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1
Introduction

Colloidal dispersions offer excellent model systems for the investigation of the

equilibrium phase behavior in mixtures which are ubiquitous in nature and in

many practical applications. Colloids are particles in the mesoscopic length scale

ranging from 1nm to 10μm which are dispersed in a fluid medium. An exam-

ple of a naturally occurring system made up of a mixture of colloidal particles

having different shapes and sizes is the eukaryotic cell, the unit compartment

of life. The intra-cellular concentration of proteins and other macromolecules

is estimated to be as high as 400 g/L [29]. Within such a complex and gel-like

environment it is very challenging to model the bio-physical processes that occur

within the cell. In industrial applications, mixtures of mesoscopic particles are

encountered in many systems. Examples include commercial paints for coating

surfaces which are made up of metal oxide nanoparticles that are dispersed in

solutions of polymers. In the food processing industry mixtures appear in the

form of dispersions containing fibers and globular macromolecules. Knowledge

of the stability of such products is very important for the production process and

also for the practical use of the system. The bulk phase behavior of such com-

plex systems is very difficult to theoretically model just as in the example of the

densely-packed cell cytoplasm.

The basis of a theoretical framework which can be applied to describe such

multi-component systems can be tested on model colloidal systems. The versa-

tility of colloidal dispersions as model systems is attributed to two main features.

The first feature is that particles of different sizes and shapes can be synthesized

1
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in the laboratory in a controlled way. The second feature is that the interpar-

ticle forces can easily be tuned for example by changing the ionic strength of

the suspending fluid solvent. The properties of model colloidal dispersions can

then be used to systematically investigate the equilibrium bulk phase behavior

and structure of mixtures with a higher degree of complexity. Another question

that can be addressed is the influence of external fields on the phase behavior

of the mixtures. This is relevant since both in natural systems and in practical

applications the colloidal dispersions are usually exposed to external force fields

such as shear flow.

The central theme of this thesis is the study of the stability of a model colloidal

rod/sphere mixture under equilibrium conditions and the role that an external

flow field plays on the phase behavior of the mixture. The following introduc-

tory chapter is divided into two main sections. The first section is a review on

the equilibrium phase behavior of mixtures of colloidal particles. In the second

section we introduce the phase behavior of mixtures of colloids in shear flow.

1.1 Equilibrium phase behavior of binary mixtures

Spherical particles have the simplest geometry and thereby offer the simplest

system to use for developing theoretical models. We will start by discussing

the equilibrium phase behavior of a binary mixture of simple hard spheres. The

resulting phase behavior depends strongly on the size ratio Rsmall/Rbig where

Rsmall and Rbig represent the radii of the small and big spheres respectively.

Super-lattice structures have been observed under equilibrium conditions in the

case of a binary mixture of hard spheres [11]. Such structures form when the size

ratio Rsmall/Rbig lies in the range 0.58−0.62. The larger spheres start to experi-

ence an attractive force mediated by the smaller spheres when Rsmall/Rbig < 0.2

[14]. This phenomena is known as a depletion attraction [7]. The attractive force

is the result of an anisotropic osmotic pressure which the smaller spheres exert

on the larger particles. The anisotropy in pressure occurs whenever the distance

separating the surfaces of the larger spheres is so small such that the probability
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of finding the smaller particles in between two big particles is greatly reduced.

The region in between the larger spheres is then said to be depleted of the smaller

spheres. Smaller particles are called the depletants and the inter-particle inter-

action is called the depletion interaction. At high enough concentrations of the

depletant, the attractive force which is induced by the smaller colloids can lead

to a bulk phase separation. A rich phase behavior can be observed analogous to

that of an atomic/molecular system. The different phases respond differently to

simple shear flow, allowing the use of rheology as a means to probe the struc-

ture of the microphases formed in phase separating mixtures. Flexible polymer

chains are commonly used as depletants. These can be modeled as penetrable

hard spheres with a radius defined by the polymer’s radius of gyration Rg. Such

colloid/polymer mixtures have been extensively studied both experimentally and

by means of numerical simulations and the result is a robust statistical mechanics

based framework [64, 84].

The complexity of the system can be increased by considering mixtures of

anisometric particles. Examples of anisometric particles include rod-like shaped

colloids and platelets. Depending on the particle concentration, dispersions made

up of one component of such particles display a manifold of liquid crystalline

phases [34, 109, 116]. In mixtures of anisometric particles, complex phases

are to be expected. We will consider here the colloidal rod/sphere mixture.

Rods are much more efficient at inducing depletion forces compared to poly-

mer chains [7]. This can be explained by the fact that a rod which is allowed to

probe all possible orientational configurations, excludes a much larger volume

compared to spherical depletants. Colloidal rods of high aspect ratio also of-

fer the possibility to induce a relatively longer ranged depletion force than that

achieved by polymer coils. For example in systems where the attraction is in-

duced by linear polymer chains, the range of the attraction is set by Rg which is

of the order ∼ 10− 100 nm. In rod-induced depletion, the range is set by the

rod length which means the range of attraction can be increased to the order of a
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several μm. At this point we define a dimensionless size ratio ξ = L/Rc, where

L is the length of the rod and Rc is the radius of spherical colloids.

We begin by considering the case of mixtures made up of spherical colloids

and small rods i.e. ξ � 1. To our knowledge, in this size regime, no experimen-

tal investigations have been reported. A major reason for the lack of studies in

this size regime could be the lack of model colloidal rods. The attractive interac-

tion mediated by rods between two spherical particles can be calculated using the

Derjaguin approximation. The approximation relates the force that acts between

two curved surfaces to the force that would act between two flat surfaces. This

is done by progressively using flat discs to approximate the curved surface [20].

The bulk phase behavior of the mixtures in this size ratio regime has likewise

not received much attention. We now discuss the case where the spheres have

a diameter much smaller compared to the length of the rod, so ξ � 1. In this

regime the spheres play the role of the depletant. The phase topology in this case

is set not only by ξ , but also by the ratio of the diameter of the sphere to that of

the rod which we define as χ = 2Rc/Drod. Buitenhuis et al varied χ in a poly-

mer/boehmite rod mixture and showed indeed how χ has a greater influence on

the topology than ξ does [17]. Dogic et al observed the widening of the region

where the isotropic and the nematic phases coexist for mixtures of filamentous

monodisperse viruses and flexible polymer chains which are modelled as small

spheres. In a similar system, but at much higher polymer concentrations, Barry

et al observed the formation of disk-shaped 2D membrane-like structures [10]. A

manifold of highly ordered structures which are rich in rods are observed when

the range of ξ runs from 6−20. In these mixtures the rods are highly monodis-

perse and have an aspect ratio Lrod/Drod > 100 [6].

We now discuss the intermediate regime ξ ≈ 1 where the length of the rod is

of the order of the radius of the sphere. We start by considering infinitely dilute

suspensions of hard spheres in the presence of ideal rods. After that we will

discuss the bulk phase behavior at higher colloid concentrations. In this regime,

the Derjaguin approximation over-estimates the depletion force acting between
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two spherical particles. Yaman et al showed how the depth of the potential de-

creases as ξ → 1 using a numerical integration based method [120]. Direct mea-

surements of rod-induced attractive force between colloidal spheres have been

performed using optical traps [67]. July et al have shown that first order analyt-

ical calculations describe very well the experimentally measured potentials that

a colloidal sphere experiences in the vicinity of a wall for rod concentrations as

high as three times the overlap concentration [55]. The minimum of the deple-

tion potential that is measured is typically in the order of several kBT which is

greater than the particle motion due to thermal energy. Such an effective attrac-

tion at the inter-particle level can induce a macroscopic phase separation at high

enough colloid concentrations. Indeed at higher colloid concentrations, Monte

Carlo Simulations (MCS) predict a fluid/fluid phase coexistence for mixtures

with ξ > 0.6 and a gas/solid region for the case ξ < 0.6 [15]. This result is

very similar to what is predicted for the bulk phase behavior of colloid/polymer

mixtures. The drawback of phase boundaries that are predicted using MCS is

that in the computation the rods are assumed to be infinitely thin, whereas in

experiments the rods actually have a finite diameter Drod. The MCS results are

recaptured at a qualitative level when using the Free Volume Theory (FVT). The

finite rod thickness is incorporated within the FVT calculation scheme. Inter-

estingly, the FVT predicts a triple coexistence region of gas,liquid,and crystal

phases as ξ ≈ 1 [112]. Semi-quantitative agreement between experiments and

the FVT has been shown by Koenderink et al using mixtures of silica spheres and

boehmite rods at ξ = 0.6 [60]. The disadvantage of using this model system is

that boehmite rods are rather poly-disperse which means a poorly defined ξ . The

rods also show a gelling behavior at longer waiting times and it is challenging to

find solvents in which the rods are neutrally buoyant.

Surprisingly, there is a dearth of systematic investigations on the equilibrium

phase behavior of rod/sphere mixtures in the regime ξ ≈ 1. The central subject

of this thesis is the characterization of the stability of such a mixture under qui-

escent conditions. In this thesis, we use mixtures of fd and neutrally buoyant
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polystyrene spheres with size ratios ξ in the range 1.8 to 3.5. The micron-sized

semi-flexible filamentous virus fd, is a well established model system for col-

loidal rods. It offers a superior colloidal rod model compared to commonly used

rod systems such as xanthan or silica coated boehmite rods. It is highly mono-

disperse and stable in solution due to charged protein residues at its surface at

pH > 4.2 [125]. In chapter 2 we introduce the theoretical concepts which will

be used to interpret and to discuss the experimentally observed phenomena. In

chapter 3 we experimentally determine the the gas/liquid binodal at various ξ
using a combination of light scattering and optical microscopy techniques. In

chapter 4 the phase topology of the rod/sphere mixture is fully characterized and

the interfacial tension between the gas/liquid interface in mixtures that phase

separate is obtained using capillary wave analysis. Chapter 4 concludes the first

main section on the equilibrium phase behavior of the rod/sphere system. The

non-equlibrium phase behavior is studied in chapter 5. A review of the effect of

shear flow on the stability of colloidal mixtures of anisotropic particles will be

presented in the following section.

1.2 Phase behavior of colloidal binary mixtures in shear flow

The discussion thus far has been dedicated to the phase behavior of binary mix-

tures in the absence of an external field. In this section, we review the influence

of shear flow on the stability of the mixtures. The relevant length and time scales

must be taken into account in order to be able to understand shear-induced phe-

nomena. At short time/length scales, shear flow strongly influences the interac-

tions at the particle level. The influence of shear flow increases with the shape

anisotropy of the colloidal particles. Upon increasing the time/length scale, shear

flow perturbs the formed microphases at a macroscopic level. The coupling of

the microphases to the shear flow field and the corresponding deformation de-

pends on several factors. Some of these factors include the interfacial tension

of the coexisting phases and the difference in viscosity of the respective phases.

Shear flow due to convection of material to and erosion from formed microphases
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Figure 1.1: Four different effects that shear flow can have on mixtures: mixed stays mixed;
mixed becomes unstable; demixed stays demixed; demixed becomes mixed. The demixed-to-
demixed example shows a phase separating colloidal sphere-polymer mixture (image taken from
Ref. [22]); demixed-to-mixed shows images of sphere-rod mixture in equilibrium and in a transi-
tion state, shortly before it is completely molten by shear flow; the mixed-to-demixed and mixed-
to-mixed examples both concern spheres in a visco-elastic background of WLMs, where particles
can enhance structure (mixed-to-mixed) or form local structures (mixed-to-demixed, image taken
from Ref. [81]). The complete figure is taken from Ref. [45] with kind permission of The Euro-
pean Physical Journal (EPJ).

also contributes to the non-equilibrium phase behavior. Another important factor

are the hydrodynamic instabilities that can occur within the geometry gap which

in turn disturb the laminar flow profile imposed in the rheometer. To facilitate

the further discussion on dispersion stability in the presence of an external flow

field we will define four possible scenarios. The first one is a mixture that is

stable under quiescent conditions which remains mixed in the presence of shear.

The second case would be a mixture that is stable under quiescent conditions but

demixes upon shearing. The third case covers dispersions that are demixed ini-

tially and upon shearing remain demixed. The fourth case would be dispersions

that are demixed initially, but on shearing complete mixing is achieved. This

classification scheme is summarized in figure 1.1.

The first example is a dispersion of Worm Like Micelles (WLMs) together
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with sub-micron sized particles which are added at a low volume fraction [9,74].

The small particles are evenly dispersed in the solution of WLMs. According

to the system classification summarized in fig 1.1, the mixture falls in the mixed

regime when no shear is applied. However a significant modification of the sam-

ple flow properties is observed when the mixture is sheared. This modification

is explained using a phenomena termed double network, i.e. the formation of

micelle-nanoparticle junctions which result in the observed viscoelastic behav-

ior. The source of the viscoelastic response is the entanglement of the micelles

and the formation of junctions similar to cross-linking [49, 74] (as illustrated

in Fig. 1.1). The adsorption of micelles onto the surfaces of the nanoparti-

cles complicates the characterization of the effect of flow on the interparticle

forces. Systems interacting via excluded volume interactions are required in or-

der to facilitate the development of a statistical mechanics based description of

the non-equilibrium phase behavior of such systems.

An interesting phenomena is observed in similar dispersions of WLMs but with

the suspended nanoparticles now replaced by micron-sized particles [81,93,118].

Necklace-like structures are formed oriented parallel to the flow direction. The

formation of these ordered structures is linked to the normal stresses induced by

shearing the WLMs that make up the host medium. The Weissenberg number

strongly influences the magnitude of the normal stresses [39]. Scirrocco et al

related shear induced ordering of suspended particles to the migration of parti-

cles towards the vicinity of the geometry walls [93]. Pasquino et al showed the

formation of 2D crystalline sheets [81], as is depicted in the middle right panel

in Fig. 1.1. This experimental evidence leads to the conclusion that the competi-

tion between hydrodynamic and colloidal forces plays an important role for the

shear-induced ordering. The first step to gain a deeper microscopic understand-

ing of the competition between the two aforementioned forces is to investigate

the rheological response of the host medium.

The second example of a two component system is the colloid/polymer mix-

ture. The interactions between the particles under quiescent conditions have been
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intensively studied in the recent past [84]. The Smoluchowski theory can be used

to describe the phase behavior of attractive colloids that are subjected to shear

flow. For example, Lettinga et al showed that shearing a colloid/polymer mix-

ture moves the location of the critical point in the state diagram to higher volume

fractions [66]. Dhont et al used the Smoluchowski theory to predict the defor-

mation caused by shear flow in a similar mixture at the onset of spinodal decom-

position [24]. Tromp et al reported the formation of shear bands which extend

into stable doughnut-like shapes [107]. Derks et al observed that shear induced

deformation increases as the structures that are formed after a spinodal decom-

position continue to coarsen [22]. The phase separating mixture was sheared in

a cone/plate rheometer which allows observation in real space/time (see the left

panel of figure 1.1). Interestingly, many phenomenological features of the shear

response of colloid/polymer mixtures that undergo spinodal decomposition can

also be observed in polymer blend systems.

In this thesis we increase the anisometry of the depletant from polymer coils

to a rigid rod of high aspect ratio (∼ 130). We use filamentous fd virus to induce

an attraction between the spherical colloids. The versatility of the rod/sphere

mixture was already discussed in the introductory section on the equilibrium

phase behavior (section 1.1). One main advantage of our system is that unlike

in the WLMs/sphere dispersions, in our system we do not have the problem

of adsorption and complicated particle interactions since the particles interact

mainly via excluded volume interactions. Another advantage of our system is

that the particles are all at the micron length scale which allows us to observe

the sample’s response to shear flow in real space/time on a single particle level.

We are then able to probe the internal structure of the resulting micro-phases in

mixtures that phase separate and to compare the subsequent deformation path-

ways with semi-quantitative models. The central theme of chapter 5 is the study

of the internal structure of the resulting microphases in demixed samples using

a counter-rotating cone/plate shear cell which is mounted onto a confocal mi-

croscope. The results are interpreted based on the knowledge gained from the
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characterization of the equilibrium phase behavior in chapters 3 and 4. Chapter

5 is followed by the summary and outlook.



2
Theoretical Background

This chapter introduces the theoretical background needed to interpret and dis-

cuss the measured phenomena. First the concept of the depletion interaction in

colloidal mixtures is presented. Then Free Volume Theory which is a statistical

mechanics based theory for calculating the phase boundaries in mixtures of col-

loidal particles is discussed. Capillary wave analysis is then introduced for the

characterization of the interfacial properties of the resulting coexisting phases

formed after depletion-induced phase separation occurs in the mixture. Finally

we discuss the concepts which are essential to understand the results which are

obtained from the shear experiments.

2.1 Depletion Interaction

The goal in this section is to describe the depletion interaction in a rod/sphere

mixture. We will first consider the depletion interaction in a simple model system

of isotropic particles namely a binary mixture of hard spheres. In the next step

we will replace the spheres with rods and discuss the depletion force induced by

the rods in an infinitely dilute dispersion of spheres.

2.1.1 Depletion Interaction in Binary Sphere Mixture

Binary mixtures of spherical particles exhibit a rich equilibrium phase behavior.

The phase diagram of such mixtures depends strongly on the size ratio rs/Rb,

11
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Figure 2.1: Binary mixture of colloidal hard spheres. The larger spheres of radius Rb experi-
ence a net attractive force mediated by the smaller spheres of radius rs. Around each sphere of
radius Rb is a region depleted of the smaller spheres which has a thickness ∼ rs/2 defined as the
depletion layer. At large inter-particle distances D the osmotic pressure exerted onto the larger
colloids due to the small spheres is isotropic resulting in a zero net force. As inter-particle dis-
tance D decreases, the depletion layers start to overlap leading to an imbalance in the osmotic
pressure acting on the larger spheres as indicated by the arrows in the figure. This anisotropy in
the osmotic pressure then results in a net attractive inter-particle force.
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where rs is the radius of the smaller spheres and Rb is that of the larger spheres.

For example colloidal crystals with super-lattice structures are formed for a size

range (0.58 ≤ rs/Rb ≤ 0.62) [11]. In the case that rs/Rb < 0.2, the smaller par-

ticles induce an apparent attractive force between the larger spheres [14] leading

to a macroscopic phase separation. In the rest of this section we will explain the

origin of this depletion attraction in a system where particles interact primarily

by means of repulsion.

Let us assume that we have a dispersion of larger colloidal hard spheres of ra-

dius Rb suspended in some solvent that we treat as a continuum background. The

treatment of the background as a continuum is justified by the fact that the sol-

vent molecules are orders of magnitude smaller than the spherical colloids. We

now add to the dispersion smaller hard spheres of radius rs. An isolated sphere

of radius Rb, experiences an isotropic pressure acting on it due to the momen-

tum transfer from the smaller spheres undergoing Brownian motion. For two

large spheres approaching each other the osmotic pressure acting on the spheres

ceases to be isotropic. We will now quantitatively determine the magnitude of

this osmotic pressure imbalance.

