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Abstract

The false discovery rate (FDR) is widely used and accepted as error criterion in

multiple hypothesis testing and much e�ort has been done to develop multiple

tests which control the FDR under di�erent model assumptions. The FDR is

often used when the number of false rejections of a multiple test is allowed to be a

reasonable portion of all rejections. It is de�ned as the expected portion of false

rejections among all rejections. The most famous multiple test with respect to

the FDR is the linear step-up test of Benjamini and Hochberg [2] which controls

the FDR under di�erent assumptions, but still does not exhausts it and thus

may have a lack of power. Therefore, the adaptive step-up test of Storey et al.

[61] has been proposed which includes an estimation of the portion of true null

hypotheses.

In the introductory �rst chapter we introduce the basic model assumptions

for this thesis and give a brief summary of well known results. Chapter 2 pro-

vides three central lemmas from which we derive various results concerning the

FDR of non adaptive step-up tests, the critical values of step-up tests with FDR

control and the asymptotic FDR of adaptive step-up tests. We consider several

dependence structures of the p-values, including independence, a reverse mar-

tingale structure, positive regression dependence and arbitrary dependence. In

Chapter 3 we extend the results of Storey [59, 60] to p-values of null hypotheses

whose marginal distributions are stochastically larger than the uniform distri-

bution on [0, 1] which may occur for one sided hypotheses. We motivate a new

class of estimators for adaptive step-up tests and show that the common esti-

mation of the portion of true null hypotheses is not appropriate in this case. In

Chapter 4 we establish a new su�cient condition for �nite sample FDR con-

trol of adaptive step-up tests under independence and we prove that a slightly

modi�ed estimator from Chapter 3 satis�es this condition. It turns out that the

selection of the estimator for the adaptive step-up test may even be performed

in a data dependent manner. A reasonable selection method is discussed in a

practical guide. Chapter 5 is devoted to �nite sample FDR control of adaptive

step-up tests under a speci�c kind of block dependence.
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Zusammenfassung

Die �false discovery rate� (FDR) ist als Fehlerkriterium in der multiplen Hy-

pothesentesttheorie weit verbreitet und akzeptiert. Es wurde viel Aufwand be-

trieben, um multiple Tests zu entwickeln, welche die FDR unter verschiedenen

Modellannahmen kontrollieren. Die FDR wird oft verwendet wenn die An-

zahl der falschen Ablehnungen eines multiplen Tests ein angemessener Anteil

aller Ablehnungen sein darf. Sie ist de�niert als der erwartete Anteil falscher

Ablehnungen an allen Ablehnungen. Der bekannteste multiple Test in Bezug auf

die FDR ist der lineare step-up Test von Benjamini und Hochberg [2], welcher

die FDR unter verschiedenen Annahmen kontrolliert, sie aber nicht ausschöpft

und somit einen Mangel an Güte haben kann. Deshalb wurde ein adaptiver step-

up Test von Storey et al. [61] vorgeschlagen, der eine Schätzung des Anteils der

wahren Nullhypothesen mit einbezieht.

Im einleitenden ersten Kapitel führen wir die grundlegenden Modellannah-

men für diese Arbeit ein und geben eine kurze Zusammenfassung wohlbekannter

Resultate. Kapitel 2 stellt drei zentrale Lemmata bereit, aus denen wir eine

gewisse Anzahl von Resultaten herleiten, welche die FDR von nicht adaptiven

step-up Tests, die kritischen Werte von step-up Tests mit FDR Kontrolle und

die asymptotische FDR von adaptiven step-up Tests betre�en. Wir betrachten

mehrere Abhängigkeitsstrukturen. Dazu gehören unabhängige p-Werte, eine

Rückwärtsmartingalstruktur, positive Regressionsabhängigkeit der p-Werte und

beliebig abhängige p-Werte. In Kapitel 3 erweitern wir die Resultate von Storey

[59, 60] auf p-Werte von Nullhypothesen deren Randverteilungen stochastisch

gröÿer als die Gleichverteilung auf [0, 1] sind. Dies kann bei einseitigen Hypo-

thesen auftreten. Wir motivieren eine neue Klasse von Schätzern für adaptive

step-up Tests und zeigen, dass die übliche Schätzung des Anteils der wahren

Nullhypothesen in diesem Fall nicht angemessen ist. In Kapitel 4 erarbeiten wir

eine neue hinreichende Bedingung für �nite FDR Kontrolle von adaptiven step-

up Tests unter Unabhängigkeit und wir beweisen, dass ein leicht modi�zierter

Schätzer aus Kapitel 3 dieser Bedingung genügt. Es stellt sich heraus, dass

die Auswahl des Schätzers für den adaptiven step-up Test sogar datenabhängig

erfolgen kann. Eine vernünftige Auswahlmethode wird in einem praktischen

Leitfaden erörtert. Kapitel 5 ist der �niten FDR Kontrolle von adaptiven step-

up Tests unter einer bestimmten Art der Blockabhängigkeit gewidmet.
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Preface

The Theory of multiple hypothesis tests has become a large area in mathematical

statistics. We often notice the following fact: The larger the number of null

hypotheses, the more di�cult to make a reasonable conclusion about these null

hypotheses. Therefore, the theory is based on the control of some type 1 error

rate like the familywise error rate or the false discovery rate. The last one has

been promoted by Benjamini and Hochberg [2] and is the focus of many recent

publications. Currently, the publication of Benjamini and Hochberg [2] has been

cited more than 23.000 times, see Google Scholar.

This thesis mainly splits into two parts. The �rst part (Chapter 2 and 5)

provides new results for the false discovery rate of several multiple tests under

di�erent dependence structures. The second part (Chapter 3 and 4) particularly

considers one sided hypotheses, where the distributions of p-values of true null

hypotheses may be stochastically larger than the uniform distribution on the

unit interval. Usually, distributions which lie deep inside the null hypotheses

disturb the detection of false null hypotheses. It is particularly disturbed for

adaptive multiple tests which incorporate an estimation of the number of true

null hypotheses. This has already been mentioned by Dickhaus [11] and Pounds

and Cheng [44]. Both try to improve the estimation of the number of true null

hypotheses.

In this thesis, we will start with the basic theory of adaptive multiple tests

and develop a new concept along the former considerations of Storey [59, 60]

using the possible advantages of one sided null hypotheses. In some proofs we

try to avoid some standard methods like so-called least favorable parameter con-

�gurations and non increasing testing procedures. Finally, we obtain adaptive

multiple tests which work well under distributions which lie deep inside the null

hypotheses. One could say, the deeper the better. Furthermore, in standard

vi
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cases the new tests still behave like the often applied adaptive multiple test of

Storey et al. [61]. As already mentioned, the larger the number of null hy-

potheses, the more di�cult to make a reasonable conclusion. Therefore, the

new multiple tests basically include a form of an adaptive reduction of the di-

mension. Obviously, a p-value of a true null hypothesis which tends to be large

has a lower e�ect on the FDR than a p-value which is uniformly distributed on

the unit interval. Thus, we try to include an estimation of the e�ective number

of true null hypotheses which have an e�ect on the FDR.

Large parts of this thesis are based on the works of Heesen and Janssen

[28, 29]. These works resulted from a joint work of the two authors. Each part

contains essential ideas, aspects and work of both contributors. In the individ-

ual chapters, we go into detail and specify in which way these chapters rely on

Heesen and Janssen [28, 29]. For some theorems, propositions and lemmas we

explain where the corresponding statements may be found in Heesen and Janssen

[28, 29]. Some statements presented in this thesis include no or minor changes

and others include signi�cant changes. This thesis and both works [28, 29]

were supported by a project of the Deutsche Forschungsgemeinschaft (DFG).

The topic of the project is �Signalerkennung in hochdimensionalen statistischen

Modellen mit Anwendungen in den Lebenswissenschaften� (English: Signal De-

tection in high dimensional statistical models with applications in the Life Sci-

ences).

A list of abbreviations and symbols is given at the end of this thesis.



Chapter 1

Introduction

1.1 From hypotheses testing to multiple hypotheses

testing

Hypotheses testing is based on a statistical experiment (Ω,A, {Pϑ : ϑ ∈ Θ}),
where the index set Θ of possible distributions may be parametric or non para-

metric. The parameter set Θ is divided into a null hypothesis H ⊂ Θ and an

alternative hypothesis K = Θ \H. Based on an observation ω ∈ Ω coming from

an underlying unknown distribution Pϑ∗ , where ϑ∗ ∈ Θ, we would like to decide

whether ϑ∗ ∈ H or ϑ∗ ∈ K holds true for ϑ∗. Since ω may be sampled from

any considered distribution, we have to make a decision under uncertainty. H
is called true if ϑ∗ ∈ H otherwise K is called true. Each decision may then lead

to one of the following two errors. A decision for K when H is true is called

type 1 error (or error of �rst kind). To overcome this problem, a speci�c level

α ∈ (0, 1) for the type 1 error is usually allowed and the decision rule is given

by a so called hypothesis test φ : Ω → {0, 1} which decides on K if φ(ω) = 1

and on Θ if φ(ω) = 0. The decision for Θ when K is true is called type 2 error

(error of second kind). Then φ is called level α test when the probability of a

type 1 error is bounded by α for all ϑ ∈ H, i.e. when

sup
ϑ∈H

Pϑ({ω : φ(ω) = 1}) ≤ α. (1.1)

Thus, a decision for K when H is true could occur at most with probability α

which is often chosen less than or equal to 0.1. Then one is often interested in

tests which minimize the probability of a type 2 error for every ϑ ∈ K over all

1



Introduction 2

level α tests.

Modern technical procedures enable the simultaneous measurement of high

dimensional data. In the life sciences the Omics technologies like Genomics,

Proteomics and Metabolomics are worth mentioning. For some diseases like

diabetes it is assumed that a few genes may contribute to it. In order to identify

these genes genome wide association studies are applied. Typically, a hypothesis

is formulated for each gene which leads to a huge amount of null hypotheses.

These null hypotheses have to be judged simultaneously. As we will see, this is

a sensitive matter.

So let us switch to multiple hypotheses Hi ⊂ Θ with corresponding alter-

natives Ki = Θ \ Hi and tests φi, i = 1, . . . , n. The following is based on the

introductory story of Tukey [63] for the Higher Criticism concept. It can also

be found in Donoho and Jin [13]. For now, let us assume that each test φi is

an exact level α test for the single hypothesis test problem Hi versus Ki. There
often exists a ϑ ∈ Θ such that every Hi is true and Pϑ({ω : φi(ω) = 1}) = α for

i = 1, . . . , n. Then the expected number of type 1 errors is simply given by

E (�number of type 1 errors�) = nα (1.2)

which can be much larger than 1. Moreover, if the tests φi are also independent,

then the probability of at least one type 1 error is given by

P (�at least one type 1 error�) = 1− (1− α)n −→
n→∞

1 (1.3)

for �xed level α. Thus, standard level α tests are often not appropriate to judge

multiple hypotheses simultaneously and new concepts were developed. Before

we get to that, we will �rst set up the statistical framework for this thesis.

For the sake of completeness, if the null hypothesesHi are disjoint, then level
α tests are known to be appropriate to judge the hypotheses simultaneously in

the sense that the probability of at least one type 1 error is less than or equal

to α.

1.2 Model assumptions and statistical framework

Let us start with the following de�nition of the univariate stochastically larger

property.
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De�nition 1.1 (Stochastically larger)

Let X and Y be real random variables with distributions P1 and P2 and distri-

bution functions (df) F1 and F2, respectively. Then X is called to be stochas-

tically larger than Y if and only if (i�) F1(t) ≤ F2(t) for all t ∈ R. We also

call X to be stochastically larger than P2 and P1 to be stochastically larger than

P2 or write X
st
≥ Y , X

st
≥ P2, P1

st
≥ P2 and F1

st
≥ P2 instead of saying that X is

stochastically larger than Y .

Note that the above de�nition includes that a random variable X or distri-

bution P is stochastically larger than itself, i.e. we have X
st
≥ X and P

st
≥ P .

During this thesis we will consider di�erent models which are all special

cases of the following Basic Model. In particular we assume that every testing

procedure is based on p-values, to be more precise, on the ordered p-values.

Model 1.2 (Basic Model)

Let (Ω,A, {P ∈ P}) be a statistical experiment with a family of probability

measures P on Ω. Throughout, we assume that we have n ∈ N null hypotheses

Hi which may be true or false and corresponding alternative hypotheses Ki, 1 ≤
i ≤ n. The status of the null hypotheses, i.e. if they are true or false, is not

�xed in advance but random. Moreover, we only observe the vector of p-values

p = (p1, . . . , pn) of the corresponding null hypotheses (H1, . . . ,Hn). The p-values

of this model are now constructed as follows. Consider the random vector

(Hi, ζi, ξi)i≤n : Ω −→
(
{0, 1} × [0, 1]2

)n
. (1.4)

The random variable Hi codes the occurrence of a true null hypothesis Hi when
Hi = 0 and false null hypothesis when Hi = 1, respectively, for 1 ≤ i ≤ n. For

convenience, we will also talk about true and false p-values instead of true and

false null hypotheses. (ζi)i≤n denotes the vector of possible true p-values and

(ξi)i≤n the possible false ones. Furthermore, let H = (H1, . . . ,Hn) be the vector

which contains the status of the null hypotheses. At this point, the only distribu-

tional assumption of (Hi, ζi, ξi)i≤n is that the conditional marginal distributions

L(ζi|H = h), h ∈ {0, 1}n, of the possible true p-values are either stochastically

larger than the uniform distribution on [0, 1] or are the uniform distribution on

[0, 1] itself. The p-values are then given by

pi = (1−Hi)ζi +Hiξi, 1 ≤ i ≤ n, (1.5)
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and the random number of true p-values is given by

N0 =

n∑
i=1

(1−Hi). (1.6)

We denote by I0 = {i : Hi = 0} the random index set of true p-values and by

I1 = {i : Hi = 1} the random index set of false ones. Moreover, let us de�ne

the vectors of true and false p-values

pI0 = (pi : i ∈ I0) and pI1 = (pi : i ∈ I1), (1.7)

respectively. Every subsequently considered testing procedure only relies on the

empirical cumulative distribution function (ecdf)

F̂n(t) =
1

n

n∑
i=1

11{pi ≤ t}, t ∈ [0, 1], (1.8)

and thus only on the order statistics

p1:n ≤ p2:n ≤ . . . ≤ pn:n (1.9)

of the p-values p1, . . . , pn. Furthermore, we assume that E(N0) > 0.

The random number of true null hypotheses N0 goes back to Efron's two

group model, cf. Efron et al. [14].

In the following, let us denote by U(a, b) the uniform distribution on the

interval [a, b]. We will simply say uniform distribution or uniformly distributed

without mentioning the precise interval if we relate to the uniform distribution

on [0, 1].

Remark 1.3

(a) The Basic Model is a two stage model. In the �rst stage the true and

false null hypotheses are determined by sampling H from P . Then (ζi, ξi)i≤n is

sampled from the conditional distribution L(P |H) and for the p-value pi in the

second stage, the corresponding true p-value is picked out of (ζi)i≤n i� Hi = 0.

Otherwise, the corresponding false p-value is picked out of (ξi)i≤n. Note that

given the �rst stage, the marginal distribution of the sampled p-value pi may

also depend on all other (Hj)j 6=i and also on the other p-values.

(b) All error measures which will be considered in this thesis are based on the

number of type 1 errors and would be controlled anyway if E(N0) = 0. The
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considered error measures do not take into account the number of type 2 errors

or directional errors.

(c) Basic Model 1.2 makes almost no assumption about the distribution of

(p1, . . . , pn) and (Hi, ζi, ξi)i≤n. We will soon consider models with di�erent

dependence structures, marginal distributions of true and false p-values and

distributions of the occurrence of true and false p-values. This will happen

by specifying the set of probability measures P. Although (Ω,A,P) in Basic

Model 1.2 is introduced as an arbitrary statistical experiment, let us think of

P as a maximum possible model. Then all following models are submodels of

Basic Model 1.2. As already said, for the true p-values marginal distributions

L(ζi|H = h)
st
≥ U(0, 1), h ∈ {0, 1}n, are considered. For the false p-values usu-

ally marginal distributions L(ξi|H = h)
st
≤ U(0, 1) are considered.

(d) In the literature, the hypotheses Hi and Ki, i = 1, . . . , n, often may be

regarded as subsets of some nonparametric space of probability measures P.
This does not work here in general since the null hypotheses are randomly

true or false. But note that those models are included in the Basic Model. An

example will be given below in Model 1.4 (b).

Basic Model 1.2 is a very general model which contains the most popular

models of the FDR literature. These are the following:

Model 1.4

(a) (i.i.d. mixture model with uniformly distributed true p-values)

Starting from Basic Model 1.2 assume that H, (ζi)i≤n and (ξi)i≤n are jointly

independent random vectors. Moreover, let H1, . . . ,Hn be i.i.d. B(1, 1 − π0)

Bernoulli distributed for some π0 ∈ (0, 1]. Let (ζi)i≤n = (Ui)i≤n, with on (0, 1)

i.i.d. uniformly distributed random variables U1, . . . , Un and let (ξi)i≤n be i.i.d.

random variables which are distributed according to some distribution function

F1 on [0, 1]. For every �xed distribution under the present model the p-values

p1, . . . , pn are i.i.d. with pi ∼ Fπ0,F1 and Fπ0,F1(t) = π0t + (1 − π0)F1(t),

0 ≤ t ≤ 1.

(b) (Model, where the hypotheses are subsets of the parameter space)

Consider the multiple hypothesis testing problem (Ω,A, {Pϑ : ϑ ∈ Θ}), Hi ⊂ Θ,

i = 1, . . . , n, of Section 1.1. Let pi, i = 1, . . . , n, be p-values for the hypotheses

Hi which ful�ll the usual assumption Pϑ(pi ≤ t) ≤ t for all i and all ϑ ∈ Hi.
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Then for each �xed ϑ ∈ Θ the p-values p1, . . . , pn can be represented as p-

values in the Basic Model 1.2 by a speci�c probability measure P ∈ P for which

Hi = 11{ϑ ∈/ Hi}, i = 1, . . . , n, are deterministic.

(c) (Dirac-Uniform (DU) con�guration) Starting from Basic Model 1.2

assume that (Hi, ξi)i≤n is deterministic with N0 = n0 and ξi = 0, i = 1, . . . , n.

Moreover, let ζi, i = 1, . . . , n be i.i.d. uniformly distributed. Then this model is

called DU(n, n0) con�guration.

Model 1.4 (a) includes a Bayesian approach and is based on Efrons two group

model, cf. Efron et al. [14], and has also been considered by Storey [59, 60],

Storey et al. [61] and Genovese and Wasserman [22, 23]. The mixture model of

Donoho and Jin [13] is also based on this model. Although Model 1.4 (a) and

hence Basic Model 1.2 include a Bayesian model approach, we will exclusively

work with frequentist methods during this thesis, i.e. without the knowledge of

the prior distribution.

Model 1.4 (b) is the most popular model in the FDR literature and has,

for instance, been considered by Finner and Roters [20], Finner et al. [17]

and Dickhaus [11]. In the literature, there are usually various assumptions

concerning the dependence structure of the p-values. In Model 1.4 (b), these

are ignored for the moment. But later on we will introduce various dependence

structures for the Basic Model 1.2. Dirac-Uniform con�gurations have been

considered by Finner and Roters [20], Finner et al. [17], Finner and Gontscharuk

[18] and Finner et al. [19] for instance.

The null hypotheses H1, . . . ,Hn of Basic Model 1.2 are judged by a multiple

hypothesis test

φ(p) = (φ1(p), . . . , φn(p)) : Ω→ {0, 1}n (1.10)

based on p, where φi(p) : Ω → {0, 1} are single hypothesis tests for Hi versus
Ki. The multiple test has the common interpretation: reject Hi i� φi(p) = 1.

For simplicity, we will also talk about rejecting p-values if we mean rejecting

the corresponding null hypotheses. Note that the single hypothesis tests may

depend on the entire vector p which will be the case for step-wise tests. Let

us denote by R the number of rejected hypotheses. In the following, we

consider multiple tests which reject the smallest p-values p1:n, . . . , pR:n since

their null hypotheses are most signi�cant. For these multiple tests it su�ces to
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de�ne R. Once R is de�ned, the test is de�ned. For the sake of convenience we

will only deal with R in the following. As already mentioned, we will only work

with p-values p1, . . . , pn instead of test statistics and all upcoming multiple tests

are particularly based on the order statistics p1:n ≤ . . . ≤ pn:n. Therefore, we

will also write R(p) to emphasize that R is a function of p.

At this point, ties may cause a problem if pR:n = pR+1:n. Then it would

not be clear which of the corresponding null hypotheses should be rejected and

which ones should not be rejected. But this problem does not occur for the

step-wise multiple tests considered below since they reject all null hypotheses

corresponding to p-values pi:n ≤ pR:n, i = 1, . . . , n.

By applying the multiple test, the single hypothesis tests may cause several

type 1 and type 2 errors simultaneously. As we mentioned, for a single hypoth-

esis test it is appropriate to control the probability of a type 1 error. Otherwise,

for a multiple test it seems to be appropriate to control properties of the unob-

servable number of type 1 errors. Throughout this thesis the number of type 1

errors, i.e. the number of false rejections, of a multiple test will be denoted by

V . For the Basic Model 1.2 we then have

V =
∑
i∈I0

11{“Hi is rejected�}. (1.11)

Later we will give a nice and easy manageable representation of V for step-wise

testing procedures which will also be de�ned later. Moreover, let us de�ne

R(t) = nF̂n(t) =
n∑
i=1

11{pi ≤ t} and (1.12)

V (t) =
∑
i∈I0

11{pi ≤ t} (1.13)

for 0 ≤ t ≤ 1. These are the quantities R and V for the multiple test which

exactly rejects the p-values pi which are less than or equal to the �xed threshold

t.

1.3 Error rates

As already mentioned, the control of the probability of a type 1 error for each

single hypothesis test is not appropriate in multiple testing. Therefore, several

other error concepts have been developed in the past. These error concepts are
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usually based on the random variables V and R. Let us start with the best

known error rates.

De�nition 1.5 (FWER, FDR, ENFR)

(a) The familywise error rate (FWER) of a multiple test φ for a distribution

P ∈ P is given by

FWERP (φ) = P (V > 0) (1.14)

which is the probability of at least one type 1 error.

(b) The false discovery rate (FDR) of a multiple test φ for a distribution

P ∈ P is given by

FDRP (φ) = EP
(

V

R ∨ 1

)
, (1.15)

where a∨b = max(a, b). Then the FDR is the expected portion of false rejections

among all rejections of the multiple test.

(c) The expected number of false rejections (ENFR) of a multiple test φ

for a distribution P ∈ P is given by

ENFRP (φ) = EP (V ) . (1.16)

(d) To simplify notation, we write FDR (FWER, ENFR) instead of FDRP (φ)

(FWERP (φ), ENFRP (φ)).

(e) The multiple test is said to control the FDR (FWER) by α ∈ (0, 1) for

the model P i� FDRP (φ) ≤ α (FWERP (φ) ≤ α) holds for every distribution

P ∈ P. Moreover, the multiple test is said to control the ENFR by α̃ ∈ (0, n)

for the model P i� ENFRP (φ) ≤ α̃ holds for every distribution P ∈ P. For

abbreviation, let us say the multiple test controls the FDR (FWER, ENFR) by

α if it is clear which model P is meant.

The FWER is the oldest error rate for multiple hypothesis tests and is known

to be very restrictive for large n. Multiple tests controlling the FWER often

have a lack of power (i.e. the number of type 2 errors tends to be large).

To overcome this problem, Benjamini and Hochberg [2] promoted the FDR

as error criterion in their pioneering work �Controlling the false discovery rate:

a practical and powerful approach to multiple testing�. See Benjamini [1] for the

background of this paper. Nowadays, the FDR is widely used and accepted as

error criterion and much e�ort has been done to develop multiple tests control-

ling it under di�erent model assumptions. It is used when the number of false
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rejections V is allowed to be a reasonable portion of the number of all rejections

R. For instance, this is the case for exploratory data analysis. Genome wide

association studies are often evaluated in an exploratory manner and the sig-

ni�cant genes are judged again by a follow-up study. Benjamini and Hochberg

also discussed the properties of the positive FDR which is de�ned as

pFDRP = EP
(

V

R ∨ 1

∣∣∣R > 0

)
. (1.17)

The Bayesian interpretation of this error rate has particularly been studied by

Storey [60].

The ENFR is also called per family error rate, PFE for short. It has been

particularly investigated by Scheer [54].

Note that the FDR is the expectation over the so called false discovery

proportion FDP = V
R∨1 . A main criticism of the FDR is that it says little

about the actual distribution of the FDP. To be more precise, it is not guaranteed

that a speci�c portion of the rejected p-values is correctly rejected with speci�c

probability. Therefore, the γ-FDP has been proposed which is de�ned by γ-

FDP = P (FDP > γ) for some 0 < γ < 1. Clearly, γ-FDP ≤ α ensures that at

most γR hypotheses of the R rejected ones are at least correctly rejected with

probability 1− α.
A less conservative alternative to the FWER is the k-FWER for some in-

teger k ≥ 1. It is given by k-FWER = P (V ≥ k) and allows up to k − 1 false

rejections. In comparison to the FDP based error rates it does not relate the

number of false rejections to the number of all rejections.

The γ-FDP and k-FWER are only listed for the sake of completeness and

are not addressed in this thesis. For a treatment of these error rates we refer

the reader to Lehmann and Romano [34], Romano and Shaikh [46, 47], Romano

and Wolf [48] and Döhler [12].

During this thesis we will mainly consider the FDR as error criterion and in

parts the ENFR. Later we will also allow the control of a generalized error rate

which has been introduced by Meskaldji et al. [39]. But the main examples for

this generalized error rate will again be the FDR and ENFR.



Introduction 10

1.4 Multiple testing procedures

This thesis mainly deals with step-up and adaptive step-up tests which are

de�ned as follows.

De�nition 1.6 (SU and adaptive SU test)

Let 0 < α1:n ≤ α2:n ≤ . . . ≤ αn:n < 1 be a sequence of �xed critical values. Then

the multiple test which results from

R = R(p) = max{i : pi:n ≤ αi:n} (1.18)

with max 0/ = 0 is called step-up test (SU test). The test then rejects the null

hypotheses corresponding to the p-values p1:n, . . . , pR:n, for short, the test rejects

the p-values p1:n, . . . , pR:n. Moreover, if the critical values αi:n, i = 1, . . . , n, are

replaced by data dependent critical values 0 < α̂1:n ≤ . . . ≤ α̂n:n < 1 in (1.18)

(i.e. if the critical values α̂i:n = α̂i:n(p) are functions of p), then it is called

adaptive step-up test (adaptive SU test).

Remark 1.7

(a) We will also use the representation α̂i:n = α̂i:n((F̂n(t))t≥λ) if we want to

accentuate that the critical values may also be de�ned as function of (F̂n(t))t≥λ

for some tuning parameter 0 < λ < 1. Observe that SU tests are permutation-

invariant in the p-values. Thus, the data dependent critical values of the adap-

tive SU tests should also be permutation-invariant in the p-values and hence be

based on the order statistics.

(b) The step-wise multiple tests exactly reject all null hypotheses corresponding

to p-values pi ≤ αR:n and pi ≤ α̂R:n, respectively. This can alternatively serve

as de�nition for the exact rejection procedure and the problems with reference

to ties which are mentioned above do not occur anymore.

(c) A SU test with αn:n ≥ 1 would always reject every null hypothesis. Thus,

we exclude this case.

In their pioneering work, Benjamini and Hochberg [2] proposed a SU test and

showed that it controls the FDR by α under an independence assumption. The

so called Benjamini Hochberg SU test (BH test) is given by the critical

values

αBHi:n =
i

n
α, i = 1, . . . , n. (1.19)
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It is also called linear step-up test and is based on the Simes test which has

been introduced as test for the global null hypothesis and controls the FWER

in the weak sense (i.e. FWER ≤ α holds for �xed N0 = n), see Simes [58].

For now, let us assume that H is �xed and not random anymore, all p-values

are independent and the true p-values are distributed according to the uniform

distribution. Then Benjamini and Hochberg [2] showed

FDR ≤ N0

n
α. (1.20)

Later, Benjamini and Yekutieli [5] and Finner and Roters [20] obtained that �≤�
can be replaced by �=� in (1.20). We will refer to this as Benjamini Hochberg

Theorem. Moreover, Benjamini and Yekutieli [5] also showed that (1.20) still

holds if H is �xed, the true p-values are distributed according to the uniform

distribution and the p-values are positively regression dependent on the subset

of true p-values which will be de�ned later on.

By Benjamini and Yekutieli [5] it is well-known that (1.20) no longer applies

for arbitrary dependent p-values. Under the assumption of �xed H, uniformly

distributed true p-values and arbitrary dependence structure of p1, . . . , pn, they

showed that (1.20) applies for the SU test with critical values

αBYi:n =
i

n
∑n

j=1
1
j

α, i = 1, . . . , n. (1.21)

Later, Blanchard and Roquain [7] obtained that these critical values may also

be replaced by

αBRi:n =
α

n

∫ i

0
xdν(x), i = 1, . . . , n, (1.22)

where ν is an arbitrary probability measure on (0,∞) and (1.20) also holds

for true p-values which are stochastically larger than the uniform distribution.

They noted that the choice of ν({k}) =
(
k
∑n

j=1
1
j

)−1
, k = 1, . . . , n, just leads

to the critical values (1.21). Further results for the FDR of speci�c multiple

tests under dependence have been obtained by Blanchard and Roquain [7, 8],

Farcomeni [15], Finner et al. [16, 17], Gontscharuk [24], Guo and Rao [25],

Roquain and Villers [50, 49], and Sarkar [51, 53] for instance.

Moreover, Blanchard and Roquain [7] showed that two simple conditions are

su�cient for FDR control, namely, a so called dependency condition and a self

consistency condition. Basically, the dependency condition imposes a condition

on a SU test for a �xed dependency structure. Then every multiple test which
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additionally ful�lls the self consistency condition based on the critical values

of the SU test exhibits FDR control. As rule of thumb, all p-values which are

rejected by the multiple test have to be less than or equal to αR′:n, where R′

is the number of rejections of the multiple test and αi:n, i = 1, . . . , n, are the

critical values of the SU test mentioned above. Each of these multiple tests reject

not more null hypotheses than the SU test. The self consistency condition is

very interesting for a reduction of the rejections of a SU test when FDR control

is still desired. This may be the case if a follow up study can only be carried

out for a certain small number of hypotheses or genes for instance. By the

results of Blanchard and Roquain [7] it follows easily that we don't even need

to reject the smallest p-values while still preserving FDR control as long as the

self consistency is satis�ed. In what follows, we pursue a di�erent aim and try

to increase the number of rejections.

Note that the consideration of �xed H corresponds to a conditional expec-

tation in the above de�nition of the FDR and is also a special case of random

H.

In the literature, also other SU tests with deterministic critical values 0 <

α1:n ≤ . . . ≤ αn:n < 1 have been considered. A common assumption for the

critical values is that

i→ αi:n
i

is non-decreasing. (1.23)

Under (1.23) and the assumptions of the BH Theorem, Benjamini and Yekutieli

[5, Theorem 5.3] showed that Dirac-Uniform con�gurations (without mentioning

these explicitly) are least favorable for the FDR, i.e.

FDRP ≤ FDRDU(n,n0) (1.24)

holds for all considered distributions P . The DU con�guration provides an easily

manageable upper FDR bound and proving FDRDU(n,n0) ≤ α, 1 ≤ n0 ≤ n

su�ces to show FDR control under the setting of the BH Theorem.

It is easy to verify that (1.23) holds for critical values coming from a concave

rejection curve which will be de�ned as follows.

De�nition 1.8

Let r : [0, 1]→ [0,∞) be a continuous, concave and non decreasing function with
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r(0) = 0 and r(x0) = 1 for some x0 < 1. We refer to r as concave rejection

curve. Moreover, let r−1 be the left continuous inverse and n ∈ N be �xed, then

αi:n = r−1
(
i

n

)
, i = 1, . . . , n, (1.25)

de�nes a set of critical values for step-wise tests. The function r−1 is also called

critical value curve.

Remark 1.9

(a) The assumption r(x0) = 1 for some x0 < 1 ensures αn:n < 1 which is reason-

able for SU tests. This assumption is often replaced by the weaker assumption

r(1) ≥ 1. For this thesis, we mainly consider the more stringent de�nition of

rejection curves.

