arranged using
sub-property relationships.

RDFS does not introduce a novel data model, but uses RDF to state
its assertions, i.e. each RDFS statement is also a valid RDF graph. For
instance, the property http://www.w3.org/2001/vcard-rdf/3.0#Given

used in Figure 2.3 is defined with RDFS using an RDF graph as presented
in Figure 2.4. Since RDFS definitions are always RDF, we are able to use
both, RDF and RDFS concepts for specifying the properties and classes to
be created.

If the domain or the range of a property shall be restricted to a specific set
of resources, this can be done using corresponding properties. A detailed
description of how to use these properties is given in [BGM04].

RDF Syntax:
We have described the data model of RDF in the previous sections and
have explained how to extend it using RDFS. Although we already used
a graph-based representation for our examples, we did not yet introduce
a concrete syntax representation for RDF. Like many modeling languages,

20 2. Background

Figure 2.4: A sample RDFS graph

RDF is not restricted to a specific syntax, but provides several different
ways to represent the information modeled.

Probably the most intuitive way to represent RDF statements is using a
graph-based diagram as shown in Figure 2.3 and Figure 2.4. Despite being
easy to understand by a human, this representation is rather difficult to be
implemented in a machine-processable and exchangeable way. Hence, such
a graphical representation is only suitable for providing humans an insight
to the information (to be) modeled and not for autonomously interacting
software agents.

A further straightforward way to represent the triples of an RDF graph
is to describe them as they are, i.e. as triples consisting of URIs, blank
nodes, or literals. Since a blank node does not contain an URI and it could
be described with more than one property, we have to assign a temporary
name, for being able to reference the blank node from the corresponding
triples. This temporary URI is only valid for the purpose of referencing
it within the same collection of triples (cf. [KlC04]). Taking the graph of
Figure 2.3 as an example, the corresponding triple representation including
the blank node for the creator of the thesis are described as presented in
Figure 2.5.

http://diss.de/ebib/

diss/file?dissid=1041 http://purl.org/dc/elements/1.1/creator _:owner.

_:owner http://www.w3.org/2001/vcard-rdf/3.0#Given "Cristian".

_:owner http://www.w3.org/2001/vcard-rdf/3.0#Family "Pérez de Laborda".

Figure 2.5: Triple representation of the sample RDF graph

To represent an RDF graph using triples has several drawbacks, since this
form od representation is rather inflexible lacking of metadata, i.e. no char-

2.2 The Semantic Web 21

acter encoding is given, the position of a triple element is not changeable,
and the delimiter between the elements of the triple are defined to be a
blank. This information is either hard-coded into the representation for-
mat or not provided at all. Consequently and although being processable
by a machine, the implementation of this representation is a challenging
task and hence not advisable.

The most popular way to represent an RDF data model is to use an XML-
based syntax. Specified in its own W3C Recommendation [Be004], the
RDF/XML Syntax represents the RDF graph in terms of XML. To describe
the sample RDF graph of Figure 2.3 using RDF/XML results in an XML
document as given in Figure 2.6.

<?xml version="1.0" encoding="ISO-8859-1" ?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:vcard="http://www.w3.org/2001/vcard-rdf/3.0#">

<rdf:Description
rdf:about="http://diss.de/ebib/diss/file?dissid=1041">

<dc:creator>
<rdf:Description>

<vcard:Given>Cristian</vcard:Given>
<vcard:Family>Pérez de Laborda</vcard:Family>

</rdf:Description>
</dc:creator>

</rdf:Description>
</rdf:RDF>

Figure 2.6: RDF/XML representation of the sample RDF graph

In the XML representation of our sample RDF graph, the corresponding
XML version and encoding are specified first. Then, an rdf:RDF tag with
the required namespace definitions (cf. [BPSM04]) is provided, signalizing
the beginning of the RDF document. Contrary to ordinary XML docu-
ments, where namespaces are only used to prevent ambiguity in the label of
the elements, in RDF they refer to external resource definitions, i.e. RDFS
documents. Agreeing on the concepts defined in such files, other users may
also reference to these RDFS documents from their RDF graphs. Such a
common representation of abstract objects is the first step in creating a
large, distributed, and common knowledge representation (cf. [Av04]).

After initiating the RDF document, an rdf:Description element is opened
representing the first subject of our RDF graph. Giving its URI in the
rdf:about attribute, we unambiguously specify the subject we are describ-
ing to be the specific thesis. The rdf:about attribute can be replaced by
rdf:ID, if the complete URI of the current document is part of the URI of

22 2. Background

the element, i.e. giving a relative URI with respect to the current document
(cf. [Be004]).

The space between the opening and the ending tags of the
rdf:Description element are used for the detailed specification of the
thesis. the only property of the thesis object is represented using a
dc:creator element. Its value is then represented by a blank node, i.e. an
rdf:Description element without an URI. The last two elements defined
in the RDF document are the vcard:Given and vcard:Family elements
of the blank node with their corresponding values. Both attributes are in
turn nested within the blank node representation.

Having given only a small overview of the possibilities provided by RD-
F/XML to represent an RDF graph in a machine processable way, we again
refer to [Be004] for a complete introduction to the RDF/XML syntax.

2.2.2.2 OWL Web Ontology Language

Because of the expressiveness of RDF and RDF Schema, which are basically
limited to simple object, class, or property relationships, the W3C realized the
requirement for a modeling language going beyond the basic semantics of RDF
Schema. Lacking enough support for shared ontology definitions, ontology evo-
lution, interoperability, inconsistency detection, or expressiveness, the W3C de-
cided to adapt the basic ideas implemented in DAML+OIL [MFHS02] into an
own web ontology language called OWL (cf. [BvH+04, Hef04, Av04]).

Borrowed from philosophy, where an ontology is a systematic account of ex-
istence, in knowledge-based information systems, this term means the explicit
specification of a conceptualization, i.e. a computer processable representation
of things that exist and their relationships among each other [Gru93, Hef04].
Contrary to taxonomies, where these relationships are restricted to build up hi-
erarchies, ontologies allow the creation of graphs with arbitrary relationships
among its components.

The OWL Web Ontology Language [Mv04] builds up on the RDF layer of the
Semantic Web and describes similar to RDFS formally the meaning of terminol-
ogy used in RDF documents, adding additional vocabulary to RDF Schema, e.g.
a disjointness relation between classes, transitivity and cardinality of properties,
or the creation of complex classes. Since applying a full logic to the expressiveness
of RDF leads to a certain undecidability of some problems in the resulting lan-
guage, the W3C has split OWL into three increasingly expressive sublanguages:
OWL Lite, OWL DL, and OWL Full. The following introduction to the three
sublanguages is based on [BvH+04, Hef04, Av04], which should be considered for
a more detailed description.

OWL Lite is the most basic of the three OWL sublanguages, supporting clas-
sification hierarchies and simple constraints. Additionally, OWL Lite pro-

2.2 The Semantic Web 23

vides the possibility to build up subclass hierarchies and make properties
optional, i.e. to impose a cardinality constraint of 0 and 1.

OWL DL adds additional features to OWL Lite, corresponding to the expres-
siveness provided by description logics (cf. [BCM+03]). Unlike OWL Lite,
OWL DL supports all language constructs of OWL, but still imposes some
restrictions, e.g. an instance of a class cannot be at the same time itself a
class or a property. These restrictions are required to guarantee the com-
putational completeness and decidability of OWL DL.

OWL Full is the OWL sublanguage, which supports the complete functionality
of OWL and allows an arbitrary combination with any constructs of RDF or
RDF Schema. As a result, the usage of OWL Full may result in undecidable
problems. In fact, even the authors of the OWL recommendation [Mv04]
disbelieve that reasoning software agents will be able to support the full
functionality of OWL Full. OWL Full is the only of the three sublanguages,
which is completely compatible to RDF, i.e. any legal RDF document is also
a legal OWL document and vice versa. For OWL Lite and OWL DL, only
holds, that any legal OWL document is a legal RDF document.

2.2.2.3 RDF Query Languages

Being able to model information using RDF and its derivates, Semantic Web
applications need a standardized access to such data. Taking into account huge
data models like Wikipedia3 [Wik06] with more than 47 million triples, it is
obvious, that a simple access to such data banks is not enough and hence a
suitable query language is required.

Indeed, RDF can be queried using any XML query language like XQuery
[BCF+05] or a transformation language like XSLT [XSL99], since we are able to
provide an XML representation of the RDF model (cf. Section 2.2.2.1). Never-
theless, such approaches ignore the enhanced expressiveness of RDF compared to
XML, like its graph-based structure, class-inheritance, triples, or inference rules.

Although there are many different query languages for RDF, ranging from
logic-based languages like TRIPLE [SD02] to XQuery or XSLT-based query lan-
guages like RDF Twig [Wal03], in this section we focus on RDQL [Sea04] and
SPARQL [PS06b] as RDF query language representatives. For a quite complete
overview of current RDF query langues we refer to [BBFS05, HBEV04], on which
we partly base this introduction.

RDQL: was submitted to the W3C as a member submission (cf. [Jac05]) in
2004 by Andy Seaborne from the HP Labs in Bristol [Sea04]. It was soon
implemented in the Jena Semantic Web Framework [Jen06] for Java and
hence became rapidly popular within the Java community.

24 2. Background

An RDQL query consists of several graph patterns, expressed in triples
containing named variables, RDF values, and additional restrictions to the
values of these variables. The results of such a query are possible variable
bindings with respect to the original RDF graph, matching both, the triple
patterns and the additional constraints. RDQL queries remind of SQL and
are composed as described in Table 2.1.

SELECT list of free variables to be bound and returned
FROM URIs specifying the RDF models to be queried
WHERE triple patterns including variables
AND additional constraints for the values of the variables
USING namespace definitions

Table 2.1: RDQL clauses

If we want to use RDQL to retrieve the last name of the author described
in the RDF graph of Figure 2.3, we can use the following query:

SELECT ?d

WHERE (?a, dc:creator, ?c),

(?c, vcard:Family, ?d)

AND ?a EQ <http://diss.de/ebib/diss/file?dissid=1041>

USING vcard for <http://www.w3.org/2001/vcard-rdf/3.0#>,

dc for <http://purl.org/dc/elements/1.1/>

In the first triple of the WHERE clause, first a variable ?a is introduced. The
object represented by this variable must have a property dc:creator with
a value represented by the variable ?c. Additionally, the object represented
by ?c must have a vcard:Family attribute with a value represented by
?d. Since the variable ?a is bound to the URI of our concrete thesis in
the AND clause of the query and the thesis has only one creator, the object
represented by ?c is the blank node assigned to the dc:creator property
of the thesis. As a result, the ?d variable contains the last name of the
author of the thesis, which is the value returned to the user, since it is the
only variable specified in the SELECT clause of the query. The namespaces
for the vcard and dc ontologies are given in the USING part of the query.
Since no FROM clause is given, the query is applied to the model known from
the context. The query returns "Pérez de Laborda", as expected.

SPARQL: Realizing the need for a standardized query language and the draw-
backs of the member submission RDQL, like lack of expressiveness or close-
ness (cf. Section 3.2), the W3C decided to promote an own RDF query
language called SPARQL [PS06b] based on RDQL and its successor BRQL
[PS06a]. Although still a candidate recommendation (cf. [Jac05]), SPARQL

2.2 The Semantic Web 25

is already supported (in part) by many applications (e.g. Jena [Jen06]) and
some major database vendors (e.g. Oracle [CDES05]) and will hence most
likely become the de facto standard for querying RDF graphs.

Based on RDQL, a SPARQL query also consists of several graph patterns
expressed with triples in an SQL-like syntax. It extends RDQL adding for
example the possibility to express closed RDF queries, either constructing
a new RDF graph or returning a subgraph of the RDF model queried. A
SPARQL query is composed using the main clauses described in Table 2.2.

PREFIX for defining the namespaces
SELECT (DISTINCT) list of free variables to be returned
CONSTRUCT to create a new RDF graph, used instead of SELECT
DESCRIBE retrieve a complete resource, used instead of SELECT
ASK returns yes or no for possible graph patterns
FROM URIs specifying the RDF models to be queried
WHERE triple patterns including variables
ORDER BY applies ordering conditions to a SELECT query
OPTIONAL indicates that a graph pattern is optional
FILTER subset of XPath filters, applied to variables

Table 2.2: Main SPARQL clauses

Following the example given in the previous section, we now query the
given RDF model from Figure 2.3 using SPARQL to retrieve the complete
resource representation of the author. Instead of retrieving possible variable
bindings, as done with RDQL, we now demand the result set to be a valid
RDF document. This can be achieved with the following query:

PREFIX dc: <http://purl.org/dc/elements/1.1/>

DESCRIBE ?c

WHERE {{?a dc:creator ?c}.
FILTER ?a=<http://diss.de/ebib/diss/file?dissid=1041>}

Unlike in RDQL, first the required namespace is introduced in the PREFIX

clause, i.e. dc for the Dublin Core ontology. Thereupon, depending on the
functionality required, either a SELECT, CONSTRUCT, or DESCRIBE clause is
specified. Since we want the complete resource representing the author
to be returned, we use the DESCRIBE keyword followed by the variable
representing the resource to be retrieved. The required triple-constraints
are then specified as usual in the WHERE clause. Instead of using an AND

clause for adding additional constraints like in RDQL, SPARQL uses a
FILTER subclause, included within the WHERE part of the query.

26 2. Background

Chapter 3

Bridging the Semantic Gap

The vision of a next generation Web [BLHL01] is, despite all the efforts to build
up the Semantic Web, still more dream than reality. The main reason for this
issue is the lack of data, since the vast majority of information is still stored in
(relational) databases and thus unavailable for most Semantic Web applications.
As a consequence, local applications usually create their own manual relational
to semantic mappings, accessing the relational data with SQL. Due to the fact,
that such mappings have to be created manually, the consequences are obvious:
different applications could map identical data extracted from the same database
to different concepts of the Semantic Web. Consequently, a well-defined mapping
of relational to semantic data is required.

In this chapter we first introduce the Relational.OWL representation of a
relational database. This technique enables us to automatically transform the
data and schema components of a relational database into a Semantic Web rep-
resentation. Initially, the schema of the database is translated into a schema
ontology, on which thereupon, the representation of the actual data can be based
on. After having created an automatic transformation mechanism into a repre-
sentation, processable by most Semantic Web application, we analyze if current
query languages for RDF and OWL are expressive enough to replace together with
Relational.OWL existing SQL access to relational databases. The advantage of
such an approach is obvious, since Semantic Web applications could use their
own built-in functionality to access data actually stored in relational databases.

Being processable by most Semantic Web applications, the Relational.OWL
representation still has one fundamental drawback: the data is represented as it
was stored in the relational database, i.e. within corresponding Table and Column
objects. For most applications, such a representation should be enough, since
their aim is not to perform advanced reasoning tasks with this data. Nevertheless,
some applications still require the data to be represented in terms of a specific
ontology. We hence show, how to extend our Relational.OWL technique to obtain
a mapping from the Relational.OWL representation of a relational database to a

28 3. Bridging the Semantic Gap

target ontology, using any Semantic Web query language, as long as it is closed
within RDF.

The remainder of this chapter is organized as follows: In Section 3.1 we in-
troduce Relational.OWL, our technique to represent the data and schema com-
ponents of a relational database in a machine processable and understandable
format. Section 3.2 analyzes, whether the RDF query languages RDQL and
SPARQL could replace the existing SQL access to relational databases from Se-
mantic Web applications. Since the Relational.OWL representation does not
result in objects containing real semantics, we show in Section 3.3, how to create
mappings from the relational model to a target ontology. Section 3.4 catches up
related work and Section 3.5 concludes giving some hints for further research.
The approaches presented in this chapter are partly based on work published in
[PC05a], [PC05b], [PC06a], and [PC06b].

3.1 Relational.OWL

In this section we introduce Relational.OWL, an OWL Web Ontology Language-
based (cf. Section 2.2.2.2) representation format for relational data and schema
components, which is particularly appropriate for exchanging items among re-
mote database systems. OWL, originally created for the Semantic Web, enables
us to represent not only the data itself, but also its interpretation, i.e. knowledge
about its format, its origin, or its original usage within specific frameworks.

With Relational.OWL, we are able to automatically extract the schema infor-
mation of any relational database and regard it as a new ontology. Thereupon,
the corresponding data items can be represented as instances of this data source
specific ontology. Using this technique, potentially any relational database may
automatically become an integral part of the Semantic Web. The advantage of
such an approach for the Semantic Web is obvious, since it enables Semantic Web
applications to perform reasoning tasks accessing or even querying data actually
stored in relational databases using their own built-in functionality.

A further application area for Relational.OWL, which apparently has little
in common with the Semantic Web, is the data and schema exchange among
relational databases. Using RDF and OWL as a common representation language,
remote databases are instantly able to understand each other without having
to arrange an explicit exchange format — the usage of a common ontology is
enough. This feature would be impossible using present XML formats. The
broad application field of this proposal hence includes all types of (multi)database
systems [LA86] where component databases share schema and data information,
as done in Peer-to-Peer or Peer-to-Multi-Peer databases [HIMT03].

Contrary to present approaches where RDF is stored in relational databases,
and relational data is converted into RDF [Mel01], this approach aims at bringing
together the representation of both, legacy data and schema components with a

3.1 Relational.OWL 29

common mediated language based on RDF and OWL, the powerful Semantic Web
languages recently recommended by the World Wide Web Consortium [MM04,
Mv04]. In other words, we have created a technique to automatically transform
the schema and data components of a relational database into a representation
format based on the knowledge representation techniques of the Semantic Web
[BKD+01].

Adopting the opportunities given by the Semantic Web and our novel Rela-
tional.OWL ontology, we are able to uniformly describe and share the schema
and data items of virtually any (relational) database. Additionally, this data
becomes processable by most Semantic Web application and hence an integral
part of the Semantic Web.

The data and schema extraction process presented in this section can be
divided into two major steps. First, the schema of the database is described
using the Relational.OWL ontology. This schema representation itself is then
used as a new ontology, on which the actual data representation is based. As
a result we obtain a model with three layers with the Relational.OWL ontology
on the bottom (Figure 3.1). The layer above stands for the schema ontology,
whereas the concrete data representation is placed on the top-most layer. Since
we want to represent all three layers using OWL, we need the entire language
(i.e. OWL Full) and not one of its sublanguages OWL Lite or OWL DL.

Figure 3.1: Three layers of abstraction using Relational.OWL

3.1.1 Motivation

In this section we present the main application fields of Relational.OWL, where a
relational data and schema representation based on the Web Ontology Language
can substantially improve the corresponding data sharing, accessing, or querying
processes.

3.1.1.1 Data for the Semantic Web

Despite the vision of a Semantic Web [BLHL01] and many efforts helping to
realize it, the current Semantic Web still lacks of enough semantic data. Most
information is still modeled and stored in relational databases and thus out of

30 3. Bridging the Semantic Gap

reach for most Semantic Web applications. As a consequence, such applications
need to create a corresponding mapping between the relational and the semantic
models by themselves for being able to access relational data. Realizing this sit-
uation, some efforts have arisen to straighten out this deplorable situation. Most
of these approaches translate relational data into a Semantic Web representation
using a proprietary mapping language (cf. Section 3.4).

With Relational.OWL we provide a technique to automatically transform re-
lational data into a machine processable and understandable representation. As
a consequence, potentially each relational database may become an integral part
of the Semantic Web without any human intervention. The advantages of such
an approach are obvious, since it enables Semantic Web applications to access
and query data actually stored in relational databases using their own built-in
functionality. Indeed, such a representation does not include real semantics, since
it converts the schema of a database automatically into an ontology containing
table and column objects and the data items as its instances, i.e. the data is
described as it was in the database (cf. Section 3.3). Nevertheless, for many Se-
mantic Web applications, particularly in scenarios with frequently changing or
evolving schemas, this is a reasonable technique. Semantic Web applications are
quickly able to access legacy data stored in a relational database using their own
built-in functionality, without having to manually adjust the mapping each time
the schema changes.

3.1.1.2 Relational.OWL as an Exchange Format

The representation of relational data and schema with the OWL Web Ontol-
ogy Language entails several advantages over classical (semi)structured exchange
formats like XML [BPSM04]. In this section we discuss these advantages and
explain, why the usage of OWL should be considered, although a minor increase
of data overhead has to be taken into account.

Knowledge Representation: The knowledge representation approach of OWL
enables us to write formal conceptualizations of domain models, the so-
called ontologies [Av03]. Having created such an ontology we are able to
encode knowledge about things and their interrelationships within our spe-
cific domain into a machine–understandable format, which can afterwards
be decoded and interpreted by any remote node or peer which has access
to that ontology (cf. [BOF+04]).

Applied to the domain of relational databases, we can describe data
and schema items and its corresponding interconnections in a machine–
processable and understandable way, as soon as we have defined an ontology
for the representation of relational data(bases).

Reliable Data and Schema Exchange: The only way to guarantee the fault-
less interpretation of data and schema items on a remote node is knowledge

3.1 Relational.OWL 31

representation. The knowledge representation process prevents machines on
different sites to interpret the same data differently. Thus, it can be guar-
anteed that an item exchanged among remote peers will always maintain
precisely its intended meaning.

The risk of a possible misunderstanding can usually be minimized through
a face to face communication or previous agreement between the exchange
partners. Nevertheless, this can not be accomplished within a volatile en-
vironment, where peers may appear and disappear at any time (e.g. Peer-
to-Peer databases). In this case it is vital to have a representation format
which is unambiguous for all exchange partners involved.

No Explicit Exchange Format: It is very sophisticated to arrange a common
representation format for a data exchange, especially if the partners in-
volved barely know each other or the schema changes constantly. In the
latter situation, a communication channel set up by two nodes may proba-
bly be used only once, thus the arrangement of a proprietary format would
be a tremendous overhead.

Although it is possible to arrange such formats (in)formally, this leads to
unmanageable amounts of representation formats, particularly if a node is
involved in several data exchanges. As we have discussed above, the usage
of a (semi)structured format in its classical way could cause misunder-
standings among the sites involved. Thus, using knowledge representation
techniques enables remote peers to understand the information provided
without having to arrange a specific exchange or representation format,
since it is provided with RDF and OWL (e.g. the OWL XML representa-
tion [HEPS02]). The only requirements for establishing such a substantial
communication are components capable to handle such knowledge repre-
sentation formats and a common ontology like Relational.OWL, which is
presented in this section.

Convertible Representation: One of the main advantages of using common
knowledge representation techniques is the simple interconnectivity of ex-
isting ontologies. Two communities using different ontologies for the rep-
resentation of relational databases could easily collaborate, as soon as a
semantic mapping between these ontologies is created [DMDH02].

Having such a mediator ontology, both communities are instantly able to
understand the representation format of each other, without having to
change a single thing on their data and schema import or export processes.
The interpretation of mediator ontologies is an integral part of the knowl-
edge representation techniques used in RDF and OWL.

Data as an Instance of its Schema: Given the fact that OWL enables the
creation of classes and its instances with one and the same syntax, we

32 3. Bridging the Semantic Gap

are able to describe relational schema and data items. Furthermore we link
schema and data representation in a singular way resulting in a homogenous
data and schema format, where data items are defined as instances of their
own schemata. This representation corresponds exactly to the internal
representation used by current relational database systems.

Uniform Representation: Since we have to describe data and on a higher
abstraction level its schema, we require two different representation formats,
especially if we want to have the data represented as an instance of its
schema. OWL supports both, ontological modeling and reasoning using the
same syntax. We thus can provide an uniform framework for the precise
representation of relational schema and its data items. Contrary to this,
other languages like XML need to fall back to their corresponding modeling
languages called XML Schema, or Document Type Definition (DTD).

Reasonable Data Overhead: Due to the characteristics mentioned above, es-
pecially concerning the powerful ontological meaning and reasoning imple-
mented in OWL, we have designed a promising technique for the represen-
tation of relational data and schemata, which is more powerful than the
established representation or exchange formats like genuine XML. In or-
der to achieve this extended functionality we have to accept an increased
amount of data. For a detailed analysis on the data overhead produced by
Relational.OWL, we refer to Section 3.1.6.

Applying knowledge representation techniques to the field of data and schema
extraction results in various advantages, which could have a big impact especially
within Peer-to-Peer databases, where volatile peers may appear for a short time
offering or demanding for data. As long as all partners understand the Web
Ontology Language OWL, we do not need to negotiate a data or schema exchange
format any more, since all partners involved are capable to talk the same language
Relational.OWL.

3.1.1.3 Peer-to-Peer Databases

Having different aims to achieve, most Peer-to-Peer (P2P) databases (cf.
[HIMT03, NWQ+02] or Section 5.3) are based on the same principle: data stored
in one single peer has to be made accessible to other remote peers and vice versa.
Afterwards this data can be requested, queried, replicated, or integrated depend-
ing on the purpose of the remote system. Nevertheless, sharing relational data
in such environments is a challenging task, since there are several substantial
differences from conventional filesharing systems.

Volatile Peers: Peers of a P2P network are usually autonomous. This auton-
omy includes the right to decide whether to join or to leave an information

3.1 Relational.OWL 33

sharing environment at any time. Such volatile peers may appear shortly,
collect or deliver some data, and disappear again. It even can not be as-
sured that a peer joins the network ever again. Due to the short availability
of potentially any peer, the negotiation of an exchange protocol for data
and schema items becomes quite challenging. An exchange format, which
can be understood instantly by all exchange partners would be more useful.

Data Distribution: Due to the characteristics of P2P environments, data
which is significant for a peer may be spread over numerous data sources.
Thus, this peer is required to collect that information from several remote
data sources. In order to be able to receive and understand such data, the
exchange partners need to arrange a data and a schema representation for-
mat. At worst, a peer would have to interpret a different format for every
single data flow causing an unmanageable situation.

Relational Data: In classical filesharing networks, where textual or binary data
(e.g. music) is offered, a file contains all the information required for un-
derstanding this data. Whereas sharing relational data means to offer data
enriched with vital schema information including important instructions
on how to interpret and use that data correctly (e.g. table and column
names, consistency constraints, etc.). This metadata has to be transferred
separately as long as data and metadata shall not be mashed.

Data Evolution: Data distributed over classical filesharing networks does usu-
ally not change, i.e. a file containing a music song will be identical, no
matter how much time has passed. Whereas it is most likely, that a rela-
tional database will evolve after a certain time period, resulting in changes
concerning both, data and schema components. This fact has to be taken
into account within the relational data sharing process.

As a result, sharing relational data within a Peer-to-Peer environment means
to distribute not only data items themselves, but also their schemata among
multiple previously unknown peers. We thus need an exchange format, which on
the one hand can be understood by a broad community of peers without being
explicitly arranged beforehand and which on the other hand has to be suitable
for representing relational schemata and their corresponding data instances.

Relational.OWL is not a classical exchange format, but a representation tech-
nique, which is equally suitable for data backups or migration scenarios. Anyway,
Relational.OWL itself may easily be extended to fit all requirements of a data
exchange format including modification, addition, or deletion directives.

In fact, including this information into our data and schema representation
would mean to loose the independence from the application fields, i.e. such an
exchange format could not be used for enabling Semantic Web applications to
access data stored in relational databases any more. We thus have decided not

34 3. Bridging the Semantic Gap

to include exchange or replication specific instructions into Relational.OWL, but
to keep it an application independent representation technique.

3.1.2 Relevant Metadata

A database management system maintains a huge amount of metadata informa-
tion to manage the whole system in a proper way. In current relational database
systems, this information is stored in predefined system-tables, also called Data
Dictionary or Repository.

We have decided to include only the upmost relevant metadata into our Rela-
tional.OWL ontology, since a large amount of the data stored in the repository is
very system-specific and thus not required or suitable for a semantic representa-
tion. The metadata we have selected is the required one for a proper interpreta-
tion of the actual data (not metadata, cf. Section 3.1.5) representation. In fact,
the set of schema items described may easily be extended, if it is required later
on. As a result, we have included the following concepts into the Relational.OWL
ontology:

Tables and Columns: As implied by its name, the most important schema
component of a relational database is the relation, also called table. Addi-
tionally each table consists of columns (attributes), where the actual data
is stored. Both schema components are the upmost essential information
for representing the schema of a relational database and thus have to be
included in the Relational.OWL ontology.

Primary and Foreign Keys: One or more columns may compose the primary
key of a table. This information can be very useful for a target system,
in particular if data updates have to be synchronized. Otherwise problems
could arise assigning the new values to the old ones. Foreign Keys have
to be represented analogously, otherwise the data in a target system could
become inconsistent.

Data Types: Data types restrict the possible values in a column (e.g. only
integer or only varchar values). This special form of consistency con-
straints can be indispensable if a bidirectional data synchronization is being
performed and very useful for performing a small consistency check of the
data received by a potential target system.

OWL provides built-in datatypes and the possibility to fall back to the
XML Schema datatypes [BM04]. Since there is no standard way to use
the latter within OWL [PSH04], we have decided to restrict this first ver-
sion of Relational.OWL to those datatypes clearly defined within the OWL
abstract syntax. Nevertheless, we need a technique to represent possible
restrictions concerning the maximal length of values stored in each column
(e.g. varchar(100)).

3.1 Relational.OWL 35

Concluding, it is necessary to include a representation for

• tables,
• columns,
• datatypes possibly with length restrictions,
• primary keys,
• foreign keys, and
• the relations among each other

into the Relational.OWL ontology.

3.1.3 The Relational.OWL Ontology

As concluded in Section 3.1.2, we require an OWL ontology which describes the
schema of a relational database in an abstract way. This OWL representation
can easily be interpreted by any remote database or application, which is capable
to process OWL and has access to the Relational.OWL ontology. As a further
step we use this schema representation itself as a novel ontology for creating a
representation format, which is suitable for the corresponding data items.

To describe the schema of a relational database with the techniques provided
by RDF and OWL, we have to define OWL classes centrally, to which any docu-
ment describing such a database can refer. The abstract representation of classes
like Table or Column becomes a central part of the knowledge representation pro-
cess realized within OWL. Additionally, we have to specify possible relationships
among these classes resulting in an ontology, a relational database can easily be
described with. We call this central representation of abstract schema compo-
nents and relationships the Relational.OWL ontology. It contains abstract defi-
nitions of relational databases D, tables T, columns C, primary keys P, foreign
keys F, and its corresponding relationships.

For each relational database RDBi, a Semantic Web correspondent
ROWLi(Si, Ii) is created, where Si is the schema ontology and Ii the data
instance representation. Si will usually contain one subclass Di of D. Analo-
gously, for each relation R1, ...,Rm ∈ RDBi, a subclass T1, ..., Tm of T is created
and included into Si. The ∈ relationship between RDBi and Rj is then added
using a corresponding hasTable property within the Di class. The remaining
components and their relationships are transformed correspondingly. The main
concepts of the Relational.OWL ontology and their corresponding relationships
are represented graphically in Figure 3.2.

