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Abstract

The analysis of network transmission log files is an important tool in the
design process of network protocols and devices. As the logs record when
which device sent or received a transmission. The very character of network
communication makes log files of multiple devices hard to compare, as they
suffer from random delays, incomplete transmissions, and inaccurate or non-
synchronized clocks. Online clock synchronization protocols are not always
applicable, require additional implementation effort, and can not eliminate
certain random delays. Thus, offline clock synchronization, a post processing
method which corrects the timestamps in log files, is very appealing.

In a local broadcast network a transmission is received by multiple devices.
Exploiting this fact, this thesis models the timestamps generation as sampling
of an unknown distribution which is parameterized by the inverse of clock
functions. This allows us to apply maximum likelihood estimation techniques
to create an offline clock synchronization method.

It is shown that the presented estimates are optimizers of linear programs
with well-known sparsity structure. Thus, they can be computed efficiently
with a tailored interior point method even for a large amount of samples.
Further, under some weak regularity assumptions, the thesis establishes the
strong consistency of the presented estimator. That is, the estimates con-
verges almost surely to the inverse clock functions. The simulation displays
the predicted asymptotic as expected. Even more, it indicates that consis-
tency might remain valid under more general assumptions.
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Zusammenfassung

Die Analyse von Übertragungslogdateien eines Netzwerkes ist ein wichtiges
Werkzeug in der Entwicklung von neuen Netzwerkprotokollen und vernetzten
Geräten. Logdateien speichern unter anderem zu welchen Zeitpunkten Über-
tragungen statt finden. Aber Logdateien von unterschiedlichen Geräten sind
schlecht vergleichbar, da die gespeicherten Zeitstempeln durch zufällige Ver-
zögerungen, unvollständigen Übertragungen, und ungenaue Uhren verfälscht
werden. Online Synchronisierungsprotokollen sind nicht immer anwendbar,
bereiten zusätzlichen Implementierungsaufwand, und können gewisse zufäl-
lige Verzögerungen nicht korrigieren. Aus diesen Gründen kann ein Offline
Synchronisierungsverfahren, welches die Zeitstempeln im Nachhinein korri-
giert, viel ansprechender sein.

In vielen Netzwerkarten erfolgt eine Übertragungen an alle benachbarten
Geräten. Die vorliegende Arbeit nutzt diese Eigenschaft aus, um die Erzeu-
gung der Zeitstempeln als das Ziehen einer Zufallstichprobe einer unbekann-
ten Verteilung zu interpretieren. Wenn die Uhren als Funktionen modelliert
werden, dann können die Inverse dieser Funktionen auf natürlicher Weise als
Parameter dieser unbekannten Verteilung interpretiert werden. Dies erlaubt
uns die inversen Uhren mit Hilfe von Schätzverfahren zu schätzen. Die vorlie-
gende Arbeit verwendet hierfür einen Maximum-Likelihood Ansatz, um ein
effizientes offline Synchronisierungsverfahren herzuleiten.

Es zeigt sich, dass die Schätzungen die Lösungen von dünnbesetzten li-
nearen Programmen sind, die sich mit Hilfe eines speziell angepassten Innere-
Punkte-Verfahrens unter Ausnutzung dieser Nullstruktur effizient berechnen
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lassen, sogar für große Stichproben. Unter schwachen Regularitätsannahmen,
zeigt die vorliegende Arbeit, dass das Schätzverfahren stark konsistent ist;
das heißt, die Schätzungen konvergieren fast sicher gegen die inversen Uhren.
Die Simulationen zeigen genau das vorhergesagte asymptotische Verhalten.
Tatsächlich, gibt sie Anlass zu vermuten, dass das Schätzverfahren unter all-
gemeineren Annahmen ebenfalls konsistent ist.
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Chapter 1

Introduction

During the design process of network devices and communication protocols
it is necessary to repeatedly simulate different use cases. Each run produces
large event logs. The analysis of these logs is crucial to discover and to
understand unexpected behavior and flawed designs. Intrinsic to network
communication these logs suffer from random delays, drop outs, and inac-
curate clocks, which complicate the analysis. Online clock synchronization
protocols may gravely interfere with an experiment, depend on a stable net-
work, and are unable to handle certain processing delays.

Exploiting the local broadcast character of certain networks, two effi-
cient offline clock synchronization methods using an affine linear clock model
based on maximum likelihood estimation and least squares estimation are in-
troduced by Scheuermann et al. [22] and Jarre et al. [11] respectively. This
thesis extends the maximum likelihood approach to non-linear clocks. The
estimate is the solution of a sparse linear program with well-known structure,
which can be solved efficiently by a customized Mehrotra predictor-corrector
interior point method [17]; and the estimator is strongly consistent under
weak assumptions.

1.1 A Motivation
An experiment within a computer network (or more general a system of
networked devices) typically results in a huge set of event logs, a log entry
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1 Introduction

for each transmission event and a log for each involved device. Each log
entry records a timestamp along with other parameters of interest. The
analysis of these logs is crucial for the interpretation of the experimental
results. Depending on the reliability of the medium and on the network
connectivity, these logs are inherently incomplete: Not every device receives
each transmission; multiple logs are necessary to reconstruct the complete
experiment. Timestamps, based on the local clock on each device, suffer from
random delays and non synchronized clocks though, which renders the logs
almost incomparable between two devices.

Employing more accurate clocks is not always feasible, due to design con-
straints like manufacturing cost or power demand. Global Positioning System
(GPS) disciplined oscillators for example provide highly accurate clocks com-
paring to simple crystal oscillators [29]. However, they also require more
energy and cost much more. Not to mention, GPS reception is poor in build-
ings, in tunnels, under water, and so on. Thus, employing GPS receivers in
huge numbers may conflict with other design decisions.

Keeping inaccurate clocks synchronized by constantly correcting them is
much easier and more inexpensive in a network, a strategy deployed in mobile
phones and networked computers for a long time. This is achieved by using
Mill’s well-known Network Time Protocol (NTP) [18], which is implemented
in most modern computer operating systems. As NTP causes network traffic,
employing NTP on the same transmission medium as the one of the proper
experiment might cause unwanted side-effects and render the results useless.
Also, NTP performs rather poorly in an unreliable network, where the trans-
mission delay between two devices is not symmetric or varies frequently.

Ignoring the individual drawbacks of the methods mentioned above, both
can not eliminate random delays between registering an event and time
stamping, due to a device’s internal working. Instead of altering the setup
to improve the time measurement, the offline clock synchronization method
presented in this thesis estimates the correct timestamps from event logs
after an experiment. Such post processing has zero side-effects during an
experiment and is ready to use without additional setup.

In local broadcast networks transmissions are usually received and recorded
by multiple neighboring systems. Using such receptions as anchors, two effi-
cient offline clock synchronization methods with strong theoretical properties
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1.2 Stochastic Formulation

were introduced in [22] and [11]. Both methods model the clocks as affine
linear functions. As clocks built into computers are nearly affine linear un-
der constant conditions for a short time period, this approach shows high
accuracy for logs that span up to 20 minutes. However, for longer time
periods, changing environmental conditions leads to non-linear clock devia-
tions. Therefore, generalizing the aforementioned approaches to a general
clock model is a natural evolution.

1.2 Stochastic Formulation
A clock is a device which counts how often a specific time period is elapsed.
If we take a date as a real number (for example as seconds passes since some
reference date), then we can model a clock as a step function from ℝ into ℝ.
However, modeling clocks as continuous functions is much more appealing
and is sufficient for most practical purposes. In particular, it is reasonable
to assume that the clock functions are increasing homeomorphisms. For
convenience, we say a clock is correct if it is the identity function on ℝ.
However, in reality we can only compare clocks to other clocks. Thus, it
would be more precise to say a clock is correct with respect to a reference
clock.

The generation of timestamps can be modeled as follows. An event 𝑘
happened, say at date 𝑡𝑘 ∈ ℝ (with respect to the correct clock), which is
observed by device 𝑗 after a delay 𝑑𝑗,𝑘 ≥ 0, and is logged with the timestamp

𝑧𝑗,𝑘 = 𝐶𝑗(𝑡𝑘 + 𝑑𝑗,𝑘)

using the clock 𝐶𝑗 of device 𝑗. Notice that we are interest into the unknown
data 𝐶𝑗 and 𝑡𝑘. However, only the skewed timestamp 𝑧𝑗,𝑘 is recorded. The
goal of offline clock synchronization is to reconstruct 𝐶𝑗, and in process also
𝑡𝑘, for given multiple skewed timestamps.

As the occurrence of an event and the delays are non-deterministic, the
timestamps and the process of their generation shall be modeled by stochastic
means. In particular, a timestamp is a random number in a natural way. The
timestamp generation is just sampling. A tuple of timestamps of the same

Homeomorphism: A continuous and bijective function with continuous inverse.

3



1 Introduction

event is merely a vector of correlated random numbers. Even if the network
devices are identical, the timestamps are not identically distributed due to
clock deviations. Thus, synchronization is transforming the timestamp vector
to an identically distributed random vector. We introduce the following
formal definition:

1.1 Definition: For 𝑚 ∈ ℕ let 𝒁 = (𝑍1, 𝑍2, … , 𝑍𝑚) be a random vector in ℝ𝑚.
The (offline) synchronization problem with the timestamp model 𝒁 is to find
increasing homeomorphisms 𝑢1, 𝑢2, … , 𝑢𝑚 ∶ ℝ → ℝ such that

1. 𝑢1(𝑍1), 𝑢2(𝑍2), … , 𝑢𝑚(𝑍𝑚) are identically distributed, and

2. the inverse functions 𝑢-1
1 , 𝑢-1

2 , … , 𝑢-1
𝑚 are the identity function in average:

1
𝑚

𝑚
∑
𝑗=1

𝑢-1
𝑗 = idℝ .

Then, the direct product 𝒖 = 𝑢1 × 𝑢2 × ⋯ × 𝑢𝑚 ∶ ℝ𝑚 → ℝ𝑚, defined by

𝒖(𝑧1, 𝑧2, … , 𝑧𝑚) = (𝑢1(𝑧1), 𝑢2(𝑧2), … , 𝑢𝑚(𝑧𝑚)),

is called a solution of 𝒁.

Definition 1.1 reflects a network setup with 𝑚 devices. The random vector
𝒁 models a vector of timestamps of one event, where 𝑍𝑗 models a timestamp
transformed by the local clock at device 𝑗. A recorded timestamp vector is
merely a realization of 𝒁, and the timestamp generation process is merely
sampling 𝒁. Using a solution we can synchronize the skewed timestamps,
make them comparable. In fact, we may interpret 𝑢1, 𝑢2, … , 𝑢𝑚 as the inverse
functions of the clock functions. As we assume that a clock maps the entire ℝ
homeomorphic onto ℝ, and that the timestamps are supported on the entire
ℝ, it makes sense also to assume that 𝑢1, 𝑢2, … , 𝑢𝑚 map onto the entire ℝ.

Given increasing homeomorphisms 𝑢1, 𝑢2, … , 𝑢𝑚 ∶ ℝ → ℝ satisfying Item 1
of Definition 1.1 and an increasing homeomorphism 𝜓 ∶ ℝ → ℝ, the compo-
sitions 𝜓 ∘ 𝑢1, … , 𝜓 ∘ 𝑢𝑚 also satisfy Item 1. Thus, to identify the correct
global scale, Item 2 of Definition 1.1 is crucial. It can be replaced by a more
general one of the form

∀𝑥 ∈ ℝ ∶ 𝜙(𝑢-1
1(𝑥), … , 𝑢-1

𝑚(𝑥)) = 𝑥,

4



1.2 Stochastic Formulation

where 𝜙 ∶ ℝ𝑚 → ℝ is continuous and satisfies the following increase condi-
tions: 1. 𝜙(𝒛) → +∞ if min1≤𝑗≤𝑚 𝑧𝑗 → ∞, 2. 𝜙(𝒛) → −∞ if max1≤𝑗≤𝑚 𝑧𝑗 →
−∞, and 3. for each 𝒛, ̃𝒛 ∈ ℝ𝑚 with 𝒛 ≤ ̃𝒛 and 𝒛 ≠ ̃𝒛 it follows 𝜙(𝒛) < 𝜙( ̃𝒛).
For example, if the first device has a GPS receiver and its clock is assumed to
be correct, then we can synchronize to that reference by using 𝒛 ↦ 𝜙(𝒛) ∶= 𝑧1.
Neither the algorithms nor the theoretical results of this thesis rely on the
exact form of 𝜙. Hence, 𝜙 is fixed to the arithmetic mean for the sake of
simplicity.

Notice that Definition 1.1 can be extended to model incomplete log-sets by
allowing 𝑍1, 𝑍2, … , 𝑍𝑚 taking ∞ as value to signal a non-existent timestamp.
For notational convenience, we will concentrate on complete log-sets first, and
then extend all results to incomplete log-sets.

Finally, the main result of this section shows that the offline synchroniza-
tion problem admits a unique solution under mild regularity assumptions on
the marginal distribution of the timestamp model:

1.2 Theorem:
Let 𝒁 = (𝑍1, 𝑍2, … , 𝑍𝑚) be a random vector in ℝ𝑚. For each 𝑗 ∈ {1, … , 𝑚}
assume that the marginal distribution function 𝐹𝑗 ∶ ℝ → [0, 1] of 𝑍𝑗 is a
homeomorphism from ℝ onto (0, 1). Define 𝑄0 ∶ (0, 1) → ℝ by

𝑄0 ∶= 1
𝑚

𝑚
∑
𝑗=1

𝐹 -1
𝑗 .

Then, the offline synchronization problem with the timestamp model 𝒁 has
exactly one solution �̌� = �̌�1×⋯×�̌�𝑚, and for each 𝑗 ∈ {1, … , 𝑚} the function
�̌�𝑗 is given by

�̌�𝑗 = 𝑄0 ∘ 𝐹𝑗.

Proof: Notice that 𝑄0 is continuous, strictly increasing, and surjective, as
𝑄0(𝜏) → −∞ for 𝜏 → 0 and 𝑄0(𝜏) → ∞ for 𝜏 → 1. Thus, if we define �̌� as
above, then �̌� is a solution of the synchronization problem by construction.

Let 𝑢1 × 𝑢2 × ⋯ × 𝑢𝑚 be any solution of the synchronization problem
and let 𝐹0 ∶ ℝ → [0, 1] denote the common marginal distribution function of
𝑢1(𝑍1), 𝑢2(𝑍2), … , 𝑢𝑚(𝑍𝑚). Then, for each 𝑗 ∈ {1, 2, … , 𝑚} and 𝑥 ∈ ℝ we
have

𝐹0(𝑥) = 𝗣{𝑢𝑗(𝑍𝑗) ≤ 𝑥} = 𝗣{𝑍𝑗 ≤ 𝑢-1
𝑗 (𝑥)} = 𝐹𝑗(𝑢-1

𝑗 (𝑥)).
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1 Introduction

Thus, it follows

idℝ = 1
𝑚

𝑚
∑
𝑗=1

𝑢-1
𝑗 = 1

𝑚
𝑚

∑
𝑗=1

𝐹 -1
𝑗 ∘ 𝐹0 = 𝑄0 ∘ 𝐹0

and

𝑢𝑗 = 𝑄0 ∘ 𝐹𝑗.

Although, an experiment lasts for a finite time period only, a small gaus-
sian perturbation would make the timestamps unbounded in theory. Thus,
it is a rather weak, and also technically convenient, assumption that the
marginal distribution functions 𝐹1, 𝐹2, … , 𝐹𝑚 are strictly increasing and con-
tinuous on the entire real line. From a practical point of view, we may assume
that the probability is mostly concentrated on some compact interval.

In the light of Theorem 1.2, the remaining thesis will impose some reg-
ularity conditions to ensure that the synchronization problem has a unique
solution. Also, we require integrability for distribution estimation.

1.3 Assumption: Assume that the timestamp model 𝒁 = (𝑍1, 𝑍2, … , 𝑍𝑚)

admits an almost everywhere positive probability density function 𝜌𝒁,

and is integrable.

The regularity condition in Assumption 1.3 ensures that the marginal
distribution functions 𝐹1, 𝐹2, … , 𝐹𝑚 of 𝒁 are homeomorphisms from ℝ onto
(0, 1). In particular, the synchronization problem has exactly one solution
�̌� = �̌�1 × �̌�2 × ⋯ × �̌�𝑚, as stated in Theorem 1.2. Further, 𝐹𝑗, �̌�𝑗, and their
inverse functions are locally absolutely continuous for each 𝑗 ∈ {1, 2, … , 𝑚}.

Integrable random vector: The expectation of the norm is finite.
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Finally, 𝑢𝑗(𝑍𝑗) is also integrable for each 𝑗 ∈ {1, 2, … , 𝑚}, as we have

𝗘[|�̌�𝑗(𝑍𝑗)|] = ∫|�̌�𝑗(𝑧𝑗)| d (𝝺(0,1) ∘𝐹𝑗) (𝑧𝑗)

= ∫
1

0
|�̌�𝑗(𝐹 -1

𝑗 (𝜏))| d𝜏

= ∫
1

0
∣ 1
𝑚

𝑚
∑
𝑗′=1

𝐹 -1
𝑗′(𝜏)∣ d𝜏

≤ 1
𝑚

𝑚
∑
𝑗′=1

∫
1

0
|𝐹 -1

𝑗′(𝜏)| d𝜏 ≤ 1
𝑚

𝑚
∑
𝑗′=1

𝗘[|𝑍𝑗′|] < ∞.

Here, we exploit the fact that the distribution of 𝑍𝑗 is given by 𝝺(0,1) ∘𝐹𝑗, the
push-forward measure of the Lebesgue measure 𝝺(0,1) on (0, 1) with respect
to 𝐹 -1

𝑗 . In an analogous fashion, we obtain

𝗘[�̌�𝑗(𝑍𝑗)] = 1
𝑚

𝑚
∑
𝑗′=1

𝗘 𝑍𝑗′.

In applications, the marginal distribution functions are unknown. Thus,
the results of this section are of purely theoretical interest. However, this
section provides some key ideas to establish an approximation scheme for
the offline synchronization problem in the following sections.

1.3 Distribution Estimation
If the distribution of the timestamp model is known, the solution of the of-
fline synchronization problem is readily given by Theorem 1.2. Hence, the
offline synchronization problem can be interpreted as a distribution estima-
tion problem. Fix a probability measure 𝑃0 on ℝ𝑚 and a sample sequence
(𝑿𝑛)𝑛∈ℕ of 𝑃0, that is an independent sequence of random variables in ℝ𝑚

distributed according to 𝑃0. There are well-known non-parametric and para-
metric estimation techniques to reconstruct 𝑃0 using (𝑿𝑛)𝑛∈ℕ. In fact, both
techniques are used to solve the offline synchronization problem efficiently.

An example for non-parametric techniques is the so-called sample distri-
bution. The sample distribution 𝑃𝑛 of the first 𝑛 ∈ ℕ samples 𝑿1, 𝑿2, … , 𝑿𝑛

7



1 Introduction

is defined by

𝑃𝑛(𝐴) = 1
𝑛

𝑛
∑
𝑘=1

𝝳𝑿𝑘
(𝐴).

Here, 𝝳𝒙 denotes the Dirac measure centered at 𝒙 ∈ ℝ𝑚. Noteworthy, 𝑃𝑛(𝐴)
is itself a random number for each Borel set 𝐴 ⊆ ℝ𝑚 and 𝑃𝑛 is a so-called
random measure. The well-known Glivenko-Cantelli theorem (compare to
the literature like [27]) states that

sup
𝐴∈𝒜

|𝑃𝑛(𝐴) − 𝑃0(𝐴)|

converges almost surely to 0, where 𝒜 = {(−∞, 𝒂] | 𝒂 ∈ ℝ𝑚} denotes the set
of closed right-bounded intervals on ℝ𝑚. That is, the distribution function
of 𝑃𝑛 converges uniformly to the distribution function of 𝑃0 almost surely.
If 𝑃0 admits a continuous Lebesgue density 𝜌0, there also exist many non-
parametric methods to estimate 𝜌0 instead of 𝑃0 itself, like the so-called
kernel density estimation [21].

Additionally assume that 𝑃0 is a member of a known family (𝑃𝜃)𝜃∈𝛩 of
probability measures on ℝ𝑚 with a parameter in a non-empty set 𝛩. Then,
exploiting the parametrization 𝜃 ↦ 𝑃𝜃 leads to parametric estimation tech-
niques. A well-known example is the maximum likelihood estimation: Assume
that 𝑃𝜃 admits a probability density 𝜌𝜃 for each 𝜃 ∈ 𝛩. The maximum like-
lihood estimate maximizes the expected value of the log-likelihood function

𝜃 ↦ 𝑃𝑛[log 𝜌𝜃] ∶= ∫ log 𝜌𝜃(𝒙) d𝑃𝑛(𝒙) = 1
𝑛

𝑛
∑
𝑘=1

log 𝜌𝜃(𝑿𝑘)

with respect to the sample distribution 𝑃𝑛. Under additional assumptions,
every sequence of maximizers converges almost surely to the parameter of 𝑃0
(compare to the literature, like [9]).

In the context of offline synchronization, estimating the distribution of the
timestamp model directly using non-parametric methods leads to slow con-
vergence and low accuracy. By regarding the solution of the synchronization
problem as a parameter, we can also apply parametric methods. Combining
both techniques, we can provide a consistent and efficient estimator.

8



1.4 Estimation for Offline Synchronization

1.4 Estimation for Offline Synchronization
For this section fix a timestamp model 𝒁 = (𝑍1, 𝑍2, … , 𝑍𝑚) which satis-
fies Assumption 1.3. For each 𝑗 ∈ {1, 2, … , 𝑚} let 𝑄𝑗 denote the quantile
function, the inverse of the marginal distribution function, of 𝑍𝑗 and let

𝑄0 = 1
𝑚

𝑚
∑
𝑗=1

𝑄𝑗.

Let 𝑃0 denote the distribution of 𝒁 and �̌� = �̌�1 × �̌�2 × ⋯ × �̌�𝑚 the solution
of 𝒁. For the sake of brevity, denote the set of ℝ𝑚-valued 𝑃0-integrable
functions by ℒ1(𝑃0, ℝ𝑚), the set of separated functions from ℝ𝑚 into ℝ𝑚 by,

𝒮𝑒𝑝𝑚 = {𝑢1 × ⋯ × 𝑢𝑚 | 𝑢1, … , 𝑢𝑚 ∶ ℝ → ℝ},

and the set of separated 𝑃0-integrable functions by

ℰ = 𝒮𝑒𝑝𝑚 ∩ ℒ1(𝑃0, ℝ𝑚).

Notice that ℰ is a closed subspace of ℒ1(𝑃0, ℝ𝑚) and contains �̌�.

1.4.1 Error and Quantile Ansatz
The mean ℒ1-error of any 𝑢1 × 𝑢2 × ⋯ × 𝑢𝑚 ∈ ℰ is given by

1
𝑚

𝑚
∑
𝑗=1

𝗘[|𝑢𝑗(𝑍𝑗) − �̌�𝑗(𝑍𝑗)|] = 1
𝑚

𝑚
∑
𝑗=1

∫
1

0
|𝑢𝑗(𝑄𝑗(𝜏)) − 𝑄0(𝜏)| d𝜏.

The right-hand side does not contain the unknown solution �̌� and only re-
quires the quantile functions 𝑄1, … , 𝑄𝑚. Essentially, we obtain a quantile
ansatz by minimizing the mean ℒ1-error with sample quantile functions in
place of quantile functions.

Simulation indicates that the quantile ansatz performs reasonably well
on complete log-sets. Unfortunately, this ansatz exhibits substantially lower
accuracy if the log-sets are incomplete. Noteworthy, the quantile ansatz es-
timates the marginal distributions of the timestamps 𝒁 only. It ignores any
correlation between the components of 𝒁. The following maximum likeli-
hood ansatz estimates the joint distribution and exploits the correlations in
a canonic fashion.

9
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1.4.2 Maximum Likelihood Ansatz
To apply maximum likelihood techniques, we need a parametric density for 𝒁.
Here, the notation of the so-called synchronized timestamp model becomes
useful, whose existence is imposed in the remaining part of this thesis:

1.4 Assumption: Additionally to Assumption 1.3: There exists a random num-
ber 𝑇 , called a synchronized timestamp model 𝑇 of 𝒁, satisfying the following
conditions:

(𝑇 , 𝒁) admits a probability density;

𝑇 is integrable and its density 𝜌𝑇 is almost everywhere positive;

the conditional density of �̌�(𝒁) given 𝑇 is given by

𝜌�̌�(𝒁)|𝑇 (𝒙|𝑡) =
𝑚

∏
𝑗=1

𝜌𝜃(𝑥𝑗 − 𝑡),

where 𝜌𝜃 denotes the density of the exponential distribution with mean
𝜃-1 > 0:

𝜌𝜃(𝑥) =
⎧{
⎨{⎩

𝜃 exp(−𝜃𝑥), 𝑥 ≥ 0,
0, 𝑥 < 0.