We define a depletion layer around each large spherical particle of thickness

rs/2. The probability of finding a smaller sphere in this layer is reduced due to

the loss in translational entropy for configurational states in which a small sphere

is found very close to the surface of the larger colloid. In the case that two larger

spheres approach each other and and their depletion layers begin to overlap, the

colloids start to experience an imbalance in osmotic pressure and are subject to

an apparent attractive force. We define an effective radius Rd

Rd = Rb + rs/2 (2.1)

As the center to center inter-particle separation distance (D) becomes less than

2Rd, the larger particles start to experience a net attractive force as depicted

in the Fig 2.1. The probability of finding smaller spheres of radius rs in the
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overlap region reduces drastically and is thus depleted of the smaller spheres.

The smaller particles as a result are commonly termed as the depletants and will

be referred to as such in the subsequent discussion. From symmetry arguments,

the components of the force that contribute to the inter-particle attraction are

those directed on the line joining the two large spheres [64]. It can be shown that

the net force Fdep acting on the colloidal spheres is given by

Fdep = −πR2
d

[
1− (D/2Rd)

2
]

2Rb ≤ D ≤ 2Rd (2.2)

= 0 D ≥ 2Rd (2.3)

where the minus sign shows this is an attractive force [8,64]. By integrating the

force using D as the variable over which the integration is performed we arrive

at the depletion potential which can be written as

Wdep = −nbkTVov(D) 2Rb ≤ D ≤ 2Rd (2.4)

= 0 D ≥ 2Rd (2.5)

where Vov(D) is the overlap volume and where nb is the bulk number density

of the depletant [114]. The derivation thus far has been for the interaction energy

between two spheres mediated by a sea of smaller spheres. In the case of the

Wdep acting between a wall and a sphere, the potential is shown to be twice as

deep. For a didactic derivation using the extended Gibbs equation please refer

to book by Lekkerkerker et al [64]. A closer look at equation (2.4) shows that

the Depletion potential is just the osmotic pressure nbkT times Vov. A result

that shows that it is easy to tune the depletion force either by increasing the

concentration of depletants or just by changing its size.
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2.1.2 Depletion induced by Colloidal rods

2.1.2.1 Rod-induced depletion using the Derjaguin Approximation

Anisotropic colloidal particles act as very efficient depletion agents [8]. This

can be explained by considering the fact that rods have a much larger excluded

volume compared to their actual volume. In order to obtain an expression for the

rod-induced depletion potential acting between two large spheres, we replace the

small spheres of radius rs in figure 2.1 with rods of length L � Rb. Instead of

using the force method as in the case of the binary sphere mixture (section 2.1.1),

we will now make use of the Derjaguin approximation which holds in the limit

where the range of interaction and the inter-particle separation distance is much

smaller than the radius of particles. The method is based on solving the integral

given by equation 2.6

Ws(h) = πRb

∫ ∞

h
W (H)dH (2.6)

where h is the distance from sphere surface to sphere surface measured along the

line joining the centers of the larger colloids while H is the distance separating

sphere surfaces along a line that is parallel to the line which connects the centers

of the spheres at a height z [20]. The equation 2.6 relates the potential acting

between curved surfaces to the potential acting between flat discs which is much

easier to compute. The first step in solving the integral is to obtain an expression

for the interaction potential per unit area W (H) which acts between two parallel

flat plates that are used for the approximation of the curved sphere surfaces. For

the case of an inter-particle interaction induced by rods W (H) is given by

W (h
′
) = −1

2
nbkT

(L−h
′
)2

L
0 ≤ h

′ ≤ L (2.7)

= 0 h
′
> L (2.8)

where now h
′
is the distance which separates the parallel plates, L is the length of
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Figure 2.2: Illustration of the parameterization used in the numerical integration method for
the determination of the depletion force between spheres which is mediated by rods. The orien-
tation of the rods is accounted for by the center of mass of sphere and two angles θ1,θ2. The
parameterization sets the phase space over which integrals of the excluded volume are computed.

the rods and nb is the bulk number density of the rods. By inserting the expres-

sion given by equation 2.7 into the integral (equation 2.6) and then integrating

over the variable H we obtain the expression for the rod-induced interaction po-

tential acting between spherical particles as shown in equation 2.9

Ws(h) =−2

3
kT φ

RL
D2

rod

(
1− h

L

)3

(2.9)

where h is again the distance from sphere surface to sphere surface measured

along the line joining the centers of the spherical particles, Drod is the diameter

of rods and φ is the rod volume fraction. The rod-induced depletion potential as

calculated by means of equation 2.9 overestimates the actual depth of the poten-

tial as the length of rod Lrod in the mixture approaches the colloidal sphere radius

Rb. In this thesis we investigated the phase behavior of rod/sphere mixtures that

fall within the regime where the deviation from the Derjaguin approximation

are expected. Yaman et al have developed a more exact numerical method to

calculate the depletion potential between two colloidal spheres mediated by a

sea of ideal rods [61, 120, 122] which is going to be presented in the following

subsection.
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2.1.2.2 Rod-induced depletion using an exact numerical integration

In the preceding section we discussed the methods that can be used to determine

the rod-induced depletion interaction acting between spherical particles. The

calculation method using the Derjaguin approximation which was discussed in

section 2.1.2.1 is only valid in the limit that the length of rod Lrod is much smaller

than the sphere radius (L � Rb). Since in this thesis the aim is to study mixtures

in which Lrod ∼ Rb, we need a way to determine the depletion potential which is

not restricted to relatively small size ratios. In this section we will now discuss

a numerical based method for calculating the rod induced depletion which holds

for any size ratio ξ = Lrod/Rb. The analysis is based on the assumption that the

dispersion of rods behaves as an ideal gas in which rod-rod interactions are neg-

ligible just as it is also assumed to be the case when the Derjaguin approximation

is used for the calculation. We start by considering a dispersion of thin rods i.e

Lrod/Drod � 1, where Drod is the rod thickness and at low rod bulk density nb.

To determine the depletion force between two spheres suspended in the rod solu-

tion we assume that the particles only interact via excluded volume interactions.

We then calculate the change in free energy ΔF in bringing the two spheres from

infinite distance to the final finite separation D using equation (2.10)

ΔF = ρrodkT [Vex(D)−Vex(D = ∞)] (2.10)

where Vex(D) is the volume inaccessible for the rods when the two spheres are

at a distance D from each other and Vex(D) = ∞ is when the separation distance

is set to infinity. The excluded volumes, Vex in the Free energy expression are

integrals over the phase space of possible rod configurations. To perform the

numerical integration, the rod configurations are parameterized by the center

of mass of rod and by two angles that give rod orientation as shown in Figure

2.2. The functional form used in the solving of the integral is selected after

considering rod position and orientation. For an explicit description of how the

numerical integration is carried out see reference [120].
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We can concisely write the expression that gives the rod-induced depletion

potential between the spheres Ws(D) as

Ws(D) = ρkT L2RK1(D) (2.11)

where K1(D) describes the distance dependence of the depletion interaction and

K1(D= 0) is the potential when the spheres come into contact. For the rod/sphere

systems that lie within the Derjaguin approximation, K1(D) = −π(1− D
L )

3/6.

Outside of this regime there are no explicit expressions for it. We used the nu-

merical integration method published by Lang et al to calculate K1(D) [61]. Fig-

ure 2.3 shows the plot of K1(D) for the four size ratios ξ used for the mixtures

we studied. The solid line is the result one would expect for a ξ value that satis-

fies the Derjaguin approximation i.e when L � Rb. The plot in figure 2.3 clearly

shows that in the range of size ratio ξ ≈ 1, the depth of the depletion potential

obtained from the numerical computation is much shallower than that from the

one calculated for ξ values for which the Derjaguin approximation is valid. The

depth of the depletion potential we obtain from the numerical integration at size

ratios ≈ 1 is a several kbT in magnitude which means we still have an apprecia-

ble attractive force induced by the rods in the mixtures that we investigated. Note

that there is a small upturn at small distances in the numerically obtained K1(D)

data. It can be explained by considering the interplay between the counterbal-

ancing effect of positional and orientational degrees of freedom of the rods as the

spheres approach each other. Lang et al discusses in detail this effect and show

that it is not an artifact inherent in the numerical integration [61]. From figure 2.3

we also see that the range of the attraction is set by the length of the rod which

in our case is ≈ 1μm. Typically depletion is induced by flexible polymer chains

whose radius of gyration Rg ≤ 100 nm which means with the filamentous virus

fd we can investigate the effect of an attraction which is by a factor 10 longer on

the phase behavior of charged spheres. The efficiency of rods as depletants also

means we can induce significant attraction at relatively low rod volume fractions.
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Figure 2.3: Plot showing K1(D) for a rod/sphere mixture calculated using an exact numerical
method [61]. The corresponding ξ values are shown in the legend on the right and the solid
line is a representative result for a size ratio where the Derjaguin approximation is valid. As ξ
increases, a systematic deviation from the Derjaguin is clearly observed.

With this model system, we can now systematically study how ξ influences the

topology of the rod/sphere phase diagram.

2.2 Free Volume Theory

The Free Volume Theory (FVT) is a versatile tool used for the prediction of the

phase behavior of colloidal systems interacting via depletion forces [63,64]. The

model is based is on a reservoir made up of two compartments with one contain-

ing only the depletant and the other compartment having a mixture of colloids

and depletant. The two compartments are separated by a membrane permeable

only to the depletant and solvent but not for the spherical particles (see Fig 2.4).

The two compartments are in osmotic equilibrium and the resulting phase be-

havior is obtained by setting up the semi-grand potential that describes the given

system. We will now outline the steps involved in applying this theory. In the
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Figure 2.4: The hypothetical scheme used in the Free Volume Theory to determine the phase
behavior of a rod/sphere system. In the right compartment are the rods in the reservoir at a
chemical potential μ2. On the left are N1 spheres with rods in the system at a temperature T
and volume V which is in chemical equilibrium with the reservoir. The two compartments are
separated by a membrane permeable only to the solvent and rods.

following discussion component 1 will be the colloidal spheres while component

2 will be the rods.

We define the compartment on the left side of the figure as the reservoir in

which we have rods that are at a chemical potential of μ2. In the right compart-

ment we have N1 spheres together with rods at a number density which we do not

know apriori in a volume V and at a temperature T . The semi-grand potential of

such a system can be written as

Ω(N1,V,T,μ2) = F(N1,V,T )+
∫ μ2

−∞

(
∂Ω
∂ μ2

)
N1,V,T

dμ2 (2.12)

= F(N1,V,T )−
∫ μ2

−∞
N2dμ2 (2.13)

where F(N1,V,T ) is the Helmholtz free energy of a colloidal hard sphere system

in the absence of rods and the second term on the right-hand side of the equation

N2 is the number of rods that are in the system compartment together with the

spheres. In order to obtain an explicit expression for N2, we will make use of

the fact that the chemical potential μ2 is the same in both the reservoir and in the
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colloid/rod system since both compartments are in osmotic equilibrium. Assum-

ing low rod number density in the reservoir, we can write the chemical potential

as

μ2 = A+ kBT ln(ρr
2) (2.14)

where A is a constant and ρr
2 is the number density of rods in the reservoir.

To obtain an expression for the chemical potential for the colloid/rod system

compartment we use the Widom insertion principle [115] which results in the

chemical potential which is given by equation 2.15

μ2 = A+ kBT ln

(
ρs

2V〈
Vf ree

〉
0

)
(2.15)

where
〈
Vf ree

〉
0

is the free volume available for the rods if the system compart-

ment would only be occupied by spheres and ρs
2 is the number density of rods

in the system compartment. Since both the system and resrvoir are in chemical

equilibrium we can equate equations (2.14) and (2.15) and from that obtain an

expression for the actual number of rods in the colloid/rod compartment which

is given by equation (2.16)

N2 = ρr
2

〈
Vf ree

〉
0
= ρr

2αV (2.16)

where V is the system volume and α is the free volume fraction. By means of

plugging in equation (2.16) into equation (2.12) and then applying the Gibbs-

Duheim relation, the semi-grand potential can now be written simply as

Ω = F −ΠαV (2.17)

where Π is the osmotic pressure of the rods in the reservoir. The next step is
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to obtain explicit mathematical expressions for Π and α in equation 2.17. We

use the Scaled Particle Theory (SPT) [88] to obtain the required respective equa-

tions. We begin by searching for an expression for Π. We approximate the

rods as sphero-cylinders of a length L and diameter D capped at the ends by a

hemisphere. Equation 2.18 is the result obtained for Π for a system of sphero-

cylinders.

Πν2

kBT
=

φ r
2

1−φ r
2

+C2

(
φ r

2

1−φ r
2

)2

+C3

(
φ r

2

1−φ r
2

)3

(2.18)

where ν2 is the volume of a sphero-cylinder and C2 and C3 are constants that

depend on the ratio of L/D [64, 112]. For the expression which we will use

for the free volume fraction α we start by simplifying the relation given in the

relation 2.16 which yields equation 2.19

α =

〈
Vf ree

〉
0

V
= e−W/kBT (2.19)

where W represents the reversible work that it would cost to insert a sphero-

cylinder into a dispersion of hard spheres. The next step in calculating the re-

versible work W is by allowing the volume of the sphero-cylinder which is in-

serted into a system of hard spheres to shrink in size approaching zero and then to

progressively expand the volume until it attains its final size. As the scaled par-

ticle size approaches that of the actual size of the sphero-cylinder, W becomes

the same as the work that would be required to create a volume of a similar mag-

nitude while acting against a pressure Ps in a hard sphere fluid which is easily

calculated by using the SPT. The just mentioned relation of W and Ps helps us to

obtain an expression for W given by equation 2.20

W
kBT

=−ln(1−φ1)+aχ +bχ2 + cχ3 (2.20)



CHAPTER 2. THEORETICAL BACKGROUND 23

here χ = φ1/(1−φ1) where φ1 is the volume fraction of the hard spheres in the

fluid. The constants a, b and c are polynomials which are determined by size

ratios of the sphero-cylinder diameter (D) to that of the sphere diameter σ which

we define as q = D/σ and the ratio of the length of the cylinder L to that of σ
which we define as t = L/σ [64]. Inserting equation 2.20 into the equation 2.19

for the free volume fraction α we obtain equation 2.21

α = (1−α1)exp
[
−
{

aχ +bχ2 + cχ3
}]

(2.21)

At this point we have all the expressions that we require to make use of equa-

tion 2.17 which yields the expressions for the chemical potential and pressure in

the rod/sphere system shown in equation (2.22) and (2.23) respectively

μ1 =

(
∂Ω
∂N1

)
μ2,V,T

= μ0
1 −Π

dα
dφ1

V (2.22)

P =−
(

∂Ω
∂V

)
μ2,N1,T

= P0 +Π
(

α −V
dα
dV

)
(2.23)

where now μ0
1 represents the chemical potential of a hard-sphere system while P0

is the pressure of a hard-sphere system. To obtain the equilibrium phase diagram

of the mixture then involves first finding for each coexisting phase the explicit

expressions for μ1 and P given by equations (2.22) and (2.23) respectively then

solving the equations under the conditions that satisfy coexistence of the phases

shown in equation 2.24, here the superscripts I and II stand for the coexisting

phases.

μ I
1 = μ II

1 (2.24)

PI = PII (2.25)
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Figure 2.5: Plot of the gas/liquid binodal calculated using the Free Volume Theory for a
rod/sphere mixture at a size ratio Lrod/Rsphere = 3.5. On the horizontal axis is the sphere volume
fraction φs and on the vertical axis is the rod volume fraction φr.

An example of a gas/liquid binodal line for a mixture at a size ratio ξ =

Lrod/Rsphere = 3.5 is shown in figure 2.5. In Chapter 3 we will determine the

location of binodals experimentally and then compare the results with the pre-

diction from FVT calculations.

2.3 Capillary wave analysis of macroscopic interfaces

Until this point we have discussed methods used for determining the depletion

interaction that is induced by rod-like colloids using the Derjaguin approxima-

tion [20] and with a more exact numerical integration method [62,121]. Follow-

ing that we discussed the Free Volume Theory which is used for calculating the

bulk equilibrium phase diagrams in mixtures of colloidal particles [63, 64]. In

this section we will discuss the characterization of interfacial properties of free

interfaces that separate coexisting fluid-fluid phases which are formed as a result

of the depletion induced attraction acting between the spherical particles. We
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Figure 2.6: Schematic representation of thermally-induced undulations of a flat interface of
length L× L. In the Monge representation, a local height position for a point P is given by
z=h(x,y). The undistorted interface has a fixed height h = h0.

will focus on the capillary waves which are observed at a fluid/fluid macroscopic

interface.

The starting point in analyzing thermally induced fluctuations of flat interfaces

is by considering the free energy of the interfacial undulations. Given some

distorted surface of size L×L as shown in Fig 2.6, we can use the Monge rep-

resentation to describe points on this surface [91]. By defining a mean interface

height h = h0, we can then define a local height at some point P as z = h(x,y) rel-

ative to h0. From the seminal work of Mandelstam [72], we can then consider the

work done, in other words the free energy increase in bringing an un-distorted

interface into a distorted one. This work is given by equation (2.26)

ΔF = ΔF1 +ΔF2 (2.26)

where ΔF1 is the work that is done against gravity to displace material during

the formation of corrugations of the interface and ΔF2 is due to the work done

against capillary forces such as electrostatic attraction/repulsion in the creation

of a new interface [113]. Unlike in the case of molecular fluids, where these

undulations are of the order of a few nm, in colloid/polymer mixtures they are

of a size that is easily accessible to real space measurement techniques such as

confocal microscopy [3].
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The two terms on the right hand-side of equation (2.26) can be written explic-

itly as follows [1]:

ΔF1 =
1

2
gΔρ

∫ ∫
dxdy h2 (2.27)

where g is the acceleration due to gravity and the mass density difference is given

by Δρ .

ΔF2 =
1

2
γ
∫ ∫

dxdy (h2
x +h2

y) (2.28)

where γ is the interfacial tension. In order to transform the equations into recip-

rocal space, the height is transformed into the Fourier space. By replacing the

Fourier series expansion of the height h into equations (2.27) and (2.28) we can

write the equation for the total work done ΔF as given by equation (2.29) where

k represents the modes and hk are the Fourier coefficients in the expansion of

the height. Using the equipartition theorem we assume that the work required to

create each mode of the fluctuations is equal to kBT/2 which leads to the mean

square amplitude of each mode being expressed as shown in equation (2.30)

ΔF =
1

2
L2 ∑ |hk|2(gΔρ + γk2) (2.29)

〈|hk|2〉= kBT
γL2

1

k2 +L−2
c

(2.30)

where γ as in equation 2.29 is the interfacial tension, L is the system size and Lc

is the capillary length which gives the length over which a disturbance reaches.