Similar representations based on RDF or OWL, which may evolve else-
where, may easily be linked to the Relational.OWL ontology with corresponding
owl:equivalentClass or owl:equivalentProperty relationships. As a result,
database representations using one of the ontologies mapped, can be understood
by any application using one of these ontologies.

36 3. Bridging the Semantic Gap

Figure 3.2: Main concepts of the Relational.OWL ontology

In other words, each component database or Semantic Web application in-
volved in a representation based on one of these ontologies is able to process
documents based on any of the interconnected representation formats. We do
not even have to adapt the reasoning processes, since it is enough to create a
semantic mapping between two or more ontologies to make them exchangeable,
as long as they correlate semantically.

In the following we describe the components of the Relational.OWL ontol-
ogy, our proposal for transforming relational data into a semantically rich rep-
resentation. We can create system specific schema representations based on this
ontology, which themselves can be used as ontologies for the representation of
data items. In the remainder of this section we abbreviate our main name-
space http://www.dbs.cs.uni-duesseldorf.de/RDF/relational.owl# with
the prefix dbs. Rdf, rdfs, and owl correspond to the commonly used prefixes for
RDF, RDF Schema, and OWL.

A listing of all the classes represented in the Relational.OWL ontology is
provided in Table 3.1. Table 3.2 contains a list of the relationships, which inter-
connect these classes. The exact class and property definitions together with a
small description can be accessed online at the URI specified above.

As mentioned above, we did not include a representation of all possible meta
information into our ontology. Hence, items like indexes, triggers, or tablespaces

3.1 Relational.OWL 37

rdf:ID rdfs:subClassOf

dbs:Database rdf:Bag

dbs:Table rdf:Seq

dbs:Column rdfs:Resource

dbs:PrimaryKey rdf:Bag

Table 3.1: Classes defined in the Relational.OWL ontology

rdf:ID rdfs:domain rdfs:range

dbs:has owl:Thing owl:Thing

dbs:hasTable dbs:Database dbs:Table

dbs:hasColumn dbs:Table dbs:Column

dbs:isIdentifiedBy dbs:Table dbs:PrimaryKey

dbs:references dbs:Column dbs:Column

dbs:length dbs:Column xsd:nonNegativeInteger

dbs:scale dbs:Column xsd:nonNegativeInteger

Table 3.2: Properties defined in the Relational.OWL ontology

are not considered, but may easily be included in a future version of Rela-
tional.OWL. In fact, the part of the relational schema we have chosen to describe
is sufficient to represent the complete data stored in that database. Additional
extensions in the Relational.OWL ontology would only increase the schema data
overhead.

3.1.4 Schema Representation

This section provides an example on how to represent the schema of existing
databases using Relational.OWL as their original ontology. The snippet in Figure
3.3 is derived from the schema representation of a corporate database containing
personal information of business contacts.

The first element corresponds to the table containing the residence informa-
tion of the contacts. In this case, the rdf:ID ADDRESS is equivalent to the table
name in the original database. Instead of exclusively using the table name as
an identifier, a complete URI pointing at this specific table can be specified us-
ing an identifier (cf. Section 4). Each of the five columns is defined using an
owl:DatatypeProperty class, where all the properties required are specified.

38 3. Bridging the Semantic Gap

<...>
<owl:Class rdf:ID="ADDRESS">
<rdf:type rdf:resource="&dbs;Table"/>
<dbs:hasColumn rdf:resource="#ADDRESS.ADDRESSID"/>
<dbs:hasColumn rdf:resource="#ADDRESS.STREET"/>
<dbs:hasColumn rdf:resource="#ADDRESS.ZIP"/>
<dbs:hasColumn rdf:resource="#ADDRESS.CITY"/>
<dbs:hasColumn rdf:resource="#ADDRESS.COUNTRYID"/>
<dbs:isIdentifiedBy>
<dbs:PrimaryKey>
<dbs:hasColumn rdf:resource="#ADDRESS.ADDRESSID"/>
</dbs:PrimaryKey>
</dbs:isIdentifiedBy>
</owl:Class>

<owl:DatatypeProperty rdf:ID="ADDRESS.ZIP">
<rdf:type rdf:resource="&dbs;Column"/>
<rdfs:domain rdf:resource="#ADDRESS"/>
<rdfs:range rdf:resource="&xsd;string"/>
<dbs:length>8</dbs:length>
</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="ADDRESS.COUNTRYID">
<rdf:type rdf:resource="&dbs;Column"/>
<rdfs:domain rdf:resource="#ADDRESS"/>
<dbs:references rdf:resource="#COUNTRY.COUNTRYID"/>
<rdfs:range rdf:resource="&xsd;integer"/>
</owl:DatatypeProperty>
</ ...>

Figure 3.3: Schema representation using the Relational.OWL ontology

The corresponding &dbs;Table and &dbs;Column objects are then linked using
a dbs:hasColumn property.

The primary key property of the table is represented using a
dbs:isIdentifiedBy property, whereas the dbs:PrimaryKey object corresponds
to the actual primary key. Since the primary key itself may consist of more than
one column, they are specified with dbs:hasColumn entries. The second element
in Figure 3.3 describes the ZIP column of the address table, e.g. a column may
contain string values with a maximum length of eight characters. The foreign
key (dbs:references) from the ADDRESS.COUNTRYID column to the ID in the
country table can be found in the second owl:DatatypeProperty element.

3.1.5 Data Representation

After having created a schema representation of a database RDBi using OWL
and our Relational.OWL ontology, we can regard this representation itself as a

3.1 Relational.OWL 39

novel ontology. With this tailored ontology-based representation of the database
schema, we are able to represent the data stored in that specific database, i.e.
the data can be represented as instances of its own schema ontology.

According to the possibilities given by OWL and due to the schema repre-
sentation presented above, we are able to use individuals (i.e. instances) of our
Relational.OWL ontology as classes. Thus the schema representation just created
belongs to OWL Full, and not to OWL Lite, nor to OWL DL [DS04]. Of course,
the fact that we can not restrict the complexity to one of the subclasses does not
automatically result in a complex representation of data and schema items. First
implementations make us confident of most RDF and OWL reasoning tools being
able to handle data and schema representations created using Relational.OWL.

In order to realize this kind of data representation process, we have to ensure
that all components involved (e.g. exchange partners)

• are able to process and understand RDF and OWL,
• have access to Relational.OWL or a semantically equivalent ontology, and
• have access to the schema ontology Si of the corresponding database RDBi.

Using the schema Si as a novel ontology means to represent the data instances
Ii stored in the database RDBi using a tailored data representation technique.
As a result, the data can be handled using common RDF/OWL techniques for
data backups, data exchanges, or any kind of data processing and reasoning tasks
within the Semantic Web.

In fact, this interdigitation of schema and data corresponds exactly to the
data management in relational database systems, where data items are stored as
instances of their own schema. As a result, the ontology, the data is described
with, changes as soon as the schema of the originating database RDBi is altered.
Using conventional techniques in data exchange processes would mean to manu-
ally adjust the corresponding exchange format. Using knowledge representation
techniques, this is done automatically.

Besides the example presented in Section 3.1.4, where we explained how to
represent the schema of a database containing information concerning business
contacts, we are now able to describe the actual data stored in that specific
database. In Figure 3.4 sample data items based on the schema ontology intro-
duced in Section 3.1.4 are provided. The namespace dbinst points to the location
where the Relational.OWL representation of the schema is stored. Hence, it is
required either to hold a copy of the relevant schema file or to have access to such
a representation (local copy vs. local accessible copy).

The example contains four elements, where the first two represent entries in
the address table and the latter two correspond to an entry in the country table
respectively. The address dataset contains all the information described in the
previous example, i.e. an ID, a street, a ZIP code, a city, and a country ID. Since
we are using OWL in its XML representation, we benefit from its sophisticated

40 3. Bridging the Semantic Gap

<... />
<dbinst:ADDRESS>
<dbinst:ADDRESS.ADDRESSID>3248</dbinst:ADDRESS.ADDRESSID>
<dbinst:ADDRESS.STREET>Königsallee 21</dbinst:ADDRESS.STREET>
<dbinst:ADDRESS.ZIP>40212</dbinst:ADDRESS.ZIP>
<dbinst:ADDRESS.CITY>Düsseldorf</dbinst:ADDRESS.CITY>
<dbinst:ADDRESS.COUNTRYID>32</dbinst:ADDRESS.COUNTRYID>
</dbinst:ADDRESS>
<... />
<dbinst:ADDRESS>
<dbinst:ADDRESS.ADDRESSID>6824</dbinst:ADDRESS.ADDRESSID>
<dbinst:ADDRESS.STREET>I~nigo Arista 1</dbinst:ADDRESS.STREET>
<dbinst:ADDRESS.ZIP>31007</dbinst:ADDRESS.ZIP>
<dbinst:ADDRESS.CITY>Pamplona</dbinst:ADDRESS.CITY>
<dbinst:ADDRESS.COUNTRYID>152</dbinst:ADDRESS.COUNTRYID>
</dbinst:ADDRESS>
<... />
<dbinst:COUNTRY>
<dbinst:COUNTRY.COUNTRYID>32</dbinst:COUNTRY.COUNTRYID>
<dbinst:COUNTRY.NAME>Deutschland</dbinst:COUNTRY.NAME>
</dbinst:COUNTRY>
<... />

Figure 3.4: Data representation using a tailored schema ontology

features concerning internationalization: Declaring the proper encoding ensures
special characters (e.g. ä, ø, or ñ) to be interpreted correctly.

Having stored all required information concerning the structure of the
database in the schema file shown in Section 3.1.4, we do not need to indi-
cate that the ADDRESSID corresponds to the primary key of the dbinst:ADDRESS

table any more. The same occurs with the primary key of the COUNTRY table.
This information is available in the accessible schema representation. It would
be redundant to include it again into the data representation.

More detailed sample databases showing all features of the knowledge repre-
sentation process using the Relational.OWL ontology and a larger amount of data
instances can be found at http://www.dbs.cs.uni-duesseldorf.de/RDF/.

3.1.6 Data Overhead in the Data Exchange Process

Due to the characteristics mentioned above, especially concerning the powerful
ontological meaning and reasoning implemented in OWL, we have achieved a
sophisticated technique to transform relational data and schemata into a seman-
tically rich representation. Additionally, RDF and OWL enable us to create a
data and schema exchange format, which is by far more powerful than established
exchange formats like genuine XML. In order to achieve this extended function-
ality we have to take an increased amount of data into account. However, this

http://www.dbs.cs.uni-duesseldorf.de/RDF/

3.2 Relational.OWL and RDF Query Languages 41

increased amount of data may be a significant reason to argue against a semantic
rich exchange format in data exchange processes.

<...>
<country>

<column name="COUNTRYID">32</column>
<column name="NAME">Deutschland</column>

</country>
<country>

<column name="COUNTRYID">152</column>
<column name="NAME">Espa~na</column>

</country>
</ ...>

Figure 3.5: XML data generated with Rec2XML

For testing how much data overhead is produced with our technique, we cre-
ated a cutout of a Data Warehouse with synthetic data containing one table
(the fact table) with six columns. We first extracted the data using the Rela-
tional.OWL application (cf. Section 5.1.1) and compared it with the results of
the Rec2XML scalar function in IBM’s UDB which generates XML data from a
relational query without any semantic representation (cf. Figure 3.5). The result
revealed a certain data overhead of Relational.OWL (Figure 3.6) compared to
Rec2XML. However, this linear increase of data is plausible since our approach
includes additional knowledge representation in each data item, lacking in the
plain XML format.

Although the resulting overhead seems to be a major drawback it is not that
substantial. Further evaluations have revealed that data represented with Rela-
tional.OWL can be compressed with a higher ratio than Rec2XML (cf. Figure 3.6).
After a compression, both representations differ very little in their corresponding
file sizes. This data overhead is thus only a minor drawback taking into account
the remarkable benefit achieved through the semantic representation.

3.2 Relational.OWL and RDF-QL

In Section 3.1 we presented Relational.OWL, a technique to extract the semantics
of a relational database and transform it into RDF/OWL, a machine readable
and understandable format. For this purpose, the schema information of the data
source is extracted and converted into an ontology. Afterwards, the data items
are represented as instances of this data source specific ontology.

In this section we analyze, whether the combination of Relational.OWL as a
Semantic Web representation of virtually any relational database and RDF query
language (RDF-QL) like RDQL [Sea04] or its successor SPARQL [PS05] could
replace existing, usually isolated, relational to semantic mappings. Indeed, com-
paring the expressiveness of a premature query languages like RDQL or SPARQL

42 3. Bridging the Semantic Gap

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 100 200 300 400 500 600 700 800 900 1000

kB
yt

es

Tuples

Relational.OWL
Rec2XML

Relational.OWL (compressed)
Rec2XML (compressed)

Figure 3.6: Amount of data after a data export

with a sophisticated language like SQL, which has developed throughout the
decades, would rather be unfair. We thus have decided to limit our evaluation to
the basic operations of the relational algebra. In other words, we want to analyze
in this section, whether RDQL or SPARQL are relational complete or not. Since
there is no formal foundation for these query languages, and a supplementary
formalization leads to several mismatches (cf. [Cyg05]), both evaluations have to
be performed on a more pragmatic level.

3.2.1 Relational.OWL and RDQL

Having created an automatic transformation mechanism from data stored in re-
lational databases into a representation, which is processable by basically any
Semantic Web application, all kinds of legacy data stored in relational databases
become an integral part of the Semantic Web.

As a result, Semantic Web applications needing access to data stored in re-
lational databases do not have to query these databases using relational query
languages any more. They may equally use their preferred query language like
RQL [KCPA01], RDQL [Sea04], or Xcerpt [BS02], as long as this query lan-
guage provides the required expressiveness. In this section we analyze RDQL as
a representative for all RDF query languages, since it is supported by the Jena

3.2 Relational.OWL and RDF Query Languages 43

Framework [Jen06] and submitted to the W3C [Sea04]. All queries presented in
this section have been verified using the Jena implementation of RDQL. Nev-
ertheless, any RDF query language could be evaluated accordingly (cf. Section
3.2.2).

We analyze whether all the possible queries on the original relational database
can be expressed using RDQL on the Relational.OWL representation of that spe-
cific database. In fact SQL has developed throughout the years from a simple
query language based on the relational calculus to a powerful language for inte-
grating data from across multiple data sources (cf. [MMJ+01b]). Hence, we have
decided to compare the expressiveness of RDQL only with the relational algebra
[Cod72] and not with SQL, i.e. to check if RDQL is relational complete or not.

The comparison is based on the sample database containing personal and
contact information of business partners already introduced in Section 3.1. It
contains the following two relations:

Address(AddressID, Street, ZIP, City, CountryID) and
Country(CountryID, Name).

Since there are various positions on how to verify the relational completeness
of a query language (cf. [CH79]), we have decided to follow the perception of
Elmasri and Navathe [NE01] regarding the set {σ, π,∪,−,×} of relational oper-
ations as complete. Additionally we show how to realize the join operation with
RDQL, since it is one of the most important operations of relational queries. Due
to the fact that RDQL is not closed, i.e. the result of an RDQL query is not an
RDF triple but a list of possible variable bindings, a direct comparison to the
relational algebra, which itself is closed, may in some cases be slightly imprecise.

3.2.1.1 Selection

One of the basic operations of the relational algebra is the selection σ. The
expression

σName=”Australia”(r(Country)) (3.1)

thus selects all tuples of the Country relation where the attribute Name equals
Australia. Since we have created an own OWL:Class for each relation in our
database, we have to apply a similar constraint for the objects of this class to
obtain the corresponding result with the Semantic Web version of our database.
A possible RDQL query hence is

SELECT ?x, ?y, ?z

WHERE (?x, rdf:type, dbinst:COUNTRY)

(?x, dbinst:COUNTRY.NAME, "Australia")

(?x,?y,?z)

USING dbinst for [...]

rdf for [...]

44 3. Bridging the Semantic Gap

The RDQL query representing the selection contains three main clauses. Since
RDQL is not closed, we have decided to include the three variables into the
SELECT clause, from which a valid RDF triple could be generated. In the first
line of the WHERE clause we restrict the result set to contain only objects of the
type dbinst:COUNTRY having their origin in the Country relation of our database.
The actual selection σ is performed in the next line, where we enforce the value
of the property dbinst:COUNTRY.NAME of all the objects represented by the ?x

variable to be Australia. The last line of the WHERE clause is required to select
the entire set of triples describing the classes which fulfil the conditions described
above. Both, the rdf and the dbinst prefixes are defined in the USING clause,
representing the commonly used prefix for RDF and the URI for the schema
of the database respectively. Since we need the same prefix definitions in all
remaining RDQL queries, we do not describe them in the following sections once
again. Please note, that besides the selection presented in this section, we are
also able to represent selections containing inequality operations like < or >
using an additional variable and constraining its values in the AND clause (e.g.
AND ?a > 25).

3.2.1.2 Projection

We are able to select relevant attributes of a relation with the projection operation
π. Hence, the following expression means that the Street and City attributes
are picked out of the Address relation:

πStreet,City(r(Address)). (3.2)

Unlike SQL, we cannot use the SELECT clause of RDQL for the projection. It has
to be done in the AND clause where we can specify more complex constraints.

SELECT ?x, ?y, ?z

WHERE (?x, rdf:type, dbinst:ADDRESS)

(?x,?y,?z)

AND ((?y EQ dbinst:ADDRESS.STREET)||

(?y EQ dbinst:ADDRESS.CITY))

USING dbinst for [...]

rdf for [...]

Analogous to the query described above, the result set is restricted to objects
of the dbinst:ADDRESS type in the WHERE clause. The actual projection is done
in the AND part of the query, where we require the properties of the result triples
(i.e. ?y) to be either dbinst:ADDRESS.STREET or dbinst:ADDRESS.CITY. The
result is a list of all the triples containing city or street information within an
address object.

3.2 Relational.OWL and RDF Query Languages 45

3.2.1.3 Set Union

The union ∪ operation unifies two union-compatible relations (cf. [Dat82]). The
expression

πCountryID(r(Address)) ∪ πCountryID(r(Country)) (3.3)

thus unifies all tuples from the CountryID attribute in the Address relation with
those of the Country relation. If we want to query the Semantic Web representa-
tion of the database using RDQL, we first have to perform the projection within
the AND clause restricting the ?y variable to both COUNTRYID attributes. The
restriction to both classes is done in the remaining two lines of the AND clause.

SELECT ?x, ?y, ?z

WHERE (?x, ?y,?z)

(?x,rdf:type,?a)

AND ((?y EQ dbinst:COUNTRY.COUNTRYID)||

(?y EQ dbinst:ADDRESS.COUNTRYID))&&

((?a EQ dbinst:COUNTRY)||

(?a EQ dbinst:ADDRESS))

USING dbinst for [...]

rdf for [...]

This RDQL query thus returns all COUNTRYIDs originated in both, the
dbinst:COUNTRY and dbinst:ADDRESS objects, i.e. the same as our expression of
the relational algebra.

3.2.1.4 Set Difference

If it is required to obtain all the tuples contained in one relation and not in a
second one, we use the set difference −. Thus, the expression

πCountryID(r(Country))− πCountryID(r(Address)) (3.4)

returns all existing CountryIDs not used in the Address relation. The projection
has been introduced only to obtain union-compatibility (cf. [Dat82]).

Within the corresponding RDQL query, objects of the type dbinst:COUNTRY

are represented by the variable ?a and the dbinst:ADDRESS objects by ?x. The
set difference constraint is specified in the AND clause where we refer to the values
of both COUNTRYID properties assigned to the variables in the WHERE clause.

SELECT ?b

WHERE (?a, dbinst:COUNTRY.COUNTRYID, ?b)

(?a, rdf:type, dbinst:COUNTRY)

(?x, dbinst:ADDRESS.COUNTRYID, ?y)

(?x, rdf:type, dbinst:ADDRESS)

46 3. Bridging the Semantic Gap

AND !(?b EQ ?y)

USING dbinst for [...]

rdf for [...]

Similar to the queries presented above, this RDQL query returns exactly the
same information as its corresponding relational algebra expression.

3.2.1.5 Cartesian Product

The Cartesian product × unifies two relations into a new relation containing the
complete set of attributes from the two original relations. The values of this
relation are a combination of all tuples of the first relation with all tuples of the
second relation. The expression

r(Country)× r(Address) (3.5)

thus corresponds to a relation containing all attributes from the Country relation
and all those from the Address relation. The original attributes are renamed to
guarantee their uniqueness (cf. [Dat82]). The amount of values corresponds to
(m ∗ n), whereas m is the number of values in the first table and n in the second
table respectively.

The definition of a Cartesian product within the Semantic Web is more com-
plex than it seems at a first glance. Melnik, for example, does not mention a
Cartesian product of RDF triples or Semantic Web objects within his RDF alge-
bra [Mel99]. Intuitively, the Cartesian product of two sets with m and n objects
would be to create (m ∗ n) new objects, containing the properties of two objects,
one of each set respectively (cf. [FHVB04]).

Since RDQL is not closed and we cannot receive objects as a result form an
RDQL query, we have to express the Cartesian product differently. There are
two main options on how to express the Cartesian product. Both are as close as
possible to the Cartesian product of the relational model.

The first option returns all possible combinations of two properties, each from
a different set of objects, i.e. one property from the dbinst:COUNTRY and one from
the dbinst:ADDRESS objects at a time:

SELECT ?a, ?b, ?c, ?x, ?y, ?z

WHERE (?a, ?b, ?c)

(?a, rdf:type, dbinst:COUNTRY)

(?x, ?y, ?z)

(?x, rdf:type, dbinst:ADDRESS)

USING dbinst for [...]

rdf for [...]

3.2 Relational.OWL and RDF Query Languages 47

The second option returns a list of all properties contained in any object of
the dbinst:COUNTRY and dbinst:ADDRESS classes.

SELECT ?x, ?y, ?z

WHERE (?x, ?y,?z)

(?x,rdf:type,?a)

AND ((?a EQ dbinst:COUNTRY)||

(?a EQ dbinst:ADDRESS))

USING dbinst for [...]

rdf for [...]

Intuitively, this query seems to be more adequate than the one mentioned
above. However, it is very similar to the RDQL query in Section 3.2.1.3 where
we expressed the set union. The main difference between both queries is only the
restriction in the union query.

3.2.1.6 (Equi-)Join

The most important relational operation is indeed the join operation on intro-
duced in [Cod79]. The θ join of two relations R1 and R2 relating to their at-
tributes B1 and B2 is the concatenation of the attributes of R1 and R2, including
their corresponding values, whenever attribute B1 and B2 correlate with the θ
condition. If θ is =, the join operation is called equi-join. Since the join operation
is usually stated in terms of the Cartesian product (cf. [NE01]), the translation
of the join operation to RDQL may help to decide, which of both possibilities
described in Section 3.2.1.5 should be considered the Cartesian product RDQL
correspondent.

The two relations Address and Country can be joined with the expression

r(Address) onCountryID=CountryID r(Country). (3.6)

Contrary to the natural join, the resulting relation contains all the attributes
from the first and the second relation including both CountryID attributes.

Once again, since RDQL is not complete, we cannot find an exact equiv-
alent query to the expression of the relational algebra just mentioned. How-
ever, we can express quite similar constraints and put both dbinst:COUNTRY and
dbinst:ADDRESS objects into a corresponding relation.

SELECT ?a, ?d, ?e

WHERE (?a, ?d, ?e)

(?a, rdf:type, ?c)

(?x, rdf:type, dbinst:COUNTRY)

(?x, dbinst:COUNTRY.COUNTRYID, ?y)

(?r, rdf:type, dbinst:ADDRESS)

48 3. Bridging the Semantic Gap

(?r, dbinst:ADDRESS.COUNTRYID, ?s)

AND (((?c EQ dbinst:COUNTRY) || (?c EQ dbinst:ADDRESS)) &&

(?y EQ ?s) &&

((?x EQ ?a) || (?r EQ ?a)))

USING dbinst for [...]

rdf for [...]

For expressing the required join condition between both classes, we first de-
fine a free result variable ?a. The objects of the dbinst:COUNTRY class are bound
to ?x and those of the dbinst:ADDRESS class to ?r. The values of the rele-
vant COUNTRYID attributes are bound to ?y and ?s correspondingly. The re-
maining relation between these bound and unbound variables is specified in the
AND clause, where we restrict the result set to either be a dbinst:COUNTRY or a
dbinst:ADDRESS object. The actual equality condition for the values in ?y and
in ?s from the join condition is given in the next line. The free variable ?a is
finally bound to the result set in the last line of the AND clause.

The decision, which of the queries described in Section 3.2.1.5 should be
considered as the RDQL correspondent of the Cartesian product remains unan-
swered. Even though the query defined in this section certainly signs to the
second alternative, where we also had a free variable, this question may probably
not be answered precisely until the queries of RDQL can be referred to as closed.

3.2.1.7 Discussion

In this section we analyzed whether a Semantic Web representation of a relational
database could potentially replace existing interfaces for the access of relational
data out of the Semantic Web. The advantage of such an approach is obvious:
All Semantic Web applications could query data stored in relational databases
using their own built-in query languages without having to convert this data in a
manual and time-consuming process. A direct comparison of this approach with
SQL, the commonly used interface to relational databases, would be unfair, since
SQL has evolved during the last decades and most semantic query languages are
rather rudimental. Hence, we decided to check whether the expressiveness of
querying semantic data created with Relational.OWL is similar to that of the
basic relational algebra. We chose RDQL as an exemplary query language since
it is widely accepted and provides a stable implementation.

During our analysis we observed that the main problem of RDQL (and of
most semantic query languages) is the absence of closeness, i.e. the result set of
a query is not a valid RDF/OWL expression any more.

Although we were able to simulate most of the main relational algebra op-
erations, we could not find a clear representative for the Cartesian product. As
long as this fundamental drawback is not resolved, we probably will not achieve
a language capable to compete with SQL.

3.2 Relational.OWL and RDF Query Languages 49

3.2.2 Relational.OWL and SPARQL

Since we did not reach a satisfactory conclusion in Section 3.2.1 concerning the
relational completeness of RDQL and Relational.OWL, we now analyze SPARQL
[PS06b] as an RDF query language representative. SPARQL is the successor of
RDQL, eliminating many of its drawbacks like lack of expressiveness and com-
pleteness. Currently declared as a candidate recommendation, it will probably
soon be recommended as a de facto standard by the W3C (cf. [Jac05]). De-
spite its novelty, the Jena Framework [Jen06] already supports SPARQL using
its ARQ extension. All queries presented in this section have been verified using
this implementation of SPARQL.

According to the argumentation of Section 3.2.1, we have again decided to
limit this comparison to the most important expressions of SQL, which can be
represented by the basic operations of the relational algebra [Cod72].

The comparison is again based on the simple database containing personal
and contact information of business partners with the two relations:

Address(AddressID, Street, ZIP, City, CountryID) and
Country(CountryID, Name).

Since there are various positions on how to verify the relational completeness
of a query language (cf. [CH79]), we have again decided to follow the perception of
Elmasri and Navathe [NE01] regarding the set {σ, π,∪,−,×} of relational opera-
tions as complete and show additionally, how to realize the (equi-)join operation
with SPARQL.

As we have seen in Section 3.2.1, using a non-closed language like RDQL leads
to insuperable problems regarding the simulation of more complex operations
like the set union ∪. We thus have decided to use the CONSTRUCT and DESCRIBE

and not the SELECT instructions of SPARQL to make sure, that all responses to
our queries are valid RDF, i.e. closed. For a detailed introduction to the query
language SPARQL we refer to [PS05].

3.2.2.1 Selection

One of the basic operations of the relational algebra is the selection σ (not to be
mistaken with the SELECT clause within an SQL query). The expression

σName=”Australia”(r(Country)) (3.7)

thus selects all tuples of the Country relation where the attribute Name equals
the term Australia. Since we have created an own OWL:Class for each relation
in our database, we have to apply a similar constraint for the objects (or nodes)

50 3. Bridging the Semantic Gap

of this class to obtain the corresponding result with the Semantic Web version of
our database. A possible SPARQL correspondent is

PREFIX rdf:[...]

PREFIX dbinst:[...]

DESCRIBE ?a

WHERE {{?a rdf:type dbinst:COUNTRY} .

{?a dbinst:COUNTRY.NAME ’Australia’}}

The SPARQL query representing the selection contains three main clauses.
The first two lines, containing a PREFIX clause each, define the rdf and dbinst

prefixes, representing the commonly used namespace of RDF and the URI for the
schema of the corresponding database. Since the definitions of these prefixes will
be required throughout this document, it will not be described in the following
sections once again.

With the DESCRIBE clause of SPARQL we are able to abbreviate those queries
representing simple nodes. DESCRIBE ?a means, that the result set contains the
objects represented by the variable ?a including all their corresponding properties.
In the first line of the WHERE clause we restrict the result set to contain only objects
of the type dbinst:COUNTRY, having their origin in the Country relation of our
database. The actual selection σ is performed in the next line, where we enforce
the value of the property dbinst:COUNTRY.NAME of all the objects represented by
the ?a variable to be Australia.

The result set of this query contains all objects of type dbinst:COUNTRY,
where the value of the dbinst:COUNTRY.NAME property is Australia. The ad-
vantage of the DESCRIBE clause is, that we can ensure all the properties of the
matching objects to be part of the corresponding objects within our result set.

3.2.2.2 Projection

Relevant attributes within a relation can be extracted with the projection oper-
ation π. Hence, the following expression means that both, the Street and the
City attributes are picked out of the Address relation:

πStreet,City(r(Address)). (3.8)

Unlike SQL, we neither can use the SELECT, nor the CONSTRUCT or DESCRIBE

clauses of a SPARQL query for the projection. It has to be done in a FILTER

3.2 Relational.OWL and RDF Query Languages 51

construct within the WHERE clause, where more complex constraints can be spec-
ified.

PREFIX rdf:[...]

PREFIX dbinst:[...]

CONSTRUCT {?a ?b ?c}
WHERE {{?a ?b ?c} .

{?a rdf:type dbinst:ADDRESS} .

FILTER (?b=dbinst:ADDRESS.STREET

||?b=dbinst:ADDRESS.CITY)}

In Section 3.2.2.1 we were able to use the DESCRIBE clause of SPARQL. In
this case, it is not possible, since we do not want to have all the properties of
the matching objects to be represented in the result set, but only those speci-
fied within the FILTER clause, i.e. the properties dbinst:ADDRESS.STREET and
dbinst:ADDRESS.CITY of the dbinst:ADDRESS objects.

