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Abstract

Aging and survival are caused by a complex and non-observable interaction between ge-

netic and environmental factors. To reveal regularities of this interaction the traditional

methods of survival analysis combined with ones of quantitative genetics data are needed.

The data used by statistical analysis of longevity usually have a number of peculiarities

and drawbacks such as selective sampling and incompleteness caused by censoring and

truncation. Genetic data can include information on genes with a known location (genetic

markers) for related individuals (e.g. twins, sibs or members of a family).

Finding genes that are differentially expressed under two or more conditions is a main

object in experiments with microarrays. Searching for such genes is usually based on statis-

tical methods involving t-statistics and multiple testing and uses datasets with information

about thousands of genes, but a relatively small number of individuals. Correlations be-

tween individuals are usually not taken into account in these studies.

Phenotypic traits such as length of life and gene expressions can correlate for related

individuals because such individuals share genetic and environmental factors. If we do not

take into account these correlations the estimates obtained in the studies can be biased

and conclusions are wrong. In this work we develop statistical models that combine the

strength of the methods of the bi- and multivariate (survival) analysis with methods of

genetic analysis and analysis of gene expression data.

In the analysis of survival data we use the concept of frailty assuming that non-

observable susceptibility to death can contain both genetic and environmental compo-

nents. Additional randomness in death process is caused by underlying hazard. Observed

covariates in the form of a Cox-like regression are also included in the survival models.

We discuss the methods and the problem of identifiability of such models. We show how

genetic markers data can be used to locate the position of longevity or frailty genes.

We also discuss how the mixed model method for detecting genes with differential gene

expression can be adapted for twin data. All models are illustrated with examples based

on analysis of real or simulated data.
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Zusammenfassung

Altern und Überleben werden durch komplexe, nicht beobachtbare Wechselwirkungen

zwischen genetischen und Umweltfaktoren verursacht. Zur Untersuchung dieser Interak-

tionen werden traditionelle Methoden der Überlebensanalyse in Kombination mit solchen

der quantitativen Genetik benötigt. Die Überlebenszeitdaten, die bei der statistischen

Analyse der Langlebigkeit verwendet werden, haben in der Regel eine Reihe von Beson-

derheiten und Nachteilen. Sie entstammen nicht selten einer selektiven Stichprobe, sind

unvollständig und weisen Zensierung und Trunkierung auf. Die eingehenden genetischen

Daten beinhalten Informationen über Gene mit bekannter Lokalisation (genetische Marker)

für verwandte Personen.

Das Auffinden von Genen, die differentiell unter zwei oder mehr Bedingungen exprim-

iert sind, ist ein Hauptliegen von Microarray-Experimenten. Die Suche nach solchen Genen

basiert in der Regel auf den statistischen Verfahren, die t-Statistiken und multiples Testen

verwenden und nutzt Datensätze mit Informationen über Tausende von Genen, die jedoch

an einer nur kleinen Anzahl von Individuen erhoben werden. Korrelationen zwischen In-

dividuen werden in diesen Studien in der Regel nicht berücksichtigt.

Phänotypische Merkmale wie Lebensdauer und Genexpressionen können für verwandte

Individuen wegen gemeinsamer genetischer Faktoren und/oder Umweltfaktoren korre-

lieren. Werden diese Korrelationen nicht adäquat berücksichtigt, können die Schätzungen

verzerrt und die Schlussfolgerungen falsch werden. In dieser Arbeit werden innovative

statistische Modelle entwickelt, die die Stärke moderner Methoden der bi- und multivari-

aten (Überlebenszeit-)Analyse mit Methoden der genetischen Analyse und der Analyse

von Genexpressionsdaten kombinieren.

Zur Analyse von Überlebenszeiten wird in dieser Arbeit das Frailty-Konzept verwen-

det mit der Annahme, dass nicht beobachtete ”susceptibility to death” sowohl genetische

als auch umweltbedingte Komponenten enthalten kann. Zusätzliche zufällige Einflüsse

auf den Todesprozess werden durch die ”baseline hazard” abgebildet. Beobachtete Ko-

variable lassen sich in Form einer Cox-Regression auch in Überlebenszeitmodellen einbrin-

gen. Diskutiert werden in dieser Arbeit die Methoden und das Problem der Identifizier-

barkeit solcher Modelle. Gezeigt wird auch, wie genetische Marker zur Lokalisierung der

Langlebigkeits- und Frailtygene genutzt werden können.

Ferner wird diskutiert, wie gemischte Effektmodelle zur Detektion von Genen mit

differentieller Genexpression an Zwillingsdaten angepasst werden können. Alle Modelle

werden an realen oder simulierten Daten illustriert.
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Chapter 1

1 Introduction

1.1 Outline

In many epidemiological, biological, demographic and medical studies researchers are in-

terested in the relationship between time-to-death or time-to-onset and factors influencing

these characteristics. Usually a lot of such factors - genetic and environmental contribute

to mortality and to disease risks and it is very difficult to measure all them directly. Until

today not all genes and environmental factors involved in death and disease processes are

known.

The concept of frailty as non-observed susceptibility to death has been firstly intro-

duced by Vaupel et al. (Vaupel et al., 1979) to extend classic univariate survival models

by taking into account hidden non-observable heterogeneity of mortality in population.

Usually frailty is defined as a random variable with known form of the distribution func-

tion (e.g. gamma distribution) but maybe with unknown parameters of this distribution.

Some authors (Gjessing et al., 2003; Gorfine and Hsu, 2011) define the frailty as a random

process. The notion of hazard as an instantaneous rate of death plays a key role in ordinary

survival analysis. Usually it is assumed that the frailty component has a multiplicative

effect on the baseline hazard function. Observed covariates can be included in the model

in the form of a Cox-like regression with unknown regression parameters.

Assuming independence of conditional survival functions for genetically related in-

dividuals (e.g. twins or sibs) given their frailties we can consider possible genetic and

environmental similarities of these individuals as the components of frailty. This impor-
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tant property allows us to use the traditional methods of quantitative genetics and to

assess the role of genes in longevity (Iachine, 2002). Using the correlated frailty model

applied to Danish twins survival data Yashin and Iachine (1995b) showed that about 50%

of the variance of frailty is due to genetic factors. Since the life span is defined by both

frailty and hazard function, the heritability of longevity span is much lower.

Another way to take into account genetic factors is to consider a discrete distribution

of frailty assuming that the frailty is a function of genotype. A major gene model allows

us to estimate the frequency and the relative risk of longevity or frailty genotypes. This

model is based on a two-level segregation analysis combining a model of the transmission

of genes from parents to offsprings with penetrance functions describing conditional proba-

bilities of phenotypes given the genotype. Studies based on a major gene model show that

such models can produce the bivariate survival density function similar to those produced

by a correlated gamma-frailty model (Begun et al., 2000a)[B1].

It is difficult to adapt the correlated frailty model with continuous distribution of

frailty to the data with more than two related individuales. Fortunately, the bivariate ma-

jor gene model for twins can be easily extended to use genealogical data. This approach

has been used to estimate the effects of familial environment (parental reproductive age

and parental longevity) on the enfant/child mortality using genealogical data from Canada

(Begun et al., 2000b)[B2].

We cannot locate the position of longevity gene if additional genetic information such

as genetic markers data are not available. If longevity gene is in linkage disequilibrium

with markers, the ordinary regression for univariate survival data with unknown regression

coefficients for markers as covariates can be used to find significant regression coefficients

and to approximately locate the position of longevity gene near respective markers. This

method can be considered in the context of association analysis when a genetic variant

associated with longevity is either in close proximity to longevity locus or longevity allele

itself (Begun, 2007; Begun, 2009)[B3, B4]. If longevity gene is in linkage equilibrium

with markers, then a combination of the segregation analysis based on the major gene

model with linkage analysis using a hidden Markov chain algorithm can be implemented

to locate the position of the longevity gene (Begun and Yashin, 2004; Begun, 2013)[B5,

B6].

Nowadays, the experiments with microarrays already having begun in 1990s are widely

used for determining differentially expressed genes under two or more conditions. In me-
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thods used in these researches it was mostly assumed that individuals are chosen inde-

pendently. However, it was not analyzed what will be if we take related individuals for

these studies. The mixture model method (Pan, 2003) can be extended to treat the data

on twins too (Begun, 2006)[B7]. The comparison of the uni- and bivariate model for gene

expression data shows that the power and the number of false positives can depend on

the concordance-discordance status of twin pairs and also on the correlation between gene

expression levels for twins (Begun, 2006; Begun 2008)[B7, B8].

1.2 Background

The present thesis resumes my work in the areas of bi- and multivariate genetic analysis of

longevity and of bivariate gene expression analysis during last decade. These studies aimed

in developing new statistical models for genetic analysis of longevity and in searching for

genes differentially expressed under two conditions using twin data. Near the correlated

frailty models with continuously distributed frailty the models with discretely distributed

frailty (models based on the major gene approach) have also been studied (Begun et al.,

2000a; Begun et al., 2000b) [B1, B2]. Some properties of the data including left trunca-

tion, right censoring, and presence of observed covariates have been taken into account.

Second, a relative risk model with flexible parameterization of the cumulative hazard

function has been investigated (Begun, 2008; Begun, 2009)[B3, B4]. This model allows

us for including the antagonistic pleiotropic effect and for taking into account both con-

tinuous cohort trends and sudden changes in longevity allele frequency by searching the

gene-longevity association.

Third, the methods aiming in locating a position of longevity or frailty genes using

bivariate survival data and information about genetic markers have been tested (Begun

and Yashin, 2004; Begun, 2013)[B5, B6].

Fourth, an extension of the mixed model method for detecting differential gene expres-

sion using bivariate data has been proposed and its properties have been studied (Begun,

2006; 2008)[B7, B8].

The thesis consists of nine chapters. In each chapter the brief overview of the most

important methods relating to theme of study is given and some aspects of my study in

this area are discussed. Some details of the methods are given in Appendices. For more
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details I refer the readers to the original papers and to the reference list.
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Chapter 2

2 Data Sources

2.1 Human mortality Database

The Human Mortality Database began in the year 2000 as a collaborative project involving

research teams in the Department of Demography at the University of California, Berkeley

(USA), and at the Max Planck Institute for Demographic Research (MPIDR) in Rostock

(Germany). Its aim was to provide comprehensive mortality and population data to

researchers. It contains uniform death rates and life tables (e.g., life expectancy) for

various populations and include data for more than 30 countries. In papers listed in this

thesis we have used mortality data for males and females for one-year age groups in France,

Japan, Sweden, and the United States. The data can be obtained from the web of MPIDR.

