
Enhanced Active Databases for
Federated Information Systems

Inaugural-Dissertation

zur Erlangung des Doktorgrades der

Mathematisch-Naturwissenschaftlichen Fakultät

der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Christopher Popfinger

aus Landsberg am Lech

April 2006

Aus dem Institut für Informatik

der Heinrich-Heine-Universität Düsseldorf

Gedruckt mit der Genehmigung der
Mathematisch-Naturwissenschaftlichen Fakultät der
Heinrich-Heine-Universität Düsseldorf

Referent: Prof. Dr. Stefan Conrad

Koreferent: Prof. Dr. Martin Mauve

Tag der mündlichen Prüfung: 30.06.2006

Preface

This thesis summarizes my research at the database group of the Department
of Computer Science at the University of Düsseldorf, where I was working as a
research assistant since October 2002. This work was primarily motivated by my
diploma thesis that I wrote at the Ludwig-Maximilians-University of Munich, like
this thesis also under supervision of Prof. Dr. Stefan Conrad.

I would like to thank all the persons that supported me in writing the thesis.
In particular, I would like to express my sincere thanks to my supervisor and
first referee Prof. Dr. Stefan Conrad for giving me the opportunity to work for
my doctoral degree at his chair. I appreciate his support and confidence in my
work and enjoyed working under his supervision. I would also like to thank Prof.
Dr. Martin Mauve for his interest in my work and willingness to be the second
referee.

I want to extend my compliments to my colleagues at the database group
for the pleasant atmosphere, and especially to Cristian Pérez de Laborda, my
longtime fellow student and coauthor of some nice papers, Evguenia Altareva,
Johanna Vompras, and Tobias Riege for the stimulating tea brakes after lunch,
as well as the members of the IGFZS community for the recreational activities.

Another word of thanks goes to the students that have contributed to my
work with their bachelor theses, which are (in alphabetical order): Ludmila Him-
melspach, Krasimir Kutsarov, Sandra Suljic, and Alexander Tchernin.

My special thanks go to Andrea Führer for supporting me throughout the
time with her confidence and encouragement and for accompanying me through
all the ups and downs.

Finally, I want to express my deepest thanks to my parents for their support,
encouragement, and advise on my way so far, and especially for the care packages
that made my time here a lot more comfortable.

Düsseldorf, April 2006

Abstract

Federated information systems provide access to interrelated data that is dis-
tributed over multiple autonomous and heterogeneous data sources. The inte-
gration of these sources demands for flexible and extensible architectures that
balance both, the highest possible autonomy and a reasonable degree of infor-
mation sharing. In current federated information systems, the integrated data
sources do only have passive functionality with regard to the federation. However,
continuous improvements take the functionality of modern databases beyond for-
mer limits. The significant improvement, on which this work is based on, is
the ability of modern active database systems to execute programs written in a
standalone programming language as user-defined functions or stored procedures
from within their database management systems.

We introduce Enhanced Active Database Systems as a new subclass of active
databases that are able to interact with other components of a federation using
external program calls from within triggers. We present several concepts and
architectures that are specifically developed for Enhanced Active Databases to
improve interoperability and consistency in federated information systems. As
the basic concept we describe Active Event Notifications to provide an informa-
tion system with synchronous and asynchronous update notifications in real-time.
Based on this functionality, Enhanced Active Databases are able to actively par-
ticipate in global integrity maintenance executing partial constraint checks on
interrelated remote data. Furthermore, we present an architecture for a universal
wrapper component that especially supports Active Event Notifications, which
makes it perfectly suitable for event-based federated systems with real-time data
processing. This tightly coupled wrapper architecture is used to build up the
D́ıgame architecture for a peer data management system with push-based data
and schema replication. Finally, we propose a Link Pattern Catalog as a guideline
to model and analyze P2P-based information systems.

Contents

Contents vii

1 Introduction 1
1.1 Motivation . 1
1.2 Overview . 2

2 Federated Information Systems 5
2.1 Why not one big database? . 5
2.2 Basic Architecture . 7
2.3 Distribution, Autonomy, and Heterogeneity 9

2.3.1 Distribution . 9
2.3.2 Autonomy . 9
2.3.3 Heterogeneity . 11

2.4 Integration Challenges . 13
2.4.1 Schema and Data Integration 13
2.4.2 Entity Resolution . 15
2.4.3 Global Integrity . 17
2.4.4 Global Transaction Management 19

2.5 Common Integration Architectures 20
2.5.1 Federated Database Systems 21
2.5.2 Mediator-based Information Systems 22
2.5.3 Peer Data Management Systems 23

3 Enhanced Active Database Systems 25
3.1 Definition . 25
3.2 Enhanced Activity . 26
3.3 External Program Calls . 28
3.4 Discussion . 30
3.5 Current EADBS . 31

4 Active Event Notification 35
4.1 Monitoring Concepts . 36

4.1.1 The Event Monitor . 37

viii CONTENTS

4.1.2 Change Capture Methods 39

4.1.3 Data Delivery Options . 42

4.2 Related Work . 46

4.2.1 Research Projects . 46

4.2.2 Commercial Change Capture Products 47

4.3 Active Event Notification . 49

4.3.1 Pull-based Asynchronous Notification 50

4.3.2 Push-based Synchronous Notification 53

4.3.3 Push-based Asynchronous Notification 57

4.3.4 Pull-based Synchronous Notification 58

5 Global Integrity Maintenance 59

5.1 Active Component Database Systems 59

5.2 Partial Integrity Constraints . 60

5.2.1 Definition of Partial Integrity Constraints 61

5.2.2 Partial Integrity Constraints as ECA Rules 63

5.2.3 System Interaction . 64

5.3 Checking Global Integrity Constraints 66

5.3.1 Attribute Constraints . 66

5.3.2 Key Constraints . 67

5.3.3 Referential Integrity Constraints 68

5.3.4 Aggregated Constraints . 72

5.4 Discussion . 73

5.5 Global Constraints with COMICS 75

5.5.1 System Overview . 75

5.5.2 Checking Constraints with COMICS 77

5.6 Related Work . 81

6 Tightly coupled Wrappers 83

6.1 Wrapper Architecture . 83

6.2 Event Detection Subsystem . 87

6.3 Application Fields . 89

6.4 Related Work . 90

7 The D́ıgame Architecture 93

7.1 Introduction . 93

7.2 Basic Functionality . 94

7.3 D́ıgame Architecture Components 97

7.4 Characteristics . 99

7.5 Implementation Details . 101

7.6 Related Work . 102

CONTENTS ix

8 Link Patterns 105
8.1 Motivation . 105
8.2 The Data Link Modeling Language (DLML) 106

8.2.1 Introduction . 106
8.2.2 DLML Components . 107
8.2.3 Example . 109

8.3 Link Patterns . 109
8.3.1 Elements of a Link Pattern 110
8.3.2 Classification . 110
8.3.3 Usage . 112

8.4 Link Pattern Catalog . 113
8.5 Example . 117
8.6 Related Work . 118

9 Conclusion and Future Work 121
9.1 Summary . 121
9.2 Future Work . 123

Bibliography 125

List of Figures 137

x CONTENTS

Chapter 1

Introduction

1.1 Motivation

Since the first centralized databases found their way into the enterprises in the
late 60s, the needs and requirements have changed towards a more distributed
management of data. Today, there are many corporations and organizations
that possess large amounts of databases, often spread over different regions or
countries and typically connected to a network. These databases raised in an
autonomous and independent manner to fit the special needs of users at the local
sites which led to logical and physical differences. However, local applications
produce or modify data that is often semantically related to data stored on other
sources. The integration of these sources allows a company to keep track of its
distributed data and thereby improving data quality and availability. One of the
main challenges in such environments is the autonomy of the integrated sources.
This autonomy implies the ability of a source to choose its own database de-
sign and operational behavior making it harder to integrate the source into a
company-wide information system. Most companies have just started to see
their distributed data as a valuable resource. Unfortunately, this data exists in
various data models and formats. A study in 2004 [101] showed that although
relational databases are by far the most popular databases in a commercial envi-
ronment, other formats like flat files, XML, and object-oriented data sources are
also widely-used in practice. The need for an integrated information platform is
increasing steadily.

Federated information systems integrate information from multiple autonom-
ous and heterogeneous data sources and provide centralized access to their data.
Unlike distributed databases with homogeneous structures they allow the inte-
grated sources to retain a certain level of autonomy. Thus, a federated architec-
ture for distributed data has to balance both, the highest possible local autonomy
and a reasonable degree of information sharing. Depending on the application
field different federated architectures support different operations on the local

2 1. Introduction

and global level but always have to address the problems imposed by distribu-
tion, autonomy, and heterogeneity to ensure consistency within the system.

In current federated information systems, the integrated data sources do only
have passive functionality with regard to the federation. Like repositories they
provide access to their data and do only respond to external requests. Although
active databases are able to react on certain local events, their possibilities to
actively support the federation are very limited or just nonexistent. Continuous
improvements of (mainly relational) database systems and query languages re-
sulted in the definition of SQL-invoked routines in the SQL-1999 standard. Those
routines are stored procedures or user-defined functions that can be defined as
external routines written in an external programming language like C or Java.
We believe that this innovation takes data management and processing in feder-
ated information systems to a higher level. To fully exploit the new capabilities
of these Enhanced Active Databases for information sharing in a federated en-
vironment, new techniques and architectures are required that are specifically
designed for this data source activity class.

1.2 Overview

In this thesis we introduce Enhanced Active Database Systems (EADBS) as an
extended class of active databases that are able to execute external routines
written in an external programming languages to react on local events in a more
complex way. We present concepts and architectures that are specifically devel-
oped for Enhanced Active Databases to support information sharing in federated
information systems.

Following the introduction we start with a general overview of federated in-
formation systems and their characteristics in Chapter 2. We motivate the need
for an integrated environment and introduce the theoretical background for the
following chapters. We discuss distribution, autonomy, and heterogeneity as the
main dimensions of federated information systems, summarize important inte-
gration challenges, that must be addressed during the system development, and
sketch some well-known federated architectures.

In chapters 3 and 4 we provide an in-depth discussion on Enhanced Active
Database Systems and our novel Active Event Notification mechanism as the ba-
sis for the following chapters. We first give a basic definition of Enhanced Active
Databases and describe the enhanced activity that distinguishes this particular
class of databases from others. The chapter also provides an overview of current
databases with enhanced activity. Secondly, we present the concept of Active
Event Notification that enables EADBSs to signal local data modifications to
external components immediately after an update occurred. Besides a detailed
description of this notification process, we provide a general overview of monitor-
ing techniques and properties, and distinguish our approach from existing event

1.2 Overview 3

detection solutions.
In Chapter 5 we show how EADBSs are able to actively participate in global

integrity maintenance in federated information systems. Active Event Notifica-
tions allow them to perform synchronous constraint checks on interrelated data
stored on remote database systems. We introduce partial integrity constraints as
a new type of constraints suitable for EADBSs and explain the checking mech-
anism for commonly used constraints. Furthermore, we present the COMICS
constraint management architecture that extends the basic concept by intro-
ducing an external constraint manager that performs the remote part of partial
constraint checks. EADBSs directly interact with the constraint manager during
constraint checks using Active Event Notifications.

Since wrappers are an essential component in most federated information
systems, we have developed a tightly coupled wrapper architecture for various
types of data sources. Chapter 6 gives a detailed description of the wrapper that
comprises an event detection subsystem which is used to extract data changes
from the encapsulated source. It particularly provides a Notification Interface
to support Active Event Notifications from Enhanced Active Databases, which
makes the wrapper perfectly suitable for event-based information systems with
push-based real-time event delivery.

Based on tightly coupled wrappers and EADBSs, we introduce the D́ıgame
architecture for a peer-to-peer information system with push-based data and
schema replication. Chapter 7 describes the basic functionality and components
of this architecture, and discusses its major characteristics and application fields.

Finally, in Chapter 8 we propose a Link Pattern Catalog as a modeling guide-
line for recurring problems in information sharing environments like our D́ıgame
architecture or similar P2P data management systems. We introduce the Data
Link Modeling Language for describing and modeling data flows and describe
commonly used Link Patterns and their applications.

Chapter 9 summarizes the concepts proposed and their contribution to the
development of federated information systems. We conclude with an outlook on
possible future work.

4 1. Introduction

Chapter 2

Federated Information Systems

In this introductory chapter we describe the main characteristics of federated
information systems (FIS) and the challenges that we face during their design and
implementation. We start with a motivation for distributed information systems
and answer the question, why it is not reasonable or feasible in many scenarios to
maintain a centralized database. We continue with a description of distribution,
autonomy, and heterogeneity as three important dimensions of an information
system architecture, followed by a summary of concrete problems that must be
addressed during the integration of autonomous and heterogeneous data sources.
The chapter closes with an overview of selected integration architectures.

2.1 Why not one big database?

In general, an information system integrates multiple sources from several net-
work nodes, which emerged autonomously to fit the special needs at a local site.
Local applications typically imply specific hard- and software requirements with
regard to the data sources. For example, the design department of a company
could use a third-party CAD application to develop a new product. This CAD
software possibly requires a specific type of database system to store its applica-
tion data or ships with its own internal data management system. Other depart-
ments may have their own special purpose software to carry out their tasks, e.g.
tools for accounting and billing, workflow management, or personnel administra-
tion. Furthermore, if a department retains a high level of autonomy, it is able to
set up its own database systems according to its needs and abilities. For exam-
ple, a department could favor a certain database system simply due to financial
reasons.

Centralization of data holds many advantages considering technical or eco-
nomic aspects. It limits the costs of redundant systems and increases data con-
sistency and integrity based on uniform standards. However, besides the problem
that most top down data planning efforts do not meet user expectations, techni-

6 2. Federated Information Systems

cal considerations are only one factor regarding data centralization in a corporate
environment. The more crucial factor for the success of an information system is
the question of data ownership as discussed in [16, 116].

With the introduction of databases into business processes the traditional
definition of data ownership has changes. Data ownership meant the total control
over the creation, maintenance, and processing of the data. Subsequently, data
sharing and data integration implied a loss of data ownership and with it the
loss of total control over the content. Thus, the need for data sharing inevitably
collides with the individual demand for ownership. According to Alystine et al.
[116], a key factor for the importance of ownership is self-interest, which means
that data owners have a greater interest in the success of an information system
than non-owners. Thus, databases are maintained more conscientiously by their
owners than by non-owners. Furthermore, they state that data quality can only
be ensured if data ownership and data origination are not separated. Data should
only be created and maintained by users with expert knowledge with regard to
the application field. For example, consider a research department that is willing
to share results of their experiments to the community. Cooperating departments
should be able to process the data but not to manipulate it, since the results are
specific to a certain experimental setup. If the department looses control over its
data, it might not be willing to share further results.

In contrast to the ownership demands of individuals or individual depart-
ments, the company requires control of its data resources to know about the
present use of the data, predict its future use, and constantly adjust that use to
meet the company’s goals. Data has to be considered as a corporate resource
just like natural resources, finances, or personnel resources. If a company bears
the costs of data, i.e. the costs for collecting, maintaining, and processing data,
the company should be considered as the owner of that data. A decentralization
of data means to delegate, transfer, and grant functional rights and privileges to
individual departments and users so that these individuals can assist the com-
pany in achieving its goals. This decentralization gives the individuals a sense of
data ownership, allowing them to plan and carry out their functional mandate
autonomously.

Putting it all together, data ownership is the key reason for decentralization
and autonomy. Interrelated data gets spread over multiple autonomous and pos-
sibly heterogeneous data sources. However, it is crucial for a company to keep
track of its distributed data to make the right decisions and increase its produc-
tivity. An information system that accesses and processes this data has to address
the problems arising from distribution, autonomy, and heterogeneity with regard
to data ownership to ensure a high level of data quality.

2.2 Basic Architecture 7

2.2 Basic Architecture

Federated information systems integrate various autonomous and heterogeneous
sources and provide access to their interrelated data. In the following we give
a description of the basic architecture of a federated information system and its
basic functionality based on [20].A federated information system consists of a set
of distinct and autonomous information system components that give up part of
their autonomy to participate in the federation and share parts of their informa-
tion. An information system component offers one or more interfaces to its data
that can be stored on a single computer or distributed over multiple, possibly het-
erogeneous network nodes. Single information systems can be database systems
with DBMS or non-database systems like flat files, spreadsheets, or document
collections without a standardized data model, predefined schema, or query lan-
guage. However, non-database systems can be treated as database system if they
enforce a strict format and offer some kind of declarative access language [1].

Figure 2.1: Basic architecture of federated information systems (based on [20])

Figure 2.1 depicts the general architecture of a federated information system.
A federation layer provides uniform access to various autonomous and hetero-
geneous information system components that store interdependent data. These
components usually are integrated in the infrastructure using wrappers to over-
come source-specific differences to provide the federation layer with a uniform
interface (wrapper layer). While the individual data sources may still be ma-
nipulated by local applications, global users and applications are able to access
the integrated sources via the federation layer. The federation layer is a software
component that implements a specific interoperation strategy that can be based
on, for example, a federated schema, a uniform query language, or a set of source
and content descriptors. The mechanisms depend on the composition and imple-
mentation of the federation layer. A selection of concrete FIS architectures can
be found in Section 2.5.

In the following, a single information system component that is integrated

8 2. Federated Information Systems

into a federated information system is called a component database or component
database system (CDBS). The data source comprised by a component database
is called a local database. A local transaction is an operation that is submit-
ted directly to a CDBS by a local user or application. It only affects data on
the respective source. Contrary, global transactions (also denoted as external
transactions from the point of view of a component database) are submitted
by global applications and affect data stored on multiple CDBSs. In general, a
global transaction is split into a sequence of local transactions which are exe-
cuted on the affected component database. Query results from multiple sources
are transformed into a common representation format and sent to the global user
or application. The access to interdependent data using global transactions is
managed by the federation layer of the federated information system. An ex-
plicit schema definition of a local database system or the implicit structure of a
local non-database system enforcing a strict format is called the local schema of
a component database.

Depending on the operations that are supported globally and locally we can
distinguish between the following operational types of federated information sys-
tems:

• Global read-only: The information system provides read-only access to
the integrated information sources. Data modifications are only supported
locally preserving a high level of local autonomy of the participating com-
ponent databases. The main challenge in a global read-only environment is
a reasonable integration of the local schemas eluding the problem of global
transaction management.

• Local read-only: Data can exclusively be modified globally via the feder-
ation layer. Local applications can only read interdependent data, revoking
autonomy from the component databases. This requires the local schemas
to be properly integrated into a global schema and a global transaction
mechanism to execute updates. Due to the restrictions to local operations,
the global transaction manager has full control of all update operations in
the federation eluding the problems of global deadlocks and serializability.

• Mixed: This operational type allows data to be modified by both, global
and local applications and is therewith the most complicated type. The
system has to cope with the entire set of problems relating to database
transaction management including serializability, deadlock detection, and
atomic commit.

The concrete composition of the federation layer and the supported operations
determine the problem areas to cope with during the integration of individual
component databases. Before we deal with common integration challenges, we
discuss the main dimensions of federated information systems in the next chapter.

2.3 Distribution, Autonomy, and Heterogeneity 9

2.3 Distribution, Autonomy, and Heterogeneity

To address the problems arising in a federated information system we first have to
identify and understand the characteristics that impose them. The architecture
of a federated information system can be classified according to three dimen-
sions: distribution, heterogeneity, and autonomy. A fully centralized information
system, for example, processes data from a single data source, whereas a fully
distributed system could integrate multiple heterogeneous sources running au-
tonomously on different network nodes. Each dimension implies advantages and
disadvantages on the overall system, whereas the dimensions cannot be treated
independently. A system with centralized data storage will surely not have to deal
with heterogeneity and autonomy problems. The following short descriptions of
each dimension are based on [52, 84, 102].

2.3.1 Distribution

Data of an information system may be located on a single data source or dis-
tributed among several databases on one or more physical machines. The benefits
of a distribution of data clearly are the increase of availability and reliability and
the improvement of access times. Furthermore, distribution is often required to
satisfy data ownership and to adapt an information platform to the data policy
of a company or organization (see Section 2.1). Data can be distributed over
multiple sources in a non-redundant or redundant way. The non-redundant dis-
tribution requires a partition of the data, like horizontally or vertically partition
in relational terms. Redundant storage of data, i.e. the replication of data, re-
quires mechanisms in the information system to ensure the consistency of all
replicas of a data item, when data is modified locally.