To achieve our goal of creating result objects containing only the required
dbinst:ADDRESS.STREET and dbinst:ADDRESS.CITY properties, we have to pro-
vide three attributes in the CONSTRUCT clause, representing the triples from which
a corresponding object can be created. These variables are bound in the first line
of the WHERE clause, representing the entire set of triples, which describe the
objects fulfilling the conditions specified in the WHERE clause.

In this case, the result set consists of untyped objects containing only the
specified attributes. We have intentionally omitted the rdf:type properties to
emphasize our goal of selecting only the attributes specified in the relational
algebra expression. Certainly, the rdf:type properties could easily be added
specifying it either in the FILTER construct or in the CONSTRUCT clause.

3.2.2.3 Set Union

The union ∪ operation unifies two union-compatible relations (cf. [Dat82]). The
expression

πCity(r(Address)) ∪ πName(r(Country)) (3.9)

thus unifies all tuples from the City attribute in the Address with the Name

tuples of the Country relation.

As an extension to RDQL, SPARQL provides the UNION construct to unify
two sets of objects, which exactly corresponds to the signification in the relational
algebra. Unlike the relational algebra, SPARQL does not demand both sets of
objects to be union-compatible, this may either be intentionally or because of
the not yet finished standardization process of the SPARQL recommendation.
Nevertheless, we have added this additional constraint to our SPRAQL query, in
order to match the query specified above.

52 3. Bridging the Semantic Gap

After the usual PREFIX definitions, a blank node with property ?b and cor-
responding value ?c is created for each result. The property either comes from
the dbinst:ADDRESS objects or from those of the dbinst:COUNTRY class. There-
fore, the ?b and ?c variables are bound to the dbinst:ADDRESS.CITY and the
dbinst:COUNTRY.NAME properties and to their corresponding values.

PREFIX rdf:[...]

PREFIX dbinst:[...]

CONSTRUCT { :v ?b ?c}
WHERE {{?a ?b ?c} .

{{?a dbinst:ADDRESS.CITY ?c} .

{?a rdf:type dbinst:ADDRESS}}
UNION

{{?a dbinst:COUNTRY.NAME ?c} .

{?a rdf:type dbinst:COUNTRY}}}

This SPARQL query returns all COUNTRY.NAMEs and ADDRESS.CITYs within
blank nodes. Thus, each object corresponds to a tuple within the original result
set of the relational algebra expression.

3.2.2.4 Set Difference

If it is required to obtain all the tuples contained in one relation and not in a
second one, we use the set difference −. Thus, the expression

πCountryID(r(Country))− πCountryID(r(Address)) (3.10)

returns all existing CountryIDs not used in the Address relation. The projection
has been introduced to obtain union-compatibility (cf. [Dat82]).

Within the corresponding SPARQL query, objects of the type
dbinst:COUNTRY are represented by the variable ?a and the dbinst:ADDRESS

objects by ?b. Unfortunately, SPARQL does not provide an inverse to the UNION

operation supported, hence we have to simulate it. The set difference constraint
is specified in the FILTER construct within the WHERE clause, where we refer to
the values of both COUNTRYID properties assigned to the ?c and ?d variables.

PREFIX rdf:[...]

PREFIX dbinst:[...]

CONSTRUCT { :v dbinst:COUNTRY.COUNTRYID ?c}
WHERE {{?a rdf:type dbinst:COUNTRY} .

{?a dbinst:COUNTRY.COUNTRYID ?c} .

{?b rdf:type dbinst:ADDRESS} .

{?b dbinst:ADDRESS.COUNTRYID ?d }.
FILTER (?c != ?d)}

3.2 Relational.OWL and RDF Query Languages 53

As a result, all dbinst:COUNTRY.COUNTRYIDs, which do not appear within an
dbinst:ADDRESS object, are part of the result set. Each COUNTRYID is represented
within a blank node.

3.2.2.5 Cartesian Product

The Cartesian product × unifies two relations into a new one, containing the
complete set of attributes from the two original relations. Its values are a com-
bination of all tuples of the first relation with all tuples of the second relation.
The expression

r(Country)× r(Address) (3.11)

thus corresponds to a relation containing all attributes from the Country relation
and all those from the Address relation. The original attributes are renamed to
guarantee their uniqueness (cf. [Dat82]). The amount of values is (m∗n), whereas
m and n correspond to the number of values in the first and second relations
respectively (cf. Section 3.2.1.5).

The main advantage of SPARQL in comparison to RDQL, the possibility to
create RDF models out of a query, has its biggest impact on the simulation of this
operation. Had it been impossible to create an unambiguous correspondent to the
Cartesian product with RDQL, we can simulate this operation with SPARQL.
Unlike in the relational algebra, the Cartesian product simulation mentioned
above does not result in (m∗n) new objects, but in m objects, each containing one
object of the dbinst:COUNTRY class and all the objects from the dbinst:ADDRESS
class. This result may surprise at first glance, since we would expect (m ∗ n)
objects to be created. If we regard the Cartesian product as a nested loop, where
each dbinst:COUNTRY object, the attributes of each dbinst:ADDRESS is added,
the result makes sense, since the attributes added to the dbinst:COUNTRY objects
are not added to a copy of that object, but to that object itself.

As a result, the Cartesian product simulated with Relational.OWL and
SPARQL is not commutative, i.e.

r(Country)× r(Address) 6= r(Address)× r(Country). (3.12)

Although this means to impose an important restriction to the Cartesian
product, we are nevertheless able to simulate this operation with:

PREFIX rdf:[...]

PREFIX dbinst:[...]

CONSTRUCT {?a ?b ?c;

?e ?f}
WHERE {{?a ?b ?c;

rdf:type dbinst:COUNTRY} .

{?d ?e ?f;

rdf:type dbinst:ADDRESS}}

54 3. Bridging the Semantic Gap

Since each node of this result set contains properties from objects of both
classes, it also contains two rdf:type properties: one with dbinst:COUNTRY and
the second with dbinst:ADDRESS as its value. The resulting nodes are thus
objects of both types. This characteristic of the newly created nodes is intended,
since the Cartesian product of two objects intuitively corresponds to the multiple
inheritance or composition operations known from the object oriented software
design.

3.2.2.6 (Equi-)Join

Even though all remaining operations of the relational algebra can be composed
with the basic operations of the relational algebra mentioned above, we addi-
tionally want to translate the most important relational operation join (on) (cf.
[Cod79]) into its SPARQL correspondent.

The θ join of two relations R1 and R2 relating to their attributes B1 and B2 is
the concatenation of the attributes of R1 and R2, including their corresponding
values, whenever attribute B1 and B2 correlate with the θ condition. If θ is =,
the join operation is called equi-join.

The two relations Address and Country can be joined with the expression

r(Address) onCountryID=CountryID r(Country). (3.13)

Contrary to the natural join, the resulting relation contains all the attributes
from the first and the second relation, including both CountryID properties.
The table names for both CountryIDs in equations 3.13 and 3.14 have been
omitted for a better readability. The corresponding attributes should be stated
as Address.CountryID and Country.CountryID respectively.

Since the join operation itself is not part of the basic operations of the re-
lational algebra, it can be stated in its terms, e.g. using the Cartesian product
and the selection (cf. [NE01]). Thus, we may express the equi-join also with the
following expression:

σCountryID=CountryID(r(Address)× r(Country)). (3.14)

The corresponding SPARQL query should then either be described using
nested SPARQL queries or by a combination of the selection and Cartesian prod-
uct operations. Since the SPARQL candidate recommendation [PS06b] does not
provide the possibility to express nested queries, we have to query the original
RDF/OWL model at first with a Cartesian product. The resulting RDF graph
is then queried with the additional selections required. We have decided to base
our (equi-)join representation on a combination of the selection and Cartesian
product operations, since it consists of a single SPARQL query. Nevertheless,
the Cartesian product and selection queries required for a corresponding nested
query simulation may easily be given.

3.2 Relational.OWL and RDF Query Languages 55

Analogous to the relevant queries stated in the previous sections, the prefixes
rdf and db are defined in the first lines of the SPARQL query given below. Both
variables ?a and ?d are again bound to the dbinst:COUNTRY and dbinst:ADDRESS

objects respectively, resulting in a Cartesian product (cf. Section 3.2.2.5). The
additional constraint imposed by the equi-join is achieved in the last two lines,
where the values of both COUNTRYID properties are specified to be equal, corre-
sponding to the selection operation already described in Section 3.2.2.1.

PREFIX rdf:[...]

PREFIX dbinst:[...]

CONSTRUCT {?d ?b ?c;

?e ?f}
WHERE {{?a ?b ?c;

rdf:type dbinst:COUNTRY} .

{?d ?e ?f;

rdf:type dbinst:ADDRESS} .

{?a dbinst:COUNTRY.COUNTRYID ?x} .

{?d dbinst:ADDRESS.COUNTRYID ?x}}

Similar to the execution of the × operation in Section 3.2.2.5, the result
set of this SPARQL query is not commutative and contains objects, which are
simultaneously of the dbinst:ADDRESS and the dbinst:COUNTRY type. Anyhow,
since the resulting objects contain all the properties of both originating objects,
the query fulfills the equi-join constraints of the relational algebra.

3.2.2.7 Discussion

Following the results of Section 3.2.1, where we discovered some fundamental
drawbacks in the query language RDQL, especially concerning its closeness, we
have decided to perform the same analysis choosing SPARQL as an RDF query
language representative, since it is expected to be recommended as a de facto
standard by the W3C soon.

During our analysis, we observed the lack of some basic operations like MINUS

in the current version of the SPARQL recommendation. Nevertheless and de-
spite the vague introduction of the UNION operation and the surprising results
with the Cartesian product, we actually managed to simulate the basic opera-
tions {σ, π,∪,−,×} of the relational algebra. Additionally we showed, that join
operations, which will certainly be part of most mapping operations between the
relational and the semantic worlds, can easily be deduced from our Cartesian
product simulation — just as it is done within the relational algebra. Since we
were successfully able to simulate more than the basic relational operations, we

56 3. Bridging the Semantic Gap

have shown, that the combination of Relational.OWL and SPARQL are relational
complete.

As we have seen, we are in a position, where we can replace existing self-made
relational database to Semantic Web bridges with a Relational.OWL represen-
tation of the database together with a query language like SPARQL. In fact,
the expressiveness of SPARQL goes beyond those operations analyzed in this
work. Although SPARQL still lacks grouping and update functionalities and
does not support nested queries, its expressiveness approaches, with operations
like DISTINCT, ORDER BY, or LIMIT, that of basic SQL. Although we are aware,
that our approach will unlikely replace all existing SQL gateways from relational
databases to the Semantic Web, we have shown, that it certainly could.

3.3 Relational to Semantic Mapping

Despite being processable by any application understanding RDF and OWL,
the data extracted using Relational.OWL still lacks real semantic meaning. In-
deed, the information originally stored in relational tables is represented within
a table object and not within an appropriate Semantic Web object, e.g. an
http://www.w3.org/2000/10/swap/pim/contact#Person object. This draw-
back has to be accepted in order to achieve an automatic transformation from
relational databases to the Semantic Web.

Nevertheless, many applications still require the data to be represented as real
semantic objects for being able to perform reasoning or further data processing
tasks. To meet the demands of such applications, a data mapping from the
relational to the required data representation is needed.

3.3.1 Requirements

Existing approaches like [BS04] introduce a special mapping language, which
although it is often based on RDF, still has to be understood and adopted by all
administrators needing to perform a single mapping from a relational database to
the Semantic Web. The technique presented in this section goes one step further
and uses common RDF query languages for the mapping task. The following
requirements have to be kept to use such query languages as a mapping language.

Relational.OWL: Contrary to a common mapping, where the relational data
is directly translated into the Semantic Web, our approach passes one ad-
ditional step. First, we represent the data stored in the original relational
database in a semantic-rich format, i.e. in RDF/OWL. This step is either
done exporting the complete data and schema sets into RDF using the Re-
lational.OWL application (cf. Section 5.1) or using the virtual database rep-
resentation provided by RDQuery (cf. Section 5.2). Please note, that both

3.3 Relational to Semantic Mapping 57

data transformation methods are processed automatically without any hu-
man intervention. Both techniques result in a Semantic Web representation
of the data and schema components of the original relational database.

Closed Query Language: We are potentially able to perform a mapping using
any of the upcoming query languages, as long as it is closed within RDF
and contains a construct similar to the CONSTRUCT clause in SPARQL (cf.
[PS06b]). Otherwise the resulting variable bindings would have to be trans-
lated again into RDF. We have chosen SPARQL as a representative query
language, since it is easy to understand, its syntax is based on SQL, it is as
powerful as the relational algebra in its expressiveness (cf. Section 3.2.2).

Target Ontology: Although the Relational.OWL representation (cf. Sec-
tion 3.3.2) of the database is processable by virtually any Semantic Web
application, it still lacks real semantics, since the data is represented as
it was stored in the relational database, i.e. stored in tables and columns.
Since we want to assign this data a real meaning, we require a target on-
tology, it can be mapped to.

3.3.2 Definitions

In this section we define the basic terms used for our relational database to
Semantic Web mapping approach. First, we introduce the semantic translation
of relational databases into the Semantic Web:

Definition 1 (Semantic Translation)
The semantic translation ST (RDB,ROWL) of a relational database RDB into
its Relational.OWL representation ROWL (see Definition 2 below) is an auto-
matic translation process, where for each RDB and its schema components, a
Semantic Web correspondent is created (cf. Section 3.1).

In this context, the Relational.OWL representation of a database is:

Definition 2 (Relational.OWL Representation)
The Relational.OWL representation of a relational database is described by
ROWL(S, I), where S is the schema representation of the database as seen
in Section 3.1 and I contains the corresponding data instances of the schema
components described with S.

Having created a Relational.OWL representation of the corresponding
database, we are now able to perform a mapping :

Definition 3 (Mapping)
A mapping M from a relational database to the Semantic Web is a four-tuple
M(RDB,ROWL, T O,Q), with RDB being the source database, ROWL the

58 3. Bridging the Semantic Gap

Relational.OWL representation of RDB, T O the target ontology, and Q the map-
ping query, expressed in a (closed) query language QL.

Contrary to the Relational.OWL representation created with an automatic
semantic translation, a mapping has to be stated manually using a query Q.
The mapping is correct, iff querying ROWL with Q results in one ore multiple
instances of T O. Hence Q has to fulfill two main properties. First, it has to be
adequate in regard to ROWL, i.e. return the desired result and secondly, the
resulting data items have to be formatted as instances of T O.

3.3.3 Mapping Process

The complete relational data to RDF mapping process is illustrated in Figure
3.7. It consists of two main steps, which were already introduced in the previous
sections.

First, the Relational.OWL representation of the schema and the data com-
ponents of the original data source are generated. The schema representation
becomes thereby an instance of the Relational.OWL ontology. In turn, the data
items converted become instances of the schema ontology just created. This step
could either be performed using the Relational.OWL application (cf. Section 5.1),
i.e. the schema and data components are translated statically in a one-time pro-
cess, or using a virtual representation of that RDF model, e.g. with RDQuery (cf.
Section 5.2). The advantage of the latter is obvious, since the data stock, on which
the queries are performed, is always up-to-date. This cannot be guaranteed using
the Relational.OWL application. Nevertheless, if the source database does not
change frequently, a static translation into the Relational.OWL representation
could be enough.

Having created the Relational.OWL representation of the relational database,
the second step including the actual mapping can be performed.

The RDF model just created may now be queried with an arbitrary RDF
query language. As long as the query language is closed, the resulting query
response is again within the Semantic Web, i.e. it is a valid RDF model or graph
and may then be processed by other Semantic Web applications using their own
built-in functionality.

Using the CONSTRUCT clause of a query language like SPARQL (cf. [PS06b]),
the resulting data items can be inserted into an arbitrary RDF skeleton. This
property of the query language is vaguely comparable to an XSLT-Stylesheet
[XSL99]. If we specify an adequate RDF skeleton, we can achieve the resulting
RDF model to correspond to an instance of the intended target ontology. The
RDF skeleton in the CONSTRUCT clause of the SPARQL query becomes hereby the
pivotal part of the actual mapping process. A sample mapping query is provided
in Section 3.3.6.

3.3 Relational to Semantic Mapping 59

Figure 3.7: Mapping process

3.3.4 Characteristics

In this section we discuss the major characteristics of our relational database to
RDF/OWL mapping approach.

Combination of Automatic and Manual Mappings: The mapping ap-
proach presented in this section is suitable for most relational database
scenarios. If we have to handle with constantly changing database schemas,
an automatic mapping with Relational.OWL into the Semantic Web is the
best choice. Indeed, an automatic mapping with Relational.OWL does not
add real semantics to the RDF objects, but at least, the data is processable
by most Semantic Web application without having to update the mapping
every time the schema changes.

In many application areas, the risk of having to update the mapping is
either negligible or consciously taken into account, since data with real se-
mantics is required. For these cases, an additional, manual mapping from
the Relational.OWL representation to a target ontology would be appropri-
ate. This may easily be done using a suitable query language. Please note,
that all present relational database to Semantic Web approaches require
the mapping to be updated, whenever the schema of the database changes,
whereas our technique provides an automatic fallback for such situations.

Mapping within the Semantic Web: The complete mapping process from
the relational database to RDF objects with real semantics is performed

60 3. Bridging the Semantic Gap

using Semantic Web applications. As a result, two different mapping ar-
chitectures are possible. The first and most reliable possibility is, that
such mappings are processed by small wrapper applications providing the
Semantic Web applications with the required target data. Taking place
within the Semantic Web, the applications may nevertheless opt to create
the mapping by themselves using their own built-in functionality.

Well-known Mapping Language(s): One of the main advantages of our ap-
proach is, that it does not require a new mapping language to be adopted,
since it is completely based on current RDF/OWL-techniques. Contrary to
approaches like [Biz03], Semantic Web application developers needing ac-
cess to data actually stored in relational databases do not have to learn yet
another mapping language, but are able to use their preferred RDF query
language, as long as it fulfills the requirements mentioned in Section 3.3.1.

3.3.5 Classification

Mapping relational data, i.e. the Relational.OWL representation of a database to
a target ontology can be regarded as part of the classical schema integration prob-
lem. Consequently, we want to assign our mapping approach to one of the two
well known integration strategies global-as-view (GAV) or local-as-view (LAV)
(cf. [Ull97, Hal01, Len02]). In GAV, for each component of the global schema, a
view over the local sources is created. Consequently, as soon as one of the source
schemas is altered, or a new source database is added, the mapping or even the
actual global schema has to be revised. In contrast, LAV expresses each local
source as a view over the global schema. The main advantage of LAV is, that
whenever a source schema changes or is added, only the corresponding mappings
have to be changed without affecting the global schema.

Dealing with a target ontology, which is rarely modified, used by an unknown
amount of data sources, and not maintained by the local administrator, a GAV-
based approach is not applicable. On the other hand, we do not use a LAV-based
approach neither, since our sources are not described as a view over the global
schema. Instead, we deal with multiple source databases, each mapping (part of)
its schema to (parts of) the mainly static global target ontology on its own. This
mapping approach hence resembles more a combination of GAV and LAV, like
BGLaV, which is described in [XE04]. A detailed analysis, whether an approach
using source-to-target mappings based on a predefined global ontology enables
efficient query rewriting from the local database to the target ontology, as claimed
by the authors, is left for future work.

3.3 Relational to Semantic Mapping 61

3.3.6 Sample Mapping

In this section we present a sample relational data to RDF/OWL mapping us-
ing SPARQL as our chosen mapping language. Despite its novelty, SPARQL is
already supported by the Jena Framework [Jen06].

Consider a Semantic Web application developer, who requires access to the
data stored in the database introduced in Section 3.1. Since he assumes the
database schema to be quite stable, he decides to create a mapping from the re-
lational data model to Semantic Web objets based on the vCard ontology [Ian01].
A possible mapping query, which gives Semantic Web applications the possibil-
ity to access the data using its own built-in functionality and enables them to
perform common reasoning operations is given in Figure 3.8.

PREFIX vCard: <http://www.w3.org/2001/vcard-rdf/3.0#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX dbinst:<http://www.dbs.cs.uni-duesseldorf.de/RDF/address schema.owl#>
CONSTRUCT { :v rdf:type vCard:ADR;

vCard:Street ?street;
vCard:Locality ?locality;
vCard:Pcode ?pcode;
vCard:Country ?country}

WHERE {{?a rdf:type dbinst:ADDRESS;
dbinst:ADDRESS.ZIP ?pcode;
dbinst:ADDRESS.STREET ?street;
dbinst:ADDRESS.CITY ?locality;
dbinst:ADDRESS.COUNTRYID ?x}.

{?d rdf:type dbinst:COUNTRY;
dbinst:COUNTRY.NAME ?country;
dbinst:COUNTRY.COUNTRYID ?x}}

Figure 3.8: Sample mapping query

After specifying the prefix definitions for vCard, rdf, and dbinst in the
PREFIX clause, the skeleton of the resulting RDF objects is defined in the
CONSTRUCT part of the query. At first, a new blank node of type vCard:ADR

is created. This object contains the attributes vCard:Street, vCard:Locality,
vCard:Pcode, and vCard:Country and could easily be extended by further at-
tributes either specified in the vCard ontology or in other RDF-Schema files. The
values corresponding to the given attributes are specified by free variables, bound
in the following WHERE clause.

The actual linkage to the original database is performed in the WHERE clause
of the SPARQL query, i.e. each of the free variables specified in the CONSTRUCT

clause is bound to a column of the original database. To be more precise, the
attributes are bound to the data instances I of the RDF representation ROWL
of the relational database. Please note, that the mapping specification is identical
for a virtual RDF model like in RDQuery or a static data representation, e.g. with

62 3. Bridging the Semantic Gap

the Relational.OWL application. Being stored in two different tables (ADDRESS
and COUNTRY), the required data is joined using the ?x variable (cf. Section 3.2.2).

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:vCard="http://www.w3.org/2001/vcard-rdf/3.0#" >

<rdf:Description rdf:nodeID="A0">
<vCard:Pcode>40225</vCard:Pcode>
<rdf:type rdf:resource="http://www.w3.org/2001/vcard-rdf/3.0#ADR"/>
<vCard:Street>Universitätsstr. 1</vCard:Street>
<vCard:Locality>Düsseldorf</vCard:Locality>
<vCard:Country>Deutschland</vCard:Country>

</rdf:Description>
<rdf:Description rdf:nodeID="A1">

<vCard:Pcode>31006</vCard:Pcode>
<rdf:type rdf:resource="http://www.w3.org/2001/vcard-rdf/3.0#ADR"/>
<vCard:Street>Campus de Arrosadia</vCard:Street>
<vCard:Locality>Pamplona</vCard:Locality>
<vCard:Country>Espa~na</vCard:Country>

</rdf:Description>
</rdf:RDF>

Figure 3.9: Sample mapping result

Having created a suitable mapping from the Relational.OWL representation
of the database to the target vCard ontology, the resulting data can be processed
by most Semantic Web application as usual. In Figure 3.9, a sample result set of
the mapping query provided in Figure 3.8 is given.

3.3.7 Evaluation

We have evaluated the performance of our relational database to Semantic Web
approach using RDQuery (cf. Section 5.2). It is a wrapper system, which enables
Semantic Web applications to access and query data actually stored in relational
databases using their own built-in functionality. RDQuery automatically trans-
lates SPARQL and RDQL queries into SQL and is hence able to perform the re-
lational to semantic mapping in one step. Providing an adequate mapping query,
the query is translated into SQL, the underlying relational database is queried,
and the results are returned in the required format. RDQuery is thereby able
to recognize the basic operations of the relational algebra within the SPARQL
query (cf. Section 3.2.2) and to translate them into SQL. Hence, most of the
workload, including join and projection operations, is not processed directly by
RDQuery, but passed to the underlying database with the generated SQL query.

Following the example shown in Section 3.3.6, we have created 18 differ-
ent queries which map relational data to the vCard ontology (cf. http://www.
w3.org/TR/vcard-rdf). We have categorized these queries into three different
classes, depending on their complexity referring to the relational algebra (i.e.
selection, projection, and join). Each of the categories contains six of the

http://www.w3.org/TR/vcard-rdf
http://www.w3.org/TR/vcard-rdf

3.4 Related Work 63

Execution time [s]
SPARQL Query Query Translation Mapping Process

Selection 0.020 0.050
Projection 0.018 0.052
Join 0.023 0.067

Table 3.3: Average execution time for a SPARQL mapping

queries. We first measured the time required by RDQuery to translate the queries
into SQL and then the time passed for the complete mapping process, includ-
ing query translation, query execution via JDBC using a MySQL database, and
the data translation back into RDF. The database, the queries were tested on,
is based on the northwind database and contains eight tables with a total of
about 3000 tuples. Unlike the first measurement, the second depends on various
factors, like network or database performance, which can hardly be influenced by
RDQuery. In Table 3.3, the average execution time of the query translations and
mapping processes for each mapping category is given.

The performance results show, that the execution time of both, the query
translations and the complete mapping process are barely measurable, lying most
of them far below 100 milliseconds. Even the more complex join operations
were translated and executed at an average of 67 milliseconds. Consequently,
our mapping relational data to Semantic Web approach enables applications to
access legacy data stored in relational databases in real-time, as if that data
would actually be part of the Semantic Web.

3.4 Related Work

Since the raise of XML in the late 1990s and early 2000s a large number of different
exchange formats for relational database systems have been developed based on
XML (e.g. Torque as part of the Apache DB Project [The04]). Actually, each
vendor of (object)relational database systems has tried to establish its own XML
representation, like ORACLE’s XMLElement function or IBM’s Rec2XML scalar
function, already mentioned above. Since these different dialects can easily be
converted using XSLT, this babylonic chaos of different representation languages
is broadly accepted. Nevertheless, the transformation rules between the different
dialects have to be created manually.

After Berners-Lee et al. had expressed their vision of the next generation Web,
a Semantic Web in [BLHL01], the community started to seriously adopt the idea
of semantic reasoning within the World Wide Web. This includes also some ideas
on how to extract data from (relational) database systems, whereof [BL98a] can

64 3. Bridging the Semantic Gap

be seen as an early forerunner. Nevertheless, this mapping of relational data to
RDF is rather rudimental, e.g. lacking a concrete schema representation.

In [Mel99], Melnik introduces a working draft for an algebraic definition of
RDF models. Unfortunately, this proposal does not include the operations re-
quired for querying the RDF graph. A more sophisticated approach is presented
by Frasincar et al. [FHVB04]. They introduce a complete algebra for RDF,
inspired by the relational algebra. Consequentially, the authors do not only in-
troduce the corresponding algebraic data model, but also adequate operators like
the projection, the Cartesian product, or the selection. Nevertheless, the authors
did neither make a direct comparison to the relation algebra, nor explain how to
bring the relational and semantic worlds together.

Recently, more efforts arose in bringing together relational databases and the
Semantic Web. Anyhow, most of these approaches do not use relational databases
as a data source, but to store RDF triples in tailored tables, exploting the im-
proved query performance of current relational databases (e.g. [KCPA01], [PH03],
or [HS05]). The main drawback of such approaches is, that the corresponding
data has to be available in RDF, i.e. their aim is not to convert legacy data into a
Semantic Web representation, but to give applications fast access to RDF triples.

Karvounarakis et al. present for example RQL [KCPA01], an advanced declar-
ative query language for RDF schemas and descriptions. To achieve the best
possible query results, the authors store the RDF data in a relational database,
where the actual query is performed. Therefore, they make an adequate mapping
of all RDF triples to the relational data model. Since this mapping is specific to
the needs of querying normal RDF triples, stored in a special way in a relational
databases, it is hard to apply it to our needs. In fact, we would have to transform
data stored in relational databases to RDF/OWL using Relational.OWL, just to
be stored once again in a relational database for accessing it.

Nevertheless, there are also some techniques, trying to map legacy relational
databases to the Semantic Web. Bizer [Biz03, BS04] for example, introduces a
mapping from relational databases to RDF. Unlike our approach which is based
on existing query languages, this method requires a specific mapping language,
which, although it is based on RDF, still has to be learned and adopted by the
corresponding developers.

Semantic integration of corporate information resources is the main topic in
[BJY+02], where Barrett et al. use RDF as a standardized communication lan-
guage between multiple components. In their approach, relational data is linked
to an ontology, which itself is used as a neutral interchange format. Hence, the
aim of the authors is not to represent relational data in a semantically process-
able way, but to relate the concepts stored in the database with those of an RDF
ontology.

An et al. outline in [ABM05] a further approach from tables to ontologies. Un-
like our technique, this approach maps database schemas directly into ontological
concepts, assuming that the required database was designed following several ER

3.5 Discussion and Future Work 65

design principles, e.g. the database is normalized and contains meaningful table
or column names.

Petrini and Risch introduce in [PR04] their technique to query relational
databases using RDF query languages, which is closely related to our approach.
Nevertheless, it has some drawbacks. The mapping from relational tables to the
Semantic Web is defined within a custom made mapping table, where columns
or tables are related to objects or attribute values. As a result, the mappings
between both worlds are always one-to-one. Our mapping technique is completely
based on the Semantic Web and allows the mappings to be as complex as a query
language can be, i.e. we would even be able to use aggregations, if they are
supported by the query language used.

Haase et al. provide in [HBEV04] a survey describing different RDF query
languages. The paper starts with the promising challenge to examine, whether
the query languages are relational complete or not. Since the paper examines
six different query languages it analyzes the languages superficially, omitting the
argumentation for the conclusions. In fact, the authors seem to have under-
estimated the expressiveness of RDQL. Unfortunately, the paper does not in-
clude SPARQL, since it was released almost at the same time. A quite complete
overview of current query languages for XML and the Semantic Web is presented
by Bailey et al. in [BBFS05].

3.5 Discussion and Future Work

We have seen in this chapter how to represent the schema of a relational database
using our Relational.OWL ontology. The semantic representation of the schema
itself can then be interpreted as a novel ontology, i.e. a schema ontology. Based
on this tailored schema ontology, the data stored in that specific database can be
represented within the Semantic Web.

The next step was to analyze whether such a relational data and schema rep-
resentation could potentially replace existing interfaces for the access of relational
data out of the Semantic Web. The advantage of such an approach is obvious:
All Semantic Web applications could query data stored in relational databases
with their own built-in query languages, without having to convert this data in
a manual and time-consuming process.

A direct comparison of this approach with SQL, the commonly used interface
to relational databases, would be unfair and easily get out of hand, since SQL has
evolved during the last decades and most semantic query languages are rather
rudimental. Hence, we have decided to check if it is possible to express the basic
operations of the relational algebra with one of the upcoming query languages
for the Semantic Web.

During our analysis we observed, that the fundamental drawback of RDQL is
the absence of closeness, i.e. the result set of a query is not a valid RDF/OWL

66 3. Bridging the Semantic Gap

expression any more. We hence have decided to recheck the basic operations
using the closed query language SPARQL.