(b) Furthermore, each of these rejection curves provides sequences of step-wise

tests which can be analyzed asymptotically. In Section 2.4 we will establish the

asymptotics of the worst case FDR of this sequence as �x point equation.

The critical values (1.19) of the BH test are given by the rejection curve

rBH(t) = t
α , t ∈ [0, 1], see Finner et al. [17] for instance. Moreover, Finner et al.

[17] introduced the Asymptotically Optimal Rejection Curve (AORC)

which is constructed to have FDR = α in an asymptotic Dirac-Uniform con-

�guration. This addresses the fact that the predetermined FDR level α is not

exhausted by the BH test if there is at least one false null hypothesis. For �xed

α ∈ (0, 1) the AORC is given by

rα(t) =
t

t(1− α) + α
, t ∈ [0, 1], (1.26)

and leads to the critical values

αAORCi:n =
iα

n− i(1− α)
, i = 1, . . . , n. (1.27)

Observe that the assumptions of De�nition 1.8 are not ful�lled for the AORC

since αn:n = r−1α (1) = 1. There exist several adjustments of the AORC and

critical values to overcome this. Finner et al. [17] consider the AORC on a

speci�c interval, say [0, t∗] with t∗ < 1, and di�erent continuations on [0, 1] such

that the concavity just holds or at least (1.23) is just ful�lled. Furthermore,

Finner et al. [19] consider so called step-up-down tests with critical values

αAORCi:n =
iα

n+ βn − i(1− α)
, i = 1, . . . , n, (1.28)
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with βn > 0. These are given by the rejection curve r(t) = (1+ βn
n )rα(t) which is

a modi�cation of the AORC for �xed n. Gavrilov et al. [21] previously discussed

the step-down test (SD test) with critical values (1.28) given by βn = 1. We

will give a de�nition of SD tests and discuss some of these adjustments later in

Section 2.3.

Scheer [54] uses the possibility to de�ne step-wise multiple tests in terms of

crossing points of the rejection curve and the ecdf F̂n. We will revert to this

technique in some proofs for the asymptotics of the FDR.

As already seen in (1.20), the predetermined FDR level α is not exhausted

by the BH test if there is at least one false p-value. In order to improve this,

adaptive SU tests have been proposed. The best known of these is the adaptive

SU test of Storey et al. [61] which is related to the results of Schweder and

Spjøtvoll [55] in some way. Let λ ∈ (0, 1) be a tuning parameter which is often

chosen close to 0.5 and let a∧ b = min(a, b). The test is then based on the data

dependent critical values

α̂i:n =

(
i

n̂0
α

)
∧ λ (1.29)

with estimator

n̂0 = n̂0(λ) = n
1− F̂n(λ) + 1

n

1− λ
. (1.30)

For �xed H the estimator n̂0(λ) is an estimator for the number of true null

hypotheses N0. Storey et al. [61] showed that this test controls the FDR by α

under the same assumptions as in Benjamini and Hochberg [2]. Adaptive SU

tests of the form (1.29) with di�erent estimators n̂0 for N0 (or estimators for

related terms) were often considered in the recent literature. Sometimes taking

the minimum with λ in (1.29) has been omitted for the de�nition of the critical

values. We refer to adaptive SU tests with critical values of the form (1.29) as

adaptive SU tests of Storey type, but for convenience, we will often just

talk about adaptive SU tests.

A frequently used motivation for adaptive SU tests of Storey type with esti-

mator n̂0 for N0 under these assumptions is the following. If the predetermined

level α in the BH test is replaced by the data dependent level n
n̂0
α, then

FDR ≈ N0

n
· n
n̂0
α ≈ α (1.31)
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would approximately hold. Another motivation based on Storey [61] is given

in Chapter 3. This motivation will also hold for true p-values whose marginal

distributions are stochastically larger than the uniform distribution.

In the recent literature, several su�cient conditions for �nite sample FDR

control of adaptive SU tests of Storey type have been developed, see Benjamini

et al. [4], Sarkar [52] and Zeisel et al. [65] for instance. Moreover, much e�ort

has been done to develop and analyze estimators of N0 and related terms, see

Benjamini and Hochberg [3], Benjamini et al. [4], Blanchard and Roquain [8],

Celisse and Robin [9], Chen and Doerge [10], Dickhaus [11], Langaas et al.

[32], Liang and Nettleton [36], Meinshausen and Rice [37], Pounds and Cheng

[43, 44], Schweder and Spjøtvoll [55], Storey [59, 60], Storey et al. [61] and

Zeisel et al. [65]. Some approaches are based on the choice of λ for the Storey

estimator (1.30), see Langaas et al. [32] for a short summary and also Liang

and Nettleton [36].

When the critical values of a step-wise test coincide, i.e. when α1:n = . . . =

αn:n, then the test degenerates to a single step test which rejects a p-value pi

i� pi ≤ α1:n. The most famous single step test is the Bonferroni test which

is de�ned by α1:n = α
n and controls the FWER by α. Furthermore, the �idàk

test is de�ned by α1:n = 1 − (1 − α)
1
n and controls the FWER by α under

an independence assumption. Finner and Gontscharuk [18] introduced adaptive

versions of these tests, where n is replaced by a Storey type estimator of the

form

n̂0(λ, κ) = n
1− F̂n(λ) + κ

n

1− λ
(1.32)

for some 0 < λ < 1 and κ > 0. They were the �rst who showed that the FWER

of these adaptive tests is controlled by α under an independence assumption for

several choices of λ and κ.

The adaptive and non adaptive SU tests yield a nice representation of the

number of false rejections given by

V =
∑
i∈I0

11{pi ≤ α̂R:n}. (1.33)

This equality easily follows by (1.11) and Remark 1.7. Many of the following

proofs will use this representation.
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1.5 New ideas for adaptive step up tests

Inference in multiple hypothesis testing is known to be more di�cult than in-

ference in single hypothesis testing. However, it also o�ers some possibilities

of improvements which do not exist for single hypothesis testing. For instance,

consider a one-sided single hypothesis testing problem, say {ϑ ≤ ϑ0} versus

{ϑ > ϑ0}. If the real distribution lies deep inside the null hypothesis, then the

actual probability of a type 1 error will often be much smaller than the allowed

type 1 error level α. In other words, the allowed type 1 error level α is often far

from being exhausted.

The adaptive test of Storey et al. [61] already tries to improve the exhaustion

of the predetermined allowed FDR level α since (1.20) holds for the BH test.

However, if the marginal distributions of some true p-values are stochastically

larger than the uniform distribution, then the adaptive test of Storey et al. [61]

may perform badly in the sense, that it rejects less hypotheses than the BH test

and that the allowed FDR level α is again far from being exhausted. In this

case, even the actual FDR level of the BH test decreases. True p-values which

are stochastically larger than the uniform distribution often occur in one-sided

hypotheses testing problems. But now, in comparison to a single hypothesis

test, there is more than one p-value available and the present information given

by the p-values is beyond the information for the estimation of the number of

true null hypotheses. In this thesis, it is shown how to use and incorporate

this information into a new estimation concept to improve the exhaustion of

the allowed FDR level α when the marginal distributions of some true p-values

are stochastically larger than the uniform distribution. These improvements,

which are the main results of Chapter 3 and 4, hold under a basic independence

assumption and some slight regularity assumptions.

Pounds and Cheng [44] and Dickhaus [11] already mentioned the lack of

exhaustion of the FDR in these cases and tried to improve the commonly con-

ducted estimation (mostly for N0 and related terms). Therefore, Dickhaus [11]

considered randomized p-values which allow an improved estimation of N0. But

note that this randomization particularly loses the useful information on which

our new estimation concept is based. Moreover, we will show that N0 (or related

terms like π0) is not the parameter which should really be estimated for adaptive

SU tests when stochastically larger true p-values are allowed. The estimation of



Introduction 17

the crucial parameter is quite more complex.

Note that for single hypothesis tests a better exhaustion of the allowed type

1 error level would only be desirable if the power of the tests got larger. Oth-

erwise it would only produce more errors. Moreover, for the separability of the

hypotheses, it is quite desirable that the type 1 error level is close to zero if

the present distribution lies deeper inside the null hypothesis. In addition, it

is desirable that the type 2 error level tends to zero if the present distribution

goes deeper inside the alternative hypothesis. But observe that this behavior

is not desirable for multiple hypothesis tests. One or more null p-values whose

distributions lie deep inside the null hypotheses often disturb the detection of

false p-values. Moreover, an increasing sample size n already deteriorates this

detection. Thus, one would like to have multiple tests with maximal detection

power of false null hypotheses with simultaneous FDR control. Therefore, we

will focus on the exhaustion of the predetermined FDR level. In some way, the

new procedures include a reduction of the dimension n.

In the literature, it is often dealt with least favorable parameter con�g-

urations (LFCs) and non-increasing testing procedures. LFCs often provide

an easily manageable upper FDR bound. However, this approach sometimes

works against the idea of exhausting the allowed FDR level α which is the

idea of adaptive multiple tests. By only considering LFCs one misses a chance

of improvement of the exhaustion. For example, Blanchard and Roquain [8],

Blanchard et al. [6], Finner and Roters [20], Finner et al. [17], Finner and

Gotscharuk [18] Finner et al. [19], Etienne and Roquain [50] and Gontscharuk

[24] worked with LFCs. In the literature, it turned out that LFCs are often

given by Dirac-Uniform con�gurations.

Furthermore, non-increasing testing procedures sometimes miss possi-

ble improvements. A multiple testing procedure is called non-increasing if the

mapping pi → R is non-increasing in each p-value pi. Thus, for adaptive non-

increasing multiple tests with critical values of the form (1.29), estimators n̂0 are

considered which are non-decreasing, i.e. the mapping pi→ n̂0 is non-decreasing

in each p-value. A common motivation for non-increasing multiple tests is the

following. The larger a single p-value the less signi�cant the corresponding hy-

pothesis and the less p-values should be rejected. But this motivation is based

on a one dimensional incomplete view of things. Observe that a multiple test
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usually rejects a number of small p-values. A consideration of all p-values thus

yields that an excessive number of large p-values indicates that there are too few

small true p-values in the area, where the p-values may be rejected. Hence we

are able to reject more p-values by still controlling the FDR as the statements

of Chapter 4 will show. The mapping pi → R should rather be non-increasing

in each p-value only on the area, where a p-value really may be rejected. We

will especially consider adaptive multiple tests which are not non-increasing in

order to improve the exhaustion of the predetermined FDR level α over a wide

range. Non-increasing testing procedures and non-decreasing estimators have,

for instance, been considered by Benjamini et al. [4], Blanchard and Roquain

[7, 8], Sarkar [52] and Zeisel et al. [65]. In particular, Benjamini et al. [4]

and Blanchard and Roquain [7, 8] used that the uniform distribution is least

favorable for the true p-values (among stochastically larger distributions) for

the FDR of non-increasing (adaptive) SU tests. This is a relative easy way to

show that these procedures work in these cases, but they do not work always

well, as we will see.

1.6 Outline

Chapter 2 provides three central lemmas (Lemma 2.5, 2.9 and 2.10) from which

we derive a certain amount of results for several dependence structures. Section

2.1 gives a de�nition of these dependence structures, including independence,

a reverse martingale structure, positive regression dependence and arbitrary

dependence. The central lemmas are stated in Section 2.2 and each of them

gives attention to some of these dependence structures. Section 2.3 contains

results concerning the FDR of non adaptive SU tests and the critical values of

SU tests with FDR control. In Section 2.4 we establish the asymptotic worst

case FDR of step-wise tests coming from a concave rejection curve as solution

of a �x point equation and Section 2.5 provides a converse result of the BH

Theorem. Moreover, Section 2.6 is devoted to the study of the asymptotic FDR

of adaptive SU tests.

In Chapter 3 we extend the results of Storey [59, 60] to p-values whose

marginal distributions are stochastically larger than the uniform distribution

which may occur for one sided hypotheses. The often applied estimator of

Storey (1.30) does not work well here. Therefore, we motivate a new class of
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estimators for adaptive SU tests and show that the common estimation of the

number of true null hypotheses is not appropriate for the exhaustion of the FDR

in this case. Moreover, we will discuss some other estimators.

In Chapter 4 we establish a new su�cient condition for �nite sample FDR

control of adaptive SU tests under independence which does not need the as-

sumption of non decreasing estimators. Moreover, we prove that a slightly

modi�ed estimator from Chapter 3 satis�es this condition. It turns out that

the selection of the estimator for the adaptive SU test may even be performed

in a data dependent manner. A reasonable selection method with proven FDR

control which yields a better exhaustion of the FDR and thus more power is

discussed in a practical guide. In this chapter, an important assumption is the

convexity of the marginal distribution functions of the true p-values. We will

show that this is a rather weak assumption.

Chapter 5 is devoted to �nite sample FDR control of adaptive SU tests

under a speci�c kind of dependence. The p-values may line up into independent

blocks, where the p-values within each block may form a reverse martingale.

Finally, the appendix contains some technical results which are used in the

proofs of the previous chapters.



Chapter 2

Inequalities for the FDR and

critical values

In this chapter, we provide a number of results for the FDR of several mul-

tiple tests under di�erent dependence structures. These include independent

true p-values, a reverse martingale dependency, p-values which are positively

regression dependent on the subset of true p-values (PRDS), negatively regres-

sion dependent true p-values (NRDS) and an arbitrary dependency, see Section

2.1. In Section 2.2 we establish some powerful technical and central lemmas.

The inequalities in these lemmas enable the development of inequalities for the

FDR itself and for the critical values of SU tests which exhibit FDR control.

This is part of Section 2.3. Furthermore, we represent the asymptotic worst case

FDR of SU tests which come from a concave rejection curve as unique solution

of a �x point equation, see Section 2.4. This �x point equation merely relies

on the concave rejection curve. In Section 2.5 we derive a converse Benjamini

Hochberg type Theorem and show that the BH test is the only SU test which is

not in�uenced by the distribution of false p-values when uniformly distributed

true p-values are present. In Section 2.6 we have a look at the asymptotics of

adaptive SU tests. Adaptive tests of Storey type (1.29) are considered for re-

verse martingale dependent p-values (including independent ones) and another

type of adaptive tests is proposed for arbitrary dependent p-values. The cen-

tral lemmas easily establish a common su�cient condition for the estimators or

distributions which ensures asymptotic FDR control.

20
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The results of this chapter mainly rely on Heesen and Janssen [29]. In their

work, they focused on uniformly distributed true p-values, whereas the present

results often include true p-values whose marginal distributions are stochasti-

cally larger than the uniform distribution. However, these generalizations for

non-adaptive multiple tests are usually clear by slight changes in the proofs. In

particular, the notation has changed to treat all cases at once. For uniformly

distributed true p-values it often su�ces to condition under N0, but for stochas-

tically larger ones it is convenient to condition under H. Section 2.5 relies on

Heesen and Janssen [28].

2.1 Dependence structures

The simplest dependence structure contains independent true p-values and the

most results in the literature refer to this structure. In view of Basic Model 1.2,

the status of a null hypothesis, i.e. if it is true or false, is random. Hence, our

simplest dependence structure contains a conditional independence assumption.

Model 2.1 (Basic Independence Model (BI) and generalized Basic Indepen-

dence Model (gBI))

Starting from Basic Model 1.2, assume that conditioned under H = (H1, . . . ,

Hn) the true p-values pi, i ∈ I0, and the vector of false p-values pI1 are jointly

independent. Note that pI1 is considered as one random variable, whereas pi,

i ∈ I0, are considered as individual random variables in terms of independence.

(a) Conditioned under H let

pi ∼ U(0, 1), i ∈ I0. (2.1)

Then we call this model Basic Independence Model (BI).

(b) Conditioned under H let

pi ∼ F0,H,i, i ∈ I0, (2.2)

with a df satisfying F0,H,i(t) ≤ t, t ∈ [0, 1]. Then we call this model generalized

Basic Independence Model (gBI). Here each true p-value is allowed to have

a di�erent marginal distribution.

For notational convenience the de�nition of the model above distinguishes

between uniformly distributed true p-values and stochastically larger ones. As
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already seen in the introduction, the largest part of the FDR literature focuses

on uniformly distributed true p-values, whereas only a small part also considers

stochastically larger ones.

For two vectors c = (c1, . . . , cn) and c′ = (c′1, . . . , c
′
n) with c, c′ ∈ [0, 1]n

let c ≤ c′ denote the component-by-component property ci ≤ c′i, i = 1, . . . , n.

Moreover, let B([0, 1]n) denote the Borel sets of [0, 1]n, then a set C ∈ B([0, 1]n)

is said to be decreasing i� c′ ∈ C and c ≤ c′ imply c ∈ C. The next de�nition
allows for more dependence between all p-values.

Model 2.2 (Reverse martingale dependence, PRDS, NRDS)

Starting from Basic Model 1.2 consider the following submodels.

(a) Conditioned under H let

11{pi ≤ t}
t

, 0 < t ≤ 1, (2.3)

be a reverse martingale for every i ∈ I0 with respect to the reverse �ltration

Ft = σ
(
H, 11{pj ≤ s} : s ≥ t, 1 ≤ j ≤ n

)
. Then we call this model Reverse

Martingale Model (RM Model).

(b) For every decreasing set C ∈ B([0, 1]n), h ∈ {0, 1}n and i ∈ I0 let

t→ P (p ∈ C|pi ≤ t,H = h) (2.4)

be non-increasing. Then we call this model PRDS Model (positive regression

dependent on the subset of true null hypotheses).

(c) Under the assumptions in (b), let (2.4) be non-decreasing and let L(ζi|H =

h) = U(0, 1), i = 1, . . . , n, for all h ∈ {0, 1}n, then we call this model NRDS

Model (negative regression dependent on the subset of true null hypotheses).

Remark 2.3

(a) Since P (pi ≤ 1|H = h) = 1 obviously holds for every 1 ≤ i ≤ n and

h ∈ {0, 1}n, the martingale property directly implies that L(pi|H = h) = U(0, 1)

for every i ∈ I0 under this condition.
(b) An interesting generalization of the RM Model would be a reverse super

martingale model, i.e.

E
(

11{pi ≤ t}
t

∣∣∣Fs, H = h

)
≤ 11{pi ≤ s}

s
(2.5)

holds for t < s and i ∈ I0 with H = h ∈ {0, 1}n. This leads to convex marginal

distribution functions for the true p-values which will be a crucial condition in
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Chapter 4 for the gBI Model.

(c) The BI Model is a submodel of the gBI, RM, PRDS and NRDS Model and

the gBI Model is a submodel of the PRDS Model. In this sense, the PRDS and

NRDS Model are not comparable with the RM Model. But the intersection of

the PRDS and RM Model are at least greater than the BI Model. It is easy

to check that the maximal dependent uniform case, i.e. when ζ1 = . . . = ζn ∼
U(0, 1) and H1 = . . . = Hn = 0, is included in both models.

(d) Assumption (2.4) in the de�nition of the PRDS Model is slightly weaker

than the original assumption of Benjamini and Yekutieli [5]. Instead of (2.4)

they demand

t→ P (p ∈ C|pi = t,H = h) (2.6)

to be non-increasing in our notation and in terms of p-values. Originally they

only considered deterministic H and formulated (2.6) in terms of test statistics.

It is well known that (2.6) implies (2.4), cf. Finner et al. [17] for instance.

Nevertheless, we will call it PRDS Model.

In addition to identical true p-values the RM Model yields a rich class of

other underlying distributions for the p-values. The next example occurs in

multivariate extreme value theory and risk analysis when the p-values have a

joint risk component.

Example 2.4 (RM Model, cf. Heesen and Janssen [29] Example 2.1)

LetX1, . . . , Xn, Y be independent, continuous and real-valued random variables,

where X1, . . . , Xn are i.i.d.. Moreover, let Zi = max(Xi, Y ), i = 1, . . . , n and

H(t) = P (Z1 ≤ t), t ∈ R. The transformed p-values pi = H(Zi) then ful�ll

(2.3) and the distribution of p1, . . . , pn is included in the RM Model.

Proof. De�ne

M
(i)
t =

11{Zi ≤ t}
H(t)

for t ∈ {H > 0}, i = 1, . . . , n.

For n = 1 it is well known that M (1)
t is a reverse martingale w.r.t. Gt =

σ(M
(1)
s : s ≥ t). We now prove that M (1)

t is a reverse martingale w.r.t. Ft =

σ((M
(j)
s )s≥t : j = 1, . . . , n) = σ((11{Zi ≤ s})s≥t : j = 1, . . . , n) in the case

of n > 1. Therefore let t < s. Obviously, E(M
(1)
t |Fs) = 0 = M

(1)
s if Z1 > s.

Otherwise, Z1 ≤ s implies X1 ≤ s and Y ≤ s. Thus, 11{Zi ≤ τ} = 11{Xi ≤ τ}



Inequalities for the FDR and critical values 24

holds for all i ≥ 2 and τ ≥ s. By the independence of Z1 and X2, . . . , Xn it

follows that

E
(
M

(1)
t |Fs

)
= E

(
M

(1)
t |Fs

)
11{Z1 ≤ s}

= E
(
M

(1)
t |11{Zi ≤ τ} : τ ≥ s, i = 1, . . . , n

)
11{Z1 ≤ s}

= E
(
M

(1)
t |11{Z1 ≤ s}, 11{Xi ≤ τ} : τ ≥ s, i = 2, . . . , n

)
11{Z1 ≤ s}

= E
(
M

(1)
t |11{Z1 ≤ s}

)
11{Z1 ≤ s}

= E
(
M

(1)
t |Gs

)
11{Z1 ≤ s}

= E
(
M

(1)
t |Gs

)
= M (1)

s .

Finally, observe that the time change

u→M
(i)
H−1(u)

=
11{H(Zi) ≤ u}

u
, i = 1, . . . , n,

preserves the reverse martingale property for the pseudo-inverse distribution

function H−1 and yields the desired distribution for the p-values. �

In the literature, conditional versions of the BI, gBI and PRDS Models have

often been considered, see Benjamini and Hochberg [2], Benjamini and Yekutieli

[5], Blanchard and Roquain [7], Finner and Roters [20] and Finner et al. [17]

for instance. The conditional versions also correspond to deterministic H which

is a special case of the models presented above.

Note that a model which allows arbitrary dependent p-values is just given

by Basic Model 1.2 and obviously includes all other models.

2.2 Central lemmas

Almost all results of this Chapter are based on the following central lemmas

which yield equalities and inequalities depending on the present model which

enable conclusions for interesting aspects of the FDR. The theory of this section

for the BI Model, the RM Model, the PRDS Model with uniformly distributed

true p-values and the NRDS Model is treated in Heesen and Janssen [29] Lemma

6.1 (a) and (b).
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Let us start with the basic independence type models and the RM Model.

The technique of Lemma 2.5 also provides a short proof of the Benjamini

Hochberg Theorem, see (1.20).

Lemma 2.5 (cf. Heesen and Janssen [29] Lemma 6.1 (a))

Let 0 < α̂1:n ≤ . . . ≤ α̂n:n ≤ λ < 1 be data dependent critical values given by

measurable functions

α̂i:n = α̂i:n((F̂n(t))t≥λ), i = 1, . . . , n. (2.7)

Moreover, introduce α̂0:n = α̂1:n and γ(i) = nα̂i:n. Then

E
(

V

γ(R)

)
=

E(N0)

n
(2.8)

holds for the SU test under the RM Model (including the BI Model) and �≤�
holds in (2.8) under the gBI Model.

Proof. Let us �rst prove the assumption for the RM Model. Therefore, observe

that the SU test can be represented by the reverse stopping time

τ = sup{α̂i:n, i = 1, . . . , n : pi:n ≤ α̂i:n} ∨ α̂1:n,

which is adapted to the reverse �ltration (Ft)0<t≤1 and where sup 0/ = 0. Then

every p-value pi ≤ τ is rejected and we have V
γ(R) = V (τ)

γ(R(τ)) by the de�nitions

(1.12) and (1.13). Due to the measurability, conditioned under Fλ the critical

values α̂1:n, . . . , α̂n:n may be considered as �xed. Thus, τ is a discrete stopping

time w.r.t. the reverse martingale (2.3) for the period α̂1:n ≤ t ≤ λ under

this condition. Furthermore, due to the construction of τ and α̂0:n = α̂1:n we

observe that α̂R(τ):n = τ . Thus, by (2.3) and the discrete version of the optional

stopping theorem we obtain

E
(

V

γ(R)

∣∣∣Fλ) = E
(

V (τ)

γ(R(τ))

∣∣∣Fλ) = E
(

V (τ)

nα̂R(τ):n

∣∣∣Fλ)

=
1

n
E
(
V (τ)

τ

∣∣∣Fλ) =
1

n
E
(
V (λ)

λ

∣∣∣Fλ)
and again by (2.3), integration yields

E
(

V

γ(R)

)
=

1

n
E
(
V (λ)

λ

)
=

1

n
E
(
V (1)

1

)
=

E(N0)

n
.
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Let us now consider the gBI Model. Observe that conditioned under H the

index set of true p-values I0 is �xed. Let p(i) = (p1, . . . , pi−1, 0, pi+1, . . . , pn) be

the vector of p-values, where the i-th p-value is decreased to zero, R(i) = R(p(i))

and α̂(i)
i:n = α̂i:n(p(i)). Then by Lemma 6.1 (a) of the appendix we have

E
(

V

γ(R)

∣∣∣H) =
∑
i∈I0

E
(

11{pi ≤ α̂R:n}
nα̂R:n

∣∣∣H)

=
∑
i∈I0

E

(
11{pi ≤ α̂(i)

R(i):n
}

nα̂R(i):n

∣∣∣H) = (?).

Due to the conditional independence under H Fubini's Theorem yields

(?) =
∑
i∈I0

E

(
F0,H,i(α̂

(i)

R(i):n
)

nα̂
(i)

R(i):n

∣∣∣H) ≤ N0

n

with equality in the BI Model. The statement again follows by integration. �

Remark 2.6

(a) The data dependent critical values (2.7) only use the information of the

ecdf F̂n on [λ, 1] and the adaptive test only rejects p-values smaller or equal to

λ, where λ is an arbitrary but �xed tuning parameter. In Chapter 4 we will

consider adaptive SU tests which also have this estimation area and rejection

area, say.

(b) The critical value α̂0:n may be set to zero without changing the adaptive SU

test. Nonetheless, we set α̂0:n = α̂1:n in order to avoid notational problems in

the proofs when R = 0 occurs with positive probability.

(c) Storey et al. [61] already incorporated martingale arguments which have

been outlined by Scheer [54].

Remark 2.7 (BH theorem)

By Remark 6.2 (b) of the appendix and Fubini's Theorem the proof of the BH

theorem now reduces to

E
(

V

R ∨ 1

∣∣∣H) = N0E
(

11{p1 ≤ αBHR:n}
R

∣∣∣H) = N0E

(
11{p1 ≤ αBHR(1):n

}
R(1)

∣∣∣H)

= N0E

(
αBH
R(1):n

R(1)

∣∣∣H) =
N0

n
α

in the BI Model, where p1 is assumed to be a true p-value without restrictions

and R(1) = R(0, p2, . . . , pn).
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The technique of Remark 2.7 is also applicable to shorten the proof of the

statement of Benjamini and Yekutieli [5, Theorem 5.3] that the Dirac-Uniform

con�gurations are least favorable for the FDR of SU tests with critical values

(1.23) under the model of the BH theorem. This result can actually be extended

to the gBI Model with convex dfs of true p-values and is stated in the next

lemma.

Lemma 2.8

Let 0 < α0:n = α1:n ≤ . . . ≤ αn:n < 1 be deterministic critical values which

ful�ll (1.23) and consider the corresponding SU test. Furthermore, consider a

distribution P of the gBI Model with �xed H = h ∈ {0, 1}n, N0 = n0 and assume

that the dfs of true p-values F0,H,i, i ∈ I0, in (2.2) are convex. Then

FDRP ≤ FDRDU(n,n0) (2.9)

holds for the DU(n, n0) con�guration.

Proof. De�ne R(i) = R(p1, . . . , pi−1, 0, pi+1, . . . , pn) as in the proof of Lemma

2.5. Along the lines of the technique in Remark 2.7 observe that

EQ
(

V

R ∨ 1

)
=
∑
i∈I0

EQ
(

11{pi ≤ αR:n}
R

)
=
∑
i∈I0

EQ
(

11{pi ≤ αR(i):n}
R(i)

)

=
∑
i∈I0

EQ
(
F0,H,i (αR(i):n)

R(i)

) (2.10)

holds for the distributions Q ∈ {P,DU(n, n0)}. Thus, it su�ces to show

EP
(
F0,H,i (αR(i):n)

R(i)

)
≤ EDU(n,n0)

(
F0,H,i (αR(i):n)

R(i)

)
(2.11)

for i ∈ I0. Let 1 ≤ j < k ≤ n. By (1.23) and the convexity of F0,H,i, it follows

that

F0,H,i(αj:n) ≤ F0,H,i

(
j
αk:n
k

)
≤
(

1− j

k

)
F0,H,i(0) +

j

k
F0,H,i(αk:n), (2.12)

where F0,H,i(0) = 0. Hence, j→ F0,H,i(αj:n)
j is non decreasing. It is easy to check

that

L(R(i)|P )
st
≤ L(R(i)|DU(n, n0)) (2.13)

which now implies (2.11) by an alternative de�nition of the stochastically larger

property, see Theorem 1.2.8 of Müller and Stoyan [41]. Without loss of generality
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let I0 = {1, . . . , n0}, i = 1 and U2, . . . , Un0 be i.i.d. uniformly distributed

random variables which ful�ll Ui ≤ pi a.s. for i = 2, . . . , n0. From this and

since R(i) is non increasing in each p-value it follows that R(0, p2, . . . , pn) ≤
R(0, U2, . . . , Un0 , 0, . . . , 0) holds almost surely. This �nally implies (2.13) since

L(R(0, U2, . . . , Un0 , 0, . . . , 0)|P ) = L(R(i)|DU(n, n0)). �

The next lemma for the PRDS and NRDS Model only applies to determin-

istic critical values and we only obtain inequalities instead of equalities in the

conditional uniform case.

Lemma 2.9 (cf. Heesen and Janssen [29] Lemma 6.1 (b) and Meskaldji et al.

[39] Corollary 3.9)

Let 0 < α0:n = α1:n ≤ . . . ≤ αn:n < 1 be deterministic critical values and

γ(i) = nαi:n. Then

E
(

V

γ(R)

)
≤ E(N0)

n
(2.14)

holds for the SU tests under the PRDS Model and �≥� holds in (2.14) for the

NRDS model.

Proof. First, let us consider the PRDS Model conditioned under H = h =

(h1, . . . , hn) ∈ {0, 1}n. By (2.4) we have

E
(

V

γ(R)

∣∣∣H = h

)
=
∑

i :hi=0

E
(

1{pi ≤ αR:n}
γ(R)

∣∣∣H = h

)

=
∑

i :hi=0

n∑
j=1

1

γ(j)
P (R = j|pi ≤ αj:n, H = h)P (pi ≤ αj:n|H = h)

≤
∑

i :hi=0

n∑
j=1

1

n
P (R = j|pi ≤ αj:n, H = h)

=
1

n

∑
i :hi=0

n∑
j=1

[
P (R ≥ j|pi ≤ αj:n, H = h)− P (R ≥ j + 1|pi ≤ αj:n, H = h)

]
=

1

n

∑
i :hi=0

P (R ≥ 1|pi ≤ α1:n, H = h)

+
1

n

∑
i :hi=0

n∑
j=2

[
P (R ≥ j|pi ≤ αj:n, H = h)− P (R ≥ j|pi ≤ αj−1:n, H = h)

]
≤ 1

n

∑
i :hi=0

P (R ≥ 1|pi ≤ α1:n, H = h) =
N0

n
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since {R ≥ j} is a decreasing set for every j = 2, . . . , n. Now, integration yields

the statement for the PRDS Model and the statement for the NRDS Model

follows in the same way. Note that the true p-values in the NRDS Model follow

a uniform distribution conditioned under H. Thus, the �rst inequality in the

above formula becomes an equality. �

Except for a rescaling of γ, a deterministic view of N0 and a weighting of the

hypotheses (which is due to Blanchard and Roquain [7]), Lemma 2.9 coincides

with Corollary 3.9 of Meskaldji et al. [39]. Their proof follows from Proposition

3.6 of Blanchard and Roquain [7] and can easily be extended to random N0.

In contrast, the proof of Lemma 2.9 is a more direct one which is based on the

technique of Theorem 4.1 of Finner et al. [17]. For a further discussion see

Remark 2.12 below.