Notice that the random number 𝑇 models the date at which the event
occurs (with respect to a reference clock), and �̌�𝑗(𝑍𝑗) − 𝑇 models the delay
at device 𝑗. Here, the delays are independent and identically exponentially
distributed. Remember that we like to estimate the solution �̌� of the syn-
chronization problem. However, it is not a typical regression setting, as we
have only samples 𝒁 but no samples for 𝑇 nor for �̌�(𝒁).

Under Assumption 1.4: Integration by substitution yields the conditional
density of 𝒁 given 𝑇

𝜌𝒁|𝑇 (𝒛|𝑡; �̌�) =
𝑚

∏
𝑗=1

𝜌𝜃(�̌�𝑗(𝑧𝑗) − 𝑡) ⋅ �̌�′
𝑗(𝑧𝑗),

where �̌� is considered as a parameter. Further, the density of 𝒁 is given by

𝜌𝒁(𝒛; �̌�) = ∫
ℝ

𝑚
∏
𝑗=1

𝜌𝜃(�̌�𝑗(𝑧𝑗) − 𝑡) ⋅ �̌�′
𝑗(𝑧𝑗) ⋅ 𝜌𝑇 (𝑡) d𝑡.
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In general 𝜌𝑇 is unknown and 𝜌𝒁 does not have a known analytic form. Also,
we have no samples for 𝑇 nor �̌�(𝒁). Thus, we can not estimate 𝜌𝑇 nor 𝜌𝒁. In
particular, we can not apply maximum likelihood techniques to 𝜌𝒁 directly.
However, we can apply maximum likelihood techniques to 𝜌𝒁|𝑇 , which leads
to conditional maximum likelihood estimation.

The conditional log-likelihood of 𝒁 given 𝑇 with parameter 𝒖 = 𝑢1 ×𝑢2 ×
⋯×𝑢𝑚 ∈ ℰ, where 𝑢1, 𝑢2, … , 𝑢𝑚 are strictly increasing and locally absolutely
continuous, is given for almost every 𝒛 ∈ ℝ𝑚 by

log 𝜌𝒁|𝑇 (𝒛|𝑡; 𝒖) =
𝑚

∑
𝑗=1

log 𝜌𝜃(𝑢𝑗(𝑧𝑗) − 𝑡) +
𝑚

∑
𝑗=1

log 𝑢′
𝑗(𝑧𝑗).

The density of the exponential distribution, 𝜌𝜃, is strictly decreasing on
its support. Thus, for fixed 𝒛 and 𝒖, the function 𝑡 ↦ log 𝜌𝒁|𝑇 (𝒛|𝑡; 𝒖) is
strictly increasing on its proper domain and admits the unique maximum
point

𝑡∗(𝒛; 𝒖) = min
1≤𝑗≤𝑚

𝑢𝑗(𝑧𝑗).

Further, it is well-known that the maximum likelihood estimate to 𝜃 is given
by the reciprocal mean

𝜃∗(𝒛; 𝒖) = ( 1
𝑚

𝑚
∑
𝑗=1

𝑢𝑗(𝑧𝑗) − min
1≤𝑗≤𝑚

𝑢𝑗(𝑧𝑗))
-1

.

Thus, we conclude

sup
𝜃>0

sup
𝑡∈ℝ

log 𝜌𝒁|𝑇 (𝒛|𝑡; 𝒖, 𝜃)

≤ −𝑚 log ( 1
𝑚

𝑚
∑
𝑗=1

𝑢𝑗(𝑧𝑗) − min
1≤𝑗≤𝑚

𝑢𝑗(𝑧𝑗))

− 𝑚 +
𝑚

∑
𝑗=1

log 𝑢′
𝑗(𝑧𝑗)

⏟⏟⏟⏟⏟
(∗)

. (1.1)

Notice that 𝑢′
1, 𝑢′

2, … , 𝑢′
𝑚 are defined almost everywhere only. To remove

the derivative term (∗) in the right-hand side of (1.1), the following constraint

Proper domain: The subset of the domain on which an extended real valued function is
finite.
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on 𝒖 is introduced:
1
𝑚

𝑚
∑
𝑗=1

𝑢𝑗 ∘ �̌�-1
𝑗 = idℝ,

which implies that the transformed mean is estimated correctly. In that case,
after some technical steps, we can establish

𝗘[
𝑚

∑
𝑗=1

log(𝑢′
𝑗(𝑍𝑗))] ≤ 𝗘[

𝑚
∑
𝑗=1

log(�̌�′
𝑗(𝑍𝑗))];

that is, the derivative term (∗) in (1.1) is bounded in expectation by a con-
stant. In fact, the consistency result in Chapter 3 shows that omitting (∗)
does not alter the maximizer of the right-hand side of (1.1).

In conclusion, we consider the following infinite dimensional optimization
problem to characterize the solution of the synchronization problem:

1.5 Problem: Under Assumption 1.4:

Minimize ∫ 𝑓(𝒖; 𝒛) d𝑃(𝒛) subject to ess sup
𝜏∈(0,1)

𝑔(𝒖; 𝑸0(𝜏)) = 0, 𝒖 ∈ ℰ,

where 𝑓, 𝑔 ∶ ℰ × ℝ𝑚 → ℝ and 𝑸0 ∶ (0, 1) → ℝ𝑚 are defined by

𝑓(𝒖; 𝒛) = 1
𝑚

𝑚
∑
𝑗=1

𝑢𝑗(𝑧𝑗) − min
1≤𝑗≤𝑚

𝑢𝑗(𝑧𝑗),

𝑔(𝒖; 𝒛) = 1
𝑚∣

𝑚
∑
𝑗=1

𝑢𝑗(𝑧𝑗) −
𝑚

∑
𝑗=1

𝑧𝑗∣,

𝑸0(𝜏) = (𝑄1(𝜏), 𝑄2(𝜏), … , 𝑄𝑚(𝜏)) .

Chapter 2 introduces an intuitive sample approximation to Problem 1.5.
Any optimizer of such sample approximation can be interpreted as a condi-
tional maximum likelihood estimate to the solution �̌� of the synchronization
problem. Strictly speaking, the sample approximation of Problem 1.5 is not
the conditional maximum likelihood estimator. We are in the more general
setting of M-estimation (compare to the literature, like [26]). However, as the
objective function is an upper bound of the conditional log-likelihood in ex-
pectation, we will tolerate that abuse of terminology and refer to the sample
approximation of Problem 1.5 as conditional maximum likelihood estimator
and its optimizer as conditional maximum likelihood estimate.
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The parameter space ℰ includes functions whose components are neither
strictly increasing nor locally absolutely continuous. Thus, it is a-priori open
whether Problem 1.5 characterizes the solution of the offline synchronization
problem. Fortunately, Chapter 3 will confirm that Problem 1.5 does charac-
terize �̌�, and that the estimator defined in Chapter 2 is strongly consistent.
That is, the optimizers of the sample approximation of Problem 1.5 converge
to �̌� almost surely.

1.5 Incomplete Log-Sets
Problem 1.5 is developed for a complete synchronization problem. That is,
each event is observed by each device and the log-sets are complete. The
presented approach can be adapted easily to incomplete log-entries. For this
purpose we modify Definition 1.1, Theorem 1.2, and Problem 1.5 accordingly:

1.6 Definition: Let 𝒁 = (𝑍1, 𝑍2, … , 𝑍𝑚) be a random vector in (ℝ ∪ {∞})𝑚

with 𝗣{𝑍𝑗 ∈ ℝ} > 0 for all 𝑗 ∈ {1, 2, … , 𝑚}. The (offline) synchroniza-
tion problem with censored timestamp model 𝒁 is to find increasing homeo-
morphisms 𝑢1, 𝑢2, … , 𝑢𝑚 ∶ ℝ → ℝ such that

1. 𝗣{𝑢𝑗(𝑍𝑗) ≤ 𝑡|𝑍𝑗 ∈ ℝ} does not depend on 𝑗,

2. and such that
1
𝑚

𝑚
∑
𝑗=1

�̌�-1
𝑗 = idℝ .

Then, the direct product 𝒖 = 𝑢1 × 𝑢2 × ⋯ × 𝑢𝑚 is again called a solution.

In the case of a censored timestamp model 𝒁, if the 𝑗-th device has not
recorded the event, the timestamp 𝑍𝑗 is simply ∞. For illustration: Assume
there are an uncensored model ̃𝒁 = ( ̃𝑍1, ̃𝑍2, … , ̃𝑍𝑚) and a random vector
𝑹 = (𝑅1, 𝑅2, … , 𝑅𝑚) in {0, 1}𝑚 such that

𝑍𝑗 =
⎧{
⎨{⎩

̃𝑍𝑗, 𝑅𝑗 = 0
∞, 𝑅𝑗 = 1.
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In general ̃𝒁 and 𝑹 are dependent. However, if ̃𝒁 and 𝑹 are independent,
then for each subset 𝐽 ⊆ {1, 2, … , 𝑚} and vector 𝒛𝐽 ∈ ℝ𝐽 we have

𝗣{𝒁𝐽 ≤ 𝒛𝐽 | 𝒁𝐽 ∈ ℝ𝐽} = 𝗣{ ̃𝒁𝐽 ≤ 𝒛𝐽 | 𝑹𝐽 = 𝟎} = 𝗣{ ̃𝒁𝐽 ≤ 𝒛𝐽}.

That is, a solution of the censored model 𝒁 is also a solution of the uncensored
model ̃𝒁.

To adapt Theorem 1.2 to a censored timestamp model, we simply replace
𝐹𝑗 in that theorem with the conditional marginal distribution function of 𝑍𝑗
under 𝑍𝑗 ∈ ℝ. That is, for each 𝑧 ∈ ℝ and 𝑗 ∈ {1, 2, … , 𝑚} we have

𝐹𝑗(𝑧) = 𝗣{𝑍𝑗 ≤ 𝑧 | 𝑍𝑗 ∈ ℝ} = 𝗣{𝑍𝑗 ≤ 𝑧}
𝗣{𝑍𝑗 ∈ ℝ}.

Like in the uncensored case, assume that 𝐹1, 𝐹2, … , 𝐹𝑚 are homeomorphisms
from ℝ onto (0, 1). Then, the censored synchronization problem has exactly
one solution, which is again given by

�̌�𝑗 = ( 1
𝑚

𝑚
∑
𝑗=1

𝐹 -1
𝑗 ) ∘ 𝐹𝑗.

Adapting Problem 1.5 is slightly technical. Let a system 𝒥 of subsets of
{1, 2, … , 𝑚} be given with

⋃ 𝒥 = {1, 2, … , 𝑚} and ∀𝐽 ∈ 𝒥 ∶ 𝗣{𝒁𝐽 ∈ ℝ𝐽} > 0.

Consider the following problem:

1.7 Problem: For each 𝐽 ∈ 𝒥 minimize

𝗘[𝑓𝐽(𝒖; 𝒁) | 𝒁𝐽 ∈ ℝ𝐽]

subject to
ess sup
𝜏∈(0,1)

𝑔𝐽(𝒖; 𝑸0(𝜏)) = 0, 𝒖 ∈ ℰ,

where 𝑓𝐽 , 𝑔𝐽 ∶ ℰ × ℝ𝑚 → ℝ are defined by

𝑓𝐽(𝒖; 𝒛) = 1
|𝐽| ∑

𝑗∈𝐽
𝑢𝑗(𝑧𝑗) − min

𝑗∈𝐽
𝑢𝑗(𝑧𝑗),

𝑔𝐽(𝒖; 𝒛) = ∣ 1
|𝐽| ∑

𝑗∈𝐽
𝑢𝑗(𝑧𝑗) − 1

𝑚
𝑚

∑
𝑗=1

𝑧𝑗∣.
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Again, ℰ is the space of separated ℒ1 functions, and 𝑸0 = (𝑄1, 𝑄2, … , 𝑄𝑚)
is the vector of the inverse functions of the conditional marginal distribution
functions 𝐹1, 𝐹2, … , 𝐹𝑚. Notice that Problem 1.7 has the same structure as
Problem 1.5. Thus, analyzing Problem 1.5 itself is sufficient. In particular, we
can decompose the global synchronization problem into smaller subproblems
by restricting the devices to the sets in 𝒥 .
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Chapter 2

Maximum Likelihood Estimator

Chapter 1 sketches a conditional maximum likelihood ansatz to characterize
the solution of the offline synchronization problem using a synchronized time-
stamp model (see Problem 1.5 on page 12). In that chapter many technical
questions crucial for the application are left unanswered. How do we evaluate
integrals with respect to unknown measures? How do we minimize over a
infinite dimensional function space? The answers to these questions will be
provided in this chapter.

2.1 Sample Approximation
To provide an efficient scheme to approximate the solution of Problem 1.5,
this section employs two well-known techniques: First, the integral and the
quantile functions are replaced by their sample counterparts. Second, the
infinite dimensional function space is approximated by well-chosen finite di-
mensional subset. The goal is to solve the following sample approximation
of Problem 1.5:

2.1 Problem: Let 𝑓, 𝑔, and ℰ be defined as in Problem 1.5. Let 𝑃𝑛 be a sample
distribution of 𝑃0 with sample size 𝑛 ∈ ℕ, 𝑄1,𝑛, 𝑄2,𝑛, … , 𝑄𝑚,𝑛 be the sample
quantile functions of its components, and 𝑸𝑛 = (𝑄1,𝑛, 𝑄2,𝑛, … , 𝑄𝑚,𝑛) be

Finite dimensional subset: A subset of some linear space whose linear span is finite dimen-
sional.
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2 Maximum Likelihood Estimator

the vector-valued sample quantile function. For a finite dimensional subset
ℱ𝑛 ⊆ ℰ, a finite subset 𝐼𝑛 ⊂ (0, 1), and a positive number 𝜂𝑛 > 0,

minimize ∫ 𝑓(𝒖; 𝒛) d𝑃𝑛(𝒛) subject to max
𝜏∈𝐼𝑛

𝑔(𝒖; 𝑸𝑛(𝜏)) ≤ 𝜂𝑛, 𝒖 ∈ ℱ𝑛.

Here, “sample” refers to the fact that 𝑃0, 𝑸0 are replaced by 𝑃𝑛, 𝑸𝑛.
“Approximation” refers to the fact that ℱ𝑛 replaces ℰ, 𝐼𝑛 replaces (0, 1), and
𝜂𝑛 is positive instead of 0. With these relaxations, Problem 2.1 turns into a
feasible finite dimensional problem.

Concerning 𝐼𝑛 and 𝜂𝑛, notice that 𝑸𝑛 is a left continuous step function
with jumps at 1𝑛 , 2𝑛 ,…, 𝑛𝑛 . Thus, we could settle with the constraint

∀𝜏 ∈ { 1𝑛 , 2𝑛 ,…, 𝑛𝑛} ∶ 𝑔(𝒖; 𝑸𝑛(𝜏)) = 0. (2.1)

This produces 𝑛 constraints, unnecessarily many as the consistency analysis
will show. Also, due to the random nature of the data, (2.1) might be
inconsistent. That is, there might be no 𝒖 ∈ ℱ𝑛 which satisfies (2.1), even
if ℱ𝑛 contains the solution �̌�. Instead, it is more convenient to impose the
collocation conditions (2.1) at few predefined points given by 𝐼𝑛 and bound
the error:

∀𝜏 ∈ 𝐼𝑛 ∶ 𝑔(𝒖; 𝑸𝑛(𝜏)) ≤ 𝜂𝑛.
Replacing the infinite dimensional space ℰ with a finite dimensional subset

ℱ𝑛 is the standard technique to treat functions as unknowns. The upcoming
consistency analysis implies that it is sufficient if ℱ𝑛 approximates the solu-
tion �̌� well. That is, we do not need to approximate the complete space ℰ.
Due to numerical and computational reasons it is important that ℱ𝑛 has a
well-behaving basis. Desirable properties are for example positivity, uniform
boundedness, or even compact support. The discussion of such implemen-
tation details is deferred to Section 2.4. The following general definition is
sufficient for this section:

2.2 Definition: Let 𝒅 = (𝑑1, 𝑑2, … , 𝑑𝑚) ∈ ℕ𝑚. A tuple 𝝓 = (𝝋𝑗)1≤𝑗≤𝑚 is
called a 𝒅-dimensional inverse clock model, if 𝝋𝑗 is a Lipschitz continuous
function from ℝ to ℝ𝑑𝑗 with

id ∈ Span{𝜑𝑗,1, 𝜑𝑗,2, … , 𝜑𝑗,𝑑𝑗
}

for each 𝑗 ∈ {1, 2, … , 𝑚}.
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2.2 Linear Program Formulation

A inverse clock model 𝝓 defines the space

ℱ(𝝓) ∶= {⟨𝝑1, 𝝋1⟩ × ⋯ × ⟨𝝑𝑚, 𝝋𝑚⟩ | 𝝑𝑗 ∈ ℝ𝑑𝑗, 1 ≤ 𝑗 ≤ 𝑚},

which is a |𝒅| = 𝑑1 +𝑑2 +⋯+𝑑𝑚 dimensional subspace of 𝒮𝑒𝑝𝑚 ∩ℒ1(𝑃0; ℝ𝑚).
Here, ⟨ ⋅ , ⋅ ⟩ denotes the Euclidean inner product of ℝ𝑑 and ⟨𝝑𝑗, 𝝋𝑗⟩ denotes
the mapping from ℝ → ℝ defined by

⟨𝝑𝑗, 𝝋𝑗⟩(𝑧) = ⟨𝝑𝑗, 𝝋𝑗(𝑧)⟩.

An illustrative example: If we assume that the solution �̌� are affine linear
functions, then for each 𝑗 ∈ {1, 2, … , 𝑚} we can use the basis function

𝝋𝑗(𝑧) = [1
𝑧] .

Using ℱ(𝝓) as ℱ𝑛, we can turn Problem 2.1 on page 17 into a sparse
linear program.

2.2 Linear Program Formulation
Fix a realization (𝒛𝑘)1≤𝑘≤𝑛 = (𝑧𝑗,𝑘)1≤𝑗≤𝑚,1≤𝑘≤𝑛 of a sample sequence of 𝑃0
with sample size 𝑛. Fix a given inverse clock model 𝝓 = (𝝋1, 𝝋2, … , 𝝋𝑚), a
finite subset 𝐼𝑛 ⊆ (0, 1), and a positive number 𝜂𝑛 > 0. Then, Problem 2.1
turns into the following equivalent finite dimensional linear program:

2.3 Problem: Minimize

1
𝑚𝑛

𝑛
∑
𝑘=1

𝑚
∑
𝑗=1

(𝑢𝑗(𝑧𝑗,𝑘) − 𝑡𝑘)

subject to

∀(𝑗, 𝑘) ∈ {1, … , 𝑚} × {1, … , 𝑛} ∶ 𝑡𝑘 − 𝑢𝑗(𝑧𝑗,𝑘) ≤ 0, (2.2)

∀𝜏 ∈ 𝐼𝑛 ∶ ± 1
𝑚

𝑚
∑
𝑗=1

𝑢𝑗 (𝑄𝑗,𝑛(𝜏)) ≤ ± 1
𝑚

𝑚
∑
𝑗=1

𝑄𝑗,𝑛(𝜏) + 𝜂𝑛, (2.3)

𝑢1 × 𝑢2 × ⋯ × 𝑢𝑚 ∈ ℱ(𝝓), (𝑡𝑘)1≤𝑘≤𝑛 ∈ ℝ𝑛.
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2 Maximum Likelihood Estimator

Although not explicitly stated, the coefficient vectors 𝝑1, 𝝑2, … , 𝝑𝑚 are the
new unknowns in place of the unknown functions

𝑢𝑗 = ⟨𝝑𝑗, 𝝋𝑗⟩, 1 ≤ 𝑗 ≤ 𝑚.

The minimum term in 𝑓 is eliminated by introducing the slack variables
𝑡1, 𝑡2, … , 𝑡𝑛 and the additional constraint (2.2). Trivially, Problem 2.3 is
bounded from below by 0. Since ℱ(𝝓) contains the identity function on
ℝ𝑚, Problem 2.3 has a strictly feasible point. Thus, the duality theory of
linear programming states that Problem 2.3 has an optimizer (compare to
the literature, like [12]). In conclusion, Problem 2.1 can be restated as a
strictly feasible linear program featuring a sparse coefficient matrix, which is
very appealing in applications.

2.2.1 Interior Point Method
The well-known interior point method is an efficient technique to solve linear
programs, particularly sparse programs, like Problem 2.3. The problem can
be restated in the standard form[a]

maximize 𝒃𝖳𝒚 subject to 𝑨𝖳𝒚 ≤ 𝒄, 𝒚 ∈ ℝ�̄�,

with a suitable coefficient matrix 𝑨 ∈ ℝ�̄�×�̄� and vectors 𝒃 ∈ ℝ�̄�, 𝒄 ∈ ℝ�̄�.
The interior point method exploits the fact that the duality gap of a

feasible linear program is zero at any solution. Usually, the Newton method
is applied to solve a system of perturbed Karush–Kuhn–Tucker conditions,
or to minimize some barrier function (see for example [19]). Only the key
aspects concerning its application on the Problem 2.3 are highlighted here.
The first one concerns the applicability, the second one concerns the efficiency.

Rank Assumption

To apply the interior point method, the coefficient matrix 𝑨 needs to have
rank �̄�. For particular inverse clock models and choice of 𝐼𝑛, the coefficient
matrix 𝑨 tends to have maximal rank. However, due to the random nature
of the data, this is in general not guaranteed.

[a]In fact, that is just one of many popular standard forms. However, the standard forms
founded in the literature are equivalent.
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2.2 Linear Program Formulation

In applications, row elimination techniques are applied to 𝑨 to reduce
the problem to an equivalent one whose coefficient matrix satisfies the rank
assumption. Fortunately, in case of Problem 2.3, the sparsity structure of 𝑨 is
preserved. Split 𝑨 into two submatrices, where the first block 𝑩 corresponds
to the slack variables 𝒕, and the second block 𝑪 corresponds to the variables
𝝑1, 𝝑2, … , 𝝑𝑚:

𝑨 = [𝑩
𝑪] .

Due to the structure of 𝑩, the rows of 𝑩 are linearly independent. Thus, we
can restrict the row elimination on 𝑪 only and preserve the sparse structure
of 𝑩. Thus, we will assume rank 𝑨 = �̄� without loss of generality for the
remaining discussion.

Sparsity Structure

The main computational cost is caused by solving linear equations involving
the coefficient matrix

𝑴 = 𝑨𝑫𝑨𝖳,

where 𝑫 is some diagonal matrix with positive diagonal entries depending on
the current iterate. The matrix 𝑴 is analogous to the coefficient matrix of
the normal equations of a least squares problem; it is also numerically prone
to rounding errors. Nonetheless, it is commonly used in interior point meth-
ods as it often admits a cheap and sparse Cholesky factorization after proper
reordering. Further, the solutions are merely search directions, saying that
inexact solutions are corrected in the successive iteration steps. Numerical
results, like those presented by Fourer et al. [10], or by Lustig et al. [16],
indicate that the inexact solutions obtained from a Cholesky factor of 𝑴
yield efficient search steps in interior point methods.

For a general positive definite sparse matrix 𝑴 of large size, iterative
methods are usually preferred, like the preconditioned conjugate gradient
method. Direct methods, like the Cholesky factorization, become favorable,
if the structure of 𝑴 is well-known and can be exploited. For the particu-
lar matrix 𝑨 here, the matrix 𝑴 is nearly diagonal, that is, computing the
Cholesky factorization is tolerable, even for high dimensional 𝑴 . Notewor-
thy, we could also apply the preconditioned conjugate gradient method using
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2 Maximum Likelihood Estimator

the Cholesky factor as preconditioner to increase the numerical accuracy. For
example, this technique is implemented in the well-known optimization soft-
ware package sedumi [25].

As 𝑴 and 𝑨𝑨𝖳 share the same zero structure, it is sufficient to analyze
the structure of the latter one. Let 𝑨𝖳 be split into two submatrices, where
the first block 𝑩𝖳 corresponds to the slack variables 𝒕, and the second block
𝑪𝖳 corresponds to the variables 𝝑1, 𝝑2, … , 𝝑𝑚:

𝑨𝖳 = [𝑩𝖳 𝑪𝖳] .

Then, it follows

𝑨𝑨𝖳 = [𝑩𝑩𝖳 𝑩𝑪𝖳

𝑪𝑩𝖳 𝑪𝑪𝖳] .

The columns of 𝑩 are the columns of the 𝑛 × 𝑛 identity matrix 𝑰 , and each
column of 𝑰 appears 𝑚 times in 𝑩. Thus, it follows

𝑩𝑩𝖳 = 𝑚𝑰.

In particular, 𝑨𝑨𝖳 is nearly diagonal, if 𝑛 is many magnitudes greater than
�̄� − 𝑛. In general, the first diagonal block of 𝑴 is a diagonal matrix only. It
is not 𝑚𝑰 due to the scale factor 𝑫.