Despite some differences to the relational algebra, e.g. in the Cartesian prod-
uct, we managed to simulate the basic operations {σ, π,∪,−,×} of the relational
algebra. Additionally we showed, that join operations, which will certainly be
part of most mapping operations between the relational and the semantic worlds,
can easily be deduced from our Cartesian product simulation — just as it is done
within the relational algebra. Since we were successfully able to simulate more
than the basic relational operations, we have shown, that the combination of
Relational.OWL and SPARQL are relational complete.

After being able to query the Relational.OWL representation of a relational
database, we have described how to map data from relational databases into a real
RDF representation using a Semantic Web query language. To use such query
languages for a mapping purpose, three main requirements have to be met. First,
the relational database (i.e. its schema and data components) has to be described
using the Relational.OWL ontology. This automatic semantic representation of
the relational database can then be queried using any RDF query language. If
the adopted query language is closed, the resulting RDF graph can be specified
to match the target ontology, the original database shall be mapped to.

The approach presented in this chapter is based on mapping the Rela-
tional.OWL representation of relational databases manually into Semantic Web
objects with real semantics. We are thus planning to analyze, whether exist-
ing (semi-)automatic schema and ontology matching approaches (cf. [SSC05,
DMDH04, RB01]) could provide reasonable results in matching an existing re-
lational schema to a target ontology, i.e. to find correspondences between the
schema of the database and the target ontology.

The expressiveness within the mapping process depends directly from the
query language used, i.e. a more complex mapping cannot be stated with an el-
ementary query language. For instance, we showed that all the basic operations
of the relational algebra can be expressed with SPARQL. Nevertheless, its has
some considerable limitations, since it does not support aggregations or nested
queries. A further restriction concerns data manipulation or data updates, which
is still not supported by most RDF query languages. We are currently analyzing,
whether SPARQL could be extended to support such operations for enabling Se-
mantic Web applications to manipulate the data actually stored in the relational
database.

Chapter 4

A Novel URI for Databases

In chapter 3 we have introduced our technique to map data stored in relational
databases into the Semantic Web. The mapping process consists of two main
steps, one automatic data and schema extraction using the Relational.OWL on-
tology and a subsequent mapping to a specific target ontology. During the first
step, we represent the data and schema items of the database like they were in
the database, i.e. the data tuples are instances of their own schema (ontology).
Nevertheless, due to the lack of a suitable URI schema, we loose one important
information: the exact location of the originating database server and its corre-
sponding data and schema components. As a result, it becomes impossible to
backtrack the data to its original data source or to identify two data tuples as
actually being the same.

In this chapter we suggest the novel URI scheme db for identifying not only
databases, but also their schema and data components like tables or columns.
One of the features of this scheme is that it may not only be used for relational
database systems, but for virtually any type of database or data source. We
therefore have combined the advantages of both global uniqueness of URIs and
the high flexibility of knowledge representation with RDF as part of the Semantic
Web. With this novel identifier we are now able to enhance every data record
exchanged between databases with metadata: an exact and identifying location
of that data in the data source. As a result not only the system administrator is
able to backtrack the data to its exact position in the data source but also the
database system itself. The approach presented in this chapter is largely based
on work published in [PC03].

4.1 Motivation

Nowadays data is not exchanged and integrated manually anymore, but semiau-
tomatically. Data exchanges between data sources run on their own after being
set up once by a database engineer. Afterwards he only has to interfere if an error

68 4. A Novel URI for Databases

occurs or changes have to be done. In the former case the source of the data which
produced the error has to be backtracked, so the error can be reconstructed and
solved. This seems quite easy in an environment with two databases involved,
but in more realistic environments we usually have quite more databases engaged
in a data exchange. Since the data exchange formats and the data exchanged
may only differ marginally, assigning the data to its corresponding sources may
be quite complicated or even impossible.

Following the vision of completely autonomous databases exchanging not only
their data, but also their metadata [BGK+02, HIMT03], we will soon face a sim-
ilar problem. In these cases, not only the data, but also the schema components
have to be backtracked exactly to their sources. If the data source cannot be
identified unambiguously out of the data exchange process, special identifiers for
the data sources are needed.

Data sources do not only have to be identified in ongoing data exchanges, but
also for later analysis. The information where a data record came from could be
crucial especially if errors do not appear immediately. If, in the meantime, the
same data has been exchanged with multiple other data peers, the actual source
of that item cannot be traced any more.

In many cases, internally assigned identifiers for each specific data source
would be enough. However if we start having autonomously and automatically
acting databases exchanging data and metadata, this internal identifiers will not
suffice any more. We can illustrate this with a small example.

2

4

a

b

g

h

c

d

e

f

13

Figure 4.1: Multi-Peer-to-Multi-Peer data exchange

A data exchange system consisting of four databases (cf. Figure 4.1) where
each database synchronizes its data with two of the other databases. Each
database propagates all data changes to both exchange partners, for which it
has assigned an internal name, i.e. database 2 (db2) knows database 1 (db1) by
the name a, db1 knows db2 by b, etc.

A data update on db1 is propagated to db2 and database 4 (db4). The first
recognizes the data as coming from database a, for db4 the data comes from h.
After it has been imported into the respective databases, the data records have
to be propagated again. For this reason database 3 (db3) will get data from db2

4.2 Challenges Designing an Identifier 69

and db4. Even if there was an identifier of the original source attached to that
data, db3 would never be able to recognize the data as coming from one and the
same source. Since the source database has two different names (a and h), db3
is not able to recognize these two sources as being the same.

Apparently it makes sense to have a global identifier for databases. This
should not only identify the database itself, but also its components. The purpose
of this chapter is to propose such a global identifier.

4.2 Challenges Designing an Identifier

The first step in designing an identifier for databases is to analyze existing stan-
dards, whether they may be suited accordingly. Obviously we first think of the
Abstract Syntax Notation One (ASN.1) [Int02] or the International Code Desig-
nator (ICD) [Int98], but they do not fulfil our needs. ASN.1, a standard for the
identification of all kinds of objects, has three main disadvantages. First, every
company or institution interested in the identification of their database objects
would have to register a subset of the ASN.1 number space, which would entail
additional costs. Second, the evolution of semi-structured data to XML and the
high popularity of domain names instead of IP addresses have shown that a data
or address–exchange has to be done in a human readable and understandable
manner. An approach based on ASN.1 with its predominating representation
Object Identifiers could be understood only with the aid of manually maintained
mapping–tables. And finally there is no way of syntax validation included in
the ASN.1 standard [Mea00]. Especially the possibility to validate the identi-
fiers would give us an important instrument en route to an automated error-
backtracking within autonomous and automatic data exchange environments.

Since ICD is a subset of ASN.1, the disadvantages mentioned above also
apply. In addition, the number of possible enterprisers with assigned ICD num-
bers is limited to 9000 [Int98], a tremendously undersized amount for identifying
databases of potentially each company or institution in the world.

Apart from the arguments mentioned above, ASN.1 and ICD identifiers persist
only of a global identification number similar to URNs [Moa97], but do not include
a locator. Thus databases, trying to backtrack a data’s source, would not be able
to locate it, nor to contact it. For this reason, and especially taking autonomously
acting databases into account, the location of a data source is an indispensable
information and should hence be included in the identifier.

The most important feature of the identification mechanism must be its flex-
ibility. It has to suit to relational and object-oriented databases as well as to
directories, legacy systems, or database types not yet developed. Additionally,
we have to handle with heterogeneity within the different database types them-
selves [VJBCS97, KCGS95]. A relational database server from vendor a may
consist of different databases in which every database user has an assigned table

70 4. A Novel URI for Databases

space. Another relational database (even from the same vendor) may skip the
database-user hierarchical level, so that one big table space is shared by all users.
This sort of heterogeneity has to be considered as well.

Of course we could propose to introduce a new registration authority for
worldwide unique database identifiers, but this center needs to be established
first, the service would certainly not be free of charge, and it would have to be
accepted by the community.

Concluding, we require a flexible identifier for databases and their compo-
nents, without having to establish a registration authority. For thus purpose, we
have decided to combine normal URIs [BLFM98] with RDF [Las97], the prin-
ciple technology of the Semantic Web [BLHL01, Dum01]. The combination of
both URIs and RDF enables us to create a flexible identifier with a virtually ex-
haustless address space, which is human readable and at the same time machine
understandable.

4.3 Model

As mentioned above, we propose a novel model for identifying databases and
their components combining the advantages of both Uniform Resource Identifiers
(URI) and the Semantic Web.

A URI is a “compact string of characters for identifying an abstract or phys-
ical resource” [BLFM98]. It is predestinated for creating a global identifier for
databases and their components. Presently, there are several standardized URI
schemes, for instance those for telephone numbers, email addresses, or host spe-
cific file names [Int03e], but the best–known and most used URI scheme is http,
which stands for the Hypertext Transfer Protocol [FGM+99]. All URI schemes
were introduced to create a global identifier for specific resources, which is also our
aim. Since there is still no appropriate URI scheme for databases, we introduce
the URI scheme db for databases. It identifies databases and their components,
no matter of what type the database is and how that database is composed.

Each database involved in a data exchange can be reached using its unique IP
address or domain name. We are thus able to use this address for the identification
of the database server itself as the first part of our novel identifier. Addition-
ally, we want to identify its components, for example its tables or columns which
can usually be done through a kind of hierarchy. Since we cannot give a global
hierarchy for all sorts of databases, the URI scheme itself has to be hierarchy in-
dependent. We have decided to use the Resource Description Framework (RDF)
[Las97] of the Semantic Web for identifying single database components. The ad-
vantage of RDF is definitely its flexibility. Referencing to an adequate ontology,
we are able to create arbitrary chains of attribute/value pairs for the unambigu-
ous identification of the required components. Using an ontology like the Rela-
tional.OWL ontology (cf. Section 3.1), a database column named WorkerPK could

4.3 Model 71

be identified by Database=admin and Table=Worker and Column=WorkerPK or
just by Column=WorkerPK, depending on the uniqueness of this specific column
name. Besides the flexibility achieved through RDF, this Semantic Web technol-
ogy gives the attribute/value chain a real meaning, i.e. we are able to represent
actual knowledge. Hence, a remote database would know, that dbs:Table rep-
resents the construct relation known from the relational model.

Summarizing, we are able to identify a database server using its unique IP
address or Domain name and its components using an RDF-based attribute/value
chain. Unfortunately, there are still some challenges to be considered:

1. how to represent the RDF-Syntax [LS99] within the URI,

2. how to use internationalization inside the URI,

3. how to specify the corresponding namespaces,

4. how to address database servers located in private networks,

5. how to incorporate temporal aspects, and

6. how to deal with databases changing their IP addresses constantly or having
a private one.

Challenges one, two, and three are solved below, the fourth, fifth, and sixth
are subject to further research.

The most evident syntax for a database URI composed of an
IP address and several RDF attribute/value pairs would certainly be
db://ipaddress/prefix:attribute=value&prefix:attribute=value, where
ipaddress specifies the location of a database server, prefix is a namespace
pointing to the ontology used as a vocabulary of database components, and value

is the concrete name of the corresponding database component.
Unfortunately this syntax is not allowed, since the colon is a reserved char-

acter for specifying the port [BLFM98] and thus must not be used elsewhere
within a URI. Using the ASCII representation %3A of the colon could also lead
to problems, since the URI will most likely be used in XML documents and the
% character specifies a parameter-entity within the DTD of an XML document
[BPSM04]. For such cases, we have to provide a further alternative representa-
tion of the colon, i.e. :. Consequently, an attribute/value pair specifying the
location of a database component looks like prefix%3Aattribute=value or like
prefix:attribute=value.

Using the URIs in XML documents leads to a further challenge, since the
ampersand (&) specifies the beginning of an entity reference or a special character,
like : for the colon. We hence additionally allow the usage of a semicolon (;)
as an alternative for separating the attribute/value pairs form each other.

A further problem arises with non-standard ASCII characters in databases.
We cannot assume all the names of tables or columns be restricted to the lim-
ited amount of ASCII characters, especially if we have to handle with data ex-
changes crossing different language regions. In the RFC for the URI Generic

72 4. A Novel URI for Databases

Syntax [BLFM98] this restriction is virtually made, since it is not mentioned
how to deal with non-standard ASCII characters. However, since the URI will
always appear within a data exchange where a corresponding character encod-
ing has already been arranged, we define the encoding of the URI to be the
same as that of the document it is contained in. Was the encoding of the
data exchange defined in the XML header as ISO-8859-1, we would be able
to have prefix%3Aattribute=küche as part of a valid URI. With the encoding
ISO-8859-5 a valid URI could contain prefix%3Aattribute=kuhn�. A corre-
sponding example could be given for virtually any encoding.

Besides the encoding, the namespace, i.e. the prefix representing the on-
tology, has to be defined before a corresponding attribute can be used within
the URI. Defining it within the URI itself would lead to a large overhead,
especially if the same namespace is used within several URIs. We hence
assume that all the namespaces have already been defined within the data
exchange document. We are hence only allowed to use a prefix dbs if
it was defined as being the representative for a correponding ontology, e.g.
http://www.dbs.cs.uni-duesseldorf.de/RDF/relational.owl#.

Figure 4.2: The db URI scheme

To sum things up, the novel URI scheme db presented in this chapter consists
of two main parts (cf. Figure 4.2). The first part represents the location of the
database server, i.e. its IP address or domain name. The second part specifies the
location of the component in the database using a chain of RDF attribute/value
pairs. The delimiter between the attribute/value pairs is either an ampersand
(&) or a semicolon (;). Whereas the prefix and the attribute names are either
separated by %3A or by :, both representing the colon (:).

4.4 Example

After having defined our URI scheme for databases we will now give a short
example. Given the fact, that such a novel URI could improve both, XML and
RDF-based data and schema representation formats of relational databases, we
describe both scenarios. First we show how to embed the URI into a basic
XML data exchange and then how to include this URI into the Relational.OWL
representation of a relational database (cf. Section 3.1). The description of both
techniques are again based on the database introduced in Section 3.1, which
contains the following two relations:

4.4 Example 73

Address(AddressID, Street, ZIP, City, CountryID) and
Country(CountryID, Name).

4.4.1 XML Data Exchange

Representing the data stored in the relational database using a simple XML-
based exchange format could lead to a file as given in Figure 4.3. Since there is
no constraint enforcing the tags to be named after the table or column names, the
tags may not give information about the actual storage location in the database.

<?xml version="1.0" encoding="ISO-8859-1" ?>

<mydatabase>

<Residence>

<PK>3248</PK>

<Str>Königsallee 21</Str>

<ZIP>40212</ZIP>

<City>Düsseldorf</City>

<Country>32</Country>

</Residence>

<Country>

<ID>32</ID>

<Name>Deutschland</Name>

</Country>

</mydatabase>

Figure 4.3: XML data exchange document

Using our novel URI scheme db we are now able to incorporate additional
metadata into that exchange file. Adding a source-specific URI to each data
record, we are now able to backtrack a data item to the exact storage position in
the original data source. Adding this information to the data exchange file from
Figure 4.3 results in a exchange file as given in Figure 4.4.

After specifying the XML version and the corresponding character encoding,
we have to define the entities used within the exchange document. Since all of
the URIs used within the document are partly identical, we define three enti-
ties, which can be used further on within the document. We are hence able to
reduce the amount of data overhead to a reasonable amount. The entity mydb

corresponds to the location of the actual database and the entities address and
country correspondingly to its tables Address and Country. Besides the entity
definition, there are two additional differences to the basic data exchange file in
Figure 4.3: a namespace definition and the source specification for each data item.
The namespace dbs pointing to an ontology for relational databases is defined

74 4. A Novel URI for Databases

in the outmost element and may hence be used within the complete XML docu-
ment. This is the namespace required for our URI. The attribute src, which was
added to the elements, specifies the source where the data actually came from,
i.e. the data between the opening and closing mydatabase tags came from the
database named admin, stored in the server with the domain name foo.de. The
source specifications for the remaining tags are made accordingly.

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE mydatabase [
<!ENTITY mydb "db://foo.de/dbs:Database=admin">
<!ENTITY address "&mydb;;dbs:Table=Address">
<!ENTITY country "&mydb;;dbs:Table=Country">
]>

<mydatabase src="&mydb;" xmlns:dbs=
"http://www.dbs.cs.uni-duesseldorf.de/RDF/relational.owl#">

<Residence src="&address;">
<PK src="&address;;dbs:Column=AddressID">3248</PK>
<Str src="&address;;dbs:Column=Street">Königsallee 21</Str>
<ZIP src="&address;;dbs:Column=ZIP">40212</ZIP>
<City src="&address;;dbs:Column=City">Düsseldorf</City>
<Country src="&address;;dbs:Column=CountryID">32</Country>
</Residence>
<Country src="&country;">
<ID src="&country;;dbs:Column=CountryID">32</ID>
<Name src="&country;;dbs:Column=Name">Deutschland</Name>
</Country>
</mydatabase>

Figure 4.4: XML data exchange document with our novel URI

4.4.2 Relational.OWL Representation of a Database

Representing the data and schema of a relational database based on the Rela-
tional.OWL ontology (cf. Section 3.1) means to incorporate data originated from
relational databases into the Semantic Web. Although we are able to represent
the basic semantics of the relational schema in a machine readable and under-
standable way, one essential information is not included: the location of the
original data source.

As we have seen in Section 4.1, the information about the origin of a data
item can be very important, especially in scenarios where data is being exchanged
among multiple partners. Dealing with data on the Semantic Web, particularly
if inference rules shall be applied, the unambiguous identification of a data item
using URIs becomes vital.

Currently, it is hardly possible to identify two data items as being the same

4.4 Example 75

information, i.e. representing the same data tuple in a source database, since
present implementations of Relational.OWL (cf. Section 5.1) use local identifiers
without a global uniqueness. In fact, for most scenarios, providing relational data
in a semantically processable way is enough, since Semantic Web applications are
able to access data using their own built-in functionality, which was previously
out of their reach. Nevertheless, for some advanced reasoning tasks, a unique
URI identifying the data item stored in the data source would support meeting
the challenge. In this section we sketch up some ideas on how to include our
novel URI into the Relational.OWL representation of a relational database for
supporting such Semantic Web applications in their reasoning tasks.

Adding the source specific URI to the data exchanged using a basic XML
document (cf. Section 4.4.1) was rather straightforward: we added the corre-
sponding URI pointing to the original storage location to each individual data
item. The decision where to add the novel URI within the Relational.OWL repre-
sentation of a database is not that trivial, since we have to deal with two different
representation types, a data and a schema representation (cf. Section 3.1).

Including the URI into the data representation according to the XML data
exchange in Section 4.4.1 would mean to dilute the strict separation between the
schema and the data representation, since we would include metadata into a pure
data representation. The adequate position for such a URI is thus the schema
ontology of the database.

Nevertheless, adding the corresponding URIs to the schema representation
does not mean to loose this information in the actual data representation. Since
the data items are instances of the schema classes defined in the schema ontology,
this information is implicitly available within the corresponding data representa-
tion.

There are basically two different approaches on how to include the novel URI
scheme into the schema representation of a relational database. On the one
hand, the Relational.OWL ontology could be extended to include an additional
attribute src for specifying the URI of the corresponding schema components. On
the other hand, it would be possible to replace the IDs of the schema component
representatives using our novel URIs.

To add an additional attribute to the Relational.OWL ontology would prob-
ably be the easiest and quickest way to incorporate the URIs into the schema
file. Nevertheless, this option would result in an imprecise model of the database
schema, since the URI is not a property of a schema component, but it repre-
sents the schema component itself. It would hence be more precise to replace the
current IDs of the schema component representatives with their source-specific
URI.

However, even this approach has one big disadvantage, since many Semantic
Web applications assume the URI of an object to be a real URL, i.e. to point to
the location, where the corresponding Semantic Web object is defined and where
to acquire additional information about this object. In our case, the URI does

76 4. A Novel URI for Databases

not point to such a location, but represents the logical location of a component
in the database server. Consequently, this approach could lead to difficulties in
the reasoning process, especially if reasoning engines try to access the resource
implied by the URI.

<...>

<owl:DatatypeProperty rdf:ID="ADDRESS.ZIP">

<rdf:type rdf:resource="&dbs;Column"/>

<rdfs:domain rdf:resource="#ADDRESS"/>

<rdfs:range rdf:resource="&xsd;string"/>

<dbs:length>8</dbs:length>

<dbs:src>&address;;dbs:Column=ZIP</dbs:src>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about=

"&address;;dbs:Column=COUNTRYID">

<rdf:type rdf:resource="&dbs;Column"/>

<rdfs:domain rdf:resource="#ADDRESS"/>

<dbs:references

rdf:resource="&country;;dbs:Column=COUNTRYID"/>

<rdfs:range rdf:resource="&xsd;integer"/>

</owl:DatatypeProperty>

</ ...>

Figure 4.5: Relational.OWL-based schema file using our novel URI

Since it is out of the scope of this work to decide, which is the best approach
to include the URI into the Relational.OWL representation of a database, we
have included both possibilities into a small example. The sample schema rep-
resentation in Figure 4.5, which is based on the schema representation of Figure
3.3 on page 38, contains the Relational.OWL representation of two columns. The
first column was enhanced with an additional property named dbs:src, which
currently is not part of the Relational.OWL ontology, but may easily be added.
In the other column we have implemented the second approach and replaced
the rdf:ID attribute by an rdf:about attribute containing the corresponding
URI. Please note, that the dbs namespace and the &address; and &country;

entities used for clarity reasons correspond to the entities already introduced in
Figure 4.4.

4.5 Related Work 77

4.5 Related Work

As far as we are aware of, there is only one alternative approach to our URI scheme
for relational databases. In [BL98a], Berners-Lee compares the relational and the
Semantic Web models. Among his ideas on how to map relational data into the
Semantic Web is a scheme for specifying corresponding URIs. The structure of
our URI is similar to that presented in his work, i.e. both approches consist of
two parts: the location of the database server and the component location within
the actual server. Nevertheless, there are some major differences in specifying the
location of a specific database component. The approach presented by Berners-
Lee does not use knowledge representation techniques to specify the location
of a component, it exclusively uses a hierarchy of component names, i.e. the
URI http://www.acme.com/mycat/ could either represent a database catalog, a
database instance, or a user schema, depending on the hierarchy implemented in
the concrete database management system. As a consequence, a remote database
system is not able to interpret such a URI unambiguously, since the encoded
information has lost its semantic significance completely.

4.6 Discussion and Future Work

In this chapter we have suggested a novel URI scheme for identifying and locating
not only databases themselves, but also their schema and data components. This
scheme guarantees a global uniqueness of the identified components and remains
as flexible as RDF is. Herewith we are not only able to identify relational or
object-oriented databases but also legacy or file systems.

The db scheme consists of two parts. The first part is the locator of the
database (e.g. its IP address) and the second part, realized with RDF, points to
a location inside the database system. Using RDF means to not only write
attribute/value pairs, but to represent knowledge about the structure of the
database. Herewith, potential data and schema exchange partners, being hu-
mans or computers, are instantly able to read and understand the data received
from remote data sources.

Besides the challenges mentioned in previous sections concerning Rela-
tional.OWL and our novel URI scheme, there are some additional items to be
solved. The most important task is to incorporate a temporal aspect [SPZ98] to
the URI scheme. Herewith we would be able to identify a data item indefinitely,
no matter how often it was changed on the actual data source. A reasonable
solution could be to introduce a mandatory attribute giving the time when the
data record was created, e.g. foo:recordCreationTime=1057159782 using the
UNIX time or foo:recordCreationTime=2003-07-02T152942GMT using one of
the numerous ISO 8601 [Int88] formats.

A further challenging problem concerns databases with changing or not reach-

78 4. A Novel URI for Databases

able IP addresses, e.g. mobile databases or those in private networks. They either
change frequently their address, or do not have an unambiguous one. This could
probably be evaded introducing artificial addresses or names. Please note, that
this fact affects only the first part of the URI scheme and not our method of
identifying components within the database.

Needing several attribute/value pairs for specifying a component within a
database usually leads to lengthy URIs, which significantly increase the data
overhead within a data exchange or representation file. We hence have to consider
some further steps for abbreviating the second part of the identifier. A step would
be to use XML entities for common parts of the URIs, like we have done in both
examples. A further step could be to use a standard namespace, i.e. if only a
basic ontology is required for describing the location on a database, the namespace
specification would not be required any more.

Chapter 5

Applications

Having introduced our Relational.OWL approach to extract the schema and data
items of a relational database and to translate it into a semantically rich format,
we now present several applications, in which the Semantic Web representation of
relational databases play a decisive role. We show with these applications, that
the approaches presented and the results concluded in this thesis can directly be
implemented and have an important impact on different application areas.

The presentation of the applications is organized as follows: In Section 5.1,
we present two different implementations of Relational.OWL, which both are
able to extract the data and schema components of a relational database and to
transform them into their Relational.OWL representation. Thereupon, we show
in Section 5.2 RDQuery, an application which applies the results achieved in
Section 3.2 and automatically translate RDQL and SPARQL queries into SQL,
enabling Semantic Web applications to query relational databases on the fly using
their own built-in functionality. Finally, we present D́ıgame in Section 5.3, a P2P
database architecture, which achieves its actual flexibility to include volatile peers
through a Relational.OWL-based data exchange format.

5.1 Relational.OWL Implementations

In this section we show in practice how to translate the schema of a relational
database into a schema ontology and then how to extract the corresponding data
instances and convert them into RDF. We therefore present two applications,
which are both able to access relational databases and automatically translate
their schema into a schema ontology and the corresponding data items into in-
stances of this newly created ontology. The main drawback of both implementa-
tions presented in this section is the up-to-dateness of the extracted data. The
result of both applications is a Relational.OWL representation of the database,
which states the database at the translation time, i.e. if a database is altered after-
wards, the Semantic Web representation becomes out-dated. In order to achieve

80 5. Applications

a synchronized semantic representation of the database, the complete schema
and/or data extraction process has to be repeated whenever a modification oc-
curs. Nevertheless, having a hard-copy of the relational data in its Semantic Web
representation, any Semantic Web application is able to process this data, even
if the underlying database has crashed or is no longer available.

We first present the Relational.OWL application, a Java-based database-
independent framework, which accesses a relational database using JDBC
and translates its corresponding data and schema components into their Re-
lational.OWL representation. Thereupon we show how to implement Rela-
tional.OWL directly within a specific database management system, without hav-
ing to use a programming language like Java, we only use XML technologies like
XSLT or XQuery.

5.1.1 Relational.OWL Application

The Rleational.OWL application is a Java framework, which extracts the data
and schema components of a relational database and automatically converts
them into their Relational.OWL representation, i.e. it makes the correspond-
ing components accessible to the broad majority of Semantic Web applica-
tion, as long as they are able to process RDF and OWL. The Relational.OWL
application is published under the GNU GPL and can be downloaded from
http://sourceforge.net/projects/relational-owl/. This section is based
on the documentation provided at that site.

5.1.1.1 Introduction

Despite the facility to gain new knowledge through reasoning mechanisms, most
Semantic Web applications are bounded by the little amount of available data in a
processable way, since most of the data is still stored in relational databases. We
hence need applications, which access relational databases and provide Semantic
Web applications with an understandable representation of that data.

The Relational.OWL application, implemented in Java, is such a framework,
offering Semantic Web application the possibility to retrieve information actually
stored in relational databases using their own built-in functionality. It therefore
connects to potentially any relational database using the Java DataBase Con-
nectivity (JDBC) [JDB06], converts its relational schema into a schema ontology
and represents the data items correspondingly. Although this data extraction
is actually based on the schema ontology created during the schema extraction
process, both tasks can be performed separately, e.g. for updating the actual data
representation, whenever a data modification occurs in the data source.

The usage of JDBC for accessing the database, enables the application to
remain independent from the underlying database management system, i.e. it
basically does not make any difference, whether the database management sys-

http://sourceforge.net/projects/relational-owl/

5.1 Relational.OWL Implementations 81

Figure 5.1: The Export tab of the Relational.OWL application

tem is from vender A or B, as long as a JDBC-driver is provided. Nevertheless,
the JDBC implementations or SQL dialects of most database vendors have some
differences, which makes it necessary to slightly adapt the application to the con-
crete database management system. Currently, the Relational.OWL application
supports two different database management systems, the IBM DB2 Universal
Database and MySQL, but it may easily be extended to support additional sys-
tems.

5.1.1.2 Usage

Depending on the required functionality, the user may opt to use the graph-
ical user interface (GUI) of the Relational.OWL application or to embed the
framework into an (existing) application using its API for accessing the Rela-
tional.OWL representation of a database. In both cases, the actual data trans-
formation is performed automatically, without any human intervention.

GUI: As soon as the main class de.hhu.cs.dbs.RelationalOWL of the Rela-
tional.OWL application is started, the GUI window appears. The window con-
sists of three tabs: Config, Import, and Export (cf. Figure 5.1), giving the user a
quick overview of the functionality. All the properties required to connect to a
database, including the class name of the JDBC-driver, the URL of the database,
or the database credentials, have to be specified or loaded from a corresponding
property file within the Config tab. After the Reload button has been pressed
and the application is able to connect to the specified database successfully, it
is ready to perform an import or export task. Depending on the desired func-
tionality, the user may either switch to the Import or Export tabs. Besides the

82 5. Applications

export of a complete database, Relational.OWL is capable to export data based
on an SQL statement, which can be specified in the Export tab. The remaining
features of the GUI can be used intuitively.

Schema Export: As already mentioned, the user is not forced to use the GUI
to benefit from the capabilities of the Relational.OWL application. Instead, he
may opt to include its functionality into his own application using the API of
the framework, which is shown for a sample schema export in the code snippet
of Listing 5.1. Before the schema extraction can be performed, the database
credentials have to be passed to the framework, which in turn tries to establish
a connection to the database. Thereupon, the actual schema transformation is
performed in a new thread, giving the calling application the ability to perform
further operations, whilst the schema is translated. Finally, an XML representa-
tion of the RDF model just created is printed using the standard output stream
System.out.