In a system of autonomous data sources the distribution of data is mainly
introduced in an uncontrolled and unintended way. The data sources are often
designed autonomously with regard to the local needs and requirements but store
data that is interrelated to other sources. The main problems arising in an in-
formation system due to the distribution of data are the planning, scheduling,
and execution of global read and write operations, allocation of data, mainte-
nance of global integrity constraints, and replication management. Distributed
databases address these problems in a homogeneous environment with a strong
centralized control without any autonomy of the data nodes. Now, the addition
of the dimensions autonomy and heterogeneity to the existing problems of data
distribution imposes the main challenges of federated information systems.

2.3.2 Autonomy

The organizational structure of an information system generally reflects the orga-
nizational structure of the collaborating partners themselves. In many companies

10 2. Federated Information Systems

the departments retain a high level of autonomy, which means that they are al-
lowed to organize, execute, and monitor their tasks on their own. This autonomy
directly effects the data sources managed by the department which means that
data sources are often separately and independently controlled by the depart-
ments. In order to design and compose an information system that comprises
several autonomous data sources, we have to understand and address the prob-
lems arising from the autonomy of the component databases. The autonomy of
a component database of an information system is also termed as local autonomy
[33]. A widely accepted classification of local autonomy is summarized in [102]
which distinguishes between three types of local autonomy: design, communica-
tion, and execution autonomy.

Design autonomy is the ability of a local database to choose its own database
design independently from the design of other component databases. This partic-
ularly means that they retain their local schemas during the integration process
and that they cannot be forced to change their designs.

In particular, design autonomy allows a CDBS to freely choose

• the data it manages,

• the naming of data elements and the data representation including the data
model and query language,

• the conceptual modeling of real world objects and the semantic interpreta-
tion of the data,

• the constraints to ensure consistency of the data,

• the set of supported operations for data access and manipulation, and

• the concrete implementation of the system.

The design autonomy is the main reason for heterogeneity in an information
system. Especially the ability of a CDBS to choose its own conceptualization of
real world objects leads to the problem field of semantic heterogeneity, which will
be discussed later (see 2.3.3).

Execution autonomy enables a CDBS to execute local transactions without in-
terference from external transactions. A system with execution autonomy cannot
be forced to execute transactions according to a certain schedule by an external
component. Operations may also be rejected at any time, for example, if they
violate local integrity constraints. A data source with execution autonomy does
not have to inform external components about the execution order of external
transactions. Basically, the CBDS treats external transactions like local trans-
actions. The problems arising from execution autonomy are mainly concerning
global transaction management and consistency. Since a global component is
unable to manipulate the scheduling and execution of transactions at a CDBS

2.3 Distribution, Autonomy, and Heterogeneity 11

with execution autonomy, it is unable to ensure a global atomic commit [77].
In particular, they cannot be forced to provide a prepare-to-commit state as re-
quired for multi phase commit protocols (e.g. 2PC). The third type of autonomy
is communication autonomy. It allows a CDBS to decide when and how to com-
municate with other components. This includes the ability of a CDBS to join or
leave the information system at any time. This particularly enables a CDBS to
go offline at any time to rejoin the system again later on. The problem of volatile
data nodes has especially to be addressed in information system architectures
resembling peer-to-peer concepts. Further taxonomies and types of autonomy
can be found in the literature, like operational autonomy and service autonomy
[33], naming autonomy and transaction-control autonomy [40], or association au-
tonomy [5]. They basically define subsets or combinations of the autonomy types
listed above and can thus be described using the given classification.

As stated by Heimbigner and McLeod [52], the aim of an information system
that integrates autonomous data sources is to achieve a feasible trade-off between
local autonomy of the CDBSs and a reasonable degree of information sharing.
Without the constraint of a central authority, information sharing is realized by
cooperating component databases, which can communicate in three ways:

• Data communication: A component database provides access to its data
or a subset of its data to other components directly. The information sys-
tem thus has to provide mechanisms to support data sharing among the
participating CDBSs.

• Transaction sharing: A component database may not allow other compo-
nents to directly access its data. It rather provides a set of operations that
can be executed upon its data stock. This requires components to be able
to define transactions.

• Cooperative activities: Without the constraint of a central authority, the
autonomous components need to cooperate to share information. They
must be able to initiate, monitor, and control a series of actions that involve
cooperation with other components using appropriate protocols (negotiated
data sharing).

A cooperation certainly demands for agreements among the partners and in
most of the cases it means restrictions to their local autonomy. Agreements
among autonomous component databases for information sharing concern the
data they are willing to share, the set of operations they support, but also addi-
tional cooperation parameters such as uptime guarantees.

2.3.3 Heterogeneity

The third dimension of an information system architecture is heterogeneity. As
mentioned above, heterogeneity is mainly caused by the design autonomy of dis-

12 2. Federated Information Systems

tributed, collaborating component data source. The ability of an administrator
of a CDBS to choose the type of database including its data model and query
language, as well as the individual conceptualization of the data leads to het-
erogeneity on the global system level. This heterogeneity has to be addressed
during the integration of the CDBSs to provide a consistent global view on the
partitioned data.

Heterogeneity can basically be divided into two classes, which are heterogene-
ity due to differences in the data sources and heterogeneity due to the semantic
interpretation of the data. Both classes are described in the following sections.

Differences in data sources

Departments with a high level of local autonomy can choose their own database
system depending on their specific environment and requirements, which leads to
differences at the system level and in data models. Heterogeneity on the system
level includes transaction management primitives and techniques like concurrency
control, commit protocols, and recovery mechanisms. Furthermore, the hardware
and operating system on which the CDBS resides may induce heterogeneity con-
cerning file systems, data formats and representation, transaction support, or
communication capabilities. System aspects are especially important during the
integration of data sources without database management system, since the inte-
gration layer of the information system has to provide system-specific solutions
for required operations, like file access or transaction management.

Heterogeneity in the data model describes the differences in the structures,
constraints, and query languages. Different CDBSs can use different data models
like relational, object-oriented, or semi-structured. Each data model provides
different modeling constructs (e.g. inheritance and generalization in the object-
oriented model) which will lead to different structures on the schema level. Even
if two CDBSs use the same data model, the probability that a real world object
will be modeled differently in the data sources will rise with the spectrum of
available modeling constructs.

Besides differences in the structure, the data models may support different
integrity constraints. Some integrity constraints might be inherent in one data
model, but must be explicitly formulated in another one. For example, a special-
ization or generalization constraint could be expressed inherently in an object-
oriented data model using an inheritance relationship, whereas in the relational
model it must explicitly be expressed by a referential integrity constraint. Fur-
thermore, active databases may use triggers to check complex constraints which
cannot be expressed in a passive database although they might both be relational
data sources.

Heterogeneity can also be caused by differences in the query languages that
are used to manipulate data represented in different data models. Two CDBSs
with the same data model might use different query languages or support different

2.4 Integration Challenges 13

versions or functionalities of the same query language.

Semantic Heterogeneity

A database can be considered as an image of the real world. During the database
design, an administrator models real world objects in the database using the
modeling constructs of the data model. To be more concrete, modeling an real
world object means to name the conceptual image of the object (entity), to choose
a set of attributes which describe the object regarding the specific requirements of
the database application, and to assign a domain to each attribute. Furthermore,
since real world objects can be related to each other, the administrator has to
model relationships between entities in the database.

In a collection of autonomous databases each administrator may have differ-
ent views on the same real world objects depending on its own understanding of
things and the local needs regarding the data. This individual semantic interpre-
tation of the data and its usage is the main reason for semantic heterogeneity.
Unlike differences in data sources, semantic heterogeneity is harder to detect and
to address. Differences can occur due to the selection and naming of entities
and attributes as well as the selection of attribute domains or interpretation of
attribute values.

2.4 Integration Challenges

As described in the previous section, the three main characteristics of an infor-
mation system architecture are distribution, heterogeneity, and autonomy. These
dimensions impose several problem fields during the integration of autonomous
and heterogeneous data sources into an information system. This section de-
scribes the main integration challenges which have to be addressed by informa-
tion system architects to create a reliable system assuring a high level of data
quality and consistency. A more detailed overview can be found in [30].

2.4.1 Schema and Data Integration

The first and probably most difficult problem is integration conflicts resulting
from the heterogeneity of the integrated data sources. Differences in data sources
and semantic heterogeneity lead to different views and models of the same real
world objects in the CDBSs. Database designers might have individual infor-
mation needs and use their own tools to satisfy them. During the integration
process, these differences must be dissolved to provide a uniform global view
(global schema) on the entire data and to enable system interoperability and
data sharing. The basic approach to build a global schema is to select several in-
dependently developed schemas from component databases with interdependent

14 2. Federated Information Systems

data (local schema), resolve syntactic and semantic conflicts among them, and
create an integrated schema comprising all their information.

A model-independent classification of integration conflicts is presented in
[105]. This taxonomy distinguishes four conflict classes: semantic, descriptive,
heterogeneity, and structural conflicts. They are briefly discussed in the following.

Semantic Conflicts: Two database designer might have different perceptions of
a set of real world objects (entities). An object class employees might in one
CDBS be used to represent employees of the entire company, but in another
CDBS it might represent only employees of a single department. Although
the object classes could be semantically equivalent in both CDBSs, they
represent different sets of real world objects. The extension of two object
classes can be disjunct, equivalent, overlapping, or a class extension can be
strictly included in another.

Descriptive Conflicts: Descriptive conflicts arise from different conceptualiza-
tions of the same set of real world objects. Two database designer might
be interested in different properties of the same object and thus create
schemas with different sets of attributes. Descriptive conflicts also include
naming conflicts due to homonyms and synonyms, attribute scale, domain,
constraints, and operations.

Heterogeneity Conflicts: Database designers could use different data models
for their databases which results in heterogeneity conflicts. In general, the
integration of heterogeneous data models also implies structural conflicts
since the data models provide different constructs to model real world ob-
jects.

Structural Conflicts: Even if designers use the same data model, there might
be structural differences between the schemas. The same real world objects
can be modeled using different modeling constructs. The more constructs
are available, the more possibilities the designers have to represent the
same object. As an example for a structural conflict consider the star and
snowflake schema as relational representations of a multidimensional data
model for data warehouses. Although both schemas store the same informa-
tion, the snowflake schema uses normalized tables to reflect hierarchies in
the dimensions whereas the star schema has a single non-normalized table
for each dimension, but with redundant storage of information.

A well-known approach for schema integration uses assertions as the main
concept. Assertions (or mappings) express correspondences between the schemas
or parts of the schemas to be integrated. They define dependencies and integra-
tion rules for the schemas as well as transformation rules for the corresponding
data instances. Thereby the mappings can be defined between a local and a

2.4 Integration Challenges 15

global schema or between two local schemas as required for information systems
without a global schema (see 2.5). For detailed information on integration us-
ing assertions we refer to [104, 105]. From the exhaustive list of work in this
area, we only want to present a small selection. [42], for instance, discuss a
method for schema integration that detects class similarities by comparing previ-
ously enriched schemas along the generalization, specialization, and aggregation
dimension. Similarly, [34] proposes a simple unified language for the specification
of three fragmentation conflict types (classification, decomposition, and aggre-
gation conflicts) together with techniques to solve them. Schema integration
using a global data structure is presented in [18]. They propose the Summary
Schemas Model to aid semantic identification. Users access local data via impre-
cise queries on the global schema whereas the system matches the user’s terms
to the semantically closest system terms. A similar approach is discussed in
[36], where a semantically expressive common data model is used to capture the
intended meanings of conceptual schemas. This Kernel Object Data Model de-
scribes structures, constraints, and operations on the shared data. An approach
for the integration of integrity constraints is presented in [31]. The authors apply
rules to a set of elementary operations for schema integration and restructuring.
Finally, [75] present an algorithm that discovers mappings between schema ele-
ments based on their names, data types, constraints, and schema structure using
linguistic, structural, and context-dependent matching techniques.

2.4.2 Entity Resolution

Semantic heterogeneity in federated information systems imposes multiple chal-
lenges considering the different representations of real world objects in the local
databases. If two database designers model overlapping views on the same real
world entity, the resulting schemas will store redundant information concerning
this entity. The problem field of entity resolution (also referred to as record link-
age or deduplication [14]) in the context of federated information systems deals
with the identification of corresponding records referring to the same real world
entity in multiple databases, possibly with different schemas.

The aim is to merge corresponding records into one record with more complete
information. For example, two departments of a company could store customer
information in their autonomous local databases. During the integration of these
customer databases into a company wide information system with one global
customer database, corresponding records that refer to the same customer have
to be merged and duplicates have to be removed to ensure a consistent customer
data stock. This join can already be problematic if the customers are globally
identified by a company wide key (e.g. a customer number), but most often there
will not be a unique key that can be used to join the records.

The basic mathematical model for entity resolution was introduced by Fellegi
and Sunter [37]. Suppose the records are stored in the sources A and B. Fur-

16 2. Federated Information Systems

thermore, an individual real world entity is assumed to be identified by multiple
attributes (key attributes) of a record in A and B, like name, address, date of
birth, and gender. Two disjoint sets M and D are defined from the cross-product
A × B and denote the sets of record pairs (a, b) from A and B that could be
matched ((a, b) ∈ M) and those pairs that could not be matched ((a, b) ∈ U).
The record linkage process tries to determine if a pair belongs to either M or
U . One of the standard algorithms for computing this task uses a probabilis-
tic model with expectation-maximization to calculate probabilities for a match
or non-match of a record pair by comparing the values of the key attributes
[124, 48]. A comparison or agreement vector γ represents the level of agreement
between a and b by calculating the matching weights of their key attributes. At-
tributes can be weighted in the comparison depending on their importance or
value distribution. The composite weight (or score) for a comparison vector γ is
calculated using the conditional probabilities for a match m(γ) and a non-match
u(γ) as defined as:

m(γ) = P (γ | (a, b) ∈ M) and u(γ) = P (γ | (a, b) ∈ U)

Given two threshold values Tµ and Tλ, a record pair (a, b) is classified using

its score S = m(γ)
u(γ)

as follows:

(a, b) is a match if Tµ ≤ S

(a, b) is a potential match if Tλ < S < Tµ

(a, b) is a non-match if S ≤ Tλ

The algorithm performs multiple blocking passes for non-match record pairs
in which it selects one or more blocking attributes to calculate the matching
weight. If an attribute value distribution for a field is not uniform, the value
can be weighted. The following overview based on [48] briefly concretizes the
challenges that arise during the record linkage process:

Standardization: Without standardization, many records could be wrongly
classified as non-matches due to typographical errors (e.g. ’stret’ instead of
’street’), homonyms and synonyms (e.g. ’name’,’lastname’,’fullname’), or
alternating representations for the same concept (e.g. ’M/F’ or ’0/1’ for a
’gender’ attribute). During the data cleaning process, attribute values are
transformed into a standardized representation and spelling or combined
with other values to satisfy global standards.

Attribute Selection: This problem field concerns the selection of common at-
tributes on which the matching weight is calculated. This requires to iden-
tify common attributes or the optimal subset of common attributes that
have sufficient information content to support the linkage quality.

2.4 Integration Challenges 17

Comparison: The actual comparison of two attributes is mainly based on dis-
tance-based metrics to compute matches. Since text or string values are
most commonly used as matching attributes, this problem field deals with
the development of efficient string comparators. Well-known comparison
techniques are based on the edit-distance, N-gram distance, vector space
representation of fields, or adaptive comparator functions.

Decision Model: After matching weights of individual attributes are calculated
they have to be combined to a composite score to determine if the record
pair is a match, non-match, or possible match. This classification is per-
formed using a decision model. Besides the probability model described
above, other models are proposed, like statistical models that compute sta-
tistical characteristics of errors or predictive models for learning threshold
values and attribute weights.

The linkage of corresponding records is essential for the consistency of the
overall system. Only if two records can be classified as a match or non-match the
system is able to perform global integrity checks which are essential for the data
quality in the information system.

2.4.3 Global Integrity

The integration of autonomous and heterogeneous information system compo-
nents into a single federated information system inevitably raises the question of
how to ensure consistency of the data from a global point of view. For exam-
ple, two CDBSs might maintain locally consistent data stocks but might store
controversial information about a real world entity from a global point of view.
These conflicts must be resolved during integration and prevented in the future
by the federated information system to ensure high data quality. Consistency
in a federated information system can only be violated by write operations on
interdependent data. Data on a local database that is not interrelated to re-
mote data on another CDBS can be modified in accordance with local integrity
constraints and does not compromise global consistency. Thus, we restrict our
further considerations to operations that modify interrelated data locally and
globally:

Local data modifications: A local data modification is a local transaction that
inserts, deletes, or updates objects in a local database which are represented
by a local schema. An update operation modifies one or more attribute
values of a local object.

Global data modifications: A global data modification is a global transaction
that is issued against a global schema. The insertion, update, or deletion
of a global object results in a sequence of local write operations executed
on the affected local databases.

18 2. Federated Information Systems

To ensure global consistency, the information system has to monitor and check
local and global write operations against global integrity constraints that express
the dependencies among the interrelated data. While global transactions can
easily be monitored by the federation layer, the detection of constraint viola-
tions caused by local transactions and their compensation is a major problem
of information system engineering. On the global level, we distinguish between
the following three types of integrity constraints that result from different situa-
tions and impose different challenges for integrity maintenance in an information
system:

Constraints resulting from schema integration: The global integrity con-
straints result from the integration of local schemas. The CDBSs might
model equivalent, overlapping, or disjunct views of a real world entity. The
information system has to ensure that objects are stored correctly in their
corresponding extensions. For example, if an object is inserted into an ex-
tension that is semantically equivalent to an extension on another CDBS,
the object must be inserted into all affected extensions. If the insertion
fails in one extension, then the overall operation must be rolled back. Se-
mantically equivalent and overlapping local extensions require the system
to maintain replicas of objects to ensure consistency. Update operations on
equivalent or overlapping extensions must be executed concurrently on all
replicated objects.

Constraints derived from local constraints: Local integrity constraints be-
long to the semantics of the data and must also be enforced on the global
level. They can be separated into explicit and implicit constraints. Explicit
constraints are formulated and managed separately by the DBMS whereas
implicit constraints are inherent properties of the data model. If the im-
plicit constraints are not supported in the global data model, then they
have to be translated and managed explicitly by the federation layer (see
[31] for details).

Additional global constraints: Additionally to the constraints resulting from
schema integration and the integration of local constraints, there might be
further constraints that are formulated explicitly on the global schema to
enforce certain rules on the interdependent data. This could be global key
or aggregate constraints that express specific business rules or existence de-
pendencies between local extensions. The information system must be able
to monitor and enforce explicit integrity constraints to ensure consistency.

As already mentioned, an essential task of global integrity maintenance is
the detection of local write operations on interdependent data. The concept we
propose later in this thesis (see Chapter 5) addresses this problem using the
functionality of Enhanced Active Database systems.

2.4 Integration Challenges 19

2.4.4 Global Transaction Management

The last challenge we discuss is the planning and execution of global transactions.
Global transactions are issued against a global schema and affect data of at
least two different component databases of the federated information system. In
general, a global transaction is decomposed and executed as a sequence of local
read and write operations (subtransactions) for each affected local databases
(nested distributed transactions [84]). A transaction management component in
the federation layer has the responsibility to generate this decomposition and to
monitor the execution of the individual local transactions. Like transactions in a
single information system, global transactions in a federated information system
should apply to the following ACID properties to ensure a consistent and reliable
system [84]:

Atomicity: A transaction is always executed as a single unit of operations. Ei-
ther all actions of a transaction are completed or none of them. If one action
cannot be completed successfully then all other actions of that transactions
must be taken back. In particular, intermediate results during the execu-
tion of a transaction that is not yet completed successfully must not be
visible to other transactions.

Consistency: A transaction must map one consistent database state to another
and may not violate the consistency of the data stock. Therefore, a trans-
action is checked against existing integrity constraints and aborted if one
of them is violated.

Isolation: This property requires a transaction to see a consistent database at
all times. A transaction cannot reveal its result to concurrent transactions
before its commitment. This ensures that a transaction does not access
data that is concurrently updated by another transaction.

Durability: Once a transaction commits, its results are stored permanently in
the database and can be processed by subsequent transactions. The dura-
bility of a transaction also refers to the ability of a system to recover the
last consistent state after a system failure.