2.3 Incomplete Log-Sets, continued
Adapting Problem 2.1 to a censored timestamp model is straightforward.
Instead of Problem 1.5 on page 12, we need to approximate the solution of
Problem 1.7 on page 14, which is basically a separated version of Problem 1.5.
For the sake of completeness, let 𝒁 = (𝑍1, 𝑍2, … , 𝑍𝑚) denote a censored time-
stamp model; that is, any 𝑍𝑗 takes values in ℝ ∪ {∞}. Also let 𝑄𝑗,𝑛 denote
the conditional sample quantile function of 𝑍𝑗 under the condition 𝑍𝑗 ∈ ℝ.
Let 𝒥𝑛 be a system of subsets of {1, 2, … , 𝑚} with ⋃ 𝒥𝑛 = {1, 2, … , 𝑚} and

min
𝐽∈𝒥𝑛

𝑃𝑛{( ⋅ )𝐽 ∈ ℝ𝐽} > 0,

where ( ⋅ )𝐽 denotes the projection onto the 𝐽 -subcomponent. That is, for
each 𝐽 ∈ 𝒥𝑛 the random subvector 𝒁𝐽 has finite realizations. Then, we
consider the following sample approximation to Problem 1.7:
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2.3 Incomplete Log-Sets, continued

2.4 Problem: For each 𝐽 ∈ 𝒥𝑛 minimize

𝑃𝑛 [𝑓𝐽(𝒖; ⋅ ) | ( ⋅ )𝐽 ∈ ℝ𝐽]

subject to
max
𝜏∈𝐼𝑛

𝑔𝐽(𝒖; 𝑸𝑛(𝜏)) ≤ 𝜂𝑛, 𝒖 ∈ ℱ𝑛.

Here, 𝑃𝑛[ ⋅ | ( ⋅ )𝐽 ∈ ℝ𝐽 ] denotes the conditional sample expectation under
the condition that the 𝐽 -subcomponent is finite; 𝑓𝐽 and 𝑔𝐽 are defined as in
Problem 1.7; 𝐼𝑛, 𝜂𝑛, ℱ𝑛, and 𝑸𝑛 are defined as in Problem 2.1.

As for an implementation, there are some open questions: 1. To exploit
as many samples as possible, we could choose 𝒥𝑛 as the set of realizations of
following random set

𝐽(𝒁) = {𝑗 ∈ {1, 2, … , 𝑚} | 𝑍𝑗 ∈ ℝ}.

In the extreme case, there are exponentially many realizations of 𝐽(𝒁), which
leads to exponentially many subproblems. Even for small 𝑚, this would be
impractical. 2. To keep the computational cost low, the subsets in 𝒥𝑛 shall
be as small as possible. An extreme example would be

𝒥𝑛 = {{𝑗} | 𝑗 ∈ {1, 2, … , 𝑚}}.

In such a configuration, we do not exploit the correlation of the components
of 𝒁. This leads to a poor rate of convergence. 3. For efficiency reason,
we would prefer to solve the subproblem for each 𝐽 ∈ 𝒥𝑛 independently.
However consider following example: In case of 𝐽1, 𝐽2 ∈ 𝒥𝑛 with 1 ∈ 𝐽1 ∩ 𝐽2,
the subproblem on 𝐽1 and on 𝐽2 both yield an estimator for the solution �̌�1.
Both estimators are consistent for �̌�1, which will be shown in the upcoming
Chapter 3. Deciding which one is “better” is not easy, in particular, if we
have only few samples. Thus, we shall solve Problem 2.4 simultaneously to
obtain a unique result:

2.5 Problem: Minimize

∑
𝐽∈𝒥𝑛

𝑃𝑛 [𝑓𝐽(𝒖; ⋅ ) | ( ⋅ )𝐽 ∈ ℝ𝐽]

subject to
max
𝐽∈𝒥𝑛

max
𝜏∈𝐼𝑛

𝑔𝐽(𝒖; 𝑸𝑛(𝜏)) ≤ 𝜂𝑛, 𝒖 ∈ ℱ𝑛.
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Fortunately, simulations indicate that the choice of 𝒥𝑛 has little influence on
the convergence.

2.4 A Spline Inverse Clock Model
In general, the solution �̌� of the synchronization problem is not affine lin-
ear, or an element of a known finite dimensional space. In fact, we only
have very weak assumptions on �̌�, namely it is locally absolutely continu-
ous and integrable with respect to the distribution of the timestamp model.
Approximating such a function is difficult, as it is not periodic and the do-
main is non-compact. If the solution �̌� is square-integrable, series expansion
techniques arise naturally. However, since the distribution of the timestamp
model is unknown, explicitly constructing an orthonormal system and esti-
mating the cut-off error would be difficult. To make standard approximation
techniques viable, we assume that �̌� is uniquely determined by its values on a
known compact domain. To be precise, for each 𝑗 ∈ {1, 2, … , 𝑚} we assume

�̌�𝑗 = 𝑣𝑗 + 𝑤𝑗,

where 𝑣𝑗 is an affine function and 𝑤𝑗 is a Lipschitz continuous function sup-
ported on some known compact interval, say 𝐾𝑗 = [𝑧�̱�, ̄𝑧𝑗] ⊆ ℝ. Notice that
�̌� is now globally Lipschitz continuous. The clock model can be generalized
easily such that 𝑣𝑗 is the sum of a polynomial and some function with pe-
riodic derivative, which allows non-globally Lipschitz continuous solutions.
However, a higher polynomial degree imposes stronger integrability condi-
tions on the timestamp model, and periodic terms produce a more dense
coefficient matrix in the linear program formulation (Problem 2.3). For the
sake of simplicity, we will assume 𝑣𝑗 to be affine only.

Trivially, �̌�𝑗|𝐾𝑗
uniquely determines 𝑣𝑗 and 𝑤𝑗, as for each 𝑧 ∈ ℝ we have

𝑣𝑗(𝑧) = ̄𝑧𝑗 − 𝑧
̄𝑧𝑗 − 𝑧�̱�

�̌�𝑗(𝑧�̱�) + 𝑧 − 𝑧�̱�
̄𝑧𝑗 − 𝑧�̱�

�̌�𝑗( ̄𝑧𝑗),

𝑤𝑗(𝑧) = �̌�𝑗(𝑧) − 𝑣𝑗(𝑧).

That is, we are dealing with approximations of Lipschitz continuous functions
on a compact interval only, which is well studied and understood. Here, we
apply spline approximation.
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2.4.1 Splines and B-Splines
As usual, to approximate a Lipschitz continuous function 𝑢 on some com-
pact interval [𝜉,̱ ̄𝜉], we divide [𝜉,̱ ̄𝜉] into subintervals and approximate 𝑢 by a
polynomial on each interval. By decreasing the length of the subintervals we
shall approximate 𝑢 arbitrarily well.

2.6 Definition (Piecewise Polynomials and Splines): Let 𝑑 ∈ ℕ ∪ {0},
𝐼 ⊆ ℝ be an interval, and 𝝃 = (𝜉0, 𝜉1, … , 𝜉𝜈) ∈ ℝ1+𝜈 be a strictly increasing
sequence.

The space of polynomials of degree ≤ 𝑑 on 𝐼 is denoted by

𝒫𝑑(𝐼) = {𝑢 ∶ 𝐼 → ℝ | ∃𝜗0, … , 𝜗𝑑 ∈ ℝ ∀𝑧 ∈ 𝐼 ∶ 𝑢(𝑧) =
𝑑

∑
𝑖=0

𝜗𝑖𝑧𝑖}.

The space of (right continuous) piecewise polynomials of degree ≤ 𝑑 with
respect to the knot sequence 𝝃 is denoted by

𝒫𝑑(𝝃) = {𝑢 ∶ [𝜉0, 𝜉𝜈) → ℝ | ∀𝑖 ∈ {1, … , 𝜈} ∶ 𝑢|[𝜉𝑖−1,𝜉𝑖) ∈ 𝒫𝑑[𝜉𝑖−1, 𝜉𝑖)}.

Notice that each 𝑓 ∈ 𝒫𝑑(𝝃) can be extended uniquely to a function ̄𝑓 on
[𝜉0, 𝜉𝜈] such that ̄𝑓 is a polynomial of degree ≤ 𝑑 on [𝜉𝜈−1, 𝜉𝜈]. Thus, we
identify 𝑓 with ̄𝑓.

The space of splines of degree ≤ 𝑑 with respect to the knot sequence 𝝃 is
denoted by

𝒮𝑑(𝝃) =
⎧{
⎨{⎩

𝒫0(𝝃), 𝑑 = 0,
𝒫𝑑(𝝃) ∩ 𝒞𝑑−1([𝜉0, 𝜉𝜈]; ℝ), 𝑑 ≥ 1.

To solve Problem 2.3 with numerical methods, it is important that the
splines admit a well-behaved basis, the so-called B-spline basis. In fact, the
B-splines lead to an even more sparse coefficient matrix in Problem 2.3.
Through out the literature, there are multiple equivalent definitions of the
B-splines. Some are more convenient than the other in certain context. The
following particular characterization demonstrates, according to Cox and de
Boor [4, 5], that the B-splines can be evaluated as sum of non-negative num-
bers in a stable fashion.
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2.7 Definition: Let a knot sequence 𝝃 = (𝜉0, … , 𝜉𝜈) be given, which we extend
bi-infinitely to

⋯ = 𝜉−1 = 𝜉0 < ⋯ < 𝜉𝜈 = 𝜉𝜈+1 = ⋯ .

For 𝑖 ∈ ℤ, the 𝑖-th B-spline 𝜑0,𝑖 ∶ ℝ → ℝ of order 0 is defined by

𝜑0,𝑖(𝑧) =
⎧{
⎨{⎩

1, 𝜉𝑖 ≤ 𝑧 < 𝜉𝑖+1,
0, otherwise.

For 𝑑 ∈ ℕ ∪ {0} and 𝑖 ∈ ℤ, the 𝑖-th B-spline 𝜑𝑑+1,𝑖 ∶ ℝ → ℝ of degree
𝑑 + 1 is defined by

𝜑𝑑+1,𝑖 = 𝛾𝑑,𝑖𝜑𝑑,𝑖 + (1 − 𝛾𝑑,𝑖+1)𝜑𝑑,𝑖+1

with

𝛾𝑑,𝑖(𝑧) =
⎧{
⎨{⎩

𝑧−𝜉𝑖
𝜉𝑖+𝑑+1−𝜉𝑖

, 𝜉𝑖 ≤ 𝑧 < 𝜉𝑖+𝑑+1,
0, otherwise.

Some properties of the B-splines follow directly from their recursive def-
inition. For example, 𝜑𝑑,𝑖 is non-negative, zero outside of [𝜉𝑖, 𝜉𝑖+𝑑+1], and
positive on (𝜉𝑖, 𝜉𝑖+𝑑+1). Due to the construction of the knot-sequence, 𝜑𝑑,𝑖 is
the zero function if and only if 𝑖 ∉ {−𝑑, … , 𝜈 − 1}. Also, 𝜑𝑑,𝑖 is a polynomial
of degree 𝑑 on the subinterval [𝜉ℓ−1, 𝜉ℓ) for ℓ ∈ {1, 2, … , 𝜈}.

To establish that 𝜙𝑑,𝑖 is globally 𝒞𝑑−1, for 𝑑 ≥ 1, on [𝜉0, 𝜉𝜈) is rather
technical. The result is well-known. Thus, we refer to the standard literature,
like the survey by de Boor [7]. Notice that due to the choice of the knot-
sequence, 𝜑𝑑,𝜈−1 will be discontinuous at 𝜉𝜈. By convention, we redefine
𝜑𝑑,𝜈−1 at 𝜉𝜈 for each 𝑑 ≥ 0:

𝜑𝑑,𝜈−1(𝜉𝜈) ← lim
𝑧→𝜉𝜈
𝑧<𝜉𝜈

𝜑𝑑,𝜈−1(𝑧) = 1,

which makes 𝜑𝑑,𝜈−1 a polynomial on [𝜉𝜈−1, 𝜉𝜈] and 𝒞𝑑−1 on [𝜉0, 𝜉𝜈].
In summary, 𝜑𝑑,−𝑑, … , 𝜑𝑑,𝜈−1 restricted onto [𝜉0, 𝜉𝜈] are non-zero elements

of 𝒮𝑑(𝝃). Finally, Karlin showed in [13] that the non-zero B-splines are linearly
independent. Counting the degrees of freedom yields that the linear space
𝒮𝑑(𝝃) has the dimension 𝜈 + 𝑑. Thus, restricted onto [𝜉0, 𝜉𝜈], they form a
basis for 𝒮𝑑(𝝃), the B-spline basis.
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2.4 A Spline Inverse Clock Model

2.4.2 Spline Approximation
The following result, according to , This section demonstrates that we can
obtain arbitrarily high approximation order using splines. The result is well-
known and a proof is given by de Boor [6], which we elaborate here for the
sake of completeness.

It is well-known that a function 𝑢 ∈ 𝒞([𝜉,̱ ̄𝜉], ℝ) can be approximated by a
step function, that is a spline 𝑆0(𝝃; 𝑢) ∈ 𝒮0(𝝃), arbitrarily well by decreasing
the mesh

𝛥𝝃 = max
1≤𝑖≤𝜈

𝜉𝑖 − 𝜉𝑖−1,

where 𝝃 = (𝜉̱ = 𝜉0, 𝜉1, … , 𝜉𝜈 = ̄𝜉) is some knot sequence in [𝜉,̱ ̄𝜉]. If 𝑢 is
Lipschitz continuous, we even obtain approximation order 1:

‖𝑢 − 𝑆0(𝝃; 𝑢)‖∞ ≤ 𝛥𝝃‖𝑢′‖∞.

If 𝑢 satisfies stronger regularity conditions, for example 𝒞𝑑,1([𝜉,̱ ̄𝜉], ℝ), similar
results holds for 𝒮𝑑(𝝃) with 𝑑 > 0. The key is to construct a good approxima-
tion of 𝑢(𝑑) explicitly, and then iteratively an approximation of 𝑢(𝑑−𝑖) by using
the approximation of 𝑢(𝑑−𝑖+1) for 𝑖 = 1, 2, 3, … , 𝑑. Here, the approximation
is given by the so-called quasi interpolant.

2.8 Definition: For a knot sequence 𝝃 = (𝜉̱ = 𝜉0, 𝜉1, … , 𝜉𝜈 = ̄𝜉), which we
extend bi-infinitely, 𝑑 ∈ ℕ ∪ {0}, and 𝑢 ∶ [𝜉,̱ ̄𝜉] → ℝ, the B-spline quasi
interpolant 𝑆𝑑(𝝃; 𝑢) ∈ 𝒮𝑑(𝝃) of 𝑢 of degree 𝑑 is defined by

𝑆𝑑(𝝃; 𝑢) =
𝜈−1
∑
𝑖=−𝑑

𝑢( ̄𝜉𝑑,𝑖)𝜑𝑑,𝑖,

where 𝜑𝑑,𝑖 is the 𝑖-th B-spline of degree 𝑑 and

̄𝜉𝑑,𝑖 = 𝜉𝑖 + 𝜉𝑖+𝑑+1
2 .

Up to constants, all results remain for a more general choice of ̄𝜉𝑑,𝑖 if
the following condition is satisfied: For each 𝑑 ∈ ℕ ∪ {0} there exists some
constan t 𝐶𝑑 ≥ 0 depending on 𝑑 only such that for each 𝑧 ∈ [𝜉,̱ ̄𝜉] and each
𝑖 ∈ ℤ with 𝜑𝑑,𝑖(𝑧) > 0 it follows

|𝑧 − ̄𝜉𝑑,𝑖| ≤ 𝐶𝑑𝛥𝝃.
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2 Maximum Likelihood Estimator

As we do not want to explicitly construct a quasi interpolant in applications,
the choice given in Definition 2.8 suffices. Here, we have 𝐶𝑑 = 𝑑+1

2 .
Exploiting some properties of the B-splines, we can show that the quasi

interpolation error is of order 1.

2.9 Lemma: For 𝑑 ≥ 0 and 𝑢 ∈ ℒ𝑖𝑝([𝜉,̱ ̄𝜉], ℝ) it follows

‖𝑢 − 𝑆𝑑(𝝃; 𝑢)‖∞ ≤ 𝑑 + 1
2 𝛥𝝃‖𝑢′‖∞.

Proof: Here, we exploit the fact that the sum of the B-splines is 1 on [𝜉0, 𝜉𝜈].
This is trivially true for 𝑑 = 0. For the induction step 𝑑 → 𝑑 + 1: For each
𝑖 ∈ {1, 2, … , 𝜈} on [𝜉𝑖−1, 𝜉𝑖) we have

∑
𝑗∈ℤ

𝜑𝑑+1,𝑗 =
𝑖−1
∑

𝑗=𝑖−𝑑−2
𝜑𝑑+1,𝑗

=
𝑖−1
∑

𝑗=𝑖−𝑑−2
(𝛾𝑑,𝑗𝜑𝑑,𝑗 + (1 − 𝛾𝑑,𝑗+1)𝜑𝑑,𝑗+1)

= 𝛾𝑑,𝑖−𝑑−2 𝜑𝑑,𝑖−𝑑−2⏟
=0

+
𝑖−1
∑

𝑗=𝑖−𝑑−1
𝛾𝑑,𝑗𝜑𝑑,𝑗

+
𝑖−2
∑

𝑗=𝑖−𝑑−2
(1 − 𝛾𝑑,𝑗+1)𝜑𝑑,𝑗+1 + (1 − 𝛾𝑑,𝑖) 𝜑𝑑,𝑖⏟

=0

.

That is

∑
𝑗∈ℤ

𝜑𝑑+1,𝑗 =
𝑖−1
∑

𝑗=𝑖−𝑑−1
(𝛾𝑑,𝑗𝜑𝑑,𝑗 + (1 − 𝛾𝑑,𝑗)𝜑𝑑,𝑗) =

𝑖−1
∑

𝑗=𝑖−𝑑−1
𝜑𝑑,𝑗 = 1.

Now, by continuity the result also holds at 𝜉𝜈.
Using that fact we can prove the statement. For each 𝑧 ∈ [𝜉,̱ ̄𝜉] let

𝐼(𝑧) = {𝑖 ∈ {0, 1, … , 𝜈 − 𝑑 − 1} | 𝜑𝑑,𝑖(𝑧) > 0},

which is an interval in ℤ containing 𝑑 + 1 indices at most. Then, for each
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2.4 A Spline Inverse Clock Model

𝑧 ∈ [𝜉,̱ ̄𝜉] it follows

|(𝑢 − 𝑆𝑑(𝝃; 𝑢))(𝑧)| = ∣ ∑
𝑖∈𝐼(𝑧)

(𝑢(𝑧) − 𝑢( ̄𝜉𝑑,𝑖))𝜑𝑑,𝑖(𝑧)∣

≤ max
𝑖∈𝐼(𝑧)

|𝑧 − ̄𝜉𝑑,𝑖|‖𝑢′‖∞

≤ 𝑑 + 1
2 𝛥𝝃‖𝑢′‖∞.

Thus, it follows
‖𝑢 − 𝑆𝑑(𝝃; 𝑢)‖∞ ≤ 𝑑 + 1

2 𝛥𝝃‖𝑢′‖∞.

Iteratively applying the previous result, we can obtain higher approxima-
tion order using higher order derivatives:

2.10 Theorem:
Let 𝑑 ≥ 0 and 𝑢 ∈ 𝒞𝑑,1([𝜉,̱ ̄𝜉], ℝ). Then, there exists a spline 𝑠𝑑 ∈ 𝒮𝑑(𝝃) with

‖𝑢 − 𝑠𝑑‖∞ ≤ (𝑑 + 1)!
2𝑑+1 𝛥𝝃𝑑+1‖𝑢(𝑑+1)‖∞.

Proof: By induction over 𝑑: For 𝑑 = 0 the statement is trivially true. For
𝑑 − 1 → 𝑑 ≥ 1: Let 𝑣 ∈ 𝒮𝑑−1(𝝃) with

‖𝑢′ − 𝑣‖∞ ≤ 𝑑!
2𝑑 𝛥𝝃𝑑‖𝑢(𝑑+1)‖∞,

and let 𝑉 denote the antiderivative of 𝑣:

𝑉 (𝑧) = ∫
𝑧

𝜉0

𝑣( ̃𝑧) d ̃𝑧.

Then, for
𝑠𝑑 = 𝑉 + 𝑆𝑑(𝝃; 𝑢 − 𝑉 )

it follows

‖𝑢 − 𝑠𝑑‖∞ = ‖𝑢 − 𝑉 − 𝑆𝑑(𝝃; 𝑢 − 𝑉 )‖∞

≤ 𝑑 + 1
2 𝛥𝝃‖𝑢′ − 𝑣‖∞

≤ (𝑑 + 1)!
2𝑑+1 𝛥𝝃𝑑+1‖𝑢(𝑑+1)‖∞.
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2 Maximum Likelihood Estimator

Notice that the factor (𝑑 + 1)! of the error bound is rather pessimistic.
For example, better error bounds are known for spline interpolation with
particular boundary conditions. Also, usually high order quasi interpolants
are constructed more efficiently by other means. However, we only want to
display the approximation ability of the splines, and do not want to explicitly
construct such a quasi interpolant.

Using similar techniques, we can also prove that for each 𝑢 ∈ 𝒞𝑑,1([𝜉,̱ ̄𝜉], ℝ)
there exists a spline 𝑠𝑑+1 ∈ 𝒮𝑑+1(𝝃) with

‖𝑢 − 𝑠𝑑+1‖∞ ≤ 𝐶𝑑𝛥𝝃𝑑+1‖𝑢(𝑑+1)‖∞

for some constant 𝐶𝑑 depending on 𝑑 only. This result is more suitable for
our application, particularly for 𝑑 = 0, since the approximation shall be
continuous at least.

2.4.3 Knot Sequence
There are no optimal knot sequences in general. Approximation applications
usually rely on heuristics to adaptively choose a suitable knot sequence. In
the context of Problem 2.3, we have a knot sequence 𝝃𝑗 = (𝜉𝑗,𝑖)𝑖=0,…,𝜈𝑛

for
each device 𝑗 ∈ {1, … , 𝑚}. Intuitively, each subinterval [𝜉𝑗,𝑖−1, 𝜉𝑗,𝑖] shall have
the same probability; that is, each subinterval has nearly the same number
of samples. This consideration leads to the choice

𝜉𝑗,𝑖 = 𝑄𝑗,𝑛(𝜏 ̱ + 𝑖𝜈𝑛 ( ̄𝜏 − 𝜏)̱), 𝑖 = 0, 1, … , 𝜈𝑛.

Here, 𝑄𝑗,𝑛 denotes the (conditional) sample quantile function of the 𝑗-th
component with 𝑛 samples, and 𝜏 ,̱ ̄𝜏 ∈ (0, 1) are some predefined values with
𝜏 ̱ < ̄𝜏 . The number of subintervals 𝜈𝑛 depends on the number of samples 𝑛.
It makes less sense to have many breaks and thus also higher computational
cost if only few samples are available. In case of incomplete log-sets, we may
even need to vary the number of subintervals 𝜈𝑛 for each 𝑗, as the numbers
of finite samples may differ between the components. A good heuristic can
be deduced from the consistency results in the upcoming Chapter 3. It also
implies that if the quantile functions 𝑄1, 𝑄2, … , 𝑄𝑚 are locally Lipschitz
continuous, then the mesh 𝛥𝝃𝑗 converges to 0 for a proper choice of 𝜈𝑛 and
𝑛 → ∞.
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Chapter 3

Consistency

Chapter 1 motivates Problem 1.5 to characterize the solution of an offline
synchronization problem; an unproven claim yet. Chapter 2 introduces Prob-
lem 2.1 to approximate the solution of Problem 1.5; also an unproven claim.
This chapter shows that these two claims are indeed valid under weak as-
sumptions. That is the optimizers of Problem 2.1 approach the solution of
the offline synchronization problem for increasing numbers of samples. In
particular, the conditional maximum likelihood estimator is consistent.

3.1 Claim 1
This section assumes the standard setting as in Problem 1.5 on page 12
and establishes that the solution �̌� of the synchronization problem is also
the unique solution of Problem 1.5. To simplify the complex notation, we
change the variable as follows:

3.1 Remark: Let ̌𝑃0 = 𝑃0 ∘ �̌�-1, that is the distribution of �̌�(𝒁). Then, Prob-
lem 1.5 is equivalent to the following problem:

Maximize ∫ min
1≤𝑗≤𝑚

�̃�𝑗(𝑥𝑗) d ̌𝑃0(𝒙) subject to 1
𝑚

𝑚
∑
𝑗=1

�̃�𝑗 = id 𝝺-a.e.

over
𝒮𝑒𝑝𝑚 ∩ ℒ1( ̌𝑃0, ℝ𝑚).

That is, we may assume �̌� = idℝ𝑚 without loss of generality.
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3 Consistency

Proof: Notice that for each measurable 𝜙 ∶ ℝ𝑚 → ℝ, we have 𝜙 ∈ ℒ1(𝑃0, ℝ)
if and only if 𝜙 ∘ �̌�-1 ∈ ℒ1( ̌𝑃0, ℝ), and in that case

𝗘[𝜙(𝒁)] = ∫ 𝜙(𝒛) d𝑃0(𝒛) = ∫ 𝜙(�̌�-1(𝒙)) d ̌𝑃0(𝒙).