The following lemma obtains an inequality for the Basic Model 1.2, where the

p-values may have an arbitrary dependence structure. Therefore, we consider

adaptive SU tests with data dependent critical values which are based on the

deterministic critical values (1.22) introduced by Blanchard and Roquain [7]. To

the best of the author's knowledge, such kind of data dependent critical values

have not been considered before.

Lemma 2.10 (cf. Heesen and Janssen [29] Lemma 6.1 (c))

Let 0 < γ̃(0) = γ̃(1) ≤ . . . ≤ γ̃(n) be data dependent values given by measurable

functions

γ̃(i) = γ̃(i, (F̂n(t))0≤t≤1), i = 0, . . . , n. (2.15)

Moreover, let ν be a probability measure on (0,∞) and de�ne data dependent

critical values via

α̂i:n =

(
α

n

∫ γ̃(i)

0
xdν(x)

)
∧ λ, i = 0, . . . , n, (2.16)

where 0 < λ < 1. Then

E
(

V

αγ̃(R)

)
≤ E(N0)

n
(2.17)

holds for the SU test under the Basic Model 1.2 with arbitrary dependence struc-

ture.

Proof. Similar as in the proof of Lemma 3.2 of Blanchard and Roquain [7] on
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page 988, rewriting 1/z =
∫∞
z v−2dv, Fubini's Theorem and (2.16) yield

E
(

V

αγ̃(R)

∣∣∣H) =
∑

i :Hi=0

E
(

11{pi ≤ α̂R:n}
αγ̃(R)

∣∣∣H)

=
∑

i :Hi=0

E
(

11{pi ≤ α̂R:n}
∫ ∞
0

v−211{v > αγ̃(R)}dv
∣∣∣H)

=
∑

i :Hi=0

∫ ∞
0

v−2E
(

11{pi ≤ α̂R:n}11{v > αγ̃(R)}
∣∣∣H) dv

≤
∑

i :Hi=0

∫ ∞
0

v−2E

(
11

{
pi ≤

α

n

∫ γ̃(R)

0
xdν(x)

}
11{v > αγ̃(R)}

∣∣∣H) dv
≤

∑
i :Hi=0

∫ ∞
0

v−2P

(
pi ≤

α

n

∫ v
α

0
xdν(x)

∣∣∣H) dv
≤ αN0

n

∫ ∞
0

v−2
∫ v

α

0
xdν(x)dv

=
αN0

n

∫ ∞
0

x

∫ ∞
αx

v−2dvdν(x) =
N0

n
.

The last inequality follows since conditioned under H the marginal distribution

of each true p-value is stochastically larger than the uniform distribution. �

Remark 2.11

(a) The Benjamini Yekutieli [5] choice of ν({k}) =
(
k
∑n

j=1
1
j

)−1
in (2.16) leads

to the adaptive critical values

α̂i:n =
bγ̃(i)c

n
∑n

j=1
1
j

· α, i = 1, . . . , n. (2.18)

(b) In contrast to Lemma 2.5, Lemma 2.10 also applies to data dependent critical

values which are functions of the entire ecdf (F̂n(t))0≤t≤1. For some dependence

structures, observing one p-value allows to draw conclusions on other p-values.

Assume that n = N0 = 2 and p1 = 1− p2 = U ∼ U(0, 1) holds. Then observing

(F̂n(t))0.5≤t≤1 su�ces at least to reconstruct the complete ecdf (F̂n(t))0≤t≤1 if

the distribution is known. Thus, the division into an estimation and rejection

area for arbitrary dependent p-values would make no sense.

Remark 2.12 (Family of generalized error rates)

Meskaldji et al. [39] and Meskaldji [38] introduced an entire family of generalized
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error rates. Each non decreasing function ρ : N ∪ {0} → (0,∞) de�nes an error

rate which is given by

E
(

V

ρ(R)

)
. (2.19)

The main examples are the FDR, given by ρ(i) = i ∨ 1, i ∈ N ∪ {0}, and the

ENFR, given by ρ ≡ 1. Weighted versions of the FDR and ENFR are also listed

by Meskaldji et al. [39]. For each error rate, they proposed a corresponding SU

test with critical values

αi:n =
ρ(i)

n
α, i = 1, . . . , n, (2.20)

where ρ is the same function as in the error rate (2.19). These SU tests control

(2.19) by α under independent true p-values or the common PRDS assumption,

see Remark 2.3 (d). Furthermore, they showed that a SU test with

αi:n =
α

n

∫ ρ(i)

0
xdν(x), i = 1, . . . , n, (2.21)

based on (1.22), controls (2.19) by α under arbitrary dependence (basically

under the assumptions of Lemma 2.10 with deterministic N0). Thus, Lemma 2.9

and non data dependent versions of Lemma 2.5 for the gBI Model and Lemma

2.10 may also be proved by their results which are straightforward applications

of the results of Blanchard and Roquain [7]. The representation of the results

only di�ers in the rescaling γ = αρ. Note that ρ(n) < n
α is needed in our setting

to ensure αn:n < 1 for (2.20) and (2.21). Furthermore, a simple rescaling of ρ

does not really change the properties of the error rate.

We will now use the central lemmas to derive �nite and asymptotic results

for the FDR of adaptive and non-adaptive multiple tests. In Chapter 4, we will

come back to this generalized error concept and develop adaptive SU tests. In

the following, we suggest the reader to mainly focus on the FDR and ENFR

when we consider the error rate (2.19).

In a further work, Meskaldji et al. [40] treated the question of an optimal

choice of the error rate, see also Meskaldji [38].

2.3 Applications of the central lemmas

We will now derive inequalities for the FDR under di�erent models and inequal-

ities for critical values which have overall FDR control under the BI Model. In
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this section we focus on SU tests with deterministic critical values

0 < α0:n = α1:n < . . . < αn:n < 1. (2.22)

Let us start with the following question.

What can be said about the FDR of a SU test with critical values

(2.22) under di�erent models?

The results of the following lemma are intuitive for the gBI Model but not

clear in advance since the distribution of false p-values is arbitrary.

Lemma 2.13 (cf. Heesen and Janssen [29] Lemma 3.1)

Let 1 ≤ k ≤ n, 0 < c < 1 and consider the SU test with critical values (2.22).

(a) If αi:n ≤ ic
n holds for all 1 ≤ i ≤ k, then

FDR ≤ E(N0)

n
c+ P (R > k) (2.23)

follows under the gBI, RM and PRDS Model (which all include the BI Model).

(b) Moreover, if αi:n ≤ ic
n , i = 1, . . . , n, holds with strict inequality for a �xed

i = j and P (R = j, V > 0) > 0, then we obtain the strict inequality FDR <
E(N0)
n c at least under the BI Model.

(c) If αi:n ≥ ic
n holds for all 1 ≤ i ≤ n, then

FDR ≥ E(N0)

n
c (2.24)

follows under the RM and NRDS Model (which also include the BI Model).

(d) Moreover, under the assumption of (c), if in addition αj:n >
jc
n holds for

some �xed j ∈ {1, . . . , n} with P (R = j, V > 0) > 0, then FDR > E(N0)
n c holds

at least under the BI Model.

Proof. (a) Let γ(i) = nαi:n, i = 0, . . . , n, and observe that γ(j)
j ≤ c holds for

all 1 ≤ j ≤ k. Since R = 0 implies V = 0 we obtain

FDR ≤ E
(

V

γ(R)

γ(R)

R ∨ 1
11{1 ≤ R ≤ k}

)
+ P (R > k)

≤ E
(

V

γ(R)

)
c+ P (R > k) ≤ E(N0)

n
c+ P (R > k)

by Lemma 2.5 and 2.9 under the gBI, RM and PRDS Model.

(b) By (a) we already know FDR ≤ cE(N0)
n . Suppose �=� would hold in the
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previous formula. We would then obtain 0 = E
(

cV
γ(R) −

V
R∨1

)
by Lemma 2.5.

But notice that c
γ(i) −

1
i∨1 ≥ 0 holds for i = 1, . . . , n. Thus,

E
(
cV

γ(R)
− V

R ∨ 1

)
≥
(

c

γ(j)
− 1

j ∨ 1

)
· P (R = j, V > 0) > 0

follows by our assumptions, a contradiction.

(c) Observe that γ(i)
i ≥ c holds for 1 ≤ i ≤ n. Thus, Lemma 2.5 and 2.9 imply

FDR = E
(

V

γ(R)

γ(R)

R ∨ 1
11{R > 0}

)
≥ E

(
V

γ(R)

)
c ≥ E(N0)

n
c

under the RM and NRDS Model.

(d) Observe that c
γ(i) −

1
i∨1 ≥ (>)0 holds for i = 1, . . . , n, (j) and the assertion

follows in the same way as (b). �

Remark 2.14

Note that P (R = j, V > 0) > 0 and even P (R = j) > 0 can not be guaranteed

in general. These assumptions depend strongly on the distribution of false p-

values. Assume that ξi ∈ (αj:n, αj+1:n], i = 1, . . . , n, and N0 < n almost surely,

where (αj:n, αj+1:n] is a non empty interval. It follows easily that R = j can

not occur.

The next proposition establishes some lower and upper bounds for the FDR

of SU tests which are based on critical values (2.22).

Proposition 2.15 (cf. Heesen and Janssen [29] Proposition 3.1)

Consider the SU test with critical values (2.22). Then

FDR ≤ E(N0)

n
max
1≤i≤n

nαi:n
i

(2.25)

holds under the gBI, RM and PRDS Model (including the BI Model) and

FDR ≥ E(N0)

n
min
1≤i≤n

nαi:n
i

(2.26)

under the RM and NRDS Model (including the BI Model).

Proof. Let γ(i) = nαi:n, i = 0, . . . , n, again and note that R = 0 implies V = 0.

A direct application of Lemma 2.5 and 2.9 yields

FDR = E
(

V

γ(R)

γ(R)

R ∨ 1
11{R > 0}

)
≤ E

(
V

γ(R)

)
max
1≤i≤n

nαi:n
i
≤ E(N0)

n
max
1≤i≤n

nαi:n
i
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under the gBI, RM and PRDS Model. (2.26) follows in the same way. �

With di�erent methods Guo and Rao [26] already showed that (2.25) holds

under the PRDS property of Remark 2.3 (d).

Under regularity assumptions it can be shown that the inequalities of Propo-

sition 2.15 are asymptotically sharp, i.e. if the critical values are generated from

a concave rejection curve which has to ful�ll some regularity assumptions, then

there exist sequences of distributions such that the asymptotic FDR coincides

with the asymptotic bound. The lower bound (2.26) can actually be improved

for a speci�c class of SU tests under a Dirac-Uniform model with martingale

structure.

Proposition 2.16 (cf. Heesen and Janssen [29] Remark 3.1)

Consider the RM Model with deterministic H = h ∈ {0, 1}n, ξi = 0, i =

1, . . . , n, and N0 = n0 (including the DU(n, n0) con�guration). Furthermore,

assume a SU test with critical values (2.22) which ful�lls the common require-

ment (1.23), then

FDR ≥ n0
αn+1−n0:n

n+ 1− n0
. (2.27)

Proof. The result directly follows by a reinspection of the proof of Proposition

2.15 since R ≥ n − n0 + 1 holds on {V > 0} for the present models. Thus, by

(1.23) we obtain γ(R)
R∨1 11{R > 0} ≥ nαn+1−n0:n

n−n0+1 . �

We now move to the next question.

What can be said about the critical values αi:n when the FDR is

controlled by α (FDR ≤ α) under di�erent models for �xed sample

size n?

For this question, let us again consider SU tests with deterministic critical

values (2.22) which ful�ll the common assumption (1.23), i.e. i→ αi:n
i is non-

decreasing. The next lemma gives necessary conditions for FDR control in the

BI model.

Lemma 2.17 (cf. Heesen and Janssen [29] Lemma 3.2)

Consider the SU test given by critical values (2.22) with (1.23) and assume that

FDR ≤ α holds for all distributions in the BI Model.

(a) Then αi:n ≤ iα
n+1−i follows for all 1 ≤ i ≤ n.
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(b) Furthermore, if αk:n
k <

αk+1:n

k+1 holds for some 1 ≤ k ≤ n − 1, then αi:n <
iα

n+1−i follows for all i ≤ k.

Proof. (a) Observe that FDRDU(n,n0) ≤ α holds particularly for theDU(n, n0)

con�gurations, 1 ≤ n0 ≤ n. Thus, by Proposition 2.16 we directly observe the

result by setting i = n− n0 + 1.

The statement may also be proved in a direct way. Therefore, by Lemma

2.5, (1.23) and by the notation of the proof of Proposition 2.15 we have

α ≥ FDRDU(n,n+1−i) = EDU(n,n+1−i)

(
V

γ(R)

γ(R)

R ∨ 1
11{R > 0}

)
(2.28)

≥ EDU(n,n+1−i)

(
V

γ(R)

)
γ(i)

i
=
n+ 1− i

i
αi:n (2.29)

for 1 ≤ i ≤ n since R ≥ i holds on {V > 0} under the present model.

(b) The inequality in (2.29) becomes a strict inequality for i ≤ k since

PDU(n,n+1−i)(R > k) ≥ PDU(n,n+1−i)(pn:n ≤ αn:n) > 0.

�

Remark 2.18

The necessary conditions of Lemma 2.17 naturally hold under the gBI, RM and

PRDS Model since they include the BI Model. By the results of Section 2.2, we

get no further necessary conditions for these models.

Corollary 2.19 (cf. Heesen and Janssen [29] Corollary 3.1)

Let the assumptions of Lemma 2.17 hold.

(a) Then α1:n ≤ α
n follows.

(b) If α1:n = α
n holds, then the SU test is already a BH test, i.e. αi:n = i

nα,

i = 1, . . . , n.

(c) If α1:n = β
n holds for some β ≤ α, then FDR ≥ E(N0)

n β follows under the

BI Model.

Proof. (a) The statement is a special case of Lemma 2.17 (a).

(b) Let us assume that the SU test is no Benjamini Hochberg test. Thus, by

(1.23) there exists some 1 < k < n with αk:n
k <

αk+1:n

k+1 . But Lemma 2.17 (b)

then implies α1:n <
α
n which contradicts our assumption.

(c) Observe that α1:n = β
n and (1.23) imply αi:n ≥ i

nβ, i = 1, . . . , n. The

statement then follows by Lemma 2.13 (c). �
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Let us now have a look at some explicit SU tests and discuss the necessary

conditions which are introduced above.

Example 2.20

(a) Stepwise tests with critical values of the form

αi:n =
iα

n+ b− ia
, i = 1, . . . , n, (2.30)

for non-negative parameters a, b with 1− α+ b
n > a are frequently discussed in

the literature, see Finner et al. [17, 19] and Gavrilov et al. [21] for instance. The

requirement αn:n < 1 for all n ∈ N for SU tests initially implies 0 ≤ a ≤ 1− α.
By Lemma 2.17 a necessary condition for FDR ≤ α is given by a ≤ b. Moreover,

if a > 0, then the stricter condition a < b is necessary.

(b) Consider the adjusted critical values

αi:n =
iα

n− i(1− α)
, i = 1, . . . , kn < n, (2.31)

of the AORC, see (1.27). There are several possibilities for the choice of αi:n,

i = kn + 1, . . . , n, such that (1.23) stays true or that a corresponding rejection

curve stays concave, cf. Example 3.2 in Finner et al. [17]. By them it is well

known that a SU test with adjusted critical values (2.31) does not exhibit �nite

sample FDR control but asymptotic FDR control for the BI Model. By (a) we

directly observe that �nite sample FDR control can not hold since a = 1 − α
and b = 0 do not ful�ll the necessary conditions. Actually, the �rst critical value

α1:n = α
n−(1−α) >

α
n is too large to allow FDR control.

Our inequalities include a device for the choice of adequate parameters a, b

for the critical values (2.30). Proposition 2.21 o�ers an approach for the ad-

justment of a for �xed parameter b. Below, we mainly restrict ourselves to

adjustments under the BI Model. Several adjustments have been introduced by

Finner et al. [17, 19] and Gontscharuk [24].

Proposition 2.21 (cf. Heesen and Janssen [29] Proposition 3.2)

Consider the SU test with critical values (2.30) with a, b ≥ 0 and a < 1−α+ b
n .

(a) Under the RM Model (including the BI Model) we have

FDR =
E(N0)

n+ b
α+

E(V )

n+ b
a (2.32)
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with �≤� under the gBI and PRDS Model and �≥� under the NRDS Model.

(b) Let P be a distribution with ξ1 = . . . = ξn = 0, ζ1, . . . , ζn ∼ U(0, 1) and

deterministic H with N0 = n0, then

EP (V ) ≥ n0αn+1−n0:n (2.33)

holds for the ENFR. In particular, P may be a Dirac-Uniform con�guration.

(c) Now let a > 0 since otherwise, the present SU test would be a BH test and

let b be �xed. Moreover, let h(n0, α) = EDU(n,n0)

(
V BH,α

)
denote the ENFR of

the level α BH test and introduce a0 as unique positive solution of

α = max
1≤n0≤n

(
αn0
n+ b

+ a · h(n0, α
′)

n+ b

)
, (2.34)

where α′ = αn
n+b . Let PBI be the set of all possible distributions of the BI Model

for �xed n and let FDRP (a, b) denote the FDR of the SU test with critical values

(2.30). Then there exists a unique parameter a1 ∈ [0,min(a0, 1− α+ b
n)) with

sup
P∈PBI

FDRP (a1, b) = α. (2.35)

The worst case FDR is strictly smaller (larger) than α for a < a1, (a > a1).

Proof. (a) By Lemma 2.5 we obtain

E(N0)

n
=

1

nα
E
(
V (n+ b)−RV a

R ∨ 1

)
=
n+ b

nα
FDR− a

nα
E(V )

for the RM Model since R = 0 implies V = 0 and the assertion for the other

models follows in the same way by Lemma 2.5 and 2.9 with �≤� and �≥�.
(b) We observe

EP (V ) =
∑
i∈I0

EP (11{pi ≤ αR:n}) ≥
∑
i∈I0

EP (11{pi ≤ αn+1−n0:n}) = n0αn+1−n0:n

since I0 is deterministic under P and since R ≥ n+ 1−n0 holds on {pi ≤ αR:n}
for all true pi.

(c) Observe that the critical values ful�ll (1.23). Hence, we may restrict ourselves

to Dirac-Uniform con�gurations since the worst case FDR is given by one for

some 1 ≤ n0 ≤ n, see (2.45) for instance. It follows that

a→ sup
P∈PBI

FDRP (a, b) = max
1≤n0≤n

(
n0
n+ b

α+
EDU(n,n0)(V )

n+ b
a

)
(2.36)
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is continuous and strictly monotonic increasing on (0, 1 − α + b
n) because the

critical values do and hence EDU(n,n0)(V ) does. Furthermore, we have

sup
P∈PBI

FDRP (0, b) =
n

n+ b
α ≤ α and lim

a↗1−α+ b
n

FDRDU(n,n)(a, b) = 1

since an:n → 1 for a ↗ 1 − α + b
n . Finally, if a0 < 1 − α + b

n holds, then

supP∈PBI FDRP (a0, b) > α holds true because of (2.34), (2.36) and since αi:n ≥
α′i
n , i = 1, . . . , n, implies h(n0, α

′) < EDU(n,n0)(V ), n0 = 1, . . . , n. �

Remark 2.22

(a) The value a0 in Proposition 2.21 (c) should be regarded as initial value for

the search for a1 which yields FDR control.

(b) The ENFR of the BH test under a Dirac-Uniform con�guration is easy to

compute and given by

h(n0, α) = EDU(n,n0)

(
V BH

)
=

n0∑
i=1

(n− n0 + 1)

(
n0

i

)
i!
(α
n

)i
, (2.37)

cf. Finner and Roters [20] page 991. This ENFR can also be computed by the

simple recursion EDU(n,1)

(
V BH

)
= α and

EDU(n,n0)

(
V BH

)
=
n0α

n
·
(
EDU(n,n0−1)

(
V BH

)
+ n− n0 + 1

)
, (2.38)

n0 = 2, . . . , n, which just gives (2.37) by induction. The proof of the recursion

is simple and short: Similar to Remark 2.7 we observe

EDU(n,n0)

(
V BH

)
= n0EDU(n,n0) (αR(1),BH :n) =

n0α

n
EDU(n,n0)

(
R(1),BH

)
=
n0α

n
EDU(n,n0)

(
V (1),BH + n− n0

)
=
n0α

n
EDU(n,n0−1)

(
V BH + n− n0 + 1

)
for the BH test, where V (1),BH is analogously de�ned as R(1),BH .

(c) Note that Proposition 2.21 (b) also holds for critical values of the form (2.22)

and there is no assumption about the dependence structure of the true p-values.

By similar methods, Scheer [54] basically obtained (2.32) for a = 1 − α for

the BI Model, cf. the proof of Theorem 3.2 in [54]. Therefore, he used a Lemma

which utilizes rejection curves and martingale arguments and which is similar
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to the statement of Lemma 2.5 restricted to the BI model and non adaptive SU

tests, cf. Lemma 3.6 in [54].

In the next proposition, we establish another adjustment of the critical values

which may have some advantage in practice. The proposal relies on the following

observation. Typically, the largest critical values in (2.30) are responsible for

situations with FDR > α, cf. Finner et al. [17]. For these reasons, we propose

to bound the largest critical values as follows.

Proposition 2.23 (cf. Heesen and Janssen [29] Proposition 3.3)

Let ε > 0 be a small constant and consider a SU test with critical values satisfying

(1.23) and α1:n <
α
n . For �xed 1 ≤ k ≤ n we introduce new critical values

α
(k)
i:n = min

(
αi:n,

i

k
αk:n

)
, i = 1, . . . , n, (2.39)

and denote the FDR of the corresponding SU test by FDR(α
(k)
· :n). If there is

a distribution P ∈ PBI with FDRP (α · :n) > α + ε, then there exists some

1 ≤ k0 < n with

sup
P∈PBI

FDR(α
(k)
· :n) ≤ sup

P∈PBI
FDR(α

(k0)
· :n ) ≤ α+ ε (2.40)

for all k ≤ k0. Moreover, if k0 is chosen to be maximal, then �>� holds in (2.40)

for k > k0.

Proof. The critical values α(k)
i:n , i = 1, . . . , n, are constructed so that (1.23) is

just ful�lled. Hence, as in the proof of Proposition 2.21 (c) we may restrict our-

selves to Dirac-Uniform con�gurations for worst case considerations. Introduce

V
(
α
(k)
· :n

)
as the number of false rejections of the speci�ed SU test. Under the

Dirac-Uniform con�gurations, it is easy to see that V
(
α
(k)
· :n

)
is increasing in k

since the critical values do. It follows that

FDRDU(n,n0)

(
α
(k)
· :n

)
= EDU(n,n0)

(
V (α

(k)
· :n)

n− n0 − V (α
(k)
· :n)

)
is increasing in k since x → x

n−n0−x is increasing. Finally, observe that k = 1

yields a BH test with FDR < α which proves the assertion. �

The modi�cation (2.39) of the critical values has also been considered by

Finner et al. [17, Example 3.2] for the special case of critical values coming

from the AORC to construct a feasible SU test. Moreover, for this type of



k

b a = 1−α

α

ε 0

k0 = 1

αi:n =
iα

n+ 1− i(1− α)
, i = 1, . . . , n,

FDRDU(n,n0)

FDRDU(n,n0) n = 300

k = 283 250, 223

FDRDU(n,n0) n = 300

n0
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Observe that the lower bound (2.26) is based on

min
1≤i≤n

nαi:n
i

=
α

1 + α
n

−→
n→∞

α. (2.42)

Thus, the bound is close to FDRDU(n,n0) for �xed N ≈ n, as one can see in the

picture. Moreover, the black curves are based on (2.39) for k = 283, 250, 223 and

are plotted with graphs decreasing in k. A choice of k = 300 would just lead to

the blue curve. The increasing straight line represents the FDR of the BH test

and the green curve is the lower bound (2.26). The calculation of the blue and

black curves have been done by using a program of the workgroup of Helmut

Finner which is based on Bolshev's recursion, see Shorack and Wellner [56, page

366] for instance. Numerical results yield the value k0 = 283 for ε = 10−3 and

k0 = 223 for ε = 10−4 given by (2.40), see also Table 2.1.

k 300 283 250 223

sup
1≤n0≤n

FDRDU(n,n0) 0.06165 0.05098 0.05020 0.05009

argmax
1≤n0≤n

FDRDU(n,n0) 32 43 74 100

Table 2.1: Worst case FDR for di�erent choices of k in (2.39) based on (2.41).

The results given in Figure 2.1 are quite promising. A minor modi�cation of

the critical values (2.41) yields a FDR which is pretty much the predetermined

FDR level α over a wide range. The FDRDU(n,n0) is quite good for large and

medium n0, where the power of the multiple test is really needed. In a small

area, it has a slightly increased FDR level α + ε which is often accepted in

practice. Basically, a further adjustment is not needed. Otherwise, a small

reduction of the critical values (2.41) yields �nite sample FDR control. This

could be done by a reduction of α in (2.41) or by an increase of b in (2.30)

with a = 1− α. As already mentioned, the latter has been proposed by Finner

et al. [19] for another preselection of k in (2.39). As another approach, they

considered a direct adjustment of b.

Note that these considerations have been done for Dirac-Uniform con�gura-

tions and the actual FDR level for distributions of the BI Model can be smaller,

cf. Finner et al. [17]. Moreover, if the true p-values get stochastically larger,

then the exhaustion of the predetermined FDR level is arbitrarily bad. In Chap-

ter 4, we will show how adaptive SU tests with critical values of the form (1.29)
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can be used to tackle this problem.

2.4 Asymptotic worst case FDR of step-up-down tests

coming from a concave rejection curve

In this section we consider the worst case FDR asymptotics of a sequence of

step-wise multiple tests which is based on a concave rejection curve r, see De�-

nition 1.8. Recall, that the critical values of the step-wise tests are determined

by (1.25). We will �rst consider sequences of SU tests under all possible dis-

tributions of the BI Models. The results also apply for a submodel of the gBI

Model which is larger than the BI model and for step-down and step-up-down

tests which are de�ned later on.

For our asymptotic considerations, let Vn and Rn denote the quantities V

and R of the corresponding tests for �xed n ∈ N. Note that H = (H1, . . . ,Hn)

and N0 also depend on n even if we do not spend an extra index.

The next theorem establishes the asymptotic worst case FDR of SU tests as

solution of a �x point equation. This �x point equation only depends on the

concave rejection curve which determines the critical values for the SU tests.

Theorem 2.25 (cf. Heesen and Janssen [29] Theorem 3.1)

Let Pn,BI be the set of all possible distributions of the BI Model for �xed n ∈ N.
Consider the sequence of SU tests given by a concave rejection curve r via the

critical values (1.25) and introduce the asymptotic worst case FDR as

β = lim sup
n→∞

sup
Pn∈Pn,BI

FDRPn . (2.43)

Then 0 < β < 1 and β is the unique solution of the �x point equation H(1−β) =

β, where

H(s) = sup

{
x

1− x
· 1− r(x)

r(x)
: 0 < x and

r(x)− x
1− x

≤ s
}

s ∈ (0, 1). (2.44)

Proof. We begin by proving the inequalities 0 < β < 1. For now choose

n0 = bn2 c and consider the DU(n, n0) con�gurations for each n. Observe that
Rn
n ≥

n−n0
n ≥ 1

2 holds for the present model. Hence, at least every p-value

pi ≤ r−1(12) will be rejected since r−1(12) ≤ r−1(Rnn ) = αRn:n holds. It follows

that

β ≥ lim inf
n→∞

FDRDU(n.n0) ≥ lim inf
n→∞

EDU(n.n0)

(
Vn
n

)
≥ lim inf

n→∞

n0
n
r−1

(
1

2

)
> 0.
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Furthermore, observe that the concavity of r implies (1.23) for the critical values.

Hence,

αi:n ≤
i

n
αn:n =

i

n
r−1(1) with r−1(1) < 1

holds and by Lemma 2.13 (a) it follows that FDRPn is simultaneously bounded

by r−1(1) < 1 for all Pn ∈ Pn,BI . Otherwise, this fact may also be proved by

observing that Pn(Vn = 0) ≥ Pn(pi > r−1(1) : i ∈ I0) > 0 holds for every

Pn ∈ Pn,BI .
We proceed by proving that β is a solution of H(1 − s) = s. It is easy

to check that this is the only solution since s → H(1 − s) is non-increasing.

Let PHn be the distribution of H under Pn and P
· |H=h
n = Pn( · |H = h) be

the conditional distribution given H = h ∈ {0, 1}n. Then by Lemma 2.8 (or

Benjamini and Yekutieli [5, Theorem 5.3])

FDRPn =

∫
FDR(

P
· |H=h
n

)dPHn (dh)

≤ sup
h∈{0,1}n

FDR(
P
· |H=h
n

) ≤ sup
1≤n0≤n

FDRDU(n,n0)

(2.45)

holds for all Pn ∈ Pn,BI since the Dirac-Uniform con�gurations are least favor-

able for the SU test under the present conditional distributions. As DU(n, n0) ∈
Pn,BI we obtain the representation

β = lim sup
n→∞

sup
1≤n0≤n

FDRDU(n,n0)

and thus, there exists a subsequence of (n, n0)n = (n, n0,n)n, again denoted by

(n, n0)n, which satis�es

FDRDU(n,n0) −→n→∞ β and
n0
n
−→
n→∞

1− y (2.46)

for some 1− y ∈ [0, 1]. Furthermore, since Vn ≤ n0 we have

FDRDU(n,n0) = E
(

Vn
n− n0 + Vn

)
≤ n0

n

and hence 1− y ∈ [β, 1] by (2.46).

Let us �rst consider an arbitrary sequence of (n, n0) which ful�lls n0
n →

1− y ∈ [β, 1) with positive y and compute the limit FDR of the corresponding

sequence of Dirac-Uniform con�gurations. In addition to (1.25) let us de�ne

α0:n = r−1( 0
n) = 0. Then

F̂n(αRn:n) =
Rn
n

= r(αRn:n) (2.47)
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follows by the subsequent considerations. The �rst equality directly follows

by the de�nition of SU tests since the critical values are non decreasing. The

second equality follows by (1.25) and the fact, that the concave rejection curve

r is invertible on [0, inf{x : r(x) ≥ 1}]. Let us introduce the straight line

g(t) = y + (1 − y)t, t ∈ [0, 1], which crosses the points (0, y), (1, 1) and has

the unique crossing point (x,K), 0 < x,K < 1, with r. Moreover, let Z

be a weak accumulation point of αRn:n, i.e. there is a subsequence so that

E(f(αRn:n)) → E(f(Z)) for all bounded and continuous functions f . Then we

have

r(Z) = g(Z) = y + (1− y)Z,

because r is continuous and F̂n converges uniformly to g with probability 1.

There is only one crossing point and thus Z = x is constant for each weak

accumulation point Z. By the above we now deduce

Rn
n

= r (αRn:n)
a.s.−→
n→∞

r(x) = K (2.48)

at least along further subsequences. A simple geometric argument for the gra-

dient of g yields
1− y

1
=
r(x)− y

x

which easily gives

y =
r(x)− x

1− x
and 1− y =

1− r(x)

1− x
. (2.49)

By n0
n → 1 − y ∈ [β, 1), (2.48), (2.49), subsequence arguments and dominated

convergence we now obtain

lim
n→∞

FDRDU(n,n0) = lim
n→∞

EDU(n,n0)

(
Rn
n −

n−n0
n

Rn
n

)

=
r(x)− y
r(x)

=
x

1− x
· 1− r(x)

r(x)
.

(2.50)

In particular, for the subsequence in (2.47) we have β = x
1−x ·

1−r(x)
r(x) .

We now turn to the case n0
n → 1. By the same arguments as above, but

with unique crossing point (x,K) = (0, 0), it follows that Rn
n → 0 a.s. at least

along subsequences. For every x′ > 0 let us de�ne z′ = r(x′) > 0 and observe

that

nαj:n
j
≤
nαbnz′c:n

bnz′c
=
nr−1

(
bnz′c
n

)
bnz′c

< 1
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holds for all j ≤ bnz′c by (1.23) which is true for critical values from a concave

rejection curve. Thus, by Lemma 2.13 (a) we obtain

FDRDU(n,n0) ≤
r−1

(
bnz′c
n

)
bnz′c
n

n0
n

+ PDU(n,n0)(Rn ≥ bnz
′c)

−→
n→∞

r−1(z′)

z′
=

x

r(x)

for all subsequences n0
n → 1 and hence

lim sup
n→∞

FDRDU(n,n0) ≤ lim inf
x↘0

x

r(x)
= lim inf

x↘0

x

r(x)
· 1− r(x)

1− x
(2.51)

since limx↘0
1−r(x)
1−x = 1.

