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Preface

This work has been developed during the last years (since May 2012) at the department for
Theoretical Physics II: Soft Matter at the Heinrich Heine University Düsseldorf. Most results
of this work have already been published in academic journals and the resulting publications
are listed in the following. In addition, I give a statement about my personal contribution to
every article to avoid plagiarism, because these publications have been written in cooperation
with other scientists and departments. This thesis is based on the first four publications listed
below and gives a selection of the main results of the projects where I have been mainly
responsible.

List of published works

[1] Vortex arrays as emergent collective phenomena for circle swimmers

Andreas Kaiser and Hartmut Löwen, Phys. Rev. E 87, 032712 (2013).

Abstact:

Collective properties of many rodlike circle swimmers are explored by computer
simulations in two spatial dimensions. In the model considered, the center of mass
of a single swimmer moves on a circle with radius R. Therefore, the model provides
an interpolation between an interacting self-propelled-rod model for linear swimmers
(R → ∞) and that of interacting passive rotors (R = 0). We map out the state diagram
for various swimmer densities and radii R. For increasing density, the dilute state is fol-
lowed by vortices consisting of single particles (singlet-vortex state), where neighboring
particles are perpendicularly oriented, and vortices of swimmer pairs (doublet-vortex
state). The vortices exhibit strong structural ordering on an array. At higher densities,
a slowed rotor fluid with a significant degree of mutual rotation hindrance occurs. The
single-particle vortex structure becomes unstable above a threshold in the circling
radius R, while pair vortices are stable only for intermediate radii R. A simple theory
is proposed to predict the topology of the state diagram. Our results are verifiable for
bacterial and artificial rodlike circle swimmers.

Statement of the author: This paper was written together with Hartmut Löwen who was in-
volved in many discussions, while I performed the simulations and data analysis. It will be
presented in Chapter 2.
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[2] Capturing self-propelled particles in a moving microwedge

Andreas Kaiser, Katarina Popowa, Henricus H. Wensink, and Hartmut Löwen, Phys.
Rev. E 88, 022311 (2013).

Abstract:

Catching fish with a fishing net is typically done either by dragging a fishing net
through quiescent water or by placing a stationary basket trap into a stream. We transfer
these general concepts to micron-sized self-motile particles moving in a solvent at low
Reynolds number and study their collective trapping behavior by means of computer
simulations of a two-dimensional system of self-propelled rods. A chevron-shaped
obstacle is dragged through the active suspension with a constant speed v and acts as
a trapping “net”. Three trapping states can be identified corresponding to no trapping,
partial trapping, and complete trapping and their relative stability is studied as a
function of the apex angle of the wedge, the swimmer density and the drag speed v.
When the net is dragged along the inner wedge, complete trapping is facilitated and a
partially trapped state changes into a complete trapping state if the drag speed exceeds
a certain value. Reversing the drag direction leads to a reentrant transition from no
trapping to complete trapping and then back to no trapping upon increasing the drag
speed along the outer wedge contour. The transition to complete trapping is marked by
a templated self-assembly of rods forming polar smectic structures anchored onto the
inner contour of the wedge. Our predictions can be verified in experiments of artificial
or microbial swimmers confined in microfluidic trapping devices.

Statement of the author: This paper is the result of the work of Katarina Popowa and myself.
In her Bachelor thesis, which I supervised, Katarina performed simulations to analyse the
trapping efficiency of multiple particles in a moving trap. Her findings align with my simu-
lation and theoretical prediction of the single particle case. Henricus H. Wensink contributed
the basic source code, while Hartmut Löwen once again provided valuable input, especially
concerning the theoretical predictions. Chapter 3 will deal with this work.

[3] Transport powered by bacterial turbulence

Andreas Kaiser, Anton Peshkov, Andrey Sokolov, Borge ten Hagen, Hartmut Löwen,
and Igor S. Aranson, Phys. Rev. Lett. 112, 158101 (2014).

Abstract:

We demonstrate that collective turbulentlike motion in a bacterial bath can power and
steer the directed transport of mesoscopic carriers through the suspension. In our exper-
iments and simulations, a microwedgelike “bulldozer” draws energy from a bacterial
bath of varied density. We obtain that an optimal transport speed is achieved in the tur-
bulent state of the bacterial suspension. This apparent rectification of random motion of
bacteria is caused by polar ordered bacteria inside the cusp region of the carrier, which
is shielded from the outside turbulent fluctuations.
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Statement of the author: This paper is the result of a collaboration with experimental physicists
from Chicago. While all experiments were performed by Anton Peshkov, Andrey Sokolov
evaluated the respective data. Numerical results are based on my work. Borge ten Hagen was
part of several helpful discussions on this matter. He also calculated the friction coefficients
for the wedgelike carrier. Hartmut Löwen helped to initiate this collaboration, providing both
supervision and guidance through many discussions. Igor S. Aranson was the initiator of the
cooperation and was included in several discussions to merge experimental and numerical
results. The according results will be shown in Chapter 4.

[4] Unusual swelling of a polymer in a bacterial bath

Andreas Kaiser and Hartmut Löwen, J. Chem. Phys. 141, 044903 (2014).

Abstract:

The equilibrium structure and dynamics of a single polymer chain in a thermal solvent
is by now well-understood in terms of scaling laws. Here, we consider a polymer in
a bacterial bath, i.e. in a solvent consisting of active particles which bring in nonequi-
librium fluctuations. Using computer simulations of a self-avoiding polymer chain in
two dimensions which is exposed to a dilute bath of active particles, we show that the
Flory-scaling exponent is unaffected by the bath activity provided the chain is very long.
Conversely, for shorter chains, there is a nontrivial coupling between the bacteria in-
truding into the chain which may stiffen and expand the chain in a nonuniversal way.
As a function of the molecular weight, the swelling first scales faster than described
by the Flory exponent, then an unusual plateau-like behavior is reached and finally a
crossover to the universal Flory behavior is observed. As a function of bacterial activity,
the chain end-to-end distance exhibits a pronounced non-monotonicity. Moreover, the
mean-square displacement of the center of mass of the chain shows a ballistic behavior
at intermediate times as induced by the active solvent. Our predictions are verifiable in
two-dimensional bacterial suspensions and for colloidal model chains exposed to artifi-
cial colloidal microswimmers.

Statement of the author: This paper was co-authored with Hartmut Löwen. The resulting find-
ings are based on my simulations, and will be presented in Chapter 5.
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[5] How to Capture Active Particles

Andreas Kaiser, Henricus H. Wensink, and Hartmut Löwen, Phys. Rev. Lett. 108,
268307 (2012).

Abstract:

In many applications, it is important to catch collections of autonomously navigating
microbes and man-made microswimmers in a controlled way. Using computer simula-
tion of a two-dimensional system of self-propelled rods we show that a static chevron-
shaped wall represents an excellent trapping device for self-motile particles. Its catching
efficiency can be controlled by varying the apex angle of the trap which defines the sharp-
ness of the cusp. Upon decreasing the angle we find a sequence of three emergent states:
no trapping at wide angles followed by a sharp transition towards complete trapping at
medium angles and a crossover to partial trapping at small cusp angles. A generic trap-
ping “phase diagram” maps out the conditions at which the capture of active particles at
a given density is rendered optimal.

Statement of the author: This paper includes the most important results of my Master the-
sis, which was produced under the supervision of Henricus H. Wensink and Hartmut Löwen.
All presented results are based on my simulations, which are based on a basic source code
provided by Henricus H. Wensink.

[6] Non-Gaussian statistics for the motion of self-propelled Janus particles: experiment

versus theory

Xu Zheng, Borge ten Hagen, Andreas Kaiser, Meiling Wu, Haihang Cui, Zhanhua
Silber-Li, and Hartmut Löwen, Phys. Rev. E 88, 032304 (2013).

Abstract:

Spherical Janus particles are one of the most prominent examples for active Brownian
objects. Here, we study the diffusiophoretic motion of such microswimmers in exper-
iment and in theory. Three stages are found: simple Brownian motion at short times,
superdiffusion at intermediate times, and finally diffusive behavior again at long times.
These three regimes observed in the experiments are compared with a theoretical model
for the Langevin dynamics of self-propelled particles with coupled translational and rota-
tional motion. Besides the mean square displacement also higher displacement moments
are addressed. In particular, theoretical predictions regarding the non-Gaussian behavior
of self-propelled particles are verified in the experiments. Furthermore, the full displace-
ment probability distribution is analyzed, where in agreement with Brownian dynamics
simulations either an extremely broadened peak or a pronounced double-peak structure
is found, depending on the experimental conditions.

Statement of the author: The paper has been written in collaboration with experimental groups
from Bejing (Xu Zheng and Zhanhua Silber-Li) and Xi’an (Meiling Wu and Haihang Cui).I
performed the simulations, while Borge ten Hagen was able to predict the experimental results



v

theoretically. Hartmut Löwen helped to merge theoretical and experimental results. The main
results are briefly summarized in the Appendix.

[7] Differently Shaped Hard Body Colloids in Confinement: From passive to active par-

ticles

Henricus H. Wensink, Hartmut Löwen, Matthieu Marechal, Andreas Härtel, Raphael
Wittkowski, Urs Zimmermann, Andreas Kaiser, and Andreas M. Menzel, Eur. Phys. J.
Special Topics 222, 3023 (2013).

Abstract:

We review recent progress in the theoretical description of anisotropic hard colloidal
particles. The shapes considered range from rods and dumbbells to rounded cubes, poly-
hedra and to biaxial particles with arbitrary shape. Our focus is on both static and dynam-
ical density functional theory and on computer simulations. We describe recent results
for the structure, dynamics and phase behavior in the bulk and in various confining
geometries, e.g. established by two parallel walls which reduce the dimensionality of
the system to two dimensions. We also include recent theoretical modelling for active
particles, which are autonomously driven by some intrinsic motor, and highlight their
fascinating nonequilibrium dynamics and collective behavior.

Statement of the author: This review presents the results of the whole project D3 from the
SFB TR6 (”Physics of Colloidal Dispersions in External Fields”), which have been published
in the last four years. In this review my contribution are the results from [1, 2, 5].

[8] Mechanisms of carrier transport induced by a microswimmer bath

Andreas Kaiser, Andrey Sokolov, Igor S. Aranson and Hartmut Löwen, (submitted to

IEEE Transactions on Nanobioscience).

Abstract:

Recently, it was found that a wedgelike microparticle (referred to as "carrier") which
is only allowed to translate but not to rotate exhibits a directed translational motion
along the wedge cusp if it is exposed to a bath of microswimmers. Here we model this
effect in detail by resolving the microswimmers explicitly using interaction models with
different degrees of mutual alignment. Using computer simulations we study the impact
of these interactions on the transport efficiency of a V-shaped carrier. We show that the
transport mechanisms itself strongly depends on the degree of alignment embodied in
the modelling of the individual swimmer dynamics. For weak alignment, optimal carrier
transport occurs in the turbulent microswimmer state and is induced by swirl depletion
inside the carrier. For strong aligning interactions, optimal transport occurs already in
the dilute regime and is mediated by a polar cloud of swimmers in the carrier wake
pushing the wedge-particle forward. We also demonstrate that the optimal shape of the
carrier leading to maximal transport speed depends on the kind of interaction model
used.

Statement of the author: This work is an extension of Reference [3] and is based on my numer-
ical results and the experimental data has been evaluated by Andrey Sokolov. Igor S. Aranson
and Hartmut Löwen have been involved by many discussions and initiated the cooperation.
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Abstract

This work is about emergent states in active fluids, meaning fluids consisting of self-propelled
units. The collective behavior of such units with spherical and rodlike shape is investigated
in bulk as well as in systems with confinements of various characteristics. These emerging
states will be mainly analysed by Brownian dynamics simulations and the results can be ap-
plied to various domains of science: self-propelled particles can be manufactured synthetically
(chemistry and even robotics) or are present in nature, e.g. in form of bacteria, fish, and birds,
(biology) and the study of their statistical properties and collective behavior has emerged as a
popular topic in physics over the past years.

Chapter 1 provides an introduction to active fluids. An explanation why the particles within
these fluids objects are called “active” will be given alongside examples for living and artificial
colloidal active particles. Furthermore, the theory behind the dynamics of these particles will
be described, including a detailed explanation of the corresponding simulation routine and
the particle model employed throughout this thesis. Moreover, a brief summary on statistical
properties of polymers in equilibrium will be given.

Chapter 2 considers self-propelled particles propagating on circular paths in bulk. Collective
properties of such circle swimmers will be investigated and a state diagram will be mapped
out for varying particle density and swimming path radii. The four emerging distinctive states
will be quantified by suitable order parameters. A simple theory will be proposed to predict
the found state diagram.

Beginning with Chapter 3 we will include an obstacle in the considered system of active par-
ticles. From there on out, we will study active particles which propagate on straight lines. For
such particles a stiff wedgelike obstacle represents an excellent trapping device and its effi-
ciency can be controlled by varying the apex angle. Adopting an established technique from
the fishing industry, the wedge will be dragged through the system of colloidal microswim-
mers. The collective trapping regimes will be investigated as well as the probability of trapping
a single swimmer in relation to the apex angle and the dragging velocity. For the single swim-
mer case a theoretical prediction will be given, which will explain an unexpected reentrant
effect in the trapping state diagram for both cases.

Chapter 4 will show the possibility of extracting directed motion, in other words useable ki-
netic energy, out of a bacterial bath. Here a carrier (a wedgelike object) is submersed in active
fluids of varied bacterial concentrations. The transport efficiency will be studied in experi-
ments on living bacteria and compared to numerical results. As the explanation for the directed
motion of the carrier, the concept of swirl shielding will be introduced. This will clarify why
the transport velocity is maximal in a state which is known as bacterial turbulence.

A deformable obstacle is considered in Chapter 5. It will be modeled as a semiflexible chain
(like a polymer) and its statistical properties will be analysed for the case that it is submersed
in a bacterial bath and compared to the well known case of the exposure to a thermal bath.
Therefore, the length of the chain as well as the density and the activity of the active fluid will
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be varied. While the static properties for long chains are unaffected, there is a faster swelling
of the polymer than described by the Flory exponent for short chains.

Chapter 6 provides a conclusion and gives an outlook on problems that remain unanswered
and need to be addressed in the future.

In the Appendix the statistical properties of the motion of an active particle will be briefly sum-
marized with respect to the mean square displacement and even higher displacement moments.
Theoretical predictions, based on the used model in this thesis, are confirmed by experiments
with artificial microswimmers.
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Zusammenfassung

In dieser Arbeit über auftretende Zustände in aktiven Flüssigkeiten werden die kollektiven
Verhalten von sowohl kugel- als auch stäbchenförmigen selbstgetriebenen Teilchen in Syste-
men ohne sowie mit unterschiedlichen Hindernissen untersucht. Dies geschieht hauptsächlich
aufgrund von Computersimulationen der Brownschen Dynamik. Die erzielten Ergebnisse sind
für verschiedene Disziplinen der Naturwissenschaften relevant: Selbstgetriebene Teilchen kön-
nen einerseits synthetisch hergestellt werden, wodurch die Chemie und die Robotik einbezo-
gen werden. Andererseits sind aber auch in der Natur (Biologie) aktive Teilchen zu finden –
Beispiele sind unter anderem Bakterien, Fische und Vögel. Darüber hinaus ist die Analyse der
statistischen Eigenschaften der oben genannten Systeme sowie die Beschreibung der auftre-
tenden kollektiven Verhalten in den letzten Jahren ein verbreiteter Forschungsbereich in der
Physik geworden.

Zu Beginn wird in Kapitel 1 eine Einleitung zu aktiven Flüssigkeiten gegeben. Beispiele
hierfür werden genauer beschrieben und es wird erklärt, warum man die Objekte, die von
einer solche Flüssigkeiten beinhaltet werden, „aktiv“ genannt werden. Außerdem werden die
grundlegende Simulationsmethodik und das genutzte Teilchenmodell detailliert beschrieben.
Abschließend wird eine kurze Einführung in die Polymerphysik gegeben.

Kapitel 2 befasst sich mit selbstgetriebenen Teilchen („Schwimmern“) die sich auf kreisförmi-
gen Trajektorien bewegen. Ihr kollektives Verhalten wird untersucht und ein Diagramm aus-
gearbeitet, das die auftretenden Strukturen zeigt. Hierbei werden sowohl die Teilchendichte
als auch der Radius der Teilchentrajektorien variiert. Die vier auftretenden Strukturen wer-
den dabei durch geeignete Ordnungsparameter charakterisiert. Basierend auf geometrischen
Überlegungen, wird eine einfache Theorie vorgestellt, mit der sich das gefundene Diagramm
qualitativ vorhersagen lassen kann.

Ab Kapitel 3 werden aktive Flüssigkeiten analysiert denen ein Hindernis hinzugefügt wird.
Außerdem werden von nun an selbstgetriebene Teilchen betrachtet, die sich auf geraden und
nicht mehr gekrümmten Bahnen fortbewegen. Ein steifer statischer Keil repräsentiert eine
ausgezeichnete Vorrichtung um solche aktiven Teilchen einzufangen. Die Effizient dieser Falle
lässt sich durch den Öffnungswinkel des Keils kontrollieren. Beim industriellen Fischfang
werden Netze durch Flüsse, Seen und Meere gezogen. Diese Idee soll nun aufgegriffen werden
um Teilchen auf mikroskopischer Größenskala einzufangen. Deswegen ziehen wir den festen
Keil durch eine aktive Flüssigkeit und untersuchen sowohl die Fangstadien für viele aktive
Teilchen als auch die Wahrscheinlichkeit einen einzelnen Schwimmer einzufangen. Dies hängt
sowohl vom Öffnungswinkel des Keils wie auch der Zuggeschwindigkeit (und deren Richtung)
ab. In Abhängigkeit der Zuggeschwindigkeit wird der kritische Öffnungswinkel, der noch ein
Einfangen eines einzelnen Schwimmers ermöglicht, berechnet werden.

