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Zusammenfassung

Graphen ist ein zweidimensionaler Festkörper, welcher sich durch einzigartige
Eigenschaften auszeichnet. Abgesehen von seiner mechanischen und chemis-
chen Stabilität, hat es auch bemerkenswerte elektronische Eigenschaften, die
sich durch äußere Einflussnahme in weiten Bereichen variieren lassen. Da sich
Elektronen in Graphen wie relativistische Teilchen verhalten, bietet es ein ideales
Versuchsfeld für Quanten-Elektrodynamik.

Im Rahmen dieser Arbeit befassen wir uns mit dem Einfluss äußerer Potentiale
auf das Verhalten von Elektronen in Graphen mit Substrat-, oder Spin-Bahn-
Effekt-induzierter Bandlücke. Genauer gesagt untersuchen wir die Fähigkeit
dieser Potentiale Elektronen zu binden und das kritische Verhalten dieser Po-
tentiale, also ihre Fähigkeit mit steigender Kopplungsstärke gebundene Elektro-
nenniveaus wieder in eines der Bänder zu drücken, was dann Streuresonanzen
erzeugen müsste.

Im ersten Teil (Kapitel 3) dieser Arbeit untersuchen wir zuerst den Ein-
fluss zweier gleich geladener Coulomb-Zentren im endlichen Abstand auf die
elektronische Struktur. Wir können sowohl den gebundenen Grundzustand
charakterisieren, als auch den Abstand der Zentren bestimmen, bei welchem
der Grundzustand kritisch wird. Ferner untersuchen wir den Einfluss zweier
gegensätzlich geladener Coulomb Zentren im endlichen Abstand, also eines
Dipols, im nicht relativistischen Grenzfall. Wir zeigen, dass dieser zwar immer,
unabhängig von der Dipolstärke, eine unendliche Anzahl gebundener Niveaus
erzeugt, und dass zusätzliche Klassen gebundener Niveaus bei gewissen Dipol-
stärken entstehen, das System jedoch nie kritisch wird.

Im zweiten Teil (Kapitel 4) wird der Einfluss von Spin-Bahn Kopplung auf
das Spektrum eines Quantenpunkts untersucht, wobei uns ein Potentialtopf als
Modell dient. Wir sind in der Lage sowohl das Spektrum gebundener Zustände,
von denen immer mindestens einer existiert, als auch das Streuspektrum zu
charakterisieren. Es findet sich außerdem eine Klasse Symmetrie-geschützter
Zustände, welche parallel zu einem Kontinuum existieren, jedoch nicht zur
Streuung beitragen. Wir gehen davon aus, dass ein Symmetrie-brechendes
Störpotential zusätzliche Resonanzen erzeugen würde.
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Summary

Graphene is a two dimensional solid, which is outstanding due to its unique
properties. Besides its mechanical and chemical stability it additionally has
notable electronic characteristics, which may be tuned over a wide range of
regimes. Since the quasiparticles in graphene behave as relativistic electrons, it
offers a great opportunity for testing predictions of quantum electrodynamics,
which may not be accessible otherwise. Within this work we investigate the
effect of exterior potentials, forming quantum dots, on electron behavior in
graphene with a gap induced by substrate or spin-orbit effects. More precisely,
we investigate the ability of these potentials to bind electrons and we investigate
the critical behavior of these potentials, i.e. their capability of pushing bound
states into one of the bands creating scattering resonances.

In the first part (chapter 3) we focus on two Coulomb-type impurities sep-
arated by a finite distance. First we focus on equally charged impurities. We
describe the behavior of the bound groundstate and estimate the critical distance
between the centers in the case of a supercritical total charge of both centers. We
then continue to investigate the effects of a dipole impurity, i.e. two oppositely
charged Coulomb centers at a finite distance, in the non relativistic limit. We
find that bound states exist for any finite dipole strength, but no criticality is
possible. Statements about the full relativistic case are made using a numerical
diagonalization procedure. Nevertheless, we observe resonances, which corre-
spond to new sets of bound levels appearing at certain critical dipole moments.
These levels exhibit certain universal features independent of the short range
characteristics of the impurity.

In the second part (chapter 4) we focus on quantum dots in graphene under the
influence of spin-orbit coupling. A potential well serves us as a model system.
We are able to calculate the bound state spectrum as well as the resonance spec-
trum of the system. In particular, we show that always at least one bound state
exists at finite potential strength. We also discover a class of symmetry protected
states, which may exist within, but not coupled to, a continuum and therefore
do not cause a scattering resonance. A symmetry breaking perturbation should
lift the protection and new resonances should appear.
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1 Introduction

Graphene consists of sp2-hybritized carbon atoms, each covalently bound to
three others by the sp2 orbitals. It thus has the shape of a honeycomb formed of
carbon atoms at the junctions, the links are σ-bonds [1]. Although it is abundant
in the nature as the building part of graphite, which consists of many graphene
layers stacked on each other bound by van der Waals force, for a long time it
was not possible to isolate it and it was commonly believed that it may not be
stable.

Nevertheless, its low energy quantum mechanical properties were investi-
gated long ago, in 1947, when P.R. Wallace was initially investigating graphite
using tight binding theory [2]. During his work he discovered that the electrons
in pristine graphene at the Fermi surface behave like massless particles with a
lightlike dispersion relation with the Fermi velocity vF ≈ 3 · 106 m/s, a speed of
light equivalent in graphene.

These striking properties became relevant when graphene was first isolated
in 2004 by K. Novoselov et al. [3] by the scotch tape method, which earned the
Nobel prize in 2010. Using this method graphene is synthesized from graphite
by applying duct tape, which detaches flakes of multilayer graphene. Repeating
the process on these flakes will eventually produce single layer graphene flakes
with a thickness of ∼ 0.8 nm, which may be seen by atomic force microscopy.

Other methods to prepare graphene are by heat desorption of SiC [4] or on
metal surfaces [5]. The substrates, however, will strongly influence its properties
in contrast to free standing graphene. For instance, a gap may be created and to
turn it into an insulator, or it may be strongly doped to make it metallic [1]. Other
methods to manipulate graphene are to introduce strain, which will result in
effective electromagnetic potentials, by creating disorder and lattice defects [6],
or by adsorbed impurities [7]. Ribbons of graphene also develop very distinct
features depending on the nature of the edges [8].

Another class of tunable properties within graphene are its spin-orbit coupling
capabilities, which may be tuned by curvature or normal to the plane electric
fields [9] or by surface adatoms [10].

Other striking discoveries within graphene physics are the anomalous integer
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CHAPTER 1. INTRODUCTION

quantum Hall effect [11] and the quantum spin Hall effect [12], the discovery of
which induced the intense research on topological insulators.

As mentioned above, the electrons at the Fermi surface in graphene behave
like relativistic particles. This makes it a simple to control lab environment for
quantum electrodynamics. Due to its high tunability and lower quasiparticle
velocities compared to the speed of light one may establish many regimes to
observe effects, which would be difficult, if not impossible, to realize in three
dimensional vacuum. One of these effects is the criticality of relativistic quantum
systems cause by large charge concentrations [13] and potentials resultig from
these. In the presence of such potentials bound levels may be pushed into the
negative continuum and become scattering resonances. This effect should be
observable for nuclei with a charge of ∼ 170e. Of course, elements with such a
high nuclear charge do not exist. In graphene, however, the charge necessary to
create these effects is only of order∼ 1e [14], which may be realized by deposition
of adatom clusters on the surface [7].

In the first part of the thesis we will investigate the action of two separated
Coulomb centers on graphene. One may think of two situations:

1. Equally charged centers.

2. Centers carrying opposite charges.

The first situation is easy to grasp intuitively. If the charges are close to each
other, they act as a single center with twice the charge. On the other hand, if the
charges are separated on a large scale1, an electron would only see one of the
centers, i.e. we again would deal with a single impurity. The crossover regime
we will investigate using the linear combination of atomic orbitals method.
Further, it will enable us to investigate at which distance between the centers
the “concentration” of the charges is large enough to create criticality.

The second of the above situations is more difficult to understand a priori. If
the centers are close to each other, the effective visible charge should be zero.
May any electrons (or holes) then be bound at all? If not, what is the minimal
distance to enable them to do so? And once an electron is bound, may it also
become critical at some point? We will be able to address all of these questions
within this work. Finally, we analyze the scattering of electrons by such an
impurity.

The second part of the thesis will deal with quantum dots in graphene in the
presence of strong spin-orbit coupling, which is a highly tunable property of
graphene, see discussion below. We thus would like to investigate its effects on

1This scale is yet to be clarified.
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the bound level spectrum as well as on the scattering, where a quantum well
will serve us as a model system.

At last we would like to mention that many of the effects discussed here one
may as well induce in surface states of topological insulators [15] and the so-
called molecular graphene [16], which consists of carbon monoxide molecules
assembled on a copper surface. Both of these systems exhibit the relativistic
dispersion relation, which graphene is popular for.

3





2 Introduction to Theory of Graphene
and Critical Effects in Relativistic
Quantum Mechanics

2.1 Low-Energy Physics of Graphene

2.1.1 Microscopic Structure of Graphene

A B

Δ1

Δ2

Δ3

a1

a2

�

K

K'

b1

b2

Figure 2.1.: Microscopic structure of graphene. Left: real space. Right: reciprocal
space.

Graphene consists of sp2-hybridized carbon atoms connected to their next
neighbors by σ-bonds. Since the corresponding sp2 states are all occupied, the
bands formed by them are full and deep below the Fermi surface and thus do
not contribute to the conductance. The remaining p-orbitals are normal to the
plane. By interactions with neighboring atoms they are delocalized and thus
form the π-band, see sec. 2.1.2.
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The lattice that follows from this configuration is hexagonal and has a basis
consisting of two atoms (sublattice A and B). The lattice vectors are [2]

a1 =
a
2

[
3√
3

]
, a2 =

a
2

[
3
−√3

]
(2.1)

and the vectors connecting any B-site to neighboring A-sites are given by

δ1 =
a
2

[
1√
3

]
, δ2 =

a
2

[
1
−√3

]
, δ3 = a

[−1
0

]
,

where a ≈ 1.42 Å is the next-neighbor distance. The corresponding connections
from A-sites to B-sites one may find by δi → −δi.

The reciprocal lattice is spanned by the vectors

b1 =
2π
3a

[
1√
3

]
, b2 =

2π
3a

[
1
−√3

]
.

Correspondingly the first Brillouin-zone (1.BZ) is a hexagon, see fig. 2.1. The
two of its nonequivalent corners (K-points) are

K = 2π
3a

[
1
1√
3

]
and K′ = 2π

3a

[
1
− 1√

3

]
.

It turns out that the number of modes inside the 1.BZ exactly corresponds to the
density of p-orbital-electrons (two per unit-cell) on graphene [2]. Due to this the
π-bands are at half filling.

2.1.2 Tight Binding Theory of Graphene

Because of the weak coupling between the p-orbitals located at neighboring sites,
the characteristics of the corresponding bands are well captured by the tight-
binding theory (for general formulation see for instance [17] or any textbook
on solid state physics). For the derivation (see [1] and the references within)
one may start by introducing annihilation-operators corresponding to p-orbitals
at site Ai(Bi) with spin sz = s, as,i(bs,i), which obey fermionic anti-commutation
relations:{

as,i, a†s′, j
}
= δi, jδs,s′ =

{
bs,i, b†s′, j

}
,
{
as,i, as′, j

}
= 0 =

{
bs,i, bs′, j

}
,
{
as,i, b

(†)
s′, j

}
= 0. (2.2)

The p-orbital part of the (kinetic) Hamiltonian may now be formulated in terms
of these operators:

HT = −t
∑
<i, j>,s

(
a†s,ibs, j + b†s,ias, j

)
, (2.3)
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2.1. LOW-ENERGY PHYSICS OF GRAPHENE

where t ≈ 2.6 eV is the hopping energy and the sum only runs over neighboring
sites, which is denoted by < i, j > in the sum argument. For now we skip the
spin-index s, since both spin-sectors may be treated separately as long as no
spin-changing are effects considered ([H, sz] = 0). Now some Bloch operators
may be constructed as linear combinations of the site creation operators (2.2)

ak =
1√N

∑
i

ai eik·ra
i , bk =

1√N
∑

i

bi eik·rb
i . (2.4)

where N is the volume of the first Brillouin zone (normalization) and the sum
runs over all lattice sites fig. 2.1. The reverse transformation is given by the
formula

ai =
1√N

∫
1.BZ

dk ak e−ik·ra
i , bi =

1√N
∫

1.BZ

dk bk e−ik·rb
i ,

where the integral is taken over the first Brillouin zone. Note that due to
the unitary nature of the transformation between ai (bi) and ak (bk) the anti-
commutation relations (2.2) are conserved:{

ak, a†k′
}
= δ(k − k′) =

{
bk, b†k′

}
, {ak, ak′ } = 0 = {bk, bk′ } ,

{
ak, b

(†)
k′
}
= 0. (2.5)

Using (2.5) H may be expressed by the Bloch operators as follows:

[HT, ak] = t
∑
δi

e−iδi·kbk = t f (k)bk,

and similarly [HT, bk] = t f ∗(k)ak,

where

f (k) = 2e−ikxa/2 cos(
√

3kya/2) + e−ikxa.

Using this one may write

HT = t
∫

1.BZ

dk ψ†k

[
f ∗(k)

f (k)

]
ψk, ψk = [ak, bk]T .

Since the result is diagonal in k one may now give the dispersion-relation:

εk = ±t| f (k)| = ±t
√

3 + 2 cos(
√

3kya) + 4 cos(
√

3kya
2 ) cos(3

2kxa). (2.6)

One may note that f (K(′)) = 0, thus it makes sense to expand H around the

7
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CRITICAL EFFECTS IN RELATIVISTIC QUANTUM MECHANICS

Figure 2.2.: Left: Dispersion-relation of graphene from (2.6). Right: Note the linear,
lightlike behavior next to the K-points.

K-points k→ k +K(′). The result up to first order is

HT =
3ta
2

∫
dk

⎛⎜⎜⎜⎜⎝ψ†k,K
⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣ (i+

√
3)

2

− (i−√3)
2

⎤⎥⎥⎥⎥⎦ kx +

⎡⎢⎢⎢⎢⎣ (1−i
√

3)
2

(1+i
√

3)
2

⎤⎥⎥⎥⎥⎦ ky

⎞⎟⎟⎟⎟⎠ψk,K

+ψ†k,K′

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣ (i−√3)

2

− (i+
√

3)
2

⎤⎥⎥⎥⎥⎦ kx +

⎡⎢⎢⎢⎢⎣ − (1+i
√

3)
2

− (1−i
√

3)
2

⎤⎥⎥⎥⎥⎦ ky

⎞⎟⎟⎟⎟⎠ψk,K′

⎞⎟⎟⎟⎟⎠ . (2.7)

Rotating k by π
6 and transforming into the real space one ends up with the 2D-

variant of the Dirac-Weyl equation, which usually describes massless relativistic
spin 1

2 particles [18] and, as we now see, also represents low energy electronic
excitations in graphene:

HT = −i�vF

∫
dr (ψ†K′(�r)σ · ∇ψK′(r) −ψ†K(r)σ∗ · ∇ψK(r)),

where vF =
3ta
2 ≈ 106 m

s is the Fermi-velocity in graphene, σ = [σx, σy]T, σx,y

are the corresponding Pauli matrices operating on the sublattice space and σ∗
means the component wise complex conjugate. The dispersion relation around
the K-points is thus light-cone shaped, εk = ±�vFk, where k = |k|. Due to the

8



2.1. LOW-ENERGY PHYSICS OF GRAPHENE

relativistic behavior of the electrons near the K-points, these are also often called
Dirac points. This can be cast into a more convenient notation

HT = −i�vF

∫
dr ψ†(r)

(
σxτz∂x + σy∂y

)
ψ(r). (2.8)

Here τi, i ∈ {x, y, z}, is the Pauli matrix operating on the K-point degree of
freedom, also called valley. ψ(r) = [ψa,K(r), ψb,K(r), ψa,K′(r), ψb,K′(r)]T is now a four
component-spinor and we use the abbreviation σi ⊗ τ j = σiτ j for the tensorial
product1. Note that usually both K-points may be treated separately, if one
assumes external potentials included into the problem to vary little on the scale
of lattice vectors (2.1), and thus having no contributions in their Fourier spectrum
close to the edge of the 1.BZ.

Due to the half-filling of the π-bands, see 2.1.1, at T = 0 the upper band is
empty and the lower band is full. Thus the Fermi-surface exactly corresponds
to the both K-points.

We mention for the sake of completeness that including a second neighbor
hopping with the energy t′ would induce an electron-hole symmetry breaking,

εk → εk + t′(2 cos(
√

3kya) + 4 cos(
√

3kya/2) cos(3kxa/2)),

which we will neglect though, since t� t′ ≈ 0.1 eV.

2M k

Ε

Figure 2.3.: Qualitative band
structure in the vicin-
ity of a K-point with
and without (dashed)
a gap.

Note that it is also straightforward to in-
clude some sublattice asymmetry

Hg =
∑

i

(
Maa†i ai +Mbb†i bi

)

into the calculations above. Without loss of
generality one may set Ma = M = −Mb. The
effect on the quasi-particle spectrum would be
that of an effective mass:

HT → HT +M
∫

dr ψ(r)†σzψ(r). (2.9)

This may be realized by substrate-effects, see
[19] and [20] for theoretical prediction and ex-
perimental realization. The corresponding spectrum is easily calculated to be

εk = ±
√

(�vFk)2 +M2.