Finally, we have

H(1− β) = sup
{

lim
n→∞

FDRDU(n,n0) :
n0
n
→ 1− y with β ≤ 1− y < 1

}
≤ β ≤ H(1− β),

where the equality follows by (2.50) if we set y = r(x)−x
1−x . Note that r(x)−x

1−x = 0

can only occur for x = 0 which is excluded in the formula above. The �rst

inequality is obvious and the second inequality follows by considering the ap-

propriate subsequence (n, n0)n for which limn→∞ FDRDU(n,n0) = β holds and

by (2.50) and (2.51). �

Remark 2.26

Note that
x

1− x
· 1− rα(x)

rα(x)
= α, x ∈ (0, 1), (2.52)

holds for the AORC rα, de�ned in (1.26). Although the AORC is not feasible

for Theorem 2.25, (2.50) supports its optimality for asymptotic Dirac-Uniform

con�gurations.

In a series of theorems, Finner et al. [17, Theorem 5.1-5.4] computed asymp-

totic upper FDR bounds and limit FDRs for multiple tests based on the AORC

under various assumptions on the limiting behavior of Rn
n . Some elements of

the proof of Theorem 2.25 are similar to techniques which are used in this se-

ries of theorems. For �nite n and deterministic N0 they also used that the
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asymptotic worst case FDR is attained by a sequence of Dirac-Uniform con�g-

urations. Moreover, from (2.48), (2.49) and Theorem 5.2 of Finner et al. [17]

we may also deduce (2.50). But as we have seen in (2.50) itself, this result is

easy to prove, at least in the special case of Dirac-Uniform con�gurations. In

view of the worst case FDR, Theorem 2.25 pursues a consistent approach which

pools all possible situations for SU tests. In fact, as we have seen, the limit of
n0
n already determines the unique limit of Rn

n for sequences of Dirac-Uniform

con�gurations. Moreover, (2.48) and (2.50) may also be proved by Lemma 3.21

of Gontscharuk [24] and (2.49). This argument also applies to the case n0
n → 1.

Similar arguments, as in the proof above, were also used by Scheer [54, Lemma

2.9] in his set up in order to prove that αRn:n converges to the crossing point x.

As the following corollary will show, Theorem 2.25 also holds under the

submodel of the gBI Model, where the df's of true p-values are convex.

Corollary 2.27

Let PCn,gBI be the set of all possible distributions of the gBI Model for �xed n ∈ N
with convex dfs F0,H,i in (2.2). Under the assumptions of Theorem 2.25 we have

lim sup
n→∞

sup
Pn∈PCn,gBI

FDRPn = lim sup
n→∞

sup
Pn∈Pn,BI

FDRPn . (2.53)

Proof. Observe that (2.45) holds by Lemma 2.8 for every Pn ∈ PCn,gBI and

it follows that �≤� holds in (2.53). Furthermore, �≥� obviously holds since

Pn,BI ⊂ PCn,gBI . �

The results of Theorem 2.25 and Corollary 2.27 can actually be extended to

step-up-down tests (SUD tests). We will point out that the asymptotic bound β

is the same for sequences of SUD tests with critical values which are generated

from the same rejection curve. But �rst, let us give a de�nition.

De�nition 2.28 (Step-up-down (SUD) test)

Let 0 < α1:n ≤ α2:n ≤ . . . ≤ αn:n < 1 be a sequence of �xed critical values and

λ ∈ {1, . . . , n}. Then the multiple test de�ned by

RSUD(λ),n = RSUD(λ),n(p)

=

max{i ∈ {λ, . . . , n} : pj:n ≤ αj:n for all λ ≤ j ≤ i}, if pλ:n ≤ αλ:n,

max{0, i ∈ {1, . . . , λ− 1} : pi:n ≤ αi:n}, if pλ:n > αλ:n
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is called step-up-down test (SUD(λ) test). As already mentioned, the test

then rejects the p-values p1:n, . . . , pRSUD(λ):n. The SUD(1) test is called step-

down test (SD test) and the SUD(n) test is the already de�ned SU test.

The following lemma extends the results of Finner et al. [19, Theorem 2] if

one of the SUD tests is a SU test and is needed in the announced theorem.

Lemma 2.29

Let 0 < α0:n = α1:n ≤ . . . ≤ αn:n < 1 be deterministic critical values which

ful�ll (1.23) and consider the corresponding SUD(λ) and SU tests for some

λ ∈ {1, . . . , n}. Furthermore, let P be a distribution of the gBI Model for �xed

n and assume that the dfs of true p-values F0,H,i, i ∈ I0, in (2.2) are convex.

Then the FDRs of the present tests satisfy

FDRP,SUD(λ) ≤ FDRP,SU . (2.54)

Proof. Let VSUD(λ),n be the number of false rejections of the SUD(λ) test and

VSU,n of the SU test. The technique of the present proof is close to the one of

Lemma 2.8. Along the lines of that proof we obtain

FDRP,SU = EP

∑
i∈I0

EP

F0,H,i

(
α
R

(i)
SU,n:n

)
R

(i)
SU,n

∣∣∣H



by Remark 6.2 (b) of the appendix and Fubini's Theorem. Similarly, from

Remark 6.2 (c) and Fubini's Theorem we conclude that

FDRP,SUD(λ) = EP

∑
i∈I0

EP

(
11{pi ≤ αRSUD(λ),n:n}

RSUD(λ),n

∣∣∣H)


≤ EP

∑
i∈I0

EP

11

{
pi ≤ αR(i)

SUD(λ),n
:n

}
R

(i)
SUD(λ),n

∣∣∣H



= EP

∑
i∈I0

EP

F0,H,i

(
α
R

(i)
SUD(λ),n

:n

)
R

(i)
SUD(λ),n

∣∣∣H



holds. The statement now follows since j → F0,H,i(αj:n)
j is non decreasing (see

(2.12)) and since R(i)
SUD(λ),n ≤ R

(i)
SU,n holds for the step-wise tests with same

critical values. �
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In short, under the assumption (1.23) Lemma 2.8 says that the FDR of SU

tests is largest under Dirac-Uniform con�gurations and Lemma 2.29 says that it

is largest for SU tests in the class of SUD tests. Blanchard et al. [6] give a nice

and broad overview of previous results of this kind, see also Figure 2 in their

work. In the strict sense, they just focus on uniformly distributed true p-values.

We are now able to formulate the theorem.

Theorem 2.30 (cf. Heesen and Janssen [29] Theorem 4.1)

Consider a sequence of SUD(λn) tests given by a concave rejection curve r and

an arbitrary sequence (λn)n∈N with 1 ≤ λn ≤ n, n ∈ N. Then

β = lim sup
n→∞

sup
Pn∈PCn,gBI

FDRPn,SUD(λn)

= lim sup
n→∞

sup
Pn∈Pn,BI

FDRPn,SUD(λn),

(2.55)

where β is de�ned in (2.43) for the sequence of SU tests which is based on r.

Proof. We only show the �rst equality in (2.55) since the other one follows

analogously. By Lemma 2.29 we directly observe that �≥� holds in (2.55). Let

us now consider sequences of DU(n, n0) con�gurations with
n0
n → 1−y ∈ [β, 1).

Along the lines of the proof of Theorem 2.25 we have

RSUD(λn),n

n

a.s.−→
n→∞

K (2.56)

at least along subsequences since (2.47) also holds for SUD(λn) tests and where

0 < K < 1 is the same value as for the sequence of SU tests. Again,

FDRDU(n,n0),SUD(λn) −→n→∞
x

1− x
· 1− r(x)

r(x)
(2.57)

follows with x de�ned as in that proof. A reinspection of the proof then shows

that the worst case limit β is attained by some sequence

FDRDU(n,n0),SU −→n→∞
x

1− x
· 1− r(x)

x
(2.58)

with n0
n → 1 − y ∈ [β, 1), see (2.50), or by lim infx↘0

x
1−x ·

1−r(x)
r(x) , see (2.51).

The statement now follows since the limits in (2.57) and (2.58) coincide. Note

that 1− y close to 1 corresponds to x close to 0. �
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Remark 2.31

Consider a sequence of SUD(λn) or SD tests as in Theorem 2.30 and assume

that every SUD(λn) test has �nite sample FDR control by α under the gBI

Model with convex dfs F0,H,i in (2.2). Then the above Theorem says that

the corresponding sequence of SU tests, based on the same rejection curve,

automatically has asymptotic FDR control by α under the present model. Note

that αn:n = r−1(1) < 1 is crucial for this statement.

2.5 Converse Benjamini Hochberg Theorem

As already mentioned, the FDR of the BH test under the BI Model is given by
E(N0)
n α. In this section we give a converse result and show that the BH test is

the only SU test which exactly exhibits this FDR level. It is obviously clear

that there are multiple tests which have this FDR level for a single or maybe

a few distributions. As we will see, already a small submodel of the BI Model

implies the result. Unlike the other results of this chapter, this section relies on

Heesen and Janssen [28].

Theorem 2.32 (cf. Theorem 5.1 in Heesen and Janssen [28])

Consider a SU test with arbitrary deterministic critical values 0 < α1:n ≤ α2:n ≤
. . . ≤ αn:n = λ < 1 or an adaptive SU test with data dependent critical values

0 < α̂1:n ≤ . . . ≤ α̂n:n ≤ λ < 1 given by measurable functions

α̂i:n = α̂i:n((F̂n(t))t≥λ), i = 1, . . . , n. (2.59)

(a) Suppose that we have FDR = E(N0)c for a constant 0 < c < 1
n for all

distributions of Model 1.4 (a), where 1 − π0 varies over a non-trivial interval

I ⊂ (0, 1) and the df F1 varies over all dfs with F1(t) ≥ t for all t ∈ [0, 1] and

which have a Lebesgue density. Then the critical values already satisfy

α̂i:n =
i

n
α a.s. (2.60)

for i = 1, . . . , n, where α = nc. In the deterministic case the �a.s.� can be

dropped.

(b) Suppose that we have E
(
V
R∨1

∣∣N0 = 1
)

= c for all distributions in (a), then

(2.60) holds again.
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Proof. This proof is based on results for complete statistical models which can

be found in Lehmann and Romano [35, p. 116] and Pfanzagl [42, p. 17-22]. Our

assumptions imply that∫ (
E
(

V

R ∨ 1

∣∣∣N0 = n0

)
− n0c

)
L(N0)(dn0) = 0 (2.61)

holds for all distributions which are described in (a). Observe that L(N0) is a

binomial distribution. Thus, we have

E
(

V

R ∨ 1

∣∣∣N0 = n0

)
− n0c = 0 (2.62)

for all n0 ∈ {0, . . . , n} since N0 is a complete statistic for the exponential family

of binomials.

From here on it su�ces to prove (b) and we focus on n0 = 1. Conditioned

under N0 = 1 the exact position of the true p-value does not matter since

the SU tests are permutation-invariant in the p-values. In this way let U be a

uniformly distributed true p-value and independent of U let ξ1, . . . , ξn−1 be false

p-values i.i.d. according to the alternative df F1. Moreover, denote ξ · :n−1 =

(ξ1:n−1, . . . , ξn−1:n−1). From (2.62) we conclude that

0 = E
(

V (U, ξ1, . . . , ξn−1)

R(U, ξ1, . . . , ξn−1) ∨ 1
− c
)

=

∫ ∫ 1

0

(
V (u, ξ · :n−1)

R(u, ξ · :n−1) ∨ 1
− c
)
duL(ξ · :n−1|F1)dξ · :n−1

(2.63)

holds. Observe that the family of distributions L(ξ1|F1) is convex and complete

in the sense of Pfanzagl [42, Theorem 1.5.10] and hence ξ · :n−1 is a complete

statistic for this model. It follows that∫ 1

0

(
V (u, ξ · :n−1)

R(u, ξ · :n−1) ∨ 1

)
du = c (2.64)

holds L(ξ · :n−1|F1) almost surely. By the same arguments as in the proof of

Lemma 2.5 we now obtain that the left hand side of (2.64) is equal to
α̂
R(1):n

R(1) ,

where R(1) = R(0, ξ1, . . . , ξn−1). For the right hand side of (2.64) introduce

α = nc which gives

α̂R(1):n =
R(1)

n
α L(ξ · :n−1|F1)− a.s.. (2.65)

It is easily seen that α < 1 holds since F1 may be the distribution function

of the uniform distribution. In this case we have α = nE
(
V
R∨1 |N0 = 1

)
=
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E
(
R
R11{R > 0}

)
= P (R > 0) < 1. Moreover, it is easy to check that the sets

{R(1) = j}, j = 1, . . . , n, have positive probability for at least one alternative

distribution function F1 which �nally proves the assertion by (2.65). We may

therefore again consider uniformly distributed false p-values and observe that

{ξj−1:n ≤ α̂j:n, ξj:n > λ} ⊂ {R(1) = j}, 1 ≤ j ≤ n,

holds for data driven critical values. Clearly, deterministic critical values are a

special case of data dependent critical values. �

Remark 2.33

(a) The conditional distributions which are considered in (b) correspond to

distributions of the BI Model with deterministic H and N0 = 1, where the false

p-values are i.i.d. according to an alternative df F1 as described in (a).

(b) The above theorem says that the BH test is the only adaptive SU test with

�distribution free� FDR. Note that �distribution free� here shall mean that the

df of false p-values F1 has no in�uence on the FDR. Of course, the distribution

of N0 still has one.

(c) Theorem 2.32 also clari�es that there is no chance to obtain exact FDR = α

for all cases for the adaptive SU tests given by (2.59).

Under the assumption (1.23) Benjamini and Yekutieli [5, Theorem 5.3]

showed that the FDR of a SU test is non-decreasing when the distribution

of false p-values becomes stochastically smaller. Otherwise, if i → αi:n
i is non-

increasing, they proved that the FDR is also non-increasing. In these cases

Theorem 2.32 is not surprising, even though this statement actually only im-

plies that the FDR of the BH test is distribution free. However, the present

result holds under much more general assumptions for SU and adaptive SU

tests without any monotonicity assumption of the form (1.23).

2.6 Asymptotics of adaptive SU tests

In the last sections, we mainly considered non adaptive SU tests and results

based on some central lemmas. Observe that Lemma 2.5 and 2.10 are also

valid for adaptive SU tests and we have not yet used the full potential of these

central lemmas. Now we show that these two lemmas easily establish a su�cient

condition which ensures asymptotic FDR control for particular sequences of
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adaptive SU tests. The next theorem applies to the RM and gBI Model and to

adaptive SU tests of Storey type with arbitrary estimators.

Theorem 2.34 (cf. Heesen and Janssen [29] Theorem 5.1)

Let Pn,RM and Pn,gBI be the sets of all possible distributions of the RM and

gBI Model for �xed n ∈ N, respectively. Moreover, let (Pn)n∈N be a sequence

of distributions with Pn ∈ Pn,RM or Pn ∈ Pn,gBI for all n and let λ ∈ (0, 1)

be a tuning parameter. Consider the sequence of adaptive SU tests given by the

critical values

α̂i:n =

(
i

n̂0,n
α

)
∧ λ, 1 ≤ i ≤ n, (2.66)

where

n̂0,n = n̂0,n((F̂n(t))t≥λ) > 0, n ∈ N, (2.67)

is a sequence of estimators for N0 given by measurable functions. If

Pn

(
n̂0,n
N0
≤ 1− δ

)
−→
n→∞

0 (2.68)

for all δ > 0, then we have

lim sup
n→∞

FDRPn ≤ α, (2.69)

where x
0 =∞ for x > 0.

Proof. Obviously, FDR = 0 if N0 = 0 almost surely. Thus, without loss of

generality let N0 > 0 hold almost surely for all n. By Lemma 2.5 and (2.66) we

obtain
N0

n
≥ EPn

(
Vn

nα̂Rn:n

∣∣∣H) ≥ EPn
(
n̂0,n
n
· Vn
Rnα

∣∣∣H) (2.70)

under both models since the conditional case is also included as special case.

Thus, by reordering and integration

α ≥ EPn
(
n̂0,n
N0
· Vn
Rn

)
≥ EPn

(
(1− δ) Vn

Rn
11

{
n̂0,n
N0

> 1− δ
})

= (1− δ)EPn
(
Vn
Rn

)
− (1− δ)EPn

(
Vn
Rn

1

{
n̂0,n
N0
≤ 1− δ

})
≥ (1− δ)EPn

(
Vn
Rn

)
− (1− δ)Pn

(
n̂0,n
N0
≤ 1− δ

)
holds for every δ > 0 and the assertion follows by (2.68). �
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In a special case (i.e. if Pn
(
n̂0,n

N0
< 1
)
→ 0 and if n̂0,n are non decreasing

estimators), the above theorem can be easily proved by application of Lemma

4.3 of Blanchard and Roquain [7]. Due to a little bug, non decreasing has to be

replaced by non increasing in [7, Lemma 4.3].

Finner and Gontscharuk [18] and Gontscharuk [24] already used (2.68) to

show asymptotic FWER control of a speci�c sequence of adaptive Bonferroni

tests and adaptive SD tests, respectively. These results hold under no additional

dependence assumption, whereas Theorem 2.34 needs at least a reverse martin-

gale structure. This is not surprising since the BH test itself does not exhibit

FDR control under arbitrarily dependent p-values. Therefore, the SU tests with

critical values (1.21) of Benjamini and Yekutieli [5] and (1.22) of Blanchard and

Roquain [7] have been proposed. It turns out that a particular adaptive version

of these SU tests has asymptotic FDR control under the same assumption, as

the next theorem will show.

For the sake of completeness, note that Theorem 2.34 has a small intersec-

tion with Theorem 4.5 of Gontscharuk [24], where the asymptotic FDR of the

adaptive SU test of Storey is computed. This theorem works under a weak de-

pendence assumption which basically corresponds to (2.79) below and just gives

(2.68) for the Storey estimator. In contrast to Theorem 2.34, it does not need

any further dependence assumption like the RM Model, but it requires some

additional assumption concerning the asymptotics of Rnn .

Further asymptotic results for the FDR of adaptive test procedures under

speci�c dependence structures have been obtained by Farcomeni [15]. His results

rely on the consistency of an estimator for the portion of true null hypotheses.

Theorem 2.35 (cf. Heesen and Janssen [29] Theorem 5.2)

Let Pn be the set of all possible distributions of the Basic Model 1.2 and let

(Pn)n∈N be a sequence with Pn ∈ Pn. Moreover, consider the sequence of adap-

tive SU tests given by the critical values (2.16) with

γ̃(i) = γ̃n(i) = i
n

n̂0,n
, 1 ≤ i ≤ n, (2.71)

and

n̂0,n = n̂0,n((F̂n(t))0≤t≤1) > 0, n ∈ N, (2.72)

is a sequence of estimators for N0 given by measurable functions. If (2.68) holds

for all δ > 0, then (2.69) follows again.
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Proof. Again, let N0 > 0 hold almost surely. By Lemma 2.10 and (2.71) we

directly obtain that
N0

n
≥ EPn

(
n̂0,n
n
· Vn
Rnα

∣∣∣H) .
The statement now follows by the same arguments as in the proof of Theorem

2.34. �

Remark 2.36

(a) As in Lemma 2.10, the data dependent critical values (2.16) with (2.71) may

again be functions of the entire ecdf (F̂n(t))0≤t≤1.

(b) Theorem 2.34 and 2.35 should not be used to look for estimators that yield

asymptotic FDR control in the entire RM and Basic Model, respectively. In-

stead, they give a su�cient condition for asymptotic FDR control for a �xed

sequence of distributions. Moreover, (2.68) describes a subclass of models

with asymptotic FDR control for each �xed sequence of estimators. In the

maximal dependent uniform case, i.e. when ζ1 = . . . = ζn ∼ U(0, 1) and

H1 = . . . = Hn = 0 hold, almost no sequence of estimators will satisfy (2.68)

except for the very conservative estimators n̂0,n = n which always work. How-

ever, whether (2.68) holds or not under the complete gBI Model is often easy

to verify for non decreasing estimators. In the other models, it gets more com-

plicated.

(c) The choice of ν({k}) =
(
k
∑n

j=1
1
j

)−1
, k = 1, . . . , n, which led to the SU

test of Benjamini and Yekutieli [5], see (1.21), now yields an adaptive version

with critical values

α̂i:n =
b n
n̂0,n
· ic

n
∑n

j=1
1
j

α, i = 1, . . . , n. (2.73)

Lemma 4.3 of Blanchard and Roquain [7] also applies to the PRDS Model

and Basic Model in the special case which is mentioned above. It is an open

question whether Lemma 2.9 can be extended to data dependent critical values

and thus whether Theorem 2.34 also holds under the PRDS Model. Note that

the estimator in Theorem 2.35 scales the range of the integral which de�nes the

adaptive critical values, whereas the adaptive critical values in Lemma 4.3 of

Blanchard and Roquain [7] are directly scaled by the estimator.
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We now show a converse result of Theorem 2.34. Under mild regularity

assumptions, (2.69) already implies a stricter version of (2.68) for Storey type

estimators.

Proposition 2.37 (cf. Heesen and Janssen [29] Proposition 5.1)

As in Theorem 2.34, let (Pn)n∈N be a sequence of RM Models and assume that

either

(i) N0
n → 1 or

(ii) ξi ≤ λ for all i ∈ N and 0 < η ≤ N0
n for all n ∈ N

holds. Consider the sequence of adaptive SU tests (2.66) with Storey type esti-

mators

n̂0,n = n
1− F̂n(λ) + κn

1− λ
, n ∈ N, (2.74)

for some positive sequence κn → 0. Moreover, assume that Pn({α̂R:n = λ})→ 0

for n→∞ and (2.69) hold. Then we have

n̂0,n
N0

−→
n→∞

1 in Pn-probability. (2.75)

Proof. Introduce the set An = {α̂Rn:n < λ} and its complement Acn. Observe

that in the proof of Lemma 5.1 α′ = nF̂n(λ)
λn̂0,n

α ≤ 1 holds on An. Otherwise, if we

assume α′ > 1, then in the notation of the proof R = Rq = nF̂n(λ) follows and

An = {nF̂n(λ)n̂0,n
α < λ} contradicts our assumption. Hence, by the arguments of

the proof of Lemma 5.1 we obtain

EPn
(

Vn
Rn ∨ 1

11An

)
=
α

λ
EPn

(
Vn(λ)

n̂0,n
11An

)
.

De�ne Sn(λ) = nF̂n(λ)− Vn(λ), then by (2.69) and (2.74) it follows that

α ≥ lim sup
n→∞

α(1− λ)

λ
· EPn

(
Vn(λ)

n− Vn(λ)− Sn(λ) + κn
11An

)
holds. Let us �rst consider case (ii). For each δ > 0 we obtain

1 ≥ 1− λ
λ

lim sup
n→∞

EPn
(

Vn(λ)/N0

1− Vn(λ)/N0 + κn/N0 + δ
11An

)
. (2.76)

Observe next that 0 ≤ Vn(λ)
N0
≤ 1 is tight and we consider an arbitrary distri-

butional cluster point Z of Vn(λ)
N0

. Let us denote the appertaining subsequence

again by n, i.e. Vn(λ)
N0
→ Z in distribution. Note that E(Z) = λ and

1 ≥ 1− λ
λ

E
(

Z

1− Z + δ

)
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hold. This and Jensen's inequality implies

λ

1− λ
≥ E

(
Z

1− Z

)
≥ λ

1− λ
when δ ↘ 0. Since x → x

1−x is strictly convex we have Z = λ a.e.. Since Z

was an arbitrary cluster point we conclude Vn(λ)
N0
→ λ in Pn-probability which

�nally implies

n̂0,n
N0

=
N0 − Vn(λ) + nκn

(1− λ) ·N0
−→
n→∞

1 in Pn-probability.

The proof of case (i) is similar. Note that the assumption implies (n−N0)+Sn(λ)
N0

→
1 and we may proceed as in (2.76). �

Remark 2.38

Consider the RM Models and let us exclude the cases with N0 = 0. As long as

su�cient variability of the variables ((1−Hi)11{pi ≤ λ})i≤n is present, condition
(2.68) can easily be veri�ed for the Storey type estimators (2.74) where κn is

some arbitrary positive sequence. Let

F̂0,n(λ) =
1

N0

n∑
i=1

(1−Hi)11{pi ≤ λ} (2.77)

be the ecdf of the true p-values. Then a su�cient condition for (2.68) is

V arPn

(
F̂0,n(λ)

∣∣∣(Hi)i≤n

)
= EPn

((
F̂0,n(λ)− λ

)2 ∣∣∣(Hi)i≤n

)
−→
n→∞

0 (2.78)

in Pn-probability. For the gBI and Basic Model

Pn

(
F̂0,n(λ) ≥ λ+ ε

∣∣∣(Hi)i≤n

)
−→
n→∞

0 (2.79)

in Pn-probability for all ε > 0 is su�cient. These cases correspond to so called

weak dependency assumptions which were discussed in Gontscharuk [24], Sec-

tion 4.1.

Proof. Observe that

n̂0,n
N0
≥ N0 − Vn(λ) + κn

(1− λ) ·N0
≥ 1− F̂0,n(λ)

1− λ
−→
n→∞

1 in Pn-probability

holds for the �rst case, where the right hand side converges by (2.78) w.r.t. the

conditional convergence. The second case follows similarly. �

In Chapter 5, we will give a counterexample for FDR control under the RM

Model when adaptive SU tests of Storey type with estimator (2.74) and λ < 1

are applied.



Chapter 3

A new estimation concept for

adaptive test procedures

Adaptive SU tests often incorporate an estimation of the proportion of true null

hypotheses. In a model with random true and false null hypotheses (like Model

1.4 (a)), the estimator for the proportion of true null hypotheses can also be

seen as an estimator for the expected proportion π0 and vice versa. In this

chapter we develop a new estimation concept in order to improve the estimators

for adaptive SU tests. The possible improvements of estimation strongly depend

on the model assumptions, i.e., on the possible distributions of true and false p-

values. Furthermore, we will show that the possible improvements for adaptive

SU tests are much broader than only an improved estimation of the portion and

expected portion of true null hypotheses, respectively. In the next chapter we

will study �nite sample FDR control of adaptive SU tests.

In the �rst section we will give a brief summary of the well known and often

applied Storey estimator. For this estimator, we provide an optimality result in

a speci�c submodel of Model 1.4 (a). In Section 3.2 we will relax these model

assumptions and consider a more general model. The important question will

be: What does really account for an improvement of an estimator for adaptive

SU tests? Therefore, we reconsider the studies of Storey [59] in this more gen-

eral model and show that the expected proportion of true null hypotheses π0

is not the parameter which should be estimated. The estimation of the correct

parameter is quite more complex. In this sense, �new estimation concept� shall

mean that we show how and why to estimate a di�erent parameter. For this

57
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purpose, we introduce new estimators and give a further optimality result in

a speci�c submodel. In Section 3.3 we will introduce integral versions of esti-

mators, considered in the previous sections. In the subsequent Section 3.4 we

will adjust estimators, which appeared in the recent literature, in order to make

them work well in our more general model. Finally, Section 3.5 is devoted to

the family of generalized error rates of Meskaldji et al. [39], see Remark 2.12.

3.1 The original Storey Estimator

We begin with a brief review of well known properties of the original Storey

estimator which has been introduced by Schweder and Spjøtvoll [55] and later

by Storey [59]. Throughout we call it original because it is the �rst of two

versions of the estimator which appeared in the literature. The other slightly

modi�ed version appeared in Storey et al. [61] and has been introduced in order

to provide �nite sample FDR control for the adaptive SU test of Storey, see

(1.29) and (1.30). We will have a detailed look at the approach of Storey [59]

in the next section. For this section let us recall Model 1.4 (a) which has also

been considered by Storey [59, 60]:

Starting from Basic Model 1.2, the p-values p1, . . . , pn are true or false ac-

cording to the i.i.d. Bernoulli random variables H1, . . . ,Hn ∼ B(1, 1 − π0),

where π0 ∈ (0, 1] and Hi = 0 codes the occurrence of a true p-value. The

true p-values are independent and uniformly distributed. Moreover, the false

p-values are independent and distributed according to some alternative df F1

on [0, 1] and independent of the vector of true p-values. For every �xed dis-

tribution under the present model p1, . . . , pn are i.i.d. with pi ∼ Fπ0,F1 , where

Fπ0,F1(t) = π0t + (1 − π0)F1(t), 0 ≤ t ≤ 1. In this model, at least the possible

joint distributions of (p1, . . . , pn) can be represented by

{Pnπ0,F1
: π0 ∈ (0, 1], F1 alternative df}, (3.1)

where Pπ0,F1 ∼ Fπ0,F1 . We will use a similar notation for further submodels

without de�ning it every time.

Remark 3.1

A parametric statistical model (Ω,A, {Pϑ : ϑ ∈ Θ}) is called identi�able i�

the mapping ϑ → Pϑ is bijective. Note that (3.1) is non-identi�able and the
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distributions Pnπ0,F1
of the p-values are not able to model the occurrence of

true and false p-values. If F1 is the df of U(0, 1), then every choice of π0

leads to the same probability measure Pn1,F1
. Therefore, the alternative df F1

may be restricted to the subset of dfs which are stochastically smaller than

U(0, 1) without the uniform distribution itself. Unfortunately, this does not

work for generalizations of this model when the marginal distributions of true p-

values are allowed to be stochastically larger than U(0, 1). For instance, U(0, 12)

distributed false p-values, U(12 , 1) distributed true p-values and π0 = 1
2 lead to

the probability measure Pn1,F1
. Nevertheless, this is an interesting and possible

underlying model which should de�nitely be analyzed with respect to the FDR.

This is the main focus of this chapter. Working without identi�ability is a very

challenging task. Therefore, we will begin by considering speci�c submodels

which exhibit identi�ability and where the estimation of the essential parameters

for the FDR works well. The new estimators are developed in these submodels.

In a further step, we will show that the introduced estimators still exhibit a

conservative behavior in the complete non-identi�able model.

The original Storey estimator is given by

π̂St,o.0 (λ) =
1− F̂n(λ)

1− λ
(3.2)

with some tuning parameter λ ∈ (0, 1). In the present model, π̂St,o.0 (λ) is an

estimator for the expected proportion of true null hypotheses π0. Storey [59]

incorporates π̂St,o.0 (λ) into the estimator

F̂DR(t) =
π̂St,o.0 (λ) · t
F̂n(t) ∨ 1

n

, t ∈ [0, 1], (3.3)

for FDR(t) which is de�ned as the FDR of the multiple test procedure which

rejects every p-value pi i� pi ≤ t. The bias of π̂St,o.0 (λ) in the present model is

given by

E
(
π̂St,o.0 (λ)− π0

)
= 1−π0λ−(1−π0)F1(λ)

1−λ − π0
= (1− π0)1−F1(λ)

1−λ ≥ 0,
(3.4)

cf. Langaas et al. [32]. Furthermore, Chen and Doerge [10] calculated the

bias under the gBI Model conditioned under H. Usually, the false p-values are

assumed to be stochastically smaller than the uniform distribution. From (3.4)

we can observe that π̂St,o.0 has a small bias when F1(λ) is close to 1 and is
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actually unbiased for F1(λ) = 1. Thus, with respect to the bias, one would like

to choose a large λ close to 1. However, one would also like to have an estimator

with small variance, but this would require the choice of a small λ. This leads

to a bias variance trade-o� and λ is often chosen close to 0.5, cf. Storey and

Tibshirani [62].

The original Storey estimator only uses the ecdf F̂n at a single position

λ. The question which now arises is the following: Is π̂St,o.0 improvable by

incorporating more information of the ecdf F̂n? The next theorem shows that

π̂St,o.0 (λ) has minimum variance among all unbiased estimators which only use

the information of (F̂n(t))t≥λ when F1(λ) = 1.

Theorem 3.2

Let λ ∈ (0, 1) and consider the following submodel of Model 1.4 (a). Assume

that F1(λ) = 1 holds for the df of false p-values, i.e. all false p-values are al-

most surely located in [0, λ]. Then the original Storey estimator π̂St,o.0 (λ) is

a uniformly minimum variance unbiased (UMVU) estimator for the statisti-

cal functional Pπ0,F1 → π0 in the class of estimators {π̂0 = f((F̂n(t))t≥λ) :

f is measurable}.