DbManager dbManager =
DatabaseManagerFactory.getDbManagerInstance(connInformation});

ExportSchemaTask taskES = new
ExportSchemaTask(dbManager.getConnection(), driver, database);

taskES.go();
while (!taskES.isDone()){

Thread.sleep(100);
}
OntModel schema =

ModelFactory.createOntologyModel(OntModelSpec.OWL_MEM,null);
schema = taskES.getSchemaOntology();
schema.setNsPrefix("dbs",

"http://www.dbs.cs.uni-duesseldorf.de/RDF/relational.owl#");
RDFWriter utf8Writer = schema.getWriter("RDF/XML-ABBREV");
utf8Writer.setProperty("allowBadURIs","true");
utf8Writer.setProperty("relativeURIs","same-document,relative");
utf8Writer.write(schema, System.out, "");

Listing 5.1: Schema export

Data Export: After the schema has been exported, the data instances can be
processed. Although a schema file is not strictly required for the data extrac-
tion, it is advisable to specify a corresponding schema ontology, otherwise the
data instances are not linked to their corresponding ontology and a subsequent
reasoning task by a Semantic Web application may become impossible to be
performed. The code snippet in Listing 5.2 shows how the data items of the
corresponding database can be transformed into their Relational.OWL represen-

5.1 Relational.OWL Implementations 83

tation. Again, after the connection to the database has been established, the data
instances are extracted and a corresponding model is created. After the assigned
thread has performed its translation task, the data may be printed analogously
to the schema model in Listing 5.1.

DbManager dbManager =
DatabaseManagerFactory.getDbManagerInstance(connInformation});

ExportDataTask taskED= new
ExportDataTask(dbManager.getConnection(), driver, db, schemaLoc);

taskED.go();
while (!taskED.isDone()){

Thread.sleep(100);
}
OntModel data=taskED.getDataOntology();

Listing 5.2: Data export

Schema Import: Besides its data and schema export functionality, the Rela-
tional.OWL application is also capable to import the Relational.OWL represen-
tation of a database into another database, i.e. to transform a Semantic Web
representation of a database back into its original, relational format. The code
snipped required to transform a schema ontology back into a relational schema
can be reviewed in Listing 5.3.

String importSchemaPath = pathToSchema;
DatabaseManagerFactory.getDbManagerInstance(connInformation);
ImportSchemaTask taskIS = new
ImportSchemaTask(dbManager.getConnection(), driver, impSchemPth);

taskIS.go();
while (!taskIS.isDone()){

Thread.sleep(100);
}

Listing 5.3: Schema import

Data Import: Importing the Semantic Web representation of data items into
a relational database requires a corresponding database schema to be available.
Please note, that it is irrelevant how this schema was created, although it will
most likely be created using the technique presented above. The data import task
itself is then performed quite analogously to the schema import presented above,
i.e. a database connection is established and subsequently a thread performing
the data transformation and import is started (cf. Listing 5.4).

84 5. Applications

DbManager dbManager =
DatabaseManagerFactory.getDbManagerInstance(connInformation});

ImportDataTask taskID = new
ImportDataTask(dbManager.getConnection(), drvr, schemPth, datPth);

taskID.go();
while (!taskID.isDone()){

Thread.sleep(100);
}

Listing 5.4: Data import

5.1.2 Relational.OWL with XSLT and XQuery

After having introduced the Java-based Relational.OWL application in Section
5.1.1, we now present an alternative implementation of the Relational.OWL tech-
nique. This version of the Relational.OWL application dos not require external
applications, but works completely within the relational database system. Since it
is implemented using XML technologies like XSLT [XSL99] or XQuery [BCF+05],
the only requirement is that the relational database system supports this kind of
XML functionality.

The corresponding functions are published under the GNU GPL and can
be downloaded from http://sourceforge.net/projects/relational-owl/. A
more detailed documentation is available at [Mat06].

5.1.2.1 Introduction

The most important advantage of implementing Relational.OWL within a rela-
tional database is, that once installed, anybody having access to that database
may benefit from the extended functionality, i.e. nobody needs to install or ad-
dress an external application anymore. The disadvantage of using stored proce-
dures to create the Relational.OWL representation of a database is the porta-
bility. Since database systems from different vendors use different programming
languages for their stored procedures (e.g. PL/SQL or Transact-SQL), the porta-
bility of the required stored procedures could become a challenging task.

Although most relational database management systems already support
Java-based stored procedures and we could have tried to call the Java-based
application (cf. Section 5.1.1) using a stored procedure, this would have been a
tremendous overhead, since whenever a stored procedure would have been called,
the underlying Relational.OWL application would have established again a con-
nection to the local database, in order to perform the data or schema extraction
task. Having the possibility to use XML techniques like XSLT or XQuery in
the Oracle 10g, Release 2 database management system, we implemented this
functionality using these techniques. The advantages of this approach are obvi-

http://sourceforge.net/projects/relational-owl/

5.1 Relational.OWL Implementations 85

ous, since using standard XML techniques like XSLT or XQuery, we are easily
able to transform the system-specific XML representation of the database into
an arbitrary XML document, e.g. its Relational.OWL representation using the
RDF/XML syntax. Since most database vendors are willing to support this ad-
vanced XML functionality, an easy portability to those systems will be most
likely.

5.1.2.2 Implementation

Since the Oracle 10g database system supports the XSL Transformations lan-
guage and XQuery, we have implemented the Relational.OWL functionality us-
ing both techniques and were hence able to compare both implementations with
respect to their performance, revealing that the XSLT version of the stored pro-
cedures are considerably faster than the XQuery implementation. The detailed
performance results can be reviewed at [Mat06]. We now introduce shortly the
stored procedures required for creating the Relational.OWL representation of the
database.

Since both, XSLT and XQuery required XML documents as a starting point,
we first need a raw XML view of the schema and data components to be
transformed. This functionality is implemented in the DATA_AS_RAW_XML() and
METADATA_AS_RAW_XML() functions, which rely on the XML transformation func-
tionality provided by the underlying database system. They are both invoked by
the corresponding XSLT and XQuery procedures.

XQuery: The XML query language XQuery [BCF+05], which is currently a
candidate recommendation at the W3C (cf. [Jac05]) and will be a de-facto
standard for querying XML documents provides the functionality to create
arbitrary XML documents from the results of a query. This can be used
to transform the raw XML document as provided by the XML functions
mentioned above to a valid RDF/XML document corresponding to the
Relational.OWL representation of that specific database. The according
function, which performs the schema conversion into the schema ontology
of the database is METADATA_AS_OWL(), whereas the function which cre-
ates the instances of this ontology, i.e. converts the data items is called
DATA_AS_OWL().

XSLT: The XSL Transformations language XSLT [XSL99], which was already
recommended by the W3C in 1999, is an XML stylesheet language which
transforms a given XML document using matching rules into a target XML
document. Hence, we are again able to transform the raw XML representa-
tion resulting from the DATA_AS_RAW_XML() and METADATA_AS_RAW_XML()

functions to RDF/XML files, corresponding to the Relational.OWL repre-
sentation of the database. The functionality to create the schema and data

86 5. Applications

representations is implemented in the METADATA_AS_OWL_WITH_XSLT() and
DATA_AS_OWL_WITH_XSLT() functions correspondingly.

Each of the four functions mentioned above, which transform the raw XML
documents into RDF/XML documents, returns an XMLType value (cf. Sec-
tion 2.1.2). If it is required to export this data into a file, the functions
EXTRACT_METADATA_INTO_FILE() and EXTRACT_DATA_INTO_FILE() can be used.
A detailed description of the functions, including their parameters is provided in
[Mat06] and at the URL specified above.

5.2 RDQuery

One of the main drawbacks of the Semantic Web is the lack of semantically rich
data, since most of the information is still stored in relational databases. We now
present RDQuery, a wrapper system which enables Semantic Web applications
to access and query data actually stored in relational databases using their own
built-in functionality. RDQuery automatically translates SPARQL and RDQL
queries into SQL. The translation process is based on the Relational.OWL repre-
sentation of relational databases and does not depend on the local schema or the
underlying database management system. A similar introduction to RDQuery
has also been published in [PZC06].

5.2.1 Introduction

With his vision of a Semantic Web, Tim Berners-Lee inspired the database and
knowledge representation communities to build up the next generation Web. De-
spite its sophisticated technologies like RDF [MM04] and OWL [Mv04], the Se-
mantic Web still has to face its major drawback, the lack of data. In fact, data is
usually still stored in relational databases where it cannot be accessed directly by
Semantic Web applications. If these applications need to query relational data,
they usually have to do this using SQL and create a corresponding mapping be-
tween the relational and the semantic models on their own. Due to the fact that
such mappings have to be created manually, the consequences are obvious: dif-
ferent applications could map identical data extracted from the same database
to different concepts of the Semantic Web. Consequently, a well-defined mapping
of relational to semantic data is required.

Although we can convert the schema of a relational database automatically
into an RDF/OWL ontology and represent the corresponding data items as in-
stances of this data source specific ontology (cf. Section 3.1), barely a database
is static. Consequently, this data and schema extract may rapidly become out-
dated. Indeed, a schema or data extraction could be initiated, whenever a data
or schema modification occurs within the database. Nevertheless, dealing with
dynamic data sources, a direct access to such data sources would be preferable.

5.2 RDQuery 87

In this section we introduce RDQuery, an application which automatically
translates Relational.OWL specific RDQL and SPARQL queries into their SQL
correspondents. RDQuery is hence able to provide Semantic Web applica-
tions real-time access to relational databases using their own RDF query lan-
guages (RDF-QL).

5.2.2 Query Translation

RDQuery is a wrapper system which makes relational databases accessible for Se-
mantic Web applications using an RDF-QL. RDQuery currently supports RDQL
[Sea04] and its successor SPARQL [PS06b]. Nevertheless, RDQuery may easily
be adapted to future developments adding specific parsers for other query lan-
guages. Figure 5.2 gives an overview of the RDQuery system architecture and
depicts the path passed by a query until it reaches the relational database as its
destination.

RDQuery Engine

SemanticWeb

Relational

Database

Relational

Database

JDBC JDBC

RDQL
Parser

Jena Syntax

Check

SPARQL
Parser

Jena Syntax

Check

Parser

Syntax

Check

Figure 5.2: RDQuery system architecture

First, the syntax of the query is validated and its relevant parts (e.g. the WHERE
clause) are extracted using the built-in syntax checker of the JENA Framework
[Jen06]. Thereupon, the relevant parts of the RDQL or SPARQL query are
once again parsed using an own JavaCC-based (Java Compiler Compiler) [Jav06]
grammar, in order to detect the properties of the query. Based on this infor-
mation, the corresponding SQL query is built up. The resulting query is then
executed and processed on the original database without having to translate the

88 5. Applications

original database into a Relational.OWL representation, which thus only exists
virtually.

The query translation is based on the results presented in Section 3.2.1 and
Section 3.2.2, where we examined possible RDQL and SPARQL correspondents
for the basic expressions of the relational algebra. Each of the five main op-
erations {σ, π,∪,−,×} of the relational algebra has characteristic appearances
within a Semantic Web query, making it possible to identify them and build up
a corresponding SQL query, as long as the queries match the Relational.OWL
representation of a database.

For instance, the triple {?x dbinst:TABLE.COLUMN ’value’} expresses that
the objects represented by the free variable ?x shall be restricted to the ob-
jects with their attribute TABLE.COLUMN matching value. This constraint ob-
viously corresponds to a selection, i.e. the WHERE part of an SQL query. On
the other hand, the FROM clause of an SQL query can be composed of the
{?x rdf:type tablename} triples contained in the query, since they specify the
object class, i.e. the tables, the objects originally came from. The remaining
operations of the relational algebra can be mapped correspondingly.

Example: The SPARQL query

CONSTRUCT {?a ?b ?c}
WHERE {{?a ?b ?c}.

{?a rdf:type dbinst:customers}.
{?a dbinst:customers.City ’Berlin’}.

FILTER (?b=dbinst:customers.ContactName)}

is automatically recognized by RDQuery as the SPARQL correspondent of a se-
lection, followed by a projection. It thus translates the given query automatically
into the following SQL query:

SELECT customers.ContactName

FROM customers

WHERE customers.City = "Berlin"

The user may opt to receive an RDF processable representation of the query
result, after it was executed at the corresponding relational database. This feature
of RDQuery is of particular importance for Semantic Web applications using a
non-closed query language like RDQL, since they are instantly able to process
the query result without having to convert the possible variable bindings, they
would usually receive, into valid RDF.

The whole query transformation process is identical for any relational
database and does not depend on the local schema or the underlying database

5.2 RDQuery 89

management system. Nevertheless, the queries have to match the instances of
the Relational.OWL ontology. For a detailed description on how to simulate the
main operators of the relational algebra in RDQL and SPARQL, we again refer
to Sections 3.2.1 and 3.2.2.

5.2.3 Usage

RDQuery gives the user two possibilities to translate Semantic Web queries into
their SQL correspondents. Whilst the experienced user is able to incorporate the
framework into his Java-based (Semantic Web) application, RDQuery may also
be tested using its Java-based user interface.

Figure 5.3: Sample query translation using the GUI

The GUI (cf. Figure 5.3) enables interested users to interactively query rela-
tional databases using one of the RDF-QL currently implemented in the system,
i.e. RDQL or SPARQL. The users may not only review the resulting SQL query,
but follow the complete translation process, including the parser details, result-
ing SQL query, the SQL query result, and its RDF correspondent. Furthermore,
the users can access their own query history and get a general idea of the tables
stored in the corresponding database.

Does a user or Semantic Web architect opt to include the functionality of
RDQuery into his own application, he may use the API of RDQuery. The user

90 5. Applications

is hence instantly able to query any relational database using current Semantic
Web technologies, pretending the relational database to be actually a part of
the Semantic Web. The application may hence perform any data processing or
reasoning tasks, without actually noticing, that the data is stored in and modeled
for a relational database.

The following code example shows, how to translate an RDQL query into
SQL, without having to query the underlying database. Before initiating the
actual translation, the SimpleTranslation class has to be instantiated with the
corresponding RDQL query as an argument.

SimpleTranslation myTranslation =

new SimpleTranslation("SELECT ?x, ?y, ?z ...");

myTranslation.translate();

After the query has been successfully translated into SQL, the corresponding
statement may then be accessed with

String sqlQuery = myTranslation.getSQLQuery();

A more detailed documentation on how to use RDQuery is available in [Zlo05]
or can be downloaded from http://www.sourceforge.net/projects/rdquery/

together with a current version of the framework. RDQuery is published under
the GNU GPL.

5.3 D́ıgame

Modern intra- and inter-enterprise collaboration requires access to information
spread over multiple autonomous and heterogeneous data sources. In this sec-
tion we present how a semantic data and schema representation like the Rela-
tional.OWL representation of a relational database can enhance the communica-
tion of a loosely coupled multidatabase architecture. The architecture presented
in this section achieves a reasonable tradeoff between autonomy and information
sharing among both, permanently available and volatile data sources. Each data
node decides autonomously which kind of information to share. Data availabil-
ity, query performance, and up-to-dateness on each participating data node is
improved using a push-based replication strategy, which propagates data modifi-
cations over multiple nodes. Most of the work presented in this section has also
been published in [PP04, PPC04a, PPC04b, PPC05].

5.3.1 Motivation

Since the first centralized databases found their way into the enterprises in the
late 60s, the needs and requirements have changed towards a more distributed

http://www.sourceforge.net/projects/rdquery/

5.3 D́ıgame 91

management of data. Today there are many corporations which possess a large
amount of databases, often spread over different regions or countries and generally
connected to a network. These local databases typically raised in an autonomous
and independent manner fitting the special needs of the users at the local site.
This leads to logical and physical differences in the databases concerning data
formats, concurrency control, the data manipulation language, or the data model
[LA86]. It is crucial for a company to keep track of its distributed data in such a
heterogeneous environment. Cooperating departments need shared access to this
data, to be able to increase their productivity. Multidatabases were introduced
for this reason, in order to integrate data from heterogeneous sources [SL90].

One of the main challenges in the integration of data in such environments is
the autonomy of the participating data nodes. This autonomy implies the ability
to choose its own database design and operational behavior. Local autonomy is
tightly attached to the data ownership, i.e. who is responsible for the correctness,
availability, and consistency of the shared data. Centralizing data means to limit
local autonomy and revoke the responsibility from the local administrator, which
is not reasonable in many cases. A federated architecture for decentralizing data
has to balance both, the highest possible local autonomy and a reasonable degree
of information sharing [HM85, Con97]. Hence, the architecture of a company
wide information system has to be applicable to the data policy of the company
and vice versa. To be more precise, the question of data ownership determines
the composition of the company wide information platform, while it has to ensure
a high level of consistency and fail-safety.

In this section we describe the D́ıgame architecture, a Dynamic Information
Grid in an Active Multidatabase Environment, which connects heterogeneous
and autonomous data sources to support loosely coupled intra- and inter-
enterprise collaboration. We have enhanced the multidatabase architecture of
Heimbigner and McLeod [HM85] with Peer-to-Peer (P2P) concepts to offer a flexi-
ble information grid with high data availability to provide each participating node
of this grid with all the data required. Extending the approach of Heimbigner
and McLeod, our architecture enables the sharing of information among both,
permanently available and volatile data sources (e.g. mobile databases [Bar99])
without any central component. For that we include a push-based replication
mechanism which propagates data modifications over multiple nodes using a se-
mantically rich data and schema representation format. Thus, we are able to
ensure flexible interconnectivity and high availability, even if the original data
source is temporarily unreachable. Additionally, the replication of data increases
query performance, since we do not have to query remote data sources. An
information sharing environment, which comprises the information shared by in-
terconnecting heterogeneous and autonomous data peers using our architecture,
shall in the following be referred to as an information or data grid [CFK+00].

The remainder of this section is organized as follows. In Section 5.3.2 we start
describing the architecture of our dynamic information grid with an overview of

92 5. Applications

the basic functionality. Afterwards we discuss the major characteristics in Section
5.3.3, followed by a description of our first wrapper prototype in Section 5.3.4.
Section 5.3.5 discusses related work and Section 5.3.6 concludes and draws up
future work.

5.3.2 D́ıgame Architecture

5.3.2.1 Basic Functionality

We now draw up the basic functionality of our enhanced multidatabase architec-
ture using a motivating example.

CB

AB

B

Sales (B)

AC

C

Product
Engineering (C)

CA

BA

A

Management (A)

Product
Launch

Consulting (D)

CD

BD

AD

D

Figure 5.4: Collaborative work realized with D́ıgame

Consider a worldwide operating company planning the launch of a new prod-
uct (Figure 5.4). We assume that there are three departments involved in this
business process: the executive board (management), the sales office, and the
product engineering department. Each department manages its own database
to store the information for which it is responsible in an autonomous way. The
management produces basic data of the product (A) including deadlines, de-
scriptions, workflows, and additional objectives. This management information
is substantial for the further product development and the work in the partici-
pating departments. The product engineering department uses a predefined part
of that management data (AC) as basic conditions for the concrete implementa-
tion and technical realization of the product. Local applications create additional
data which has to be stored separately (C). According to the product engineer-
ing the sales department enriches the authoritative management data (AB) with
concrete concepts for the upcoming product launch (B). Furthermore concrete de-
velopment plans of the product engineering are required to prepare sales strategies
(CB). Both, sales and product engineering departments, concretize the strategic
guidelines of the management in their specific assignment. To keep track of the

5.3 D́ıgame 93

costs and the progress of the project, it is indispensable for the management to
access the product engineering and sales department’s relevant information just
mentioned (BA, CA).

Basically there are two different techniques for providing the participating
departments with the required data. Contrary to the commonly used method
querying the data sources actively, our approach uses push-based replication ini-
tiated by the data source. Referring to our example, the executive board gets
data updates whenever changes occur in the sales and/or product engineering
databases rather than having to request for updated data items continuously.
If the subscribing department requires individual delivery strategies, we are fur-
thermore able to provide data updates periodically, i.e. in an aggregated way.

Sharing data within this company using our architecture is realized using a
push-based replication strategy to improve data availability, query performance,
and up-to-dateness on each participating data node. Hence, the data source
actively propagates data updates to relevant peers, which are herewith able to
maintain an up-to-date replica of the imported data.

For example, the creation of a new replica of management data on department
B is realized as follows: each data source of the departments A, B and C is
wrapped by a source-specific wrapper component. These wrappers build up a
communication layer, which enables the departments to interact pair-wise using a
common protocol. This union adopts Peer-to-Peer concepts and operates without
any central administrative instance. Due to these characteristics the combination
of such a data source and its related wrapper component can be named as a (data)
peer.

The administrator of peer A makes a subset of its own local data accessible
using the administrative interface of the wrapper component. The export schema
[HM85] created this way is managed by the wrapper component and specifies the
information that the department is willing to share. The information concerning
the access control to local data by remote peers is attached to the export schema.
Peer B is now able to import the data into its local database subscribing to a
specific part (AB) of the published data, i.e. the data required by the department.
During this subscription process the data target (subscriber) informs the data
source (publisher), which subset of the export schema it is willing to import.
The data stock AB is then transferred to the subscriber to perform an initial
filling.

If a data or schema modification is detected by the wrapper of the publisher,
all relevant subscribers have to be informed. To determine whether the sub-
scribers, including peer B, have to be notified about this modification, the wrap-
per queries all export schemas in the repository. The modified data or schema
items are then pushed actively to the relevant subscribers using a semantically
rich representation format. Each data peer is herewith able to maintain an up-
to-date replica of the data and schema items required by local applications.

Now the management department has decided to involve an external consult-

94 5. Applications

ing group D to analyze and optimize the productivity within corporate workflows.
Therefore the consultants need access to the entire management data, including
the data of departments B and C. Instead of negotiating separate data exchanges
with every single department, our architecture enables the consulting group to
obtain all data required from only one data source, the management department.
This can be realized, since our architecture supports the sharing of data imported
from other nodes. Please note, that the export of imported data must explicitly
be allowed by the administrator of the management department. After the con-
sulting has subscribed to the entire management data, data updates in B and C
are propagated to A as usual. Node A delivers updates on its own data stock and
additionally those coming from nodes B and C to its subscriber D. Due to this
characteristic, node A becomes a Data Hub for the consulting group according
to the Link Pattern Catalog introduced in Chapter 6.

We distinguish two different types of update propagation: direct and indi-
rect updates. After an update is detected on local data of a data source, it is
propagated to the relevant subscribers. Referring to our example, B gets di-
rect updates, whenever modifications occur on the data stock of node C. If a
node explicitly shares a previously imported data stock, its modifications are in
turn propagated to other subscribers. Referring to our example, node A shares
previously imported data from peers B and C, which is subscribed by the con-
sulting group node D. If an update occurs on B or C, it is first propagated to
node A, which in turn propagates it to its subscriber D. This sequence of update
propagation is called a cascading update.

Further partners may join this collaboration at any time. In fact, each peer
can be provided with any data concerning the product launch stored in one of the
collaborating data nodes without interfering with existing data flows. The data
source maintained by the partner can on the other hand be easily connected to the
existing data grid sharing its own data. If a peer is no longer willing to share its
data, it can easily be removed from the data grid, notifying all its subscribers to
remove the replicas from their local data stocks. The support of this temporary
collaboration makes our D́ıgame architecture particularly suitable for virtual
cooperations.

5.3.2.2 Components of the Architecture

In this section we discuss the components of our D́ıgame architecture (Figure
5.5). The data grid DG := (P, C) created by our architecture is a directed graph,
which consists of a set of peers P := {p1,pn} and a set of connections C, where
a connection c = (pi, pj) ∈ C links exactly two peers, representing a data flow
from pi to pj.

As already mentioned, each peer consists of a component database and a cor-
responding wrapper component. These components which are both required for

5.3 D́ıgame 95

Figure 5.5: D́ıgame architecture

establishing data flows between communicating peers are described in the follow-
ing:

Wrapper: The core of our data grid is the wrapper component, which provides
a uniform interface to the heterogeneous component databases. It is responsible
for negotiating and establishing communication among peers and coordinates
the data and schema exchanges after a communication channel has been set up.
Each wrapper maintains a repository in its corresponding data source to store
information about subscribers, export and import schemas, access control lists,
and delivery schedules.

Each wrapper has to realize two major tasks: exporting and importing data
and schema items. To export local data from a peer p, a set of export schemas
XSp := {XSp1, ..., XSpi} is maintained by the wrapper of p. To allow indirect
updates, those export schemas have to be based on the entire conceptual schema
CSp of the database, excluding RSp, the schema of the repository stored in p, i.e.
∀XS ∈ XSp : XS ⊆ CSp \ RSp. They are required to determine, which peers
have to be informed about data modifications. Since exporting peers actively
propagate the data and schema to relevant subscribers, they must be able to
detect modifications on their local data stock. Earlier research proposes several
mechanisms helping a wrapper to monitor data modifications [TC97]. If there
are triggers of underlaying database systems available, they should be used, par-
ticularly their enhanced functionality given by recent developments in database
systems [PC05c].

To import data from a remote peer p, the wrapper on a peer q (p 6= q)
maintains a set of import schemas ISq := {ISq1, ..., ISqj}, where

∀q ∈ P ∀IS ∈ ISq ∃1p ∈ P ∃1XS ∈ XSp : IS = XS ∧ p 6= q (5.1)

96 5. Applications

and
∀p ∈ P ∀XS ∈ XSp ∃1q ∈ P ∃1IS ∈ ISq : XS = IS ∧ q 6= p . (5.2)

After the initial import of subscribed data, each data and schema modification
propagated by remote peers is reproduced locally in the workspace of the wrapper.

Autonomous Component Databases: According to the Three Schemas Ar-
chitecture and the architecture for loosely coupled multidatabases [HM85], each
component database on a peer q contains several types of schemas (see Figure
5.5). The private schema PSq stores data, which is locally produced and main-
tained. It is controlled exclusively by the local database administrator. Other
peers do not have direct access to this data. Besides the private schema, the
conceptual schema CSq comprises the disjoint union of the import schemas and

the repository mentioned above, i.e. CSq := (
⋃̇

IS∈ISq
IS) ∪ PSq ∪ RSq, where

IS ∩ PSq = ∅. Local applications Aq1, ..., Aqf can now access and process the
data of the conceptual schema excluding the repository information as usual us-
ing a set of external schemas ESq := {ESq1, ..., ESqd}. The only limitation is the
read-only access to data derived from the imported schema.

Please keep in mind that the imported data and the repository are exclu-
sively managed by the wrapper component and should never be modified by the
local administrator or applications, although this would be possible due to the
local autonomy. In fact, future implementations could support such multi-master
replication techniques.

5.3.3 Characteristics

In this section we discuss the major characteristics of our D́ıgame architecture
including the advantages and limitations related to its implementation.

Autonomy and Heterogeneity: Our architecture is based on the concept of
loosely coupled multidatabases of Heimbigner and McLeod [HM85] using import
and export schemas for data exchanges. The aim of this architecture is to achieve
a feasible trade-off between local autonomy and a reasonable degree of informa-
tion sharing. A data source is basically free to decide on its own level and form
of participation. This includes the ability to decide which data it is willing to
export, which data is imported, and during which periods services are provided.

The wrapper component interacts with the data source via standardized in-
terfaces or query languages. Thus, it acts like a local application from the point
of view of the database system preserving especially its execution and communi-
cation autonomy [SL90].

Our architecture supports the integration of principally any kind of data
source using a wrapper component tailored to that specific data source. The
wrapper provides an uniform interface for the D́ıgame system, where communi-
cation is performed using a standardized protocol and exchange format.

5.3 D́ıgame 97

No Central Authority: Any information sharing environment based on our
D́ıgame architecture interconnects autonomous and previously isolated data
peers. Each participating data node keeps full control over its own data, i.e.
there is no central authority imposing certain restrictions. Contrary to other ap-
proaches like [YPK03] we do not use any central component, where publications
or subscriptions are managed. In our system, peers subscribe directly to data
published by other nodes. The information on the data offered is not managed
centrally, but stored exclusively on the corresponding peers.

Wrapper organized similar to P2P systems: We have enhanced the mul-
tidatabase architecture with P2P concepts. The wrappers in our architecture
interact similar to classical P2P networks. Data exports and imports are exclu-
sively negotiated pair-wise, whereas each peer is basically able to interact with
any number of data nodes. The entire communication is realized without any
central authority, resulting in a network of self-responsible peers, where members
are basically able to join or leave at any time.

Replication: The replication of data is one of the main features of our D́ıgame
architecture. Data availability is improved in the information grid allowing a data
stock to be directly or indirectly replicated over multiple peers. This means, that
required data is accessible, even if the original data node is temporary unavailable.
Furthermore query performance is increased, since all the required data is stored
locally.

The refreshment strategies for updating the replicas depend on the application
field. We are basically not limited to a single delivery schedule, but able to
provide specific replication strategies depending on the needs of each subscribing
peer. Generally, the preferred delivery schedule is an immediate propagation of
updates, but other possible delivery schedules can be, but are not limited to
periodical or even aggregated propagation. The replication is managed by the
wrapper component, which holds information about each subscribing database
and its corresponding delivery schedule in its corresponding repository.

Due to the replication supported by our architecture, each single data peer
provided with data updates maintains a replica of remote data locally, which
balances both, up-to-dateness and a reasonable effort. The replication strategies
provided by D́ıgame use lazy replication protocols with one single master and
multiple read-only replicas [OV99]. Each update transaction is first committed
at the master and afterwards propagated to each relevant slave.

Push-based Protocol: A further central characteristic of our architecture is the
push-based propagation of data and schema modifications to subscribing peers.
At first a data peer subscribes to data offered by a data source, whereupon it
receives once a complete copy of the requested data. Afterwards the data source
pushes all relevant updates directly to the subscribers according to their specific
delivery schedule. This modifications are passed on to further subscribers using
indirect updates, until all replicas are updated. Each peer maintaining a replica

98 5. Applications

of remote data is herewith able to access data, which is as up-to-date as possible,
even if the original data source is temporary not available.

If a replica can not be updated, because a subscriber is currently not reachable,
we have decided to include a pull-based fallback mechanism into our architecture.
After the communication has been reestablished, the data target can then actively
query the data source whether data updates have occurred since their last contact.
Thereupon lost updates are propagated once again to the data target.

Standardized Exchange Format: The dynamic interconnectivity of data
peers requires a standardized exchange format, suitable for both, data and schema
representation. Using knowledge representation techniques we can guarantee that
every single data peer understands data and schema updates without explicitly
arranging an exchange format. The additional integration of identifiers for data
items (cf. Chapter 4) within the data exchange process simplifies data mainte-
nance, especially if data is imported from multiple sources. This meta information
may furthermore be useful for detecting and solving conflicts within the data.

We have decided to use a Semantic Web-based data and schema representa-
tion format, since it provides several advantages over classical (semi)structured
exchange formats like XML. Due to the short availability of potentially any peer,
the negotiation of an exchange protocol for data and schema items becomes quite
challenging. An exchange format, which can be understood instantly by all ex-
change partners would be more useful. Hence, using a Relational.OWL-based
representation format, remote databases are instantly able to understand each
other without having to arrange an explicit exchange format — the usage of a
common ontology is enough.