In Kapitel 4 wird gezeigt, dass es möglich ist eine gerichtete Bewegung und damit nutzbare
kinetische Energie aus einem Bakterienbad zu extrahieren. Dafür wird ein Keil in ein solches
Bad eingetaucht, welcher durch die Bakterien entlang der Keilachse transportiert wird. Die
zugehörige durch Simulationen erhaltene Effizienz wird durch experimentelle Ergebnisse
bestätigt. Die Erklärung für die gerichtete Bewegung des Keils beruht auf dem Konzept der
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Wirbelabschirmung des Keils. Bakterien zeigen ein kollektives Verhalten, das als bakterielle

Turbulenz bezeichnet wird. Diese Turbulenz ist dadurch charakterisiert, dass das Bad eine
Vielzahl von Wirbeln aufzeigt, die in unterschiedliche Richtungen rotieren. Diese Wirbel
liefern letztendlich die Erklärung, warum die erreichte Transporteffizienz im Bereich der bak-
teriellen Turbulenz am höchsten ist.

Als nächstes betrachten wir in Kapitel 5 ein deformierbares Hindernis in einer aktiven Flüs-
sigkeit. Dieses Hindernis wird eine Kette sein und wie typischerweise ein Polymer als halb-
starre Kette modelliert werden. Die statistischen Eigenschaften von Polymeren in einem ther-
malen Bad sind seit langen bekannt und werden nun hier verglichen mit dem Fall, dass ein
solches Polymer einem bakteriellen Bad ausgesetzt ist. Dazu werden sowohl die Länge der
Polymerkette wie auch die Konzentration und die Aktivität des Bades variiert werden. Hier-
bei ist signifikant, dass der End-zu-End-Abstand für kurze Ketten in einer aktiven Flüssigkeit
schneller anwächst als im Falle eines thermalen Bads, in dem der Flory-Exponent gilt.

Abschließend werden alle Ergebnisse nochmals kurz zusammengefasst und ein Ausblick wird
gegeben, welche unbeantworteten Fragen immer noch bleiben, die es in Zukunft jedoch zu
beantworten gilt, siehe Kapitel 6.

Zusätzlich werden im Anhang die statistischen Eigenschaften der Bewegung von einzelnen ak-
tiven Teilchen, ausgehend vom mittleren Verschiebungsquadrat und höheren Momenten, un-
tersucht. Experimentelle Ergebnisse für künstliche Schwimmer zeigen, dass die verwendete
theoretische Modellierung der Schwimmerbewegung, basierend auf den Langevin Gleichun-
gen, in dieser Arbeit gerechtfertigt ist.
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1 Introduction

1.1. Active and passive particles

Every existing object can be classified as either passive or active. While the motion of pas-
sive particles is restricted to external forces and torques, active particles also move due to an
internal propulsion mechanism. Consequently, non-living (dead) organisms as well as various
synthetically produced materials are passive particles and most living organisms (independent
of their size) can be categorized as active, e.g. birds [9], fish [10], insects like locusts [11]
or ants [12], and human beings [13–15]. Furthermore, in recent years several realizations of
artificial self-propelled particles have been established, see the recent review [16]. These man-
made swimmers are based on various self-propulsion mechanisms and can be manufactured
with arbitrary shapes.

1.2. Living and synthetic active colloidal particles

In this work we will concentrate on colloidal systems. Colloidal particles are small particles,
in the range of 10−9 m – 10−6 m dispersed in another continuous medium like a liquid [17].
Therefore, in nature living colloidal particles are microorganisms such as bacteria, sperm and
algae. Due to their small size and low velocity1 colloidal microswimmers move in the low
Reynolds number regime2. The Reynolds number is defined by the relation of non-linear iner-
tia forces and viscous forces [19]. Hence, small Reynolds numbers lead to a quasi inertia free
and overdamped motion.

Let us start with the basic requirements for self-propulsion in the low Reynolds number regime
established by body-deformations before we concentrate on actual self-propulsion mecha-
nisms used by living and artificial microswimmers. Non-reciprocal periodic changes of the
body shape of microswimmers are essential for a non-zero time averaged propulsion force
(internally created) and a resulting drag-based (i.e. frictional based) propulsion. Here I want

1Bacteria move with a high velocity compared to their own size. The propulsion velocity is up to ten times
their body length per second, although the absolute value (v ∼ 20 µm/s) is quite small [18].

2Typically the Reynolds number for swimming microorganisms is in the order of 10−4 while macroscopic
living organisms it is in the range of 103 – 108.
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Figure 1.1.: Representation of the scallop theorem. (a) While a scallop with a single hinge

is not able to perform a total net propulsion after one cycle of body deforma-

tions, (b) a swimmer consisting of three linked spheres can achieve this. Com-

pressed links are drawn in red. Vertical dashed lines are a guide to the eye to

visualize the resulting displacement due to a sequence of body deformations.

The time course is indicated by an arrow.

to stress that these forces do not contradict the fact that a swimmer is force-free. The quasi
inertia free motion in the low Reynolds number regime requires a force balance (actio = re-
actio). There are no external forces and torques acting on a microswimmer. Nevertheless they
are able to perform a directed motion. Let us consider an active particle which is capable of
creating a thrust force F, e.g. by clever body deformations3, acting on the surrounding fluid
and pushing the particle forward. This motion induces a force −F onto the fluid. Hence, the
total force on a microswimmer is zero. In our modeling for the dynamics of microswimmers
we will concentrate on the fact that a swimmer has a self-propulsion velocity, which can be
related via friction to an effective self-propulsion force [20].

A necessary condition for such a net propulsion of a microswimmer after one cycle of body
shape deformations is that the sequence of shapes during one of these cycles is different when
viewed in a time-reversed way, which is then called a non-reciprocal sequence. This has been

3This will be specified in the following paragraph.
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stated in the well known scallop theorem by Edward Purcell [21]. Here Purcell shows that a
scallop, consisting out of two stiff rods connected by a hinge, cannot move just by changing its
apex angle, since this motion is reciprocal, see Figure 1.1(a). If a scallop reduces the angle at its
hinge, it is able to move forward. But due to the restriction to the low Reynolds number regime
the scallop moves back to its original position when the angle increases again. At least two or
more parametric deformations are necessary for a propulsion of a single particle [22–24]. The
most famous simple microswimmer is the three sphere swimmer [25]. To achieve a directed
propulsion three spheres are connected with two arms whose lengths are varied in a non-
reciprocal way. The deformation cycle is composed of four consecutive time-reversal breaking
stages, as shown in Figure 1.1(b). This swimmer can be treated theoretically much more easily
than a simple Pucell swimmer with two hinges. For the three sphere swimmer, many properties
can be analysed in detail or even calculated analytically [25–27].

Common living colloidal microswimmers, such as bacteria, sperm and algae use techniques
other than deformation of the main body. All of the mentioned examples have thin flagella
attached to their body4. A screwlike rotational motion of the flagella is used by bacteria as
Escherichia coli and Bacillus subtilis [3, 18], which fulfills the scallop theorem mentioned
above [28]. Sperm, however, perform a wavelike beating motion with their flagellum to propel
themselves [29–33], see Figure 1.2. Obviously, a wavelike motion of the main body of a
microorganisms leads to a directed self-propulsion, too [34].

All of these living microswimmers can be classified as pushers since they repel the surround-
ing fluid from the body along the long axis [28], commonly achieved by propelling flagella
in the rear relative to the direction of propulsion (see again Figure 1.2). A puller draws fluid
in along the elongated direction [28]. Usually, it has the flagella in front of the main body
during the propulsion. Here Chlamydomonas reinhardtii, a biflagelled alga, is the best known
representative [35, 36]. The two flagella beat synchronized in a “breast-stroke” pattern [33],
see Figure 1.2.

Self-propulsion, induced by the motion of attached flagella or by rotation of a screwlike body
has also been adopted for artificial microswimmers [37–39], but it is not the most common
propulsion mechanism for such synthetic swimmers. The majority of these particles move by
converting chemical energy into kinetic energy, see recent reviews [16, 40] as well as refer-
ences herein and Figure 1.3.

The self-propulsion of most manmade swimmers is due to self-phoresis, where phoresis refers
in general to an effective transport of colloidal particles due to boundary layer forces induced
by external fields [41]. A drift experienced by a particle which is subject to a concentration
gradient across its interface is known as diffusiophoresis [42–46]. Self-phoresis describes the
phenomenon that the change in the environment – in this case the existence of a concentration
gradient – is induced by the particle itself and not by any externally applied field. As a conse-
quence, the ability to catalyze fuel substance on the particle surface in an asymmetric fashion
will lead to a robust self-propulsion of the particle.

4Typically the body of a bacterium has a length and thickness of several micrometers, while the flagella are
of the same length scale but very thin (nanometer scale).
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Figure 1.2.: Sketches of living microswimmers, all propagating to the left in this picture.

Left: Representation of common pushers like bacteria (top) and sperm (bottom)

which are propelled by either a rotating flagella bundle or a wave-like motion

of the flagellum. Right: A typical puller, propelled by a “breast-stroke” motion

of flagella in front of the main body, as done by Chlamydomonas reinhardtii.

Figure 1.3.: Sketch of an artificial microswimmer, here a rodlike Janus particle. A robust

directed propulsion is generated by the decomposition of hydrogen peroxide

(H2O2) at the platinum coated half, see text for details. The same principle can

be applied to spherical particles as well.

As a widespread system Janus particles5, i.e. particles which are differently coated, therefore
leading to a symmetry breaking, are used. A typical example for the realization of artificial
swimmers are Janus particles half coated with platinum and gold. Thereby, spherical as well
as rodlike particles are used, see e.g. [6, 47–50]. Platinum (Pt) is a catalyst for the decom-
position of hydrogen peroxide (H2O2) into water and oxygen [51]. Here, the strength of the
self-propulsion, and thereby the velocity of the particle, can be tuned by the H2O2 concen-
tration [6, 52–54], since the hydrogen peroxide is oxidized to generate protons in solution
and electrons within the platinum coated side. On the other side of the particle, the gold (Au)
coated side, the protons end electrons are consumed in the reduction of hydrogen peroxide.
The resulting ion flux along the particle induces its motion relative to the fluid, propelling the

5The origin of the name is the Roman god Janus who is usually represented with two faces, one looking
ahead and one behind.
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particle towards the platinum-coated side, see Figure 1.3. This propulsion mechanism can be
slightly changed by building rolled-up conelike microtubes, which are then propelled by the
formed oxygen bubbles [55, 56].

Since this self-phoresis is based on diffusiophoresis, it has a big disadvantage for long time
studies, as the mobility depends on the fuel concentration and the necessary fuel is consumed
after some time. This is not the case if the effect of self-thermophoresis is used to generate
a directed motion. By exposing silica particles, coated with either gold or carbon, to a laser
which heats up the coated side a reversible temperature gradient is generated, which leads to
a propulsion [57]. Alternatively, suspending the particles in a water-lutidine mixture a local
demixing at the heated cap settles the motion of such swimmers. This has been realized in
experiments for isotropic and even anisotropic particles [58,59]. However, for this propulsion
mechanism the demixing zone has to be sufficiently small.

1.3. Dynamics of active colloidal particles

Let us start with the description of a simple passive spherical colloidal particle in a liquid
before we introduce the important feature of the directed propulsion of the swimmers. Such
passive particles undergo a non-vanishing and undirected motion, which was observed by the
botanist Robert Brown in 1827 [60]. His initial observation had been on small pollen grains
and his first clue was that the erratic motion should be based on some kind of living properties
of the biological material. But in further experiments, this time on granular and glassy material,
he saw the same phenomenon and concluded that the origin of this motion had to be physical.

Although this observed motion is named after Robert Brown, it should be mentioned here
that he was not the first one who observed this phenomenon. Already in 1784 Jan Ingen-
Housz made this discovery on coal particles immersed in a fluid [61]. The origin of this
non-vanishing motion was experimentally traced back to the motion of the molecules of the
surrounding fluid by Christian Wiener in 1863 [62]. Later on Albert Einstein [63, 64], Mar-
ian von Smoluchowski [65] and Paul Langevin [66] were able to describe theoretically the
behavior of a Brownian particle and its motion due to molecular impacts from the liquid on
the particle.

Following Langevin’s description, the dynamics of a single spherical passive colloidal particle
under continuous bombardment by the solvent can be determined by its position r using the
following equation of motion

m
d2
r

dt2
= −f

dr

dt
+ F(t), (1.1)

A statistical analysis of the motion of a single active particle, considering the mean square displacement and even
higher displacement moments is given in the Appendix, following Reference [6].
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where m is the mass of the particle, f corresponds to the friction coefficient due to the solvent
and F(t) to a random force, which is supposed to describe the kicks by the solvent molecules.
While Langevin assumed temporally short correlated random forces, Uhlenbeck and Ornstein
pointed out that the stochastic forces are supposed to be Gaussian distributed with independent
components and δ-correlated time dependence [67]

〈F(t)〉 = 0 (1.2)

〈Fi(t)Fj(t
′)〉 = 2kBTfδijδ(t− t′), i, j = x, y, z. (1.3)

The components of F(t) are referred to as Gaussian white noise with zero mean and intensity
2kBTf , where kB is the Boltzmann constant and T is the temperature. According to the Stokes-

Einstein relation D = kBT/f is the diffusion coefficient of a spherical particle6 with f =
3πησ, where η is the viscosity of the solvent and σ the diameter of the spherical particle
[63, 68].

Analogously, we can consider the orientation of the particle. The respective Langevin equation
can be written as

I
dω

dt
= −frω + T (t), (1.4)

where I is the moment of inertia, fr is the rotational friction coefficient and T (t) a random
torque according to

〈T (t)〉 = 0 (1.5)

〈Ti(t)Tj(t
′)〉 = 2kBTfrδijδ(t− t′), i, j = x, y, z, (1.6)

with fr = πησ3 = fσ2/3. This leads to the rotational diffusion coefficient Dr = 3D/σ2. The
angular velocity ω is responsible for the reorientation of the swimmer

dû

dt
= ω × û, (1.7)

where û is the unit vector defining the particle orientation, which will be confined to the unit
circle throughout this thesis.

In order to tailor this description to an active colloidal microswimmer, the low-Reynolds num-
ber regime has to be considered as previously described in Section 1.2. The motion of such a

6This is an example for the fluctuation-dissipation theorem.
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particle is overdamped and inertia free, leading to a vanishing left hand side of equations (1.1)
and (1.4) and the self-propulsion of active particles requires further modification. The propa-
gation velocity can be included though an effective self-propulsion force F0 which is directed
along the direction û

7. Hereby, we will not account for details of the self-propulsion mecha-
nism of the active particles and just rely on the fact that a particle migrates in the direction û.
To consider the effect of an external potential, U(r, t) can be included easily8.

Consequently, the Langevin equation for the translational motion of an active colloidal parti-
cle9 can be written as the following

dr

dt
=

D

kBT
[−∇rU(r) + F0û] + ξ(t), (1.8)

where ξi is Gaussian white noise with zero mean and correlations 〈ξi(t)⊗ ξj(t
′)〉 = 2Dδ(t−

t′)1 with the unit tensor 1.

The rotational Langevin equation can be written analogously for an active Brownian particle

dû

dt
=

Dr

kBT
[−∇ûU(r) +M] + ζ(t)× û. (1.9)

Here ∇û denotes the gradient on the unit circle and ζ is as well a Gaussian-distributed noise
with zero mean and variance 〈ζi(t) ⊗ ζj(t

′)〉 = 2Drδ(t − t′)1. The term M is an additional
constant torque. If it is non-vanishing, it leads to a circular motion of an active particle with a
constant radius [1, 69, 70].

The stochastic noise term for the rotation of a particle is sensitive to the system which is de-
scribed. While artificial microswimmers are modeled properly by equations (1.8) and (1.9),
living active particles have to be modeled slightly different. For Bacillus subtilis any fluctua-
tions can be neglected [3,71] and for Escherischia coli the rotational noise has to be modeled
more carefully, since these bacteria perform a run-and-tumble motion [72, 73], which means
that they change direction randomly after straight swimming paths of various lengths due to
chemotaxis [18]. Here the bacteria check, after each run, the concentration gradient of either
an attractant or a repellent in the surrounding fluid.

If we neglect all kind of fluctuations we can rewrite the Langevin equations (1.8) and (1.9)
like the following

7This effective self-propulsion force F0 does not contradict the condition that a swimmer is force free.
8In this thesis this additional potential will be caused by steric interactions between several particles.
9Another term for an active colloidal particle would be “active Brownian particle”, which is also often used

in literature.
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fT
dr

dt
= −∇rU(r) + F0û, (1.10)

fR
dû

dt
= −∇ûU(r) +M, (1.11)

using friction tensors for the translational fT and rotational motion fR. These friction ten-
sors depend on the actual particle geometry. In each chapter the exact representation of the
Langevin equations will be given and possible changes will be explained.

All computer simulation results presented in this thesis have been performed via Brownian

dynamics simulations in two spatial dimensions. This technique uses the Langevin equations,
which have been discussed above, ergo stochastic differential equations which are integrated
forward in time to create trajectories of particle motion. Hence it is a perfect tool to study the
temporal evolution and dynamics of active fluids [74].

1.4. The Yukawa segment model

For the numerical study of active fluids we chose the Yukawa segment model to build self-
propelled units of any shape. We will concentrate in this work on stiff spherical and rodlike
active particles and introduce the particle aspect ratio a = ℓ/λ which is a dimensionless
number representing the quotient of the particle length ℓ and width λ. Accordingly, a spherical
particle corresponds to the case of a = 1, while rodlike particles will be considered in a range
up to a = 10. The position of an active particle α will be described by its center of mass
position rα and the orientation by the unit vector ûα = (cosϕα, sinϕα).