1Note that in this sense one always should read σi = σi ⊗ idτ.
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Obviously (2.9) is translational invariant in the graphene plane, since it com-
mutes with ∂x and ∂y. We also note that (2.9) is rotationally invariant by means
of the transformation

HT(φ, r)→ U†θHT(φ, r)Uθ = HT(φ + θ, r), Uθ =

[
eiθ

1

]
.

2.1.3 Effects of Spin-Orbit Coupling

So far the spin was neglected, since it was conserved by Hamiltonian in the
tight-binding picture ([H, sz] = 0). It turns out, however, that there are numerous
effects, which may lift this degeneracy. These interactions enable a rich physics.

In 2005 it was shown [12] that at graphene ribbon boundaries edge states are
induced. These carry counter propagating currents of spin filtered electrons. The
spin is locked to the direction of propagation. This configuration is time reversal
invariant, since under time reversal the spin of an electron would change as well
as its direction of propagation. This phenomenon became popular under the
name quantum-spin-Hall-effect2 and encouraged the research on topological
insulators, which support edge states and spin selective currents related to
them at boundaries between topologically distinct phases. We will see that also
in circular quantum dots in the presence of spin-orbit coupling spin selective
currents are induced.

The intrinsic spin-orbit coupling (SOC) is due to a relativistic effect, which
adds

Hso =
�

4m2
e c2

s · (∇V × p),

s =
[
sx, sy, sz

]T
, to the one particle Schrödinger equation with any external poten-

tial V [12]. Here si, i ∈ {x, y, z}, is the Pauli matrix operating on the spin degree
of freedom.

In case of graphene V is generated by the microscopic configuration of a
graphene sample, which is usually not free standing, but located on a substrate
and under influence of external fields, curvature and impurity coverings. Inter-
actions with the σ-bonds, connecting neighboring lattice sites, also take place.
This results in an additional term of the low-energy Hamiltonian (2.8), [12],

HT → HT +Mso

∫
dr ψ†(r)σzszτzψ(r). (2.10)

2Note that the regular quantum-Hall-effect does not obey time-reversal symmetry due to
presence of magnetic fields. Both spins are propagating in the same direction.
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2.1. LOW-ENERGY PHYSICS OF GRAPHENE

2Mso

2 ΛR

k

Ε

2Mso

ΛR�2Mso

ΛR�2Mso

k

Ε

Figure 2.4.: Dispersion-relation of graphene from (2.13). Left: |λR| < Mso, Right: |λR| >
Mso.

Note that ψ is now an eight-component spinor, which additionally includes the
spin-degree of freedom. This Hamiltonian corresponds to a gap, which changes
sign, depending on spin and valley.

Another class of SOC-effects, the so-called Rashba-SOC, arises through a
breaking of symmetry normal to a two dimensional system [21], which gives an
effective contribution

HR = λR(s × p) · ez,

where ez is the z-direction unit vector and λR is the so-called Rashba-coupling.
Its magnitude is tunable by the magnitude of symmetry breaking, i.e. one may
enhance it by applying a electric field normal to the plane of movement of the
electrons.

One may achieve this on graphene e.g. by applying an electric field normal to
the plane or by curvature [22]. The resulting part of the Hamiltonian one may
calculate to be

HT → HT +
λR

2

∫
dr ψ†(r)(σxsyτz − σysx)ψ(r). (2.11)

In contrast to the intrinsic effects Rashba-SOC will break electron-hole sym-
metry of the quasi-particle spectrum. However, the valley-degeneracy is still
present, since the right side of (2.11) only depends on τz and thus [HT, τz] = 0.

Taking all SOC-effects into account one ends up with the Hamiltonian

HT =

∫
dr ψ†(r)

(
−i�vF(τzσx∂x + σy∂y) + τzszσzMso +

λR

2
(σxsyτz − σysx)

)
ψ(r) (2.12)

11
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whose eigenstates are represented by four valley-degenerate bands,

ε−k − λR
2 = ±

√
(�vFk)2 + (Mso − λR

2 )2 and

ε+k +
λR
2 = ±

√
(�vFk)2 + (Mso +

λR
2 )2,

(2.13)

see fig. 2.4, and have no definite spin. Notably λR ≥ 2Mso would close the gap,
thus the contributions due to Mso and λR are in competition for the possibility of
a gap. Note also that for t � �vFk � max(λR,Mso) the quasi-particles still have
a light-like dispersion relation.

There are various numerical estimates for Mso generated due to spin-orbit
effects present in isolated C-atoms. Using 2nd-order perturbation-theory it
was shown by [9] and [23] that the SOC due to the intrinsic effects is ranging
from 0.2 K to 0.01 K. In this context one speaks of intrinsic-SOC. Note that the
effect due to this intrinsic effects is tiny compared to the energy scale of the
system t ≈ 32 × 103 K, which would make its effects unobservable. However,
by introducing a number of adatoms with a strong intrinsic SOC one may
enhance the Mso [10]. Note that adatoms also introduce a local distortion of
graphene, which would turn the interaction between the p- and s-orbitals into
a first order process in the sense of perturbation theory [24]. Attention has
to be paid to the possibility of simultaneous increasing of λR and thus closing
of the gap again, see for instance [25] and [26] for theoretical predictions and
experimental measurements with Au adatoms. It was predicted in [10] that
using Te or In deposited on the surface of graphene, one may tune Mso over a
large range, depending on the surface coverage (number of adatoms per unit
cell) of these impurities. For instance, at 7% coverage one may achieve up
to 25 meV∼300 K for Mso, while simultaneously the Rashba coupling remains
moderate. Experimental realization also include hydrogenated graphene with
Mso enhanced by ∼1000 compared to clean, freestanding graphene [24].

Different methods for varying the Rashba-SOC are, e.g by electric fields nor-
mal to the plane, as mentioned above, or curvature, see [9] and [23]. Typical
estimates are λR ≈ 0.13K at an electric field of E ∼ 50 V

300 nm. Note that effects of
curvature and electric fields will add to each other.

Using a combination of all these procedures one may tune graphene to a wide
range of regimes, thus allowing experimental testing of our calculations below.
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2.2. INTRODUCTION TO CRITICALITY OF RELATIVISTIC ELECTRONS

2.2 Introduction to Criticality of Relativistic
Electrons

The relativistic hydrogen problem was first treated by Dirac himself [27], [28]
and thereafter by numerous authors (for a nice review cf. [29] and [13]). He
managed to solve the corresponding static equation,

Eψ =

⎛⎜⎜⎜⎜⎜⎝−i�c
3∑

i=1

αi∂i +mc2α0 − Ze2

r

⎞⎟⎟⎟⎟⎟⎠ψ (2.14)

where αi is a set of 4 × 4 matrices satisfying {αi, α j} = 2δi, j. The lowest bound
level (bound means |ε| < mec2, which corresponds to wave functions decaying
as e−|κ|r for r→∞) was found to be

εg

mec2 =
√

1 − ζ2, ζ =
Ze2

�c
≈ Z

137
.

Note that εg becomes purely imaginary once Z > 137. It turns out that any wave
function in the limit r→ 0 then also behaves like

ψ ∝ r
√

1−ζ2
,

which makes it impossible to impose proper boundary-conditions, since the
function does not converge. Proper boundary conditions are necessary to estab-
lish the hermiticity of H, thus it becomes non hermitian in this limit. This is the
popular “falling to the center” phenomenon. The intuition behind this is that
once a core gets charged above Z ∼ 137 any electron attracted by it will collapse
into the core, accumulating an infinite phase, thus reducing the effective charge
to a value Z < 137, making it sub-critical again.

This problem may be cured by observing that a true physical charge never is
point-like, e.g [29]. For instance, any atomic nucleus has an extent of the order
of ∼pm. Taking this into account mathematically means to introduce additional
boundary conditions at r = R, where R has to be chosen appropriately small, i.e.
by regularizing the potential. For instance, one may introduce a cutoff for the
potential at r < R.

This enables one to tune the core charge to as big as Z = Zcr ≈ 170, if one
regularizes the potential on a length scale corresponding to an atomic nucleus.
Then the corresponding ground level energy would reach the negative-energy
continuum, ε < −mc2, and become a Fano resonance [30]. One speaks in this
case of "criticality" of the system. The wave function of the critical state con-
sists of free wave functions from the negative continuum with a bound state

13
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Figure 2.5.: Qualitative relativistic energy spectrum of a general binding potential with
some coupling parameter V0. Vc denotes the critical coupling, where the
lowest bound level may cross the boundary to the lower continuum.

admixture forming a state of finite width, [13], where it was also shown that the
corresponding energy behaves like −ε − mc2 ∝ (Z − Zcr) and the broadening of
the resonance Γ ∝ (Z−Zcr)2. The bound state admixture distorts the continuum
wave functions around the nucleus in the real space, which results in a polarized
vacuum. This situation is depicted schematically in fig. 2.5. Also this state may
capture an electron thus emmiting a positron, which may be detected.

Unfortunately the experimental evidence for this is hard to achieve since there
are no stable nuclei charged as high as 170e. Attempts were made to create a
quasi-molecule with sufficient charge by colliding uranium nuclei [13]. So far
no positron emission was observed. We will see in the next section, however,
that similar physics was predicted and realized in graphene.

2.3 A Single, Charged Impurity in Graphene

The task would now consist in solving the one-particle version of (2.8) focusing
on one single K-point with additional Coulomb potential and mass included:

0 =
[−αr − ε +M −i(∂x − i∂y)
−i(∂x + i∂y) −αr − ε −M

] [
ψa

ψb

]
= (HT + V − ε)ψ = (H − E)ψ. (2.15)

Here we set

ε
�vF
→ ε,

M
�vF
→M and α = Ze2

�vF
. (2.16)

Note that now M has the unit of inverse length, and thus may serve us as a
length scale.

14
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This problem has already been solved in numerous publications, e.g. [14], [31]
and [32]. We will give a brief sketch of the solution.

First of all, one may easily check that [H,L] = 0, where L = −i∂φ+ 1
2σz is the total

angular momentum operator. This is true for all polar potentials. Obviously
one may then separate the radial and angular coordinates by expressing ψ in
terms of eigenstates of L:[

ψa

ψb

]
=

[
eimφ fa(r)

iei(m+1)φ fb(r)

]
.

Here m ∈ Z to fulfill the periodic boundary condition ψ(r, π) = ψ(r,−π). Using
this and switching to polar coordinates one ends up with the following coupled
equations for f(a,b):

(ε +M +
α
r

) fb,m = (−∂r +
m
r

) fa,m ,

(ε −M +
α
r

) fa,m = −(∂r +
m + 1

r
) fb,m.

(2.17)

One may already observe that the asymptotic solutions at r → 0 are ∝ r±γ−
1
2 ,

γ =
√

(m − 1
2)2 − α2. Note that for m ∈ {0, 1} γ becomes imaginary if α > 1

2 . This
hints at some critical behavior for “large” charges since it is then not possible to
establish |ψ| r→0−−→ 0.

After some calculations one may show that the solution of this equation is

fσz,m,n(r) =
√

(M + σzε)e−ur(2ur)γ−
1
2×⎛⎜⎜⎜⎜⎝1F1(γ − αε

u ; 1 + 2γ; 2ur) + σz
γ − αε

u

m + 1
2 +

αM
u

1F1(1 + γ − αε
u ; 1 + 2γ; 2ur)

⎞⎟⎟⎟⎟⎠ ,
(2.18)

(remember that σz operates on the sub-lattice space) where u =
√|M2 − ε2|,

1F1(μ; ν; x) = 1 +
μx
ν1!
+
μ(μ + 1)x2

ν(ν + 1)2!
+ . . .

is the corresponding degenerate hypergeometric function [33]. Unfortunately
(2.18) diverges for r→∞. Note, however, that 1F1(μ; ν; x) reduce to Polynomials
for −μ = n ∈N0:(

n + α
n

)
1F1(−n;α; x) = Lαn(x)
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with the corresponding Laguerre polynomials Lαn [33]. This now allows to select
solutions corresponding to bound levels,

γ − αε
u
= −n⇒ εm,n = sign(α)M

√
(n + γ)2

(n + γ)2 + α2 .

The bound state wave functions then are

fσz,m,n(r) =
√

(M + σzεm,n)e−ur(2ur)γ−
1
2×⎛⎜⎜⎜⎜⎝1F1(−n; 1 + 2γ; 2ur) − σz

n

m + 1
2 +

√
α2 + (n + γ)2

1F1(1 − n; 1 + 2γ; 2ur)

⎞⎟⎟⎟⎟⎠ .
(2.19)

Note the prefactor before the second term inside the brackets. It imposes n ∈N0

for m ≥ 0, n ∈N for m < 0, since
√
α2 + γ2 = |m + 1

2 |.
m = 0, n = 0 corresponds to the minimal absolute energy

ε = 2sign(α)Mγ. (2.20)

Similarly to the three dimensional case it becomes imaginary for α > 1
2 . In

general one may show for potentials ∝ r−s that these characteristics always
occur for s > 1 and never for s < 1, turning s = 1 into a boundary with mixed
behavior [31].

Again, this problem may be circumvented for a larger range of α by imposing
different boundary conditions. This was for instance performed in [32], where

V = −α
r
→ − α

max(r,R)
.

Imposing continuity at r = R it was found

lim
R→0

αc ≈ 1
2
+

π2

ln2(MR)

for the critical coupling.
Note that the charge necessary to drive the system into a critical state now is of

order Z ≈ 1. This is due to the fact that the light speed-equivalent in graphene,
the Fermi velocity vF, is about 100 times smaller than c, which reduces the fine
structure constant equivalent by the same factor. This makes it much easier to
realize supercritical configurations experimentally, as was shown in [7] recently.
Their approach consisted in clustering together several Ca adatoms. Although
each of them was charged subcriticaly, the total charge may exceed the critical
value. The scale of regularization then is the cluster-size.
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3 Two Center Problem in Graphene

As we discussed in the introduction, critical effects may occur if Dirac particles
get bound by a sufficiently deep potential, for instance caused by a charge center.
In the following sections, we will investigate how this situation would change
in a case where we have two centers which may be carrying either equal charge,
or equal absolute charge with opposite prefactor.

It is possible to realize such situations experimentally [7], as we mentioned
above, where adatoms were clustered on a graphene sheet in a controlled way.
We note that depending on the electronegativity of the used atoms one may
create positively or negatively charged clusters. Also tunable potentials may be
created by the use of the so-called conical singularities, consisting of wrinkles of
the graphene sheet [34]. The potentials in this case are induced by the curvature
of the sheet. We would like to mention again that all of the following calculations
hold for the topological insulators and molecular graphene.

3.1 Equal Charges - The LCAO Approach

In this section we will discuss the two center problem in graphene, which
means the case, where two equal charges are located at c± = [±a, 0]T. Note that
the alignment of the centers w.r.t. the origin is arbitrary due to translational and
rotational invariance of the free, massive Dirac Hamiltonian (2.9), and we thus
may make a choice convenient for latter calculations.

This problem was dealt with in a recent publication [35] already by different
procedures. In what follows we will investigate this system by means of the
linear combination of atomic orbitals (LCAO). One may see [36] for the general
theory and [37] for the application to the 3D two center Dirac problem, i.e. (2.14)
with an additional Coulomb potential centered at some different position w.r.t.
the first one.

Take a set of states, which depend on a set of parameters v, |i(v)〉, usually these
are naturally given by the problem at hand, then expand the full Hamiltonian
in the subspace spanned by |i(v)〉, find the eigenenergies and minimize these
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CHAPTER 3. TWO CENTER PROBLEM IN GRAPHENE

with respect to the parameters v. In our case we use superpositions of one-
center Coulomb problem ground state solutions to find the bound states of the
two-center problem.

Focusing on the K-point K the corresponding Hamiltonian reads

H = HT + Vtc = −iσ · ∇ +Mσz − α
( 1
r+
+

1
r−

)
, (3.1)

where the first two parts in the rightmost term correspond to HT, r± = |r − c±|,
c± = [±a, 0]T, please also see appendix A, and we use the units (2.16),

(�vF)−1[M, ε]T → [M, ε]T

for mass and energy.
Due to the fact that asymptotically the potential has a 1/r behavior, we quali-

tatively expect the same physics as in the one center case, see 2.3, which means
that we should encounter critical behavior, if the total charge ζ = 2α exceeds
a threshold value. However, the magnitude of this value should be strongly
dependent on the distance R = 2a between the centers. Note that separating the
charge into two different centers in itself is a regularization, which usually is the
procedure of turning a mathematical problem of a point-like centers into a more
physical situation of smeared out charges. Thus it should be possible to drive
the total charge ζ = 2α above 0.5 before the system becomes critical.

As in [37], we consider two wave functions, centered around one of the centers,
to be a ground state with respect to some effective charge Q, which will be our
parameter with respect to which the energy is to be minimized. These will span
the subspace in which the Hamiltonian is expanded and v = Q.