2.2 Twin survival data from Denmark

The Danish Twin Registry (DTR) was created in the 1950s and is one of the oldest

population-based registries in the world. It contains information about twins born in

Denmark since 1870 and survived to age 6. Multiple births were manually ascertained in

birth registers from all 2,200 parishes in Denmark. As soon as twin was traced, a question-

naire was mailed to the twin, to her/his partner or to their closest relatives (if neither of the

twin partners were alive). Zygosity was assessed on the basis of the questions about phe-

notypic similarities. The reliability of the zygosity diagnosis was validated by comparison

with laboratory methods based on the blood, serum, and enzyme groupe determination.

It was found that missclassification rates were less than 5%. Other information includes

the data on sex, birth, causes of death, health, and life style. An important feature of
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the Danish twin survival data is their right-censoring and left truncation. In our study

we used the data on same-sex twins with known zygosity born between 1870 and 1900.

These data includes 470 male monozygotic (MZ) twin pairs, 475 female MZ twin pairs,

780 male dizygotic (DZ) twin pairs and 835 male DZ twin pairs. More details about the

Danish Twin Registry can be found in Hauge (1981).

2.3 Family survival data from Canada

Immigration from France to Canada began in the 17th century. The peopling started from

the Quebec city area and expanded rapidly upstream and downstream the St.Lawrence

river. Almost whole population (85%) in Quebec derives from about 8,000 original French

founders and is genetically homogeneous. The Population Register in Quebec is supported

now by inter-university research center and contains around 700,000 vital records of virtu-

ally every individual who ever lived in Quebec. The main file is related with various topics

or sub-populations (e.g. patients suffering from genetic disorders). A computer linkage

system can process married couples and links the family records together. More informa-

tion about the Population Register in Quebec can be found in Bouchard (1989). From

13544 records, relating to French-Canadian children born in Quebec between 1623 and

1705, 2066 children (1016 boys and 1050 girls) were chosen with valid birth/death dates,

who survived until 30 and overlived their parents. The number of children in families

fluctuates between 1 and 10 with a mean 2.6.

2.4 Simulated data

If real data was not available in the studies we simulated datasets for given vector param-

eters. Details of these simulations can be found in the text and in the original papers.
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Chapter 3

3 The univariate survival models with proportional hazard

3.1 Definition of survival and hazard functions

Define a nonnegative random variable T representing the lifetime (the time to death) of an

individual in a homogeneous population (Kalbfleish and Prentice, 1980; Cox and Oakes,

1984). Assuming that transition to death is a continuous-time Markov process we define

an instantaneous rate (hazard) of death as

λ(t) = lim
∆t↓0

P (t ≤ T < t + ∆t|T ≥ t)

∆t

(if this limit exists). Conditional survival function S(t|t0) is the probability that the

individual does not die in the interval [t0, t) given that it was alive at age t0. It is easy to

check that S(t|t0) is a non-increasing left-hand continuous function with S(t0|t0) = 1 and

λ(t) = −d lnS(t|t0)/dt = −S(t|t0)−1dS(t|t0)/dt.

It means that S(t|t0) has a right-hand derivative and is also a right-continuous function.

From this and the initial condition S(t0|t0) = 1 it follows that

S(t|t0) = exp(−H(t0, t)),

where

H(t0, t) =

∫ t

t0

λ(τ)dτ

is the cumulative hazard. For the absolutely continuous conditional random time T |t0
to death given that the individual was alive at age t0−, the probability density function
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corresponding to S(t|t0) is

f(t|t0) = −dS(t|t0)/dt = λ(t)S(t|t0).

Taking into account random censoring time C, a vector of time independently observed

covariates u, and a non-observed random variable Z (frailty), we define observed time to

death as min(C, T ) and the hazard function for the latent time to death as

λ(t|u, Z) = lim
∆t↓0

P (t ≤ T < t + ∆t|T ≥ t, u, Z)

∆t
.

We will assume that the hazard functions of the latent failure times follow the mixed

proportional hazard specification. That is, they depend multiplicatevely on the cause-

specific baseline hazard functions, observed regressors, and frailty

λ(t|u, Z) = λ0(t) exp(β∗u)Z,

where symbol ”∗” denotes the matrix transpose and β is the Cox regression parameter

vector. To avoid non-identifiability it is usually assumed that EZ = 1.

Since Gompertz in 1825 has proposed the exponential increasing of mortality rates

for human population over the segment 30-84 years, there were many attempts to explain

this form of dependency and to approximate the force-of-mortality function for other age

groups. Strehler and Mildvan (Strehler and Mildvan, 1960) related the exponential in-

crease of human mortality with the linear decline of a vitality index. A lower rate of

mortality in the 85-and-older age group of humans than the Gompertzian model predicts

(the levelling-off effect) can be explained, for example, by the presence of inhomogeneity in

population (Manton, 1982) or in terms of the mutation accumulation theory ( Laszkiewicz

et al., 2003).

A multiclonal model (Abernethy, 1998) explains the exponential increase of mortality

rates in multicellular organisms. This model is based on the assumption that the cells of

such an organism are subject to cellular aging phenomena of limited replicability (Hayflick

limit) and mitotic deceleration (exponential increase in time of the mitotic event waiting-

time).

The concept of the space of life-cycle-states underlies the approach proposed in [B9]

(Begun, 2006). The ontogenetic evolution of a multicellular organism is associated with

a material point moving in this space under the action of a force field. Such an associa-

tion seems quite reasonable. In theoretical mechanics the evolution of the material point
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follows ”the principle of least action”. The age evolution of the living organism is also

in accordance with some principle of least action allowing biological interpretation. This

principle states that the own biological time on the trajectory of the age evolution of the

living system is minimal. The own biological time of the multicellular organism (e.g. hu-

man being) elapsing between two moments of its calendar age is interpreted as a certain

number of generations of the living system at the next lower level of hierarchy (cells).

Continuous deceleration with age of the rate of evolution (associated with decreasing of

the ”kinetic energy”) in the space of life-cycle-states leads to an increase of the mitotic

event waiting-time and finally to death. The model makes it possible to estimate the

dimensionality of the space of life-cycle-states, describes the phylogenetic evolution of this

dimensionality, and explains the form of the force-of-mortality function over the different

segments of the lifespan of a multicellular organism.

Over the age interval 35-85 years we describe the force-of-mortality function in terms

of the Gompertz model by

λ0(t) = aebt.

Strehler and Mildvan (Strehler and Mildvan, 1960) theoretically predicted that the pa-

rameters a and b are negatively correlated and the changes in the human mortality rate

resulting from economical, medical, and other improvements must follow certain regalari-

ties. Namely,

ln a = lnK −B−1b

for some positive constants B and K. The Strehler-Mildvan negative correlation was then

confirmed in a number of empirical studies based on the period data for different human

populations and often manifested as universal demographic law regulating changes in the

age mortality rates. However, later studies (Yashin et al., 2001; Yasin et al., 2002) showed

that the Strehler-Mildvan correlation pattern is relatively stable only in certain periods

of survival history. That is, the changes in period and cohort hazard functions can follow

different patterns with different sets of the coefficients B and K.

3.2 Baseline hazard functions

Now we will discuss briefly different types of the baseline hazard functions used usually

to describe times to failure.

Constant hazard. This is the simplest form of the hazard function with probability of
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dying within a time interval depending only on length of this interval. Survival function

in this case is exponential

S0(t) = exp(−λt)

with λ > 0, hazard function λ0(t) = λ, and cumulative hazard H0(t) = λt.

Weibull function. It is a generalization of the exponential distribution and is often

used in mortality studies. Two-parameter λ, γ > 0 survival function is

S0(t) = exp(−λtγ)

with hazard function

λ0(t) = λγtγ−1

and cumulative hazard function

H0(t) = λtγ .

Gompertz function. This form of hazard is closely related with the Weibull function

and is very popular in survival analysis. For exponential hazard function λ0(t) = a exp(bt)

with a, b > 0 we have a double exponential survival function

S0(t) = exp(−(a/b)(ebt − 1))

and cumulative hazard function

H0(t) = (a/b)(ebt − 1).

The hazard function for the Gompertz-Makeham mortality law includes additionally an

age-independent positive component c

λ0(t) = c + a exp(bt).

The Gamma-Gompertz-Makeham model with survival function

S0(t) =
(

1 + s2
(

ct + (a/b)(ebt − 1)
))−1/s2

is a further generalization of the Gompertz model.

Log-logistic function. This hazard function is more flexible than two parameter hazard

functions mentioned above and allows for describing monotone trends as well as bell-shaped

ones. The two-parameter survival function is

S0(t) = (1 + atb)−1
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with a, b > 0, hazard function

λ0(t) =
abtb−1

1 + atb
,

and cumulative hazard function

H0(t) = ln(1 + atb).

Log-normal function. In this model the logarithm of the random time-to-failure T is

normally distributed, i.e. lnT ∼ N(µ, σ2). The probability density function is

f0(t) =
1√

2πσt
exp

(

−(ln t− µ)2

2σ2

)

.

More information about hazard functions can be found, for example, in (Wienke, 2011).

3.3 Frailty component

The term frailty has first been suggested in demography to characterize unobserved indi-

vidual susceptibility to death and to take into account hidden heterogeneity of mortality

risk in population and the deviation of mortality rates at advanced ages (Vaupel et al.,

1979; Vaupel and Yashin, 1985; Andersen et al., 1993). Frailty models play an important

role in analysis of data on related individuals (e.g. twins, sibs) by allowing the assessment

of such genetic characteristics as genetic variation and heritability (Yashin and Iachine,

1995a; Yashin and Iachine, 1997).

Different types of frailty distributions are used in survival analysis, including dis-

crete, gamma, log-normal, positive-stable, inverse-gaussian, and power variance function

distribution (Hougaard, 1986; Wienke, 2011). Since the univariate survival function is

the Laplace transform with respect of frailty distribution, from computational point of

view the most attractive distributions are those with simple form of its Laplace transform.