A rodlike particle is discretized into n spherical segments. The number n obviously depends
on the aspect ratio of the particle and is given by [75]

n = ⌊9a/8⌉, (1.12)

with ⌊ · ⌉ denoting the nearest integer. These n segments are placed along the main particle
axis, which corresponds to the orientation û. The distance d between individual segments is

d = ℓ/[(n+ 1)(n− 1)]1/2, (1.13)

which means that the distance d ≤ λ is always valid.

The total pair potential between two swimmers α and β is modeled by a repulsive Yukawa
potential and given by
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Uαβ =
U0

n2

n∑

i=1

n∑

j=1

exp[−(rαβij /λ)]

rαβij
, (1.14)

where U0 > 0 is a prefactor10 and

rαβij = |∆rαβ + (liûα − ljûβ)| (1.15)

is the distance between the ith segment of rod α and the jth segment of rod β, with li ∈
[−(ℓ − λ)/2, (ℓ − λ)/2] denoting the position of segment i along the symmetry axis of the
rod α, see Figure 1.4.

Figure 1.4.: Sketch of a rodlike self-propelled particle pair {α, β} build up by the Yukawa

segment model. Each rod consists of n = 5 such segments, has a length ℓ and

width λ, leading to an aspect ratio a = ℓ/λ. The effective self-propulsion force

F0 acts along the main rod orientation û. Additionally indicated is the center

of mass distance ∆rαβ and rαβij , the distance between segment i of rod α and

segment j of rod β.

We will focus on the dynamics of active particles propagating with a velocity v0. As introduced
in Section 1.2, the respective self-propulsion force F0 is directed along the particle orientation
ûα, see again Figure 1.4.

The translational fT and rotational fR friction tensors can be decomposed into parallel f‖,
perpendicular f⊥ and rotational fR components in the following way,

10A detailed study shows that the collective behavior of sufficiently hard rods is only weakly dependent on
the exact value of the Yukawa amplitude [76]. Furthermore we will restrict our studies to monodisperse systems.
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fT = f0
[
f‖ûαûα + f⊥(1− ûαûα)

]
, (1.16)

fR = f0 fR1, (1.17)

with a Stokesian friction coefficient f0 and the 2D unit tensor 1. The dimensionless geometric
factors {f‖, f⊥, fR} depend solely on the aspect ratio a of the rodlike particles. Here we adopt
the standard expression for stiff rodlike macromolecules as given in Ref. [77],

2π

f||
= ln a− 0.207 + 0.980a−1 − 0.133a−2, (1.18)

4π

f⊥
= ln a + 0.839 + 0.185a−1 + 0.233a−2, (1.19)

πa2

3fR
= ln a− 0.662 + 0.917a−1 − 0.050a−2. (1.20)

The described model is an established one for charged rodlike colloids [78–80], such as
suspensions of the tobacco-mosaic virus [75, 81], fd-virus [82] and DNA strands [83–85].
It has already been extensively used to model active particles, showing good agreement to
experimental results, see e. g. Ref. [76, 86, 87]. Such a segment model has also been used for
different repulsive potentials like a shifted Lennard-Jones potential, showing similar results in
the case of self-propelled rods [88].

Any modifications of this particle model will be explicitly described in the respective chapter.

1.5. Polymer physics

In general a polymer is a large molecule consisting of many small simple chemical units,
called monomers, which are joint together. Accordingly, such polymers can be modeled by N
segments connected with bonds of length b.

In order to make an assumption on the statistical properties of such a polymer, the spatial
extension will be discussed in the following. At first we will start with the simplest model
of an ideal chain before introducing more complex models. In case of such an ideal chain
it is assumed that there are no correlations between the directions of different bonds and all
directions occur with the same probability. Furthermore, the monomers do not interact with
each other at all. The resulting polymer chain conformation is the same as a random walk on
a lattice.

To make an assumption on the spatial extension, i.e. the length of the polymer, we start with
the end-to-end vector RE, which joins one end of the chain with the other. For a chain with N
monomers with bond vectors ri it is given by
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RE =

N∑

i=1

ri. (1.21)

Obviously, the average of this quantity vanishes, 〈RE〉 = 0, since all directions have the same
probability. Therefore, the second moment 〈R2

E〉, which is the average of the square of the
end-to-end vector,

〈R2
E〉 =

N∑

i=1

N∑

j=1

〈ri · rj〉, (1.22)

will be considered and its square root will be used to express RE, the length of the end-to-end
vector. Since there are no correlations between the directions of the bonds if i 6= j, 〈rirj〉 =
〈ri〉 · 〈rj〉 = 0 is valid. Consequently, equation (1.22) can be rewritten as

〈R2
E〉 =

N∑

i=1

〈ri2〉 = Nb2. (1.23)

The same scaling for large numbers of monomers N can be found if a fold-back of two con-
secutive bonds is excluded through interactions within the chain. Even in case of a Gaussian

chain11 this scaling is unaffected, although an effective bond length may be used to express
the average end-to-end distance. For all these simple models excluding interactions between
the segments themselves, the scaling

RE ∼ N1/2 (1.24)

is valid.

The end-to-end distance is only a valid quantity to measure the spatial extension in the case of
chainlike polymers. For branched or starlike ploymers using the end-to-end distance character-
ization is inappropriate. Instead it is common to evaluate the radius of gyration as a quantity
describing the spatial extension for polymers of all shapes – even for chains. Another advan-
tage of this quantity is that it can be measured by means of scattering experiments, which is
not possible for the end-to-end distance. The radius of gyration RG is defined by the square
root of

11In case of a Gaussian chain it is assumed that the bond vector r itself possesses flexibility and follows a
Gaussian distribution.
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R2
G =

1

N2

N∑

i=1

N∑

j=1

〈(Ri −Rj)
2〉, (1.25)

where Ri corresponds to the position of the ith monomer of the polymer. By using the position
of the center of mass

RC =
1

N

N∑

i=1

〈Ri〉, (1.26)

R2
G can be expressed as the square of the average distance between the single segments of the

polymer and its center of mass

R2
G =

1

N

N∑

i=1

〈(Ri −RC)
2〉. (1.27)

Let us now focus on the actual scaling behavior of the radius of gyration. Again, in the case of
a long ideal chain, Ri−Rj has a Gaussian distribution with variance |i−j|b2. Equation (1.25)
can be rewritten in the following way

R2
G =

1

2N2

N∑

i=1

N∑

j=1

|i− j|b2 = 1

6
Nb2. (1.28)

As a result, R2
G/R

2
E = 1/6 and both quantities show the exact same scaling behaviors, RG ∼

N1/2 ∼ RE [89, 90].

Up to now we have dealt with polymers which are not self-avoiding. If we consider self-
avoidance, the scaling exponent, which we will call ν from now on, is different. Since excluded
volume effects have to be considered for real chains, the scaling exponent for the spatial exten-
sion should be larger than before, so ν > 1/2. We will now focus on Paul Flory’s approach to
determine this exponent by assuming a self-avoiding polymer chain with an unknown radius
R and N monomers in d dimensions [91]. The total repulsive energy E scales as

E ∼ N2

Rd
. (1.29)
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Here, we assume a monomer concentration c ∼ N/Rd and integrated the repulsive energy
between the monomers which scales with Em ∼ c2 over the volume Rd. According to equa-
tion (1.29) the total energy of a polymer decreases with increasing spatial extension of the
polymer. Consequently, elongated chains are the preferred configuration. However, this leads
to a minimization of the entropy. To avoid this, Flory introduced a term for the entropy accord-
ing to an elastic energy

S ∼ R2

b2N
, (1.30)

where b is the length of a bond as before.

It is well known that these approximations overestimate the repulsion because they ignore
correlations. However, the entropy term is overestimated as well [90], so these two errors
cancel each other out to give a good approximation. The free energy of the considered system
can be estimated by

F ∼ N2

Rd
+

R2

b2N
. (1.31)

Its minimum

Rd+2 ∼ b2N3 (1.32)

leads to a general scaling R ∼ Nν with the well known Flory exponent [91]

ν =
3

d+ 2
, (1.33)

and thus ν = 3/4 in two dimensions and ν = 3/5 ∼ 0.588 in three dimensions12, which has
been studied extensively by simulations [93].

12Flory introduced the scaling exponent for the case of d = 3. For general d it was first quoted in Ref. [92].
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2 Vortex arrays as emergent

collective phenomena for

circle swimmers

Both swimming micro-organisms [94, 95] and synthetic colloidal swimmers [40] are able to
form remarkable collective spatiotemporal patterns [73, 96–101] including swarming [102–
105] and complex swirling [76, 106–114] behavior. Most of the observed patterns can be ob-
tained by a simple modeling that includes the tendency of the particles to move autonomously
and their direct interaction mainly governed by the excluded volume of effective anisotropic
objects [76, 86]. When supplemented with Brownian dynamics, binary collisions between
neighboring particles lead to mutual alignment and thus provide a mechanism of swarm-
ing [115]. The observed effects occur in most cases in two dimensions, i.e., for particles
moving in a planar geometry.

In fact, self-propelled particles in two dimensions can be realized in a number of ways in-
cluding autonomously navigating confined bacteria and microbes [107, 108, 116–119], polar
granular rods on a vibrating flat surface [120, 121], flagellated alga [122], and even pedestri-
ans in a pedestrian zone [13, 14]. Moreover, colloidal dispersions have been shown to provide
various valuable model systems of active matter [37, 50, 123–128]. Most of these particles
have an anisotropic rodlike shape and move along their orientation axis such that a single
particle proceeds along a line. This is a key ingredient in previous modeling of many swim-
mers [84, 105, 115, 129–133].

Moreover, self-propelled particles have been discovered that move in circles rather than in a
straight line. Examples for these circle swimmers include various bacteria [134–139], proto-
zoans [140], microtubules [141], spermatozoa [109,142,143], crustaceans [144], and spherical
camphors that have been shown to exhibit circular swimming at an interface [145]. Further-
more, synthetic microswimmers with various shapes exhibit circular motion [58,59,146,147].
Driven Brownian particle models [69, 70, 148–150] have been proposed to describe the basic
physics of circle swimmers where the particles proceed with both an effective translational and
angular propagation velocity and experience additional Brownian fluctuations. The determin-

This chapter has been published in a very similar form by Andreas Kaiser and Hartmut Löwen, Phys. Rev. E 87,
032712 (2013), see Reference [1].
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CHAPTER 2. VORTEX ARRAYS AS EMERGENT COLLECTIVE PHENOMENA FOR
CIRCLE SWIMMERS

istic (noise-free) trajectory in two dimensions is a closed circle. More explicit models that re-
solve the swimming strokes have recently been put forth for single circle swimmers [151,152].

However, the collective properties of circle swimmers at finite density are rarely understood.
Experiments [109] have shown emerging dynamic arrays of vortices for spermatozoa resem-
bling quantized rotating waves if the density exceeds a threshold. The origin was explained
in terms of hydrodynamic interactions. However, apart from a coarse-grained recent diffusive
theory [153], there is no particle-resolved simulational study nor any theoretical study for the
emergent behavior of many circle swimmers. Here we simulate the collective behaviour of
many circle swimmers by a minimal model in two spatial dimensions incorporating excluded
volume interactions. The swimmers are interacting via a strongly repulsive and short-range
Yukawa-segment potential [75], which prevents particles from overlapping. Each rod has a
length ℓ. The self-motility of the individual swimmers is imposed by introducing a constant
translational velocity along the main orientation axis of each rod and a constant angular veloc-
ity that rotates each rod. The combination of both translational and rotational self-propulsion
results in a circular swimming path for the center of mass of radius R for each individual rod.
At finite density, different circle swimmers will collide, leading to nontrivial emergent behav-
ior that gets crowded and nontrivial if the area πR2 embraced by a single swimmer is occupied
on average by two or more swimmers. In particular, at intermediate and high densities, novel
emerging effects are expected.

The model considered here has been studied previously in two special limits, namely, for
vanishing angular velocity [76, 86] and vanishing translational velocity [154]. For vanishing
angular velocity, we recover the special case of linear swimmers that move in straight lines
corresponding to the limiting case R → ∞. Even though the averaged swimming direction
is constant, it has been shown [76, 86] that at finite density, swirls emerge in the model. The
average rotational sense of the swirls, however, averages to zero due to symmetry. The com-
plementary case of vanishing translational velocity [154, 155] describes passive rotors. The
absence of translational propulsion leads to a vanishing swimming radius R. These rotors can
be realized by placing passive colloids into circularly polarized light fields [156–158]. Passive
rotors have been shown to exhibit a T structure of neighboring rotating rods that can also be
viewed as a special kind of vortex array, a singlet vortex, in the sense that each rotor forms
its own vortex and neighboring vortices possess perpendicular rod orientation. The compact
though dynamic T structure is formed since mutual collisions are avoided. At high density,
the vortex array structure disappears due to jamming [154], leaving a slowed rotor fluid as the
high-density state.

In our simulation of many circle swimmers, we have the radius R of a single swimmer’s path
as an additional parameter. First we confirm that the singlet-vortex phase and the slowed rotor
fluid phase that were discovered previously for vanishing R [154] possess a large stability for
finite R. More surprisingly, we find a novel vortex array formation at intermediate swimmer
densities and an intermediate range of radii R. In this phase, the vortices are composed of
circle swimmer pairs that are oriented antiparallel with respect to each other. Many of these
doublet vortices exhibit strong structural ordering on an array. We propose a simple theory
to predict the onset of circle swimmer pairing to understand the underlying mechanisms for
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vortex array formation. Our vortex array is induced by steric interactions together with circular
self-propulsion and is therefore different in origin that the hydrodynamically induced vortices
of Refs. [109, 159]. The rotation sense of the vortices is obviously correlated with the sense
of rotation of a single swimmer since the clockwise or counterclockwise symmetry of rotation
is broken in our model. This make our vortex pairing different from previous explorations of
swirling in linear swimmers at intermediate densities [76,107,108,160,161]. In principle, our
results are verifiable for bacterial and artificial rodlike circle swimmers.

This Chapter is organized as follows: In Section 5.1 we specify our model for circle-swimming
self-propelled rods, the corresponding equations of motion and the simulation technique. Sim-
ulation results on the nonequilibrium state diagram are presented and analyzed in Section 2.2
while in Section 2.3 a simple theory is proposed to predict the vortex formation. We conclude
in Section 5.4 with a brief discussion of possible extensions of the model and highlight oppor-
tunities to observe the predicted behavior in experiment.

2.1. Frictional dynamics of a self-propelled-rod model

The rodlike circle swimmers in our model are characterized by a length ℓ and are driven by
a constant self-propulsion force F directed along the main rod axis û. The actual position of
the αth rod (α = 1, . . . , N) is described by a center of mass position vector rα and a unit
orientational vector ûα = (cosϕα, sinϕα). We do not resolve the details of the swimming
mechanism. The force F is a formal one that results in some overdamped dynamics in a con-
stant propagation velocity as in previous models [5,86,130]. Similarly, the circular movement
is implemented using an additional torque M normal to the plane of motion as described for a
single rod in Ref. [69]. The rods themselves are modelled by the Yukawa segment model, as
introduced in Section 1.4.

Accodring to the low-Reynolds-number limit, the transplational and rotational equations of
motion can be written as

fT · ∂trα = −∇rα
U + F ûα, (2.1)

fR · ∂tûα = −∇ûα
U +M. (2.2)

Here F is the constant self-motility force acting along the longitudinal axis of each rod (see
Figure 2.1), U = (1/2)

∑
β,α:β 6=α Uαβ is the total potential energy, ∇û denotes the gradient

on the unit circle, and fT , fR are the translational and rotational friction tensors. The dimen-
sionless geometric factors {f‖, f⊥, fR} depend solely on the aspect ratio a and we adopt the
standard expressions for rodlike macromolecules, as given in Ref. [77], and shown in Sec-
tion 1.4.
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ℓ

λ

Figure 2.1.: Sketch of a pair of rodlike circle swimmers with n = 11 repulsive Yukawa

segments and aspect ratio a = ℓ/λ. Self-propulsion is provided by a constant

force F acting along the main rod axis û. The circular motion is brought about

by an additional torque M perpendicular to the plane of motion. The total

rod pair potential is obtained by a sum over all Yukawa segment pairs with

distance rαβij and is a function of the center of mass distance vector ∆rαβ and

orientations (1.14). The circular swimming path of radius R of the center of

mass coordinates is also indicated.

The constant torque M , directed perpendicular to the plane of motion (see Figure 2.1), induces
a circular motion of a single swimmer with a radius

R =
fRF

f||M
, (2.3)

and an angular velocity

ω0 =
M

fR
. (2.4)

Clearly, there is no finite temperature in our model as any stochastic fluctuations are ignored.

In our simulations, we have adopted characteristic units such that λ = 1, F = 1, and f0 = 1,
which means that distance is measured in units of λ, velocity in units of F/f0, time in units
of τ0 = λf0/F and energy in units of Fλ. Upon rescaling to dimensionless coordinates, four
relevant system parameters remain: the dimensionless Yukawa amplitude Ũ0 = U0/(Fλ),
which determines the hardness of the rod interactions relative to their characteristic propulsion
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energy, the aspect ratio a, the reduced radius R/λ, and the packing fraction of the rods. This
fraction is specified in terms of the dimensionless area fraction

η =
π

4

N

A
ℓ2 (2.5)

where N is the total number of rodlike circle swimmers and A denotes the area of the quadratic
simulation box. For steeply repulsive Yukawa interactions, the general dynamical behavior re-
sembles that of hard rods and only weakly depends on the Yukawa amplitude and we set
Ũ0 = 250. We further consider anisotropic rods with fixed aspect ratio a = 10. The remaining
quantities, the reduced swimmer radius R/λ and area fraction η constitute the main steering
parameters for our investigation. We simulate the evolution of the many-body self-propelled
rod model as a function of time τ = t/τ0 in a square box with periodic boundary conditions
at packing fractions in the range 0.1 < η < 2.5. The simulations are carried out using a total
number of N = 103 rods. Initial configurations are generated from a rectangular lattice of
aligned rods with û pointing randomly up or down. The rods are randomly displaced from
the initial lattice such that the starting configuration bears already some randomness. We have
tested different random starting configurations and confirmed that the steady state properties
do not depend on the starting configuration. We then relax the system during an time interval
of a transitory time τT = 2000 before statistics are being gathered over an interval τS = 40 000.
We checked that the results do not depend on τT if τT is chosen larger than 2000. Moreover,
we have done longer exploration runs with τS = 100 000 to confirm that the steady state aver-
ages are reproduced. Finally, we have checked the system size dependence by systematically
exploring particle numbers in the range of N = 100 − 1000 particles. The occurrence of the
different steady states is stable.

