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Abstract

In this thesis we will focus on the interplay between proximity induced superconducting

correlations and Coulomb interactions in a Josephson junction: i.e., in a system where

two superconductors modeled as two s-wave superconductors at a phase difference ϕ are

contacted by means of a weak link, in our case a quantum dot located in the contact. In the

first part we will study the Josephson current-phase relation for a multi-level quantum dot

tunnel-contacted by two conventional s-waves superconductors. We will determine in detail

the conditions for observing a finite anomalous Josephson current, i.e. a supercurrent flowing

at zero phase difference in a two-level dot with spin-orbit interactions, a weak magnetic

(Zeeman) field, and in the presence of Coulomb interactions. This will lead to an onset

behavior Ia ∝ sgn(B), interpreted as the sign of an incipient spontaneous breakdown of

time-reversal symmetry. Moreover, we will provide conditions for realizing spatially separated

- but topologically unprotected - Majorana bound states, whose signature in the system will

be detectable via the current-phase relation. In the second part of the thesis, we address the

Andreev bound state population dynamics in superconducting weak links (a superconducting

’atomic contact’), in which a poisoning mechanism due to the trapping of single quasiparticles

can occur. Our motivation is that quantum coherent superconducting circuits are the

most promising candidates for future large-scale quantum information processing devices.

Moreover, quasiparticle poisoning has recently been observed in devices which contain a

short superconducting weak link with few transport channels. We will discuss a novel charge

imbalance effect in the continuum quasiparticle population, which is due to phase fluctuations

of the environment weakly coupled to the superconducting contact. This coupling enters

the system as a transition rate connecting continuum quasiparticles and the Andreev bound

state system. The charge imbalance is then due to the breaking of left-right symmetry in

the rates. Moreover, it will be discussed how the system can generate a phase-dependent

quasiparticle current and an asymmetric charge profile around the weak link.
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Zusammenfassung

In dieser Dissertation betrachten wir das Wechselspiel zwischen Annäherung-induzierten

supraleitenden- und Coulomb Wechselwirkungen in einem Josephson-Kontakt: d.h., in

einem System, bei dem zwei s-Wellen-Supraleiter mit einer Phasendifferenz ϕ durch einen

Quantenpunkt in Kontakt gesetzt werden. Im ersten Teil der Dissertation erforschen wir

die Josephson Strom-Phasen-Beziehung in einem mit vielen Energieniveaus ausgestatteten

Quantenpunkt, der in Kontakt mit zwei konventionellen s-Wellen-Supraleitern steht. Wir

bestimmen die Bedingungen, um einen endlichen anomalen Josephson Strom zu messen:

ein Suprastrom, der in einem Doppelquantenpunkt mit Spin-Bahn Kopplung, schwachem

magnetischen Feld (Zeeman), und in Anwesenheit der Coulomb-Wechselwirkungen fließt.

Das führt uns zu einem Verhalten des Stromes Ia ∝ sgn(αB), das als Anfang der spontanen

Symmetriebrechung der Zeitumkehrinvarianz angesehen werden kann. Außerdem identifizieren

wir die notwendigen Voraussetzungen, um räumlich getrennte - aber topologisch ungeschützte

- gebundene Majorana-Zustände zu realisieren, deren Präsenz im System durch die Strom-

Phasen-Beziehung detektiert werden kann. Im zweiten Teil der Dissertation betrachten

wir die Dynamik der Population gebundener Andreev-Zustände in supraleitenden atomaren

Punktkontakten mit wenigen Transportkanälen, wobei die Prozesse durch eingefangene

Quasiteilchen im Kontakt gestört werden. Kohärente supraleitende quantenmechanische

Bauelemente entsprechen den erfolgversprechendsten Kandidaten für zukünftig umfassende

Verarbeitungsgeräte in der Theorie der Quanteninformation. Wir diskutieren einen neuartigen

Ladungsasymmetrie, der in der Population der Quasiteilchen im Kontinuum stattfindet, infolge

von Phasenfluktuationen der Umgebung, die an den supraleitenden Atomkontakt gekoppelt

ist. Diese Kopplung wurde als eine Übergangsrate zwischen Quasiteilchen im Kontinuum

und gebundenen Andreev-Zuständen angesehen. Dieser Ladungsasymmetrie zeigt sich infolge

einer Links-Rechts Symmetriebrechung der Übergangsraten. Außerdem diskutieren wir,

wie in unserem System ein phasenabhängiger Quasiteilchen-Strom und ein asymmetrisches

Ladungsprofil um den supraleitenden atomaren Punktkontakt erzeugt werden kann.
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Chapter 1

Introduction

The Josephson effect is the phenomenon of a supercurrent flow occurring in devices known as

Josephson junctions. A supercurrent is defined as a current that flows indefinitely without

any voltage difference applied to the system; and Josephson junctions are devices consisting

of two superconducting banks, or leads throughout this thesis, coupled by a weak link. The

weak link can be a thin insulating barrier, forming so a system that is a superconductor-

insulator-superconductor (SIS) junction, that is also the initial theoretic work considered

by B. D. Josephson in 1962, Ref. [1]. But the coupling between the two superconducting

leads can occur also via nanoscale conductors (’quantum dots’) tunnel coupled to the system,

quantum point contacts or normal conducting layers. In this thesis we will deal with weak

links in the specific case considered of quantum dots and superconducting atomic contacts

(constrictions) in order to study specific properties and phenomena occurring in Josephson

junctions and to investigate Andreev bound state population dynamics and quasiparticle

trapping in devices containing a short superconducting weak link with few transport channels.

It is well known that, in devices made of an insulating thin barrier between two normal

electrodes, a NIN system, electrons can tunnel through the insulating layer and that this

tunneling occurs with an associated current density that decays exponentially as the thickness

of the barrier increases. Along the guidelines of Ref. [2], let us consider then a SIS system

at T = 0. Then we do not have anymore normal electrons at the Fermi level. Hence, we

would expect no tunneling to be possible as long as the voltage difference applied eV < 2∆,

with ∆ energy-gap voltage. When eV > 2∆, Cooper pairs can break up into two normal

electrons and hence tunnel through the barrier. The question whether a Cooper pair can

actually tunnel through the barrier remains. The general idea in 1962 was that this event

would not happen often enough to be measurable, apparently explained by the fact that, since
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the probability of a single electron to tunnel is of the order of pt . 10−4, then for a Cooper

pair one would expect p2t . 10−8. But, in 1962, Josephson changed this idea by discovering

that Cooper pairs tunnel through the barrier as a whole. The motivation is that Cooper

pairs tunnel coherently: their tunneling is not depicted as two incoherent electron waves

approaching the barrier, but rather it is a macroscopic wave function of the superconducting

system that tunnels through the weak link. One year later, P.W. Anderson and J.M. Rowell,

see Ref. [3], confirmed experimentally the prediction made by him. For this prediction, the

Nobel Committee awarded Josephson the Nobel Price in 1973, together with L. Esaki and I.

Giaever.

The tunnel properties of the Cooper pairs follows as consequence of the macroscopic nature

of the superconducting state. Usually, if we consider the behavior of a macroscopic object

consisting of a large number of atoms, quantization effects are not observable, even though

every single atom obeys the law of quantum mechanics. The motivation for this is that the

thermal effects have the property to overshadow quantum effects. Though it is believed that

quantization occurs at microscopic scales only, for some phenomena, such as superconductivity,

macroscopic quantization is found to be possible. In this sense, quantization of parameters

is still observable at orders of magnitude larger than the microscopic scales, typical for

objects like atoms. This occurs because, due to quantum coherence effects, electrons in a

superconductor form a highly correlated system: then all superconducting electrons behave

as a single mechanical object. There exists a macroscopic quantum wave function

ψ (~r, t) = ψ0 (~r, t) e
iΘ(~r,t) (1.1)

that describes the behavior of the whole ensemble of the electrons in the superconductor. This

hypothesis can be justified by the microscopic theory of superconductivity, the BCS-theory,

[4], named after the physicists J. Bardeen, L.N. Cooper and J.R. Schrieffer, proposed in 1957

and Nobel Price awarded in 1972. The general idea of the theory is that in superconducting

systems, electrons near the Fermi level exhibit an attractive force between them. Below a

critical temperature, Tc, this binding of electrons gives rise to a quantum state different from

the Fermi sea of normal metals. On a general level, a small portion of electrons near the Fermi

level form Cooper pairs. If one considers a simple model of two electron added to the Fermi

sea at T = 0, with the request that the added electrons interact with each other, but not with

the rest of the sea, except via exclusion principle, one may require to build a two-particle

wave-function. Following general arguments, based on the Bloch theorem, one may expect

the lowest-energy level to have a total zero angular momentum (a s-wave superconductor).

Consequently, Pauli’s principle would force the electrons to show an antisymmetric spin state:

the two spins must be in a singlet state. Differently from the binding of atoms in molecules,
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the orbitals state of the Cooper pair has a larger radius, orientative speaking between 10 nm

and 1 µm. The spatial overlap then results to be strong.

Studies of the current-phase relation in a Josephson junction have been widely analyzed

in pioneering works like Refs. [5, 6, 7]. The interest in such nanoscale hybrid devices has

sharply increased recently since they allow to fabricate and manipulate well-characterized

setups and raise the hope for new applications, as well as by the prospect of realizing Ma-

jorana fermions. Moreover, Josephson transport throughout quantum dots also tends to

find application in the control of localized spin states by a Josephson current, and so the

possibility to create entangled electron pairs via non-local Andreev processes. To mention

just a few key experiments, gate-tunable supercurrents through the two-dimensional electron

gas in semiconductors have been demonstrated, see for instance Refs. [9]-[13], the CPR

of superconducting atomic point contacts has been measured using a loop geometry, as in

Ref. [14], and the direct spectroscopy of Andreev bound states in carbon nanotube devices was

reported, as one may find in deeper details in Ref. [15]. The phenomena studied below will

be particularly pronounced for strong spin-orbit coupling (SOC) in the nanoscale conductor.

Note that strong SOC is naturally present in InAs or InSb, widely reported in Refs. [16]-[25],

and in self-assembled SiGe quantum dots, see Ref. [26]. SOC is often responsible for nontrivial

topological properties and the emergence of Majorana fermions, see Refs. [27, 28], in very

similar settings, as in the wide collection of Refs. [29]-[34]. Majoranas have attracted wide

attention after recent experiments reported first transport signatures such as those expected

for Majorana fermions, as in Refs. [36]-[39].

The anomalous Josephson effect is characterized by a finite supercurrent flowing at zero

phase difference, Ia ≡ I(ϕ = 0) 6= 0. Comparing to the conventional Josephson relation in

junctions where SOC is typically a crucial ingredient, we have I(ϕ) = Ic sinϕ with critical

current Ic. This is equivalent to a ϕ0 phase shift, i.e., Ia = Ic sinϕ0. Junctions with Ia 6= 0

are thus commonly referred to as ’ϕ0-junctions’. The Josephson CPR for quantum dots with

SOC has been studied in many theoretical works, see Refs. [40]-[53], and the conditions for

ϕ0-junction behavior have been clarified in the noninteracting case, in Refs. [41, 42, 48, 49, 50]

for instance. Moreover, the ϕ0-junction can act as a phase battery, as in Ref. [54] or as

superconducting rectifier, see Refs. [48, 52]. While it is well-established, see Ref. [54], and also

experimentally observed, see Ref. [55], that spin-active interfaces, e.g., for a ferromagnetic

’dot’ region, allow one to realize a ϕ0-junction, we here focus on semiconducting or molecular

systems with spin-conserving and spin-independent interfaces, where ϕ0-junction behavior

is quite nontrivial. ϕ0-junctions were also predicted but never observe in unconventional
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superconductors, as in the collection of Refs. [56]-[60].

Besides analyzing the anomalous supercurrent, we also address the possibility of Majorana

bound state formation in an interacting double dot with SOC and Zeeman field. The double

dot is contained as special case in our general multi-level Hamiltonian, and our theory is

directly applicable to such a two-orbital case with well separated orbitals. Majorana fermions

are emergent quasi-particles that equal their own antiparticle and they are of much interest in

the context of topological quantum computation, as in the collection of Refs. [29, 30, 31, 32, 33].

When our ’dot’ region corresponds to a semiconductor nanowire, one effectively can realize

Kitaev’s chain model that, in the right parameter regime, allows for a pair of topologically

protected Majorana bound states localized near the nanowire ends, see Refs. [35, 34]. As

discussed by Lejinse and Flensberg, as in Ref. [67] and also Ref. [68], a simpler variant, with

topologically unprotected Majorana fermions, can be realized for two Coulomb-blockaded

single-level dots coupled to a superconductor. Similarly, in our setting a pair of spatially

separated Majorana bound states can also be realized. Signatures of Majorana fermions could

be detected through the highly unusual features in the 2π-periodic current-phase relation.

Moreover, in this thesis we focus on other phenomena occurring when weak links are consid-

ered. Namely, we study the Andreev bound state population dynamics in a single-channel

superconducting atomic contact. This is linked to the fact that quantum coherent supercon-

ducting circuits have acquired importance among the scientific community for their potential

in building large-scale quantum information processing devices, see Refs. [53] and [72]. Their

functioning is often limited by the presence of residual nonequilibrium quasiparticles, whose

uncontrolled tunneling provide a severe decoherence mechanism, see Refs. [73]-[76]. Remark-

ably, in some cases where the parity of the quantum state matters, the presence of a single

extra quasiparticle can determine the macroscopic response of the device, see Refs. [77, 78].

In our theory we approach the phenomenon of trapping of single quasiparticles in super-

conducting islands, known as “poisoning” , as one might find in Ref. [79]. Although at

temperatures well below the superconducting gap ∆, such states have an exponentially small

chance to exist in thermal equilibrium, they can have very long lifetimes if generated in a

nonequilibrium process. Quasiparticle poisoning has been also observed in recent experiments

for devices containing a short superconducting weak link with only a few transport channels,

as for instance in Refs. [80, 81, 82]. Those experiments reported the existence of long-lived

nonequilibrium quasiparticles trapped in the Andreev bound states formed near the weak

link. In our theoretical framework, we refer to such a superconducting constriction as a

’superconducting atomic contact’ (SAC), see for instance also Ref. [83].
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In our theory, we consider transitions between different Andreev bound state configurations

and their interplay with continuum quasiparticles. Such transitions, triggered for instance

by environmental phase fluctuations, also can change the fermion number parity in the

Andreev levels. The system exhibits a ground state with even parity, although there are two

spin-degenerate odd-parity Andreev bound state configurations with excitation energy

EA(ϕ0) = ∆
√

1− T sin2(ϕ0/2) (1.2)

relative to the ground state, where ϕ0 is the superconducting phase difference across the

contact and T the normal-state transmission probability of the contact. The phase-dependent

energy EA also determines the transition frequencies between different Andreev configurations,

which have recently been studied by microwave absorption and supercurrent spectroscopy

[81, 82], where the odd-parity states can be excited together with a continuum quasiparticle.

Events resulting in the occupation of one of these odd-parity states block the Josephson

current causing the quasiparticle poisoning. The spin degree of freedom corresponding to the

two odd-parity states has also been proposed as qubit platform, see Refs. [84, 85], because

of its long lifetime. But the occupation of the odd-parity states has also strong limitations

on the possibility of realizing the ’Andreev qubit’, see Refs. [86, 87], which is built from the

Andreev ground state configuration and the excited even-parity state of energy 2EA, see also

Ref. [88]. Similar superconducting devices are also discussed in the context of Majorana

fermion physics [89, 90], and questions pertaining to quasiparticle poisoning and the interplay

between Andreev (or Majorana) and continuum quasiparticle distribution functions are

important in that direction as well.
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Chapter 2

Transport through Quantum Dots

2.1 Introduction

In this chapter, as pointed out in Ch. 1, we will present with more details the first part

constituting this thesis. Here we study the combined effects of spin-orbit (SO) interaction,

magnetic field, and Coulomb charging on the Josephson current-phase relation (CPR), I(ϕ),

for a multi-level quantum dot tunnel-contacted by two conventional s-wave superconductors

with phase difference ϕ. A general model is formulated and analyzed in the cotunneling

regime (weak tunnel coupling) and in the deep subgap limit, fully taking into account

interaction effects. We determine the conditions for observing a finite anomalous supercurrent

Ia = I(ϕ = 0). For a two-level dot with spin-orbit coupling and arbitrarily weak Zeeman

field B, we find the onset behavior Ia ∝ sgn(B) in the presence of interactions, suggesting

the incipient spontaneous breakdown of time-reversal symmetry (TRS). We also provide

conditions for realizing spatially separated (but topologically unprotected) Majorana bound

states (MBSs) in this system, which have a clear signature in the 2π-periodic current-phase

relation.

Before going deeper into details, the structure of this chapter will be organized as follows.

In Sec. 2.2, we introduce the general model for the system: namely, we introduce and consider

a S-Dot-S hybrid structure, i.e. a quantum dot sandwiched between two superconductors.

We focus on an arbitrary single-particle Hamiltonian in the dot region, and take into account

Coulomb charging effects. By means of a later-on described technique, we derive an effective

partition function expressed in terms of dot variables only, which then allows to extract

the Josephson current-phase relation by a phase derivative. In order to get concrete results,

we reduce our analysis on a generic two-orbital dot with a Zeeman field and (Rashba or

Dresselhaus) spin-orbit coupling (SOC) on it.
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In Sec. 2.3, we present and discuss the two analytical approaches used in this work to calculate

the Josephson current, pointing out the existence of an anomalous Josephson current in the

system. First, we study the cotunneling regime by means of perturbation theory in the tunnel

couplings. After having derived the general ground-state current-phase relation, as second

approach, we study the ’atomic limit’, i.e. the limit ∆ → ∞, where ∆ is the superconducting

gap.