Among them are the gamma (most common distribution), inverse-gaussian, compound

Poisson, positive-stable, and power variance function distributions.

Discrete distributions. In the simplest situation the population under study con-

sists of two non-observed groups with two different risks of mortality. If the proportion of
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individuals in the first group is equal to p, then a randomly selected person belongs to the

first group with probability p or to the second group with probability 1 − p. The risk of

mortality r is a binary random variable which has the value r1 with probability p and r2

with probability 1 − p. This two-point frailty distribution can be easily extended to the

k-point discrete one. The discrete frailty can be related with unknown genotypes affecting

longevity.

Power variance function distribution P (α, δ, θ). This family is exponential for fixed

α, δ with natural observation t and parameter θ (Hougaard, 1986). The parameter space

is 0 < α ≤ 1, δ > 0, θ ≥ 0. The probability density function is

f(t;α, δ, θ) = − exp(−θt + δθα/α)(πt)−1
∞
∑

k=1

Γ(kα + 1)

k!
(−δt−α/α)k sin(αkπ).

The Laplace transform is

L(s) = exp

[

− δ

α
{(θ + s)α − θα}

]

.

Compound Poisson distribution. This distribution can be constructed as the sum

of a Poisson distributed number of independent and identically gamma distributed ran-

dom variables. This is also a three parameter distribution with parameters α < 0, δ > 0,

θ > 0, with probability density function similar to the density function of the power vari-

ance function distribution.

Gamma distribution. The density of the Gamma distribution with mean δ/θ and

the variance δ/θ2 is

f(t) =
θδtδ−1e−θt

Γ(δ)
, θ > 0, δ > 0.

Its Laplace transform is

L(s) = (θ/(θ + s))δ.

It is a special case of the power variance function distribution for θ > 0 as α ↓ 0.

Degenerate distribution. The distribution degenerates at zero and corresponds to

δ = 0.
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Positive-stable distribution. It is a special case of the power variance function distri-

bution given by P (α, α, 0) for α ∈ (0, 1]. Its Laplace transform is

L(s) = exp(−sα).

Inverse-gaussian distribution. It is also a special case of the power variance function

distribution. For α = 1/2 we have the inverse-gaussian distribution with density function

f(t) = δπ−1/2 exp(2δθ1/2)t−3/2 exp(−θt− δ2/t).

Log-normal distribution. This distribution defined for positive t does not have the

Laplace transform in simple closed form. Its probability density function is

f(t;µ, σ) =
1√

2πtσ
e−

−(ln t−µ)2

2σ2 .

with mean exp(µ + σ2/2) and the variance exp(σ2 − 1) exp(2µ + σ2).

3.4 Identifiability and validation

In parametric approach the parametric form of frailty distribution and of the baseline

hazard functions are known. To calculate the Maximum Likelihood (ML) estimates

of unknown parameters, we maximize the likelihood function directly with respect to

Cox-regression parameters β, the parameters of frailty distribution, and the parameters

involved with baseline hazard functions. Alternatively, the Expectation-Maximization

(EM)-algorithm can be used for computing iteratively the unknown parameters.

In some cases the distribution assumptions regarding the baseline hazard functions

can be incorrect. Therefore, the estimates based on purely parametric approach are in-

consistent. In non-parametric approach we do not specify the baseline hazard functions

which are regarded as infinite dimensional parameters. The estimates of baseline hazard

functions obtained using the non-parametric approach can suffer from some efficiency loss

in comparison to the parametric approach, as long as the baseline hazards are correctly

specified (Gorfine, Hsu, 2011).
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The nonparametric technique of Kaplan and Meier can be used to estimate the hazard

λ(t) for the failure time data without covariates by

λ(ti) =
di
ni

.

Here failure (death) occurs with multiplicity di at time ti, t1 < t2 < ... < tk, and ni is

the number subjects at risk just before the moment ti. The value of λ(t) is equal to zero

elsewhere. For more details see, for example, (Kalbfleish and Prentice, 1980; Cox and

Oakes, 1984).

Similarly, for a known vector u of covariates, the estimates of the background hazard

function can be obtained to be

λ0(ti) =
di

∑

l∈R(ti)
exp(β̂∗ul)

,

where R(ti) is the set of all subjects chosen prior moment ti and the maximum likelihood

estimates β̂ of regression coefficients are obtained from the partial likelihood

L(β) =
k
∏

i=1

exp[β∗ui]
∑

l∈R(ti)
exp[β∗ul]

.

As above we put λ(t) = 0 elsewhere.

The identifiability of this univariate model with unspecified functional form of frailty

distribution and baseline hazard has been studied elsewhere (Elbers and Ridder, 1982).

This model is identifiable given information on T for finite EZ and is not identifiable when

frailty has an infinite mean.
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Chapter 4

4 The bi- and multivariate survival models with propor-

tional hazard

4.1 Model description

In Section 3.3 we discussed briefly the problem of heterogeneity in populations due to

unobservable factors. Now we shall focus on another aspect of modelling - statistical

dependencies in data. We are concerned with it, for example, in analysis of survival data

for related individuals (e.g. twins, family data). We shall show how the concept of frailty

can be combined with a multivariate approach. The correlated bivariate frailty model

has been used in (Begun et al., 2000a; Begun, 2009; Begun and Yashin, 2004; Begun,

2013)[B1, B4, B5, B6].

In the bivariate shared frailty model it is assumed that two time-to-death random

variables T1 and T2 are conditionally independent given shared frailty Z, covariates u1,

u2, and that the bivariate survival function is defined by

S(t1, t2|Z, u1, u2) = exp(−Z exp(β∗u1)H0(t1)) exp(−Z exp(β∗u2)H0(t2))

for the cumulative baseline hazard function

H0(t) =

∫ t

0
λ0(τ)dτ.

The correlated bivariate frailty model is a generalization of the shared frailty model and

includes two dependent frailties Z1 and Z2. For covariates u1 and u2 measured for the

two subjects and for two latent random failure times T1 and T2 the conditional bivariate
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survival function has a form

S(t1, t2|Z1, Z2, u1, u2) = exp(−Z1 exp(β∗u1)H0(t1)) exp(−Z2 exp(β∗u2)H0(t2)).

Here we have assumed that T1 and T2 are conditionally independent of the vectors of

covariates u1, u2 and the frailties Z1, Z2. In other words,

P (T1 ≥ t1, T2 ≥ t2|Z1, Z2, u1, u2) = S(t1, t2|Z1, Z2, u1, u2) = S1(t1|Z1, u1)S1(t2|Z2, u2),

where S1(t1|Z1, u1) and S1(t2|Z2, u2) are the univariate conditional survival functions.

Unconditional bivariate survival function is defined by

S(t1, t2|u) = ES(t1, t2|u1, u2, Z1, Z2).

Although this approach is quite general, for simplicity we will specify the form of hazard

functions and frailty distribution. Let Y0 ∼ Γ(k0, µ), Y1 ∼ Γ(k1, µ), and Y2 ∼ Γ(k1, µ) be

independent gamma distributed random variables with probability density given by

g(y) =
µkyk−1e−µy

Γ(k)

for some real positive k0, k1, µ. We define

Z1 = Y0 + Y1 ∼ Γ(k0 + k1, µ)

Z2 = Y0 + Y2 ∼ Γ(k0 + k1, µ)

with EZ1 = EZ2 = 1, Var(Z1) = 1/µ := σ2, Var(Z2) = 1/µ := σ2, Corr(Z1, Z2) := ρ. It is

easy to check that

k0 = ρ/σ2, k1 =
1 − ρ

σ2
.

After a number of transformations we get (Wienke, 2011)

S(t1, t2|u1, u2) =
S1(t1|u1)1−ρS1(t2|u2)1−ρ

(S1(t1|u1)−σ2 + S1(t2|u2)−σ2 − 1)
ρ

σ2

with

S1(t|u) = (1 + σ2eβ
∗uH0(t))

−1/σ2
.

To make the model more flexible we will use a Gamma-Gompertz-Makeham representation

of the univariate survival function according to

S1(t|u = 0) = (1 + s2(ct + (a/b)(ebt − 1)))−1/s2 = (1 + σ2H0(t))
−1/σ2
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for some real positive a, b, s. From here we find that

H0(t) = ((1 + s2(ct + (a/b)(ebt − 1)))σ
2/s2 − 1)/σ2.

Combining last equalities we get that

f(t|u) = ∂S1(t|u)/∂t = −S1(t|u)(1 + σ2eβ
∗uH0(t))

−1eβ
∗uλ0(t),

where

λ0(t) = (c + aebt)(1 + s2(ct + (a/b)(ebt − 1)))σ
2/s2−1.

The log-likelihood for the frailty-based bivariate survival model is given by

lnL(Data; θ) = (1 − δi1)(1 − δi2)
∑

i lnS(ti1, ti2|u1, u2)
−δi1(1 − δi2)

∑

i ln (∂S(ti1, ti2|u1, u2)/∂ti1)
−(1 − δi1)δi2

∑

i ln (∂S(ti1, ti2|u1, u2)/∂ti2)
+δi1δi2

∑

i ln
(

∂2S(ti1, ti2|u1, u2)/∂ti1∂ti2
)

.

Here θ = (a, b, s2, σ2, ρ, β∗)∗ is the vector of unknown parameters

and

• δi1 = δi2 = 0 if both survival times ti1 and ti2 are censored,

• δi1 = 1, δi2 = 0 if survival time ti1 is uncensored and survival time ti2 is censored,

• δi1 = 0, δi2 = 1 if survival time ti1 is censored and survival time ti2 is uncensored,

• δi1 = δi2 = 1 if both survival times ti1 and ti2 are uncensored.

The expressions for ∂S(ti1, ti2|u1, u2)/∂ti1, ∂S(ti1, ti2|u1, u2)/∂ti2, and S(ti1, ti2|u1, u2)/∂ti1∂ti2
are given in Appendix A.

The formulas for the bivariate survival function and its first and second partial deriva-

tives in the case when frailties Z1 and Z2 have different variances σ2
1 and σ2

2 are given in

Wienke (2011). If the data is left truncated and both twins enter the population at risk

at age t0i < ti we modify the formulas dividing S(ti1, ti2|u1, u2), ∂S(ti1, ti2|u1, u2)/∂ti1,
∂S(ti1, ti2|u1, u2)∂ti2, and ∂2S(ti1, ti2|u1, u2)∂ti1∂ti2 by S(t0i , t

0
i |u1, u2).