2.2. Simulation results

Figure 2.2(a) shows a state diagram for rodlike circle swimmers in the two-dimensional pa-
rameter space of swimmer density η and swimming radius R. Four different states emerge, for
which typical simulation snapshots are shown in Figures 2.2(b) - 2.2(e)1. We discriminate be-
tween different states by suitable order parameters as explained in detail below, but emphasize
here that there are no strict phase transitions between the different states. Let us first discuss
the contents of Figure 2.2 before we characterize the states in more detail.

For low densities there are only very few collisions and therefore little or no collective motion.
Consequently, there is a dilute state at low density η [see Figure 2.2(b)]. Complementarily, at
high density, there is a slowed rotor fluid with no particular mesostructure [see Figure 2.2(e)].
In this state, rotating rods collide, which slows down their mean angular velocity. More inter-
estingly, there are intervening phases at intermediate densities. We find two different vortex
array states. The first consists of singlet vortices such that every vortex comprises a single

1See http://link.aps.org/supplemental/ 10.1103/PhysRevE.87.032712 for movies showing the individual oc-
curring states.
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Figure 2.2.: (a) Nonequilibrium state diagram of rodlike circle swimmers in the parameter

space spanned by the swimming radius R and the swimmer density η. Four dif-

ferent states emerge, which are depicted as - dilute for low swimmer densities,

singlet vortex for intermediate densities and low rotation radii, doublet vortex

for higher swimmer densities and slowed rotor fluid for even higher densities.

(b)-(e) Characteristic simulation snapshots for the four states are also shown,

including blue circles to show typical configurations of the vortex array states.
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particle. This phase has been called T structure in earlier investigations for passive particles
at vanishing radius R [154] since it clearly shows a perpendicular orientation of neighboring
rods. We refer to this state here as a singlet-vortex array phase as every particle rotates around
its own such that any vortex comprises a single particle [see Figure 2.2(c)]. The second phase
is a doublet-vortex array such that each vortex comprises two rods that are oriented in an an-
tiparallel way. The rod pairing is clearly visible in the snapshot shown in Figure 2.2(d). It is
important to note that the doublet-vortex state is stable only in a finite range of swimming
radii λ/2 < R < 7λ. Its transition density towards the slowed rotor fluid exhibits a large
nonmonotonicity in R, which implies a marked reentrant behavior of the slowed rotor fluid if
R is increased at fixed density. For the parameter space studied, we never found vortices with
more than two rods.

In more detail, we now define order parameters in order to distinguish and characterize the
four different states. To analyze the orientation of neighboring rods we define normalized
orientational order parameters

m1 = 〈cos θ(r)〉s , (2.6)

m2 =
〈
cos2 θ(r)

〉
s
, (2.7)

where 〈· · · 〉s =
∫ s

0
drg(r) · · ·/

∫ s

0
drg(r) is a statistical steady state average. These order

parameters correspond to measures of the polar and nematic order in a neighbor shell of size
s. Here g(r) is the pair correlation function between two rods (provided their center of mass
positions have a distance r) and θ(r) denotes the angle between their orientations. Moreover,

s = (N/A)−1/2 is the average distance between two rods. The order parameter m2 was already
applied to evaluate passive rotors [154].

In the case of no correlation of neighboring rods m1 = 0 and m2 = 0.5. Perpendicular
orientation is indicated by m1 = 0 and m2 = 0. A perfect parallel orientation leads to m1 =
1 and m2 = 1, while an antiparallel alignment is represented by m1 = −1 and m2 = 1.
Furthermore, we calculate (as a dynamical diagnostics) the mean angular velocity

〈ω〉 = 1

N

N∑

α=1

ϕ̇α (2.8)

of the rods.

The dilute state is characterized by almost freely rotating rods with just a few collisions.
We define this state by a combination of structural and dynamical criteria demanding that
m1 > −0.4, m2 > 0.4, and 〈ω〉 ≥ 0.99ω0 should hold in the dilute state. Moreover, the singlet-
vortex state is defined via the condition m2 ≤ 0.4, which brings about strong perpendicular
orientation of neighboring rods. Conversely, for doublet vortices we require m1 ≤ −0.4, indi-
cating that neighboring rods are orientated in an antiparallel way. The slow rotor fluid state is
defined by the combined complementary conditions m1 > −0.4, m2 > 0.4, and 〈ω〉 < 0.99ω0.

Simulation data for the orientational order parameters m1 and m2 and the mean angular ve-
locity 〈ω〉 are given in Figures 2.3 and 2.4(a), respectively, as a function of swimmer density
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Figure 2.3.: Orientational order parameters (a) m1 and (b) m2 for several swimming radii

R as a function of swimmer density η. The horizontal dashed lines represent

the criteria for the vortex states. Typical swimmer configurations, hereby their

orientation is indicated by arrows, for selected order parameter values are

sketched on the right – in the case of no correlation of neighboring rods m1 =
0 and m2 = 0.5.

η for various swimming radii R. These plots are consistent with the state diagram shown in
Figure 2.2(a). In detail, for low densities, clearly the dilute state emerges. For small radii, m2

drops down to zero for intermediate densities and then increases again. This demonstrates the
occurrence of the singlet-vortex state. At higher densities there is no indication for the doublet-
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Figure 2.4.: (a) Reduced circular frequency 〈ω〉 /ω0 as a function of swimmer density η
and different rotation radii R. (b) Reduced circular frequency 〈ω〉 /ω0 as a

function of swimmer radius R for a fixed swimmer density η = 1.25 showing

the reentrance of the slowed rotor fluid. The intermediate doublet vortex state

is denoted by vertical dashed lines.

vortex state, but the system goes directly into the slowed rotor fluid state, as indicated by an
alignment that leads to the increase of m2. This is accompanied by a very sharp reduction in
the mean angular velocity as shown in Figure 2.4(a).

For R > λ/2, in contrast, there is an overshoot of m2 as a function of density just after
the singlet vortex is stable, implying a parallel ordering of neighboring rods. This points to
the new state of doublet vortices. This is simultaneously revealed by a largely negative m1
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as indicative for the antiparallel doublet-vortex state. Again, further increasing of the density
leads to the slowed rotor fluid state where the swimmers hinder each other in rotating [see
again Figure 2.4(a)].

Finally, for very large R, the dilute to slowed rotor fluid state becomes more and more blurred.
For R → ∞ the crossover from the dilute to a swarming state [103,115] is approached slowly
as observed in Ref. [86].

Figure 2.4(b) shows the mean angular velocity 〈ω〉 now as a function of the swimming radius
R for fixed density η = 1.25. Clearly 〈ω〉 is nonmonotonic, revealing again the reentrant
transition of the slowed rotor fluid phase with an intermediate doublet-vortex phase.

As a general final remark the order parameter plots Figures 2.3 and 2.4 reveal that some
transitions are pretty sharp (in particular the transition from the doublet vortex to the slowed
rotor fluid state at low R) and other are rather smooth crossovers whose location depends a
bit on the precise definition of the states (as for the transition from the doublet vortex to the
slowed rotor fluid state at high R). We emphasize, however, that the global topology of the
state diagram does not change if the transition criteria as shown by the dashed lines in Figure
2.3 are modified.

2.3. Simple Theory

Let us now present a simple instability theory to predict the state diagram of rodlike circle
swimmers. For a vanishing swimming radius R, as already denoted in Ref. [154], the singlet
vortices are mostly governed by a situation where four rodlike circle swimmers on a square
lattice rotate with a relative perpendicular orientation [see again the encircled region of the
snapshot shown in Figure 2.2(c)]. For infinitely thin needles (λ → 0), as sketched in Fig-
ure 2.5(a), the circles covered by the needle orientation can overlap if the rotating motion is
performed coherently with a fixed relative phase shift. The maximal packing fraction that can
be reached in this configuration is when needles of length ℓ are placed on a square lattice of
lattice constant ℓ/

√
2 [see again Figure 2.5(a)], resulting in a threshold packing fraction of

η0 =
π

2
. (2.9)

Rods with an effective finite thickness λ need to be more distant to avoid overlap upon their
coherent rotation, corresponding to the infinitely thin needles of a larger length ℓ+λ [see again
Figure 2.5(a)]. If they perform an additional circling of swimming radius R [see Figure 2.5(b)],
this effective length needs to be augmented by 2R such that the singlet-vortex state should be
stable up to

η1(R) = η0

(
ℓ

ℓ+ 2R + λ

)2

. (2.10)
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Figure 2.5.: Schematic representations of rod-shaped circle swimmers in the vortex states,

showing typical configurations marked in Figures 2.2(b) and 2.2(c). The

singlet-vortex state is illustrated for (a) a passive rodlike particle and (b) an

active swimmer whose center of mass moves on a circle with radius R, shown

here by small blue circles. The doublet-vortex state is sketched in (c). In all

figures black dots represent the rotation center of the swimmers, while the light

gray circles indicate the area covered by the circle swimmers during a full

rotation. The lattice constants for all square lattices are given as well.
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We now employ a similar argument for the doublet-vortex state by considering effective com-
posite rods consisting of a swimmer pair [see Figure 2.5(c)]. A suitable cutout from a sim-
ulation snapshot is presented in Figure 2.2(d). In the simulations, the pairs are observed to
rotate around their joint center of mass without exhibiting any circling. The swimmer pair
[see the encircled region of the snapshot shown in Figure 2.2(d)] possesses typically an inter-
rod distance b and is laterally shifted by an amount of ∆ℓ [see again Figure 2.5(c)]. In general,
these two quantities depend on the prescribed swimming radius R and the prescribed density
η. Lacking any theoretical input for these quantities b and ∆ℓ, we resort in our simulation data
to determine them and to achieve at least a consistent theory. In detail, we identify swimmer
pairs by a center of mass distance less than a cutoff rc that we chose in the considered density
range as rc = 8λ. For all identified pairs, we average their mutual distance b and their lateral
shift ∆ℓ. Results are presented in Figure 2.6(a). Interestingly, b and ∆ℓ depend strongly on
the swimming radius R, but are rather density independent. In fact, the data obtained for two
selected densities η = 0.75 and 1 almost coincide. Therefore, we skip the density dependence
and consider just b(R) and ∆ℓ(R) for which we obtain linear and hyperbolic fits from the
simulation data [see dashed lines in Figure 2.6(a)] as

b(R)/λ = 1.73R/λ+ 0.78/λ, (2.11)

∆ℓ(R)/λ = 4.29/R/λ− 0.93/λ. (2.12)

After all one can then treat a pair effectively as a rectangular block of length ℓ + ∆ℓ(R) and
width b(R) + λ. Since the block now contains two particles, the instability density for the
doublet-vortex state now reads

η2(R) = 2η0

(
ℓ

ℓ+∆ℓ(R) + b(R) + λ

)2

. (2.13)

In Figure 2.6(b) both instability lines obtained from either equation (2.10) or (2.13) are shown.
The simulated state diagram from Figure 2.2(a) is plotted as a reference. Given the simpli-
fications entering in our instability theory, the transition lines describe the simulation data
reasonably well. Moreover, the reentrance effect of the slowed rotor fluid is well captured by
our instability analysis such that the topology of the phase diagram is predicted correctly by
the theory.

We finally remark that our instability analysis also sheds light on the stability of the singlet-
and doublet-vortex states for parameter combinations different from those used in our simu-
lation study. For example, one important condition is that the aspect ratio of the swimmers
is high since the reference system in the theory consists of infinitely thin hard needles. This
implies that no multiplet-vortex states are expected for almost spherical swimmers.
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simulated state diagram is shown as a reference.

2.4. Conclusions

We have studied the collective dynamical behavior of a simple two-dimensional model of
circle-swimming rigid rods by computer simulation. A new vortex array formation was found
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where a vortex is composed of a circle swimmer pair, which we referred to as a doublet-vortex
state.

The results obtained in our modeling of circle swimmers can be verified in experiments of
circle swimmers on two-dimensional substrates. An ideal realization for our model consists
of such colloidal rods that are catalytically driven from one side such that they perform strong
circular swimming. The swimming radius can in principle be tuned by the lever arm length
of the spot where the catalytical reaction happens. The same idea can be used for thermally
driven rodlike particles as proposed in Ref. [124]. It is, however, essential to use slender rod-
like particles in order to obtain the singlet- and doublet-vortex states. As documented by our
theoretical approach, almost spherical particles with a low aspect ratio are not expected to
show these vortex states.

For the future, it would be interesting to explore other physical shapes of the swimmer such
as recently explored L-particles [59] or C-particles2 that have a strong tendency to form
stacks [162]. We expect that the pairing process will be significantly disturbed for a different
particle shape. For such nonconvex particle shapes, it is possible that multiplet-vortex states
arise, which comprise an even higher number of swimmers.

Further theoretical efforts should be aimed at expanding the model and equations of motion
step by step by considering effects that are relevant in experiment such as multi-body hydro-
dynamic interactions and flexibility of particle shape. The effect of finite temperature could be
incorporated as well if one wishes to assess the effect of translation and rotational noise (e.g.,
tumbling in bacteria) in more detail. In fact, previous studies [154] have already shown that
the results are stable with respect to noise provided the strength of the noise is not too large.
We have confirmed the stability for some selected parameters also for the doublet-vortex state.
It is also desirable to explore the model in three spatial dimensions where the swimming path
is a helix rather than a circle [163]. Finally, it would be challenging to construct microscopic
theories that are capable of predicting the observed emergent states advanced in this study.
Dynamical density functional theory for anisotropic systems [130, 164, 165] might provide a
promising avenue for this.
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2A recent numerical study shows the emergence of spinning rotor clusters for C-shaped self-propelled parti-
cles [87].
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With an appropriate use of a fishing net, many fish can be simultaneously caught in an efficient
way. There are two different strategies to catch fish using, e.g., a cone-shaped net; the net can
either be dragged through quiescent water or a stationary trap (a so-called “fyke”) can be
placed in running water, forcing the fish to swim into the fyke. While the general methods for
trapping macroscopic swimming organisms (fish) have been known since ancient times [166],
the corresponding problem in the microscale has been scarcely explored thus far due to the
general difficulty in controlling and designing processes in systems of micron-sized objects.
There are many realizations of microscopic swimmers [40, 94–96] including autonomously
navigating microbes [107, 108, 111, 118, 119, 135–139, 167] and human-made artificial swim-
mers [37,38,44,50,58,59,123,125–127,146,147,168,169]. For many applications it is of key
importance to trap collections of these active particles into a moving trap. A first application
is to transport ensembles of swimmers to a given destination like a cargo. This situation dif-
fers from the more commonly considered case in which the swimmer itself transports an inert
cargo [170–174]. It is obvious that, in the former situation, one, first, has to catch the particles
in an efficient and controlled way before they can be transferred to the specific destination via
a moving trap. A second application could be to efficiently remove “dangerous” toxic particles
in order to clean the environment [175, 176]. Moreover, the motion of the trap is expected to
play a crucial role in optimizing the removal of contaminating mesogens.

Apart from the different length scale, it is important to note that another basic difference
between macroscopic fish and microbes is their Reynolds number Re, which characterizes the
ratio of inertial to viscous forces associated with swimming. While fish typically swim at a
Reynolds number of several hundred, microswimmers typically operate at very low Reynolds
numbers, Re ≪ 1.

In this chapter, we transfer the ideas of catching fish in a net to micron-sized self-motile par-
ticles propagating through a solvent at a low Reynolds number. We use computer simulations

This chapter has been published in a very similar form by Andreas Kaiser, Katarina Popowa, Henricus H.
Wensink, and Hartmut Löwen, Phys. Rev. E 88, 022311 (2013), see Reference [2].
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of a two-dimensional system of self-propelled rods and drag a chevron-shaped obstacle with
a constant speed v through the embedding active fluid. As revealed by a simple Galilean trans-
formation, this setup is equivalent to a static trap in a flowing solvent. Our simulations com-
plement earlier studies for a static trap [5] where a wedge was found to optimize the catching
efficiency. Here, we focus on the effect of a nonzero drag speed. At fixed swimmer density and
varied drag velocity v and apex angle of the trap, there are three emerging states corresponding
to no trapping, partial trapping, and complete trapping. While in the no-trapping state, no parti-
cles remain in the trap over time, in the complete trapping state all swimmers are permanently
caught in the microwedge after a certain amount of time. Finally, partial trapping refers to a
state where only a fraction of the particles are permanently trapped. Obviously, the dream of
any fishermen and the most desirable situation in many applications is the complete-trapping
state, where no freely moving particles are left.