Then, Sec. 2.4 is devoted to the anomalous Josephson effect for the two-level dot, and in

Sec. 2.5 we show how a suitably choice of parameters can let a pair of spatially separated

Majorana bound states emerge.

2.2 Model and effective partition function

We consider here a general model describing the Josephson effect in an interacting nanostruc-

ture, where a central region, to which we refer as ’dot’, is tunnel-coupled to two conventional

s-wave superconducting leads. We take into account Coulomb interactions, SOC, and mag-

netic field effects only on the dot, but not in the bulk electrodes nor in the tunnel contact.

The Hamiltonian of the system can be written as:

H = Hd +Ht +Hl. (2.1)

The dot Hamiltonian

For M relevant and spin-degenerate electronic orbitals in the central dot region, the dot

Hamiltonian is taken in the form

Hd =
∑

nσ,n′σ′

d†nσhnσ,n′σ′dn′σ′ + Ec(N̂ − ng)
2, (2.2)

where the operator d†nσ creates a dot electron in a single-particle state with orbital quantum

number n = 1, . . . ,M and spin projection σ =↑, ↓. The 2M × 2M Hermitian matrix hnσ,n′σ′

encapsulates the single-particle features, including SOC and magnetic field effects. For we

still are in the preliminary stage, we don’t make any assumptions about the nature of the

SO couplings, in order to allow for the most general statements regarding the anomalous

Josephson effect. Importantly, the h matrix can always be conveniently diagonalized by

mean of a unitary transformation, U †hU = diag(Eν), with the single-particle energies Eν

(ν = 1, . . . , 2M). So we get the associated fermionic operators, cν , with

dnσ =
2M
∑

ν=1

Unσ,ν cν , (2.3)
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which correspond to single-particle eigenstates of the isolated dot. The dnσ operators instead

will be taken to represent dot fermion modes tunnel-coupled to the leads. Both representations

are, of course, equivalent. After the unitary transformation, the Hamiltonian of the dot reads

Hd =
∑

ν

Eνc
†
νcν + Ec(N̂ − ng)

2. (2.4)

Moreover, the capacitive Coulomb charging energy term, that formally describes intra- and

inter-orbital Coulomb interactions, is only sensitive to the total dot fermion number operator,

N̂ =
∑

nσ

d†nσdnσ ≡
∑

ν

c†νcν , (2.5)

according to the two equivalent representations. Here the charging energy, Ec, sets the energy

cost for adding or removing electrons into or from the system. The real number ng is tunable

by a backgate voltage and regulates the average number of electrons on the dot. Usually, the

above charging term generically describes the dominant interaction contribution.

The BCS Hamiltonian

The left and right (j = L,R) superconducting leads are described by standard bulk BCS

Hamiltonian. Here, we assume that the leads have identical energy gap ∆ and normal-state

dispersion relation ξk, with chemical potential µS = 0. In this analysis, assuming different

energy gap in the leads, ∆L 6= ∆R does not lead to sensible changes in the physics of the

system, but it resolves rather in an overall decrease of the supercurrent. Similarly, considering

different ξk would only change the respective density of states.

Moreover, we use a gauge where the phase of the order parameter appears in the tunneling

Hamiltonian Ht only, presented below, and ∆ ≥ 0 is real-valued, see also Appendix A. It

is then convenient to switch to the Nambu (particle-hole) space and introduce the Nambu

spinor Ψjk = (cj,k,↑, c
†
j,−k,↓)

T , where c†j,k,σ creates an electron in lead j with momentum k and

spin projection σ. Finally, introducing a set of Pauli matrices %x,y,z, acting in the Nambu

space, the lead Hamiltonian is given by

Hl =
∑

j=L,R

∑

k

Ψ†
jk (ξk %y +∆ %x)Ψjk. (2.6)

The tunneling Hamiltonian

To conclude, we come to Ht, where a complex-valued tunneling matrix element tj,k,σ;n,σ′ gives

the probability amplitude for an electron to transfer from the dot state (n, σ′) to the lead
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state (j,k, σ). To simplify the analysis, we neglect the k-dependence of the tunneling matrix

elements, adopting so the standard wide-band approximation for the leads. Moreover, the

tunneling is assumed to be spin-conserving and spin-independent, tj,k,σ;nσ′ = δσσ′tj,n, and Ht

is fully determined by 2M complex-valued parameters tj,n. Making use again of the Nambu

spinor notation also for the dot fermions, Dn = (dn,↑, d
†
n,↓)

T , we obtain

Ht =
∑

j=L,R

∑

k

M
∑

n=1

Ψ†
jkTj,nDn +H.c. , Tj,n = ei%z φj/2 %z

(

tj,n 0

0 −t∗j,n

)

, (2.7)

where φj is the superconducting phase in lead j.

2.2.1 Current-phase relation

To push further on our analysis, since our aim is to obtain a formally exact expression for

the CPR from the partition function, Z = Tre−βH , with inverse temperature1 β = 1/T , we

now study the equilibrium Josephson CPR in the zero-temperature limit, T → 0.

By means of Wick’s theorem, we can average over the leads in order to trace out the non-

interacting lead fermions, since we want to derive an effective partition function written

in terms of dot variables only. In the interaction picture, let H0 = Hd + Hl govern the

imaginary-time (τ) evolution. For arbitrary operator O, we use the notation

O(τ) = eH0τOe−H0τ , Ō(τ) = eH0τO†e−H0τ . (2.8)

The partition function then reads

Z = Trd Trl

(

e−βH0T e−
∫ β

0
dτHt(τ)

)

= Zl Trd
(

e−βHdT e−St
)

, (2.9)

where T denotes the time ordering. The traces Trd,l are performed over the dot- and lead-

Hilbert spaces respectively, with Zl = Trl e
−βHl . In Eq. (2.9), we have averaged over the leads,

and using 〈Ht(τ)〉l = Z−1
l Trl[e

−βHlHt(τ)] = 0, Wick’s theorem implies that St in Eq. (2.9) is

completely determined by the Gaussian correlator

St = −1

2

∫ β

0

dτdτ ′ 〈T Ht(τ)Ht(τ
′)〉l . (2.10)

Inserting Ht of Eq. (2.7) into Eq. (2.10) , we obtain

St =
1

2

∫ β

0

dτdτ ′
∑

nn′

D̄n(τ)Λnn′(τ − τ ′)Dn′(τ ′), (2.11)

1Throughout this thesis we often use ~ = kB = 1
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where

Λnn′(τ − τ ′) = 2
∑

j

T †
j,nGl(τ − τ ′)Tj,n′ (2.12)

is expressed in terms of the Matsubara-Green’s function, that is a matrix in the Nambu space,

for each uncoupled lead (j = L/R):

Gl(τ − τ ′) = −
∑

k

〈

T Ψjk(τ)Ψ̄jk(τ
′)
〉

l
= −πν0T

∑

m

e−iωm(τ−τ ′)

√

ω2
m +∆2

(

iωm ∆

∆ iωm

)

, (2.13)

which is identical for both leads. Here we have employed the wide-band approximation,

with the (normal-conducting) lead density of states ν0 =
∑

k
δ(ξk), and fermionic Matsubara

frequencies ωm = πT (2m+1), with integerm. The kernel Λnn′(τ−τ ′) in Eq. (2.12), describing

the effects of the traced-out leads on the dot fermions, thus reads

Λnn′(τ) =
∑

j=L,R

Γ
(j)
nn′

(

∂τ +∆e−i%zφj%x
)

f(τ) (2.14)

where we again make use of the set of Pauli matrices in the Nambu space, {%x,y,z}, and where

the tunnel contacts are described by Hermitian M ×M hybridization matrices,

Γ
(j)
nn′ = 2πν0t

∗
j,ntj,n′ , (2.15)

where - it is worth to stress it further - we assume spin-conserving bare tunneling, i.e. there is

no spin flip in absence of SO and Zeeman fields, and hence, taking into account TR symmetry,

tj,σ;nσ′ = δσσ′tj,n. Moreover we use the auxiliary function

f(τ) = T
∑

m

e−iωmτ

√

ω2
m +∆2

. (2.16)

Notice that Λnn′(τ − τ ′) factorizes in spin/orbital (n, σ) and Nambu (%x,y,z) subspaces.

The Josephson current flowing through the contact j to the dot follows from the ground-state

average

Ij =
2e

~
∂φj

F, (2.17)

where F = −T lnZ is the free energy. Current conservation imposes IL,R = ±I(ϕ), where
ϕ = φL−φR is the gauge-invariant phase difference. As concluding remark to this section, we

point out that the expression derived for Z is formally exact, within the standard assumption

of k-independent tunneling matrix elements. This implies that the Josephson current found

to be flowing in the system is the most general expression possible.

Next, we will leave the general case to consider a toy-model from which concrete results can

be derived.
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2.2.2 Two orbital levels: building the toy-model

For concrete results, we will consider a generic model with M = 2 dot orbital levels, which

provides a minimal setting for studying SOC effects, the anomalous supercurrent, and

Majorana fermions. The 4× 4 matrix h describing the single-particle spectrum of the dot

Hamiltonian Hd, see Eq. (2.2), is taken in the generic form

h = (µτ0 + ετz)σ0 +Bτ0σz + ατy [cos(χ)σz + sin(χ)σy] , (2.18)

where τx,y,z (σx,y,z) are Pauli matrices in orbital (spin) space and the respective unity matrices

are τ0 (σ0). The physics is here determined by the interplay of a Rashba-type SOC, whose

strength is parameterized by the energy scale α, and the magnetic Zeeman field, with energy

scale B.

Spin-orbit effects in quantum dots have attracted interest because of their versatile applica-

tions in spintronics and in quantum informations theory, as in Ref. [45].

Rashba spin-orbit, i.e. a particular SO coupling considered throughout this thesis, is linked

to the asymmetry of the confining potential of the electrons in a 2DEG, i.e. an electron gas

with a strong confinement along one direction. The essence of such a coupling is the action

of an external electric field on a moving spin, see Ref. [46].

In Eq. (2.18), 0 ≤ χ ≤ π denotes the angle between the effective spin-orbit field and the

Zeeman field. The bare dot levels are µ± ε for α = B = 0.

The single-particle Hamiltonian in Eq. (2.18) plays the role of a toy-model but actually

represents a realistic Hamiltonian, reported in detail in Appendix A.

Now we conveniently express the 2× 2 hybridization matrices (in orbital space) written in

Eq. (2.15) in the form

Γ(j=L,R) = γj

(

eλj eiδj

e−iδj e−λj

)

, (2.19)

where γj ≥ 0 gives the overall hybridization strength of the respective contact and λj

parametrizes the orbital asymmetry. This means that, for λj = 0, both orbitals couple

symmetrically to the jth lead, and δj is an inter-orbital phase shift. It is worth to point out

that, since δL,R is independent of spin, these phase shifts are independent of SO coupling of

any nature. For instance, they could be caused by orbital magnetic fields and they might pop

up in the system by virtue of a gauge transformation transferring the orbital field dependence

to the tunneling Hamiltonian. It is also worth emphasizing that, for α 6= 0 and ∆ 6= 0, one

cannot gauge away the resulting phases δL,R.

For further convenience in the upcoming calculations, we define the relative inter-orbital
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phase shift

δ = δL − δR. (2.20)

Note that our assumption of k-independent tunneling matrix elements, that we made in

Sec. 2.2.1, implies that the phase shifts δj are also momentum-independent. If this assumption

is violated, the δj are best treated as statistical variables. While the resulting average may

suppress the anomalous Josephson current Ia, it will leave the critical currents basically

unaffected. Since such generalizations are straightforward to implement, we proceed here by

assuming k-independent phase shifts δL,R too.

2.3 The Josephson current

As discussed briefly in Sec. 2.1, in this thesis we consider a multi-level quantum dot tunnel-

contacted by two conventional s-waves BCS superconductor to investigate the equilibrium

Josephson current using two complementary vantage points. The first approach is presented

in an extensive way and corresponds to the perturbation theory in the cotunneling regime,

while the second one will employ an effective Hamiltonian valid in the ’deep subgap’ regime,

or atomic limit, for ∆ → ∞ .

2.3.1 First approach: the cotunneling regime

We will start presenting the analytical progress that can be done by means of the first

approach discussed above. The cotunneling regime is realized when all eigenvalues of the

hybridization matrices Γ(j), j = L/R, are small against ∆, in other words, the condition

Γ(j) � ∆ (2.21)

will define the energy regime in which we will be working.

Let us start from Eqs. (2.11) and (2.14): since the Gaussian correlator defined in Sec. 2.2.1,

St ∝ Γ(j), the free energy F can be directly expanded in powers of St:

F = −β−1 ln

[

1− 〈St〉+
1

2!
〈S 2

t 〉 − . . .

]

. (2.22)

Since ∂φj
〈St〉 = 0, the lowest-order contribution to the Josephson current (2.17) is proportional

to the product of the hybridization matrices ΓLΓR and reads

Ij = −2β−1
〈

St∂φj
St

〉

GS
. (2.23)
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The current for each lead here is taken as the ground-state expectation value for the closed

dot Hamiltonian Hd. Expressing the effective action St in function of the kernel Λnn′(τ − τ ′),

see Eq. (2.12), in accordance with current conservation, we find Ij(ϕ) = ±I(ϕ), where

I(ϕ) = I0 sinϕ+ Ia cosϕ . (2.24)

In the last equation we have divided the Josephson current into its conventional part,

proportional to sinϕ, and its anomalous part, proportional to cosϕ. Both currents appear in

the total Josephson current with a pertinent intensity, I0 and Ia. Their forms are
(

I0

iIa

)

=
∑

nm,n′m′

(

Γ
(L)
nmΓ

(R)
n′m′ + Γ

(R)
nmΓ

(L)
n′m′

Γ
(L)
nmΓ

(R)
n′m′ − Γ

(R)
nmΓ

(L)
n′m′

)

(2.25)

× 1

2
∆2β−1

∫ β

0

dτ1dτ2dτ
′
1dτ

′
2

× f(τ1 − τ2)f(τ
′
1 − τ ′2)

〈

T dn↓(τ1)dm↑(τ2)d̄n′↑(τ
′
1)d̄m′↓(τ

′
2)
〉

.

Before extending our analysis, we may comment on some of the previous points. Eq. (2.24)

gives the basic idea of the anomalous Josephson effect. The anomalous contribution to the

total Josephson current is characterized by a finite supercurrent flowing even at zero phase

difference, ϕ = 0.

Comparing to the conventional Josephson effect , where the supercurrent reads I(ϕ) = Ic sinϕ,

with critical current Ic, this is equivalent to a phase-shift in the system. In fact:

I(ϕ) → I(ϕ+ ϕ0) = [Ic cosϕ0] sinϕ+ [Ic sinϕ0] cosϕ , (2.26)

i.e., I0 = Ic cosϕ0 and Ia = Ic sinϕ0. Therefore, Junctions in which Ia 6= 0 are commonly

referred to as ’ϕ0-junctions’. The critical current for the system is Ic =
√

I20 + I2a .

It is now crucial to use the unitary transformation U in Eq. (2.3) to switch from the dnσ

to the cν fermion representation, where the latter represent the eigenstates of the isolated

interacting dot. Using the symmetry property f(τ) = f(−τ), we observe that only the

antisymmetric part of the transformed hybridization matrices enters the expressions for I0

and Ia. In formula:

Γ̃(j=L,R)
νµ =

∑

nm

Γ(j)
nm (Un↓,νUm↑,µ − Un↓,µUm↑,ν) , (2.27)

By employing Eq. (2.25), we find for the following simple form for the anomalous Josephson

current as product of two matrices

Ia =
e∆2

~

∑

ν>µ

Jνµ Qνµ. (2.28)
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The first ones are the symmetric 2M × 2M matrices

Jνµ = Im
(

Γ̃(L)
νµ [Γ̃

(R)]∗νµ

)

, (2.29)

written in terms of the antisymmetric matrices in Eq. (2.27), whose dimension is 2M × 2M .

Note that Jνµ matrices depend only on single-particle quantities, such as tunneling matrix

elements, SOC, and Zeeman fields. It is worth stressing that Josephson currents through

nanoscale multilevel quantum dots are strongly affected by SOC, even without an external

magnetic field, see Ref. [44].

In this analysis, the role of interactions is encoded in the Q matrix and can be crucial in

breaking the balance between time-reversed processes, which may then induce the anomalous

Josephson effect:

Qνµ = −β−1

∫ β

0

dτ1dτ2dτ
′
1dτ

′
2 f (τ1 − τ2) f (τ

′
1 − τ ′2)

〈

T cν(τ1)cµ(τ2)c̄ν(τ ′1)c̄µ(τ ′2)
〉

. (2.30)

The time-ordered product generates 4! = 24 terms with different time ordering:

Qνµ =
24
∑

p=1

Q(p)
νµ . (2.31)

To complete the derivation, the current I0 follows in a similar form,

I0 =
e∆2

~

∑

ν>µ

Re
(

Γ̃(L)
νµ [Γ̃(R)

νµ ]∗
)

Qνµ. (2.32)

We can now use Eq. (2.28) to derive some general conditions for the anomalous Josephson

effect to exist within the cotunneling regime. As necessary condition for Ia 6= 0, we observe

that Jνµ 6= 0 must be satisfied for at least one index pair ν > µ.