Thus far we have carried out the derivation considering fluctuations of single

points on the interface. Experimentally it is easier to obtain the height-height

correlation function. If we Fourier transform equation (2.30), what we obtain

is the corresponding static correlation function gh(x) shown in equation (2.31).
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The latter expression can be further simplified by transformation of the s = (x,y)

Cartesian coordinates into cylindrical ones leading to equation (2.32). A more

comprehensive treatment of the theory can be found in reference [1]

gh(x) = ∑
k

kBT
γL2

1

k2 +L−2
c

eik ·s =
kBT
γL2

L2

(2π)2

∫
dk

1

k2 +L−2
c

eik ·s (2.31)

gh(x) =
kBT
γL2

1

(2π)2

∫
dk

k
k2 +L−2

c

∫ 2π

0
dφ eikx cosφ (2.32)

=
kBT
γL2

2π
(2π)2

∫ kmax

kmin

dk
k

k2 +L−2
c

J0(kx) (2.33)

The upper and lower limits of the integral (2.32), kmax and kmin are respectively

set by the physical system size L and the microscopic length lm. In our system,

kmin = 2π/L � 0 since L is very large. The upper limit kmax is set by the colloid

diameter φc. In our experiments where φc = 0.5μm, this gives a kmax � 13. If

one plots theoretically calculated correlation functions obtained by using finite

integral limits in one case and in the other setting kmax to infinity, a considerable

difference is observed at very small distances x along the interface. For distances

greater than φc, there is no significant mismatch anymore and we can thus set

kmax to infinity instead of using a finite cut-off allowing us to analytically solve

the integral 2.32. Note that in the integral, we have a Bessel function of the first

kind represented by J0. On solving the integral, we then obtain

gh(x) =
kBT
2πγ

K0

(
x
Lc

)
(2.34)

where we now have a modified Bessel function, K0 which is written as a function

of x/Lc. We use the expression in equation 2.34 to fit the experimental data with

Lc and γ as the fitting parameters.

It is also possible to define a dynamic correlation function by staying at a

fixed position x along the length of the interface and following the corresponding
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height of the interface as a function of time. This can be written as gh(t) =

gh(x = 0, t). It has been shown that colloid/polymer mixtures fall into the the

over-damped capillary wave regime [3, 54]. Based on this fact, theory predicts

that a mode with a wave-vector k relaxes as exp(−t(γk + gΔρ/k)2η). Using

a similar ansatz as in the derivation for the expressions used for analyzing the

static correlation function, we obtain the expression for the dynamic correlation

function

gh(t) =
kBT
2πγ

∫ kmax

0
dk

k

1+ k2
exp(−(k+ k−1

)t/2τ) (2.35)

where k = Lck and the relaxation time τ is given by τ = Lcη/γ [1]. The viscosity

η is in actual fact a sum of the viscosities of the respective coexisting colloidal

fluid phases.

2.4 Capillary wave analysis of spherical shaped droplets

It is also possible to determine the interfacial properties of spherically shaped

fluid-like objects suspended in a second fluid. Typical systems where it is ap-

plied are in the study of the fluctuations of giant unilamellar vesicles (GUVs)

[31,33,82,97], lipid bilayer vesicles [28] red blood cells using methods like video

flicker spectroscopy [13,32,37,100] and spherical microemulsions [73,89]. The

bending rigidity κ of the droplets and their interfacial tension γ can then be ob-

tained from such an analysis. Milner et al. calculated the fluctuation spectra for

nearly spherical droplets [73]. The analysis is based on the Helfrich theory of

curvature elasticity [48]. A Helfrich energy expression is derived assuming that

the droplets have a constant area and volume. This expression is effectively the

elastic energy per unit area of droplet’s surface and it characterizes its fluctua-

tions.

Typically in experiments where the fluctuations are observed by video mi-

croscopy, the most accessible fluctuations are those in the plane of the droplet’s
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Figure 2.7: Parameterization of Cartesian coordinates (sx,u(sx)) into polar coordinates. Part of
a contour of a cluster is shown as dashed line and superimposed is an arc representing the mean
position of the contour.The local displacement of the contour is given by u(sx) = R(θ)−< R >.
(Adapted from Pecraux et al.).

equator. The problem becomes two-dimensional and the spectrum can be calcu-

lated using the Helfrich equation for planar membranes equation (3.1)

〈|u(q⊥)|2〉= kBT
γq2

⊥+κq4
⊥

(2.36)

where u(r⊥) denotes the local perpendicular displacement of the interface rel-

ative to its average position and q⊥ is the wave vector associated with u(r⊥) [82].

κ gives the bending rigidity and γ is the interfacial tension.

To determine the amplitude of the fluctuations, the contour of the droplet is

expressed in polar coordinates (r,θ). An average position of the interface <

R > is calculated and the displacements about this average is given by equation

u(sx) = R(θ)− < R > (see figure2.7). The contours at the droplet’s equator are

decomposed into a Fourier series:

r(θ) = R(1+
∞

∑
n=1

ancos(nθ)+bnsin(nθ)) (2.37)
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where the radius R of the contour is given by:

R =
1

4π

N

∑
n=1

(ri + ri+1)× (θi+1 −θi)) (2.38)

The coefficients of cos and sin, an and bn respectively in equation 2.37 can be

used to compute the amplitude of the fluctuations relative to the mean position

of the interface. To relate the spectral coefficients 〈|u(q⊥)|2〉 to the interfacial

tension σ , we use equation 2.39 [82].

〈|u(q⊥)|2〉= kBT
2γ

⎡
⎢⎣ 1

qx
− 1√

γ
κ −q2

x

⎤
⎥⎦ (2.39)

The first few modes are discarded when fitting the Power Spectral Density

(PSD). This is done to account for the significant difference in the first 5 modes

between theoretically calculated fluctuation spectra of a spherical and that of a

planar geometry. Above the first five modes the two spectra become indistin-

guishable within experimental error. At high-q, the cut-off is set by the optical

resolution of the imaging setup and the pixel size of the camera which for a

standard optical microscopy imaging system is of the order of q ∼ 10−7m−1.

The method presented in this section can be applied in determining the inter-

facial tension of neutrally buoyant liquid-like clusters dispersed in a continuous

medium. In comparison the method for analyzing the capillary waves at macro-

scopic interfaces that was discussed in section 2.4 requires that the droplets first

coalesce and then sediment due to gravity to the bottom of the sample holder

so as to form one continuous liquid phase. Since the latter method can only be

applied for systems which are not density matched, the sedimentation-diffusion

dynamics have to be taken into account in the determination of the interfacial

tension [53] which is not necessary for the method in which the clusters are

density-matched. Despite the differences both methods when applied to study
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Figure 2.8: The calculated dynamic effective interfacial tension Γe f f at a gas/liquid macroscopic
interface for a mixture of poly(methyl methacrylate) PMMA spheres and polystyrene polymer
chains obtained from reference [21].

free fluid-fluid interfaces of colloid/polymer mixtures they yield ultra-low inter-

facial as determined by other methods such as spinning drop method [18].

2.5 Shear induced suppression of Capillary Waves

In section 2.3 and 2.4 we discussed the theoretical background required to

explain the capillary waves that are observed under quiescent conditions at a

gas/liquid interface in colloid/polymer mixtures. In mixtures that are subjected

to shear flow the amplitude of the thermally induced capillary waves decreases

with increase in shear rate. This observation can be explained by the concept of

an effective interfacial tension Γe f f which depends on the applied shear rate [21].

For a macroscopic horizontal gas/liquid interface which lies parallel to the direc-

tion of shear flow the mathematical expression for Γe f f is given by equation 2.40

Γe f f (γ̇) = Γ0 +
3kBT
4π

γ̇τcap

L2
cap

√
(γ̇τcap)2 −1 (2.40)

here Γ0 is the interfacial tension at zero shear, τcap and Lcap are a characteris-

tic time and length respectively [3] which were introduced in section 2.3. All
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the quantities required to apply equation 2.40 are obtained by fitting the experi-

mentally determined dynamic height-height correlation function at the interface

using equation 2.34. At low shear rates the second term on the right hand side

of equation 2.40 is relatively small and the effective interfacial tension is almost

equal to Γ0. The second term increases at higher shear rates. Figure 2.8 shows

the Γe f f versus shear rate calculated using experimentally determined quanti-

ties for a mixture of poly(methyl methacrylate) PMMA spheres and polystyrene

polymer chains obtained from reference [21]. The plot serves to illustrate how

the dynamic interfacial tension depends on shear rate.

2.6 Droplet deformation under shear

Thus far we have focused on the theoretical background needed to discuss the

equilibrium phase behavior of colloidal/rod sphere mixtures. In this section we

discuss fundamentals essential to understand the flow behavior of the mixtures.

We start by defining the capillary number (Ca) which is a dimensionless mea-

sure for characterizing the deformation of liquid droplets of viscosity ηd (where

the subscript d denotes the dispersed phase) that are suspended in a continuous

host liquid phase of viscosity ηh (where the subscript h denotes the continuous

host phase). The capillary number is defined as

Ca =
ηhγ̇R

Γ
(2.41)

where γ̇ is the applied shear rate, R is the radius of the spherical droplet and Γ
is the interfacial tension. Ca is actually the ratio of elongational/viscous forces to

the capillary/surface tension forces. The breakup of droplets which are subjected

to shear flow occurs above a critical capillary Cacrit number which is reached

when the shear stress ηmγ̇ is of the same order of magnitude as the interfacial

stress Γ. When Ca > Cacrit the elongational stresses are the dominating forces

leading to the droplets undergoing affine deformation. In the case that Ca <
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Cacrit , the interfacial tension dominates thereby leading to droplets which are

spherically shaped.

Droplet deformation mechanisms and eventually their break-up into smaller

droplets when subjected to flow depends on the type of the flow field (shear or

elongational), the viscosity ratio p = ηd/ηh and the capillary number as defined

by equation 2.41. A theoretical framework has been well established to explain

the response of single droplets to a well defined flow field for the case of New-

tonian liquids [108]. The stability of droplets and how they break-up has been

characterized for a wide range of the viscosity ratio p running from 10−6 to 103

and capillary numbers Ca spanning 3 orders of magnitude by Grace [40]. Figure

2.9 shows the empirical fit to the experimental data measured by Grace which

separates the region where droplets acquire a steady shape,orientation and are

deformed affinely in the presence of shear flow and the region where they begin

to breakup [19, 108].
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Figure 2.9: A plot showing the dependence of droplet deformation on the critical capillary num-
ber (Cacrit ) and the viscosity ratio p = ηd/ηm in a simple shear flow. The solid line which
separates the region where stable droplets are found and the onset of droplet break-up is an em-
pirical fit of the experimental data produced by Grace for two immiscible Newtonian liquids [40].
The mechanism of droplet breakup can be separated into three main regimes: (a) for p � 1 the
droplet deforms into a sigmoidal shape and above the Cacrit small droplets are released at the
tips, (b) p ∼ 1 the droplet breaks up in the middle region into daughter droplets and at p � 1

no droplet breakup is possible but rather the orientation of the steady shape changes into the
direction of the flow is observed. (Figure adapted from Tucker et al [108]).



3
Determining Binodals

We determined the gas-liquid binodal in a colloidal rod/sphere mixture using

a combination of Diffusing Wave Spectroscopy and fluorescence confocal mi-

croscopy. The colloidal rods induce an attractive force between the colloidal

spheres which at high enough rod concentrations leads to phase separation. We

studied how the location of the binodal line in the rod/sphere mixtures is influ-

enced by the buffer ionic strength and the size ratio L/R, where L is the length

of the rod and R is the radius of the colloidal spheres. The experimentally de-

termined binodals were compared to phase boundaries obtained using the Free

Volume Theory, a well established method for calculating the phase behavior of

mixtures of colloidal particles.

3.1 Introduction

In the soft matter community, entropy driven ordering at the colloidal length

scale has been well established both by theoretical [36, 78] and experimental

studies [6, 34]. Colloidal particles with strictly hard body interactions offer rel-

atively simple model systems which can be used for developing a statistical me-

chanical description of the phase behavior of collodal dispersions. The descrip-

tion of colloidal dispersions with an increasing degree of complexity can then be

based upon the knowledge that is acquired from the investigation of ideal model

systems.

The Helmholtz free energy of a dispersion of colloidal particles interacting

35
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only via steric repulsion can be written as F = U −T S, where U is the interac-

tion energy which in the case of strictly hard body interactions is zero, T is the

temperature and S is the entropy. At constant temperature, the system can only

minimize its free energy through maximizing its entropy S. A good example

in which entropy driven ordering is observed is in colloidal hard sphere disper-

sions. Highly monodisperse sterically stabilized hard spheres can be synthesized

in the lab by following well established protocols [98, 110]. The phase behavior

of such systems has been intensively studied and transitions from liquid to crys-

talline and to jammed glassy states upon increasing sphere concentration have

been observed [86]. The observed phase behavior can be explained by consider-

ing that at low sphere volume fractions maximum entropy is achieved in states

having disordered particle configurations. As the sphere concentration increases

the crystalline packing configurations offer more possible particle arrangements

than the disordered states and this in turn maximizes the entropy of the system.

We thus have an ordering of a colloidal system that is driven purely by entropy.

Entropic driven phase transitions also occur in mixtures of particles. The free

volume available to each particle species in a multi-component mixture increases

when the system phase separates. An increase in free volume corresponds to

an increase in the translational entropy of the particles. Actually the entropy

of mixing is lowered in the process but at high enough particle concentrations

the total entropy is maximized by means of the increase in the translational en-

tropy. A well studied mixture in which this phase separation is observed is the

colloid/polymer system [84]. It is typically a suspension of hard spheres and

non-adsorbing polymer chains which induce an effective attraction.

A well studied colloid/polymer mixture is the dispersion of polymethyacrylate

(PMMA) particles which are sterically stabilized using poly-12-hydroxy stearic

acid in cis-decalin solution mixed together with non-adsorbing polystyrene

random-coils. The sterical stabilization yields nearly-hard sphere particles and

the short polymer chains induce a relatively short-ranged attraction. This effec-

tive attraction is called the depletion effect and was first proposed by Asakura and
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Oosawa [7] and then further developed by Vrij [114] and is discussed in detail in

section 2.1. The induced attractive inter-particle force leads to a rich equilibrium

phase behavior which is analogous to what is observed in molecular systems.

The appearance of the phase diagram is determined by the range of the attraction

which can be quantified by defining a size ratio ξ = rg/R where rg is the polymer

radius of gyration and R is the radius of the spherical colloids [38, 52]. In sys-

tems where the attraction is induced by random coils the range of the attraction

is ≈ rg which is of the order ∼ 10−100 nm.

Anisometric particles (e.g. rod-shaped colloids) can also be used to induce

depletion forces. Depletants having shape anisotropy are highly efficient at me-

diating an attractive potential between the colloidal particles. This efficiency can

be explained by considering the fact that the effective volume occupied by the de-

pletants is much larger that the actual particle volume. The topology of the equi-

librium state diagram, strongly depends on the size ratio of the relevant length

scale of the depletant to that of colloid of interest. In the case of rod-induced de-

pletion between spherical colloids, this size ratio is given by ξ = Lrod/R, where

Lrod is the rod length. Bolhuis et al using Monte Carlo based Simulations (MCS)

predict a gas/solid phase coexistence for mixtures with ξ < 0.6 [15]. In their

investigations the assumption is that the rods are infinitely thin although in ex-

periments rods have a finite diameter. A theory that takes into account the finite

thickness of rods is the Free Volume Theory [63]. Phase diagrams determined

using FVT also show the strong influence of ξ on the topology of the rod/sphere

state diagram [112]. Experiments have been performed in mixtures of silica

spheres and boehmite rods. The rods have an aspect ratio Lrod/Drod < 25 and

the size ratio of the experimental system ξ = 0.6. They observed that the spher-

ical particles phase separate into a sphere-rich phase made up of crystallites, a

result which agrees well with the FVT predictions [60,80]. One disadvantage of

the silica sphere/boehmite rod system is that the colloids are not density matched

and each particle species sediments rather quickly. This means the influence of

gravity cannot be neglected when interpreting experimentally observed phenom-
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ena within these mixtures. Yasarawan et al [123] studied the phase behavior

of a mixture consisting of sepiolite rods and silica spheres but in their exper-

iments they used very high rod volume fractions φr which are well above the

Isotropic/Nematic coexistence concentration making it difficult to compare the

experimental results to theoretical predictions which are derived under the as-

sumption that φr is below the overlap concentration.

Semi-flexible filamentous bacteriophages offer versatile colloidal rod-like

model systems [26, 35]. fd viruses are a good example of such a well char-

acterized system [90]. The viruses have an aspect ratio ≈ 130 and are charge

stabilized due to the negative surface charge of the coat proteins at values of

pH > 4.2 [125]. Adams et al have studied the equilibrium phase behavior of

mixtures of fd and polystyrene spheres for a range of size ratios ξ running from

6− 80 [6]. For the ξ values that they investigated the spheres act as the deple-

tion agents and not the rods. Concentrations of rods used in the experiments by

Adams et al [6] also either lie close to the I/N coexistence regime or are already

at high rod volume fractions where the rods self assemble into highly ordered

phases in the absence of any depletants. In several studies fd virus has been used

to mediate an attraction between single spherical particles and a fixed wall and

to determine the corresponding depletion potential [50, 55]. To our knowledge

there is a dearth of studies in the literature on the bulk phase behavior in mixtures

of fd and colloidal spheres. This might be due to the already mentioned reason

that there are few rod models that can be density matched and at the same time

have a narrow size distribution having a high aspect ratio.

In this chapter we will present the experimentally determined binodal lines of

colloidal rod/sphere mixtures consisting of fd-virus, an established model system

for mono-disperse colloidal rods and density matched polystyrene spheres. We

determined binodals for a range of size ratios ξ = L/R, where L is the length of

the rod and R is the radius of the spheres. We studied the influence of electrostatic

repulsion in the mixtures by performing the experiments in buffers at relatively

low and at high effective ionic strength. We also used sterically stabilized rods
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as depletants by covalently attaching small polyethylene glycol short polymer

chains onto the surface of fd-virus. The theoretical background needed to under-

stand and interpret the results in this chapter is discussed in chapter 2. We present

the description of the rod/sphere system and the experimental techniques used to

determine the location of the binodals in section 3.2. Experimentally determined

phase boundaries are presented in section 3.3 and we compare these boundaries

to the boundaries determined theoretically using the Free Volume Theory. The

chapter closes by a discussion of the discrepancy of theory versus experimental

data and how to introduce fitting parameters to bring the two into quantitative

agreement.

3.2 System description and Experimental Techniques

3.2.1 Mixtures: Polystrene spheres and fd viruses

Polystyrene spheres purchased from Thermo Scientific were used for preparing

the rod/sphere mixtures. For a detailed description of the particle properties see

Table 3.1. The spheres were concentrated by centrifugation and re-dispersed

in TRIS-HCl buffer at a pH = 8.3. Ionic strengths of the buffers used were

set by adding NaCl. The buffer was prepared in a D2O/H2O mixture to make

the spheres neutrally buoyant. The spheres remain stable in solution and sealed

samples of the micro-sphere stock solution do not show any sedimentation over

a period of several months. The polystyrene spheres carry a negative surface

charge due to ionizable sulphate groups. The buffers used in our experiments

have monovalent salt ion concentrations of 25 mM and 100 mM which gives a

Debye length (κ−1) ≈ 2 nm and 1 nm respectively. We determined the concen-

tration of the polystyrene spheres by drying the spheres in a vacuum oven and

then measuring the dry weight of particles. Rod/sphere mixtures were then pre-

pared by taking the desired concentration of each component from the respective

stock solution.