While these properties are well-understood and guaranteed in centralized or
homogeneous distributed database systems, their implementation impose great
challenges in an environment of heterogeneous data sources with high level au-
tonomy. In the following we describe the three major problem fields concerning
transaction management in federated systems based on [17]:

Global Serializability: Since each participating component database may use
its individual concurrency control protocol, existing serialization protocols

20 2. Federated Information Systems

for homogeneous distributed databases cannot be used. If the global trans-
action manager is unaware of local transactions then it can only guarantee
a serial execution of global transactions which does not automatically guar-
antee global serializability due to indirect conflicts caused by local transac-
tions.

Global Atomicity: The atomicity property of a transaction dictates that all
subtransactions of that transaction are either committed or aborted. In a
homogeneous distributed environment this is ensured using an atomic com-
mit protocol such as 2PC (two phase commit protocol). It requires that
the participating data sources provide a prepare-to-commit state for each
subtransaction and guarantee to remain in this state until a coordinator
sends a global commit or abort. Obviously, this strongly limits the execu-
tion autonomy of the CDBS and not all data sources are able to provide a
prepare-to-commit state. So, if execution autonomy should be preserved,
we cannot force a CDBS to export a prepare-to-commit state. However,
this will allow a CDBS to abort a subtransaction at any time before it is
committed resulting in non-atomic global transactions and incorrect global
schedules. As stated in [77] an atomic commit in an environment of au-
tonomous and heterogeneous environments is impossible without either vi-
olate local autonomy, limit the types of transactions allowed, or using a
new or relaxed transaction/correctness model.

Global Deadlocks: The third major problem field concerns the detection and
prevention of global deadlocks. In an autonomous environment where the
participating component databases use locking mechanisms to ensure local
serializability, there can be a sequence of subtransactions that leads to a
global wait-for-cycle that results in a global deadlock. To detect and pre-
vent deadlocks, the global transaction manager needs information about
local transactions and locks. On the other hand, since CDBSs are unwill-
ing to exchange their control information with the federation layer (design
autonomy) they will be unaware of global deadlocks.

Solutions to global integrity and global transaction management require infor-
mation on the state of the participating data sources. As the main contribution of
this thesis, we describe how the functionality of Enhanced Active Databases can
be used to interact with other component databases or the federation layer to sig-
nal changes of their states to coordinate their actions. They particularly support
immediate notifications perfectly suitable for real-time information systems.

2.5 Common Integration Architectures

The basic architecture presented in Section 2.2 gives only a general overview of
the composition of a federated information system. In detail, the design and

2.5 Common Integration Architectures 21

implementation of the federation layer including the specific interoperation strat-
egy, the supported operations and transactions, the integration strategy, as well
as the wrapper functionalities and supported data sources may vary strongly
with the intended application field. An important criteria for the classification
of a federated information system is the composition of its federation layer. In
the following we present three architectures for building federated information
systems with different levels of distribution of their federation layer: centralized,
modular, and fully decentralized.

2.5.1 Federated Database Systems

A Federated Database System as defined by [102] is a collection of autonomous
but cooperating database systems that are integrated into the federation and con-
trolled by a federated database management system (FDBMS). Components give
up parts of their autonomy to participate in the federation depending on the needs
and desires of federation users and administrators. The FDBMS implements
DBMS functionality of centralized or distributed database systems and controls
access and manipulation of the data on the integrated component databases.
It provides location, distribution, and replication transparency and commonly
supports query language access to the data. Supporting read-write operations it
contains a query processor and optimizer, as well as a global transaction manager
to ensure global consistency while allowing concurrent updates across multiple
databases. The FDBS maintains either one single or multiple federated schemas
which are mapped to the local schemas of the structured sources.

Figure 2.2: Five-level schema architecture of an FDBS [102]

22 2. Federated Information Systems

Figure 2.2 depicts the well-known five-level schema architecture of an FDBS.
The dashed lines between the federated schemas symbolize the option of a single
or multiple federated schemas. Referring to the general architecture of federated
information system (Figure 2.1) the component and export schemas are defined
and maintained by wrapper component providing the federation layer with a
common data model and query language. The global federated schema(s) and
the export schemas reside in the federation layer. The federation layer of an FDBS
typically consists of a non-distributed, monolithic federation service implementing
the DBMS-like functionality. The static structure of FDBSs makes it harder to
add or remove components or to react on changes in their schemas.

2.5.2 Mediator-based Information Systems

One of the first descriptions of mediator systems was introduced in [103] as a
”pseudo intelligent software controller which [...] mediates between an Infor-
mation Retrieval System and its end-user”. This basic three-layer architecture
consisting of users, mediators, and data sources is also reflected in [120] where me-
diators are defined as small and simple active software modules that implement
dynamic interface functions between users workstations and database servers.
Typical tasks performed by mediators are

• transformation and subsetting of databases,

• abstraction and generalization of underlaying data,

• providing intelligent directories to information bases, and

• providing access and merge data from multiple source.

Each mediator implements a specific set of mediation functions using one or
a few databases. A user task will most likely need multiple distinct mediators
to accomplish. Figure 2.3 depicts the basic architecture of a mediator-based
information system.

A data source is typically encapsulated by a wrapper component to provide
a homogeneous interface to the mediation layer. They convert query results
into a common (or canonical) data model before they are sent to the mediators.
The mediators communicate with one or a few wrappers to accomplish a specific
mediation task that is offered to the application layer. Mediators can also use the
functionality of other mediators as a data source, thus supporting a hierarchical
composition of the mediation layer. Each mediator maintains its own federated
schema which is ideally represented in the common data model and supports
a common query language. The users now access the mediators that offer the
required functionality to access the sources. The data is preprocessed using the
mediation functions and returned for individual processing.

2.5 Common Integration Architectures 23

Figure 2.3: Architecture of mediator-based information systems [41, 20]

Contrary to federated database systems, mediator-based systems incorporate
a modular structure and abstain from centralization. A data source can be ac-
cessed by multiple mediators whereas new mediators and sources can be added to
the system at any time making the system more dynamic than FDBSs. On the
other hand, mediators typically provide read-only access to their data sources,
since decentralization complicates global transaction management and concur-
rency control.

2.5.3 Peer Data Management Systems

Peer-to-Peer (P2P) information systems or Peer Data Management Systems [49,
112] resemble concepts and mechanisms for fully decentralized sharing and ad-
ministration of data. P2P systems are highly dynamic and scalable allowing
autonomous and heterogeneous network nodes (peers) to join or leave the net-
work at any time. The system gets more flexible than mediator-based systems,
since there are no central global components that have to be maintained by ad-
ministrators. Peers store data that the users are willing to share with other
participants. Although not necessarily required, many P2P network topologies
use super-peers to increase network performance (see Figure 2.4). Super-peers
are used for peer aggregation, query routing, or query mediation [80].

Since P2P systems are decentralized there exists no global schema but a collec-
tion of pairwise mappings between peer schemas that are typically created using
schema mapping languages (e.g. [50]). Contrary to FDBSs or mediator-based
systems, the schema mediation does not follow a tree-like integration hierarchy
with source schemas at the leaves and mediated schemas as inner nodes but an
arbitrary graph of interconnected schemas. The set of mappings defines the se-
mantic network (or topology) of the system. Queries are reformulated using the

24 2. Federated Information Systems

Figure 2.4: Architecture of Peer-to-peer information systems

schema mappings and routed to all the peers that might have answers. In turn,
results are converted along the schema mappings from the remote into the local
representation. Semantic related results from multiple peers are integrated either
completely at the peer that issued the query or using intermediate integration
results created by super-peers.

Referring to our basic architecture for federated information systems, the fed-
eration layer is fully decentralized and distributed over the participating peers.
Each peer data source is wrapped to provide a homogeneous query interface
whereas pairwise connections between peers are established via P2P network in-
terfaces. Each peer decides autonomously which data it is willing to share and
maintains its own set of schema mappings. In general, a P2P system supports
read-only operations with the option to cache query results locally. However, in
Chapter 7 we describe an architecture for a P2P-based information system that
implements a push-based replication strategy among autonomous and heteroge-
neous peer databases.

Chapter 3

Enhanced Active Database
Systems

Enhanced Active Databases build the basis for the concepts we propose in this
thesis. In this chapter we introduce Enhanced Active Database systems and
present their specific functionality that contributes to solutions to common prob-
lems in federated information systems. After a definition of Enhanced Active
Databases in Section 3.1, we describe the new functionalities that can be added
to component databases using External Program Calls. We introduce remote
state queries, injected transactions, and external notifications as three new opera-
tions of component databases that enable the interaction of component databases
within a federation. A detailed description of an External Program Call is subject
to Section 3.3. We present the required components and explain the basic steps to
communicate with external components. Section 3.4 discusses the effects of Ex-
ternal Program Calls on the local autonomy of the component databases. Finally,
the chapter is closed with an overview of current Enhanced Active Databases that
are widely used in practice to confirm the practicability of our concepts.

3.1 Definition

Traditionally, database systems have been regarded as passive data providers
that manage the storage of data and response to read and write requests issued
by the users. More complex requirements regarding the integrity and consis-
tency of the data had to be implemented in the applications themselves. But
with the association of databases to highly complex information processing sce-
narios, with huge amounts of data or high performance requirements, database
systems were extended by more comprehensive facilities to model structural and
behavioral aspects of data to support the applications. Active database systems
were introduced that assist applications by migrating reactive behavior from the
application to the DBMS. They are able to observe special requirements of ap-

26 3. Enhanced Active Database Systems

plications and react in a convenient way if necessary to preserve data consistency
and integrity. The integration of active behavior in relational database systems
is not particularly new and currently most commercial database systems support
ECA rules, whereas the execution of triggers is mainly activated by operations
on the structure of the database (e.g. insert or update a tuple) than by user-
defined operations [86]. Unfortunately, the ability to react on events, especially
from within the scope of trigger conditions and actions, has until recently been
limited to the isolated databases they were defined at. Subsequent developments
integrated special purpose programming languages (e.g. PL/SQL [74]) into the
database management system to overcome some limitations of the query language
and to provide a more complex programming solution for critical applications.
But again, the scope of these extensions was strictly limited to the system borders
of the database system, so an interaction with its environment was impossible.
However, the support of ECA rules in form of triggers is necessary, but not suf-
ficient for the concepts we propose here.

The significant improvement, on which this work is based on, is the ability of
modern active database systems to execute programs written in a standalone pro-
gramming language as user-defined functions or stored procedures (also referred
to as external routines) from within their database management systems. This
enhancement takes the functionality of active databases beyond former limits.
Thus, we define a new subclass of active databases as follows:

Definition 1 The ability of a database system to execute programs or methods
from within its DBMS to interact with software or hardware components beyond
its system border shall be called enhanced activity. A database with enhanced
activity is a Enhanced Active Database System (EADBS). The execution of
a program or method in this context shall be called an External Program Call
(EPC).

The execution of external programs (EPs) from inside the DBMS offers new
perspectives to data management and processing in a federated information sys-
tem. The database has herewith access to the entire functionality of the pro-
gramming language including user-created libraries and extensions. EADBSs are
active databases that are actively able to invoke methods or programs from within
their database management system. An Enhanced Active Database that partici-
pates in a federation as a component database can offer its enhanced activity to
improve interoperability in the federation. Which particular functionality can be
provided by such component databases is presented in the next section.

3.2 Enhanced Activity

The enhanced activity allows Enhanced Active Database systems to execute ex-
ternal programs to interact with hardware or software components beyond the

3.2 Enhanced Activity 27

system borders of the database. In the context of federated information systems,
this functionality allows component databases with enhanced activity to commu-
nicate with specific components of the federation, like, for instance, a wrapper
component, a constraint or transaction manager, an event broker, or another
component database or additional data source. Communication is established
using the APIs and libraries provided by the programming language that is used
to code the external program. In particular, we focus on the database connectiv-
ity and client-server APIs for sockets or remote procedure calls (RPC) to add the
following functionalities to a component database that participates in a federated
information system:

Query the state of a remote database: The main functionality which is ele-
mentary for our approach is the ability of an CDBS to query a remote data
source directly during the execution of a database trigger. After a connec-
tion has been established by the EP, we can perform any read operation
on the remote schema items we are allowed to access. Depending on the
query language we can formulate complex queries with group and aggregate
functions (e.g. like in SQL). The query result of the remote database is used
locally to evaluate conditions of ECA rules. We call this kind of query a
remote state query.

Manipulating a remote database: After a connection is set up by the pro-
gram, a CDBS is basically able to modify the data stock of the remote
database directly during the execution of a database trigger. Assuming the
appropriate permissions, any operation supported by the query language
can be executed including data insertions, updates, and deletions. Depend-
ing on the query language, a CDBS is thus basically able to modify even the
schema of a remote database using for example ALTER TABLE statements
in SQL. In the following, a manipulation of remote data or schema items
from within a database trigger shall be called an injected transaction, since
its execution depends on a triggering transaction on a local relation. From
the point of view of the remote database, a remote state query or injected
transaction is handled like a request of an ordinary application.

Notification of external components: Besides the database connectivity we
use client-server APIs of the programming language to establish a connec-
tion to a remote server component of an arbitrary software application. The
database acts as a client and opens a communication channel via sockets or
remote procedure calls. Thus, it is able to interact with remote applications
and use their services during the execution of triggers or stored procedures.
In particular, those connections are used to send notifications to external
components via External Notification Programs (ENP), to either simply
signal the manipulation of local data or to actually propagate the modified
data items themselves.

28 3. Enhanced Active Database Systems

Within recent commercial database systems a commonly supported program-
ming language that provides the technology we need to implement these enhanced
functionalities is Java. It contains JDBC, a common database connectivity frame-
work, that provides a standardized interface for a multitude of different data
sources like relational databases or even flat files. JDBC is part of the Java core
API since version 1.1 and is supported by all major database manufacturers [119].
Furthermore, it comprises APIs to establish client-server connections via sockets
or Remote Method Invocations (RMI). Its platform independence is particularly
useful in an heterogeneous environment such as a federated information system.
Java functions can be migrated between component databases without much code
rewriting. Remote state queries and injected transactions are executed via JDBC
using SQL as the standard query language bridging the heterogeneity. Although
we cast the remainder of this work in the context of Java UDFs using JDBC
and RMI the concepts certainly adapt to Enhanced Active Databases supporting
other programming languages that meet the requirements just mentioned.

3.3 External Program Calls

The enhanced functionalities like remote state queries, injected transactions, and
update notifications are realized using external program calls, which are described
in detail in the following. Although an external program could also be explicitly
executed by a user as a stored procedure, we focus on external program calls
from within database triggers as part of a database transaction. The de-facto
standard for managing and querying databases is SQL, currently in the version
SQL-2003. Its predecessor SQL-1999 has already defined the concept of SQL-
invoked routines in the form of stored procedures and user-defined functions
(UDF) [6]. The standard allows both types to be defined as external routines
in an external programming language like C or Java. Such routines are already
supported by major database systems (e.g. Java Stored Procedures or Java UDFs
[73, 78]). They can be called from triggers during their execution as part of a
database transaction.

Figure 3.1 displays a schematic overview of an external program call. In
general, triggers are activated by transactions that execute write operations (up-
dates) on the data stock. In our example, an update on a relation R fires a trigger
that in turn sequentially calls one or more external programs. The EPs interact
with external hardware or software components, making requests and eventually
waiting for responses. After the EPs terminate, the trigger returns its call and
results in a commit or abort of the corresponding transaction. The execution of a
trigger including the external programs is typically synchronous, i.e. the DBMS
holds a lock on the affected data until the trigger terminates. The concrete
locking mechanism strongly depends on the implementation of the concurrency
control protocol and thus varies with the database management system.

3.3 External Program Calls 29

Figure 3.1: Schematic overview of an external program call

Obviously, to use an external program practically, we must be able to pass
parameters to the EP and to access the corresponding program output from in-
side the trigger. This output can be used to evaluate trigger conditions or to
determine subsequent trigger actions. Since the EPCs are embedded straight
inside the DBMS of the local system, we are able to delay or abort transactions
depending on the result of an external program call. Just like common triggers
that exclusively use local data to evaluate their trigger conditions, the DBMS
autonomously schedules the execution of the trigger that encapsulates the EP. In
particular, we do not force a component database to provide an atomic commit-
ment protocol like 2PC (see 3.4 for a discussion).

We now illustrate the call of an external program using a simple example.
Unfortunately, the concrete statements and mechanisms to load and register ex-
ternal programs in a database vary among different database products. Thus, we
use Java and the database DB2 as concrete representatives to give an example
for an EPC. Before an external program can be called from a trigger it has to be
loaded into the database and registered as a user-defined function or stored pro-
cedure. The program must define a specific method, procedure, or function that
should be callable by the database and execute the required operations. As an
example, we assume that the following Java function someClass.someFunction

shall be registered in the database:

public class someClass {

public static int someFunction (String arg1, int arg2) {

int result=0;

// do something with param1, param2, and result

return result;

}

}

The function takes two arguments arg1 and arg2 with the given data types.
It calculates an integer as a function value of the parameters. Depending on the
database system, the compiled class someClass.class can be loaded directly
into the database or it must be added to a Java archive first. We assume the
class to be included into a jar file ep.jar, that is loaded into the database using a
database-specific mechanism and registered as archive ep. Thereafter, the exter-
nal function has to be registered as a Java UDF in the database. The following

30 3. Enhanced Active Database Systems

statement exemplarily creates a new UDF in a DB2 database and maps it to the
someFunction function:

CREATE FUNCTION someUDF (arg1 VARCHAR(255), arg2 INT)

RETURNS INTEGER LANGUAGE JAVA

PARAMETER STYLE JAVA

EXTERNAL NAME ’ep:someClass.someFunction’

EXTERNAL ACTION DETERMINISTIC FENCED NO SQL

The statement specifies the signature of the function (name, arguments, return
type) and additional parameters required by the database system to successfully
register the function as UDF, e.g. the language type security settings. The UDF
is mapped to the external function in the registered jar archive ep. It is now
accessible from within the database and can particularly be called by a trigger.
The following trigger is executed before an update occurs on the relation R(A, B),
with A and B being string and integer attributes respectively:

CREATE TRIGGER onUpdate

BEFORE UPDATE ON R

REFERENCING NEW AS n

FOR EACH ROW MODE DB2SQL

IF (someUDF(n.A, n.B) = -1) THEN

SIGNAL SQLSTATE ’75000’ SET MESSAGE_TEXT=’Error’;

The trigger calls the external program someUDF for each updated row in R,
while the update transaction is blocked by the DBMS and waits for the trigger to
return. The update operation only commits, if the function call for the updated
values of A and B does not yield −1. Otherwise an error is raised and the
corresponding update transaction is aborted.

3.4 Discussion

We now discuss the restrictions to local autonomy that are induced by the ex-
ecution of external programs. We refer to the well-known classification of local
autonomy summarized in 2.3.2.

The execution of external program clearly violates local design autonomy,
since the creation of triggers and user-defined functions requires changes to the
database system. Communication autonomy, as it is defined in [102], allows the
CDBS to decide when and how to respond to external requests. According to
this definition, EPCs do not impose restrictions to communication autonomy,
since we do not force to answer requests immediately. As we will see later (see
Chapter 5), a component database may go offline during a global integrity check
without compromising global integrity, if pessimistic checks are implemented.

3.5 Current EADBS 31

Furthermore, a request via an EPC is initiated by the database itself without
being forced to execute, which allows a CDBS to retain a high level of execution
autonomy. The DBMS decides when to schedule a local transaction, the execution
of a trigger or an external program. EPs do not interfere with local serialization
of transactions or concurrency control. Like local constraint checks implemented
by triggers, the DBMS waits for the termination of the EP that returns a value
to commit or abort a transaction. A timeout value typically limits the time that
a trigger, function, or procedure may take to execute. The decision to abort the
execution of a trigger belongs exclusively to the DBMS.

As already motivated in the previous chapter, reasonable information sharing
in a heterogeneous and autonomous environment demands for certain arrange-
ments and assurances among the partners. The enhanced activity allows a com-
ponent database to interact with other components of a federated information
system while retaining a high level of local autonomy. Using triggers we are able
to commit or abort a local transaction depending on the state of a remote data
source. In particular, using Java with JDBC and SQL we can implement portable
solutions to overcome heterogeneity in different types of data sources. As we will
see in the next section, there is a comprehensive list of current EADBSs that sup-
port Java as a standard language for coding external procedures and functions.