It is also worth noting that this condition is very general and holds for arbitrary matrices h

determining the single-particle spectrum.

In Sec. 2.2.2, we inferred thatM = 2 orbitals represent the minimal model to consider to carry

out significant results. The reason is that for a single-level dot, M = 1, the hybridization

matrices Γ(L) and Γ(R) are just real numbers. The antisymmetric Γ̃(L,R) matrices in Eq. (2.27)

are then fully determined by

Γ̃
(j)
21 = Γ(j)(U↓,2U↑,1 − U↓,1U↑,2) = 0, (2.33)

which immediately yields J = 0 in Eq. (2.29).

Hence no anomalous Josephson current is possible in a single-orbital dot, even in presence of

29



interactions.

In order to infer general considerations that are independent of the analytical method

considered, i.e. beyond the cotunneling regime, one can use symmetry arguments. We show

this by analyzing the supercurrent through an inversion-symmetric two-dimensional dot with

in-plane (purely Zeeman) magnetic field B and SOC strength α.

To perform a spatial inversion operation, (x, y) → (−x,−y), the following operations apply:

• exchanging the lead indices, L↔ R;

• inverting the phase difference, ϕ→ −ϕ;

• changing the sign of the SOC, α → −α;

• changing the sign of the (in-plane) Zeeman field, B → −B.

Since I(ϕ) → −I(−ϕ) under spatial inversion, Eq. (2.24) implies that the anomalous super-

current must satisfy the symmetry relation

Ia
(

Γ(L),Γ(R), B, α
)

= −Ia
(

Γ(R),Γ(L),−B,−α
)

. (2.34)

Similarly, we deduce an additional condition from the supercurrent behavior under a time

reversal operation,

Ia
(

Γ(L),Γ(R), B, α
)

= −Ia
(

Γ(L),Γ(R),−B,α
)

, (2.35)

which implies that Ia is always odd in B: Ia(B) = −Ia(B).

Let us next address the Q matrix in Eq. (2.30), which only depends on properties of the

closed dot. In the cotunneling regime, interactions can affect the CPR only through this

matrix. In general, from Eq. (2.30), a total number 4! = 24 terms involving all possible

permutations of time-ordered fermion operators will be generated. However, if the closed dot

has a non-degenerate interacting ground state |GS〉, Eq. (2.30) allows for simplifications in

the β → ∞ limit of interest here. Assuming a TRS-breaking magnetic field to be present,

effectively, only three permutations in Eq. (2.30) are relevant and Qνµ can be expressed in
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terms of the three real-valued functions

Qi(εa, εb, εc) =
1

β

∫ β

0

dτa

∫ τa

0

dτb

∫ τb

0

dτc

∫ τc

0

dτd (2.36)

× e−εa(τa−τb)−εb(τb−τc)−εc(τc−τd)































f(τa − τb)f(τc − τd), i = 1,

f(τa − τd)f(τb − τc), i = 2,

f(τa − τc)f(τb − τd), i = 3,

where εa,b,c ≥ 0 are possible excitation energies. Switching to the frequency domain and using

Eq. (2.16), we obtain2

Qi =

∫

dω1dω2

(2π)2
1

√

(ω2
1 +∆2)(ω2

2 +∆2)
(2.37)

×































(1− δεb,0)/[(iω1 + εa)(iω2 + εc)εb], i = 1,

1/[(iω1 + εa)(iω1 + εc)(iω1 + iω2 + εb)], i = 2,

1/[(iω1 + εa)(iω2 + εc)(iω1 + iω2 + εb)], i = 3.

We also underline that the Qi are invariant under the exchange εa ↔ εc. Let’s consider now

the ground state |GS〉 of the closed dot Hamiltonian Hd in Eq. (2.4), with N0 electrons on

the dot, N̂ |GS〉 = N0|GS〉. Assuming that |GS〉 is non-degenerate, the filling factor nν for

each single-particle state ν = 1, . . . , 2M is known. Arranging the Eν as ordered sequence,

E1 ≤ E2 ≤ · · · ≤ E2M , the result is

nν = 〈GS|c†νcν |GS〉 =
{

1, ν ≤ N0,

0, ν > N0.
(2.38)

For given index pair ν > µ, three possibilities arise, namely (nν , nµ) = (0, 0), (1, 1), and (0, 1).

For a matter of convenience, we also define the Coulomb energy differences Wk, with integer

k,

Wk = Ec(N0 + k − ng)
2 − Ec(N0 − ng)

2, (2.39)

2The double-frequency integrals in Eq. (2.37) can be carried out analytically by replacing f(τ) → f̃(τ)

in Eq. (2.16), with (ω2 +∆2)−1/2 → (∆̃2/∆)/(ω2 + ∆̃2), where ∆̃ is a fitting parameter of order ∆ chosen

such that f(τ) and f̃(τ) have the same low-energy behavior. Within 1% accuracy, analytical results (using

f̃) were found to match numerics (using f) for all parameters studied. We have used f → f̃ exclusively for

generating the figures throughout the rest of this thesis.
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where the integer N0 denotes the ground-state electron number on the dot. To state the final

result for Q, it is useful to introduce the positive energies

Ẽν = (1− 2nν)Eν +W1−2nν
, (2.40)

Ẽνµ = (1− 2nν)Eν + (1− 2nµ)Eµ +W2−2nν−2nµ
.

For Ec = 0, we have 1−2nν = sgn(Eν) and hence Ẽν = |Eν |, recovering so the non-interacting

case. We then obtain the symmetric Q matrix,

Qνµ = (1− 2nν)(1− 2nµ)
[

2Qi1(Ẽν , Ẽνµ, Ẽµ)

+ Qi2(Ẽν , Ẽνµ, Ẽν)Qi2(Ẽµ, Ẽνµ, Ẽµ) + 2Qi3(Ẽν , 0, Ẽµ)
]

, (2.41)

where the indices are i1 = i2 = 1 and i3 = 3 for nν = nµ. For nν 6= nµ, we instead have

i1 = i3 = 2 and i2 = 3.

Strong Coulomb blockade

For Ec → ∞, the cotunneling supercurrent is generally strongly suppressed. Technically, this

suppression can be seen from Eq. (2.37): all excitation energies scale as

εa,b,c ∝ Ec → ∞, (2.42)

which implies Qνµ → 0 and thus I0,a → 0.

This argument only breaks down for half-integer values of ng, where the strong charging term

in Hd allows for two degenerate charge states with particle numbers N0 = N0,± ≡ ng ± 1/2.

Let us therefore now focus on half-integer values of ng, where {Eν}, the single-particle energy
spectrum, determines the ground state and which particle number N0 is realized: i.e., if it is

either N0,+ or N0,−. Using this argument, and since the Coulomb energy difference W∓1 = 0,

Eq. (2.41) simplifies to

Q(N0,+)
νµ = 2nνnµQ3(−Eν , 0,−Eµ) (2.43)

− [(1− nν)nµQ3(−Eµ, Eν − Eµ,−Eµ) + (ν ↔ µ)] ,

Q(N0,−)
νµ = 2(1− nν)(1− nµ)Q3(Eν , 0, Eµ)

− [(1− nν)nµQ3(Eν , Eν − Eµ, Eν) + (ν ↔ µ)] .

It is interesting to discuss Eq. (2.43) for a spin-degenerate single-level dot, i.e., the M = 1

case, without SOC and without magnetic field.
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In this case, the two single-particle states, defined by ν =↑, ↓, have identical energy, say

Eν = x∆, where x plays the role of a dimensionless parameter, and Eq. (2.43) yields3

Q↑↓ = Q3(|x|∆, 0, |x|∆)×
{

2, N0 = 0, 2,

−1, N0 = 1,
(2.44)

where Eq. (2.37) gives (x > 0)

Q3(x∆, 0, x∆) =
1

π2∆3

(π/2)2(1− x)− Arccos2x

x(1− x2)
. (2.45)

Since Ia = 0 for M = 1, the critical current Ic directly follows from Eq. (2.32): so, Ic ≡ I0.

As final remark, Eq. (2.44) predicts π-junction behavior, with I(ϕ) = −Ic sinϕ, for N0 = 1;

while for N0 = {0, 2} it predicts 0-junction, with I(ϕ) = Ic sinϕ. It is proper to point out

that these are actually well-known results, [5, 7].

In general, in the strong Coulomb blockade limit Ec → ∞, we find π-junction behavior for

odd N0 and half-integer ng.

2.3.2 Second approach: the superconducting atomic limit

After having shown results of perturbation theory in the tunneling matrices, we now briefly

focus on the second approach. It deals with the parameter regime where ∆ represents the

largest relevant energy scale of interest, and we can effectively put ∆ → ∞: the atomic limit.

This approach allows us to go beyond the perturbative cotunneling regime and to compute

the free energy F exactly, without further approximations. Considering Eq. (2.14), one can

set:

f(τ) → ∆−1δ(τ) (2.46)

and the partition function reads Z = Trde
−βHeff . The ’effective dot Hamiltonian’ is

Heff = Hd +
1

2

∑

j=L,R

∑

nm

(

Γ(j)
nme

iφjdn↓dm↑ +H.c.
)

, (2.47)

with Hd in Eq. (2.2) and a proximity-induced s-wave pairing term due to the traced-out

superconducting leads.

The CPR then follows again from Eq. (2.17). Our vantage point is that the Hilbert space of

the dot can now be decomposed into two independent sectors with even and odd fermion

parity, respectively.

3Note that for N0 = 1, the ground-state is two-fold spin degenerate. Since both spin orientations lead to

the same result, our derivation, based on the assumption of non-degenerate |GS〉, still holds.
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The form of the effective dot Hamiltonian in Eq. (2.47) can be used to demonstrate that the

two limits Ec → ∞ and ∆ → ∞ do not commute. For ∆ → ∞, one needs to retain only

those contributions in Eq. (2.30) where two fermions forming a Cooper pair are tunneling as

a whole, with no retardation effect, with the correlator of the form

〈T cν(τ + 0+)cµ(τ)c̄ν(τ
′ + 0+)c̄µ(τ

′)〉. (2.48)

Using Ẽνµ ≥ 0 in Eq. (2.40), some algebra gives

Qνµ =
δnν ,nµ

2∆2

1− δẼνµ,0

Ẽνµ

. (2.49)

Since now Qνµ ≥ 0 for arbitrary N0, π-junction behavior is never possible in the atomic limit,

in contrast to what we found for ∆ < Ec → ∞ in Sec. 2.3.1. This statement always applies

within the atomic limit, or equivalently said, beyond the cotunneling regime. Moreover, in

the atomic limit, Ec < ∆ → ∞, current flows only in the vicinity of the 2e-charge degenerate

points, defined for W±2 = 0. These points correspond to integer values of ng. This again

differs from the strong-blockade result in Eq. (2.43), where current flows only for half-integer

ng. We conclude that the limits Ec → ∞ and ∆ → ∞ do not commute.

2.4 The anomalous Josephson current

After the introductory part, in which we presented the model and gave details about the

techniques used to derive preliminary results of the most general form, we now focus on the

CPR solely and, in particular, we keep the further analysis on the anomalous supercurrent,

Ia = I(ϕ = 0), for the two-level dot in Sec. 2.2.2, with Rashba-like SOC and Zeeman magnetic

field. The guidelines of this section have been imagined to recall the organization of Sec. 2.3:

it will be devoted to achieve results following the two approaches presented above. Let us

start with the results in the cotunneling regime.

2.4.1 The cotunneling regime

In the cotunneling regime, the currents Ia and I0 determining the Josephson CPR follow

from Eqs. (2.28) and (2.32), respectively.

The anomalous supercurrent is expressed in terms of the 4×4 matrices J and Q, see Eqs. (2.29)

and (2.41), respectively, where a necessary condition for the anomalous Josephson effect is

given by Jνµ 6= 0 for at least one index pair ν > µ. To evaluate the J matrix, the unitary

matrix U diagonalizing h is needed. Analytical results in several complementary limits, where
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the algebra is simpler and allows for an intuitive picture, will be provided.

Let us first observe that when the spin-orbit field is perpendicular to the Zeeman field

(χ = π/2), h is a symmetric matrix. This implies that the diagonalizing matrix U can always

be chosen to have only real-valued entries only, and for δj = 0, (j = L/R), we obtain J = 0

from Eq. (2.29). One conclusion of this consideration is that we can check, in agreement with

previous works, [50], that the anomalous current Ia is identically zero for χ = π/2 and δj = 0,

I(ϕ = 0) ≡ Ia = 0 ⇐⇒ (χ = π/2 , δj = 0) . (2.50)

2.4.1.1 Case of collinear spin-orbit and Zeeman fields

In this subsection, we consider the case of collinear spin-orbit and Zeeman fields, i.e. where

spin-orbit and Zeeman fields point along the same direction, realized for χ = 0. We thus

consider h in Eq. (2.18) for χ = 0. Its form then reads

h = (µτ0 + ετz)σ0 +Bτ0σz + ατyσz. (2.51)

The diagonalizating matrix is found to be

U =











cos(θ/2) 0 i sin(θ/2) 0

0 cos(θ/2) 0 i sin(θ/2)

i sin(θ/2) 0 cos(θ/2) 0

0 i sin(θ/2) 0 cos(θ/2)











(2.52)

or, using Pauli matrices in orbital and spin space, in a more compact form

U = eiτxσzθ/2, sin θ =
α

Ed

, Ed =
√
ε2 + α2, (2.53)

The spectrum (E1, . . . , E4) is given by

µ+ (Ed +B,Ed − B,−Ed +B,−Ed − B). (2.54)

Using Eq. (2.27), the antisymmetric hybridization matrices Γ̃(L,R) have the following nonvan-

ishing entries

Γ̃
(j)
23 = −[Γ̃(j)]∗14 = γj

(

cos δj + i
α sinhλj + ε sin δj

Ed

)

,

Γ̃
(j)
21 = γj

(

coshλj +
ε sinhλj − α sin δj

Ed

)

= Γ̃
(j)
43

∣

∣

∣

θ→θ+π
.
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Following the procedure sketched previously, the symmetric J matrix in Eq. (2.29) has the

following non-zero elements

J32 =
γLγR
Ed

[ε sin δ + α(cos δR sinhλL − cos δL sinhλR)] (2.55)

and J41 = −J32. Note that, surprisingly, this result does not depend on the Zeeman field B.

In the end, the anomalous supercurrent is

Ia = ∆2J32 (Q32 −Q41) . (2.56)

Several physical considerations can be drawn from the equations above.

First of all, we that J32 = 0 for Γ(L) = Γ(R), where δL = δR and λL = λR. This allows us to

conclude that asymmetric tunnel contacts with matrices

Γ(L) 6= Γ(R) ⇐⇒
[

Γ(L),Γ(R)
]

6= 0 (2.57)

are necessary for Ia 6= 0. This condition, present also in Ref. [50], is indicating that it is

crucial to have off-diagonal entries in these tunneling matrices to observe a phase-shift. In

other words: if the lead-to-dot tunneling has a conserved orbital degree of freedom (e.g.,

channel number, transverse momentum, angular momentum, as it might be in nanotube

dots and/or in single-electron transistors), the off-diagonal entries vanish and therefore no

ϕ0-junction behavior is possible. Another point of view, from which one can equivalently

formulate the argument, is that having anomalous current in the system requires to break

the chirality symmetry.

Discussion of figures and results

Now we will illustrate the figures appearing in this section. We will start by analyzing the

’phase diagram’ for the conventional and anomalous Josephson currents, I0 and Ia respectively,

in the α-B plane, as depicted in Fig. 2.1.

The upper row illustrates the anomalous supercurrent: it is most pronounced when |α| ≈ |B|.
The standard Josephson effect, in the lower row, where one has either 0- or π-junction

behavior with |Ia/I0| � 1, is recovered when either α or B are small. Moreover, the lower

panel (still on I0) indicates that within the Zeeman-dominated regime |B| >
√
α2 + ε2, we

have I0 < 0, implying that π-junction behavior can be realized. Furthermore, we observe

that, for the chosen parameter set described in the caption of Fig. 2.1, Ia is an odd function

in the product αB.
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Figure 2.1: Anomalous supercurrent (Ia, top panel) and ’normal’ supercurrent (I0, bottom)

determining the cotunneling CPR (2.24) in the B-α plane. The results are for the two-level

dot with ε = 0.3∆, Ec = 2∆, ng = 2, and χ = δL,R = µ = λL = 0. For the right contact,

only the orbital level n = 1 is assumed to couple to the superconductor, i.e., λR → ∞ with

γRe
λR → γR. Note that Ia,0 are normalized to the respective critical current Ic =

√

I20 + I2a .
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Figure 2.2: Parameter dependence of Ia,0 (main panels) and of the particle number N0 (inset)

for B = 0.5∆, with other parameters as in Fig. 2.1. Blue solid curves show Ia, and black

dashed curves I0, both in units of eγLγR/~∆. Top row: SOC α is varied for fixed field angle

χ = 0, with ng = 1 (left) and ng = 2 (right). Bottom row: χ is varied for fixed α = 1.2∆,

with ng = 1 (left) and ng = 2 (right).

Fig. 2.2 presents results for the dependence of the Josephson currents on the SOC and χ,

denoting the relative angle between the SOC and the Zeeman field in our system. The upper

panel of Fig. 2.2 illustrates the behavior of I0,a and I0,a as function of α for fixed B = 0.5∆.