Based on a meta representation of (relational) databases we can describe the
schema of virtually any database. Thereupon the schema representation itself
can be used as a novel schema ontology, to base the representation of the actual
data on. The result is a three layered model with the Relational.OWL ontology
on the bottom. The layer above stands for the concrete schema ontology, which
itself is based on the Relational.OWL ontology. The representation of the data,
which in turn is based on the schema ontology is placed on the top-most layer.
This flexible and powerful technique is only possible due to the possibilities given
by OWL Full to interpret an instance of a metamodel as a novel ontology. A
detailed discussion on this topic can be found in Section 3.1.

Local Integration: As already mentioned above, each peer may subscribe to
multiple data sources. For each subscription it obtains an exact copy of the
relevant remote data and schema items. Since we do not have a global schema,
the imported data is integrated individually following local integration strategies,
which are not provided by our D́ıgame architecture. Having all required data
stored in the local database, we are particularly able to associate local and re-
mote data with integrity constraints provided by the database, e.g. foreign keys.

5.3 D́ıgame 99

Furthermore index structures can be created on imported data to optimize data
access according to local query requirements.

5.3.4 D́ıgame System Design

Now we give a brief overview of the design of our first D́ıgame wrapper prototype.
The components required are depicted in Figure 5.6. Our system is divided into
two conceptual layers: a source specific and a source independent layer. Both
layers interact exclusively using Java objects. The source specific layer contains
all classes and packages, which are customized to the specific data source. This
layer has to be implemented for each type of data source and provides a uniform
interface for the classes of the source independent layer. Thus, new data sources
can be supported exchanging solely the source specific components, leaving the
remaining components unchanged.

The main component of our system is the D́ıgame Manager. It initializes
the remaining components and coordinates the entire system flow. At first, it
is responsible for the creation and management of import and export schemas,
which are set up by the administrator using a corresponding user interface and
stored in the repository of the wrapper. Thereupon, the D́ıgame Manager auto-
matically handles subscription and unsubscription requests to shared data from
remote peers and coordinates the data exchange during data import and export
processes. After a data modification has been reported, it determines the peers
which have to be provided with that updated data and initiates the correspond-
ing data transfers. Outgoing data is compressed by the D́ıgame Manager using
the Compression Unit to reduce network traffic.

The entire communication with the data source is handled by the Data Han-
dler. It consists of a set of functions providing a uniform interface to the data
stored in that specific source. This interface is used by the D́ıgame Manager
and the event detection packages to access the data and the repository, which are
stored both directly in the data source. Thus, the access to both, the storage of
data and metadata are entirely managed by the Data Handler component. As a
result, all source specific properties, i.e. data model, query language, or operating
system are hidden from the components of the source independent layer.

The Data Handler supports three types of interactions: data requests, reposi-
tory requests, and event notifications. The D́ıgame Manager component submits
data requests, whenever a new peer subscribes to the data or data updates are
received from remote peers. In the first case, data items have to be transformed
into the Relational.OWL-based exchange format, in the latter from RDF/OWL
into the source specific data format. These conversions are realized by the Re-
lational.OWL converter, closely attached to the Data Handler. Unlike the data,
information stored in the repository is only used internally and thus, responses to
repository requests are not transformed into their Semantic Web representation.

Changes on the local data stock are signalized to the Data Handler via event

100 5. Applications

notifications by the event processor. These events are either detected by the
notification interface or the event monitor. If a data source supports extended
triggers, the notification interface is directly invoked by database triggers to notify
the event processor about local data modifications [PC05c]. Otherwise, such
events have to be detected by the event monitor, which therefore periodically
scans the local data stock.

Notification
Interface

Event
Processor

Data Handler

Data Source

Repository

Event
Monitor

Relational.OWL
Converter

so
u
rc

e
 s

p
e
ci

fic
la

ye
r

so
u
rc

e
 in

d
e
p
e
n
d
e
n
t

la
ye

r

DÍGAME Manager

Negotiator

remote negotiator

request

response

Compress-
ion Unit

Cipher

Figure 5.6: Design of the D́ıgame wrapper

A communication between two peers is established using the Negotiator. It
interacts with remote peers using a special protocol to establish a secure commu-
nication channel. After the successful authentication and authorization it is used
by the D́ıgame Manager for interacting with remote peers. The communication
is encrypted using the Cipher component of our system.

5.3.5 Related Work

The first generation of grid computing emerged in the mid 1990s with the de-
mand for high performance applications, which could not be satisfied by single
computers. De Roure et al. [DBJS03] divide the evolution of grid computing
into three generations: the first generation with its primitive architecture, which
tried to distribute computing onto different computers a trivial way. With the
second generation of grid computing middleware systems emerged, and finally
the current third generation tries to facilitate global collaboration.

Simultaneously some efforts arose to use distributed resources for information
retrieval. Although the Information Grid of Rao et al. [RCJ+92] is focused on giv-
ing an integrative user interface for distributed information, this approach can be

5.3 D́ıgame 101

seen as an early forerunner of the so called Data Grid [CFK+00], a specialization
and extension of grid computing. Its intention is to create an architecture of inte-
grated heterogeneous technologies in a coordinated fashion. Although Chervenak
et al. act on the assumption of a heterogeneous conglomerate of data sources,
they force the introduction of a centralized metadata repository, e.g. an LDAP
directory [Sto01]. This aim is quite catchy especially in a grid consisting of com-
pletely autonomous databases changing their schemas frequently. Although we
admit that a global metadata repository would simplify many of the challenges,
we abstain from that effort of re-centralization, as it causes many difficulties, e.g.
every schema change has to be replicated to the global schema directory. The
effect is a single point of failure, exactly the opposite of what we wanted to con-
struct. We thus prefer to keep the databases as they are: autonomous, loosely
coupled, and without a single point of failure.

With the raise of filesharing systems like Napster or Gnutella [CG01] the
database community started to seriously adopt the idea of P2P Systems to the
formerly known loosely coupled database systems. Contrary to the data grid, P2P
database systems do not have a global control in form of a global registry, global
services, or a global resource management, but multiple databases with overlap-
ping and inconsistent data. These P2P databases resemble heterogeneous and dis-
tributed databases, also known as multidatabases [HJKS06, BGK+02, GHI+01].
Currently the database community makes a great effort in investigating P2P
databases. Worth mentioning is especially the Piazza [HIMT03] project, where a
P2P system is built up with the techniques of the Semantic Web [BLHL01] with
local point-to-point data translations rather than mapping to common mediated
schemas or ontologies. Halevy et al. focus on processing and rewriting queries
on XML data throughout multiple peers. Contrary to this approach, we deal
mainly with relational data and do not have a global schema, since every peer
may have its own import-/export-schema combination. As a result every peer
has its own integrated schema as basis for queries. Beyond this, Piazza can only
deal with data updates as long as the peers are online. As soon as one peer is
disconnected from the network data consistency cannot be guaranteed any more.
Like in most P2P approaches, peers may not have all the information required for
their queries stored locally, so they have to deal with query and result rewriting.
This is superfluous in our architecture, since all the data required is cached on
that peer. Similar to our approach, Piazza allows only data updates in its origin.
Hoschek follows a quite different approach [Hos02], since his goal is to let the
loosely coupled databases appear to be a single data source and thus has to deal
with distributed query processing. For a more general glimpse on data mappings
in P2P systems see [KAM03].

Our strategy allows data to be exchanged among distributed databases con-
nected through a lazy network. This means, that although a running network
may not be guaranteed and thus some data broadcasts may be lost, the system
heals itself. This challenge resembles the problems known from environments

102 5. Applications

with mobile databases. Current research covers synchronous mobile client syn-
chronization, i.e. data changes are propagated periodically (every t seconds) and
not just in time of the data change. Current systems have two main problems
which arise with the synchronous replication: clients have to be contacted every
t seconds, no matter if changes have occurred and in the worst-case changes have
to be delayed for t seconds. For a more detailed discussion we refer to [Har02], as
most push-based technologies base on the idea of broadcast disks [AFZ96, AFZ97].
In contrast to the broadcast disks, our model ensures that data is only broad-
casted to the clients when changes occur, unless the communication between both
peers crashes. Hence our approach resembles a push-based system with a pull-
based fallback, similar to [AFZ97] with the major difference that our approach is
not based on broadcast disks, but on the Observer’s Pattern (see below).

There has been much effort in the research of better and more efficient tech-
niques for data propagation, caching, and replication. The evolution of these
methods started with early papers like [JT75] for classical database systems and
goes to more recent publications for mobile clients like [Bar99, BI94, Har02]. For
a classification of database replication techniques see [WPS+00]. As mentioned
above, we have decided to use a push-based replication strategy, which resembles
the software engineering’s Observer-Pattern [GHJV95]. This pattern gives us a
prototype of how to notify all interested databases about data updates [Har02].
This communication is only started, if a data update has occurred and a database
is interested. In consequence, data broadcasts are minimized.

Following the argumentation in [GHOS96] and [CFK+00] our model provides
only single-master replication, the only guarantor for data stability and clear
defined data flows.

Most of the research on active multidatabases has been done concerning global
integrity. Chawathe et al. [CGMW96] propose a toolkit for constraint manage-
ment in loosely coupled systems. Additionally the idea of Gupta and Widom to
optimize the testing of global constraints by local verification is worth mentioning
[GW93]. Conrad and Türker [TC97] sketch a more general architecture for an
active federated database system. They extend a multidatabase system by ECA-
Rules to preserve consistency. A main challenge hereby is to detect local events,
especially schema and data modifications, which is commonly done by a software
module for each data source, i.e. a monitor or wrapper component. Basically two
approaches are therefore proposed: Conrad and Türker use the event detection
ability of the underlying subsystem, while Blanco et al. [BIPG92] use the oper-
ating system to signal schema modifications by directly observing changes to the
data(base) files.

5.3.6 Discussion and Future Work

In this section we presented the D́ıgame architecture, which connects heteroge-
neous and autonomous data sources creating a dynamic information grid. This

5.3 D́ıgame 103

architecture enhances the well-known multidatabase architecture with P2P con-
cepts, in order to support dynamic intra- and inter-enterprise collaboration. Local
administrators decide themselves on their level of participation, since the local
autonomy is preserved.

Data provided by other peers can be subscribed and integrated into the local
database as needed. The data source actively propagates changes on the sub-
scribed data and schema items to the relevant peers via a Semantic Web-based
representation format resulting in a replication of the data and schema items
demanded locally. Peers participating in the data grid interact pairwise and are
instantly able to read and understand the data received from remote data sources,
without having to arrange an explicit data or schema exchange format or being
managed by any central authority.

We presented a scenario supported by the D́ıgame architecture, in which
data had to be managed across multiple peers in order to accomplish the launch
of a new product. Furthermore we described the components of the architecture
and discussed its main characteristics.

Further steps include the refinement of the prototype. In addition, we have
to examine the impact of D́ıgame on the network traffic, particularly concerning
query intensive applications.

Due to its characteristics D́ıgame provides a sophisticated infrastructure for a
diversified application field including e-business, e-science, or e-health, initiating
the next generation of collaborative work.

104 5. Applications

Chapter 6

Link Patterns

Collaborative work requires, more than ever, access to data located on multiple
autonomous and heterogeneous data sources. The development of these novel
information and knowledge platforms, referred to as Semantic Web, information
or data grids, and P2P databases, need appropriate modeling and description
mechanisms. In this chapter we propose the Link Pattern Catalog as a modeling
guideline for recurring problems appearing during the design or description of
such information platforms. For this purpose we introduce the Data Link Model-
ing Language, a language for describing and modeling virtually any kind of data
flows in information and knowledge sharing environments. A part of the Link
Pattern Catalog presented in this chapter has been published in [PPC04c].

6.1 Introduction

With the rise of filesharing systems like Napster or Gnutella the database com-
munity started to seriously adopt the idea of P2P systems to the formerly known
loosely coupled databases. While the original systems were only designed to share
simple files among a huge amount of peers, we are not restricted to these data
sources any more. New developments allow peers to share virtually any data, no
matter if it is originated from the Semantic Web, a relational, object-oriented, or
XML database. In fact, the data may still come from ordinary flat files.

Apparently we have to deal with a very heterogeneous environment of data
sources sharing data, referred to as an information or data grid [CFK+00]. If
we allow participants to join or leave information grids at any time (e.g. using
P2P concepts [CT04]), we must take a constantly changing constellation of peers
into account. Any information grid or knowledge sharing environment built up
by these peers can either evolve dynamically or be planned beforehand. In both
cases we need a concept in order to describe and understand the interactions
among the peers involved. Having such a mechanism, we could not only detect

106 6. Link Patterns

single data exchanges, but even model and optimize complex data flows of and
among the systems.

In this work we adopt commonly used methods for designing data exchanges
among peers as Link Patterns, suitable especially for information and knowledge
sharing environments. Analogous to the intention of the Design Pattern Catalog
used for object-oriented software development [GHJV95] we want to provide mod-
eling guidelines for engineers and database designers, engaged in understanding,
remodeling, or building up an information grid. Thus information grid architects
are provided with a common vocabulary for design and communication purposes.

Up to now data flows in information grids were designed without having a
formal background leading to individual solutions for a specific problem. These
were only known to a circlet of developers involved into that project. Other
designers, engaged with a similar problem would never get in contact with these
results and thus make the same mistakes again. Different modeling techniques
make it difficult to exchange successfully implemented solutions.

Link Patterns do not claim to introduce novel techniques for sharing, access-
ing, or processing data in shared environments, but a framework for being able
to understand, describe, and model their data flows. They provide a description
of basic interactions between data sources and operations on the data exchanged,
resulting in a catalog of reusable conceptual units.

A developer may choose Link Patterns to model and describe complex data
flows, to identify a single point of failure, or to avoid or consciously insert redun-
dant data exchanges. The composition of Link Patterns is an essential feature of
our design method. It gives us the possibility to represent a structured visualiza-
tion not only of single data linkages, but of the entire information platform.

The remainder of this chapter is organized as follows. In Section 6.2 we
introduce DLML, a language for modeling data flows, followed by a structural
description of the Link Patterns in Section 6.3. Section 6.4 specifies the Link
Pattern Catalog, followed by an example. Section 6.6 catches up some related
work and Section 6.7 concludes.

6.2 The Data Link Modeling Language (DLML)

6.2.1 Motivation

The Data Link Modeling Language (DLML) is based on the Unified Modeling
Language (UML) [GHJV95] notation, but slightly modifies existing components,
adds additional elements, and thus extends its functionality. It is a language for
modeling, visualizing, and optimizing virtually any kind of data flows in infor-
mation and knowledge sharing environments.

Modeling: DLML is a language, suitable for modeling, planning, and re-
engineering data flows in information and knowledge sharing environments,

6.2 The Data Link Modeling Language (DLML) 107

e.g. information grids or the Semantic Web, systematically. A Data Link
Model built up using this language reflects the logical and not the physical
structure of the entire system. It enables the developer to specify the prop-
erties and the behavior of existing and novel systems, in order to describe
and understand their basic functionalities.

Visualizing: Visualizing data flows is an important assistance in understanding
the structure and behavior of an information platform. The impact of ER
[Che76] and UML has proven, that a system is easier to grasp and less
error-prone, if a graphical visualization technique is provided, which uses a
well-defined set of graphical symbols, understood by a broad community.
Especially within the analysis of systems with distributed information, it
is favorable to have a method, suitable for drawing up a map of relation-
ships between the participating peers, in order to depict global data and
knowledge flows.

Validating: The more complex an information or knowledge sharing environ-
ment gets, the more error-prone becomes such a system, especially if it was
extended throughout the years in numerous steps. Without being carefully
validated, such extensions could easily lead to duplicated data items in data
grids or conflicts within knowledge sharing environments. Particularly for
the Semantic Web, such conflicts could cause semantic reasoners to draw
fatal conclusions. Of course a language like the DLML cannot prevent Se-
mantic Web architects from modeling knowledge improperly, but it may
help him to identify possible misconfigurations at an early stage.

Optimizing: Besides the modeling, visualization, and validation of existing or
planned information sharing environments, DLML can be useful to optimize
the whole distributed data management. Redundant data flows and data
stocks can systematically be detected and removed, leading to a higher
performance of the entire system. Of course, redundancy may explicitly
be wanted, in order to achieve a higher fail-safety or a faster access to the
data.

Due to the characteristics mentioned above, the Data Link Modeling Lan-
guage is especially suitable for visualizing data and knowledge flows in distributed
information and knowledge sharing environments. It may furthermore be em-
ployed to model data management in enterprise information systems, data inte-
gration and migration scenarios, or data warehouses, i.e. wherever data has to be
accessed across multiple different data sources.

6.2.2 Components

Since DLML is based on UML, its diagrams are constructed in an analogous
manner, using a well-defined set of building blocks according to specific rules.

108 6. Link Patterns

The following components may be used in DLML (Fig. 6.1) to build up a Data
Link Model:

Data Node CommentApplication Node

Data Flow

<< copy >>

Data Node
with Role

G

Location

Label

NodeName:DataStockName

{location = Server A}

Figure 6.1: DLML components

Nodes: Nodes are data sources, data targets, or applications, usually involved in
a data exchange process. They may either be isolated or connected through
at least one data flow. A data source may be a database (e.g. relational),
a flat file (e.g. XML), or something similar, offering data, whereas a data
target receives data and stores it locally. An application is a software unit,
which accesses or generates data, without maintaining an own physical
data stock. Physical data stocks are represented in DLML by Data Nodes,
applications by Application Nodes.

Label: Each node can have a label. It consists of generally two parts separated
by a colon: the node name and the data stock name or application name
respectively. The data stock name identifies the combination of data and
schema information stored at this node. If this data is replicated as an
exact and complete copy to another node, the data target has to use the
same data stock name. The application is identified by the application
name. Analogous to the data stock name, any further instances of the
same application have the same application name. In both cases we use the
node name to distinguish nodes with the same data stock or application
name. Otherwise the node name is optional.

Location: The optional location tagged value specifies the physical location of
the node. It either specifies an IP address, a server name, or a room number,
helping the developer to locate the Data or Application Node.

Role: A node providing a certain functionality on the data processed, may have
a functional role (e.g. filtering or integrating data). This role will usually be
implemented as a kind of application, operating directly on the incoming or
outgoing data. The name of the role or its abbreviation is placed directly
inside the symbol of the node. This information is not only useful for
increasing the readability of the model, but also for being able to identify
complex relationships.

6.2 The Data Link Modeling Language (DLML) 109

<< copy >>

hq:products

{location = hq.myserver.com}

branch:products

{location = Server A}

:managementApp

{location = New York}

:customersDial-up connection

synchronized twice

a day

Figure 6.2: DLML example

Data Flow: The data exchange between exactly one data source and one data
target is called data flow. The arrow symbolizes the direction, in which
data is being sent. A node may have multiple incoming and outgoing data
flows. Optionally each data flow may be labeled concerning its behavior,
i.e. if the data is being replicated (<<copy>>) to the data target or if it is
just accessed (<<access>>). If data is being synchronized, both data flow
arrows may be replaced by one single arrow with two arrowheads.

Comment: A comment may be attached to a component, in order to provide
additional information about a node or a data flow. These explanations
may concern a node’s role, filter criteria, implementation hints, data flow
properties, or further annotations important for the comprehension of the
model.

6.2.3 Example

We now illustrate the usage of the Data Link Modeling Language with a simplified
example. Consider a worldwide operating wholesaler, with an autonomous over-
seas branch. The headquarters is responsible for maintaining the product catalog
(hq:products) with its price list, while the customers database (:customers) is
administrated by the branch itself (Figure 6.2).

The overseas branch is connected to the headquarters by a dial-up connection,
not sufficient for accessing the database permanently. For this reason, the product
catalog is replicated to the branch twice a day (branch:products), where the
data may be accessed by the local employees. The branch management uses
a special application (:managementApp) to access both data stocks in order to
generate the annual report for the headquarters.

110 6. Link Patterns

6.3 Link Patterns

In order to be able to provide a catalog of essential Link Patterns it is necessary
to understand what a Link Pattern is. Therefore we present the elements a Link
Pattern is composed of, including its name, its classification, or its description.
For graphical representation we use the Data Link Modeling Language, specified
above.

6.3.1 Elements of a Link Pattern

In this section we present the description of the Link Pattern structure. It is
based on the Design Pattern Catalog of Gamma et al. [GHJV95], which has
reached great acceptance within the software engineering community. Thus a
developer is able to quickly understand and adopt the main concept of each Link
Pattern for his own purposes. Each Link Pattern is described by the following
elements:

Name: The name of a Link Pattern is its unique identifier. It has to give a first
hint on how the pattern should be used. The name is substantial for the
communication between or within groups of developers.

Classification: A Link Pattern is classified according to the categories described
in Section 6.3.2. The classification organizes existing and future patterns
depending on their functionality.

Motivation: Motivating the usage of the pattern is very important, since it
explains the developer figuratively the basic functionality. This is done
using a small scenario, which illustrates a possible application field of the
pattern. Therewith the developer is able to understand and follow the more
detailed descriptions in the further sections.

Graphical Representation: The most important part of the pattern descrip-
tion is the graphical representation. It is a DLML diagram and describes
the composition and intention of the pattern in an intuitive way. The de-
veloper is advised to adopt this representation, wherever he has identified
the related functionality in his own information or knowledge sharing envi-
ronment.

Description: The composition of the Link Pattern is described in-depth in this
section, including every single component and its detailed functionality.
The explanation of the local operations on each node and data flows between
the components involved, points up the intended functionality of the whole
pattern described. This description shall give the user both, a guidance
through the identification process and instructions for its proper usage.

6.3 Link Patterns 111

Figure 6.3: Link Pattern Catalog Classification

Challenges: Besides the general instructions given in the prior section, this sec-
tion shall give hints for sources of error in the implementation process of this
pattern. The developer shall get ideas, of how to identify and avoid pitfalls,
arising in a certain context (e.g. interaction with other Link Patterns). This
part of a Link Pattern corresponds approximately to the Implementation
section of a Design Pattern (cf. [GHJV95]).

6.3.2 Classification

A classification of the Link Pattern Catalog shall provide an organized access
to all Link Patterns presented. Patterns situated in the same class have similar
structural or functional properties, depending on the complexity of their imple-
mentation. Although a categorization of a very limited number of patterns may
seem superfluous, we have decided to include this into our Link Pattern Catalog,
since it shall help developers to allocate and evaluate the pattern required. Fur-
thermore it should stimulate the developer to find and rate novel patterns, not
yet included in the catalog.

Figure 6.3 depicts the classification of our Link Pattern Catalog we have cho-
sen. The patterns presented can be divided into two main categories, Elementary
Link Patterns and Composed Link Patterns. In fact this classification is not
completed, but shall provide a starting point for further extension.

Elementary Link Pattern: An Elementary Link Pattern is the smallest unit
for building up an information grid model. It consists of exclusively one
single node and at least one data flow connected to it. Each Data Link
Model is composed of several Elementary Link Patterns, linked together
with data flows in an appropriate way. Please note, that a single Elementary
Link Pattern is not yet a reasonable Data Link Model, since any data flow
must have at least one node offering data and one node receiving data.

Elementary Link Patterns are easy to understand and easy to implement,
since they concern only a single node, a small set of data flows, and do
not include basically any data processing logic. It must be pointed out,

112 6. Link Patterns

that the Elementary Link Patterns consist only of two main patterns, the
Basic Data Node and the Basic Application Node, and its derivatives (e.g.
Publisher and Generator, discussed in Section 6.4).

Composed Link Pattern: Composed Link Patterns are built up by combin-
ing at least two Elementary Link patterns in a specific way, in order to
realize a particular functionality. A Composed Link Pattern may hereby
be composed out of both, Elementary or other Composed Link Patterns.
A pattern has to represent a prototype or solution for a recurring sort of
problem. Please keep in mind, that an arbitrary combination of different
patterns will not automatically lead to a reasonable Composed Link Pat-
tern.

In contrast to the Elementary Link Patterns, we have to deal in this con-
text with a more complex kind of patterns. They do not only include more
nodes, but may even represent a quite sophisticated way of linking them.
Besides, each node may additionally process the data received or sent. The
fact, that it may act differently depending on the data involved, is an essen-
tial property of Composed Link Patterns and justifies the creation of two
subclasses:

Data Sensitive Link Pattern: As soon as a node included in a Com-
posed Link Pattern acts depending on the data it processes, the entire
pattern is called a Data Sensitive Link Pattern. This data processing
logic implemented on such a node may depend on and be applied to
incoming and/or outgoing data. The operations of this application
can either create, alter, or filter data.

Data Independent Link Pattern: Any Composed Link Pattern, not
classified as Data Sensitive, belongs to this class. In contrast to the
patterns described above, data is not being modified, but sent or re-
ceived as is. A rather crucial topic is the topology of the nodes and
data flows involved, which is most relevant for the creation and func-
tionality of this kind of patterns.

6.3.3 Usage

This section describes how Link Patterns can be useful to develop, maintain,
analyze, or optimize both, straightforward and complex data flows in information
sharing environments. There are basically two methods, how Link Patterns can
improve the work of developers:

Analyzing existing systems: Many existing information or knowledge sharing
environments have arisen during the years without being planned centrally
or consistently. Even if they were planned initially, they usually tend to

6.4 Link Pattern Catalog 113

spread in an uncontrolled way. In such an environment it is vital to have
supporting tools, helping to understand and later optimize an existing sys-
tem.

First of all a map or model of the existing system has to be created, e.g.
with DLML presented in Section 6.2. Afterwards we examine successively
smaller parts of the model, in order to match them to existing Link Pat-
terns of the Catalog. As a result we get a revised model containing basic
information on the composition and functionality of subsystems, including
their data processing and data flows. With this information in mind, we
are now able to derive information on data flows and interaction of nodes
inside the Data Link Model. This enables us to perform optimizations like
detecting and eliminating vulnerabilities or handling redundancies.

Link Patterns may thus not replace human expertise for understanding
existing information grids, but give support in the process of recognizing
global data flows and therewith interpret the purpose of the entire system.

Composing new models: As already mentioned a Link Pattern may not only
improve the process of understanding an existing model, but is also a sup-
port for modeling new systems. An architect needs to have a clear idea of
what the system should do. Depending on the data sources available, the
local requirements on the nodes, and the results he wants to achieve, he can
combine nodes and data flows, according to Link Patterns, until the entire
system realizes the intended functionality. Link Patterns hereby guarantee
a common language, understood by other developers, not yet involved in
the modeling. Each developer is thus able to quickly get a general idea of
the system modeled at any time. Furthermore they accelerate the develop-
ment process, since they provide well tried solutions for recurring problems,
leading to an efficent system of high quality.

6.4 Link Pattern Catalog

In this section we give an introduction to the Link Pattern Catalog. This includes
a graphical overview over the main Link Patterns in DLML, as well as a detailed
description of selected patterns. As mentioned beforehand the Link Patterns
can be classified according to the classification presented in Section 6.3.2. Since
any Composed Link Pattern either belongs to the Data Sensitive or to the Data
Independent Link Patterns, we organize the catalog as follows:

114 6. Link Patterns

6.4.1 Elementary Link Patterns

The Elementary Link Patterns are the basic building blocks of a Data Link Model.
They consist of the two basic patterns, described below, and its derivatives. All
Elementary Link Patterns are depicted in Figure 6.4.

Basic Data Node Subscriber Publisher

ConsumerBasic Application Node Generator

Figure 6.4: Elementary Link Patterns

Basic Data Node

Classification: Elementary Link Pattern

Motivation: This pattern is one of the basic building blocks of a Data Link
Model. Each incoming or outgoing data flow of a Data Node is modeled
using this Link Pattern.

Graphical Representation: See Figure 6.4

Description: A Basic Data Node is a DLML Data Node, which receives data
through incoming data flows, stores it locally, and simultaneously propa-
gates data, held in its own data stock. If a Basic Data Node does only
have outgoing or incoming data flows, it applies the Publisher Pattern or
the Subscriber Pattern respectively. If it does neither have any incoming,
nor any outgoing data flows, the Data Node is called isolated.

Challenges: One of the main challenges to take in this pattern is the proper
coordination of incoming and outgoing data flows. At first all incoming
data has to be stored permanently on the local data stock, without violating
any constraints, before it may be propagated again to other nodes.

Basic Application Node

Classification: Elementary Link Pattern

6.4 Link Pattern Catalog 115

Motivation: This pattern is one of the basic building blocks of a Data Link
Model. All applications, relevant for a Data Link Model, are based on this
pattern.

Graphical Representation: See Figure 6.4

Description: An application interacting with arbitrary Data or Application
Nodes, is represented by this pattern. The application does not only re-
ceive, but also propagate data. If a Basic Application Node does only have
outgoing or incoming data flows, it applies the Generator Pattern or the
Consumer Pattern respectively. If it does neither have any incoming nor
any outgoing data flows, the Application Node is called isolated.

Challenges: Propagated data can either be received or generated. All data
manipulations on incoming data, which have to be propagated, have to be
processed in real-time, without storing data locally.

Publisher - Subscriber Synchronize

<< copy >>

Data Hub

Data Processor

Data Backbone

Distributor Fallback

<< copy >>

Fallback connection,

activate only in case

of failure

Figure 6.5: Data Independent Link Patterns

6.4.2 Data Independent Link Patterns

The Data Independent Link Patterns belong to the Composed Link Patterns.
These patterns describe a functionality, which only depends on their structure, i.e.
the way nodes and data flows are combined. A graphical overview of the patterns
in this class is given in Figure 6.5, of which the Data Backbone is described
exemplarily.

Data Backbone

Classification: Data Independent Link Pattern

116 6. Link Patterns

Motivation: A Data Backbone is used, wherever a centralization of data sharing
or data access has to be realized. This is typically required, if data stocks
are re-centralized, a central authority wants to keep track on all data flows,
or data exchanges have to be established among multiple data stocks and
applications.

Graphical Representation: See Figure 6.5

Description: The Data Backbone Pattern consists of several nodes, linked to-
gether in a specific way. A designated node, called Data Backbone, is either
data source or data target for all data flows in this pattern. All nodes, in-
cluding the Data Backbone itself, can be data stocks or applications. Data
is always propagated from data sources to the Data Backbone, where it
may be accessed or propagated once again to other target nodes. Direct
data flows between nodes, which are not the Data Backbone, are avoided.

Challenges: Since the Data Backbone is involved in all data flows, it has a
crucial position in this part of the information grid. Thus, a Data Backbone
node has to provide a high quality of service, concerning disk space, network
connection, and processing performance. If the quality of service required
cannot be provided, the Data Backbone may easily become a bottleneck.
Furthermore a breakdown of this node could lead to a collapse of the entire
data sharing infrastructure, which makes it to a single point of failure.

6.4.3 Data Sensitive Link Patterns

Contrary to the Data Independent Link Patterns, the patterns described in this
section are not only classified according to their structural properties, but partic-
ularly because of their data processing functionality. A graphical representation
of these Data Sensitive Link Patterns can be found in Figure 6.6, while a detailed
description is only given for the Gatekeeper and Semantic Translation Patterns.