Proof. The statement follows by application of the well known Theorem of

Lehmann and Sche�é (see Witting [64, Satz 3.35] or Lehmann and Casella [33,

Theorem 1.11] for instance). Therefore, consider the transformed model{(
Pnπ0,F1

)(F̂n(t))t≥λ : π0 ∈ (0, 1], F1 with F1(λ) = 1

}
. (3.5)

Observe that Fπ0,F1(t) = (1 − π0) + π0t for t ≥ λ and all considered dfs F1.

Thus, we obtain Pπ0,F1( · |(λ, 1)) ∼ U(λ, 1) and

(
Pnπ0,F1

)(F̂n(t))t≥λ|F̂n(λ)=k/n = L

((
k

n
+
n− k
n

F̂n−k(t)

)
t≥λ

∣∣∣U(λ, 1)n−k

)

is independent of π0 and F1 for 0 ≤ k ≤ n. Hence, F̂n(λ) is a su�cient statistic

for (3.5). Moreover, observe that

L
(
nF̂n(λ)

∣∣∣ (Pnπ0,F1

)(F̂n(t))t≥λ) = B(n, Fπ0,F1(λ))

is a binomial distribution and the image of {(π0, F1) : π0 ∈ (0, 1], F1 with

F1(λ) = 1} under the mapping (π0, F1) → Fπ0,F1(λ) is given by [λ, 1). Hence,
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F̂n(λ) is also a complete statistic for (3.5) (see Lehmann and Romano [35, Ex-

ample 4.3.1] for instance). Finally, π̂St,o.0 (λ) is unbiased and factorizes after the

su�cient and complete statistic F̂n(λ) which proves the statement. �

3.2 New estimation concept and new estimators

Let us now switch to the following more general model which allows for signi�-

cant improvements as we will see.

Model 3.3 (i.i.d. mixture model)

Assume a relaxed form of Model 1.4 (a), where the true p-values (ξi)i≤n are

still i.i.d. but distributed according to some null df F0 whose distribution is

stochastically larger than the uniform distribution. For every �xed distribution

under the present model the p-values p1, . . . , pn are i.i.d. with pi ∼ F and

F (t) = Fπ0,F0,F1(t) = π0F0(t) + (1− π0)F1(t), 0 ≤ t ≤ 1. (3.6)

Hence, the possible joint distributions of (p1, . . . , pn) can be represented by

{Pnπ0,F0,F1
: π0 ∈ (0, 1], F0

st
≥ U(0, 1), F1 alternative df},

where Pπ0,F0,F1 ∼ Fπ0,F0,F1. We will use a similar notation for further submodels

without de�ning it again.

Note that this model is no arti�cial construct to allow the announced im-

provements. Null dfs F0 with F0

st
≥ U(0, 1) widely occur in one sided hypotheses

testing problems. For more information we refer to Section 4.1.

We will soon show that the parameter π0 is not really the parameter one

should estimate for FDR controlling procedures in this model. But even the

estimation of π0 becomes more di�cult when the null p-values get stochastically

larger as the following example shows. The last fact has already been mentioned

by Chen and Doerge [10] and Dickhaus [11]. In contrast to our approach, their

approach is based on an improved estimation of π0 and related parameters.

Example 3.4

Let us consider Model 3.3 with F1(t) = 11[0,1](t) and F0(t) = (1−π2)t+π211{1}(t),
0 ≤ t ≤ 1, with π2 ∈ [0, 1]. The df F0 is the df of a mixed Dirac-Uniform

(mDU) con�guration with Dirac part 1. Furthermore, the df

F (t) = (1− π0)11[0,1](t) + π0(1− π2)t+ π0π211{1}(t), 0 ≤ t ≤ 1,
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of the p-values pi is the df of a mixed twofold Dirac-Uniform (m2DU)

con�guration with Dirac parts 0 and 1. Observe, that F is a linear function

on the open interval (0, 1) and has jumps at 0 and 1. According to π2, the

estimator π̂St,o.0 (λ) can have a very bad behavior even if F1(λ) = 1. Table 3.1

shows E(π̂St,o.0 (0.5)) for π0 = 0.9 and di�erent values of π2 in order to indicate

this. The larger the Dirac part π0π2 at 1 in F , the larger the upwards bias. The

π2 0 0.05 0.1 0.15

E(π̂St,o.0 (0.5)) 0.9 0.945 0.99 1.035

Table 3.1: Expectation of the original Storey estimator.

same behavior shows up for di�erent values of π0 and λ and also for di�erent

dfs F0 and F1. Actually, E(π̂St,o.0 (λ)) > 1 is possible, cf. Table 3.1 for π2 = 0.15.

Our next considerations are based on Storey [59, Section 3]. We will gener-

alize his results by replacing Model 1.4 (a) by Model 3.3 and by reconsidering

his approach step by step.

His purpose is to estimate FDR(Γ) which is de�ned as the FDR of the

multiple test procedure which is based on real test statistics T1, . . . , Tn and

rejects every Ti i� Ti ∈ Γ for a �xed rejection region Γ ⊆ R. As in Model

3.3, T1, . . . , Tn are i.i.d. randomly chosen to be true or false but distributed

according to some �xed arbitrary null df F̃0 or alternative df F̃1. However, in

terms of p-values p1, . . . , pn, Storey only considers uniformly distributed true

p-values and rejection areas Γ = [0, t]. The FDR of the rejection area [0, t] is

denoted by FDR(t). He precisely calculates pFDR(Γ) for T1, . . . , Tn which is

de�ned as the positive FDR (pFDR) of the test described before. Since our

p-value Model 3.3 is contained in his model of T1, . . . , Tn we immediately obtain

the next theorem.

Theorem 3.5 (cf. Theorem 1 in Storey [59] and [60])

Consider Model 3.3. Then we have

pFDR(t) =
π0F0(t)

F (t)
, t ∈ [0, 1]. (3.7)

Proof. The statement follows directly from Theorem 1 of Storey [59] as special

case. �
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Storey proposes to estimate π0 by the conservative (upwards biased) estimate

π̂St,o.0 (λ) and F (t) by the ecdf F̂n(t). Furthermore, F0(t) = t, 0 ≤ t ≤ 1, holds

for uniformly distributed true p-values, but Storey suggests to use the correction

t/(1−(1− t)n), because 1−(1− t)n is a lower bound for P (R(t) > 0) and pFDR

is de�ned as conditional expectation given R(t) > 0. This leads to the estimator

p̂FDR
St

(t) =
π̂St,o.0 (λ) · t

(F̂n(t) ∨ 1
n)(1− (1− t)n)

, t ∈ [0, 1]. (3.8)

Retrospectively, he argues that

F̂DR
St

(t) =
π̂St,o.0 (λ) · t
F̂n(t) ∨ 1

n

, t ∈ [0, 1], (3.9)

is an estimator for FDR(t) since the FDR is not a conditioned quantity. For

further understanding of these corrections for the estimation of pFDR(t) and

FDR(t), we refer to Storey [59, Section 3 and 8].

For our next considerations we will only focus on FDR(t) and estimators for

this quantity. For uniformly distributed p-values one can clearly replace F0(t)

by t itself, but if we switch to Model 3.3, F0(t) = t no longer applies. In Model

3.3, F0(t) ≤ t is valid. Depending on F0, the replacement of F0(t) by t may be

far too conservative. Of course, π0 itself is usually estimated by a conservatively

biased estimate (in the sense that one would tend to overestimate π0 and hence

tend to overestimate FDR(t)), but one would truly like to have a low bias in

order to have an accurate estimation of FDR(t). As we have seen in Example

3.4, π̂St,o.0 may already have an increased bias if we switch to Model 3.3. The

next example will give a joint consideration of this problem.

Example 3.6 (Example 3.4 continued)

Let us consider a conditional version of the m2DU con�guration. Assume

that about (1 − π0)n p-values are false and have Dirac distribution ε0, about

π0(1 − π2)n p-values are true, independently and uniformly distributed and

about π0π2n p-values are true and have Dirac distribution ε1. The exact or-

der of the p-values inside p does not matter. If we now consider FDR(t) with

t < 1, about π0π2n true p-values (i.e. the true p-values with Dirac distribution

ε1) are not in danger of getting rejected and becoming a so-called false positive

by the corresponding testing procedure. Hence, these p-values do not have any

in�uence on FDR(t). This clearly remains true if the Dirac distribution ε1 is re-

placed by some p-value df G with G(t) = 0. Even if 0 ≤ G(t) < t, the associated
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p-values would have a lower e�ect on FDR(t) than the uniformly distributed

true p-values. This observation also carries over to SU tests, see Chapter 4 for

more details.

Therefore, it is desirable to jointly estimate π0F0(t) in the present generalized

model and to use

F̂DR(t) =
π̂0F0(t)

F̂n(t) ∨ 1
n

, t ∈ [0, 1], (3.10)

as estimator for FDR(t). In Model 3.3, the term 1−(1−t)n is no longer a lower
bound for P (R(t) > 0) and hence we cannot de�ne an analogue estimator for

pFDR(t). But we still regard F̂DR(t) as estimator for FDR(t), see also (3.43)

for a direct motivation.

We now derive new estimators for π0F0(t) which will be denoted by $̂(t, ·).
Note that $ is the calligraphic form of π. This shall indicate that $̂(t, ·) is

the estimator for the crucial parameter π0F0(t) which is related to π0, in some

sense. Previously in Model 1.4 (a), π0 has been the crucial parameter. It will

turn out that the estimation of π0F0(t) is more di�cult than merely estimating

π0. Therefore, we will develop the new estimators in a speci�c submodel in

which π0F0(t) shows a nice behavior and proceed as described in Remark 3.1

due to the problem of identi�ability. Let us now introduce the family of new

estimators given by

$̂(t, λ, γ) =
F̂n(γ)− F̂n(λ)

γ − λ
t (3.11)

with 0 ≤ t ≤ 1 and 0 < λ < γ ≤ 1. Similar estimators have already been

mentioned in passing by Liang and Nettleton [36] in another context and without

focus on �nite sample FDR control. Further estimators will be described and

discussed later.

Proposition 3.7

Let 0 < λ∗ < γ∗ ≤ 1 be �xed in advance and consider the following submodel

of Model 3.3. Assume that F0(t) = (1 − π2)t + π2G(t) for some p-value df G

with G(γ∗) = 0 and for some π2 ∈ [0, 1]. Furthermore, assume that we have

F1(λ
∗) = 1. If t ≤ γ∗ and λ∗ ≤ λ < γ ≤ γ∗, then $̂(t, λ, γ) de�ned in (3.11) is

an unbiased estimator for π0F0(t) = π0(1− π2)t.

Proof. Since F (t) = (1− π0) + π0(1− π2)t for all t ∈ [λ∗, γ∗], it follows imme-
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diately that

E ($̂(t, λ, γ)) =
F (γ)− F (λ)

γ − λ
· t = π0(1− π2)t.

�

The next theorem gives an optimality result for the new estimators which is

similar to the one of Section 3.1.

Theorem 3.8

Consider the model given in Proposition 3.7. Then the estimator $̂(t, λ∗, γ∗)

is an UMVU estimator for the statistical functional Pπ0,π2,F0,G → π0F0(t) =

π0(1−π2)t in the class of estimators {$̂ = f((F̂n(t))λ∗≤t≤γ∗ : f is measurable}
for every t ≤ γ∗.

Proof. Similar to the proof of Theorem 3.2 we show that (F̂n(λ∗), F̂n(γ∗)) is a

complete and su�cient statistic for the transformed model{(
Pnπ0,π2,F1,G

)(F̂n(t))λ∗≤t≤γ∗ :
π0 ∈ (0, 1], F1 with F1(λ

∗) = 1,

π2 ∈ [0, 1], G with G(γ∗) = 0

}
. (3.12)

The statement then follows by the same arguments. Observe that F (t) =

Fπ0,π2,F1,G(t) = (1− π0) + π0(1− π2)t for all λ∗ ≤ t ≤ γ∗. Thus,
Pπ0,π2,F1,G( · |[λ∗, γ∗]) ∼ U(λ∗, γ∗) follows and

(
Pnπ0,π2,F1,G

)(F̂n(t))λ∗≤t≤γ∗ |F̂n(λ∗)=k1/n,F̂n(γ∗)=k2/n
= L

((
k1
n

+
k2 − k1
n

F̂k2−k1(t)

)
λ∗≤t≤γ∗

∣∣∣U(λ∗, γ∗)k2−k1

)

is independent of π0, π2, F1 and G for 0 ≤ k1 ≤ k2 ≤ n. Hence, (F̂n(λ∗), F̂n(γ∗))

is a su�cient statistic for (3.12). Furthermore, it su�ces to show that the

multinomial distributed statistic(
nF̂n(λ∗), n(F̂n(γ∗)− F̂n(λ∗))

)
∼M

(
n, F (λ∗), F (γ∗)− F (λ∗), 1− F (γ∗)

)
is complete with respect to (3.12). This follows directly by application of Lemma

6.3 of the appendix since

{(F (λ∗), F (γ∗)− F (λ∗)) : π0, π2 ∈ (0, 1)} (3.13)
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has a nonempty interior. Therefore, observe that the mapping

(0, 1)2 3 (π0, π2)→ (F (λ∗), F (γ∗)− F (λ∗))

=
(
1− π0 + π0(1− π2)λ∗, π0(1− π2)(γ∗ − λ∗)

)
has the continuous inverse

(x, y)→

(
1− x+ y

λ∗

γ∗ − λ∗
,
1− x− y 1−λ∗

γ∗−λ∗

1− x+ y λ∗

γ∗−λ∗

)
(3.14)

on the set (3.13). The inverse is well-de�ned since F (λ∗) < 1 for all π0, π2 ∈
(0, 1) and thus, 1 − x + y λ∗

γ∗−λ∗ > 0 follows. Hence, (3.13) is a nonempty and

open set as inverse image (of the continuous inverse) of (0, 1)2. �

Remark 3.9

The estimator

$̂(λ, γ) =
F̂n(γ)− F̂n(λ)

γ − λ
(3.15)

(which results from (3.11) by removing t) can be seen as generalization of the

original Storey estimator π̂St,o.0 (λ). But in the model of Proposition 3.7, $̂(λ, γ)

estimates π0(1−π2), whereas π̂St,o.0 (λ) estimates π0. In the more general Model

3.3 it is actually not clear what $̂(λ, γ) is estimating exactly. Hence, one should

rather compare $̂(t, λ, γ) with π̂St,o.0 (λ) · t which both estimate π0F0(t). We will

also refer to π̂St,o.0 (λ) · t as original Storey estimator. However, every estimator

$̂(t, ·) for π0F0(t) considered in this chapter is linear in t and may be written

as $̂(t, ·) = t · $̂(·) for some estimator $̂(·) which does not depend on t. For

convenience we will hence sometimes deal with $̂(·) instead of $̂(t, ·).

A slightly modi�ed version of (3.15) has been introduced in Heesen and

Janssen [28]. In their model, it served as estimator for the random number of

true null hypotheses N0.

In Model 1.4 (a) the original Storey estimator π̂St,o.0 (λ) exhibits a very nice

behavior if all false p-values are almost surely located in [0, λ]. The new es-

timator $̂(t, λ, γ) shows a very nice behavior in the model of Proposition 3.7.

But the assumption of false p-values, which are less than or equal to λ, seems

to be far more realistic than the assumptions of Proposition 3.7. We will now

weaken the assumptions of Proposition 3.7 and investigate the behavior of the

new estimators (3.11).
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Theorem 3.10

(a) Consider Model 3.3 and let 0 < λ < γ ≤ 1. Furthermore, assume that

the df F0 of true p-values is convex and di�erentiable. Then $̂(t, λ, γ) is a

conservatively biased estimator for π0F0(t) for all 0 < t ≤ λ, i.e. we have

E ($̂(t, λ, γ)) ≥ π0F0(t). (3.16)

(b) Under the assumptions of (a), the estimator $̂(t, λ, γ) has a lower bias than

π̂St,o.0 (λ) · t, i�
γ − λ
1− λ

+
1− γ
1− λ

F (λ) ≥ F (γ). (3.17)

Proof. (a) By our assumptions on F0, observe that

F0(γ)− F0(λ)

γ − λ
≥ F ′0(λ) and

F0(t)

t
=
F0(t)− F0(0)

t
≤ F ′0(t).

Thus, we obtain

E ($̂(t, λ, γ)− π0F0(t))

=
π0F0(γ) + (1− π0)F1(γ)− π0F0(λ)− (1− π0)F1(λ)

γ − λ
t− π0F0(t)

≥ π0t
(
F0(γ)− F0(λ)

γ − λ
− F0(t)

t

)
≥ π0t

(
F ′0(λ)− F ′0(t)

)
≥ 0

since F ′0 is non decreasing for convex di�erentiable functions.

(b) By de�nition, we have

0 ≤ E
(
π̂St,o.0 (λ) · t− $̂(t, λ, γ)

)
=

t

(1− λ)(γ − λ)

(
γ − λ+ (1− γ)F (λ)− (1− λ)F (γ)

)
i� (3.17). �

Remark 3.11

(a) Convex dfs of true p-values occur in a broad and intuitive setting of testing

problems. We will go into details in Section 4.1.

(b) The smaller F (γ) and hence the more p-values located in the upper tail, the

better $̂(t, λ, γ) becomes in terms of bias.

Some more general conditions for a conservative bias of several estimators

are treated in Proposition 3.17.
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The possible choice of λ and γ leads to a more complex bias variance trade-

o� as in the case for π̂St,o.0 since the bias is particularly in�uenced by the choice

of γ. At this point, we propose to use λ = 0.5 and γ = 0.95 (or γ = 0.9) for the

new estimator $̂(t, λ, γ). Based on the original Storey estimator π̂St,o.0 (λ) · t,
it has only a slightly increased variance but excludes a substantial part of the

upper tail of the ecdf F̂n which may include too many true p-values, in the sense

that their part of the distribution does not a�ect FDR(t) for small t.

As estimator for FDR(t) we propose

F̂DR(t) =


$̂(t,λ,γ)

F̂n(t)∨ 1
n

, 0 ≤ t ≤ λ,

1, λ < t ≤ 1.
(3.18)

As seen in Proposition 3.7, the new estimator $̂(t, λ, γ) is unbiased in a speci�c

submodel for t ≤ γ∗. Since we try to choose γ close to the unknown parameter

γ∗ we expect F̂DR(t) not to be accurate for t > γ. Hence, one should rather

estimate FDR(t) for t > γ by the conservative estimate 1. The estimator in

(3.18) is actually a little more conservative and estimates FDR(t) for t > λ by 1.

A similar approach is described in Storey et al. [61] who rede�ned F̂DR
St

(t) = 1

for t ≥ λ when π̂St,o.0 (λ) is used in F̂DR
St

(t). Note that γ∗ can only be de�ned

in a speci�c submodel of Model 3.3.

FDR(t) is an interesting value, but the FDR of the corresponding test,

which rejects every p-value pi ≤ t, is not bounded by any predetermined level α.

Therefore, one would like to have a multiple testing procedure which exhausts

a predetermined FDR level α as good as possible. This leads to considerations

for �nite sample FDR control which is the topic of the next chapter. Here, we

merely show how to get from F̂DR(t) to adaptive SU tests. Storey et al. [61]

propose to reject every p-value with

pi ≤ sup

{
0 ≤ t ≤ 1 : F̂DR

St
(t) ≤ α

}
(3.19)

for their estimator F̂DR
St

(t) and show that this procedure is the adaptive SU

test with critical values

αi:n =
i

nπ̂St,o.0 (λ)
α, 1 ≤ i ≤ n, (3.20)

see Storey et al. [61, Lemma 2]. An analogue statement applies to (3.18).
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Theorem 3.12 (cf. Lemma 2 in Storey et al. [61])

Consider the estimator (3.18). The multiple test procedure which rejects every

p-value with

pi ≤ sup
{

0 ≤ t ≤ 1 : F̂DR(t) ≤ α
}

(3.21)

is the adaptive SU test with critical values

αi:n =

(
i

n$̂(λ, γ)
α

)
∧ λ, 1 ≤ i ≤ n. (3.22)

Proof. The statement follows directly from the proof of Lemma 2 of Storey et

al. [61] since $̂(t, λ, γ) = $̂(λ, γ) · t is linear in t. One merely has to replace

the estimator π̂St,o.0 (λ) by $̂(λ, γ) and take into account that F̂DR(t) = 1 > α

for t ≥ λ. �

Remark 3.13

Again, note that every estimator $̂ considered in this chapter is of the form

$̂(t, ·) = t · $̂(·). Thus, Theorem 3.12 also applies if we replace $̂(t, λ, γ) in

(3.18) by any estimator $̂(t, ·) = t · $̂(·) which will be studied in the next

Sections 3.3 and 3.4.

Moreover, to obtain �nite sample FDR control, Storey et al. [61] modi-

�ed π̂St,o.0 and F̂DR
St

(t), respectively. We will also modify our estimators, cf.

Chapter 4. In the next section we �rst introduce di�erent estimators of integral

type.

3.3 Integral type estimators

The tuning parameter λ of the estimator π̂St,o.0 (λ) is often chosen by a bias

variance trade-o�. The smaller λ the larger the bias and the smaller λ the

smaller the variance of π̂St,o.0 (λ). Moreover, under certain assumptions we have

shown that π̂St,o.0 (λ) is the best estimator in a speci�c class of estimators. If one

believes that there are no false p-values above λ and one would like to consider

only the information of the ecdf F̂n above λ, then Theorem 3.2 advises to take

π̂St,o.0 (λ). However, λ has to be chosen heuristically in practice.

Instead of choosing a potential optimal λ in this fashion and then applying

π̂St,o.0 (λ), we consider the following approach. Let Q be a �xed probability
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measure on [c0, c1] with 0 < c0 ≤ c1 < 1 and de�ne the estimator

π̂Int0 (Q) =

∫
π̂St,o.0 (λ)Q(dλ). (3.23)

The advantage of this estimator is that we are able to incorporate the original

Storey estimator also for λ that is little smaller than usually used. For this

approach, we recommend to incorporate π̂St,o.0 (λ) with small λ only with small

weights. If such a λ is too small, in the sense that π̂St,o.0 (λ) has a too large bias

in comparison to standard λ, then it does not account so much for the complete

estimation. Often λ = 0.5 is chosen as parameter for π̂St,o.0 . Based on this, we

may consider

π̂Int0

(
1

10
ε0.4 +

8

10
ε0.5 +

1

10
ε0.6

)
=

1

10
π̂St,o.0 (0.4) +

8

10
π̂St,o.0 (0.5) +

1

10
π̂St,o.0 (0.6)

which also takes λ = 0.4 and λ = 0.6 into account.

The same considerations can be done for $̂(λ, γ) particularly with regard

to F0 and γ. Let Q be a �xed probability measure on [c0, 1]2 with 0 < c0 < 1

and Q({(λ, γ) : γ − λ > ε}) = 1 for some ε > 0. The tuning parameters λ and

γ should never be too close together since this would dramatically increase the

variance of $̂(λ, γ). Let us then de�ne the estimator

$̂Int(Q) =

∫
$̂(λ, γ)Q(d(λ, γ)) (3.24)

which is a natural generalization of πInt0 . If Q([c0, 1]×{1}) = 1, then $̂Int(Q) =

π̂Int0 (QPr1), where Pr1 is the projection (λ, γ)→ λ.

Theorem 3.14

Consider Model 3.3 and let the above assumptions hold for (3.24). Then

E
(
$̂Int(Q)

)
=

∫
F (γ)− F (λ)

γ − λ
Q(d(λ, γ)) (3.25)

and

Var
(
$̂Int(Q)

)
=

1

n

∫ ∫
P
(
(λ, γ] ∩ (λ′, γ′]

)
(γ − λ)(γ′ − λ′)

Q(d(λ, γ))Q(d(λ′, γ′))− 1

n
E
(
$̂Int(Q)

)2
,

(3.26)

where P is the corresponding probability measure of the df F .
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Proof. Formula (3.25) follows directly by de�nition of $̂(λ, γ) and Fubini's

Theorem. Here, (λ, γ) can be regarded as a Q random variable. In this sense,

let (λ′, γ′) be an independent copy of (λ, γ). Hence, by Fubini's Theorem, we

obtain

E
(
$̂Int(Q)2

)
= E

(∫
$̂(λ, γ)Q(d(λ, γ)) ·

∫
$̂(λ′, γ′)Q(d(λ′, γ′))

)
(3.27)

= E
(∫ ∫

$̂(λ, γ)$̂(λ′, γ′)Q(d(λ, γ))Q(d(λ′, γ′))

)
(3.28)

=

∫ ∫
E
[
$̂(λ, γ)$̂(λ′, γ′)

]
Q(d(λ, γ))Q(d(λ′, γ′)). (3.29)

Let 0 ≤ x ≤ y ≤ 1. Since(
nF̂n(x), n(F̂n(y)− F̂n(x)), n− nF̂n(y)

)
∼M

(
n, F (x), F (y)− F (x), 1− F (y)

)
is distributed according to the multinomial distribution observe that

Cov
(
nF̂n(x), n(F̂n(y)− F̂n(x))

)
= −nF (x)(F (y)− F (x)).

Thus, we have

E
(
F̂n(x)F̂n(y)

)
=

1

n2
E
(
nF̂n(x)

(
nF̂n(y)− nF̂n(x)

))
+ E

(
F̂n(x)2

)
= − 1

n
F (x)(F (y)− F (x)) + F (x)(F (y)− F (x)) +

1

n
F (x)(1− F (x)) + F (x)2

= (1− 1

n
)F (x)F (y) +

1

n
F (x)

and hence

E
[
$̂(λ, γ)$̂(λ′, γ′)

]
= E

(
F̂n(γ)− F̂n(λ)

γ − λ
· F̂n(γ′)− F̂n(λ′)

γ′ − λ′

)

=

(
1− 1

n

)
· F (γ)− F (λ)

γ − λ
· F (γ′)− F (λ′)

γ′ − λ′

+
F (min{γ, γ′})− F (min{γ, λ′})− F (min{λ, γ′}) + F (min{λ, λ′})

n(γ − λ)(γ′ − λ′)
.
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Moreover, observe that

F (min{γ, γ′})− F (min{γ, λ′})− F (min{λ, γ′}) + F (min{λ, λ′})

=


F (γ)− F (γ)− F (λ) + F (λ) = 0 for λ < γ ≤ λ′ < γ′,

F (γ′)− F (λ′)− F (λ) + F (λ) = F (γ′)− F (λ′) for λ ≤ λ′ < γ′ ≤ γ,

F (γ)− F (λ′)− F (λ) + F (λ) = F (γ)− F (λ′) for λ ≤ λ′ ≤ γ ≤ γ′

= P
(
(λ, γ] ∩ (λ′, γ′]

)
.

Note that in the strict sense there exist 3 more cases, but the other cases follow

directly by interchanging (λ, γ) and (λ′, γ′). Altogether, we obtain

(3.29) = (1− 1

n
)E
(
$̂Int(Q)

)2
+

∫ ∫
P
(
(λ, γ] ∩ (λ′, γ′]

)
n(γ − λ)(γ′ − λ′)

Q(d(λ, γ))Q(d(λ′, γ′))

which proves the assertion. �

Remark 3.15

(a) The integral type estimator $̂Int(Q) is unbiased for π0(1 − π2) under the

assumptions of Proposition 3.7 if in addition Q([λ∗, γ∗]2) = 1.

(b) For π̂Int0 (Q) the statements from Theorem 3.14 reduce to

E
(
π̂Int0 (Q)

)
=

∫
1− F (λ)

1− λ
Q(dλ)

and

Var
(
π̂Int0 (Q)

)
=

1

n

∫ ∫
1− F (max{λ, λ′})

(1− λ)(1− λ′)
Q(dλ)Q(dλ′)− 1

n
E
(
π̂Int0 (Q)

)2
.

The integral type estimator π̂Int0 (Q) is unbiased for π0 under Model 1.4 (a) if in

addition F1(λ
∗) = 1 and Q([λ∗, 1)) = 1 hold for some λ∗.

Corollary 3.16 (of Theorem 3.10)

Consider Model 3.3 and assume that the df F0 of true p-values is convex and

di�erentiable. Moreover, let Q([λ∗, 1]2) = 1 for some 0 < λ∗ < 1. Then

$̂Int(t, Q) = $̂Int(Q) · t is a conservatively biased estimator for π0F0(t) in

the sense of Theorem 3.10 for all 0 ≤ t ≤ λ∗.

Proof. The statement follows directly by Theorem 3.10 and Fubini's Theorem.

�
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3.4 Other estimators

Several estimators for π0 and related parameters can be found in the literature.

In particular, a model similar to Model 1.4 (b) with deterministic N0 = n0

has often been considered and estimators n̂0 for n0 were developed. As already

mentioned, π0 often denotes the portion n0
n , whereas in this chapter, it denotes

a parameter of Model 1.4 (a) and 3.3. Nonetheless, the estimators for n0 and π0

can be rewritten by π̂0 = 1
n n̂0 regardless of whether π0 denotes the parameter

or the portion. In other words, the estimator π̂0 yields a reasonable estimator

n̂0 and vice versa. This also applies to the estimation of N0 in the BI and

gBI Model which were de�ned in Section 2.1. In the following, we give a brief

discussion of those estimators and introduce some generalized versions.

3.4.1 Estimators of Zeisel, Zuk and Domany

Zeisel et al. [65] developed two estimators for the number of true null hypotheses

n0 based on

n̂ZZD,10 = 2
n∑
i=1

pi (3.30)

and

n̂ZZD,20 = −
n∑
i=1

log(1− pi). (3.31)

The �rst estimator n̂ZZD,10 has already been used by Pounds and Cheng [44]

who also tried to improve the estimation of π0 and related terms when the true

p-values are allowed to be stochastically larger than the uniform distribution.

In Model 1.4 (a) and 3.3, the corresponding estimators for π0 would be written

as

π̂ZZD,i0 =
1

n
n̂ZZD,i0 , i = 1, 2. (3.32)

Zeisel et al. [65] argue that false p-values which are usually considered to be

stochastically smaller than the uniform distribution thus have only a weak in�u-

ence on both estimators and they hence have only a small conservative bias. Let

us now switch to Model 3.3 again. Since the p-values close to 1 have a strong

in�uence on both estimators (especially for the logarithmic one), a change to

null p-values which are stochastically larger than the uniform distribution would

increase the bias and the estimators get worse. Moreover, we already showed

that an estimation of π0F0(t) instead of π0 is preferable. Since F0(t) ≤ t holds,
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π̂ZZD,i0 · t, i = 1, 2, often have a bias which is increased once more. It follows

that these estimators are not suitable for such generalized models.

Zeisel et al. [65] place special emphasis on conservatively biased estimators.

Such estimators are very easy to obtain. The next proposition introduces a gen-

eral class of estimators for π0F0(t) and gives su�cient conditions for achieving

a conservative bias.

Proposition 3.17

Consider Model 3.3. Let g : [0, 1] → R≥0 be a non negative function with∫
gdλλ|(0,1) = 1 and introduce the following estimator

$̂(t, g) =
t

n

n∑
i=1

g(pi). (3.33)

Then E ($̂(t, g)) ≥ π0F0(t) holds

(a) for all t ≤ 1 if g is non-decreasing,

(b) for all t ≤ λ if F0 is a convex df with density f0 and g|[0,λ] = 0,

(c) for all t ≤ λ if F0 is a convex df which posses a density f0 on the interval

[0, 1) and g|[0,λ]∪(1−ε,1] = 0 for some ε > 0.

Proof. (a) This assertion follows from

E ($̂(t, g)) = t(1− π0)EF1 (g) + tπ0EF0 (g) ≥ tπ0
∫ 1

0
g(s)ds ≥ F0(t)π0

since F0 is stochastically larger than the uniform distribution and g is non-

decreasing.

(b) Without restrictions, we may assume that f0 is non decreasing on [0, 1] since

F0 is convex. Hence, we obtain

E ($̂(t, g)) ≥ tπ0
∫ 1

λ
g(s)F0(ds) = tπ0

∫ 1

λ
g(s)f0(s)ds

≥ tπ0f0(t)
∫ 1

λ
g(s)ds = tπ0f0(t)

≥ π0
∫ t

0
f0(s)ds = π0F0(t).

(3.34)

(c) Here, we may assume that f0 is non decreasing on [0, 1) and the assertion

follows by the same arguments as in (b) by replacing the upper integral bound

1 in (3.34) by 1− ε. �
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It is very easy to obtain conservatively biased estimators, but FDR control

for the corresponding adaptive SU tests is still far away. However, we would like

to have estimators with small conservative bias over a wide range of possible dis-

tributions in Model 3.3. For this purpose we use heuristics. At least in a speci�c

submodel of Model 3.3, we have already shown that the estimators $̂(t, λ, γ)

are unbiased and have minimum variance among all unbiased estimators, see

Theorem 3.8.