The steps in I0,a vs α can be traced back to level degeneracies. In other words our analysis

here is still a perturbative one, in which we retain the lowest-order contributions to the

Josephson current as the main terms to study. In presence of level-degeneracies, higher-order

perturbative terms become important and smear out the steps. For the chosen parameters

and ng = 2, we have N0 = 2 for all shown SOCs, but for ng = 1 (in the upper left panel),

N0 = 1 for certain α. As evidence from the plots, the anomalous supercurrent is generally

enhanced for odd N0, if compared to the even-N0 case.

The lower-row panels in Fig. 2.2 show the χ-dependence of Ia,0 for SOC α = 1.2∆, confirming

that the anomalous supercurrent is maximized for χ = 0 mod π but vanishes for χ = π/2.

38



-5 0 5
µ / ∆

-0.1

0

0.1

0.2

0.3
I 

(γ
L
γ

R
 /

 ∆
)

-4 -2 0 2 4
B / ∆

-0.05

0

0.050

2

4

1

2

Figure 2.3: Same as Fig. 2.2 but showing Ia,0 vs µ for B = 0.001∆ (left), and Ia,0 vs B for

µ = 3∆ (right). Other parameters are as in Fig. 2.1 except for Ec = 1.5∆.

Further considerations to be made is that we observe that Ia is not drastically affected by

interactions while I0 becomes suppressed. This might suggest that the presence of interactions

tends to enhance the relative importance of the anomalous supercurrent.

Next, we devote our analysis to the dependence of the Josephson current on the chemical

potential µ and the Zeeman field. The left panel in Fig. 2.3, in fact, shows that even for

B = 0.001∆, in the presence of interactions and with odd N0, we can appreciate an anomalous

supercurrent that is finite and sizeable.

Similarly, the right panel shows that for B → 0, we obtain an unusual Ia(B) dependence

instead of the standard linear B-dependence reported in Ref. [50], where the non-interacting

case has been studied and the following behavior for Ia has been found: Ia ∝ αB. In our

analysis, as pointed out already, we expect higher-order perturbative corrections to smear out

the cusps near B = 0 and eventually to lead to Ia ∝ sgn(B). Next we observe that in general

Q32 6= Q41, see Eq. (2.56). As long as J32 6= 0, there are in principle no arguments that can

let the anomalous supercurrent not flow. This could happen for arbitrary (including zero)

SOC α. However, a finite Zeeman field is always needed to achieve this. In fact, when the

B = 0 condition is realized, we find that Q32 = Q41 due to level degeneracies (E1 = E2 and

E3 = E4), see Eq. (2.54), and hence Ia = 0 for B = 0, as one might see in Fig. 2.1, upper

plot. It is worth to point out that anomalous supercurrents can survive even for arbitrarily

weak B, when interactions are present.

Let us now try to see analytically the case without SOC: setting α = 0 in Eq. (2.55), we
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Figure 2.4: Same as Fig. 2.2 but showing Ia,0 vs α for µ = Ec = 0 (left), and Ia,0 vs µ

for α = 0 and Ec = 2∆ (right). We use the parameters ε = 0.5∆, B = 0.7∆, ng = 2,

χ = λL,R = δR = 0, and δL = π/2.

observe that Ia 6= 0 is possible for relative inter-orbital phase shift δ 6= 0, as one can read off

from Eq. (2.20). So, we get the possibility of realizing an anomalous Josephson effect induced

by the magnetic field alone, with no SOC, in a noninteracting multi-level dot.

This is evident in the left panel of Fig. 2.4, we present, for phase shifts δR = 0 and δL = π/2,

a counter-intuitive increase in |Ia| as the SOC is decreased and, moreover, the anomalous

supercurrent is now an even function of the SOC parameter α. This is due to the fact that

inter-orbital phase shifts δ = π/2 are present. In this case N0 = 2. As a matter of fact, here

we find the largest possible anomalous supercurrent for α = 0.

Finally, the right panel of Fig. 2.4 presents the µ-dependence of Ia, for α = 0, where we see

again that the anomalous supercurrent is enhanced whenever N0 is odd.

2.4.1.2 Resonant level case

Another interesting and nontrivial situation emerges when the two bare levels are resonantly

aligned. This case corresponds to ε = 0 with arbitrary χ, in Eq. (2.18). The diagonalization

matrix has the form:

U =
1√
2











cos(θ+/2) i sin(θ+/2) i cos(θ−/2) − sin(θ−/2)

i sin(θ+/2) cos(θ+/2) − sin(θ−/2) i cos(θ−/2)

i cos(θ+/2) − sin(θ+/2) cos(θ−/2) i sin(θ−/2)

− sin(θ+/2) i cos(θ+/2) i sin(θ−/2) cos(θ−/2)











(2.58)
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or, writing again by means of Pauli matrices in orbital and spin spaces:

U = eiτxπ/4eiθ̂σx/2. (2.59)

In the last equation, θ̂ = diag(θ+, θ−) is a diagonal matrix in orbital (τ) space. The angles

θ± follow from

sin θ̂ =

(

sin θ+ 0

0 sin θ−

)

=
α sinχ τz

√

α2 +B2 + 2αB cosχ τz
,

cos θ̂ =

(

cos θ+ 0

0 cos θ−

)

=
B + α cosχ τz

√

α2 +B2 + 2αB cosχ τz
. (2.60)

The angles can be put in a more compact form as follows:

eiθ± =
B ± eiχα

E±
, E± =

√

α2 +B2 ± 2αB cosχ. (2.61)

(E1, . . . , E4) = µ+ (E+,−E+, E−,−E−) are the eigenstates of the matrix h as it appears in

Eq. (2.18). The symmetric J matrix has the non-vanishing elements

J21 = γLγR (cos δL sinhλR − cos δR sinhλL) (2.62)

and J43 = −J21. Note that for ε→ 0, Eq. (2.55) coincides with Eq. (2.62). For the anomalous

Josephson current, we thus find

Ia = ∆2J21 (Q21 −Q43) . (2.63)

It is quite remarkably that J21 in Eq. (2.62) neither depends on the Zeeman field B nor on

the SOC α. In principle, we may then expect Ia 6= 0 even for very small α and/or B. In

addition, J21 does not depend on χ either. However, we also need to examine the contribution

of the Q matrix. In fact, when αB cosχ = 0, the level degeneracy E+ = E− implies from

Eq. (2.41) that Q21 = Q43, which gives Ia = 0 for ε = 0 and arbitrary Ec.

Discussion of figures and results

We now illustrate Fig. 2.5, for very small values of the magnetic field, for instance B = 0.001∆ .

The left panel indeed reveals a finite and sizeable anomalous supercurrent for α = B = 0.001∆

if interactions are present, Ec 6= 0, and N0 is odd. The right panel, instead, shows that

Ia ∝ sgn(αB) for arbitrarily small but finite SOC α. We again encounter the possibility

that Ia 6= 0 even for very small Zeeman field B and temperatures T < |B|, suggesting the
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Figure 2.5: Same as Fig. 2.2 but for the resonant orbital (ε = 0) case with tiny Zeeman field,

B = 0.001∆. The left panel shows Ia,0 vs µ for α = 0.001∆, while the right panel displays

Ia,0 vs α for µ = 5∆. The remaining parameters are as in Fig. 2.1.

incipient spontaneous breakdown of TRS. Here ’incipient’ means that TRS is restored for

B = 0. Remarkably, this onset behavior can be triggered by Coulomb interactions even for

very small SOC α.

Next we aim at understanding the above Ia ∝ sgn(αB) onset behavior. We can simplify the

algebra furthermore by putting χ = 0. Thus we can consider the limiting case of very small

but finite (B,α), where interactions play a crucial role. For |α| � |B|, the arguments below

show that the onset behavior Ia ∝ sgn(B) is possible even when Ec = 0.

Equation (2.61) then gives eiθ± = ±sgn(α) for |α| > |B|, and thus the complex-valued unitary

matrix in Eq. (2.59) has different limits for positive and negative SOC. In formula this reads:

limα→0+ U 6= limα→−0+ U .

To be more specific, we obtain

lim
α→0+

U =
1√
2











1 0 0 −1

0 1 −1 0

i 0 0 i

0 i i 0











, lim
α→0−

U =
1√
2











0 i i 0

i 0 0 i

0 −1 1 0

−1 0 0 1











(2.64)

This corresponds to different residual ’magnetizations’ of the τ ⊗ σ isospin near the SU(4)

symmetric point in the parameter space defined by B = α = 0. Next, the columns of U are

eigenvectors of h and they four linearly independent isospin projections. The corresponding

single-particle energy levels are

µ+ {|α|+ η,−|α| − η, |α| − η,−|α|+ η} (2.65)
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Figure 2.6: Same as Fig. 2.2 but showing Ia,0 vs Ec for ng = 2 (main panel) and ng = 3/2

(large right inset), with α = 0.5∆, B = 0.01∆, and ε = 0.01∆.

with η = sgn(α)B. When µ is chosen such that N0 = 1, assuming B > 0, one spin-down

electron will occupy the single-particle level E2 (E4) for α > 0 (α < 0).

For N0 = 1, we observe that

sgn(Q21) = −sgn(Q43) = −sgn(α), (2.66)

as one can see in Eq. (2.41), with Qi > 0. Therefore Eq. (2.63) suggests that we may

have a finite anomalous supercurrent. However, for very small (B,α) and Ec = 0, the

energy separation between states with different N0 is also tiny. This could eventually lead

to the mutual cancellation of all time-reversed contributions, having then Ia = 0 in the

noninteracting case for very small B and α. Interactions play a crucial role because, for a

finite charging energy, the energy gap between states with different N0 scales with Ec, which

effectively results in having a N0 = 1 ground state more robust. Taking the small-(B,α) limit

for finite Ec should then leave ground-state properties such as N0 or the spin polarization

unaffected, and Ia ∝ sgn(αB) remains finite. However, the above arguments also show that

Ia will be suppressed by thermal fluctuations once the temperature scale exceeds the Zeeman

field scale, T > |B|. Therefore the Ia ∝ sgn(αB) onset behavior just found for the ground

state can ’only’ be interpreted as incipient breakdown of TRS, i.e., TRS is restored by thermal

fluctuations.
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Figure 2.7: Anomalous supercurrent Ia for the two-orbital dot vs SOC α in the atomic limit

(∆ → ∞) for several γ = γL = γR. The shown results follow from Eq. (2.68) and the effective

dot Hamiltonian (2.47). The other parameters are as in the right panel of Fig. 2.5: ε = 0,

B/Ec = 0.0005, µ/Ec = 2.5, ng = 2, χ = δL,R = λL = 0, and λR → ∞. The solid blue curve

gives the respective cotunneling result [Eq. (2.63) with ∆ → ∞] for γ/Ec = 0.05.

Finally, the interaction effects in this interesting parameter regime are displayed in Fig. 2.6,

for values of SOC as α = 0.5∆. While Ia = 0 for small Ec, we find Ia 6= 0 for Ec
>
∼|α|, with

|Ia| weakly decreasing in the limit of strong Coulomb blockade. For the resonant case of

half-integer ng, Ia saturates at a finite value for Ec → ∞, cf. inset of Fig. 2.6.

Analytical results for the ground-state anomalous supercurrent are possible in the strong

Coulomb blockade limit. For instance, at the charge degeneracy point ng = 3/2 with N0 = 1,

Eq. (2.63) yields for small (B,α) the result

Ia = −3 sgn(αB)∆2J21Q3(µ, 0, µ) =⇒ Ia ∝ sgn(αB) (2.67)

where J21 and Q3(µ, 0, µ) are given in Eqs. (2.62) and (2.45), respectively. As conclusive

remark, this confirms explicitly the onset behavior discussed above.

2.4.2 Superconducting atomic limit

In this section, we briefly discuss the anomalous Josephson effect in the superconducting

atomic limit, already discussed in Sec. 2.3.2, where ∆ → ∞, and the effective dot Hamiltonian
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Heff , in Eq. (2.47), allows us to go beyond the perturbative cotunneling regime. Evaluating

the anomalous Josephson current, e.g., at the left contact, we obtain

Ia = −2e

~
Im
∑

ν<µ

Γ̃(L)
νµ 〈cνcµ〉 , (2.68)

where the brackets indicate a ground-state average using Heff(ϕ = 0). We consider the two-

orbital dot in Sec. 2.2.2, where the 4× 4 hybridization matrices Γ̃(j) follow from Eq. (2.19),

after having performed the unitary transformation in favor of the cν fermion representation.

As presented already in Sec. 2.3.2, the ϕ-dependent ground-state energies should be computed

separately for the decoupled odd and even fermion parity subspaces. We then expect Ia 6= 0

only when the ground state, for ϕ = 0 has odd parity.

The dependence of Ia on the SOC α is illustrated in Fig. 2.7, where parameters are the same

as in the right panel of Fig. 2.5. This allows us to study how the Ia ∝ sgn(αB) onset behavior,

the signature of incipient TRS breaking, emerges from the cusp features encountered in

perturbation theory.

• We note from Fig. 2.7 that the cotunneling result (taking ∆ → ∞ in the above

expressions) matches the predictions of Eq. (2.68) for γL,R → 0. This matching

has also been confirmed analytically by perturbative expansion of the general ∆ →
∞ cotunneling result, see Eqs. (2.28) and (2.49), to lowest nontrivial order in the

hybridization matrices. Conclusion is that the limits γL,R → 0 and ∆ → ∞ do

commute.

• Cusp-like features as seen in the right panel of Fig. 2.5 emerging under a perturbative

theory will be smeared out by higher-order corrections, and indeed imply Ia ∝ sgn(αB)

onset behaviors associated with TRS breaking.

• Large hybridizations γL,R could also possibly result in a change of the fermion parity of

the resulting ϕ = 0 ground state. This is visible in Fig. 2.7, where we find Ia = 0 for

small |α| and γ/Ec = 1.1 as a consequence of such a transition.

The message of this subsection is that the anomalous supercurrent tends to vanish either by

raising γL,R or by lowering Ec.

2.5 Majorana fermions physics

In this section, we will conclude the analysis of the ground-state Josephson CPR of the system

by pointing out the second interesting phenomenon in such a setting, namely the possibility
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of realizing Majorana bound states (MBSs), in both non-interacting and interacting cases.

2.5.1 Introduction to Majorana fermions

A Majorana fermion is a particle that is its own antiparticle, whose notion can be tracked

back to the early moments of the relativistic quantum mechanics. Their name is due to Ettore

Majorana, [27], who showed, in 1937, that the complex Dirac equation can be decomposed

into a pair of real wave-equations: each of them actually describes a real fermionic field, but

with no possibility to distinguish between particle and antiparticle. This rewriting could

look, at a first glance, as a mere formal step: it is possible to express a complex fermion

as a superposition of two real Majorana fermions. Even though this seems a mathematical

operation, the search for Majorana fermions in condensed matter physics has increased as well

as the list of the proposals to realize them in various systems, see for instance Refs. [28, 31, 32].

We here focus on superconducting systems, in the specific case of a quantum dot between

two s-waves superconducting leads, where the role of particles and antiparticles is played

by electron and hole excitations, respectively. While electron excitations are filled states at

energy E > 0, with E = 0 defining the Fermi level, holes are empty states with energy −E
below the Fermi level. At E = 0, from electron-hole symmetry it follows that the excitations

are Majorana fermions. If we define the set {ξ†(E), ξ(E)}, of creation and annihilation

operators for excitations at energy E, the relation between them will be

ξ(E) = ξ†(−E). (2.69)

At the Fermi level they will coincide, implying ξ = ξ†. We can give some basic properties

defining Majorana fermions. They anti-commute, for every pair of fermions considered

ξiξj + ξjξi = 2δij, (2.70)

but the product ξ2i = 1 doesn’t vanish.

The first reasonably convincing experiment supporting the existence of Majorana fermions was

reported in Ref. [36], where semiconductor nanowires coupled to superconductors have been

considered. The presence of the s-wave superconductor induces a proximity superconducting

gap (∆ ' 250 µV) on the nanowire. Moreover, such InSb nanowires are known to exhibit

strong spin-orbit and a large g-factor. Here, the authors report spectroscopic measurements

on the density of states in InSb nanowires contacted with one normal contact and one s-wave

superconducting electrode held at temperature of the mK order. In the presence of magnetic

fields, B ∼ 100 mT, states at zero bias voltage, i.e. zero energy states, appear4. These bound

4A large g-factor is essential to dismiss the possible explanation of the zero-bias peak due to a Kondo

resonance.
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states remain fixed at zero bias even when magnetic fields and gate voltages vary considerably.

They lead to a zero-energy peak (zero-bias peak), in the plot of the differential conductance

(dI/dV ) vs the applied voltage V , that is interpreted as a signature of Majorana fermions5.

2.5.2 Realization of the Majorana bound states

We proceed by noting that all ingredients needed for the realization of Majorana fermions

are in principle already present in our model, namely proximity-induced superconductivity,

SOC, and a TRS-breaking magnetic field. The Majorana regime can be reached in the

superconducting atomic limit of the two-level dot in Sec. 2.2.2, where the two orbitals

correspond to two spatially separated single-level dots, i.e. a double quantum dot.