The fd virus was obtained following the protocol outlined in [90]. The yield
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Table 3.1: Polystyrene particle physical properties

Catalogue no. 3495A 3600A 3700A 4009A

mean diameter 496 ± 8 nm 600 ± 9nm 707 ± 9nm 994 ± 0.01 nm

standard deviation 8.6 nm 10.0 nm 8.3 nm 0.010 nm

coefficient of variation 1.7% 1.7% 1.2% 1.0%

density 1.05 g/cm3 1.05 g/cm3 1.05 g/cm3 1.05 g/cm3

Index of refraction at 589 nm 1.58 1.58 1.58 1.58

of viruses is highly mono-disperse due to the fact that fd essentially clones itself

using the biological machinery of the host bacterial cells. fd was then dispersed

in a 10 mM TRIS-HCl buffer at pH = 8.3 set at ionic strengths of 20 mM and

50 mM. fd virus is a rod-like colloid made up of single stranded DNA (ssDNA)

which is covered by repeat units of a coat protein [90]. It has contour length

of 0.88 μm and diameter of 6.6 nm. This gives a slender rod with an aspect

ratio of 130. The persistence length lp ≈ 3.0 μm making fd a semi-flexible rod.

Virus concentration is measured by UV-VIS absorbance measurements using an

empirically determined extinction coefficient of 3.84 mg cm−2 at 269 nm [12].

At a pH>7 and the ionic strength at which the fd was suspended, the rods carry

an estimated linear charge density of 10-20 e/nm [101]. The effect of the surface

charge is that the rods exhibit a long range soft repulsion superimposed on top of

the hard body interactions. The electrostatic repulsion between the rods is given

by equation 3.1

Uel(x)

kT
=

Γe−κ(x−D)

sin(γ)
(3.1)

Where x is separation distance between two rods, Γ is a constant resulting from

the solution of the Poisson-Boltzmann equation, γ is the orientation of one rod

with respect to another and κ−1 represents the Debye length [25]. In theoretical

descriptions of the phase behavior, fd can be described as a rod with a larger

effective diameter de f f than the bare fd diameter of 6.6 nm. The de f f can be

determined empirically from the plot of the isotropic/nematic coexistence con-

centrations versus the ionic strength. At a buffer ionic strength of 25 mM and 100
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Figure 3.1: DWS in transmission geometry. Sample is illuminated by a He-Ne 514.5 nm laser
beam and the light undergoes multiple scattering in the turbid sample. Scattered light in the
forward direction is detected by an avalanche photo diode and the intensity correlation function
is obtained using a commercial correlator.

mM, de f f ≈ 14 nm and 10.6 nm respectively [101]. The long ranged repulsion of

the fd virus can be switched off by modifying the surface properties of the rods.

This was done by covalently attaching onto the coat proteins of the virus, short

Polyethylene Glycol (PEG) polymer chains [42]. In the protocol, end function-

alized PEG is attached onto the N-terminal end of virus coat proteins. Since the

PEG used is electrically neutral the polymer coated rods interact predominantly

via steric repulsion depending on the surface density coverage by the linear poly-

mer chains and on the ionic strength of buffer. At an ionic strength of 25mM, the

surface charges lie completely within the PEG chains and are thus shielded. de f f

is now determined by the radius of gyration Rg of the polymer coils attached on

the surface of the rod. As in the uncoated fd case discussed above, the de f f can

be obtained from the plot of isotropic/nematic coexistence concentrations as a

function of ionic strength. For a buffer at 25 mM ionic strength as used in our

experiments, this gives a de f f ≈ 19nm.

3.2.2 Experimental technique

Characterization of the fd/sphere dispersions was done using a combination of

several techniques. In the first step bright field transmission microscopy and con-
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focal laser scanning microscopy (CLSM) were used to estimate the location of

the phase boundaries. Optical microscopy is not suitable for investigating mix-

tures with compositions that are close to a phase transion boundary because they

scatter light strongly. For such samples we used Diffusive Wave Spectroscopy

(DWS) to determine the location of binodals more precisely since it is a method

developed for application in dispersions where multiple scattering occurs. DWS

also has the advantage that it is highly sensitive to smaller changes in the turbid-

ity of the colloidal dispersion. We will start by describing the optical microscopy

methods we used for the determination of the equilibrium phase behavior of our

rod/sphere mixture then a description of the DWS experimental setup.

Bright field microscopy was carried out on a Zeiss Axioplan 2 microscope with

a 40x oil immersion objective lens. The fluorescence confocal microscopy was

performed with a 60x water objective on an IX71 inverted Olympus microscope

equipped with a Olympus Fluoview 300 single pinhole scanning unit. For the

confocal fluorescence microscopy images, similar polystyrene spheres as in the

DWS experiments were used but now with a fluorescent core. On preparing

a sphere/fd mixture, samples were loaded into a 0.5 x 0.5 mm capillary from

Vitrotube and mounted onto a glass slide to facilitate the imaging.

Diffusive wave spectroscopy was performed in transmission geometry Fig.

3.1. The sample was illuminated by a Spectra physics Beamlock 2060-06S Ar-

gon ion laser at a wavelength of 514.5 nm. The sample was placed in a 0.1 mm

path length quartz suprasil cuvette and the transmitted light through the sample

was captured by an optical fiber and detected by an ALV single photon avalanche

diode. An ALV-6010/160 multi-tau correlator was used to compute intensity cor-

relation functions.
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Figure 3.2: Time series of the correlation function in a DWS experiment after mixing colloidal
spheres at a fixed volume fraction of φspheres = 0.02 and rod mass concentration of [fd] = 0
mg/ml (a) and 2 mg/ml (b). No changes in the measured correlation functions are observed in
the dispersion containing only spheres, while in the mixture in which 2 mg/ml fd was added the
correlation function is stretched towards longer relaxation times. (Figure taken from reference
[46]).
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3.3 Results

3.3.1 Determination of phase boundaries

We prepared statepoints in the phase diagram by mixing the desired rod/sphere

concentrations diluted from the respective stock solutions. Both fd-virus and

polystyrene spheres were dispersed in an aqueous based buffer as described

in section 3.2. The rod/sphere dispersions are highly turbid upon mixing due

to a mismatch of the buffer refractive index (nbu f f er ≈ 1) compared to that of

the polystyrene spheres (nspheres ≈ 1.6). In mixtures which phase separate, the

turbidity of the sample decreases significantly allowing for characterization by

means of optical microscopy. For statepoints that lie close to the binodal line,

the mixtures scatter quite strongly. DWS was then used to investigate the precise

location of the gas/liquid binodals. The samples were loaded into a quartz cu-

vette of 1mm optical path length after homogenizing the mixture by vortexing.

The cuvette was then mounted onto a home-built DWS experimental setup (see

section 3.2). Correlation functions were measured every 30 seconds until the

system reached steady state. In stable mixtures, i.e mixtures in which no phase

separation occurred, the measured correlation functions did not change in time.

In the case of phase separating mixtures, the characteristic relaxation time of the

measured correlation functions increased as the mixture phase separated.

Representative time evolution plots of correlation functions measured during

an experiment are shown in Figure 3.2. Figure 3.2(a) shows what is measured

in the case of a stable mixture and in the case of a demixing rod/sphere disper-

sion Figure 3.2(b). The measured correlation functions can be described by a

stretched exponential function which has a single relaxation time τ . In Figure

3.3, representative results of the measured τ for several mixtures are plotted as

a function of time. In classical Diffusing-wave spectroscopy, one defines a pho-

ton transport mean free path l∗ [83]. This l∗ is used as a fitting parameter of

the measured auto-correlation functions. In our case this characteristic length is

ill-defined since in phase separating mixtures there is a large distribution of clus-
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Figure 3.3: The mean relaxation time τ plotted as a function of time after quenching at three
sphere volume fractions φspheres = 0.01 (a), 0.015 (b) and 0.02 (c). At a fixed φspheres, the typical
time evolution of τ for a stable mixture and a phase separating mixture is shown. (Figure taken
from reference [46]).

ter sizes and the turbidity changes as a function of time. With respect to phase

separation kinetics, our temporal resolution is not able to resolve the onset of

the demixing. We thus could not observe the nucleation time and are not able

to exactly say whether we have a nucleation and growth phase separation or a

spinodal decomposition taking place in our rod/sphere mixtures.

3.3.2 Binodals as a function of ξ and buffer ionic strength

We prepared mixtures of fd which has a contour length of 0.88 μm and mono-

disperse polystyrene spheres of various radii as described in section 3.2. The

range of ξ covered runs from 1.8 to 3.5. By varying ξ , we effectively changed the

form of the rod-induced depletion potential which acts between the spheres in the

mixtures without changing the range of the attractive potential (see section 2.1).

We determined the gas/liquid binodals for relatively low spherical colloid volume
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fractions φs < 0.03 in a density-matched buffer at an effective ionic strength of

25mM and at 100mM. Figure 3.4(a) shows the boundaries between stable and

phase separating mixture compositions for the range of ξ values studied. The

open symbols represent the highest volume fraction of rods, φr added to the

mixture, at a given φs, where the mixture is stable. The solid symbols represent

the lowest φr measured wherein the system demixes. The solid lines serve as a

guide to the eye.

We investigated the role of buffer ionic strength on the location of the phase

boundary at a fixed ξ value of 3.5. Two buffers were prepared with total ionic

strengths set at 25mM and 100mM both at a pH of 8.3. Figure 3.4(b) displays

the binodals at the respective buffer conditions. The lower boundary in the figure

with the square symbols represents the 100mM mixture while the upper one with

the triangles represents the binodal line in the 25mM ionic strength buffer.

Since both fd and the polystyrene spheres are charged both particle species in-

teract via a soft repulsive potential. For the spheres the range of this repulsive

force is simply given by the Debye length while in the case of the charged rod

there is a need to define an effective rod diameter de f f see section 3.2. This con-

sideration is important when comparing the experimentally determined binodals

with theoretical predictions, since the Free Volume Theory assumes hard body

interactions and does not consider the soft repulsive potential present in charged

systems. Following the protocol described in section 3.2, we switched off the

charge on the surface of the rods yielding sterically stabilized rods. Figure 3.5 is

the comparison of the experimentally determined binodal in the fd-PEG/sphere

system with the gas/liquid phase boundary calculated using the Free Volume

Theory. At an ionic strength of 100mM the surface charge on the surface of the

rods is screened quite effectively. The rods have an experimentally determined

de f f ≈ 10nm. This yields a good approximation to a hard rod. The experimen-

tally determined binodal in the rod/sphere mixture in a 100mM ionic strength

buffer is plotted in the same figure with the fd-PEG/sphere system for compari-

son in figure 3.5. The FVT calculation using de f f from the Onsager consideration
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qualitatively agrees with the experimental data but the best fit of the data uses as

an input for the calculation a higher de f f .

3.4 Discussion and Conclusion

The location of the binodal line at a fixed buffer ionic strength, shifts to higher

rod volume fractions φr as ξ increases (see figure 3.4(a)). Our experimental

observation is in agreement with the work done by Vliegenthart et al where they

showed how the location of the gas/liquid binodal in a rod/sphere phase diagram

is determined by ξ using the FVT [112]. The observed bulk phase behavior

also corroborates with numerical calculations which show that the depth of the

depletion potential decreases monotonically as ξ increases [120] (see figure 2.3).

The experimentally determined binodal was observed to shift to lower φr by

a factor two as the effective ionic strength of the buffer was increased from

25mM to 100mM as shown in figure 3.4(b). The Debye length κ for the charged

polystyrene particles changes from ≈ 2nm to 1nm which is less than 1% of the

radius of the spheres. This small difference does not explain the relatively large

shift in the binodal. On the other hand the effective rod diameter de f f changes

from 14nm in the 25mM buffer to 10nm in the 100mM buffer. Changing the

buffer ionic strength effectively tunes the de f f and thus changes the rod aspect

ratio. This evidence seems to suggest that the rod aspect ratio is an important

parameter in determining the phase behavior of the rod/sphere mixture. This

strong dependence of the location of gas/liquid boundary on the rod aspect ratio

is confirmed when calculating binodals using the Free Volume Theory.

The binodal obtained in the mixture of spheres and the fd-PEG complex, which

should effectively screen off the charges on the surface of the rod showed a large

difference when compared to the FVT calculated binodal as shown in figure 3.5.

We can only offer a few hand-waving arguments to explain the difference be-

tween experimental result and theory. One possible reason for this discrepancy

is based on the efficiency of the surface coverage of the rods with the polymer

chains. A patch-wise coverage could lead to an incomplete screening of the
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negative charge along the surface of the rods. The unscreened charges lead to

a modified effective interparticle interaction. The resulting interaction poten-

tial would then be a superposition of a soft electrostatic repulsion and a steric

repulsion. Within the FVT calculation scheme, we only take into account ex-

clusively hard body interactions which could then explain the difference which

we observed between FVT and the experimentally determined binodal. Another

explanation for the difference between the FVT calculation and the experimental

binodal is that the flexible PEG polymer coils are assumed to behave as unde-

formable spheres having a radius Rg which are immobilized onto the surface of

the rods. In practice we would expect that the spherically shaped polymer coils

are deformable. The extent of the polymer chain deformation which we are not

able to quantify, alters the effective diameter of the fd-PEG complex and thus

leads to a mismatch between FVT and experiments. However the FVT yielded

a smaller deviation when compared to the experimentally obtained binodal in

the case of the mixture where depletion was induced by uncoated fd which were

dispersed in a buffer set at relatively high ionic strength. The attempt to pre-

pare a mixture which interacts dominantly via excluded volume interactions was

therefore achieved by setting the buffer ionic strength at 100mM. At this effec-

tive ionic strength we obtain a de f f of 10nm which when applied for the FVT

computation, yields a smaller mismatch between theory and experimental data.

If we set de f f as a fitting parameter, a de f f of 13nm matches the experimental

data quite well. There is a small difference in the shape of the binodal which we

attribute to the flexibility of the fd which is not accounted for in the FVT. To get

rid of the rod flexibility we plan in the future to use Y21M, a stiffer mutant of the

wild-type fd which approaches the ideal rigid rod limit.

We find a quantitative mismatch between FVT and experiments which in-

creases in magnitude with increasing ξ . For discussing this discrepancy, we

compare the binodals that are predicted by using a de f f which we obtained from

two different methods. In the first case we use an empirically determined de f f

from the plot of the isotropic/nematic coexistence concentration versus the ef-
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fective buffer ionic strength. In the second case we apply de f f obtained from

the best fit of the experimental data. At ξ = 1.8, the deviation is only ≈ 7%. It

increases to ≈ 20% for ξ = 2.5 and finally for the ξ = 3.5 it is as high as ≈ 40%

difference in magnitude. This discrepancy can be explained by the fact that the

mathematical expression used to calculate the average free volume of rods in the

phase boundary calculation scheme is correct in the limit of low φr and is only

an approximation at higher φr. At larger ξ , much higher rod volume fractions

are required to induce phase separation and in turn the FVT is less accurate in

predicting the location of the binodal line. In our experiments we are at rod

number densities that are ≈ 30c∗, where c∗ is the overlap concentration. It is

very impressive that with the FVT we are able to semi-quantitatively describe

the observed phenomena. Future work will be focused on developing a theory

which takes into account the fact that the spheres begin to experience the deple-

tion force at an effective range which is no longer set by Lrod but by the mesh

size of the dynamic network made up of the rods.
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Figure 3.4: (a) Gas/liquid Binodal lines of a sphere-rod mixture for ξ = 1.8 (triangles), 2.5
(diamonds), 2.9 (pentagons) and 3.5 (squares). The open symbols in each case indicate the
highest rod volume fraction φr at a fixed sphere volume fraction φs where the mixture was stable
while the solid symbols indicate the lowest concentration of fd where the mixture was unstable,
as determined from Fig.3.3. The vertical arrow points in the direction of increasing ξ values. (b)
Gas/liquid Binodal lines at ξ = 3.5 in 25mM and 100mM ionic strength buffers. Lower boundary
(square symbols) is the experimentally determined binodal in the 100mM ionic strength buffer
and the upper boundary (triangle symbols) is the one for the 25mM buffer.
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Figure 3.5: Experimentally determined binodals of mixtures of spheres and the fd-PEG complex
at an effective ionic strength of 25mM (red circles), and uncoated fd at an effective ionic strength
of 100mM (black squares). The solid lines are the binodals calculated by means of the Free
Volume Theory using rod diameter de f f determined by using the Isotropic-Nematic coexistence
concentration and by applying the Onsager theory on hard rods. From Onsager’s theory, PEG-
coated fd has a de f f ≈ 19nm and the uncoated fd at the given buffer ionic strength has a de f f ≈
10nm. The dashed lines are the respective binodals from Free Volume Theory using the de f f as
a fitting parameter. The best fit for the fd-PEG complex mixture gave a de f f of 28nm and in the
uncoated fd de f f = 13nm.
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Figure 3.6: Experimentally determined rod/sphere mixture binodals, for ξ = 0.9, 2.5, 3.5 at a
fixed effective ionic strength of 25mM. The solid lines are binodals calculated using the Free Vol-
ume Theory (FVT). The effective rod diameter de f f used is determined by means of the Onsager
theory on ideal rods. The dashed lines are a fit of respective experimental data with the de f f as
fitting parameter also using the FVT.



4
Equilibrium Phase Behavior

In this chapter we investigated the equilibrium phase behavior of a model

colloidal rod/sphere mixture. We determined the location of a two phase

(gas/liquid) coexistence region and also a three phase coexistence region

(gas/liquid/solid) in the experimentally determined state diagram. We present

a study of free fluid/fluid interfaces and a discussion of the resulting microstruc-

tures which are formed after phase separation in the respective regions of the

phase diagram.

4.1 Introduction

As highlighted in chapter 2, the depletion interaction plays an important role

in determining the equilibrium phase behavior of a binary mixture of colloidal

particles. Phase separation can occur at sufficiently high enough colloid concen-

trations. For the rest of this chapter the colloidal particle species which mediates

the attractive force between the second component shall be referred to as the

depletant agent. Analogous to atomic systems, bulk phases such as gas-like (di-

lute in colloids), liquid-like (more concentrated in colloids but still disordered)

or solid-like (crystalline) can be observed. Moreover, depending on particle size

and shape, phases with complicated microstructures have been observed experi-

mentally [6, 10].

A binary mixture which has not been investigated intensively is the rod/sphere

mixture. This is quite surprising when considering the fact that mixtures of rod-

53
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like and globular particles are ubiquitous both in nature and in numerous practi-

cal applications. In the introduction of this thesis, we reviewed the current state

of the work published on the rod/sphere system both from theoretical work and

experiments (see chapter 1). Two main regimes were reviewed with respect to

size ratio ξ = Lrod/R, where Lrod is the length of the rod and R is the radius of

spheres.

The first case is the one in which the rods are extremely small i.e ξ << 1, and

in the other limit where the spheres are much smaller than the rods, so ξ >> 1.

This chapter will focus on the intermediate regime ξ ≈ 1 where there is a lack of

systematic experimental investigations of the equilibrium phase behavior of this

system.

In order to be able to predict the bulk equilibrium phase behavior of colloidal

mixtures a starting point is to obtain the form of the depletion potential acting be-

tween the particles in an infinitely dilute system. The Derjaguin approximation

is a relatively simple way to obtain a quantitative expression of this inter-particle

force. The approximation relates the force that acts between two curved surfaces

to the force that would act between two flat surfaces. This is done by progres-

sively using flat discs to approximate the curved surface [20]. The larger the

radius of the curved surface is, the more accurate is the Derjaguin approxima-

tion. When applied to a rod/sphere mixture the Derjaguin approximation holds

for R � Lrod . The mixtures which we investigated fall in the range of ξ ≈ 1 in

which the Derjaguin approach overestimates the rod-induced depletion potential.