We solve the single-rod case analytically and present the trapping state diagram in the plane
spanned by the opening angle α of the microwedge (0 < α ≤ π) and the trap velocity v
(normalized by the swimmer velocity v0). The drag direction is along the symmetry axis of the
wedge and we define a positive drag speed if its drag is along the inner part of the wedge. As a
result, if the net is dragged into the positive direction, trapping is facilitated. Counterintuitively,
however, for a negative drag velocity, a situation of no trapping can change into a trapped one,
which we attribute to polar ordering of the swimmer along the wedge symmetry axis. Clearly,
when the (negative) trap velocity exceeds the swimmer velocity (v/v0 < −1), trapping is
no longer possible as the trap overtakes the swimmer, which leads to a reentrant effect for
increasing negative velocity: for intermediate opening angles α, we observe the state sequence
of no trapping, complete trapping, and no trapping. For finite trap density we employ computer
simulations [5, 130, 177] and confirm the trends of single-particle trapping. For high-enough
positive drag speed, a partial trapped situation will change into a complete trapped situation. In
the converse case of a negative trap velocity, the reentrance effect is amplified by a collective
polar ordering in the trap. This is a typical example of self-assembly of self-propelled colloidal
rods [178] directed by the moving microwedge. Previous studies analyzing the rectification
effect of a wall of funnels by experiments [29, 179], theory [180], and simulation [181–184]
have utilized similar chevron-shaped boundaries but have never focused on trapping1.

Apart from their relevance for applications, our predictions can be verified in experiments on
rodlike microbes and self-propelled colloids and granulates [103,179,188–190]. Typically, the
system is moving on a two-dimensional substrate or can be subject to a strong two-dimensional
confinement [76]. A chevronlike trap can be prepared by lithographic techniques [58,116,168,
191] and it can be dragged at will using optical tweezers [124,192]. Therefore, an experimental
realization of our model is conceivable. We further anticipate that the same effects occur also
in three dimensions where the corresponding generalization of the wedgelike trap is a hollow
cone, similar in spirit to a real fishing net.

This chapter is organized as follows: in Section 5.1 we introduce the model and explain the
simulation method. Section 3.2 is devoted to the case of a single self-propelled rod. We will

1In the meantime there a couple of studies focussing on the trapping of active swimmer due to boundaries,
e.g. [185–187].
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give a theoretical prediction of the trapping state diagram along with numerical results. In
Section 3.3, we investigate the trapping states for many particles and all three main control
parameters. In particular, we fix each time one of these, vary the others and obtain a full
trapping state diagram which can be explained by the effects already showing up for the single
particle case. Finally, we conclude in Section 5.4.

3.1. Model

The aim is to formulate a minimal collision-based model for self-propagating rod-shaped par-
ticles that is capable of capturing the generic features of interacting swimmers at intermediate
to high particle density and their collective response to mobile confining boundaries. Follow-
ing earlier studies [5, 86], our system consists of N rigid rods of length ℓ, each moving in the
overdamped limit with a propagation velocity v0 arising from a formal force F0 fixed along
the longitudinal rod axis û [86,130]. The rodlike swimmers are modelled via the Yukawa seg-
ment model, introduced in Section 1.4. A trap is introduced as a boundary with a prescribed
shape and contour length ℓT and is dragged with a velocity v through the system. Particle-trap
interactions are implemented by discretizing the trap boundary into nT = ⌊ℓT/d⌉ equidistant
segments2 each interacting with the rod segments via the same Yukawa potential, resulting in
the pair potential

UαT = U0

n∑

i=1

nT∑

k=1

exp[−rαTik /λ]

rαTik
. (3.1)

Here rαTik denotes the distance between segment i of rod α and segment k of the trap. The net
is dragged with imposed velocity v = vx along the symmetry axis of the wedge according to

rk = vt, (3.2)

where rk denotes the position of the kth segment of the trap. Mutual self-propelled rod colli-
sions generate apolar nematic alignment which stimulates swarm formation at finite concen-
trations [103]. The wedge boundary mimics a hard wall and imparts 2D planar order with rods
pointing favorably perpendicular to the local wall normal.

The microscopic equations of motion for the center-of-mass position rα(t) and orientation
ûα(t) = (cosϕα(t), sinϕα(t)) of the self-propelled particles emerge from a balance of the
forces and torques acting on each rod α and are similar as described in Ref. [86]

fT · ∂trα = −∇rα
U + F0ûα, (3.3)

fR · ∂tûα = −∇ûα
U, (3.4)

2Here the segment distance d is equal for both, the swimmers and the trap.
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in terms of the total potential energy U = (1/2)
∑

α,β(α6=β) Uαβ +
∑

α,T UαT with UαT the
potential energy of rod α with the trap and ∇ûα

denotes the gradient on a unit circle. The one-
body translational and rotational friction tensors fT and fR can be decomposed into parallel
f‖, perpendicular f⊥ and rotational fR contributions as shown in Section 1.4.

Equation (3.4) neglects thermal or intrinsic Brownian noise [73], which is acceptable at inter-
mediate to high concentrations when particle collision dominate the dynamics [76]. Despite
its minimal nature, the self-propelled rod model provides a remarkably accurate description of
the velocity statistics and microstructure of dense active matter [76].

It is important to note that our system is strictly equivalent to a quiescent net where the swim-
mers all experience their propagation velocity v0 together with an added velocity −v. This can
easily be demonstrated by transforming the equation of translational motion equation 3.3) in
terms of reduced difference coordinates r̃α = rα− vt, i.e., by applying a Galilean transforma-

tion [193] so:

∂tr̃α = (v0ûα − v)− f
−1
T · ∇r̃αU. (3.5)

The typical self-propulsion speed of a free single self-propelled rod

v0 =
F0

f0f||
(3.6)

defines the time interval

τ =
ℓ

v0
(3.7)

a rod needs to swim a distance comparable to its size. In the following, distances are measured
in units of ℓ and energy in units of F0ℓ.

We simulate self-propelled rods with aspect ratio a = 10, using n = 11 segments, in a square
simulation box with area A and periodic boundary conditions in both Cartesian directions. A
particle packing fraction is defined as φ = Nσ/A with σ = λ(ℓ−λ)+λ2π/4 the effective area
of a single rod. In the bulk density range φ < 0.2 the self-propelled rods spontaneously form
flocks with strong spatial density fluctuations [194]. We subject the self-propelled rods to a mo-
bile chevron boundary with contour length ℓT = 20ℓ and variable apex angle 0◦ < α < 180◦,
leading to an occupied trap area A0 = (ℓ2T/8) sinα/2, which is dragged with velocity v
(see Figure 4.1). In the macroscopic limit, the system can be interpreted as a reservoir of mi-
croswimmers exposed to an equidistant array of mutually independent wedges. A reduced trap
density is defined by φT = (ℓ2T/8A) which fixes the number of rods via N = (ℓ2T/8σ)(φ/φT ).
We constrain φT = 0.031 < 0.1 in order to guarantee the microwedges to be completely in-
dependent of each other within the typical range of bulk rod packing fractions 0 < φ < 0.1
considered here. The latter density is one of our main steering parameters. There are also
the drag velocity which is in the range of −1.2v0 < v < 8v0 and the apex angle α of the
microwedge.
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Figure 3.1.: Sketch of the system of self-propelled rods with aspect ratio a = ℓ/λ and a

self-motile velocity v0 directed along the main axis û (red arrows) of each rod

at bulk density φ. The single Yukawa segments are shown as red spheres. A

mobile wedge (indicated by blue spheres) with contour length ℓT and an apex

angle α is dragged with a constant velocity v (green arrow). Periodic boundary

conditions in both Cartesian directions are indicated by dotted lines.

Initial configurations are generated from a rectangular lattice of aligned rods with û pointing
randomly up or down. The rods are randomly displaced from the initial lattice such that the
starting configuration bears already some randomness. The segments of the microwedge are
successively placed in the system to avoid overlapping rods. We simulate the whole system
for a time of at least ts = 15000τ .

3.2. Trapping a single swimmer in a mobile

microwedge

We first focus on a single swimmer for which analytical results can be obtained which we
test against our computer simulations. In Figure 3.2(a), simulation results and analytical for-
mulas for the trapping state diagram are combined. The main control parameters we vary are
the reduced trap drag velocity v/v0 and the apex angle α. The trapping scenario of a single
swimmer is generic and is independent of the contour length of the net, as long as ℓT ≫ ℓ,
and the aspect ratio of the rod-shaped swimmer. In the simulation, a particle is considered to
be trapped if it remains inside the wedge for at least t∗ = 103τ .

Let us, first, discuss some limiting cases which are all intuitive: For strongly negative drag
velocities, v/v0 < −1, the swimmer is slower than the microwedge and therefore can never
get trapped for any opening angle α. Conversely, for v/v0 > −1 and very small opening angles,
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Figure 3.2.: (a) Trapping state diagram for a single self-propelled rod in the plane of re-
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ferent trapping mechanisms are sketched in (b)–(d). For more details, see text.
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once a rod enters the moving net it is faster than the net and therefore will approach to the kink
of the wedge, where it remains because it cannot escape by turning around. Hence there is a
trapping state for v/v0 > −1 and small opening angles. Complementarily, for v/v0 > −1 and
very large opening angles (α ≈ π), if the rod enters the microwedge, it will just slide along
the wall of the wedge and will then pass over the slight kink of the wedge such that the rod
leaves the trap again. Consequently, the rod does not permanently reside in the wedge and,
thus, attains a no-trapping state.

As shown in Figure 3.2(a), the intermediate transition opening angle which separates the trap-
ping from the no-trapping regime is a marked function of the reduced trap velocity which
exhibits some cusps. The cusps occur at v/v0 = −1, v/v0 = 0, and v/v0 =

√
3 and clearly

distinguish four different situations which we now discuss quantitatively step by step. We
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use the frame of the resting net for this discussion and introduce forces instead of velocities.
Clearly forces are proportional to velocities. In the microwedge system, the rod center expe-
riences a force F0 ∝ v0 governing its self-propulsion plus another force −F ∝ −v arising
from the resting rod frame. Third, the wall possibly exerts at contact a force FN onto the rod
which is always normal to the wall.

As already stated above, for strongly negative drag velocities, v/v0 < −1, a swimmer moves
slower than the microwedge and therefore can never get trapped. For −1 < v/v0 < 0, it
is expected that single rods are still spilled out by the net, but the opposite behavior is true:
trapping becomes more efficient if the drag speed approaches the swimmer speed v/v0 → −1+

from above. This counter-intuitive behavior can be understood as sketched in Figure 3.2(b). If
a rod enters the trap and hits a wall (see upper sketch of Figure 3.2(b)), it will orient at an angle
γ. This angle is determined by the condition that the projection of F0−F onto the wall normal
has to vanish, (F0 − F) · en = 0, with the wall normal vector en = (sinα/2,− cosα/2). This
leads to γ = arcsin(v/v0). With this orientation, the rod will slide along the wall inside the
corner until it touches the lower wedge wall [see lower sketch of Figure 3.2(b)]. The threshold
condition whether the rod slides further outside the wedge along the lower wall is finally given
by requiring that the normal projection along the lower wall normal e′n = (sinα/2, cosα/2)
vanishes, i.e.: (F0 − F) · e′n = 0. This all leads to the threshold condition

α =
π

2
− 2

(
arcsin

(
v√
2v0

)
− arcsin

(
v

v0

))
. (3.8)

which is plotted as a solid line in Figure 3.2(a). This implies that a trap moving into the
negative direction orients the rods along the wedge symmetry axis and thus keeps them inside,
thereby enhancing the trapping efficiency.

In the case of positive drag velocities, two different trapping mechanisms can occur. The first
mechanism is shown in Figure 3.2(c). Here the swimmer enters into the wedge and is stuck
close to the wedge cusp with two contact points, one at the highter and another at the lower
wall. This hinders the rod in rotating further such that it gets immobilized. The contact points
are indicated in Figure 3.2(c). In this situation, the rod experiences four different forces, two
arising simultaneously from the wall normals plus F0 − F. The normal wall forces are un-
known but determined by the joint conditions of the vanishing total force and the torque acting
on the rod center which characterize the transition from no trapping to trapping. Hence, these
conditions are F0−F+Fn+F′

n = 0 and Fneh×e′n+F ′
neh×en = 0. Eliminating the unknown

normal forces, we obtain the threshold criterion

v

v0
= − cos

(α
2

)
+

sin4 (α/2)

cos3 (α/2)
. (3.9)

The second mechanism is shown in Figure 3.2(d) and refers to a situation where an aligned
rod intends to leave the trap, for example when it was able to turn in the kink. If the projection
of −F tangential to the wall exceeds the self-propulsion, the moving microwedge surpasses
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the rod and keeps it caught. The condition for the threshold for this second mechanism is,
therefore F · eh = F0 for eh = (− cosα/2,− sinα/2) which yields

cos
(α
2

)
=

1

v/v0
. (3.10)

As can be shown easily, this second mechanism surpasses the former mechanism for dragging
velocities v/v0 >

√
3.

Summarizing, a single self-propelled particle can always be trapped for v > −v0 and α <
90◦. For apex angles larger than 90◦ and increasing trap velocities, the following sequence of
states is found: no trapping, trapping, no trapping, and trapping. This clearly demonstrates the
nontrivial interplay between wedge geometry and orientational coupling to the rod. Moreover
we find for positive drag velocities two different mechanisms which hold the particles inside
the microwedge3. Finally, the good agreement of the threshold lines between analytical theory
and simulations shows that the segment model used in this thesis reproduces well the purely
geometric conditions of steeply repulsive interactions.

3.3. Collective trapping

3.3.1. Static microwedge

Let us, first, briefly recapitulate previous results [5] for a static trap (v = 0). The trapping state
diagram now drawn in the parameter space spanned by the wedge apex angle α and reduced
rod packing fraction φR at fixed net densities is shown in Figure 3.3, including characteristic
snapshots.

Following earlier work [5], we consider a rod α trapped if its velocity vα = |vα| < 0.1v0 for
a time interval t∗ = 25τ . In contrast to the single particle case we now have to distinguish be-
tween two different kinds of trapped states. These are characterized by the fraction of trapped
particles xT = NT/N which acts as some kind of order parameter for the different states.
Either no particle is trapped, xT = 0 (no trapping), or all particles are trapped, xT = 1 (com-
plete trapping), or just a fraction of all particles in the system can be captured by the wedge,
0 < xT < 1. This new state will be referred to as partial trapping.

All trapping states can be found in the state diagram for a static microwedge, see Figure 3.3.
Evidently, in the case of small apex angles there is only partial trapping since the area of the
wedge is too small to accommodate all particles.

Larger apex angles enable complete trapping up to a certain reduced rod density. The resulting
triple point is independent of the trap density and attains a value φ∗

R ≈ 1.3. Higher densities
will show only two different trapping states. While for a single particle and a static microwedge

3See http://link.aps.org/supplemental/ 10.1103/PhysRevE.88.022311 for movies showing the occurring trap-
ping mechanisms for the single-particle case.
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ferent states for varying apex angles and a reduced self-propelled rod packing
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a capture is only possible for an apex angle α < 90◦, an increase of the rod density leads to
an increase of the maximum apex angle which allows trapping. Self-propelled rods coherently
self-trap at the kink of the trap and jam. Hereby a small immobile cluster can be formed which
grows and leads to a filling of the wedge. Therefore, in the studied density regime, a trapping
state is possible for apex angles up to α ≈ 120◦. The influence of rotational noise, which may
arise from fluctuations in the swimming direction as manifested by run-and-tumble motion of
swimming bacteria, has been accounted for by adding Gaussian white noise to the equation of
rotational motion equation (3.4). No significant effect on the trapping state diagram was found
for typical values of the effective rotational diffusivity of bacterial swimmers [5].

3.3.2. Mobile microwedge

We now consider a moving trap. Simulation results for the trapping state diagram in the plane
spanned by reduced trap velocity v/v0 and apex angle α are shown in Figure 3.4 combined
with appropriate simulation snapshots characterizing the final state. As a first general finding,
the state diagram has the same topology as that for a single rod if one does not discriminate
between partial trapping and complete trapping. Of course, the actual numbers for the trapping
to no trapping transition are significantly shifted. In particular, the worst case of trapping
which occurs at an opening angle of 90◦ for a static microwedge [see Figure 3.2(a)] is now
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Figure 3.4.: Trapping state diagram and simulation snapshots of the final state at finite rod

density φR = 1.09. (a) - (e) Simulation snapshots for an apex angle α = 110◦.

The respective dragging velocity of the trap is given in each figure and indi-

cated by a scaled arrow. (f) State diagram showing the three different trapping

states in the plane spanned by the reduced net velocity and the trap apex angle

α. Circles correspond to no trapping, triangles to partial trapping and squares

to complete trapping.

significantly shifted towards an opening angle of about 110◦ at a negative reduced drag velocity
of about –0.7. A corresponding snapshot of the empty microwedge is shown in Figure 3.4(c).

If the trap velocity is varied at a fixed opening angle of 110◦, as indicated by the different
snapshots in Figures 3.4(a)-3.4(e), there is an intermediate trapping effect at reduced negative
drags close to –1, as indicated in Figure 3.4(b). In this case, rods can catch up with the moving
net to accumulate inside the wedge. This is opposed to strongly negative dragging velocities
v ≤ −v0, where the wedge is faster than the rods on average, which leads to an accumulation
of particles outside the net [see Figure 3.4(a)].

Let us focus on the partial trapping situation of rods which are only slightly faster than the
net as shown in Figure 3.4(b). We observe a large swarm following the movement of the
net. The structure of the swarm is characterized by a significant degree of nematic (or polar)
order which stems from the repulsive rod interactions. The big swarm therefore is a result
of rod self-assembly templated by the moving net. The net plays the role of a leader which
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guides the swarm. This is an interesting collective effect which can be in principle exploited to
control and guide assemblies of active particles at will [152] or to align them dynamically in
an efficient way. Qualitatively, the tendency of alignment can be seen from only a single rod
[see Figure 3.2(b)] which tries to orient along the drag direction. The rod interaction, however,
dramatically increases the alignment, leading to a large orientated swarm.

Further increasing positive drag speed will compress the trapped particles, leading to a larger
number density of the captured particles inside the net. Therefore, at higher speeds, the thresh-
old to a no-trapping state is shifted towards larger opening angles.