The Hamiltonian of the full problem can be cast into the form

H = HT −Q
( 1
r+
+

1
r−

)
− δα

( 1
r+
+

1
r−

)
, (3.2)

where HT is the free (kinetic) part of the Hamiltonian (2.8) and δα = α −Q. We
use the normalized wave functions [31]

ψQ
± (r±) =

uQ√
4πMΓ(2γQ + 1)

[ √
M + εg,Q

i
√

M − εg,Qeiφ±

]
e−uQr±(2uQr±)γQ− 1

2 = 〈x|±〉

which obey

(T − Q
r±

)ψQ
g (r±) = εg,Qψ

Q
g (r±), (3.3)
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3.1. EQUAL CHARGES - THE LCAO APPROACH

where

εg,Q = sign(Q)M
√

1 − 4Q2, γQ =

√
1
4
−Q2, uQ = 2MQ

and r± = |r − c±| is the distance to the centers and φ± is the angle enclosed r − c±
and the x-axis, please check appendix A for further explanations.

Expanding the Hamiltonian in |±〉 gives:[
εg,Q − 〈+| δαr+ + α

r− |+〉 εg,Q〈+|−〉 − 〈+| δαr+ + α
r− |−〉

εg,Q〈−|+〉 − 〈−| δαr+ + α
r− |+〉 εg,Q − 〈−| δα−r− +

α
r+
|−〉

] [
v+
v−

]
= ε

[
1 〈+|−〉
〈−|+〉 1

] [
v+
v−

]
.

(3.4)

Finding the minimum of ε w.r.t. Q will give us an upper bound estimate of
the actual ground state energy, once we have found expressions for the various
overlaps. We may already evaluate in polar coordinates

A0 = 〈±| 1r± |±〉 =
2Q
γQ
.

The remaining task is now to calculate the values of S = 〈+|−〉, C = 〈±| 1
r∓ |∓〉 and

A = 〈±| 1
r∓ |±〉 as a function of a, which we will do in elliptic coordinates1. Note

that one may note simply copy the results obtained in three dimnesions [37],
since the volume element of the prolate spheroidal coordinates used there is
quite different from what we encounter within simple elliptic coordinates.

3.1.1 Calculation of the Overlaps A, C, S.

We perform the calculation of the overlaps A, C and S [38]. Useful identities will
be:

1∫
−1

dν(1 − ν2

μ2 )Ω
√

1 − ν2 =
π
2

F
(1
2
,−Ω; 2;μ−2

)
,

1∫
−1

dν
(1 − ν2

μ2 )Ω
√

1 − ν2
= πF

(1
2
,−Ω; 1;μ−2

)
,

(3.5)

see [39],
1∫

−1

dx
e−pxxn

√
1 − x2

= π(−1)n∂n
pI0(p) = f I(n, p), (3.6)

1Please check appendix A.
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see [33], and

∞∫
1

dx
xαe−px

√
x2 − 1

=

1
2

B
(

1
2 ,−α2

)
1F2

(
α+1

2 ; 1
2 ,

α
2 + 1; p2

4

)
− p

2
B
(

1
2 ,−α+1

2

)
1F2

(
α+1

2 ; 3
2 ,

α+3
2 ; p2

4

)
+ p−aΓ (α) 1F2

(
1
2 ; 1−α

2 , 1 − α
2 ; p2

4

)
= I(α, p),

(3.7)

[39] where B is the β-function, I is the corresponding modified Bessel function
and Γ, F and 1F2 have their usual meanings.

We compute using (A.4)

S =
(2uQ)2γQ(M + εg,Q)

8πMΓ(2γQ + 1)

∫
dr
(
1 + κ cos(φ+ − φ−)

)
(r+r−)γQ−1

2 e−uQ(r++r−)

= PS

μ=∞,ν=1∫
μ=1,ν=−1

dμdν(μ2 − ν2)√
(μ2 − 1)(1 − ν2)

(
1 + κ − 2κ

1 − ν2

μ2 − ν2

)
(μ2 − ν2)γQ−1

2 e−uRμ

= PS

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣(1 + κ)

μ=∞,ν=1∫
μ=1,ν=−1

dμdν(μ2 − ν2)γQ+
1
2√

(μ2 − 1)(1 − ν2)
e−uQRμ

−2κ

μ=∞,ν=1∫
μ=1,ν=−1

dμdν(μ2 − ν2)γQ−1
2
√

(1 − ν2)√
μ2 − 1

e−uQRμ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3.8)

where

κ =
M−εg,Q

M+εg,Q
and PS =

(RuQ)2γQ(M + εg,Q)
4πRMΓ(2γQ + 1)

.

Note that in (3.8) we neglected i sin(φ+ − φ−), stemming from exp(φ+ − φ−), in
the integral due to its antisymmetry (sign(φ+) = sign(φ−)). Also, we included a
factor two due to integration over both half planes of y, sign(y) = ±1.
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3.1. EQUAL CHARGES - THE LCAO APPROACH

Now we may use (3.5):

S = PSπ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣(1 + κ)

μ=∞∫
μ=1

dμμ2γQ+1F
(

1
2 ,−γQ − 1

2 ; 1;μ−2
)

√
μ2 − 1

e−uQRμ

−κ
μ=∞∫
μ=1

dμμ2γQ−1F
(

1
2 ,−γQ +

1
2 ; 2;μ−2

)
√
μ2 − 1

e−uQRμ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (3.9)

The F(a, b; c; x) are convergent for x = 1, iff �(c) > �(a + b), [33]. This is the
case in the integrals above, since γQ ∈]0, 1

2 [. Thus we may expand F in the
hypergeometric series and safely interchange the sum and the integral. Using

F(a, b; c; x) = 1 +
ab
c1!

x +
a(a + 1)b(b + 1)

c(c + 1)2!
x2 + . . . =

∞∑
n=1

(a)n(b)n

(c)nn!
xn,

where (k)n is the so-called Pochhammer symbol, (k)n+1 = (k)n(k+n), (k0) = 1, and
using (3.7) we may write (3.9) as

S = πPS

⎡⎢⎢⎢⎢⎣(1 + κ)
n=∞∑
n=0

(1
2 )n(−γQ − 1

2 )n

(1)nn!
I(2γQ + 1 − 2n,uQR)

−κ
n=∞∑
n=0

( 1
2 )n(−γQ +

1
2 )n

(2)nn!
I(2γQ − 1 − 2n,uQR)

⎤⎥⎥⎥⎥⎦ . (3.10)

To deal with C we first may write

1
r±
=

2(μ ∓ ν)
R(μ2 − ν2)

.

Along the same path as in case of S we then get

C = PC

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣(1 + κ)

μ=∞,ν=1∫
μ=1,ν=−1

dμdνμ(μ2 − ν2)γQ−1
2√

(μ2 − 1)(1 − ν2)
e−uQRμ

−2κ

μ=∞,ν=1∫
μ=1,ν=−1

dμdνμ(μ2 − ν2)γQ−3
2
√

(1 − ν2)√
μ2 − 1

e−uQRμ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (3.11)
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where PC = 2PS/R and where we used that integrals including odd powers of ν
vanish due to asymmetry. Redoing same steps as before we arrive at

C = πPC

⎡⎢⎢⎢⎢⎣(1 + κ)
n=∞∑
n=0

(1
2 )n(−γQ +

1
2 )n

(1)nn!
I(2γQ − 2n,uQR)

−κ
n=∞∑
n=0

( 1
2)n(−γQ +

3
2 )n

(2)nn!
I(2γQ − 2 − 2n,uQR)

⎤⎥⎥⎥⎥⎦ , (3.12)

where we again could interchange sum and integral due to the same reasons as
before.

The integral A needs a slightly different approach. Focusing on 〈+|r−1− |+〉 and
using (3.6)

A =
(2uQR)2γQ

4πR2Γ(2γQ + 1)

μ=∞,ν=1∫
μ=1,ν=−1

dμdν(μ + ν)2γQ√
(μ2 − 1)(1 − ν2)

e−uQR(μ+ν)

=PA

μ=∞,ν=1∫
μ=1,ν=−1

μ2γQe−uQRμ√
μ2 − 1

∞∑
n=0

(−1)n(−2γQ)n

μn

νne−uQRν

√
1 − ν2

=PA

μ=∞∫
μ=1

∞∑
n=0

(−1)n(−2γQ)n f I(n,uQR)μ2γQ−ne−uQRμ√
μ2 − 1

=PA

∞∑
n=0

(−1)n(−2γQ)n f I(n,uQR)I(2γQ − n,uQR),

(3.13)

where

PA =
(uQR)2γQ

4πR2Γ(2γQ + 1)
.

We now may calculate the integrals to good approximation by truncating
the sums in (3.10), (3.12) and (3.13). These results may easily be confirmed by
observing that

lim
R→0

S = 1, lim
R→0

A = A0 = lim
R→0

C and lim
R→∞A =

1
R
, (3.14)

since in that limit |−〉 → |+〉. This is indeed the case, as may be seen in fig. 3.1.
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Figure 3.1.: Integrals A, C and S as a function of the two center distance R, Q = 0.2,
truncation order 10. Note that the results indeed agree with (3.14), as may
be seen by comparing the curves to the green line corresponding to A0 and
green dots corresponding to R−1.

3.1.2 Results

Substituting the expressions (3.10), (3.12) and (3.13) calculated in the previous
sections into (3.4) one arrives at the expression [38]

det
[
(εg,Q − ε) − (δαA0 + αA) (εg,Q − ε)S − (δα + α)C
(εg,Q − ε)S − (δα + α)C (εg,Q − ε) − (δαA0 + αA)

]
= 0 (3.15)

to be solved for ε. The result is then minimized numerically with respect to Q
using iterative parabolic interpolation, where we use the sums calculated in the
last chapter truncated at some not too small order N, usually N ∼ 10, see fig. 3.2.
Note how the results nicely capture the physics one would expect qualitatively:
at large distance of the centers the electron may only be bound at one of them
and the other has no effect, while at small distance both centers may be seen as
a single center with twice the charge. This is reflected in the dependency of Qmin

on the distance between the centers, R.
Using this method one may also estimate the distance of both centers at which

the system becomes critical, i.e. when the total charge 2α = ζ > 0.5, by using the
secant method iteratively, see fig. 3.2. The results seem to agree well with [35],
see fig. 3.2, who, among other methods, used some asymptotic-matching, which
selects putative bound levels by searching for the equality of the logarithmic
derivative of the two asymptotic, r → 0 and r → ∞. Obviuosly the critical
distance becomes extremely small in the case ζ→ 0.5. This is in agreement with
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Figure 3.2.: a) Ground state estimate of the two center problem using LCAO as a
function of center distance, ζ = 0.4. Inset: the minimizing effective charge
Qmin. Note: εg,0.2 = 0.917 M, εg,0.4 = 0.6 M. b) Critical distance Rcr as a
function of the total charge ζ using the LCAO-method (red) and from [35]
(black). Inset: estimated energy as a function of the two center distance R
for various ζ.

experiments [7], where adatoms hat to be pushed closely together, before the
system became critical.

We expect the LCAO method to work best for ζ→ 1, since then the asymptotic
behavior of our trial function ψ±(r± → 0) is close to the exact asymptotic near

the centers ∝ r
γα−1

2± . In this limit, namely, Q→ 0.5.

3.2 Dipole Problem

Now we focus on a situation, where we have two charged centers separated by
a distance R = 2a with the same absolute charge α but opposite sign, i.e. the
total charge of the problem ζ = 0 [40]. It is hard to achieve an intuition, whether
bound states may occur or not. This problem was investigated in 3 dimensions
in the Schrödinger [41], as well as in the Dirac case [42]. The result was that
a critical value of the dipole moment D = αR is necessary for the existence of
bound states. In two dimensions it was found [43] in the Schrödinger case that
a bound state exist for arbitrary small dipole moments. The solution of the
corresponding problem in the two dimensional Dirac case was not yet treated
in the literature.

Note that in atomic physics in three dimensions this problem would be highly
academical, since highly concentrated negative charges, Z ∼ 130, necessary to
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obtain physics described by us in graphene case, are even harder to achieve
that strongly charged positive centers. However, since, as mentioned above, on
graphene the effective fine structure constant is much smaller, charges of order
∼ 1e are already sufficient to get measurable effects.

The solution of the full dipole problem is very difficult to treat analytically,
since no coordinate system can be found, whose coordinate dependencies of the
Hamiltonian separate. It turns out, however, that the qualitative behavior of the
dipole problem may be explained by means of non relativistic calculations for
energies close to the band edge, ε → ±M. In this limit one may separate the
equation in radial and angular components, which may be solved separately.
To address the full Dirac problem, we will resort to a numerical diagonalization
procedure. Finally we will give some estimates for the scattering behavior in
the presence of a dipole impurity.

3.2.1 Model

In analogy to the two center problem we may write the Hamiltonian

H = HT + Vtc = −iσ · ∇ +Mσz + α
( 1
r+
− 1

r−

)
. (3.16)

Again, we have a free choice of our center positions.
This equation is very difficult to solve by analytical means, because there

exists no coordinate system, whose coordinate dependencies of the Hamiltonian
separate. However, one should be able to capture the qualitative behavior
through the dominant r→∞ asymptotics of Vtc. Using the multipole expansion
one quickly computes

lim
r→∞Vtc(r) = −2αa cos(φ)

r2 = −D cos(φ)
r2 = Vpd(r).

One may see Vpd as a point-like dipole, α = D/R and R → 0. We note that this
potential is highly diverging at r→ 0, which requires some regularization. This
may be done by means of a cutoff at r0 ≈ a, which represents the small scale
structure of the problem, see fig. 3.3.

We find an antisymmetry of the Hamiltonian (3.16) w.r.t. the transformation

RxσxHRxσx = −H, (3.17)

where Rx inverts the x-coordinate. This represents the electron-hole symmetry
of the system, since for any state with the energy ε we may find a state with the
energy −ε. This antisymmetry holds for both Vtc, as well as Vpd. In fact, it will
hold for any potential V that obeys V(x, y) = −V(−x, y).
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Figure 3.3.: The true physical situation (left) and the corresponding model (right) of a
dipole immersed on a graphene sheet.

3.2.2 Nonrelativistic Limit - Point-like Dipole

As mentioned above, we may for now limit ourselves to energies close to a band
edge, e.g. ε ≈ −M. Note that the opposite case ε ≈ M is also captured by these
calculations, because of the antisymmetry (3.17). Putting −ε −M = η � M, i.e.
focusing on weakly bound states, the corresponding Dirac equation reads[

2M + Vpd −i(∂x − i∂y)
−i(∂x + i∂y) −η + Vpd

] [
f
g

]
= 0.

Now we regularize the potential by inserting boundary conditions at r = r0,
where we choose r0 such that Vpd(r0) � M. Remembering the definition of our
units (2.16), �vF ∼ at (2.8), and choosing a reasonably large gap M ≈ 0.1 t [20]
and α ≈ 1 we get

Vpd(r0) ∼ α
r0
≈ 1

r0
and M ≈ 0.1t

ta
=

0.1
a

and thus

r0 � 10a.

This constrain should still allow a reasonable experimental realization.
Using this we may neglect Vpd w.r.t. 2M. We now arrive at a highly simplified

set of equations,

2M f − i(∂x − i∂y)g = 0 and

− i(∂x + i∂y) f + (−η + Vpd)g = 0,
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where we call f the small and g the large component of the spinor2. By substi-
tution we may easily reduce this system to a 2nd order equation for g:

0 =
(
Δ + 2M(−η + Vpd)

)
g, (3.18)

or equivalently, in polar coordinates

(−∂2
φ + 2MD cos(φ))g = (r2∂2

r + r∂r − 2Mηr2)g.

for which we seek solutions respecting boundary conditions

i) g(π, r) = g(−π, r), ii) g(r0, φ) = 0 and iii) lim
r→∞ g(φ, r) = 0. (3.19)

These conditions correspond to an infinitely repulsive circular core with the
radius r0.

Obviously this boundary-value problem may be separated in an angular and
a radial part. Using g(r, φ) = Φ(φ)R(r) we may write

Φ′′ + (A − 2MD cos(φ))Φ = 0,

r2R′′ + rR′ − (A + 2Mηr2)R = 0
(3.20)

where A is the separation constant.
By the substitution φ = 2u, Φ(2u) = Φ̃(u) in the angular part we arrive at the

equation

Φ̃′′ + (4A − 8MD cos(2u))Φ̃ = 0.

which is nothing else than the popular Mathieu equation (B.1). Therefore, we
may conclude that

Φ±, j(φ) =

⎧⎪⎪⎨⎪⎪⎩ce2 j

(
φ
2 , a2 j(d)

)
, A+, j =

a2 j(d)
4 , j ∈N0

se2 j

(
φ
2 , b2 j(d)

)
, A−, j =

b2 j(d)
4 j ∈N , (3.21)

where we defined d = 4MD and a2 j are the Mathieu characteristic values. We
mention that the solutions ce are cos-like, even, while ce are sin-like, odd solu-
tions. In fact, if D→ 0, cej(φ, d)→ cos( jφ), sej(φ, d)→ sin( jφ) and aj = j2 = bj.

This fixes any possible choices of the separation constant. Note that we
skipped any solution of order 2 j + 1, j ∈ N0, due to boundary conditions (3.19)
i).

2Note that f ∝ ∂g/2M.
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Figure 3.4.: Values of the separation constant Aκ.

The radial part is nothing other than the modified Bessel equation (C.5). We
may simply read off the solution from (C.4):

R(r) = aKK√A(
√

2Mηr) + aII√A(
√

2Mηr),

where Kν and Iν are the corresponding modified Bessel functions. The boundary
condition (3.19) iii) then enforces aI = 0 since |Iν| is exponentially growing for
any ν ∈ C.