Yaman et al showed how the depth of the depletion potential becomes shallower

as ξ increases using an exact numerical integration method which uses for the

calculation of the depletion interaction, a first order approximation of the po-

tential (see section 2.1.2.2) [120]. The relatively shallow potential obtained in

rod/sphere mixtures calculated in the ξ regime where the Derjaguin approxima-

tion breaks down has been suggested as a posible reason for the lack of phase

separation in rod/sphere mixtures [106].

On the other hand Monte Carlo simulations applied to study the bulk phase
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behavior showed that at high enough rod volume fractions φr, phase separation

occurs and that the resulting phase behavior is a liquid/liquid phase coexistence

for ξ > 0.6 and a gas/solid phase for ξ < 0.6 [15]. In the Monte Carlo sim-

ulations (MCS), the rods are assumed to be infinitely thin but in experiments

the depletants have a finite rod diameter. A theory that accounts for the finite

rod aspect ratio is the Free Volume Theory (FVT) (see section 2.2). Using a

rod aspect ratio of 20, the qualitative behavior observed in the MCS was con-

firmed but interestingly at ξ ≈ 1 the FVT predicts a three phase coexistence

region [112]. Experiments on mixtures of silica spheres and boehmite rods with

ξ = 0.6 showed depletion induced crystallisation in the bulk and at the wall con-

firming the FVT predictions [60]. One disadvantage inherent to the experimental

system is that the rods had a polydispersity ≈ 40 % hence a ξ which is not well

defined. Yasarawan et al observed in the Isotropic/Nematic (I/N) coexistence re-

gion of the rods, the formation of nematic tactoids interspersed with layers made

up of spheres. They used sepiolite rods and silica spheres at a ξ = 2.7 [123].

In this chapter we present a study on the equilibrium phase behavior of a

rod/sphere mixture in a buffer in which the colloidal particles are neutrally

bouyant. We use fd, an established model system for mono-disperse colloidal

rods, and charge stabilized polystyrene spheres. By preparing mixtures of fd and

spherical particles of different diameters, we scanned mixtures with several ξ
values around 1. We characterized the equilibrium phases just above the theo-

retically determined binodal line in the region of the phase diagram highlighted

in figure 4.1. The phase separation kinetics of a representative state point in

the phase diagram studied using confocal microscopy volume scans is discussed

in section 4.3.1. After that, the interfacial properties of structures formed af-

ter reaching the end stage of phase separation characterized using capillay wave

analysis are presented in section 4.3.2 and 4.3.3. The chapter ends with the pre-

sentation of the equilibrium phase diagram that we determined experimentally.
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Figure 4.1: Plot showing the region of the rod/sphere state diagram that was characterized
above and below the gas/liquid binodal. The region within the checkerboard rendered rectangle
highlights the location of state points that were investigated.

4.2 Materials and experimental techniques

4.2.1 Experimental System and Setup

Polystyrene spheres of radius 0.5μm purchased from Thermo Fischer Scientific

were used to prepare the rod/sphere mixtures. We used fd virus, for the mono-

disperse colloidal rods. The colloidal particles were dispersed in a TRIS-HCl

buffer set at a pH value of 8.3 and at a total ionic strength of 25mM. For exper-

iments in which the microspheres are made neutrally bouyant, we prepared the

buffer in a D2O/H2O mixture. In experiments where we observed the fluctua-

tions at a macroscopic interface between two phases, only H2O was used and thus

the system is no longer density-matched. For a more comprehensive description

of the physical properties of the particles please see section 3.2

The fluorescence confocal microscopy volume scans for studying the phase

separation kinetics were performed using a 60x water immersion objective on

a Olympus IX 71 inverted microscope equipped with a FLUOVIEW FV3-291



CHAPTER 4. EQUILIBRIUM PHASE BEHAVIOR 57

Figure 4.2: Schematic diagram of the thin sample holder used for the characterizaton of the
microstructure after phase separation. The top part of the figure is a planar view from the top of
the holder showing the glass slide and the coverslip that make up the chamber after sealing with
glue. The bottom part of the figure is a view from the side showing the region between the two
glass slide where the sample is pipetted onto for observation by optical microscopy.

confocal unit. Mixtures were loaded into capillaries of 100μm path length made

of borosilicate glass purchased from Vitrocom. Image stacks 60μm deep behind

the coverglass were acquired in 0.5μm stepsizes in the z-direction. A z-stack was

acquired every 3 minutes over a period of two hours to ensure that we imaged the

phase separation from the very early stages until the system reached equilibrium.

The characterization of the microstructure was carried out using a combination

of wide field fluorescence microscopy and confocal laser scanning microscopy

(CLSM). The wide field fluorescence measurements were performed on a Zeiss

Axioplan 2 microscope with a 63x oil immersion objective. Image acquisition

was carried out by means of an Andor Technologies NEO sCMOS fast cam-

era controlled by Mircomanager software [92]. The fluorescence confocal mi-

croscopy was performed with a 100x oil objective on a Zeiss Axiovert 200M

inverted microscope equipped with a VT-Infintity (Visitech International) con-

focal scanning unit. Images were acquired using an Andor iXon camera. We

prepared sample holders made up of regular coverglasses and circular thin cov-

erslips of diameter 14mm and 170μm thick. Figure 4.2 shows a schematic dia-

gram of the sample holder. 5μl of the sample to be observed is pippeted onto the

coverglass then the thin coverslip is placed directly on top of the sample droplet
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which causes the sample to spread and thus fill the space confined between the

coverslip and coverglass by means of capillary forces. The sample is sealed with

glue and the resulting average chamber height is ≈ 20μm which is a factor 20

the rod length thus we can rule out confinement effects on the equilibrium phase

behavior of prepared mixtures. The thin chamber has the advantage of making

it possible to image inside the highly scattering samples since the microspheres

are not optically-matched.

The measurements to study the interfacial properties of the microstructures

formed after phase separation were carried out in observation chambers de-

scribed in the preceding paragrapgh. An hour after sample preparation, when

a phase separating mixture reaches steady state (see section 4.3 where the phase

separation kinetics is discussed), the sample is placed onto an AXIOPLAN 2,

Zeiss microscope equipped with a 100x, 1.4 Numerical Aperture immersion oil

objective. The sample is illuminated by a HBO 100 Mercury lamp. The exper-

imental protocol to determine the interfacial properties of the respective phases

consists of acquiring 1000 frames at 20 frames per second using a sCMOS Andor

NEO camera. In the fluorescence images, fd viruses are not visible since they do

not fluoresce but one sees spherically shaped clusters, consisting of small spher-

ical particles in a background of the rods. We set the imaging plane to coincide

with the equator of the cluster and obtain fluorescence time series of the fluc-

tuations (see figure 4.3). To get the fluctuation spectrum density, we threshold

the images and use an edge detection algorithm in ImageJ, a java based image

processing toolkit. After obtaining the discretized contour for each frame, we

use JFilament [96] to get the cartesian coordinates.

For the set of experiments that were performed in rod/sphere mixtures at φcol

= 0.1, the colloidal particles were dispersed in H2O and thus the spheres are

no longer density matched. The gravitational length which is defined as lg =

kBT/G∗ is in this case 6μm. Here kBT is the energy due to thermal motion and

G∗ is a buoyant colloid weight. For a particle of diameter 500 nm, at such a

gravitational length, motion due to gravity of a single particle is at least by a
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Figure 4.3: a) is a snapshot of a time series showing a typical cluster after reaching steady state
in a phase separating mixture. The rods are not fluorescently-labelled and are thus invisible. b)
is the contour of the cluster at its equator plane. The contour is decomposed into a discretized
Fourier series and used in the determination of the Power Spectral Density.

factor 10 greater than that due to thermal motion. The effect of gravity on the

system can no longer be neglected.

We constructed rectangular shaped sample holders of dimensions 15 x 1 x

0.17 mm, with walls made from 170μm coverslip glass slides to facilitate the

imaging. Upon preparing mixtures at four different statepoints represented by the

points labelled (vii-x) as shown in figure 4.5, we vortexed the sample and filled

the measurement cell. The cells were sealed with glue and placed in a vertical

position. As the phase separation in the rod/sphere mixture proceeds, the formed

colloidal liquid phase droplets are subject to gravity driven flow [2]. The droplets

begin to collect at the bottom of the measuring cell and they coalesce leading to

the formation of a macroscopic horizontal interface between the colloidal liquid

and gas phases. After reaching equilibrium, The holder is then mounted on a

horizontal confocal scanning laser microscope (CSLM, Zeiss Exciter) for the

imaging of thermal capillary waves at the fluid-fluid interface [1]. After allowing

the phase separated sample to equilibrate over night, we follow the thermally

induced undulations by recording a time series of 5000 frames. The confocal

microscope is setup in a horizontal configuration and we image capillary waves

in a focal-plane parallel to the x-z plane see the top right insert in Fig. 4.4. A
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Figure 4.4: A typical snapshot of a time series taken using a horizontal confocal microscope
showing a colloidal liquid phase at the bottom and a gas phase at the top. fd virus is not fluores-
cently labelled thus not visible in this snapshot. Insert on the top-right shows the imaging plane
in which the fluctuations are observed.

typical frame in the series is shown in Fig. 4.4 where the colloidal liquid phase is

at the bottom of the image and above a sharp interface is the colloidal gas phase.

4.3 Results and discussion

An overview of the experimental results which will be discussed in this section is

presented in figure 4.5. The figure shows part of the experimentally determined

phase diagram in a mixture at a size ratio of ξ = 3.5. The roman numerals above

the gas/liquid binodal line represent the rod/sphere mixture compositions that

were used for the characterization of the equilibrium phase behavior. In each

subsection we will make reference to the figure 4.5 and give a description of the

microstructure being studied, then the experimental technique that was used to

investigate the equilibrium properties of the microstructure and then present the

results.



CHAPTER 4. EQUILIBRIUM PHASE BEHAVIOR 61

4.3.1 Phase separation kinetics and morphology

In chapter 3 we determined the location of gas/liquid binodals for rod/sphere

mixtures for a range of size ratios ξ running from 1,8 to 3,5. It was observed

that in mixtures that phase separate, it takes ∼ 60 minutes for the system to

reach steady state. Diffusive Wave Spectroscopy measurements showed that the

mean relaxation time τ of the correlation functions which we measured dur-

ing the phase separation process initially increased before it reached a plateau

value (section 3.3.1). The constant value of τ at later stages of the phase sep-

aration hints to the fact that the microstructure attains an equilibrium size after

full phase separation. We also observed that the turbidity of the samples de-

creases throughout the demixing process which allowed the imaging of the bulk

phase behavior by optical microscopy methods. In this subsection we report the

results of following the formation of structures during phase separation by con-

focal fluorescence microscopy. From the image analysis we determine the phase

separation kinetics.

The composition of the mixture discussed in this subsection is represented by

the statepoint labelled (iii) in figure 4.5. We observed that the phase separation

occurs via a formation of nuclei made up of the spherical colloids that grow

into larger clusters. The clusters continue to grow in size until they attain a

narrow size distribution an hour after the system is quenched. We were not able

to observe the initial stages of the demixing due to the time it takes to load

the mixture into the sample holder and then mounting it onto the microscope. A

typical time series of images showing the growth of the clusters is shown in figure

4.6(a). We then determined the average volume that each cluster occupies using

the confocal z-stacks recorded every three minutes. The analysis was carried

out using a three dimension object counter which is an ImageJ plugin [16]. In

the initial stages of the phase separation, the volume of the spherically shaped

clusters grows linearly in time and then caps off reaching a plateau as seen in the

plot of average cluster volume versus time presented in figure 4.6(b).

Phases which are made up of stable of clusters consisting of charged spherical
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Figure 4.5: Plot showing the experimentally determined gas/liquid binodal line for a mixture
at size ratio ξ = 3.5. The open and closed square symbols represent mixtures which are stable
and unstable respectively. The solid blue line is a guide to the eye showing the location of the
gas/liquid binodal. Statepoints (i-ii) phase separated into solid/liquid/gas phases that coexist in
the form of clusters having a solid core covered by a thin liquid layer which decreases in thickness
the further away the point is from the gas/liquid binodal. The mixture with the composition
represented by the statepoint labelled (iii) is in the two phase coexistence (gas/liquid) region of
the phase diagram. The phase separation mechanism and kinetics for the point (iii) are dicussed
in section 4.3.1. The three blue hexagonal points just above the gas/liquid binodal line which
are labelled (iv-vi) represent the statepoints where contour analysis of clusters was performed
(see section 4.3.2). The three circular symbols at φs=0.1 which are labelled (vii-ix) represent
mixture compositions where the interfacial tension was determined for macroscopic interfaces
between the gas and liquid phases (see section 4.3.3). The statepoint (x) is a mixture in which the
three phase coexistence region is observed and it was not possible to obtain a clean horizontal
macroscopic interface. The mixture represented by (xi) is also in the three phase coexistence
region but at a φs = 0.025 and shows crystalline regions with clear grain boundaries which
separate crystallites having different lattice orientation (see section 4.3.4).
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(a) Time series of cluster growth

(b) Average cluster volume vs time

Figure 4.6: (a) Video microscopy time lapse at a fixed imaging plane during the phase separa-
tion of a mixture having a composition represented by the statepoint (iii) in figure 4.5. (b) The
average cluster size determined from confocal z-stacks plotted against time while the mixture
phase separates.

colloids have been observed in several colloid/polymer mixtures [94, 99, 124].

The competition between the long-ranged double layer repulsion and the rela-

tively shorter-ranged depletion attraction which has an effective range � Rcolloid

is used to explain the resulting bulk phase behavior. The range of the attraction

when using polymer chains as depletants is set by the radius of gyration of the

chains which is typically of the order of < 50nm. Unique to our experimental

system is that by using fd virus as a depletant which has a contour length of
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≈ 880nm, we induce a relatively longer-ranged attraction compared to the one

induced by short polymer chains. In our rod/sphere mixtures we thus have double

layer repulsion due to the charged polystyrene spheres and an induced attraction

with an effective range ≈ Rcolloid. Both theoretical work and simulations predict

that in systems with such competing interactions, an equilibrium cluster phase is

can coexist together with a gas phase [43, 44].

Our rod/sphere mixture undergoes microphase separation into clusters that are

rich in the spherical particles at sphere volume fractions in the range of φs <

0.02. The probability of clusters coalescing which would result in a macroscopic

liquid phase is relatively low. The reason for the improbable coalescence events

is explained by the fact that the diffusion of the clusters above a critical size

is hindered within the background host which is rich in rod-like fd-virus. The

concentration of rods is above the overlap concentration at the statepoint being

discussed. We suggest that the existence of the stable clusters in our rod/sphere

system cannot be explained completely by only applying the theory postulated

by Groenewold et al; which attributes this sea of cluster phase mainly to the

competition between the electrostatic repulsion and depletion induced attraction.

We suggest that the clusters are actually thermodynamically stable liquid-like

droplets that coexist together with a gas phase. We arrive at this conclusion

because at the cluster/gas phase interface we observe a dynamic exchange of

single particles between the two phases. Preliminary experiments carried out

using high resolution confocal microscopy suggest that this exchange is in a

dynamic equilibrium but we do not as yet have sufficient quantitative proof of

this.

4.3.2 Analysis of thermally induced fluctuations at cluster interface

As was already shown in the previous subsection, mixtures at low sphere volume

fraction φs for high enough rod concentrations φr phase separate into a stable

sea of liquid-like clusters rich in colloidal spheres and a rod-rich background

which is poor in spherical particles. In this subsection we report the results of
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the characterization of interfacial properties of the clusters. We recorded a time

series of the thermally-induced fluctuations at the equator plane of individual

clusters using video microscopy (see figure 4.3). Each cluster is made up of ≈
1000 polysytrene particles and in the fluorescence images the cluster looks like a

liquid droplet in a host medium of a different viscosity. Statepoints in the phase

diagram for which the fluctuations were recorded are shown in figure 4.5 and

are depicted by the blue hexagonal points labelled with roman numerals (iv-vi).

A detailed description of the experimental protocol followed can be found in

section 4.2.

Figure 4.7 shows a representative fluctuation spectrum which is plotted versus

the wave vector qx for a mixture with the composition represented by the blue

point labelled (vi) in figure 4.5. The fluctuation spectra of statepoints iv and v

qualitatively look similar to the spectra obtained for the statepoint (vi). In order

to relate the spectral coefficients 〈|u(q⊥)|2〉 to the interfacial tension γ , we use

equation 4.1 [82].

〈|u(q⊥)|2〉= kBT
2γ

⎡
⎢⎣ 1

qx
− 1√

γ
κ −q2

x

⎤
⎥⎦ (4.1)

where kB is the boltzmann constant, γ is the interfacial tension and κ is the

bending rigidity. The two fitting parameters are γ and κ . For a colloidal

rod/sphere mixture the bending rigidity κ is infinitely small and can be neglected

since the curvatures of interfaces are also small which is due the characteristic

ultra-low interfacial tension observed in mixtures of colloidal particles [54]. The

first few modes are discarded when fitting the Power Spectral Density (PSD).

This is done to account for the significant difference in the first five modes be-

tween the theoretically calculated fluctuation spectra of a spherical geometry and

that of a planar one [82]. Above the first five modes the theoretically calculated

spectra become indistinguishable within experimental error both for the spheri-

cal and planar geometry. This makes the performing of the analysis as a planar
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Figure 4.7: Plot of fluctuation amplitude < u2
qx
> versus wave vector qx of a typical cluster in

a colloid/rod mixtures of composition φcol = 0.04 and φr = 0.008. The solid line is the fit of the
data yielding a γ = 9.7 ·10−7 N/m.

problem a good approximation to the three diemsional case. At high-q, the cut-

off is set by the optical resolution of the imaging setup and the pixel size of the

camera. In our imaging system this is of the order of q ∼ 10−7m−1.

Table 4.1: Ultra-low Interfacial tension of liquid-like clusters of mixtures with compositions
shown in figure 4.5.

Statepoint iv v vi

γ (N/m) 7.3·10−7 7.02·10−7 9.7·10−7

Figure 4.7 shows the fit of the experimentally determined power spectral den-

sity for a mixture with φcol = 0.04 and φr = 0.008. The point measured is de-

picted by the blue point labelled (vi) in figure 4.5. The solid line shows the fit

with a γ = 9.7·10−7 N/m. Table 4.1 shows the corresponding determined in-

terfacial tension of mixtures at the state points depicted by the roman numerals

(iv),(v) and (vi) in figure 4.5. In colloidal systems the interfacial tension can be

estimated by simple scaling arguments. For colloidal particles of radius rcol, the

interfacial tension γ � kBT/r2
col. We used spheres of rcol = 250 nm which re-
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sults in γ � 5·10−8 N/m. The experimentally determined interfacial tension for

our rod/sphere mixture is overestimated by a factor 10. This could partly be due

to the fact that we reduce the three dimensional cluster into a two dimensional

problem. We are thus only sensitive to the fluctuations in the plane of the equator

which do not account for all the possible modes of the thermally induced undula-

tions at the interface. Despite the discrepancy in magnitude, we obtain ultra-low

interfacial tension which has been determined in similar colloid/polymer mix-

tures using independent methods such as the spinning drop method [18].