4.2 Identifiability and estimation methods

Identifiability of the shared and the correlated frailty models using data on T1 and T2 was

proved by Honoré (1993) under assumption of finite means of Z1 and Z2. Yashin and
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Iachine (1999) proved the identifiability of the correlated frailty model without observed

covariates under assumption that Z1 and Z2 are gamma-distributed.

In parametrical approach we get the estimates of unknown parameters by maximizing

the log-likelihood function directly with respect to θ. An extended version of the EM

algorithm was suggested for the analysis of bivariate survival data using the correlated

frailty model (Iachine, 1995). This approach allows for estimating the frailty distribution

parameters σ2 and ρ, Cox regression coefficients β, and the hazard profile H.
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Chapter 5

5 Genetic analysis of longevity

5.1 Quantitative genetic analysis

Heritability. The main goal of genetic analysis is to give an answer to the question: to what

extent genetic variation may account for the variation of some trait, for example, longevity

or susceptibility to death. To solve this problem we need to combine the measurement of

the phenotype with genetic information. This information is usually available in the form

of pedigrees if we study related individuals (sibs, families, twins). In genetic studies of

twins the differences in life spans in MZ pair are caused by environmental factors, whereas

DZ twins can demostrate less similarity in life spans due to effects associated with genetic

differences.

Instead of studying life spans we can analyze frailties within the framework of cor-

related frailty model. This approach was proposed by Yashin and Iachinne (1995). We

decompose the frailty into a sum of of independent genetic and environmental additive

components

Z = A + D + I + C + E.

Here A, D and I are the additive, dominance, and epistasis genetic effects, and C, E

stand for shared and non-shared environmental effects. Assuming independence of these

components define the associated variance proportions

a2 = V ar(A)
V ar(Z) , d2 = V ar(D)

V ar(Z) , i2 = V ar(I)
V ar(Z) , c2 = V ar(C)

V ar(Z) , e2 = V ar(E)
V ar(Z) ,

where

a2 + d2 + i2 + c2 + e2 = 1.
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The correlation coefficient between co-twin’s frailties is

ρ = ρaa
2 + ρdd

2 + ρii
2 + ρcc

2 + ρee
2,

where ρ(.) are the correlations between respective frailty components (A, D, I, C, E)

within a twin pair. Under common assumptions of quantitative genetics we get that

ρa = ρd = ρi = ρc = 1, ρe = 0

for monozygotic twins, and

ρa = 0.5, ρd = 0.25, ρi = k, ρc = 1, ρe = 0

for dizygotic twins with unknown magnitude of epistasis effects k, 0 ≤ k < 0.25 (Neale and

Cardon, 1992). All parameters a2, d2, i2, c2 cannot be found from this decomposition. It is

only possible to conclude that the broad sense heritability H2, characterizing the relative

importance of genetic effects and defined as the percentage of variation of the trait (e.g.

frailty) explained by the variation of genetic factors, is contained in an interval

ρMZ − ρDZ ≤ H2 ≤ min{ρMZ , 2(ρMZ − ρDZ)},

where in the absence of epistasis this interval becomes narrower (Iachine, 2002). To make

the model identifiable we can reduce it to an ACE model including only additive genetic,

common environmental, and uncommon environmental components

1 = a2 + c2 + e2

ρMZ = a2 + c2

ρDZ = 0.5a2 + c2

(Wienke, 2011).

Linkage. If loci are located at the same chromosome there is a chance that they are

not transmitted independently between generations. The probability of a single chromo-

somal crossover between two genes during meiosis (recombination frequency) is a measure

of genetic linkage parameter θ. This parameter lies in the interval [0, 1/2] and varies from

0 (completely linked loci, no recombination) to 1/2 (unlinked loci, free recombination).

Linkage allows for specifying relative position of genes on the chromosome. Different

genetic map distances have been proposed to describe the distance between two genes
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(Weir, 1996 ). A unit of map distance is a centimorgan that describes a recombination

frequency of 0.01. The linkage procedure deals with longevity data and information on

genetic markers and generally involves calculation of the conditional distribution of life

span, the distribution of inheritance vector, and averaging of likelihood with respect to

this distribution (Kruglyak and Lander, 1995). Morton suggested linkage analysis using

logarithm of the odds (LOD) score (Ott, 1991).

5.2 A major gene model in twin studies

Frailty can include a large number of the risk factors - genetic and environmental. The

influence of genes with highest impact on mortality or longevity can be modelled using

the major gene approach. Assume that the frailty Z(g) is a function of the genotype in

a longevity locus with two alleles a and A and that an individual’s instantaneous risk of

death λ(t) is proportional to the baseline hazard λ0(t), frailty Z(g), and the term exp(β∗u)

characterizing the influence of observed covariates u,

λ(t) = Z(g) exp(β∗u)λ0(t).

Specifying the dependency of frailty on the genotype let us assume, for example,

that allele a is a beneficial one with multiplicative action r < 1, the frequency p and

lies in autosomal longevity locus. In Hardy-Weinberg equilibrium the probability P (g)

of genotypes aa, aA + Aa, and AA is equal to p2, 2p(1 − p), and (1 − p)2, respectively.

Moreover, for these genotypes it holds that Z(aa) = r2, Z(aA+Aa) = r, and Z(AA) = 1.

The monozygotic twins have the similar genotypes and, therefore, the same frailties. The

frailties (and genotypes) of the dizygotic twins have less similarity but correlate, since

both twins inherit their genes from the same parents. We assume that the genotypes of

DZ twins are inherited independently from parents. The conditional probabilities of twins’

genotypes can be computed using simple transmission model.

The bivariate survival function for a MZ (DZ) twin pair with survival times t1 and t2

for independently chosen parents can be calculated as the sum

SMZ
d (t1, t2|u1, u2) =

∑

gm,gf
P (gm)P (gf )

∑

g P (g|gm, gf )

× exp(−Z(g)(exp(β∗u1)H0(t1) + exp(β∗u2)H0(t2))),

SDZ
d (t1, t2|u1, u2) =

∑

gm,gf
P (gm)P (gf )

∑

g P (g|gm, gf ) exp(−Z(g) exp(β∗u1)H0(t1))

×
∑

g P (g|gm, gf ) exp(−Z(g) exp(β∗u2)H0(t2))
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with cumulative hazard H0(t) =
∫ t
0 λ0(τ)dτ . The expressions for conditional genotype

probabilities P (g|gm, gf ) given parental genotypes gm (mother’s genotype) and gf (father’s

genotype) can be found in Appendix B. The conditional univariate probability density

function

−dS(t|Z(g), u)/dt = Z(g) exp(β∗u)λ0(t) exp(−Z(g) exp(β∗u)H0(t))

in the case of non-censored data and the conditional univariate survival function S(t|Z(g), u)

in the case of censored data can be viewed as the so-called penetrance functions in segre-

gation analysis.

5.3 Mixed frailty model

In the mixed discrete-continuous frailty model we assume that the full frailty is a sum of

two independent frailty components - discretely distributed frailty (for example, as in the

major gene model) and continuously distributed frailty (for example, spread influence of

a large number of genes)

Z = Zd + Zc.

Assuming the gamma distribution for continuous part of frailty and the major gene model

for the discrete part of frailty we get the bivariate survival in the form

S(t1, t2|u1, u2) = Sd(t1, t2|u1, u2)Sc(t1, t2|u1, u2),

where

Sc(t1, t2|u1, u2) = S1(t1|u1)1−ρS1(t2|u2)1−ρ(S1(t1|u1)−σ2
+ S1(t2|u2)−σ2 − 1)−ρ/σ2

,

σ2 = VarZc, ρ = Corr(Z1,c, Z2,c), S1(t|u) was defined in Section 4.1, and Sd(t1, t2|u1, u2)
was defined in previous section.

To compare three approaches - the major gene model, the gamma frailty model, and

the mixed model we applied these models to the non-censored Danish twin data with no

observed covariates (Begun et al., 2000a)[B1]. Marginal univariate survival functions were

approximated using the Gamma-Gompertz-Makeham parameterization

S(t|u = 0) = (1 + s2(ct + (a/b)(ebt − 1)))−1/s2 = (1 + σ2H0(t))
−1/σ2

×
∑

gm,gf
P (gm)P (gf )

∑

g P (g|gm, gf ) exp(−Z(g)H0(t)).

For the data from the Danish Twin Registry analysis revealed a surprising degree of sim-

ilarity between models with discrete and those with gamma-distributed frailties. The
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similarity was expressed in the likeness of probability density functions, fits of marginal

hazards, and maximum likelihood values for all populations we considered (MZ males,

MZ females, DZ males, DZ females). The essential difference between the two models

involves the behaviour of underlying hazards and the asymptotic behaviour or life-span

correlations. But these differences are based on the nature of the frailty distributions.

Genetic factors explain about 50% of the frailty variance of the continuous component of

frailty. The beneficial allele is spread with a probability of approximately 0.5 and decreases

mortality risk by a factor of about 3 for both sexes. Both the model with continuously

distributed frailty and the one with discretely distributed frailty are nested in a mixed

frailty model. But in accordance with the likelihood ratio test we cannot reject models

with purely discrete and purely continuous frailties. This is probably due to the insuffi-

cient size of sample - in reality we must take into account both the dominant influence of

a major gene as well as spread influence of a large number of genes.

5.4 A major gene model in family studies

In previous section we have used the approach based on the major gene model to analyze

the data on twins. This approach can be easily adapted to the family data containing

information about more than one generation and more than two members of the family.

Assume that we have n sibs in a family. If in the sibship the monozygotic sibs are not

contained we can write the n-variate survival function in a form

Sd(t1, ..., tn|u1, ..., un) =
∑

gm,gf

P (gm)P (gf )
n
∏

i=1

∑

gi

P (gi|gm, gf ) exp(−Z(gi) exp(β∗ui)H0(ti)).

Here ti is a survival for ith sib.

