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My father would say: “History repeats. Now, Bioinformatics is the

same to Biology as Computer Science was a few years ago to

Mathematics”. I suppose he does not really understand what I did in

my thesis, but this sentence of him has some truth in it.

When I was forced to explain my friends what I was doing all the

time and what Bioinformatics is about, I said: “Bioinformatics is

what physicists applied to other systems of nature long time ago” .

However, from the very beginning I was fascinated with this research

area and the excellent reputation of Bioinformatics at the

Heinrich-Heine-University was one of the main reasons to study there.
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Summary

Massive re-sequencing projects such as the human 1000 genomes project

are providing genetic variation data from thousands of individuals around

the world. The production of such databases rapidly increased in the last

decades and has shifted the bottleneck in population genetics from data

acquisition to data analysis. Projects like this imply a substantial progress

for the elucidation of important questions regarding human evolution and

the genetic contribution to disease.

Widely used population genetic software packages like DnaSP do not have

the capability to handle such whole genome data in an efficient way. This

(cumulative) thesis introduces the new population genomic software pack-

age PopGenome, “An efficient Swiss army knife for population genomic

analyses in R”. PopGenome facilitates large-scale population genetic anal-

yses and at the same time provides an ideal framework for the effortless

integration of new population genetic & genomic methods.

An ultimate goal of theoretical population genetics is the design of meth-

ods which can tell as much as possible about the evolutionary history of

populations on the basis of DNA sequence data observed in the present.

Once the evolutionary forces are detected, future developments of biolog-

ical systems become predictable. Genes which are subject to any kind

of selection play a decisive role in the understanding of evolution as they

reveal an important biological functionality.

The second project introduced here is a new genome scan method to de-

tect genes which are under balancing or directional (population-specific)

selection via Bayesian inference.



Zusammenfassung

High-throughput Technologien haben in den letzten Jahren einen rasante

und kostengünstige Produktion genomischer Informationen von tausenden

biologischen Organismen ermöglicht. Das 1000 Genomes Projekt z.B. se-

quenziert zur Zeit menschliche Genome von Populationen auf der ganzen

Welt, um den größten Katalog menschlicher genetischer Variationen in

der Geschichte zu erstellen. Es zielt darauf ab, bedeutende Fragen der

Evolutionsbiologie zu beantworten und neue Erkenntnisse über die Rolle

einzelner Variationen bei der Entstehung von Krankheiten zu erlangen.

Dieser Fortschritt geht einher mit der Notwendigkeit von Software App-

likationen, mithilfe derer die Analyse dieser enormen Datenmengen prob-

lemlos zu realisieren ist. Etablierte populations-genetische Analyse Soft-

ware, wie z.B. das Programm DnaSP, sind nicht dafür entwickelt worden

Datenmengen solchen Ausmaßes effizient zu verarbeiten. Diese Disser-

tation präsentiert unter Anderem das neue Software Paket PopGenome.

Zum einen beinhaltet PopGenome ein weites Spektrum populationsgenomis-

cher Methoden, zum Anderen bietet die zugrunde liegende Architektur

eine Umgebung, die die Integration neuer Methoden spielerisch einfach

macht.

Das Ziel theoretischer Populationsgenetiker ist es, Methoden zu entwick-

eln, die auf der Basis heutiger Muster im Genom möglichst genaue Aus-

sagen über die Evolutionsgeschichte machen können. Erst wenn diese

Muster entschlüsselt sind können zukunftige Entwicklungen biologischer

Systeme sicher vorhergesagt werden. Gene, die unter Selektionsdruck ste-

hen und somit eine bedeutende biologische Funktion implizieren, sind ein

wesentlicher Bestandteil dieser Entwicklungen. Ein zweiter Teil dieser

Dissertation stellt eine neue bayesianische Methode vor, die anhand von

genomweiten SNPs (Single nucleotide polymorhisms) Gene verifiziert, die

sich entweder unter balancierender oder populations-spezifischer Selektion

befinden.
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Chapter 1

Introduction

In the last decades high throughput sequencing technologies boosted the production

of genomic data containing DNA sequence informations from thousands of organisms

and individuals around the world. The 1000 genomes project [5] aims to provide the

biggest database of human genetic variation data in history, facilitating the under-

standing of genetic contribution to disease. Analogously the same is done for whole

genome variation data of the reference plant Arabidopsis thaliana [3], which is the

most popular model organism in plant genetics.

Projects like these imply a substantial progress for the elucidation of important ques-

tions regarding human evolution [6]. However, while many people are doing serious

sequencing now on numerous non-model organisms there is no population genomics

software package available to analyse such data in an effortless and efficient way.

The widely used software program DnaSP [7], for instance, incorporates a wide range

of established methods but only is suitable for small scale population genetic analyses.

Usually, biologists write their own scripts as an ad-hoc solution for the analysis needed

for a specific task. Thus, the corresponding software is not designed for extensibility.

In addition, the source code is not available to the research community, consequently

identical processes are done over and over again. The paper “Computer programs

for population genetics data analysis: a survival guide” [13] published in the journal

Nature Reviews Genetics signifies this dysplasia by providing a guide through a wide

range of population genetic & genomic software packages. Obviously a software envi-

ronment is needed where most of those implementations can be easily integrated and

which is simultaneously armed for the big data era.

My first project during my PHD encompassed the development of such a framework.
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The corresponding paper is in press at the journal MBE with the title “PopGenome:

An efficient Swiss army knife for population genomic analyses in R”.

An ultimate goal of theoretical population genetics is the design of methods which

can tell as much as possible about the evolutionary history of populations on the basis

of DNA sequence data observed in the present. The knowledge about the history of

genes or whole genomes strongly influences the predictability of future developments

of biological systems. One of the main goals is to distinguish between neutrally evolv-

ing genes and genes which play a significant role in terms of revealing an important

biological functionality.

The paper “GeneFeST: Bayesian calculation of gene-specific FST from genomic SNP

data” introduces a new method to detect genes which are subject to selection on the

basis of population differentiation measurements. We have submitted the paper to

the journal MBE.
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Chapter 2

PopGenome: An efficient Swiss
army knife for population genomic
analyses in R

PopGenome is a new R-package for population genomic & genetic analyses in R. R is

a high-level open source interpreted programming language with particular strengths

in statistical computing and graphics. The R-project enables scientists to contribute

their software packages and guarantees system independence due to stringent re-

strictions on the source code. PopGenome is designed to handle a huge amount of

individual loci as well as big data files containing whole genome variation data such

as those contributed by the HapMap [1], the Human 1000 genomes [5] and the Ara-

bidopsis 1001 genomes project [3].

The current version of PopGenome includes a wide range of neutrality statistics, link-

age disequilibrium and population differentiation measurements like Hudson’s FST

[18] which all can be applied to individual loci, sets of loci and sliding windows.

Neutrality statistics like the Tajima’s D statistic [8] aims to distinguish between

“neutrally” evolving DNA sequences and those which are influenced by evolutionary

forces like selection or demographic factors (e.g population expansions or bottlenecks).

Neutrality statistics are based on the coalescent theory firstly introduced by King-

man (1982) [12]. It is the most popular concept of neutral evolution in the field of

population genetics. The coalescent process attempts to trace all alleles of a single

locus (gene) backwards in time until a most recent common ancestor (MRCA) for the

whole sample of alleles is found. During this binomial sampling process an ancestral

history of the alleles is produced. The sampling scheme can be affected by additional

3



evolutionary parameters and thus enables to test the hypothesis if the alleles observed

in the present could have arisen by chance (selectively neutral) [11].

Simulation programs like Hudson’s MS [17] utilize this theory to generate patterns

of neutrally evolving genes under different model parameter settings. To analyse

several types of selection the coalescent simulation program MSMS [9] can be used.

PopGenome incorporates both programs and provides an effortless way to compare

simulated “theoretical” data with observed data.

Beside a wide range of so called “moment estimators”, PopGenome also provides

an R version of Foll & Gaggiotti (2008) [15], a Bayesian approach to detect genes

which are subject to selection. The corresponding BayeScan software calculates an

explicit posterior probability for non-neutral evolution at each locus.

Moreover, PopGenome can automatically handle annotation files like those in the

GFF/GTF format. Accordingly, the full range of methods can be applied to feature

centered regions (e.g. genes and coding regions) of the genome. One of the major

strengths of this work is that our framework is suitable for sequence data which con-

tains full nucleotide information of the reference genome, as well as for SNP data

which only contains information about the variable sites, which hampers the calcula-

tion e.g. of synonymous and non-synonymous codon substitutions.

PopGenome stores the genomic data in ff-objects provided by the R-package ff [2]. ff

objects are structures that are stored on disk but behave (almost) as if they were in

RAM by transparently mapping only a section (pagesize) in main memory. In fact,

PopGenome only depends on this single R-package and; this dependence can be easily

replaced by other mechanisms in the future, if necessary.
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2.1 Accelerated computations on large vectors and

matrices in R

During the work on PopGenome we discovered that R itself produces some extensive

computational bottlenecks hindering efficient population genomic analysis of whole

genome variation data. R is an interpreted vector-oriented programming language and

is internally written in C and FORTRAN to ensure good computational performance.

However, R functions are designed for a general applicability to a wide range of

data structures and thus cause unnecessarily large overheads in special cases where

computation time is important. Numeric vectors, for instance, containing already

sorted entries are rarely considered in the R environment. Moreover, vector-oriented

programming languages usually apply calculations to every entry of a data structure,

whereas in many cases a return value can already be found from a subset of the entries.

PopGenome uses as much as possible simple data structures like matrices and vec-

tors to store genomic data. In the paper “BASIX: Accelerated computation on large

vectors and matrices in R” we introduce the R package BASIX, which provides some

useful functions applicable to large vectors and matrices. The work discusses the

gained accelerations theoretically, based on O-notations, and through computer sim-

ulations. In this work we also suggest some R-packages contributed on CRAN which

might be very useful for researchers intending to speed up their source code in R.

The BASIX paper is currently under review at the R journal.
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2.2 High-speed access to whole genome variation

and sequence data

Ulrich Wittelsbürger, now also a PHD candidate at the Bioinformatics group of Hein-

rich Heine University, started developing an R-package named WhopGenome in his

Master thesis under my supervision. The idea was to offer comfortable access to

whole genome data in the format published by the 1000 genomes project.

WhopGenome incorporates the software Tabix [10], providing selective access to VCF

(Variant Call Format) [4] files, which is the main file format contributed on the 1000

genome project platform. In addition, for PopGenome it was vital to have a mecha-

nism which enables to stream genomic data as SNP chunks in order to interpret the

data step by step instead of reading everything into the RAM. PopGenome is build up

for reading data chunks by interpreting those chunks step by step and concatenating

the necessary information afterwards.

At the end WhopGenome became a stand-alone R-package which now also is avail-

able on CRAN. It provides additional functionalities which may be very useful for

population geneticists worldwide.

The corresponding paper has been submitted to the journal Bioinformatics.
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2.3 Application: The CNTNAP5 gene

PopGenome is the ideal framework for exploratory genomic data analysis. During

some sliding window genomic scans on the human chromosome 2, we discovered a

selective sweep region at the genomic region 123Mb-127Mb (see Figure 2.1). The

only protein-coding gene annotated in this region is the CNTNAP5 gene. Its dele-

tion appears to be related to autism (and possibly dyslexia) as well as other cogni-

tive/psychological disorders (e.g. bipolar disorder). In a detailed population-specific

analysis (see also Figure 2.1), we discovered the Asian populations as a sweep candi-

date for this specific region.

Figure 2.1: CNTNAP5: Populations and number of individuals used for the genomic
scan on Human chromosome 2 shown in Figure 2.2

The results observed from Figure 2.2 suggests a recent selective sweep in the Asian
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Figure 2.2: Measures of diversity in sliding windows (10kb) on Human chromo-
some 2 in 3 populations using the R-package PopGenome (LOESS-smoothed in R,
span=0.01). The red bar on the x-axis indicate the position of the CNTNAP5 gene
(the only protein-coding gene annotated 125Mb-127Mb, GRCh37.p10). FST vs. all
means: nucleotide FST in sliding windows, contrasting one population with the union
of the two others.

populations, possibly related to selection on cognitive/psychological traits. Inter-

estingly, the same calculations applied to the data published by the International

HapMap Consortium produced results where the peak is slightly more shifted into

the CNTNAP5 region. Moreover, the diversity measurements on human chromosome

2 indicate the CNTNAP5 gene as a target of recent regional selection in Asians on

cognitive traits.

Previous population genetics papers mentioned CNTNAP5, but always in passing

or in tables and/or supplements, and always without reference to cognitive functions.

However, the main issue of these observations is that the sweep area apparently lies
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directly behind the target gene. We didn’t find any annotated functional elements

(e.g promoters) in this region. It would be very interesting to know if there are po-

sitions of disease-causing mutations inside the sweep area. Moreover, it would be

interesting to examine if genes functionally linked to CNTNAP5 show similar signals.