3.5 Current EADBS

In this section we give a brief overview over current Enhanced Active Database
systems and their supported programming languages. Commonly supported pro-
gramming languages meeting the requirements of data connectivity and client-
server connections are C, C++, and Java. Like Java comprising JDBC as a
database connectivity framework, C and C++ support data connections via the
ODBC (Open Database Connectivity) interface using SQL as query language.
Besides, we are able to implement client-server connections which makes C and
C++ perfectly suitable for the concepts we propose in this work. In general, the
external programs are packed into shared libraries (e.g. jar, so, dll) and loaded
into the database using a product-specific installation routine. The following list
contains database products that support triggers and user-defined functions writ-
ten in at least one of the languages C, C++, or Java and can thus be classified as
Enhanced Active Database systems. The list is ordered according to their market
share as presented in [43] and does not claim to be complete.

Oracle Database: The object-relational database Oracle runs on various plat-
forms and provides a comprehensive set of tools for data management [7, 73]. As
an active database it supports triggers on row, statement, schema, and database
level. The basic version of Oracle was developed in 1979 and since then con-
stantly enhanced [82]. Since version 6.0 it comprises PL/SQL, a procedural

32 3. Enhanced Active Database Systems

language for database scripting, to provide a more complete programming so-
lution for database applications. The first, although very limited possibility of
interaction with its execution environment was introduced on version 7.3 with
the UTL_FILE package allowing PL/SQL scripts to read and write external files
sequentially. Access to operating system operations could be provided using the
DBMS_PIPE package that allows a PL/SQL script to put a request in a database
pipe from which it could be picked up and processed by a listener written in
Perl or the Oracle Call Interface (OCI). In the current version 10g, Oracle sup-
ports stored procedures and user-defined functions written in C and Java that are
callable directly from within triggers. Java Stored Procedures were introduced in
version 8i which was released in 1999. It comprises its own J2SE 1.4.x compliant
Java Virtual Machine as well as a couple of extensions to the JDBC connectivity
framework like JDBC Thin and server-side internal drivers.

IBM DB2 UDB: The IBM Universal Database 2 (DB2) was originally re-
leased in 1983 and is now available in the version 8.2 [4, 11, 59]. Like Oracle
it runs on various operating system platforms and has active capabilities in the
form of triggers, although only supported on row and statement level. In the
current version, stored procedures and functions can be written as SQL stored
procedures based on procedural extensions to the SQL language (similar to Ora-
cle PL/SQL), or based on high-level languages on the host system, such as RPG
(Report Program Generator), COBOL, C, or Java. Non SQL procedures like C
and COBOL were introduced with the DB2 version 6 released in 1999, whereas
Java was not supported prior to version 7 from 2001. COBOL is a high-level lan-
guage suitable for data processing in business applications. Initially designed for
the handling of huge amounts of data stored in a specific record format, COBOL
is also able to access databases directly via specific COBOL database bridges like
[28].

Microsoft SQL Server: The MS SQL Server is currently in the version 2005
and like Oracle and DB2 supports triggers and external procedures and functions
[76, 106]. The first version of the SQL Server was developed for the OS/2 platform
by Sybase and released in 1988. In 1994 Microsoft ended the marketing partner-
ship with Sybase and bought a copy of the source code to independently develop
their own database server designed for Windows NT. After the release of the first
SQL Server version 4.3, the versions 6.0 (in 1995), 6.5 (in 1996), 7 (in 1998),
and 2000 followed. The database uses its own SQL dialect Transact-SQL to ma-
nipulate the data. Stored procedures can either be a collection of Transact-SQL
statements or a reference to a Microsoft .NET Framework common language run-
time (CLR) method. The CLR component was integrated into SQL Server 2005
and allows the execution of stored procedures, triggers, or functions written in a
compatible .NET programming language like Visual Basic .NET or Visual C#.

3.5 Current EADBS 33

Connections to remote databases are established using the ADO.NET framework
based on the ActiveX Data Object (ADO) technology. Furthermore, Visual Ba-
sic and C# support remote procedure calls. In the previous versions (since 6.5)
SQL Server supported extended stored procedures to load and execute a func-
tion within a dynamic-link library (DLL). The development of such extended
stored procedures is treated as any other DLL development. DLLs are shared
object written in C or C# that can be accessed by multiple threads at the same
time. They can be called from within trigger like common Transact-SQL state-
ments using the data connectivity of the host language to connect to remote data
sources.

Informix Dynamic Server: The Informix Dynamic Server (IDS) is the data-
base system of the Informix company which was taken over by IBM in 2001 [60].
The current version 10.0 runs on various platforms and is designed for online
transactional processing (OLTP) applications. Like Sybase ASE, IDS descends
from the Ingres relational database developed at the University of California,
Berkeley. The database supports triggers on row and statement level. External
functions and stored procedures in the languages C and Java is supported by the
database since its version 9.2 released in 1999. C programs are loaded into the
database as DLL or shared libraries depending on the operating system. The
support of Java requires the J/Foundation extensions which contains the JVM of
Sun. The mechanisms and syntax to load, register, and execute external functions
and procedures is similar to DB2.

Sybase ASE: Sybase Adaptive Server Enterprise (ASE) 15.0 is the current
version of the Sybase relational database which was first released in 1984 as
Sybase SQL Server and has its name since version 11.5, released in 1997 [110,
111]. Like Informix, the database is a descendant of the Ingres database and
was developed by Sybase in cooperation with Microsoft until 1994. After their
marketing partnership ended in 1994, both databases were further developed
independently. Due to their common history, the products share many basic
foundations, particularly the SQL dialect Transact-SQL, although now in slightly
different versions. The database runs on various platforms and implements active
capabilities in the form of triggers. Since version 12.0, which was released in
1999, Sybase ASE supports external stored procedures that are registered in the
database as common procedures but implemented by an Open Server application
called XP Server. The procedural functions written in C or a language capable
of calling C functions are loaded into the database as shared libraries like in
Oracle, DB2, or Informix Dynamic Server. Also since version 12.0 the database
comprises an internal Java Virtual Machine to execute Java methods as functions
and stored procedures.

34 3. Enhanced Active Database Systems

PostgreSQL: PostgreSQL was initially developed, again, as a successor of the
Ingres database at the University of California at Berkeley [96]. In 1996 it started
as an open source project and was soon replaced by a radically transformed and
enhanced version known under its current name PostgreSQL. It is currently in the
version 8.1 and supports per-row and per-statement triggers as well as external
stored procedures and functions. They can be written in procedural languages
like PL/pgSQL, PL/Tcl, PL/Perl, PL/Python, as well as C and, since version
8.0, also Java. The trigger definition in PostgreSQL strongly differs from other
DBMSs. Trigger events are specified in SQL but the actual trigger action is
implemented as an external trigger function, one for each trigger. The trigger is
executed by a trigger manager that passes arguments to the trigger via specific
trigger data structures.

This list shows that most database vendors already support external pro-
gram calls and implies that the technology will be most likely included into most
database products in the near future. In the following chapters we show how
the enhanced functionality of Enhanced Active Databases could contribute to
common problems in federated information systems.

Chapter 4

Active Event Notification

The integration of data sources into federated information systems is a difficult
task, especially when they shall be loosely coupled to the system and retain
the highest possible degree of autonomy. According to the basic architecture
described in Section 2.2, a database is generally integrated using a wrapper com-
ponent which encapsulates a source and provides a common interface to the
federation layer. A difficult problem in such an environment with autonomous
component databases is the detection of events in the integrated data sources
in order to react to that event on the global level. Particularly in event-based
systems of event producers and consumers, we need a mechanism to detect events
in the attached sources and propagate those changes to corresponding event pro-
cessing components. A special application scenario is real-time (or zero latency
[81]) data warehousing, where updates are propagated and integrated into the
warehouse immediately after the update occurred. The implementation of such
types of data warehouses demands for real-time event delivery mechanisms for
the integrated sources.

A common approach to event detection in databases is monitoring. The source
is scanned at specific intervals to poll events using change extraction algorithms
based on, for example, snapshots or log files. Although this method is widely
used in practice, it is only able to provide periodic or deferred updates to an
information system, since the Event Monitor does not exactly know the time an
updated occurred. A truly immediate update notification requires the notification
process to be integrated into the update process at the data source itself. This
requires firstly that the database is able to detect and react on local events, which
is the case for active databases, and secondly that the database is able to actively
notify an external component about the local update. The latter functionality is
provided by the external program calls, which can use client-server APIs of the
external programming language to open the required connections.

In this chapter we present a concept that allows Enhanced Active Databases
to actively notify an external notification interface about updates in its local data
stock. The concept fully exploits the enhanced activity of the database to pro-

36 4. Active Event Notification

vide an information system with immediate update notifications. We describe
the interaction of the database with a Notification Interface, which is specifi-
cally designed to support Active Event Notifications invoked by Enhanced Active
Databases. The concept is particularly suitable for real-time data warehousing
and global integrity maintenance supporting both, asynchronous and synchronous
event delivery to a monitoring component. Active Event Notifications build the
basis for the concept of global integrity maintenance and the tightly coupled
wrapper component introduced later in this thesis.

We start with a general overview of monitoring concepts including a descrip-
tion of event detection phases, concrete change capture methods, and additional
change delivery options in Section 4.1. Section 4.2 summarizes related work pre-
senting solutions to event detection in research projects and major commercial
database products. Our concept of Active Event Notification for immediate syn-
chronous and asynchronous update delivery is described in Section 4.3.

4.1 Monitoring Concepts

Before we describe our concept of Active Event Notification using Enhanced Ac-
tive Databases, we shortly summarize popular monitoring techniques and prop-
erties, mainly developed in the context of data warehouses for incremental view
maintenance. Updates are extracted from the sources (base relations) and sent
to the data warehouse where they are incrementally integrated and stored. How-
ever, since a data warehouse can be considered as a federated information system
with read-only operations on autonomous operational sources, the techniques are
also applicable to other forms of federations, where the federation layer must be
aware of local updates.

Which monitoring techniques are applicable to a data source strongly depends
on the type and activity class of the data source. With the definition of Enhanced
Active Database systems as an extended type of active databases we distinguish
between three data source activity classes:

Passive Data Sources: Passive data sources are still widely used in practice
and a lot of important data is stored in flat files (CSV) or spreadsheets.
With the uprise of XML and the semantic web, the amount of semistruc-
tured information sources steadily grows enormously. Unstructured and
semistructured information is typically stored in text files without being
managed by a database management system (except XML databases like
[61]). Thus, such flat files, spreadsheets, or XML files do not provide trans-
action management and integrity checks. This activity class also includes
passive database systems which in fact comprise a database management
system but do not support triggers to react on local events.

Active Databases (ADBS): Active databases comprise an integrated active

4.1 Monitoring Concepts 37

mechanism to react on local events and execute integrity checks on the
local data to ensure consistency. They commonly support triggers based
on ECA rules which can be set up to fire on a certain event (insert, update,
or delete), evaluate a trigger condition, and determine subsequent trigger
actions. With triggers we are able to implement constraint checks that
involve more than one entity in the database.

Enhanced Active Databases (EADBS): Enhanced Active Databases as in-
troduced in Chapter 3 are active databases with enhanced activity. The
main difference is their ability to execute external routines written in ex-
ternal programming languages, which enables them to actively interact with
external components in a complex way, like calling remote procedures or
querying remote databases directly.

The active capabilities determine the capture methods and data delivery op-
tions that can be used to monitor the data source. Changes in data sources are
typically captured using an event monitor that implements a concrete monitoring
concept suitable for the underlaying data source activity class.

4.1.1 The Event Monitor

Figure 4.1 depicts an Event Monitor and its interaction with other architectural
components in an event-based information system. the Event Monitor can be
implemented in any component that has access to the data source and wants
to stay informed about events in the underlaying data source. In a federated
information system, the monitor is usually part of the wrapper or federation layer,
depending on the concrete design and intended functionality of the system. If
implemented in the wrappers, the changes are extracted from the sources directly
by the wrappers and propagated to the federation layer. Otherwise, updates are
extracted from the sources by the federation layer via the wrapper components.

An event monitor basically consists of a Change Capturer component and a
clock to trigger periodic data extractions. The capturer knows how to access the
data source and implements a specific capture method suitable for the data model
and activity class of the underlaying source. The captured changes are propagated
to an event processor where they could, for example, be integrated into an existing
data stock (like a data warehouses), replicated to another data source, or checked
against integrity constraints. In many real-time scenarios, the Event Processor
is a messaging system that distributes updates in a publish-subscribe fashion.
Besides invoked by the internal clock, the capture process can also be triggered
by an external user or application or directly by the data source itself. To better
understand the sequential execution of the event detection process using an Event
Monitor, we distinguish between the following three phases:

38 4. Active Event Notification

Figure 4.1: Interaction of the Event Monitor.

1. Notification: During the notification phase, the change capturer receives a
notification that changes should be extracted from the data source. There-
upon, the capturer executes the subsequent change extraction phase. The
invocation can either be triggered by a user or application, a clock, or the
data source itself. The type of notification is determined by the data deliv-
ery schedule that is discussed in detail in Section 4.1.3.

2. Change Extraction: During the change extraction phase, the change
capturer uses a specific capture method to identify and retrieve updates
from the database. The concrete change capture technique depends on the
data model and the activity class of the source, i.e. if the source is a passive,
active, or enhanced active data sources. A list of popular change capture
methods are presented in Section 4.1.2.

There are several approaches for change extraction in different kinds of data
sources available. For example, well-known solutions for passive relational
or XML data sources are presented in [69] and [118] respectively, whereas
updates are detected by comparing the updated data with a snapshot cre-
ated previously. Other approaches use log files or timestamps to identify
updates data items.

3. Change Propagation: After updates have been extracted from the source,
they are sent to an event processor component for further processing. In a
data warehouse scenario this component would most likely be a data inte-
grator that loads the updates into the staging area of the data warehouse.
In the context of other information system architectures this could be a con-
straint manager, a replication manager, or an event broker that processes
the updates in an application dependent way.

Before we discuss the data delivery options including the delivery schedule

4.1 Monitoring Concepts 39

that determines the notification phase, we give an overview of commonly used
approaches for the extraction of changes during the change extraction phase.

4.1.2 Change Capture Methods

There is a number of concepts for event detection in various types of data sources.
They can basically be divided in static and incremental capture methods. While
static capture is usually associated with taking snapshots of the data periodically,
the incremental capture methods do consider only the updated data items and
not the entire data stock. Both classes have different requirements towards the
capabilities of the data sources and thus entail different advantages and disadvan-
tages. In the context of federated information systems, we assume that monitor
components of the federation layer monitor the source to detect and extract local
updates.

Static Capture Methods

Static capture methods are intended for monitoring sources that store a man-
ageable amount of data. They are less suitable for sources with high data load,
since the data capture process could significantly influence their performance,
especially if they store large data sets. However, except for the file comparison
capture, the techniques are rather simple and therewith easy to implement.

Static Capture: The idea of this simple monitoring technique is to periodically
take a snapshot of the entire base relation in the source and load it into the
data warehouse. The information in the warehouse can either be replaced
by the snapshot or the data can be appended to an existing table. Thus,
the warehouse either holds a replica of the base relation at a given time
or an accumulation of all data items over a certain time period. Unless
the federation layer needs to maintain copies of the data as required for
data warehousing, this capture method is rather inappropriate. In general,
the federation layer needs to be provided with the updated records only
rather than the entire data stock. These changes can be computed using
a snapshot copy maintained by the federation layer (see file comparison
capture below).

Timestamp Capture: The timestamp capture method assumes that every
record contains information about the time at which it was last updated.
These temporal information can now be used to select updates from the
base relations. The monitors select only those records which have changed
since the last scan. This capture method is independent of the database
type but does not capture all changes of state of the records that occur
in the time period between two scans. Furthermore, deleted records are
not considered unless they are marked as deleted in the base relation and

40 4. Active Event Notification

purged from the database after the capturing process. Thus, the timestamp
capture is not applicable in federated information system, if the federation
layer must be aware of all changes of state (as required for global integrity
maintenance) or if the sources do not implement a marked-as-deleted status
for deleted records.

File Comparison Capture: The file comparison capture (also known as snap-
shot differential method [69]) detects updates in the base relation by com-
paring it with a previously taken snapshot. The records in the base relation
are compared to the entries in the snapshot to reveal inserted tuples, that
are not present in the snapshot, and deleted tuples that only exist in the
snapshot. Records existing in both, the base relation and the snapshot,
have to be scanned for changed attribute values to identify data updates.
Typically, to speed up this comparison operation, the snapshot does only
store the key attributes together with a hash value that is calculated from
the attribute values of the record. If the hash value calculated from the
base relation does not match the corresponding hash value in the snapshot
then the record has changed and is identified as an update. The snapshot
management and record comparison has to be implemented in the federa-
tion layer, whereas the snapshot should ideally be stored in an additional
repository maintained by the federation layer to preserve design autonomy
of the source. Popular representatives of file comparison methods are the
comparison method for unstructured strings [57], relational and hierarchi-
cally structured data as presented in [69] and [23] respectively, or algorithms
for the comparison of semi-structured data like XML files as described in
[27, 118].

Incremental Capture Methods

Incremental capture methods provide the integration layer with updates without
taking a look at the entire basis relation. Updates are stored in a persistent
area (delta sets [46]) where they are captured by the monitor and deleted after
processing. Thus, unlike using static capture methods, all changes of state of
the records are recorded and accessible by the monitor. Incremental methods
are closely tied to the capabilities of the source (DBMS) and more complex than
static methods. They are particularly suitable for data sets where the amount
of changes in a given update window is significantly smaller than the size of the
entire base relation.

Application-assisted Capture: This incremental capture mode is implemen-
ted in the applications that modify the local data sources. Every time an
update operation is executed by the application on the local database, it
concurrently writes the changes in a persistent delta set (file, database table,
etc.) for further processing. The updates can be polled from the storage

4.1 Monitoring Concepts 41

area immediately. The method inherits several problems: all applications
that modify the data source have to be recoded to write the changes in delta
sets. Furthermore, an application might only maintain key information
of the records whereas additional information is added by the database
(e.g. a timestamp or other default values). This requires the application
to fetch the entire record from the source before writing it to the delta
set. In the context of federated information systems, an implementation of
the application-assisted capture method requires the recoding of all local
applications that modify data on the component databases to maintain
delta sets. These can then be retrieved periodically by a monitor in the
federation layer to capture the data updates. Like the timestamp technique,
this method is independent from the database type but is difficult to apply
to legacy systems.

Transaction Log Capture: This capture method exploits the logging and re-
covery capabilities of database management systems to capture updates.
The DBMSs maintain those log files for transaction management and sys-
tem recovery so they particularly store all the information about write
operations on the database. The files can now be monitored to periodically
extract changes of interest without limiting source performance. The main
drawbacks of this method are that the monitor must be able to identify and
extract only that information that is already committed by the database
and that the transaction logs must be available until all changes of interest
have been captured. Obviously, this method is only applicable to source
with DBMS and the log files must be accessible by the federation layer.
This could cause security problems, since the log file access enables the
federation layer to basically read all local transactions including those that
should not be visible to the federation. The transaction log-based capture
method is also the basis for popular database replication techniques, so
replication-based monitoring approaches are basically represented by this
method.

Trigger-based Capture: The last capture method we discuss is based on the
active capabilities of active databases and uses triggers to maintain the
delta sets which are typically stored directly in the database. A trigger is
invoked by a certain condition or event and writes a copy of the changes
of interest to the delta set. The monitor can now retrieve the updates
from the delta sets similar to the application-assisted approach. Since the
invocations of the triggers significantly affect the system performance, this
method should only be applied to sources that are capable of processing
the expected number of events. The use of triggers implies a significant
limitation of design and execution autonomy. The database administrators
must agree to set up the triggers and store delta sets in their database.

42 4. Active Event Notification

The main advantage is that the delta sets are maintained directly by the
database independent of local and global applications and contain only
changes that are already committed by the database.

The capture methods do only describe the requirements and algorithms to
retrieve updated records from the sources. The interaction of the Event Monitor
with the source and other event consuming components is defined by the delivery
options described next.