Combining both parts, angular and radial, one arrives at solutions

g+, j(φ, r) = K√Aj,+
(
√

2Mηr) ce2 j

(
φ
2 , a2 j(d)

)
, j ∈N0,

g−, j(φ, r) = K√Aj,−
(
√

2Mηr) se2 j

(
φ
2 , b2 j(d)

)
, j ∈N, (3.22)

which still have to fulfill (3.19) ii). For convenience we now introduce the
multiindex κ, which runs over all valid values of (±, j).

We note that Kν(x) � 0 for ν ∈ R, thus to fulfill the boundary conditions at
hand it is required ν ∈ C. Observing possible values for A in (3.21) we conclude
that a set of levels may appear when a2 j(d) < 0 or b2 j(d) < 0. This happens at
certain critical dipole strengths Dcr

κ , see fig. 3.4.
Next we will check for bound states. First we note that Ki|ν|(z) accumulates an

infinite number of zeroes as z→ 0 [42] and we may conclude, using (3.22), that
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once D > Dcr
κ a new infinite set of bound states appears. We will refer to such a

set as a tower corresponding to κ. Using (3.22) we may write

ηκ,n =
z2
κ,n

2Mr2
0

,

where zκ,n is the nth largest zero of K√
Aκ(D)

(z), A±, j < 0.

Using

lim
z→0

Kiν(z) ≈ −
√

π
ν sinh(πν)

[
sin(ν{ln(z) − ln(2)} − φν)

]
, (3.23)

where ν ∈ R, φν = arg(Γ[1 + iν]), we may estimate the functional behavior of
η → 0. (3.23) becomes exact in the limit ν → 0. The condition for a zero zn of
(3.23) then reads

0 > ν(ln(zn) − ln(2)) − φν = −nπ.

Comparing with (3.22) we find

ηκ,n =
2

r2
0M

exp
(
−2

nπ − φνκ
νκ

)
, νκ =

√|Aκ|. (3.24)

We may simplify (3.24) further by expanding Aκ around Dcr
κ . We note, ex-

panding the Mathieu characteristics around their zeroes,

A+,0 ≈ −2(MD)2

for D→ 0 and

A±, j ≈ −
α±, j

4
M(D −Dcr

±, j)

for D→ Dcr
±, j and j ∈N. Further [33]

lim
ν→0

φν = −γν

with the Euler-Mascheroni constant γ ≈ 0.5772. Substituting all of this into
(3.24) we arrive at

η+,0,n =
2e−2γ

r2
0M

exp
(
−√2 nπ

MD

)
, η±, j,n =

2e−2γ

r2
0M

exp
(
−4 nπ√

α±, jM(D−Dcr
±, j)

)
, j ∈N,
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κ ακ MDcr
κ

(−, 1) 3.651 1.894
(+, 1) 3.627 5.324
(−, 2) 3.643 10.482
(+, 2) 3.648 17.357

Table 3.1.: The first four numerical values for ακ and MDcr
κ .

or in a shorter representation

ηκ,n = C exp
(
−nπ

sκ

)
, (3.25)

where

C =
2e−2γ

r2
0M

, sκ =

⎧⎪⎪⎨⎪⎪⎩
MD√

2
, if κ = (+, 0)√

ακM(D−Dcr
κ )

4 , if κ = (±, j), j ∈N
. (3.26)

For a selection of numeric values of ακ and MDcr
κ please consult table 3.1. We

note in passing that if we rescale r0 → r0μ, μ ∈ R, we get the same physics by

M→ M
μ
, η→ η

μ
and D→ Dμ. (3.27)

Note that

lim
ν±, j→0

ηκ,n = 0.

Also, for ηκ,n � M, ηκ,n is a monotonically growing function of |Aκ| and thus
also is a monotonically growing function of D − Dcr

κ . From this we conclude
that no bound states may return to the continuum, neither by crossing the gap
nor by returning to the band they started in, no matter how large the dipole
moment may become; at least as long the regularized point-like dipole is a
good approximation. We note, however, that other approaches give similar
qualitative results, see sec. 3.2.3 below. Once a state become bound by the
dipole, it is “trapped” within the for increasing dipole moments.

The energy spectrum near the valence band edge one gets by

εκ,n = ηκ,n −M.

Note that due to antisymmetry (3.17) additional bound levels must appear at
−εκ,n, see fig. 3.5 for a qualitative bound level schematics.
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We may also now plot corresponding orbitals of our point-like dipole potential
solutions, see fig. 3.6. We note that the states look similar to atomic orbitals
distorted away from the repulsing center, c+ for holes, c− for electrons. The
density function for electrons and holes with the same quantum numbers (κ,n)
are related to each other by x→ −x. For a state with the quantum numbers (κ,n)
one observes n − 1 radial and j + 1

2 ± 1
2 angular nodes. Also we may observe

from (C.10) that the states are confined on a scale
√

Mη
−1

. From this follows: the
deeper a state is bound within the gap the stronger it is confined. This resembles
the physics of atomic orbitals.

Since no level that gets bound by the dipole can return to the continuum, the
gap will become very densely populated. We will estimate the density of bound
states, which is defined as

ν(η) =
∑
κ

νκ =
∑
κ

∑
n

δ(η − ηn,κ),

Focusing on one tower κ we may introduce a physical level broadening

δ(η − η̃)→ 1
2π

Γ

Γ2 + (η − η̃)2 .

Figure 3.5.: The qualitative level spectrum of the dipole problem near the band edges.
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Figure 3.6.: Weakly bound hole states-density (3.22) on the scale r
r0

. Top left: (+, 0, 1).
Top right: (+, 0, 2). Bottom left: (−, 1, 1). Bottom right: (−, 1, 2).

Making the assumption

∞∑
n=1

≈
∞∫

1

dn =

ηκ,1∫
0

dηκ,n
|dηκ,n/dn|

justified by the fact that the energies vary slowly on the scale of M as a function
of n and regularizing the density at η → 0 by a cutoff μ to avoid divergences
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inside the integral, one finds

νκ(η) = lim
μ→0

sκΓ
4π2

∫ ηκ,1

μ

dy
y(Γ2 + (η − y)2)

=

− sj,κΓ

4π2 lim
μ→0

⎡⎢⎢⎢⎢⎢⎢⎣2η(arctan
(

(η−y)
Γ

)
+ Γ(ln

(
Γ2 + (η − y)2) − 2 ln(y))

2Γ(Γ2 + η2)

⎤⎥⎥⎥⎥⎥⎥⎦
y=ηκ,1

y=μ

.

Now one may perform the limits Γ→ 0 (zero temperature) and μ→ 0 thereafter.
It turns out the only part of the above equations, which survives the first limit,
is the arctan. This results in

νκ(η) =
sκ
4π

1 − sign(η − ηκ,1)
η

=
sκ

2πη
θ(ηκ,1 − η),

where we used lim
x→∞ arctan(±x) = ±π and η > μ.

We encounter a divergence at η→ 0, which is not surprising, since the bound
states accumulate near the band edges. Note that the prefactor of this diver-
gences has a noncontinuous derivative w.r.t D at Dcr

κ , since new towers appear
at these critical dipole moments.

We also note an interesting feature for two successive levels from the same
tower:

ηκ,n
ηκ,n+1

= exp
(
π
sκ

)
.

This is the so-called Efimov scaling, which was initially discovered in context
the of the 3-body boson problem with short range interactions [44] . This
characteristic was also predicted for supercritical impurities in graphene, [45]
and [46], as well as for Schrödinger fermions in three dimensions [47]. In the
dipole case it has its source in the long distance characteristics of the potential
at hand. We thus expect it to be independent of the regularization procedure.

3.2.3 Non Relativistic Limit - Abramov-Komarov So-

lution

One may argue that the qualitative behavior found in the last section will
strongly depend on the choice of the boundary-conditions used. To prove the
opposite we will use a model that differs strongly from the one we used in the
last section.

In 1972 Abramov and Komarov [47] were investigating the bound states spec-
trum of a non relativistic electron in the field of a dipole in three dimensions
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using prolate spheroidal coordinates. It turns out that (3.18) in elliptic coordi-
nates (app. A) with the full two center potential,

Vtc = −α(
1
r+
− 1

r−
) = − 4Dν

R2(μ2 − ν2)
,

where D = αR, coincides with the equation treated in [47]. We will show
that although the models only agree in the r → ∞ asymptotics, the results are
qualitatively equal.

In elliptic coordinates (3.18) reads

0 =
(
Δ + 2M(−ηAK + Vtc)

)
g

=
4

R2(μ2 − ν2)

(
(μ2 − 1)∂2

μ + μ∂μ − (ν2 − 1)∂2
ν − ν∂ν − 1

2η
AKR2(μ2 − ν2) −MDν)

)
,

or equivalently(
(μ2 − 1)∂2

μ + μ∂μ − 1
2η

AKR2μ2
)

g =
(
(ν2 − 1)∂2

ν + ν∂ν − 1
2η

AKR2ν2 +MDν
)

g.

Using the ansatz

g =
U(μ)

4
√
μ2 − 1

V(ν)
4√
1 − ν2

and introducing the separation constant A, the final separated equations are

0 =
(
∂2
μ −

R2MηAK

2
+

A
μ2 − 1

+
3
4

1
(μ2 − 1)2

)
U(μ),

0 =
(
∂2
ν −

R2MηAK

2
+

2DMν + A
1 − ν2 +

3
4

1
(1 − ν2)2

)
V(ν).

Comparing with the starting point of [47],

0 =
(
∂2
μ +

R2MηAK

2
+

A
μ2 − 1

+
1 −m2

(μ2 − 1)2

)
U(μ),

0 =
(
∂2
ν +

R2MηAK

2
+

2DMν + A
1 − ν2 +

1 −m2

(1 − ν2)2

)
V(ν),

where the notation is identical up to m, which in their case is the rotational
quantum number along the dipole axis, one finds that both equations are equal
if one sets m2 = 1

4 and changes the sign of η. This allows us simply to read off
the solutions to our equations from the results in [47]. Note, however, that their
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solution is approximate in the sense of an expansion in 1/
√

D and thus should
fail at D→ 0.

They find

−R2MηAK

2
≈ exp

⎛⎜⎜⎜⎜⎜⎜⎜⎝−
Γ
(

1
4

)2
(n + 1)

2
√

M(D −Dcr,AK)
+ 2τ(0,m)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
where

τ(x,m) = 2 ln(2) +
2 arg (Γ(1 + ix)) − arg (Γ(1 + ix −m))

x
.

Substituting the variables of our problem we find

ηAK
κ,n ≈ 25e−2γ

RM2 exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝−Γ
(

1
4

)2 n + 1
2

2
√

M(D −Dcr,AK
κ )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

MDcr,AK
κ ≈

Γ
(

1
4

)4

64π

((
2m ± 1

2

)2

− 1
6π

)
.

(3.28)

We note that the functional shape of energies in (3.28) qualitatively agree well
with the previous results, (3.25), up to some prefactors. Also we may observe
the Efimov scaling again. Thus we may conclude that it is indeed an universal
feature of bound states of a potential ∝ cos(φ)

r2 for r→∞.
We note that also the critical dipole strengths for formation of bound levels are

in good agreement with above results, see tab. 3.2. The only strong deviation
occurs at κ = (+, 0), for which [47] predict a finite dipole strength necessary to
allow bound states. However, since their results rely on an expansion in 1/

√
D

we may expect that their method fails at D→ 0. We also would like to turn the
readers attention to a more recent publication, in which it was shown that for
the full, relativistic, two center problem, always infinitely many bound states
exist [48].

Note that (3.28) allows estimates of zeroes of Mathieu characteristic values a2 j,
b2 j.

3.2.4 Numerical Results on a Finite Disc

So far we could only find the qualitative shape of the spectrum in the vicinity
of band edges analytically. Unfortunately there seems to be no way to get the
analytic solution for the full Dirac problem, i.e. also to make statements about

35



CHAPTER 3. TWO CENTER PROBLEM IN GRAPHENE

κ MDcr
κ MDcr,AK

κ

(+, 0) 0 0.169
(−, 1) 1.894 1.888
(+, 1) 5.324 5.326
(−, 2) 10.482 10.482
(+, 2) 17.357 17.357
(−, 3) 25.951 25.951

Table 3.2.: Comparison of critical dipole strength obtained using the regularized point-
like dipole solution, MDcr

κ , and using the results of [47], MDcr,AK
κ .

solutions deep within the gap. Therefore, we will resort to a numerical analysis
of the problem to gain an intuition for the behavior of deeply bound states by
means of exact diagonalization, [49], [50], on a finite disc.

Our further procedure will be the expansion of the regularized point-like
dipole Hamiltonian in free (V ≡ 0) solutions on a disc with radius Rc, ψλ(x) =
〈x|λ〉, where λ may be some multiindex, with appropriate boundary conditions
at r = Rc. This model serves well to describe a graphene flake with a dipole
impurity somewhere on top of it. Note, however, that we may also achieve the
quasicontinuous case Rc → ∞ to make the numerical results comparable with
bulk graphene. Especially in the dipole case, where the potential is quickly
decaying away from the center, one may argue that finite size effects are of small
importance.

The energy solutions are then found as the eigenvalues of the matrix

Hλ,λ′ = 〈λ|HT + Vpd|λ′〉, (3.29)

where Vpd is the regularized point-like dipole potential. Since HT is already
diagonal in ψλ(x) one only needs to calculate the overlaps

Vλ,λ′ = 〈λ|Vpd|λ′〉,
which we do numerically by the built-in global adaptive Mathematica algorithm.

To be more precise, focusing on the K-point K, we expand in free, spherical
solutions of (2.8) [31]

ψε,m(r, φ) = Neiν

[
aεJ|m|(uεr)eimφ

i sign(m + 1
2 )sign(ε)bεJ|m+1|(uεr)ei(m+1)φ

]
=

[
fε,m(r, φ)
gε,m(r, φ)

]
= 〈x|ε,m〉,

where aε =
√|ε +M|, bε =

√|ε −M|, uε = aεbε and ν ∈ R is some fixed phase.
These solutions fulfill

HTψε,m(r, φ) = εψε,m(r, φ).
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The boundary conditions we assume to be of minor importance, since for not to
small Rc Vpd(Rc) goes quickly to 0 and thus it should make not much difference
how the states look like close to the boundary. We also note in passing that
Vpd ∝ (eiφ + e−iφ)/r2 may only couple m and m ± 1.

As we will see below, a convenient choice turns out to be the so-called infinite
mass boundary condition [51]:

gε,m(Rc, φ)
fε,m(Rc, φ)

= i exp(iφ),

or, by substituting f and g with their definitions,

aεJ|m|(uεRc) = sign(m + 1
2 )sign(ε)bεJ|m+1|(uεRc). (3.30)

Solving this for ε will give us the discrete spectrum of the disc without any
external potential.

We observe the identity a−ε = bε, from which quickly follows: if ε solves the
boundary condition (3.30) for ψε,m, then −ε solves (3.30) ψε,−m−1. Note that this
corresponds to the antisymmetry of the Hamiltonian (3.17). We choose ν = 0 for
the positive part of the spectrum and derive the states with negative energies
from positive energy states by the symmetry transformation (3.17),

ψ−ε,−m−1 = σxRxψε,m.

From this we may easily derive

〈ε,m|Vpd|ε′,m′〉 = 〈−ε,−m − 1|σxRxVpdσxRx| − ε′,−m′ − 1〉
= −〈−ε,−m − 1|Vpd| − ε′,−m′ − 1〉.

Including the hermiticity, this reduces the number of matrix elements we need
to calculate by a factor of 4. The eigenvalues of the matrices Hi, j may then be
calculated numerically. Besides R one has to introduce cutoffs of the energy,
εco, and of angular momentum, mco. One expects convergence for Rc � r0,
which is desired anyway, since we are interested in the quasicontinuous case,
and Vpd(r0) � Eco. Also one may easily show that our results will obey (3.27).
First observe that by scaling Rc → Rc/μ, μ ∈ R, the solutions to the boundary
condition (3.30) scale like ε→ με, since we can rewrite the condition (3.30) as

0 = f
(√

(ε −M)(ε +M)Rc,
ε −M
ε +M

)
= f

(√
(με − μM)(με + μM)

Rc

μ
,
με − μM
με + μM

)

with some appropriate function f . Next we are calculating how the normaliza-
tions scale. Given the parameters M, Rc and ε, the last of whom is the set of all
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Figure 3.7.: The spectrum of a dipole on a finite disc calculated by the exact diago-
nalization procedure, r0M = 1, RM = 75, εco = 10M, mco = 8. Note the
symmetry w.r.t. E → −E. Inset: a zoomed in picture of the lowest level
in the vicinity of the zero energy avoided crossing for DM ≈ 6.09. The
minimal energy there is Emin ≈ 0.014M.

energies supported by the free disc,

N (M,Rc,ε)
i =

Rc∫
0

dr r|ψi(uir)|2 r=μr̃−−−→ μ2

Rc
μ∫

0

dr̃ r̃|ψi(μuir̃)|2 = μ2N (μM,Rc/μ,με)
i .