For the calculations we have used data from variant calls in VCF-format published

2011 on the 1000 Genome project:ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/

release/20101123/. We repeated the analyses for the following data published

2012 on the 1000 Genome project: ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/

release/20110521/ with very similar results.
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Chapter 3

GeneFeST: Bayesian calculation of
gene-specific FST from genomic
SNP data

The fixation index FST , first introduced by Wright (1950) [19], measures the degree of

population subdivision. On the account that signals of population differentiation are

very similar to those caused by several types of selection (e.g balancing or directional

or population-specific selection), FST was also established as a test for non-neutral

evolution.

It can be misleading to consider only one gene and make predictions about selec-

tion on the basis of these observations, as the neutral FST value strongly depends on

factors which contribute to heterogeneous genomic divergence. Thus, genome wide

calculations should be preferred. In nowadays practice, fixation indices are routinely

calculated for whole chromosomes to get an idea of the genome-wide neutral FST

distribution. Accordingly, genes are determined as significant outliers when their FST

value passes some user defined threshold (e.g the 0.05 quantile). To facilitate those

approaches PopGenome is the ideal platform as one can easily scan genome-wide

data based on annotations such as those specified in GFF/GTF files. However, it is

a challenging task to verify such a threshold value.

To remedy these shortcomings, Beaumont & Balding (2004) [14] introduced a rigorous

way to detect outlier loci that are subject to selection via Bayesian calculations. The

method is based on a logistic regression model to distinguish between locus-specific

effects (selection), and population-specific effects that reflect the common history of

all loci. Accordingly, FST is split into a locus (e.g gene) specific compounded α and
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a population specific parameter β shared by all loci. Monte-Carlo Markov-Chain

(MCMC) is used to determine the corresponding parameters.

Foll & Gaggiotti (2008) [15] extended this work by introducing a reversible jump

model conceived by Green (1995) [16] to explicit generate posterior probabilities for

non-neutral population differentiation. In the paper “GeneFeST: Bayesian calcula-

tion of gene-specific FST from genomic SNP data” we introduce a modified version of

these approaches and validate our method with Greg’s MSMS [9] simulation program.

The simulations clearly show that our new approach has better performance to de-

tect genes that are subject to selection, in particular, balancing selection genes were

detected significantly better. Moreover, we discovered that the posterior probabilities

of non-neutrality produced by Foll & Gaggiotti’s approach contains much less infor-

mation than the corresponding posterior FST values.

An R version of the method is available on CRAN and the corresponding paper

has been submitted to the journal MBE.
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Chapter 4

Manuscripts

PopGenome: An efficient Swiss army knife for population genomic analy-

ses in R

Authors: Bastian Pfeifer, Ulrich Wittelsbürger, Sebastian E. Ramos-Onsins

and Martin J. Lercher

BASIX: accelerated computations on large vectors and matrices in R

Authors: Bastian Pfeifer and Martin J. Lercher

WhopGenome: high-speed access to whole genome variation and sequence

data in R

Authors: Ulrich Wittelsbürger, Bastian Pfeifer and Martin J. Lercher

GeneFeST: Bayesian calculation of gene-specific FST from genomic SNP

data

Authors: Bastian Pfeifer, Stefan Habenschuss and Martin J. Lercher
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4.1 Manuscript 1: (chapter 2)

PopGenome: An efficient Swiss army knife for population genomic analy-

ses in R

Authors: Bastian Pfeifer, Ulrich Wittelsbürger, Sebastian E. Ramos-Onsins

and Martin J. Lercher

Status quo: published

Journal: Molecular Biology and Evolution (MBE).

Impact factor: 10.353

Contributions: MJL conceived of the project in general terms. BP developed the de-

tails of the project, designed the program architecture, implemented the algorithms,

and published the R-package PopGenome on CRAN. UW implemented the func-

tionality for the selective access to tabixed VCF (Variant Call Format) files. SERO

consulted BP on the implementation of statistical tests. BP and MJL wrote the

paper.
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Abstract

Although many computer programs can perform population genetics calculations, they are typically limited in the
analyses and data input formats they offer; few applications can process the large data sets produced by whole-
genome resequencing projects. Furthermore, there is no coherent framework for the easy integration of new statistics
into existing pipelines, hindering the development and application of new population genetics and genomics approaches.
Here, we present PopGenome, a population genomics package for the R software environment (a de facto standard for
statistical analyses). PopGenome can efficiently process genome-scale data as well as large sets of individual loci. It reads
DNA alignments and single-nucleotide polymorphism (SNP) data sets in most common formats, including those used by
the HapMap, 1000 human genomes, and 1001 Arabidopsis genomes projects. PopGenome also reads associated anno-
tation files in GFF format, enabling users to easily define regions or classify SNPs based on their annotation; all analyses
can also be applied to sliding windows. PopGenome offers a wide range of diverse population genetics analyses, including
neutrality tests as well as statistics for population differentiation, linkage disequilibrium, and recombination. PopGenome
is linked to Hudson’s MS and Ewing’s MSMS programs to assess statistical significance based on coalescent simulations.
PopGenome’s integration in R facilitates effortless and reproducible downstream analyses as well as the production of
publication-quality graphics. Developers can easily incorporate new analyses methods into the PopGenome framework.
PopGenome and R are freely available from CRAN (http://cran.r-project.org/) for all major operating systems under the
GNU General Public License.

Key words: population genomics, software, single-nucleotide polymorphisms.

Introduction
Recent sequencing technologies allow to map genetic varia-
tion across hundreds of individual genomes (Harrison 2012);
notable examples are the 1000 genomes project in humans
(1000genomes.org) and the 1001 genomes project in
Arabidopsis thaliana (1001genomes.org). These technological
developments have shifted the bottleneck in population ge-
netics from data acquisition to data analysis.

Different software packages for population genetics (or
population genomics) analyses typically have limited overlap
in implemented statistics and accepted input formats. This
diversity hampers both efficient data analysis and the quick
dispersion of new statistical approaches. Many widely used
software packages, such as DnaSP (Rozas et al. 2003), cannot
handle the data formats developed for massive resequencing
projects. Only few programs support the use of genomic
annotation, and thus users interested in specific regions
have to preprocess the data using other tools.

To address these issues, a new software tool for population
genomic data analysis should:

� read data in a variety of input formats, including both
traditional formats and those used by the major rese-
quencing projects;

� implement a comprehensive range of population genetics/
genomics analyses and statistics;

� read associated annotation files and allow to systematically
select regions of interest;

� be able to analyze individual loci, multiple loci, and sliding
windows;

� be open source and be easily extendable by the scientific
community to incorporate new types of analyses;

� be integrated with powerful numerical and graphical ca-
pabilities; and

� be platform independent.

We implemented these features in PopGenome, a package
embedded in the freely available, platform-independent, sta-
tistical, and graphical computing environment R (http://cran.
r-project.org/, last accessed April 30, 2014).

Description of PopGenome

Summary

To fully exploit the capabilities of the R statistical and graph-
ical environment, and to allow the creation of stable work-
flows (scripts), all processes in PopGenome are executed
as command line functions. However, we anticipate that a

� The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://
creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium,
provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com Open Access
Mol. Biol. Evol. doi:10.1093/molbev/msu136 Advance Access publication April 16, 2014 1
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graphical user interface implementing the most important
functionalities will be available in the near future.

PopGenome is designed to facilitate the easy integration of
virtually all major types of population genetics and popula-
tion genomics analyses, and, as outlined below, its current
version includes a large array of different statistics (see over-
view in table 2). The emphasis on extensibility was inspired by
the way Bioconductor (bioconductor.org) has come to dom-
inate the analysis of microarray data, where newly developed
methods for specific tasks are easily integrated into a pre-
existing larger framework, thereby obviating the need to
recreate tasks shared with existing analysis pipelines. We
hope that PopGenome may become the kernel of a similar
paradigm in the analysis of population genomics data, en-
abling researchers to effortlessly implement and share new or
modified statistics.

That PopGenome is embedded within the R framework
not only facilitates the easy integration of extensions and
stable workflows but also allows immediate and effortless
postprocessing of analysis results with R’s powerful numerical
and graphical capabilities.

Data Organization

PopGenome can read data both as full alignments and in sin-
gle-nucleotide polymorphism (SNP) formats such as those
generated by large resequencing projects. PopGenome’s abil-
ity to simultaneously manage large numbers of loci, which
allows for variation in sequence and population coverage,
provides a convenient framework for multilocus analyses.

After reading data, PopGenome first converts it into a
biallelic matrix, that is, a matrix whose rows correspond to
sequences and whose columns correspond to SNP positions
in the alignment. Entries are either 0, indicating the major
allele, or 1, indicating the minor allele (with entries corre-
sponding to unknown variants labeled NA). In PopGenome,
this matrix is stored as part of a GENOME object, which con-
tains additional data needed for downstream analyses; this
includes information on missing data, as well as annotations
for individual SNPs (e.g., if these are transitions/transversions,
coding/noncoding, or synonymous/nonsynonymous in the
case of coding sequences).

Large input files are split automatically into smaller chunks,
with the resulting partial biallelic matrices stored on the hard
disk. For this temporary storage, we use ff objects (Adler et al.
2013). These data structures are stored on disk but behave
(almost) as if they were in RAM, by transparently mapping
only a section (pagesize) in main memory. An ff object needs

about 3 kB of RAM to store SNP data from 1 million SNPs
across 50 individuals. When analyzing larger data sets,
PopGenome concatenates the partial biallelic matrices into
a single temporary file.

This strategy allows to simultaneously process whole-
chromosome or whole-genome SNP data from hundreds
of individuals, as collected in the 1000 human genomes
(1000genomes.org) and 1001 Arabidopsis genomes
(1001genomes.org) projects. To further speed up the reading
process, we employ the R-package parallel (Vera et al. 2008)
that facilitates parallel computations on computers with
multiple cores/CPUs.

Most functions in PopGenome are implemented in C or
C++ to speed up computations and to limit memory re-
quirements. This also applies to the reading of genome-scale
alignments and SNP data. Supported alignment formats in-
clude FASTA, NEXUS, MEGA, MAF, and Phylip. An almost de
facto standard for whole-genome variation data is the Variant
Call Format (VCF), used, among others, by the 1000 genomes
project (1000genomes.org) and the UK10k project
(uk10k.org). PopGenome can read large SNP data sets
stored in this format very efficiently, using indexes created
with Tabix (Li 2011). SNPs in defined regions can be extracted
directly from the corresponding file without time-consuming
search operations over the entire file, with input speeds
exceeding 6,000 variant positions per second even on older
desktop computers.

The implementations of PopGenome’s data access func-
tions conform to a set of optimization guidelines to guarantee
aminimal reading time. To the best of our knowledge, there is
currently no general-purpose population genetics software
capable of directly accessing VCF files with comparable
speed. Typical times required to read large data sets are
listed in table 1.

PopGenome sessions can be saved on hard disk; thus, the
conversion to the biallelic matrix needs to be performed only
once per data set. The function region.as.fasta() can be used
to export data of a specific region, a group of subsites, or the
entire data set (i.e., all SNPs or even complete genome align-
ments) as a FASTA file. A parameter include.unknown indi-
cates if unknown positions should be included in the analyses.

Implemented Methods

To structure the rich landscape of population genetics and
genomics analysis methods, PopGenome partitions the im-
plemented methods into modules. Currently, PopGenome
provides nine modules (table 2). All modules use the

Table 1. Times Required to Read Large Data Sets.

Data Set Individuals SNPs Format Time for Readinga

Arabidopsis (Chr 1) 80 1,200,000 SNP (1001 Genomes) <1 minb

�3min

Human (Chr2: 100–150Mb) 1,094 660,000 VCF (1000 Genomes) �5min

3450 individual alignments 25 200,000 FASTA �15 s

aIntel� CoreTM i3-2130 CPU @ 3.40GHz � 4, 8 GB RAM, with data stored in temporary files.
bWithout temporary files, if sufficient RAM is available.
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GENOME object created when the input data were read, and
store their results in the same GENOME object. For analyses
that require to distinguish between ancestral and derived
alleles, outgroups can be specified.

As a default, all analyses packaged into one module are
performed simultaneously when the module is executed. To
accelerate calculations on large data sets, individual methods
can be switched off using additional arguments. We plan to
integrate more methods in the future, and welcome requests
for the implementation of specific statistics. In the next
release of PopGenome, we aim to incorporate methods for
detecting recent selective sweeps, such as the algorithm im-
plemented in the software SweeD (Pavlidis et al. 2013).

Apart from many “standard” statistics (e.g., neutrality
and linkage disequilibrium statistics), PopGenome offers
several tests for the detection of nonneutral evolution. So
far, we have implemented the McDonald–Kreitmann test
(McDonald and Kreitman 1991) and a wide range of FST
measurements, including an implementation of a previously
published method based on Bayesian statistics (Foll and
Gaggiotti 2008). PopGenome also includes a calculation of
r2 correlation coefficients and the corresponding P values
(Fisher’s exact test) for interregion calculations. By
concatenating the corresponding GENOME objects, statistics
that rely on comparisons between regions can be calculated
even when these are located on different chromosomes.
Details of the implemented methods are given in table 2
and in the PopGenome documentation.