4.3.3 Thermally-induced fluctuations at macroscopic interfaces

In the previous section 4.3.2 we characterized the interfacial properties of the

clusters formed in mixtures at relatively low φs ≤ 0.04. In mixtures at φs ≥ 0.04,

the average cluster size increases and after the large clusters coalesce they can

form a single homogeneous liquid phase. In this section, we characterize the

interfacial properties of the liquid phase by analyzing thermally-induced fluctua-

tions that occur at a macroscopic gas/liquid interface. We also compare values of

the interfacial tension γ determined by two independent methods. One method

is the capillary wave analysis method which is applied in the case of horizon-

tal macroscopic gas/liquid interfaces. The second method is the Power Spectral

Density analysis of spherically shaped clusters (see section 4.3.2). We carry out

the experiments in a buffer prepared in pure H2O thus mis-matching the density

of spheres in the experimental system. We prepared three mixtures with com-

positions represented by the three state-points labelled (vii-ix) in figure 4.5. A

horizontal macroscopic interface is formed following phase separation between

a fluid-like phase, which is rich in spherical colloids, and a gas-like phase (see

figure 4.4). The volume fraction of spheres in the mixtures was kept fixed while

we varied the volume fraction of rods φr. Figure 4.8 shows the probability distri-

bution of the height-height displacement of the interface about an average height

for the two mixtures of different rod volume fraction φr. Clearly increasing φr
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Figure 4.8: The probability distribution function of the amplitude of the height displacements
(h) about a mean interface height for two mixtures with rod/sphere compositions represented by
the roman numerals (vii) and (ix) in figure 4.5. The distribution of displacement heights is much
broader for the statepoint (vii) which is closer to the binodal line.

results in fluctuations with a lower amplitude and a height distribution that has a

much smaller standard deviation compared to the mixture at lower φr.

We determined both the static and dynamic correlation functions following

the experimental protocol outlined in section 4.2. The theoretical background

required to analyze and interpret the results is discussed in section 2.3. The

static correlation function gh(x) is defined as

gh(x) =
kBT
2πγ

K0

(
x
Lc

)
(4.2)

where kB is the Boltzmann constant, γ is the interfacial tension, Lc is a char-

acteristic length called the capillary length and K0 is a Bessel function which

is written as a function of x/Lc. Experimentally determined static correlation

functions gh(x) are presented in figure 4.9. We fit the experimentally obtained
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Figure 4.9: Experimentally determined height-height static correlation functions gh(x) measured
for three statepoints vii, ix, x shown in figure 4.5. The red line is for the statepoint ix, the blue
line is for the statepoint viii and the black line stands for the statepoint vii. All mixtures are at a
fixed sphere volume fraction φs but different rod volume fraction φr.

static data using equation 4.2, and obtain the interfacial tension γ . The dynamic

correlation function gh(t) is defined as

gh(t) =
kBT
2πγ

∫ kmax

0
dk

k

1+ k2
exp(−(k+ k−1

)t/2τ) (4.3)

where k = Lck and the relaxation time τ is given by τ = Lcη/γ [1]. By fitting

the experimentally determined gh(t) by equation 4.3 we also obtain an interfacial

tension.

Table 4.2 shows the interfacial tension determined using the static gh(x), and

dynamic gh(t) correlation functions. The fitting of the corresponding correlation

functions resulted in comparable values of γ . There is however a two orders in

magnitude difference in the the values of γ obtained using the power spectral

decomposition method (Table 4.2), compared with the values from the height-
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Table 4.2: Ultra-low Interfacial tension of the macroscopic interface between the liquid phase
and a gas phase in mixtures with compositions shown in figure 4.5 determined from fitting both
the static and dynamic correlation function.

Statepoint γ from fit of gh(x) (N/m) γ from fit of gh(t) (N/m)

vii 4.04·10−9 6.26·10−9

viii 4.73·10−9 8.2·10−9

ix 1.22·10−8 1.96·10−8

height correlation function analysis (Table 4.1). The correlation function analy-

sis has the advantage that the gas/liquid interface can to a good approximation

be considered as a continuum since the length along the interface Lint where the

capillary waves are measured is much larger than the radius of a single spheri-

cal colloid rc i.e (Lint � rc). In the method used for analyzing the contours of

the spherically shaped clusters, whose typical radius is ∼ 5μm, single spherical

particles can be resolved leaving and entering the liquid phase during the im-

age acquisition. For the latter case, assuming that the interface is a continuum

is a poor approximation. Furthermore the leaving and entering of the smaller

spherical particles into and out of the liquid phase introduces artifacts during

the edge detection protocols rendering this method less accurate. Nonetheless

both methods yield an ultra-low interfacial tension ≈ 10−7 − 10−9N/m which

has been measured in similar colloid/polymer mixtures [18]. In the next section

we will present experimental results that show a region of the phase diagram for

a rod/sphere mixture at ξ = 3.5 in which three phases (solid/liquid/gas) coexist.

4.3.4 Three-phase coexistence

So far in this chapter we have characterized the equilibrium phase behavior of

statepoints that lie relatively close to the gas/liquid binodal in a mixture at a size

ratio ξ = 3.5. Indeed after phase separation we observed a liquid-like phase that

is rich in spherical particles coexisting with a much more dilute gas phase. In

section 2.2 we introduced the Free Volume Theory (FVT) which is a tool used to

calculate the phase behavior in mixtures of colloidal particles [63,64]. The FVT

predicts a fluid/fluid coexistence for mixtures having a size ratio ξ > 0.6 which
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Figure 4.10: (left figure) A confocal image of a mixture at a size ratio ξ = 3.5 showing clusters
that have a solid crystalline core which is covered by a thin liquid-like outer layer. Distinct grain
boundaries are observed whenever two crystallites that have different lattice orientations collide
with each other. (middle figure) A zoomed-in image of crystallite C showing the highly ordered
solid core and the more liquid-like film at the edges of the cluster. Both the solid and liquid
outer layer coexist together with a much more dilute gas phase. (most right figure) Fast Fourier
transform of clusters A and B respectively showing evidence of typical colloidal crystal packing.

is in agreement with what we observe for our rod/sphere mixture at a size ratio

ξ = 3.5. For the size ratio that we studied the FVT also predicts a three phase

coexistence region within the phase diagram which is bounded from below by

the gas/liquid region and above by the gas/solid coexistence region [112]. In

this section we present the results of the characterization of statepoints which

are found deeper into the phase separating region where we found experimental

evidence that suggests a three phase coexistence region.

We investigated the phase morphology of the statepoint (xi) in figure 4.5)

which lies just above the gas/liquid region of the experimentally determined

phase diagram. The dispersion was prepared in a buffer that was not density

matched to allow the dense colloidal phases formed after phase separation to

collect at the bottom of the observation microscopy slide which we mount on

a horizontal confocal microscope setup. It was observed that the initial stages

of the phase separation occurred via the formation of clusters that grow in time

just as in the case of mixtures that were prepared close to the binodal line. The



72 4.3. RESULTS AND DISCUSSION

main difference however is that the clusters formed exhibit a solid crystalline

core covered by a liquid-like melted layer several colloidal diameters thick. Due

to gravity, the clusters gradually sediment to the bottom of the sample holder but

instead of coalescing into one homegeneous phase as in the case of the purely

liquid-like clusters, grain boundaries are formed which separate the crystallites

having different crystal lattice orientation as shown in figure 4.10. Fast Fourier

transform performed on the images of the solid-like core shows a regular hexag-

onal pattern which is characteristic of a colloidal crystalline order. A gas phase

is observed which coexists together with the gas/liquid phase. This experimental

evidence leads us conclude that we have located the three-phase coexistence re-

gion in our colloidal rod/sphere mixture which is predicted by the Free Volume

Theory [112].
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Figure 4.11: Fluctuation spectra determined for the liquid-like melted layer covering the solid
crystalline core of clusters observed in the three-phase cosxistence region of phase diagram. The
rod/sphere mixtures were all prepared at a fixed volume fraction of spheres (φs = 0.01) at three
different rod concentrations (φr).

We characterized the thin liquid film on top of the crystalline core phase by

analysing the fluctuations of the melted layer at statepoints labelled (i-iii) in fig-
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ure 4.5. The fluctuation spectra at the interface between the liquid outer layer

of the solid-core of the clusters and the gas phase is shown in figure 4.11. The

spectra have the same shape as those of the purely liquid-like clusters measured

in section 4.3.2. This supports what we observed in the case of the macroscopic

interfaces where the interfacial tension γ increased with increase in φr which in

turn led to a decrease in displacement heights of the interface (see section 4.3.3).

Interestingly, during the initial stage of the phase separation there is no evidence

of a solid phase in the clusters from the confocal microscopy images. The clus-

ters appear to behave as dense liquid droplets. It is only when phase separation

goes to completion that the crystalline core becomes clearly visible. An indepen-

dent experiment which we performed that supports this conclusion is presented

in the chapter 5.3.2. Ten Wolde et al have shown how critical density fluctu-

ations in dense liquid droplets in the fluid/fluid coexistence region can lead to

crystallite formation inside the droplets for systems with short-ranged attraction

using numerical simulation methods [117]. In chapter 5.3.2 we will show what

we believe is an experimental observation of such crystal nucleation and growth

which occurs within dense liquid-like clusters.

4.3.5 Phase Topology

As mentioned at the outset of this chapter, the goal was to map out the equilib-

rium phase behavior of the colloidal rod/sphere mixture consisting of rod-like fd

virus and charge stabilized polystyrene spheres. We studied in our experiments a

narrow colloidal sphere concentration window namely φs ≤ 0.1. We were limited

to this range by the fact that the polystyrene spheres we used are not refractive

index matched and thus the highly scattering particles make charaterization of

the sample using optical microscopy almost impossible at very high φs. The

experimentally mapped out phase diagram is shown in figure 4.12.

Although the fact that anisotropically shaped particles make excellent deple-

tion agents has been known since the seminal work of Asakura and Oosawa [7]

in the 50s, there has been a lack of suitable experimental model systems where
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this could be systematically explored. The phase diagram we mapped out clearly

highlights the efficiency of rod-like particles as depletants. Rod volume fractions

φr ≈ 0.002 are already sufficient to induce phase separation whereas when using

polymers or smaller spherical colloids as depletants at least a factor 10 higher in

concentration will be required to induce strong enough depletion forces. Further-

more, relatively small increases in φr at a fixed φs lead to pronounced differences

in the phase morphology. This is seen for example in the phase diagram at sphere

volume fractions φs < 0.03 where the transition from a stable gas/liquid phase

into a three phase coexistence region is induced by ∼ 5% increase in φr. It is

also clear to see that the phase behavior of the rod/sphere mixture is indeed rich

considering that we only studied a very small window but we were able to ob-

serve a (gas/liquid), (gas/liquid/solid) and (gas/crystal) phase separation. With

spherical particles that can be index matched with the buffer it would be possible

to determine the complete rod/sphere phase diagram and then compare this to

predictions made by the Free Volume Theory. Refractive index-matched parti-

cles would also make it possible to follow particle ordering within clusters as

a function of time and precisely determine when the dense liquid core in the 3

phase region transforms into the crystalline core. Although fd wild type is an

excellent model for colloidal rods the mutant Y-21M is a more ideal rod. The

mutant is less flexible having a persistence length ∼ 10 times its contour length.

It would be very interesting to determine the location of binodals using the more

rigid Y-21M and check if deviations with the FVT will decrease.
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Figure 4.12: Part of the rod/sphere phase diagram for a mixture of size ratio ξ = Lrod/R =
3.5. The blue line is a guide to the eye showing the location of the experimentally determined
gas/liquid binodal line. Above the binodal line is a region where the mixture becomes unstable
and phase separates into a gas/liquid tha coexist at equilibrium. Increasing rod volume fraction
φr a three phase coexistence region is observed (gas/liquid/crytal). At low φs and high φr a
gas/crystal phase is the thermodynamically equilibrium state.





5
Mixtures of rods and spheres under shear flow

We investigated the internal structure of clusters rich in spherical particles which

are formed after phase separation in rod/sphere mixtures. We studied clusters

formed in the two phase coexistence region (gas/liquid) and the three phase

(gas/liquid/solid) region of the experimentally determined phase diagram. We

probe the structure using a home built cone/plate shear cell that is mounted on

a confocal microscope allowing real space and time measurements of the flow

properties of the clusters. We show that the clusters in the two phase region

deform as pure liquid droplets and we compare the experimental observations

to theoretical models on liquid droplet deformation. For the clusters in the three

phase region, we show that they deform following a mechanism which resembles

the tip streaming effect. Finally we present experimental evidence of the forma-

tion of crystal nuclei within purely dense fluid clusters found in the 3-phase

coexistence region of the rod/sphere state diagram.

5.1 Introduction

Complex colloidal dispersions are abundant both in naturally occurring systems

and also in many practical applications. Examples of naturally occurring sys-

tems are blood, and the cytoplasm of a living cell [30]. Practical systems which

are made up of dispersions of colloids include drug delivery systems for medi-

cal purposes [56, 76], paints, drilling fluids [71, 104] and in the food processing

industry in the form of proteins and polyscaccharides [27]. The understand-

77
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ing of the phase behavior of such dispersions is thus not only important from

a fundamental research point of view but it is also essential for many applied

purposes. This need has prompted an active interdisciplinary field of research

which approaches the study of colloid physics from an experimental, computer

simulations and theoretical perspective [69, 70].

The complexity of the physics of colloidal dispersions can be classified us-

ing a general scheme [68, 69]. In the first instance we consider the degree of

complexity of the colloidal system itself. This degree of complexity considers

the shape, the concentration of particles and the form of interaction potential

whether it is attractive or repulsive or if it is a superposition of both. The system

complexity can be further increased by dispersing mixtures of anisomeric parti-

cles. We can also define the complexity of the problem. The criteria for making

this classification is whether we study the thermodynamic behavior of the system

in the absence of external fields that can mechanically perturb the system or we

consider the thermodynamic behavior in the presence of external fields such as

magnetic, optical, confining geometries and shear flow.

The equilibrium phase behavior of colloidal dispersions is very rich and is

not yet fully understood. In the first part of this thesis we presented a review

on the phase behavior of simple spherical particles and also for colloid/polymer

mixtures. We increased the system complexity by replacing the polymers in the

mixtures with nearly ideal rods and we determined the equilibrium phase behav-

ior. In all the discussions the stability of the dispersions was investigated under

quiescent conditions. Interestingly though, at the colloidal length scale (1-10 nm

to 1-10 μm) the systems fall under a class of materials known as soft matter.

Such soft materials are more susceptible to deformation compared to condensed

molecular systems and in many practical applications mixtures of colloidal parti-

cles are always subject to some external fields such as shear, magnetic and optical

fields. Shear flow is more common and it is easier to realise in a controlled fash-

ion under normal laboratory conditions so we will restrict our discussion to the

influence of shear on the phase behavior of colloidal dispersions.
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In colloidal dispersions shear flow can either destroy structure or induce their

formation. For example steady shear flow melts away the ordering in disper-

sions of colloidal crystals made up of simple spherically shaped charged parti-

cles [4]. On the other hand shear has been observed to induce ordering in liquid-

like phases made up of nearly hard spheres that are subjected to an oscillatory

shear at low strain amplitude [5, 119]. Holmqvist et al showed that growth rates

and induction times of crystal formation exhibit a maximum which depends on

the rate of shearing in dispersions of charged silica particles [51]. For a more

comprehensive review on the literature that discusses flow induced structure in

colloidal suspensions see reference [111].

Shear flow couples more strongly to the orientation of anisometric particles

than in the case of their spherical counterparts. Examples of anisometric parti-

cles are colloidal rods and disc shaped particles also known as platelets. Under

equilibrium conditions such anisometric particles can form lyotropic liquid crys-

talline phases [85]. At low concentrations particles have random orientations but

as concentration increases particles start to align with the longer axis pointing on

the average in one preferred direction. The first ordered state after the isotropic

phase is known as the nematic phase. Smectic and columnar phases can also

be observed at higher particle volume fractions. In the case of colloidal rods

it has been shown theoretically that shear flow can shift the Isotropic-Nematic

(I-N) coexistence to lower concentrations [23, 77]. Lenstra et al observed exper-

imentally the predicted displacement of the I-N spinodals using dispersions of fd

viruses [65]. The flow-induced rod alignment in suspensions of fd virus leads to

a decrease in the viscosity with the increase in shear rate (shear thinning) [41].

This decrease in the viscosity has an influence on the flow behavior and could

lead to flow instabilities. Kang et al observed in fd dispersions formation of shear

bands in the vorticity direction using an optical couette shear cell and they also

managed to determine the full non-equilibrium phase diagram [57] of the rod-

like viruses. Similar hydrodynamic instabilities are also observed in dispersions

of worm-like micelles and platelets [45].
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The complexity of the problem can be increased by shearing multi-component

dispersions. The theoretical and experimental knowledge of the flow behavior of

pure colloidal suspensions serves as the framework upon which we can explain

the phenomena observed in mixtures subjected to shear flow. One example of a

multi-component dispersion is a solution of Worm-Like Micelles (WLMs) where

spherical nanoparticles at volume fractions (∼ 1 percent) are added to the dispe-

rion [49,74]. The addition of the nanoparticles to the solution of WLMs increases

the zero-shear viscosity and the longest relaxation time. The modification of the

flow behavior is explained by considering that micelle-nanoparticle juctions are

formed in the network which significantly influences the relaxation mechanisms

of the WLMs network. In systems where spherical particles are suspended in a

visco-elastic host medium the formation of 2-Dimensional sheets or chain-like

structures which are made up of the spheres has been observed [81, 93].

In near critical colloid polymer mixtures the critical point is shifted to higher

concentrations when shear flow is applied [66]. In the case of already phase sep-

arated mixtures shear flow can either deform structures or induce their forma-

tion. For example Derks et al studied phase separation under shear in a mixture

of poly-(methylmethacrylate) PMMA particles and polystyrene spheres. They

showed that above a critical size spinodal domains begin to couple to shear flow

and are stretched in the direction perpendicular to flow and that the steady state

width of the band-like structures is independent of the shear rate [22]. Similar

string-like structures under shear are also observed in polymer blends [79].

In the case of colloid/polymer mixtures the complexity of the problem can

be increased further by substituting the flexible polymer chains with more rigid

rod-like particles [46]. The rods are much more susceptible to shear flow and

it is thus reasonable to conclude that the coupling of the rods to the flow field

will alter the rod-induced depletion force that is mediated between the spherical

particles. This in turn will influence the stability of the rod/sphere mixtures.