We now focus on the transition line between partial trapping and complete trapping; see the
squares and triangles in Figure 3.4(f). At fixed opening angle (say at about 80◦), this line also
shows an interesting reentrance effect for increasing drag velocities as embodied in the highly
nontrivial state sequence of partial trapping - complete trapping - partial trapping - complete
trapping. The first transition from partial trapping to complete trapping has to do with the
efficient nematization which then becomes less efficient at almost zero drag velocities. The
ultimative transition to complete trapping is then an effect of rod compression inside the net for
increasing drag velocities. Interestingly, starting with a resting net with opening angles slightly
below 90◦, the trapping efficiency increases no matter in which direction the microwedge is
dragged.

We now characterize the directed self-assembled state more carefully by monitoring the area
covered by the trapped particles and the actual nematic order. First we draw a convex hull
around all trapped particles which defines an area Ac. We normalize this area to the inside
area A0 = (ℓT/8) sinα/2 of the wedge. Results for Ac/A0 as a function of the drag speed
are presented in Figure 3.5(a) at fixed opening angle α. In line with the huge nematic wake
discussed earlier, the ratio Ac/A0 vastly exceeds unity for negative drags close to −v0. In fact,
Ac/A0 has a maximum as a function of v/v0, which points to a very efficient wake area that
contains particles which are dragged through the liquid by the moving wedge.

Second, we analyze the degree of nematic ordering in the trapped particles by calculating the
average

S = 〈2 cos2 θi − 1〉, (3.11)

where θi is the angle between the rod orientation of the ith rod and the drag velocity. The
average 〈. . .〉 refers to an average over all captured rods for a variety of different initial con-
figurations. The nematic order parameter S is defined as usual in two spatial dimensions. For
a perfect alignment of all trapped rods, S = 1, while S vanishes if there is no orientational
ordering at all. We relate this quantity S to a perfect cone filling of the rods where the orienta-
tional direction is anti-radially towards the origin of the wedge. In this reference situation, the
nematic order parameter Sr is given by

Sr =
1

α

∫ α/2

−α/2

(2 cos2 θ − 1)dθ = sinα/α. (3.12)
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In Figure 3.5(b), S is shown versus the opening angle for fixed drag speeds. The cone normal-
ization Sr is also given. For the nematic swarm at v/v0 = −0.9, S clearly exceeds Sr. This
is inverted for very high positive drags v > v0, where S < Sr holds over the full range of
opening angles. This finding can be attributed mainly to particle misorientations at the wedge
boundary close to the end of the wedge, see again the snapshot of Figure 3.4(e).
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Figure 3.6.: Trapping states for a fixed apex angle α = 110◦ and varied rod density φR

and reduced dragging velocity v/v0.

In addition, we consider a system with a fixed apex angle α = 110◦ and vary the reduced rod
packing fraction φR and the dragging velocity. The data contained in Figure 3.6 show that the
dependence on the rod density is weak providing the same state-sequence as for the special
rod density selected previously for Figure 3.4(f). Only in the case of extreme rod densities
φR > φ∗

R = 1.3 is the area of the net not large enough to accommodate all particles. This leads
to a partial trapping state instead of complete trapping as indicated in Figure 3.6 for a static
microwedge at high rod densities.

We expect our results to be robust against hydrodynamic far-field interactions, which are ex-
pected to be less important for the particle dynamics at high local particle densities, as found
inside the trap, due to mutual hydrodynamic screening [195] and the small magnitude of the
flows fields generated by the microswimmers [73] and the moving wedge. Moreover, the pres-
ence of no-slip trap boundaries in microfluidic devices are expected to strongly suppress hy-
drodynamic long-range interactions between swimmers due to cancellation effects from the
hydrodynamic images [76].

3.4. Conclusions

While there is a considerable amount of detailed knowledge about how to trap macroscopic
particles and passive particles in static traps such as colloids using optical tweezers or atoms
in a Paul trap, is it much less clear how large numbers of active microscopic particles can be
captured in an efficient way. Using computer simulations, we have studied a dragged chevron-
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shaped trap which allows us to capture several self-propelled rods in an irreversible manner.
A microwedge with variable apex angle α enforces active particles to rectify their swimming
direction and stimulates the formation of microscopic cluster which may subsequently act as
a nucleus for a fast-growing mesoscopic aggregate of captured rods. We have demonstrated
the crucial role of the apex angle and the drag velocity of the trap. A non-zero drag velocity
imposes dynamic nematization and layerlike ordering of the clustered rods provided the drag
velocity is slightly above −v0 (v & −v0). We have highlighted the influence of collective self-
trapping by comparing results for many self-propelled rods with the single-particle case. The
dramatical collective response of self-propelled rods to a minor change in the boundary shape
or drag velocity is remarkable and remains unseen for passive systems exposed to external
boundaries or electromagnetic traps.

Collective trapping of ensembles of active particles in moving traps can be verified by ex-
periments using rod-shaped bacteria [160] or driven polar granular rods [120] exposed to
geometrically structured boundaries [58, 116, 191]. While the presented results are valid for
linearly propagating swimmers, it would be interesting to study a trapping device for several
swimmers moving on circlelike pathways4 [1,59,70,197]. Furthermore, it would be interesting
to exploit the trapping scenarios proposed here to design a trapping device which is capable
of extracting swimmers with a specific velocity bandwidth from a mixture of active particles
with a strong spread in motility. According to the results in Figure 3.4, such velocity-selective
trapping could be envisaged by dragging the net at a judiciously chosen negative drag velocity
such as to facilitate templated clustering of a subset of swimmers whose individual motility
closely resembles that of the moving net.

An interesting open question is in regard to what extent the details of the propulsion mecha-
nism affect the self-trapping behavior of the rods. In particular, it would be interesting to study
whether puller- and pusher-type swimmers exhibit different trapping behaviors. These prob-
lems will necessitate the use of more sophisticated simulation schemes [198–200] and bring
us also to the question regarding the importance of hydrodynamic near-field interactions [201]
which are ignored in our model. Real bacteria are usually propelled by flagella attached to the
bacterial body whose internal configuration will presumably change at high bacterial density,
under strong confinement or at an obstacle [202]. These flagellar interactions may lead to more
specific effects which are neglected in our model but could be included on a coarse-grained
level in future studies. In particular, one could introduce a density-dependent microscopic mo-
bility which is known to have a considerable effect on the collective behavior in bulk [203].
Finally, it would be interesting to model the properties of the trapped polar state of rods using
continuum elasticity theory following recent efforts in this direction for the wetting behavior
of (passive) liquid crystals confined in wedges [204–206].

4In the meantime the behavior of circle swimmer interacting with a periodic array of L-shaped obstacles has
been studied in [196].
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4 Transport powered by

bacterial turbulence

Suspensions of bacteria or synthetic microswimmers show fascinating collective behavior
emerging from their self-propulsion [16, 40, 94, 95] which results in many novel active states
such as swarming [84, 111, 121, 131, 207] and “active turbulence” [71, 76, 88, 110, 208–211].
In contrast to hydrodynamic turbulence, the apparent turbulent (or swirling) state occurs at
exceedingly low Reynolds numbers but at relatively large bacterial concentrations.

Here we address the question whether one can systematically extract energy out of the seem-
ingly turbulent state established by swimming bacteria and how the bacterial turbulence may
power micro-engines and transport mesoscopic carriers through the suspension. A related
question is what processes on a scale of an individual swimmer are responsible for the en-
ergy rectification from this “active heat bath”.

In our experiments we analyze the motion of a microwedge-like carrier (“bulldozer”) sub-
mersed in a suspension of swimming bacteria Bacillus subtilis. Experimental studies are com-
bined with particle-resolved computer simulations. A broad span of bacterial densities is exam-
ined, ranging from the dilute regime over the turbulent to the jammed state. Due to the activity
of the suspension, the bulldozer-like particle is set into a rectified motion along its wedge cusp
[179, 181], in contrast to tracers with symmetric shape [116]. Its averaged propagation speed
becomes maximal within the turbulent-like regime of collective swimming. Our simulations
and experiment indicate that the directed motion is caused by polar ordered bacteria trapped
inside the carrier in a region near the cusp which is shielded from outer turbulent fluctuations.
The orientation of trapped bacteria yields a double-peaked distribution centered in the direc-
tion of the average carrier motion. Consequently, the bacterial turbulence powers efficiently
the transport of carriers through the suspension. This finding opens the way to utilize self-
propulsion energy of bacteria forming a turbulent active fluid for the purpose of control and
powering of mesoscopic engines.

Converting bacterial self-propulsion into mechanical energy has been considered previously
for shuttles and cogwheels [87,174,188,189,212,213] and for bristlebots, meaning centrimet-
ric rodlike robots [214]. Most of the studies were restricted to low swimmer concentrations

This chapter has been published in a very similar form by Andreas Kaiser, Anton Peshkov, Andrey Sokolov,
Borge ten Hagen, Hartmut Löwen, and Igor S. Aranson, Phys. Rev. Lett. 112, 158101 (2014), see Reference [3].
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where swirling is absent. While fundamental microscopic mechanisms of energy transduction
and interaction with solid walls on a scale of a single bacterium are fairly well understood,
see e.g. [73, 136, 215], the role of collective motion has not been elucidated so far. Ref. [117]
demonstrated that while the energy generated by individual bacteria dissipates on microscale,
the increase in swimming velocity and mass transport due to collective motion is significant.
Here we put forward an idea how the collective bacterial swimming (bacterial turbulence)
strongly amplifies the energy transduction. Complementarily, in high-Reynolds-number turbu-
lent flows, the motion of suspended inertial particles is not directed [216], lacking a conversion
of turbulent fluctuations into useful mechanical work.

4.1. Experiment

Mesoscopic wedge-like carriers were fabricated by photolithography [189, 217]. We mixed a
liquid photoresist SU-8 with micron-size magnetic particles before spin coating. This allows
to control the orientation of the carriers with an external magnetic field applied parallel to the
fluid surface. The arm length of the wedge-like carriers is L = 262 µm (see Figure 4.1), and
the wedge angle is 90◦. Experiments were conducted on a suspension of Bacillus subtilis, a
flagellated rod-shaped swimming bacterium ℓ ∼ 5 µm long and 0.7 µm wide. The suspension
of bacteria was grown for 8–12 hours in Terrific Broth growth medium (Sigma Aldrich). To
monitor the concentration of bacteria during the growth phase, we continuously measured the
optical scattering of the medium using an infrared proximity sensor. At the end of the exponen-
tial growth phase the bacteria were washed and centrifuged to achieve the desired concentra-
tion. Then a small drop of concentrated bacterial suspension was placed between four movable
fibers and stretched up to the thickness of ∼ 100 µm (see Ref. [108]). Both surfaces of the
free-standing liquid film were exposed to air, significantly increasing the oxygen diffusion rate
into the bulk of the film. According to our previous study [71], a relatively high concentration
of oxygen is required for bacterial motility in concentrated suspensions of Bacillus subtilis.
We measured the bacteria concentration (or, equivalently, three-dimensional volume fraction)
by means of optical coherence tomography (see Ref. [218]) before and after the experiments
in order to monitor the effect of film evaporation. This revealed that evaporation is negligible
in the course of our relatively short experiment.

Two pairs of orthogonal Helmholtz coils were used to create a uniform magnetic field in the
bulk of the liquid film. The carrier was carefully inserted in the film by a digital micropipet.
In the course of our experiment, the orientation of the magnetic carrier was reversed every
20 s to prevent migration of the carrier out of the field of view1. We also confirm that the
average speed of the wedge does not depend on the direction of the motion. The influence
of gravity was negligible in our experiment. The motion of the wedge was captured by a
digital high-resolution microscope camera [Figure 4.1(a)] for the duration of 2− 4 min. Both

1See http://link.aps.org/supplemental/ 10.1103/PhysRevLett.112.158101 for movies from the experiment
and the simulation.



4.1. EXPERIMENT 47

displacement and orientation of the carrier were tracked by a custom-designed software based
on Matlab toolboxes.
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4.2. Model

We model the bacteria by rod-like objects with repulsive interactions and an effective self-
propulsion using parameters matching the experimental conditions. More specifically, the ex-
cluded volume interaction between the rods is described by n “Yukawa” segments positioned
equidistantly with the distance d = 0.85 µm along a stiff axis of length ℓ, i.e., a repulsive
Yukawa potential is imposed between the segments of different rods [75]. However, in order
to properly take into account collisions between the bacteria, an important modification is in-
troduced in the model compared to that of Ref. [76]. Experiments [73,108,219] demonstrated
that two bacteria swim away from each other after the collision. This effect results in a sup-
pression of clustering for small and moderate bacteria concentrations. However, in previous
simulations [76], the bacteria had a propensity to swim parallel after the collision and to form
dense clusters with a smectic-like alignment. In order to describe the experimentally observed
swim-off effect and the resulting suppression of clustering, we incorporate an asymmetric ef-
fective bacterial shape2 by enlarging the interaction prefactor of the first segments of each
rod with respect to the other segments by a factor of 3. The resulting total interaction poten-
tial between a swimmer pair α, β is then given by Uαβ =

∑n
i=1

∑n
j=1UiUj exp[−rαβij /λ]/rαβij

with U2
1 /U

2
j = 3 (j = 2 . . . n), where λ is a screening length obtained from the experimen-

tal effective rod aspect ratio ℓ/λ = 5, and rαβij = |rαi − r
β
j | is the distance between segment

i of rod α and segment j of rod β (α 6= β). The carrier is implemented correspondingly
by tiling the wedge-like contour with length L = 262 µm [see Figure 4.1(a)] with Yukawa
segments. The ratio L/ℓ is matched to the experimental situation. For comparison we also
perform simulations for smaller arm lengths. The self-propulsion is taken into account via a
formal effective force F0 acting along the rod axis û = (cosϕ, sinϕ). By imposing a large
interaction strength U2

j = 2.5F0ℓ, we ensure that the bacteria and the wedge do not overlap.
The model neglects long-range hydrodynamic interactions between the swimmers. These in-
teractions do not change the overall morphology of the bacterial flow. The most noticeable
effect of the hydrodynamic interactions is a seven to ten fold increase of the collective flow
velocity compared to the speed of individual bacteria [107, 108]. Certainly, this phenomenon
cannot be attained by our model and would require proper incorporation of the hydrodynamic
forces.

Since bacterial swimming occurs at exceedingly low Reynolds numbers, the overdamped equa-
tions of motion for the positions and orientations of the rods are

fT · ∂trα(t) = −∇rα
U + F0ûα(t) , (4.1)

fR · ∂tûα(t) = −∇ûα
U . (4.2)

Here, U = (1/2)
∑

α,β(α6=β) Uαβ +
∑

α Uα< is the total potential energy, where Uα< denotes
the interaction energy of rod α with the carrier. (In general, a subscript < refers to a quan-
tity associated with the wedge-like carrier.) The one-body translational and rotational friction

2Recently, the impact of the body shape asymmetry of the swimmers on the transport efficiency of a mi-
crowedge has been studied in Ref. [8].



4.3. TRANSPORT OF A WEDGELIKE CARRIER 49

tensors for the rods fT and fR can be decomposed into parallel f‖, perpendicular f⊥, and
rotational fR components which depend solely on the aspect ratio ℓ/λ, see Section 1.4, and
are taken from Ref. [77]. The resulting self-propulsion speed of a single rod v0 = F0/f‖ is
matched to the experimental value 15 µm/s [108] leading to the time unit τ = ℓ/v0. Since
at a relatively large bacteria concentration thermal fluctuations and tumbling are not impor-
tant, we neglect all stochastic noise terms (our experimental studies in Ref. [71] showed that
tumbling of Bacillus subtilis becomes significant only for very low oxygen concentrations).
Moreover, details of the hydrodynamics between the bacteria and the air-water interface are
neglected. According to the experiment, the motion of the carrier is mostly translational and
induced by the carrier-bacteria interactions. The hydrodynamic friction tensor f< of the wedge
is calculated for the specific geometry with the dimensions shown in the sketch (left inset) in
Figure 4.1(a). For this purpose, the shape of the carrier is approximated by a large number of
beads that are rigidly connected. The corresponding hydrodynamic calculations based on the
Stokes equation for the flow field around a particle at low Reynolds number are performed
with the software package HYDRO++ [220, 221].

The resulting equation of motion for the carrier is

f< · ∂tr<(t) = −∇r<

∑

α

Uα<(t) . (4.3)

We simulate N ∼ 104 rods and a single carrier in a square simulation domain with the area
A = (3L/

√
2)2 and periodic boundary conditions in both directions. The dimensionless pack-

ing fraction φ = Nλℓ/A corresponds to the bacterial volume fraction c in the experiments.

4.3. Transport of a wedgelike carrier

The shape reflection symmetry of the wedge around its apex will exclude any averaged di-
rected motion perpendicular to the apex while there is no such symmetry in the apex direction.
Hence, due to rectification of random fluctuations, the carrier will proceed on average along its
cusp. The transport efficiency of the carrier can then be characterized by its average migration
speed v in this direction. We have examined the carrier motion in a wide range of bacterial
bulk concentrations including a dilute regime, where bacterial swimming is almost uncorre-
lated, as well as an intermediate turbulent and a final jammed regime. These regimes can be
characterized by suitable order parameters. For that purpose, we define the mean magnitude of
vorticity Ω = 1

2
〈|[∇× V(r, t)] · êz|2〉 for a bacterial velocity field V(r, t) coarse-grained over

three bacterial lengths which is a convenient indicator for bacterial turbulence [76, 86]. The
average swimming speed vp of the bacteria obtained by averaging the displacements after a
time t = 10−3τ indicates jamming at high concentrations. Simulation results for these two or-
der parameters are presented for a bacterial suspension in the absence of the carrier [see inset
in Figure 4.1(b)]. The results indicate three different states: “dilute” (φ . 0.25), “turbulent”
(0.25 . φ . 0.75), and “jammed” (0.75 . φ). The same sequence of states is found in the
experiments [100].
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Figures 4.1(a) and 4.1(b) show that the transport efficiency v/v0 of the carrier peaks in the
turbulent regime where it attains a significant fraction of the net bacterial velocity v0. Ex-
perimentally, this fraction is found to be about 0.25, which is confirmed by the simulations.
Snapshots from the experiments and simulations (see insets in Figure 4.1) show a directed mo-
tion along the wedge apex though there are considerable fluctuations which we discuss later.
For a very dilute regime, there are only a few bacteria pushing the carrier such that v tends
to zero in this limit [note that in the experiment no motion of the carrier was observed in a
very dilute regime since the resulting bacterial forces are not sufficient to overcome the fric-
tion of the carrier with the surface (air-water interface)]. We have also performed simulations
for different carrier lengths and opening angles to determine the geometry leading to optimal
transport. While we have chosen the optimal apex angle for our experiments, a slightly higher
transport efficiency can be achieved with a smaller carrier length, see Figure 4.2.
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Figure 4.2.: Transport speed for a fixed swimmer density φ = 0.5 for (a) varied apex

angles α of the carrier and constant length L = 131 µm and for (b) varied

length and fixed apex angle α = 90◦.