To expand H we are evaluating integrals of the form

H(M,Rc,r0,ε,D)
i, j

M
=
εi

M
δi, j +

D

M
√
N (M,Rc,ε)

i N (M,Rc,ε)
i

Rc∫
0

dr r
ψ†i (uir)ψ j(ujr)

max(r0, r)2

r=μr̃−−−→ μεi

μM
δi, j +

(D/μ)

μM
√
N (Mμ,Rc/μ,με)

i N (Mμ,R/μ,με)
j

Rc/μ∫
0

dr̃ r̃
ψ†i (μuir̃)ψ j(μujr̃)

max(r0/μ, r̃)2

=
H(μM,Rc/μ,r0/μ,με,D/μ)

i, j

μM
.

(3.31)
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Figure 3.8.: The lowest bound states for Mr0 = 0.5, Mr0 = 0.75 Mr0 = 1, MRc = 20,
εco = 10M, mco = 7. Dots correspond to respective expressions from (3.32).

Settingμ =M−1 we may eliminate and thus skip M as a parameter, by measuring
all other parameters in units of M.

When using r0M = 1, convergence deep inside the gap, |ε| < M, is quickly
achieved at εco ≈ 10M, RcM ≈ 20, mco = 7, which forms a space of dimension
≈ 2000. The quasicontinuum, |ε| > M, is strongly dependent on Rc, though, thus
we expect the results very close to the gap to be a poor approximation.

The results for the lowest (with respect to absolute energy) 20 levels are
presented in fig. 3.7. We note many avoided crossings inside the gap. Since the
levels are symmetric w.r.t. ε→ −ε, they will also avoid crossing ε = 0. Because
of this reason one expects no criticality. These results are qualitatively equal to
other choices of r0M, see fig. 3.8.

Note that it is difficult to compare the numerical results from the exact diag-
onalization, which is supposed to give good results deep within the gap, with
the weakly bound levels found in previous sections, which are only valid near
the edges of the gap. Still, we empirically managed to find a fit, see fig. 3.8, of
the type

ε(D) =M − 2e−2γ

r2
0M

exp
(
−π
√

2ν
MD

)
, (3.32)

which highly resembles (3.25), up to a prefactor ν ≈ 2−1 in the D-dependent ex-
ponent, and is valid for all choices of Mr0, even well within the gap. This change
of the prefactor sκ is not surprising, since it depends on boundary conditions at
r0, as may be see by comparing the Abramov-Komarov solutions, (3.28), and the
point-like dipole solutions, (3.25). Unfortunately we could not find appropriate
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CHAPTER 3. TWO CENTER PROBLEM IN GRAPHENE

fits for other levels. This we refer to the fact that the other levels are quite shal-
low and the convergence near the edge of the gap is slow, since the continuum
reacts strongly on the change of the boundary condition.

3.2.5 Scattering

A very important observable of a solid state system is its resistivity. Obviously
this is dependent on the scattering within the sample, i.e. the inability of a plane
wave to propagate, without being scattered by impurities.

We would like to investigate the dependency of scattering on the presence of
a dipole type impurity by means of exact analysis near the gap boundary, where
we have exact analytical solutions, and deep within the bands, where we may
rely on perturbative analysis by means of the Born approximation, see [31].

Regularized Point-like Dipole

We will now focus on a situation, where an electron, characterized by the wave
vector

k =
√

(ε −M)(ε +M)[cos(φk), sin(φk)]T,

is scattered by the regularized, point-like dipole [38]. Since we would like to use
our analytical solutions above, we focus on energies near the conduction band
edge, η = ε −M�M.

Asymptotically our solution at some energy should have the form of a freely
propagating wave and a circular, scattered part,

lim
r→∞ψ(r) = eik·r + fφk

(φ)
eikr

√
r
,

where

k =
√

(ε −M)(ε +M) ≈ √
2Mη.

We now need to construct this type of asymptotic out of solutions of the radial
wave equation, (3.20), inside the conduction band. The results for the valence
band follow by the antisymmetry (3.17). We find using the same notation for Aκ

as before (3.21):

R(r) = βκH
(1)√

Aκ
(kr) +H(2)√

Aκ
(kr),
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3.2. DIPOLE PROBLEM

where H(1,2) are the corresponding Hankel functions (C.3), κ = (±, j) and

βκ = −
H(2)√

Aκ
(kr0)

H(1)√
Aκ

(kr0)

is chosen in a way to fulfill the boundary conditions R(r0) = 0. Any general
solution with energy η we may write as a superposition of these solutions

ψη(r) =
∑
κ

cκ
(
βκH

(1)√
Aκ

(kr) +H(2)√
Aκ

(kr)
)
Φκ(φ), (3.33)

where we used the definition (3.21) for Φ and cκ ∈ C. Asymptotically this
behaves like

ψη(r→∞) =

√
2
πikr

∑
κ

cκ

(
βκeikre−i

π
√

Aκ
2 + ie−ikrei

π
√

Aκ
2

)
Φκ(φ). (3.34)

We would like to compare this with the incoming part of the wave function,
where we suppress the second argument of the Mathieu functions, ce and se, for
convenience:

eikr cos(φ−φk) =

∞∑
m=−∞

imJm(kr) cos(m(φ − φk))

=

∞∑
m=−∞

imJm(kr)
[
cos(mφ) cos(mφk) + sin(mφ) sin(mφk)

]

=

√
1

2πikr

∞∑
m=−∞

(
eikr + i(−1)me−ikr

) [
cos(mφ) cos(mφk) + sin(mφ) sin(mφk)

]

=

√
2
πikr

⎧⎪⎪⎨⎪⎪⎩eikr
∞∑
j=0

(
ce2 j

(
φk

2

)
ce2 j

(
φ

2

)
+ se2( j+1)

(
φk

2

)
se2( j+1)

(
φ

2

))

+ ie−ikr
∞∑
j=0

(
ce2 j

(
π + φk

2

)
ce2 j

(
φ

2

)
+ se2( j+1)

(
π + φk

2

)
se2( j+1)

(
φ

2

))⎫⎪⎪⎬⎪⎪⎭ .
(3.35)

Here we expanded sin and cos in terms of the Mathieu functions, see (B.3) for
details, and used

(−1)m cos(φ) = cos(mπ + φ), (−1)m sin(φ) = sin(mπ + φ).
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CHAPTER 3. TWO CENTER PROBLEM IN GRAPHENE

Now we require that all contributions ∝ exp(−ikr) in (3.34), which correspond
to incoming circular waves, stem from the incoming part of the wave function
(3.35). This may be achieved by setting

c+, j = e−i
π
√

A+, j
2 ce2 j

(
π + φk

2

)
,

c−, j = e−i
π
√

A−, j
2 se2 j

(
π + φk

2

)
.

Substituting everything into (3.33) and subtracting the incoming part ∝ eik·r we
get

fφk
(φ) =

∑
κ

fκ,φk
(φ),

where

f+, j,φk
(φ) =

√
2
πik

[
β+, jce2 j

(
π + φk

2

)
e−iπ
√

A+, j − ce2 j

(
φk

2

)]
ce2 j

(
φ

2

)
,

f−, j,φk
(φ) =

√
2
πik

[
β−, jse2 j

(
π + φk

2

)
e−iπ
√

A−, j − se2 j

(
φk

2

)]
se2 j

(
φ

2

)
.

(3.36)

By defining the scattering cross section as the ratio of total outgoing current
divided by the incoming current density, we get

Λ =

2π∫
0

| fφk
(φ)|2dφ.

Also we may calculate the transport cross section, which describes the backscat-
tered contribution by adding a weight function ∝ (kr − k · r):

Λtr =

2π∫
0

(1 − cos(φ − φk))| fφk
(φ)|2dφ.

We may now plot Λ and Λtr resolved in φk, see fig 3.9. Note a suppressed
backscattering at φk = π, which corresponds to incidence normal to the dipole
axis. One may argue that the reason for that is the equal contribution to the
scattering from both, oppositely charged centers, which destructively interfere
with each other.
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3.2. DIPOLE PROBLEM

Figure 3.9.: Scattering (top) and transport (bottom) cross section angular dependency
w.r.t. the angle of incidence for the incoming electron as contributed to by
the five lowest channels from (3.36). MD = 1.05.
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Figure 3.10.: Scattering cross section for a point dipole impurity at k = 10−9M, r0M =
100 in the non relativistic limit. Note the resonances at threshold values
MDcr

−,1 ≈ 1.894 and MDcr
+,1 ≈ 5.325 from (3.36).

Also we may see the resonances attributed to appearance of new towers,
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which become more pronounced for |φk| = π, fig. 3.10.
Note that there is a net scattering even for MD → 0, which is the effect of

the residual regularization procedure of an infinitely repulsive core, that still
may scatter, but it is negligible against the dipole contribution. In the presence
of the dipole the scattering amplitude has a separate dependency in φ and φk,
in contrast to the case of a rotatonally invariant scatterer such as the infinitely
repulsive core.

Born Approximation

In this section we apply the Born approximation procedure [40], as introduced
in [31], to the full dipole problem. The Born approximation usually works well
for high energies |ε/M| � 1, and thus seems appropriate to gain an intuition for
the scattering far inside one of the bands. It may not capture any resonances,
though, since there is no implicit dependency on the coupling parameter.

We again would like to construct a solution of the Dirac equation with a dipole
potential, which asymptotically behaves like

ψ = ψin +ψout,

where we assume the incident wave function to be a solution freely propagating
along k [31]

ψin,k(r) =
1√
2|ε|

⎡⎢⎢⎢⎢⎢⎢⎣
√|ε +M|e−i

φk

2

sign(ε)
√|ε −M|ei

φk

2

⎤⎥⎥⎥⎥⎥⎥⎦ eik·r = uε,φk
eik·r,

where k =
√

(ε −M)(ε +M)[cos(φk), sin(φk)]T, φk is the incidence angle w.r.t.
the x-axis.

In the Born approximation, which corresponds to first-order perturbation
theory, one may express the outgoing scattered wave as

(HT − ε)ψout = −Vψin.

From this it follows [31]

ψout(r) = −
∫

dr′Gε(r − r′)(HT + ε)V(r′)ψin(r′),

where

Gε(r′) =
∫

dk

4π2

eik·r

(k2 +M2 − (ε + isign(ε)0))

=
i sign(ε)

4
H(1)

0 (pr) r→∞−−−→ i sign(ε)
4

√
2
πpr

ei
(
pr−π4

)
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is the free Greens-function and p =
√
ε2 −M2 and H(1)

0 again the corresponding
Hankel function of the first kind (C.3). After some straightforward calculations
in the large-distance limit, r� r′, one gets

ψout(r) ≈ f Born(φ − φk)√
ir

uε,φ−φk
eikr,

where

f Born(φ,φk) = −
√

k
8π

Ṽ(k′ − k)b(φ − φk),

Ṽ(k) =
∫

dre−ik·rV(r),

b(φ) = ei
φ
2

√ |ε +M|
|ε −M| + e−i

φ
2

√ |ε −M|
|ε +M|

(3.37)

and k′||r, k′ = k.
We now focus on the full dipole potential,

Vtc(r) =
D
R

( 1
|r − c+| −

1
|r − c−|

)
,

and from this, using∫
dr

e−ik·r

r
=

2π
k
,

we may calculate the corresponding Fourier transform,

Ṽtc(k) =
4iπD

Rk
sin (k · c−) .

Turning to the ultra-relativistic limit, ε�M, and substituting this into (3.37) we
arrive at

f Born(φ,φk) = i
2D
√

2πk
|k′ − k|c− cos

(
φ − φk

2

)
sin ((k′ − k) · c−) . (3.38)

Simple expressions are obtainable in the limit kR→ 0 by using

|k′ − k| = 2k sin
(
φ − φk

2

)
and (k′ − k) · c− = kR

2
(cos(φ) − cos(φk)) :

f Born(φ − φk) = iD
√

2πk cos
(
φ − φk

2

)
sin

(
φ + φk

2

)
.
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Now we may calculate the scattering and transport cross sections analytically

Λtr =
π2D2k

2
,

Λ = (1 + 2 sin2(φk))Λtr.

Notably, Λtr is isotropic w.r.t. the angle of incidence φk in this limit, see fig.
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Figure 3.11.: Scattering and transport amplitude for a dipole impurity in Born ap-
proximation calculated by numerical integration of (3.38). Note that Λtr
becomes constant for k→ 0.

3.11. We can trace this back to the prefactor cos
(
φ−φk

2

)
, which is characteristic

for Dirac fermions and is causing the well known “absence of backscattering”
by short ranged impurities [1].

Since Λtr is corresponding to the resistivity induced by the potential, one
may argue, observing the isotropy w.r.t. φk of the former of the previous two
equation, that even for a graphene sample with an colinear dipole impurity
array immersed on it, the conductance will be isotropic. However, the exact
analysis in the previous section shows that there should be a net incidence angle
dependency. We conclude that Born approximation fails at low energies.
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4 Graphene Quantum Dots with Spin-Orbit
Coupling

In this chapter graphene with some electrostatic confining potential, which
defines a quantum dot, is considered [52]. Such an potential may be induced by
a gate, see for instance [53], or a clusters of impurities, [54]. For some theoretical
review one may check [55], [31] and [56], where such quantum dots were treated,
but without including SOC, see sec. 2.1.3. However, in reality SOC effects are of
course inevitable. Our goal will be to characterize the dots with respect to the
shape of the bound level spectrum and critical behavior as a function of SOC
related parameters Mso and λR, since we may expect that a wide range of this
parameter space to be experimentally accessible in the near future.

For the sake of simplicity we will limit the discussion to circular-symmetric
potentials, since this allows to reduce the corresponding mathematical problem
to one dimension and still would allow us to draw conclusions on general
behavior.

4.1 General Potentials

We consider the Dirac Hamiltonian of the form (2.12) with an additional scalar
potential,

H = −i(σxτz∂x + σy∂y) +
λR

2
(σxsyτz − σysx) +Msoσzszτz + V(r), (4.1)

which acts on the space of functions ψ : R2 → C8:

ψ(r) =
[
ψA↑K(r), ψB↑K(r), ψA↓K(r), ψB↓K(r), ψA↑K′(r), ψB↑K′(r), ψA↓K′(r), ψB↓K′(r)

]T .
Again, we use the units (2.16) for ε, Mso, λR and possible coupling parameters
in V. From now on we also will skip the subscript so with Mso and simply write
M. V(r) we choose to be some rotationally symmetric potential.
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As we will need them later on, when investigating the scattering, the plain
wave-solutions of the free problem (V ≡ 0) are provided in the projection on the
K-sector [1]:

ψ±k(r) =
[
i

ke−iθk

εk −M
, i,±1,± keiθk

εk −M

]T

eik·r, (4.2)

where θk = arg(kx + iky) and

εk = ∓λR

2
+

√(
M ± λR

2

)2

+ k2

are the positive energy-eigenvalues. The negative energy-eigenvalues are given
by

εk = ∓λR

2
−
√(

M ± λR

2

)2

+ k2,

see fig. 2.4. The eigenvalues in the K′-sector follow from symmetries of the
Hamiltonian, see 4.1.1 below.

One may easily show that

[HK(′) , Jz] = 0, (4.3)

where Jz = −i∂φ + sz
2 +

τzσz
2 is the corresponding angular momentum. In analogy

to the procedure in 2.3 this suggests the following ansatz for the wave function
projections around K

ψK
m(r) =

[
ei(m−1)φaK

↑ (r), ieimφbK
↑ (r), eimφaK

↓ (r), iei(m+1)φbK
↓ (r)

]T

and around K′

ψK′
m (r) =

[
eimφaK′

↑ (r), iei(m−1)φbK′
↑ (r), ei(m+1)φaK′

↓ (r), ieimφbK′
↓ (r)

]T
,

Where m ∈ Z, to ensure periodicity. Using −i(∂x ± i∂y) = e±iφ(−i∂r ± ∂φ
r ) the

projection of the Hamiltonian into the subspace of the K-valley and a total
angular momentum m yields the following system of differential equations

0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
M − (ε − V(r)) ∂r +

m
r−∂r +

m−1
r −M − (ε − V(r)) −λR

−λR −M − (ε − V(r)) ∂r +
m+1

r−∂r +
m
r M − (ε − V(r))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
aK
↑ (r)

bK
↑ (r)

aK
↓ (r)

bK
↓ (r)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=(HK

m − ε)ψK
m(r)
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(4.4)

and for K′ subspace

0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−M − (ε − V(r)) −∂r +

m−1
r −λR

∂r +
m
r M − (ε − V(r))

M − (ε − V(r)) −∂r +
m
r−λR ∂r +

m+1
r −M − (ε − V(r))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
aK′
↑ (r)

bK′
↑ (r)

aK′
↓ (r)

bK′
↓ (r)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=(HK′

m − ε)ψK′
m (r).

(4.5)

4.1.1 Symmetries

The symmetries of a Hamiltonian help to reduce the problem with respect to
degrees of freedom of any considered system, which makes it very helpful to
collect as many of them as possible, before proceeding with the calculations.

Besides the conservation of the total spin Jz, (4.3), one finds the following
symmetries:

σysyHK
mσysy = HK

−m and σxHK
mσx = HK′

m , (4.6)

where HK
m, HK′

m are the projections of the full Hamiltonian on the corresponding
valley and angular momentum subspace. Note that although by this transfor-
mations the valley and total angular momentum degree of freedom is changed
in the projections on these sectors, the total Hamiltonian, which is the direct
sum of all projections, is conserved.