We use the atomic-limit effective Hamiltonian Heff in Eq. (2.47) for the double dot. Using

the basis

{|1, ↑〉, |2, ↓〉, |1, ↓〉, |2, ↑〉}, (2.71)

the single-particle matrix h, as it appears in Eq. (2.18), has the representation

h =











µ+ (ε+B) −α sinχ 0 iα cosχ

−α sinχ µ− (ε+B) iα cosχ 0

0 −iα cosχ µ+ (ε− B) α sinχ

−iα cosχ 0 α sinχ µ− (ε− B)











. (2.72)

Without loss of generality, we consider the regime defined by α > 0 and B > 0. The aim of

this calculation is to map our system to a short Kitaev chain, see Refs. [30, 31, 32, 33], which

is a 1D toy model with which one is able to theoretically observe the emergence of Majorana

modes. Kitaev proposed a simple 1D tight-binding model of spinless electrons and a term

encoding p-wave superconductivity. This chain can be rewritten through Majorana fermion

operators and, according to the choice of parameters, the system can be driven to a (so-called

non-trivial) phase so that every lattice site can host two Majorana fermion. Here, Majorana

fermions sitting on different sites couple, leaving two unpaired Majorana fermions at both

ends of the chain. The corresponding ground state is found to be two-fold degenerate.

To perform this mapping, we choose χ = π/2, i.e., Zeeman and spin-orbit fields are perpen-

dicular, consistent with Ref. [32]. Our single-particle matrix h is then block-diagonal with

decoupled upper and lower two-state subspaces. The connection to the Kitaev chain becomes

evident when ε is positive and chosen in the parameter regime

∆ � ε+B � max (α, |ε− B| , γL,R, µ, Ec) . (2.73)

5However, this interpretation is still debatable at this time.
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The upper-block state (2, ↓) will always be occupied, while the (1, ↑) block is always empty.

The upper left block in Eq. (2.72) can thus be projected away, and we are left to consider a

truncated Hamiltonian, H ′
eff , which acts only within the lower right block described by the

fermion operators, namely, d1 ≡ d1↓ and d2 ≡ d2↑, which can be regarded as spinless. The

effective truncated Hamiltonian thus reads

H ′
eff = (µ+ ε− B)d†1d1 + [µ− (ε− B)]d†2d2 + Ec

(

d†1d1 + d†2d2 − ng

)2

+
(

αd†1d2 + ∆̃(ϕ)eiϑ(ϕ)d†2d
†
1 +H.c.

)

, (2.74)

where the occupied (2, ↓) state leads to a shift ng → ng + 1. With the hybridization matrix

(2.19) for the double-dot, Eq. (2.47) yields the complex-valued effective pairing amplitude

∆̃eiϑ = 1
2

∑

j γje
−i(φj+δj). Introducing γ ≡ (γL + γR)/2, and gauging away the overall phase

∑

j(φj + δj)/2, we obtain

∆̃(ϕ) = γ
√

1− T0 sin
2[(ϕ+ δ)/2], T0 =

4γLγR
(γL + γR)2

,

ϑ(ϕ) = tan−1

(

γR − γL
γR + γL

tan[(ϕ+ δ)/2]

)

, (2.75)

with the phase shift δ in Eq. (2.20). Note that 0 ≤ T0 ≤ 1 corresponds to the transmission

probability of a single-channel quantum point contact (QPC), while ∆̃(ϕ) gives the Andreev

level energy in the atomic limit, as in Ref. [69].

Non-interacting case

We proceed by first discussing the noninteracting case, Ec = 0, where two spatially resolved

MBSs may appear when the necessary conditions

B = ε, µ = 0 (2.76)

are fulfilled. The effective Hamiltonian in Eq. (2.74) can be diagonalized in terms of fermionic

Bogoliubov-de Gennes (BdG) quasiparticle operators,

η± =
1

2

[

d1 + d2 ± eiϑ
(

d†1 − d†2

)]

, (2.77)

and re-formulated in the BdG Hamiltonian form

H ′
eff =

∑

±
E±(ϕ)

(

η†±η± − 1

2

)

, E± = α± ∆̃(ϕ). (2.78)
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The four possible single-particle eigenstates are constructed by applying the BdG operators

η†± or η± to the vacuum state, with the respective energies E±/2 and −E±/2. The CPR

follows as phase-derivative of Eq. (2.78),

I(ϕ) = 2
∂∆̃

∂ϕ
[Θ(−E+)−Θ(−E−)], (2.79)

where Θ is the Heaviside function. Here

I(ϕ) = 0, ∆̃(ϕ) < α, (2.80)

since both energies E± = α± ∆̃ have the same sign. We therefore find

I(ϕ) = Θ(∆̃− α)I0(ϕ), I0(ϕ) =
eγ

2~

T0 sin(ϕ+ δ)
√

1− T0 sin
2[(ϕ+ δ)/2]

, (2.81)

where I0(ϕ) coincides with the CPR of a single-channel quantum point contact with trans-

parency T0, as in Ref. [7], but here shifted by the inter-orbital phase difference δ.

The CPR (2.81) is 2π-periodic in ϕ and vanishes, or reappears, at the boundaries between

ground states with opposite fermion parity. These boundaries are precisely the formation

points of MBSs, as we show next.

Noting that both α and ∆̃ are non-negative quantities, the zero-energy condition for MBS

formation is satisfied for

E−(ϕ) = 0 ⇐⇒ ∆̃(ϕ) = α. (2.82)

This corresponds to a pair of zero-energy MBSs, generated by the anticommuting Majorana

fermion operators

ξ1 = −i(η− − η†−), ξ2 = η− + η†−, (2.83)

that satisfy the condition in Eq. (2.69)

ξn = ξ†n (2.84)

and where ξ2n = 1. Ensuring the MBSs to be spatially separated means avoiding recombination

to a conventional fermion. This is achieved by imposing

ϑ(ϕ) = 0 mod π, (2.85)

where ξ1 and ξ2 have well-defined and different orbital quantum numbers. Therefore we claim

that they correspond to different single-level dots in this double-dot configuration. Taking

for instance ϑ = 0, Eq. (2.77) yields ξ1 = −i(d1 − d†1) and ξ2 = d2 + d†2, which indeed implies
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that the MBS associated with ξn=1 (2) has the orbital wavefunction n = 1 (2).

We conclude that Eq. (2.85) ensures that both MBSs are ’separated’ in orbital space. Through

Eq. (2.75), there are two possibilities to satisfy this condition:

• We may choose equal hybridization strengths, γL = γR = γ. Therefore we get T0 = 1,

which implies ∆̃ = γ| cos[(ϕ+ δ)/2]| = α, with two solutions (for ϕ) when γ > α. For

these two phase values, MBSs will be present.

• Alternatively, for γL 6= γR, another possibility emerges by adjusting ϕ = −δ (mod 2π),

where Eq. (2.82) allows for a MBS pair when γ = α.

Interacting case

Now, it is interesting to study the result for the same system but in presence of weak electron-

electron interactions, for which we continue using the global charging energy. This is justified

by the fact that our double dot is in the regime of large-B field, see Eq. (2.73), and this

means that both dots are occupied by one fermion at most. In this case the global charging

energy equals a capacitative inter-dot interaction. For finite Ec, the system can be tuned to

the MBS regime by replacing the condition µ = 0 in Eq. (2.76) by µ = −2Ec(1− ng), i.e., by

putting µ at the charge degeneracy point, always with B = ε.

In terms of the η± operators in Eq. (2.77), the Hamiltonian (2.74) then reads

H =
∑

±
E±(ϕ)

(

η†±η± − 1

2

)

+ Ec

(

η†+η+ − η†−η−

)2

, (2.86)

with E±(ϕ) in Eq. (2.78). The MBS regime is realized when two ground states have opposite

fermion parity. By examining the many-particle spectrum of Eq. (2.86),

E0,0 = −α, E1,0 = ∆̃ + Ec, (2.87)

E0,1 = −∆̃ + Ec, E1,1 = α,

where En+,n−
denotes the energy of a state with n± = 〈η†±η±〉, the condition (2.82) for the

appearance of MBSs is replaced by

α = ∆̃(ϕ)− Ec > 0. (2.88)

In the MBS regime, one has a double-degenerate ground state, corresponding to negative

energy eigenvalues E0,1 = E0,0. Interactions thus only shift the conditions for Majorana

formation, therefore below we focus on the non-interacting case.
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Figure 2.8: CPR in the atomic limit [see Eq. (2.73)] with B = ε, µ = Ec = 0, and χ = π/2.

Main panel: CPR (blue solid curve) for α = 0.4γ, where γ = (γL + γR)/2 with slightly

asymmetric γR,L such that T0 = 0.99. Red points on the CPR indicate that for the respective

value of ϕ, a MBS pair is formed (see main text). The dashed black curve shows the CPR

for α = 0, where no MBSs occur. The top left inset shows the schematic setup. The bottom

right inset gives the CPR for α = 0.99γ and significant hybridization asymmetry, T0 = 0.5,

as blue solid curve. The red point indicates MBS pair formation, and the dashed curve is for

α = 0 (without MBSs).

Discussion of the figure and results

In Fig. 2.8, we can notice that I(ϕ) = 0 within a part of the CPR: it represents the indirect

signature for the MBSs. While jumps in the CPR can also have a different origin, the peculiar

feature linked to the appearance of MBS pairs is the complete vanishing of the supercurrent

in a finite phase interval. In the lower inset of Fig. 2.8, the asymmetric case is shown: it

is illustrates the other two points on the CPR where the current vanishes correspond to

spatially overlapping MBSs.

The Josephson current in Eq. (2.81) turns out to be nonzero (zero) for odd (even) N0, where

the CPR in general consists of two different regions: For ∆̃(ϕ) > α, we find I = I0(ϕ) as for

a single-channel quantum point contact (but with a phase shift when δ 6= 0), while I = 0 for

∆̃ < α.

At the boundary between both regions, the parity (−1)N0 changes from odd to even, or

eventually vice versa. It is precisely at these points that two degenerate ’half-fermion’ BdG

quasi-particle states appear. Under the described conditions, these can form a pair of spatially
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separated MBS.

Finally, as conclusion to this chapter, we point out that the MBSs discussed here do not

mediate a Josephson current themselves, in contrast to the fractional Josephson effect for

topologically protected Majoranas, as in Ref. [32].
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Chapter 3

Andreev level population dynamics

3.1 Introduction

In this chapter, as briefly discussed already in Ch. 1, we present a comprehensive theoretical

framework for the Andreev bound state population dynamics in another type of supercon-

ducting weak links. We investigate the Andreev bound state (ABS) population dynamics in

a single-channel ’superconducting atomic contact’ (SAC), i.e. a superconducting constriction

or - equivalently - (short) weak link. Experiments, as in Ref. [7], have reported the existence

of long-lived quasiparticles trapped in the ABS formed near these constrictions.

The structure of the remainder of this paper is as follows. In Sec. 3.2, we introduce a second-

quantized formulation of the model. Here, the fermionic quasiparticles, i.e. the Andreev

bound state and the continuum quasiparticles, are weakly coupled to the environmental

phase fluctuations. In Sec. 3.3 we assume the electromagnetic environment to be in thermal

equilibrium and we provide the master equation description of this model. We show that the

density matrix for the quasiparticles can be factorized into an Andreev part, ρA(t), and a

diagonal density matrix describing the quasiparticles belonging to the continuum spectrum:

important point is that diagonal and off-diagonal parts of ρA(t) appear decoupled from each

other. We also include relaxation of quasiparticles caused by phonons, and the resulting steady-

state solution will be obtained solving two coupled nonlinear equations in a self-consistent

way. In Sec. 3.4, as an application of our theory, we describe a charge imbalance effect, caused

by an asymmetry in the transition rates between Andreev and continuum quasiparticles.

Stressing that no external forces drive the system out of equilibrium in our model, the self-

generated nonequilibrium distribution of continuum quasiparticles causes a phase-dependent

quasiparticle current, and an asymmetric charge profile around the weak link. We also point
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response of the device.

In this section, we consider a single-channel SAC embedded in the asymmetric SQUID

geometry sketched in Fig. 3.1, where the ring includes both the SAC and a conventional

Josephson junction. In multi-channel quantum point contacts (QPC), one might observe

long-living states of two trapped quasiparticles sitting in two different Andreev levels if they

form a triplet state, keeping in mind that quasiparticle annihilation is forbidden in triplet

states by spin conservation. Correspondingly, two transport modes result to be blocked (’spin

blockade’). In the possible case of two-channels SAC, the SAC itself can be viewed as a

quantum dot for Γ � ∆ and it allows to study a two-orbital dot case with a mixture of

spin-blockade and plasmon dynamics. But let us focus now on the single-channel SAC.

Denoting the superconducting phase differences across the SAC and the Josephson junction

by ϕ and χ, respectively, both phases are linked by

χ(t)− ϕ(t) + ϕ0 = 0, (3.2)

where the dimensionless parameter ϕ0 is related to the magnetic flux threading the ring, in

units of the flux quantum h/2e. Assuming EJ � EC , i.e. the Josephson energy to be much

bigger than the charging energy of the Josephson junction, EC = (2e)2/2C, with capacitance

C, the SAC will see environmental electromagnetic modes that are well described by an

effective LC circuit Hamiltonian,

Henv = −EC
d2

dχ2
+
EJ

2
χ2, (3.3)

corresponding to an undamped harmonic oscillator.

But, we will also include the effects of an additional shunt resistance R in the theory, as we

will see in Sec. 3.3, and it will lead to a damping parameter ηd = 1/(RC). We also stress

that in the regime EJ � EC of interest here, fluctuations of χ are small, 〈χ2〉 � 1.

Turning to the single-channel SAC, the BCS Hamiltonian is written in terms of a two-

component Nambu spinor

ψ(x) = (ψ↑(x), ψ
∗
↓(x))

T , (3.4)

describing electrons in the left (x < 0) or right (x > 0) superconducting bank, with the SAC

located at x = 0. Using the standard quasiclassical Andreev approximation, as in Ref. [69],

we introduce the slowly varying envelope functions,

ψ(x) = eikF xψR(x) + e−ikF xψL(x), (3.5)
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with Fermi momentum kF . Combining the right- and left-moving envelopes into Ψ(x) =

(ψR, ψL)
T , where each entry still carries the Nambu spinor structure, the time-dependent

wave function satisfies the Bogoliubov-de Gennes (BdG) equation, whose details are to be

found in Ref. [69], where we often set ~ = e = c = 1

(i∂t −HBdG)Ψ(x, t) = 0, with HBdG = vF τzσz(−i∂x) + ∆τ0σx, (3.6)

with Fermi velocity vF , the BCS gap ∆, and Pauli matrices σx,y,z and τx,y,z in Nambu and

right/left-mover space, respectively. In the remaining part of the chapter, the corresponding

unit matrices σ0 and τ0 will not be written fully, but rather kept implicit.

Keeping as guideline for our calculations Ref. [87], the BdG solutions on both sides of the

contact have to be matched at x = 0 by a transfer matrix,

Ψ(−0+, t) = eiσzϕ(t)/2

(

1/d r/d

r/d 1/d

)

Ψ(0+, t), (3.7)

where d =
√
T and r =

√
R are the energy-independent transmission and reflection ampli-

tudes, respectively, with T +R = 1. Eq. (3.10) can be rewritten in a more compact form in

terms of the transmission probability only,

Ψ(−0+, t) =
eiσzϕ(t)/2

√
T

(

τ0 +
√
1− T τx

)

Ψ(0+, t), (3.8)

which is 4π-periodic in ϕ.

For sake of simplicity, the transmission probability, 0 < T ≤ 1, which characterizes the

transparency of the constriction in the normal phase, is assumed to be energy-independent

too. In our analysis, it is convenient to remove the time dependence from Eq. (3.8) by a

gauge transformation,

Ψ(x, t) → e−(i/4)sgn(x)χ(t)τ0σzΨ(x, t), (3.9)

with χ(t) in Eq. (3.2). Since we assume low-inductance loop, i.e. small χ, and since the phase

factor in Eq. (3.8) thereby becomes time-independent, with ϕ(t) → ϕ0, we obtain

HBdG → HBdG + V, (3.10)

where the interaction term is given by

V (x, t) = A(x)χ̇(t) +W (x)χ(t) +O
(

χ2
)

, (3.11)

with χ̇ = ∂tχ, where

A(x) = −1

4
sgn(x)τ0σz, W (x) = −∆

2
sgn(x)τ0σy. (3.12)
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Since 〈χ2〉 � 1, the linearized expression in Eq. (3.11) now couples the quasiparticle dynamics

to the phase χ(t). Using the Josephson plasma frequency, Ω =
√
2ECEJ , where we assume

Ω < ∆ throughout this thesis, the Lagrangian of the coupled system is

L(t) =
1

4EC

(

χ̇2 − Ω2χ2
)

+

∫

dx Ψ̄(i∂t −HBdG − V )Ψ. (3.13)

with Ψ̄ = (Ψ∗)T . Employing the momentum Pχ canonically conjugate to the phase χ, the

corresponding Hamiltonian is

H = EC

(

Pχ +

∫

dx Ψ̄A(x)Ψ

)2

+
Ω2

4EC

χ2 +

∫

dx Ψ̄[HBdG +W (x)χ]Ψ. (3.14)

3.2.1 Formulation in the second quantization language

We now switch to a second-quantized language by letting Ψ(x) → Ψ̂(x), where the electron

field operator, Ψ̂(x), is expanded in terms of the stationary solutions, Ψν(x), with energy Eν ,

of the BdG equation for time-independent matching condition (3.8), i.e., for ϕ(t) = ϕ0. The

wave functions Ψν(x) thus represent the noninteracting SAC eigenstates.