It is di�cult to adapt π̂ZZD,i0 , i = 1, 2, to Model 3.3 since large p-values

greatly increase the estimate. However, as we have seen, large p-values should

rather be excluded or handled carefully. An estimator that tries to avoid these

problems is given by

$̂log(λ, ε) = −c(λ, ε) 1

n

n∑
i=1

log

(
pi − λ
1− λ

)
11[λ+ε,1](pi)

with 0 < λ < 1, ε > 0, λ + ε < 1, where the convention ∞ · 0 = 0 is utilized.

The constant c(λ, ε) is chosen such that the assumption of Proposition 3.17 is

ful�lled. The most in�uential p-values lie in the neighborhood of λ+ ε and large

p-values have less in�uence on the estimate.

Note that the choice of g(pi) = 11{λ<pi≤γ}
γ−λ in (3.33) just yields $̂(t, λ, γ) and

each p-value pi ∈ (λ, γ] has the same in�uence on the estimate.

3.4.2 Estimator of Benjamini, Krieger and Yekutieli

Motivated by Schweder and Spjøtvoll [55], Benjamini and Hochberg [3] and

Storey [59]

n̂BKY0 =
n− k

1− pk:n
(3.35)

with k = bn2 c (and other choices of k) has been introduced by Benjamini et

al. [4] as estimator for the number of true null hypotheses n0. As model they

considered a relaxed form of Model 1.4 (b), where the true p-values are allowed

to be discrete and hence stochastically larger than the uniform distribution. It

is well known that under certain regularity assumptions we basically have

π̂St,o.0 (pk:n) =̂
1

n
n̂BKY0 . (3.36)

In this manner we get a new estimator by adjusting $̂(λ, γ). Therefore, intro-

duce

$̂BKY (t, k1, k2) =
t

n
· k2 − k1

(pk2:n − pk1:n) ∨ 1
n

(3.37)
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with k1 = bn2 c and k2 = b0.95nc as estimator for π0F0(t). Langaas et al. [32]

already introduced

π̂0 = min
l≤n

F̂n(pn:n)− F̂n(pl:n)

pn:n − pl:n
= min

l≤n

1− F̂n(pl:n)

pn:n − pl:n

as estimator for the parameter π0 which has a slight resemblance to (3.37).

This estimator is based on a decreasing density estimation by a non parametric

maximum likelihood estimator, where the false null p-values are assumed to

have a density which is decreasing.

Note that n̂BKY0 may be very conservative if n − n0 > k. In a DU(n, n0)

con�guration with n − n0 > k we obtain n̂BKY0 = n − k > n0. Moreover, if

n − n0 < k and the true p-values stochastically increase, then pk:n and hence

n̂BKY0 tend to be larger and the estimation may be very conservative again.

Similar to (3.36) we basically have

$̂(t, pk1:n, pk2:n) =̂ $̂BKY (t, k1, k2) (3.38)

under certain regularity assumptions and some of the properties of $̂(t, λ, γ)

carry over to $̂BKY (t, k1, k2). Hence, the choice of $̂BKY (t, k1, k2) and related

estimators as estimator for adaptive SU tests may also have some advantages.

3.5 Estimation for a generalized error rate

Until now the present chapter only considered the FDR as error rate. We derived

(3.10) as estimator for the FDR of the multiple test which rejects every p-value

which is less than or equal to a �xed threshold t. Theorem 3.12 then gave us

the relation between the estimator (3.10) and adaptive SU tests. In particular,

this theorem motivates the use of $̂(λ, γ) instead of π̂St,o.0 (λ) as estimator for

the adaptive SU tests. Finally, we will brie�y study the generalized error rates

of Meskaldji et al. [39] which have been introduced in Remark 2.12.

Theorem 3.18

Consider Model 3.3 and let ρ : {0, . . . , n} → (0, nα) be a non decreasing function.

If F (t) > 0, then we have

E
(

V (t)

ρ(R(t))

)
=
π0F0(t)

F (t)
g(F (t), ρ), (3.39)

where g(F (t), ρ) = nF (t)E( 1
ρ(B+1)) and B ∼ B(n− 1, F (t)).
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Proof. The �rst part of the proof of (3.39) is similar to the proof of Theorem

1 of Storey [60]. Observe that

E
(

V (t)

ρ(R(t))

)
=

n∑
k=1

E
(
V (t)

ρ(k)

∣∣∣R(t) = k

)
P (R(t) = k) (3.40)

=

n∑
k=1

k

ρ(k)
P (H1 = 0|p1 ≤ t)P (R(t) = k) (3.41)

=
π0F0(t)

F (t)

n∑
k=1

k

ρ(k)
P (R(t) = k), (3.42)

where (3.41) follows by the same arguments as in the proof of Storey [60, The-

orem 1] which we omit at this point. Furthermore, we obtain the remaining

statement

n∑
k=1

k

ρ(k)
P (R(t) = k) =

n∑
k=1

k

ρ(k)

(
n

k

)
F (t)k(1− F (t))n−k

= nF (t)

n−1∑
j=0

1

ρ(j + 1)

(
n− 1

j

)
F (t)j(1− F (t))n−1−j

= g(F (t), ρ).

�

Observe that by Theorem 3.18

FDR(t) =
π0F0(t)

F (t)
· (1− (1− F (t))n) and ENFR(t) = nπ0F0(t), (3.43)

where ENFR(t) denotes the ENFR of the multiple test which rejects every p-

value that is less than or equal to the �xed threshold t. By similar considerations

as in Section 3.2, it follows that a reasonable estimator for ENFR(t) is given

by

ÊNFR(t) = n$̂(t, λ, γ). (3.44)

Based on the estimator (3.44), the adaptive test which rejects every p-value

pi ≤ sup
{

0 ≤ t ≤ 1 : ÊNFR(t) ≤ α̃
}

(3.45)

with α̃ ∈ (0, n) is an adaptive single step test with adaptive threshold α̃
n ·$̂(λ, γ).
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Remark 3.19

For the other error rates, an additional non trivial factor comes into play. At

this point, it is not clear which estimator should be used for the estimation of

E( V (t)
ρ(R(t))) and hence for adaptive SU tests. However, in terms of �nite sample

control of the error rate E( V
ρ(R)), we will show in Section 4.2 that the estimators

for the FDR and ENFR work.



Chapter 4

Generalized error rate control of

adaptive SU tests

In Chapter 3 we derived F̂DR(t), see (3.10), as estimator for the FDR of the

multiple test which rejects every p-value which is less than or equal to a �xed

threshold t. Moreover, we introduced and motivated $̂(t, λ, γ), see (3.11), as

estimator for the crucial parameter π0F0(t) of Model 3.3 and used this estimator

within the estimator F̂DR(t). Theorem 3.12 then gave us the relation between

F̂DR(t) and adaptive SU tests. In particular, this theorem motivated the use

of n$̂(λ, γ), see in (3.15), as estimator for adaptive SU tests.

This section is devoted to �nite sample FDR control and generalized error

rate control of adaptive SU test under the gBI Model. We establish a new suf-

�cient condition for generalized error rate control of adaptive SU tests which

does not need the assumption of non decreasing estimators. In comparison to

previous conditions, it is shown that this condition is more powerful in the situ-

ation of the gBI Model. Furthermore, we prove that a slightly modi�ed version

of n$̂(λ, γ) satis�es this condition. It turns out that the selection of the es-

timator for the adaptive SU test may even be performed in a data dependent

manner which leads to dynamic adaptive SU tests. Finally, a reasonable selec-

tion method with generalized error rate control is developed in a practical guide

and we give a small simulation study.

The results of this chapter are based on Heesen and Janssen [28]. In their

work, they focus on the BI Model, whereas the present results are based on

the gBI Model, where the marginal distributions of the true p-values may be

79
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stochastically larger than the uniform distribution. In comparison to the BI

Model, new interesting and intuitive opportunities arise for the gBI Model,

including Model 3.3. These opportunities particularly a�ect the data dependent

selection of the estimator of the adaptive SU test.

4.1 Model assumptions

Let us brie�y recall the gBI Model: Conditioned under H let pi, i ∈ I0, and
pI1 be jointly independent. Moreover, let

pi ∼ F0,H,i, i ∈ I0, (4.1)

with dfs F0,H,i(t) ≤ t, t ∈ [0, 1].

Most of the adaptive SU tests which are considered below will not have error

rate control at level α in the entire gBI Model and we have to restrict ourselves to

speci�c submodels of the gBI Model. Therefore, we consider some weak forms of

convexity for the dfs F0,H,i, see Remark 4.5 for a one sided convexity condition.

The next theorem shows that even convex dfs F0,H,i occur in a natural and

wide range of one sided testing problems. In Chapter 2 and 3 we often used the

assumption of convex dfs of true p-values in connection with the gBI Model.

Theorem 4.1

Consider (Ω,F , {Pϑ : ϑ ∈ Θ}) with Θ ⊆ R and monotone likelihood ratio in

T : Ω→ R. Moreover, assume that the distributions P Tϑ have a Lebesgue density

and the corresponding dfs F Tϑ are strictly increasing on the interval S(ϑ) =

(S(ϑ), S̄(ϑ)) ⊂ R̄, where F Tϑ (S(ϑ)) = 0 and F Tϑ (S̄(ϑ)) = 1 for all ϑ. The

quantities S(ϑ) and S̄(ϑ) may be in�nite. Let us consider the one-sided testing

problem

H : {ϑ ≤ ϑ0} versus K : {ϑ > ϑ0} (4.2)

with p-value

p = 1− F Tϑ0(T ) (4.3)

for some ϑ0 ∈ Θ. Then we have:

(a) The distribution P pϑ0 is the uniform distribution on (0, 1).

(b) The distribution P pϑ is stochastically larger than U(0, 1) for all ϑ ≤ ϑ0.
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(c) The df F pϑ of the p-value p is convex on [0, 1] for all ϑ ≤ ϑ0.

Proof. (a) The statement follows directly since F Tϑ0 is continuous and thus we

have F Tϑ0(T ) ∼ U(0, 1).

(c) Let us only consider ϑ < ϑ0 since F pϑ0(x) = x, x ∈ [0, 1], is obviously

convex. We �rst show the convexity on the open interval (0, 1). According to

the Lebesgue decomposition and (a) we obtain

F pϑ(x) =

∫ x

0

dP pϑ
dP pϑ0

(y)dy + P pϑ

(
[0, x] ∩

{
y :

dP pϑ
dP pϑ0

(y) =∞

})
(4.4)

for x ∈ [0, 1]. We continue by calculating

dP pϑ
dP pϑ0

(y) = EPTϑ0

(
dP Tϑ
dP Tϑ0

(T )
∣∣∣p = y

)
, y ∈ [0, 1). (4.5)

Since the experiment has a monotone likelihood ratio in T , observe that there

exists a non-decreasing function Hϑ,ϑ0 with

dPϑ0
dPϑ

(ω) = Hϑ,ϑ0(T (ω)) Pϑ + Pϑ0 a.e..

For y = 0 observe that {p = y} = {F Tϑ0(T ) = 1} = {T ≥ S̄(ϑ0)}. S̄(ϑ) is

non-decreasing since Hϑ,ϑ0 is non-decreasing and hence {T > S̄(ϑ0)} is a null

set according to Pϑ + Pϑ0 . Moreover, {T = S̄(ϑ0)} is also a null set according

to Pϑ + Pϑ0 . Thus, without restrictions, we may set
dPTϑ
dPTϑ0

(t) = 1/Hϑ,ϑ0(t) = 0

for all t ≥ S̄(ϑ) and hence
dP pϑ
dP pϑ0

(0) = 0 P pϑ0-a.s.. For y ∈ (0, 1) observe that we

have {p = y} = {(F Tϑ0)−1(1− y) = T} since F Tϑ0 is strictly increasing on S(ϑ0).

Thus, by (4.5) we obtain

dP pϑ
dP pϑ0

(y) =
dP Tϑ
dP Tϑ0

((F Tϑ0)−1(1− y)) =
1

Hϑ,ϑ0((F Tϑ0)−1(1− y))
P pϑ0-a.s.. (4.6)

The right hand side is a non-decreasing function in y since Hϑ,ϑ0 and (F Tϑ0)−1

are non-decreasing. Moreover, since (F Tϑ0)−1(1 − y)) ∈
o
S(ϑ0) holds and since

P T
ϑ|
o
S(ϑ0)

is absolutely continuous with respect to P Tϑ0 we have

dP pϑ
dP pϑ0

(y) <∞ P pϑ0 a.s.

by (4.6). Thus, without restrictions we can assume
dP pϑ
dP pϑ0

to be non-decreasing

and smaller than ∞ on [0, 1). Hence, by (4.4), we obtain

F pϑ(x) =

∫ x

0

dP pϑ
dP pϑ0

(y)dy (4.7)
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for x ∈ (0, 1), where F pϑ is convex on (0, 1) (see Roberts and Varberg [45],

Chapter 1, Section 12, Theorem A for instance).

We �nally show convexity on the closed interval [0, 1]. By (4.7) and since
dP pϑ
dP pϑ0

(y) is bounded for every 0 ≤ y ≤ ε with �xed 0 < ε < 1, it follows that F pϑ
is continuous in 0. Furthermore, consider the continuous continuation

F̃ pϑ(x) =

F
p
ϑ(x), 0 ≤ x < 1,

limy↗1 F
p
ϑ(1), x = 1,

of F pϑ at 1. Then it is easily seen that F̃ pϑ ful�lls the convexity condition on

the closed interval [0, 1] by turning to limits since F̃ pϑ is continuous and already

known to be convex on (0, 1). Finally, it is easy to show that F pϑ is also convex

on [0, 1] by using F̃ pϑ(1) ≤ F pϑ(1).

(b) By the convexity of F pϑ in combination with F pϑ(0) = 0 and F pϑ(1) = 1 it

follows that F pϑ(t) ≤ t holds for all t ∈ [0, 1]. Note that the assertion also follows

by standard arguments from the one sided testing theory. �

Figure 4.1: Distribution functions of true p-values in a one sided normal mean

testing problem.

Example 4.2

(a) The assumptions of Theorem 4.1 are particularly satis�ed for families of

normal distributions. Consider the statistical experiment (Ω,B, {N(ϑ, 1) : ϑ ∈
R}) and the one sided testing problem H : {ϑ ≤ 0} versus K : {ϑ > 0}. It is

well known that the experiment has a monotone likelihood ratio in the identity
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function. Thus, the p-value p = 1 − Φ(id) has a convex df for every ϑ ≤ 0,

where Φ is the df of N(0, 1). Figure 4.1 shows the dfs of the p-value p for

ϑ = 0,−0.5,−1 and −1.5 in decreasing order.

(b) Let us combine the situation of (a) with the gBI Model. Assume that we

have n = 1000 independent p-values, where each p-value tests a one sided testing

problem as described in (a). Furthermore, assume that n1 = 150 of these p-

values are false and distributed according to ϑ = 2 and n0 = 850 p-values are

true. Let 250 of the true p-values be distributed according to ϑ = −1 and 600

according to ϑ = 0. The true p-values with ϑ = 0 may also come from two sided

testing problems of the form H : {ϑ = 0} versus K : {ϑ 6= 0}. Figure 4.2 shows

a typical realization of the ecdf of these p-values. Notice that this realization

Figure 4.2: Realization of an ecdf of p-values in a one sided normal mean testing

problem.

of the ecdf is sagging on the second half of the interval and that F̂n(0.5) < 0.5

holds. Further observe that F̂n(0.5) < 0.5 implies n̂0(0.5) > n for the Storey

estimator n̂0(λ), see (1.30). In this situation, the adaptive SU test of Storey

with critical values (1.29) and estimator n̂0(0.5) tends to be more conservative

than the BH test. Observe that the ecdf tends to be very steep near 1 due

to the convexity of the marginal dfs which are based on ϑ = −1. This fact

enables the development of our dynamic adaptive SU tests in Section 4.3 and

the e�ectiveness of the estimator n$̂(λ, γ).
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4.2 Conditions for �nite sample error rate control and

the generalized Storey estimator

We will now develop two conditions. Each of them ensures �nite sample error

rate control of adaptive SU tests of Storey type. Therefore, let us again consider

the generalized error rate E
(

V
ρ(R)

)
of Meskaldji et al. [39] and let us assume

that

ρ : {0, . . . , n} →
(

0,
n

α

)
is a non decreasing function. (4.8)

As already mentioned, the generalized error rate, based on ρ, easily leads to

SU tests with critical values αi:n = ρ(i)
n α, i = 1, . . . , n, which ful�ll E

(
V
ρ(R)

)
=

E(N0)
n α under the BI Model, cf. Meskaldij et al. [39] and also Remark 2.12.

In the following, let us primarily consider the FDR, given by ρ(i) = i ∨ 1,

i ∈ N∪{0}, and the ENFR, given by ρ ≡ 1. At least the theoretical results hold

for the entire family of generalized error rates based on (4.8). Again, a multiple

test is said to control the generalized error rate E
(

V
ρ(R)

)
by α if E

(
V
ρ(R)

)
≤ α

holds under the present model. For abbreviation, we only talk about error rate

control.

Let us divide the interval [0, 1] into two areas: the rejection area [0, λ] and

the estimation area [λ, 1], where 0 < λ < 1 is a tuning parameter as before.

Regardless, λ is contained in both areas. The estimation part of the adaptive

SU test is then carried out with the p-values which lie in the estimation area.

Then the rejection part of the adaptive SU test is carried out with the p-values

which lie in the rejection area. Storey et al. [61] implicitly used this concept.

The estimator n̂0 is based on the ecdf F̂n on the estimation area [λ, 1].

Therefore, let

n̂0 = n̂0

(
(F̂n(t))t≥λ

)
> 0 (4.9)

be given by a measurable function. Again, note that for the FDR and ENFR

the estimator n̂0 should not be regarded as estimator for N0 but in the sense

of Section 3.2. Nevertheless, we denote the estimator of the adaptive SU tests

by n̂0 since it is not described in detail, at this point, and since it is used for

all generalized error rates. For the other generalized error rates than the FDR

and ENFR, based on (4.8), it is not clear which estimators may have a nice

behavior, see Section 3.5. So far, n̂0 may at least be regarded as estimator for

N0.
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The adaptive SU test is then based on the data dependent critical values

α̂i:n =

(
ρ(i)

n̂0
α

)
∧ λ, 1 ≤ i ≤ n, (4.10)

and only rejects a certain amount of p-values which lie in the rejection area

[0, λ]. Each error rate based on ρ leads to its own adaptive SU test with critical

values (4.10). In this section we mainly consider a generalized Storey estimator

which will be de�ned later and which is a slightly modi�ed version of n$̂(λ, γ).

Moreover, in Section 4.3 we develop adaptive SU tests with adaptive estimators

based on this generalized Storey estimator. We will refer to these tests as

dynamic adaptive SU tests.

Observe that the random variables R and V are functions of the p-values,

i.e. they may be written as R = R(p) and V = V (p). In the following, let

R = R(p) and V = V (p) always refer to the present adaptive SU test when it

is clear which test is meant. Some techniques and proofs are based on setting

one true p-value to zero. Therefore, introduce

p(i) = (p1, . . . , pi−1, 0, pi+1, . . . , pn), (4.11)

R(i) = R(p(i)), (4.12)

n̂
(i)
0 = n̂0(p

(i)) (4.13)

and α̂
(i)
j:n =

(
ρ(j)

n̂
(i)
0

α

)
∧ λ, j = 1, . . . , n, (4.14)

for i ∈ I0. Furthermore, we will sometimes condition under

Ft = σ(H, 11{pi ≤ s} : s ≥ t, 1 ≤ i ≤ n). (4.15)

for some t ∈ (0, 1). Conditioned under Ft the random variables H, 11{pi ≤ s},
s ≥ t, 1 ≤ i ≤ n and in particular F̂n(t) can be treated as �xed values, due to

measurability arguments.

Now we are able to formulate both conditions. The �rst one already showed

up in Sarkar [52, Theorem 3.3] for a slightly di�erent setting and only for the

FDR. The inequalities of the next two theorems directly yield the desired con-

ditions for the error rate control, see Remark 4.5 (a).
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Theorem 4.3

Assume (4.8). Consider the gBI Model and the adaptive SU test with critical

values (4.10) and estimator (4.9). Then we have

E
(

V

ρ(R)

)
≤ α · E

∑
i∈I0

1

n̂
(i)
0

 . (4.16)

Proof. The proof is based on advanced techniques of Sarkar [52] and Benjamini

et al. [4]. Conditioned under H, observe that the random index set of true p-

values I0 is �xed. Hence, by Lemma 6.1 (a) of the appendix, we obtain

E
(

V

ρ(R)

∣∣∣H) =
∑
i∈I0

E
(

11{pi ≤ α̂R:n}
ρ(R)

∣∣∣H) (4.17)

=
∑
i∈I0

E

(
11{pi ≤ α̂(i)

R(i):n
}

ρ(R(i))

∣∣∣H) . (4.18)

Moreover, given H, observe that each true p-value pi is independent of all other

p-values in the gBI Model. From this, Fubini's Theorem and (4.10) it follows

that

(4.18) =
∑
i∈I0

E

F0,H,i

(
α̂
(i)

R(i):n

)
ρ(R(i))

∣∣∣H
 ≤∑

i∈I0

E

(
α̂
(i)

R(i):n

ρ(R(i))

∣∣∣H)

≤
∑
i∈I0

E

(
α

n̂
(i)
0

∣∣∣H) .
Finally, taking the expectation over H yields the assertion. �

Basically, Sarkar [52, Theorem 3.3] considered the BI Model conditioned

under H for the FDR, where he does not need the estimation, rejection area

concept. The estimator n̂0 may depend on the entire ecdf F̂n and the adaptive

SU test may reject p-values on the entire interval [0, 1]. In comparison, the

restriction to the rejection area [0, λ] in our case is not substantial, since it is

often realistic in practice. Even in the FDR case, rejections of p-values larger

than λ are sometimes disliked, since the evidence of a large p-value against

the corresponding null hypothesis is small. Moreover, the theorem of Sarkar

[52] requires estimators n̂0 which are non-decreasing in each p-value pi. As

already mentioned in Section 1.5, this assumption is very popular in the FDR

literature. However, as it will turn out later, some estimators which do not ful�ll
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this assumption are exactly the ones which yield substantial improvements in

the gBI Model when the dfs of true p-values are convex.

For the next condition and inequality, respectively, we have to make the

additional assumption (4.19) below. Although the theorem contains this addi-

tional assumption, it has some advantages since the inequality (4.20) turns out

to be sharper.

Theorem 4.4

Assume (4.8). Consider the gBI Model and the adaptive SU test with critical

values (4.10), estimator (4.9) and λ ∈ (0, 1). Moreover, assume that the dfs

F0,H,i ful�ll

F0,H,i(tλ) ≤ t · F0,H,i(λ), t ∈ [0, 1], i ∈ I0. (4.19)

Then we have

E
(

V

ρ(R)

)
≤ α

λ
· E
(
V (λ)

n̂0

)
. (4.20)

Proof. Conditioned under Fλ, see (4.15), we have exactly V (λ) true p-values

smaller or equal to λ (where V (λ) is a �xed number) among n(λ) = nF̂n(λ)

p-values which are smaller or equal to λ. Without restrictions, we assume N0 ≥
V (λ) > 0 since everything is obviously true for the excluded cases. Let us now

consider new rescaled p-values qi, i = 1, . . . , n(λ), de�ned by

qi =
pji
λ
, i = 1, . . . , n(λ),

where {j1 < . . . < jn(λ)} = {i : pi ≤ λ} is the index set of p-values which are

smaller or equal to λ. Moreover, de�ne Ĩ0 = {i : ji ∈ I0} as the index set of

new p-values corresponding to true null hypotheses. Then qi, i ∈ Ĩ0, and the

vector (qi : i ∈/ Ĩ0) of new false p-values are jointly independent under the above

condition. Furthermore, observe that

P
(
qi ≤ t

∣∣∣Fλ) = P
(
qi ≤ t

∣∣pji ≤ λ,H)
=

F0,H,ji(tλ)

F0,H,ji(λ)
≤ t, t ∈ [0, 1], i ∈ Ĩ0,

holds by independence and (4.19) under the above assumptions. Without re-

strictions, we can assume that F0,H,ji(λ) > 0 holds since the other case only

occurs with probability zero by dropping out all conditions except for H.
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We now apply Theorem 4.3 for non adaptive SU tests with critical values

α
(q)
i:n(λ) =

ρ(i)

n(λ)
α′ with α′ =

n(λ)

λn̂0
α

on the q's. By (4.9), the data dependent level α′ only depends on the information

given by (nF̂n(t))t≥λ. Conditioned under Fλ, we thus have a usual non adaptive

SU test on the q's. Let Rq and Vq denote the number of rejections and false

rejections, respectively, by the above SU test with critical values α(q)
i:n(λ) for the

q's. We now have to consider di�erent cases.

1. If α(q)
n(λ):n(λ) < 1 and α′ < 1, we directly obtain

E

(
Vq

ρ(Rq)

∣∣∣Fλ) ≤ V (λ)

n(λ)
α′ =

V (λ)

λn̂0
α (4.21)

by Theorem 4.3.

2. If α(q)
n(λ):n(λ) < 1 holds, but α′ ≥ 1, then the SU test on the q's has a

too big preselected level α′, but may still reject not all hypotheses depending

on the choice of ρ. For this case, let us introduce rescaled versions α̃′ = 1
2

and ρ̃(·) = 2α′ρ(·) and consider the corresponding SU test with critical values

α̃
(q)
i:n(λ) = ρ̃(i)

n(λ) α̃
′. Now Theorem 4.3 is applicable to this SU test de�ned by α̃′

and ρ̃. Since both tests coincide it follows that (4.21) holds again.

3. As last case suppose that α(q)
n(λ):n(λ) ≥ 1 holds. Then every p-value

q1, . . . , qn(λ) is rejected by the SU test. Hence, we have

Vq
ρ(Rq)

=
V (λ)

ρ(n(λ))
≤ V (λ)

n(λ)
α′ =

V (λ)

λn̂0
α. (4.22)

Now observe that

Rq = max{i ≤ n(λ) : qi:n(λ) ≤ α
(q)
i:n(λ)}

= max

{
i ≤ n(λ) :

pi:n
λ
≤ ρ(i)

n(λ)

n(λ)

λn̂0
α

}
= max

{
i ≤ n : pi:n ≤

(
ρ(i)

n̂0
α

)
∧ λ
}

= R

holds and hence Vq = V follows since both tests, belonging to R and Rq, are

rejecting the same hypotheses. Thus, (4.21) and (4.22) yield

E

(
V

ρ(R)

)
= E

(
E

(
V

ρ(R)

∣∣∣Fλ)) = E

(
E

(
Vq

ρ(Rq)

∣∣∣Fλ)) ≤ E (V (λ)

λn̂0
α

)
.

�
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Remark 4.5

(a) For �nite sample error rate control of E
(

V
ρ(R)

)
by α one merely has to show

that the estimator n̂0 ful�lls

E

∑
i∈I0

1

n̂
(i)
0

 ≤ 1 (4.23)

by Theorem 4.3 or

E
(
V (λ)

n̂0

)
≤ λ (4.24)

by Theorem 4.4. In fact, the control holds under the gBI Model and the gBI

Model restricted by (4.19), respectively.

(b) The restriction (4.19) is quite natural. In other words, it says that a true

p-value pi conditioned under {pi ≤ λ} again has to be stochastically larger

than the uniform distribution on the remaining interval [0, λ]. For our following

considerations we also need (4.19) for other values than λ in order to proceed

with the further contemplation of the error rate control condition of Theorem

4.4 (except for the Storey estimator n̂0(λ)).

(c) Observe that the stronger restriction

F0,H,i(tx) ≤ t · F0,H,i(x), x, t ∈ [0, 1], i ∈ I0, (4.25)

corresponds to a one sided convexity condition of F0,H,i. To be more precise,

the usual convexity condition (F (tx+(1− t)y) ≤ tF (x)+(1− t)F (y), 0 ≤ t ≤ 1,

0 ≤ x, y ≤ 1) just has to be ful�lled for �xed y = 0. As already seen in Theorem

4.1 and Example 4.2, the convexity of F0,H,i is given in a wide range of one sided

testing problems.

The technique of Theorem 4.4 also gives an exact formula for the FDR under

the BI Model, see Lemma 5.1 in the following chapter. The next theorem gives

a comparison of both conditions and inequalities, respectively.

Theorem 4.6

Consider the gBI Model. Then we have

α

λ
· E
(
V (λ)

n̂0

)
≤ α · E

∑
i∈I0

1

n̂
(i)
0

 . (4.26)

Moreover, under the BI Model �=� holds in (4.26).
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Proof. Let us again condition under H. Observe that n̂(i)0 = n̂0 holds on

{pi ≤ λ} for all i ∈ I0 by (4.9). Thus, we obtain

E

(
V (λ)

n̂0

∣∣∣H) =
∑
i∈I0

E

(
1{pi ≤ λ}

n̂0

∣∣∣H) =
∑
i∈I0

E

(
1{pi ≤ λ}

n̂
(i)
0

∣∣∣H)

=
∑
i∈I0

F0,H,i(λ) · E

(
1

n̂
(i)
0

∣∣∣H) ≤∑
i∈I0

λ · E

(
1

n̂
(i)
0

∣∣∣H) .
The second to last equality holds due to the independence of pi and n̂

(i)
0 and

Fubini's Theorem. Moreover, under the BI Model we have F0,H,i(λ) = λ and it

follows that �=� holds in the above formula. Finally, taking expectation yields

the statement. �

Observe that the inequalities (4.16) and (4.20) of Theorem 4.3 and Theorem

4.4, respectively, coincide under the BI Model and (4.19) is then redundant.

However, under the assumptions of Theorem 4.4, it turns out that condition

(4.24) is more liberal than (4.23) since (4.23) implies (4.24) by Theorem 4.6.

Note that V (λ) factors the distributions of the true p-values into E(V (λ)
n̂0

). If

the true p-values are stochastically larger than the uniform distribution, then

V (λ) tends to be small. Hence, n̂0 may also be small. To be more precise, it

may be signi�cantly smaller than N0. Therefore, we will mainly consider the

inequality of Theorem 4.4 and show that the new estimators ful�ll (4.24).

In Chapter 3 we already introduced the estimator $̂(λ, γ) = F̂n(γ)−F̂n(λ)
γ−λ .

As we have seen, it has some nice properties when included in the estimation

of FDR(t) and ENFR(t) in Model 3.3 for convex dfs of true p-values. Fur-

thermore, we related $̂(λ, γ) and the estimation of FDR(t) and ENFR(t) to

adaptive SU tests, see Theorem 3.12 and Section 3.5. Like Storey et al. [61]

we have to consider a slightly modi�ed version of $̂(λ, γ) in order to achieve

generalized error rate control. Therefore, let

m̂(λ1, γ1) = n
F̂n(γ1)− F̂n(λ1) + 1

n

γ1 − λ1
(4.27)

for λ ≤ λ1 < γ1 ≤ 1. We call m̂(λ1, γ1) a generalized Storey estimator.

In contrast to Section 3.2, it is not clear which exact parameter is estimated

by m̂(λ1, γ1). Nevertheless, roughly speaking, m̂(λ1, γ1) estimates the e�ective
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number of true null hypotheses whose actual marginal distributions really con-

cern the FDR via the SU test. Obviously, in comparison to uniformly distributed

true p-values, true p-values whose marginal distributions are really stochastically

larger than the uniform distribution often have a weaker e�ect on the FDR of

many multiple tests since their probability of getting falsely rejected is lower.

Although m̂(λ1, γ1) is particularly suitable for the FDR and ENFR (cf. Section

3.2 and 3.5) it will also work for the generalized error rates based on ρ since the

right hand side of (4.20) does not depend on the error rate itself.

For further considerations we need

F0,H,i(tx) ≤ t · F0,H,i(x), t ∈ [0, 1], i ∈ I0, (4.28)

for di�erent values of x ∈ [λ, 1].

Lemma 4.7

Assume (4.8) and let m̂(λ1, γ1) be the generalized Storey estimator (4.27) for

some 0 < λ ≤ λ1 < γ1 ≤ 1. Consider the gBI Model and assume (4.28) for all

x ∈ {λ, γ1}. Then we have

E
(

V (λ)

m̂(λ1, γ1)

∣∣∣(nF̂n(t))t≥γ1

)
≤ λ (4.29)

and the adaptive SU test with critical values (4.10) and estimator (4.27) has

�nite sample error rate control of E
(

V
ρ(R)

)
by α.