The first operation in (4.6) is related to parity, the product of both to time
reversal. These symmetries ensure a fourfold degeneracy for any possible bound
state. Due to this we may focus on K and m ≥ 0, since the rest follows by the
respective transformations in (4.6).

One may already see that forλR = 0 a weak, angle dependent perturbation will
change the situation for the observables at most in the second order. Considering
a potential of the form

Vp(r, φ) =
∑
m�0

am(r)eimφ with am = a∗−m.

Here one may neglect m = 0, since this will only result in a radial shift of V(r)
and the the prior arguments still are true. Then the degenerate states do not
mix, since they are spin- and valley-orthogonal. All the other states are also
not altered in the first order, since Vp does not conserve the angular quantum
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number m. We conclude that the leading contribution is due to the second order.
Also one may see that symmetries are conserved up to any order for finite λR if
am = a−m.

There is also a "symmetry" in the Rashba parameter λR, which is not a degree
of freedom of the system, but merely a parameter:

szHK(′)
m (λR)sz = HK(′)

m (−λR). (4.7)

This means that for any bound state of H(λR) with a defined valley and angular
momentum and the energy ελR there is a bound state of the H(−λR) with the
energy ε−λR = ελR and the same valley and angular momentum. Obviously
one may focus on λR > 0 during calculations. If the spectum has an analytic
dependency on λR, one may expect a quadratic dependency of non degenerate1

states of lambda at λR → 0, the energies behave as ελR = ε0 + O
(
λ2

R

)
.

One may now obviously not proceed along the route of 2.3, since one has four
coupled equations instead of only two. It is possible, though, to decouple the
4 coupled differential equations into two 2 × 2 blocks using a constant, linear
transformation in one of the cases, ∂rV = 0, or m = 0. To see this, we start at (4.4)
and substitute a↑ and b↓ in the rest of the equations. The result one may write in
a convenient form using Pauli-matrices:

0 =

⎡⎢⎢⎢⎢⎣ 1
M − ε + V

⎛⎜⎜⎜⎜⎝∂2
r −

m2 − 1
2

r2 +
(∂rV)

M − ε + V

[
−∂r +

1
2r

]
−M − ε + V

⎞⎟⎟⎟⎟⎠1
− m(∂rV)

r(M − ε + V)
σz − λRσx

] √
r−1

[
b↑
a↓

]
. (4.8)

Note that one generally may decouple equations of the form Mv = (Aσi+Bσ j)v =
0 by the transformation M→ ŨMU with some constant matrices U, Ũ. In (4.8)
applying this would be possible in the cases λ = 0 or, less naively, m(∂rV) = 0.
This is not a coincidence. Note that HK

m commutes with the first symmetry in
(4.6) for m = 0. By using

UHK
0 U−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
V + (M − ε) ∂r

−∂r − 1
r V − (M + ε − λR)

V − (M + ε + λR) −∂r − 1
r

∂r V + (M − ε)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,
(4.9)

1Non degenerate within the subspace with a fixed angular momentum m.
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where

U =
1√
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 1

1 −1
1 1

1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
diagonalizes σysy, one ends up with a 2×2 equation system with some shifted
energy and mass: ε → ε ± λR

2 , M → M ± λR
2 . Note that they may be mapped to

each other by the transformation

H+0 (λR) = σxH−0 (−λR)σx (4.10)

where H+(−) is the upper left (lower right) block of the system (4.9).

4.1.2 Free Circular Waves

We would like to find free, circular solutions of our problem, which we will
need during our scattering analysis and which will allow us to find solutions of
the quantum-well potential. I.e. we are looking at the Hamiltonian (4.4) with
V ≡ 0.

We observe that the differential operators Θ±m = ±∂r +
m
r correspond to the

ladder-operators of the Bessel functions (C.11). This suggests the ansatz

ψK
m(r) =

[
f ↑Zm−1(ur), g↑Zm(ur), f ↓Zm(ur), g↓Zm+1(ur)

]T
, (4.11)

where Zm is a regular Bessel function, Jm or Ym, if

U±ε = (ε −M)(ε +M ± λ) > 0,

or a modified one, Im or Km, if U±ε < 0. Note the asymptotically free wave-like
behavior of the regular functions, and decaying wave-, bound-like nature of the
modified functions. This ansatz reduces the system of differential equations into
a purely algebraic equation for the coefficients f and g in (4.11).

Focusing on the case U±ε > 0 we arrive at

0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
M − ε u 0 0

u −M − ε −λR 0
0 −λR −M − ε u
0 0 u M − ε

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f ↑
g↑
f ↓
g↓

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
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One quickly finds that the matrix above is singular for u±ε =
√|U±ε |, which plays

the role of a wave number. Corresponding wave functions are

ψ±,Jε,m(r) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
u±ε
ε−Δ Jm−1(u±ε r)

Jm(u±ε r)
±Jm(u±ε r)

± u±ε
ε−Δ Jm+1(u±ε r)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , ψ±,Yε,m (r) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
u±ε
ε−ΔYm−1(u±ε r)

Ym(u±ε r)
±Ym(u±ε r)

± u±ε
ε−ΔYm+1(u±ε r)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (4.12)

Note, however, that the Y solutions are diverging at r→ 0 and are thus skipped
in the free case, since they are not physical.

Repeating the procedure along similar paths one finds for U±ε < 0

ψ±,Iε,m(r) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
u±ε
ε−Δ Im−1(u±ε r)

Im(u±ε r)
±Im(u±ε r)

∓ u±ε
ε−Δ Im+1(u±ε r)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , ψ±,Kε,m (r) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
− u±ε
ε−ΔKm−1(u±ε r)

Km(u±ε r)
±Km(u±ε r)

± u±ε
ε−ΔKm+1(u±ε r)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (4.13)

Neither of these solutions is normalizable. There may thus be no bound states
within the gap without a confining potential.

4.1.3 Currents

In passing we would like to analyze for the possibility of circular, spin selective
currents, which may be encountered in edge-states between topologically dis-
tinct phases, one example of which is SOC graphene, whose boundaries carry
edge states with mentioned properties [12].

The current density operator at K is well known to be [1] j =
[
τzσx, σy

]T
. One

may easily derive the current density in polar coordinates from this:

jφ = − sin(φ) jx+ cos(φ) jy = − sin(φ)τzσx+ cos(φ)σy =

[ −ie−τziφ

ieτziφ

]
. (4.14)

The projection on the m-subspace of the full angular momentum Jz yields jφ = σx.
The corresponding spin current density is defined by js

φ = jφsz. One may easily
show that the second of (4.6) conserves both currents. The first one reverses
the total current density but conserves the spin current. Thus any bound state
may carry spin filtered, counter propagating, angular currents, which are not
canceled by the symmetry-degenerate counterparts from other angular channels
(m → −m) and valleys (K → K′). This strongly resembles the situation found
in [12], although the circular currents in this case are not generated by edge-
states, but stem from simple bound states, or, more picturesque, from electrons
scattered along the border of a confining potential.
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The radial current density is found the same way

jr = τz

[
e−τziφ

eτziφ

]
(4.15)

and its projection on any Jz-subspace gives jr = σy. Since this matrix is antisym-
metric, one expects for the real results of (4.4) and (4.5) the expectation value of
jr to vanish for both spins. Note, however, that this is not necessarily true for
superpositions of states, see below.

4.2 Potential Well

The potential well in graphene has already been studied extensively in the past.
For a review one may consult [55]. A situation similar to the case dealt with in
this work was studied in [56], where no Rashba interaction was included. The
potential well will serve us as a way to model qualitative behavior of quantum
dots in the presence of SOC.

4.2.1 Model

Now we consider a piecewise constant step potential V(r) = −V0θ(R − r) with
V0 ≥ 0 and θ(x) is the Heaviside step function. The solutions of (4.4) with this
potential are wanted.

The corresponding solutions, from which we have to select the one, fulfilling
the continuity at r = R, may be copied from equations (4.12) and (4.13) by putting
ε→ ε − V. The results are

ψσ,Jε,m(r) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
uσε−V

ε−V−M Jm−1(uσε−Vr)
Jm(uσε−Vr)
σJm(uσε−Vr)

σ
uσε−V

ε−V−M Jm+1(uσε−Vr)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , ψσ,Yε,m(r) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
uσε−V

ε−V−MYm−1(uσε−Vr)
Ym(uσε−Vr)
σYm(uσε−Vr)

σ
uσε−V

ε−V−MYm+1(uσε−Vr)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4.16)

if U±ε−V > 0 and

ψσ,Iε,m(r) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
uσε−V

ε−V−MIm−1(uσε−Vr)
Im(uσε−Vr)
σIm(uσε−Vr)

−σ uσε−V
ε−V−MIm+1(uσε−Vr)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , ψσ,Kε,m(r) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
− uσε−V
ε−V−MKm−1(uσε−Vr)

Km(uσε−Vr)
σKm(uσε−Vr)

σ
u±ε−V

ε−V−MKm+1(uσε−Vr)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4.17)

else, where we introduced the degree of freedom σ = ±. Here one has to pay
attention to whether the potential solutions are regular on their domain, [0,R[
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Figure 4.1.: The local, V-dependent, band structure. White area corresponds to Uσ
ε−V <

0, gray to Uσ
ε−V > 0, gray-dashed to U−ε−V > 0 > U+ε−V.

or [R,∞[ respectively. Observing the asymptotic behavior of different Bessel-
functions, see (C.6), (C.7), (C.8), (C.10), (C.9), one may conclude that for r < R
only J and I type solutions are allowed, while for R > r, J, Y and K solutions may
be used. Observing the local band-structure, fig. 4.1 we may make statements
about the nature of any possibly present state at some fixed energy. Note that in
general the minimal number of states at a given ε and m � 02 is Ns = N>+N<−4,
where N> (N<) is the number of regular solutions at r > R (r < R). In the white
area at r > R we find only solutions consisting of Kν functions, which would
correspond to bound states given any solution fulfilling continuity there. In
this energy range we also have Ns = 0, i.e. we can at most have some discrete
spectrum there. In the gray dashed are N> = 3, so we expect to have one state,
which is continuous in nature (J and Y contributions). In the gray area we have
the fully continuous case.

Note that for m = 0 the problem reduces to an effectively Rashba uncoupled
case with modified ε and M. Using (4.9) we can show that the continuity
condition (4.18) factorizes into two terms corresponding to the a problem not
coupled by λR each and with shifted mass and energy M→M+σλR

2 , ε→ ε+σλR
2 .

Note that this allows for a situation, where we may have a bound state in the
σ = + sector parallel to the σ = − continuum, right gray dashed area fig. 4.1.

2m = 0 is a special case due to fact that it can be decoupled, see (4.9)
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Figure 4.2.: Bound level spectrum as a function of λR at a fixed V0 = 2M and RM = 3.
Left: m = 0, σ = ±. Right: m = 1, m = 2. Note that there are non interacting
bound states immersed in a continuum. Inset right: Bound level spectrum
for m = 1 as a function of V0 at λR = 0.6M.

This is not possible for m � 0.
We now focus on the energies ε ∈]M − V0,M[, which correspond to the range

of energies allowing bound states within the well3.
The continuity at r = R corresponds to

a+,Jψ+,Jε,m(R) + a−,Jψ−,Jε,m(R) = a+,Kψ+,Kε,m (R) + a−,Kψ−,Kε,m (R).

The condition for the existence of some coefficients a fulfilling above equation
may be then written as

det
[
ψ+,Jε,m(R),ψ−,Jε,m(R),ψ+,Kε,m (R),ψ−,Kε,m (R)

]
= 0. (4.18)

It is not possible to solve this for ε analytically, thus we will rely on numerical
root finding procedures.

The corresponding levels are visualized in fig. 4.2 as a functions of λR at
constant V0, R and as a function of V0 at constant λR and R (inset). We may
clearly see some coexistence of bound states from the m = 0, σ = + subspace
with the σ = − continuum (energies below the red dashed line). Also it seems
the levels dive almost linearly with growing V0 and there is some level splitting
due to Rashba coupling.

3We would like to stress that no continuous solutions were found in the white-white interface,
which by above argument of dimensionality may also allow a discrete spectrum of bound
states
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4.2.2 The Appearance of Bound States

Do bound states exist for arbitrary shallow potential? To answer this question
the continuity condition is expanded in δ+ = M − ε around δ+ = 0. One finds
that the answer depends strongly on the angular momentum m one considers.
In following, we will only focus on m ≥ 0 and K, since the results for −m and K′
one gets by (4.6).

For m = 0 the continuity condition reads

0 =
∏
σ

[
(ε −M)uσε+V0

J1

(
uσε+V0

R
)

K0
(
uσεR

)
−uσε(ε −M + V0)J0

(
uσε+V0

R
)

K1
(
uσεR

)]
(4.19)

or in the limit δ+ → 0∏
σ

(
δ+
√

V0(2M + V0 + σλR)K0

(√
δ+(2Mso + σλR)R

)
J1

(√
V0(2M + V0 + σλR)R

)
+V0

√
δ+(2M + σλR)K1

(√
δ+(2M + σλR)R

)
J0

(√
V0(2M + V0 + σλR)R

))
= 0.

Note that the condition factorizes in two sectors σ. Focusing on one sign of
σ = − (the other will follow by substitution λR → −λR, (4.10)) and expanding
the Kn-terms up to the lowest order in δ+ by using (C.8) one ends up at

δ+
√

V0(2M − λR + V0)J1

(√
V0(2M + V0 − λR)R

) [
−γ − ln

(√
δ+(2M−λR)

2 R
)]

= −V0

R
J0

(√
V0(2M + V0 − λR)R

)
Since lim

x→0
xn ln(x) = −xn/n one may see

δ+

M

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝−γ +
1
2
+ ln

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
√

2 − λR
M RM

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = −

√
V0

RM
√

(2M − λR)

J0

(√
V0(2M + V0 − λR)R

)
J1

(√
V0(2M + V0 − λR)R

) .

Obviously δ+ = 0 only can be realized for J0(
√

V0(2M − λR)R) = 0. Also, since
lim
x→0

J0(x)
J1(x) =

2
x , V0 → 0 allows no solution. We conclude that a new bound level

appears at a zero of J0(
√

V0(2M + V0 ± λR)R) and that one needs to achieve some
finite potential strength V0 to have a bound level in the m = 0 subspace. Same
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result was found in [57] in the limit λR = M = 0. We conclude for the threshold
potential Vt

σ,0,i necessary to bind the ith level from the m = 0 subspace and σ = ±:

Vt
σ,0,i = (M + σ

λR

2
)

⎡⎢⎢⎢⎢⎢⎢⎢⎣−1 +

√
1 +

(
2 ji

0

R(2M + σλR)

)2
⎤⎥⎥⎥⎥⎥⎥⎥⎦ , i > 0.

Here ji
0 is the i-th zero of J0.

At m = 1 in the boundary condition one again may expand Kn around 0 using
(C.8). In the limit δ+ → 0 one arrives at the condition

δ+ = 4
(2 − λR

M )
λR
4M (2 + λR

M )−
λR
4M√

4M2 − λ2
RR2

×

exp

⎡⎢⎢⎢⎢⎣−2γ − 1
2V0R2

⎛⎜⎜⎜⎜⎝
√

V0(2M−λR+V0)RJ0

(√
V0(2M−λR+V0)R

)
J1

(√
V0(2M−λR+V0)R

) + (λR → −λR)

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦ . (4.20)

δ+ → 0 now can be achieved by J1(
√

V0(2M ± λR + V0)R) → 0 or in the limit
V0 → 0, when one gets

ε =M

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝1 − 4
M(2 − λR

M )
λR
4M (2 + λR

M )−
λR
4M√

4M2 − λ2
RR2

e−2γ− 2
V0R

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (4.21)

If λR = 0 the result from [56] is recovered. It follows for the threshold potential
strength in the m = 1 subspace.

Vt
±,1,i = (M ± λR

2
)

⎡⎢⎢⎢⎢⎢⎢⎢⎣−1 +

√
1 +

(
2 ji

1

R(2M ± λR)

)2
⎤⎥⎥⎥⎥⎥⎥⎥⎦ , i ≥ 0,

where ji
1 is the ith zero of J1. Note that i = 0 is now also included, j0

1 = 0 and
thus Vt

±,1,0 = Vt
1,0 = 0.

For m > 1 the procedure is repeated. It was not possible to obtain short
expressions for the shallow levels δ+ → 0, but it is possible to derive a somewhat
simpler condition for the threshold potential strength. The condition for the
appearance of a new bound level is

0 =
∑
±

[
2(m − 1)

√
V0(2M ± λR + V0)Jm−1

(√
V0(2M ± λR + V0)R

)
− RV0(2M ± λR)Jm

(√
V0(2M ± λR + V0)R

)]
Jm

(√
V0(2M ∓ λR + V0)R

)
.

(4.22)
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We also note that now (4.18) then can’t be solved for arbitrary small V0 > 0.
We conclude that for arbitrary small V0 only |m| = 1 can provide bound states,
which again agrees with [56]. Having found the potential strength V0, at which
a level may appear, and using the fact that the levels dive linearly with growing
V0, one may easily estimate the spectrum.

4.2.3 Critical Potential Strength

In [56] an expression for V0, at which the lowest level hits the boundary be-
tween the gap and the lower continuum, ε = −M, was derived for the Rashba
uncoupled case. We would like to see, how this changes in the presence of SOC.