Gatekeeper

Classification: Data Sensitive Link Pattern

Motivation: A Gatekeeper is used to control data flows according to specific
rules (e.g. Access Control Lists), stored separately from the data processed.
It is responsible for providing the target nodes with the accessible data
required. The application of this pattern is not limited to data security
matters. It may actually be applied to any node, which has to supply
different target nodes with specific (e.g. manipulated or filtered) data flows.

6.4 Link Pattern Catalog 117

Aggregator

A

Cleaner

C

Integrator

I

<< access >>

Gatekeeper

G

<< access >>

Switch

S

SW<< copy >> << copy >>

:Relational.OWL

Semantic Translation

<< access >>

ReasonerR

<< access >>

SW

SWSW

Figure 6.6: Data Sensitive Link Patterns

Graphical Representation: See Figure 6.6

Description: A Gatekeeper is a designated node, which distributes data accord-
ing to specific rules, eventually stored separately. Local or incoming data of
a Gatekeeper is accessed by target nodes. Before this access can be admit-
ted, the Gatekeeper has to check the permissions. Thus, corresponding to
the rules processed, neither all data stored in the Gatekeeper, nor all data
requested by the target nodes has to be transmitted.

Challenges: The rules and techniques, which are used by the Gatekeeper in
order to secure access to the data, have to be robust and safe. The Gate-
keeper needs a mechanism to identify and authenticate the source and target
nodes (e.g. IP address, public key, username and password, or identifiers as
in Chapter 4), which may be stored in a separated data stock. Due to its
vital position in the exchange process, this information has to be protected
from unauthorized access. The Gatekeeper must be able to rely on the
correctness, authenticity, and availability of the rules required.

Semantic Translation

Classification: Data Sensitive Link Pattern

Motivation: Whenever data originally stored in a relational database has to
be made accessible for Semantic Web applications, a Semantic Translation
should be made. It automatically transforms relational legacy data into a

118 6. Link Patterns

semantic rich representation, processable by most Semantic Web applica-
tion using its own built-in functionality. This data can then be used for
further data processing or reasoning tasks and may be mapped to a target
ontology (cf. Section 3.3).

Graphical Representation: See Figure 6.6

Description: A Semantic Translation consists of three nodes, two DLML Data
Nodes and one DLML Application Node. The latter is an instance of the
Relational.OWL application (cf. Section 5.1), which retrieves data stored in
a relational database, transforms it into its Relational.OWL representation
(cf. Section 3.3.2) and makes it part of the Semantic Web. The data flows
from the relational database to the Relational.OWL application and to the
DLML Data Node tagged with SW, i.e. the Semantic Web role, are both
marked with <<copy>> labels, since the data is copied out of the relational
database into the Semantic Web.

Challenges: Implementing a Semantic Translation should not cause serious
problems, since it is performed automatically by the Relational.OWL ap-
plication. Nevertheless, there are some precautions to be considered.

Since a Semantic Translation does not result in Semantic Web objects con-
taining real semantics, but in data items represented within table and col-
umn objects, some applications needing to perform reasoning tasks, may
not be able to interpret this data correctly. In this case, the Relational.OWL
representation of the database has to be mapped additionally to a target
ontology (cf. Section 3.3).

Moreover, it has to be considered that a Semantic Translation implemented
following this Link Pattern is performed using the Relational.OWL applica-
tion. As a consequence, the data provided to the Semantic Web corresponds
to a snapshot of the original relational database, i.e. it may not always be
up-to-date. If the information in the original relational database is time-
critical, a version of the Semantic Translation pattern should be regarded,
where the data transformation is performed in real-time by an application
like RDQuery (cf. Section 5.2).

6.5 Example

This section provides an example of how to model a new information sharing en-
vironment of a worldwide operating company. The headquarters of the company
are located in New York. It has additionally branches in Düsseldorf (head of-
fice of the European branches), Paris, Bangalore, and Hong Kong. Each branch
maintains its own database containing sales figures, collected by local applica-
tions. For backup and subsequent data analysis, this data has to be replicated

6.5 Example 119

to the headquarters. Additionally, the Düsseldorf branch needs to be informed
about the ongoing sales activities of the Paris branch. To simplify the central-
ized backup, the company has decided to forbid any data exchanges between the
single branches.

The central component of this infrastructure is the backup system in New
York. It collects the sales data from all branches, without integrating them.
Additionally it provides the Düsseldorf branch with all the information required
from Paris. Since the headquarters in New York want to analyze the entire data
stock of the company, a data warehouse, based on the data of the backup system,
is set up. Having a certain local autonomy, the data provided by the European
branches and the remaining branches have some structural differences. For this
reason, the data has to be integrated prior to the aggregation required for the
data warehousing analysis.

Using the Link Patterns proposed, we are now able to model the enterprise
information grid as depicted in Figure 6.7.

I,A

data stock backup

no integration so far

<< access >>

<< copy >>

<< copy >>

<<
co

py
>>

<<
copy

>>

<<
copy

>>

G

:SalesD

{location = Düsseldorf}

:SalesP

{location = Paris}

:SalesB

{location = Bangalore}

:DW

:SalesP

:OLAPApp

{location = New York}

:SalesH

{location = Hong Kong}

{location = New York}

Figure 6.7: Example using Link Patterns

The local applications, which maintain the local sales databases, are modeled
using the Data Processor. This data is replicated to the backup system in New
York, realized as a Gatekeeper. It thus controls the data flows from the branches
to the data warehouse and to the Düsseldorf branch. It must be guaranteed, that
the data targets get only their designated data, i.e. neither data from Bangalore,
nor from Hong Kong is accessible for the European head office in Düsseldorf.
The data warehouse is realized by a node, which integrates several data sources
using common integration strategies (Integrator Pattern) and aggregates the data
afterwards (Aggregator Pattern), in order to provide OLAP applications with a
homogenous data stock.

120 6. Link Patterns

Please keep in mind, that the Data Link Model presented in Figure 6.7 reflects
the logical structure of the information platform, not the physical. This means,
that the nodes of the model do not have to be located on different machines.

6.6 Related Work

Data Flow analysis and modeling has been a focus of researchers for decades.
Earlier work concentrates mainly on data flows in computer architectures and
software components (e.g. [Win78, CPRZ89]). Later on, data flows were also used
for query processing and optimization in database systems. For instance, Teeuw
and Blanken [TB93] compare control versus data flow mechanisms controlling the
execution of database queries on parallel database systems.

Dennis and Misunas present in [DM75] a Basic Data-Flow language, which
expresses graphically the data dependencies within a program. In this data flow
graph model, instructions are represented by nodes and paths stand for data
or control flows. Although this language was originally designed for software
development, it may be seen as an early forerunner, in designing data flows
among different data sources. A specialized data flow graph is introduced by
Eich and Wells [EW88], which can be used for scheduling database queries within
multiprocessor environments or databases distributed over a network [BH89].
Thus, both approaches apply data flow concepts to database processing.

The Link Patterns are tightly coupled to the Design Patterns of the object-
oriented software design [GHJV95, BMR+96] and Enterprise Application Inte-
gration (EAI) [HW03], since they represent prototypes or solutions for recurring
problems. Contrary to these patterns, Link Patterns are not intended to solve
recurring problems in software design or EAI, but to provide modeling and de-
scription guidelines for information grids, focusing exclusively on data flows.

As a possible application field of our Link Patterns we suggest modeling or vi-
sualizing information grids, i.e. heterogeneous environment of data sources shar-
ing data, or modern information infrastructures, based on P2P concepts (e.g.
[HIMT03] or Section 5.3).

6.7 Discussion and Future Work

In this chapter we have presented Link Patterns as guidelines for modeling and
describing data flows between nodes in information and knowledge sharing en-
vironments. The Link Pattern Catalog consists of prototypes or solutions for
recurring problems and therewith supports developers to model, describe, and
understand complex information grids. Furthermore the Link Patterns provide a
common vocabulary for design and communication purposes, enabling developers
to exchange successfully implemented solutions.

6.7 Discussion and Future Work 121

Additionally we have introduced the Data Link Modeling Language (DLML)
for modeling, visualizing, and optimizing data flows, especially suitable for knowl-
edge and information grids. This language based on UML consists of a well-
defined set of building blocks, representing data nodes, application nodes and
data flows between them. They can be combined according to specific rules, to
build up the Data Link Model of an information sharing environment.

The concepts we have presented in this chapter are ideal to generate a static
model of data and application nodes with their corresponding data flows. In
future work we have to consider dynamically changing and evolving environments,
in which nodes constantly join or leave the grid. This may not only affect the
Link Pattern Catalog, but also the Data Link Modeling Language. Furthermore
the Catalog has to be enhanced, in order to include novel Link Patterns, not
yet identified. The entire Link Pattern Catalog shall provide developers with an
extensive reference guideline for modeling information sharing environments.

122 6. Link Patterns

Chapter 7

Conclusion

The vision of the Semantic Web [BLHL01] is, despite all the efforts to build up
the next generation Web, still more dream than reality. The main reason for this
issue is the lack of data, since the vast majority of information is still stored in
(relational) databases and thus unavailable for most Semantic Web applications.

In this thesis we have introduced Relational.OWL, a technique to automat-
ically transform data and schema components of a relational database into a
Semantic Web representation. First, the schema of the corresponding database
is extracted based on the Relational.OWL ontology. This schema representation
itself is then used as a new ontology to describe the data items stored in that
specific database.

Despite being processable by any application understanding RDF and OWL,
the data extracted using Relational.OWL still lacks real semantic meaning, since
the information originally stored in relational tables is represented within a table
object and not within appropriate Semantic Web objects. Since many appli-
cations performing reasoning tasks require the data to be represented as real
Semantic Web objects, we have described how to map the Relational.OWL rep-
resentation of a database to a specific target ontology using an RDF query lan-
guage.

Furthermore, we have introduced the novel URI scheme db for identifying
not only databases, but also their schema and data components like tables or
columns. Particularly suitable for the Semantic Web, this URI enables us to
backtrack each relational data item transformed into a Semantic Web object to
its original location in the relational database.

Finally, we have presented the Link Pattern Catalog, which consists of pro-
totypes or solutions for recurring problems and therewith supports developers
to model, describe, and understand complex information sharing environments
like the Semantic Web. Additionally, Link Patterns provide a common vocab-
ulary for design and communication purposes, enabling developers to exchange
successfully implemented solutions.

With the techniques presented in this thesis, relational databases and the Se-

124 7. Conclusion

mantic Web have approached significantly. We are now able to map relational
data automatically into the Semantic Web, enabling Semantic Web applications
to process formerly relational data using their own built-in functionality. Since
some applications require the data items to be mapped to a specific target ontol-
ogy, instead of using the automatically generated data representation, we have
shown how to perform such a mapping task using a suitable RDF query lan-
guage. Using our novel URI, we are additionally able to unambiguously identify
each data item and backtrack it to its original storage location in the relational
database.

Having implemented a relational to Semantic Web solution successfully, a user
is now able to make his solution available to other users confronted with a similar
problem. Using a Link Pattern, he shares successfully implemented solutions and
hence helps other users to realize their contribution to the Semantic Web.

As a consequence, relational databases and the Semantic Web are no longer
isolated data banks lacking of any common data flows, but each relational
database can now be regarded as an integral part of the Semantic Web.

Bibliography

[ABM05] Yuan An, Alexander Borgida, and John Mylopoulos. Inferring Com-
plex Semantic Mappings Between Relational Tables and Ontologies
from Simple Correspondences. In On the Move to Meaningful Inter-
net Systems 2005: CoopIS, DOA, and ODBASE, OTM Confeder-
ated International Conferences, CoopIS, DOA, and ODBASE 2005,
Agia Napa, Cyprus, October 31 - November 4, 2005, Proceedings,
Part II, volume 3761 of Lecture Notes in Computer Science, pages
1152–1169. Springer Verlag, 2005.

[AFZ96] Swarup Acharya, Michael J. Franklin, and Stanley B. Zdonik. Dis-
seminating Updates on Broadcast Disks. In VLDB’96, Proceedings of
22th International Conference on Very Large Data Bases, Septem-
ber 3-6, 1996, Mumbai (Bombay), India, pages 354–365. Morgan
Kaufmann, 1996.

[AFZ97] Swarup Acharya, Michael Franklin, and Stanley Zdonik. Balancing
push and pull for data broadcast. In SIGMOD 1997, Proceedings
ACM SIGMOD International Conference on Management of Data,
May 13-15, 1997, Tucson, Arizona, USA., pages 183–194. ACM
Press, 1997.

[Av03] Grigoris Antoniou and Frank van Harmelen. Web Ontology Lan-
guage: OWL. In Steffen Staab and Rudi Studer, editors, Handbook
on Ontologies in Information Systems, International Handbooks on
Information Systems. Springer Verlag, 2003.

[Av04] Grigoris Antoniou and Frank van Harmelen. A Semantic Web
Primer. MIT Press, Cambridge, MA, USA, 2004.

[Bac69] Charles W. Bachman. Data structure diagrams. DATA BASE,
1(2):4–10, 1969.

[Bar99] Daniel Barbará. Mobile Computing and Databases - A Survey. IEEE
Transactions on Knowledge and Data Engineering, 11(1):108–117,
1999.

126 BIBLIOGRAPHY

[BBFS05] James Bailey, François Bry, Tim Furche, and Sebastian Schaffert.
Web and Semantic Web Query Languages: A Survey. In Reasoning
Web, First International Summer School, volume 3564 of Lecture
Notes in Computer Science, pages 35–133. Springer Verlag, 2005.

[BCF+05] Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela Florescu,
Jonathan Robie, and Jérôme Siméon. XQuery 1.0: An XML Query
Language. http://www.w3.org/TR/2005/CR-xquery-20051103/,
2005. W3C Candidate Recommendation.

[BCM+03] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele
Nardi, and Peter F. Patel-Schneider, editors. The Description Logic
Handbook: Theory, Implementation, and Applications. Cambridge
University Press, 2003.

[Be004] RDF/XML Syntax Specification (Revised). http://www.w3.org/

TR/2004/REC-rdf-syntax-grammar-20040210/, February 2004.
W3C Recommendation.

[Ber00] Michael K. Bergman. The Deep Web: Surfacing Hidden Value.
BrightPlanet LLC, 2000. White paper.

[BGK+02] Philip A. Bernstein, Fausto Giunchiglia, Anastasios Kementsietsidis,
John Mylopoulos, Luciano Serafini, and Ilya Zaihrayeu:. Data Man-
agement for Peer-to-Peer Computing: A Vision. In Proceedings of the
Fifth International Workshop on the Web and Databases, WebDB
2002, Madison, WI, 2002.

[BGM04] Dan Brickley, Ramanathan V. Guha, and Brian McBride. RDF Vo-
cabulary Description Language 1.0: RDF Schema. http://www.w3.
org/TR/2004/REC-rdf-schema-20040210/, February 2004. W3C
Recommendation.

[BH89] Lubomir Bic and Robert L. Hartmann. AGM: A Dataflow Database
Machine. ACM Transactions on Database Systems (TODS),
14(1):114–146, 1989.

[BI94] Daniel Barbará and Tomasz Imielinski. Sleepers and Workaholics:
Caching Strategies in Mobile Environments. In Proceedings of the
1994 ACM SIGMOD International Conference on Management of
Data, Minneapolis, Minnesota, May 24-27, 1994., pages 1–12. ACM
Press, 1994.

[BIPG92] José M. Blanco, Arantza Illarramendi, José M. Pérez, and Alfredo
Goñi. Making a Federated Database System Active. In Database and

http://www.w3.org/TR/2005/CR-xquery-20051103/
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/

BIBLIOGRAPHY 127

Expert Systems Applications (DEXA 1992), pages 345–351. Springer
Verlag, 1992.

[Biz03] Christian Bizer. D2R MAP-A Database to RDF Mapping Language.
In Proceedings of the Twelfth International World Wide Web Con-
ference, WWW2003, Budapest, Hungary, 20-24 May 2003 - Posters,
2003.

[BJY+02] Tom Barrett, David Jones, Jun Yuan, John Sawaya, Mike Uschold,
Tom Adams, and Deborah Folger. RDF Representation of Metadata
for Semantic Integration of Corporate Information Resources. In
International Workshop Real World and Semantic Web Applications
2002, 2002.

[BKD+01] Jeen Broekstra, Michel Klein, Stefan Decker, Dieter Fensel, Frank
van Harmelen, and Ian Horrocks. Enabling Knowledge Representa-
tion on the Web by Extending RDF Schema. In Proceedings of the
Tenth International World Wide Web Conference, WWW 10, Hong
Kong, China, May 1-5, 2001, pages 467–478. ACM Press, 2001.

[BL98a] Tim Berners-Lee. Relational Databases and the Semantic Web
(in Design Issues). http://www.w3.org/DesignIssues/RDB-RDF.

html, September 1998.

[BL98b] Tim Berners-Lee. Web design issues; What a semantic can rep-
resent. http://www.w3.org/DesignIssues/RDFnot.html, Septem-
ber 1998.

[Bla98] Kenneth R. Blackman. Technical Note - IMS Celebrates Thirty
Years as an IBM Product. IBM Systems Journal, 37(4):596–603,
1998.

[BLFM98] Tim Berners-Lee, Roy Thomas Fielding, and Larry Masinter. RFC
2396: Uniform Resource Identifiers (URI): Generic syntax, 1998.

[BLHL01] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic
Web. Scientific American, May 2001.

[BLM02] Tim Berners-Lee and Eric Miller. The Semantic Web lifts off.
ERCIM News, 51:9–11, October 2002.

[BM04] Paul V. Biron and Ashok Malhotra. XML Schema Part
2: Datatypes Second Edition. http://www.w3.org/TR/2004/

REC-xmlschema-2-20041028/, 2004. W3C Recommendation.

http://www.w3.org/DesignIssues/RDB-RDF.html
http://www.w3.org/DesignIssues/RDB-RDF.html
http://www.w3.org/DesignIssues/RDFnot.html
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/

128 BIBLIOGRAPHY

[BMR+96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommer-
lad, and Michael Stal. Pattern-Oriented Software Architecture: A
System of Patterns. John Wiley & Sons, Inc., 1996.

[BOF+04] Christopher Brewster, Kieron O’Hara, Steve Fuller, Yorick Wilks,
Enrico Franconi, Mark A. Musen, Jeremy Ellman, and Simon Buck-
ingham Shum. Knowledge Representation with Ontologies: The
Present and Future. IEEE Intelligent Systems, 19(1):72–81, 2004.

[BPSM04] Tim Bray, Jean Paoli, and Michael Sperberg-McQueen. Extensible
Markup Language (XML) 1.0 (Third Edition). http://www.w3.

org/TR/2004/REC-xml-20040204, 2004. W3C Recommendation.

[BS02] François Bry and Sebastian Schaffert. The XML Query Language
Xcerpt: Design Principles, Examples, and Semantics. In Web, Web-
Services, and Database Systems, NODe 2002 Web and Database-
Related Workshops, Erfurt, Germany, October 7-10, 2002, Revised
Papers, Lecture Notes in Computer Science, pages 295–310. Springer
Verlag, 2002.

[BS04] Christian Bizer and Andy Seaborne. D2RQ -Treating Non-RDF
Databases as Virtual RDF Graphs. In The Semantic Web - ISWC
2004: Third International Semantic Web Conference,Hiroshima,
Japan, November 7-11, 2004., 2004. poster presentation.

[BvH+04] Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks,
Deborah L. McGuinness, Peter F. Patel-Schneider, Lynn Andrea
Stein, and Franklin W. Olin. OWL Web Ontology Language Ref-
erence. http://www.w3.org/TR/2004/REC-owl-ref-20040210/,
2004. W3C Recommendation.

[CB74] Donald D. Chamberlin and Raymond F. Boyce. SEQUEL: A Struc-
tured English Query Language. In Randall Rustin, editor, Proceed-
ings of 1974 ACM-SIGMOD Workshop on Data Description, Access
and Control, Ann Arbor, Michigan, May 1-3, 1974, 2 Volumes, pages
249–264. ACM, 1974.

[CDES05] Eugene Inseok Chong, Souripriya Das, George Eadon, and Jagan-
nathan Srinivasan. An Efficient SQL-based RDF Querying Scheme.
In Proceedings of the 31st International Conference on Very Large
Data Bases, Trondheim, Norway, August 30 - September 2, 2005,
pages 1216–1227. VLDB Endowment, 2005.

[CDF+98] Mark Craven, Dan DiPasquo, Dayne Freitag, Andrew McCallum,
Tom M. Mitchell, Kamal Nigam, and Seán Slattery. Learning to

http://www.w3.org/TR/2004/REC-xml-20040204
http://www.w3.org/TR/2004/REC-xml-20040204
http://www.w3.org/TR/2004/REC-owl-ref-20040210/

BIBLIOGRAPHY 129

extract symbolic knowledge from the World Wide Web. In Proceed-
ings of AAAI-98, 15th Conference of the American Association for
Artificial Intelligence, pages 509–516. AAAI Press, Menlo Park, US,
1998.

[CFK+00] Ann Chervenak, Ian Foster, Carl Kesselman, Charles Salisbury, and
Steven Tuecke. The Data Grid: Towards an Architecture for the
Distributed Management and Analysis of Large Scientific Datasets.
Journal of Network and Computer Applications, 23(3):187–200,
2000.

[CG01] Bengt Carlsson and Rune Gustavsson. The Rise and Fall of Napster
- An Evolutionary Approach. In Active Media Technology, 6th In-
ternational Computer Science Conference, AMT 2001, Hong Kong,
China, December 18-20, 2001, Proceedings, volume 2252 of Lecture
Notes in Computer Science, pages 347–354. Springer Verlag, 2001.

[CGMW96] Sudarshan S. Chawathe, Hector Garcia-Molina, and Jennifer
Widom. A Toolkit For Constraint Management In Heterogeneous
Information Systems. In Proceedings of the Twelfth International
Conference on Data Engineering, February 26 - March 1, 1996, New
Orleans, Louisiana, pages 56–65, 1996.

[CH79] Ashok K. Chandra and David Harel. Computable Queries for Re-
lational Data Bases (Preliminary Report). In Conference Record of
the Eleventh Annual ACM Symposium on Theory of Computing, 30
April-2 May, 1979, Atlanta, Georgia, USA, pages 309–318. ACM
Press, 1979.

[Cha76] Donald D. Chamberlin. Relational Data-Base Management Systems.
ACM Computing Surveys (CSUR), 8(1):43–66, 1976.

[Che76] Peter Pin-Shan Chen. The Entity-Relationship Model - Toward
a Unified View of Data. ACM Transactions on Database Systems
(TODS), 1(1):9–36, 1976.

[Cod70] Edgar F. Codd. A Relational Model of Data for Large Shared Data
Banks. Communications of the ACM, 13(6):377–387, 1970.

[Cod72] Edgar F. Codd. Relational Completeness of Data Base Sublan-
guages. R. Rustin (ed.): Database Systems: 65-98, Prentice Hall
and IBM Research Report RJ 987, San Jose, California, 1972.

[Cod79] Edgar F. Codd. Extending the Database Relational Model to
Capture More Meaning. ACM Transactions on Database Systems
(TODS), 4(4):397–434, 1979.

130 BIBLIOGRAPHY

[Con97] Stefan Conrad. Föderierte Datenbanksysteme: Konzepte der Daten-
integration. Springer Verlag, Berlin, 1997.

[CPRZ89] Lori A. Clarke, Andy Podgurski, Debra J. Richardson, and Steven J.
Zeil. A Formal Evaluation of Data Flow Path Selection Criteria.
Transactions on Software Engineering, 15(11):1318–1332, 1989.

[CT04] Mario Cannataro and Domenico Talia. Semantics and Knowledge
Grids: Building the Next-Generation Grid. IEEE Intelligent Sys-
tems, 19(1):56–63, 2004.

[Cyg05] Richard Cyganiak. A relational algebra for SPARQL. Technical
Report HPL-2005-170, HP Labs, Bristol, UK, 2005.

[Dat82] Christopher J. Date. A Formal Definition of the Relational Model.
SIGMOD Record, 13(1):18–29, 1982.

[Dat00] C. J. Date. An Introduction to Database Systems. Addison-Wesley,
2000.

[DBJS03] David De Roure, Mark A. Baker, Nicholas R. Jennings, and Nigel R.
Shadbolt. The Evolution of the Grid. In Fran Berman, Geoffrey
Fox, and Tony Hey, editors, Grid Computing: Making the Global
Infrastructure a Reality, pages 65–100. John Wiley & Sons Inc., New
York, April 2003.

[DM75] Jack B. Dennis and David P. Misunas. A Preliminary Architecture
for a Basic Data-Flow Processor. In Proceedings of the 2nd Annual
Symposium on Computer Architecture, pages 126–132. ACM Press,
1975.

[DMDH02] AnHai Doan, Jayant Madhavan, Pedro Domingos, and Alon Halevy.
Learning to Map between Ontologies on the Semantic Web. In Pro-
ceedings of the Eleventh International World Wide Web Conference,
WWW2002, Honolulu, Hawaii, USA, 7-11 May 2002, pages 662–
673. ACM Press, 2002.

[DMDH04] AnHai Doan, Jayant Madhavan, Pedro Domingos, and Alon Y.
Halevy. Ontology Matching: A Machine Learning Approach. In
Steffen Staab and Rudi Studer, editors, Handbook on Ontologies,
International Handbooks on Information Systems, pages 385–404.
Springer Verlag, 2004.

[DRR+06] Olivier Dameron, Elodie Roques, Daniel Rubin, Gwenaelle Marquet,
and Anita Burgun. Grading Lung Tumors using OWL-DL based rea-
soning . In Proceedings of the 9th International Protege Conference,
Stanford USA, 2006.

BIBLIOGRAPHY 131

[DS04] Mike Dean and Guus Schreiber. OWL Web Ontology Language Ref-
erence. http://www.w3.org/TR/2004/REC-owl-ref-20040210/,
2004. W3C Recommendation.

[Dum01] Edd Dumbill. The semantic web: A primer. http://www.xml.com/
pub/a/2000/11/01/semanticweb/, November 2001.

[EM02] Andrew Eisenberg and Jim Melton. SQL/XML is Making Good
Progress. SIGMOD Record, 31(2):101–108, 2002.

[EM04] Andrew Eisenberg and Jim Melton. Advancements in SQL/XML.
SIGMOD Record, 33(3):79–86, 2004.

[EW88] Margaret H. Eich and David L. Wells. Database Concurrency Con-
trol Using Data Flow Graphs. ACM Transactions on Database Sys-
tems (TODS), 13(2):197–227, 1988.

[FGM+99] Roy Thomas Fielding, James Gettys, Jeffrey C. Mogul, Henrik
Frystyk, Larry Masinter, Paul J. Leach, and Tim Berners-Lee. RFC
2616: Hypertext Transfer Protocol - HTTP/1.1, 1999.

[FHVB04] Flavius Frasincar, Geert-Jan Houben, Richard Vdovjak, and Peter
Barna. RAL: An Algebra for Querying RDF. World Wide Web,
7(1):83–109, 2004.

[Fre98] Dayne Freitag. Information Extraction from HTML: Application of
a General Machine Learning Approach. In Proceedings of AAAI-98,
15th Conference of the American Association for Artificial Intelli-
gence, pages 517–523, 1998.

[GHI+01] Steven Gribble, Alon Halevy, Zachary Ives, Maya Rodrig, and Dan
Suciu. What Can Databases Do for Peer-to-Peer? In Proceedings
of the Fourth International Workshop on the Web and Databases
(WebDB ’2001), Santa Barbara, CA, 2001.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design Patterns: Elements od Reusable Object-Oriented Soft-
ware. Addison-Wesley Professional Computing Series. Addison-
Wesley Publishing Company, New York, NY, 1995.

[GHOS96] Jim Gray, Pat Helland, Patrick O’Neil, and Dennis Shasha. The
Dangers of Replication and a Solution. In Proceedings of the 1996
ACM SIGMOD international conference on Management of data,
pages 173–182, Montreal, Canada, 1996. ACM Press.

[GMUW02] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom.
Database Systems: The Complete Book. Prentice-Hall, 2002.

http://www.w3.org/TR/2004/REC-owl-ref-20040210/
http://www.xml.com/pub/a/2000/11/01/semanticweb/
http://www.xml.com/pub/a/2000/11/01/semanticweb/

132 BIBLIOGRAPHY

[Gru93] Thomas R. Gruber. A Translation Approach to Portable Ontology
Specifications. Knowledge Acquisition, 5(2):199–220, 1993.

[GW93] Ashish Gupta and Jennifer Widom. Local Verification of Global In-
tegrity Constraints in Distributed Databases. In Proceedings of the
1993 ACM SIGMOD International Conference on Management of
Data, Washington, D.C., May 26-28, 1993., pages 49–58, Washing-
ton, DC, 1993.

[Hal01] Alon Y. Halevy. Answering queries using views: A survey. The
VLDB Journal, 10(4):270–294, 2001.

[Han98] David J. Hand. Data Mining: Statistics and More? The American
Statistician, 52(2):112–118, 1998.

[Har02] Takahiro Hara. Cooperative caching by mobile clients in push-based
information systems. In Proceedings of the 2002 ACM CIKM Inter-
national Conference on Information and Knowledge Management,
McLean, VA, USA, November 4-9, 2002, pages 186–193, 2002.

[HBEV04] Peter Haase, Jeen Broekstra, Andreas Eberhart, and Raphael
Volz. A Comparison of RDF Query Languages. In The Seman-
tic Web - ISWC 2004: Third International Semantic Web Confer-
ence,Hiroshima, Japan, November 7-11, 2004. Proceedings, pages
502–517, 2004.

[HdCD+05] Frank W. Hartel, Sherri de Coronado, Robert Dionne, Gilberto
Fragoso, and Jennifer Golbeck. Modeling a description logic vo-
cabulary for cancer research. Journal of Biomedical Informatics,
38(2):114–129, 2005.

[Hef04] Jeff Heflin. OWL Web Ontology Language Use Cases
and Requirements. http://www.w3.org/TR/2004/

REC-webont-req-20040210/, 2004.

[HEPS02] Masahiro Hori, Jérôme Euzenat, and Peter F. Patel-Schneider. OWL
Web Ontology Language XML Presentation Syntax. http://www.

w3.org/TR/owl-xmlsyntax/, 2002. W3C Recommendation.