It is challenging to synthesize mono-disperse ideal colloidal rod model systems

which are also neutrally bouyant. There are currently no systematic studies to our
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knowledge on mixtures of colloidal rods and spheres under shear flow as a result

of this lack of suitable rods. Naturally occurring filamentous bacteriophages

offer an excellent model for colloidal rod-like particles [34]. In particular fd

virus is a well established model system (see section 3.2). Chapters 3 and 4 of

this thesis have been dedicated to studying the equilibrium phase behavior of a

mixture fd and polystyrene spheres that are density matched. In the rest of this

chapter we will present the results of a systematic study of how structures formed

in phase separating mixtures undergo deformation when subjected to a steady

shear flow. We probed the internal sructure of clusters formed at statepoints

that lie just above the experimentally determined gas/liquid binodal which we

expect to have a purely liquid-like internal structure. We also investigate the

internal structure of clusters that we observe in mixtures prepared at statepoints

well above the gas/liquid binodal. For these statepoints we have evidence from

confocal microscopy images which show clusters that have a highly ordered core

and a disordered liquid-like outer layer.

In section 5.2 we describe the experimental details and the confocal-rheoscope

which is a home built cone-plate shear cell mounted on a fast confocal fluores-

cence microscope that we use for performing in-situ rheology experiments. In

section 5.3.1 we discuss the susceptibility to shear flow of the liquid droplets

that are formed in the gas/liquid region of the phase diagram. We present in sec-

tion 5.3.2 the results on the shear-induced deformation of clusters formed in the

3-phase coexistence region. We show in section 5.3.3 that the clusters in the 3-

phase region before steady state deform via a mechanism similar to that of pure

liquid droplets but at equilibrium they deform following a two step mechanism.

This is followed by the conclusions in section 5.4.
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5.2 Materials and experimental techniques

5.2.1 Description of model system

We used charge stabilized polystyrene spheres of diameter 0.5μm. The spheres

were fluorescently labelled with rhodamine. To induce the depletion force be-

tween the colloidal spheres we used fd virus. fd is a filamentous bacteriophage

880nm long, 8nm in diameter with a persistence length of 2.2μm. A complete

description of the colloidal particles and the buffer used for the experiments is

given in section 3.2. fd virus which is made up of single stranded DNA wrapped

in repeat units of coat proteins is also neutrally bouyant yielding a model sys-

tem for which influence of gravitaty is negligible. We define the size ratio

ξ = Lrod/Rsphere where Lrod is the length of the rod and Rsphere is the radius

of the polystyrene spheres which will be used for the rest of the chapter. The

rod/sphere mixture that we discuss in the rest of the chapter has a size ratio of

ξ = 3.5. We prepared mixtures with compositions in the two phase coexistence

region (gas/liquid) and in the three phase (gas/liquid/solid) region of the phase

diagram.

5.2.2 Cone/Plate shear geometry

For the shear experiments we used a home-built cone/plate shear cell which is

mounted onto a ZEISS Axiovert 200M inverted microscope equipped with a

vt infinity fast confocal unit. The cone is made of steel and has an angle of

1.4◦. The bottom plate of the shear cell is made up of a circular coverglass 80

mm in diameter and 170μm thick as shown in the schematic diagram of the

setup shown in figure 5.1. The actual inner diameter of the shear cell chamber

is 20mm. Both the steel cone and glass bottom plate are coupled to servomotors

that are driven independently and which are set to rotate in opposite directions.

Figure 5.2 shows an engineering drawing with greater detail on the actual shear

cell construction.

The rotation of the cone in an opposite direction to that of the plate results
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Figure 5.1: Schematic diagram of the counter-rotating cone-plate shear cell. α = 1.4◦ is the
angle the steel cone makes with the bottom glass plate. The location of the zero velocity plane is
depicted by the dashed line. ωcone and ωplate are the angular velocities of the cone and plate re-
spectively, which are made to rotate in opposite directions. The ratio of ωcone/ωplate determines
the location if the zero velocity plane.
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Figure 5.2: A sectional view of the cone plate shear shell which is integrated onto an inverted
confocal microscope. The shear cell is mounted onto the microscope such that the objective is
7 mm off the centre with respect to the centre of the shear cell. High magnification immersion
objectives can be used for imaging by applying a thin film of immersion liquid onto the bottom
glass plate in a ring which is concentric with the metal cone. Sample volume needed to fill the
cell is 180 μl. The shear cell chamber is enclosed in a metal block and added to that a vapour
lock reduces evaporation allowing experiments to be carried out over several hours with sample
drying out.
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in the establishing of a stationary plane called the zero velocity plane. When

observed under a microscope the structures that are located within this plane

seem not move with repect to the lab frame of reference while shear is being

applied. This makes it possible to observe what is in the zero velocity plane

using the microscope without features of interest moving fast in and out of the

field of view. The height of zero velocity plane is determined by the ratio of the

angular velocity of the cone ωcone to that of the bottom plate ωplate while keeping

the shear rate γ̇ constant. For a cone/plate geometry, the shear rate is calculated

using equation 5.1

γ̇ =
Δω

tanα
(5.1)

where Δω = ωcone −ωplate and α is the angle between cone and bottom plate.

From equation 5.1 it is clear that in the cone/plate geometry the shear rate is the

same at all radial positions.

5.2.3 Image acquisition and analysis

Real time/space observations of the phase separated mixtures while subjecting

the dispersions to shear flow is made by using the confocoal microscope in the

EPI-fluorescence illumination mode. Relatively high frame rates ∼ 13 f ps are

achieved by using a multi-pinhole fast confocal scanning unit. The confocal

microsope is equipped with an Andor iXon camera (Andor Technologies) which

has 512x512 pixels each of size 16μm x 16μm. For all the experiments discussed

in this chapter we used a 63x Glycerol/Oil immersion objective with a Numerical

Aperture N.A = 1.3 resulting in a field of observation of size 130μm x 130μm.

The imaging plane was set parallel to the plane spanned by the velocity (v) and

vorticity vector (∇ x v). The ratio of ωcone/ωplate was chosen such that the

zero velocity plane was ∼ 40μm deep behind the bottom glass plate. Volume

scans were obtained by driving the objective with a piezo crystal from Jena Piezo

Systems which was sychronized with the fast confocal vt infinity confocal unit.
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For example a hyperstack of 130μm x 130μm x 20 z-slices takes around 3s to

acquire and at the relatively low shear rates used in the experimental protocol

γ̇ ≤ 3s−1 the acquisition of the hyperstack is fast enough to avoid blurring of

features that are in the field of view.

To characterize the deformation of clusters under shear we use an in-bulit func-

tion in ImageJ [92] which fits an ellipse of the projection of a cluster onto a 2D

imaging plane. From the best fitting ellipse we obtain themajor and minor axes.

We define the aspect ratio of the cluster as:

β =
minor axis
ma jor axis

(5.2)

The spherical polystyrene particles are highly scattering because they are not re-

fractive index matched. This leads to poor resolution in the z-axis of the confocal

volume scans. It is thus challenging to precisely determine the dimension of the

clusters in the gradient direction. We performed 3D rendering of the volume

scans using an in-built ImageJ plugin [92].

5.2.4 Determining the viscosity ratio of coexisting fluid/fluid phases and

the capillary number Ca of liquid droplets

The viscosity ratio of coexisting fluid/fluid phases is a dimensionless parameter

which is important in explaining the flow behavior of binary fluid mixtures. The

viscosity ratio is defined as p = ηd/ηh, where ηd is the viscosity of the dispersed

phase and ηh is the viscosity of the host phase. In our experiments clusters that

are rich in spherical particles make up the dispersed phase while a rod-rich phase

makes up the host. We now describe the experimental method which was used

to determine the respective viscosities of the dispersed and host phase.

We determined ηh by measuring flow curves of pure fd which were suspended

in the same buffer as the colloidal rod/sphere mixtures that were used for the

shear experiments. Figure 5.3 shows a typical flow curve of pure fd. The dis-

persion of rods is shear thinning but the measured viscosity decreases only from
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Figure 5.3: Measured flow curve of a pure fd dispersion at a mass concentration of 2.5 mg/ml in
a 10mM TRIS-HCl, 20mM NaCl buffer.

0.034 Pa ·s to 0.020 Pa ·s in the shear rate regime (0.03s−1 ≤ γ̇ ≤ 3s−1) in which

the experiments were performed. We can thus approximate the rod-rich contin-

uous phase in which the cluster are suspended as a Newtonian fluid and use the

measured viscosity at low shear rates as the zero shear viscosity for calculating

the viscosity ratio p. The viscosity of the clusters (rich in spherical particles)

was determined by using an emperical expression for calculating the viscosity of

a suspension of spheres given by equation 5.3

ηdrop = ηh

[
1− φs

φmax

]2.5φmax

, (5.3)

where φmax = 0.74 and φs was obtained by determining the voxels occupied by

the clusters in the confocal volume scans using a method described in section

4.3.1. We calculated a volume fraction of spheres ∼ 0.3. This value of φs was

then used to calculate the viscosity of the dispersed phase ηd. In the gas/liquid

coexistence mixtutes that we sheared the viscosity ratio p ≈ 0.3.

The capillary number Ca is a dimensionless number used to predict the de-

formation of liquid droplets which are suspended in a host phase of a higher
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viscosity. The theoretical background of Ca was introduced in chapter 2.6 and

here we recall the main points. The capillary number Ca is defined as

Ca =
ηhγ̇R

Γ
(5.4)

where R is the radius of the spherical droplet and Γ is the interfacial tension be-

tween liquid droplet and surrounding gas phase. Ca is the ratio of viscous forces

to the interfacial forces. In the case of Newtonian liquids the critical capillary

number Cacrit is obtained when the two respective forces are of the same or-

der of magnitude. At Ca < Cacrit the interfacial tension is more dominant than

the viscous forces and droplets deform affinely maintaining a stable ellipsoidal

shape with increase in shear rates. At Ca > Cacrit the viscous forces dominate

and droplets become unstable and begin to breakup. In the limit Ca � Cacrit

droplets deform into long and slender bands that breakup due to Rayleigh-Taylor

instabilities [95, 103]. For the calculation of Ca using equation 5.4, we used an

average < R > which was obtained from the confocal microscopy images of the

sheared clusters (<R>∼ 5·10−6m) and Γ which was determined experimentally

by capillary wave analysis as described in section 4.3.2 (Γ ∼ 10−8 N/m).

5.3 Results and Discussion

5.3.1 Shearing a gas/liquid coexistence mixture

In chapter 4 we determined the location of the two phase (gas/liquid) coexistence

region in the rod/sphere mixture at relatively low sphere volume fraction φs < 0.1

for a mixture of size ratio ξ = 3.5. The liquid phase is rich in the spherical col-

loids. We observed the formation of spherically shaped clusters which coexist

together with a gas phase (poor in polystyrene spheres) which is suspended in

a rod-rich host phase (see figure 5.6(A)). We also showed that the polystyrene

spheres are neutrally bouyant and as such the suspended clusters made up of the

spherical particles do not sediment but rather remain dispersed. Growth kinetics
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studies showed that the clusters grow until they reach an equilibrium end size

after ∼ 60 minutes. The liquid-like droplets have an ultralow interfacial tension

∼ 10−8 N/m as determined by contour analysis of the thermally induced fluctua-

tions at the gas/liquid interface. In this section we present the results of how sin-

gle clusters which behave as liquid-like droplets of ultra-low interfacial tension

γ that are suspended in a continuous matrix of different viscosity deform and fi-

nally breakup into daughter droplets. We compare the observed non-equilibrium

droplet behavior to classical theories on droplet deformation and break-up [108].

We prepared a rod/sphere mixture at ξ = 3.5 which had a sphere/rod compo-

sition of φs = 0.03 and φr = 0.007 respectively. After preparing the mixture in

an eppendorf tube we immediately loaded it into the home built counter-rotating

shear cell described in section 5.2. We waited for an hour before starting the

shear experiments to allow sufficient time for the system to fully phase separate

and reach steady state. The statepoint labelled by the roman numeral (v) which

we sheared is located just above the gas/liquid binodal line in the phase diagram

presented in chapter 4.3 in figure 4.5. The end stage of the phase separation

is made up of the liquid-like clusters which are suspended in a rod-rich host

phase (figure 5.6(A)). The zero velocity plane was adjusted so that it was located

∼ 25μm behind the cover glass. Confocal z-stacks were acquired by imaging a

plane every 1 μm along the z-axis while simultaneously applying a ramp in shear

rates. Time was allowed for the mixture to equilibrate after each step increase in

shear rate γ̇ .

At γ̇ ≤ 0.05s−1 the liquid droplets are not deformed as evidenced by an av-

erage value of the cluster aspect ratio β ∼ 1 which was defined in equation

5.2. Table 5.1 is a summary of the results. At such low shear rates a snap-

shot of the dispersion under shear cannot be distinguished from images acquired

in the quiescent state as shown in figure 5.6(A). After increasing the shear rate

(0.05 < γ̇ < 0.09s−1) we observed that the droplets are deformed affinely into

a steady ellipsoidal shape with an average cluster aspect ratio β ∼ 0.75 which

we obtained after analysing 10 clusters at each shear rate applied. The longest
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Figure 5.4: A 3D rendering of a confocal z-stack showing a deformed liquid-like cluster at a
shear rate γ̇ = 0.15 s −1. The cluster is deformed into a steady ellipsoidal shape with the longest
axis parallel to the flow direction.

Figure 5.5: Projections of the liquid-like cluster presented in figure 5.4 showing the equator of
the cluster viewed in the plane spanned by the velocity and vorticity vector (left image) and the
corresponding orthogonal view in the plane which is spanned by the gradient and vorticity vector
(left image).
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axis of the droplet was alligned parallel to the direction of flow as shown in

figure 5.6(B). Further increasing the shear rate (0.09 < γ̇ < 0.15s−1) results in

a state where the larger droplets are stretched into long and slender bands that

almost stretch across the 128 μm long field of view used for the experiment

while smaller droplets undergo affine deformation. A 3D reconstruction of an

intermediate-sized droplet which is undergoing deformation is shown in figure

5.4. Sectional views of the ellipsoidal structure are shown in figure 5.5. At a con-

stant γ̇ the bandlike structures formed from the stretching of the larger droplets

remain stable after allowing time for equilibration as presented in figure 5.6(C).

On stopping the shear flow the band-like structures breakup into smaller droplets

that retract back into spherical droplets as shown in the series of images in fig-

ure 5.6(D-F). Starting off at high shear rates 0.2s−1 < γ̇ results in the almost

instantaneous formation of the bandlike structures similar to those presented in

figure 5.6(C) which are unstable and are completely destroyed as strain units γ̇t

increase.

Table 5.1: Table showing droplet deformation mechanisms as shear rate γ̇ is increased.

Shear rate γ̇ [s−1] Ca <Cluster aspect ratio> (β )

≤ 0.05 ≤ 0.25 ∼ 1

0.05−0.09 0.25 - 0.45 ∼ 0.75

0.09−0.15 0.5 - 0.8 decreases monotonically

> 0.2 > 0.8 not defined

To compare the experimentally observed droplet deformation with theoreti-

cal models and to discuss the subsequent breakup of clusters we will use the

viscosity ratio p, the capillary number Ca and critical capillary number Cacrit

which were defined in section 5.2.4 and discussed more fully in section 2.6. In

our experiment we obtained p ≈ 0.3. We calculated Ca for the whole range of

shear rates applied during the experimental protocol and the results are summa-

rized in table 5.1. The table shows the observed droplet deformation at each

respective shear rate. Grace [40] showed that for viscosity ratios p in the range

0.1 − 1.0 the Cacrit is ≈ 0.5. For our mixture we observed that the droplets
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Figure 5.6: Representative confocal microscopy images taken while applying a ramp in shear
rates γ̇ . The rod/sphere mixture of size ratio ξ = 3.5 demixes into a gas and liquid phase that
coexist. The liquid phase is in the form of suspended clusters rich in the spherical colloids and the
gas phase of spheres is contained in the continuous rod-rich phase. The sphere volume fraction
in the mixture is set to φs = 0.03 and rod volume fraction φr = 0.007. Shown are images acquired
at shear rates γ̇: 0.03 s−1 (A), 0.06 s−1 (B) and 1 s−1(C). Images (D-F) are part of a time lapse
showing what happens on cessation of the shear flow. The elongated bandlike structures break
into smaller droplets that retract into spherically shaped ones.
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Figure 5.7: A confocal volume image of a liquid-like cluster sitting at the glass wall under
quiescent condition. The cluster partially wets the glass and maintains a finite contact angle
with the cover glass.

undergo affine deformation below Ca ∼ 0.5 from a spherical shape into stable

ellipsoids. At Ca > 0.5 the droplet shapes are not stable anymore. The droplets

elongate into long slender band-like structures. This result is strikingly similar to

the phenomenological behavior observed in mixtures of polymer blends [108].

The prediction of droplet deformation and break up under shear is often dis-

cussed using an emperically determined boundary which separates the region

of stable droplets from unstable ones in a plot of capillary number Ca versus

viscosity ratio p. This stability boundary spans an interfacial tension range of

5 ·10−4 ≤ Γ ≤ 2.5·10−2 N/m and covers several orders of magnitude of viscosi-

ties 5 ≤ η ≤ 3·103 Pa ·s [19, 40] (see figure 2.9 in chapter 2.6). It was deter-

mined for a model system of immiscible polymer blends. Our colloidal model

system has a much lower interfacial tension (Γ ∼ 7·10−7 N/m) and viscosity

(η ∼ 0.025Pa ·s) compared to what is typically the case in the polymer blends.

Interestingly though, the stability boundary in figure 2.9 semi-quantitatively de-

scribes our observations.

A deviation from the predicted behavior using the stability boundary is ob-

served at Ca > 0.5. Instead of droplets breaking up into smaller stable daugh-
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Figure 5.8: Sectional projections of the cluster shown in figure 5.7 under quiescent conditions.
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ter droplets, stable bandlike sructures are formed as shown in figure 5.6(C).

Such bandlike formation has been observed in phase-separated solutions of poly-

mers [47, 107]. Hashimoto et al [47] call the band formation a string-like phase

and suggest that the strings are the first step towards shear-induced mixing. Qual-

itatively we observe the same behavior. At moderate shear rates the string-like

phase is stable but at higher shear rates the cross section of bands decreases

until the bands are destroyed. The fact that at moderate shear rates the band-

like structures are stable can be attributed to the suppression of surface tension

instablities by shear flow [21, 47]. The coupling of the shear flow to the cap-

illary waves leads to an effective interfacial tension which is dependent on the

shear rate (section 2.5). By suppresing the thermally induced fluctuations at the

fluid/fluid interface, the Rayleigh-Taylor instabilities that would typically lead

to break up of the bands are damped and thereby stabilizing the band-like struc-

tures. Droplet breakup and retraction is observed on cessation of shear as shown

in figure 5.6(D-F) which can be understood by considering that the interfacial

tension becomes dominant in the absence of viscous stresses of the sheared host.

The experimental evidence gathered from studying the behavior of the clusters

under shear in this section clearly shows that the clusters behave as purely liquid

droplets. Further evidence of the liquid-like nature of the clusters is the way

that clusters which are close to the bottom glass plate of the shear cell partially

wet the glass surface forming a finite contact angle. Figure 5.7 is an example

of a cluster at the bottom glass plate of shear cell. Orthogonal projections of

the cluster are shown in figure 5.8 clearly highlighting the finite contact angle

between the horizontal glass plate and droplet surface. In the next section we

will probe mixtures in the region where we observed the coexistence of three

phases (gas/liquid/solid) using shear flow.