0 0.5 1 1.5 2
λR/M

0

1

2

Vc1,0 /M

0.5 1 1.5 2
RM

0

2

4

6
λR/M=0
λR/M=0.4
λR/M=1.99

Figure 4.3.: Left: the critical potential strength for the lowest bound state of m = 1
as a function of λR according to (D.1) at MR = 3. The Rashba uncoupled
critical energy was calculated to be Vc

1,0(λR = 0) ≈ 2.283M in [56], which is
nicely fulfilled by our calculated results. The almost-linear behavior may
be explained by the weak sensitivity of the lowest bound level with respect
to λR. Right: same as left as a function of the well size RM. It seems, that
the larger the well is, the easier it is to fit an electron into it.

We will call the critical potential strength Vc
κ the potential V0 at which the

bound level, which appears at the threshold potential Vt
κ, will cross the gap
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and dive into the opposite continuum. κ is the set of quantum numbers, e.g.
κ = [σ, 0, i] for m ∈ {0, 1}.

In the presence of Rashba coupling the level of interest is the first bound level in
the m = 1 subspace. The relevant boundary then is ε = λR−M. If V0 becomes too
big, levels from this subspace may begin diving into the lower half-continuum
ε < λR −M. One may again expand (4.19), this time in δ− = ε +M − λR around
δ− = 0. Unfortunately it was not possible to derive a closed expression for Vc

1,0.
We will give the condition for a critical potential in (D.1). Note that although
this expression looks intimidating, it is still more simple, than the corresponding
full condition (4.18). Using this numerical estimate, which agrees with [56] in
the limit λR → 0, is possible, see fig. 4.3. One may see that a change in the
critical potential strength is mainly due to an increase of the valence energy
−M→ −M + λR.

Analytic expressions are possible for m = 0. Using the effective energy and
mass in the σ = ± sector, ε + σλR

2 and M + σλR
2 , we may see that the relevant

continuum boundaries for the σ-sector are

ε + σλR
2 = −

(
M + σλR

2

)
⇒ ε = −(M + σλR).

Expanding the decoupled continuity conditions we quickly get

Vc
σ,0,i = (M + σ

λR

2
)

⎡⎢⎢⎢⎢⎢⎢⎢⎣1 +
√

1 +
(

2 ji
1

R(2M + σλR)

)2
⎤⎥⎥⎥⎥⎥⎥⎥⎦ , i > 0,

where ji
1 again is the i-th zero of J1(x).

Note that for some choices of parameters the lowest state from m = 0, σ = +
subspace for large V0 may be bound deeper than the first bound level to appear,
i.e. the lowest level in the m = 1 subspace. However, the relevant boundary for
criticality is in the former case ε = −M − λR which lies higher than the σ = +
continuum boundary ε < −M − λR. This will always ensure that the ground
level with m = 1 becomes critical first.

4.2.4 Angular Current Density

On the basis of observations made in [12], we would like to investigate the
current structure within the well to search spin selective counter propagating
currents.

In what follows we only consider the lowest bound level at m = 1, which
should serve us as a qualitative example. One may define the local spin current
density corresponding to a state ψ by ψ† js

φψ = 〈 js
φ〉r, where js

φ is defined as in
(4.14).
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Figure 4.4.: Angular current density carried by lowers bound state of m = 1 subspace
for RM = 3, V0

M = 1.05 and a) λR
M = 0, b) λR = 0.5M, c)λR = M. j± is the

contribution of sz = ±1
2 to the current.

The resulting angular current density then qualitatively looks like the curve in
fig. 4.4. One may clearly see an angular current, which is bounded by the well.
The sz = + current is in this case dominant. The situation would reverse in the
m = −1 subspace, where sz = − contribution would dominate, though the sign
of the current would change. Thus the total angular current from both m = 1
and m = −1 subspace would be zero, while we still have a nonzero effective spin
current. A time reversal symmetry breaking perturbation, e.g. a magnetic field,
should produce an observable net current.

A similar situation one seems to encounter in [12], where both spins counter
propagate along the edge of a graphene sheet. Yet here the situation is a little
different, since here the currents are not due to a boundary of topologically
distinct continua, but are simply scattered states along the boundaries of the
well.
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4.2.5 Scattering

We are now interested in the case of an incoming particle along the x-axis, which
is scattered by the well. Here we follow the corresponding section in [31] and
try to extend the formalism for our spin-orbit coupled case. For this we extend
the solutions (4.16) to the region r > R by setting V0 = 0, which then represent
continuum states for ε > M and M ± λR > ε. One will now try to represent
a scattered solution by a superposition of circular waves. From now on σ also
refers to m � 0 subspaces. Let us for now focus on the case of incoming electrons
with σ = −.

Note that similar calculations were performed by [54] for the case of a finite
region with Rashba coupling. Importantly, there the asymptotic states were
considered of the form λR = 0, i.e. u+ε = u−ε . This means also that there are no
bound states, which exist inside a continuum, but are not coupled to it, as in our
case. We will see that, unlike other critical levels, these uncoupled bound states
do not contribute to scattering via resonances. This property is only protected
by the symmetry (4.6). If we introduce a symmetry-breaking perturbation, new
resonances should appear.

We note that there are three different energy regions, which admit continuum
solutions. In the region −M − λR < ε < −M + λR one only has two continuum
solutions ψ−,J and ψ−,Y, which makes the problem similar to the case discussed
in [31]. For ε > M and ε < −M−λR, on the other hand, one has a two-dimensional
Hilbert-space of solutions, since there exist four different continuum solutions:
ψ±,J and ψ±,Y. Since for now one only focuses on incoming particles with σ = −,
we require that the σ = + direction should only have asymptotically outgoing
wave contributions. I.e. the r > R solutions in the σ = + sector are of the shape

ψ+,J + iψ+,Y ∼ eiu+ε r.

Now for any εwe have a unique solution for r > R in the σ = + sector which we
from now on will denote byψ+,>ε,m . The corresponding solutionψ−>,m for σ = −we
will assume to be a linear combination of the form

ψ−,>ε,m = ψ
−,J
ε,m + zmψ

−,Y
ε,m ,

where zm in general is some complex-valued number, which one gets from the
continuity-condition

a−,<ψ−,<ε+V0,m
(R)+ a+,<ψ+,<ε+V0,m

(R) = Am(ψ−,Jε,m(R)+ zmψ
−,Y
ε,m (R)+ ηmψ

+,>
ε,m (R)). (4.23)

Hereηm represents the amplitude for being scattered into the oppositeσ-sector, in
the current case corresponding to the process − → +. Note that theψ±,<ε+V0,m

parts
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represent regular solutions from the set (4.12) and (4.13) at the corresponding
energies, and ψ+,>ε,m is either ψ+,Kε,m or ψ+,Yε,m + iψ+,Yε,m , depending on whether one is
inside the σ = +-continuum, ε < −M − λR, or not.

The procedure now is as follows. We find the exact continuous solutions of
the problem for each m obeying (4.23). From these, by linear combination, we
try to construct a solution, which asymptotically behaves like

�ueiu−ε x + �v− f−(φ)√−ir
eiu−ε r + �v+ f+(φ)√

r eiu+ε r,

i.e. a combination of an incoming plane wave with σ = − and of outgoing
circular waves with both spins, we thus allow for spin-flips.

Lets look at the plane wave-part of the wave function. Following (4.2) the
wave incoming at an energy ε in the σ = − sector along the x-axis is given by

ψ−in =
[
i

u−ε
ε −M

, i,−1,− u−ε
ε −M

]T

eiu−ε x.

Note that due to rotational symmetry of the problem the direction of incidence
does not matter. Now, using [33]

eix cosφ =

∞∑
m=−∞

eimφ(i)mJm(x),

we may compute

ψ−in =
∞∑

m=−∞
imeimφ

[
u−ε
ε−Me−iφJm−1(u−ε r), iJm(u−ε r),−Jm(u−ε r),−i u−ε

ε−MeiφJm+1(u−ε r)
]T
.

This is a superposition of free, circular solutions. In the asymptotic limit this
behaves like

ψ−in,ε(r→∞) =
√

1
2iπu−ε r

∞∑
m=−i∞

imeimφ×
([

u−ε
ε−Me−iφ(−i)m−1, i(−i)m,−(−i)m,−i u−ε

ε−Meiφ(−i)m+1
]T

eiu−ε r+

i
[

u−ε
ε−Me−iφ(i)m−1, i(i)m,−(i)m,−i u−ε

ε−Meiφ(i)m+1
]T

e−iu−ε r
)
, (4.24)

where we used that the Bessel function behave like (C.9)

Jm(x→∞) =
√

2
πx cos(x − m

2π − π
4 ) , Ym(x→∞) =

√
2
πx sin(x − m

2π − π
4 ).
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Now one may proceed in the same spirit as [31], or [58] more fundamentally.
Given zm from the continuity-condition above the σ = − part of a general wave
function solving the Dirac-equation at some energy ε is of the form

ψ−ε =
∞∑

m=−i∞
Ameimφ×

([
u−ε
ε−Me−iφJm−1(u−ε r), iJm(u−ε r),−Jm(u−ε r),−i u−ε

ε−MeiφJm+1(u−ε r)
]T
+

zm

[
u−ε
ε−Me−iφYm−1(u−ε r), iYm(u−ε r),−Ym(u−ε r),−i u−ε

ε−MeiφYm+1(u−ε r)
]T
)

(4.25)

which, again, in the asymtotic limit behaves like

ψ−ε (r→∞) =
√

1
2iπu−ε r

∞∑
m=−∞

Ameimφ×
([

u−ε
ε−Me−iφ(−i)m−1, i(−i)m,−(−i)m,−i u−ε

ε−Meiφ(−i)m+1
]T

(1 − izm)eiu−ε r+

i
[

u−ε
ε−Me−iφ(i)m−1, i(i)m,−(i)m,−i u−ε

ε−Meiφ(i)m+1
]T

(1 + izm)e−iu−ε r
)
. (4.26)

Now one postulates that all the e−iu−ε r parts of the asymptotic solutions ψ shall
be only due to theψ−in contribution. To fulfill this the appropriate choice of Am is

Am =
im

1 + izm
.

The outgoing part in the σ = − sector of the solution then is

ψ−out,ε(r→∞) = (ψ−ε −ψ−in,ε)(r→∞) =[
i u−ε
ε−Me−iφ, i,−1,− u−ε

ε−Meiφ
]T

∞∑
m=−i∞

eimφ√
2iπu−ε

−2izm

1 + izm

eiu−ε r

√
r
. (4.27)

We define

f −,−m =

√
2

iπu−ε
−izm

1 + izm
,

the scattering amplitude into the m channel. Using the definition of the current-
density operator, (4.14) and (4.15), one finds

〈Jr〉out,±/〈Jx〉in = |
∑

m

f −,±eimφ|2/r.
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We note that due to the symmetries 4.6 fm = f−m. From this we expect a sym-
metric scattering with respect to φ → −φ. For the corresponding scattering
amplitude into the sector σ = + one quickly gets

f −,+m =

√
2

iπu+ε

ηm

1 + izm
,

where ηm is the corresponding component in the continuity condition (4.23).
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Figure 4.5.: Potential strength dependency of the scattering cross section Λ−,± for ε =
2M, RM = 3, λR = 0.5M. Note the strongly resonant behavior.
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Figure 4.6.: Scattering cross sections Λσ,σ
′

for V0 = 1.3M and V0 = 1.7M as a function
of ε for λ = 0.5M, RM = 3. Again we realize the strongly resonant behav-
ior. It seems that the inter scattering between the channels σ is typically
suppressed at high momenta.
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By normalizing the outgoing current by the incident current density, the total
scattering cross section follows to be

Λ−,±s =
u±ε
u−ε

∫ 2π

0
dφ|

∑
m

f −,±m eimφ|2 = 2π
u±ε
u−ε

∑
m

| f −,±m |2.

The u-dependent prefactor is due to the shape of the spinors for the corre-
sponding channels. Note that there is no scattering into the σ = + sector from
an incoming particle in sector σ = − at energies within the half continuum
] − M − λR,−M + λR[. The respective + → ± process one may derive in a
completely analogous way. We may now plot the scattering amplitudes, fig.
4.6.

The transport cross sections are also easily calculated

Λσ,σ
′

tr =
uσ′ε
uσε

∫ 2π

0
dφ|

∑
m

f σ,σ
′

m eimφ|2(1− cos(φ)) = Λσ,σ
′

tr −2π
uσ′ε
uσε

∑
m

�
(

f σ,σ
′

m f σ,σ
′

m+1

∗)
.

As expected, the overall scattering becomes small for shallow potentials, fig.
4.5. Note the resonant behavior of the scattering amplitudes.

It turns out that whenever a resonance hits the band gap, a new bound level
is created. This is illustrated in fig. 4.7 for m = 0 (disconnected spins) and fig.
4.8 for m = 1 (connected spins). This is indeed not surprising, since there is
no formal difference between a bound level diving into a continuum ( [30], see
below) and an immersed level getting bound. The tuning-direction of V0 should
have no effect.
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Figure 4.7.: Scattering cross sections Λσ,σ
′

at ε = 1.0001M in the vicinity of Vt
−,0,1 (top)

and Vt
+,0,1 (bottom), RM = 3, λR = 0.5M. Note that only resonances appear

in scattering processes from and into the channel σ corresponding to a
level about to be bound. All the other cross sections show no resonances.
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Figure 4.8.: Scattering cross sections Λσ,σ
′

at ε = 1.0001M in the vicinity of Vt
−,1,1 (top)

and Vt
+,1,1 (bottom), RM = 3, λR = 0.5M. Since now the according bound

levels have no definite σ, all scattering processes are showing resonances.
Same behavior was seen also at threshold potentials corresponding to
m > 1 and for higher levels.

Using this method now allows us to observe resonances in the lower half-
continuum of σ = −, see fig. 4.9, which correspond to the famous Fano reso-
nances [30]. Note that obviosly it makes a large difference, whether the diving
level is decoupled in the sectors σ, or not. If that is the case, we may only observe
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resonances within the sector, in which the level is bound. Due to this we may
not observe resonances of the σ = +, m = 0 sector inside the half continuum
ε ∈ [−λR−M, λR−M], see fig. 4.9, and resonances belonging to levels at threshold
to get bound, see fig. 4.7 and 4.8. We expect that by introducing a perturbation
breaking the symmetry (4.6) i) we will get additional resonances.
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Figure 4.9.: Scattering cross section Λ−,− in the lower half-continuum, RM = 3, λR =
0.5M, V = 2.3M. We see some resonances appear, whenever V0 hits a
critical value, see insets, which makes a bound level dissolve into the
lower continuum. Note: Vc

1,1 ≈ 1.777M, Vc
2,1 ≈ 2.108M, Vc

−,0,1 ≈ 2.231M.
However, we see no resonances corresponding to levels m = 1, σ = +,
which are symmetry protected from the σ = − continuum.

For the transport cross section we find similar, resonant behavior. Resonances
within the scattering cross section are accompanied by resonances of the trans-
port cross section, see fig. 4.10. All other statements about the scattering cross
section also hold for the transport cross section.
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Figure 4.10.: Scattering cross sectionΛ−,− and transport cross sectionΛ−,−tr as a function
of energy at R = 3, λR = 0.5. Positions of resonances coincide for both
cross sections. Comparison of general combinations Λσ,σ

′
and Λσ,σ

′
tr gives

qualitatively equal results.

4.3 Coulomb Impurity

For the sake of completeness we now present the exact solution for the case of a
SOC Coulomb impurity, V(r) = −αr , with m = 0. However, an exact solution for
m � 0 is so far not available. This also includes m = 1, presumably carrying the
state with the lowest energy [31], [32].

4.3.1 Exact Solution for m = 0
We now focus on the transformed set of equations (4.9). Following [31] and
substituting V = −αr in (4.9) we may observe that the resulting two sets of
equations are of the form (2.17) with m = 0 and M→M± λR

2 =M±, ε→ ε± λR
2 =

ε±. This allows us simply to read off the solutions from (2.18):

ψ±(r) = e∓ ⊗ e−u±ε r(2u±ε r)γ−
1
2×⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
(M± + ε±)

⎛⎜⎜⎜⎜⎜⎝1F1(γ − αε±
u± , 1 + 2γ; 2u±ε r) +

γ−αε±u
1
2+

αM±
u±ε

1F1(1 + γ − αε±
u±ε
, 1 + 2γ; 2u±ε r)

⎞⎟⎟⎟⎟⎟⎠
√

(M± − ε±)

⎛⎜⎜⎜⎜⎜⎝1F1(γ − αε±
u±ε
, 1 + 2γ; 2u±ε r) − γ−αε±u±ε

1
2+

αM±
u±ε

1F1(1 + γ − αε±
u±ε
, 1 + 2γ; 2u±ε r)

⎞⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(4.28)
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e± =
[

1
2 ± 1

2 ,
1
2 ∓ 1

2

]T
, u±ε =

√|(M − ε)(M + ε ± λR)| and γ =
√

1
4 − α2. Following

the argument in 2.3 we now may easily select the energies with bound solutions:

εn,± = sign(α)
(
M ± λR

2

) √ (n + γ)2

α2 + (n + γ)2 ∓
λR

2
, n ∈N.

Again, we encounter the falling to the center phenomenon at α = 0.5, which we
will bypass by regularizing the potential:

V(r)→ − α
max(R, r)

.