[HIMT03] Alon Y. Halevy, Zachary G. Ives, Peter Mork, and Igor Tatarinov.
Piazza: Data Management Infrastructure for Semantic Web Appli-
cations. In Proceedings of the Twelfth International World Wide
Web Conference, WWW2003, Budapest, Hungary, 20-24 May 2003.,
pages 556–567, 2003.

http://www.w3.org/TR/2004/REC-webont-req-20040210/
http://www.w3.org/TR/2004/REC-webont-req-20040210/
http://www.w3.org/TR/owl-xmlsyntax/
http://www.w3.org/TR/owl-xmlsyntax/

BIBLIOGRAPHY 133

[HJKS06] Katja Hose, Andreas Job, Marcel Karnstedt, and Kai-Uwe Sattler.
An Extensible, Distributed Simulation Environment for Peer Data
Management Systems. In Advances in Database Technology - EDBT
2006, 10th International Conference on Extending Database Tech-
nology, Munich, Germany, March 26-31, 2006, Proceedings, vol-
ume 3896 of Lecture Notes in Computer Science, pages 1198–1202.
Springer Verlag, 2006.

[HM85] Dennis Heimbigner and Dennis McLeod. A Federated Architecture
for Information Management. ACM Transactions on Information
Systems (TOIS), 3(3):253–278, 1985.

[Hos02] Wolfgang Hoschek. A Unified Peer-to-Peer Database Framework
for Scalable Service and Resource Discovery. In Grid Computing -
GRID 2002, Third International Workshop, Baltimore, MD, USA,
November 18, 2002, Proceedings, pages 126–144, 2002.

[HS05] Stephen Harris and Nigel Shadbolt. SPARQL Query Processing with
Conventional Relational Database Systems. In Web Information
Systems Engineering - WISE 2005 Workshops, WISE 2005 Inter-
national Workshops, New York, NY, USA, November 20-22, 2005,
Proceedings, volume 3807 of Lecture Notes in Computer Science,
pages 235–244. Springer Verlag, 2005.

[HSWW03] L. Hollink, A. Th. Schreiber, B. Wielemaker, and B. Wielinga.
Semantic Annotation of Image Collections. In Proceedings of the
KCAP’03 Workshop on Knowledge Markup and Semantic Annota-
tion, Florida, USA, October 2003., 2003.

[HW03] Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns.
Addison-Wesley, 2003.

[Ian01] Renato Iannella. Representing vCard Objects in RDF/XML. http:
//www.w3.org/TR/vcard-rdf, 2001. W3C Note.

[Int88] International Organization for Standardization. ISO 8601:1988.
Data elements and interchange formats — Information interchange
— Representation of dates and times. Geneva, Switzerland, 1988.
See also 1-page correction, ISO 8601:1988/Cor 1:1991.

[Int98] International Organization for Standardization. ISO/IEC 6523-
1:1998 Information technology – Structure for the identification of
organizations and organization parts – Part 1: Identification of or-
ganization identification schemes. Geneva, Switzerland, 1998.

http://www.w3.org/TR/vcard-rdf
http://www.w3.org/TR/vcard-rdf

134 BIBLIOGRAPHY

[Int01] International Organization for Standardization. ISO/IEC 9075-
9 : 2001: Title: Information technology – Database languages –
SQL–Part 9: Management of External Data (SQL/MED). Geneva,
Switzerland, 2001.

[Int02] International Telecommunication Union. Abstract Syntax Notation
One (ASN.1): Specification of basic notation. ITU-T Recommenda-
tion X.680. Geneva, Switzerland, 2002.

[Int03a] International Organization for Standardization. ISO/IEC 13250 :
2003: Title: Information technology – SGML applications – Topic
maps). Geneva, Switzerland, 2003.

[Int03b] International Organization for Standardization. ISO/IEC 9075 :
2003: Title: Information technology – Database languages – SQL.
Geneva, Switzerland, 2003.

[Int03c] International Organization for Standardization. ISO/IEC 9075-14 :
2003: Title: Information technology – Database languages – SQL–
14: XML-Related Specifications (SQL/XML). Geneva, Switzerland,
2003.

[Int03d] International Organization for Standardization. ISO/IEC 9075-
9 : 2003: Title: Information technology – Database languages –
SQL–Part 9: Management of External Data (SQL/MED). Geneva,
Switzerland, 2003.

[Int03e] Internet Assigned Numbers Authority. Uniform Resource Iden-
tifier (URI) SCHEMES. http://www.iana.org/assignments/

uri-schemes, 2003.

[Jac05] Ian Jacobs. World Wide Web Consortium Process Document. http:
//www.w3.org/2005/10/Process-20051014/, 2005.

[Jav06] JavaCC - Java Compiler Compiler. https://javacc.dev.java.

net/, 2006.

[JDB06] JDBC Technology. http://java.sun.com/products/jdbc/, 2006.

[Jen06] Jena - A Semantic Web Framework for Java. http://jena.

sourceforge.net/, 2006.

[JT75] Paul R. Johnson and Robert H. Thomas. RFC 677: Maintenance of
duplicate databases, 1975.

http://www.iana.org/assignments/uri-schemes
http://www.iana.org/assignments/uri-schemes
http://www.w3.org/2005/10/Process-20051014/
http://www.w3.org/2005/10/Process-20051014/
https://javacc.dev.java.net/
https://javacc.dev.java.net/
http://java.sun.com/products/jdbc/
http://jena.sourceforge.net/
http://jena.sourceforge.net/

BIBLIOGRAPHY 135

[KAM03] Anastasios Kementsietsidis, Marcelo Arenas, and Renée J. Miller.
Mapping Data in Peer-to-Peer Systems: Semantics and Algorithmic
Issues. In Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data, San Diego, California, USA,
June 9-12, 2003, pages 325–336. ACM Press, 2003.

[KCGS95] Won Kim, Injun Choi, Sunit Gala, and Mark Scheevel. On Resolving
Schematic Heterogeneity in Multidatabase Systems. In W. Kim,
editor, Modern Database Systems, chapter 26, pages 521–550. ACM
Press, New York, NY, 1995.

[KCPA01] Gregory Karvounarakis, Vassilis Christophides, Dimitris Plex-
ousakis, and Sofia Alexaki. Querying RDF Descriptions for Commu-
nity Web Portals. In 17èmes Journées Bases de Données Avancées,
BDA’2001, Agadir, Maroc, pages 133–144, 2001.

[KlC04] Resource Description Framework (RDF): Concepts
and Abstract Syntax. http://www.w3.org/TR/2004/

REC-rdf-concepts-20040210/, February 2004. W3C Recom-
mendation.

[KMH06] Vipul Kashyapa, Alfredo Morales, and Tonya Hongsermeiera. On
Implementing Clinical Decision Support: Achieving Scalability and
Maintainability by Combining Business Rules and Ontologies. Tech-
nical Report CIRD-20060322-01, Clinical Informatics R&D, Part-
ners HealthCare System, Wellesley, MA, 2006.

[LA86] Witold Litwin and Abdelaziz Abdellatif. Multidatabase Interoper-
ability. Computer, 19(12):10–18, 1986.

[Las97] Ora Lassila. Introduction to RDF Metadata. http://www.w3.org/
TR/NOTE-rdf-simple-intro-971113.html, November 1997. W3C
NOTE 1997-11-13.

[Len02] Maurizio Lenzerini. Data Integration: A Theoretical Perspective. In
Proceedings of the Twenty-first ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, June 3-5, Madison,
Wisconsin, USA, pages 233–246. ACM, 2002.

[LL95] Stefan M. Lang and Peter C. Lockemann. Datenbankeinsatz.
Springer Verlag, 1995.

[LS99] Ora Lassila and Ralph R. Swick. Resource Description Framework
(RDF) Model and Syntax Specification. http://www.w3.org/TR/

1999/REC-rdf-syntax-19990222/, February 1999. W3C Recom-
mendation.

http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/NOTE-rdf-simple-intro-971113.html
http://www.w3.org/TR/NOTE-rdf-simple-intro-971113.html
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/

136 BIBLIOGRAPHY

[Mai83] David Maier. The Theory of Relational Databases. Computer Science
Press, 1983.

[Mat06] Michael Matuschek. Extraktion relationaler Daten für das Semantic
Web in Oracle 10g. Bachelor’s Thesis, Heinrich-Heine-Universität
Düsseldorf, 2006.

[Mea00] Michael Mealling. RFC 3001: A URN Namespace of Object Identi-
fiers, 2000.

[Mel99] Sergey Melnik. Algebraic Specification for RDF Models.
http://www-diglib.stanford.edu/diglib/ginf/WD/rdf-alg/

rdf-alg.pdf, 1999. Working Draft.

[Mel01] Sergey Melnik. Storing RDF in a Relational Database. http://

www-db.stanford.edu/~melnik/rdf/db.html, 2001.

[MFHS02] Deborah L. McGuinness, Richard Fikes, James A. Hendler, and
Lynn Andrea Stein. IEEE Intelligent Systems: DAML+OIL: An
Ontology Language for the Semantic Web. IEEE Distributed Sys-
tems Online, 3(11), 2002.

[MM04] Frank Manola and Eric Miller. RDF primer. http://www.w3.org/

TR/2004/REC-rdf-primer-20040210/, 2004. W3C Recommenda-
tion.

[MMJ+01a] Jim Melton, Jan-Eike Michels, Vanja Josifovski, Krishna G. Kulka-
rni, Peter M. Schwarz, and Kathy Zeidenstein. SQL and Manage-
ment of External Data. SIGMOD Record, 30(1):70–77, 2001.

[MMJ+01b] Jim Melton, Jan-Eike Michels, Vanja Josifovski, Krishna G. Kulka-
rni, Peter M. Schwarz, and Kathy Zeidenstein. SQL and Manage-
ment of External Data. SIGMOD Record, 30(1):70–77, 2001.

[Moa97] Ryan Moats. RFC 2141: URN Syntax, 1997.

[Mv04] Deborah L. McGuinness and Frank van Harmelen. OWL Web
Ontology Language Overview. http://www.w3.org/TR/2004/

REC-owl-features-20040210/, 2004. W3C Recommendation.

[NE01] Shamkant B. Navathe and Ramez A. Elmasri. Fundamentals of
Database Systems. Addison-Wesley Longman Publishing Co., Inc.,
2001.

[Neu05] Eric Neumann. Finding the Critical Path: Applying the Semantic
Web to Drug Discovery and Development. Drug Discovery World,
6:25–33, 2005.

http://www-diglib.stanford.edu/diglib/ginf/WD/rdf-alg/rdf-alg.pdf
http://www-diglib.stanford.edu/diglib/ginf/WD/rdf-alg/rdf-alg.pdf
http://www-db.stanford.edu/~melnik/rdf/db.html
http://www-db.stanford.edu/~melnik/rdf/db.html
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://www.w3.org/TR/2004/REC-owl-features-20040210/

BIBLIOGRAPHY 137

[NWQ+02] Wolfgang Nejdl, Boris Wolf, Changtao Qu, Stefan Decker, Michael
Sintek, Ambjörn Naeve, Mikael Nilsson, Matthias Palmér, and Tore
Risch. EDUTELLA: A P2P Networking Infrastructure Based on
RDF. In Proceedings of the Eleventh International World Wide Web
Conference, WWW2002, Honolulu, Hawaii, USA, 7-11 May 2002.,
pages 604–615. ACM Press, 2002.

[OV99] M. Tamer Özsu and Patrick Valduriez. Principles of Distributed
Database Systems. Prentice Hall, 1999.

[PC03] Cristian Pérez de Laborda and Stefan Conrad. A Semantic Web
based Identification Mechanism for Databases. In Proceedings of the
10th International Workshop on Knowledge Representation meets
Databases (KRDB 2003), Hamburg, Germany, September 15-16,
2003, volume 79 of CEUR Workshop Proceedings, pages 123–130.
Technical University of Aachen (RWTH), 2003.

[PC05a] Cristian Pérez de Laborda and Stefan Conrad. Querying Relational
Databases with RDQL. In Berliner XML Tage, pages 161–172.
Humboldt-Universität zu Berlin, Freie Universität Berlin, 2005.

[PC05b] Cristian Pérez de Laborda and Stefan Conrad. Relational.OWL
- A Data and Schema Representation Format Based on OWL. In
Conceptual Modelling 2005, Second Asia-Pacific Conference on Con-
ceptual Modelling (APCCM2005), Newcastle, NSW, Australia, Jan-
uary/February 2005, volume 43 of CRPIT, pages 89–96. Australian
Computer Society, 2005.

[PC05c] Christopher Popfinger and Stefan Conrad. Maintaining Global In-
tegrity in Federated Relational Databases Using Interactive Com-
ponent Systems. In On the Move to Meaningful Internet Systems
2005: CoopIS, DOA, and ODBASE, OTM Confederated Interna-
tional Conferences CoopIS, DOA, and ODBASE 2005, Agia Napa,
Cyprus, October 31 - November 4, 2005, Proceedings, Part I, volume
3760 of Lecture Notes in Computer Science, pages 539–556. Springer
Verlag, 2005.

[PC06a] Cristian Pérez de Laborda and Stefan Conrad. Bringing Relational
Data into the Semantic Web using SPARQL and Relational.OWL.
In Semantic Web and Databases, Third International Workshop,
SWDB 2006, Proceedings of the 22nd International Conference on
Data Engineering Workshops, ICDE 2006, 3-7 April 2006, Atlanta,
GA, USA. IEEE Computer Society, 2006.

138 BIBLIOGRAPHY

[PC06b] Cristian Pérez de Laborda and Stefan Conrad. Database to Semantic
Web Mapping using RDF Query Languages. In Conceptual Modeling
- ER 2006, 25th International Conference on Conceptual Modeling,
Tucson, Arizona, Lecture Notes in Computer Science. Springer Ver-
lag, 2006. to appear.

[Pep00] Steve Pepper. The TAO of Topic Maps - finding the way in the
age of infoglut. In XML Europe - Proceedings of the XML Europe
Conference, June, 12-16, 2000, Paris, France, 2000.

[PH03] Zhengxiang Pan and Jeff Heflin. DLDB: Extending Relational
Databases to Support Semantic Web Queries. In PSSS1 - Prac-
tical and Scalable Semantic Systems, Proceedings of the First In-
ternational Workshop on Practical and Scalable Semantic Systems,
Sanibel Island, Florida, USA, October 20, 2003, volume 89 of CEUR
Workshop Proceedings, 2003.

[PP04] Cristian Pérez de Laborda and Christopher Popfinger. A Flexible
Architecture for a Push-based P2P Database. In Tagungsband zum
16. GI-Workshop Grundlagen von Datenbanken, Mohnheim, NRW,
1.-4. Juni 2004, pages 93–97. Universität Düsseldorf, 2004.

[PPC04a] Cristian Pérez de Laborda, Christopher Popfinger, and Stefan Con-
rad. D́ıgame: A Vision of an Active Multidatabase with Push-based
Schema and Data Propagation. In Enterprise Application Integra-
tion 2004, Proceedings of the GI-/GMDS Workshop on Enterprise
Application Integration (EAI-04), Oldenburg, Germany, February
12-13, 2004, volume 93 of CEUR Workshop Proceedings, 2004.

[PPC04b] Christopher Popfinger, Cristian Pérez de Laborda, and Stefan Con-
rad. D́ıgame: A Push-based P2P Database. In Key Technologies for
Data Management, 21st British National Conference on Databases,
BNCOD 21, Edinburgh, UK, July 7-9, 2004, Proceedings Volume 2.
Heriot Watt University, 2004.

[PPC04c] Christopher Popfinger, Cristian Pérez de Laborda, and Stefan Con-
rad. Link Patterns for Modeling Information Grids and P2P Net-
works. In Il-Yeol Song and Stephen W. Liddle and Tok Wang Ling
and Peter Scheuermann, editor, Conceptual Modeling - ER 2004,
23rd International Conference on Conceptual Modeling, Shanghai,
China, November 8-12, 2004 Proceedings, volume 3288 of Lecture
Notes in Computer Science. Springer Verlag, 2004.

[PPC05] Cristian Pérez de Laborda, Christopher Popfinger, and Stefan Con-
rad. Dynamic Intra- and Inter-Enterprise Collaboration Using an

BIBLIOGRAPHY 139

Enhanced Multidatabase Architecture. In 16th International Work-
shop on Database and Expert Systems Applications (DEXA 2005),
22-26 August 2005, Copenhagen, Denmark, pages 626–631. IEEE
Computer Society, 2005.

[PR04] Johan Petrini and Tore Risch. Processing Queries over RDF views
of Wrapped Relational Databases. In 1st International Workshop
on Wrapper Techniques for Legacy Systems, WRAP 2004, Delft,
Holland, 2004.

[PS05] Eric Prud’hommeaux and Andy Seaborne. SPARQL
Query Language for RDF. http://www.w3.org/TR/2005/

WD-rdf-sparql-query-20051123/, 2005. W3C Working Draft.

[PS06a] Eric Prud’hommeaux and Andy Seaborne. BRQL - A Query Lan-
guage for RDF. http://www.w3.org/2004/07/08-BRQL/, 2006.

[PS06b] Eric Prud’hommeaux and Andy Seaborne. SPARQL
Query Language for RDF. http://www.w3.org/TR/2006/

WD-rdf-sparql-query-20060220/, 2006. W3C Working Draft.

[PSH04] Peter F. Patel-Schneider and Ian Horrocks. OWL Web
Ontology Language Semantics and Abstract Syntax Sec-
tion 2. Abstract Syntax. http://www.w3.org/TR/2004/

REC-owl-semantics-20040210/syntax.html, 2004. W3C Recom-
mendation.

[PZC06] Cristian Pérez de Laborda, Matthäus Zloch, and Stefan Conrad.
RDQuery - Querying Relational Databases on-the-fly with RDF-
QL. In Posters and Demos of the 15th International Conference on
Knowledge Engineering and Knowledge Management, EKAW 2006,
Podebrady, Czech Republic, 2006. to appear.

[RB01] Erhard Rahm and Philip A. Bernstein. A survey of approaches to
automatic schema matching. The VLDB Journal, 10(4):334–350,
2001.

[RCJ+92] Ramana Rao, Stuart K. Card, Herbert D. Jellinek, Jock D. Mackin-
lay, and George G. Robertson. The Information Grid: A Framework
for Information Retrieval and Retrieval-Centered Applications. In
Proceedings of the 5th Annual Symposium on User Interface Soft-
ware and Technology (UIST’92), pages 23–32, Monterey, CA, 1992.

[SD02] Michael Sintek and Stefan Decker. TRIPLE - A Query, Inference,
and Transformation Language for the Semantic Web. In Ian Hor-
rocks and James A. Hendler, editors, The Semantic Web - ISWC

http://www.w3.org/TR/2005/WD-rdf-sparql-query-20051123/
http://www.w3.org/TR/2005/WD-rdf-sparql-query-20051123/
http://www.w3.org/2004/07/08-BRQL/
http://www.w3.org/TR/2006/WD-rdf-sparql-query-20060220/
http://www.w3.org/TR/2006/WD-rdf-sparql-query-20060220/
http://www.w3.org/TR/2004/REC-owl-semantics-20040210/syntax.html
http://www.w3.org/TR/2004/REC-owl-semantics-20040210/syntax.html

140 BIBLIOGRAPHY

2002, First International Semantic Web Conference, Sardinia, Italy,
June 9-12, 2002, Proceedings, volume 2342 of Lecture Notes in Com-
puter Science, pages 364–378. Springer Verlag, 2002.

[SDWW01] A. Th. (Guus) Schreiber, Barbara Dubbeldam, Jan Wielemaker, and
Bob Wielinga. Ontology-Based Photo Annotation. IEEE Intelligent
Systems, 16(3):66–74, 2001.

[Sea04] Andy Seaborne. RDQL - A Query Language for RDF. http://www.
w3.org/Submission/2004/SUBM-RDQL-20040109/, 2004. W3C
Member Submission.

[SKS98] Abraham Silberschatz, Henry F. Korth, and S. Sudershan. Database
System Concepts. McGraw-Hill, Inc., New York, NY, USA, 1998.

[SL90] Amit P. Sheth and James A. Larson. Federated Database Sys-
tems for Managing Distributed, Heterogeneous, and Autonomous
Databases. ACM Computing Surveys (CSUR), 22(3):183–236, 1990.

[SL03] Kai-Uwe Sattler and Frank Leymann. Information Integration und
Semantic Web. Datenbank-Spektrum, 3(6):5–6, 2003.

[SM96] Heather A. Smith and James D. McKeen. Object-Oriented Technol-
ogy: Getting Beyond the Hype. DATA BASE, 27(2):20–29, 1996.

[SMQ06] Susie Stephens, Alfredo Morales, and Matthew Quinlan. Applying
Semantic Web Technologies to Drug Safety Determination. IEEE
Intelligent Systems, 21(1):82–86, 2006.

[SPZ98] Stefano Spaccapietra, Christine Parent, and Esteban Zimányi. Mod-
eling time from a conceptual perspective. In Proceedings of the 1998
ACM CIKM International Conference on Information and Knowl-
edge Management, Bethesda, Maryland, USA, 1998, pages 432–440.
ACM, 1998.

[SS06] Steffen Staab and Heiner Stuckenschmidt, editors. Semantic Web
and Peer-to-Peer: Decentralized Management and Exchange of
Knowledge and Information. Springer Verlag, 2006.

[SSC05] Gunter Saake, Kai-Uwe Sattler, and Stefan Conrad. Rule-based
schema matching for ontology-based mediators. Journal of Applied
Logic, 3(1):253–270, 2005.

[Sto01] Heinz Stockinger. Distributed Database Management Systems and
the Data Grid. In Proceedings of the 18th IEEE Symposium on
Mass Storage Systems and 9th NASA Goddard Conference on Mass
Storage Systems and Technologies, Washington, DC, 2001.

http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/
http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/

BIBLIOGRAPHY 141

[STZ+99] Jayavel Shanmugasundaram, Kristin Tufte, Chun Zhang, Gang He,
David J. DeWitt, and Jeffrey F. Naughton. Relational databases for
querying xml documents: Limitations and opportunities. In Mal-
colm P. Atkinson, Maria E. Orlowska, Patrick Valduriez, Stanley B.
Zdonik, and Michael L. Brodie, editors, VLDB’99, Proceedings of
25th International Conference on Very Large Data Bases, Septem-
ber 7-10, 1999, Edinburgh, Scotland, UK, pages 302–314. Morgan
Kaufmann, 1999.

[SW00] Harald Schöning and Jürgen Wäsch. Tamino - An Internet Database
System. In Carlo Zaniolo, Peter C. Lockemann, Marc H. Scholl, and
Torsten Grust, editors, Advances in Database Technology - EDBT
2000, 7th International Conference on Extending Database Technol-
ogy, Konstanz, Germany, March 27-31, 2000, Proceedings, volume
1777 of Lecture Notes in Computer Science, pages 383–387. Springer
Verlag, 2000.

[TB93] Wouter B. Teeuw and Henk M. Blanken. Control versus Data Flow
in Parallel Database Machines. IEEE Transactions on Parallel and
Distributed Systems, (4):1265–1279, 1993.

[TC97] Can Türker and Stefan Conrad. Towards Maintaining Integrity of
Federated Databases. In Data Management Systems, Proceedings of
the 3rd Int. Workshop on Information Technology, BIWIT’97, July
2–4, 1997, Biarritz, France, pages 93–100, Los Alamitos, CA, 1997.
IEEE Computer Society Press.

[TF76] Robert W. Taylor and Randall L. Frank. CODASYL Data-Base
Management Systems. ACM Computing Surveys (CSUR), 8(1):67–
103, 1976.

[The04] The Apache DB Project. Torque. http://db.apache.org/torque/,
2004.

[Tür03] Can Türker. SQL:1999 & SQL:2003 - Objektrelationales SQL, SQLJ
& SQL/XML. dpunkt, 2003.

[Ull97] Jeffrey D. Ullman. Information Integration Using Logical Views. In
Database Theory - ICDT ’97, 6th International Conference, Delphi,
Greece, January 8-10, 1997, Proceedings, volume 1186 of Lecture
Notes in Computer Science, pages 19–40. Springer Verlag, 1997.

[Upd05] Andrew Updegrove. The Semantic Web: An Interview with Tim
Berners-Lee. Consortium Standards Bulletin, June 2005. http:

//www.consortiuminfo.org/bulletins/semanticweb.php.

http://db.apache.org/torque/
http://www.consortiuminfo.org/bulletins/semanticweb.php
http://www.consortiuminfo.org/bulletins/semanticweb.php

142

[VJBCS97] Pepjijn R. S. Visser, Dean M. Jones, Trevor J. M. Bench-Capon, and
Michael J. R. Shave. An analysis of ontological mismatches: Het-
erogeneity versus interoperability. In AAAI 1997 Spring Symposium
on Ontological Engineering, Stanford, USA, 1997.

[Wal03] Norman Walsh. RDF Twig: Accessing RDF Graphs in XSLT. In
Proceedings of the Extreme Markup Languages 2003 Conference, 4-8
August 2003, Montréal, Quebec, Canada, 2003.

[Wik06] System One - Wikipedia3. http://labs.systemone.at/

wikipedia3, June 2006.

[Win78] Elizabeth Winey. Data Flow Architecture. In Proceedings of the
16th annual Southeast regional conference, Atlanta, Georgia April
13 - 15, 1978., pages 103–108. ACM Press, 1978.

[WM02] Richard Widhalm and Thomas Mück. Topic Maps. Semantische
Suche im Internet. Xpert.press. Springer Verlag, Berlin, 2002.

[WPS+00] Matthias Wiesmann, Fernando Pedone, André Schiper, Bettina
Kemme, and Gustavo Alonso. Database Replication Techniques:
a three parameter classification. In 19th IEEE Symposium on Reli-
able Distributed Systems (SRDS’00), 16-18 October 2000, Nürnberg,
Germany, pages 206–215. IEEE Computer Society, 2000.

[XE04] Li Xu and David W. Embley. Combining the Best of Global-as-
View and Local-as-View for Data Integration. In Information Sys-
tems Technology and its Applications, 3rd International Conference
ISTA’2004, June 15-17, 2004, Salt Lake City, Utah, USA, Proceed-
ings, volume 48 of LNI, pages 123–136. GI, 2004.

[XSL99] XSL Transformations (XSLT). http://www.w3.org/TR/1999/

REC-xslt-19991116, 1999. W3C Recommendation.

[YPK03] Jian Yang, Mike P. Papazoglou, and Bernd J. Krämer. A Pub-
lish/Subscribe Scheme for Peer-to-Peer Database Networks. In On
The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and
ODBASE - OTM Confederated International Conferences, CoopIS,
DOA, and ODBASE 2003, Catania, Sicily, Italy, November 3-7,
2003, volume 2888 of Lecture Notes in Computer Science, pages
244–262. Springer Verlag, 2003.

[Zlo05] Matthäus Zloch. Automatic translation of RDQL queries into SQL.
Bachelor’s Thesis, Heinrich-Heine-Universität Düsseldorf, 2005.

http://labs.systemone.at/wikipedia3
http://labs.systemone.at/wikipedia3
http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.w3.org/TR/1999/REC-xslt-19991116

List of Figures

2.1 A relation with four attributes and three rows 9
2.2 Result of the σCity=′Berlin′(Address) operation 10
2.3 A sample RDF graph . 19
2.4 A sample RDFS graph . 20
2.5 Triple representation of the sample RDF graph 20
2.6 RDF/XML representation of the sample RDF graph 21

3.1 Three layers of abstraction using Relational.OWL 29
3.2 Main concepts of the Relational.OWL ontology 36
3.3 Schema representation using the Relational.OWL ontology 38
3.4 Data representation using a tailored schema ontology 40
3.5 XML data generated with Rec2XML 41
3.6 Amount of data after a data export 42
3.7 Mapping process . 59
3.8 Sample mapping query . 61
3.9 Sample mapping result . 62

4.1 Multi-Peer-to-Multi-Peer data exchange 68
4.2 The db URI scheme . 72
4.3 XML data exchange document . 73
4.4 XML data exchange document with our novel URI 74
4.5 Relational.OWL-based schema file using our novel URI 76

5.1 The Export tab of the Relational.OWL application 81
5.2 RDQuery system architecture . 87
5.3 Sample query translation using the GUI 89
5.4 Collaborative work realized with D́ıgame 92
5.5 D́ıgame architecture . 95
5.6 Design of the D́ıgame wrapper 100

6.1 DLML components . 108
6.2 DLML example . 109
6.3 Link Pattern Catalog Classification 111
6.4 Elementary Link Patterns . 114

144 List of Figures

6.5 Data Independent Link Patterns 115
6.6 Data Sensitive Link Patterns . 117
6.7 Example using Link Patterns . 119

List of Tables

2.1 RDQL clauses . 24
2.2 Main SPARQL clauses . 25

3.1 Classes defined in the Relational.OWL ontology 37
3.2 Properties defined in the Relational.OWL ontology 37
3.3 Average execution time for a SPARQL mapping 63

	Motivation
	Contributions
	Outline

	Background
	Relational Databases
	Relational Model
	Relational Data Model
	Relational Algebra

	SQL

	The Semantic Web
	Introduction
	Semantic Web Technologies
	RDF
	OWL Web Ontology Language
	RDF Query Languages

	Bridging the Semantic Gap
	Relational.OWL
	Motivation
	Data for the Semantic Web
	Relational.OWL as an Exchange Format
	Peer-to-Peer Databases

	Relevant Metadata
	The Relational.OWL Ontology
	Schema Representation
	Data Representation
	Data Overhead in the Data Exchange Process

	Relational.OWL and RDF Query Languages
	Relational.OWL and RDQL
	Selection
	Projection
	Set Union
	Set Difference
	Cartesian Product
	(Equi-)Join
	Discussion

	Relational.OWL and SPARQL
	Selection
	Projection
	Set Union
	Set Difference
	Cartesian Product
	(Equi-)Join
	Discussion

	Relational to Semantic Mapping
	Requirements
	Definitions
	Mapping Process
	Characteristics
	Classification
	Sample Mapping
	Evaluation

	Related Work
	Discussion and Future Work

	A Novel URI for Databases
	Motivation
	Challenges Designing an Identifier
	Model
	Example
	XML Data Exchange
	Relational.OWL Representation of a Database

	Related Work
	Discussion and Future Work

	Applications
	Relational.OWL Implementations
	Relational.OWL Application
	Introduction
	Usage

	Relational.OWL with XSLT and XQuery
	Introduction
	Implementation

	RDQuery
	Introduction
	Query Translation
	Usage

	Dígame
	Motivation
	Dígame Architecture
	Basic Functionality
	Components of the Architecture

	Characteristics
	Dígame System Design
	Related Work
	Discussion and Future Work

	Link Patterns
	Introduction
	The Data Link Modeling Language (DLML)
	Motivation
	Components
	Example

	Link Patterns
	Elements of a Link Pattern
	Classification
	Usage

	Link Pattern Catalog
	Elementary Link Patterns
	Data Independent Link Patterns
	Data Sensitive Link Patterns

	Example
	Related Work
	Discussion and Future Work

	Conclusion
	Bibliography
	List of Figures
	List of Tables