We then reformulate the field operator Ψ̂(x) by introducing the corresponding quasiparticle

creation (annihilation) operators γ†ν (γν), with the standard fermionic anticommutator algebra

{γν , γ†ν′} = δνν′ , and we arrive at

Ψ̂(x) =
∑

ν

Ψν(x)γν . (3.15)

The noninteracting SAC Hamiltonian then reads

HSAC =
∑

ν

Eνγ
†
νγν . (3.16)

The quantum numbers ν include

• a pair of Andreev bound states, ν = η ≡ ±, where the energy Eη = ηEA, with EA(ϕ0)

in Eq. (3.1), is within the BCS gap, i.e. EA(ϕ0) < |∆|, and Ψη(x) stays localized near

the contact at x = 0;

• delocalized scattering states in the continuum, ν = p ≡ (E, s), where |E| ≥ ∆ and the

index s (with s = 1, 2, 3, 4) refers to the four possible types of incoming states (from

the left or right side, and of electron- or hole-like character).

The analytical form of the wave functions Ψν(x) are provided in Appendix B, see also Ref. [93].
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We discuss a second-quantization framework, stressing analogies and differences with Refs. [80,

93]. We here employ a semiconductor representation describing effectively spinless quasiparti-

cles with either positive or negative energies, in contrast to Ref. [93], where the excitation

picture, where one describes effectively spinless quasiparticles with only positive energies,

is employed. In the semiconductor picture, in the ground state of HSAC, all Eν < 0 states

are occupied, including the ABS described by η = −. Using standard occupation number

operators, n̂ν = γ†νγν , whose eigenvalues are nν = 0, 1, the four possibilities for the occupation

of the Andreev bound state sector are indexed by (n+, n−). The ground state, with energy

−EA, corresponds to the (0, 1) configuration, which we also denote by the Andreev state

|−〉A. This state carries the equilibrium Josephson supercurrent

IA = −(2e/~)
∂EA

∂ϕ0

. (3.17)

The state |−〉A is an even-parity state, while the odd-parity sector corresponds to the spin-

degenerate (0, 0) and (1, 1) states, with excitation energy EA relative to the ground state.

The odd-parity states, with n+ + n− = 0 and 2 respectively, are denoted by

|0〉A = γ−|−〉A, |2〉A = γ†+|−〉A, (3.18)

and imply a vanishing Andreev supercurrent, consistent with the ’quasiparticle poisoning’

scenario. The lifetime of these states can reach the millisecond regime for high transparency,

T → 1, and they decay as a function of EA/∆, exhibiting nearly universal scaling behavior.

Finally, the (1, 0) even-parity state, denoted as

|+〉A = γ†+γ−|−〉A, (3.19)

represents an excited ’Andreev Cooper pair’ localized at the contact, with excitation energy

2EA above the ground state. The |+〉A state carries the Josephson current −IA, with opposite

sign as compared to |−〉A, but rather quickly relaxes to the ground state.

Turning back to our problem, the second-quantized form of the interacting Hamiltonian (3.14)

is thus given by

H = EC(Pχ + Ā)2 +
Ω2

4EC

χ2 +HSAC + χ
∑

ν,ν′

Wνν′γ
†
νγν′ , (3.20)

where Ā =
∑

ν,ν′ Aνν′γ
†
νγν′ plays the role of a vector potential. The matrix elements

Aνν′ =

∫

dx Ψ†
νA(x)Ψν′ , Wνν′ =

∫

dx Ψ†
νW (x)Ψν′ , (3.21)
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are discussed below. For convenience, we now shift

Pχ → Pχ − Ā (3.22)

via a unitary transformation, H → UHU † with U = eiĀχ, and represent the unitarily

transformed phase χ and its canonically conjugated momentum Pχ by a standard boson

operator, b, with commutator [b, b†] = 1, such that

χ =
√

EC/Ω (b+ b†), Pχ = −i 2
√

Ω/EC (b+ b†). (3.23)

We then arrive at the Hamiltonian in its final form, up to an irrelevant constant,

H = HSAC + Ωb†b+ λ
(

b+ b†
)

ÎS, (3.24)

describing fermionic (Andreev level and continuum) quasiparticles coupled to an oscillator

mode with the plasma frequency Ω. For EJ � EC , we are effectively in the weak-coupling

regime, λ� 1, with the dimensionless coupling strength λ =
√

EC/4Ω.

Finally, the Josephson current operator in Eq. (3.24) is

ÎS =
∑

ν,ν′

Iνν′γ
†
νγν′ ,

Iνν′ = 2Wνν′ − 2i (Eν − Eν′)Aνν′ . (3.25)

Let us discuss the matrix elements Iνν′ in more detail. From Eq. (3.25), we first need to

determine the corresponding matrix elements Aη,p and Wη,p. Using the auxiliary quantities

u =
1

η sin θη + iηE sinh θE
, (3.26)

z =
1

2

(

e(θE+iθη)/2 − ηηEe
−(θE+iθη)/2

)

,

as well as the definitions in App. B, we find

(

Wη,p/∆

2Aη,p

)

=

√

ξ0
8L cosh θE

{

u∗[(c− ηEa)ηAη + (b+ ηEd)Bη]

(

iηz

z∗

)

(3.27)

+ u [(δs,1 − ηEδs,4)Aη − (ηEδs,2 + δs,3)ηBη]

(

iηz∗

z

)}

.

Equation (3.25) then yields the current matrix elements Iη,p.
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3.2.2 Derivation of the current

This subsection is devoted to the study of the currents in the system: we will analyze the

current generated from transitions between continuum states at the same (or different) energy,

then we will write down the form of the current pertinent to the Andreev level sector only,

and, finally, the contributions coming from the ’Andreev to Continuum’ transitions.

We first note that due to the spatial homogeneity of the extended quasiparticle states, since

they are plane waves, away from the contact, the matrix elements App′ and Wpp′ , and hence

also Ipp′ , between continuum states can be finite only when their energies match, E = E ′, i.e.,

phase fluctuations do not induce intraband transitions. Moreover, one finds that Wpp′ = 0

even for E = E ′, implying that Ipp′ = 0. The explanation is that in the limit L→ ∞, only

states with E = E ′ can have a finite matrix element. Taking into account that the Nambu

spinors (B.5) satisfy the relations ψ̄e,hσyψe,h = 0 and ψ̄e,hσzψe,h = ± tanh θE, one then finds

Wpp′ = 0. Although the matrix elements App′ are nonzero, they do not contribute to Ipp′

because they appear together with a factor (E − E ′) = 0.

In this theoretical framework, delocalized continuum states can contribute to the supercurrent

ÎS only via transitions mixing them with Andreev levels.

The Josephson current operator then contains a part ÎA, coming from the Andreev sector

only, and a part ÎcA, describing the mixing of continuum and Andreev states,

ÎS = ÎA + ÎcA. (3.28)

For the pure Andreev current, as in Refs. [86, 87], we find

ÎA = −T ∆2 sin(ϕ0/2)

EA

γ†
[

cos(ϕ0/2)ηz −
√
1− T sin(ϕ0/2)ηy

]

γ, (3.29)

where γ = (γ+, γ−)
T combines the two Andreev level fermion operators, and the Pauli matrices

set, {ηx,y,z}, acts in the corresponding space. Note that the Andreev current operator (3.29)

is written in the energy representation, and that in this representation the Hamiltonian

projected to the Andreev sector is diagonal,

HA = EAγ
†ηzγ. (3.30)

For non-ideal transparency of the contact, T < 1,

[ÎA, HA] 6= 0. (3.31)
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This renders the Andreev level eigenstates superpositions of current eigenstates implying that

strong fluctuations of the supercurrent, resulting form the normal backscattering in the SAC,

are generated for ϕ0 ≈ π, as in Ref. [87].

Similarly, the supercurrent contribution caused by the mixing of continuum and Andreev

states is

ÎcA =
∑

η=±

∑

p=(E,s)

Iη,pγ
†
ηγp + h.c., (3.32)

where the matrix elements Iη,p are specified in Eq. (3.25). ÎcA describes the mixing of the

Andreev bound state at energy ηEA, with η = ±, and the continuum state with p = (E, s),

where ηE = sgn(E) and |E| ≥ ∆.

Finally, the total current flowing through the contact also contains a conventional dissipative

quasiparticle contribution due to continuum states, Iqp, on top of the supercurrent contribution

〈ÎS〉. This contribution follows from the Ψp in Eq. (B.4),

Iqp = evF
∑

p=(E,s)

npΨ̄pτzΨp, (3.33)

where the Pauli matrix τz acts in left-right mover space, see Sec. 3.2. Using the s-dependent

scattering amplitudes (a, b, c, d) in App. B, we find

Iqp =
e

2π~

4
∑

s=1

∫

|E|≥∆

|E|dE√
E2 −∆2

n(E,s) (3.34)

×
[

(δs,1 + δs,2)
(

|cs|2 − |ds|2
)

+ (δs,3 + δs,4)
(

|as|2 − |bs|2
)]

3.3 The master equation approach

To study the physics described by the interacting Hamiltonian,

H = H0 + V, (3.35)

with the noninteracting piece and the interaction contribution

H0 = HSAC + Ωb†b, V = λ(b+ b†)ÎS (3.36)

we now turn to a master equation approach. To this aim, we assume that the plasma mode

remains in thermal equilibrium with a heat bath of temperature Tenv at all times, in order to
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neglect feedback effects on the phase dynamics.

Within the master equation framework, see Ref. [69], the Liouville-von Neumann equation

for the density matrix of the complete system, ρtot, is expanded to second order in the small

interaction parameter λ� 1. Writing time-dependent operators in the interaction picture as

O(t) = eiH0tOe−iH0t, the density matrix then obeys the equation

∂tρtot(t) = −
∫ t

0

dτ [V (t), [V (t− τ), ρtot(t− τ)]]− i[V (t), ρtot(0)]. (3.37)

Our assumption of thermal equilibrium for the plasma mode allows for a factorized form of

the density matrix,

ρtot(t) = ρosc ⊗ ρ(t), (3.38)

where ρosc ∼ e−(Ω/Tenv)b†b is a thermal density matrix for the plasma mode and ρ(t) describes

the time evolution of fermionic quasiparticles. Taking the trace over the oscillator degree of

freedom, Eq. (3.37) yields

∂tρ(t) = −
∫ ∞

0

dτ
[

D(τ)ÎS(t)ÎS(t− τ)ρ(t)−D(−τ)ÎS(t)ρ(t)ÎS(t− τ)
]

+ h.c. , (3.39)

where we have employed the Markov approximation1, valid at long times t and not too low

temperatures. In Eq. (3.39) the boson correlator function reads

D(τ) =

∫ ∞

0

dωJ(ω)
[

(nB(ω) + 1) e−iωτ + nB(ω)e
iωτ
]

, (3.40)

with the Bose function,

nB(ω) =
1

eω/Tenv − 1
, (3.41)

and the environmental spectral density function, with the property J(ω) = −J(−ω),

J(ω) =
λ2ηd
2π

(

1

(ω − Ω)2 + η2d/4
− 1

(ω + Ω)2 + η2d/4

)

. (3.42)

Moreover

J(ω) (1 + nB(ω)) = J(−ω)nB(−ω). (3.43)

We use Eq. (3.42) below also for ω < 0, and directly include the Ohmic damping parameter,

ηd, to capture the effects of a shunt resistance. For ηd → 0, the spectral density has the limit

J(ω) = λ2δ(|ω| − Ω)sgn(ω). (3.44)

1Specifically, the Markov approximation amounts to replacing ρ(t− τ) → ρ(t) and neglecting the last term

(describing correlations with the initial state) in Eq. (3.37). This step is valid for temperatures above λ2/∆.
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For finite ηd, Eq. (3.42) exhibits sharp peaks for |ω| = Ω.

The equation of motion (3.39) is still quite difficult to deal with, and we shall here proceed

by making two approximations.

• We neglect entanglement between the Andreev and continuum quasiparticles, which

means that the reduced density matrix factorizes into an Andreev part and a continuum

part,

ρ(t) = ρA(t)⊗ ρc(t). (3.45)

This approximation is justified in the weak-coupling regime λ� 1, since higher-order

terms in λ are needed to coherently couple Andreev and continuum states2. The

factorized density matrix (3.45) is expected to be highly accurate away from the zero-

temperature limit, since the thermal energy uncertainty causes a blurring of continuum

quasiparticle wavepackets that rapidly destroys entanglement between Andreev and

continuum states.

• We also assume that the density matrix ρc(t) describing continuum quasiparticles

remains diagonal during the time evolution. This approximation is justified by noting

that there are no direct matrix elements in H connecting different continuum states,

and implies that ρc(t) is fully determined by specifying the time-dependent occupation

probabilities np(t) of continuum states,

ρc(t) =
∏

p

[

np(t) |1p〉 〈1p|+ [1− np(t)] |0p〉 〈0p|
]

, (3.46)

where |1p〉 = γ†p|0p〉 corresponds to a filled single-particle state p = (E, s). Note

that ρc(t) in Eq. (3.46) is always normalized, Trc [ρc(t)] = 1. On the other hand,

the density matrix ρA(t) describing the Andreev sector, with normalization condition

TrA [ρA(t)] = 1, may have off-diagonal entries reflecting quantum coherence.

Tracing over the Andreev part in Eq. (3.39) then yields an equation of motion for the

continuum state occupation numbers np(t). Similarly, tracing instead over the continuum

states, one obtains an equation for the time evolution of the reduced Andreev density matrix

2Mathematically speaking, we here construct an asymptotic solution for the reduced density matrix of the

form ρ0(ζt) + ζρ1(t), where ζ is a small expansion parameter ∝ λ2 � 1, which reflects the weakness of the

coupling λ. The first term corresponds to Eq. (3.45) and is ’slow’ on the timescale 1/∆, while the second

term contains off-diagonal terms oscillating with frequencies >
∼
(∆− EA). This term is therefore ’fast’ and

remains small.
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ρA(t). In these equations, the transition rates between different levels follow from the Fermi

golden rule,

Γνν′ =
2π

~
|Iνν′ |2 [1 + nB (Eν − Eν′)] J (Eν − Eν′) , (3.47)

with the Bose function nB(ω) in Eq. (3.41) and the spectral density J(ω) in Eq. (3.42). By

using Eq. (3.29), we observe that the direct rates connecting different Andreev states are

given by

Γη,−η =
2π

~
(1− T )

(∆2 − E2
A)

2

E2
A

[δη,+ + nB(2EA)] J(2EA). (3.48)

These rates vanish for perfect transparency, T → 1.

Recalling now that Ipp′ = 0 for arbitrary T , we see that transition rates between continuum

states are always absent, Γpp′ = 0. Finally, the supercurrent matrix elements between Andreev

and continuum states, Iηp, see Eq. (3.25), determine the corresponding transition rates, Γη,p,

for exciting an Andreev quasiparticle into the continuum, plus the reverse process with rate

Γp,η. Such transitions must involve the absorption or emission of an environmental photon.

Since |E| ≥ ∆ and the spectral density is sharply peaked around the Josephson plasma

frequency Ω, those rates are sizeable only when Ω > ∆− EA, see Ref. [93].

Tracing now over the Andreev sector in Eq. (3.39), we find

∂tnp = −
∑

η=±
[Γp,η(1− nη)np − Γη,p(1− np)nη] . (3.49)

The time-dependent continuum state distribution function, {np(t)}, thereby couples to the

Andreev level occupation probabilities,

nη(t) = TrA [n̂ηρA(t)] , n̂η = γ†ηγη. (3.50)

Tracing instead over the continuum states in Eq. (3.39), we find ({A,B} denotes the anti-

commutator)

∂tρA(t) = −1

2

∑

η

Γη,−η {n̂η(1− n̂−η), ρA(t)}+
∑

η

Γ−η,ηγ
†
ηγ−ηρA(t)γ

†
−ηγη

−
∑

p,η

Γp,ηnp(t)

(

1

2
{1− n̂η, ρA(t)} − γ†ηρA(t)γη

)

−
∑

p,η

Γη,p[1− np(t)]

(

1

2
{n̂η, ρA(t)} − γηρA(t)γ

†
η

)

. (3.51)
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Moreover, the terms ∼ γ†ηρA(t)γη and ∼ γηρA(t)γ
†
η in Eq. (3.51) describe ’parity jumps’,

in the language of Andreev quasiparticles, where the fermion number parity of Andreev

quasiparticles can change. The basis we are going to use here and in Sec. 3.3.2 is the Andreev

level basis: the generic matrix element is

ρνν′(t) = 〈ν|ρ(t)|ν ′〉, (3.52)

and the basis used is

|ν〉 ∈ {|0〉, |η = ±〉 = γ†η|0〉, |2〉 = γ†+γ
†
−|0〉} (3.53)

Since there are four Andreev configurations (n+, n−), the Andreev density matrix is a 4× 4

matrix. We here represent ρA(t) in the basis spanned by the Andreev ground state |−〉A,
corresponding to the (0, 1) configuration, the spin-degenerate odd-parity states |0〉A and |2〉A
in Eq. (3.18), and the excited even-parity state |+〉A in Eq. (3.19).