Solutions for r < R one may easily read from (4.12) with the shift ε→ ε + α
R :

ψ±(r)r<R = e∓ ⊗
⎡⎢⎢⎢⎢⎢⎢⎣
−√ε± + α

R +M±J1(u±
ε±+ αR

r)√
ε± + α

R −M±J0(u±
ε±+ αR

r)

⎤⎥⎥⎥⎥⎥⎥⎦ , (4.29)

where we used J−n(x) = −1nJn(x).

4.3.2 Bound Levels and Critical Coupling

The task is now to find solutions continuous at R = r. Note that in (4.28) and
(4.29) we may focus on one sign only and thus skip ±, since, as before in 4.2.2,
the condition for criticality factorize. In the respective results the ±-cases are
then reestablished by taking M→M±.

The condition for the existence of a bound level at ε is

√
M + ε

ε +M + α
R

1F1(γ − αε
uε
, 1 + 2γ; 2uεR) +

γ−αεu
1
2+

αM
uε

1F1(1 + γ − αε
uε
, 1 + 2γ; 2uεR)

J1

(
uε+ αR

R
) =

−
√

M − ε
ε −M + α

R

1F1(γ − αε
uε
, 1 + 2γ; 2uεR) − γ−αεuε

1
2+

αM
uε

1F1(1 + γ − αε
uε
, 1 + 2γ; 2uεR)

J0

(
uε+ αR

R
) .

(4.30)

This condition may be solved numerically. Again, there are values of α, for
which the energy of σ = + is located inside the continuous spectrum of σ = − .
The diving points of both spins into the corresponding continuum are different,
but tend to α = 1

2 in the limit R→ 0, see fig. 4.11.
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Figure 4.11.: Left: The lowest bound level of m = 0, σ = ± in dependency of α
up to the critical coupling, λR = 0.6M, RM = 0.01. Right: Critical
coupling in dependency ofλR at RM = 0.01. Inset: Critical coupling
as a function of R at λR = 0 (black) and at λR = ±0.6M (blue) for
σ = ∓.
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5 Summary

In this work we investigated the effect of electrostatic impurities on graphene,
which form quantum dots. In detail, we focused on the ability of such impu-
rities to bind electrons and the critical phenomena connected to this. We also
calculated the scattering and transport cross sections of such impurities, which
makes it possible to estimate the conductance using the Drude formula.

In chapter 3 we investigated the effects of two impurities in graphene, which
served us as a model for clusters of adatoms. This may be experimentally
realized, see e.g. [7].

In the first part of chapter 3 we focused on two equally charged Coulomb
centers located at a distance R from each other. Using the LCAO method
we were able to estimate the ground state energy. The results were in good
agreement with the analytically accessible limits R→ 0 and R→ ∞. Therefore,
we conclude that intermediate results should also be accurate. Further, using
the same method we could calculate the distance Rcr between the two centers
at which the system becomes critical. These results are also in good agreement
with previous publications [35].

In the second part of chapter 3 we were able to calculate the qualitative spec-
trum close to the band edges of a dipole impurity on graphene. In particular, we
discovered some universal phenomena, which do not depend on short range
details of the problem, e.g. the Efimov scaling and critical dipole strength neces-
sary for appearance of infinite bound state sets. We also found that the functional
shapes of the bound energies are independent of short range characteristics of
the potentials. A striking feature here is that at finite dipole moments a bound
state is always present in contrast to the respective problem in three dimensions.
This was also confirmed for the full, two center, dipole potential [48]. It should
also be possible to create similar physics in semiconducting hetero structures.
Infact, the nonrelativistic calculations then become exact.

We discovered that dipole impurities lack criticality since we found no bound
states being able to return to one of the continua. We were able to characterize
the qualitative behavior of bound levels deep within the gap using the numerical
exact diagonalization procedure. It was possible to find fits for the ground state
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energies, which are of the same qualitative shape as analytical results obtained
before. It seems that there should be no zero energy states. This supports our
previous claims of no critical behavior.

Finally, we addressed the scattering of a dipole impurity in the full relativistic
limit using the born approximation and in the non relativistic limit using the
analytical results for the low energy continuum states. Although there is no
criticality, we could find resonances corresponding to states at the threshold of
being bound by the dipole.

In chapter 4 we investigated the effects of SOC on critical effects on circular
graphene quantum dots, which serve us as model for general impurities. It
turned out that bound states always exist for finite potential strengths. More-
over, we could calculate closed, analytical expressions of threshold potential
strengths necessary to bind electrons in the gap as well as conditions for criti-
cality.

We found a strong dependency of threshold and critical potential strength
on the Rashba parameter λR, due to the corresponding up shift of the valence
energy and level splitting, and we were able to show the appearance of Fano
resonances.

We also discovered the bound levels existing within, but not coupled to,
a continuum and hence are not contributing to scattering. This property is
protected by a symmetry. Therefore, we expect that a weak local perturbation,
breaking this symmetry, would establish a connection between both and thus
additional resonances would appear.

It may be an object of further research to find the dependency of newly
emerging scattering resonance on the strength of the perturbation breaking the
above mentioned symmetry. Systems with several electrons or holes bound to
a dipole may also be investigated.
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A Elliptic Coordinates
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Figure A.1.: Elliptic coordinates. Con-
stant μ (black) and con-
stant ν (red) contours.

Given the two centers c± = [±a, 0]T in
the x − y-plane one may define r± =
|r−c±|, which enclose the anglesθ±with
the x-axis. Then one gets the elliptic
coordinates by setting:

μ =
r+ + r−

2a
∈ [1,∞[,

ν =
r+ − r−

2a
∈ [−1, 1[.

(A.1)

We refer to μ as the radial and to ν as
the angular coordinate.

The inverse transformation reads

x = aμν and y2 = a(μ2−1)(1−ν2). (A.2)

Note that the case of an positive and
negative y have to be treated sepa-
rately.

Alternatively one may introduce

ν = cos(η), η ∈ [0, 2π[.

In that case both signs of y are covered. The volume element is

dV = a2dμdν
a2(μ2 − ν2)√

(μ2 − 1)(1 − ν2)
= dμdη

a2(μ2 − cos(η)2)√
μ2 − 1

. (A.3)

The Laplacian is easily obtained from the definition (A.1)

Δ =
1

a2(μ2 − ν2)

⎛⎜⎜⎜⎜⎝√μ2 − 1∂μ
1√
μ2 − 1

∂μ +
√

1 − ν2∂ν
1√

1 − ν2
∂ν

⎞⎟⎟⎟⎟⎠ .
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APPENDIX A. ELLIPTIC COORDINATES

Usefull relations are

cos(θ±) =
z ± a

r±
=
μν ± 1
μ ± ν , sin(θ±) = sign(θ±)

√
(μ2 − 1)(1 − ν2)

μ ± ν ,

cos(θ+ − θ−) =
(μ2 + ν2 − 2)
μ2 − ν2 and sin(θ+ − θ−) = ±2

√
(μ2 − 1)(1 − ν2)
μ2 − ν2 .

(A.4)

The last two results were obtained using addition theorems for sine and cosine.
We also note that by using the η coordinate in the limit a → 0 one arrives at

the polar coordinate system, if one redefines μ→ aμ, ν→ aν.
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B Properties of Mathieu Functions

One may introduce the Mathieu functions as solutions of the eigenvalue equa-
tion (we follow [33] throughout this section)

−∂2
z y + 2k2 cos(2z)y = ay. (B.1)

Within this work we are only interested in periodic solutions, which may be
acquired in the form of series of cos and sin functions. Setting k2 = q:

ce2n(z, q) =
∞∑

r=0

A2n
2r cos(2rz), ce2n+1(z, q) =

∞∑
r=0

A2n+1
2r+1 cos((2r + 1)z),

se2n(z, q) =
∞∑

r=0

B2n
2r sin(2rz), se2n+1(z, q) =

∞∑
r=0

B2n+1
2r+1 sin((2r + 1)z),

(B.2)

where the A and B coefficients are q-dependent. Obviously cei(z) are even
solutions, while sei(z) odd w.r.t. z→ −z, see fig. B.1.

We denote the eigenvalues, also called characteristic values, corresponding to
cei and sei as ai and bi and they may be found by solving the eigenvalue equation
for the coefficients A, B, which, for instance, for A2n

2r reads⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
a2n −q 0 0 0 . . .
−2q a − 4 −q 0 0 . . .

0 −q a − 16 −q 0 . . .
. . . . . . . . . . . . . . . . . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
A0

A2

A4
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ = 0.

We note a hierarchy a0 < b1 ≤ a1 < b2 ≤ a2 < . . ., where equality holds for q = 0,
see fig. B.1. All the characteristics eventually become negative, for sufficiently
large q, while a0 ≤ 0, where, again, equality is true for q = 0.

The Mathieu functions form an orthogonal system,

2π∫
0

σej(φ, q)σ′ej′(φ, q)dφ = πδσ,σ′δ j, j′ ,
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Figure B.1.: Left: The first two periodic Mathieu functions cei (solid) and
sei (dashed) at q = 10. Right: Characteristic values (solid) ai,
i ∈ {0, 1, 2, 3} and (dashed) bi, i ∈ {1, 2, 3, 4}.

where σ ∈ {c, s}. We thus may expand simple trigonometric functions in σe:

cos(2mφ) =
∞∑
j=0

ce2 j(φ, q)A2 j
2m, cos((2m + 1)φ) =

∞∑
j=0

ce2 j+1(φ, q)A2 j+1
2m+1,

sin(2mφ) =
∞∑
j=1

se2 j(φ, q)B2 j
2m, sin((2m + 1)φ) =

∞∑
j=0

se2 j+1(φ, q)B2 j+1
2m+1.

(B.3)

One may also expand trigonometric functions in even order functionsσe2 j
(
φ
, q
)

only. Note the halfing of the first variable. One may write

cos(mφ) = cos
(
2mφ

2

)
and sin(mφ) = sin

(
2mφ

2

)
and then simply substitute in the even parts of (B.3).
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C Properties of Bessel Functions

Consider the differential equation[
z2∂2

z + z∂z + (z2 − ν2)
]

Jν(z) = 0.

One solution may be given for arg(z) < π in the form of the series (we will cite
from [33] throughout this chapter)

Jν(z) =
zν

2ν

∞∑
n=0

(−1)n z2n

22nΓ(ν + n + 1)
. (C.1)

This is the Bessel function of the first kind of order ν ∈ C. A second, linearly
independent solution for non-integer ν (from now on we use n ∈ Z, ν ∈ C/Z)
would also be

Yν(z) =
1

sin(νπ)
(cos(νπ)Jν(z) − J−ν(z)) ,

the Bessel function of the second kind. One may extend the range of this
solutions for integer orders by means of the relation

πYn(z) = 2Jn(z) ln( z
2 ) −

n−1∑
k=0

(n − k − 1)!
k!

(z
2

)2k−n

−
∞∑

k=0

(−1)l

k!(k + n)!

(z
2

)n+2k (
ψ(k + 1) + ψ(k + n + 1)

)
, (C.2)

where ψ(x) = ∂x ln(Γ(x)) (for the rest of the chapter ν ∈ C, n ∈ N). One may
introduce the complex-valued Hankel functions by means of the transformation

H(1)
ν (z) = Jν(z) + iYν(z),

H(2)
ν (z) = Jν(z) − iYν(z).

(C.3)
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Now the solutions may be extended to purely imaginary arguments z. One
defines the real-valued modified Bessel functions of the first and second kind:

Iν(z) = e−iπ2 νJν(iz), Kν(z) =
πi
2

eiπ2 νH(1)
ν (iz), (C.4)

which are two linearly independent solutions to the differential equation[
z2∂2

z + z∂z − (z2 + ν2)
]

f (z) = 0. (C.5)

Focusing on arbirtary order, one may see that for small |z| from (C.1)

2 4 6

�1

1

(a)

2 4 6

�1

1

(b)

2 4

1

(c)

2 4

1

(d)

Figure C.1.: Plots of Bessel functions a) Jn, b) Yn, c) In and d) Kn of order 0 (red), 1 (blue)
and 2 (green).

Jμ(z) ∼ zμ

2μΓ(μ + 1)
+ O(zμ+1). (C.6)

This allows to see the asymptotics of Yn for integer orders using (C.2)

Y0(z) ∼ 2
π

(ln( z
2 ) + γ) + O(z2), Yn(z) ∼ −(n − 1)!

zn + O(z−n+2) for n>0.
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For non integer orders one may find

Yν(z) =
1

sin(πν)

⎡⎢⎢⎢⎢⎢⎣cos(πν)
(z
2

)ν ∞∑
k=0

(−1)k

Γ(ν + 1 + k)

(z
2

)2k

−
(z
2

)−ν ∞∑
k=0

(−1)k

Γ(−ν + 1 + k)

(z
2

)2k
⎤⎥⎥⎥⎥⎥⎦ (C.7)

Further

In(z) ∼ 1
n!

(z
2

)n
+ O(zn+2), K0(z) ∼ −(γ + ln( z

2 )) + O(z2)

and for n>0 Kn(z) ∼ (n − 1)!
2

(2
z

)n

+ O(z−n+2) (C.8)

where γ = 0.577216 is the Euler-Mascheroni constant. In the lowest order of z−1

one gets for |z| → ∞

Jν(z) ∼
√

2
πz

cos(z− πν
2 − π

4 )(1+O(z−1)), Yν(z) ∼
√

2
πz

sin(z− πν
2 − π

4 )(1+O(z−1)).

(C.9)

From this the asymptotics for the Hankel and modified Bessel functions follow:

H(1)
ν (z) ∼

√
2
πz

ei(z−πν2 −
π
4 )(1 + O(z−1)), H(2)

ν (z) ∼
√

2
πz

e−i(z−πν2 −
π
4 )(1 + O(z−1)),

Iν(z) ∼ ez

√
2πz

(1 + O(z−1)), Kν(z) ∼
√
π
2z

e−z(1 + O(z−1)).

(C.10)

Following recursion formulas turn out to be useful

2
z

Zν(z) = Zν−1(z) + Zν+1(z), 2∂zZν(z) = Zν−1(z) − Zν+1(z),

where Z ∈
{
J,Y,H(1),H(2)

}
. This allows to define some ladder-operators(

ν
z
± ∂z

)
Zν(z) = Zν∓1(z). (C.11)

We give respective ladder-operators for the modified Bessel functions:(
∂z ± νz

)
Iν(z) = Iν∓1(z),

(
∂z ± νz

)
Kν(z) = −Kν∓1(z).
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Finally we notice following symmetry relations with respect to an integer order
for the regular Bessel and Hankel functions Jn, Yn and H(i)

n :

Z−n(z) = (−1)nZn(z), n ∈N.
For the modified Bessel functions: I−n(z) = In(z). For Kν this is even valid for
non-integer orders: K−ν(z) = Kν(z).

80



D Condition for the Critical Coupling
of a Potential Well Within m = ±1
Subpace

The condition reads

− 4(V0 + λR − 2M)×
J1

(
u−V0+λR−MR

) {
u+λR−M(V0 + λR − 2M)J1

(
u+V0+λR−MR

)
K0

(
u+λR−MR

)
+ (λR − 2M)u+V0+λR−MJ0

(
u+V0+λR−MR

)
K1

(
u+λR−MR

)}
+ R(λ − 2M)

[
u+λR−M(V0 + λR − 2M)

{
u−V0+λR−MJ1

(
u+V0+λR−MR

)
J2

(
u−V0+λR−MR

)
+u+V0+λR−MJ1

(
u−V0+λR−MR

)
J2

(
u+V0+λR−M

)
R
}

K0

(
u+λR−MR

)
+ (λR − 2M)u−V0+λR−Mu+V0+λR−M

{
J0

(
u+V0+λR−MR

)
J2

(
u−V0+λR−MR

)
+J0

(
u−V0+λR−MR

)
J2

(
u+V0+λR−MR

)}
K1

(
u+λR−MR

)
+ u+λR−M(V + λR − 2M)

{
u+V0+λR−MJ0

(
u+V0+λR−MR

)
J1

(
u−V0+λR−MR

)
− u−V0+λR−MJ0

(
u−V0+λR−MR

)
J1

(
u+V0+λR−MR

)}
K2

(
u+λR−MR

)]
+ R(λ − 2M)

[
u+λR−M(V + λR − 2M)

{
u−V0+λR−MJ1

(
u+V0+λR−MR

)
J2

(
u−V0+λR−MR

)
−u+V0+λR−MJ1

(
u−V0+λR−MR

)
J2

(
u+V0+λR−M

)
R
}

K0

(
u+λR−MR

)
+

(λ − 2M)u−V0+λR−Mu+V0+λR−M

{
J0

(
u+V0+λR−MR

)
J2

(
u−V0+λR−MR

)
+ J0

(
u−V0+λR−MR

)
J2

(
u+V0+λR−M

)
R
}

K1

(
u+λR−MR

)
− u+λR−M(V + λR − 2M)

{
u+V0+λR−MJ0

(
u+V0+λR−MR

)
J1

(
u−V0+λR−MR

)
+ u−V0+λR−MJ0

(
u−V0+λR−MR

)
J1

(
u+V0+λR−MR

)}
K2

(
u+λR−MR

)]
= 0. (D.1)

If any V0 fulfills this condition, another bound state from m = ±1 subspace
becomes critical.
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