Proof. Observe that the mappings pi → m̂(λ1, γ1), i = 1, . . . , n, are non de-

creasing on [0, γ1]. Thus, by Lemma 6.4 of the appendix, we only have to show

that (4.29) holds for the BI Model. To be more precise, Lemma 6.4 shows that

the FDR increases when, conditioned under H, the true p-values are replaced

by independent on [0, 1] uniformly distributed p-values. From this point, the

proof is basically the same as in Heesen and Janssen [28, Lemma 3.2.].

Let us introduce the following simplifying notation

V (t) = n0(t) = #{pi ≤ t : Hi = 0},

S(t) = n1(t) = #{pi ≤ t : Hi = 1}, 0 ≤ t ≤ 1,

and let us condition under Fγ1 , see (4.15). In this case the quantities n0(γ1)

and n1(γ1) can be treated as �xed values, whereas the random variables V (λ),
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V (λ1) and S(λ) are still random. Since n1(γ1)− S(λ1) ≥ 0 holds, we obtain

E

(
V (λ)

n(F̂n(γ1)− F̂n(λ1) + 1
n)

∣∣∣Fγ1
)

(4.30)

= E
(

V (λ)

n0(γ1) + 1− V (λ)− (V (λ1)− V (λ)) + n1(γ1)− S(λ1)

∣∣∣Fγ1) (4.31)

≤ E
(

V (λ)

n0(γ1) + 1− V (λ)− (V (λ1)− V (λ))

∣∣∣Fγ1) . (4.32)

The random vector (V (λ), V (λ1)− V (λ), V (γ1)− V (λ1)) is distributed accord-

ing to the multinomial distributionM
(
n0(γ1),

λ
γ1
, λ1−λγ1

, γ1−λ1γ1

)
under our con-

ditions. Thus, Lemma 6.5 of the appendix yields

(4.32) =
λ

γ1 − λ1

(
1−

(
λ1
γ1

)n0(γ1)
)
≤ λ

γ1 − λ1
(4.33)

and integration gives

E

(
V (λ)

n(F̂n(γ1)− F̂n(λ1) + 1
n)

∣∣∣(nF̂n(t))t≥γ1

)
≤ λ

γ1 − λ1

which proves (4.29). Finally, the error rate control follows by a further integra-

tion and Theorem 4.4. �

Due to conditioning under (nF̂n(t))t≥γ1 , inequality (4.29) is a little stronger

than the required inequality (4.24). We will need this for dynamic adaptive SU

tests presented in the next section. Furthermore, if the adaptive SU test with

estimator m̂(λ1, γ1) is applied, then it is reasonable to set λ = λ1.

Remark 4.8

The generalized Storey estimator (4.27) in Lemma 4.7 may be replaced by(
1−

(
λ1
γ1

)nF̂n(γ1)∨1)
· m̂(λ1, γ1). (4.34)

This simply follows by replacing the right hand side of (4.33) in the proof by

λ

γ1 − λ1
·

(
1−

(
λ1
γ1

)nF̂n(γ1)∨1)
.

This estimator is smaller and the adaptive SU test thus has more power. All in

all this is only a very slight improvement which vanishes for increasing n and

hence we mainly focus on m̂(λ1, γ1).
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4.3 Dynamic adaptive SU tests

Let us now develop the previously announced dynamic adaptive SU tests. We

begin with a stationary approach which includes a non data dependent weighting

of a family of estimators. This approach creates new estimators based on this

family.

The following corollary of Theorem 4.4 is a generalization of Corollary 3.1

of Heesen and Janssen [28]. The statement there is only formulated for �nitely

many Storey estimators n̂0(λi), i = 1, . . . , k, with λ ≤ λ1 < . . . < λk < 1.

Corollary 4.9 (Deterministic integral type combination of estimators)

Assume (4.8) and consider the gBI Model. Furthermore, assume that (4.28)

holds for all x ∈ [λ, 1], where 0 < λ < 1 is a tuning parameter. Let

(m̂(s))s∈S =
(
m̂
(
s, (F̂n(t))t≥λ

))
s∈S

(4.35)

be a family of estimators indexed by some index set S and let each estimator

m̂(s) be given by a measurable function of (F̂n(t))t≥λ. Moreover, assume that

m̂(s) > 0 and

E
(
V (λ)

m̂(s)

)
≤ λ for all s ∈ S. (4.36)

If ν is a �xed probability measure on the index set S, then the adaptive SU test

with critical values (4.10) and estimator

m̂ν =

∫
m̂(s)ν(ds), (4.37)

has error rate control of E
(

V
ρ(R)

)
by α.

Proof. By Jensen's inequality and Fubini's Theorem, we obtain

E
(
V (λ)

m̂ν

)
≤ E

(∫
V (λ)

m̂(s)
ν(ds)

)
=

∫
E
(
V (λ)

m̂(s)

)
ν(ds) ≤ λ

and the error rate control follows by Theorem 4.4. �

Remark 4.10

(a) In actual fact, the assumption that (4.28) holds for all x ∈ [λ, 1] is not really

needed since (4.36) shall hold. However, (4.36) often requires (4.28), see Lemma

4.7 for instance. Therefore, we additionally assume (4.28).

(b) In particular, the assumptions of Theorem 4.9 are ful�lled if (m̂(s))s∈S is
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the family of generalized Storey estimators introduced in (4.27).

(c) Theorem 4.9 corresponds to the ideas of Section 3.3.

The next theorem gives a dynamic approach and includes a data dependent

weighting of estimators.

Theorem 4.11 (Dynamic combination of estimators)

Assume (4.8) and consider the gBI Model. Moreover, assume that (4.28) holds

for all x ∈ [λ, 1], where 0 < λ < 1 is a tuning parameter. Let λ < γ1 ≤ . . . ≤
γk ≤ 1 be inspection points and let m̂(i), i = 1, . . . , k, be estimators of the form

(4.9) which ful�ll

E
(
V (λ)

m̂(i)

∣∣∣(nF̂n(t))t≥γi

)
≤ λ, i = 1, . . . , k. (4.38)

Furthermore, let β̂1, . . . , β̂k be non negative data dependent weights with
∑k

i=1 β̂i

= 1 and let β̂i be measurable with respect to σ((nF̂n(t))t≥γi), i = 1, . . . , k. Then

the dynamic adaptive SU test with critical values (4.10) and estimator

m̂ =

k∑
i=1

β̂im̂(i) (4.39)

has error rate control of E
(

V
ρ(R)

)
by α.

Proof. The proof is basically the same as the proof of Theorem 6.1 of Heesen

and Janssen [28]. Since m̂ is a convex combination (or similar to the proof of

Theorem 4.9 by Jensen's inequality), we observe that

V (λ)∑k
i=1 β̂im̂(i)

≤
k∑
i=1

β̂i
V (λ)

m̂(i)

holds for �xed p-values. Moreover, since the β̂i's are σ((nF̂n(t))t≥γi)-measurable,

we obtain by (4.38)

E
(
V (λ)

m̂

)
≤ E

(
k∑
i=1

β̂i
V (λ)

m̂(i)

)
=

k∑
i=1

E
(
β̂iE

(
V (λ)

m̂(i)

∣∣∣ (nF̂n(t)
)
t≥γi

))

≤ E

(
k∑
i=1

β̂iλ

)
= λ

and the error rate control follows by Theorem 4.4. �
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Remark 4.12

(a) Remark 4.10 (a) also applies for Theorem 4.11.

(b) In particular, (4.38) is ful�lled for the generalized Storey estimators m̂(λi, γi)

with λ ≤ λi < γi ≤ 1, i = 1, . . . , k, see Lemma 4.7.

We now give a guideline how to use Theorem 4.11 for large n in connection

with the generalized Storey estimators m̂(λ1, γ1).

Practical Guide 4.13

For the Practical Guide let us again consider the gBI Model and assume that

every possible df F0,H,i is convex which is slightly stricter than demanding for

(4.28) for all x ≥ λ. Furthermore, assume that conditioned under H the false p-

values pi, i ∈ I1, have marginal dfs F1,H,i which are concave or ful�ll F1,H,i(λ) ≈
1. Although the theorems of this chapter work without this assumption it is

crucial for a signi�cantly improved estimation part of the adaptive SU tests.

Even in the BI Model the adaptive SU test of Storey et al. [61] with estimator

n̂0(λ) can perform very bad when arbitrary distributions of false p-values are

allowed. Like the assumption of convex dfs of true p-values, this assumption

is also very natural for false p-values and Theorem 4.1 may be extended in an

analog way.

First, let us recapitulate some features of the estimator n$̂(λ1, γ1) obtained

in Section 3.2. These features basically transfer to the slightly modi�ed gener-

alized Storey estimators m̂(λ1, γ1) which are mainly considered in this chapter.

As we have seen, the estimator $̂(λ1, γ1) and hence m̂(λ1, γ1) perform well if

the false p-values are likely to lie below λ1 and if the true p-values, which are

stochastically much larger than U(0, 1), are likely to lie above γ1. Moreover, the

larger γ1 − λ1 the smaller the variance of these estimators. It is often assumed

that the false p-values are likely to lie below 0.5 and the tuning parameter λ is

often chosen close to 0.5. In this situation, we thus advise to choose a small �xed

λ1 = λ ≈ 0.5. As said in Section 3.2, the choice of γ1 is quite more complex, but

here the dynamic approach of Theorem 4.11 comes into play. We now construct

a data dependent selection of γ1 which we denote by γ∗. For the adaptive SU

test we then use the estimator

m̂ = m̂(λ, γ∗). (4.40)

The construction of γ∗ is done in the sense of Theorem 4.11.
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Figure 4.3: Limit ecdf of p-values in a one sided normal mean testing problem.

Before we introduce a suggestion for a data dependent γ∗ we begin by an

analysis of likely ecdfs for some meaningful examples. At �rst, let us recall the

situation of Example 4.2 (b). The ecdf of Figure 4.2 looks almost smooth and in

the following we would like to talk about derivatives. But since the derivative

of every ecdf is almost everywhere equal to zero, we have to turn to an idealized

model. Thus, by Glivenko-Cantelli arguments and since we are considering very

large n let us consider the p-value df

F (t) =
3

20
(1− Φ(Φ−1(1− t)− 2)) +

12

20
t+

5

20
(1− Φ(Φ−1(1− t) + 1))

which is a possible and nearby limit ecdf of an appropriate sequence of p-value

models. F is displayed in Figure 4.3. Observe that the limit ecdf is almost

linear on the interval [0.5, 0.8]. Due to the convexity of the df of true p-values,

it is likely that there are too many true p-values located in the interval [0.8, 1]

which disturbs the estimation in the sense of Example 3.4. The adaptive SU

test would reject more p-values when the estimator m̂(λ, γ∗) gets smaller since

then the critical values α̂i:n get larger. Thus, m̂(λ, γ∗) applied to F is preferably

small when it is applied to the linear part of F , i.e. for the choice of γ∗ = 0.8.

Up to this point, this contemplation also holds for the primary ecdf F̂n of Figure

4.2. Observe that a linear part of a function F exhibits F ′′ ≡ 0 restricted to

this part. Thus, in this idealized situation γ∗ should be chosen as the largest t

such that F ′′(t) ≈ 0 holds since this would indicate the end of the linear part.
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Figure 4.4: Other possible limit ecdf.

Figure 4.4 shows two limit ecdfs for other possible situations, where we forgo

their explicit form in the following consideration. Observe that the recently

proposed choice of γ∗ does not work well for the limit ecdf on the left hand

side since the limit ecdf already consists of linear parts. Hence, this choice

just yields γ∗ = 1. But again, the estimator m̂(λ, γ∗) is preferably small when

applied to the central linear part, i.e. when applied to the interval [0.5, 0.9].

This corresponds to the choice of γ∗ = 0.9. The probability of a true p-value in

[0.9, 1] is increased and the �rst derivative on this interval is too large. Thus,

similar as before γ∗ should also be chosen as largest t such that F ′(t) is close

to the slope of the central linear part. But in general, this slope is unknown.

We merely know that the slope of such a linear part is bounded from above by

1. This bound is obtained in the BI Model for �xed N0 = n. Hence, in the

idealized situation, γ∗ should also ful�ll F ′(γ∗) ≤ 1. But notice that this choice

of γ∗ may still be far away from an optimal choice. But observe that it is not

guaranteed that there exists a central linear part of the limit ecdf. This is the

case for the picture on the right hand side in Figure 4.4. Hence, there should

be a lower bound γmin(λ) for γ∗. This ensures that γ∗− λ ≥ γmin(λ)− λ is not

too small.

Based on the previous considerations we now introduce an explicit adaptive

estimator m̂. Therefore, let λ < γmin = γ1 < . . . < γk = γmax < 1 be inspec-

tion points and consider the situation of Theorem 4.11 with m̂(i) = m̂(λ, γi),

i = 1, . . . , k. We will choose a data dependent γ∗(ω) ∈ {γ1, . . . , γk} which cor-

responds to setting β̂i(ω) = 1 and hence setting all other (β̂j(ω))j 6=i to zero i�
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. . .

λ γmin γmax 1

γ1 γ2 γ3 . . . γk

(III) (II) (I)

. . .

(I) minimal interval for adjusting γ∗

(II) interval for adjusting γ∗ and estimation by m̂(λ, γ∗)

(III) minimal interval for the estimation by m̂(λ, γ∗)

Figure 4.5: Areas of the estimation process.

γ∗(ω) = γi, see Figure 4.5 for a graphical explanation. For each inspection point

γi we basically need the �rst and second derivative of an appropriate limit ecdf

at γi by our previous consideration. But this is not realistic. Therefore, we �t

a polynomial smoothing function of degree 3 by least squares to the ecdf F̂n on

the interval [γi, γi + δi], where δi is a �xed constant with 0 < δi < 1− γi. Then
we take the derivatives of the smoothing function at γi. Since we are assum-

ing convex dfs of true p-values, ties of p-values in [γi, γi + δi] can be neglected.

However, the probability of ties at 1 may be positive. Hence δi = 1− γi should
be excluded. A polynomial smoothing function of at least degree 3 seems to

be appropriate since linear changes of the second derivative may be recognized.

Let j1,i < . . . < jr,i be the indices of the p-values pj ∈ [γi, γi + δi]. Then the

least squares smoothing function

gi(t) = b0,i + b1,i · t+ b2,i · t2 + b3,i · t3 (4.41)

is given by the coe�cients
b0,i
...

b3,i

 = (ATA)−1AT


F̂n(pj1,i)

...

F̂n(pjr,i)

 , (4.42)

with

A =


1 pj1,i p2j1,i p3j1,i
...

...
...

...

1 pjr,i p2jr,i p3jr,i

 ∈ Rr×4. (4.43)

In addition the derivatives at γi are given by

g′i(γi) = b1,i + 2b2,iγi + 3b3,iγ
2
i , (4.44)

g′′i (γi) = 2b2,i + 6b3,iγi. (4.45)
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Of course, this only holds if rank(A) = 4 which is known to be true i� there

are at least 4 di�erent p-values located in [γi, γi + δi]. If this is not the case,

we advise in the following to set g′i(γi) = 1 and g′′i (γi) = 0 so that γ∗ ≥ γi

automatically holds. Let ε > 0 be a tuning parameter. Altogether, we de�ne

β̂i = 11[0,1]×(−∞,ε]
(
g′i(γi), g

′′
i (γi)

) k∏
j=i+1

11([0,1]×(−∞,ε])c
(
g′j(γj), g

′′
j (γj)

)
(4.46)

for i = 2, . . . , k and

β̂1 =
k∏
j=2

11([0,1]×(−∞,ε])c
(
g′j(γj), g

′′
j (γj)

)
. (4.47)

In other words, we set β̂i = 1 i� g′i(γi) ∈ [0, 1] and g′′i (γi) ∈ (−∞, ε] for the
last time and hence take γ∗ = γi in (4.40). Otherwise, we set β̂1 = 1 and

take γ∗ = γmin = γ1. According to the construction of gi, the data dependent

weights β̂i are obviously measurable with respect to σ((nF̂n(t))t≥γi) and ful�ll

the assumptions of Theorem 4.11. Thus, the error rate control of E
(

V
ρ(R)

)
by

α of the adaptive SU test with critical values (4.10) and estimator

m̂ = m̂(λ, γ∗) =

k∑
i=1

β̂im̂(λ, γi) (4.48)

follows by Lemma 4.7 and Theorem 4.11.

Remark 4.14

(a) Consider some true p-values which are distributed according to some strictly

convex df and an arbitrary subinterval [a, b] ⊂ [0, 1]. Observe that the p-values

which fall into [a, b], tend to lie in the second half of the interval. Thus, we expect

that the best �t of the least squares smoothing functions gi in the practical guide

are attained at γi + δi. Due to our construction of the adaptive estimator, we

would like to have a good �t of gi at γi. Therefore, a weighted lest squares

approach may perform better.

(b) A di�erent approach for the data dependent choice of γ may be based on

the spacings pi+h:n − pi:n.
(c) Standard methods (like kernel density estimation, see Silverman [57] for

instance) do not work in the situation of Theorem 4.11 since they often require

the entire information of the ecdf F̂n. Many estimators perform poorly at the

border and some of them do not even reconstruct the convexity of the df which

is important for the proceeding of the Practical Guide.
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Liang and Nettleton [36] already proposed a data dependent choice of λ

for the Storey estimator n̂0(λ). Their approach is based on the �ltration σt =

σ(11{pi ≤ s} : 0 ≤ s ≤ t, i = 1, . . . , n), 0 ≤ t ≤ 1, whereas our approach is based

on the reverse �ltration Ft, 0 ≤ t ≤ 1.

Finally, we give two concluding remarks and an outlook on future work.

Remark 4.15 (Discrete distributions)

Under the assumptions of Theorem 4.11, consider the estimators m̂(i)=m̂(λ, γi),

i = 1, . . . , k. By Lemma 4.7, it follows that (4.38) is ful�lled. Furthermore, a

reinspection of Lemma 4.7 and the proof of Theorem 4.11 yields that The-

orem 4.11 also holds for this choice of m̂(i) if (4.28) is only ful�lled for all

x ∈ {λ, γ1, . . . , γk} instead of all x ∈ [λ, 1]. Note that a df of a discrete

distribution cannot satisfy (4.28) for all x ∈ [λ, 1], but such a df may ful�ll

(4.28) for all x ∈ {λ, γ1, . . . , γk}. Observe that (4.28) can only be ful�lled for

all x ∈ {λ, γ1, . . . , γk} if every possible df F0,H,i of a discrete distribution has

jump discontinuities at all points λ and γ1, . . . , γk. Thus, a reasonable choice

of λ, γ1, . . . , γk and the just described homogeneity of the discrete distributions

are crucial for the treatment of dynamic adaptive SU tests under discrete distri-

butions. Discrete distributions do not exclude the simultaneous consideration

of continuous distributions, i.e. some of the dfs F0,H,i may be continuous and

some may have jump discontinuities.

Remark 4.16

In a couple of works, Donoho and Jin [13], Hall and Jin [27], Jager and Wellner

[30] and Jin [31] essentially considered the Higher-Criticism statistic and related

statistics as test statistic for the global intersection null hypothesis

H0 : pi ∼ U(0, 1), 1 ≤ i ≤ n,

versus several sparse alternative hypotheses. The recently announced adaptive

SU tests with estimator m̂(λ1, γ1) and the dynamic adaptive SU tests may have

some advantage when the true p-values may be stochastically larger than the

uniform distribution. For an asymptotic sparse normal mean testing problem,

Donoho and Jin [13] already showed that the so-called detection region of the BH

test is only slightly smaller than the detection region of the Higher Criticism

statistic which is the maximum possible detection region in this asymptotic

setting.
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Future work may include the analysis of other estimators, like the estimators

of Section 3.4. So far, it is not clear if some of these estimators (or modi�ed ver-

sions) ful�ll (4.24). Moreover, an adequate choice of the quantities k, γ1, . . . , γk,

δ1, . . . , δk and ε of the Practical Guide is not clear and may be analyzed. Ob-

viously, the number of inspection points k should depend on the sample size

n.

4.4 Simulation

Here we present a small simulation study based on Example 4.2. Therefore, let

n = 1000 andX = (X1, . . . , Xn) ∼ N(µ, In) with �xed vector µ = (µ1, . . . , µn)∈
Rn and identity matrix In. Let us consider the multiple testing problem

Hi = {µi ≤ 0} versus Ki = {µi > 0}, i = 1, . . . , n,

and de�ne the p-values pi = 1−Φ(Xi), where Φ denotes the df of the standard

normal distribution. For our simulation study, we consider µ with

µi =


ϑ, 1 ≤ i ≤ k,

0, k < i ≤ 800,

3, 800 < i ≤ 1000,

i = 1, . . . , n,

for several choices of k and ϑ ≤ 0. Note that we have �xed N0 = n0 = 800 in

all cases. Table 4.1 shows the result of a Monte-Carlo simulation with 10.000

iterations for the FDR of several multiple tests with predetermined level α =

0.05. Therefore, FDRBH denotes the FDR of the BH test with critical values

(1.19), FDRn̂0(λ) denotes the FDR of the adaptive SU test of Storey with critical

values (1.29) and estimator n̂0(λ), and FDRm̂(λ,γ) denotes the FDR of the

adaptive SU test with critical values (4.10) and estimator m̂(λ, γ). Moreover,

let FDRBH,o be the FDR of the oracle BH test which is based on the critical

values αBH,oi:n = i
n0
α, i = 1, . . . , n. The oracle BH test includes the exact value

n0 which the Storey estimator n̂0(λ) tries to estimate.

For k = 0 and ϑ = 0 the FDR of the BH test is just given by the BH

Theorem and does not exhaust the predetermined FDR level α. In contrast,

the other tests exhaust the predetermined FDR level α very well. Note that

slight variations are due to the Monte-Carlo simulation. For the other cases of
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k 0 200 200 400 400

ϑ 0 -1 -2 -1 -3

FDRBH 0.04 0.03 0.03 0.21 0.0201

FDRn̂0(λ) λ = 0.5 0.05 0.032 0.03 0.019 0.016

FDRBH,o 0.05 0.038 0.0377 0.026 0.0248

γ = 0.95

FDRm̂(λ,γ) λ = 0.5 0.049 0.035 0.04 0.023 0.041

γ = 0.9

FDRm̂(λ,γ) λ = 0.5 0.05 0.037 0.043 0.024 0.045

Table 4.1: Monte-Carlo Simulation of the FDR of several multiple tests.

k and ϑ the exhaustion of the FDR in case of the BH test and adaptive SU test of

Storey deteriorates and for k = 400 and ϑ = −1,−3 the FDR of the adaptive SU

test of Storey is even lower than the FDR of the BH test. Furthermore, observe

that the exhaustion of the FDR in case of the oracle BH test also deteriorates

for the other cases of k and ϑ. In contrast to the BH test and adaptive SU test of

Storey, the new adaptive SU tests, based on m̂(λ, γ), yield a completely better

exhaustion of the FDR. For k = 200, ϑ = −2 and k = 400, ϑ = −3 the new tests

even outperform the oracle BH test. In particular, in the extreme situation with

ϑ = −3 the exhaustion of the FDR works very well in comparison to the other

tests. As already mentioned, the deeper inside the null hypotheses, the better

the new tests work.

Finally, note that a better exhaustion of the predetermined FDR level α

comes along with an increased power of the tests.



Chapter 5

FDR control of adaptive SU

tests under dependence

In Section 2.6 we were concerned with the asymptotic FDR of adaptive SU

tests for several dependence structures and in Chapter 4 we dealt with �nite

sample FDR control for adaptive SU tests under independence. This chapter is

devoted to �nite sample FDR control of adaptive SU tests under dependence.

The treatment of adaptive SU tests for dependent p-values is known to be far

more di�cult and there are only a few references in the literature. For example,

Blanchard and Roquain [7, 8] considered two-stage adaptive SU tests, where

the number of true null hypotheses is estimated by the number of rejections of

a previously conducted multiple test. The previously conducted tests are based

on the same p-values and exhibit some error rate control. Unfortunately, the

predetermined levels of both tests add up, in some sense. Furthermore, several

asymptotic results can be found in the literature, see Farcomeni [15] for instance.

Here, we will focus on the RM Model, see Model 2.2 for a de�nition. We will

show that �nite sample FDR control actually requires further restrictions and

obtain control under a block dependence structure for Storey type estimators

n̂0(λ, κ), see (1.32), by a careful choice of the tuning parameter κ. The material

of this chapter is presented in Section 5 of Heesen and Janssen [29].

The next lemma provides an exact FDR formula and imposes a condition

on the estimators of adaptive SU tests for the RM Model which is the same

condition as in Theorem 4.4 and again ensures FDR control.

103
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Lemma 5.1 (cf. Heesen and Janssen [29] Lemma 5.1)

Consider the RM Model and the adaptive SU test based on the critical values

(4.10) with ρ = id and estimator (4.9). Then we have

FDR =
α

λ
· E

(
V (λ) ·min

{
1

n̂0
,

λ

nF̂n(λ)α

})
≤ α

λ
· E
(
V (λ)

n̂0

)
. (5.1)

Proof. The proof is very similar to the proof of Theorem 4.4. Therefore, let us

only sketch it and use the notation of the proof of Theorem 4.4. Conditioned

under Fλ = σ(H, 11{pi ≤ s} : s ≥ λ, 1 ≤ i ≤ n) we may again construct

new rescaled p-values qi, i = 1, . . . , n(λ) = nF̂n(λ). These rescaled p-values

again ful�ll the requirement of the RM Model by use of the reverse �ltration

Fqt = σ
(
σ(11{qi ≤ s} : s ≥ t, 1 ≤ i ≤ n(λ)), Fλ

)
. Here, we only have to consider

two cases for α′ = n(λ)
λn̂0

α. 1. If α′ ≥ 1, then every p-value qi, i = 1, . . . , n(λ), is

rejected by the present SU test for the q's and we obtain Vq
Rq∨1 = V (λ)

n(λ) . 2. As

other case suppose that α′ < 1. Then Lemma 2.5 for the RM Model implies

E
(

Vq
Rq∨1

∣∣∣Fλ) = V (λ)
n(λ)α

′. Hence, we have

E
(

Vq
Rq ∨ 1

∣∣∣Fλ) =
V (λ)

n(λ)
min{α′, 1}.

By the same arguments as before, we obtain R = Rq and V = Vq conditioned

under Fλ and it follows that

E
(

V

R ∨ 1

)
= E

(
V (λ)

n(λ)
min{α′, 1}

)

=
α

λ
· E

(
V (λ) ·min

{
1

n̂0
,

λ

nF̂n(λ)α

})
.

�

In Chapter 3 and 4, we considered estimators which try to underestimate

N0 in speci�c situations. Here, we will only focus on estimators for N0 since

these situations do not occur in the RM Model. It is an open question if the

estimation concept of Chapter 3 may be applied to the reverse super martingale

model, described in Remark 2.3 (b).

Although Lemma 5.1 basically gives the same condition as Theorem 4.4, we

note that this condition is more di�cult to ful�ll under the RM Model. The

following proposition contains a negative result. It shows that the usability
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of adaptive SU tests is limited under dependence and a restriction of the RM

Model is necessary to allow reasonable estimators with FDR control.

Proposition 5.2 (cf. Heesen and Janssen [29] Proposition 5.2)

Under the assumptions of Lemma 5.1, let pi → n̂0 be non-decreasing in each

p-value pi and α < λ. If FDRP ≤ α for all P ∈ PRM , then n̂0 ≥ n follows.

Proof. Let n = N0 > 2 and p1 = . . . = pn = U ∼ U(0, 1) which gives

V (λ) = nF̂n(λ) = n11{U ≤ λ}. The exact FDR formula in (5.1) yields

α ≥ FDR =
α

λ
nλ ·min

{
1

n̂0(~1)
.
λ

nα

}
,

where n̂0(~1) stands for the value of the estimator when F̂n(x) = 1 for all x ≥ λ.
The minimum is attained by the �rst argument since otherwise, α < λ gives a

contradiction. Thus, we obtain n ≤ n̂0(~1) ≤ n̂0. �

Note that n̂0 ≥ n implies that the adaptive critical values α̂i:n, i = 1, . . . , n,

are dominated by the BH critical values. Thus, to control the FDR under the

complete RM Model, the BH test should be used instead.

Example 5.3

Consider the distribution of the last proof which is a possible case of the RM

and PRDS Model. Observe that (2.68) is violated for the Storey type estimators

n̂0(λ, κ) with κ = 1
n and Proposition 5.2 applies. The exact FDR is then given

by

FDR =
α

λ
· E
(
n11{U ≤ λ} ·min

{
1− λ, λ

nα

})
= min{αn(1− λ), λ},

cf. Blanchard and Roquain [8, Proposition 17]. Hence, FDR > α if λ > α and

n(1− λ) > 1.

Due to the drawback, let us introduce the following submodel of the RM

Model.

Model 5.4 (Block model with martingale structure)

Consider the RM Model and suppose that the p-value vector p can be divided by

{p1, . . . , pn} =

k⋃
i=1

Gi (5.2)
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into k disjoint groups (blocks) Gi = {pi : pi belongs to group i}, i = 1, . . . , k,

of p-values. Let G̃i = {pi ∈ Gi : Hi = 0} ⊂ Gi be the subsets of true p-

values which are uniformly distributed. Note that the division into the Gi's is

deterministic, whereas the G̃i's depend on the random variable H. Moreover,

assume that the groups G̃i, i = 1, . . . , k, are conditionally independent given H.

Gontscharuk [24] considered a similar model, called block dependent p-

values, where the p-values consist of independent groups, but with arbitrary

dependence structure within each group. Gontscharuk [24] then introduces fur-

ther conditions so that the p-values are weakly dependent and gives asymptotic

results for the FWER and FDR which have already been discussed in Section

2.6. Brie�y, the p-values are weakly dependent if the Glivenko-Cantelli Theo-

rem holds for the empirical cumulative distribution function of true p-values. In

contrast to this, the next theorem works for �nite n.

In practice, the model may have the following meaning for genome data.

Each p-value may be formulated for a speci�c gene and each group Gi may

stand for all those genes which come from one speci�c chromosome. It is often

assumed that p-values of di�erent chromosomes are independent, see also the

motivation of Gontscharuk [24, page 91] for block dependent p-values. Then G̃i,

i = 1, . . . , k, stand for independent portions of true p-values which come from

di�erent chromosomes. The p-values of Gi and G̃i, respectively, may be reverse

martingale dependent. Some of them may be equal, for instance.

It will be shown that a Storey type estimator

n̂0(λ, κ) = n
1− F̂n(λ) + κ

n

1− λ
, 0 < λ < 1, κ ≥ 1, (5.3)

yields FDR control in a submodel of Model 5.4. Observe that the larger κ, the

more conservative the estimator and hence the more conservative the adaptive

SU test. The control under the complete Model 5.4 is not possible in general

and there is a trade-o� between the conservativeness of the estimator and the

maximal size of the controlled submodel. To be more precise, the control of the

FDR essentially depends on an appropriate choice of κ. Therefore, introduce

the maximal group size and the residual

M = max
i≤k
|Gi| and r = Mk − n, (5.4)
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respectively. Furthermore, assume that the number of true p-values is lower

bounded by

N0 ≥ nmin a.s. (5.5)

for some constant nmin > 0. Then

κ > M + r + (n− nmin) (5.6)

is su�cient for FDR control under the present distribution. If the groups are

balanced, i.e. if |G1| = . . . = |Gk|, then r vanishes and the best �t is obtained.

Of course, n̂0(λ, κ) > n may happen for large r in the unbalanced case. As

before, the BH test is then preferable.

Theorem 5.5 (cf. Heesen and Janssen [29] Theorem 5.3)

Consider Model 5.4 and the adaptive SU test based on (4.10) with ρ = id and

Storey type estimator (5.3). If (5.4)-(5.6) hold, then the adaptive SU test has

�nite sample FDR control by α, i.e. we have FDR ≤ α.