4.1.3 Data Delivery Options

Besides the capture methods that define the techniques to identify and extract
updated information from the sources, there are additional delivery options that
must be considered during source monitoring. Data delivery options define the
interaction of the Event Monitor with the data source and the Event Processor,
and significantly influence the behavior of the entire information system. The
option we discuss here are the delivery schedule that determines the notification
phase and therewith the freshness of the system, the delivery mode that differ-
entiates between push and pull-based data delivery, and the coupling mode of
the notification process and the local write operation. The descriptions in the
following subsections are mainly based on [38].

Coupling Mode

The first delivery option that significantly influences the behavior of the entire
system is the coupling mode. It defines the way of interaction between a local
transaction process that modifies data, and the change extraction process exe-
cuted by the data capturer. The coupling between these two processes can either
be asynchronous or synchronous:

Asynchronous: The change extraction process is completely detached from
the update operation process. The update operation is not blocked while
changes are extracted and transfered to the Event Processor. Changes must
be committed to the source before the change extraction is started. Since
the extraction is detached from the update, there is typically a latency be-
tween the time the changes are committed and the time they are extracted
and propagated to the Event Processor.

Synchronous: The change capture process is executed as part of the update
process. The DBMS blocks the local transaction during the change extrac-
tion and event processing phase. After that, locks on the local transactions
are released again.

4.1 Monitoring Concepts 43

Event detection is commonly implemented using the asynchronous coupling
mode. Changes are extracted after changes are written to the source and sub-
sequently processed in an separate process. In general, events are propagated
to a message queue from where they are processed chronologically by an event
consumer. Synchronous event detection in a federated information system allows
the federation layer to react on local events as part of the update operation in
the source. This is essential in highly reliable systems with strict consistency.
As we will show in Chapter 5, synchronous notification can be used for global
constraint maintenance in federated information systems.

Delivery Schedule

Another delivery option we discuss here is the delivery schedule that is imple-
mented by a monitor. It determines the time a notification is sent to the Event
Monitor to extract updates from the source. A widely accepted classification
for centralized and distributed systems is presented in [29, 127], where updates
are extracted according to a periodic, deferred, or immediate delivery schedule,
depending on who is triggering the change extraction phase. The three types of
notification connections are depicted as dashed arrow lines in Fig. 4.1:

Periodic Delivery (1a): The probably most common delivery schedule is the
periodic update extraction. The source is scanned for changes at certain
time intervals, commonly triggered by an internal clock of the Event Mon-
itor. The polling rate is significantly affecting data freshness and perfor-
mance within the entire system. Although a scan should ideally only be
performed if changes occurred in the source, the optimal polling strategy
depends on the application field. For example, in a data warehouse scenario
it could be sufficient to load new data from the sources once a day, whereas
a more time-critical scenario might require updates of the view every hour
or even every minute. However, too many scans in a short period of time
unnecessarily stress the underlaying data source, especially when only a few
changes occurred in the same time. On the other hand, if there are too few
scans on a source with frequent updates, the data in the system will always
be out of date. Periodic updates can, for example, be optimized using the
Slacker coherence protocol presented in [109], which dynamically adjusts
the polling rate to the update frequency observed at the source. Further-
more, periodic update extraction can be scheduled into off-peak hours (e.g.
during the night), not to interfere with local applications.

Deferred Delivery (1b): A deferred delivery schedule captures updates from
the sources as needed, for example initiated by a user or an application,
whereupon the change capturer executes the change extraction phase. For
instance, deferred delivery can be used to refresh a materialized view in a
data warehouse whenever a query is issued against that view. The system

44 4. Active Event Notification

will refresh the view by importing updates from the sources before results
are sent to the user. Deferred delivery will always provide fresh data, but
entails a couple of drawbacks. Since updates are extracted on demand, it
takes some time to calculate all updates and transfer them to the Event
Processor. Furthermore, if an application triggers the extraction during
time with high load on the sources, this can significantly slow down the
systems, especially if a static capture method is applied.

Immediate (Real Time) Delivery (1c): The immediate delivery schedule re-
quires updates to be extracted directly after the changes occurred in the
data source. The source notifies the change capturer which thereupon starts
the change extraction process. Immediate delivery produces significant ad-
ditional workload to a data source, since each local transaction entails the
change delivery. However, immediate updates are crucial for real-time ap-
plications like real-time data warehousing or the maintenance of strict con-
sistency and data replication in federations. We like to point out that
although an immediate schedule can be approximated by a periodic (near
real time) schedule using a time interval small enough to report changes
almost instantly (e.g. every second), it cannot substitute a real time (im-
mediate) schedule. A truly immediate schedule will adapt automatically
to the (aperiodic) update frequency of the source and report changes only
when they occur, whereas a near real time periodic schedule will stress the
data source due to high frequent scans even if the source was not modified.

With regard to the coupling mode we can state that a synchronous event
monitoring mechanism will always implement an immediate delivery sched-
ule, since the capture process is part of the update operation and therefore
executed at the time the update occurs. Although discussed and required as
a fundamental functionality of various research projects and applications, a
truly immediate update notification mechanism has not yet been described
in the literature (see Section 4.2 for details). Almost all the projects and ap-
plications that claim to perform real-time change capture operate in batch
mode assuming that the changes can be polled from delta sets, log files, or
event queues on a certain schedule (periodic delivery) [70]. So one of our
contributions as presented in this chapter is a concept for truly immediate
data delivery in federated information systems.

Immediate and deferred delivery are synonymously referred to as aperiodic
delivery [38]. As we will see in Section 4.3, Enhanced Active Database systems
are able to actively notify an event monitor about changes in their data, so that
inefficient empty scans, i.e. scans on an unchanged data stock, are avoided. Even
more, a scan is performed in the second the source was updated providing an
event processor with up-to-date information.

4.1 Monitoring Concepts 45

Delivery Mode

Another important delivery option of monitoring techniques is the delivery mode.
Changes can either be pulled from the source from an event processor or actively
pushed by the source. Whereas polling the changes from the sources is a com-
monly used technique in almost every monitoring implementation, truly pushing
mechanisms for immediate updates initiated by the data source are currently not
available (see 4.2).

Pull: This is the traditional request/response mechanism over a unicast connec-
tion. The data capturer receives a notification from a component to initiate
the change extraction phase and subsequently pulls changed records from
the source. In case of a static capture method, it will compute the changes,
for example, using snapshots or timestamps directly from the base relation.
Using an incremental capture method, changes are polled from a persistent
area, such as delta sets, log files, or other kinds of message pipes imple-
menting the producer-consumer pattern. The source acts as a passive data
provider and responses to requests from external components. It does not
actively participate in the event detection process. Data can be pulled from
the sources periodically (periodic pull) or aperiodically (aperiodic pull).

Push: This data delivery mode is typical for publish/subscribe systems, where
the data flow is initiated by the data source. Interested components sub-
scribe to specific information and receive an update automatically whenever
changes occur in the data source on that portion of information. Updates
can be pushed to subscribers using different delivery schedules (periodic
push and aperiodic push). Update messages are actively created and trans-
mitted by the data source. In particular, we do not consider a monitor
component running at the database that extracts changes from the source
and sends them to an event broker as a truly push-based delivery mecha-
nism, since changes are again polled by an external component.

The data delivery options determine the behavior of the entire event-based
system. Like the change capture method, the supported delivery options also
depend on the capabilities of the underlaying data source. Table 4.1 lists the
delivery options and capture methods supported by different data source activ-
ity classes. As can be seen, there are three delivery options that are uniquely
supported by EADBSs (marked with ⊕). As the only data source activity class,
EADBSs are able to provide immediate (real time) update delivery with pull and
push using asynchronous and synchronous coupling modes.

46 4. Active Event Notification

Passive Sources ADBS EADBS
without DBMS with DBMS

Change Capture Method
Static + + + +
Timestamp + + + +
File Comparison + + + +
Appl.-assisted + + + +
Transaction log - + + +
Trigger-based - - + +

Delivery Schedule
periodic + + + +
deferred + + + +
immediate - - - ⊕

Delivery Mode
pull + + + +
push - - - ⊕

Coupling Mode
asynchronous + + + +
synchronous - - - ⊕

Table 4.1: Data source activity classes and their supported monitoring options

4.2 Related Work

4.2.1 Research Projects

Most of the work concerning the monitoring of sources deal with the incremental
view maintenance problem for single and multiple view using incremental and
parallel processing of updates in a data warehouse environment [71, 126, 127].
A common characteristic of all these approaches is the computation of updated
views within the data warehouse using the sets of changes provided by distributed
sources. Updates are extracted from the sources using wrapper and monitor com-
ponents, but only few details are available on the monitoring process and the
extraction of updates itself. [126] presents a data warehouse architecture with
wrappers for various distributed data sources supporting only deferred updates
initiated by the data warehouse manager. There are no details given about the
particular change detection process within the wrapper components. In [71] the
authors describe an experiment to evaluate their view maintenance algorithm
using an Oracle 8i database, but again there are no details about the implemen-
tation of the change detection provided. The sample scenario used in [127] has
also no information about the functionality of its event monitors. The source
simply sends updates to the data warehouse.

A rather related concept is described in [121] where wrappers and monitors

4.2 Related Work 47

are realized as separate modules within the Whips architecture. While the wrap-
pers are responsible for the conversion of queries and query results, the monitors
extract updates from the heterogeneous sources. The monitors should also take
advantage of sources that are willing to support the event detection process. Be-
sides periodic updates using snapshots and database logs, they claim to have
implemented trigger-based monitors for relational sources, but there are no fur-
ther details available. In particular, the system does not support immediate
updates.

Another related approach for distributed events in a heterogeneous environ-
ment is presented in [66, 117]. CORBA-based, distributed, and heterogeneous
systems are enhanced by Active DBMS-style active functionality. The architec-
ture uses wrappers with event monitors to detect data modifications in the data
source based on polling and triggers. The trigger-based mechanism uses a pipe
concept provided by the database to send updates as database messages to a local
message buffer where they can be accessed by the wrapper. Thus, the wrapper
has to poll events from the message buffer instead of the database itself.

The approach presented in [67] uses a database gateway solution to detect
events in the local database. The authors state that triggers show too many
restrictions and impose a substantial loss of autonomy. Thus, they propose a
database wrapping approach that analyzes SQL statements to identify opera-
tions that modify the database. The gateway is created on top of the DBMS
between the database and the application and eavesdrop the entire communica-
tion. However, this approach requires the DBMS to provide an interface where
a gateway can be implemented to monitor the communication. Otherwise, espe-
cially all the local applications must be adjusted to use the gateway instead of
the database server directly.

4.2.2 Commercial Change Capture Products

Change detection is an essential task in the popular application field of Data
Warehousing. Since the major database vendors offer data warehouse add-ons
to their database flagships, they provide specific solutions for event monitoring
implemented as part of their ETL tools.

Since version 9i the Oracle database includes the Change Data Capture (CDC)
framework to provide data warehouses with updates [83]. The CDC architecture
uses rules and trigger to identify data that has been changed since the last extrac-
tion. The capture process works according to the publisher-subscriber paradigm
that typically consists of one publisher and many subscribers. A trigger copies
updated data to a specially created change table where they can be accessed
by subscribers using individual views to access the information it is interested
in and allowed to read. This trigger-based delta set approach is similar to the
management of materialized views and is intended for asynchronous periodical
pull of changes.

48 4. Active Event Notification

Oracle also offers Oracle Streams intended to continuously capture changes
at a database and send them to remote sources as required for data warehouses
or replication. The process is asynchronous using a source and a destination
queue. Changes are captured at the source according to user-defined rules from
the transaction logs, converted into the logical change record (LCR) information
model, and enqueued in the source queue. Like in the CDC framework changes
are polled from the queue using a propagation process that asynchronously polls
LCRs from the source queue at a certain time interval. If immediate change
delivery is required the interval must be set as small as possible resulting in
queue lookups even if the queue is empty. Both concepts, CDC and streams,
are unable to provide truly immediate change delivery or synchronous message
processing.

In the IBM DB2 Universal Database the event detection basically works sim-
ilar to the concepts implemented in Oracle. The database provides SQL replica-
tion, a delta set approach where changes are stored in change tables (cp. Oracle
CDC), and Q replication/Event Publishing where changes are queue in a mes-
sage queue before sending them to subscribers (cp. Oracle Streams) [58]. When
using SQL Replication, a Capture program identifies changed source data using
the DB2 recovery log files and saves the committed changes into staging tables.
Sources in SQL Replication can be DB2 tables and views, or tables on non-DB2
relational databases. In the latter case, changes are captured using triggers (if
provided by the source system). Corresponding to the Capture program on the
source, there exists an Apply program on the target that supports three methods
for replicating a table: full-refresh replication and two types of change capture
replication. The full-refresh replication is a static capture method that frequently
replaces the target tables with a snapshot of the source tables. The remaining
two options captures a row (1) whenever a value changes in a column that is
registered for replication, or (2) whenever a value in any column of the table
changes. As already mentioned, changes in non-DB2 relational databases are
captured using a trigger-based delta set capture method. Triggers are created on
the source table to populate staging tables. For the delivery schedule the user
can choose between interval timing (periodic), continuous (immediate), and event
timing (deferred) whereas the capture method is asynchronous and pull-based,
since changes are polled from the staging tables by the Apply program. Thus,
applying continuous replication the Apply program replicates data ”as frequently
as it is able, depending on its workload and available resources” [58].

Q Replication also uses a Q Capture Program and a Q Apply program to cap-
ture changes on the source tables and to apply the changes on the target tables
respectively. Contrary to the SQL replication, the programs directly communi-
cate using messages sent over WebSphere MQ queues according to the publish-
subscribe paradigm. The Capture program identifies committed changes using
the transaction logs. They are converted into messages for the WebSphere MQ
system and placed in the queue. The Q Apply program accesses those changes

4.3 Active Event Notification 49

from the queue and applies them on the target tables. Q Replication supports
single-master (unidirectional) and multi-master replication between two tables
(bidirectional) or multiple tables (Peer-to-peer replication). Q Replication is
a DB2-specific replication technique and does not support non-DB2 databases.
Event Publishing is an extension to Q Replication insofar as changes are converted
to an XML representation format before they are placed in the message queue.
There they can be accessed by user applications that are capable of processing
XML documents. Event Publishing also uses the Q Capture program to detect
updates based on log files. Again, like any other pipe mechanism, the publish-
subscribe paradigm means asynchronous pull-based message transfer between the
publisher and the subscriber.

To summarize we state that the capture methods provided by commercial
database vendors are in general very source-specific solutions. They either are
only applicable for their own database product or require additional software
to execute. Data Warehousing requires the database companies to reluctantly
provide methods and techniques to access databases of competing vendors, thus
dealing with heterogeneity in their systems. The event detection concepts offered
use asynchronous, pull-based publish-subscribe messaging systems that cannot
provide truly immediate update notifications.

4.3 Active Event Notification

As we have shown in the previous section, EADBSs are able to provide truly
immediate (real time) event delivery to an event processor without the need to
stress the source with high frequent periodical scans. We now present the concepts
of Active Event Notification for immediate push and pull-based change delivery
with synchronous and asynchronous coupling mode. In all the presented concepts
the communication between the EADBS and the Event Monitor is established
via external programs and remote procedure calls. A trigger detects a local
update event and executes an External Notification Program (see Section 3.2)
that signals the event to the monitor. Since the most common events in databases
are modifications of data, i.e. insertion, updates, and deletions, we limit our
considerations to these operations. The ENPs connect to a specifically designed
Notification Interface (NI) that is, in this context, implemented as a part of
the Change Capture component. Please note that a Notification Interface can
basically reside in any component of the federated information system that wants
to be informed about updates.

Our description shall be clarified using a simple example. Consider an en-
hanced active relational data source DB that stores a base relation R with schema
R = {A, B, C}. An event monitor with a Notification Interface is set up in a
wrapper component to receive active notifications from DB. Although we cast
the following considerations on the relational model, our concept certainly adapts

50 4. Active Event Notification

to EADBSs with other data models by adjusting the change capture method.
Furthermore, since Java is commonly supported by recent database systems, we
describe our approach using Java implementations of the ENP and the Notifica-
tion Interface. The concepts have been evaluated in the context of our tightly
coupled wrapper architecture which is described in detail in Chapter 6.

4.3.1 Pull-based Asynchronous Notification

The first concept we present is the pull-based asynchronous notification suitable
for most event-based information systems that require real time event delivery
without blocking local transactions. The change extraction is initiated asyn-
chronously after the corresponding local transaction is committed.

Figure 4.2: Pull-based asynchronous Active Event Notification.

Our approach fully exploits the active capabilities of the underlaying En-
hanced Active Database. We use a trigger-based capture method that maintains
a delta set in a separate relation which directly contains the updated tuples. Fig-
ure 4.2 depicts a schematic overview of the component interaction referring to our
example. After a local operation modified the base relation R, a trigger copies
the affected tuples to the delta set, where they are enriched with additional infor-
mation. Subsequently, a trigger on ∆R executes the ENP to notify the Change
Capturer about updates in R (notification phase). Thereupon it starts a Har-
vester Thread which continuously polls the tuples from ∆R until it is empty
(extraction phase). Finally, the updates are converted into a common informa-
tion model and sent to an event processor for further processing (propagation
phase).

Creation of ∆R

For the base relation R in our example, we create a delta set ∆R with the
attributes A, B, C,OP, T , with A, B, C being the original attributes of R. OP
and T are additional attributes storing the type of operation and the time the
operation occurred respectively. T is automatically set by the database using

4.3 Active Event Notification 51

a default value expression during the creation of ∆R. The value of attribute
OP codes the type of data modification, like for example I for an insert, U for an
update, or D for a delete. By default we set OP to NULL to differentiate between
newly inserted tuples and tuples in the delta set that still have to be processed
by the Harvester Thread. The current operation type is set by the trigger that
we use to maintain the delta set according to the corresponding operation on R.

Creation of the triggers

Changes to the base relation R are detected and processed using the active ca-
pabilities of the database. The following trigger example in SQL monitors insert
operations on R and copies inserted tuples to the delta set ∆R:

CREATE TRIGGER R_insert

AFTER INSERT ON R

REFERENCING NEW_TABLE AS N

FOR EACH STATEMENT BEGIN ATOMIC

INSERT INTO R_delta (A,B,C)

SELECT * FROM N;

UPDATE R_delta set OP=’I’

WHERE OP IS NULL;

END

In the first step, we copy new tuples from the temporary relation NEW_TABLE

to ∆R and in the second step, since we have detected an insertion, we update
∆R and set OP to I where OP is not already set, i.e. only tuples that were
added in the previous statement within the trigger are marked as inserts. Thus,
for any number of affected tuples in R, we execute exactly one insert and one
update statement inside the trigger. Please note that updates and deletions of
tuples in R will also result in an insert operation in ∆R. Thus, ∆R reflects a
chronological list of operations on R together with the operation type and the
time the operation occurred. Now, we define a second trigger on the delta set
R_delta, which exclusively fires on update events, as follows:

CREATE TRIGGER R_delta_notify

AFTER UPDATE ON R_delta

FOR EACH STATEMENT

sendnotify(’R’);

END

The delta set R_delta shall, of course, exclusively be updated by the trigger
R_insert. Thus, R_delta_ notify is executed as a cascading trigger directly
after R_insert. It is triggered by the update statement in R_insert which sets
the operation type in ∆R. This trigger calls the ENP sendnotify which is

52 4. Active Event Notification

registered in the database as a Java user defined function. The ENP connects
to the Notification Interface of the wrapper and informs it about an update in
relation R during the notification phase (see 4.1.1). Please note that each trigger
is executed once for each insert, update, or delete statement on R. Thus, each
update operation on R results in one call of the external notification program.

The External Notification Program

The external notification program sendnotify is used during the change notifi-
cation phase to notify the Event Monitor about updates in the local database. A
challenge here is the communication between the ENP and the Notification Inter-
face of the Change Capturer (see Figure 4.2). During the implementation we face
the problem that the Event Monitor in the wrapper component and the ENP are
two different processes which are initiated and executed independently from each
other. A wrapper component is installed and started once for each data source
as a standalone application. An ENP is initialized and executed by the database
system whenever a corresponding trigger is activated by a database transaction.
After the notification, the external program process terminates and resources are
freed again. In fact, we have one instance of the NI and many instances of the
ENP. Thus, the communication between the ENP and the Notification Interface
has to be established via sockets, a distributed object protocol such as CORBA,
or, as described in this example, the Java Remote Method Invocation protocol.
The NI registers a notification method notify to the local RMI registry. The
ENP implements a call of this remote method and sends as a parameter the name
of the updated relation ’R’. The ENP is loaded into the database and mapped
to a local function or stored procedure which can be called during the execution
of a trigger (see 3.3 for details).