PopGenome is fully integrated with two widely used coa-
lescent simulation tools: Hudson’s MS (Hudson 2002), as well
as Ewing’s MSMS (Ewing and Hermisson 2010), which incor-
porates selection. The PopGenome function MS() compares
the statistics calculated for the observed data with corre-
sponding data simulated by the coalescent method.
PopGenome supports the full coalescent simulation capabil-
ities of MS andMSMS. Parameters can be specified as vectors
in the dedicated class “cs.stats,” and thus different models
(mutation rates, migration rates, etc.) can be applied to dif-
ferent windows or regions of the genome. PopGenome’s
MS() function stores the calculated statistics of coalescent

simulations in a dedicated R object. Direct comparison to
coalescent simulations is currently implemented for themod-
ules Neutrality statistics, Linkage, and FST. If statistics from
other modules need to be compared with coalescent simula-
tions, PopGenome can directly readMS output files and then
process these data using the method of interest (readMS()).

R is an efficient environment for large-scale computations.
However, although most native R functions are implemented
in C or Fortran, R itself is an interpreted and vector-oriented
language. As a consequence, some types of calculations tend
to be slow when applied to large objects. To avoid major
bottlenecks, we implemented several specialized calculations
in C++ . PopGenome finishes the calculation of most statis-
tics in minutes even for very large data sets (table 3).

Partitioning and Interpreting SNPs

Users can restrict analyses to subregions specified either by
genomic coordinates or positions in SNP files. When an an-
notation file in GFF format is present (GFF v2 or v3),
PopGenome will automatically label SNPs located in genes,
exons, coding regions, and UTRs. Other annotations of inter-
est in the GFF file can be read using the function getgffinfo().

Table 2. Population Genetics Statistics Implemented in PopGenome’s Modules.

Module Statistics

Neutrality statistics Tajima’s D (Tajima 1989), Fu and Li’s F* & D* (Fu and Li 1993), Fay and Wu’s H (Fay and Wu 2000), Zeng’s E
(Zeng et al. 2006), Strobeck’s S (Strobeck 1987), Achaz’s Y (Achaz 2009), Fu’s FS (Fu 1997), Ramos-Onsins’ and
Rozas’ R2 (Ramos-Onsins and Rozas 2002), as well as all corresponding theta values

Linkage disequilibrium ZnS (Kelly 1997), B/Q (Wall 1999), ZA/ZZ (Rozas et al. 2001), and correlation coefficient r2 for each pair of SNPs
within or between windows/regions

Recombination statistics Four-gamete test (Hudson and Kaplan 1985)

Diversities Nucleotide and haplotype diversity (Hudson, Boos et al. 1992); (Nei 1979); see “Neutrality statistics” for a list of
calculated Theta values

Selective sweeps CL, CLR (Nielsen et al. 2005)

FST estimates GST (Nei 1973); FST (Hudson, Slatkin et al. 1992); GST, HST, KST (Hudson, Boos et al. 1992); Snn (Hudson 2000);
PhiST (Excoffier and Smouse 1992)

MKT McDonald–Kreitman test (McDonald and Kreitman 1991)

Mixed statistics Site frequency spectrum; fixed and shared polymorphisms; biallelic structure

BayeScanR Bayesian estimation of FST (Foll and Gaggiotti 2008)

Table 3. Calculation Speed for Haplotype and Nucleotide Diversity in
Sliding Windows.

Data Sliding Window (nucleotides) Running
Timea

Arabidopsis (Chr 1) Window size=10,000 �30 s

80 individuals Jump size=10,000

1,200,000 SNPs Number of windows=3,042

Human
(Chr 2: 100–150Mb)

Window size=1,000 �5min

1,094 individuals Jump size=1,000

660,000 SNPs Number of windows=50,000

3,450 alignments 3,450 windows (alignments) �7 s

25 individuals

5,086,953 sites

200,097 SNPs

aIntel� CoreTM i3-2130 CPU @ 3.40GHz� 4, 8 GB RAM.
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The user can apply the full range of implementedmethods to
all SNPs observed in a specific class (e.g., all exonic SNPs), or to
each region specified in the GFF file separately (e.g., all introns
individually).

If a GFF file is present, PopGenome can also classify syn-
onymous and nonsynonymous sites; for SNP data formats,
this additionally requires a reference genome in FASTA
format. PopGenome stores the codons internally as numerical
values, coded from a polynomial function as in the PGE
Toolbox (Cai 2008). Based on the GFF file, the function get.-
codons() will provide information about the nature of amino
acid changes resulting from the observed SNPs (encoded
amino acids, charges, hydrophobicities, size, and polarity
changes). Per default, PopGenome assumes the standard
genetic code, but alternative codes can be specified.

Most multipurpose population genetics software tools are
geared toward the analysis of discrete loci (Rozas et al. 2003;
Excoffier et al. 2005), restricting their utility for the analysis of
whole-genome SNP data sets. One widely used approach to
apply population genetics methods to whole-genome data
is the analysis of sliding windows (Rozas et al. 2001). In
PopGenome, users can freely choose window and jump
sizes for sliding windows, measured either in nucleotides or
in numbers of SNPs. The underlying algorithm copies the
information (mostly pointer) stored in the GENOME object
to another object of the same class, where the data are reor-
ganized into the specified windows. The full spectrum of
PopGenome methods is thus available both for arbitrarily
large sets of individual loci and for systematic genomic scans.

Easy Integration of New Methods

To be used by the scientific community at large, a new algo-
rithm ideally has to be implemented in a framework that
allows its efficient application to data in the diverse file for-
mats commonly used in different resequencing projects.
PopGenome is geared toward making this task as easy as
possible. All information required for the calculation of pop-
ulation genetics statistics, including the biallelic matrix as well
as genomic annotation, is stored in a GENOME object, which
new methods can directly access.

To further simplify the integration of new methods, we
implemented the function create.PopGenome.method(),
which generates a skeleton of a typical PopGenome function.
New methods thus implemented are fully embedded in the
PopGenome framework and can be applied to sliding win-
dows or subsites in the sameway as the existingmodules. This
approach frees developers of new population genetics or pop-
ulation genomics algorithms from the need to implement
many auxiliary functions, such as efficient data input and
output, data conversion, and region subsetting.

To enable PopGenome to work with additional data for-
mats, users can write a simple parser that converts the data to
a binary R object. The mechanism to integrate new methods
or data formats is documented extensively in a tutorial,
accessible by typing “vignette(“Integration_of_new_
Methods”)” in R (see also supplementary file S1,
Supplementary Material online).

Results
To illustrate the usage of PopGenome, we show two exem-
plary analyses for human and A. thaliana whole-genome SNP
data. More details are found in the PopGenome documenta-
tion and in supplementary file S2, Supplementary Material
online.

Diversity on A. thaliana Chromosome 1

The 1001 genomes project (1000genomes.org) stores all SNP
calls fromone individualA. thalianaplant inone (.SNP)file.We
downloaded .SNPfiles for 80 individuals (Cao et al. 2011) into a
subdirectory named “Arabidopsis.” After starting R and load-
ing the PopGenome library, we read in the data for chromo-
some 1 to analyze diversity and population differentiation:

> library(PopGenome)

> genome <- readSNP(“Arabidopsis,” CHR=1)

We define the populations as a list of character vectors
containing the individuals of each population:

> Central_Asia <- c(“ICE127,” “ICE130,” “ICE134,”

“ICE138,” “ICE150,” “ICE152,” “ICE153” , “Sha”)

> . . . (analogous for the other populations) . . .

> populations <- list(Central_Asia, Caucasus,

N_Europe, N_Africa, S_Italy, S_Russia, S_Tyrol,

Swabia)

The population definitions are now added to the
GENOME object:

> genome<- set.populations(genome, populations)

We then transform these data into consecutive 10-kb-
sliding windows:

> genome.slide <- sliding.window.transform(ge-

nome, width=10000, jump=10000)

The nucleotide and haplotype diversities for each window
are calculated in the module diversity.stats. We store the re-
sults also in the GENOME object:

> genome.slide <- diversity.stats(genome.slide)

The “slot” of the GENOME object that stores the nucleo-
tide diversities of the individual populations is called
nuc.diversity.within. Slots of such objects are accessed by
appending the slot name to the object name, separated by
an @ symbol: genome.slide@nuc.diversity.within. These data
can be analyzed further using the built-in statistical
and graphical capabilities of R. Here, we plot the sliding
window nucleotide diversities (fig. 1A) with a specialized
function:

> PopGplot(genome.slide@nuc.diversity.within,

colours)

where colors is a vector listing the R names of the colors used
for the eight populations in the figure. The haplotype diversity
per 10-kb window (fig. 1B), as well as Hudson’s fixation index,
FST (fig. 1C), is produced with similar function calls.
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The data thus displayed in figure 1 indicate a lower level of
diversity in the Central Asia population of A. thaliana (dark
blue lines) along the whole chromosome. As reported earlier
(Cao et al. 2011), we observe a dip in diversity in the region
around 20Mb in all populations, suggesting a recent selective
sweep in this region.

We find two additional, even stronger candidate re-
gions for selective sweeps around position 8 and 22Mb.
Closer inspection of these two regions shows that they are
devoid of polymorphisms between positions 8765643 and
8831390, and between positions 21766562 and 21823063.
This observation suggests additional recent, species-wide se-
lective sweeps in these two regions. Furthermore, we find a
strong decrease in diversity in plants from Asia and
Southern Russia between genomic positions 11870001 and
11900000, suggesting a population-specific selective sweep in
this region.

Tajima’s D across Human MHC Exons

As a second illustration of the PopGenome usage, we calcu-
lated Tajima’s D around the human MHC (Major
Histocompatibility Complex) region. The 1000 genomes proj-
ect stores SNP calls from all examined individuals in gzipped
VCF format, together with a Tabix (Li 2011) index (.tbi) file. To
read data for the MHC region on human chromosome 6
(including the corresponding annotation in the GFF file),
we use the following line:

> genome <- readVCF(“chr6.vcf.gz,” numcols=

10000, tid=“6,” from=28000000, to=34000000,

gffpath=“chr6.gff”)

where “numcols” is the number of SNPs read in simulta-
neously, “tid” is a chromosome identifier, “from/to” delimit

FIG. 2. Tajima’s D calculated across nonsynonymous coding sites of
exons in the human MHC region on chromosome 6. Each data point
in (A) and (B) represents one exon; HLA type I and type II exons are
shown in red. (A) Tajima’s D of a Tuscan population (117 individuals),
plotted along chr. 6. (B) Comparison of Tajima’s D between a Tuscan
(117 individuals) and a Yoruba (229 individuals) population. (C)
Distribution (density curves) of the Tajima’s D values in (A) for MHC
(red) and non-MHC exons (black). The blue curve displays the distri-
bution of neutral values from coalescent simulations with Hudson’s MS
based on all SNPs in the MHC region. Data from 1000genomes.org.

FIG. 1. Diversity statistics for Arabidopsis thaliana chromosome 1. Data
from the 1001 genomes project website (1001genomes.org) was
analyzed in consecutive 10-kb windows. (A) Nucleotide diversity,
(B) haplotype diversity, (C) fixation index (Hudson’s FST), contrasting
one population against all other individuals. Each line corresponds to
one population (see legend in panel [A]). Lines were smoothed using
spline interpolation. The black bars around 15-Mb mask the
centromere.
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the nucleotide positions of the SNPs read in, and “gffpath”
specifies the position of the GFF annotation file. Based on the
annotations read from the GFF file and the chromosomal
reference sequence in FASTA format, the next command

labels positions in protein-coding regions as either synony-
mous or nonsynonymous:

> genome <- set.synnonsyn(genome, ref.chr=

“chr6.fas”)

FIG. 3. Comparison of PopGenome with existing software for population genetics and population genomics analyses. Symbols reflect the breadth of the
implemented functionalities: ++ , broad; + , limited; �, nonexistent. Details on the criteria used for assignment to the breadth classes are given in
supplementary table S1, Supplementary Material online.
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As in the Arabidopsis example, we define the populations
via the vectors “Africa” and “Europe,” which contain the iden-
tifiers of the corresponding individuals:

> genome <- set.populations(genome, list(Africa,

Europe))

Here, we want to calculate statistics for each exon individ-
ually, considering only nonsynonymous SNPs. To do this,
we first split the region into individual loci, where
each locus stores the SNP information from the coding se-
quence part contained in one exon, as annotated in the GFF
file:

> genome.exons <- splitting.data(genome,

subsites=“coding”)

Next, we calculate Tajima’s D across all nonsynonymous
positions of each exon. This calculation is performed in the
module “neutrality.stats”:

> genome.exons<- neutrality.stats(genome.exons,

subsites=”nonsyn”)

We thus obtain the data displayed in figure 2. The high
Tajima’sD values in some loci likely reflect balancing selection
(Hedrick 1998), for example, due to frequency-dependent
selection in pathogen recognition.

We can use coalescent simulations to derive the expected
neutral distribution of Tajima’s D values across the MHC
region. For this, we first calculate Theta across all SNPs in
the MHC region:

> genome <- neutrality.stats(genome)

We then use the genome object as input for a call to
Hudson’s MS program:

> ms <-MS(genome, thetaID=“Tajima,”

neutrality=TRUE)

If no additional parameters are specified for the MS sim-
ulations, PopGenome will use the standard neutral model
(SNM).