5.3.2 Shearing clusters in the 3-Phase region

In section 4.3.4 we presented confocal microscopy images of clusters rich in

polystyrene spheres which are formed after phase separation in a rod/sphere
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Table 5.2: Table showing shear rate at which tip streaming occurs (γ̇s) in a mixture at fixed
φs = 0.01 but increasing rod volume fraction φr.

φr γ̇s in s−1

0.010 2.5

0.013 6.8

0.015 9.2

mixture at a size ratios ξ = 3.5. The clusters formed in that part of the phase

diagram have a core in which the polystyrene particles are highly ordered and

an outer which shows a liquid-like ordering. Dispersed clusters coexist together

with a dilute gas phase. We conclude from this experimental evidence that we

have identified a 3 phase coexistence region in our phase diagram. Such a 3-

phase region is predicted for rod/sphere mixtures using the The FVT at size ratio

ξ > 0.6. The 3 phase region is bounded from below by a gas/liquid two-phase

region and bounded above by the gas/solid coexistence region [63]. In the rest

of this section we will present the results of the response of the clusters found in

this 3 phase region to simple shear flow. We then compare the deformation path-

way of the clusters to that of the one observed in the case of purely liquid-like

clusters which were discussed in section 5.3.1.

Rod/sphere mixtures at a size ratio ξ = 3.5 were all prepared in a density

matched buffer as described in section 5.2. The sphere volume fraction was fixed

at φs = 0.01 but we varied the rod volume fraction φr. After preparing a mixture

of a desired composition, we loaded the sample into our home built cone/plate

shear cell and waited for an hour before performing shear experiments to allow

the system to reach equilibrium. We set the zero velocity plane at 30 μm behind

the cover glass. For all the experiments which are reported in this section the

experiment consisted of a ramp in shear rates (γ̇ < 10s−1) while acquiring a time

series of images in the zero velocity plane at an average rate of 13 frames per

second.

We can describe the observed response of the clusters to the ramp in shear rates

(γ̇) by defining three main flow regimes. In the first regime at γ̇ < 0.4s−1 no
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Figure 5.9: The evolution from a stable cluster under shear (a) to one undergoing tip streaming
(b) and (c). The green arrow in (b) shows the region at one of the poles of the cluster where a
thin liquid jet is released in the direction of the flow field.

deformation was observed. Increasing the shear rate to 0.4s−1 < γ̇ < 2.5s−1 we

enter into an intermediate regime where clusters grow into larger structures by

means of coalescence which is aided by the shear-induced convection but there is

no indication of clusters undergoing deformation. The average cluster shape due

to the coalescence events is no longer spherical but relatively anisotropic which

we parameterize by defining a major and minor axes. In the intermediate regime

the major axis of the clusters tumbles with respect to the direction of flow. Since

we only observe a projection of the clusters onto the imaging plane and thus do

not have information in the z direction, we could not precisely determine the

tumbling frequency. In the third flow regime the clusters are deformed as shear

rate is increased. In particular spherically shaped clusters deform into a spindle-

like shape with the pointed tips pointing in the direction of shear flow (see figure

5.9(a)). This is followed by an ejection of a thin stream of particles emanating

from the tips of the clusters as shown in figure 5.9(b). Keeping the shear rate

constant leads to tip-streaming which is followed by a complete melting of the

clusters into band-like structures made up of the spherical particles similar to the
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bands observed for the liquid droplets mentioned in section 5.3.1. The shear rate

at which this jetting and susbsequent melting away of clusters occurs increases

with the increase in rod volume fraction φr for a fixed sphere volume fraction φs

as shown in table 5.2.

The transition from the first flow regime where the clusters maintain a fixed

orientation with respect to the flow direction, into the second flow regime in

which the clusters start to tumble is observed in many model systems. Examples

include suspensions of lipid vesicles [58, 75] and red blood cells [59]. Differ-

ences in the detailed rheological response is governed by the interfacial tension,

the strength of the interparticle attraction and the viscosity ratio p. In the first two

flow regimes presented in the preceeding paragraph the clusters behave as unde-

formable anisotropically shaped colloidal structures under shear. The third flow

regime which occurs at larger shear rates has many similarities to a phenomenon

called tip-streaming. The classical case of tip streaming applies to purely liq-

uid droplets where the droplets become elongated during shear thereby forming

pointed tips. The tip formation is followed by an ejection of smaller droplets at

the pointed tips until a new equilibrium droplet size and shape is achieved for the

specific shear rate being applied [87]. The difference to what we obeserve from

this classical picture is that we do not obtain discrete droplets being ejected at

the tips but rather we obtain a thin tube-like liquid jet at the conical shaped tips

(see figure 5.9). Furthermore instead of the streaming stopping after the larger

cluster has reduced its size as in the classical case [102], we observe a complete

fluidization of the once solid core into a band-like strip. We propose that what we

observe for the clusters in the 3 phase region under shear is not the classical tip

streaming but rather the gradual deformation and the subsequent melting away

of the clusters.

In the initial stages of the cluster deformation the shear flow mainly affects the

outer liquid-like layer by changing its effective dynamic interfacial tension Γe f f

(equation 2.40). Derks et al showed how shear flow suppresses the thermally-

induced fluctuations at a colloidal gas/liquid interface which in turn leads to an
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increase in Γe f f [21]. A more comprehensive description of the dynamic interfa-

cial tension in colloid/polymer mixtures under shear was given in chapter 2.5. In

the cone/plate geometry used in our shear experiments the coupling of shear flow

to the capillary waves is highly effective for the surfaces of clusters which mostly

lie in the direction parallel to the flow resulting in a localized increase in the ef-

fective surface tension Γ‖
e f f . The interfacial tension for the surfaces which lie

perpendicular to the flow direction Γ⊥
e f f is much lower than the Γ‖

e f f and this dif-

ference in magnitude increases at higher shear rates (figure 2.8). This anisotropy

in the dynamic surface tension results in the formation of conical shaped tips at

the poles of the clusters (see figure 5.9). Such tip formation was not observed

for the purely liquid droplets in the previous section 5.3.1 because in that case

shear rates that are by a factor 10 less than the ones applied in this section were

sufficient to deform and destroy the clusters. The surface tension can be approx-

imated as isotropic throughout the cluster surface at the low shear rates applied

in the respective experimental protocol. The next stage of the deformation is

the steady jetting of the outer liquid layer which starts from these pointed tips.

As the liquid layer decreases in thickness the inner solid-like core is then grad-

ually fluidized. In the final stages the cluster is smeared into long and slender

liquid-like bands.

The shear rate at which the "3 phase clusters" start to deform increases at a

fixed sphere volume fraction φs with increase in rod volume fraction φr. We

can explain this by considering that the depletion-induced attraction acting be-

tween the spherical particles also increases with φr. This increase in interparticle

attraction is further confirmed by the capillary wave analysis at the gas/liquid

interface which showed that the amplitude of the fluctuation of the interface de-

creases with increase in φr (see section 4.3.4) which implies a larger interfacial

tension.
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5.3.3 Crystal nucleation inside dense liquid droplets

In the previous subsection 5.3.2 we characterized the flow behavior of clusters

which are formed in the 3 phase coexistence region of our rod/sphere mixture at

a size ratio ξ = 3.5. In this section we present the results of a shear experiment

that we designed to study the evolution of the internal structure of clusters. ten

Wolde et al have shown using numerical simulations that in the phase diagram

of colloids which have relatively short-range attractions, crystalline nuclei can

form within an initially dense liquid-like cluster [117]. The formation of the

crystallite at the core is attributed to critical density fluctuations within the pure

dense droplet twhich lower the free energy needed to form the crystal nucleus.

The probability of the crystallite nuclei formation increases above a critical size

of the liquid-like droplet [117].

In the early stages of phase separation the core of clusters shows no crys-

talline ordering based on the analysis of confocal microscopy cluster images. A

solid-like core is resolved when the average size of the clusters approaches a

steady state end size which we determined experimentally (section 4.3.1 where

the growth kinetics of clusters is discussed). The fact that the highly ordered

structure inside the clusters starts appearing in the microscopy images only at

later times leads us to conclude that initially the core is just a dense fluid which

then transforms into a crystalline ordered phase in line with ten Wolde et al [117]

numerical simulation results. We probed the internal structure of the clusters by

subjecting them to shear flow at different waiting times after quenching. In each

experiment we determined the shear rate at which the onset of cluster deforma-

tion occurred and the corresponding droplet deformation mechanism.

In the shear experiments performed at relatively short waiting times after

quenching t ≤ 50 minutes, low shear rates (corresponding to a low shear stress)

were sufficient to destroy the clusters (γ̇ < 6s−1) as shown in figure 5.10. For

longer waiting times after quenching t > 50 minutes much higher shear rates

(γ̇ > 6s−1) were needed for destroying clusters as also shown in the figure 5.10.

From our study of the growth kinetics of a mixture of the same composition
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Figure 5.10: A plot showing the shear rate at which clusters are deformed and thereafter de-
stroyed. Each solid triangle is a separate experiment for which a mixture of a fixed composition
(φr = 0.013,φs = 0.01) is prepared but sheared at different waiting times after sample prepara-
tion. The blue vertical dashed line separates the observed droplet deformation mechanisms into
two main flow regimes. For mixtures sheared after waiting t ≤ 50minutes the clusters are affinely
deformed into ellipsoidal shaped droplets as illustrated by the blue ellipse inserted into the figure
to the left of the dashed line. For mixtures sheared after t > 50minutes the clusters deform via
the formation of cone shaped tips (illustrated by sketch to the right of the blue dashed line) which
is followed by the ejection of a stream of particles similar to what was presented to figure 5.9.
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under quiescent conditions (see section 4.3.1) we know that after ≈ 60 minutes

the clusters reach an equilibrium end size which has a narrow size distribution.

The results presented in figure 5.10 and the knowledge of the growth curve of

the clusters suggests that clusters in mixtures which are allowed to fully phase

separate have a greater shear modulus than that of the ones formed during the

initial stages of the phase separation. It was also observed that the clusters at

relatively short waiting times after quenching t ≤ 50 minutes, deform via a dif-

ferent mechanism compared to clusters in samples allowed to phase separate for

longer times t > 50 minutes as shown in figure 5.10. At shorter waiting times the

droplets deform affinely into ellipsoidal shaped structures which is a typical de-

formation mechanism of purely liquid droplets dispersed in a continuous phase

of a different viscosity. For mixtures allowed to phase separate for longer times

we observed the tip streaming-like phenomena which we attribute to the cluster

having a denser solid-like core and a liquid-like outer layer. From this experi-

mental evidence we conclude that the internal structure of the clusters seems to

evolve from a purely liquid homogeneous droplet to one with a much more dense

core. The core shows a crystalline ordering as observed by means of confocal

microscopy images (see section 4.3.4).

5.4 Conclusion

Simple shear flow was used to probe the structure of clusters which are formed

in phase separating colloidal rod/sphere mixtures. Clusters that are formed in

the two phase (gas/liquid) coexistence region of the phase diagram responded

to shear via a mechanism similar to what is observed for purely liquid droplets

that are suspended in a host medium of a higher viscosity. Several flow regimes

were identified. No deformation of structures was observed at the lowest shear

rates (γ̇ ≤ 0.05s−1) applied in a shear ramp experiment. Increasing the shear rate

(0.05 < γ̇ < 0.09s−1) led to the clusters being deformed affinely into stable el-

lipsoidal shaped droplets with the longest axis aligned parallel to the direction of

flow. Increasing the shear rate further (0.09 < γ̇ < 0.15s−1) resulted in a coexis-



CHAPTER 5. MIXTURES OF RODS AND SPHERES UNDER SHEAR FLOW 103

tence of smaller sized clusters that deform affinely and stable band-like structures

which are formed as a result of the strecthing of the larger sized droplets. The

bands break-up into smaller droplets when shear flow was switched off remines-

cent of Rayleigh-Taylor instabilities. The remixing of phase separated mixtures

occurred in experiments where the shear protocol started off with the applica-

tion of relatively high shear rates (0.2s−1 < γ̇). The behavior of the clusters

under shear flow clearly shows that their internal structure is made up of a purely

liquid-like phase. The partial wetting of the bottom glass wall of the shear cell

by the cluster provides corroborative evidence that the clusters formed in state-

points close to the gas/liquid binodal are indeed liquid-like droplets. Due to the

fact that we study the phase behavior of the rod/sphere mixture at rather low

sphere volume fractions (φs < 0.06) the number density of spherical particles is

not significantly high enough to form a single homogeneous liquid phase. We

instead obtain spherical shaped droplets dispersed throughout the rod-rich host

medium.

There is a clear difference in the evolution of cluster shapes as the rate of

shearing is increased in the case of the 3 phase region (see figure 5.9) to that

of the purely liquid-like droplets (see figure 5.6) found in the 2 phase region

of the phase diagram. This difference is a strong indication that the "3 phase

clusters" are much more viscous at the core than the purely liquid ones. Futher

proof that the "3 phase clusters" have a solid-like core is seen in the shear rates

at which deformation is observed. The "2 phase clusters" require shear rates

as low as γ̇ ≈ 0.1s−1 to destroy the clusters, but for the more solid-like clusters

the shear rates must be increased by up to a factor 10 to begin to observe small

deformations. In the low shear rate regime the 3-phase clusters behaved as purely

solid structures under shear showing a transition from a fixed orientation with

respect to velocity vector to a tumbling behavior. Our experiments revealed that

cluster deformation followed a two step pathway. In the first step of the cluster

deformation we observe a jet streaming of particles from conical shaped tips. We

propose that the tips form as a result of a lower effective interfacial tension Γe f f
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at the poles than on the cluster surfaces which are parallel to the flow direction.

The interfacial tension of surfaces parallel to flow direction is lower because

shear induces suppression of capillary waves leading to an increase in Γe f f . After

the outer liquid layer is convected away we enter into the second step of the

deformation pathway. In this step the crystalline core is melted and we observe

the formation of bands similar to the ones we obtain in the case of the 2-phase

liqiuid-like clusters. We conclude that the deformaton of the 3-phase clusters

begins with the shear flow affecting mainly the outer liquid-like layer and once

that fluid layer is depleted the solid-like core is then fluidized and subsequently

smeared into the band-like structures. Further shearing after band formation as

in the 2-phase clusters case leads to mixing.

We also showed that the internal structure of the 3-phase clusters evolves from

a purely dense liquid-like state at short waiting times after preparing mixture to

a crystalline structure inside the cluster having a melted liquid-like outer layer

when system is fully phase separated. We propose that this is an experimental

observation of crystal nucleation inside a dense fluid cluster which is induced by

critical density fluctuations as predicted by ten Wolde using numerical simula-

tions [105].
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Summary and Outlook

The central theme of this thesis is the study of the stability of a model colloidal

rod/sphere mixture under equilibrium conditions and the role that an external

flow field plays on the phase behavior of the mixture. Experimentally obtained

phase boundaries are related to binodals which are calculated using the Free

Volume Theory (FVT), a well established method for calculating phase bound-

aries in mixtures of colloids. For state-points which de-mix, the resulting micro-

phases are sheared in order to probe the internal structure. The subsequent defor-

mation pathways are compared with semi-quantitative models. In this thesis we

use mixtures of rods and neutrally buoyant polystyrene spheres with size ratios

ξ in the range 1.8 to 3.5. Here ξ is defined as the ratio of Lrod/Rc where Lrod is

the length of the colloidal rods and Rc is the radius of the spheres. The rods in-

duce an attractive interaction potential between the spherical particles. fd virus,

a micron-sized semi-flexible filamentous bacteriophage was used as a model for

an ideal rod-like colloid.

In chapter 3 we characterized the depletion-induced clustering in the mixtures

at various ξ using a combination of light scattering and optical microscopy tech-

niques. We investigated the influence of the size ratio ξ and the effective buffer

ionic strength on the location of the gas/liquid binodal in the equilibrium state di-

agram. We found that the gas/liquid binodal line shifts to higher rod volume frac-

tions φr with increase in ξ . The binodals which were calculated using the FVT

are in good qualitative agreement with the experimental results. We find how-

ever a quantitative mismatch between theory and experiments which increases in

105
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magnitude with increasing ξ . This discrepancy can be explained by the fact that

the mathematical expression used to calculate the average free volume of rods in

the phase boundary calculation scheme is correct in the limit of low φr and is only

an approximation at higher φr. At larger ξ much higher rod volume fractions are

required to induce phase separation and in turn the FVT is less accurate.

In chapter 4 we performed capillary wave analysis at the interfaces between a

coexisting liquid and gas phase. We obtained an ultra-low interfacial tension γ
ranging from 10−7 to 10−9 N/m. The values obtained are comparable to those

calculated using scaling laws. We characterized the region of the state diagram

located just above the experimentally determined gas/liquid binodal for a mixture

at a size ratio ξ = 3.5. Three distinct regions were identified which the FVT also

predicts. In the first region we found liquid-like clusters (rich in polystyrene

spheres) coexisting together with a gas phase. In the second region the core

of the clusters exhibits a crystalline structure, but a more liquid-like outer layer

which coexists with a gas phase. In the third region we find the coexistence of

crystallites and a gas phase.

In chapter 5 the internal structure of the clusters was probed using a counter-

rotating cone/plate shear cell, mounted on a confocal microscope, which facili-

tated measurements in real space/time while simultaneously applying shear. We

found that clusters which are formed in the two phase (gas/liquid) coexistence

region, responded to shear via a pathway similar to that of droplets which are

suspended in a denser fluid. At intermediate shear rates stable bands were bands

were formed. We rationalized that the stability is due to the shear dependent

suppression of capillary waves on the surfaces of the bands which leads to an

increase in the interfacial tension. On cessation of shear the bands break up into

daughter droplets reminiscent of the Rayleigh-Taylor instabilities. Phase sepa-

rated mixtures are homogenized above a limiting shear rate. We also found that

clusters in the (gas/liquid/solid) coexistence region deform following a two-step

pathway. The first step involves the removal of the liquid-like outer layer via a

jet streaming of particles from conical shaped tips which point in the direction of
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shear flow. The final step involves the fluidization of the crystalline core which

leads to the formation of liquid-like bands similar to what was observed in the

case of the liquid-like cluster. Finally we could show that the crystalline core be-

longing to clusters in the three phase region is a result of the formation of crystal

nuclei within an initially dense fluid phase. This can be explained by critical

density fluctuations which lower the free energy barrier for crystal nucleation

within such a metastable fluid phase.

For further work on the characterization of the rod sphere mixture, several

properties of the colloidal particles require improvement in order to allow the

use of optical microscopy techniques. Firstly the synthesis of spherical particles

that have a fluorescent core and an outer shell than can be rendered transparent by

matching the shell’s refractive index to that of the solvent. Such an improvement

would facilitate the tracking of particles within clusters and also allow the direct

determination of the particle ordering within the microphases. With respect to

the rods, it would be of interest to use a more rigid rod. A possibility would

be to use Y-21M, which is a mutant of the wild type fd. This mutant has a

persistence length ∼ 10 times its contour length and offers a good model for an

ideal rod. One would expect a better agreement of the experimentally obtained

binodals with those predicted by the FVT in mixtures of Y-21M and spheres.

Another feature which was not exploited in our experiments is the possibility to

fluorescently label the viruses. This feature would allow the direct visualization

of the rod-rich phase at single particle level. In shear experiments, the average

orientation of the rods could then be determined in real space/time as a function

of shear rate.
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