The Notification Interface

The NI is started by the wrapper component and listens for incoming RMI re-
quest from a databases via ENP calls. It is registered at the local RMI registry
and offers a notification method notify(relationname) to get informed about
updates of the database. The task of the notify method is to initialize the change
extraction phase by waking up the Harvester Thread which is responsible for the
relation relationname. If the harvester is already running due to a previous
notification call, no action is performed by notify. The implementation of the
NI determines the coupling mode of the event detection mechanisms. In an asyn-
chronous implementation, as discussed in this section, the call of notify returns
immediately after the harvester has been woken up, without waiting for a result.
Thus, the ENP call returns and subsequently also the triggers R_delta_notify

and R_insert, so locks are released and changes are committed before the har-
vester starts reading R_delta. Contrary, if the NI calls a method of another

4.3 Active Event Notification 53

component synchronously, the entire system gets blocked until the last function
call has returned. For more details on synchronous notification we refer to Sec-
tions 4.3.2 and 4.3.4.

The Harvester Thread

The Harvester Thread (see Figure 4.2) is responsible for the extraction of up-
dates from the database during the change extraction phase. It connects to the
database and reads the updates directly from the delta set that corresponds to the
notification call. Since tuples in ∆R are enriched with timestamps, the harvester
is able to read the events that modified R chronologically as follows:

while runs
while no entries exist in ∆R

wait for notification from NI;
end
read all entries in ∆R ordered by T ascending;
process entries chronologically ;
set Tmax = T of last update in current result set;
delete entries in ∆R with T ≤ Tmax;

end

The monitor uses a single Harvester Thread for each delta set, which is exe-
cuted as long as the wrapper is running or the Event Monitor is shut down. While
the delta set is empty, the harvester waits for a notification from the NI. When it
gets notified, it wakes up to read and process the tuples from ∆R chronologically.
During the extraction of updates in the delta set, new updates can concurrently
be executed on R and thus new tuples are added to ∆R. In that case, ∆R con-
sists of a set of tuples ∆Rp, which are currently processed by the harvester, and
a set of newly added tuples ∆Rn. Thus, the harvester deletes the set ∆Rp from
∆R after each read operation using the time of the last operation in ∆Rp as the
split point. The harvester starts over again as long as unprocessed tuples ∆Rn

exist in ∆R. Otherwise it goes to sleep until the next notification.

4.3.2 Push-based Synchronous Notification

Enhanced Active Databases are basically able to synchronously notify an exter-
nal component about local updates. Synchronous notification is, for instance,
required for strict global integrity maintenance in database federations or for
synchronous replication. A local transaction is blocked until an external con-
straint manager is notified by the ENP and has evaluated a global constraint on
interdependent data of remote component databases. Depending on the result of
the global constraint check, the blocked transaction is committed or rejected. A

54 4. Active Event Notification

detailed description of the concept for global integrity maintenance in federated
information systems using Enhanced Active Databases is given in Chapter 5.

We have evaluated an approach with a combined notification and extraction
phase, where updates are transferred directly via the ENP as parameters. The
main problem herein is the adaptability of the ENP to different schemas in the
databases. The changed records must somehow be accessed and send by the
trigger, no matter what schema the records have and which data types are used
for the attributes. Since it is not reasonable to create a schema-specific ENP
for each relation in the database, where each attribute in the relation matches
a parameter of the ENP, we have to find a way to pass schema and data of an
arbitrary relation to the ENP.

Figure 4.3: Push-based synchronous event notification.

Figure 4.3 depicts the general process of the synchronous push-based notifi-
cation. Firstly, triggers must be defined for all relations that shall be monitored.
A trigger is schema-specific and must be created individually for each relation. It
fires on a local event and executes an ENP to notify the Notification Interface in
the Change Capturer about the data modification. Contrary to the pull-based ap-
proach, this mechanism directly pushes the changes to the Notification Interface
as part of the event notification via the ENP. From there they are synchronously
propagated to the Event Processor. The coupling of the ENP, the Notification
Interface, and the Event Processor is synchronous, i.e. the local transaction is
blocked until the ENP returns from its call after the Event Processor and NI
have finished processing (indicated by the bidirectional arrows). As mentioned
above, the main problem arising in this concept is the handover of the changed
records from the trigger to the ENP, which must be able to transfer the updates
to the Notification Interface regardless of the specific structure of the data. Like
in the asynchronous mechanism, the synchronous notification uses the delta sets
of changed tuples in the temporary relations NEW_TABLE and OLD_TABLE storing
new values (for inserted and updated records) and old values (for updated and
deleted records) respectively. In general, due to the isolation property of database
transactions, these temporary delta sets are not accessible from outside a trigger,

4.3 Active Event Notification 55

especially not from within an external program. Thus, the trigger has to loop
through the delta set and calls an ENP for each inserted, updated, or deleted
tuple passing their values as arguments to the ENP. Obviously, the arguments of
the ENP must somehow match the attributes of the updated records. Therefore,
we propose the following options to solve this problem.

Schema-specific ENPs

Records can be transfered to the Notification Interface using an individual ENP
for each relation that is monitored (see Figure 4.4).

Figure 4.4: Notification via schema-specific ENPs.

For each attribute in the schema there is a corresponding argument, denoted
as schema argument, in the signature of the ENP to take the values of records in
R. Referring to the example of 4.3.1 the ENP for R(A, B, C) takes four additional
parameters:

notifyR (’R’, operationtype, A, B, C)

operationtype marks the type of update operation (i.e. insertion, update,
deletion), whereas the arguments A, B, and C take the values of the attributes
A,B, and C respectively. Consider another relation S(D, E, F, G) that shall be
monitored, then we need an additional ENP specifically designed for the schema
of S:

notifyS (’S’, operationtype, D, E, F, G)

Obviously, notifyR cannot be used to process a record from S since the num-
ber of schema attributes does not match the number of attributes in S. All
ENPs communicate with a single instance of the Notification Interface. Before
the updates are sent to the NI, the records are converted into an object-based
internal representation format comprising all the information required to propa-
gate updates to an event processor: the name of the affected relation, the type
of event, and the schema and values of the changed records. The benefit of this
approach is obviously its robustness, since an ENP can specifically be coded to
meet the requirements regarding the corresponding schema. On the other hand,
to monitor a relation we must create a new schema-specific ENP, load it into
the database, and register it as an additional user defined function. Thus, each

56 4. Active Event Notification

relation requires, besides the trigger definitions, a corresponding UDF and ENP
to be present in the database. Furthermore, if the schema of a monitored relation
is altered, it consequently requires the UDF and ENP to be changed, making the
concept less suitable for systems with frequent schema modifications.

Delimiter Approach

Instead of individual ENPs for each monitored relation, the delimiter approach
uses only a single ENP for all updates (see Figure 4.5). The main advantage of
this concept is its universality, since an ENP must be loaded and registered in
the database only once.

Figure 4.5: Active notification with a single ENP.

Due to the limited capabilities of the trigger language, we are unable to pass
a sophisticated universal data structure to the ENP. The delimiter approach uses
host variables attributes and values to store schema and data information to
hand them over to the ENP as arguments. The variables are concatenated within
the trigger using a unique sequence of characters as delimiter. For example, to
propagate a tuple r(1, 3, 4) of the relation R(A, B, C), we create the host variables

attributes = "A#B#C";

values = "1#3#4";

using the character # as delimiter. After R is updated, the trigger fires the
ENP for each affected tuple passing the schema and the values of the tuple
as arguments to the NI. To receive the schema and data information from the
triggers, the ENP takes three additional parameters besides the name of the
affected relation:

notify (relationname, operationtype, attributes, values)

The argument operationtype stores the operation type of the update whereas
attributes and values match the concatenated host variables. The Notification
Interface receives the data via the ENP and decomposes the attribute and value
strings back into their atomic values for further processing and propagation. The
following example shows an update trigger definition for R with host variable
concatenation in DB2 syntax:

4.3 Active Event Notification 57

CREATE TRIGGER R_upd

AFTER UPDATE ON R

REFERENCING NEW AS n

FOR EACH ROW mode db2sql

BEGIN ATOMIC

DECLARE attributes VARCHAR(32672)

DECLARE values VARCHAR(32672)

SET attributes = ’A#B#C’;

SET values = n.A||’#’||n.B||’#’||n.C;

EXEC(notify(’R’, ’U’, attributes, values));

end

The delimiter approach works fine under several assumptions;

• updates may only affect a small number of tuples, since we experienced
that the transmission of too many tuples caused a transaction rollback due
to a trigger timeout;

• the length of the concatenated string of a tuple may not exceed the maxi-
mum length of the string host variable;

• the delimiter must be universally unique for any entry in the database.

Due to these assumptions, the delimiter approach does not seem to be appli-
cable to relations with many attributes or attributes storing large values or binary
data. Furthermore, if multiple tuples are affected by a single update statement
and one of the tuples causes the transaction to be rejected due to local constraint,
we have to execute compensating actions, since all previous updates have already
been sent to the Notification Interface. However, it seems to be quite reasonable
for global integrity maintenance, where an attribute check does only require the
transmission of only a few attribute values. Chapter 5 presents such a concept
using synchronous push-based notifications for global integrity checks. Both con-
cepts for push-based event notification have their limitations concerning their
applicability resulting mainly from limitations of the trigger language. An opti-
mal solution would require the ENP to directly access the temporary delta sets
NEW_TABLE and OLD_TABLE as part of a local transaction. This could be realized
using references on the delta sets that are passed to the ENP as arguments.

4.3.3 Push-based Asynchronous Notification

The push-based notification mechanism can easily be changed to implement the
asynchronous coupling mode. Therefore, the Change Capturer implements an
event queue in which the changes pushed by the data source are placed chrono-
logically. The call of the notify method of the NI is returned immediately after

58 4. Active Event Notification

an event has been queued, so the locks are released directly after all changes
are propagated to the NI. Figure 4.6 displays a schematic overview of the pro-
cess. Synchronous messages are indicated by bidirectional arrows, asynchronous
calls by unidirectional arrows. The changes can either be polled from the event
queue or pushed to the Event Processor (as depicted) independently from further
notifications.

Figure 4.6: Push-based asynchronous event notification.

4.3.4 Pull-based Synchronous Notification

The adjustment to synchronously pull changes from the source in in no way
straightforward. The main challenge in the synchronous notification lies in the
change extraction phase. While the notification imposes no problem, the trans-
mission of updates is rather difficult. For the evaluation of the delta set concept
as presented in the previous section, we adjusted the Harvester Thread to return
a boolean value when it finished extracting the updates from ∆R. The NI was
recoded to wait for the return value of the harvester after its notification via the
ENP. The result was a sequence of cascading calls of the triggers, the ENP, the
NI, and the harvester, which resulted in a deadlock, since the harvester could not
access ∆R because it was locked by the triggers. Even if the DBMS would allow
read access to the delta set, the harvester would not be allowed to delete the
processed tuples ∆Rp from ∆R. In general, the ACID properties of local trans-
actions ensured by the DBMS prevent any external processes from accessing the
changed records before they are committed. This basically applies to both, static
and incremental change capture methods (except application-assisted), since the
extraction of changes requires access to the entire updated data stock or material-
ized delta set. However, specific solutions for pull-based synchronous notification
may be provided depending on the concrete implementation of concurrency con-
trol mechanisms of the databases. The Active Event Notification mechanisms
have been evaluated as part of the tightly coupled wrapper architecture that is
described in Chapter 6.

Chapter 5

Global Integrity Maintenance

The maintenance of global integrity constraints in federated information systems
is still a challenge since traditional integrity constraint management techniques
cannot be applied to such a distributed management of data. In this chapter
we present a concept of global integrity maintenance by migrating the concepts
of active database systems to a collection of Enhanced Active Databases. These
Active Component Systems are able to interact with each other using direct con-
nections established from within their database management systems to actively
participate in global integrity maintenance. Global integrity constraints are de-
composed into sets of partial integrity constraints, which are enforced directly by
the affected Active Component Systems. The content of this chapter is based on
the work originally published in [92].

We start with a definition of Active Component Database Systems based on
Enhanced Active Databases in Section 5.1. In Section 5.2 we introduce partial
integrity constraints as a new type of constraints to define dependencies on in-
terrelated data managed by ACDBS. Based on partial constraints, Section 5.3
provides a detailed explanation of the constraint checking mechanism for a set of
commonly used classes of constraints. A discussion of properties of our approach
and related constraint checking protocols is covered in Section 5.4. To overcome
some limitations of the basic concept, we present the COMICS constraint man-
agement extension in Section 5.5. Partial integrity checks are initiated by the
Active Component Systems but executed and evaluated using an external con-
straint manager. The last section of this chapter provides an overview of related
work.

5.1 Active Component Database Systems

Within the classical notion of federated databases [102], the component databases
do only have passive functionality with regard to the federation. Like reposito-
ries, they provide access to their data and respond to data requests initiated

60 5. Global Integrity Maintenance

by the clients. Such passive component databases, with respect to the federa-
tion, operate isolated and do not have any knowledge of other CDBSs within
the federation to which their data is related. Now, the enhanced functionality of
Enhanced Active Database enables them to interact with external hardware or
software components beyond their system borders. An EADBS that is integrated
into a federated information system as a component database can use this en-
hanced activity to coordinate its actions with other components of the federation.
In particular, the extended functionality can be used to ensure consistency of in-
terdependent data and to enforce business rules in the form of global integrity
constraints.

Definition 2 An Active Component Database System (ACDBS) is an Enhanced
Active Database which actively participates in maintaining global integrity con-
straints in a federated information system. It is able to directly communicate
with other component databases, to which its data is semantically related, and
implements constraint checks to maintain consistency among this interdependent
data.

Constraint checks are executed on ACDBSs using remote state queries from
within triggers as proposed in 3.2. Local events are processed according to the
push-based synchronous notification mechanisms proposed in 4.3.2. After a local
event has been detected, the trigger executes a remote state query that uses
the database connectivity of the programming language to connect to remote
databases. Since we use synchronous notification, the local transaction is blocked
while the EP is executed. After the connection is established, we execute queries
upon the remote stock to determine the state of interrelated remote data items.
The local transaction is aborted or committed depending on the state of the
remote data sources. Such constraint checks performed by ACDBSs are triggered
and executed on local CDBSs, but require access to remote data. Since these
checks cannot be expressed by neither local nor global constraints, we introduce
partial integrity constraints as a new type of integrity constraints for ACDBSs.

5.2 Partial Integrity Constraints

In this section, we present partial integrity constraints as a new type of con-
straints for ACDBS participating in a federated information system. Our work is
developed in the context of relational databases, since this type of data source is
widely used for data storage in practice and currently most EADBSs support the
relational model (see 3.5). We assume an information system which comprises
a collection of autonomous relational sources of various vendors running on dif-
ferent platforms. The databases store interdependent data that is accessed by
local and global applications. Each ACDBS in this federation has to meet two

5.2 Partial Integrity Constraints 61

requirements concerning the programming language for encoding EPs for remote
state queries:

• the DBMS must be able to connect to other component databases of the
federation using the database connectivity of the programming language
and

• the DBMS must support a query language understood by the other com-
ponent databases to execute at least read operations on the remote data
stock.

In practice, two widely used standard database connectivity interfaces are
JDBC and ODBC, which support a multitude of relational databases. An estab-
lished query language for relational databases certainly is SQL. This enhanced
functionality is used to implement constraint checking algorithms for partial in-
tegrity constraints, which are defined next.

5.2.1 Definition of Partial Integrity Constraints

We start with the following definitions similar to [46]:

Definition 3 A federation F of relational component databases is a set of n
interconnected database systems {S1, ..Sn}. The database systems do not neces-
sarily have to be located on physically different nodes of the network. Each system
Si ∈ F manages a local database Di. A local schema Di of a database Di com-
prises the schemas Ri

1, ...Ri
ni

of the relations Ri
1, ..., R

i
ni

stored in the database.
The global database schema G of F is the set of all relational schemas Ri

j in F .

We assume that a real-world object, that is modeled in a component database
of F , is globally identified by a set of key attributes, i.e. a real-world object will
have the same key attribute values when stored in different CDBSs. Otherwise
we assume mapping functions to match real-world objects in different sources.

Definition 4 A local integrity constraint IDi
L is a boolean function over a local

database schema Di, i.e. IDi
L : Di → {true, false}. A global integrity constraint

IG is a boolean function over the global schema G, i.e. IG : G → {true, false}. It
cannot be expressed over a local database schema Di ∈ G. Constraint checks for
IDi
L and IG are algorithms for evaluating IDi

L and IG respectively.

After a global constraint IG has been defined over G, we identify a non-empty
set C ⊆ F of component databases c ∈ C whose local schemas Rc are affected by
IG, i.e. data stored in the relations Rc on the component databases is semantically
related. Thus, from the point of view of each component database c, IG affects
a relation managed locally and at least one remote relation managed by another

62 5. Global Integrity Maintenance

component database. For example, if a key constraint is defined on a global
attribute that is derived from multiple sources, each of the sources has to ensure
the global uniqueness of the key attribute, when a new tuple is inserted locally.
This means that IG consists of a set of partial integrity constraints, which we
define as follows:

Definition 5 A partial integrity constraint IRc on an ACDBS c ∈ C is a boolean
function, which is expressed over the local schema Rc and related schemas Rku

for ku ∈ C \ {c}, i.e. IRc : Rc ×Rk1 × · · · ×Rkv → {true, false} for v ≤ |C| − 1.
A constraint check for IRc is an algorithm for evaluating IRc, which is entirely
implemented on c using external program calls to access the remote schemas Rku.

A partial integrity constraint consists of a local constraint check and one or
more remote constraint checks on interrelated remote data, depending on the type
of global constraint and the number of affected databases. It is used to express a
global constraint from the local view of a single component database. An ACDBS,
which implements a partial integrity constraint, has to ensure consistency of its
local data depending on related data stored in other component databases. This
means that it is responsible for checking a specific part of the corresponding
global integrity constraint concerning local write operations on the interrelated
data. Thus, a global integrity constraint is assured, iff all affected component
databases enforce their corresponding partial integrity constraints, expressed as

IG :
∧
c∈C

IRc

The global constraint IG consists of a conjunction of partial integrity con-
straints IRc , which are formulated as

IRc : localRc ∧
∧
j∈C′

remoteRc,Rj

Depending on the type of global integrity constraint, each affected ACDBS
c has to check an optional local condition localRc and one or more remote con-
ditions. remoteRc,Rj

defines a pairwise dependency between the affected local
relation Rc and one interrelated relation Rj on component j. Remote conditions
do not necessarily have to be defined for each pair of local and remote databases
in C. Thus, C ′ ⊆ C\{c} denotes a subset of ACDBSs, which are required to check
for a specific integrity constraint. A constraint check for IRc implements tests for
the local condition localRc and each remote condition remoteRc,Rj

. For aggregate
constraints, a test for a local or remote condition results in the successful com-
putation of a local or remote aggregate. Detailed examples for partial constraint
checks are provided in Section 5.3.

5.2 Partial Integrity Constraints 63

5.2.2 Partial Integrity Constraints as ECA Rules

Since our concept of global integrity maintenance is based on ACDBS with en-
hanced activity, we use database rules following the event-condition-action (ECA)
paradigm to specify a partial integrity constraint IRc on a component database c
as follows:

define rule PartialIntegrityRule IRc

on event which modifies Rc

if a test for localRc yields false or
a test for remoteRc,Rj

yields false
do local and/or remote action(s) to ensure or

restore a consistent global state

Such integrity rules can precisely define both: events that potentially violate
the integrity of local and remote data, and corresponding reactions on these
events to ensure or restore consistency in the entire system. The relevant events
concerning data consistency are modifications of the data stock, i.e. insertions,
updates, and deletions. According to the definition of partial constraints, each
rule condition and rule action of a partial integrity rule can consist of a local
and one or more remote checks. The local check localRc exclusively uses and
accesses local data, while the remote checks remoteRc,Rj

exclusively process data
stored on remote systems. The remote checks of a partial integrity rule are
implemented using remote state queries (or injected transactions) provided by
the ACDBS. Thus, we have the following options to call an external program
during an integrity check:

During the evaluation of a trigger condition: An EPC during the evalua-
tion of a trigger condition allows a DBMS to determine subsequent actions
depending on the result of a remote state query or the result of an injected
transaction. Thus, a locally executed constraint check can be conditioned
by the state and behavior of a remote data source. In our concept, most
of the constraint checks are implemented using remote state queries from
within trigger conditions. The part of the trigger condition, which evaluates
a condition using remote data shall be called remote condition.