The simulated Tajima’s D values are then extracted:

> MS.get.stats(ms)

Figure 2C compares the distributions of expected
Tajima’s D values under the SNM with values observed
for Human Leukocyte Antigen (HLA, red) and non-HLA
(black) exons. The distribution of Tajima’s D values is
strongly shifted toward higher values in HLA exons com-
pared with non-HLA exons, indicating strong balancing
selection; a deviation from neutral expectations for HLA
exons is supported by a comparison to the simulated
data.

The highest Tajima’s D values—suggesting strong balanc-
ing selection—are seen in HLA type I and type II genes
(marked in red in fig. 2). Tajima’s D values are correlated
between the African (Yoruba) and European (Tuscany) pop-
ulations (fig. 2B; Spearman’s R2= 0.33). One notable outlier is
the coding exon 2 of the HLA-DPA1 gene, which shows

evidence of purifying selection in Yoruba, but strong evidence
of balancing selection in Tuscans.

Discussion
Several computer programs for population genetics or pop-
ulation genomics analyses are publicly available. However,
these tend to specialize on specific subsets of analyses (e.g.,
Vilella 2005; Rozas et al. 2001; Purcell et al. 2007; Jombart 2008;
Paradis 2010) or cannot process whole-genome data (e.g.,
Rozas et al. 2003; Excoffier et al. 2005). Figure 3 compares
major features of PopGenome with five other widely used
software packages.

PopGenome can not only read data in several common
alignment formats but also understands the widest choice of
SNP data formats; this includes data from the HapMap as well
as the 1000 and 1001 genomes projects. PopGenome’s ability
to work efficiently with temporary files allows calculations on
very large SNP data sets. No other available program offers a
similar combination of flexible data input options with a
broad toolbox of population genetics and genomics statistics,
including the ability to perform analyses in sliding windows.

PopGenome can read GFF annotation files, which permits
high plasticity in the variability analysis of different regions of
the genome. PopGenome can link this annotation automat-
ically to the SNP data, which can thus be restricted to specific
annotated features or feature groups (e.g., all introns vs. all
exons). This feature also allows to discriminate synonymous
and nonsynonymous codon positions in whole-genome SNP
data sets, which is necessary, for example, for McDonald–
Kreitman tests. Like adegenet/pegas (which are more limited
in scope), PopGenome is fully integrated with the powerful
graphical and data analysis capabilities of the R environment
(http://cran.r-project.org/, last accessed April 30, 2014), thus
simplifying downstream analyses and graphics as well as the
development of stable work flows.

Supplementary Material
Supplementary files S1–S3 are available at Molecular Biology
and Evolution online (http://www.mbe.oxfordjournals.org/).
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CONTRIBUTED RESEARCH ARTICLE 1

BASIX: accelerated computations on large

vectors and matrices in R
by Bastian Pfeifer and Martin J. Lercher

Abstract GNU R is a high-level open source interpreted programming language, with particular
strengths in statistical computing and graphics. To accelerate computations, most of the embedded
functions are internally written in C/C++ and FORTRAN. To ensure their general applicability, these
functions are designed for a wide range of different inputs, causing excessive running times for special
cases that would lend themselves to faster, specialized algorithms. Due to the data deluge following
recent advances in nucleotide sequencing technology, inefficient analysis of large structured vectors
and arrays has become an increasingly important bottleneck. This provides a strong incentive to replace
slow generic native R functions with faster algorithms that exploit specific data structures. Here, we
introduce the R-package BASIX, which provides several R functions to accelerate calculations on large
structured vectors and matrices. These functions are internally written in C/C++, and either replace
generic R functions for specific types of input or provide new functionalities that solve frequently
occurring subproblems fast and efficiently. We demonstrate theoretically and through simulations
that the BASIX functions can accelerate specific, frequently occurring tasks in R. They thus can aid
in developing fast methods to process large structured datasets as those produced in re-sequencing
projects.

Background

The high-level programming language R (cran.r-project.org) is the de facto standard for statistical
analyses, and has become an important platform in the analysis of microarray data, as well as in
evolutionary genomics, population genomics, and systems biology. R is a functional object-oriented
language and is available under the GNU public license for all major operating systems. R functions
are based on efficient, compiled C/C++ and FORTRAN code. R also has extensive graphics capabilities
to facilitate data interpretation and publication. Since R version 3.0, numeric index values exceeding
231 are possible (http://cran.r-project.org/src/base/NEWS.html), allowing the generation and
processing of huge objects. These features make R appealing for bioinformaticians and theoretical
biologists interested in analysing large datasets fast and efficiently. However, the applicability of R to
large structured data such as that produced in re-sequencing projects is limited in two aspects: there is
no memory-efficient storage mechanism for large vectors and matrices; and the generic R functions
are designed for a wide range of input types, and are thus unnecessarily slow when applied to some
types of structured data. Specific R packages exist to partially circumvent these problems (e.g., ff
(Adler et al., 2013), bigmemory (Kane and Emerson, 2013) , foreach (Analytics and Weston, 2013) ,
parallel (Vera et al., 2008)). In this article, we introduce the package BASIX (Pfeifer, 2013), which is
written in C/C++ and provides functions specialized to the acceleration of computationally intensive
calculations on large matrices and vectors. As one example, native R functions rarely take into account
that specific vectors may already be sorted, and BASIX implements accelerations for this case.

Implementation

R provides elegant mechanisms for the integration of compiled code. We use the interface function
.Call to integrate compiled C code, as it allows C functions to directly allocate memory and enables
the use of complex data types (see also the R-package Rcpp (Eddelbüttel and Francois, 2011)). A
major problem of vector-based languages such as R is that most algorithms are designed to apply
calculations to every entry of a vector or matrix, even though this may not be necessary in special
cases where a return value can be found from a subset of the entries. In the following, we shortly
describe the main functions of the BASIX package and compare their runtime complexity to that of
the corresponding native R solutions.

BASIX.match(x,y)

BASIX.match(x,y) implements a fast version of the native match() function for sorted vectors x,y.
BASIX.match(x,y) takes a value from vector x and verifies the first match position i in the target
vector y. The next value from x will than be tested against the vector y[i:length(y)]. The runtime
complexities of BASIX.match() and native R match() are compared in Table 1 for input vectors of
lengths m, n. The best case occurs when the first element of x is the last entry in y. Our runtime
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complexity analysis assumes that the vectors are already sorted. If vectors need to be sorted first, the
runtime for sorting (O(n ∗ log(n))) must be added, diminishing the gain in speed accordingly.

Worst case Average case Best case

BASIX.match(x,y) max{m, n} = O(c · n) O(c · n) = O(n) O(n)
= O(n) c < m/n

native R match(x,y) O(m · n) O(m · n) * O(m)
* see Figure 2

Table 1: Runtime complexity of BASIX.match() compared to native R match() for input vectors of
lengths m, n.

BASIX.equal(x,y)

BASIX.equal(x,y) provides a fast test for the identity of two vectors x, y. For this task in R, users may
use the function all(x==y) (see also Figure 1), where all entries of the vectors will be compared and a
vector with TRUE or FALSE, if the values are equal or not, will be returned to the function all(), which
then checks if all entries are TRUE. This is highly inefficient for the comparison of vectors with more
than one mismatch, as the inequality is established after encountering the first occurrence of FALSE.
Table 2 compares the runtime complexity of BASIX.equal() to that of the native R solution for two
vectors x,y of length n. The BASIX.equal() function is a case of so-called “shortcut functions” that are
often used in Perl programming; the same strategy is likely useful also for the acceleration of other
tasks in R.

Worst case Average case Best case

BASIX.equal(x,y) O(n) c · (n/2) ∈ O(n) * O(1)
native R all(x==y) 2 · n = O(n) 2 · n = O(n) 2 · n = O(n)

* ∑n
i=1

1
x2 · i ≤ c · n

2 , i.e., c = 1
x2 < 1, where x is the number of different numeric values that can be observed. For

the average case we assume that the values are independent.

Table 2: Runtime complexity of BASIX.equal() compared to the native R solution for input vectors of
lengths n.

BASIX.combnapply(x,op)

BASIX.combnapply(x,op) accelerates the implementation of nested for loops, which are generically
slow in R. BASIX.combnapply() extends the class of apply functions, which perform calculations on
combinations or permutations of indices of a vector. BASIX.combnapply() applies an arithmetical oper-
ation provided by the user to all pairs of entries of a vector. For example, BASIX.combnapply(x,’==’)
computes all pairwise differences of entries in vector x, a task often performed in population ge-
netics and genomics to measure the nucleotide diversity of DNA sequences. The runtime complex-
ity is the same for BASIX and for the native R solution which would combine nested for loops
((n ∗ (n − 1))/2 = O(n2)) for input vectors of length n. However, nested for-loops carry a large over-
head because R is an interpreted and vector-oriented language, and as a consequence vectorized code
will be perform much better in most cases. Our analogous implementation of pairwise comparisons in
compiled C-code speeds up the calculations enormously (see Results).

BASIX.unique(x) and BASIX.table(x)

BASIX.unique(x) and BASIX.table(x) provide fast alternatives/extensions for the native R function
unique(), which is fast for vectors but slow on matrices. BASIX.unique() returns a matrix with
duplicated rows removed, saving the corresponding row numbers as row names. BASIX.table
extends the native R function table(), which works only on vectors, by calculating the counts of the
unique rows of a matrix. BASIX.table() and BASIX.unique() can, for example, be used to efficiently
calculate haplotype diversities from matrices storing DNA information (see Figure 3 and Table 3).
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Worst case Average case* Best case

BASIX.unique(x) O(n3) O(n2 · O(n)) ∈ O(n3) O(n2)
native R unique(x) O(n3) O(n3) O(n3)

* Average case: Rows that have been already visited and classified as non-unique rows will be ignored in the next
loop iteration (see also BASIX.equal()).

Table 3: Runtime complexity of BASIX.unique() (and equivalently, BASIX.table()) compared to
native R unique() for quadratic input matrices x with n rows and columns.

BASIX.find.interval(x,from,to)

BASIX.find.interval(x,from,to) implements a fast version of the native findInterval() function
for sorted vectors. BASIX.find.interval() identifies the entries of a vector that lie in a user-defined
interval faster than the native R function findInterval(). The asymptotic runtime complexity is the
same for both functions (O(n)), but the implementation for sorted vectors is slightly more efficient
than the native R version (see Results). BASIX.find.interval() can be used, e.g., to scan genomic
diversity data with sliding windows; such data is commonly already sorted by position. If vectors
need to be sorted first, the runtime for sorting (O(n ∗ log(n))) must be added; however, this does not
change the overall runtime complexity of BASIX.find.interval().

Results and discussion

To illustrate the run time improvement in comparison with native R functions, we generated vectors
and measured running times with the R function system.time() (total elapsed). The calculations were
performed on a standard PC (Intel® Core™ i3 CPU M 350 @ 2.27GHz × 4 with 3.8 GB RAM). The
analysis of large datasets is frequently done on large computer clusters. However, such clusters are
combinations of many processors not unlike those in common desktop computers. Thus, our results
obtained on a standard PC scale linearly to such clusters. As seen from Figure 1, BASIX.equal() is
substantially faster than native R solutions for large vectors and matrices especially when the vectors
exceed a size of 220(1 million) elements. The running times shown on the y-axis are for repeated
applications of the functions (1000 equally sized vectors in each case); such repeated applications
occur, e.g., when analyzing all genes of a genome, or when performing randomizations to assess
statistical significance. As seen from our simulations (Figure 2), the computational acceleration of
the BASIX.match() function becomes significant when applied to vectors with more than about 215

elements. When the vector size increases at constant sample size (< length of vector) and both vectors
x,y have the same length, BASIX.match(x,y) and match(x,y) have the same asymptotical runtime.
However, in real world applications such as genome-wide population genetic analyses, where the
sample size often represents the number of polymorphic positions, the sample size will always be
bigger than the length of the vectors. The BASIX.unique() function can be used, for example, to identify
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Figure 1: Runtimes for BASIX.equal() and native R alternatives. We randomly sampled values from
{0, 1} for two binary vectors x and y of equal length n. We then sorted these vectors to ensure that the
mismatch will not occur at the very beginning (in which case the average asymptotic running time of
BASIX.equal() would be constant, and its advantage correspondingly trivial; however, this type of
situation may often occur in practice). We show runtimes for repeated application (1,000 times in each
case) for exponentially increasing vector lengths n, comparing the performance of BASIX.equal() with
the native R functions all(...==...), all.equal() and identical(). The table in the inset shows the
ratio of runtimes for all(...==...) vs. BASIX.equal(). We use a logarithmic scale for the y-axis.
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Figure 2: Runtimes for BASIX.match() and the native R alternative match(). We produced vectors
x and y of exponentially increasing lengths n, each time filled by randomly sampling 2n values out
of {1...n} with replacement and then sorting x and y. We show runtimes for repeated application
(1,000 times in each case). The table in the inset shows the ratio of runtimes for all(...==...) vs.
BASIX.equal(). We use a logarithmic scale for the y-axis.
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identical haplotypes in population genomics analyses. In times of high-throughput re-sequencing
projects covering thousands of individuals, such as the 1000 genomes project (McVean, 2012), this type
of acceleration becomes an important issue in data analysis. We integrated BASIX.unique() (along
with several other BASIX functions) with the R-package PopGenome (Pfeifer et al., 2014) and used it
to calculate haplotype diversities for sliding windows of human chromosome 6 across 350 European
individuals resequenced in the HapMap project (www.hapmap.org) (HapMap, 2005). The calculation
with BASIX.unique() was 8 times faster (∼ 5 minutes) than that using the native R version (∼ 40
minutes). As seen in Figure 2, the haplotype counts decreases especially in the MHC-region, signifying
lower diversity in this region. To validate the accelerated computation of BASIX.combnapply(), we

Figure 3: Haplotype counts along human chromosome 6, calculated using BASIX.unique() integrated
with the R package PopGenome. We scanned the HapMap data for 350 European individuals with
a window size of 100 SNPs and a jump size of one SNP, producing about 64,000 windows. To each
window, we applied BASIX.unique() to verify the total number of unique sequences in each window.
Using BASIX.unique(), the calculation takes 5 minutes, while the native R-function needed about 40
minutes.

generated a vector of length 10,000 which leads to a total number of pairwise comparisons of ∼
50,000,000. We than applied a function written in native R written with nested for-loops, which took
about 5 minutes of computer time. After that we used the function cmpfun() from the R-package
compiler, which provides an interface to a byte-code compiler for R. The computation needed about
one minute. BASIX.combnapply() completed the same computation after 0.84 seconds. To test the
improvement in runtimes obtained with BASIX.find.interval(), we generated a vector of size 220

by sampling out of {1, ..., 220} with replacement, and sorted the vector afterwards (note that in the
intended applications, the vectors will already be sorted). We than sampled randomly two values out
of this vector to define an interval. We repeated the simulation 1000 times. BASIX.find.interval()
was on average three times faster (in total 4 seconds) than the native R version findInterval().