3.3.1 Diagonal Andreev density matrix elements

The diagonal elements of ρA(t) yield the respective occupation probabilities, P0(t) =

A〈0|ρA(t)|0〉A, and likewise for Pη=±(t) and P2(t). Thereby the normalization condition

for ρA(t) gives

P0(t) + P2(t) +
∑

η

Pη(t) = 1, (3.54)

and the nη=±(t) in Eq. (3.49) are expressed as

nη(t) = Pη(t) + P2(t). (3.55)

We now observe that the off-diagonal components of ρA(t) decouple from the equations for

the diagonal part in Eq. (3.51): the latter determines the dynamics of the Andreev state

occupation probabilities, where we find

Ṗη = −Γη,−ηPη + Γ−η,ηP−η

∑

p

[

np (Γp,−ηPη − Γp,ηP0) + (1− np) (Γη,pPη − Γ−η,pP2)
]

(3.56)

and

Ṗ0 = −
∑

p,η=±
[Γp,ηnpP0 − Γη,p(1− np)Pη] ,

Ṗ2 = −
∑

p,η

[Γη,p(1− np)P2 − Γp,−ηnpPη] . (3.57)
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The dynamics of the even-parity matrix elements is determined by

∂tρ+,−(t) = −1

2

∑

η

[

Γη,−η +
∑

p

{

np(t)Γp,η + [1− np(t)]Γη,p

}]

ρ+,−(t). (3.59)

and for matrix elements connecting states with different parity we obtain

∂tρη,0 = −1

2

{

Γη,−η +
∑

p

[

np (2Γp,−η + Γp,η) (1− np)Γη,p

]}

ρη,0

− η
∑

p

(1− np)Γ−η,pρ2,−η , (3.60)

∂tρ2,−η = −1

2

{

Γ−η,η +
∑

p

[

(1− np) (2Γ−η,p + Γη,p)

+ npΓp,η

]}

ρ2,−η − η
∑

p

npΓp,−ηρη,0 . (3.61)

As conclusion, from now on we assume that the initial state (at t = 0) is diagonal. In that

case, the decoupled off-diagonal density matrix elements remain zero during the entire time

evolution.

3.3.3 Steady-state distribution of quasiparticles

Under the assumption that the initial Andreev density matrix, ρA(0), is diagonal in the

basis {|±〉A, |0〉A, |2〉A}, see Eq. (3.53), in the long-time limit, the system will reach a time-

independent steady-state distribution, which is fully characterized by the probabilities P±,0,2

together with the continuum quasiparticle distribution function {np}. In order to determine

these quantities, we first observe that P2 = P0 due to the spin degeneracy of the two odd-parity

states (equiprobable spin-up and spin-down configurations in the excitation picture).

By using the normalization condition in Eq. (3.54), P0 can be expressed in terms of P± alone,

P0 = P2 =
1

2
(1− P+ − P−) . (3.62)

For the Andreev level occupations, we thus find

n+ = 1− n− =
1

2
(1 + P+ − P−) . (3.63)

The steady-state reformulation of Eq. (3.49) yields

0 = −
∑

η

[Γp,η(1− nη)np − Γη,p(1− np)nη]−
np − n

(0)
p

τqp
, (3.64)
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In the last equation we have added a phenomenological relaxation term for continuum

quasiparticles describing, for instance, the effect of phonons, in analogy with Ref. [93], and,

according to this reference, estimates for SACs made of aluminum in the phonon-dominated

regime, given by EA < ∆−Ω, we expect τqp∆ ≈ 104. For simplicity, we here assume an energy-

independent relaxation time, τqp, and a Fermi distribution function for the noninteracting

continuum quasiparticles,

n
(0)
p=(E,s) =

1

eE/Tqp + 1
, (3.65)

where the temperature Tqp may differ from the temperature Tenv governing environmental

phase fluctuations. In order to point out analogies and differences with Ref. [93], our case

here corresponds there to the fast equilibration case with Γp,ητqp � 1.

Taking into account Eq. (3.62), the rate equation (3.56) then yields the steady-state relation

0 = −Γη,−ηPη+Γ−η,ηP−η−
∑

p

[

np

(

Γp,−ηPη−Γp,ηP0

)

+(1−np) (Γη,pPη − Γ−η,pP0)
]

, (3.66)

and Eq. (3.57) is automatically fulfilled.

Now we can proceed to solve Eq. (3.64) for the continuum quasiparticle distribution function,

np =
Γ̃
(−)
p

Γ̃
(−)
p + Γ̃

(+)
p

, (3.67)

which is thereby expressed by the P±-dependent effective rates

Γ̃(−)
p =

∑

η

Γη,pnη +
n
(0)
p

τqp
,

Γ̃(+)
p =

∑

η

Γp,η(1− nη) +
1− n

(0)
p

τqp
. (3.68)

To obtain the Andreev level probabilities P±, we then plug the continuum quasiparticle

distribution function in Eq. (3.67) into Eq. (3.66). We finally arrive at two coupled nonlinear

equations,
(

Γ+,− + 2G− +G+ G+ − Γ−,+

G− − Γ+,− Γ−,+ + 2G+ +G−

)(

P+

P−

)

=

(

G+

G−

)

, (3.69)

with the auxiliary functions

Gη=±(P+, P−) = ν0

4
∑

s=1

∫

|E|≥∆

dE
|E|

2
√
E2 −∆2

[Γp,ηnp + Γη,p(1− np)] , (3.70)
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where p = (E, s) encodes the continuum energy index and the scattering channel s, and

ν0 = L/(π~vF ) is the normal density of states at the Fermi level.

The nonlinear system in Eq. (3.69) can be solved by numerical iteration, where a relative ac-

curacy of 10−6 was ensured by using a Newton-Raphson algorithm. This is necessary because

the continuum quasiparticle distribution {np}, Eq. (3.67), derived from the self-consistent

solution for P+ and P−, strongly responds even to tiny changes in the P±.

Furthermore, it will be useful to translate our analysis into a ’parity-language’. This means

that we consider the rate Γin for transitions from the even-parity to the odd-parity sector: in

this case, P0 increases. We consider the escape rate as well, Γout, out of the odd-parity state,

which will mean that P0 decreases. In Ref. [93] the authors consider those rates by assuming

an equilibrium quasiparticle distribution function {np}.
Here we employ the self-consistent continuum quasiparticle distribution function, and both

rates can be read off from Eq. (3.57),

Γin =
∑

p,η

Γη,p(1− np), Γout =
∑

p,η

Γp,ηnp. (3.71)

Since our interest is mostly captured by the current flowing in the system, we will discuss the

quasiparticle current Iqp, which follows with our self-consistent solution for {np} by using

standard scattering theory expressions, see Eq. (3.34).

3.3.4 Perfect transparency case

Applications of our theoretical framework, presented further on in this thesis, are actually

simplified when we consider a SAC with perfect transparency, T = 1.

The quasiparticle wave functions for ideal contact transparency, T → 1, can be written down

fully. In the Andreev bound state wave functions, Ψη=±(x) in Eq. (B.1), the coefficients Aη

and Bη now take the form

Aη =
√

sin(ϕ0/2) δη,−sgn(π−ϕ0), (3.72)

Bη =
√

sin(ϕ0/2) δη,sgn(π−ϕ0).

where 0 ≤ ϕ0 < 2π. Turning to the continuum state wave functions Ψp=(E,s)(x) in Eq. (B.4),

we need the scattering amplitudes (as, bs, cs, ds) for an incoming state of type s = {1, 2, 3, 4},
which have been specified for arbitrary T in Eqs. (B.8) and (B.9). For T = 1, these results
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can be simplified to yield


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d1











=











c4

b4

a4

d4











=
1
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sinh θE
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






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
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
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1
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
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





0

i sin(ϕ0/2)

0

sinh θE











.

The Andreev bound state energies, ηEA with η = ±, then follow from EA(ϕ0) = ∆| cos(ϕ0/2)|,
see Eq. (3.1), and for ϕ0 → π, the Andreev levels tend to zero energy. Moreover, Eq. (3.48)

shows that transition rates between different Andreev states vanish for T = 1, i.e., Γη,−η = 0.

For a given energy E with |E| ≥ ∆, there are two decoupled types of scattering states Ψp=(E,s),

namely s = {1, 4} and s = {2, 3}. Those channels correspond to a net charge transfer across

the weak link in opposite directions.

Charge flows from the left to the right side for s = {1, 4}, but from the right to the left when

s = {2, 3}, as it follows from the definition of the scattering states, see Eqs. (B.4) and (B.6).

This also implies that the supercurrent matrix elements between Andreev and continuum

states, Ip,η, are nonzero only when

η = − sgn(π − ϕ0), s = {1, 4}
η = +sgn(π − ϕ0), s = {2, 3}. (3.73)

In what follows, we take the phase difference across the contact as 0 ≤ ϕ0 ≤ π. With

ηE = sgn(E), we find the transition rates from Eq. (3.47), as in Refs. [93].

Γp=(E,s),η =
2π

~

1

4πν0

(E2 −∆2)
√

∆2 − E2
A

|E|ωηηE

(3.74)

× [δη,−(δs,1 + δs,4) + δη,+(δs,2 + δs,3)] [δηE ,+ + nB (ωηηE)] J(ωηηE),

with the following transition energies

ωηηE=± = |E| ∓ EA ≥ 0, (3.75)

but noting that, for each scattering channel s, |Iη,p=(E,s)|2 in Eq. (3.74) is invariant under a

particle-hole transformation, (E, ηEA) → (−E,−ηEA).
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3.4 The charge imbalance effect

In this final section of this chapter, we now address the charge imbalance effect, which is

predicted to be observable in high-transparency SACs. We discuss this effect for a perfectly

transmitting, i.e. transparent, SAC, where, as we saw already, T = 1, and by assuming

ϕ0 ∈ [0, π]; for ϕ0 ∈ (π, 2π), the sign of the induced quasiparticle current discussed below is

reversed.

In a transparent SAC, Eq. (3.74) only allows for transitions between Andreev and continuum

current states propagating in the same direction. This results in generating a charge imbalance

effect.

We note that, since the matrix elements in Eq. (3.74) are identical for s = {1, 4}, as well as
for s = {2, 3}, the steady-state distribution function np=(E,s) for continuum quasiparticles

corresponds to a single distribution function for left-movers, nL(E), and one for right-movers,

nR(E), respectively,

n(E,s=1) = n(E,s=4) = nR(E), (3.76)

n(E,s=2) = n(E,s=3) = nL(E).

For nR(E) 6= nL(E), continuum quasiparticles are driven out of equilibrium. For given

steady-state Andreev occupation probabilities P±, the distribution functions in Eq. (3.76)

follow from Eqs. (3.67) and (3.68).

Using Eqs. (3.74) and (3.34), the quasiparticle current flowing through the SAC, in terms of

the Andreev level occupation, is given by

Iqp =
e

π~

∫

|E|≥∆

dE jqp(E) [nR(E)− nL(E)] , (3.77)

with the energy-resolved dimensionless quasiparticle current (|E| ≥ ∆),

jqp(E) =
|E|

√
E2 −∆2

E2 − E2
A

, (3.78)

and the self-consistent distribution functions nL,R(E) in Eq. (3.76). Evidently, nL(E) 6=
nR(E), will cause a charge imbalance, and therefore a finite quasiparticle current Iqp 6= 0

from Eq. (3.77).

We can also define the total accumulated quasiparticle charge

Qqp = eν0

∫

|E|≥∆

dE
|E|√

E2 −∆2
[nR(E)− nL(E)] . (3.79)
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In a very narrow constriction, the density of states, that is

ν0 ∝ L/ξ0, (3.80)

where L is the channel length and ξ0 = ~vF/∆ the BCS coherence length, tends to vanish.

As consequence,

Qqp → 0

for a very short channel, while the induced quasiparticle current remains finite in that limit.

Presentation of figures and discussion of the results

Let us first address the steady-state Andreev populations, P±,0,2, where the two P± follow

from the self-consistent solution of Eq. (3.69). The occupation probability of the degenerate

odd-parity state, P0 = P2, is then given by Eq. (3.62).

Representative results for P±,0 vs EA/∆ are shown in Fig. 3.3, where the parameters chosen

have experimental relevance. We essentially show the phase dependence of the Andreev state

probabilities for ϕ0 ∈ [0, π]. The charge imbalance turns out to be absent in the strong

relaxation regime τqp∆ < 1, where our theory reduces to the approach of Ref. [93] and thus

the self-consistency plays no role at all. We therefore focus on the weak relaxation regime

τqp∆ � 1 in this section. The main panel in Fig. 3.3 is for Tenv = Tqp, while the inset studies

a case where Tenv > Tqp. From Fig. 3.3, we can distinguish two qualitatively different regimes

EA > ∆− Ω, where P0 → 0

EA < ∆− Ω, where P0 6= 0 (3.81)

For EA > ∆−Ω, environmental photons can rapidly excite quasiparticles from an odd-parity

state into the continuum. As net effect the system remains quite close to the ground state,

|−〉A. Instead, for EA < ∆− Ω, the frequency Ω is too low to achieve such a transition.

The corresponding rates Γin and Γout, see Eq. (3.71), for populating and depopulating the odd

parity states, respectively, are shown in Fig. 3.4, again as a function of EA/∆. The existence

of two regimes, as defined before, EA > ∆− Ω and EA < ∆− Ω, becomes clearer now.

For EA ≈ ∆ − Ω, the rates increase over several orders in magnitude with very small ϕ0

variation, and one enters a regime where the odd-parity state quickly decays. This regime,

EA > ∆− Ω, has been termed ’fast relaxation regime’ in Refs. [80, 93].
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Figure 3.3: Self-consistent solution of Eq. (3.69) for the steady-state Andreev level occupation

probabilities in a transparent SAC, T = 1. Here, P± refers to the even-parity Andreev

levels, with |−〉A being the ground state, and P0 = P2 to the degenerate pair of odd-parity

states. These results have been obtained for plasma frequency Ω = 0.5∆, quasiparticle-

photon coupling λ =
√

EC/4Ω = 0.1, environmental temperature Tenv = 0.2∆, quasiparticle

temperature Tqp = 0.2∆, channel length L = ξ0, Ohmic damping constant ηd = 0.01∆, and

τqp∆ = 105 (weak quasiparticle relaxation). The inset shows the case Ω = 0.2∆, Tenv = 0.5∆,

and Tqp = 0.01∆, where all other parameters are as in the main panel.

Next, in Fig. 3.5 we show the induced quasiparticle current Iqp as function of EA for Ω = 0.5∆.

This quantity clearly demonstrates that there is a significant charge imbalance effect through-

out the regime EA > ∆− Ω, but not for EA < ∆− Ω. The induced current gets reduced as

the quasiparticle relaxation rate 1/τqp increases, and is only significant for τqp∆ � 1, which

is the typical regime for aluminum-made SACs, as in Ref. [80].

More understanding of the generated charge imbalance is obtained by analyzing the distribu-

tion functions nR,L(E) for right- and left-moving quasiparticles, as they appear in Eq. (3.76).

As illustrated by the insets in Fig. 3.5, the generated imbalance is maximal for EA → ∆, and
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Figure 3.4: Transition rates Γin and Γout (in units of ∆/~) vs EA/∆ on a semi-logarithmic

scale. Γin describes the rate for entering the odd-parity sector, and Γout is the decay rate of

odd-parity states. Parameters are as in Fig. 3.3. The inset shows the rates for parameters as

in the inset of Fig. 3.3.

becomes smaller as EA decreases. Moreover, it is worth stressing that EA → ∆ corresponds

to the case ϕ0 → 0, where the supercurrent 〈ÎS〉 can be vanishingly small.

In the insets of Fig. 3.5, we find that the smaller n(E) curves (indicated by dotted curves),

i.e., the nR component for E > 0, and 1− nL for E < 0, coincide with the Fermi distribution

at the corresponding temperature, for the present case Tqp = Tenv.

Noting that the Josephson current for a fully transparent SAC is of order

〈ÎS〉 = 〈ÎA〉 ≈ e∆/~, (3.82)

the induced quasiparticle current is a few percent of this value for the parameters in Fig. 3.5.

This imbalance discussed here is due to the breaking of the left-right symmetry in the rates

connecting continuum quasiparticles and the Andreev bound states and induces a quasiparti-

cle current on top of the Josephson current in the ring geometry, depicted in Fig. 3.1.

The quasiparticle current Iqp flows in opposite direction to the Josephson current 〈ÎS〉, even
if P+ < P− favors the same sign of Iqp and 〈ÎS〉. This can be seen as follows. The rate

from |+〉A to the left-moving s = 2 continuum states with E > 0 carries negative current
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Figure 3.5: Main panel: Induced quasiparticle current Iqp (in units of e∆/~) vs EA/∆

for varying τqp∆ = 105, 104 and 103 from bottom to top; other parameters are as in the

main panel of Fig. 3.3. Insets: Continuum quasiparticle distributions nL,R(E) vs E/∆ for

two EA/∆ values and τqp∆ = 105. For E < 0, the distribution functions follow by using

the electron-hole symmetry relation nR(−E) = 1 − nL(E). Dotted curves indicate the

corresponding equilibrium Fermi distributions.

and results to be much bigger than the one from |−〉A to the (E > 0, s = 1) states carrying

positive current, because of the much shorter distance in energy.

As we show next, it is also interesting to consider an alternative classical regime, where

the temperature of the environmental modes is high, Tenv � Ω. Experimental realization

of this scenario is possible by replacing the electromagnetic environment by an external

microwave radiation source at frequency Ω. We here consider the case Ω = 0.2∆, with

Tenv = 0.5∆ ≡ 2.5Ω and quasiparticle temperature Tqp = 0.01∆, significantly smaller than

Tenv. The Andreev state populations for this case are shown in the inset of Fig. 3.3, and the
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Figure 3.6: Main panel: Quasiparticle current Iqp (in e∆/~) and accumulated charge Qqp (in

units of e) vs EA/∆ for the parameters in the inset of Fig. 3.3, i.e., Ω = 0.2∆, Tenv = 0.5∆

and Tqp = 0.01∆. The insets show the continuum quasiparticle distributions, nR,L(E), for

two different EA values. In contrast to the case studied in Fig. 3.5, the induced quasiparticle

current is now significant for the whole EA range, and exhibits a sign change for EA ' Ω.

corresponding Γin/out rates in the inset of Fig. 3.4.