Also, a function 𝒖 ∈ ℰ is feasible for Problem 1.5 if and only if almost
everywhere

𝑄0 = 1
𝑚

𝑚
∑
𝑗=1

𝑢𝑗 ∘ 𝑄𝑗 = 1
𝑚

𝑚
∑
𝑗=1

𝑢𝑗 ∘ �̌�-1
𝑗 ∘ 𝑄0.

Since 𝑄0 and its inverse function are locally absolutely continuous, it is equiv-
alent to almost everywhere

id = 1
𝑚

𝑚
∑
𝑗=1

𝑢𝑗 ∘ �̌�-1
𝑗 .

Remember that �̌�1(𝑍1), �̌�2(𝑍2), … , �̌�𝑚(𝑍𝑚) are identically distributed,
say according to the common marginal distribution 𝑃�̌�1(𝑍1). Thus, for each
𝒖 ∈ ℰ we have

𝗘[ 1
𝑚

𝑚
∑
𝑗=1

𝑢𝑗(𝑍𝑗)] = 1
𝑚

𝑚
∑
𝑗=1

∫ 𝑢𝑗(�̌�-1
𝑗 (𝑥𝑗)) d ̌𝑃0(𝒙)

= 1
𝑚

𝑚
∑
𝑗=1

∫ 𝑢𝑗(�̌�-1
𝑗 (𝑥)) d𝑃�̌�1(𝑍1)(𝑥)

= ∫
ℝ

1
𝑚

𝑚
∑
𝑗=1

𝑢𝑗(�̌�-1
𝑗 (𝑥))

⏟⏟⏟⏟⏟⏟⏟
𝑥

d𝑃�̌�1(𝑍1)(𝑥) = 𝗘[�̌�1(𝑍1)].

and

𝗘[ 1
𝑚

𝑚
∑
𝑗=1

𝑢𝑗(𝑍𝑗) − min
1≤𝑗≤𝑚

𝑢𝑗(𝑍𝑗)]

= 𝗘[ 1
𝑚

𝑚
∑
𝑗=1

�̌�𝑗(𝑍𝑗)] − ∫ min
1≤𝑗≤𝑚

𝑢𝑗(�̌�-1
𝑗 (𝜉𝑗)) d ̌𝑃0(𝑥).

Now, naming 𝑢𝑗 ∘ �̌�-1
𝑗 to �̃�𝑗 yields the statement.

32



3.1 Claim 1

In the light of Remark 3.1, the following equivalent result implies that �̌�
is the unique minimizer of Problem 1.5 (up to equality almost everywhere):

3.2 Theorem:
Let 𝒁 = (𝑍1, 𝑍2, … , 𝑍𝑚) be a random vector in ℝ𝑚 with distribution 𝑃0, let
𝑇 be a random number, and let

ℰ = 𝒮𝑒𝑝𝑚 ∩ ℒ1(𝑃0, ℝ𝑚).

Define 𝜙 ∶ ℰ × ℝ𝑚 → ℝ by

𝜙(ℎ1 × ⋯ × ℎ𝑚; 𝑧1, … , 𝑧𝑚) = min
1≤𝑗≤𝑚

𝑧𝑗 + ℎ𝑗(𝑧𝑗).

Assume that

(𝑇 , 𝒁) admits a probability density;

𝑇 is integrable and its density 𝜌𝑇 is almost everywhere positive;

the conditional density of 𝒁 given 𝑇 is given by

𝜌𝒁|𝑇 (𝒛 | 𝑡) =
⎧{
⎨{⎩

∏𝑚
𝑗=1 exp(−(𝑧𝑗 − 𝑡)), 𝑧1, 𝑧2, … , 𝑧𝑚 ≥ 𝑡,

0, else.

Then, the zero function 𝟎 is a maximizer of 𝛷 ∶ ℰ → ℝ, defined by

𝛷(𝒉) ∶= 𝗘[𝜙(𝒉; 𝒁)],

over the subset

𝒮 ∶= {ℎ1 × ⋯ × ℎ𝑚 ∈ ℰ | 1
𝑚

𝑚
∑
𝑗=1

ℎ𝑗 = 0 𝝺-a.e.}.

Further, for each 𝒉 ∈ 𝒮 with 𝛷(𝒉) it follows 𝒉 = 𝟎 almost everywhere.

Remark: The assumption of the previous theorem on (𝑇 , 𝒁) is exactly As-
sumption 1.4 on page 10 in case the solution �̌� is the identity function, and
the parameter 𝜃 of the exponential distribution is 1. We can assume 𝜃 = 1
without loss of generality, as we can rescale �̌� and (𝑇 , 𝒁) otherwise.
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3 Consistency

Given the assumption above, 𝑃0 admits the density

𝜌𝒁(𝒛) = ∫ 𝜌𝒁|𝑇 (𝒛|𝑡) 𝜌𝑇 (𝑡) d𝑡,

which is continuous, positive, and bounded by 1. In particular, every 𝑃0-
integrable function is locally 𝝺-integrable and every 𝑃0-null set is also a
𝝺-null set.

The key to prove Theorem 3.2 is that 𝛷 is concave and its directional
derivative

𝛷′(𝟎)[𝒉] ∶= lim
𝜃→0+

𝛷(𝜃𝒉) − 𝛷(𝟎)
𝜃

vanishes at 𝟎 for any direction 𝒉 ∈ 𝒮 . Notice that 𝟎 is a maximizer of 𝛷 if and
only if 𝛷′(𝟎)[𝒉] is non-positive for every direction 𝒉 ∈ 𝒮 . Establishing the
concavity of 𝛷 is rather trivial, as the minimum function is concave and the
expectation operator is monotone. However, calculating 𝛷′(𝟎)[𝒉] is rather
technical.

3.1.1 Preliminary
Starting with some elementary properties of the functional 𝛷:

3.4 Lemma: With the same assumption as in Theorem 3.2 it follows:

1. 𝛷 is concave.

2. 𝛷 admits the Lipschitz constant 1.

Proof: Notice that the minimum function

ℝ𝑚 ∋ (𝜉1, 𝜉2, … , 𝜉𝑚) ↦ min{𝜉1, 𝜉2, … , 𝜉𝑚}

is concave and Lipschitz continuous with respect to the maximum-norm ‖ ⋅ ‖∞
with Lipschitz constant 1. Thus, for each 𝒛 ∈ ℝ𝑚, the function 𝜙( ⋅ ; 𝒛) is
concave and admits the Lipschitz constant 1 with respect to ‖ ⋅ ‖∞.

Ad Item 1: For 𝒉, �̃� ∈ ℰ, 𝒛 ∈ ℝ𝑚, and 𝜃 ∈ [0, 1] it follows

𝜙((1 − 𝜃)𝒉 + 𝜃�̃�; 𝒛) = min
1≤𝑗≤𝑚

𝑧𝑗 + (1 − 𝜃)ℎ𝑗(𝑧𝑗) + 𝜃ℎ̃𝑗(𝑧𝑗)

≥ (1 − 𝜃) ( min
1≤𝑗≤𝑚

𝑧𝑗 + ℎ𝑗(𝑧𝑗)) + 𝜃 ( min
1≤𝑗≤𝑚

𝑧𝑗 + ℎ̃𝑗(𝑧𝑗))

= (1 − 𝜃)𝜙(𝒉; 𝒛) + 𝜃𝜙(�̃�; 𝒛).
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3.1 Claim 1

Since the expectation operator is monotone and linear, it follows

𝛷((1 − 𝜃)𝒉 + 𝜃�̃�) ≥ (1 − 𝜃)𝛷(𝒉) + 𝜃𝛷(�̃�).

That is, 𝛷 is concave.
Ad Item 2: For 𝒉, �̃� ∈ ℰ, and 𝒛 ∈ ℝ𝑚, we have

|𝜙(𝒉; 𝒛) − 𝜙(�̃�; 𝒛)| ≤ max
1≤𝑗≤𝑚

∣𝑧𝑗 + ℎ𝑗(𝑧𝑗) − 𝑧𝑗 − ℎ̃𝑗(𝑧𝑗)∣ ≤
𝑚

∑
𝑗=1

∣ℎ𝑗(𝑧𝑗) − ℎ̃𝑗(𝑧𝑗)∣

and

|𝛷(𝒉) − 𝛷(�̃�)| ≤
𝑚

∑
𝑗=1

𝗘[|ℎ𝑗 − ℎ̃𝑗|(𝑍𝑗)] = ‖𝒉 − �̃�‖ℒ1(𝑃0,ℝ𝑚).

The next step is to establish the directional derivative of 𝛷. For that
purpose, the following representation becomes useful:

3.5 Lemma: Let 𝒖 = 𝑢1 ×𝑢2 ×⋯×𝑢𝑚 ∈ ℰ. Assume 𝑢1, 𝑢2, … , 𝑢𝑚 are increasing
homeomorphisms. Define 𝑣 ∶ ℝ × ℝ → ℝ by

𝑣(𝑡; 𝑥) =
𝑚

∑
𝑗=1

(𝑢-1
𝑗 (𝑥) − 𝑡)+ =

𝑚
∑
𝑗=1

⎧{
⎨{⎩

𝑢-1
𝑗 (𝑥) − 𝑡, 𝑢-1

𝑗 (𝑥) ≥ 𝑡,
0, otherwise,

and let 𝑣-1(𝑡; ⋅ ) denote the inverse function of 𝑣(𝑡; ⋅ ) on ℝ+ for every 𝑡 ∈ ℝ.
Then, it follows

𝛷(𝒖 − idℝ𝑚) = ∬
∞

0
𝑣-1(𝑡; 𝑧) exp(−𝑧) d𝑧 𝜌𝑇 (𝑡) d𝑡.

Proof: Let ̃𝜙 = 𝜙(𝒖 − idℝ𝑚 ; ⋅ ) and denote the standard exponential distri-
bution by 𝝴; that is, for each measurable 𝐴 ⊆ ℝ it follows

𝝴(𝐴) = ∫
𝐴∩(0,∞)

exp(−𝑥) d𝑥.

Like usual, the conditional distribution of ̃𝜙(𝒁) given 𝑇 is characterized by
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its value on (−∞, 𝑥] for each 𝑥 ∈ ℝ:

𝗣{ ̃𝜙(𝒁) ≤ 𝑧 | 𝑇 } = 1 − 𝗣{∀1 ≤ 𝑗 ≤ 𝑚 ∶ 𝑢𝑗(𝑍𝑗) > 𝑥 | 𝑇 }
= 1 − 𝗣{∀1 ≤ 𝑗 ≤ 𝑚 ∶ 𝑍𝑗 > 𝑢-1

𝑗 (𝑥) | 𝑇 }

= 1 − ∫
∞

𝑢-1
1 (𝑥)

⋯ ∫
∞

𝑢-1𝑚(𝑥)
𝜌𝒁|𝑇 (𝒛 | 𝑇 ) d𝑧𝑚 ⋯ d𝑧1

= 1 −
𝑚

∏
𝑗=1

exp(−(𝑢-1
𝑗 (𝑥) − 𝑇 )+)

= 1 − exp(−𝑣(𝑇 ; 𝑥))
= 𝝴(𝑣(𝑇 ; (−∞, 𝑥])).

That is, we have
𝗣{ ̃𝜙(𝒁) ∈ ⋅ | 𝑇 } = 𝝴 ∘𝑣(𝑇 ; ⋅ )

and

𝗘[𝗘[ ̃𝜙(𝒁) | 𝑇 ]] = ∬ 𝑥 d 𝝴 ∘𝑣(𝑡; 𝑥) 𝜌𝑇 (𝑡) d𝑡

= ∬
∞

0
𝑣-1(𝑡; 𝑧) exp(−𝑧) d𝑧 𝜌𝑇 (𝑡) d𝑡.

3.1.2 Directional Derivative of the Objective
The computation of the directional derivative of 𝛷 is performed in two steps.
First we assume that the direction 𝒉 is smooth and compactly supported,
then we extend the result to ℒ1(𝑃0, ℝ𝑚) functions by an approximation ar-
gument.

The Smooth Case

3.6 Assumption: Let 𝒉 = ℎ1×ℎ2×⋯×ℎ𝑚 ∶ ℝ𝑚 → ℝ𝑚 be smooth and compactly
supported. For each 𝑗 ∈ {1, 2, … , 𝑚} define 𝑢𝑗 ∶ ℝ × ℝ → ℝ by

𝑢𝑗(𝜃; 𝑧) = 𝑧 + 𝜃ℎ𝑗(𝑧)

and 𝒖 ∶ ℝ × ℝ𝑚 → ℝ𝑚 by

𝒖(𝜃; 𝒛) = (𝑢𝑗(𝜃; 𝑧𝑗))1≤𝑗≤𝑚
.
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3.7 Remark:
1. For each 𝜃 ∈ ℝ the random vector 𝒖(𝜃; 𝒁) is integrable, as 𝒁 is integrable

and 𝒉 is bounded.

2. For a given 𝒉 there exists an open and bounded interval 𝛩 ⊆ ℝ containing
0 such that for each 𝜃 in the closure �̄� of 𝛩 and each 𝑗 ∈ {1, 2, … , 𝑚} the
function 𝑢𝑗(𝜃; ⋅ ) is increasing and bilipschitz with constant 1

2 . Particularly,
𝑢𝑗(𝜃; ⋅ ) is an increasing homeomorphism.

3.8 Lemma: Under Assumption 3.6 on page 36: Let 𝛩 be given as in Remark 3.7.
For each 𝑗 ∈ {1, 2, … , 𝑚} and 𝜃 ∈ 𝛩 denote the inverse function of 𝑢𝑗(𝜃; ⋅ )
by 𝑢-1

𝑗 (𝜃; ⋅ ). Further, define 𝑣 ∶ 𝛩 × ℝ × ℝ → ℝ by

𝑣(𝜃, 𝑡; 𝑥) =
𝑚

∑
𝑗=1

(𝑢-1
𝑗 (𝜃; 𝑥) − 𝑡)+.

Then, for each (𝜃, 𝑡) ∈ 𝛩 × ℝ the function 𝑣(𝜃, 𝑡; ⋅ ) ∶ ℝ → ℝ+ is bilipschitz
on its support

Supp 𝑣(𝜃, 𝑡; ⋅ ) = {𝑥 ∈ ℝ | 𝑥 ≥ min
1≤𝑗≤𝑚

𝑢𝑗(𝜃; 𝑡)}.

Further, 𝑣-1 ∶ 𝛩 × ℝ × ℝ+ → ℝ is Lipschitz continuous and is smooth on the
complement of

𝑁 =
𝑚
⋃
𝑗=1

{(𝜃, 𝑡, 𝑣(𝜃, 𝑡; 𝑢𝑗(𝜃; 𝑡))) | (𝜃, 𝑡) ∈ 𝛩 × ℝ}.

Remark: Since 𝑁 is a union of graphs of continuous functions, 𝑁 has
measure zero in ℝ3. Similarly, for each 𝜃 ∈ 𝛩 the set

𝑁𝜃 ∶= {(𝑡, 𝑧) | (𝜃, 𝑡, 𝑧) ∈ 𝑁}

has measure zero in ℝ2. In particular, for each 𝜃 ∈ 𝛩 and almost every
(𝑡, 𝑧) ∈ ℝ × ℝ+ the partial derivative

𝜕𝜃𝑣-1(𝜃, 𝑡; 𝑧) ∶= d
d𝜃 [𝑣-1(𝜃, 𝑡; 𝑧)]

exists, and 𝜃 ↦ 𝜕𝜃𝑣-1(𝜃, ⋅ ; ⋅ ) is continuous with respect to convergence almost
everywhere on 𝛩.
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Proof: Under the given assumption, the function

⎡
⎢
⎣

𝜃
𝑡
𝑥

⎤
⎥
⎦

↦ ⎡
⎢
⎣

𝜃
𝑡

𝑣(𝜃, 𝑡; 𝑥)

⎤
⎥
⎦

is a bilipschitz function from the support of 𝑣 onto 𝛩 × ℝ × ℝ+. Thus, 𝑣-1 is
Lipschitz continuous.

As for smoothness: Fix (𝜃, 𝑡, 𝑧) ∈ (𝛩×ℝ×ℝ+)∖𝑁 . Due to the continuity
of 𝑣 and 𝑢1, 𝑢2, … , 𝑢𝑚, there exits a neighborhood 𝑈 of (𝜃, 𝑡, 𝑧) which is
disjunct from 𝑁 . Particularly, 𝑣 is smooth on

̃𝑈 = {( ̃𝜃, ̃𝑡, 𝑣-1( ̃𝜃, ̃𝑡; ̃𝑧)) | ( ̃𝜃, ̃𝑡, ̃𝑧) ∈ 𝑈}

and hence 𝑣-1 is smooth on 𝑈 .

Combining Lemmas 3.5 and 3.8, we can compute the directional derivative
of 𝛷 as follows:

3.10 Theorem:
Under Assumption 3.6 on page 36: Let 𝛩 be given as in Remark 3.7. Then,
the function

𝜃 ↦ 𝛷(𝜃𝒉)
is continuously differentiable on 𝛩 with

d
d𝜃 [𝛷(𝜃𝒉)]

𝜃=0
=

𝑚
∑
𝑗=1

∬
∞

𝑡
ℎ𝑗(𝑧) e−𝑚(𝑧−𝑡) d𝑧 𝜌𝑇 (𝑡) d𝑡. (3.1)

Remark: Since 𝛷 is Lipschitz continuous, 𝜃 ↦ 𝛷(𝜃𝒉) is also almost every-
where differentiable. However, on 𝛩, the derivative is continuous and admits
the explicit integral form given by Equation (3.1).

Proof: For each 𝜃 ∈ 𝛩, Lemma 3.5 states

𝛷(𝜃𝒉) = ∬
∞

0
𝑣-1(𝜃, 𝑡; 𝑧) e−𝑧 d𝑧 𝜌𝑇 (𝑡) d𝑡.

The idea is to differentiate 𝑣-1 under the integral sign with respect to 𝜃 (see
Appendix A.2.2 on page 75).
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Define 𝑁 as in Lemma 3.8 and denote its complement by

𝑁𝖢 = (𝛩 × ℝ × ℝ+) ∖ 𝑁.

That is, 𝑣-1 is smooth on 𝑁𝖢. For each 𝑗 ∈ {1, 2, … , 𝑚} and (𝜃, 𝑡, 𝑥) ∈
𝛩 × ℝ × ℝ let

𝑣𝑗(𝜃, 𝑡; 𝑥) = (𝑢-1
𝑗 (𝜃; 𝑥) − 𝑡)+.

By the chain rule, for each (𝜃, 𝑡, 𝑧) ∈ 𝑆 we have

𝜕𝜃𝑣-1(𝜃, 𝑡; 𝑧) = −𝜕𝜃𝑣(𝜃, 𝑡; 𝑣-1(𝜃, 𝑡; 𝑧)) ⋅ 𝜕𝑧𝑣-1(𝜃, 𝑡; 𝑧)

= −
𝑚

∑
𝑗=1

𝜕𝜃𝑣𝑗(𝜃, 𝑡; 𝑣-1(𝜃, 𝑡; 𝑧)) ⋅ 𝜕𝑧𝑣-1(𝜃, 𝑡; 𝑧).

Observe that for each (𝜃, 𝑡, 𝑥) in the interior of Supp 𝑣𝑗 it follows

𝜕𝜃𝑣𝑗(𝜃, 𝑡; 𝑥) = −ℎ𝑗(𝑡 + 𝑣𝑗(𝜃, 𝑡; 𝑥)) ⋅ 𝜕𝑥𝑣𝑗(𝜃, 𝑡; 𝑥).

The formula remains valid for each (𝜃, 𝑡, 𝑥) in the complement of Supp 𝑣𝑗, as
𝜕𝑥𝑣𝑗(𝜃, 𝑡; 𝑥) is simply 0. Thus, we have

𝜕𝜃𝑣-1(𝜃, 𝑡; 𝑧)

=
𝑚

∑
𝑗=1

ℎ𝑗(𝑡 + 𝑣𝑗(𝜃, 𝑡; 𝑣-1(𝜃, 𝑡; 𝑧))) ⋅ 𝜕𝑥𝑣𝑗(𝜃, 𝑡; 𝑣-1(𝜃, 𝑡; 𝑧)) ⋅ 𝜕𝑧𝑣-1(𝜃, 𝑡; 𝑧)

=
𝑚

∑
𝑗=1

ℎ𝑗(𝑡 + 𝑣𝑗(𝜃, 𝑡; 𝑣-1(𝜃, 𝑡; 𝑧))) ⋅ d
d𝑧 [𝑣𝑗(𝜃, 𝑡; 𝑣-1(𝜃, 𝑡; 𝑧))] .

Integration by substitution with 𝑤𝑗(𝜃, 𝑡; 𝑧) = 𝑡 + 𝑣𝑗(𝜃, 𝑡; 𝑣-1(𝜃, 𝑡; 𝑧)) yields

∬
∞

0
|ℎ𝑗(𝑤𝑗(𝜃, 𝑡; 𝑧))| ⋅ 𝜕𝑧𝑤𝑗(𝜃, 𝑡; 𝑧) ⋅ e−𝑧 d𝑧 𝜌𝑇 (𝑡) d𝑡

= ∬
∞

𝑡
|ℎ𝑗(𝑧)| e−𝑤-1

𝑗 (𝜃,𝑡;𝑧)
⏟⏟⏟⏟⏟⏟⏟

(∗)

d𝑧 𝜌𝑇 (𝑡) d𝑡.

The integrand (∗) on the right is continuous as a function of (𝜃, 𝑡, 𝑧). Further,
as

𝑤-1
𝑗 (𝜃, 𝑡; 𝑧) = 𝑣(𝜃, 𝑡; 𝑢𝑗(𝜃; 𝑧)) ≥ 𝑣𝑗(𝜃, 𝑡; 𝑢𝑗(𝜃; 𝑧)) = (𝑧 − 𝑡)+
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holds for every (𝜃, 𝑡, 𝑧) ∈ 𝛩 × ℝ × ℝ, the integrand (∗) is also dominated
by (𝑡, 𝑧) ↦ |ℎ𝑗(𝑧)|e−(𝑧−𝑡)+ , which is integrable by assumption. Thus, 𝜃 ↦
𝜕𝜃𝑣-1(𝜃, ⋅ ; ⋅ ) is a continuous function in ℒ1. In particular, we may differen-
tiate 𝑣-1 under the integral sign (Theorem A.7 on page 75) and obtain

d
d𝜃 [𝛷(𝜃𝒉)] = ∬

∞

0
𝜕𝜃𝑣-1(𝜃, 𝑡; 𝑧) e−𝑧 d𝑧 𝜌𝑇 (𝑡) d𝑡

=
𝑚

∑
𝑗=1

∬
∞

𝑡
ℎ𝑗(𝑧) e−𝑣(𝜃,𝑡;𝑢𝑗(𝜃;𝑧)) d𝑧 𝜌𝑇 (𝑡) d𝑡,

which is continuous in 𝜃 on 𝛩. Finally, at 𝜃 = 0, we have

𝑣(0, 𝑡; 𝑢𝑗(0; 𝑧)) = 𝑚(𝑧 − 𝑡)

for 𝑡 ∈ ℝ and 𝑧 ∈ [𝑡, ∞), which yields the statement.

The General Case

3.12 Theorem:
Define 𝐴 ∶ ℰ → ℝ by

𝐴𝒉 =
𝑚

∑
𝑗=1

∬
∞

𝑡
ℎ𝑗(𝑧) e−𝑚(𝑧−𝑡) d𝑧 𝜌𝑇 (𝑡) d𝑡. (3.2)

Then, 𝐴 is continuous and is the (directional) derivative 𝛷′(𝟎) of 𝛷 at 𝟎.

Proof: For the first part, notice that 𝑚(𝑧−𝑡)+ ≥ (𝑧−𝑡)+ for every 𝑡, 𝑧 ∈ ℝ.
Thus, 𝐴 is linearly bounded:

|𝐴𝒉| ≤
𝑚

∑
𝑗=1

∬
∞

𝑡
|ℎ𝑗(𝑧)| e−(𝑧−𝑡) d𝑧 𝜌𝑇 (𝑡) d𝑡 =

𝑚
∑
𝑗=1

𝗘[|ℎ𝑗(𝑍𝑗)|] = ‖𝒉‖ℒ1(𝑃0,ℝ𝑚).