Usage

To illustrate the use of BASIX functions, we list short examples for the three functions BASIX.combnapply(),
BASIX.table() and BASIX.unique(). Almost all functions in BASIX can be viewed as extensions or
replacements of existing R functions, and their usage will thus be familiar to R users.

> install.packages("BASIX")
> library(BASIX)

# BASIX.combnapply
> vec <- 1:5
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> BASIX.combnapply(vec,"+")
[1] 3 4 5 6 5 6 7 7 8 9

# BASIX.table
> mat <- matrix(c(1,2,1,2,2,2), ncol=2)
> mat

[,1] [,2]
[1,] 1 2
[2,] 2 2
[3,] 1 2

> BASIX.table(mat)
rows 1 2
counts 2 1

# BASIX.unique
> mat <- matrix(sample(c(0,1),10000000,replace=TRUE),nrow=10000,ncol=1000)
> system.time(unique(mat))
15.537(user) 0.144(system) 15.721(elapsed)
> system.time(BASIX.unique(mat))
1.600(user) 0.088(system) 1.691(elapsed)

Discussion

R is designed to handle a wide range of different data types organized in objects such as lists and data
frames. This design ensures flexible programming and enables fast software development but at the
same time produces computational overheads, e.g., caused by the need to check data types prior to
performing calculations. However, data structures storing only one type of data, such as matrices or
vectors, can be processed much faster. Accordingly, to accelerate computations, genomic data should
be organized as much as possible in simple data structures, and we have thus concentrated here on
matrices and vectors, which can store numeric as well as character values. Bioinformaticians who are
interested in using large data tables should also have a look at the CRAN package data.table (Dowle
et al., 2013). In this paper, we presented several new functions contributed by the R-package BASIX
to speed up specific calculations in R. The computational overhead of related native R-functions
has diverse reasons. BASIX.combnapply(), for example, which also provides a new function for a
widely used functionality, was introduced as a wrapper to compiled C code because the computational
overhead in R here preliminary comes from the R’s interpreted language design. In addition, R
is optimized for vector-based programming, and it is sometimes hard to vectorize such structures.
Other BASIX functions like BASIX.unique() are introduced to directly solve the computational costs
arising in vector-oriented languages. Finally, we integrated functions like BASIX.match() optimized
on already sorted vectors; this important special case has rarely received attention in R.

Conclusions

BASIX includes a set of functions that seamlessly integrate with R and that accelerate some commonly
used computations substantially when applied to very large vectors and matrices. These functions
will be particularly useful, e.g., in population genomics studies that need to process large vectors and
matrices of polymorphism (SNP) data. They thus can aid in developing fast methods for the processing
of large structured datasets as those produced in re-sequencing projects in R. R has the potential to
become widely used for large-scale genomic data analysis projects, aided by the R tradition of publicly
available libraries contributed by academic scientists; BASIX may accelerate the development and
runtime of some of such future contributions.

Availability and requirements

BASIX (version 1.1) is freely available from CRAN (www.r-project.org), which provides binary
versions for all major computer platforms (Linux, Mac OS X, Windows, and Solaris). A manual de-
scribing usage and providing detailed accounts of the underlying algorithms can also be downloaded
from CRAN. We encourage any users to share their experiences with the authors to contribute to the
extension of BASIX.
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ABSTRACT

Summary: The statistical programming language R has become a de

facto standard for the analysis of many types of biological data, and

is well suited for the rapid development of new algorithms. However,

variant call data from population-scale resequencing projects is

typically too large to be read and processed efficiently with R’s built-

in I/O capabilities. WhopGenome can efficiently read whole genome

variation data stored in the widely used VCF file format into several R

data types. VCF files can be accessed either on local hard drives

or on remote servers. WhopGenome can associate variants with

annotations such as those available from the UCSC genome browser,

and can streamline the reading process by filtering loci according

to user-defined criteria. WhopGenome can also read other Tabix-

indexed files, and can create indices to allow fast selective access

to FASTA-formatted sequence files.

Availability: The WhopGenome R package is available on CRAN at

http://cran.r-project.org/web/packages/WhopGenome/

Contact: Martin J. Lercher, lercher@cs.uni-duesseldorf.de

1 INTRODUCTION

Population-scale whole genome sequencing projects produce

information on SNPs, InDels, and structural variations across

thousands of individuals. These projects commonly use the Variant

Call Format (VCF) (1000 Genomes Project Analysis Group, 2011)

text files for data storage. The resulting files often contain millions

of variant sites and may fill tens of gigabytes. The environment

for statistical computing R (R Core Team, 2013) has established

itself as a de-facto standard for general statistics and for the

analysis of different types of sequencing data, and has efficient

functions to process large vectorized data. However, routinely

reading gigabyte-sized VCF files into R is not realistic with R’s

built-in I/O capabilities.

VCF files are typically compressed and indexed with Tabix

(Li, 2011). Tabix compresses appropriately formatted data files

and produces an accompanying index file. The index can be

used to quickly locate, decompress, and extract selected portions

of the data. While several R packages are capable of reading

VCF files (VariantAnnotation (Obenchain et al., 2014), seqminer1,

∗to whom correspondence should be addressed

1 http://cran.r-project.org/web/packages/seqminer/

Rplinkseq2), these either lack the desirable speed, ease of

use, or completeness of support for Tabix files. Further, these

implementations post-process the text returned by Tabix in R, which

incurs a sizable overhead especially for repeated and large-scale

processing.

Here, we present WhopGenome, an R package for fast, straight-

forward, and flexible processing of genomic variation data in VCF

format. WhopGenome is also capable of compressing files with

BGZF and indexing suitably formatted files with Tabix, allowing

efficient selective access to the data stored in these files. This

data needs to be organized into entries identifiable via unique

index pairs: a group name (e.g., a chromosome) and a number

(e.g., a chromosomal position). With WhopGenome’s generic Tabix

interface, users can process, for example, GFF or BED files in order

to access them efficiently from within R.

The same selective access functionality exists also for FASTA

files through WhopGenome’s interface to FaIdx (the indexing

solution included in samtools) (1000 Genome Project Data

Processing Subgroup, 2009). Using this interface to pre-process

FASTA files facilitates quick selective retrieval of DNA or amino

acid sequence regions. WhopGenome can thus efficiently integrate

information from associated sequence, genome annotation, and

population-scale variation files for a given chromosomal region for

joint processing.

2 FEATURES & IMPLEMENTATION

All indexed data files can reside either on local hard disks or on remote HTTP

or FTP servers. Thus, WhopGenome can, for example, selectively read data

from the 1000 Genomes Project directly from the NCBI servers 3.

WhopGenome provides functionality to relate genomic loci to annotation

data. A wide range of different annotation data types is accessible through

the UCSC Genome Browser (Kent et al., 2002), the AmiGO Gene Ontology

database (Carbon et al., 2009), and through BioConductor’s (Gentleman

et al., 2004) org.XX.eg.db annotation packages. WhopGenome includes

user-friendly interfaces to the UCSC Genome Browser and the AmiGO

servers, vastly simplifying the construction of the necessary SQL queries

and the communication with the remote servers. WhopGenome also provides

a comfortable way to select and download the BioConductor annotation

packages.

2 https://atgu.mgh.harvard.edu/plinkseq/

3 ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release

c© Oxford University Press 20XX. 1
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Table 1. Comparison overview

WhopGenome SeqMiner VariantAnnotation

ms/SNP1

- single SNP 4.88 9.46 330.39

- list of 1000 0.16 0.62 1.15

- matrix of 1000 0.07 0.60 1.27

Est. total time for entire file

- one by one 4h 1m 7h 47m 11d 7h 51m

- list of 1000 7m 53s 30m 36s 56m 51s

- matrix of 1000 3m 27s 29m 37s 1h 2m

Pre-filtering Y N N

Result formats2 R,V,M,L Y,Y,Y,N Y,N,N,Y N,N,Y3,Y

Read via HTTP/FTP Y N Y

Create indices Y Y4 N5

1 Average time in milliseconds per SNP when reading 100,000 SNPs
2 Directly supported result formats (without additional calls)
3 An extra R function call extracts the genotype matrix from the result
4 SeqMiner can create indices on compressed files; WhopGenome compresses, too
5 Not specifically for VCF files

To link genomic variation to pedigree data, WhopGenome includes

support for .PED files (a simple text-based table format used, e.g., by

PLINK). Users can load this data into a matrix, modify it, save it back, and

locate individuals with certain family relationships. This is mainly useful for

selecting samples or correlating them with phenotypes, populations, or other

information.

When reading from VCF files with WhopGenome, a typical workflow

would be as follows. The function VCF open() creates a handle to the VCF

file. This handle is required to select samples (individuals), genomic regions,

and filtering steps, as well as for reading data.

Users can choose to get their results in a variety of R data types. Besides

reading each data field independently, it is also possible to read only

information on single nucleotide polymorphisms (SNPs) and store the data

fields for each SNP in a vector. Especially useful for sliding window analyses

are the matrix variants, which can return SNP genotypes in 4 different

representations, either numeric or textual. In order to maximize speed gains,

we wrote a dedicated read function for each result format. If specific areas

of research would benefit from additional data representations in R, we will

implement these in future versions of WhopGenome.

After setting a region by specifying a chromosome (or contig) and start

and end positions, the next read call will return data for the first variant

within that region. Active filters will exclude lines depending on a list of

user-defined rules. Rules are specified with simple function calls in R, but

are run in compiled C++.

The .PED file support for pedigrees, Gene ontology queries, UCSC

Genome Browser database queries, and Bioconductor genome annotation

support is implemented in R. All time-critical code is written in C/C++. To

avoid losing time by allocating memory, many read functions expect an R

variable as a parameter in which to store the results. This improves speed

dramatically especially if the data is read into matrices.

3 EVALUATION

WhopGenome is able to parse about 9,000 variant sites per second

from a typical VCF file on a current PC (Intel Core i7, 32GB

RAM, Linux Mint 16 64-bit, Kernel 3.11.0-12). We compared

WhopGenome in terms of speed, features, and ease of use to

two other R packages that make use of Tabix: SeqMiner and

VariantAnnotation (Table 1). We did not make a comparison to

Rplinkseq, as Rplinkseq could not be compiled without manual code

changes, and because using Rplinkseq requires extensive manual

interaction with the external PLINK software (Purcell et al., 2007).

As reference file, we chose the 1000 Genomes Project’s

chromosome 1 consensus VCF file, describing over 2.9 million

variants in 1094 individuals, stored in 49 gigabytes of text,

compressed down to 1.4 gigabytes. SeqMiner expects special non-

standard annotation in the VCF files, which is not present in the

1000 Genomes Project files. We thus ran all benchmarks on the

same, pre-processed file for better comparability (to pre-process the

input file for SeqMiner, we needed to uncompress the original file

and install additional software).

Although all three packages rely on the Tabix library, their usage

and feature sets differ substantially. VariantAnnotation was the

slowest program by a large margin, while WhopGenome was the

fastest (Table 1). All programs provide matrix representations of

genotypes, but only WhopGenome offers four alternative forms

of matrices. WhopGenome’s pre-filtering capabilities have no

equivalent in the other packages. With regards to the learning

curve, we consider our solution to be easier to understand than

VariantAnnotation, while SeqMiner’s limited feature set makes its

usage somewhat simpler, but also much less powerful.