For the data on French-Canadians we built seven covariates; u1=(year of birth - 1650),

u2=the age of a child at father’s death, u3=the age of a child at mother’s death, u4 the

reproductive age of a father, u5 the reproductive age of a mother, u6 the life-span of a

father, u7 the life-span of a mother. The age of child at father’s/mother’s death were

categorized as a follows: 0 if u2,3 ≤ 5, 1 if 5 < u2,3 ≤ 10, 2 if 10 < u2,3 ≤ 15, 3 - otherwise.

The values of the fourth and fifth covariates were put to 0 if u4,5 ≤ 35 and 1 - otherwise.

We assumed that the sixth and the seventh covariates were 0 if u6,7 ≤ 75 and 1 otherwise

(Begun et al., 2000b)[B2].
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All estimates of unknown parameters were obtained through the maximization of the

likelihood function. It was found that we can use the model with one beneficial allele in

Hardy-Weinberg equilibrium with allele frequency 0.406 and multiplicative action 0.485.

No cohort effect and no effect of age of a child at parental death have been found. Only two

coefficients of Cox’s regression were significant: β4 = β5 = 0.188 and β6 = β7 = −0.451.

That is, we can find the beneficial allele in about 41% of cases and the presence of each

beneficial allele in the genotype decreases the mortality by about 2.1 times. The greater

a parent’s life is, the less a child’s mortality risk will be. On the contrary, the higher

a reproduction age of a parent is, the greater the mortality risk will be. Summarizing

these finding we conclude that familial environment may have profound effects not only

on infant/childhood mortality, but also on adult mortality. The most important factors

of this environment are the parental longevity and the parental reproduction age. The

genetic material, which a parent transmits to its offspring might be essentially damaged

in the reproductive age after 35, which leads to a shorter child’s longevity. But the effect

of the parental longevity is stronger. However, it does not mean that only genetic factors

play the crucial role in child’s longevity. Familial habits and the life-style can affect the

life-span to some degree as well.
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Chapter 6

6 Searching for genes contributing to longevity using asso-

ciation analysis

6.1 Gene frequency method

In previous section we studied genetic effects on longevity in the case when the genetic

data were not available. Correlated frailty model allows us to calculate heritability as a

total measure of genetic influence on the life span given longevity data for related individ-

uals (twins, sibs, families). Non-zero heritability can indicate the presence of the non-zero

genetic component in frailty. Alternatively we can use the segregation analysis based on

the major gene model. Using different assumptions relating to the nature of genetic influ-

ence on longevity we can try to detect the existence of a gene with beneficial genotypes

decreasing the risk of mortality. Since we assume that the genetic data are not available

we average conditional survival function with respect to distribution of unobserved risk of

mortality (frailty).

Another approach called the ”gene frequency method” has been developed to study

the gene-longevity associasions if information on genotype frequencies is available (De

Benedictis et al., 1998; Tan et al., 2003; Garastro et al., 2003). In this approach the eval-

uation is based on the idea that a significant difference in the gene and allele frequencies

in distinct age groups can indicate the presence of a genetic influence on life span. How-

ever, this method do not answer questions about the estimates of mortality trajectories

and survival functions for populations of individuals carrying different genotypes. Most of

extensions of the ”gene frequency method” suggested later can be classified into 4 groups
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- the ”parametric method”, the ”semi-parametric method”, the ”nonparametric method”,

and the ”relative risk method” (Yashin et al., 1999). In the ”relative risk method” survival

functions for different genotypes are related. Substantial improvements in the accuracy

of statistical estimates based on the ”relative risk method” can be achieved by using ad-

ditional non-genetic data (Yashin et al., 2007). More flexible parameterization applied in

a modification of the ”relative risk method” relates cumulative hazards parameterically

rather than survival functions for different genotypes (Begun, 2007; Begun, 2009)[B3,

B4]. This method allows us to observe the so-called antagonistic pleiotropic effect when

some genotype has an advantage only up to some age.

6.2 A modification of the relative risk model

Let denote a and A the longevity and non-longevity alleles with frequencies pa and pA =

1−pa, respectively. In Hardy-Weinberg equilibrium the genotype frequencies are Paa = p2a,

PaA+Aa = 2(1 − pa)pa, and PAA = (1 − pa)2. Assume additionally that for any individual

with genotype g (g ∈ {aa, aA + Aa,AA}) the risk of mortality at age t is defined by the

model with proportional hazard

λ(t|Zg) = Zgλ0,g(t),

where the gamma distributed random variable Zg is the individual frailty with mean 1

and variance σ2
g . The survival function Sg(t) and the cumulative hazard function Hg(t)

for individuals with genotype g in this model are related via the equation

Sg(t) = (1 + σ2
gHg(t))−1/σ2

g .

Assume additionally that the cumulative hazards for different genotypes can be parame-

terized by

Hg(t) = cgt + agH0(t)
bg

for some non-negative ag, bg, and cg, and unknown non-decreasing with age baseline

cumulative hazard function H0(t). Without loss of generality we can put aAA = bAA = 1.

The information about the birth cohort of individuals born in year x can be included in

the model by logistic parameterization

pa = 1 − 1/(1 + exp(γ + δt + Rφ(t, t0)))
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for t = T − x. Here T is the year of data collection and the parameters R, γ, and δ are

unknown. The value of Rφ(t, t0) characterizes the sudden change in the allele frequency

in the birth cohort T − t0 and the step function φ(t, t0) is defined by the interval equations

φ(t, t0) = 1 for 0 ≤ t ≤ t0 and φ(t, t0) = 0 for t > t0. The value of γ + δt stands here for

the slow cohort effect of the allele frequency.

The genotype frequencies πg(t) and the allele frequency πa(t) for the whole population

can be calculated from the formulas

πg(t) = PgSg(t)/S(t),

πa(t) = [πaa(t) + 0.5πAa+aA(t)]/[πaa(t) + πAa+aA(t) + πAA(t)],

where it holds for the survival function for whole population that

S(t) =
∑

g

PgSg(t).

It is assumed that the survival function S(t) is known. The vector of unknown parameters

θ = (R, δ, γ, aaa, aaA+Aa, baa, baA+Aa, caa, caA+Aa, cAA, σ
2
aa, σ

2
aA+Aa, σ

2
AA)∗ can be estimated

by maximizing the likelihood function

Lik =
∏

t

πaa(t, θ)Naa(t)πaA+Aa(t, θ)NaA+Aa(t)πAA(t, θ)NAA(t),

where Ng(t) is the observed number of individuals with genotype g at age t.

If the data on S(t) in some age intervals are either unreliable or unavailable we can

approximate the survival function using the Gamma-Gompertz-Makeham function

S̃(t) = (1 + s2H̃(t))−1/s2)

with

H̃(t) = c̃t + ã(exp(b̃t) − 1)/b̃.

Unknown non-negative parameters ã, b̃, c̃, and s2 can be estimated over the age interval,

where S(t) is known. To choose the optimal model we can use the Likelihood Ratio Test

for nested models, and either the Akaike Information Criterion or the Bayesian Informa-

tion Criterion for non-nested models.

Example based on the simulated data showed that, given time of sudden change in

allele frequency, survival in whole population, and numbers Ng, all unknown parameters

can be identified. Moreover, the antagonistic pleiotropic effect can also be modelled using

this approach. For example, the frequency of the beneficial allele increases up to some age
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when the survival functions for individuals with beneficial allele and without beneficial

allele become equal. Then this frequency falls drastically because after this age the indi-

viduals with beneficial allele do not have more advantage in survival (Begun, 2007)[B3].

6.3 A bivariate relative risk model

In previous section we discussed the ”relative risk method” for independent individuals.

This approach can be also adapted for detecting longevity genes for the data set con-

sisting of twin pairs (Begun, 2009)[B4]. Using the same assumptions about univariate

survivals and parametrical form for cumulative hazard functions Hg(t) and for the fre-

quency pa of longevity allele a, assume additionally that the information on longevities

for twins and their genotypes is also available. Suppose that the life spans of twins T1

and T2 are conditionally independent given frailties Z1 and Z2 and genotypes g1 and g2.

If Corr(Z1, Z2) = ρ, VarZ1 = VarZ2 = σ2, and EZ1 = EZ2 = 1, then, analogous to the

survival function corresponding to the continuous part of frailty in the mixed frailty model

of Section 5.3, the bivariate survival function is

S(t1, t2|g1, g2) = P (T1 ≥ t1, T2 ≥ t2) = S1−ρ
g1 S1−ρ

g2 (S−σ2

g1 (t1) + S−σ2

g2 (t1) − 1)−ρ/σ2
.

For univariate and bivariate survival function in the whole population it holds that

S(t) =
∑

g PgSg(t)

SMZ(t1, t2) =
∑

g PgS
MZ
g,g (t1, t2)

SDZ(t1, t2) =
∑

g1,g2
PDZ
g1,g2S

DZ
g1,g2(t1, t2).

The formulas for PDZ
g1,g2 under assumption of independent transmission of the maternal

and paternal alleles to offspring are given in Appendix C. The frequencies πMZ
g (t) and

πDZ
g1,g2(t) of the genotype g and (g1, g2) at age t can be calculated from the formulas

πMZ
g (t) = PgS

MZ
g,g (t, t)/SMZ(t, t)

πDZ
g1,g2(t) = PDZ

g1,g2S
DZ
g1,g2(t, t)/SDZ(t, t).

If the univariate survival in the whole population is known the vector of unknown pa-

rameters θ = (R, δ, γ, aaa, aaA+Aa, baa, baA+Aa, caa, caA+Aa, cAA, σ
2, ρ)∗ can be estimated

through maximizing the likelihood function

Lik =

NMZ
g
∏

i=1

πMZ
gi (ti, θ)

NDZ
g
∏

i=1

πDZ
gi1 ,gi2

(ti, θ).
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Here ti is the age of twin pair i at the moment of data collection, NMZ
g and NDZ

g are

the observed numbers of MZ and DZ twin pairs in the genetic data set, respectively. As

in the case of independent individuals we choose the optimal model using the Likelihood

Ratio Test for nested models, and either the Akaike Information Criterion or the Bayesian

Information Criterion for non-nested models. Notice that under null hypothesis (no dif-

ferences between cumulative hazard functions for different genotypes) we assume that

aaa = aAa = baa = bAa = 1 and caa = cAa = cAA = 0. Significant deviation from this

hypothesis can indicate the gene-longevity association.