As for directional differentiability, in case 𝒉 is smooth and compactly
supported, Theorem 3.10 implies the statement. For the general case: As
𝑃0 is absolutely continuous with respect to the Lebesgue measure, the set
of compactly supported smooth functions is dense in ℒ1(𝑃0, ℝ𝑚) (compare
to the literature, like [8]). Let 𝒉 ∈ ℰ and 𝒉𝑛 ∈ 𝒮𝑒𝑝𝑚 ∩ 𝒞∞

c (ℝ𝑚; ℝ𝑚) with
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𝒉𝑛 → 𝒉 in ℒ1(𝑃0, ℝ𝑚). For every 𝜃 ∈ ℝ ∖ {0} it follows

∣𝛷(𝜃𝒉) − 𝛷(𝟎)
𝜃 − 𝐴𝒉∣

≤ |𝛷(𝜃𝒉) − 𝛷(𝜃𝒉𝑛)|
|𝜃| + ∣𝛷(𝜃𝒉𝑛) − 𝛷(𝟎)

𝜃 − 𝐴𝒉∣

≤ ‖𝒉 − 𝒉𝑛‖ℒ1(𝑃0,ℝ𝑚) + |𝐴𝒉𝑛 − 𝐴𝒉| + ∣𝛷(𝜃𝒉𝑛) − 𝛷(𝟎)
𝜃 − 𝐴𝒉𝑛∣.

In particular, for every 𝑛 ∈ ℕ we have

lim sup
𝜃→0

∣𝛷(𝜃𝒉) − 𝛷(𝟎)
𝜃 − 𝐴𝒉∣ ≤ 2‖𝒉 − 𝒉𝑛‖ℒ1(𝑃0,ℝ𝑚),

where the right-hand side converges to 0 for 𝑛 → ∞.

3.1.3 The Proof of Claim 1

Turning to the actual proof of Theorem 3.2 on page 33: Theorem 3.12 already
implies that 𝟎 is one maximizer of 𝛷, as for every 𝒉 ∈ 𝒮 we have

𝛷(𝒉) − 𝛷(𝟎) ≤ 𝛷′(𝟎)[𝒉]

= ∬
∞

𝑡

𝑚
∑
𝑗=1

ℎ𝑗(𝑧)
⏟

0

e−𝑚(𝑧−𝑡) d𝑧 𝜌𝑇 (𝑡) d𝑡 = 0.

To ensure the uniqueness, we use the following result:

3.13 Lemma: Let 𝒉 ∈ ℰ with 𝛷(𝒉) = 𝛷(𝟎). Then, there exists a set 𝑁 ⊆ ℝ of
Lebesgue measure zero such that
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1. every 𝑧 ∈ ℝ ∖ 𝑁 is a Lebesgue point[a] of ℎ1, ℎ2, … , ℎ𝑚 and it follows

1
𝑚

𝑚
∑
𝑗=1

ℎ𝑗(𝑧) = 0;

2. for each 𝒛 ∈ (ℝ ∖ 𝑁)𝑚 the function 𝜃 ↦ 𝜙(𝜃𝒉; 𝒛) is affine on [0, 1];

3. in particular, for each 𝒛 ∈ (ℝ ∖ 𝑁)𝑚 it follows

𝐽 ∗(𝒛) ∶= (arg min
1≤𝑗≤𝑚

𝑧𝑗) ∩ (arg min
1≤𝑗≤𝑚

𝑧𝑗 + ℎ𝑗(𝑧𝑗)) ≠ ∅.

Proof: Ad Item 1: Notice that ℎ𝑗 is locally Lebesgue integrable for each
𝑗 ∈ {1, 2, … , 𝑚}. Thus, there exists a zero measure set 𝑁𝑗 ⊆ ℝ such that
ℝ ∖ 𝑁𝑗 contains only Lebesgue points of ℎ𝑗. Further, by the definition of 𝒮,
the mean of ℎ1, ℎ2, … , ℎ𝑚 is the zero function on the complement of a zero
measure set, say 𝑁0 ⊆ ℝ. Now, the finite union

𝑁 ∶=
𝑚
⋃
𝑗=0

𝑁𝑗

has measure zero again and has the properties stated in Item 1.
Ad Item 2: Due to concavity, for every 𝜃 ∈ [0, 1] we have

𝜙(𝜃𝒉; ⋅ ) − ((1 − 𝜃)𝜙(𝟎; ⋅ ) + 𝜃𝜙(𝒉; ⋅ )) ≥ 0.

By assumption 𝟎 and 𝒉 are maximizers of 𝛷. Thus, we also have

0 ≥ 𝛷(𝜃𝒉) − 𝛷(𝟎)
= 𝛷(𝜃𝒉) − ((1 − 𝜃)𝛷(𝟎) + 𝜃𝛷(𝒉))
= 𝗘[𝜙(𝜃𝒉; 𝒁) − ((1 − 𝜃)𝜙(𝟎; 𝒁) + 𝜃𝜙(𝒉; 𝒁))] ≥ 0.

[a]A point 𝒙 ∈ ℝ𝑛 is called a Lebesgue point (also known as density point) of a measurable
function 𝒇 ∶ ℝ𝑛 → ℝ𝑚 if

lim
𝛿→0+

1
𝝺(𝐵𝛿) ∫

𝐵𝛿

‖𝒇(𝒙 + 𝒉) − 𝒇(𝒙)‖ d𝒉 = 0,

where 𝐵𝛿 denotes the ball with radius 𝛿 > 0 centered at 𝟎. The definition does not depend
on the norm on ℝ𝑛 and ℝ𝑚.

Trivially, if 𝒇 is continuous at 𝒙 ∈ ℝ𝑛, then 𝒙 is a Lebesgue point. Further, the Lebesgue
differentiation theorem states, that if 𝒇 is locally integrable, then almost every point of
ℝ𝑛 is a Lebesgue point [8].
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That is, we have almost surely

𝜙(𝜃𝒉; 𝒁) = (1 − 𝜃)𝜙(𝟎; 𝒁) + 𝜃𝜙(𝒉; 𝒁).

Thus, it is sufficient to show that every 𝒛 ∈ (ℝ ∖ 𝑁)𝑚 is a Lebesgue point of
𝜙(𝜃𝒉; ⋅ ) for every 𝜃 ∈ [0, 1]. As the minimum function admits the Lipschitz
constant 1 with respect to ‖ ⋅ ‖∞, we have for every ̃𝒛 ∈ ℝ𝑚

|𝜙(𝜃𝒉; ̃𝒛) − 𝜙(𝜃𝒉; 𝒛)| ≤
𝑚

∑
𝑗=1

∣ ̃𝑧𝑗 + 𝜃ℎ𝑗( ̃𝑧𝑗) − (𝑧𝑗 + 𝜃ℎ𝑗(𝑧𝑗))∣

≤
𝑚

∑
𝑗=1

| ̃𝑧𝑗 − 𝑧𝑗| + 𝜃
𝑚

∑
𝑗=1

|ℎ𝑗( ̃𝑧𝑗) − ℎ𝑗(𝑧𝑗)|.

Now, the average of the right-hand side on the 𝛿-neighborhood of 𝒛 tends to
0 for 𝛿 → 0. Hence, 𝒛 is a Lebesgue point of 𝜙(𝜃𝒉; ⋅ ).

Concluding the proof of Theorem 3.2: Let 𝒉 = ℎ1 ×ℎ2 ×⋯×ℎ𝑚 ∈ 𝒮 with
𝛷(𝒉) = 𝛷(𝟎). Let 𝑁 and 𝐽 ∗ be defined as in Lemma 3.13. Fix ̃𝑧 ∈ ℝ ∖ 𝑁 .
For each 𝜀 > 0 and 𝑗 ∈ {1, 2, … , 𝑚} define

𝑂𝜀( ̃𝑧, 𝑗) = ( ̃𝑧, ̃𝑧 + 𝜀)𝑗−1 × ( ̃𝑧 − 𝜀, ̃𝑧) × ( ̃𝑧, ̃𝑧 + 𝜀)𝑚−𝑗.

For each 𝜀 > 0, 𝑗1, 𝑗2 ∈ {1, 2, … , 𝑚}, and 𝒛 ∈ (ℝ ∖ 𝑁)𝑚 ∩ 𝑂𝜀( ̃𝑧, 𝑗1) it
follows

𝑧1, … , 𝑧𝑗1−1, 𝑧𝑗1+1, 𝑧𝑚 > ̃𝑧 > 𝑧𝑗1
,

also
𝐽 ∗(𝒛) = {𝑗1},

and finally

𝑧𝑗1
+ ℎ𝑗1

(𝑧𝑗1
) ≤ min

1≤𝑗≤𝑚
𝑧𝑗 + ℎ𝑗(𝑧𝑗) ≤ 𝑧𝑗2

+ ℎ𝑗2
(𝑧𝑗2

).

In particular, we have

0 ≤ lim
𝜀→0

1
𝜀𝑚 ∫

𝑂𝜀( ̃𝑧,𝑗1)
(𝑧𝑗2

+ ℎ𝑗2
(𝑧𝑗2

)) − (𝑧𝑗1
+ ℎ𝑗1

(𝑧𝑗1
)) d𝒛

= lim
𝜀→0

1
𝜀 ∫

̃𝑧+𝜀

̃𝑧
𝑧𝑗2

+ ℎ𝑗2
(𝑧𝑗2

) d𝑧𝑗2
− lim

𝜀→0
1
𝜀 ∫

̃𝑧

̃𝑧−𝜀
𝑧𝑗1

+ ℎ𝑗1
(𝑧𝑗1

) d𝑧𝑗1

= ℎ𝑗2
( ̃𝑧) − ℎ𝑗1

( ̃𝑧),
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3 Consistency

as ̃𝑧 is a Lebesgue point of ℎ𝑗1
and ℎ𝑗2

. We conclude

ℎ𝑗1
( ̃𝑧) = ℎ𝑗2

( ̃𝑧),

and as 𝑗1 and 𝑗2 are arbitrary, also

ℎ1( ̃𝑧) = ℎ2( ̃𝑧) = ⋯ = ℎ𝑚( ̃𝑧).

In particular, for every 𝑗 ∈ {1, 2, … , 𝑚} it follows

ℎ𝑗( ̃𝑧) = 1
𝑚

𝑚
∑
𝑗′=1

ℎ𝑗′( ̃𝑧) = 0.

As ̃𝑧 ∈ ℝ ∖ 𝑁 is arbitrary, it follows ℎ𝑗 = 0 almost everywhere for every
𝑗 ∈ {1, 2, … , 𝑚}.

3.2 Claim 2
Does the solutions of the sample approximation, Problem 2.1 on page 17,
converge to the solution of Problem 1.5 on page 12? Unfortunately, that
question can not be answered in full generality. However, the answer is
positive if the solution �̌� is determined by its value on a known compact set
(comparing to Section 2.4 on page 24). The main idea is to apply the results
about so-called extremum estimators described in Appendix B on page 77.

3.2.1 The Setting
This section follows the established notations and assumptions of Problem 2.1
on page 17. However, we need to strengthen some assumptions.

The Function Space

Unlike in Problem 2.1, let ℰ ⊆ 𝒮𝑒𝑝𝑚 ∩ ℒ1(𝑃0, ℝ𝑚) be a Banach space with
norm ‖ ⋅ ‖ℰ such that (ℰ, ‖ ⋅ ‖ℰ) is continuously embedded into ℒ1(𝑃0, ℝ𝑚).
Further, let ℱ ⊆ ℰ be closed, convex, and locally compact as a topological
subspace. For example, the following uniformly Lipschitz continuous subset

{𝑢 ∈ ℒ𝑖𝑝([0, 1], ℝ) | ‖𝑢′‖∞ ≤ 1} ⊆ 𝒞([0, 1], ℝ),
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3.2 Claim 2

is closed, convex, and locally compact by the Arzelà-Ascoli theorem (compare
to the literature, like [1]).

Let 𝐼0 = [𝜏,̱ ̄𝜏 ] ⊆ (0, 1) with 𝜏 ̱ < ̄𝜏 . Let 𝑉 ⊆ ℝ𝑚 be bounded and open
with

∀𝑛 ∈ ℕ ∪ {0} ∶
𝑚

∏
𝑗=1

𝑄𝑗,𝑛(𝐼0) ⊆ 𝑉 .

Finally, let ℱ𝑛 ⊆ ℱ be a closed convex subset.

Extremum Estimator

Let 𝑓 and 𝑔 be given as in Problem 1.5. Let (𝐼𝑛)𝑛∈ℕ be a sequence of
finite partitions of 𝐼0. Let (𝜂𝑛)𝑛∈ℕ be a sequence of positive numbers with
𝜂𝑛 → 𝜂0 ∶= 0. For each 𝑛 ∈ ℕ let 𝒖∗

𝑛 denote a minimizer of

𝑓𝑛(𝒖) ∶= ∫ 𝑓(𝒖; 𝒛) d𝑃𝑛(𝒛)

over
𝒮𝑛 ∶= {𝒖 ∈ ℱ𝑛 | 𝑔𝑛(𝒖) ∶= max

𝜏∈𝐼𝑛
𝑔(𝒖; 𝑸𝑛(𝜏)) ≤ 𝜂𝑛}.

3.2.2 Convergence
3.14 Theorem:

Under the setting given by Section 3.2.1 on page 44: Assume that

1. (Identification) �̌� ∈ ℱ0 and for each 𝒖 ∈ 𝒮0 it follows

∀𝜏 ∈ (0, 1) ∶ 𝑔(𝒖; 𝑸0(𝜏)) = 0;

2. (Approximation)

dist(ℱ𝑛, �̌�) = 𝒪(𝜂𝑛), dist(𝐼𝑛, 𝐼0) = 𝒪(𝜂𝑛), √(log log 𝑛)/𝑛 = 𝒪(𝜂𝑛);

3. there exists a neighborhood 𝒰⊆ ℱ of �̌� and some 𝐶𝑉 > 0 with

∀𝒖 ∈ 𝒰∶ ‖𝒖‖∞,𝑉 ≤ 𝐶𝑉 ‖𝒖‖ℰ

and
𝐿 ∶= sup

𝒖∈𝒰
‖𝒖′‖∞,𝑉 < ∞;
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3 Consistency

4. and the quantile functions 𝑄1, 𝑄2, … , 𝑄𝑚 are locally Lipschitz continuous.

Then, ‖𝒖∗
𝑛 − �̌�‖ℰ converges to 0 almost surely.

Notice that 𝒪 denotes the little-o Landau symbol and dist the Hausdorff
distance in Item 2.

Proof: We need to check the assumptions of Theorem B.8 on page 86.
Item 1–3 of Theorem B.8 are given by the assumptions.

Concerning Item 4: We show

lim
𝛿→0

∫ ω𝑓(𝛿, ℱ × {𝒛}) d𝑃0(𝒛) = 0

where

ω𝑓(𝛿, ℱ × {𝒛}) = sup{|𝑓(�̃�; 𝒛) − 𝑓(𝒖; 𝒛)| | 𝒖, �̃� ∈ ℱ, ‖�̃� − 𝒖‖ℰ < 𝛿}

denotes the modulus of continuity of 𝑓 with respect to the first argument.
Since ℰ is continuously embedded in ℒ1(𝑃0, ℝ𝑚), there exists some 𝐶ℒ1 > 0
with

‖ ⋅ ‖ℒ1(𝑃0,ℝ𝑚) ≤ 𝐶ℒ1‖ ⋅ ‖ℰ.
Thus, for each 𝒖, �̃� ∈ ℱ it follows

∫|𝑓(𝒖; 𝒛) − 𝑓(�̃�; 𝒛)| d𝑃0(𝒛) ≤ 2 ∫ max
1≤𝑗≤𝑚

∣𝑢𝑗(𝑧𝑗) − �̃�𝑗(𝑧𝑗)∣ d𝑃0(𝒛)

≤ 2‖𝒖 − �̃�‖ℒ1(𝑃0,ℝ𝑚)

≤ 2𝐶ℒ1‖𝒖 − �̃�‖ℰ,

which converges to 0 for ‖𝒖 − �̃�‖ℰ → 0.
Concerning Item 5: Notice that 𝑔 is Lipschitz continuous on 𝒰× 𝑉 , as

for each 𝒖, �̃� ∈ 𝒰 and 𝒛, ̃𝒛 ∈ 𝑉 it follows

|𝑔(𝒖; 𝒛) − 𝑔(�̃�; 𝒛)| ≤ max
1≤𝑗≤𝑚

|𝑢𝑗(𝑧𝑗) − �̃�𝑗(𝑧𝑗)| ≤ 𝐶𝑉 ‖𝒖 − �̃�‖ℰ,

and

|𝑔(𝒖; 𝒛) − 𝑔(𝒖; ̃𝒛)| ≤ max
1≤𝑗≤𝑚

|𝑢𝑗(𝑧𝑗) − 𝑢𝑗( ̃𝑧𝑗)| ≤ 𝐿‖𝒛 − ̃𝒛‖∞.
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Thus, we only need to prove

dist(𝑸𝑛(𝐼𝑛), 𝑸0(𝐼0)) = 𝒪(𝜂𝑛).

Let ̄𝐼 ⊆ (0, 1) be a compact interval with 𝑉 ⊆ ∏𝑚
𝑗=1 𝑄𝑗,0( ̄𝐼). By Theorem C.3

on page 91, it follows almost surely

‖𝑸𝑛 − 𝑸0‖∞, ̄𝐼𝑚 = 𝒪 (√log log 𝑛
𝑛 ) ,

where 𝒪 denotes the big-o Landau symbol. Let 𝐶 be the Lipschitz constant
of 𝑸0 on ̄𝐼𝑚. Notice that for each 𝑛 ∈ ℕ we have 𝐼𝑛 ⊆ 𝐼0 ⊆ ̄𝐼 and thus

dist(𝑸𝑛(𝐼𝑛), 𝑸0(𝐼0)) ≤ ‖𝑸𝑛 − 𝑸0‖∞, ̄𝐼𝑚 + 𝐶 dist(𝐼𝑛, 𝐼0) = 𝒪(𝜂𝑛).

3.3 Examples
To illustrate the consistency result, this section presents some examples for
ℰ, ℱ0, ℱ1, … We will begin with an affine linear inverse clock model, and
then expand the example to the B-spline based inverse clock model found in
Section 2.4 on page 24.

For the sake of completeness: Let 𝜏 ,̱ ̄𝜏 ∈ (0, 1) with 𝜏 ̱ < ̄𝜏 . For 𝑧,̱ ̄𝑧 ∈ ℝ
with

𝑧̱ < min
1≤𝑗≤𝑚

𝑄𝑗,0(𝜏)̱ < max
1≤𝑗≤𝑚

𝑄𝑗,0( ̄𝜏) < ̄𝑧

define 𝑉 = (𝑧,̱ ̄𝑧)𝑚. For each 𝑛 ∈ ℕ let

𝜂𝑛 = √(log log 𝑛)/√𝑛

and
𝐼𝑛 = {𝜏 ̱ + ( ̄𝜏 − 𝜏)̱ 𝑘𝑝𝑛 | 0 ≤ 𝑘 ≤ 𝑝𝑛}

with
𝑝𝑛 = ceil(√𝑛/(log log 𝑛)).

Notice that the values for 𝜂𝑛 and 𝑝𝑛 are for illustration only and are not prac-
tical. The value of 𝜂𝑛 should be multiplied by a small number in applications,
as the asymptotic is much too pessimistic. Also, 𝑝𝑛 should depend on the
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3 Consistency

dimension of the inverse clock models, which again depend on 𝑛 and irreg-
ularity of the assumed clock deviations. Applicable examples are discussed
later with simulation results.

Since 𝑸𝑛 converges locally to 𝑸0 almost surely, we have almost surely

max
1≤𝑗≤𝑚

dist(𝑄𝑗,𝑛(𝐼0), 𝑄𝑗,0(𝐼0)) → 0.

That is, for almost each sample and 𝑛 sufficiently large, we have

𝑚
∏
𝑗=1

𝑄𝑗,𝑛(𝐼0) ⊆ 𝑉 .

Further, by construction, it follows

√(log log 𝑛)/𝑛 = 𝒪(𝜂𝑛),

dist(𝐼𝑛, 𝐼0) = ̄𝜏 − 𝜏 ̱
𝑝𝑛

= 𝒪(√(log log 𝑛)/𝑛),

and thus
dist(𝐼𝑛, 𝐼0) = 𝒪(𝜂𝑛).

The exact values of 𝑉 , 𝜂𝑛, and 𝐼𝑛 have little influence from a theoretical
point of view. However, the values of 𝜏 ̱ and ̄𝜏 do have some implication, as
shown later.

3.3.1 Affine Linear Inverse Clock Model

Let 𝑃 be some probability measure on ℝ with ∫|𝑧| d𝑃(𝑧) < ∞, and let
𝐾 = [𝑧,̱ ̄𝑧]. Denote the set of affine linear functions from ℝ into ℝ by 𝒜,
which is trivially a finite dimensional subspace of ℒ1(𝑃 , ℝ). As 𝑧̱ < ̄𝑧, the
sup-norm ‖ ⋅ ‖∞,𝐾 restricted onto 𝐾 is also a norm on 𝒜. Further, as 𝒜 is
finite dimensional, and therefore every pair of norms on 𝒜 are equivalent,
there exist 𝑐, 𝐶 > 0 with

∀𝑢 ∈ 𝒜 ∶ 𝑐‖𝑢‖∞,𝐾 ≤ ∫|𝑢| d𝑃 ≤ 𝐶‖𝑢‖∞,𝐾.
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In fact, an upper bound 𝐶 can be given easily: For each 𝑢 ∈ 𝒜 and 𝑧 ∈ ℝ it
follows

∫|𝑢(𝑧)| d𝑃(𝑧) ≤ |𝑢(𝑧)̱| + ∣𝑢( ̄𝑧) − 𝑢(𝑧)̱
̄𝑧 − 𝑧̱ ∣ ∫|𝑧 − 𝑧|̱ d𝑃(𝑧)

≤ ‖𝑢‖∞,𝐾 (1 + 2| ̄𝑧 − 𝑧|̱-1∫|𝑧 − 𝑧|̱ d𝑃(𝑧))
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=∶𝐶

.

Also, notice that any bounded subset 𝒰⊆ 𝒜 is uniformly Lipschitz continu-
ous: For each 𝑢 ∈ 𝒰 it follows

‖𝑢′‖∞ = ∣𝑢( ̄𝑧) − 𝑢(𝑧)̱
̄𝑧 − 𝑧̱ ∣ ≤ 2| ̄𝑧 − 𝑧|̱-1‖𝑢‖∞,𝐾.

Since this approach does not generalize well to infinite dimensional spaces,
we will equip 𝒜 with the norm ‖ ⋅ ‖∞,𝐾 instead of ‖ ⋅ ‖ℒ1(𝑃 ,ℝ).

Adapting for Theorem 3.14

Define

ℰ = ℱ = ℱ0 = ⋯ = {𝑢1 × 𝑢2 × ⋯ × 𝑢𝑚 | 𝑢1, 𝑢2, … , 𝑢𝑚 ∈ 𝒜}

with
‖𝒖‖ℰ ∶= max

1≤𝑗≤𝑚
‖𝑢𝑗‖∞,𝐾.

If ℱ0 contains the solution �̌�, then the extremum existmator 𝒖∗
𝑛 converges

to �̌� almost surely.
In applications, we can simply choose 𝜏 ̱ and ̄𝜏 , as the values of 𝑧̱ and ̄𝑧 are

not needed for estimation. In general, we can not provide a finite dimensional
space which already contains �̌�, and approximation techniques are required.
It that case, the specific values of 𝜏 ̱ and ̄𝜏 become more important.

3.3.2 A Lipschitz Continuous Inverse Clock Model
The affine linear inverse clock model can be generalized in a natural way by
adding continuous functions whose support is in 𝐾 = [𝑧,̱ ̄𝑧], which coincides
with the approach stated in Section 2.4 on page 24. Again, the approach can
be extended to include periodic terms.
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Let 𝑃 be some probability measure on ℝ with ∫|𝑧| d𝑃(𝑧) < ∞, denote
the set of affine linear functions from ℝ into ℝ by 𝒜, and denote the set
of continuous functions from ℝ into ℝ with support in 𝐾 by 𝒞0(𝐾, ℝ). Let
𝒦 be a closed and convex subset of 𝒞0(𝐾, ℝ) which is uniformly Lipschitz
continuous; that is

sup
𝑣∈𝒦

‖𝑣′‖∞ < ∞.

Now, consider the Banach space

𝒜 + 𝒞0(𝐾, ℝ) = {𝑣 + 𝑤 | 𝑣 ∈ 𝒜, 𝑤 ∈ 𝒞0(𝐾, ℝ)}

equipped with the sup-norm ‖ ⋅ ‖∞,𝐾 on 𝐾, and the closed convex subset

𝒜 + 𝒦= {𝑣 + 𝑤 | 𝑣 ∈ 𝒜, 𝑤 ∈ 𝒦}.

Notice that 𝒜+𝒞0(𝐾, ℝ) is continuously embedded into ℒ1(𝑃 , ℝ), and 𝒜+𝒦
is locally compact, as 𝒜 is finite dimensional and 𝒦 is compact by Arzelà-
Ascoli theorem[1]. In particular, each bounded subset of 𝒜 + 𝒦 is compact
and uniformly Lipschitz continuous. Further, 𝒜 + 𝒞0(𝐾, ℝ) is isometrically
isomorphic to 𝒞(𝐾, ℝ), again by restricting onto 𝐾, and 𝒜+𝒦is isometrically
isomorphic to some locally compact subset of 𝒞(𝐾, ℝ).