The core functionality of WhopGenome has been successfully

used by the population genomics software PopGenome (Pfeifer

et al., 2014), which implements a broad range of population genetics

analyses for individual loci, sliding windows, and genomic feature

sets such as exons.

Besides its ability to efficiently read VCF and other Tabix-

indexed files, WhopGenome can also index and access FASTA-

formatted sequence files efficiently. With its auxiliary feature set

covering pedigree, genome annotation, and fast pre-filtering, we

expect WhopGenome to substantially accelerate the development

and application of genomic and population genomic analyses in R.
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Abstract 
The fixation index FST, which measures population differentiation, can be used to identify 

non-neutrally evolving loci from genome-scale SNP data across two or more populations. 

Recent Bayesian approaches to estimate FST based on Markov-Chain Monte-Carlo 

simulations were not originally developed for SNP data, and cannot account reliably for the 

co-evolution of linked SNP positions. Here, we present a new Bayesian approach that 

assigns identical locus-specific effects to all SNPs located in predefined blocks; a typical 

application is the identification of genes under balancing or directional selection. Through 

extensive simulations, we show that the new method is superior to previous moment-based 

and Bayesian approaches. We also show that haplotype-based FST estimates show 

systematic biases, and that the posterior probabilities of non-neutral evolution provided by 

some Bayesian approaches are inaccurate indicators of selection. An R implementation of 

our method, which builds on the powerful population genetics and genomics software 

PopGenome, is available freely from CRAN. 
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Introduction 
Wright (1950) introduced the fixation index  as a method to measure the inbreeding effect 

of population subdivision. In coalescent theory,  is now more often discussed as , 

where F is the probability that two randomly chosen individuals are identical by descent. 

Accordingly,  can be considered as an index of genetic differentiation, where small values 

indicate low genetic differentiation between populations, while high values indicate larger 

genetic differentiation.  is commonly defined as , where  is total 

heterozygosity, and  is subpopulation heterozygosity.  has a theoretical minimum of 0 

and a theoretical maximum of 1. In addition to , a wide range of related F-statistics has 

been developed over the past decades to better account for the effects of sampling only 

limited numbers of subpopulations and individuals (Hartl and Clark 2007; Hudson, et al. 

1992; Weir 1996; Weir and Cockerham 1984).  

 

Different types of  measurements can be broadly classified into methods based on 

haplotypes and sequence-based methods that consider individual nucleotide differences. At 

small sample sizes, many or most haplotypes will occur only once in a given dataset except 

when haplotype diversity is very low, and hence haplotype-based methods have low power 

to detect non-neutral evolution (Hudson 2000). Sequencing errors may artificially increase 

the number of haplotypes, exacerbating this effect. Furthermore, in genome-scale  

analyses, the number of haplotypes per gene will depend on haploblock length, causing 

systematic biases in haplotype-based  measurements. Thus, in many situations, 

nucleotide-based  methods should be preferred (Riebler, et al. 2008). 

 

Analyses that calculate  values frequently aim to separate neutral contributions to  

caused by population histories from gene-specific contributions due to non-neutral evolution. 

However, different populations have different histories and are influenced by different 

factors, such as mutations, genetic drift, and migration (Kronholm, et al. 2010). As a 

consequence, the neutral distribution of  values strongly depends on the organisms and 

populations considered. The separation between non-neutral and neutral (population history-

based)  contributions can be made explicit in Bayesian approaches that employ Markov-

Chain Monte-Carlo (MCMC) methods to estimate  (Beaumont and Balding 2004; Foll and 

Gaggiotti 2008; Riebler, et al. 2008).  

  

The new method introduced in this paper is based on the work of Beaumont & Balding 

(2004), which establishes an -based hierarchical Bayesian model to detect loci that 

evolve non-neutrally. This Bayesian approach uses a logistic regression model to distinguish 
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between locus-specific effects (selection) and population-specific effects (reflecting the 

common history of all loci). Foll & Gaggiotti (2008) and, independently, Riebler et al. (2008) 

extended this work through a reversible jump MCMC method (Green 1995), which calculates 

an explicit posterior probability for non-neutral evolution at each locus. The software 

BayeScan (http://cmpg.unibe.ch/software/BayeScan) implements this approach (Foll and 

Gaggiotti 2008).  

 

The new method introduced here is an extension of BayeScan and related Bayesian 

methods for the analysis of population differentiation. Whereas previous algorithms allowed 

the analysis of either haplotypes or of individual single nucleotide polymorphisms (SNPs), 

we propose to group neighboring SNPs that likely experienced the same evolutionary 

pressures into blocks, e.g., by gene or by sliding window. This joint analysis of co-evolving 

SNPs increases the statistical power of our approach, allowing us to more reliably detect 

directional and in particular balancing selection. 

 

A logistic regression model for  

At the heart of the Bayesian estimate of  lies a logistic regression, first formulated by 

Beaumont & Balding (Beaumont and Balding 2004; Foll and Gaggiotti 2008): 

 

(1)  

 

(2)   

 

Here,  measures the differentiation at locus  between subpopulation  and the ancestral 

population. In the Bayesian approach,  and  are not calculated for each individual locus 

using moment estimators, but are instead defined in terms of two independent parameters, 

 and .  is a parameter specific to locus  (capturing locus-specific deviations from 

neutral evolution), while  is a parameter specific to population  (capturing locus-

independent effects, i.e., consequences of population history).  

 

The  are determined such that the average  (assumed to be neutral) is zero in each 

population. Thus, negative  correspond to  values below the genomic average 

(indicating that locus  is under balancing selection), while positive  correspond to above-

average  (indicating population-specific directional selection at this locus). 
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Estimation of gene- and population-specific parameters via MCMC 

BayeScan (Foll and Gaggiotti 2008) uses an MCMC approach directly based on the ideas in 

(Balding and Nichols 1995) and (Beaumont and Balding 2004). However, these simulations 

do not provide the final output of BayeScan. Instead, they represent “pilot runs” (or burn-in 

simulations) that determine parameters for the second phase of the algorithm, the 

application of the reversible jump model. For every locus , BayeScan first calculates the 

total counts of each allele  over all populations , and generates a corresponding set of 

allele frequencies of the ancestral population  out of a Dirichlet distribution.  

 

Given a specific parameterization of the model (i.e., ancestral allele frequencies locus-

specific effect , and population-specific effect ), the likelihood of the observed allele 

distribution at locus  and population , , can be calculated as (Foll and Gaggiotti 2008): 

(3)      

 

Here,  is the sample size at locus  of population , and is the number of alleles of 

type  observed at locus  in the sample from subpopulation  (  in case of bi-allelic 

SNP data). The likelihood to observe the overall allele frequencies of one locus is then 

calculated as the product over the populations 

 

 

and the overall likelihood of observing the data given the model is the product over all 

populations  and loci , 

 

 

In each pilot run iteration , the algorithm proposes new values for  and , each drawn 

from a normal distribution , where  denotes the value at the previous iteration; this 

creates a random walk through parameter space. The proposed values are accepted with a 

probability equal to the ratio in likelihood between the proposed and the previous parameter 

values (and are always accepted if the likelihood increases); in other words, the new values 

are accepted with probability .  

 

If the acceptance rate is high (e.g., >0.45), the parameters are close to an optimum, and the 

algorithm will decrease . In case of low acceptance rates (e.g., <0.25),  will be 

increased instead to allow faster movement to the optimum. The pilot runs are used to adjust 

Page 4 of 23

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support: (434) 964-4100

Molecular Biology and Evolution

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



PDF Proof: Mol. Biol. Evol.

5

the acceptance rates of , , and . This pre-processing step hence facilitates good 

mixing of the MCMC and thus rapid convergence. 

 

Finding optimal acceptance rates is a challenging task, and the rates are often tuned by 

hand to achieve the best results for a specific task. Generally, acceptance rates should be 

neither too high (resulting in a long time to explore the full Likelihood landscape) nor too low 

(reducing the probability to converge to global maxima). Our method uses the same limiting 

values [0.25,0.45] as suggested by Foll and Gaggiotti (2008). [NB: In case of the normal 

distribution, it was found that a value of 0.234 was optimal under certain conditions (Roberts, 

et al. 1997; Rosenthal 2009).] 

 

Reversible jump model 

BayeScan aims to determine the posterior probability of non-neutral population 

differentiation for each gene through a reversible jump MCMC approach. Reversible jump 

algorithms are widely used for model determination problems (Hastie and Green 2012). In 

the application to F-statistics, jumps occur between neutral states ( ) and non-neutral 

states ( ).  

 

The  distributions estimated in the pilot runs should ensure good mixing of the Markov-

chain in the jump-model phase (Hastie and Green 2012). After the pilot runs, the  are first 

set to zero, corresponding to an initial model of only neutral evolution. The means ( ) and 

standard deviations ( ) of the  distributions sampled in the pilot runs are then used in the 

proposal scheme for each , which is drawn from a normal distribution ( ); 

this corresponds to a saturated space model (Brooks, et al. 2003). A proposed value is 

accepted with probability , where the likelihood ratio  is (Foll and Gaggiotti 2008): 

 

(4)     .  

 

Here,  denotes the likelihood to observe the given data under the current 

ancestral frequencies  and the  and  values.  is the prior probability distribution over 

(a normal distribution ). 

 

BayeScan then iteratively proposes a new  if currently  and vice versa. If the 

proposed value is accepted, this  is included in the model, i.e., a corresponding jump 

between  and  is made. The posterior probability that a locus is subject to 
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selection  is simply the fraction of iterations in which  is included in the 

model. 

 

New Approaches 

Considering SNPs in co-evolving groups (type1):  as a block effect 

To identify non-neutrally evolving blocks of DNA (such as genes) from SNP data, BayeScan 

allows two possible strategies: either to consider each SNP as an independently evolving 

unit, or to consider haplotypes that combine all SNPs for one block of DNA (the same 

applies to the very similar algorithm published by Riebler, et al. (2008)). Considering each 

SNP separately may lead to statistical problems due to non-independence, and ignores prior 

knowledge (the strong linkage of SNPs within one co-evolving block). Conversely, using 

haplotypes can produce misleading results at moderate to high mutation rates, as each 

mutation introduces a new haplotype (Hudson 2000; Riebler, et al. 2008); this disadvantage 

of considering haplotypes was strongly confirmed by our simulations (see below).  

 

To avoid the problems of using either individual SNPs or full haplotypes, we propose to 

combine the strengths of both approaches. We consider the likelihood contribution of each 

SNP separately, but assume that the locus-specific effect  is identical for all SNPs located 

in the same block of DNA (e.g., the same gene). Thus, in Eqs. (1)-(4), we use one  for all 

SNPs located in the same DNA block. This means that also in the jump model, all SNPs in 

one block are either classified as evolving neutrally ( ) or non-neutrally ( ). This 

strategy is type1 of our approach.  

 

We envisage that typical applications of our algorithm might consider genes as coherent 

units of evolution, and we hence use the terms “block of DNA” and “gene” interchangeably in 

the remainder of this paper. However, the proposed algorithm can of course be equally 

applied to other block definitions, such as sliding windows or pre-defined haploblocks.  

 

Improving discrimination performance by controlling average P-values 

The likelihood that all SNPs in a block can be explained well by  often becomes 

vanishingly small, especially for large group sizes. Thus, in many cases, a single uniform  

for all SNPs in one block may be an overly restrictive assumption. Accordingly, we noticed in 

simulations that the type1 method successfully distinguishes balancing from directional 

selection, but produces an overall shift towards 1 of posterior P-values for non-neutral 

evolution even for many sequences simulated under a neutral scenario. This is not 
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problematic as long as one considers the posterior distribution of  values as the main 

output of the method. However, the discrimination between neutrally and non-neutrally 

evolving loci based on the posterior probability P becomes inefficient when P values are 

close to 1.  

 

To obtain a more realistic distribution of posterior P-values, we propose a simple and 

theoretically well-founded modification to the sampling scheme. First, the user specifies an 

expected mean P-value based on prior knowledge. A user-specified average P value of 0.1, 

for example, means that 10% of all blocks are expected to evolve non-neutrally. During the 

MCMC sampling, this expectation is treated as an additional constraint, enforced by 

iteratively adapting the model prior probability  until the desired mean P 

value is attained (variational inference with posterior constraints, see (Graca, et al. 2007)). In 

our implementation, the model prior probability is adapted every 100 iterations. As long as 

the average posterior P value measured during the last 100 iterations is above the user-

specified value,  is decreased by a fixed step size. The step size can be 

tuned by the user. Use of this posterior constraint can be deactivated by the user if desired, 

and the algorithm then uses a fixed prior probability . 

Considering SNPs in co-evolving groups (type2): selection as a block effect 

Linkage between the SNPs in one block may not be perfect, and we might expect that 

deviations from neutral evolution ( ) become weaker with increasing distance from the 

site of selection. Furthermore, evolution is a stochastic process, and thus individual SNPs 

may be best described with different  even if they evolved under the same selection 

pressures. To allow for these effects, we propose a second approach that sets no 

restrictions on the  of the individual SNPs in one block. Instead, we use a block-specific 

jump model (Eq. (4)). Thus, the SNPs in one block are assumed to evolve either neutrally ( 

 for all SNPs) or non-neutrally (  chosen from the pilot-run distribution for each SNP) 

together; the decision to include a block into the non-neutrally evolving part of the genome is 

based on the joint likelihood of all SNPs in the block. To characterize the amount of non-

neutral evolution of the block, we use the most extreme  value of all SNPs (i.e., the 

maximal ). 