During the execution of (a) trigger action(s): Besides the remote condi-
tion, an external program can be executed as a trigger action. A local
transaction can thus trigger an injected transaction to manipulate a remote
data source. This can be used to execute consistency restoration actions or
to implement special constraints like cascading referential integrity. This
part of the trigger action, which manipulates remote data using injected
transactions shall be called remote action.

64 5. Global Integrity Maintenance

The specific combination of the time the corresponding EP is executed (i.e.
during remote condition or remote action) and the time a partial integrity rule
is evaluated (i.e. before or after a local transaction is committed) significantly
affects the behavior of the entire system. Please note, that we are certainly
not limited to exclusively one of these combinations. During the evaluation of
a partial integrity rule, external programs can be called from both, the remote
condition and the remote action, before or after a local transaction is committed.

Figure 5.1: Global integrity maintenance with Active Component Systems

Putting it all together, we present the architecture for global integrity checking
in federated information systems using active component databases depicted in
Fig. 5.1. The partial integrity checks are defined and implemented directly
in the ACDBSs, building up an application independent communication layer
to jointly ensure global consistency of interdependent data. The ACDBSs uses
push-based Active Event Notification in synchronous coupling mode to initiate
and execute the constraint check process. Each transaction is checked according
to local and partial integrity constraints, no matter if submitted by local or global
applications. The maintenance of global integrity is thus migrated from a global
application or federation layer to the underlaying active component databases.

5.2.3 System Interaction

We now give a schematic description of the interaction process between two
ACDBSs during the execution of a partial integrity check. The concept relies on
the push-based synchronous event notification mechanisms presented in Section
4.3.2. The synchronous execution blocks the local transaction until the partial
constraint is evaluated using the remote data sources.

5.2 Partial Integrity Constraints 65

Consider two relations R and S on active component databases ACDBS1

and ACDBS2, which store interdependent data. To enforce a global constraint,
we have to define and implement partial constraint checks on both component
databases. Therefore we create the following objects on each ACDBS (see Fig.
5.2):

• An external program (EP) (here a Java method) to execute queries upon
the remote data stock,

• a user defined function (UDF), which is mapped to the external Java
method, and

• a trigger which executes the UDF when relevant write operations occur
on the relation.

Figure 5.2: Interaction between two ACDBSs during a partial constraint check

We assume a global key constraint to be enforced on R and S, i.e. whenever a
tuple is inserted or modified in R or S, we have to check the global uniqueness of
the key attributes of the newly inserted or modified tuple in both relations. Our
description focuses on data modifications in R, since modifications in S would
be processed analogously. When an application inserts or updates data items
∆R in R, the corresponding trigger is executed by the database system before
the transaction is completed. The trigger has access to ∆R via temporary tables
provided by the DBMS. For each new tuple r in ∆R, the trigger first performs
a check on the local data and afterwards, if necessary, on the remote data. If
the local test fails, the key constraint is already violated and the remote test is
omitted. If the local test succeeds, the trigger calls a UDF to check for conflicts
in the remote data. The UDF is mapped to a Java function and receives r as a
parameter from the trigger.

The Java function now bridges the gap between the two component databases.
Using JDBC it connects to the remote database and executes an SQL query to
check for the existence of r in S. The function returns true or false depending
on the query result. The trigger receives this result and is now able to deter-
mine subsequent actions. Please keep in mind that we execute local and remote
checks during the evaluation of the trigger condition before the transaction is
completed. Thus, the transaction is blocked as long as the trigger is executed. If
a corresponding tuple already exists in S, then we reject the data modifications
on R. An SQL error is raised to signal the global key constraint violation.

66 5. Global Integrity Maintenance

Department Database Relations
A DBA resA(RA, NA, SA)

projA(PA, TA, BA)
proresA(RA, PA)

B DBB resB(RB, NB, SB)
projB(PB, TB, BB)
proresB(RB, PB)

Table 5.1: Example relations in the research departments A and B

5.3 Checking Global Integrity Constraints

We now concretize our concept of global integrity maintenance explaining how
partial integrity constraints are expressed and implemented for different con-
straint types. Therefore we use a simplified scenario with two relational data
sources. A generalization to more than two sites is discussed in Section 5.4.

Consider a company with two research departments A and B, which both
manage their own autonomous relational database DBA and DBB. The company
wants to integrate these standalone sources into an information system and define
integrity constraints to ensure global data consistency within the entire company.
We assume that the sources are relational databases with enhanced activity, which
host the relations shown in Table 5.1. Each department stores information about
researchers in relation res (researcher number R, name N , salary S) and their
corresponding projects in relation proj (project number P , title T , budget B).
Researchers are related to projects using the prores relation (m:n).

According to the classification presented in [115, 44], we consider four com-
monly used classes of global integrity constraints which can be defined on the
global schema: attribute constraints, key constraints, referential integrity con-
straints, and aggregate constraints. In the following, we provide an example for
each non-trivial class of global integrity constraints, followed by a rule definition
for corresponding partial integrity constraint on the affected ACDBSs.

5.3.1 Attribute Constraints

The company could define a constraint saying that the budget of each project
may not exceed a certain value. Since this global attribute constraint is expressed
over a single attribute, it can be translated into a local attribute constraint and
thus be enforced by local integrity mechanisms on DBA and DBB, e.g. by an
additional check clause in both project relations. The global constraint can be
enforced by a local constraint check on each ACDBS, so no EPCs are required.

5.3 Checking Global Integrity Constraints 67

5.3.2 Key Constraints

The company may want to ensure that each project is globally identified by a
unique identifier, i.e. the values stored in PA and PB are globally unique. Thus,
each time a project is added in one of the research departments, we have to ensure
that the new project number does neither already exist locally nor in the project
database of the other research department.

Since partial constraint checks are entirely implemented on a participating
ACDBS using EPCs to access remote data, we decompose KeyG into a set of
partial integrity constraints KeyprojA and KeyprojB for DBA and DBB respec-
tively:

KeyG : KeyprojA ∧KeyprojB

The partial constraints are in turn formulated as

KeyprojA : localprojA ∧ remoteprojA,projB

KeyprojB : localprojB ∧ remoteprojB,projA

A partial constraint consist of a local condition and a remote condition, which
are defined for KeyprojA as follows (KeyprojB and remoteprojB,projA are defined
analogously):

localprojA : ∀P, T, B, P ′, T ′, B′ :

[projA(P, T, B) ∧ projA(P ′, T ′, B′) ⇒ ¬(P = P ′)]

remoteprojA,projB : ∀P, T, B, P ′, T ′, B′ :

[projA(P, T,B) ∧ projB(P ′, T ′, B′) ⇒ ¬(P = P ′)]

Suppose the tuple projA(p, t, b) is inserted. According to KeyprojA we have
to check the existence of the key locally and in projB, stored on DBB, with the
following tests for localprojA and remoteprojA,projB:

localtestKeyprojA
:6 ∃P, T, B : [projA(P, T, B) ∧ (P = p)]

remotetestKeyprojA
:6 ∃P, T,B : [projB(P, T, B) ∧ (P = p)]

Both tests are evaluated by performing queries on the relevant relations for a
tuple that has p as its project number. Therefore, we need two boolean functions

68 5. Global Integrity Maintenance

checklocalkey : schema(projA) → {true, false}
checkremotekey : schema(projB) → {true, false}

for localtestKeyprojA
and remotetestKeyprojA

respectively. checklocalkey should
always be evaluated first to avoid cost-intensive remote data access where pos-
sible. The checkremotekey function is implemented using a remote state query,
which queries database DBB to find tuples with the values to be inserted. If the
query result is not empty or the remote source is not reachable by the external
program, then the function is evaluated to false, i.e. the corresponding transac-
tion in database DBA is rejected. The condition is evaluated before the triggering
operation is committed at DBA. The corresponding partial rule for KeyprojA is
expressed as:

define rule PartialKeyConstraint
on creation of a new object in projA
if checklocalkey yields false or checkremotekey yields false
do reject transaction

A partial constraint is herewith realized on an ACDBS with an implementa-
tion of the ECA rule using two functions checklocalkey and checkremotekey with
one remote state query. Having implemented both partial constraints KeyprojA

and KeyprojB on both systems, we are able to verify KeyG each time a modifying
transaction is committed locally on DBA and DBB.

5.3.3 Referential Integrity Constraints

A widely spread constraint is the definition of referential integrity on relations
to specify existence dependencies between two database objects. Referring to
our scenario, the company could allow researchers of department A to cooperate
on shared projects of department B. Thus, we have to ensure that a researcher
in DBA is related to an existing project in DBB and vice versa. As already
mentioned, researchers are related to projects via the prores relation referencing
the relevant primary keys of the local project and researcher relations. Now,
to reflect the global referential integrity constraint in our exemplary relational
model, we allow RB in proresB to reference both, local researchers using RB in
resB and cooperating researchers in resA using RA. In the scope of this thesis
we only consider referential integrity without cascading, although our concept
of ACDBSs basically supports cascading. An outlook on cascading referential
integrity can be found later in this section.

5.3 Checking Global Integrity Constraints 69

Referential Integrity Without Cascading

In the following, we focus on the referential integrity concerning the researcher
number RB in proresB. Referential integrity for PB in proresB is handled anal-
ogously. Similar to global key constraints, a global referential constraint is first
decomposed into a set of partial constraints:

RefIntG : RefIntresA ∧RefIntproresB

The existence dependency between the local parent relation resA and the
local dependent relation proresA can be expressed as follows:

localproresA : ∀R,P∃R′, N, S :

[proresA(R,P) ∧ (R = R′) ⇒ resA(R′, N, S)]

Furthermore we formulate a remote constraint remoteproresB,resA as

remoteproresB,resA : ∀R,P∃R′, N, S :

[proresB(R,P) ∧ (R = R′) ⇒ resA(R′, N, S) ∨ resB(R′, N, S)]

Using these definitions, we express the partial constraints for RefIntG as

RefIntresA : localproresA ∧ remoteproresB,resA

RefIntproresB : remoteproresB,resA

A project can only be inserted into proresB, if a corresponding researcher ex-
ists in either resB (locally) or resA (remote). Contrary, a researcher in the parent
relations resA and resB may not be deleted, as long as depending projects exist
in the dependent relation proresB. Thus, we have to distinguish between con-
straint checks for insertions and deletions on the dependent and parent relations
respectively.

Insertion check: Suppose the tuple proresB(r, p) is inserted, whereas p refers
to an existing project in projB. According to RefIntproresB we have to
check the existence of r locally and remote using the following tests for
remoteproresB,resA:

70 5. Global Integrity Maintenance

localtestRefIntproresB
: ∃R,N, S : [resB(R,N, S) ∧ (R = r)]

remotetestRefIntproresB
: ∃R,N, S : [resA(R,N, S) ∧ (R = r)]

If one of the tests yields true, then there exists a corresponding entry in
either the local or remote parent relation and the tuple proresB(r, p) can be
inserted. Otherwise the insertion has to be rejected. For the implementa-
tion of these tests, we use the functions checklocalkey and checkremotekey
as introduced in Section 5.3.2. The remote test is evaluated using a remote
state query on DBA. A corresponding ECA rule for this partial constraint
can be expressed as follows:

define rule PartialReferentialConstraint
on creation of a new object in proresB
if checklocalkey yields false and checkremotekey yields false
do reject transaction

Deletion check: Suppose the tuple resA(r,n,s) shall be deleted from DBA. Ac-
cording to RefIntresA we have to ensure that there are no depending objects
in the prores relations on DBA and DBB before we delete this item. Thus,
we formulate the following tests for localproresA and remoteresA,proresB:

localtestRefIntresA
: 6 ∃R,P : [proresA(R,P) ∧ (R = r)]

remotetestRefIntresA
: 6 ∃R, P : [proresB(R,P) ∧ (R = r)]

The deletion check succeeds, i.e. resA(r, n, s) can be deleted, if there are
no dependent objects in proresA and proresB. This partial constraint is
represented by the following ECA rule:

define rule PartialReferentialConstraint
on deletion of an object in resA
if checklocalkey yields true or checkremotekey yields true
do reject transaction

Of course, we have to ensure that an entry in the parent table exists either
in resA or resB. This is realized using a key constraint on the researcher id as
presented in Section 5.3.2.

5.3 Checking Global Integrity Constraints 71

Cascading Referential Integrity Constraints

With the extended functionality of Active Component Systems, we are basically
able to realize cascading referential integrity on updates or deletions of tuples.
Injected transactions can be executed during the evaluation of a partial integrity
constraint to modify remote data stocks including even deletions, before or after
the modifying operation is committed locally. If a tuple is deleted in the parent
relation, we execute an injected transaction to delete all corresponding tuples
in the dependent relation. Analogously, if a key value is updated in the parent
relation, we cascade this update to the dependent relation by modifying the
relevant entries in the remote database via injected transactions.

The corresponding partial integrity constraint for the parent relation is ex-
pressed similar to the partial rule without cascading presented in 5.3.3. We
extend the rule to delete dependent objects from within the rule condition or
action depending on the intended system behavior. Thus, we are able to delete
entries in the dependent relation from within a remote condition or a remote
action, before or after the local entry is deleted. Of course, if we modify data
on more than one autonomous database system, we face the problem of atomic
commitment in a multidatabase environment [77, 79]. A distributed update may
lead the federation into a (temporary) inconsistent state in case of a failure or
constraint violation. An analysis of potential consistency violations using injected
transaction can be found in [108]. We need a recovery mechanism based on the
concept proposed to detect inconsistencies and restore global consistency after
an injected transaction has not committed globally.

Referring to our example, consider a third department C that maintains a
database DBC similar to the databases in departments A and B. Researchers in
resB and resC are related to projects in projA via the relations proresB and
proresC respectively. A referential constraint with cascading would require the
deletion of corresponding entries in proresB and proresC if the related parent
entry in projA is deleted. Now, during the partial referential constraint check
with cascading triggered by a deletion of project (pA, tA, bA) from projA we have
to delete the depending tuples (rB, pA) and (rC , pA) from proresB and proresC
using injected transactions. It is possible that the deletion fails at one remote
site due to conflicts with local transactions or if the database is not reachable.
In that case we face an inconsistent global state. The literature proposes sev-
eral approaches to react on such violations of atomic commitment, which are
summarized in [17]:

Redo: Redo a subtransaction that only writes local data. If a redo transaction
also fails then repeatedly resubmit it until it commits.

Retry: If a global transaction reads and writes local data, an aborted subtrans-
action can either be retried or compensated. In the retry approach, the
failed subtransaction is resubmitted as a new subtransaction, thus possible

72 5. Global Integrity Maintenance

reading an writing different values. This approach requires a transaction to
be retriable, that is that it will eventually commit after a sufficient number
of times from any database state.

Compensate: The compensation approach tries to perform an undo of a sub-
transaction from the semantic point of view. A compensating transaction
is a regular transaction and may not only consist of an inverse function of
the original subtransaction. Another local or global transaction may see
the state written by the subtransaction before it is compensated.

For the injected transactions as part of partial constraint checks the redo
or compensate approach seem to be applicable. In our example, the trigger
blocks the delete operation TA on DBA during the partial constraint check. The
partial constraint check submits two injected transactions TB and TC to delete
the depending tuples in DBB and DBC respectively. If TB commits but TC aborts
then we can either redo TC and commit TA or compensate TB and abort TA.

5.3.4 Aggregated Constraints

As a representative for this type of constraint let us assume that the company
has a budget limit for all research projects. Thus, it must be checked whenever
a project is created or updated in DBA and DBB that the sum of all project
budgets BA and BB does not exceed a certain value ε. We restrict our further
considerations on the standard aggregate functions min, max, sum, and count.
The average function avg must be calculated during a partial constraint check
using sum and count. Furthermore, we assume that agg(T,w) is an aggregate
function that calculates the aggregate of an attribute w of a relation T . The
function totalagg(agg(Rm1 , wm1), ..., agg(Rms , wms)) computes the overall aggre-
gate of partial aggregates for mu ∈ C and s = |C|. Please note that count is a
semi additive aggregate function and the overall aggregate must be calculated as
the sum of partial count aggregates.

These preliminaries provided, we can now formulate a global aggregated con-
straint for our example as

SumG : SumprojA ∧ SumprojB

with the partial constraints defined as

SumprojA : totalsum(localsumprojA, remotesumprojB) ≤ ε

SumprojB : totalsum(localsumprojB, remotesumprojA) ≤ ε

5.4 Discussion 73

Both databases have to check the total sum whenever an insertion or update
occurs on BA or BB. Therefore, DBA calculates its corresponding local and
remote aggregate as

localsumprojA = sum(projA, BA) and remotesumprojB = sum(projB, BB)

using two functions

agglocal : schema(projA) → R and aggremote : schema(projB) → R

The calculation of the remote aggregate is realized using a remote state query
on DBB. The aggregates for DBB are calculated analogously. Now suppose
the tuple projA(p, t, b) is inserted. According to SumprojA we first compute
localsumprojA including the new value b and remotesumprojB on DBB. After
we receive the result from the remote aggregation, we calculate totalsum and
compare the overall aggregate to ε. If the comparison yields false then the
insertion of projA(p, t, b) is rejected. A corresponding ECA rule for this partial
constraint can be expressed as:

define rule PartialAggregatedConstraint
on update of BA in projA or insertion of a new object in projA

if totalsum(localsumprojA, remotesumprojB) > ε
do reject transaction

5.4 Discussion

An evaluation of our concept of global integrity maintenance can be found in
[53] using a simple scenario. Besides the basic functionality, the main focus was
on the portability of external notification programs among different databases.
Thus, the concept was evaluated for various Enhanced Active Databases using
Java and JDBC for Oracle and DB2, and C# and ODBC for the MS SQL Server.

The checking mechanism presented in this chapter is closely related to the
Local Test Transaction Protocol (LTT) presented by Grefen and Widom in [46].
They state that LTT requires the database system to be ”capable of performing a
notification and waiting for an acknowledgment, all within a single transaction”.
Furthermore, to behave correctly, the local test must be evaluated within the same
transaction in which the update occurred. Using Enhanced Active Database we
are able to provide synchronous update delivery with local transaction blocking
during a constraint check as required by LTT. Referring to the related work pre-
sented in Section 4.2 we state that an implementation of constraint checks using
LTT and databases without enhanced activity has so far been impossible, since
common event detection techniques implement asynchronous update delivery.

74 5. Global Integrity Maintenance

LTT exploits transaction capabilities provided by the local database system
to perform a notification and wait for acknowledgment within a single transac-
tion. Using the LTT we try to avoid remote checks by evaluating local tests
first. If a local test has already failed, then we do not have to evaluate the
cost intensive remote check using remote state queries. The implementation of
a transaction-based protocol like LTT has to evaluate a constraint check before
the triggering operation is committed. The external program is executed as part
of the remote condition of a partial integrity rule. Our implementation certainly
adopts all advantages and drawbacks of the applied LTT protocol. Thus, the
implementation proposed is safe and accurate, which means that it detects all
constraint violations and that, whenever an alarm is raised, there is a state in
which the constraint is violated. On the other hand, since the relation is locked
until the external program returns a result, the local ACDBS looses autonomy
and the risk of deadlocks is relatively high, if relations in DBR and DBS are
updated concurrently.

Due to the flexibility of our architecture, we are basically able to implement
the entire set of protocols described by Grefen et al. Thus, to overcome the draw-
backs of the LTT, we can modify the partial integrity constraints to implement
the Materialized Delta Set Protocol (MDS), which increases autonomy and re-
duces the risk of deadlocks. Therefore, we maintain an additional relation ∆R,
which stores an accumulated set of updates of the original relation R. The con-
straint checking mechanism is then evaluated using ∆R instead, so the original
relation is not locked during the check. This enables at least concurrent read
access to R while updates must still be delayed until the lock is released. In our
architecture ∆R is maintained using the active capabilities of the DBMS. We
define a local rule on R to copy all updated items to ∆R. The partial integrity
rule including the remote checks as presented above is then expressed over the
Materialized Delta Set ∆R.