Adapting for Theorem 3.14

Let ℒ𝑖𝑝0(𝐾, ℝ; 𝐿) denote the set of Lipschitz continuous function from ℝ
into ℝ with constant 𝐿 and support in 𝐾. Define

ℰ = {𝑢1 × 𝑢2 × ⋯ × 𝑢𝑚 | 𝑢1, 𝑢2, … , 𝑢𝑚 ∈ 𝒜 + 𝒞0(𝐾, ℝ)},
ℱ = {𝑢1 × 𝑢2 × ⋯ × 𝑢𝑚 | 𝑢1, 𝑢2, … , 𝑢𝑚 ∈ 𝒜 + ℒ𝑖𝑝0(𝐾, ℝ; 𝐿)}.

For each 𝑛 ∈ ℕ ∪ {0} and 𝑗 ∈ {1, 2, … , 𝑚} let 𝒦𝑗,𝑛 ⊆ ℒ𝑖𝑝0(𝑄𝑗,𝑛(𝐼0); 𝐿𝑛) be
closed and convex, and define

ℱ𝑛 = {𝑢1 × 𝑢2 × ⋯ × 𝑢𝑚 | ∀𝑗 ∈ {1, 2, … , 𝑚} ∶ 𝑢𝑗 ∈ 𝒜 + 𝒦𝑗,𝑛}.

Assume that almost surely

𝐿0 ≤ lim inf
𝑛→∞

𝐿𝑛 ≤ lim sup
𝑛→∞

𝐿𝑛 ≤ 𝐿
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3.4 Incomplete Log-Sets, continued II

and that almost surely

∀𝑗 ∈ {1, 2, … , 𝑚}, 𝑢 ∈ 𝒦𝑗,0 ∶ dist(𝒦𝑗,𝑛, 𝑢) = 𝒪(√(log log 𝑛)/𝑛).

If ℱ0 contains �̌�, then the extremum estimator 𝒖∗
𝑛 converges to �̌� almost

surely.
Concerning the Lipschitz constants, 𝐿 and 𝐿0 are deterministic, and 𝐿𝑛

is an estimate for 𝐿0. The value of 𝐿 is irrelevant. However, 𝐿𝑛 needs
to be consistent in the sense stated above. Again, estimating 𝐿0 has little
practical value. In applications we simply guess 𝐿0 and set 𝐿𝑛 to a large
value accordingly, or completely ignore 𝐿𝑛.

Concerning the compact subsets 𝒜 + 𝒦𝑗,𝑛: They are random, as they
depend on 𝑄𝑗,𝑛(𝐼0), a random compact interval, and on 𝐿𝑛. A simple and
practical choice for 𝒦𝑗,𝑛 are the space of splines, as laid out in Section 2.4.

3.4 Incomplete Log-Sets, continued II
Concerning the case of incomplete log-sets (Problem 1.7 on page 14 with its
sample approximation Problem 2.5 on page 23), the solutions of Problem 2.5
converge to the unique solution of Problem 1.7 almost surely under similar
assumptions imposed in this chapter. The structure of Problems 1.7 and 2.5
is the same as one of Problems 1.5 and 2.1 on page 12 and on page 17.

Notice that we can simplify Problem 2.5 by exploiting Theorem 3.12 and
the linearity of differentiation. Assume that the network does not split into
two independent parts; that is

3.15 Assumption: For each non-empty 𝐽 ⊆ {1, 2, … , 𝑚} there exist 𝑗1 ∈ 𝐽 and
𝑗2 ∈ {1, 2, … , 𝑚} ∖ 𝐽 with

𝗣{𝑍𝑗1
, 𝑍𝑗2

∈ ℝ} > 0.

Further, if the sets in 𝒥 of Problem 1.7 have the same cardinality, then
Problem 1.7 and the following problem have the same optimizer:

3.16 Problem: With the same notation as in Problem 1.7 and assumed that
𝑚0 = |𝐽| for each 𝐽 ∈ 𝒥 : Minimize

1
|𝒥 | ∑

𝐽∈𝒥
𝗘[𝑓𝐽(𝒖; 𝒁) | 𝒁𝐽 ∈ ℝ𝐽]
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3 Consistency

subject to
ess sup
𝜏∈(0,1)

̃𝑔(𝒖; 𝑸0(𝜏)) = 0, 𝒖 ∈ ℰ,

where ̃𝑔 ∶ ℰ × ℝ𝑚 → ℝ is defined by

̃𝑔(𝒖; 𝒛) = ∣ 1
𝑚0|𝒥 | ∑

𝐽∈𝒥
∑
𝑗∈𝐽

𝑢𝑗(𝑧𝑗) − 1
𝑚

𝑚
∑
𝑗=1

𝑧𝑗∣.

Analogously to Problems 1.7 and 2.5, we can construct a consistent sample
approximation of Problem 3.16 using the same techniques. However, such
a sample approximation of Problem 3.16 will have substantially fewer con-
straints in its linear program formulation comparing to Problem 2.5.

Concerning Assumption 3.15, if the network does split into two indepen-
dent parts, say 𝐽1 ∪ 𝐽2 = {1, 2, … , 𝑚} with 𝐽1 ∩ 𝐽2 = ∅ and

∀(𝑗1, 𝑗2) ∈ 𝐽1 × 𝐽2 ∶ 𝗣{𝑍𝑗1
, 𝑍𝑗2

∈ ℝ} = 0,

then Problem 3.16 has infinitely many solutions. For the sake of simplicity,
this is illustrated in case of 𝒥 = {𝐽1, 𝐽2} with |𝐽1| = |𝐽2|. The general case
is analogous with additional scaling. Let �̌�1 × �̌�2 × ⋯ × �̌�𝑚 be a solution of
Problem 3.16, and let 𝛼 > 0. Then, the function �̃� = �̃�1 × �̃�2 × ⋯ × �̃�𝑚
defined by

�̃�𝑗 =
⎧{
⎨{⎩

�̌�𝑗 + 𝛼�̌�𝑗, 𝑗 ∈ 𝐽1,
�̌�𝑗 − 𝛼�̌�𝑗, 𝑗 ∈ 𝐽2,

is again feasible and has the same objective value as �̌�. In fact, �̃�1, �̃�2, … , �̃�𝑚
fail to be monotonic for sufficiently large 𝛼. However, if Assumption 3.15
holds, then we can establish that Problem 3.16 has exactly one solution in a
similar fashion as in Section 3.1.3 on page 41.
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Chapter 4

Simulations

Chapter 3 ensures that the conditional maximum likelihood estimates de-
fined in Chapter 2 converge to the solution of the offline synchronization
problem. However, for applications, it is also important to know how fast
the estimates converge, and when the asymptotic become effective. Notice
that the estimation error is mainly comprised of two factors, caused by the
sample average approximation and the inverse clock approximation. Thus,
the estimation error is expected to decrease with order 1

2 at least due to the
central limit theorem, and then stagnates as the approximation error of the
inverse clocks becomes dominant. The quality of the inverse clock approx-
imation is obviously determined by the regularity of the actual clocks, the
choice of the inverse clock model, and the distribution of the delays.

4.1 Methods

In the following simulations, clock functions and timestamps are generated
randomly for various parameters. Then, we compute the conditional maxi-
mum likelihood estimate and analyze the estimation error to find a depen-
dency with respect to the varying parameters. For the analysis, 100 log-sets
of each setup are generated randomly. In the following figures the bars show
the median estimation errors, and on the top of them the left and the right
hooks indicate the 50% and 95% inter quantile range.
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4 Simulations

4.1.1 Generating Log-Sets

We will simulate a setup with 𝑚 devices and 𝑛 events, where the correct
timestamps (without clock deviations and delays) are concentrated on the
compact interval [0, ̄𝜉] for some ̄𝜉 > 0. Every time related value is stated in
second. We consider ̄𝜉 = 20 ⋅ 60 as an example for shorter time periods and
̄𝜉 = 8 ⋅ 60 ⋅ 60 for longer time periods. If not mentioned explicitly, we have

𝑚 = 100 devices and 𝑛 = 105 events.

Random Clock Functions

We simulate the clock functions as twice continuous differentiable functions
with nearly constant first derivative and slightly oscillating second derivative.
This assumption is rather common in the synchronization community (com-
pare to [18]). Here, we choose the clock functions 𝐶1, 𝐶2, … , 𝐶𝑚 ∶ ℝ → ℝ
randomly with

1
𝑚

𝑚
∑
𝑗=1

𝐶𝑗 = idℝ

and such that each 𝐶𝑗 is the sum of an affine linear function and a cubic
spline with respect to some equidistant knot sequence 𝝃 = (𝜉0, … , 𝜉𝜈) of
[0, ̄𝜉] for 𝜈 ≥ 4. To achieve this some technical steps are necessary. Pick 𝛼0,𝑗,
𝑗 = 1, 2, … , 𝑚 (pseudo) randomly from a standard normal distribution and
𝛼1,𝑗, 𝛽𝑖,𝑗, 𝑖 = 1, 2, … , 𝜈 −3, 𝑗 = 1, 2, … , 𝑚 from a beta distribution according
with parameter (1

2 , 1
2) transformed onto the interval [−1, 1], Then, center the

values by redefining

𝛼𝑖,𝑗 ← 𝛼𝑖,𝑗 − 1
𝑚

𝑚
∑
𝑗′=1

𝛼𝑖,𝑗′, 𝑖 = 0, 1,

𝛽𝑖,𝑗 ← 𝛽𝑖,𝑗 − 1
𝑚

𝑚
∑
𝑗′=1

𝛽𝑖,𝑗′, 𝑖 = 1, 2, … , 𝜈 − 3.
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4.1 Methods

Finally, for some scale parameters 𝜎offset, 𝜎skew, 𝜎drift > 0 define 𝐶1, … , 𝐶𝑚
by

𝐶𝑗(𝑥) = 𝜎offset𝛼0,𝑗 + (1 + 𝜎skew𝛼1,𝑗)𝑥, 𝑥 ∈ {𝜉0, 𝜉𝜈},
𝐶′

𝑗(𝑥) = 1 + 𝜎skew𝛼1,𝑗, 𝑥 ∈ {𝜉0, 𝜉𝜈},
𝐶″

𝑗 (𝑥) = 0, 𝑥 ∈ {𝜉0, 𝜉𝜈},
𝐶″

𝑗 (𝜉𝑖) = 𝜎drift𝛽𝑖,𝑗, 𝑖 = 2, … , 𝜈 − 2.

Then, the clock functions are strictly increasing for 𝜎skew, 𝜎drift ≪ 1 and are
correct in average by construction.

For the simulation we choose the default values 𝜈 = 9 (or 6 cubic B-spline
basis functions), 𝜎offset = 100, 𝜎skew = 10−5, and 𝜎drift = 10−9. Notice that
the rate error is dominated by 𝜎skew for shorter time periods, whereas for
longer time periods 𝜎drift dominates the rate error. The transition is around
̄𝜉 = 104.

Random Timestamps

The correct timestamps (without clock deviations and delays) 𝑡1, 𝑡2, … , 𝑡𝑛 are
generated according to the uniform distribution on [0, ̄𝜉] plus some Gaussian
noise with variance much less than ̄𝜉/𝑛. This ensures the theoretical condi-
tion that the timestamps are supported on the complete real line. However,
concerning applications, the timestamps remain basically bounded. Then,
per device, we add to 𝑡𝑘 a delay 𝑑𝑗,𝑘 that is exponentially distributed with
mean 𝜇delay and apply the clock function 𝐶𝑗,

𝑧𝑗,𝑘 ∶= 𝐶𝑗(𝑡𝑘 + 𝑑𝑗,𝑘),

to yield the final timestamp 𝑧𝑗,𝑘. For the simulation, the default mean delay
𝜇delay is 10−4.

Censoring

To simulate incomplete log-sets, for 𝑚 ≥ 𝑚group ≥ 1 consider the system

𝒥 = {{𝑗, 𝑗 ⊕ 1, … , 𝑗 ⊕ (𝑚group − 1)} | 1 ≤ 𝑗 ≤ 𝑚},

where ⊕ denotes the addition modulus 𝑚 in {1, 2, … , 𝑚}. For each event
𝑘 ∈ {1, 2, … , 𝑛}, choose a subset 𝒥𝑘 ⊆ 𝒥 to determine the receivers of the
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event 𝑘; that is, for each 𝑗 ∉ ⋃ 𝒥𝑘 redefine

𝑧𝑗,𝑘 ← ∞.

We assume that the cardinality |𝒥𝑘| is geometric distributed with success
probability 𝜋group ∈ (0, 1]. That is, the probability is 𝜋group(1 − 𝜋group)𝑙−1

for |𝒥𝑘| = 𝑙. The parameter 𝑚group is referred to as group size, each set in
𝒥𝑘 as a observer group of event 𝑘, and |𝒥𝑘| as numbers of observer groups of
event 𝑘.

In the case of 𝑚group = 𝑚, the log-sets are complete. In the case of
𝑚group ≪ 𝑚, the synchronization problem is sparse yet does not break into
two independent subproblems (compare to Assumption 3.15 on page 51).
Notice that this setup reflects the local broadcast network, as nodes in a
“neighborhood” share common events. However, the neighborhood is not en-
tirely static, but also has non-deterministic elements. If not stated otherwise,
we use 𝑚group = 5 and 𝜋group = 1

2 by default.

4.1.2 Conditional Maximum-Likelihood Estimate
The conditional maximum likelihood estimate is computed according to Prob-
lem 2.3 on page 19 with a B-spline inverse clock model for each device. For
the sake of simplicity, each inverse clock model employs the same dimension
𝑑est ≥ 1, and encompasses the probability range from 𝜏 ̱ ∈ (0, 1) to ̄𝜏 = 1 − 𝜏 ̱
(compare to Section 3.3 on page 47 and Section 2.4.3 on page 30).

As the clock functions are only twice continuously differentiable, linear B-
spline inverse clock models shall be sufficient, which admit the approximation
order 2 (compare to Section 2.4.2 on page 27). However, the simulated clock
functions are locally polynomial. A higher degree spline estimate may benefit
from the local regularity. Thus, we will vary the degree of the estimating
splines in the following.

For numerical reasons, the estimate is computed using standardized time-
stamps given by

̃𝑧𝑗,𝑘 = 𝑧𝑗,𝑘 − 𝜇𝒛
𝜎𝒛

,

where
𝜇𝒛 = 1

𝑚
𝑚

∑
𝑗=1

mean{𝑧𝑗,𝑘 | 𝑧𝑗,𝑘 < ∞, 1 ≤ 𝑘 ≤ 𝑛}
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is the average sample mean, and

𝜎𝒛 = 1
𝑚

𝑚
∑
𝑗=1

std{𝑧𝑗,𝑘 | 𝑧𝑗,𝑘 < ∞, 1 ≤ 𝑘 ≤ 𝑛}

is the average sample standard deviation. The parameters 𝜇𝒛 and 𝜎𝒛 can also
be replaced by the average of other location and scale parameters, like sample
median and sample inter quantile range. To compensate the standardization,
the estimates need to be rescaled too.

As default, we set 𝜏 ̱ = 5 ⋅ 10−3 and 𝑑est = 16 (2 for the linear term, 14
for the B-spline term). Unlike in Problem 2.3 and Section 3.3, we simply fix
𝜂𝑛 = 10−12.

4.1.3 Measuring Estimation Error
The solution of the synchronization problem is given by the inverse functions
of 𝐶1, 𝐶2, … , 𝐶𝑚. However, we can not compute them explicitly. This makes
comparing the estimates �̂�1, �̂�2, … , �̂�𝑚 with 𝐶 -1

1 , 𝐶 -1
2 , … , 𝐶 -1

𝑚 difficult. Instead,
for a given estimate �̂�𝑗 to the solution 𝐶 -1

𝑗 consider following integral

1
̄𝜉 ∫

̄𝜉

0
|�̂�𝑗(𝐶𝑗(𝑥)) − 𝑥| d𝑥 = 1

̄𝜉 ∫
𝐶𝑗( ̄𝜉)

𝐶𝑗(0)
|�̂�𝑗(𝑧) − 𝐶 -1

𝑗 (𝑧)|(𝐶 -1
𝑗 )′(𝑧) d𝑧. (4.1)

That is, the left hand side of Equation (4.2) is the weighted ℒ1 error with
weight (𝐶 -1

𝑗 )′/ ̄𝜉. For the complete estimate �̂�, we employ the average ℒ1

error
1

̄𝜉 ∫
̄𝜉

0

1
𝑚

𝑚
∑
𝑗=1

|�̂�𝑗(𝐶𝑗(𝑥)) − 𝑥| d𝑥. (4.2)

The average error measures the distance of the estimates to the inverse
clock functions. However, in many applications, it is sufficient that the esti-
mates are similar to the inverse clock functions modulo some common global
transformation; that is, the following average standard deviation

1
̄𝜉 ∫

̄𝜉

0

√√√
⎷

1
𝑚

𝑚
∑
𝑗=1

(�̂�𝑗(𝐶𝑗(𝑥)) − 1
𝑚

𝑚
∑
𝑗′=1

�̂�𝑗′(𝐶𝑗′(𝑥)))
2

d𝑥 (4.3)

is small.
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For the simulation results presented in the following, the integrals in
Equations (4.2) and (4.3) are approximated using the componsite Simpson’s
rule with 1024 equidistant subintervals. The quadrature error will be suffi-
ciently small, as the integrands are piecewise smooth according to a much
coarser partition, and the higher order derivatives are small in comparison.
We need approximate the integrals to high precision, as we are interested in
the magnitude of the errors only.

4.2 Linear Estimates, a Reference Point
A reliable and accurate synchronization method was presented in [22] using
an affine linear inverse clock model for timestamps in a 1200 seconds range.
As the setup of [22] is slightly different from the one in this thesis, we pro-
vide some results for the sake of comparison. Notably, the normalization is
handled differently. In [22], the estimates �̂�1, �̂�2, … , �̂�𝑚 of the inverse clock
functions are normalized such that

1
𝑚

𝑚
∑
𝑗=1

�̂�𝑗 = idℝ

holds, without using the sample quantiles, unlike in this thesis (compare to
Problem 2.1 on page 17). Generalizing that approach to arbitrary inverse
clock models is not straightforward, and it is not clear how to establish
consistency in that setting.

Different from the default setup (Section 4.1), let the clock functions and
the estimates be affine linear, and let ̄𝜉 = 20⋅60. Figure 4.1 on the next page
shows the estimation error for different group sizes (𝑚group). The results for
𝑚group = 5 and 10 are very comparable to the results in [22]. The estimator
presented there stagnates pretty fast. Whereas the estimator presented in
this thesis improves further with order 1

2 beyond the cited estimator. Re-
member that the order 1

2 decrease was anticipated and is typical for most
sample average approximation techniques.

58



4.3 Piecewise Linear Estimates

Figure 4.1: Group Size Dependence (Linear Clocks and Estimates)
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4.3 Piecewise Linear Estimates

To handle non-linear clock deviations, we could divide the log-sets in smaller
subsets, each within shorter time periods. Obviously, that makes the esti-
mates discontinuous. Also, each subinterval will not benefit from the data
in other subintervals. However, that approach provides a useful baseline for
comparison. We concentrate on the default case of 𝑚group = 5, on a longer
interval, say with ̄𝜉 = 8 ⋅ 60 ⋅ 60. In the following, the case of 1 subinterval
reduces to an affine linear inverse clock model and is given as reference. For
the case of 𝑘 > 1 subintervals, the probability range [𝜏 ,̱ ̄𝜏 ] is divided into 𝑘
subintervals of equal length. That is, the inverse clock estimates are (not
necessarily continuous) piecewise linear polynomials.

Let us consider linear clock functions first with piecewise linear estimates.
Figure 4.2 on the following page shows higher estimation errors compared to
Figure 4.1, even in the globally linear case. This does not surprise, as the
timestamps have absolutely higher values. However, the error does not scale
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Figure 4.2: Linear Clocks and Piecewise Linear Estimates
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Figure 4.3: Non-Linear Clocks and Piecewise Linear Estimates
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proportional to the interval length ̄𝜉, which increases by factor 24, whereas
the estimation error increases roughly by factor 5 only. Unfortunately, the
error of the piecewise linear cases is much higher than the globally linear
case, particularly visible in the case of 105 events. This stark difference can
not be explained by the lower number of events per subinterval alone. In
fact, the piecewise linear estimates decrease slightly slower than the global
one. Notice that overfitting is a common problem of regression techniques.
Fortunately, the effect is less prominent if we consider the piecewise linear
estimates alone.

Finally, we introduce non-linear clock deviations into the simulation. Fig-
ure 4.3 on page 60 shows that the approximation error dominates the estima-
tion error. The globally linear and piecewise linear estimates perform much
worse than in the case of linear clock deviations. Yet, the piecewise linear
estimates perform much better than the globally linear one, particularly in
the case of many subintervals. In the case of 4 and less subintervals, the
estimation error hardly improve for increasing event numbers. This behavior
is expected, as the clock functions are cubic splines on 9 subintervals. In the
case of 8 and more subintervals, the estimation error decreases with order 1

2
at the beginning and then slows down.

As piecewise linear polynomials have the approximation order 2, we may
also expect that the estimation error decreases with order 1.5 when the length
of subintervals decreases. That is, the error shall decrease by a factor

1
2
√

2
≈ 10−0.45

as the length of subintervals halves. Figure 4.3 exhibits clearly that behavior.
Compare the estimation error for different numbers of subintervals when they
stagnate. In the most cases the error decreases roughly by a factor 10−0.5

when the number of subintervals doubles. The only anomaly is the case when
2 subintervals doubles to 4. Noteworthy, we need more events to realize the
higher approximation ability. For example, the 16 subintervals case improves
substantially over the 8 subintervals case not before 104 events.

Obviously, the number of events per subinterval decreases, if the num-
ber of subintervals increases. Thus, we can not employ arbitrarily many
subintervals. Also, there are twice many unknowns as subintervals for each
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Figure 4.4: Inverse Clock Dimension Dependence (Degree 1 Spline Estimates)
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inverse clock estimate. Thus, increasing the polynomial degree further is not
a favorable option. In summary, to handle non-linear deviations, we shall
investigate low dimensional estimates with high approximation order.

4.4 Spline Estimates
Similarly to the previous two sections, this section generates log-sets ran-
domly according to the default setting with spline estimates (Section 4.1 on
page 53). Again, we change the value of some specific parameters, like the
degrees of freedom or the delay mean, to gauge their influence.

4.4.1 Approximation Error
Consider degree 1 splines first, which are continuous piecewise linear poly-
nomials. We expect that the results are very comparable to those of the
piecewise linear estimates in the last section. In particular, the estimation
error should decreases with order 1

2 for increasing events and with order 1.5
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4.4 Spline Estimates

for increasing subintervals.

Figure 4.4 on page 62 shows the simulation results for different degrees
of freedom 𝑑est. The case 𝑑est = 2 reduces to the linear inverse clock model
and is given as reference. For the cases 𝑑est > 2, the probability range [𝜏 ,̱ ̄𝜏 ]
is divided equidistantly into 𝑑est −1 subintervals. That is, with each bar, the
length of the subintervals is roughly halved. Figure 4.4 on page 62 confirms
our expectation. Noteworthy, the degree 1 spline estimate achieves similar
results with 𝑑est = 16 as the piecewise linear estimate on 16 subintervals with
32 unknowns. In other words, we can roughly half the estimate error with
the same computational effort.

Do the approximation order of the inverse clock model always transfer
to the estimation error? To obtain empirical evidence for that conjecture,
we repeat the simulation with cubic spline estimates. Although the clock
functions are globally twice continuously differentiable only, they are locally
smooth. Thus, we shall achieve the approximation order 3.5. In other words,
the estimation error decreases roughly by a factor 10−1 if the length of the
subintervals halves.

The cubic spline estimator performs as expected (Figure 4.5 on the next
page). The case of 𝑑est = 8 is notably better than the linear spline estima-
tor. Despite the immense amount of events, we see no benefit of 𝑑est = 32
over 𝑑est = 16. Putting that into perspective, 105 events in 8 hours means
about 4 events per second. The sample quantile functions offer a possible
explanation, as they determine the average of the clock estimates, and as
they converges with an order lower than 1

2 in general. In fact, the aver-
age standard deviation shows that the inverse clock estimates are similar to
each other (Figure 4.6 on the following page). Thus, just their mean is off.
This indicates that the estimation accuracy is limited by the sample quantile
functions and not by the approximation ability of the splines. Noteworthy,
the presented method reduces the clock deviations below 10 microseconds in
an average over 8 hours, or about 0.3 nanoseconds per second, a stability
comparable to a GPS disciplined oscillator.
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Figure 4.5: Inverse Clock Dimension Dependence (Degree 3 Spline Estimates)
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Figure 4.6: Inverse Clock Dimension Dependence (Degree 3 Spline Estimates)
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4.5 Incorrect Models

Figure 4.7: Clock Drifts vs Delays
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4.4.2 Delays versus Clock Drifts
Reassessing the cubic estimates (Figure 4.5 on page 64), the approximation
error plays a minor part in the estimation error for the case 𝑑est = 16 in-
dependent of the event numbers up to 105. Using this, we can analyze the
influence of the clock drifts and the delays and simulate the setup for various
values of drift scale parameter 𝜎drift and the delay mean parameter 𝜇delay.