By noting that the induced quasiparticle current exhibits a sign change for EA ' Ω, in the

main panel of Fig. 3.6, a significant quasiparticle current is induced throughout the whole

EA range. Again fast and slow relaxation regimes can be identified, for EA > ∆ − Ω and

EA < ∆− Ω, respectively. In this case, the generated quasiparticle populations differ more

strongly from the Fermi distributions, as shown in the insets of Fig. 3.6.

76



Chapter 4

Conclusions

In this chapter we will collect the conclusive remarks derived from the results presented in the

previous chapters. The results of Ch. 2 are published in Ref. [8], where we have analyzed two

particularly interesting aspects of Josephson transport in hybrid superconductor-dot systems.

First, a pair of conventional BCS superconductors is connected through a multi-level quantum

dot, where spin-orbit coupling, Coulomb charging and magnetic field effects are taken into

account. We have studied the conditions for deriving an anomalous Josephson current, i.e., a

supercurrent flowing at zero phase difference. It is remarkable that Coulomb interactions can

qualitatively affect this phenomenon to allow for ground-state anomalous supercurrents even

when time-reversal breaking perturbations are very small compared to all other relevant scales.

As a result, we have found that the system is close to a spontaneously broken time-reversal

symmetry, with an anomalous supercurrent flowing for arbitrarily weak but finite Zeeman field.

Second, in the deep subgap case, we have addressed the possibility of having topologically

unprotected Majorana bound states in a double dot, where a spatial separation is naturally

defined. This is related to a vigorous debate in the scientific community, see Refs. [67, 68]

where similar - though different in details - issues are studied. In our setup a strong spin-orbit

coupling is present as well and, together with a Zeeman field, is responsible for the emergence

of Majorana fermions, see Refs. [29]-[34]. This results in an easier realization of Majorana

physics. However, here a fine tuning of parameters is needed, but this seems a ’fair prize to

pay’ given the high degree of control that experimentalist physicists have over quantum dots.

Signatures of Majorana fermions are then indirectly detected in the current-phase relation

through the critical phases ϕ, where the current switches from a finite value to zero. Finally,

while a large Zeeman field is required, Coulomb interactions play no role for the formation of

Majorana bound states in our setup.
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The results presented in Ch. 3, present in Ref. [71], have been carried out in a theoretical

framework for the Andreev bound state population dynamics in single-channel superconduct-

ing weak links. Taking into account phase fluctuations by the electromagnetic environment,

we have developed a master equation approach for the quasiparticle dynamics, to capture

the interplay between the Andreev states and the continuum states. In particular, we have

stressed the role of odd-parity Andreev states and the need for a self-consistent treatment

of the generated nonequilibrium continuum quasiparticle distribution. As an application

of our theory, we have shown that the coupling of the superconducting weak link to the

environmental phase fluctuations causes an intriguing charge transfer across the weak link,

i.e. a charge imbalance of the continuum population. This charge imbalance is due to the

breaking of the left-right symmetry in the rates connecting continuum quasiparticles and

the Andreev bound states, and manifests itself as a persistent (i.e., in absence of subgap

voltage) quasiparticle current, circulating on top of the Josephson current in the system. Our

theory could be also applied for the study of the quantum coherent dynamics of this system,

including the effect of parity mixing processes. This is of relevance for the various proposals

of using Andreev levels as qubits [84, 85, 87, 88]. Another extension of our formalism would

be to study the Andreev- and Majorana bound state dynamics in topological superconductor

weak links, or to study the interaction-induced effects (see also Ref. [99]) on Andreev bound

state dynamics when the constriction contains a quantum dot with sizeable charging energy,

or couples to local phonon modes.

We are confident that the results illustrated so far throughout this thesis contributed positively

to this relatively new and flourishing field and we hope that these effects can soon be observed

in experiments.

78



Appendix A

Orbital magnetic field effects in a

realistic quantum dot

We consider the Hamiltonian of the quantum dot (QD)

HQD = H0 +HZ +HSO ≡
∫

d2r d†(~r)

[

(−i ~∇)2

2m
+ V (~r) + hZ + hSO

]

d(~r) , (A.1)

where d = (d↑ , d↓)
T . We aim to understand what is the effect of the presence of an orbital

magnetic field ~b. For simplicity, one can consider the orbital magnetic field normal to the

2DEG plane. This allows a choice of a vector potential ~a(~r)

~a(~r) = (ax(x, y), ay(x, y), 0) ≡ ~a(x, y) =⇒ ~b = ~∇× ~a(~r) ∝ ẑ (A.2)

The free dot

We start by analyzing the free dot case (h0 = −(∇2/2m) + V (~r)), studying in detail the

effects on the Zeeman field and the spin-orbit (SO) in different subsections. By mean of the

minimal prescription

h0 = − 1

2m
~∇2+V (~r) −→ h0 = − 1

2m
~∇2+V (~r)−i∇xax(x, y)−i∇yay(x, y)−iax(x, y)∇x−iay(x, y)∇y

and for the free dot case the Hamiltonian in Eq. (A.1) becomes,

H0 =

∫

d2r d†(~r) [h0 − i∇xax(x, y)− i∇yay(x, y)− iax(x, y)∇x − iay(x, y)∇y] d(~r)

We gauge away the vector potential from the Hamiltonian through a transformation of the

general form

d(~r) → e−i
∫
C
d~l·~a(~r)d(~r) (A.3)
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with C regular curve to be parametrized

C : t ∈ [t1, t2] 7−→ ~C(t) = (Cx(t), Cy(t)) =⇒
∫

C

d~l · ~a(~r) =
∫ t2

t1

~a
(

~C(t)
)

· ~C ′(t) ≡ δ ∈ R

The result of the line integration is, of course, C-independent and is a real number, that we

identify as a phase. One may wonder to go as general as possible in the calculations, but the

choice of a specific gauge for ~a(~r) and the choice of how to model the dot (so, how to choose

the confinement types) simplifies the calculations.

We choose the symmetric gauge 1

~a(~r) =
b

2
(−y, x, 0)

and we assume that the QD is confined in a box of length L in the x̂ direction and by a

parabolic potential in the ŷ direction. The set of the eigenfunctions of the dot, in absence of

SO or Zeeman field, are given by
(

− 1

2m
~∇2 + V (~r)

)

χn(~r) = εn χn(~r) (A.4)

with d(~r) =
∑

n χn(~r)dn and χn(~r) = ψnx
(x)Φny

(y) assumed to be real orbital functions.

As a concrete example we assume, without loss of generality, a coordinate system where

the tunnel contacts are located at (x, y) = (∓L/2, 0) and moreover we consider the dot

states given by the first two oscillator eigenstates (ny = 0, 1) in the longitudinal ground state

(nx = 1).

Without Zeeman field and SO, one may conclude that the orbital magnetic field has no effects

on H0

H0 =

∫ L/2

−L/2

dx

∫ ∞

−∞
dy ψnx

(x)Φny
(y)

[

h0 + i
b

2
y∇x − i

b

2
x∇y

]

ψn′
x
(x)Φn′

y
(y) (A.5)

and that the term proportional to y∇x − x∇y will give zero integrals of the orbital wave

functions, because of their symmetry properties. In fact, since we are in the longitudinal

ground state (nx = 1)

∫ L/2

−L/2

dx ψnx
(x)∇xψnx

(x) =

∫ L/2

−L/2

dx x [ψnx
(x)]2 = 0 (∀nx)

1Please note that, in this gauge, no matter what regular C curve is chosen, the line integral will always be

proportional to the magnitude of ~b, or, in other form,
∫

C
d~l · ~a(~r) ∝ b.
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Then the result for the free dot case has to be what already we know from Eq. (A.4), so one

may write

H0 =
∑

n

εnd
†
ndn (A.6)

Now we may investigate the Zeeman field and the SO terms.

The Zeeman Term

The general integral to study is

HZ =

∫

d2r d†(~r) ei
∫
C
d~l·~a(~r)( ~B · ~σ) e−i

∫
C
d~l·~a(~r) d(~r)

Assuming an in-plane magnetic field ~B = (B, 0, 0), whose entries do not depend on the

coordinates, the Zeeman field term is found to be

HZ =
∑

nn′

d†n

(

~Bnn′ · ~σ
)

dn′ (A.7)

where

~Bnn′ ·~σ =

∫ L/2

−L/2

dx

∫ ∞

−∞
dy ψnx

(x)Φny
(y) ( ~B ·~σ)ψn′

x
(x)Φn′

y
(y) = ( ~B ·~σ) δnxn′

x
δnyn′

y
≡ ~Bnyn′

y
·~σ

one may conclude that the the Zeeman field term is transparent to the gauge transformation

in Eq. (A.3) and, moreover, the Hermitian matrix ~B is symmetric. It is worth stressing that

the symmetric nature of the ~B matrix is consequence of having assumed real orbital wave

functions.

The Spin Orbit Term

The general integral to study is

HSO =

∫

d2r d†(~r) ei
∫
C
d~l·~a(~r)(hSO) e

−i
∫
C
d~l·~a(~r) d(~r)

where hSO gets modifies because of the minimal substitution

hSO = σx

[

αR

m

(

−i∇y +
b

2
x

)

− αD

m

(

i∇x +
b

2
y

)]

+ σy

[

αR

m

(

i∇y +
b

2
y

)

+
αR

m

(

i∇y −
b

2
x

)]

The SO term has then the following form

HSO =
∑

nn′

d†n

(

~Ann′ · ~σ
)

dn′ (A.8)
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With the choice of the confinement parameters made above

~Ann′ · ~σ = σx

[

−i αR

m

∫ ∞

−∞
dy Φny

(y)∇yΦn′
y
(y)− i

b

2

αD

m

∫ ∞

−∞
dy Φny

(y) yΦn′
y
(y)

]

+

+ σy

[

b

2

αR

m

∫ ∞

−∞
dy Φny

(y) yΦn′
y
(y) + i

αD

m

∫ ∞

−∞
dy Φny

(y)∇yΦn′
y
(y)

]

≡ ~Anyn′
y
· ~σ

Particular focus on the previous integrals shows that, for ny = 0 and n′
y = 1

I
(

ny, n
′
y

)

=

∫ ∞

−∞
dy Φny

(y)∇yΦn′
y
(y) =⇒ I (0, 1) =

∫ ∞

−∞
dy Φ0(y)∇yΦ1(y) = 1

I
(

ny, n
′
y

)

=

∫ ∞

−∞
dy Φny

(y) yΦn′
y
(y) =⇒ I (0, 1) =

∫ ∞

−∞
dy Φ0(y) yΦ1(y) =

√
π

Note that the ~A Hermitian matrix is totally skew-symmetric. Again, this comes essentially

by having assumed real orbital wave functions in shaping our QD.

Building the effective Hamiltonian

We have the ingredients for building the Hamiltonian matrix HQD. Collecting informations

from Eqs. (A.6)-(A.7)-(A.8), when expanded into the basis Eq. (A.4), HQD is

HQD =
∑

n

εnd
†
ndn +

∑

nn′

d†n

(

~Ann′ + ~Bnn′

)

· ~σ dn′ (A.9)

Defining the ladder operators A±
nn′ = Ax,nn′ ± iAy,nn′ and Az = Az,nn′ (same holds for ~Bnn′)

and taking into account the symmetry arguments stated above, the HQD matrix explicitly

becomes

HQD =











ε1 + µ B−
00 0 A−

01

B+
00 ε1 + µ A+

01 0

0 −A−
01 ε2 + µ B−

00

−A+
01 0 B+

00 ε2 + µ











Note that B±
00 = B and

A±
01 = −i α̃R ∓ α̃D

where

α̃R =
1

m

(

1∓
√
π

2
b

)

αR and α̃D =
1

m

(

1±
√
π

2
b

)

αD

or, in other words, the orbital magnetic field effect reveals its presence only by mean of a

renormalization of the Rashba and Dresselhaus SO couplings. It is then clear that, as soon

as one tunes the orbital magnetic field to zero

α̃R = αR and α̃D = αD
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Then, HQD takes the form

HQD =











ε1 + µ B 0 −i α̃R + α̃D

B ε1 + µ −i α̃R − α̃D 0

0 i α̃R + α̃D ε2 + µ B

i α̃R − α̃D 0 B ε2 + µ











Finally, if one neglects the orbital magnetic field and the Dresselhaus SO coupling and, for

sake of simplicity one sets αR = α:

HQD =











ε1 + µ B 0 −i α
B ε1 + µ −i α 0

0 i α ε2 + µ B

iα 0 B ε2 + µ











= (µτ0 + ετz) σ0 +Bτ0σx + ατy σx

where the the bare energy levels are rewritten as ε1,2 = µ± ε. Through a rotation σx → σz

and parametrizing the SO coupling through a parameter χ, HQD takes the final form that we

use in our analysis throughout the Sec. 2.2.2.

Finally, the gauge transformation Eq. (A.3) yields a phase term entering the tunneling

Hamiltonian

Ht =
∑

j=L,R

∑

~k

M
∑

n=1

Ψ†
j~k
Tj,nDn +H.c. , Dn =

(

dn,↑, d
†
n,↓

)T

as it appears in Eq. (2.7).

As last remark, it is worth to stress that these phases get adsorbed in the tunneling Hamiltonian

and actually appear in the hybridization matrices (in the level space), and they are not

related to the SOC.
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Appendix B

Quasi-particle wave functions

In this Appendix, we provide the wave functions, Ψν(x), solving the stationary BdG equation,

H0Ψν = EνΨν , under the matching condition Eq. (3.8) for time-independent phase difference,

ϕ(t) = ϕ0, with 0 ≤ ϕ0 < 2π.

Andreev bound states, ν = η = ±, with energy ηEA(ϕ0), see Eq. (3.1), have the wave function

Ψη(x) = ξ
−1/2
0 e−

√
T sin(ϕ0/2)|x|/ξ0

[

Θ(−x)
(

Aηψ̃h

Bηψ̃e

)

+Θ(x)

(

−ηAηψ̃e

ηBηψ̃h

)]

, (B.1)

where Θ(x) the Heaviside step function. We use the Nambu spinors

ψ̃e,h =
e±iθησz/2

√
2

(

1

η

)

, (B.2)

where cos θη = EA/∆ with η sin θη ≥ 0. We also define the parameters

Aη =
√

Nη sin(ϕ0/2− θη), (B.3)

Bη =
√

Nη(1− T ) sin(ϕ0/2),

Nη =

√
T

2 cos(θη) sin(ϕ0/2− θη)
.

The Andreev bound states (B.1) satisfy the normalization condition
∫

dx Ψ†
η(x)·Ψη′(x) = δηη′ .

Next we summarize the stationary solutions of the BdG equation in the continuum, Ψp=(E,s)(x)

with |E| ≥ ∆. Using ηE = sgn(E) = ± and cosh θE = |E|/∆ (with θE ≥ 0), and denoting

the wavenumber by k = ηE
√
E2 −∆2/vF , we find

Ψp = Ψ(in)
p +Θ(−x)e

−ikx

√
2L

(

aψh

bψe

)

+Θ(x)
eikx√
2L

(

cψe

dψh

)

, (B.4)
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where the electron- and hole-type Nambu spinors ψe,h follow by analytic continuation of

Eq. (B.2),

ψe,h =
e±θEσz/2

√
2 cosh θE

(

1

ηE

)

. (B.5)

There are four different solutions (s = 1, 2, 3, 4), describing electron- or hole-type states

incoming from the left or right side,

Ψ(in)
p = Θ(−x) e

ikx

√
2L

(

ψeδs,1

ψhδs,2

)

+Θ(x)
e−ikx

√
2L

(

ψhδs,4

ψeδs,3

)

. (B.6)

With Q = sinh2 θE +T sin2(ϕ0/2), the scattering amplitudes (a, b, c, d) appearing in Eq. (B.4)

can be expressed in terms of four functions,

A(θ, ϕ) = − iT
Q

sin(ϕ/2) sinh(θ − iϕ/2),

B(θ, ϕ) =

√
1− T
Q

sinh2 θ, (B.7)

C(θ, ϕ) =

√
T
Q

sinh(θ) sinh (θ − iϕ/2) ,

D(θ, ϕ) =
i
√

(1− T )T
Q

sin(ϕ/2) sinh θ,

such that for s = 1,











a1

b1

c1

d1











=











A(θE, ϕ0)

B(θE, ϕ0)

C(θE, ϕ0)

D(θE, ϕ0)











(B.8)
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For the other three possible values of s, we find











a2

b2

c2

d2











=











B(−θE, ϕ0)

A(−θE, ϕ0)

D(−θE, ϕ0)

C(−θE, ϕ0)











, (B.9)











a3

b3

c3

d3











=











−D(θE,−ϕ0)

C(θE,−ϕ0)

−B(θE,−ϕ0)

A(θE,−ϕ0)











,











a4

b4

c4

d4











=











C(−θE,−ϕ0)

−D(−θE,−ϕ0)

A(−θE,−ϕ0)

−B(−θE,−ϕ0)











.

Notice that for all s, the relation ab+ cd = 0 is fulfilled.
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crescendo, capisco sempre di più quanto sia importante avere legami solidi e punti di

riferimento. Ti fanno sentire libero di andare ovunque nel mondo, sapendo però di appartenere
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