To improve the accuracy of statistical estimates and to increase the power we can ad-

ditionaly use the data on longevity of twins in population. This information can decrease

the length of the confidence intervals for σ2 and ρ. There is a win in statistical power when

using the more robust univariate model compared to the bivariate model. Information on

longevity included additionally in the dataset can also substantially increase the power

(Begun, 2009)[B4].
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Chapter 7

7 Searching for genes contributing to longevity using lin-

kage analysis

7.1 Introduction

The frequency and the relative risk of mortality of a longevity allele a can be estimated

using the major gene model and the data on related individuals such as twins and siblings.

To locate the longevity allele in genome we need genetic markers data. The simplest way

to find a location of the longevity genes is the standard technique involving a Cox-type

proportional hazards univariate model, where markers are considered as observed covari-

ates. If some coefficients of regression are significantly different from zero and all loci are

in linkage disequilibrium (the alleles from loci do not occur independently in haplotypes),

then respective genetic markers are involved in longevity determination. It could mean

that longevity or frailty gene is located in the neighbourhood of respective genetic mark-

ers on the chromosome. But if loci are in linkage equilibrium this method will give us

an information about the location of longevity or frailty gene only in the case when some

genetic marker coincides with this gene. The advantage of bivariate and multivariate sur-

vival analysis with genetic markers is that they allow detection not only of the presence of

longevity or frailty genes but also determine location of these genes on the chromosome,

even if observed genetic markers are in linkage equilibrium (the alleles from loci occur

independently in haplotypes).

The methods of linkage analysis usually use approaches based on the maximization

of likelihood. Since the construction of the likelihood function involves elements related
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to longevity (hazard function, parameters of frailty distribution) and to linkage (recombi-

nation distances between longevity locus and genetic markers), observed markers do not

influence longevity directly, and position of the longevity gene does not influence the life

span, a two-step procedure is useful. In the first step (segregation analysis) we estimate

parameters characterizing the bivariate survival function without genetic markers. In the

second step (linkage analysis) we determine the location of the longevity or frailty gene

on chromosome. The first step involves the usual technique of segregation analysis for the

bivariate survival data described above. The linkage analysis involves calculation of the

distribution of inheritance vector data, then calculation of the conditional distribution of

life span, and finally averaging of likelihood with respect to first distribution.

7.2 Construction of the bivariate survival function

For constructing the bivariate survival function we will use a major gene model with

multiplicative action r, 0 ≤ r < 1, of longevity allele and frequency p. If longevity locus is

autosomal and in Hardy-Weinberg equilibrium, and parents are independent individuals,

the bivariate survival function for dizygotic twins can be calculated as follows (Begun et

al., 2000b)[B2]

SDZ(t1, t2) = p4e−r2H0(t1)−r2H0(t2)

+p3(1 − p)(e−r2H0(t1) + e−rH0(t1))(e−r2H0(t2) + e−rH0(t2))

+p2(1 − p)2(0.5e−r2H0(t1) + e−rH0(t1) + 0.5e−H0(t1))(0.5e−r2H0(t2) + e−rH0(t2) + 0.5e−H0(t2))

+p(1 − p)3(e−rH0(t1) + e−H0(t1))(e−rH0(t2) + e−H0(t2))

+2p2(1 − p)2e−rH0(t1)−rH0(t2) + (1 − p)4e−H0(t1)−H0(t2).

To calculate the baseline cumulative hazard function H0(t) we use the Gamma-Gompertz-

Makeham parameterization

S(t) = (1 + s2H̃(t))−1/s2 = p2e−r2H0(t) + 2p(1 − p)e−rH0(t) + (1 − p)2e−H0(t),

where µ̃0(t) = dH̃(t)/dt = c + a exp(bt), non-negative parameters a, b, c, and s2 are un-

known. This form of parameterization approximates the univariate survival in ages after

30 very good. Notice that unknown cumulative hazard function H0(t) is the cumulative

hazard for frailty equal to 1 and can be calculated using simple bisection procedure. For
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construction of the likelihood function we can take into account possible censoring. Maxi-

mizing this likelihood function we find the vector of unknown parameters (p, r, a, b, c, s2)∗.

7.3 Construction of the likelihood function for calculating

the LOD score profile

In linkage analysis the notion of inheritance vector plays an important role. Let γj =

(γj,1, γj,2, γj,3, γj,4)
∗ be the inheritance vector for the marker number j, j = 1, ..., l, with

components zero or one. The first and third ones denote the alleles inherited from the

mother for the first and for the second twin, respectively (0 if from the grandmother and

1 if from the grandfather). Analogously, the second and the fourth components stand for

alleles inherited from the father. Altogether we have 24 = 16 possible inheritance vectors

for each locus.

Additionally we assume that

• parental genotypes are independent at each locus with known probabilities in mark-

ers’ loci and unknown probabilities in longevity locus,

• the probability for each possible inheritance vector at the first step is equal to 1/16,

• probabilities of recombination between marker loci are known,

• observed markers are in linkage equilibrium,

• observed markers do not influence longevity directly,

• only the unobserved major gene may possess this property.

To calculate the probability Pg1,g2(Mj) that a twin pair has joint genotype (g1, g2) in

marker Mj we can use the hidden Markov chain algorithm (Lander and Green, 1987)

based on the Markov property of a pair (γj ,Mj). Marker Mj contains information about

alleles inherited from the mother and the father by the first twin (the first and the third

components) and by the second twin (the second and the fourth component). Because

of Markov property of a pair (γj ,Mj) the stepwise probability of a twin pair having the

extended genotype (markers and longevity locus situated on the chromosome on unknown
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distance between the observed markers) can be calculated. Then we multiply these prob-

abilities by survival functions (or their derivatives for noncensored data) for observed life

spans. The final likelihood is obtained by averaging the result with respect to all possible

parental genotypes and twins’ genotypes in the longevity locus. Detailed description of

the likelihood construction can be found in (Begun and Yashin, 2004)[B5].

7.4 Location of the major gene

Although all markers are in linkage equilibrium and do not influence longevity directly

the location of longevity gene may influence the joint distribution of the extended mark-

ers vector and the life span values for genetically related individuals. We can construct

the LOD score profile for the longevity gene calculating the value of log10(Likelihood) −
log10(Likelihood0), where Likelihood0 is the value of the likelihood function when longevity

gene is situated out of the chromosome (i.e. recombination probabilities of the longevity

gene is equal to 0.5), for different positions of the longevity locus on the chromosome.

The accuracy of the estimating unknown recombination probability of the longevity gene

can be assessed using a specific support interval (Ott, 1991). This support interval must

contain all the points where LOD score is higher than or equal to 3. For this interval the

linkage is significant. On the contrary, all points where LOD score is less than or equal to

-2 must be excluded.

The empirical survival and genetic markers data sets for 10 markers and 1000 DZ

twin pairs have been simulated to study the influence of the risk of mortality on the LOD

score profile (Begun and Yashin, 2004)[B5]. The smaller relative risk r, the greater the

correlation coefficients between life spans of siblings. The clear peak of the LOD score

profile has been observed only for small values of r. This peak was situated near the real

position of the longevity gene. The possibility of the localization of the longevity gene in

high degree depends on the action r of the longevity allele.

There are no any principle difficulties to apply this method to two different longevity

genes situated on the same or on different chromosomes.
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7.5 Joint analysis of bivariate competing risks survival times

and genetic markers data

Assume now that there are several types of failure. Define the cause-specific hazard

function for subject k from cluster i (twin pair, family or sibship) by

λikj(t|uik, Zikj) =

= lim∆t→0+ P (t ≤ T ≤ t + ∆t, lik = j|T ≥ t, uik, Zikj)/∆t = λ0j(t)Zikj exp(β∗
j uik),

where lik is a type of failure, j = 1, ..., L, L is a number of the types of failure, Zikj is

an individual frailty for the failure type j, λ0j(.) is the underlying cause-specific hazard

function, βj are cause-specific regression coefficients’ vectors, and uik are the vectors of

time-independent covariates. If only one of the failure types can occur, the full hazard

function for a subject is defined by

λik(t|uik, Zik1, ..., ZikL) =
L
∑

j=1

λ0j(t)Zikj exp(β∗
j uik).

The frailties Zikj can correlate for subjects from the same cluster and for different types of

failure. Dependency between subjects can be caused by the identical alleles transmitted

from parents. The polygene inheritance of a failure can lead to the correlations between

causes of death or onset.

Consider an example with twin pairs and two competing risks of death. Let two

longevity alleles a and b with dominant action and frequencies pa and pb, respectivelly, are

located in different loci on the same or different chromosomes. Neutral alleles A and B

have frequencies 1−pa and 1−pb, respectively, and correspond to frailties Zik1 = Zik2 = 1.

Suppose that the presence of at least one longevity allele a in genotype decreases the risk

of the type 1 failure by factor r1 < 1 and the risk of the type 2 failure by factor q2 < 1.

Similarly, the presence of at least one longevity allele b in genotype decreases the risk of

the type 2 failure by factor r2 < 1 and the risk of the type 1 failure by factor q1 < 1. If

both longevity genes are in Hardy-Weinberg and linkage equilibrium and the action r1,

r2, q1, q2 of the longevity genes does not depend on the location on the chromosome, the

possible longevity genotypes have the frequencies and frailties given in Table 1 (Appendix

D).

Denote the observed data in cluster (twin pair) i, i = 1, ..., n, by (Xi, Ui, Li, δi). Here

Xi stands for the time of failure (or censoring), Ui are the vectors of observed covariates,

Li are the types of failure (Li ∈ {1, 2}), and δi is the censoring vector. Similarly to
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the case with only one cause of death we estimate in the first step the parameters β (Cox

regression coefficients), vector-parameter ω characterizing the underlying hazard functions,

and parameters ζ = (pa, pb, r1, q1, r2, q2) characterizing the frailties by maximizing the

likelihood function

L(X,L, |U, δ, β, ω, ζ) =

=
∏n

i=1 EZ

(

∏2
k=1 exp

(

−∑2
j=1 Zikje

β∗

j uikH0j(Xik|ω)
)(

λ0Lik
(Xik|ω)ZikLik

e
βL∗

ik
uik

)δik
)

.

Here H0j(.) is the cause-specific cumulutive hazard and EZ denotes expectation with

respect to distribution of frailty Z.