In the following we discuss the underlying reason for the optimal carrier transport in the turbu-
lent regime. First, the bacteria inside the wedge close to the cusp are on average orientationally
ordered along the wedge orientation (x-direction). The orientational ordering is revealed by
the intensity plots for 〈cosϕ〉, 〈sinϕ〉which is used as an appropriate orientational order pa-
rameter (see the green “hot spot” in Figure 4.3). The “hot spot” sets the carrier into motion
along the x-direction. Similar to a moving bulldozer piling up sand, the carrier motion causes
an accumulation of particles in the front and a depleted wake, while not destroying the order-
ing of particles inside the wedge (see the intensity plot in Figure 4.3 as well as Figure 4.4 for
experimental and simulation data for the averaged concentration difference between inside and
outside bacteria). This concentration difference decreases the transport speed. But the driving
effect increases with the increase in bacterial concentration.

When the turbulence sets in, there is a shielding of turbulent fluctuations near the walls of the
carrier (see the intensity plots of the local magnitude of vorticity in Figure 4.5). The shielding
is, however, more pronounced inside than outside the wedge. Intuitively this implies that the
hot spot is shielded from swirls which would sweep away the driving bacteria. (Concomitantly,
the outside swirls shown in Figure 4.5 are induced by the bulldozer motion but do not cause
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the motion.) The intuitive concept of swirl shielding is sketched in Figure 4.5 where also a
typical swirl size as a function of the density is shown, which has been obtained as the first
minimum of the equal-time spatial velocity autocorrelation function [86]. A typical swirl of
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this size can never reach the “hot spot” area as schematically shown by the shielded area in
Fig. 4.5. Swimmer within this area are trapped, leading to large transport velocity correlation
times tv for the carrier, see Figure 4.6. For simple geometric reasons, there is no such shielded
zone for the outside bacteria as a swirl can sweep them away. At very high concentrations
(φ ≈ 0.8), the bacteria are jammed (see Figure 4.1), which is manifested also in a reduced
carrier mobility. In conclusion, the polar order of bacteria (see intensity plots in Figure 4.3)
inside the wedge and its shielding from the swirls are the two basic ingredients to understand
the optimal transport in the turbulent state. As a consequence, optimal transport is achieved
when the carrier aperture width is comparable to typical swirl size, see again Figure 4.2.
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4.4. Direction of transport

Finally, we plot the full distribution of the carrier velocity direction P (ϑ) in Figure 4.7(a). For
small bacterial densities φ the distribution is random, while for intermediate concentrations
this distribution exhibits a single peak centered around the x-axis. For even higher concentra-
tions it becomes double-peaked corresponding to a motion perpendicular to the single wedge
walls (π ± π/4). This is correlated with the orientational order distribution of the inside bac-
teria in the shielded area, P (〈ϕ〉), implying that there is a flipping in the orientation of the
inside bacteria, see Figure 4.7(b), for high bacterial concentrations. The kink-like change in
the direction of motion perpendicular to the wedge walls is also observed experimentally [see
the trajectory in Figure 4.1 and peaks in Figure 4.7(a)].
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4.5. Conclusion

We have shown that mechanical energy from bacterial turbulent movements can be extracted
powering directed motion of a wedge-like carrier. Both polar ordering and swirl shielding
inside the wedge yield an optimal transport velocity which becomes even bidirectional at high
concentrations. This effect can be exploited to power and steer microcarriers and motors by
bacterial turbulence or collective motion of synthetic swimmers.
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5 Unusual swelling of a

polymer in a bacterial bath

The physics of polymer chains in a thermalized bath is governed by scaling laws. One of the
most fundamental scaling relates the typical extension of a polymer chain R to its molecular
weight N culminating in the traditional Flory exponent ν, such that R ∝ Nν [89, 90] for very
large N . While ν = 1/2 for a Gaussian chain, a self-avoiding chain exhibits a Flory exponent
ν > 1/2 which depends on the spatial dimensions d, we have ν = 0.588 ≈ 3/5 in three and
ν = 3/4 in two dimensions [93]. Similar scaling laws apply to the polymer dynamics where
hydrodynamic interactions between the monomers play a crucial role [89]. It is important to
note that these basic considerations are designed for equilibrium situations, i.e. the solvent is
a thermal bath at temperature T and the chain is not exposed to external fields.

In this Chapter we consider a polymer chain in a bacterial (or active) bath which consists of
swimming particles or bacteria. The collisions of the bacteria with the chain lead to nonequi-
librium (non-thermal) fluctuations of the chain which may result in new phenomena of chain
stretching and compaction different from equilibrium solvents. Active matter itself has been
intensely explored over the last years, both for living systems as bacteria [108], spermato-
zoa [109] and mammals [13, 96] or is system of artificial microswimmers [37, 48, 50, 59, 126,
222] with various propulsion mechanisms [58,128,223–225] and a plethora of nonequilibrium
pattern formation phenomena were discovered [76,104,110,111,169,194,208,211,226–234].
At fixed system boundaries active system show distinct clustering and trapping behavior
[5, 130, 179–181, 185–187, 235–239] and can be exploited to steer the motion of microrotors
and microcarriers [3, 188, 189] of fixed shape.

Here, we link the field of microswimmers to polymer physics and consider a single polymer
chain in a bacterial bath (or an active solvent). The motivation to do so is threefold: first, from a
fundamental point of view, there is a need to understand how polymer scaling laws are affected
by non-bulk or nonequilibrium situations [240–243]. An active solvent which is intrinsically
in nonequilibrium is one of basic cases which put the scaling laws into questions. Second, the
collective behavior of microswimmers has been studied at moving boundaries [2,3,174] but all
of which were of fixed shape. Bacteria and active particles near flexible boundaries have not

This chapter has been published in a very similar form by Andreas Kaiser and Hartmut Löwen, J. Chem. Phys.
141, 044903 (2014), see Reference [4].
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yet been explored systematically and it is interesting to understand how clustering and trap-
ping phenomena are modified for flexible boundaries [244]. Our case of a flexible polymer
chain is therefore one of the simplest key examples to proceed along this important direc-
tion. Third, in general, the set-up we are proposing is realizable in experiments and relevant
for biological systems where swarms of bacteria are moving close to flexible objects like at
water-air interfaces [245–250]. Our two-dimensional model can indeed be realized e.g. by in-
serting long polymers into two-dimensional Bacillus subtilis suspensions [3,76,111]. Another
complementary realization is by exposing colloidal model chains [251] to artificial colloidal
microswimmers [50, 124, 252].

We use computer simulations of a self-avoiding polymer chain in two dimensions which is
exposed to a dilute bath of active particles. As a result, we show that the Flory-scaling exponent
ν = 3/4 is unaffected by the bath activity provided the chain is very long. For shorter chains,
there is a nontrivial coupling between the bacteria intruding into the chain which stiffen and
expand the chain. As a function of the molecular weight, the swelling first scales faster than
described by the Flory exponent until a plateau-like behavior with a slight non-monotonicity is
reached. This is nonuniversal behavior which reminds to the swelling of polymers in quenched
disorder where similar nonmonotonicities have been observed [253,254] which have, however,
a different physical origin. Finally, for large molecular weights, a crossover to the universal
Flory behavior is observed. Moreover, as a function of bacterial activity, the chain end-to-end
distance shows a pronounced non-monotonicity. The dynamical correlations exhibit a diffusive
behavior for very short and long times in qualitative accordance with an equilibrated polymer,
while an intermediate ballistic regime can be found in the mean-square displacement of the
center of mass of the chain induced by the active solvent.

This Chapter is organized as follows: we introduce our model and our computer simulation
technique in Section 5.1. Various results on the statistics of polymer structure in a bacterial
bath are presented in Section 5.2 while the polymer dynamics is discussed in Section 5.3.
Finally we conclude and give an outlook in Section 5.4.

5.1. Model

We study the statistics of a polymer chain, modeled as a sequence of N coarse-grained spring
beads, in a bacterial bath, composed of spherical swimmers in two dimensions, see Figure 5.1.
For simplicity, interactions between the active particles and the chain as well as inter-chain
interactions are modeled by the same repulsive WCA (Weeks-Chandler-Andersen) potential

UWCA(r) = 4ǫ

[(σ
r

)12

−
(σ
r

)6
]
+ ǫ, (5.1)

for distances r < 21/6σ. Here the diameter of a bead and a disk-like swimmer is assumed
to be equal and is denoted with σ and ǫ = kBT is the interaction strength. These quantities
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represent the length and energy units, while times are measured in τ = σ2/D0, where D0 is
the short-time diffusion constant of a single monomer.

Springs are introduced via a socalled FENE (finitely extensible nonlinear elastic) potential
[255]

UFENE(rij) = −1

2
KR2

0 ln

[
1−

(
rij
R0

)2
]
, (5.2)

with neighboring beads i, j and their distance rij = |ri − rj|. The spring constant is fixed to
K = 27ǫ/σ2 and the maximum allowed bond-length to R0 = 1.5σ. These interactions ensure
that for the parameters chosen the swimmers do not cross the polymer chain.

In our chosen units, the overdamped equation of motion of the ith bead located at position
ri = [xi(t), yi(t)] is given by

∂tri(t) = −∇ri
U + ξi (5.3)

Figure 5.1.: Schematic sketch of the system for a chain with a low number N = 7 of beads

(blue) connected by springs with bond angle θ. Furthermore the end-to-end

distance RE is indicated. The αth self-propelled disk (red – bottom left) is

driven along the marked orientation ûα (black arrow) with an velocity v0.
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where ξi is Gaussian white noise with zero mean and correlations 〈ξ(t)ξ ⊗ (t′)〉 = 2D0δ(t−
t′)1 with the unit tensor 1, and U is the total potential energy. The overdamped equation of
motion for a swimmer α is described through

∂trα(t) = −∇rα
U + v0ûα(t) + ξα (5.4)

where ξα is Gaussian white noise as before, U is the total potential interaction, and v0 is a self-
propulsion velocity directed along ûα = (cosϕα, sinϕα), which will be given by the dimen-
sionless Péclet number Pe = v0σ/D0. The presence of v0 brings the system inherently into
non-equlibrium. Finally, the orientation of the swimmer is coupled to the rotational Langevin
equation

∂tûα(t) = ζα × ûα(t). (5.5)

Here ζα is as well a Gaussian-distributed noise with zero mean and variance 〈ζ(t)⊗ ζ(t′)〉 =
2Drδ(t− t′)1 and the corresponding rotational diffusion coefficient is Dr = 3D0/σ.

Steric interactions between the active particles are modeled by a soft repulsive Yukawa poten-
tial. The total pair potential between a pair of disks {α, β}, is given by

Uαβ = U0
exp(−rαβ/σ)

rαβ/σ
, (5.6)

where the screening length corresponds to the disk diameter σ and rαβ = |rα − rβ| is the
distance between the swimmers, the prefactor is set to U0 = 20ǫ.

We perform Brownian dynamic simulations for various chain lengths 1 ≤ N ≤ 1000 (N = 1
refers to the case of a single spherical tracer) using periodic boundary conditions in a square
simulation domain with an area A = L2

0 where L0 ∼ Nσ corresponds to the contour length
of a linear chain in equilibrium. In integrating the Brownian dynamic equations of motion, we
have used a finite time step 10−7τ . The number of bacteria is determined by the dimensionless
packing fraction

φ =
NSσ

2

4A
, (5.7)

where NS is the number of swimmers. We are interested in a dilute bacterial bath, so we chose
φ ≤ 0.02, which is below the jamming transition for self-propelled disks [86]. Statistics are
gathered for 20 to 50 independent simulation runs.
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5.2. Results
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Figure 5.2.: (a) End-to-end distance RE as a function of number of monomers N for differ-

ent bacterial densities φ and different self-propulsion strengths Pe. Line cor-

responds to the radius of gyration RG of the polymer for the given parameters.

(b) Relative end-to-end distance, now scaled with its value at vanishing Péclet

number, versus molecular weight N for different Péclet numbers at φ = 0.002.

The dashed line without symbols corresponds to the reduced end-to-end dis-

tance for Pe = 10 at φ = 0.02.

As a key result, in Figure 5.2 the dependence of the end-to-end distance on the molecular
weight is shown on a double-logarithmic plot where the slope indicating the typical two-
dimensional Flory scaling with ν = 3/4 is also indicated. For small chain lengths, the polymer
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swells stronger than Flory scaling which is obviously more pronounced for large activities Pe.
The strong swelling results from events where a bacterium intrudes into the polymer chain
stretching it, see inset of Figure 5.2. Increasing the molecular weight N further results again
in more coiling such that a plateau-like regime is reached, the associated molecular weight
needed to reach the plateau depends on the Péclet number. Even a slight nonmonotonicity is
compatible with the statistical uncertainties. Finally, a crossover to the universal Flory behav-
ior of a self-avoiding chain is observed. This is expected since at very large scales only the
statistics of self-avoidance should matter. In this limit, the presence of the bacteria are just
providing some kind of higher effective temperature to the polymer such the typical entropi-
cally generated Flory exponent is obtained, compare to a similar finding in Ref. [256]. Clearly,
the non-universal plateau-like behavior is also found when the radius of gyration is plotted in-
stead of the end-to-end distance, see again Figure 5.2. In Figure 5.2(b), the polymer extension
is again shown versus the molecular weight N but is now scaled with its equilibrium value
for vanishing activity at same N . By definition, this quantity is unity when Pe = 0 but varies
with increasing Péclet number. Interestingly, for this quantity there is a marked nonmono-
tonicity in N at intermediate Péclet numbers. For small N , the scaled end-to-end distance
RE/RE(Pe = 0) is larger than unity quantifying the stretching effect by the bacteria sliding
along the polymer chain. For larger N , the collisions of the bacteria with the polymer chain
lead effectively to a compression as signalled by RE/RE(Pe = 0) < 1. It is instructive here to
consider the limit of infinite Péclet number. In this extreme case a single active particle would
stretch the full polymer chain to its contour length implying a huge change in the end-to-end
distance. At finite density, this extreme stretching is compensated by multiple particle colli-
sions – see the reduced end-to-end distance for a fixed activity Pe = 10 and varied density
[Fig. 5.2(b)]. However, the high Péclet number limit cannot be easily simulated as the time
step required to resolve the dynamics has to be chosen to be very small.

The distribution of the end-to-end distance is shown in Figure 5.3(a) for various Péclet num-
bers for a fixed molecular weight N = 50 revealing a broad peak which first shifts to the left
and subsequently to the right for increasing Pe. For intermediate Péclet numbers the peak is
pretty broad documenting the strong polymer fluctuations imprinted by the bacterial bath. The
quantitative analysis of the shift is shown in Figure 5.3(b) where the end-to-end distance in
units of the contour length L0 is plotted versus Péclet number for various N and at fixed di-
luted φ = 0.002. For fixed N , a nonmonotonic behavior of RE/L0 (or equivalently of RE/σ)
is clearly revealed as a function of Péclet numbers. This can qualitatively understood as fol-
lows: for small Pe a bacterium intrudes into the swollen chain and thus compactifying it, see
also the snapshot series in Figure 5.3(c). The larger Pe becomes, the more is the bacterium
able to really stretch the chain by sliding along it which then induces an increase in the av-
eraged polymer extension. This scenario occurs over the whole range of molecular weight
explored in this work and is therefore quite general. The critical Péclet number for which the
averaged polymer size is getting minimal increases with increasing molecular weight N , see
Figure 5.3(b).
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Figure 5.3.: (a) Probability distribution function of the reduced end-to-end distance

RE/L0 for various self-propulsion strengths Pe and fixed chain length N =
50. (b) Averaged reduced end-to-end distance 〈RE/L0〉 as a function of Pe for

various chain lengths and end-to-end distance for various molecular weights

N . (c) Time sequences showing the compactifying and the swelling of a poly-

mer due to an a swimmer. Swimmer trajectories are indicated by its swimmer

positions.

Finally, we explore the impact of the intruding bacteria on the bond angle θ of subsequent
monomers along the chain in Figure 5.41. The statistical distribution of θ, as shown in Fig-

1Another measure for the stiffness of the chain is the polymer persistence length [257] which could be used
as an alternative quantity.