Figure 4.7 shows that the estimation error decreases linearly with the
drift scale parameter and also with the delay mean until it stagnates. In fact,
the clock drifts and the delays are interacting with and limiting each other.
Notice that the difference between drift scale parameter 10−10 and 10−9 is
rather insignificant. Also, delay mean lower than 10−3 shows little effect.

4.5 Incorrect Models
Some employed assumptions are overly simplified and not realistic. For ex-
ample, in a complex device like a computer, various components cause delays.
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Thus, the delay in a timestamp is likely not exponentially distributed. Here,
we also consider gamma distribution, which includes the exponential dis-
tribution as special case. Also, network devices of various types and from
various manufacturers are used in larger experiments. Thus, the delays are
not identically distributed in general.

Further, the censoring and the values of the timestamps are not neces-
sarily dependent. For example, a device traveling through a tunnel and
temporarily losing the connection would result in incomplete communica-
tions and incomplete logs. Such kind of gap is time dependent and is not
modeled by our timestamp model. Obviously, a large gap might alter the
sample distribution gravely. In particular, we will not be able to use the
sample quantile function for synchronization. Thus, we will alter the simu-
lation setup to gauge the robustness of the estimator with respect to these
modeling errors.

4.5.1 Gamma or Non Identically Distributed Delays

Figure 4.8 on the next page shows the simulation result with gamma dis-
tributed delays according to different parameters. They are chosen such that
the delay mean remains 𝜇delay = 10−4, yet the variance 𝜎delay ranges be-
tween 10−12 and 10−4. The 𝜎delay = 10−8 case reduces to the exponential
distribution.

The 𝜎delay ≤ 10−8 cases show surprisingly few difference, and each of them
also exhibits order 1

2 decrease. A possible explanation is that the delays can
be viewed as sums of many independent exponentially distributed delays
(with even lower mean). On the other hand, the 𝜎delay > 10−8 cases do not
have such convenient interpretation. Although, the 𝜎delay = 10−6 case shows
similar asymptotic, the 𝜎delay = 10−4 case is significantly different.

As for non identically distributed delays, we choose the delay mean, de-
vice dependent, randomly according to the gamma distribution with mean
𝜇delay = 10−4 and different variance, which we call delay mean variation for
the sake of clarity. Figure 4.9 on the facing page shows that the estimation
error exhibit much stronger fluctuations for higher delay mean variations.
However, lower variations have little influence and the asymptotic is pre-
served.
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4.5 Incorrect Models

Figure 4.8: Variance Dependence (Gamma Distributed Delays)
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Figure 4.9: Delay Mean Variation
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4 Simulations

In summary, the simulations indicate that the presented approach might
remain valid for particularly (non necessarily identically) gamma distributed
delays.

4.5.2 Dependent Censoring
Remember, the set of devices is divided into groups by the system 𝒥 , and
an event is observed by groups randomly chosen from 𝒥 where the number
of groups per event is geometric distributed. For sake of simplicity, we drop
the geometric distribution and assume that each event has exactly a group
of observers. Thus, the probability for a group 𝐽 ∈ 𝒥 observes an particular
event is constantly 1𝑚 over the time. Now, we alter that probability time
dependently.

Assume that the number of groups is even and divide 𝒥 into two disjoint
subsystems 𝒥1 and 𝒥2 of the same size. To be more precise, let

𝒥1 = {{𝑗, 𝑗 ⊕ 1, … , 𝑗 ⊕ (𝑚group − 1)} | 1 ≤ 𝑗 ≤ 𝑚
2 },

𝒥2 = {{𝑗, 𝑗 ⊕ 1, … , 𝑗 ⊕ (𝑚group − 1)} | 𝑚
2 ≤ 𝑗 ≤ 𝑚},

where ⊕ again denotes the addition modulus 𝑚 in {1, 2, … , 𝑚}. For each
event, choose randomly a subset 𝐽 ∈ 𝒥 as group of observers where the
subsets in 𝒥1 have the probability 𝜋censor/𝑚 and the subsets in 𝒥2 have
the probability (1 − 𝜋censor)/𝑚 for some 𝜋censor ∈ (0, 1). The experiment is
divide into two periods of the same length over the time. In the first period
we set 𝜋censor = 1

4 and in the second period 𝜋censor = 3
4 . Thus, there are

more observed events for devices in ⋃ 𝒥1 in the second half of the simulation.
Therefor, the sample median of the timestamps of these devices is higher
compared to the independent censoring case. A similar argument applies to
other sample quantiles. By a symmetric argument the sample quantiles of
the devices in ⋃ 𝒥2 are lower compared to the independent censoring case. In
particular, we can not longer rely on the sample quantiles to fix the average
of the clock estimates. Figure 4.10 on the next page confirms our expectation
and shows that our method performs poorly in case of dependent censoring.

In that particular case, in which the probability 𝜋censor changes suddenly,
we can try to separate the events before and after the change by analyzing
the relative frequency of each group. However, such an ad-hoc fix does not
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4.5 Incorrect Models

Figure 4.10: Independent vs Dependent Censoring
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apply if the probability 𝜋censor changes continuously with the time. A proper
censor model is still an open problem.
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Chapter 5

A Bottom Line and Beyond

This thesis provides a flexible, efficient, and consistent framework to approx-
imate the solution of the offline synchronization problem using maximum-
likelihood estimation techniques. Numerical simulations display much higher
accuracy than indicated by the theoretical results. Thus, the presented ap-
proach is not only sound in theory but also efficient in applications.

Although designed with a generic spline inverse clock model in mind, it
can be instantly replaced by a more sophisticated inverse clock model to in-
clude additional prior knowledge. Although estimating non-linear functions,
the shown estimates are just solutions of large linear programs. Although
using the conditional probability of the delays only, the estimator is strongly
consistent.

There is more to do however. Practical applications need to be able
to handle incomplete log-sets with dependent censoring. We also like to
adaptively refine the inverse clock model. Finally, we like to establish a
convergence order for the estimates. As for the last item, the framework
of sample average approximation seems to be promising. As for adaptive
refinement of the model, the B-spline inverse clock model shall be sufficiently
flexible. As for dependent censoring, the framework of time series may be
useful. For these open issues, the method shown in this thesis provides a
solid starting point.
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Appendix A

Basics

A.1 Dominated Convergence
A.1 Theorem (Compare to [8]):

Let 𝑃 be a probability measure on ℝ𝑚.

Let (𝑓𝑛)𝑛∈ℕ be a sequence of measurable functions from ℝ𝑚 into ℝ which
converges 𝑃 -almost everywhere pointwise to 𝑓 ∶ ℝ𝑚 → ℝ.

Let (𝑔𝑛)𝑛∈ℕ be a sequence of ℒ1(𝑃 , ℝ) functions which converges to 𝑔 ∈
ℒ1(𝑃 , ℝ) in ℒ1.

For every 𝑛 ∈ ℕ let |𝑓𝑛| ≤ 𝑔𝑛 hold 𝑃 -almost everywhere.

Then, 𝑓𝑛, 𝑛 ∈ ℕ, and 𝑓 are ℒ1 with 𝑓𝑛 → 𝑓 in ℒ1.

A.2 Absolutely Continuous Functions
A.2 Definition: Let 𝐼 ⊆ ℝ be an interval.

A function 𝑓 ∶ 𝐼 → ℝ is called absolutely continuous, if for every 𝜀 > 0
there is some 𝛿 > 0 such that for every 𝑎1, 𝑎2, … , 𝑎𝑛, 𝑏1, 𝑏2, … , 𝑏𝑛 ∈ 𝐼 with
𝑎1 < 𝑏1 ≤ 𝑎2 < 𝑏2 ≤ ⋯ ≤ 𝑎𝑛 < 𝑏𝑛 and

𝑛
∑
𝑖=1

𝑏𝑖 − 𝑎𝑖 < 𝛿
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A Basics

follows
𝑛

∑
𝑖=1

|𝑓(𝑏𝑖) − 𝑓(𝑎𝑖)| < 𝜀.

A function 𝑓 ∶ 𝐼 → ℝ is called locally absolutely continuous, if for every
compact subinterval 𝐾 ⊆ 𝐼 the restriction 𝑓|𝐾 is absolutely continuous.

Notice that a locally absolutely continuous function is continuous, and
if it is absolutely continuous, then it is uniformly continuous. Further, a
(locally) Lipschitz continuous function is (locally) absolutely continuous.

A.3 Theorem (Fundamental Theorem of Calculus, Compare to [24]):
Let 𝐼 ⊆ ℝ be an interval and 𝑓 ∶ 𝐼 → ℝ. Then, 𝑓 is (locally) absolutely
continuous, if and only if 𝑓 is almost everywhere differentiable, 𝑓 ′ is (locally)
integrable, and for every 𝑎, 𝑏 ∈ 𝐼 it follows

𝑓(𝑏) − 𝑓(𝑎) = ∫
𝑏

𝑎
𝑓 ′(𝑡) d𝑡.

A.4 Theorem (Integration by Parts, Compare to [24]):
Let 𝐼 = [𝑎, 𝑏] ⊆ ℝ be a compact interval and 𝑓, 𝑔 ∶ 𝐼 → ℝ be absolutely
continuous. Then, it follows

∫
𝑏

𝑎
𝑓 ′(𝑡)𝑔(𝑡) d𝑡 = 𝑓(𝑏)𝑔(𝑏) − 𝑓(𝑎)𝑔(𝑎) − ∫

𝑏

𝑎
𝑓(𝑡)𝑔′(𝑡) d𝑡.

A.5 Theorem (Integration by Substitution, Compare to [24]):
Let 𝐼, 𝐽 ⊆ ℝ be compact intervals, let 𝜙 ∶ 𝐼 → 𝐽 be absolutely continuous
and strictly monotone, and let 𝑓 ∶ 𝐽 → ℝ be integrable. Then, 𝑓 ∘ 𝜙 ⋅ 𝜙′ is
integrable, and for each 𝛼, 𝛽 ∈ 𝐼 it follows

∫
𝜙(𝛽)

𝜙(𝛼)
𝑓(𝑡) d𝑡 = ∫

𝛽

𝛼
𝑓(𝜙(𝜏))𝜙′(𝜏) d𝜏.

A.2.1 About the Inverse Function
A.6 Theorem (Compare to [28]):

Let 𝐼 ⊆ ℝ be a compact interval and 𝑓 ∶ 𝐼 → ℝ be absolutely continuous.
Assume that 𝑓 ′ is almost everywhere positive (or negative). Then, 𝑓 is
strictly increasing (or decreasing), and its inverse function 𝑓 -1 ∶ 𝑓(𝐼) → 𝐼 is
absolutely continuous.
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A.2 Absolutely Continuous Functions

A.2.2 Differentiation of Integrals
There are many differentiation of integral type theorems. The most well-
known variants base on dominated convergence theorem (compare to the
literature, like [8]). If we assume slightly stronger regularity, we can replace
the dominated convergence argument with an Fubini type argument and
obtain following variant here, which is more suitable for this thesis.

A.7 Theorem:
Let 𝐼 ⊆ ℝ be a non-trivial interval, and let 𝑃 be probability measure on ℝ𝑚.
Further, let 𝑓 ∶ 𝐼 ×ℝ𝑚 → ℝ be such that for every 𝑡 ∈ 𝐼 the function 𝑓(𝑡, ⋅ ) is
𝑃 -integrable, and such that for 𝑃 -almost every 𝒙 ∈ ℝ𝑚 the function 𝑓( ⋅ , 𝒙)
is absolutely continuous. Assume that 𝑡0 ∈ 𝐼 and 𝑔 ∈ ℒ1(𝑃 , ℝ) satisfy

lim
𝑡→𝑡0

∫|𝜕𝑡𝑓(𝑡, ⋅ ) − 𝑔| d𝑃 = 0.

Then, the function 𝐹 ∶ 𝐼 → ℝ defined by

𝐹(𝑡) = ∫ 𝑓(𝑡, ⋅ ) d𝑃 ,

is differentiable at 𝑡0 with the derivative

𝐹 ′(𝑡0) = ∫ 𝑔 d𝑃 .
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Appendix B

Extremum Estimator and
Stochastic Programming

In statistical inference, an extremum estimate arises as the optimizer (or
rather the set of optimizers) of an optimization problem whose objective
function and feasible set depend on random data. Like in the deterministic
case, the theory of convex programs is much easier, and it is fortunately also
sufficient for the application in this thesis.

Consider the following setting: Let 𝑋 be a closed convex subset of some
Banach space such that 𝑋 as topological subspace is locally compact. For
each 𝑛 ∈ ℕ ∪ {0} let 𝑓𝑛 be a random convex and continuous function from
𝑋 into ℝ, let 𝑆𝑛 be a random closed convex subset of 𝑋, and let 𝑓∗

𝑛 denote
the infimum and 𝑆∗

𝑛 denote the set of minimizers of the problem

minimize 𝑓𝑛(𝑥) subject to 𝑥 ∈ 𝑆𝑛. (P𝑛)

Assume that (𝑓𝑛, 𝑆𝑛) converges to (𝑓0, 𝑆0) in some to be specified sense,
that (𝑓0, 𝑆0) is deterministic, also that 𝑆∗

0 is non-empty and compact. Does
(𝑓∗

𝑛, 𝑆∗
𝑛) converge to (𝑓∗

0 , 𝑆∗
0)? This chapter provides a positive answer under

reasonable conditions. The result is proven for the deterministic case first
and then extended to a stochastic setting.

Notice that the subject is rather standard in statistical inference and is
covered by many authors, for example by [23]. As the treatment there is
less specific, we elaborate the result here specifically for our application. In
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particular, the approach to the feasible set 𝑆𝑛 is less standard.

B.1 About Notations
In the following, each topological notion is to be understood relatively to 𝑋.
For example, 𝑆 ⊆ 𝑋 is open if 𝑆 is open in 𝑋, or the interior of 𝑆 is the
largest subset of 𝑆 which is open in 𝑋. Also, for 𝑛 ∈ ℕ ∪ {0} and 𝜀 > 0
denote the set of 𝜀-suboptimizers of 𝑓𝑛 on 𝑆𝑛 by

𝑆∗
𝑛(𝜀) = {𝑥 ∈ 𝑆𝑛 | 𝑓𝑛(𝑥) < 𝑓∗

𝑛 + 𝜀},
and for 𝛿 > 0 denote the 𝛿-neighborhood of 𝑆∗

0 by

𝑈𝛿 = {𝑥 ∈ 𝑋 | ∃𝑆∗
0 ∈ 𝑆∗

0 ∶ ‖𝑥 − 𝑆∗
0‖ < 𝛿}.

Further, the following generic notations make the discourse more concise:

For a metric space (𝑀, 𝑑𝑀), some 𝑎 ∈ 𝑀 , and subsets 𝑈, 𝑆, 𝑇 ⊆ 𝑀 let

dist(𝑎, 𝑆) = dist(𝑆, 𝑎) = inf
𝑦∈𝑆

𝑑𝑀(𝑎, 𝑦) ∈ [0, ∞],

dev(𝑆, 𝑇 ) = sup
𝑥∈𝑆

dist(𝑥, 𝑇 ) ∈ {−∞} ∪ [0, ∞],

dev𝑈(𝑆, 𝑇 ) = dev(𝑈 ∩ 𝑆, 𝑈 ∩ 𝑇 ),
dist(𝑆, 𝑇 ) = max{dev(𝑆, 𝑇 ), dev(𝑇 , 𝑆)}.

For metric spaces (𝑀, 𝑑𝑀), (𝑁, 𝑑𝑁), 𝑓 ∶ 𝑀 → 𝑁 , we denote the (global)
modulus of continuity of 𝑓 by ω𝑓 ∶ [0, ∞] → [0, ∞], defined by

ω𝑓(𝛿) ∶= sup{𝑑𝑁(𝑓(𝑥), 𝑓( ̃𝑥)) | 𝑥, ̃𝑥 ∈ 𝑀, 𝑑𝑀(𝑥, ̃𝑥) ≤ 𝛿}.
Further, for any 𝑆 ⊆ 𝑀 , let

ω𝑓(𝛿, 𝑆) ∶= ω𝑓|𝑆(𝛿).

For normed spaces 𝐸, 𝐹 , 𝑆′ ⊆ 𝑆 ⊆ 𝐸, a function 𝑓 ∶ 𝑆 → 𝐹 , we denote
the sup-norm of 𝑓 restricted to 𝑆′ by

‖𝑓‖𝑆′ ∶= ‖𝑓|𝑆′‖∞ ∶= sup
𝑥∈𝑆′

‖𝑓(𝑥)‖ ∈ [0, ∞].

Finally, the abbreviations a.s. for almost surely and a.e. for almost
every(where) are used extensively.
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B.2 The Deterministic Case

B.2 The Deterministic Case
In this section, we additionally assume that 𝑓𝑛 and 𝑆𝑛 are deterministic for
each 𝑛 ∈ ℕ. This assumption will not be explicitly mentioned again.

B.1 Theorem:
Under the established setting: Assume, for each 𝛿 > 0,

lim inf
𝑛→∞

inf
𝑆𝑛∖𝑈𝛿

𝑓𝑛 > 𝑓∗
0 ,

and
lim sup

𝑛→∞
𝑓∗

𝑛 ≤ 𝑓∗
0 .

Then, for each zero sequence (𝜀𝑛)𝑛∈ℕ of positive numbers, it follows

lim
𝑛→∞

dev(𝑆∗
𝑛(𝜀𝑛), 𝑆∗

0) = 0.

In particular, if 𝑆∗
0 is a singleton, then it also follows

lim
𝑛→∞

dist(𝑆∗
𝑛(𝜀𝑛), 𝑆∗

0) = 0.

Proof: Fix 𝛿 > 0. Notice that 𝑓∗
𝑛 is finite for sufficiently large 𝑛, as 𝑓𝑛 is

bounded from below by 𝑓∗
0 on 𝑆𝑛 ∖ 𝑈𝛿, and 𝑓𝑛 is continuous on the closure

of 𝑆𝑛 ∩ 𝑈𝛿, which is compact. Thus, 𝑆∗
𝑛 and 𝑆∗

𝑛(𝜀𝑛) are non-empty.
By assumption, there are 𝜀 > 0 and 𝑛1 ∈ ℕ with

∀𝑛 ≥ 𝑛1 ∶ 𝑓∗
0 + 𝜀 ≥ 𝑓∗

𝑛 > −∞

and
∀𝑛 ≥ 𝑛1 ∶ inf

𝑆𝑛∖𝑈𝛿
𝑓𝑛 ≥ 𝑓∗

0 + 2𝜀 ≥ 𝑓∗
𝑛 + 𝜀.

Thus, for each 𝑥 ∈ 𝑆𝑛 ∖ 𝑈𝛿, it follows 𝑓𝑛(𝑥) ≥ 𝑓∗
𝑛 + 𝜀 and 𝑥 ∈ 𝑆𝑛 ∖ 𝑆∗

𝑛(𝜀).
Now, let 𝑛2 ∈ ℕ with

∀𝑛 ≥ 𝑛2 ∶ 𝜀𝑛 < 𝜀.
Then, for all 𝑛 ≥ 𝑛0 ∶= max{𝑛1, 𝑛2}, we have

𝑆∗
𝑛(𝜀𝑛) ⊆ 𝑆∗

𝑛(𝜀) ⊆ 𝑈𝛿

and
dev(𝑆∗

𝑛(𝜀𝑛), 𝑆∗
0) < 𝛿.
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B.2.1 Limit of the Minima
B.2 Theorem:

Under the established setting: Assume that

𝑓𝑛 converges uniformly to 𝑓0 on a compact neighborhood ̄𝑈 of 𝑆∗
0,

dev�̄�(𝑆𝑛, 𝑆0) converges to 0,

there exists a convergent sequence ( ̄𝑥𝑛)𝑛∈ℕ ∈ ∏𝑛∈ℕ 𝑆𝑛 with limit ̄𝑥0 ∈ 𝑆∗
0.

Then, it follows

1. lim inf𝑛→∞ inf𝑆𝑛∖𝑈𝛿
𝑓𝑛 > 𝑓∗

0 for each 𝛿 > 0,

2. lim inf (𝛿,𝑛)→(0,∞) inf𝑈𝛿
𝑓𝑛 ≥ 𝑓∗

0,

3. lim sup𝑛→∞ 𝑓∗
𝑛 ≤ 𝑓∗

0, and in particular,

4. lim𝑛→∞ 𝑓∗
𝑛 = 𝑓∗

0.

Concerning the assumptions: Since 𝑆∗
0 is compact, there exists some ̄𝛿 > 0

with 𝑆∗
0 ⊆ 𝑈 ̄𝛿 ⊆ ̄𝑈 . Further, dev�̄�(𝑆𝑛, 𝑆0) converges to 0 if and only if for

each infinite subset 𝐾 ⊆ ℕ and convergent sequence (𝑥𝑛)𝑛∈𝐾 ∈ ∏𝑛∈𝐾 𝑆𝑛 ∩ ̄𝑈
it follows lim𝑛→∞ 𝑥𝑛 ∈ 𝑆0.

Proof:
Ad Item 1: Fix some 𝛿 > 0. Without loss of generality assume 𝑈𝛿 ⊆ ̄𝑈 .

Then, for each 𝑥 ∈ 𝑆0 ∖ 𝑈𝛿 there exists some 𝛼 ∈ [0, 1] with

̃𝑥 = (1 − 𝛼) ̄𝑥0 + 𝛼𝑥 ∈ 𝑆 ∶= 𝑆0 ∩ ( ̄𝑈 ∖ 𝑈𝛿).

Since 𝑆 is compact and 𝑓0 is continuous, it follows

𝑓∗
0 < inf

𝑆
𝑓0 ≤ inf

𝑆0∖𝑈𝛿
max{𝑓0( ̄𝑥0), 𝑓0} ≤ max{𝑓∗

0 , inf
𝑆0∖𝑈𝛿

𝑓0}

and
𝜀 ∶= 1

4 ( inf
𝑆0∖𝑈𝛿

𝑓0 − 𝑓∗
0) > 0.

Now, let 𝑛1 ∈ ℕ with

∀𝑛 ≥ 𝑛1 ∶ [ ̄𝑥𝑛 ∈ ̄𝑈, 𝑓0( ̄𝑥𝑛) < 𝑓∗
0 + 𝜀, ‖𝑓𝑛 − 𝑓0‖�̄� < 𝜀].
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For 𝑛 ≥ 𝑛1 let 𝑥𝑛 ∈ 𝑆𝑛 ∖ 𝑈𝛿. Due to convexity, there exists some 𝛼𝑛 ∈ [0, 1]
with

̃𝑥𝑛 ∶= (1 − 𝛼𝑛) ̄𝑥𝑛 + 𝛼𝑛𝑥𝑛 ∈ 𝑆𝑛 ∩ ( ̄𝑈 ∖ 𝑈𝛿).
Since ̄𝑈 is compact, assume ̃𝑥𝑛 → ̃𝑥0 ∈ 𝑆0 ∖ 𝑈𝛿 without loss of generality.
Let 𝑛2 ∈ ℕ such that for each 𝑛 ≥ 𝑛2 it follows 𝑓0( ̃𝑥𝑛) ≥ 𝑓0( ̃𝑥0) − 𝜀. Thus,
for each 𝑛 ≥ 𝑛0 ∶= max{𝑛1, 𝑛2} it follows

max{𝑓𝑛( ̄𝑥𝑛), 𝑓𝑛(𝑥𝑛)} ≥ 𝑓𝑛( ̃𝑥𝑛)
> 𝑓0( ̃𝑥𝑛) − 𝜀 ≥ 𝑓0( ̃𝑥0) − 2𝜀 ≥ 𝑓∗

0 + 2𝜀.

Notice that 𝑓𝑛( ̄𝑥𝑛) < 𝑓0( ̄𝑥𝑛)+𝜀 < 𝑓∗
0 +2𝜀 excludes the case 𝑓𝑛(𝑥𝑛) ≤ 𝑓𝑛( ̄𝑥𝑛).

Thus, we have 𝑓𝑛(𝑥𝑛) > 𝑓∗
0 + 2𝜀. As 𝑥𝑛 ∈ 𝑆𝑛 ∖ 𝑈𝛿 was arbitrary, we obtain

inf
𝑆𝑛∖𝑈𝛿

𝑓𝑛 > 𝑓∗
0 + 2𝜀

for 𝑛 ≥ 𝑛0.
Ad Item 2: Fix 𝛿 > 0 and 𝑥 ∈ 𝑈𝛿. Then, there exists some ̄𝑥 ∈ 𝑆∗

0 with
‖𝑥 − ̄𝑥‖ < 𝛿. Thus, for each 𝑛 ∈ ℕ it follows

𝑓𝑛(𝑥) = 𝑓0( ̄𝑥) + 𝑓0(𝑥) − 𝑓0( ̄𝑥) + 𝑓𝑛(𝑥) − 𝑓0(𝑥)
≥ 𝑓∗

0 − ω𝑓0
(𝛿, 𝑈𝛿) − ‖𝑓𝑛 − 𝑓0‖𝑈𝛿

.