In the second step we calculate the one- or two-dimensional LOD-score profile for two

longevity genes located on the same or different chromosomes (Begun, 2013)[B6].
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Chapter 8

8 Experiments with microarrays in twin studies

8.1 Main concepts in microarray analysis

The aim of the gene expression profiling is to measure the activity of thousands of genes

(the gene expression) at once for creating a picture of cellular function. These profiles

can help to compare the gene expression in cells or tissues from two or more experimental

conditions (e.g. affected and non-affected patients). Genes contain the information for

producing the messenger RNA (mRNA), but not all genes at any moment make mRNA.

Whether a gene is ”on” (active) or ”of” (non-active) depends on many factors such as

disease status, sex, local environment, and so on. Usually only a small fraction of genes

are differently expressed under changed experimental conditions. A DNA microarray itself

is a collection of microscopic spots on a solid surface. There are different technologies for

producing the microarray chips. The first experiments with modern form of DNA chips

were reported in 1990s.

Analysis of the microarray data consists of a number of steps. The poor-quality

and low-intensity features are removed by image analysis. The noise (background) is sub-

stracted, then the intensities ratios in the log-scale are calculated and normalized by the

data processing step. Then, the differentially expressed genes are detected using statisti-

cal tests. Finally, the gene sets (functionally related groups of genes) analysis estimates

significance of gene sets.
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8.2 Detecting differential gene expression

The classic task in microarray analysis is to detect differential gene expression between

two conditions. This may provide useful information on important biological processes or

functions and involves not only determining whether there are any differentially expressed

genes but also finding those genes with differential expression. The methods based on a

modification of the t statistic are mostly used to find genes that are differentially expressed

under two conditions. All these methods involve testing a null hypothesis H0 that there

is no differential expression and calculating a test statistic Z for each gene. To estimate

the null distribution of the statistic Z, it is auxiliary to construct a suitable null statistic

Z0 whose distribution is the same as the null distribution of Z. This distribution of Z0

can then be used to detertmine cut-off points. Genes whose Z exceed these cut-off points

are claimed significant.

Three non-parametric methods (methods independent on strong parametric assump-

tions) are often used for detecting differential gene expression. The procedures based

on the permutations of arrays and computation order statistics are implemented in the

significant analysis of microarray (SAM) (Tusher et al., 2001). The implementation of

a t statistic with a Bayesian adjusted denominator is used in the empirical Bayes (EB)

method (Efron et al., 2000,2001; Smyth, 2004). The mixture model method (MMM) uses

specific permutation of arrays followed by obtaining the sample of Z0-distributed random

variables and fitting a finite normal mixture model to this data (Pan et., al., 2002; Pan,

2003).

As for real data we usually have genes with differential expression, the null distri-

bution Z0 obtained using the permutation procedure suffers under the overdispersion of

the null distribution. Another problem arises if we use data from related individuals such

as twins. Twin data are very interesting in genetic studies because of the minimal influence

of environment confounders and the absence of the ascertment bias. Correlations between

traits of twins can bring distortions into statistical tests. This can lead to wrong infer-

ences, to falsely estimated number of differentially expressed genes, and to uncontrolled

changes of the power. It is possible to apply the EB method to gene expression data

with correlated replications (the within-array correlation method). A robust method for

37



treating gene expression data for twins has also been proposed (Begun, 2006)[B7]. This

method allows avoiding the possible errors in finding differentially expressed genes for twin

data and involves usage of a special version of the t statistic, taking into account possible

correlations between twins. Null distribution is estimated in this method similarly to the

mixture model method.

8.3 Model description for non-related individuals

The univariate MMM aproach is based upon the following assumptions. Let Yjk be the

expression level of gene j in array k, j = 1, ..., G, k = 1, ...,K1,K1 + 1, ...,K1 + K2. Here,

the first K1 and the last K2 arrays are obtained under the two conditions, respectively.

Assume that

Yjk = aj + bjxk + σjεjk,

where εjk are independent, identically and symmetrically distributed random errors with

mean 0 and the variance 1, xk = 1 for 1 ≤ k ≤ K1 and xk = 0 for K1 + 1 ≤ k ≤ K1 + K2.

Detemining whether a gene has differential expression is equivalent to testing for the null

hypothesis H0 : bj = 0 against H1 : bj 6= 0. To detect differential gene expression for

non-related individuals the four-sample equal-variance t-statistic Z1j can be used. This

statistic is defined by

Z1j =
Ŷ 11
j + Ŷ 12

j − Ŷ 21
j − Ŷ 22

j
√

(1/K11 + 1/K12 + 1/K21 + 1/K22)S2
1j

with Ŷ 11
j , Ŷ 12

j , Ŷ 21
j , Ŷ 22

j , and the pooled sample variance Ŝ2
1j given in Appendix E.

The null statistic is

Z0
1j =

Ŷ 11
j − Ŷ 12

j −
(

Ŷ 21
j − Ŷ 22

j

)

√

(1/K11 + 1/K12 + 1/K21 + 1/K22)S2
1j

.

Since εjk are symmetrically distributed, Z0
1j has the same distribution as Z1j under H0.

In MMM the probability density of null distribution is approximated by the normal

mixture model with g01 components

f1(z; Θg01) =

g01
∑

i=1

π1iφ(z;µ1i, V1i),
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where π1i are the mixing proportions and φ(z;µ1i, V1i) denotes the normal density func-

tion with mean µ1i and variance V1i, and Θg01 is the vector of parameters (µ1i, V1i),

i = 1, ..., g01. The approximate function f1(z; Θg01) allow us to determine the cut-

off points for a given Type I error. The unknown parameters of the mixture model

can be estimated using the EM algorithm (McLachlan and Basford, 1988). This algo-

rithm is realized in the Fortran program EMMIX, which is freely available on the web

http://maths.uk.edu.au/ gjm/emmix//emmix.html.

8.4 Model description for twins

Let Yjk,1 and Yjk,2 be the expression levels of gene j in array k for the first and the second

twin, respectively, with j = 1, ..., G and k = 1, ..., n. Assume that

Yjk,1 = aj + bjxk + σj,0εjk,0 + σj,1εjk,1,

Yjk,2 = aj + bjxk + σj,0εjk,0 + σj,1εjk,2,

where εjk,0, εjk,1, εjk,2, are independent, identically and symmetrically distributed random

errors with mean 0 and the variance 1, xk = 1 under condition 1 and xk = 0 under

condition 2. It is easy to show that the correlation between Yjk,1 and Yjk,2 for gene j is

defined by the formula

ρj = σ2
j,0/(σ2

j,0 + σ2
j,1).

As above we test the null hypothesis H0 : bj = 0 against H1 : bj 6= 0 to determine whether

the gene j has differential expression.

We divide all the twin pairs into three groups with respect to their concordance-

discordance status. Similarly to the case of non-related individuals we define statistic Z2j

and the null statistic Z0
2j for detecting differential gene expression (Begun, 2006)[B7]

Z2j =
Ȳ 11
j +Ȳ 12

j −Ȳ 21
j −Ȳ 22

j

S0
2j

Z0
2j =

Ȳ 11
j −Ȳ 12

j −(Ȳ 21
j −Ȳ 22

j )

S0
2j

(for notations in these formulas see Appendix F).

Theorem 1 If εjk,0, εjk,1, εjk,2, are independent, identically and symmetrically distributed

random variables the null statistic Z0
2j has the same distribution as Z2j under H0 for all

j = 1, ..., G.
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The proof of this Theorem is given in (Begun, 2006)[B7].

As in the case of non-related individuals we approximate the probability density of

null distribution by the normal mixture model with g02 components

f2(z; Θg02) =

g02
∑

i=1

π2iφ(z;µ2i, V2i),

where π2i are the mixing proportions and φ(z;µ2i, V2i) denotes the normal density func-

tion with mean µ2i and variance V2i, and Θg02 is the vector of parameters (µ2i, V2i),

i = 1, ..., g02.

8.5 Comparison of the uni- and bivariate approaches

The approximate function fi(z; Θg0i), i = 1, 2, allows us to determine the cut-off points

cdown and cupper such that the type I error rate α is

α = 1 −
cupper
∫

cdown

fi(z; Θg0i)dz ≈ p/G,

where p is the genome-wide significance level. As the functions fi(z) should be symmetric

about zero, and we are usually interested in both up- and down-regulated genes, we can

put |cdown| = cupper = Cα. Given α and fi, the value of Cα can be estimated using a

simple bisection procedure.

Let ρe and ρn are coefficients of correlation for differentially and non-differentially

expressed genes. Simulation studies for 1000 twin pairs shows that the method for non-

related individuals gives approximately the same results as for twins if ρe = ρn. This

method finds more (less) false positives for concordant (discordant) twins if ρe > ρn. On

the contrary, the method for non-related individuals finds less (more) false positives for

concordant (discordant) twins if ρe < ρn. The greater the difference between ρe and ρn,

the greater this effect. In general, results depend on the difference between ρe and ρn and

the concordance-discordance status of twins.
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8.6 Power estimation

In (Begun, 2008)[B8] it was shown that the standard deviation Ωj of Ȳ 11
j +Ȳ 12

j −Ȳ 21
j −Ȳ 22

j

can be written in a form

Ωj(σj , ρj) = σj

√

√

√

√

2
∑

p,q=1

1

n2
pq

(

npq + 2Kc
pqρj

)

−
2

∑

q=1

Kd
q ρj

n1qn2q

with σ2
j = σ2

j,0 + σ2
j,1 (for notations in this formula see Appendix F). Note that statistic

Z2j differs from statistic Z0
2j by the value dj = 2bj/S

0
2j . Replacing S0

2j with Ωj(σj , ρj) in

formula for dj and taking into account that Z2j under H0 has the same distribution as

Z0
2j , we can estimate the power function β(dj , α) using approximate formula

β̂(d̃j , α) =

d̃j−Cα
∫

−∞

f2(z; Θg02)dz +

∞
∫

d̃j+Cα

f2(z; Θg02)dz

with d̃j = 2bj/Ωj(σj , ρj). Simulation studies based on the sample with 1000 twin pairs

shows that there is a clear difference in the behaviour of the power function for concordant

and discordant twin pairs. The power increases with bj/σj and decreases with ρj for

concordant twin pairs. For discordant twins, the power increases with both bj/σj and ρj .