64 CHAPTER 5. UNUSUAL SWELLING OF A POLYMER IN A BACTERIAL BATH

ure 5.4(a), reveals a double peak of stretched parts of the chain where the bacteria are scratch-
ing along and a coiled part unaffected by the bacteria, see again Figure 5.3(c). The average
value 〈θ〉 increases with Pe reaching slowly the asymptotic value of π due to full chain stretch-
ing induced by a bacterium travelling along the polymer, see Figure 5.4(b).
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N = 50 for various Péclet numbers Pe. (b) Averaged bond angle θ versus
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5.3. Polymer dynamics

We finally turn to the influence of the bacterial bath on the polymers dynamics which is typ-
ically measured in terms of mean-square displacements. One may consider the latter for the
end-monomer position rN , the end-to-end distance RE itself, and the center of mass position
r.
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Let us first recall the well-known scalings for a polymer in a thermal bath, corresponding to
the case Pe = 0. In equilibrium, in the absence of hydrodynamic interactions, the mean square
displacement of the end-monomer behaves as [258]

〈(∆rN )
2〉 ∼ t + λ(1− exp(−t/τp)), (5.8)

for long times where λ is a constant coefficient and τp a characteristic polymeric relaxation
time. For very short times 〈(∆rN)

2〉 is diffusive (i.e. linear in t). The crossover behavior from
short to long times can be studied in terms of the logarithmic derivative which sets an effective
time-dependent exponent as γ(t) = d log (∆rN)

2 /d log t. As a function of increasing time t,
this exponent first decreases from 1 down to values of approximately 0.5 and then increases
back to 1.

The mean-square displacement of the end-to-end distance in equilibrium is given for long
times by [240]

〈(∆RE)
2〉 ∼ 1− exp(−t/τp) (5.9)

such that it approaches it limiting values exponentially in time, while it is again diffusive for
short times and approximately scales with 〈(∆RE)

2〉 ∼ t1/2 for intermediate times [240].

Finally, the mean square displacement of the center of mass of the polymer chain scales in
equilibrium as

〈(∆r)2〉 ∼ t (5.10)

which turns out to be a good approximation for all times.

In Figures 5.5 and 5.6 we compare these well known mean-square displacements for a polymer
chain in a thermal bath (insets) with those for a chain in a bacterial bath with φ = 0.02 at a
self-propulsion strength Pe = 10. We observe for all three studied quantities the same short
and long-time behavior. For short time, this is simply a result of our Brownian model. For long
times, it is expected that an active solvent can hardly be discriminated from a passive one on
average. At intermediate time, however, different behavior gets visible. First of all, the end-
monomer mean-square displacement shows an acceleration at intermediate times resulting in
a larger value for the exponent γ(t), compare Figure 5.5(a) with its inset. This obviously has
to to do with the intruding bacteria which brings in more dynamics into the chain. This effect
is less pronounced for the end-to-end dynamics (Figure 5.5(b)) where the dynamical behavior
is qualitative similar to the passive case, see the inset in Figure 5.5(b).

Conversely, for the center of mass motion, there is a strong amplification of the bacterial
dragging effect on the chain. Clearly, even new intermediate ballistic scaling regime shows
up here where the mean-square displacement scales as t2, compare Figure 5.6 with its inset.
Again, this has to do with the fact that in this regime the active particles drags the whole
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chain with it. The ballistic regime typically ceases to exist when the particle decorrelates its
orientation, i.e. its pulling or dragging force, which occurs on a time scale 1/Dr. This has
been studied in great detail for a single Brownian active particle [6,49,148] and will be briefly
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summarized in the Appendix2 following Ref. [6]. The decorrelation time scale 1/Dr is plotted
as a reference in Figure 5.6 and represents indeed a reasonable upper bound at which the
ballistic regime ceases to exist. Finally, as a further extreme reference, we have included the
case N = 1 of a single segment, representing a passive tracer in a bath of active particles
as studied recently [259–261]. In this case, the ballistic regime is not very visible, since the
collision time of active particles with the tracer is short.

5.4. Conclusions

We have considered the impact of an active (bacterial) bath on the conformations of a flexible
polymer chain in two dimensions by using extensive Brownian dynamics computer simula-
tions. While the traditional Flory scaling for a two-dimensional self-avoiding random walk is
found for large chains, there is an interesting nonuniversal behavior for finite chain lengths.
Due to the intruding bacteria, the polymer extensions is getting more stretched than predicted
by Flory scaling and then crosses over to a plateau where the chain size does not depend on the
molecular weight. This behavior is unusual as it is not found in equilibrium. We have further

2Here among others the mean square displacement of an active particle will be presented, showing three
distinct regimes.
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identified trends of the chain size with increasing bacterial activity and find a relative com-
pression for small activities and a strong stretching for large activities which we attribute to
intrusion events of bacteria into the coiled chain. For the polymer dynamics, we find a t2 scal-
ing for the center of mass mean square displacement for intermediate times, which is absent
for athermal solvents.

We hope that our findings will stimulate new explorations. First of all, a detailed theory would
be challenging which predicts at least the scaling of the plateau behavior. Moreover, more sim-
ulation will be necessary to understand the three-dimensional case both for one-dimensional
chains where bacteria can more easily circumvent the polymer and for flexible membranes. In
two dimensions our predictions can in principle be verified. Bacterial suspensions [71] sponta-
neously form chains of inert bacteria in a bath of mobile ones. These chains can be considered
to act like a passive polymer. When confined between glass plates this would be a intriguing
realization of our model. It can also be realized on the granular level. Shaken granulates pro-
vide an active bath [194,262] and a usual macroscopic chain of millimetric beads can be added
as a passive polymer. This set-up has the advantage that it can be studied in real-space directly
avoiding any microscope. However colloidal polymers which are built by using lock-and-key
colloids as monomeric entities [251] are among the realisations. These can easily be confined
between glass plates and exposed to further artificial colloidal microswimmers such that the
non-crossing situations which is crucial for our set-up is realized. It is less evident how our
model is realized for real polymer chains and real bacteria as those are typical crossing in
strong slit confinement. A related set-up are bacteria close to a liquid-air interface which are
standardly considered in experiments, see e.g. Refs. [245,249,250]. The latter interface is flex-
ible but under tension. The intrusion effect, however, is also expected to play a leading role in
case the line tension is small compared to thermal effects. Finally we think that the complex
interaction between bacteria and flexible filaments as revealed in our study may be exploited
in general for the fabrication of machines on the micro- and nanoscale [186].

It would be interesting to consider bacterial suspensions with higher density as well as polymer
chains at finite densities. At high densities the active bath is known to exhibit clustering [169,
229,263,264]. It is an interesting question to study how an added passive polymer chain would
influence the clustering behaviour. We expect that it will act as a heterogeneous nucleation
center to nucleate active particle clusters. The feedback of clustering on the extension of the
polymer chain is less obvious and left for future research. Finally for finite chain density the
formation of a polymeric glass [265] which is well studied in a thermal bath is unexplored in
an active bath. One might expect different dynamical modes (such as reptation) [90] in such a
bath.
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6 Conclusion

That linear propagating microswimmers are able to form remarkable collective spatiotemporal
patterns like swarming or swirling had already been shown by a variety of experiments and
simulations. We started this thesis by taking – for the first time – a look at the patterns formed
by active particles moving on circular paths, so called circle swimmers. The emerging states
have been mapped out in a state diagram spanned by the swimmer density and the radius of
the swimming path. Hereby, we could successfully fill the gap between the case of passive
rotors, corresponding to a vanishing swimming path radius, and linear propagating swimmers,
corresponding to an infinite radius. We have studied the emerging vortex arrays consisting of
either one, singlet-vortex, or two, doublet-vortex, circle swimmers. This state diagram can be
reproduced using a simple instability theory.

We studied the influence of static wedgelike confinements on active fluids, as well as the
influence of wedgelike confinements moving with a predefined velocity and orientation. In
case of a dilute system of self-propelled rodlike particles a static wedgelike obstacle can be
used as an efficient trap for these particles. Its efficiency can be tuned by the apex angle. We
have presented a theoretical prediction for the critical apex angle which still allows a trapping
of a single swimmer, even if the trap is dragged. Three different trapping mechanisms for a
single swimmer and different dragging velocities could be observed. The resulting trapping
state diagram shows a surprising reentrant effect. For apex angles α > 90◦ and increasing
dragging velocity we find the sequence no trapping – trapping – no trapping – trapping. This
basic appearance of the trapping state diagram has also been found in case of many swimmers.
Hereby, we have been able to show that a drag in the direction of the apex increases the
trapping efficiency. For small apex angles a partial trapping passes into a complete trapping

state, while for large apex angles it is possible to have complete trapping where is it has not
been able to trap any particle for lower dragging velocities. Furthermore, we propose a method
for a velocity-selective trapping by dragging the trap in the direction of the cusp. This could
be used in a suspension of various types of active particles to extract a specific species.

We have studied the efficiency of a directed transport induced by rodlike microswimmers for
the whole density range of active particles. In agreement with experiments on Bacillus sub-

tilis we have shown that the transport velocity of a wedgelike shuttle has its maximum in a
density regime which is known as bacterial turbulence. We have successfully worked out the
reason for the directed transport and why the velocity is maximal in the turbulent regime by
introducing the concept of swirl shielding. In the state of bacterial turbulence the active fluid
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consists of several swirls with different directions of rotation. Due to the wedgelike geome-
try of the used carrier these swirls cannot wash out swimmers near the cusp. Consequently,
swimmers get trapped in this region and are rectified by the wedgelike boundary, which leads
to the directed transport. Since the typical radii of the swirls within the active fluid increase
with increasing density it is clear why the efficiency increases with growing particle density.
Another effect which occurs at the same time is the bulldozer-effect. The transported wedge
accumulates swimmers in its front, which leads to a slow down. We have shown in this study
that is is possible to extract directed motion, meaning useful kinetic energy, out of random
fluctuations characterized by the turbulent state of the active fluid.

Finally, we have shown that for long polymer chains submersed in a bacterial bath the spatial
extension scales with the well-known Flory exponent. This confirms a previously made as-
sumption that an active fluid can be considered as an effective temperature. To gather further
proof for this statement the dynamical quantities of the polymer chain were analyzed by the
mean square displacement of typical quantities of polymer chains in a thermal and in a bacte-
rial bath. All quantities show the same short and long-time behavior. However, for short chains
the extension scales faster than the Flory exponent. This unusual swollen state is caused by
a nontrivial coupling between the microswimmers intruding into the chain and expanding it.
For intermediate chain lengths even a plateaulike behavior can be observed. As a function of
activity the end-to-end distance of the polymer chain exhibits a strong non-monotonicity in N
at intermediate Péclet numbers.

The basic results of this thesis have already been adopted by various other groups. The quanti-
tative shape of the emergent state diagram for circle swimmers could be confirmed [266] and
recently the collective bahaviour of active spinners with different directions of rotation has
been numerically investigated [267].

With respect to the possibility of trapping active particles there is first experimental evidence
that the suggested wedgelike confinement is an effective trap for sperm [185] and artificial
rodlike microswimmers [186]. A proposed trapping device for photophoretic swimmers uses
a shading mask to slow down and accumulate particles at a predefinded area [268]. Recent
numerical studies have adopted the idea of dragging a trap through an active fluid by apply-
ing a constant external drift to active swimmers in a system with various L- and V-shaped
barrier arrays [269], which is basically the same as our study, since we applied a Gallileian
transformation. Using the same barriers, the behavior of circle swimmers has been investi-
gated [196]. Rectangular obstacles positioned like a flower can trap circle swimmers. Hereby
different flower chiralities lead to a sorting of the swimmers, depending on their direction
of rotation [270]. The swimmer accumulation at convex boundaries has been studied for the
case of non-interacting spherical self-propelled particles [239]. For such systems even fixed
randomly placed obstacles can act as a trapping device [187]. Inside these traps vortexlike
patterns have been observed. Asymmetric convex obstacles can also lead to a rectification of
active particles [271]. It has been shown, by measuring the mean square displacement, that the
curvature of a passive tracer submersed in an active fluid has a huge influence on its rotational
and translational motion, as tracers with large curvature enable a directed transport [272].
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Problems yet unexplored or unsolved are, among other, the influence of patterned walls on
the state of bacterial turbulence, which could be tackled by particle-resolved simulations and
by analytical calculations [273]. The behavior of several passive particles of various shapes
submersed in an active fluid should be studied in more detail, since they can used to extract
useful energy out of the fluid. Another approach would be to check if several building blocks
can be assembled by the active fluid to form a workable micromachine.
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A Appendix: Non-Gaussian

statistics for the motion of

self-propelled Janus

particles: Experiment

versus theory

In this Appendix we will briefly summarize the statistical properties of the diffusiophoretic
motion of self-propelled particles using Platinum-Silica Janus spheres and our theoretical ap-
proach based on the Langevin description, see Ref. [6]. In the according experiments the
particles have been in a quasi two dimensional confinement. The translation was limited to
a plane, while the particle was freely rotating in three dimensions. The appropriate Langevin
equations for the translational and rotational motion can be written as

dr

dt
=

D

kBT
F0û+

√
2Dξ

r
,

dû

dt
=

√
2Drξû × û .

The translational and rotational random motion due to the kicks of the solvent molecules is in-
cluded by the Gaussian noise terms ξ

r
and ξ

û
with zero mean and variances 〈ξ

r
(t1)⊗ξ

r
(t2)〉 =

〈ξ
û
(t1)⊗ξ

û
(t2)〉 = δ(t1−t2)1, where 1 is the unit tensor and the self-propulsion is modeled by

an effective force F0 directed along the particle orientation û = (sin θ cosϕ, sin θ sinϕ, cos θ).
We will see later on that in case of large self-propulsion strengths the particle orientation will
be confined to two dimensions, corresponding to θ = 0. The self-propulsion will be measured
by the dimensionless self-propulsion strength a = F0d/kBT , where d is the diameter of the
swimmer.
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Mean square displacement of an active particle

In Figure A.1 we compare the experimentally obtained mean square displacement 〈(∆r)2〉 of
a self-propelled Janus sphere with the theoretical prediction.

Figure A.1.: Comparison of the measured mean square displacement (symbols) with the

theoretical prediction (solid curves) using appropriate fitting parameters a,

see Ref. [6] for details. Dashed lines indicate the transition times τ1(a) =
18/a2 and τ2 = 1/2 between the different regimes of motion.

Obviously we can distinguish three different regimes. For short times t < τ1 where particles
undergo simple Brownian motion, 〈(∆r)2〉 ∼ t1, and the deterministics displacements due to
the self-propulsion are not relevant. For longer times τ1 < t < τ2 the activity of the swimmer
leads to a superdiffusive motion. Hereby the transition time τ1 depends on the strength of
the self-propulsion and is given by τ1(a) = 18/a2, times are given in dimensionless units
τ = tDr. The motion of the Janus particle is again Brownian for large times due to the
rotational diffusion [49] with a constant transition time τ2 = 1/2 in our chosen units.
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Higher displacement moments and displacement

distribution function

On top of the analysis of the mean square displacement, here we also address skewness S
and excess kurtosis γ, which serve to quantify the non-Gaussian behavior of self-propelled
particles [148, 274]. They are given by

S =
〈(∆x)3〉

û0

〈(∆x)2〉3/2
û0

and

γ =
〈(∆x)4〉

û0

〈(∆x)2〉2
û0

− 3 ,

respectively. Note that these equations are only valid because 〈∆x〉
û0

= 0 in the system.
Otherwise, the moments have to be replaced by the respective central moments. As the third
moment 〈(∆x)3〉û0

trivially vanishes due to the symmetry of the full displacement probability
distribution Ψ(∆x, t), resulting from the averaging over the initial orientation û0 of the Janus
particles, the skewness S is zero; though, the measurements in H2O2 solution clearly yield
nonzero values for the excess kurtosis γ, which directly indicates non-Gaussian behavior.

Basically, the theoretical results show the same tendency as for the experimental curves in Fig-
ure A.2(a). In particular with regard to the general behavior and the position of the minimum
for intermediate times the agreement is very good, although the experimental values for γ
are usually less negative than the theoretical predictions. Slightly positive values as measured
for very short times can again be ascribed to small deviations from an ideal isotropic particle
shape, similar to our observations in pure water.

To visualize the non-Gaussian distribution, we are also interested in the exact shape of the
full displacement distribution function Ψ(∆x, t) for the one dimensional displacement. In wa-
ter (corresponding to passive particles), the Janus particles show a simple diffusive behavior
corresponding to Gaussian probability distributions at all times. However, for self-propelled
particles the curves for Ψ(∆x, t) significantly deviate from a Gaussian shape. In Figure A.3(a)
exemplary the experimental results for various fuel concentrations, corresponding to various
self-propulsion strengths, are given as well as numerically obtained results. All results show
the same characteristic features - such as the broadened peak and the steep wings - as the ex-
perimental plots. These results have been obtained for low self-propulsion strengths where the
orientation of the swimmer purely diffusive in three dimension. However large self-propulsion
stengths lead to a double-peak structure for intermediate times of the full displacement propa-
bility function, see Figure A.4(a). Experimental observations have led to the conclusion that
in case of strong self-propulsion the orientation of the particle is restricted to the plane of mo-
tion. Considering this limitation to the rotation of the self-propelled spheres in the numerical
framework lead to the same shape of the probability distribution, see Figure A.4(b).
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Figure A.2.: (a) Experimental and (b) theoretical results for the excess kurtosis γ. The

theoretical curves are calculated for the values of the self-propulsion force

extracted from the MSD fits in Figure A.1. Inset in (b): Visualization of the

theoretical data in a linear plot.

In general for small times the random translational motion dominates, leading to a Gaus-
sian distribution and a vanishing kurtosos. The same is true for large times due to rotational
diffusion. The shape of the displacement probability distribution function depends however
strongly the self-propulsion (and its orientational constraints), leading to either a just broad-
ened peak or even a double-peak.
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Figure A.3.: Time evolution of Ψ(∆x, t): (a) experimental results for 5 % H2O2 concen-

tration, (b) corresponding simulation for a = 62.



Figure A.4.: (a) Time evolution of the measured probability distribution Ψ(∆x, t) for

Janus particles in a 10 % H2O2 solution. The occurrence of the double peak

indicates that the particle orientation does not diffuse freely on a unit sphere

for high H2O2 concentrations. (b) Reference simulation for particles whose

orientation is restricted to the x-y plane.
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