For sufficiently small 𝛿 > 0 we have 𝑈𝛿 ⊆ ̄𝑈 and

inf
𝑈𝛿

𝑓𝑛 ≥ 𝑓∗
0 − ω𝑓0

(𝛿, ̄𝑈) − ‖𝑓𝑛 − 𝑓0‖�̄� ,

where the right-hand side converges to 𝑓∗
0 for (𝛿, 𝑛) → (0, ∞).

Ad Item 3: From ̄𝑥𝑛 → ̄𝑥0 ∈ 𝑆∗
0 we have ̄𝑥𝑛 ∈ ̄𝑈 for sufficiently large 𝑛.

Thus, for every 𝑛 ∈ ℕ it follows

𝑓∗
𝑛 ≤ 𝑓𝑛( ̄𝑥𝑛) = 𝑓𝑛( ̄𝑥𝑛) − 𝑓0( ̄𝑥𝑛) + 𝑓0( ̄𝑥𝑛) → 𝑓0( ̄𝑥0) = 𝑓∗

0 .

B.2.2 Limit of the Feasible Set
B.3 Assumption: For 𝑛 ∈ ℕ ∪ {0} let 𝑋𝑛 be a closed convex subset of 𝑋, and

let 𝑌𝑛 be a non-empty compact subset of some complete metric space 𝑌 . Let
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𝑔 ∶ 𝑋 × 𝑌 → ℝ be continuous. Let (𝜂𝑛)𝑛∈ℕ be a sequence of positive numbers
with 𝜂𝑛 → 𝜂0 ∶= 0. For 𝑛 ∈ ℕ ∪ {0} define 𝑔𝑛 ∶ 𝑋 → ℝ by

𝑔𝑛(𝑥) = max
𝑌𝑛

𝑔(𝑥; ⋅ )

and let
𝑆𝑛 = {𝑥 ∈ 𝑋𝑛 | 𝑔𝑛(𝑥) ≤ 𝜂𝑛}.

Assume that

1. there exists a totally bounded subset 𝑈 ⊆ 𝑋0 with 𝑆0 ∩ 𝑈 ≠ ∅ such that 𝑔
is uniformly continuous on 𝑈 × 𝑌 ;

2. and the modulus of continuity ω𝑔 of 𝑔 satisfies

ω𝑔(dist(𝑌𝑛, 𝑌0), 𝑈 × 𝑌 ) = 𝒪(𝜂𝑛).

B.4 Lemma: Under Assumption B.3: The function 𝑔0 is uniformly continuous
on 𝑈 , the moduli of continuity satisfy

∀𝛿 > 0 ∶ ω𝑔0
(𝛿, 𝑈) ≤ ω𝑔(𝛿, 𝑈 × 𝑌 ),

and for each 𝑛 ∈ ℕ it follows

‖𝑔𝑛 − 𝑔0‖𝑈 ≤ ω𝑔(dist(𝑌𝑛, 𝑌0), 𝑈 × 𝑌 ).

Proof: Concerning the uniform continuity of 𝑔0: Fix 𝛿 > 0, and fix 𝑥, ̃𝑥 ∈ 𝑈
with ‖𝑥 − ̃𝑥‖ < 𝛿. Let 𝑦0 ∈ 𝑌0 with 𝑔(𝑥; 𝑦0) = 𝑔0(𝑥). Then, it follows

𝑔0(𝑥) − 𝑔0( ̃𝑥) ≤ 𝑔(𝑥; 𝑦0) − 𝑔( ̃𝑥; 𝑦0) ≤ ω𝑔(‖𝑥 − ̃𝑥‖, 𝑈 × 𝑌 ).

Symmetrically, we have 𝑔0( ̃𝑥) − 𝑔0(𝑥) ≤ ω𝑔(‖𝑥 − ̃𝑥‖, 𝑈 × 𝑌 ). That is

|𝑔0(𝑥) − 𝑔0( ̃𝑥)| ≤ ω𝑔(‖𝑥 − ̃𝑥‖, 𝑈 × 𝑌 ).

In particular, we have

ω𝑔0
(𝛿, 𝑈) ≤ ω𝑔(𝛿, 𝑈 × 𝑌 ).
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Concerning the uniform convergence: Fix 𝑥 ∈ 𝑈 . Let 𝑦0 ∈ 𝑌0 with
𝑔(𝑥; 𝑦0) = 𝑔0(𝑥). For 𝑛 ∈ ℕ let 𝑦𝑛 ∈ 𝑌𝑛 with 𝑑𝑌 (𝑦𝑛, 𝑦0) ≤ dist(𝑌𝑛, 𝑌0).
Then, it follows

𝑔0(𝑥) − 𝑔𝑛(𝑥) ≤ 𝑔(𝑥; 𝑦0) − 𝑔(𝑥; 𝑦𝑛) ≤ ω𝑔(dist(𝑌𝑛, 𝑌0), 𝑈 × 𝑌 ).

Now, for 𝑛 ∈ ℕ let 𝑧𝑛 ∈ 𝑌𝑛 with 𝑔(𝑥; 𝑧𝑛) = 𝑔𝑛(𝑥) and ̃𝑧𝑛 ∈ 𝑌0 with
𝑑𝑌 (𝑧𝑛, ̃𝑧𝑛) ≤ dist(𝑌𝑛, 𝑌0). Then, we have

𝑔0(𝑥) − 𝑔𝑛(𝑥) ≥ 𝑔(𝑥; ̃𝑧𝑛) − 𝑔(𝑥; 𝑧𝑛) ≥ −ω𝑔(dist(𝑌𝑛, 𝑌0), 𝑈 × 𝑌 ).

B.5 Theorem:
Under Assumption B.3:

1. Then, 𝑆𝑛 ∩ 𝑈 is non-empty for sufficiently large 𝑛 ∈ ℕ, and it follows
𝑑𝑛 ∶= dev𝑈(𝑆𝑛, 𝑆0) → 0.

2. Let 𝑥0 ∈ 𝑆0 with ω𝑔(dist(𝑋𝑛, 𝑥0), 𝑈 × 𝑌 ) = 𝒪(𝜂𝑛). Then, there exists a
sequence (𝑥𝑛)𝑛∈ℕ in 𝑋 and 𝑛0 ∈ ℕ such that for each 𝑛 ≥ 𝑛0 it follows
𝑥𝑛 ∈ 𝑆𝑛.

Proof (Item 1 of Theorem B.5): Assume that there is an infinite sub-
set 𝐾 ⊆ ℕ with

∀𝑛 ∈ 𝐾 ∶ 𝑆𝑛 ∩ 𝑈 = ∅.
Without loss of generality assume 𝐾 = ℕ. Thus, for each 𝑛 ∈ ℕ and 𝑥 ∈ 𝑈
it follows

𝑔𝑛(𝑥) > 𝜂𝑛.
On the other hand, for 𝑥 ∈ 𝑆0 ∩ 𝑈 we have

0 = lim inf
𝑛→∞

𝑔0(𝑥)
𝜂𝑛

≥ lim inf
𝑛→∞

𝑔𝑛(𝑥)
𝜂𝑛⏟⏟⏟⏟⏟

≥1

+ lim
𝑛→∞

𝑔0(𝑥) − 𝑔𝑛(𝑥)
𝜂𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟

=0

≥ 1,

a contradiction. Thus, 𝑆𝑛 ∩ 𝑈 is non-empty for sufficiently large 𝑛.
Now, as 𝑈 is totally bounded, we have 𝑑𝑛 ∈ [0, ∞) for sufficiently large

𝑛 and
𝑑0 ∶= lim sup

𝑛→∞
𝑑𝑛 ∈ [0, ∞].
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Without loss of generality assume 𝑑𝑛 → 𝑑0. For 𝑛 ∈ ℕ let 𝑥𝑛 ∈ 𝑆𝑛 ∩ 𝑈
be such that 𝑑𝑛 − dist(𝑥𝑛, 𝑆0 ∩ 𝑈) → 0. Without loss of generality assume
𝑥𝑛 → 𝑥0 ∈ 𝑋. By Lemma B.4, we have

𝑔0(𝑥0) = 𝑔𝑛(𝑥𝑛)⏟
≤𝜂𝑛

+ 𝑔0(𝑥0) − 𝑔0(𝑥𝑛)⏟⏟⏟⏟⏟⏟⏟
→0

+ 𝑔0(𝑥𝑛) − 𝑔𝑛(𝑥𝑛)⏟⏟⏟⏟⏟⏟⏟
→0

→ 0

and

𝑑0 = lim
𝑛→∞

𝑑𝑛 = lim
𝑛→∞

dist(𝑥𝑛, 𝑆0 ∩ 𝑈) = dist(𝑥0, 𝑆0 ∩ 𝑈) = 0.

Proof (Item 2 of Theorem B.5): Let (𝑥𝑛)𝑛∈ℕ ∈ ∏𝑛∈ℕ 𝑋𝑛 with

‖𝑥𝑛 − 𝑥0‖ = 𝒪(dist(𝑋𝑛, 𝑥0)).

Then, it follows

𝑔𝑛(𝑥𝑛) ≤ 𝑔0(𝑥𝑛) − 𝑔0(𝑥0)⏟⏟⏟⏟⏟⏟⏟
𝒪(ω𝑔(dist(𝑋𝑛,𝑥0),𝑈×𝑌 ))

+ ‖𝑔𝑛 − 𝑔0‖𝑈⏟⏟⏟⏟⏟
𝒪(ω𝑔(dist(𝑌𝑛,𝑌0),𝑈×𝑌 ))

= 𝒪(𝜂𝑛).

That is, for 𝑛 ∈ ℕ sufficiently large it follows 𝑥𝑛 ∈ 𝑆𝑛.

B.3 A Uniform Law of Large Numbers
For this section, fix a measurable space (𝑌 , 𝒴). For a function 𝑓 ∶ 𝑋 ×𝑌 → ℝ
and a random (including deterministic) probability 𝑃 on (𝑌 , 𝒴), define the
random function 𝑃𝑓 from 𝑋 into ℝ by

𝑃𝑓(𝑥) = ∫ 𝑓(𝑥; 𝑦) d𝑃(𝑦),

as long as the right hand side is well-defined. Even if 𝑃𝑓(𝑥) is well-defined,
𝑃𝑓(𝑥) need not be a random number. However, if 𝑦 ↦ 𝑓(𝑥; 𝑦) is 𝒴-measurable
and 𝑃 is some sample distribution, then 𝑃𝑓(𝑥) is a random number.

B.6 Assumption: Let 𝑃0 be a probability measure on (𝑌 , 𝒴). For 𝑛 ∈ ℕ let 𝑃𝑛
be a sample distribution of 𝑃0 of size 𝑛. Let 𝑓 ∶ 𝑋 × 𝑌 → ℝ be such that
𝑓(𝑥; ⋅ ) is 𝒴-measurable for each 𝑥 ∈ 𝑋. Assume that
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1. 𝑓(𝑥; ⋅ ) is 𝑃0-integrable for each 𝑥 ∈ 𝑋;

2. there exists a function ̄𝑓 ∶ (0, ∞) × 𝑌 → ℝ and a totally bounded subset
𝑈 ⊆ 𝑋 such that for each 𝛿 > 0 it follows ̄𝑓(𝛿, ⋅ ) is 𝑃0-integrable,

∀𝑦 ∈ 𝑌 ∶ ω𝑓(𝛿, 𝑈 × {𝑦}) ≤ ̄𝑓(𝛿, 𝑦),

and
lim
𝛿→0

𝑃0 ̄𝑓(𝛿) = 0.

B.7 Theorem:
Under Assumption B.6: 𝑃0𝑓 is uniformly continuous on 𝑈 and 𝑃𝑛𝑓 converges
uniformly to 𝑃0𝑓 on 𝑈 almost surely.

Proof: For each 𝛿 > 0 it follows

ω𝑃0𝑓(𝛿, 𝑈) ≤ ∫ ω𝑓(𝛿, 𝑈 × {𝑦}) d𝑃0(𝑦) ≤ 𝑃0 ̄𝑓(𝛿) → 0.

Without loss of generality let 𝑃0𝑓|𝑈 = 0. Fix 𝜀 > 0 and 𝛿 > 0 with
𝑃0 ̄𝑓(𝛿) < 𝜀. Since 𝑈 is totally bounded, there exist 𝑥1, 𝑥2, … , 𝑥𝑙𝛿

∈ 𝑈 with

𝑈 ⊆
𝑙𝛿

⋃
𝑙=1

{𝑥 ∈ 𝑈 | ‖𝑥 − 𝑥𝑙‖ < 𝛿}.

Notice that 𝑃𝑛𝑓(𝑥𝑙) converges to 𝑃0𝑓(𝑥𝑙) = 0 almost surely by the Strong
Law of Large Numbers for each 𝑙 ∈ {1, 2, … , 𝑙𝛿}. Putting these together, we
have

sup
𝑥∈𝑈

|𝑃𝑛𝑓(𝑥)| ≤ sup
𝑥∈𝑈

min
1≤𝑙≤𝑙𝛿

|𝑃𝑛𝑓(𝑥) − 𝑃𝑛𝑓(𝑥𝑙)|⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≤𝑃𝑛 ̄𝑓(𝛿)→𝑃0 ̄𝑓(𝛿) a.s.

+ max
1≤𝑙≤𝑙𝛿

|𝑃𝑛𝑓(𝑥𝑙)|⏟⏟⏟⏟⏟⏟⏟
→0 a.s.

.

Thus, it follows almost surely

lim sup
𝑛→∞

‖𝑃𝑛𝑓‖𝑈 ≤ 𝑃0 ̄𝑓(𝛿) < 𝜀.

That is, 𝑃𝑛𝑓 converges uniformly to 0 on 𝑈 almost surely.
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B.4 The Stochastic Case
B.8 Theorem:

Let 𝑋 be a closed, convex, and locally compact subset of some Banach space.
Let 𝑌 be a closed subset of ℝ𝑚. Let 𝑃0 be a probability measure on 𝑌 .
For 𝑛 ∈ ℕ let 𝑃𝑛 be a sample distribution of size 𝑛 given by independently
sampling 𝑃0. For 𝑛 ∈ ℕ ∪ {0} let 𝑋𝑛 be some random non-empty closed
convex subset of 𝑋, let 𝑌𝑛 be some random non-empty compact subset of 𝑌 ,
and let 𝜂𝑛 > 0. Let 𝑓, 𝑔 ∶ 𝑋 × 𝑌 → ℝ. For 𝑛 ∈ ℕ ∪ {0} define

𝑓∗
𝑛 = inf

𝑆𝑛
𝑃𝑛𝑓 with 𝑆𝑛 = {𝑥 ∈ 𝑋𝑛 | max

𝑦∈𝑌𝑛
𝑔(𝑥; 𝑦) ≤ 𝜂𝑛}.

Assume that

1. 𝑋0, 𝑌0, and 𝜂0 are deterministic with 𝜂0 = 0;

2. 𝑓(𝑥; ⋅ ) is 𝑃0-integrable for each 𝑥 ∈ 𝑋;

3. 𝑃0𝑓 has exactly one minimizer ̄𝑥0 on 𝑆0;

4. there exists a totally bounded neighborhood 𝑈 of ̄𝑥0 with

lim
𝛿→0

∫ ω𝑓(𝛿, 𝑈 × {𝑦}) d𝑃0(𝑦) = 0;

5. and there exists a neighborhood 𝑉 of 𝑌0 with almost surely

ω𝑔(dist(𝑋𝑛, ̄𝑥0), 𝑈 × 𝑉 ) = 𝒪(𝜂𝑛),

and almost surely

ω𝑔(dist(𝑌𝑛, 𝑌0), 𝑈 × 𝑉 ) = 𝒪(𝜂𝑛).

Then, the following statements are true:

The optimal value 𝑓∗
𝑛 converges almost surely to 𝑓∗

0.

For each 𝑛 ∈ ℕ let 𝜀𝑛 > 0 and 𝑥𝑛 be a 𝑋-valued random variable with a.s.

𝑃𝑛𝑓(𝑥𝑛) < 𝑓∗
𝑛 + 𝜀𝑛.

If 𝜀𝑛 converges to 0, then 𝑥𝑛 converges a.s. to ̄𝑥0.
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Proof: The assumptions of Theorem B.5 are satisfied almost surely, and
the assumptions of Theorem B.7 are satisfied. Both together imply that the
assumptions of Theorem B.2 are satisfied almost surely, which yields the
almost sure convergence of 𝑓∗

𝑛 to 𝑓∗
0 . Further, Theorem B.1 yields the almost

sure convergence of 𝑥𝑛 to ̄𝑥0.
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Appendix C

Uniform Law of the Iterated Loga-
rithm for Sample Quantiles

The Law of the Iterated Logarithm about sum of random numbers is a well
studied subject. The particular case about sum of independent and iden-
tically distributed random numbers 𝑋1, 𝑋2, … with finite variances is well-
known [15]:

𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛 − 𝑛 𝗘[𝑋1] = 𝒪 (√𝑛 log log 𝑛) almost surely.

Applying it pointwise to the sample distribution function

𝑛𝐹𝑛(𝑥) =
𝑛

∑
𝑘=1

𝟙(−∞,𝑥](𝑋𝑛)

yields only a pointwise version of Law of the Iterated Logarithm for 𝐹𝑛.
However, Chung showed in [3] that the law is in fact valid uniformly, if the
distribution function 𝐹0 of 𝑋1 is continuous. That is

‖𝐹𝑛 − 𝐹0‖∞ = 𝒪 (√log log 𝑛
𝑛 ) almost surely.

Using that result, we can elementarily obtain a locally uniform Law of the It-
erated Logarithm for the sample quantile function, if 𝐹0 is strictly increasing,
and 𝐹 -1

0 is locally lipschitz continuous. Notice that the Bahadur representa-
tion of the sample quantiles yields a more precise asymptotic (compare to
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[2, 14]) and also allows us to weaken the independent assumption (compare
to [20]). However, such type of arguments usually requires stronger regularity
on 𝐹0, like twice continuous differentiability.

C.1 Assumption: For 𝑛 ∈ ℕ ∪ {0} let 𝐹𝑛 be a random increasing function
from ℝ into [0, 1] and let 𝑄𝑛 be a random increasing function from (0, 1)
into ℝ. Let 𝐾 = [𝜏,̱ ̄𝜏 ] ⊆ (0, 1) be a compact interval. For each 𝛿 > 0 let
𝐾𝛿 = [𝜏 ̱ − 𝛿, ̄𝜏 + 𝛿]. Assume that

𝐹0 and 𝑄0 are deterministic, strictly increasing, and continuous;

𝐹0 = 𝑄-1
0 ;

‖𝐹𝑛 − 𝐹0‖∞ and ‖𝐹𝑛 ∘ 𝑄𝑛 − id(0,1)‖∞ converge to 0 almost surely.

C.2 Lemma: Additionally to Assumption C.1, assume 𝐹𝑛 and 𝑄𝑛 being deter-
ministic for each 𝑛 ∈ ℕ.

1. For each 𝜏 ∈ (0, 1) it follows 𝑄𝑛(𝜏) → 𝑄0(𝜏).

2. For each 𝛿 > 0 there exists some 𝑛0 ∈ ℕ such that for each 𝑛 ≥ 𝑛0 and
𝜏 ∈ 𝐾 it follows

𝐹0(𝑄𝑛(𝜏)), 𝐹𝑛(𝑄𝑛(𝜏)) ∈ 𝐾𝛿.

3. For each 𝛿 ∈ (0, min{𝜏,̱ 1 − ̄𝜏}) it follows

‖𝑄𝑛 − 𝑄0 ∘ 𝐹𝑛 ∘ 𝑄𝑛‖∞,𝐾 = 𝒪(ω𝑄0
(‖𝐹𝑛 − 𝐹0‖∞, 𝐾𝛿).

4. In particular, for each 𝛿 ∈ (0, min{𝜏,̱ 1 − ̄𝜏}) it follows

‖𝑄𝑛 − 𝑄0‖∞,𝐾 = 𝒪(ω𝑄0
(‖𝐹𝑛 − 𝐹0‖∞ + ‖𝐹𝑛 ∘ 𝑄𝑛 − id(0,1)‖∞, 𝐾𝛿)).

Proof: Ad Item 1: By assumption, we have

‖𝐹0 ∘ 𝑄𝑛 − id(0,1)‖∞ ≤ ‖𝐹0 ∘ 𝑄𝑛 − 𝐹𝑛 ∘ 𝑄𝑛‖∞ + ‖𝐹𝑛 ∘ 𝑄𝑛 − id(0,1)‖∞ → 0.

By the continuity of 𝑄0, it follows that 𝑄𝑛(𝜏) converges to 𝑄0(𝜏)
Ad Item 2: Fix 𝛿 > 0. Then, there exists some 𝑛0 ∈ ℕ such that for each

𝑛 ≥ 𝑛0 it follows
‖𝐹0 − 𝐹𝑛‖∞ < 𝛿

3
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and
‖𝐹𝑛 ∘ 𝑄𝑛 − id(0,1)‖∞ < 𝛿

3.
Thus, for every 𝜏 ∈ 𝐾, we obtain

𝜏 ̱ − 𝛿 2
3 < 𝐹0(𝑄𝑛(𝜏)̱) ≤ 𝐹0(𝑄𝑛(𝜏)) ≤ 𝐹0(𝑄𝑛( ̄𝜏)) < ̄𝜏 + 𝛿 2

3

and
𝜏 ̱ − 𝛿 < 𝐹𝑛(𝑄𝑛(𝜏)) < ̄𝜏 + 𝛿.

Ad Item 3: Fix 𝛿 ∈ (0, min{𝜏,̱ 1 − ̄𝜏}). There exists some 𝑛0 ∈ ℕ such
that for each 𝑛 ≥ 𝑛0 and 𝜏 ∈ 𝐾 it follows

𝐹0(𝑄𝑛(𝜏)), 𝐹𝑛(𝑄𝑛(𝜏)) ∈ 𝐾𝛿.

Particularly, we have

|𝑄0(𝐹0(𝑄𝑛(𝜏))) − 𝑄0(𝐹𝑛(𝑄𝑛(𝜏)))| ≤ ω𝑄0
(‖𝐹0 − 𝐹𝑛‖∞, 𝐾𝛿).

C.3 Theorem:
Additionally to Assumption C.1: For 𝑛 ∈ ℕ assume that 𝐹𝑛 is a sample
distribution function of sample size 𝑛 given by an independent sampling of
𝐹0 and that 𝑄𝑛 is the sample quantile function to 𝐹𝑛. Then, for each 𝛿 ∈
(0, min{𝜏,̱ 1 − ̄𝜏}) it follows almost surely

‖𝑄𝑛 − 𝑄0‖∞,𝐾 = 𝒪(ω𝑄0
(𝑐𝑛 + 1𝑛 , 𝐾𝛿))

with
𝑐𝑛 ∶= √log log 𝑛

2𝑛 .

In particular, if 𝑄0 is Lipschitz continuous on a neighborhood of 𝐾, then we
have almost surely

‖𝑄𝑛 − 𝑄0‖∞,𝐾 = 𝒪(𝑐𝑛).

Proof: By Chung’s Uniform Law of Iterated Logarithms[3] we have almost
surely

‖𝐹𝑛 − 𝐹0‖∞ = 𝒪(𝑐𝑛).
Let 𝜁1, 𝜁2, … , 𝜁𝑛 denote the samples corresponding to 𝐹𝑛. By definition, 𝐹𝑛
is a right-continuous step function with jumps at the samples 𝜁1, 𝜁2, … , 𝜁𝑛
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and with jumps of size 1𝑛 . Further, 𝑄𝑛 is a left-continuous step function
with jumps at 1𝑛 , 2𝑛 ,…, 𝑛𝑛 and the values 𝜁1, 𝜁2, … , 𝜁𝑛. Thus, for each 𝑘 ∈
{1, 2, … , 𝑛} and 𝜏 ∈ (𝑘−1𝑛 , 𝑘𝑛 ] it follows

𝐹𝑛(𝑄𝑛(𝜏)) = 𝑘
𝑛.

In particular, we have

sup
𝜏∈(0,1)

|𝐹𝑛(𝑄𝑛(𝜏)) − 𝜏| ≤ 1
𝑛.

Together, these yield the statement.
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Glossary

finite dimensional subset A subset of some linear space whose linear span
is finite dimensional. 17

homeomorphism A continuous and bijective function with continuous in-
verse. 3

integrable random vector The expectation of the norm is finite. 6

proper domain The subset of the domain on which an extended real valued
function is finite. 11
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Index

B-spline 26
basis 26

conditional maximum likelihood
estimate 12, 53, 56
estimation 10

directional derivative 33
direct product 4

inverse clock model 18

knot sequence 25, 30

Landau symbol 45
log-likelihood 8

conditional 11

maximum likelihood
estimate 8

estimation 8
modulus of continuity 46

partial derivative 37

quantile function 8

sample
approximation 17
distribution 7
sequence 7

separated function 9
solution 4, 5, 12, 13, 17, 31
spline see B-spline, 25

timestamp model 4
censored 13
synchronized 10
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