Proof. By Lemma 5.1 it su�ces to prove that E
(

V (λ)
n̂0(λ,κ)

)
≤ λ. For the i-th

group, let us introduce the quantities

Vi(λ) =
∑

j : pj∈G̃i

11{pj ≤ λ} and N0,i = |G̃i|, (5.7)

where V (λ) =
∑k

i=1 Vi(λ). Thus, we obtain

E
(

V (λ)

n̂0(λ, κ)

∣∣∣H) = (1− λ) · E

( ∑k
i=1 Vi(λ)

n− nF̂n(λ) + κ

∣∣∣H) (5.8)

≤ (1− λ) · E

( ∑k
i=1 Vi(λ)

N0 −
∑k

i=1 Vi(λ) + κ

∣∣∣H) . (5.9)

Let us keep the condition under H. Whenever |G̃i| > 0, let p̃i ∈ G̃i be a

�xed true p-value which we may arbitrarily select. Observe that the p̃i's are

conditionally independent given H. Without restrictions, let us assume that

|G̃i| > 0 holds for all groups. Otherwise, the groups with |G̃i| = 0 can be

omitted. By our assumptions, there is at least one group which contains a

true p-value. In the next step we are going to condition under
∑k

i=2 Vi(λ). By
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Lemma 6.6 of the appendix, a substitution of V1(λ) by N0,111{p̃i ≤ λ} gives

E

(
V1(λ) +

∑k
i=2 Vi(λ)

N0 − V1(λ) +
∑k

i=2 Vi(λ) + κ

∣∣∣H, k∑
i=2

Vi(λ)

)

≤ E

(
N0,111{p̃i ≤ λ}+

∑k
i=2 Vi(λ)

N0 −N0,111{p̃i ≤ λ}+
∑k

i=2 Vi(λ) + κ

∣∣∣H, k∑
i=2

Vi(λ)

)

since E(V1(λ)|H) = N0,1λ = E(N0,111{p̃i ≤ λ}|H) obviously implies that the

distribution of N0,111{p̃i ≤ λ} is just given by P ′ in Lemma 6.6. If we proceed

in this way, we arrive at the upper bound and obtain

(5.9) ≤ (1− λ) · E

( ∑k
i=1N0,i11{p̃i ≤ λ}

N0 −
∑k

i=1N0,i11{p̃i ≤ λ}+ κ

∣∣∣H) (5.10)

≤ (1− λ) · E

( ∑k
i=1M11{p̃i ≤ λ}

N0 −
∑k

i=1M11{p̃i ≤ λ}+ κ

∣∣∣H) (5.11)

= (1− λ) · E

( ∑k
i=1 11{p̃i ≤ λ}

N0
M −

∑k
i=1 11{p̃i ≤ λ}+ κ

M

∣∣∣H) , (5.12)

because x→ x
N0−x+κ is increasing for x ∈ [0, N0 + κ) and

M
k∑
i=1

11{p̃i ≤ λ} ≤ kM ≤ kM +M +N0 − nmin ≤ N0 + κ

holds by (5.4)-(5.6). Finally,

N0 + κ

M
≥ N0 − nmin +M + r + n

M
=
N0 − nmin +M +Mk

M
≥ k + 1

and Lemma 6.5 of the appendix imply

(5.12) ≤ (1− λ) · E

( ∑k
i=1 11{p̃i ≤ λ}

k + 1−
∑k

i=1 11{p̃i ≤ λ}

∣∣∣H) = λ(1− λk) ≤ λ.

�

Lemma 5.1 and Theorem 5.5 may be extended to the control of the gener-

alized error rates E
(

V
ρ(R)

)
of Meskaldji et al. [39] with ρ as in (4.8).



Chapter 6

Appendix

This appendix contains some technical lemmas which are used in the proofs of

the previous chapters. These lemmas are used a few times or would disturb the

narrative �ow.

The next lemma applies when a true p-value is set to zero. Therefore, let

p(i) = (p1, . . . , pi−1, 0, pi+1, . . . , pn) be the vector of p-values, where the i-th p-

value is set to zero, R(i) = R(p(i)) and α̂(i)
i:n = α̂i:n(p(i)), i = 1, . . . , n. Obviously,

R = R(p) and α̂i:n = α̂i:n(p) are functions of the p-value vector p, but let us

also write α̂i:n = α̂i:n((F̂n(t))t≥λ) if we want to accentuate that α̂i:n may also be

de�ned as function of (F̂n(t))t≥λ. The random variables R and R(i) refer to SU

tests, whereas RSD, R
(i)
SD, RSUD(λ) and R

(i)
SUD(λ) refer to the corresponding SD

and SUD tests, respectively. For a de�nition of SD and SUD test see De�nition

2.28.

Lemma 6.1

(a) Consider an adaptive SU test with data dependent critical values 0 < α̂0:n =

α̂1:n ≤ . . . ≤ α̂n:n ≤ λ < 1 given by measurable functions

α̂i:n = α̂i:n((F̂n(t))t≥λ), i = 1, . . . , n. (6.1)

Then we have

{pi ≤ α̂R:n} =
{
pi ≤ α̂(i)

R(i):n

}
, (6.2)

and R = R(i) holds on {pi ≤ α̂R:n}.
(b) For an adaptive SD test with same critical values as in (a) we get

{pi ≤ α̂RSD:n} ⊆
{
pi ≤ α̂(i)

R
(i)
SD:n

}
, (6.3)
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and RSD = R
(i)
SD holds on {pi ≤ α̂RSD:n}.

Proof. (a) Since pi ≤ λ holds on every set which is considered below we always

have α̂j:n = α̂
(i)
j:n, j = 1, . . . , n, on those sets by (6.1). Let p(i)1:n, . . . , p

(i)
n:n be the

order statistics of p(i). Then for r = 1, . . . , n− 2, observe that

{(p1, . . . , pn) : pi ≤ α̂R:n, R = r}

=
{

(p1, . . . , pn) : pi ≤ α̂r:n, pr:n ≤ α̂r:n, pr+1:n > α̂r+1:n, . . . , pn:n > α̂n:n

}
=
{

(p1, . . . , pn) : pi ≤ α̂(i)
r:n, pr:n ≤ α̂(i)

r:n, pr+1:n > α̂
(i)
r+1:n, . . . , pn:n > α̂(i)

n:n

}
=
{

(p1, . . . , pn) : pi ≤ α̂(i)
r:n, p

(i)
r:n ≤ α̂(i)

r:n, p
(i)
r+1:n > α̂

(i)
r+1:n, . . . , p

(i)
n:n > α̂(i)

n:n

}
= {(p1, . . . , pn) : pi ≤ α̂(i)

R:n, R
(i) = r}

since i→ α̂i:n is non-decreasing. By similar arguments, we also obtain

{(p1, . . . , pn) : pi ≤ α̂R:n, R = r} =
{

(p1, . . . , pn) : pi ≤ α̂(i)
R:n, R

(i) = r
}

for r = n− 1 and r = n. However, there is nothing to show for r = 0 since then

{pi ≤ α̂R:n, R = 0} ⊆ {pi ≤ α̂1:n, R = 0} = 0/ = {R(i) = 0}. Combining the

above results for r = 0, . . . , n gives (6.2) and R = R(i) holds on {pi ≤ α̂R:n}.
(b) The statement follows by an analogue argument for SD tests since

{pi ≤ α̂RSD:n, RSD = r}

= {pi ≤ α̂r:n, p1:n ≤ α̂1:n, . . . , pr:n ≤ α̂r:n, pr+1:n > α̂r+1:n}

=
{
pi ≤ α̂(i)

r:n, p1:n ≤ α̂
(i)
1:n, . . . , pr:n ≤ α̂

(i)
r:n, pr+1:n > α̂

(i)
r+1:n

}
⊆
{
pi ≤ α̂(i)

r:n, p
(i)
1:n ≤ α̂

(i)
1:n, . . . , p

(i)
r:n ≤ α̂(i)

r:n, p
(i)
r+1:n > α̂

(i)
r+1:n

}
=

{
pi ≤ α̂(i)

R
(i)
SD:n

, R
(i)
SD = r

}
and the cases r = 0 and r = n has to be considered similar to (a). �

Remark 6.2

(a) Lemma 6.1 applies generally without any distributional assumption and also

for false p-values.

(b) For non adaptive SU and SD tests with critical values 0 < α1:n ≤ . . . ≤
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αn:n < 1, which are included in the adaptive case, Lemma 6.1 reads as

{pi ≤ αR:n} = {pi ≤ αR(i):n} (6.4)

for the SU test and

{pi ≤ αRSD:n} ⊆
{
pi ≤ αR(i)

SD:n

}
,

for the SD test, respectively.

(c) Under the assumptions of (b) and for SUD(λ) tests it is also easy to verify

that

{pi ≤ αRSUD(λ):n} ⊆
{
pi ≤ αR(i)

SUD(λ)
:n

}
(6.5)

since R(i)
SUD(λ) is non increasing in each p-value.

Remark 6.2 (b) is a special case of Lemma 6.1. But note that a proof of

Remark 6.2 (b) is actually dispensable.

Lemma 6.3

Let (Ω,F , {M(n, p1, p2, 1 − p1 − p2) : (p1, p2) ∈ A}) be a statistical space for

some set A ⊆ {(p1, p2) : 0 ≤ p1, p2 ≤ 1, p1 + p2 ≤ 1} and let (M1,M2,M3) be

distributed according to the multinomial distribution M(n, p1, p2, 1 − p1 − p2).
If the interior of A is not empty, then (M1,M2) is a complete statistic.

Proof. Let f : {(m1,m2) : m1,m2 ∈ N, 0 ≤ m1+m2 ≤ n} → R be an arbitrary

function with E(p1,p2) (f(M1,M2)) = 0 for all (p1, p2) ∈ A where E(p1,p2) denotes

the expectation according toM(n, p1, p2, 1−p1−p2). Furthermore, let Å be the

interior of A on which p1, p2, 1− p1 − p2 > 0 hold. For (p1, p2) ∈ Å we observe

0 = (1− p1 − p2)−n · E(p1,p2) (f(M1,M2))

=
∑

0≤m1,m2≤n
0≤m1+m2≤n

f(m1,m2) · n!

m1!m2!(n−m1 −m2)!
pm1
1 pm2

2 (1− p1 − p2)−m1−m2

=
n∑

(m1+m2)=0

m1+m2∑
m2=0

f(m1,m2) · n!

m1!m2!(n−m1 −m2)!

(
p1

1− p1 − p2

)m1+m2

·
(
p2
p1

)m2

.

Consider the continuously di�erentiable reparametrization

g : (p1, p2)→
(

p1
1− p1 − p2

,
p2
p1

)
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de�ned for (p1, p2) ∈ Å. Observe that the determinant of the derivation satis�es

detDg|(p1,p2) = det

 1−p2
(1−p1−p2)2

p1
(1−p1−p2)2

−p2
p21

1
p1

 =
−1

p1(1− p1 − p2)2
6= 0

and hence by the inverse function theorem there exists an open set A0 ⊆ Å and

an open set B0 such that g : A0 → B0 is bijective. Moreover, for (q1, q2) ∈ B0

we have

n∑
(m1+m2)=0

m1+m2∑
m2=0

f(m1,m2) · n!

m1!m2!(n−m1 −m2)!
qm1+m2
1 qm2

2 = 0. (6.6)

Since every derivative of the polynomial in (6.6) is equal to zero on B0 it can

easily be obtained by Taylor's formula that every coe�cient of the polynomial

is equal to zero. Hence, f ≡ 0 and (M1,M2) is a complete statistic. �

Lemma 6.4

Let 0 < λ < γ ≤ 1 and n̂0 be an estimator as in (4.9). Consider the gBI Model

and assume that

F0,H,i(tγ) ≤ t · F0,H,i(γ), t ∈ [0, 1], i ∈ I0. (6.7)

If the functions

pi→ n̂0(p1, . . . , pn) are non decreasing on [0, γ] (6.8)

for i = 1, . . . , n, then we have

E
(
V (λ)

n̂0

∣∣∣(nF̂n(t))t≥γ

)
≤ EBI

(
V (λ)

n̂0

∣∣∣(nF̂n(t))t≥γ

)
(6.9)

and

E

∑
i∈I0

1

n̂
(i)
0

∣∣∣(nF̂n(t))t≥γ

 ≤ EBI

∑
i∈I0

1

n̂
(i)
0

∣∣∣(nF̂n(t))t≥γ

 . (6.10)

EBI denotes the expectation with respect to the BI Model, where the distribu-

tion of (H, ξ) stays the same, i.e. conditioned under H the true p-values are

exchanged by independent on [0, 1] uniformly distributed p-values.

Proof. Let us condition under Fγ = σ(H, 11{pi ≤ s} : s ≥ γ, 1 ≤ i ≤ n).

Under this condition, let {i1 < . . . < ik} ⊂ I0 be the index set of true p-values
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which are less than or equal to γ. Those true p-values pi1 , . . . , pik are still

independent and their marginal conditional distribution is stochastically larger

than the uniform distribution on [0, γ] since

P (pij ≤ t|Fγ) = P (pij ≤ t|pij ≤ γ,Hij = 0)

=
F0,H,ij (t)

F0,H,ij (γ)
≤ t

γ
, t ∈ [0, γ], j = 1, . . . , k,

follows by (6.7). Now let p̃i1 , . . . , p̃ik be independent and uniformly distributed

on [0, γ]. By Müller and Stoyan [41, Theorem 3.3.8] it follows that

(pi1 , . . . , pik)
st
≥ (p̃i1 , . . . , p̃ik) (6.11)

since both random vectors have the independence copula under the above condi-

tion and where
st
≥ denotes the usual multivariate stochastically larger property,

see Müller and Stoyan [41, De�nition 3.3.1 (a)] for a de�nition. Furthermore,

since V (λ)
n̂0

and
∑

i∈I0
1

n̂
(i)
0

are non increasing in each p-value pi1 , . . . , pik on [0, γ],

the inequalities (6.9) and (6.10) just follow by the de�nition of the multivariate

stochastically larger property and by integration. �

Lemma 6.5 (cf. Lemma 6.1 in Janssen and Heesen [28])

Let (V1, V2, V3) be distributed according to the multinomial distribution

M(n, p1, p2, p3) with p3 > 0 and n ≥ 0. Then we have

E

(
V1

n+ 1− V1 − V2

)
=
p1
p3

(1− (p1 + p2)
n). (6.12)

Proof. A simple calculation gives

E

(
V1

n+ 1− V1 − V2

)
(6.13)

=
∑

k1+k2≤n
k1>0,k2≥0

n!

(k1 − 1)!k2!(n+ 1− k1 − k2)!
pk11 p

k2
2 p

n−k1−k2
3 (6.14)

=
p1
p3
·

∑
j+k2≤n−1
j,k2≥0

n!

j!k2!(n− j − k2)!
pj1p

k2
2 p

n−j−k2
3 , (6.15)

where the last equality follows from the substitution j = k1−1. Observe that the

last term adds the probabilities of the multinomial distribution times a constant
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factor. Thus, extending the missing probabilities yields

(6.15) =
p1
p3
·

1−
∑

j+k2=n

n!

j!k2!(n− j − k2)!
pj1p

k2
2 p

n−j−k2
3


=

p1
p3
·

1−
n∑
j=0

n!

j!(n− j)!
pj1p

n−j
2

 =
p1
p3
· (1− (p1 + p2)

n) .

�

Lemma 6.6 (cf. Heesen and Janssen [29] Lemma 6.3)

Let f : {0, . . . ,m} → R be a convex function and P =
∑m

j=0 pjεj be a distribution

on {0, 1 . . . , n}, where εj denotes the Dirac distribution on {j}. Furthermore,

introduce

P ′ =

1−
m∑
j=1

j

m
pj

 · ε0 +
m∑
j=1

j

m
pj · εm. (6.16)

Then we have EP (f) ≤ EP ′(f) and EP (id) = EP ′(id) for the identity function.

Proof. Obviously, the last assertion holds by the de�nition of P ′. Moreover,

by the convexity of f , we obtain

EP (f) =
m∑
j=0

f(j)pj ≤
m∑
j=0

(
m− j
m

f(0)pj +
j

m
f(m)pj

)
= EP ′(f).

�
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Ac Complement of the set A

|A|,#A Cardinality of the set A

Å Interior of the set A

AORC Asymptotically Optimal Rejection Curve

a.s. Almost surely

a.e. Almost everywhere

α1:n, . . . , αn:n Critical values of a stepwise multiple test

α̂1:n, . . . , α̂n:n Data dependent critical values

αBH1:n , . . . ,α
BH
n:n Critical values of the Benjamini Hochberg test

BI Model Basic Independence Model

B(n, p) Binomial distribution with parameters n and p

det Determinant

df Distribution function

DU Dirac-Uniform

DU(n, n0) Dirac-Uniform con�guration with parameters n

and n0

ecdf Empirical cumulative distribution function

ENFR Expected number of false rejections

F̂n Ecdf of p1, . . . , pn

F0 Marginal df of true p-values in the mixture models

F1 Marginal df of false p-values in the mixture models

F0,H,i Marginal df of the i-th true p-value in the gBIModel

FDP False discovery proportion

FDR False discovery rate
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FDR(t) FDR of the single step test with �xed threshold t

F̂DR(t) Estimator for FDR(t)

FWER Family Wise Error Rate

gBI Model Generalized Basic Independence Model

H Vector of the status of the null hypotheses

Hi i-th null hypothesis

Hi = 0 i-th null hypothesis is true

Hi = 1 i-th null hypothesis is false

I0 Index set of true null hypotheses / p-values

I1 Index set of false null hypotheses / p-values

id Identity function

i� If and only if

i.i.d. Independent and identical distributed

IM(f) Image of a mapping f

LFC Least favorable parameter con�guration

λλ|(0,1) Lebesgue measure restricted to (0, 1)

L(X) distribution of the random variable X

L(X|P ) distribution of the random variable X under the

probability measure P

L(P |A) conditional distribution given A

M(n, p1, . . . , pk) Multinomial distribution with parameters

n, k and p1, . . . , pk

n Number of hypotheses / p-values

N0 Random number of true null hypotheses

n0 Fixed number of true null hypotheses

n̂0 Estimator for N0, n0 and related terms

n̂0(λ) Storey estimator

N {1, 2, . . .}
N(µ, σ) Normal distribution with mean µ and variance σ

N(µ,Σ) Multivariate normal distribution with mean vector

µ and covariance matrix Σ

NRDS Negatively Regression Dependence on a Subset

m̂ Estimator for the e�ective number of true null

hypotheses which concern the FDR
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m̂(λ, γ) Generalized Storey estimator

p Vector of p-values

pi i-th p-value

pi:n i-th order statistic of p1, . . . , pn

pI0 Vector of true p-values

pI1 Vector of false p-values

Pn n-fold product measure of P

PX = L(X|P ) distribution of the random variable X under the

probability measure P

P Family of probability measures

Pn,· Distributions of the BI, gBI or RM Model for

�xed n

PCn,gBI Distributions of the gBI Model for �xed n with

convex dfs F0,H,i

pFDR Positive FDR

π0 (Expected) proportion of true null hypotheses

π̂0 Estimator for π0

$̂(t, ·) Estimator for π0F0(t)

PRDS Positively Regression Dependence on a Subset

Φ Cumulative distribution function of the N(0, 1)

distribution

R Number of rejections of the multiple test

R(t) Number of p-values less than or equal to t

R Real numbers

R̄ R ∪ {−∞,∞}
RM Model Reverse Martingale Model

r(x) Rejection curve

SD test Step-down test

SU test Step-up test

SUD test Step-up-down test

σ(X) σ-algebra generated by X

U(a, b) Uniform distribution on the interval [a, b]

V Number of false rejections of the multiple test

V (t) Number of true p-values less than or equal to t
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w.r.t. with respect to

X ∼ P, F X is distributed according to the measure P and

distribution function F , respectively

bxc max{m ∈ Z : m ≤ x}
x ∨ y max(x, y)

x ∧ y min(x, y)

(ξ)i≤n Vector of possible false p-values

Z {0,±1,±2, . . .}
(ζ)i≤n Vector of possible true p-values

11A, 11A Indicator function of A
a.s.−→
n→∞

Almost sure convergence

0/ Empty set
st
≥ Stochastically larger property



List of Figures

2.1 FDRDU(n,n0) plot with n = 300 for (2.41) (blue curve), (2.39)

with k = 283, 250, 223 based on (2.41) (black curves in decreasing

order), BH test (increasing red straight line) and lower bound

(2.26) (green curve). . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 Distribution functions of true p-values in a one sided normal mean

testing problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 Realization of an ecdf of p-values in a one sided normal mean

testing problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3 Limit ecdf of p-values in a one sided normal mean testing problem. 96

4.4 Other possible limit ecdf. . . . . . . . . . . . . . . . . . . . . . . 97

4.5 Areas of the estimation process. . . . . . . . . . . . . . . . . . . . 98

119



List of Tables

2.1 Worst case FDR for di�erent choices of k in (2.39) based on (2.41). 41

3.1 Expectation of the original Storey estimator. . . . . . . . . . . . 62

4.1 Monte-Carlo Simulation of the FDR of several multiple tests. . . 102

120



Bibliography

[1] Y. Benjamini. Discovering the false discovery rate. J. R. Stat. Soc. Ser. B

Stat. Methodol., 72(4):405�416, 2010.

[2] Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a

practical and powerful approach to multiple testing. J. Roy. Statist. Soc.

Ser. B, 57(1):289�300, 1995.

[3] Y. Benjamini and Y. Hochberg. On the adaptive control of the false dis-

covery rate in multiple testing with independent statistics. J. Educ. Behav.

Statist., 25(1):60�83, 2000.

[4] Y. Benjamini, A. M. Krieger, and D. Yekutieli. Adaptive linear step-up

procedures that control the false discovery rate. Biometrika, 93(3):491�

507, 2006.

[5] Y. Benjamini and D. Yekutieli. The control of the false discovery rate in

multiple testing under dependency. Ann. Statist., 29(4):1165�1188, 2001.

[6] G. Blanchard, T. Dickhaus, E. Roquain, and F. Villers. On least favorable

con�gurations for step-up-down tests. arXiv:1108.5262v1, August 2011.

[7] G. Blanchard and E. Roquain. Two simple su�cient conditions for FDR

control. Electron. J. Stat., 2:963�992, 2008.

[8] G. Blanchard and E. Roquain. Adaptive false discovery rate control under

independence and dependence. J. Mach. Learn. Res., 10:2837�2871, 2009.

[9] A. Celisse and S. Robin. A cross-validation based estimation of the pro-

portion of true null hypotheses. J. Statist. Plann. Inference, 140(11):3132�

3147, 2010.

121



Bibliography 122

[10] X. Chen and R. W. Doerge. Generalized estimators for multiple testing:

proportion of true nulls and false discovery rate. Technical report, Depart-

ment of Statistics, Purdue University, West Lafayette, USA, April 2012.

[11] T. Dickhaus. Randomized p-values for multiple testing of composite null

hypotheses. J. Statist. Plann. Inference, 143(11):1968�1979, 2013.

[12] S. Döhler. A su�cient criterion for control of generalised error rates in

multiple testing. arXiv:1307.4394v1, July 2013.

[13] D. Donoho and J. Jin. Higher criticism for detecting sparse heterogeneous

mixtures. Ann. Statist., 32(3):962�994, 2004.

[14] B. Efron, R. Tibshirani, J. D. Storey, and V. Tusher. Empirical Bayes anal-

ysis of a microarray experiment. J. Amer. Statist. Assoc., 96(456):1151�

1160, 2001.

[15] A. Farcomeni. Some results on the control of the false discovery rate under

dependence. Scand. J. Statist., 34(2):275�297, 2007.

[16] H. Finner, T. Dickhaus, and M. Roters. Dependency and false discovery

rate: asymptotics. Ann. Statist., 35(4):1432�1455, 2007.

[17] H. Finner, T. Dickhaus, and M. Roters. On the false discovery rate and an

asymptotically optimal rejection curve. Ann. Statist., 37(2):596�618, 2009.

[18] H. Finner and V. Gontscharuk. Controlling the familywise error rate with

plug-in estimator for the proportion of true null hypotheses. J. R. Stat.

Soc. Ser. B Stat. Methodol., 71(5):1031�1048, 2009.

[19] H. Finner, V. Gontscharuk, and T. Dickhaus. False discovery rate control

of step-up-down tests with special emphasis on the asymptotically optimal

rejection curve. Scand. J. Stat., 39(2):382�397, 2012.

[20] H. Finner and M. Roters. On the false discovery rate and expected type I

errors. Biom. J., 43(8):985�1005, 2001.

[21] Y. Gavrilov, Y. Benjamini, and S. K. Sarkar. An adaptive step-down

procedure with proven FDR control under independence. Ann. Statist.,

37(2):619�629, 2009.



Bibliography 123

[22] C. Genovese and L. Wasserman. Operating characteristics and extensions

of the false discovery rate procedure. J. R. Stat. Soc. Ser. B Stat. Methodol.,

64(3):499�517, 2002.

[23] C. Genovese and L. Wasserman. A stochastic process approach to false

discovery control. Ann. Statist., 32(3):1035�1061, 2004.

[24] V. Gontscharuk. Asymptotic and Exact Results on FWER and FDR in

Multiple Hypotheses Testing. PhD thesis, Heinrich-Heine-Universität Düs-

seldorf, Germany, 2010,

http://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=16990.

[25] W. Guo and M. B. Rao. On control of the false discovery rate under no

assumption of dependency. J. Statist. Plann. Inference, 138:3176�3188,

2008.

[26] W. Guo and M. B. Rao. On optimality of the Benjamini-Hochberg proce-

dure for the false discovery rate. Statist. Probab. Lett., 78(14):2024�2030,

2008.

[27] P. Hall and J. Jin. Innovated higher criticism for detecting sparse signals

in correlated noise. Ann. Statist., 38(3):1686�1732, 2010.

[28] P. Heesen and A. Janssen. Dynamic adaptive multiple tests with �nite

sample FDR control 1. Preprint, October 2013.

[29] P. Heesen and A. Janssen. Inequalities for the false discovery rate (FDR)

under dependence. Preprint, February 2014.

[30] L. Jager and J. A. Wellner. Goodness-of-�t tests via phi-divergences. Ann.

Statist., 35(5):2018�2053, 2007.

[31] J. Jin. Detecting a target in very noisy data from multiple looks. In A

festschrift for Herman Rubin, volume 45 of IMS Lecture Notes Monogr.

Ser., pages 255�286. Inst. Math. Statist., Beachwood, OH, 2004.

1Note added when the dissertation was under revision on October 23, 2014. After the

dissertation was submitted, a new version was published, see arXiv:1410.6296v1, October

2014



Bibliography 124

[32] M. Langaas, B. H. Lindqvist, and E. Ferkingstad. Estimating the propor-

tion of true null hypotheses, with application to DNA microarray data. J.

R. Stat. Soc. Ser. B Stat. Methodol., 67(4):555�572, 2005.

[33] E. L. Lehmann and G. Casella. Theory of point estimation. Springer Texts

in Statistics. Springer, New York, second edition, 1998.

[34] E. L. Lehmann and J. P. Romano. Generalizations of the familywise error

rate. Ann. Statist., 33(3):1138�1154, 2005.

[35] E. L. Lehmann and J. P. Romano. Testing statistical hypotheses. Springer

Texts in Statistics. Springer, New York, third edition, 2005.

[36] K. Liang and D. Nettleton. Adaptive and dynamic adaptive procedures for

false discovery rate control and estimation. J. R. Stat. Soc. Ser. B. Stat.

Methodol., 74(1):163�182, 2012.

[37] N. Meinshausen and J. Rice. Estimating the proportion of false null hy-

potheses among a large number of independently tested hypotheses. Ann.

Statist., 34(1):373�393, 2006.

[38] D. E. Meskaldji. Multiple Comparison Procedures for Large Correlated Data

with Application to Brain Connectivity Analysis. PhD thesis, École Poly-

technique Fédérale de Lausanne, Switzerland, 2013,

http://infoscience.ep�.ch/record/188425.

[39] D. E. Meskaldji, J.-P. Thiran, and S. Morgenthaler. A comprehensive error

rate for multiple testing. arXiv:1112.4519v4, July 2013.

[40] D. E. Meskaldji, J.-P. Thiran, and S. Morgenthaler. Optimality in multiple

comparison procedures. arXiv:1307.2614v1, July 2013.

[41] A. Müller and D. Stoyan. Comparison methods for stochastic models and

risks. Wiley Series in Probability and Statistics. John Wiley & Sons Ltd.,

Chichester, 2002.

[42] J. Pfanzagl. Parametric statistical theory. de Gruyter Textbook. Walter de

Gruyter & Co., Berlin, 1994. With the assistance of R. Hamböker.

[43] S. Pounds and C. Cheng. Improving false discovery rate estimation. Bioin-

formatics, 20(11):1737�1745, 2004.



Bibliography 125

[44] S. Pounds and C. Cheng. Robust estimation of the false discovery rate.

Bioinformatics, 22(16):1979�1987, 2006.

[45] A. W. Roberts, J. Roberts, and D. E. Varberg. Convex functions. Academic

Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-

London, 1973. Pure and Applied Mathematics, Vol. 57.

[46] J. P. Romano and A. M. Shaikh. On stepdown control of the false discovery

proportion. In Optimality, volume 49 of IMS Lecture Notes Monogr. Ser.,

pages 33�50. Inst. Math. Statist., Beachwood, OH, 2006.

[47] J. P. Romano and A. M. Shaikh. Stepup procedures for control of gen-

eralizations of the familywise error rate. Ann. Statist., 34(4):1850�1873,

2006.

[48] J. P. Romano and M. Wolf. Control of generalized error rates in multiple

testing. Ann. Statist., 35(4):1378�1408, 2007.

[49] E. Roquain and F. Villers. Supplement to "Exact calculations for false

discovery proportion with application to least favorable con�gurations",

2010.

[50] E. Roquain and F. Villers. Exact calculations for false discovery proportion

with application to least favorable con�gurations. Ann. Statist., 39(1):584�

612, 2011.

[51] S. K. Sarkar. Some results on false discovery rate in stepwise multiple

testing procedures. Ann. Statist., 30(1):239�257, 2002.

[52] S. K. Sarkar. On methods controlling the false discovery rate. Sankhy	a,

70(2, Ser. A):135�168, 2008.

[53] S. K. Sarkar. Two-stage stepup procedures controlling FDR. J. Statist.

Plann. Inference, 138(4):1072�1084, 2008.

[54] M. Scheer. Controlling the number of false rejections in multiple hypotheses

testing. PhD thesis, Heinrich-Heine-Universität Düsseldorf, Germany, 2012

http://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=23691.

[55] T. Schweder and E. Spjøtvoll. Plots of p-values to evaluate many tests

simultaneously. Biometrika, 69(3):493�502, 1982.



Bibliography 126

[56] G. R. Shorack and J. A. Wellner. Empirical processes with applications to

statistics. Wiley Series in Probability and Mathematical Statistics: Prob-

ability and Mathematical Statistics. John Wiley & Sons Inc., New York,

1986.

[57] B. W. Silverman. Density estimation for statistics and data analysis. Mono-

graphs on Statistics and Applied Probability. Chapman & Hall, London,

1986.

[58] R. J. Simes. An improved bonferroni procedure for multiple tests of signif-

icance. Biometrika, 73(3):751�754, 1986.

[59] J. D. Storey. A direct approach to false discovery rates. J. R. Stat. Soc.

Ser. B Stat. Methodol., 64(3):479�498, 2002.

[60] J. D. Storey. The positive false discovery rate: a Bayesian interpretation

and the q-value. Ann. Statist., 31(6):2013�2035, 2003.

[61] J. D. Storey, J. E. Taylor, and D. Siegmund. Strong control, conservative

point estimation and simultaneous conservative consistency of false discov-

ery rates: a uni�ed approach. J. R. Stat. Soc. Ser. B Stat. Methodol.,

66(1):187�205, 2004.

[62] J. D. Storey and R. Tibshirani. Statistical signi�cance for genomewide

studies. PNAS, 100(16):9440�9445, 2003.

[63] J. W. Tukey. T13 n: The higher criticism. Course Notes, Statistics 411,

Princeton Univ., 1976.

[64] H. Witting. Mathematische Statistik. I. B. G. Teubner, Stuttgart, 1985.

Parametrische Verfahren bei festem Stichprobenumfang. [Parametric meth-

ods for �xed sample size].

[65] A. Zeisel, O. Zuk, and E. Domany. FDR control with adaptive procedures

and FDR monotonicity. Ann. Appl. Stat., 5(2A):943�968, 2011.





Erklärung

Ich versichere an Eides Statt, dass die Dissertation von mir selbständig und ohne

unzulässige fremde Hilfe unter Beachtung der �Grundsätze zur Sicherung guter

wissenschaftlicher Praxis an der Heinrich-Heine-Universität Düsseldorf� erstellt

worden ist. Die Dissertation wurde in der vorgelegten oder in ähnlicher Form

noch bei keiner anderen Institution eingereicht. Ich habe bisher keine erfolglosen

Promotionsversuche unternommen.

Philipp Heesen Düsseldorf, den 08.05.2014