 

GeneFeST: an R implementation of our algorithm 

We implemented our type1 and type2 algorithm in a freely available software, GeneFeST, 

available free of charge from CRAN (http://cran.r-project.org/). GeneFeST runs in the R 

environment for statistical computing (R Core Team 2014), the de facto standard in many 
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areas of statistics and biological data analysis. Our GeneFeST implementation uses the 

powerful data processing capabilities of PopGenome, a recently published comprehensive R 

software package for population genetic and population genomic analyses (Pfeifer, et al. 

2014); PopGenome also includes an implementation of the original BayeScan approach 

(Foll and Gaggiotti 2008). GeneFeST utilizes PopGenome’s ability to work with a wide range 

of input file formats, and comfortable methods exist to define blocks in genomic SNP data 

based on sliding windows or annotated features such as genes, coding sequences, or 

exons. Alternatively, the user can generate input text files as illustrated in the 

documentation, which is also available on CRAN. To ensure fast computations, the 

GeneFeST source code is highly vectorized, and we have implemented some remaining 

bottlenecks in C/C++.  

 

Results & Discussion 

Simulation Model  

To validate our approach and to compare it to alternative  measurements, we performed 

extensive simulations using the program MSMS (Ewing and Hermisson 2010), an extension 

of Hudson’s ms (Hudson 2002) that allows coalescent simulations for a structured 

population under selection. We chose model and parameters similar to a previously 

published simplified model of human population history (Gutenkunst, et al. 2009). We 

assume a population with an effective population size of Ne=10,000 that split into two 

subpopulation 4,000 generations ago (Figure 1). After the splitting event there is no 

migration between the two populations (island model). The exact MSMS calls are listed in 

the Supplementary material. 

 

Based on this population history, we used MSMS to sample 500 genes under a neutral 

scenario, 50 genes under balancing selection, and 50 genes under population-specific 

directional selection. We used the same selection coefficient s for both balancing and 

directional selection. We repeated this simulation for different per-gene mutation rates 

(θ=4Neu), selection coefficients (s), numbers of sampled individuals (Nind), and numbers of 

populations (Npop).  
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Figure 1. The evolutionary model used to generate samples under neutral, balancing, 

and directional (population-specific) selection. We start with one population of 

effective population size Ne=10,000, i.e., an expected gene history of 40,000 

generations. 4,000 generations ago, the population split into subpopulations. In the 

case of balancing selection, selection starts at the very beginning of the simulation; 

population-specific directional selection acts only after the split event. We assume that 

no migrations occur between the populations (m=0).  

 

 

 

GeneFeST can store the MCMC simulation results to allow further diagnostics. We 

confirmed adequate convergence speed of the MCMC sampling using the Gelman Rubin 

convergence diagnostic (Gelman and Rubin 1992), provided in the R package coda 

(Plummer, et al. 2006). When processing simulated sampling data of 20 individuals each 

from 2 populations that evolved at a mutation rate of θ=1, this lead to a multivariate potential 

scale reduction factor (mpsrf) of 2.28 for 10,000 pilot run iterations. The mpsrf was reduced 

to 1.63 when we simulated with 20,000 runs. The ‘point scale reduction factor’ (psrf) of the  

was on average 1.03, with a standard deviation of 0.01, for 10,000 pilot run iterations. As the 

 are interpreted independently from each other to make jump model decisions, we mainly 

concentrated on the psrf outcomes and set the default values of our method accordingly 

(10,000 pilot run iterations, with updates of sdi every 500 iterations).  

 

Benchmarking 

To benchmark the ability of different  measurements to detect non-neutral evolution at the 

gene level, we scored Receiver-Operator-Characteristic (ROC) curves, which plot sensitivity 

(fraction of true positives) versus specificity (1 - fraction of false positives) at different cutoff 

values for the parameter used for discrimination. The area under this curve (AUC) can be 
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interpreted as the overall accuracy of discrimination provided by the parameter (Riebler, et 

al. 2008). AUC was calculated with the R package pROC (Robin, et al. 2011). 

 

We assessed the performance of BayeScan (Foll and Gaggiotti 2008) applied to either full 

gene haplotypes or individual SNPs, and Hudson’s  (Hudson 2000) calculated for 

haplotypes or for nucleotides. The accuracy of these methods was compared to the 

performance of the GeneFeST type1 and type2 models introduced here. 

 

To obtain a rough estimate of the statistical variation expected for AUC values based purely 

on stochastic fluctuations in the coalescent process, we simulated for every parameter 

combination (see below) 10,000 loci under a neutral, balancing selection, and directional 

selection scenario, and compared the AUC values for Hudson's  with those based on the 

smaller sample sizes. We found that AUC values typically differed by at most 0.03. Below, 

we thus consider AUC differences >0.06 as noteworthy. 

 

 measurements across mutation rates 

We performed simulations for three different values of the scaled mutation rate θ (1, 5, and 

10), corresponding to mutation rates u of 0.000025, 0.000125, and 0.00025 per gene and 

generation. Table 1 shows that with the simulated population history we expect on average 

5.44θ SNPs per gene. 

 

Table 2 and Figure 2 show the accuracy (AUC of the ROC curve) of the examined methods 

when aiming to detect non-neutral evolution from patterns of population differentiation under 

different mutation rates. Both Hudson’s and BayeScan made more accurate predictions 

when applied to individual SNPs than when applied to haplotypes, indicating that 

summarizing SNP data into haplotypes is often associated with a substantial loss in 

information. 

 

Table 1: Relationship between mutation rate θ and the number of SNPs per gene 

Mutation rate 
θ=4Neu 

Mean Standard 
deviation 

1 5.44 2.50 

5 27.22 8.72 

10 53.72 15.17 
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The jump model introduced by Foll & Gaggiotti (2008) and independently by Riebler, et al. 

(2008) aims to give a direct estimate of the probability that a locus evolves non-neutrally, 

expressed as a posterior probability P. However, Table 2 shows that predictions of non-

neutrality based on the posterior  values (which describe the locus-specific component of 

the population differentiation) are much more accurate than those based on P. 

 

At low mutation rate (θ=1, corresponding to on average 5.4 SNPs per gene), the methods 

proposed here (GeneFeST type1 and type2) are similar in accuracy to BayeScan. At higher 

mutation rates, this is also the case for directional selection, while GeneFeST is more 

accurate for balancing selection. Hudson’s nucleotide  performed surprisingly well at 

intermediate and high mutation rates, where it showed an accuracy similar to BayeScan. 

 

 

Table 2: Accuracies (AUC) for measurements across mutation rates 

Number 
of pops 

Sample 
size 
 

Mutation 
rate 
θ=4Neu 

AUC BayeScan 
haplotype 

BayeScan 
(SNPs)1 

Hudson’s 
nucleotide 
FST 

Hudson’s 
haplotype 
FST 

GeneFeST 
(type1) 
 

GeneFeST 
(type2) 
 

2 
 

20 1 
 
 

 
bal 2 

pos 3 

P.norm 4 

 
bal 2 

pos 3 

P 5 

pilot 
0.6755 
0.7281 
0.5696 
posterior 
0.6808  
0.7424 
0.5834 

pilot 
0.732 
0.7378 
0.6099 
posterior 
0.742 
0.7511 
0.5647 

 
0.6962 
0.658  
0.6222 

 
0.6171 
0.625 
0.5919 
 
 

pilot 
0.7298 
0.7179 
0.611 
posterior 
0.731 
0.7257 
0.6243  

pilot 
0.7298 
0.7292 
0.614 
posterior 
0.7535 
0.7485 
0.6558 

2 
 

20 5  
bal 2 

pos 3 

P.norm 4 

 
bal 2 

pos 3 

P 5 

pilot 
0.5614 
0.7544 
0.594 
posterior 
0.5589 
0.7571  
0.6083 

pilot 
0.732 
0.8256 
0.6888 
posterior 
0.7368 
0.8464 
0.734 

 
0.7738  
0.7909 
0.7192 

 
0.6068 
0.7647 
0.6405 

pilot 
0.8215 
0.8548 
0.7482 
posterior 
0.8248 
0.8546 
0.7529  

pilot 
0.7227 
0.8333 
0.6863 
posterior 
0.7419 
0.8309 
0.7414 

2 
 

20 10  
bal 2 

pos 3 

P.norm 4 

 
bal 2 

pos 3 

P 5 

pilot 
0.6067 
0.6508 
0.5715 
posterior  
0.6045 
0.6513 
0.571 

pilot 
0.7722 
0.8059 
0.6805 
posterior 
0.7883 
0.7923 
0.6818 

 
0.809 
0.8006 
0.6993 

 
0.5911 
0.6509 
0.5614 

pilot 
0.8626 
0.8233 
0.6948 
posterior 
0.8633 
0.8212 
0.6867 

pilot 
0.7696 
0.8028 
0.677 
posterior 
0.7803 
0.7972 
0.7402 

1 BayeScan performed on individual SNPs and interpreting the most extreme  in a group (identical to our type2 method 

except for the jump model). 
2 Detection of balancing selection  
3 Detection of population-specific directional selection 
4 Probability of non-neutral evolution (balancing and directional selection combined), estimated from fits of the parameter 

distribution (  or ) to a normal distribution. 
5 Probability of non-neutral evolution (balancing and directional selection combined), estimated via the jump model. 
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We noticed in our simulations that the locus-specific effects  estimated during the pilot 

runs were almost as useful for the detection of non-neutrality as the posterior , and we 

hence also report AUC values based on these . The detection of natural selection based 

on  was originally proposed in (Beaumont and Balding 2004). To allow a direct statistical 

interpretation in this case, we also fitted the  distributions from the pilot runs to normal 

distributions, and estimated a probability  for non-neutrality from the position of a locus’s 

 relative to this distribution. In most simulations, these  values were similarly accurate 

for the classification of non-neutrality as the computationally much more expensive posterior 

probabilities . To allow a statistical interpretation of Hudson’s values, we also fitted 

these to a normal distribution and calculated corresponding  values.  

 

 

 
Figure 2. The accuracy of  measurements across mutation rates. AUC values are 

plotted against the scaled mutation rate θ=4Neu. Panels (A), balancing selection, and 

(B), directional selection, show AUC calculated for posterior  from BayeScan and 

GeneFeST, as well as for Hudson’s . (C) AUC calculated for posterior probabilities 

of non-neutral evolution P calculated with BayeScan and GeneFeST. The AUC values 

are also listed in Table 2. 

measurements across sample sizes and numbers of populations 

We also performed simulations across different sample sizes and numbers of populations. 

Consistent with previous observations (see Table 4 in (Foll and Gaggiotti 2008)), we found 

that all tested methods gain substantially in power when samples from more populations are 

available (Supplementary Table S1). In this situation of generous data availability, the choice 

of method becomes less important. Conversely, increasing sample sizes above 20 within the 
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same two populations does not systematically improve the accuracy of predictions 

(Supplementary Table S2). 

 

Both GeneFeST type2 and BayeScan performed on SNPs (as employed here) classify 

genes based on the most extreme  value. As seen in Supplementary Table S2, this 

strategy becomes more powerful with increasing sample sizes, presumably because 

increasingly more information is available for each individual SNPs.  

 

measurements on genes of different lengths and across selection coefficients 

When applying  based methods to genome-scale data, it is important to recognize that 

gene lengths - and hence per-gene mutation rates θ - can vary widely between genes. We 

thus performed benchmark tests on data simulated on a continuous distribution of θ values. 

We estimated θ for all genes on human chromosome 21 (Genomes Project, et al. 2012) with 

Watterson’s estimator (Watterson 1975) as implemented in the R package PopGenome 

(Pfeifer, et al. 2014). We then randomly sampled θ values out of this distribution to generate 

500 neutrally evolving genes, 50 genes under balancing selection, and 50 genes under 

directional selection. These mixed θ values modeled on the human genome lead to on 

average 138 SNPs per gene, with a standard deviation of 136. We performed these 

simulations with three different selection coefficients s (0.01, 0.05, and 0.1), sampling 20 

individuals each from two populations evolving as above. 

 

Figure 3 shows ROC curves for the classifications based on Bayesian posterior parameters 

at strong selection (s=0.1). The number of haplotypes per gene increases strongly with 

increasing θ, and hence haplotype-based predictions become heavily biased by gene length 

in realistic situations (Figure 4). The ROC curves for BayeScan applied to haplotypes in 

Figure 3 are close to the diagonals; i.e., haplotype-based classifications are hardly more 

accurate than random guess in realistic situations. Accordingly, the AUC values for 

haplotype-based methods are barely above the random expectation of 0.5 (Table 3 and 

Figure 5). In contrast, GeneFeST type1 successfully separates the three simulated 

scenarios (neutral evolution, balancing selection, and directional selection); the separation is 

evident already from the locus-specific effects estimated in the pilot runs, . 