It was not surprising that the power increases with sample size. Discordant twins are more

informative than concordant ones and give more power for the same values of bj/σj and

ρj .
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Chapter 9

9 Conclusions

Including frailty in traditional survival analysis extends our possibilities to analyze the

longevity data and to interpret results of the studies. The notion of frailty as a random

non-observed risk of mortality complements the notion of the hazard function and de-

scribes additional source of randomness and variability in mortality process. The third

source of variability in mortality are observed covariates. An assumption about conditional

independence of mortality risks for related individuals given individual frailties makes it

possible to consider genetic factors as the components of frailty and to study the genetic

influence on mortality using the traditional methods of quantitative genetics.

The frailty models can be useful in locating of genes contributing to longevity. This is

possible if additional genetic information such as genetic markers data are also available.

Thereby, searching for parameters relating to frailty and hazard and for parameters defin-

ing the location of longevity genes can be carried out separately because longevity does

not depend on the position of genes at the chromosome.

Apart from clear advantages of frailty modelling there are some problems and lim-

itations in using the frailty component in survival analysis. It is not easy to adapt the

approach based on the correlated frailty model with continuous frailty to groups with more

than two related individuals such as family (in the models with discretely distributed frailty

this problem can be easily overcome). Secondly, the form of the frailty distribution used

in survival analysis may vary and interpretation of results can depend on this form.

Other limitations of frailty modelling relate to the proportional structure of the haz-

ards, assumptions about independence of observed covariates, and about fixed (not chang-
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ing with age) frailty. Approaches free of these limitations need to be developed.

Special methods for detecting differentially expressed genes under two or more condi-

tions having been intensively developed in last years. A number approaches and software

tools were successfully used by analysis of the data in experiments with microarrays. Such

methods include preliminary treatment of the microarray data followed by statistical tests

locating differentially expressed genes, and the gene sets analysis. Correlations between

individuals may markedly influence the results of search of such genes and the power.

To avoid the bias in studies and incorrectness in conclusions we must take into account

possiible genetic and environmental similarities between individuals.
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Appendix A

S(t1, t2|u1, u2) = S1(t1|u1)1−ρS1(t2|u2)1−ρ(S1(t1|u1)−σ2
+ S1(t2|u2)−σ2 − 1)−ρ/σ2

∂S(t1, t2|u1, u2)/∂t1 = f1(t1|u1)S1(t1|u1)−ρS2(t2|u2)1−ρ

×
[

S1(t1|u1)−σ2
+ S1(t2|u2)−σ2 − 1

]−ρ/σ2−1

×
[

−S1(t1|u1)−σ2 − (1 − ρ)S2(t2|u2)−σ2
+ 1 − ρ

]

∂S(t1, t2|u1, u2)/∂t2 = f2(t2|u2)S1(t1|u1)1−ρS2(t2|u2)−ρ

×
[

S1(t1|u1)−σ2
+ S1(t2|u2)−σ2 − 1

]−ρ/σ2−1

×
[

−S2(t2|u2)−σ2 − (1 − ρ)S1(t1|u1)−σ2
+ 1 − ρ

]

∂2S(t1, t2|u1, u2)/∂t1∂t2 = f1(t1|u1)f2(t2|u2)S1(t1|u1)−ρS2(t2|u2)−ρ

×
[

S1(t1|u1)−σ2
+ S1(t2|u2)−σ2 − 1

]−ρ/σ2−2

×((1 − ρ)2
[

S1(t1|u1)−σ2
+ S2(t2|u2)−σ2 − 1

]2

+ρ(1 − ρ)S2(t2|u2)−σ2
[

S1(t1|u1)−σ2
+ S2(t2|u2)−σ2 − 1

]

+ρ(1 − ρ)S1(t1|u1)−σ2
[

S1(t1|u1)−σ2
+ S2(t2|u2)−σ2 − 1

]

+ρ(ρ + σ2)S1(t1|u1)−σ2
S2(t2|u2)−σ2

)

Here fi(ti|ui) = ∂Si(ti|ui)/∂ti, i = 1, 2.
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Appendix B

In the major gene model with one beneficial allele a in autosomal locus assume that

the first allele of the offspring is inherited from the mother and the second one from the

father. Altogether we have 4 genotypes: aa, aA, Aa, and AA. The conditional genotype

frequencies of an offspring given parental genotypes can be calculated from formulas

P (g = aa|gm = aa, gf = aa) = 1

P (g = aa|gm = aa, gf = aA + Aa) = 0.5

P (g = aA|gm = aa, gf = aA + Aa) = 0.5

P (g = aA|gm = aa, gf = AA) = 1

P (g = aa|gm = aA + Aa, gf = aa) = 0.5

P (g = Aa|gm = aA + Aa, gf = aa) = 0.5

P (g = aa|gm = aA + Aa, gf = aA + Aa) = 0.25

P (g = AA|gm = aA + Aa, gf = aA + Aa) = 0.25

P (g = aA + Aa|gm = aA + Aa, gf = aA + Aa) = 0.5

P (g = Aa|gm = AA, gf = aa) = 1

P (g = Aa|gm = AA, gf = aA + Aa) = 0.5

P (g = AA|gm = AA, gf = aA + Aa) = 0.5

P (g = AA|gm = AA, gf = AA) = 1
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Appendix C

PDZ
aa,aa = P 2

aa + (1/2)PaaPaA+Aa + (1/16)P 2
aA+Aa

PDZ
aa,aA+Aa = (1/2)PaaPaA+Aa + (1/8)P 2

aA+Aa

PDZ
aA+Aa,aa = (1/2)PaaPaA+Aa + (1/8)P 2

aA+Aa

PDZ
aa,AA = (1/16)P 2

aA+Aa

PDZ
AA,aa = (1/16)P 2

aA+Aa

PDZ
aA+Aa,AA = (1/2)PAAPaA+Aa + (1/8)P 2

aA+Aa

PDZ
AA,aA+Aa = (1/2)PAAPaA+Aa + (1/8)P 2

aA+Aa

PDZ
aA+Aa,aA+Aa = (1/2)PaaPaA+Aa + 2PaaPAA + (1/2)PAAPaA+Aa + (1/4)P 2

aA+Aa

PDZ
AA,AA = P 2

AA + (1/2)PAAPaA+Aa + (1/16)P 2
aA+Aa,

where Paa = p2a, PaA+Aa = 2pa(1 − pa), and PAA = (1 − pa)2.
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Appendix D

Table 1: Frailties and genotype frequencies for two dominant longevity genes.

Zik1 Zik2 Genotype Frequency

r1q1 r2q2 (aa + Aa + aA) × (bb + bB + Bb) (1 − (1 − pa)2)(1 − (1 − pb)
2)

r1 q2 (aa + Aa + aA) ×BB (1 − (1 − pa)2)(1 − pb)
2

q1 r2 AA× (bb + bB + Bb) (1 − pa)2(1 − (1 − pb)
2)

1 1 AA×BB (1 − pa)2(1 − pb)
2
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Appendix E

Z1j =
Ŷ 11
j + Ŷ 12

j − Ŷ 21
j − Ŷ 22

j
√

(1/K11 + 1/K12 + 1/K21 + 1/K22)S2
1j

where

Ŷ 11
j =

K11
∑

k=1

Yjk

K11
; Ŷ 12

j =
K1
∑

k=K11+1

Yjk

K12
;

Ŷ 21
j =

K1+K21
∑

k=K1+1

Yjk

K21
; Ŷ 22

j =
K1+K2
∑

k=K1+K21+1

Yjk

K22

S2
1j =

[

K11
∑

k=1

(Yjk − Ŷ 11
j )2 +

K1
∑

k=K11+1

(Yjk − Ŷ 12
j )2 +

K1+K21
∑

k=K1+1

(Yjk − Ŷ 21
j )2 +

K1+K2
∑

k=K1+K21+1

(Yjk − Ŷ 22
j )2

]

K1 + K2 − 4

K11 = [K1/2] ; K12 = K1 − [K1/2] ;

K21 = [K2/2] ; K22 = K2 − [K2/2] ;

and [x] is the integer part of x.
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Appendix F

Denote the groups of twin pairs according their concordance-discordance status by M c
1 ,

M c
2 , and Md with the number of pairs equal to l1, l2, and l12, respectively. The first

group for concordant twins under the first condition, the second group for concordant

twins under the second condition, and the third group for discordance twins with the first

twin under the first condition and the second twin under the second condition. The full

number of twin pairs is equal to n = l1 + l2 + l12. Denote

Kc
11 = [l1/2] ; Kc

12 = l1 − [l1/2] ;

Kc
21 = [l2/2] ; Kc

22 = l2 − [l2/2] ;

Kd
1 = l12 − [l12/2] ; Kd

2 = [l2/2] ;

We divide arbitrary groups M c
1 , M c

2 into four groups - M c
11, M c

12, M c
21, and M c

22 with

number of pairs equal to Kc
11, K

c
12, K

c
21, and Kc

22, respectively, and the group Md into two

groups Md
1 and Md

2 with the number of pairs equal to Kd
1 , and Kd

2 , respectively. Then we

form new groups M11, M12, M21, and M22 as follows. The group M11 includes all twins

from M c
11 and all first twins from the group Md

1 . The group M12 includes all twins from

M c
12 and all first twins from the group Md

2 . The group M21 includes all twins from M c
21

and all second twins from the group Md
1 . The group M22 includes all twins from M c

22 and

all second twins from the group Md
2 . The number of individuals in the groups M11, M12,

M21, and M22 is equal to n11 = 2Kc
11 + Kd

1 , n12 = 2Kc
12 + Kd

2 , n21 = 2Kc
21 + Kd

1 , and

n22 = 2Kc
22 +Kd

2 , respectively. It holds that n11 +n12 +n21 +n22 = 2n. Finally we define

Ȳ pq
j , p, q = 1, 2 from the formula

Ȳ pq
j =

∑

k∈Mc
pq

(Yjk,1 + Yjk,2) +
∑

k∈Md
q

Yjk,p

npq
.

The value of S0
2j is an estimate of the standard deviation of the numerator of Z2j

Ȳ 11
j + Ȳ 12

j − Ȳ 21
j − Ȳ 22

j

and can be found in (Begun, 2006)[B7].
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