 

Comparing the different -based methods across selection coefficients (Table 3 and 

Figure 5), we again find that the accuracy of GeneFeST type1 and BayeScan applied to 

SNPs is comparable for classifying genes under directional selection, while GeneFeST 

type1 is substantially more accurate for the detection of balancing selection. In contrast, the 
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model of GeneFeST type2 seems not to be appropriate for the realistic situation that 

sequences differ widely in length. 

 
Figure 3. ROC curves and distributions of  for simulated data corresponding to 

genes of varying lengths. Panels (A) and (B) show ROC curves for  computed by 

BayeScan and  computed by GeneFeST type1. The numbers next to the ROC 

curves report the best threshold values (those with the highest distance from the 

diagonal). (C) The  from the GeneFeST pilot runs were fitted to a normal 

distribution to estimate  values for non-neutral evolution, which were then used to 

generate the ROC curve; this is compared to the posterior probabilities given by 

BayeScan. (D) Distribution of the pilot run  from GeneFeST for genes under 

balancing selection (bal), directional selection (pos), and neutral evolution (neut). The 

plots were generated based on simulations under strong selection, s=0.1.  
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Figure 4: Correlation between  and the number of SNPs per gene (reflecting per-

gene mutation rate or gene length). The total number of SNPs observed in a 

simulated gene is plotted against the  estimated by BayeScan applied to haplotype 

data (A) and by GeneFeST type1 (B). Haplotype calculations are strongly biased by 

gene length, while this is not the case for the GeneFeST approach. Calculations were 

performed on 20 simulated individuals each from 2 populations at strong selection 

(s=0.1).  

Table 3: Accuracies (AUC) for measurements across selection strengths 

Number 
of pops 

Sample 
size 

 

Selection 
coefficient 

s 

AUC BayeScan 
haplotype 

BayeScan 
(SNPs)1 

Hudson’s 
nucleotide 
FST  

Hudson’s 
haplotype 
FST  

GeneFeST 
(type1) 
 

GeneFeST
(type2) 
 

2 
 

20 0.1  
bal 2 

pos 3 

P.norm 4 

 
bal 2 

pos 3 

P 5 

pilot 
0.5686 
0.5147 
0.5348 
posterior 
0.5652 
0.5129 
0.5419 

pilot 
0.6714 
0.7459 
0.6687 
posterior 
0.7689 
0.7592 
0.6834 

 
0.7695 
0.7435 
0.688 

 
0.5685 
0.5287 
0.5166 

pilot 
0.8102 
0.7664 
0.6978 
posterior 
0.8124 
0.7691 
0.6859 

pilot 
0.7384 
0.7549 
0.7017 
posterior 
0.6987 
0.7561 
0.6621 

2 20 0.05  
bal 2 

pos 3 

P.norm 4 

 
bal 2 

pos 3 

P 5 

pilot 
0.5543 
0.5465 
0.5432 
posterior 
0.5524 
0.5438 
0.5361 

pilot 
0.6668 
0.7598 
0.6811 
posterior 
0.6751 
0.7951 
0.6611 

 
0.7115 
0.7345 
0.6519 

 
0.5322 
0.537 
0.5429 

pilot 
0.8059 
0.7647 
0.6647 
posterior 
0.807 
0.7661 
0.6501 

pilot 
0.7011 
0.7661 
0.6968 
posterior 
0.6884 
0.7712 
0.62 

2 20 0.01  
bal 2 

pos 3

P.norm 4 

 
bal 2 

pos 3 

P 5 

pilot 
0.5631 
0.5391 
0.5198 
posterior 
0.5586 
0.5563 
0.5313 

pilot 
0.66 
0.7486 
0.6661 
posterior 
0.7648 
0.7687 
0.6562 

 
0.7249 
0.6125 
0.5871 

 
0.5608 
0.5523 
0.5522 

pilot 
0.8084 
0.7695 
0.6993 
posterior 
0.8132 
0.7686 
0.6696 

pilot 
0.6946 
0.7433 
0.6929 
posterior 
0.6596 
0.7427 
0.6294 

1 BayeScan performed on individual SNPs and interpreting the most extreme  in a group (identical to our type2 method 

except for the jump model). 
2 Detection of balancing selection  
3 Detection of population-specific directional selection 
4 Probability of non-neutral evolution (balancing and directional selection combined), estimated from fits of the parameter 

distribution (  or ) to a normal distribution. 
5 Probability of non-neutral evolution (balancing and directional selection combined), estimated via the jump model. 
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Figure 5. The accuracy of  measurements across selection coefficients. AUC 

values are plotted against selection coefficients s. Panels (A), balancing selection, 

and (B), directional selection, show AUC calculated for posterior  from BayeScan 

and GeneFeST, as well as for Hudson’s . (C) AUC calculated for posterior 

probabilities of non-neutral evolution P calculated with BayeScan and GeneFeST. The 

AUC values are also listed in Table 3. 

Conclusions 
statistics to assess the extent of population differentiation can detect both balancing 

selection and population-specific directional selection from SNP data. Neighboring SNPs, 

such as those co-localized in the same gene or exon, are often expected to be under similar 

selection pressures. However, summarizing SNP data into haplotypes results in a 

substantial loss of information, and haplotype-based  methods were inferior in the 

detection of non-neutral evolution in all simulated situations. 

Surprisingly, we found that the addition of a jump model to the original Bayesian approach of 

(Beaumont and Balding 2004), while requiring much longer computation times, leads to only 

a small improvement in accuracy. Moreover, in both BayeScan and GeneFeST, detection of 

non-neutral evolution is much less accurate when based on the jump model posterior 

probabilities P than when based on the locus-specific effects . The apparently 

straightforward interpretation of the posterior P values is an illusion; fitting the (or even the 

pilot run ) distribution to a Gaussian provides a more reliable reference frame. 
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While prediction of non-neutral evolution with the GeneFeST type1 method was at least as 

accurate as the other methods tested and was superior in many simulations, we observed 

one shortcoming of this method. A single  for a whole block of SNPs may sometimes be 

an overly restrictive assumption, resulting in a global shift of posterior P values towards 1. 

We proposed a simple approach to mitigate this issue, by balancing posterior P values using 

the framework of variational inference with posterior constraints (Graca, et al. 2007). Future 

work should address how to improve the Bayesian model itself to ensure that posterior 

probabilities are more directly interpretable and representative of a locus’s true selection 

history. One promising avenue of research may be the introduction of an additional layer in 

the hierarchical Bayesian model that mediates between the unspecific global prior 

distribution, ( ), and the SNP-level . Linkage of SNPs within one gene could be 

accounted for in such a model by introducing group priors that bind together all  within 

each gene. Such a model would also allow to distinguish between gene-wide and more local 

locus-specific effects.  

 

Several recommendations for the population differentiation analysis of SNP data can be 

drawn from our simulation study: 

• When sequencing additional individuals, strong preference should be given to 

sampling additional populations; 

• Haplotype-based methods are substantially less reliable than methods that examine 

individual SNPs, and are strongly biased when blocks with different lengths or 

mutation rates are compared; 

• The strategy of assigning the same locus-specific coefficient to all SNPs within one 

co-evolving block (GeneFeST type1) leads to substantially improved predictions 

especially in the case of balancing selection compared to previous Bayesian 

approaches; 

• The predictions derived from pilot runs (as originally proposed by Beaumont & 

Balding (2004)) are almost as good as those derived from the jump model results, 

but can be computed much faster. 

• To detect non-neutrally evolving sequence blocks (genes) with Bayesian methods, 

one should not use the posterior probabilities provided by a jump model, but should 

use the locus effects  instead. 

• Hudson’s nucleotide provides a fast and relatively good measurement in the case 

of strong directional selection, but is inferior to the Bayesian approach implemented 

in GeneFeST (type1) especially for the detection of balancing selection. 
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Supplemental Tables 
 

Table S1: FST measurements across population numbers 

Number 
of pops 

Sample 
size 

 

Mutation 
rate 

θ=4Neu 

AUC BayeScan 
haplotype 

BayeScan 
(SNPs)1 

Hudson’s 
nucleotide 
FST  

Hudson’s 
haplotype 
FST  

GeneFeST 
(type1) 
 

GeneFeST 
(type2) 
 

5 
 

20 1  
bal 2 

pos 3 

P.norm 4 

 
bal 2 

pos 3 

P 5 

pilot 
0.7906 
0.8828 
0.6775 
posterior 
0.7856 
0.8831 
0.6802 

pilot 
0.9073 
0.8732 
0.7884 
posterior 
0.9064 
0.8613 
0.7314 

 
0.8345  
0.7828 
0.7308 

 
0.7548  
0.7937 
0.6852 

pilot 
0.8508 
0.8568 
0.7466 
posterior 
0.8504 
0.8599 
0.7392 

pilot 
0.9081 
0.8765 
0.7937 
posterior 
0.9094 
0.8685 
0.7294 

5 
 

20 5  
bal 2 

pos 3 

P.norm 4 

 
bal 2 

pos 3 

P 5 

pilot 
0.6135 
0.8586 
0.5853 
posterior 
0.6217  
0.8559 
0.5831 

pilot 
0.9159 
0.9348 
0.7988 
posterior 
0.9184 
0.937 
0.79 

 
0.9287 
0.9374 
0.8483 

 
0.6661 
0.9 
0.643 

pilot 
0.9329 
0.92 
0.8497 
posterior 
0.9316 
0.9209 
0.8498 

pilot 
0.9187 
0.9371 
0.799 
posterior 
0.9209 
0.9328 
0.7782 

1 BayeScan performed on individual SNPs and interpreting the most extreme  in a group (identical to our type2 method 

except for the jump model). 
2 Detection of balancing selection  
3 Detection of population-specific directional selection 
4 Probability of non-neutral evolution (balancing and directional selection combined), estimated from fits of the parameter 

distribution (  or ) to a normal distribution. 
5 Probability of non-neutral evolution (balancing and directional selection combined), estimated via the jump model. 

 

 

Page 21 of 23

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support: (434) 964-4100

Molecular Biology and Evolution

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



PDF Proof: Mol. Biol. Evol.

22 

Table S2: FST measurements across sample sizes 

Number 
of pops 

Sample 
size 

 

Mutation 
rate 

θ=4Neu 

AUC BayeScan 
haplotype 

BayeScan 
(SNPs)1 

Hudson’s 
nucleotide 
FST  

Hudson’s 
haplotype 
FST  

GeneFeST 
(type1) 
 

GeneFeST 
(type2) 
 

2 
 

100 1  
bal 2 

pos 3 

P.norm 4 

 
bal 2 

pos 3 

P 5 

pilot 
0.7151 
0.7434 
0.636 
posterior 
0.7185  
0.7482  
0.6282 

pilot 
0.8459 
0.7118 
0.6886 
posterior 
0.8378  
0.7129  
0.6393 

 
0.7517 
0.5857 
0.6722 

 
0.6956 
0.6052 
0.615 

pilot 
0.7197 
0.7053 
0.6209 
posterior 
0.7201 
0.7095 
0.6178 

pilot 
0.8192 
0.7175 
0.7047 
posterior 
0.8328 
0.7093 
0.6523 

2 
 

100 5  
bal 2 

pos 3 

P.norm 4 

 
bal 2 

pos 3 

P 5 

pilot 
0.59 
0.7652 
0.6153 
posterior 
0.5949 
0.7616 
0.6299 

pilot 
0.9318  
0.7742 
0.806 
posterior 
0.9146 
0.7691 
0.6622 

 
0.8563 
0.7329 
0.7245 

 
0.6395 
0.7557 
0.6548 

pilot 
0.8305 
0.8067 
0.7086 
posterior 0.8289 
0.807 
0.7202 

pilot 
0.9328 
0.7761 
0.8035 
posterior 
0.9266 
0.7747 
0.673 

1 BayeScan performed on individual SNPs and interpreting the most extreme  in a group (identical to our type2 method 

except for the jump model). 
2 Detection of balancing selection  
3 Detection of population-specific directional selection 
4 Probability of non-neutral evolution (balancing and directional selection combined), estimated from fits of the parameter 

distribution (  or ) to a normal distribution. 
5 Probability of non-neutral evolution (balancing and directional selection combined), estimated via the jump model. 
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MSMS calls 
 

Model: 

Theta (-t) = 5 

Number of populations (-I)=2 

Sample size (-I) = 20 

Effective population size (-N) = 10,000 

Split event (-ej) = 0.1 (4,000 generations ago) 

Selection coefficient (-SAA & -SaA) = 0.1 

Start of selection (-SI) = 0.9 (balancing selection), 0.1 (positive selection) 

Initial frequencies of the beneficial allele = 0.01 

 

Neutral: 

msms 40 500 -t 5 -N 10000 -I 2 20 20 0 -ej 0.1 1 2  

 

Balancing selection: 

msms 40 50 -t 5 -N 10000 -I 2 20 20 0 -ej 0.1 1 2 -SAA 1 -SaA 2000 -SI 0.9 2 0.01 0.01 

 

Directional selection: 

msms 40 50 -t 5 -N 10000 -I 2 20 20 0 -ej 0.1 1 2 -SAA 2000 -SaA 1 -SI 0.1 2 0.01 0.01 
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