A generalization of the constraint checking mechanism to more than two sites
is tightly corresponding to the implemented integrity checking protocols. As
already described in [46], most of the constraints that involve more than one
site can be decomposed into a couple of constraints, which are expressed over
exactly two databases. If there is the need for multi-site constraints, the authors
propose to use non-transaction-based protocols like Direct Remote Query (DRQ)
or Timestamped Remote Query Protocol (TRQ), which can both be implemented
using our architecture. To avoid locking of the updated relation we adjust the
partial integrity rule to be evaluated after the modifying operation is committed.

The protocols could be optimized according to the Demarcation Protocol
presented in [10]. This protocol is particularly suitable for arithmetic constraints
like aggregated constraints, but can also be used for key or referential integrity
constraints. The Demarcation Protocol can be seen as an extension to the LTT
and thus be implemented using our architecture.

5.5 Global Constraints with COMICS 75

5.5 Global Constraints with COMICS

To overcome the limitations of the basic concept presented in the previous section
and to enable global constraint checks over more than two sites, we have developed
the COMICS system, a global Constraint Manager for Interactive Component
Systems. COMICS is an extension to the basic concept insofar as it introduces an
external constraint manager component that is used to define interdependencies
and mappings between the data sources and to execute constraint checks on
remote ACDBSs of a federation. The return values of the checks determine if a
local transaction shall be committed or aborted. In this section we sketch the
basic architecture of COMICS and describe its functionality.

Analogously to the basic concept, a global constraint is decomposed into a set
of partial integrity constraints, which are enforced by the affected ACDBSs using
triggers, but the rule definition in COMICS consists of only one local and one
remote integrity check clause. For example, a partial constraint IRc on relation
R on a component database c can be formulated as:

define rule PartialIntegrityRule IRc

on event which modifies Rc

if local check on Rc yields false or
remote check performed by the constraint manager yields false

do reject transaction

The local check is directly performed on the local system, while the remote
check is performed and supervised by the external COMICS Constraint Man-
ager. During the remote check, the Constraint Manager (CM) queries interrelated
component databases to detect violations of the corresponding global constraint.
COMICS currently supports the same set of global constraints like the basic con-
cept: global key constraints, global referential integrity constraints, and global
aggregated constraints with the standard aggregate functions min, max, sum,
and count. Although we are basically able to implement referential constraints
with cascading using injected transactions, we restrict our considerations in the
focus of this work to remote checks performing remote state queries only.

5.5.1 System Overview

The COMICS system is specifically designed for global integrity maintenance
among a collection of Enhanced Active Databases and does not support global
transactions itself. COMICS can be included into the federation layer of the fed-
erated information systems as a constraint management subsystem that assists
the ACDBS with the checking of partial integrity constraints. The management
of schema mappings is shifted from the ACDBSs to an external repository hid-
ing semantics from the components and thus reducing complexity of the ENPs.

76 5. Global Integrity Maintenance

Figure 5.3 displays the architecture for global integrity checks enhanced by the
following COMICS components:

Figure 5.3: Federated Information System with COMICS Constraint Manager

Constraint Manager: The Constraint Manager enables and controls the com-
munication between the ACDBSs. It is responsible for the execution and
evaluation of remote checks on related component databases as part of
partial integrity constraints. Therefore, it implements constraint check al-
gorithms for commonly used global constraints and comprises a query inter-
face for various EADBSs to poll the required data from the remote sources.
To overcome the differences of the database schemata, the constraint man-
ager needs access to a repository, which maintains mappings between the
local schemata.

Mapping Repository: This repository stores the mappings between the local
schemas of the ACDBSs. Mappings are created when a new component
database is attached to the Constraint Manager for integrity maintenance.
The repository mainly contains table-to-table and attribute-to-attribute
mappings to overcome naming differences imposed by local design auton-
omy. To perform an integrity check, the Constraint Manager retrieves in-
terrelated tables and attribute from the repository to create the concrete
remote state queries.

The COMICS components can be implemented as part of the federation layer
or global application as well as part of a standalone constraint management layer.
If part of the federation layer, it can access the mappings created during the
integration of the local schema into the global schema. If no such mappings
exists, they have to be created and maintained separately.

5.5 Global Constraints with COMICS 77

Department Database Relations
A DBA resA(RA, NA, SA)

projA(PA, TA, BA)
proresA(RA, PA)

B DBB resB(RB, NB, SB)
projB(PB, TB, BB)
proresB(RB, PB)

C DBC resC(RC , NC , SC)
projC(PC , TC , BC)
proresC(RC , PC)

Table 5.2: Interrelated relations in research departments A,B, and C

5.5.2 Checking Constraints with COMICS

We now describe the constraint checking process in COMICS using the key con-
straint example presented in Section 5.3.2. Therefore we consider a third research
department C that maintains its individual database DBC for its projects in the
relations displayed in Table 5.2.

The company wants to ensure the same global key constraint as above saying
that the project number in each database must be globally unique. Checking this
constraint now involves all three departments:

KeyG : KeyprojA ∧KeyprojB ∧KeyprojC

The global key constraint KeyG is decomposed into three partial key con-
straints for each affected database DBA, DBB, and DBC . Now, each time a new
project is inserted or an existing project is updated in one of the departments,
we have to check the uniqueness of the project identifier in all three databases
by executing the partial integrity check on the database, on which the update
occurred. In the following we exemplarily describe the checking process for the
partial key constraint on the relation projA in database DBA when a new tuple
projA(pA, tA, bA) is inserted.

Basic Process

Checking global integrity with COMICS basically involves four steps:

1. A local update on projA is detected by a trigger component. It subse-
quently evaluates the corresponding partial key constraint including a local
key check and a remote key check. If the local check fails then the local
transaction is aborted, otherwise the remote check is executed.

2. The remote check for global uniqueness is performed by the Constraint
manager. The trigger uses an ENP to connect to the external Constraint

78 5. Global Integrity Maintenance

Manager via a remote procedure call to initiate the process. This call is
executed synchronously, i.e. the local transaction is blocked until the call
returns.

3. The Constraint Manager receives the message from the ENP including the
name of the database and relation that was updated. It looks up a set of
schemas of remote component databases to which the updated schema is
related to and schedules the query of these databases.

4. After the interrelated schema items have been identified, the Constraint
Manager actually queries the remote databases to check if pA already exists.
If the value exists in at least one of the sources, then the update transaction
on DBA is rejected.

We will now take a closer look at the components performing the essential
tasks: the trigger to react on local events, the ENP to connect to the CM, and
the external CM that executes the partial constraint check.

Trigger Definition

The key constraint has to be checked whenever data is inserted or updated in the
relation projA. Analogous to the basic concept, we define a trigger to react on
inserts and updates as follows:

CREATE TRIGGER key_project

BEFORE INSERT OR UPDATE ON projA

REFERENCING NEW AS n

FOR EACH ROW

// local test

DECLARE localtest INTEGER;

SET localtest =

(SELECT COUNT(Pa) FROM project WHERE Pa = n.Pa);

IF (localtest > 0) THEN

RAISE LOCAL ERROR;

// remote test

ELSE IF

(checkremotekey(’DB_A’, ’projA’, ’Pa’, n.Pa) = -1) THEN

RAISE REMOTE ERROR;

END

When a local transaction inserts or updates data items ∆p in projA, the
trigger is executed before the transaction is completed. The trigger has access
to ∆p via a temporary table NEW provided by the DBMS. Corresponding to the
partial integrity constraint, the trigger executes two integrity checks: a local

5.5 Global Constraints with COMICS 79

test on local data and a remote test on interrelated data on other component
databases. First, the trigger checks if the new or updated project number already
exists in the local data stock. This can be done using a local query which counts
the number of tuples with the corresponding project number. If a project with
this number already exists, then the transaction is rejected without executing the
remote check. Otherwise, the trigger executes the remote check via the external
program checkremotekey to check the existence of the project number in both
related project databases DBB and DBC . If the remote check returns false, i.e. a
tuple with the respective PA (denoted as Pa in the trigger definition) was found
in DBB or DBC , then the transaction is rejected.

The External Notification Program

Contrary to the basic concept we do not directly access the remote component
databases from within the external programs, but delegate the constraint check to
the COMICS Constraint Manager. Figure 5.4 shows the basic interactions during
global integrity checks using COMICS. Implementing the push-based synchronous
event notification mechanism (see Section 4.3.2) we use an External Notification
Program to connect to the Constraint Manager to initiate the check for the remote
part of the partial key constraint. The trigger blocks the local transaction, calls
the ENP, and waits for the program to return the result of the remote check.
The ENP performs a remote procedure call (RMI in the case of Java) to the
Constraint Manager which in turn executes the actual existence check of the key
value n.Pa in the remote database DBB and DBC using, for example, JDBC
connections.

Figure 5.4: Constraint checking with COMICS

The following function is executed during a remote condition by the trigger:

checkremotekey(db, table, attr, value) =

{
1 : if key does not exist

−1 : if key exists or error

Although the signature and codomain of the checkremotekey in the basic
concept and COMICS do only differ slightly, they implement completely differ-
ent logics. While the external program in the basic concept is a remote state

80 5. Global Integrity Maintenance

query executed directly from within the DBMS, it performs a notification of an
external component in COMCIS. The function takes a database identifier db, the
name of the relation table, and the name of the key attribute attr where the data
modification was detected locally. Furthermore, the function requires the value
of the inserted or updated project key that has to be checked against the remote
databases. The function returns 1, if the key does not exist remotely or−1 if it ex-
ists or in case of a system failure or network breakdown. The return value is used
by the trigger to determine if a transaction shall be committed or aborted. Since
we enforce pessimistic synchronous integrity checks, the transaction has also to be
rejected, if a system failure or network breakdown occurs during communication
with the constraint manager or one of the remote component databases.

The Constraint Manager

In the first version of COMICS the Constraint Manager is a centralized compo-
nent, that plans, initiates, and monitors the execution of remote state queries
among a set of interactive component databases. It receives synchronous no-
tifications from the databases via remote procedure calls and thereupon exe-
cutes queries on interdependent component databases. The ENP calls a function
checkkey of the Constraint Manager which can be defined as follows:

boolean checkkey(db,table,attr,value) {

boolean success = true;

db[] = mappings.lookupMappings(db,table,attr);

for all (db[i]) {

if (value exists in db[i].table)

success = false;

}

}

return success;

}

In our example, the Constraint Manager receives a synchronous update notifi-
cation via the EPC checkremotekey(’DB_A’,’projA’,’P_A’,’p_A’) executed
on DBA with P_A and p_A being the name and value of the key attribute in
projA. It thereupon looks up interrelated schemas from the mapping repository,
in our case projB and projC. Knowing the concrete databases, relation, and
attribute name it then queries projB and projC for the existence of pA. If the
value cannot be found both databases then checkkey returns true, i.e. the update
operation on projA is committed.

In our first Java prototype of a mediator-based information system, the CM
is implemented as a centralized component in the architecture. Since all remote
checks in the entire information system are performed by one CM, this obviously

5.6 Related Work 81

builds a performance bottle neck. However, it guarantees global consistency since
updates on interrelated data that require partial constraint checks are globally
serialized by the Constraint Manager. Furthermore it prevents global deadlocks
and ensures atomic execution of partial constraint checks. Besides, semantic
information is moved from the sources to the Constraint Manager which makes it
easier to add or remove interdependent sources or to maintain schema mappings.
In our Java prototype the Constraint Manager queries the databases using JDBC
and SQL. The method checkkey is implemented as synchronized which means
that it can only be called once at the same time. Future implementations could
consider decentralized Constraint Managers that are assigned to only a subset of
the data sources in the information system. They are able to communicate with
each other during partial constraint checks if a check requires access to sources
of multiple CMs.

5.6 Related Work

In the last years, research on integrity constraints in heterogeneous environments
mainly considered the simplification, evolution, or reformulation of constraints
rather then mechanisms or protocols for integrity checking. A closely related
concept in terms of the rule structure and constraint types is presented in [44].
The authors use private and public global constraints to define dependencies be-
tween data in different databases, similar to the partial constraints presented in
this chapter. One of the main differences is the use of a layered approach to
support the active functionality required for event detection and rule processing.
A reactive middleware based on CORBA encapsulates active and passive sources
and processes rules using an external remote rule processing mechanism. Further-
more every component is assumed to have an Update Processor to execute local
update requests, but the local relation cannot be locked during the evaluation of
remote conditions.

The metadatabase approach [56] uses a rule-oriented programming environ-
ment to implement knowledge of information interactions among several subsys-
tems. Each subsystem is encapsulated by a software shell, which is responsible
for monitoring significant events, executing corresponding rules, and interacting
with other shells. Although conditions can be evaluated in a distributed way, the
rule processing itself is still centralized.

A distributed rule mechanism for multidatabases is presented in [64] as part
of the Hyperion project. A distributed ECA rule language is introduced, which is
mainly used to replicate relevant data among data peers in a push-based fashion.
Rules are processed by a rule management system that resides in the P2P layer
on top of a peer database. The X2TS prototype [72] integrates a notification and
transaction service into CORBA using a flexible event-action model. The archi-
tecture presented resembles a publish/subscribe system, whereas publishing of

82 5. Global Integrity Maintenance

events is non-blocking. Another middleware approach for distributed events in a
heterogeneous environment is presented in [66]. CORBA-based, distributed, and
heterogeneous systems are enhanced by Active DBMS-style active functionality.
The architecture uses wrappers with event monitors to detect data modifications
in the data source.

A common characteristic of the architectures just mentioned is the use of a
layered approach with event monitoring to somehow notify a mediating compo-
nent (e.g. a constraint manager, rule processor, or middleware component) about
events occurring in the local database. If the source is not monitored, the no-
tification mechanism is generally based on active capabilities of the underlaying
database management system, but there is so far no detailed description of this
interaction published.

The most distinctive characteristic of our concept is the direct usage of existing
active capabilities of modern database management systems without the need
for wrappers or monitoring components. Since a remote condition is evaluated
during the execution of a trigger, it is irrelevant if the triggering transaction
was a global or local update. We benefit from the active functionality of the
DBMS in terms of transaction scheduling, locking, and atomicity, resulting in
a synchronous integrity checking mechanism. Especially the ability to rollback
updates depending on a remote state query makes corrective or compensative
actions superfluous.

Chapter 6

Tightly coupled Wrappers

The interconnection of heterogeneous and autonomous data sources for informa-
tion sharing in federated information systems demands for flexible and extensible
integrative components. In this chapter we present a universal architecture for
building wrapper components to access various types of data sources. Our wrap-
per comprises an event detection subsystem to detect modifications of the data
stock and propagate them to the federation layer for further processing. The ar-
chitecture proposed includes a Notification Interface to especially support push-
and pull-based Active Event Notifications from Enhanced Active Databases as
presented in detail in Section 4.3. Due to this bidirectional communication, the
wrapper gets tightly coupled to its data source. The content of this chapter is
based on a paper originally published as [93].

We start with a detailed description of the architectural components of the
wrapper and the functionalities they provide in Section 6.1, followed by a schema-
tic overview of the event detection subsystem in Section 6.2.

6.1 Wrapper Architecture

As already discussed in Section 2.2, component databases of a federated informa-
tion system are commonly integrated via a wrapper layer. Wrappers encapsulate
heterogeneous data sources to convert the source-specific interface into a source-
independent interface the federation layer expects. A wrapper can act as a simple
adapter for queries and corresponding query results or attach additional func-
tionality to the data source to build up more complex infrastructures as needed
for federated information sharing environments or interoperable collections of
databases.

We now present a wrapper architecture for the integration of various data
sources into a federated information system. The architecture comprises both,
a query subsystem and an event detection subsystem to detect and propagate
modifications of the data stock to the federation layer. It particularly provides

84 6. Tightly coupled Wrappers

a Notification Interface to support Active Event Notifications from Enhanced
Active Component Systems as described in Section 4.3. The components of the
wrapper itself communicate via methods and function calls written in the wrapper
programming language and return data types or objects. Figure 6.1 depicts the
components of the wrapper architecture, which are described in the following.

Figure 6.1: Wrapper architecture with event detection subsystem.

Heterogeneous Data Sources: Our architecture basically supports any type
of data source, but the functionality that can be offered to the mediation layer by
the wrapper strongly depends on the capabilities of the underlaying data source.
A data source is connected to the wrapper by a source-specific query interface.
Types of data sources can be, for example, unstructured or semi-structured files,
relational or object-oriented database systems, or directory systems, with our
without integrated active mechanisms. The architecture is designed to support
event detection for all data source activity classes, but especially Enhanced Active
Databases with the ability to actively signal updates to the wrapper for real-time
change delivery.

Source Specific Query Interface: The source-specific query interface is a
software component that provides basic operations on the data stock. It knows

6.1 Wrapper Architecture 85

how to open and close a connection to a source and what types of queries are
supported. Furthermore it translates query results into a representation format of
the programming language. This can be, for example, a result set, a multidimen-
sional array, or a heterogeneous collection of basic data types. The required query
language and the returned query results significantly depend on the functionality
provided by the data source. Most databases with database management systems
support SQL as a standardized query language and return a resource identifier
which points to the result of a specific query. A well-established package which
can be associated to this architectural component is the Java Database Connec-
tivity Framework (JDBC). It supports various types of data sources including
even query interfaces for flat or XML files. The Query Manager calls functions
of the source-specific query interface to communicate with the data source and
to read or modify its data stock.

Query Manager: The Query Manager consists of a set of functions which en-
capsulate the entire communication from the wrapper components to the data
source. These functions are specifically designed for the desired data source func-
tionality of the overall system. The Query Manager uses the source-specific query
interface to open and close connections, send queries, and receive corresponding
results. Each query function executes a single query or a parameterized family
of queries to read or modify the data stock. The functions can be divided into
two types of interaction: data requests and repository requests. Data request
functions provide an interface to access local data in the data source, whereas
repository requests are used to access meta data stored in the repository. Both,
controller and event monitor, call the predefined query functions to interact with
the data source. They receive the corresponding query result as data types or
objects as return values from the functions. Due to the centralization of the
data source access in the Query Manager and the separation of Query Manager
and source-specific query interface we achieve a portable wrapper solution for
federated information systems.

Converter: Since a wrapper is used to convert queries and data from one model
to another, we need a component to convert source-specific data into an exchange
format the mediation layer expects and vice versa. This conversion is done by
the Converter component. On the one hand, it is used by the Query Manager
and the Event Processor to transform local data into the desired exchange format
before it is sent to the mediation layer. On the other hand it converts external
data received from the mediation layer into the internal representation format
understandable to the Query Manager. In the scope of this thesis we do not
provide a specific exchange format, since the choice of a format depends on the
properties, characteristics, and functionality of the overall system. However,
a common exchange format for the use in the mediation layer of a federated

86 6. Tightly coupled Wrappers

information systems could be based on RDF or OWL [88].

Controller: The Controller controls the interaction between the mediation
layer and the data source. In particular, it maps external requests to inter-
nal query functions of the Query Manager, and forwards results for output. An
external request may result in a sequence of database operations which are also
coordinated and processed by the Controller component. Furthermore, it man-
ages all the meta data required in the repository. The Controller also provides
a set of event notification functions, which are used by the Event Processor to
signal data modifications of the local source. Events can thus be reported to the
mediation layer for further processing.

Mediator Interface: The Mediator Interface is the communication unit for
interaction with the mediation layer. The functionality and concrete implemen-
tation of the interface depends on the type of infrastructure to be established.
Possible infrastructures for mediation layers could be based on for example RMI
or CORBA, Server-Client communication over specified protocols, web services,
publish-subscribe, or peer-to-peer. The Mediator Interface establishes connec-
tions to remote systems and handles incoming or outgoing requests between the
mediation layer and the wrapper controller.

Repository: The repository contains all meta data required for the operation
of the wrapper component and the interaction with the mediation layer and the
data source. This includes configurations and properties, data source descriptors,
login information, and access control lists. The repository is managed exclusively
by the controller of the wrapper, but it is stored directly in the local data source.
Thus, requests to data and meta data in the repository can be processed in
a uniform manner by the Query Manager. The Query Manager provides the
Controller and event monitor with query functions for repository management
and access. The main advantage is the homogeneous storage of both, data and
meta data, and the centralized access via the Query Manager.

Event Monitor: The Event Monitor is the active component of the event de-
tection subsystem. It detects data modifications in data sources that are not able
to actively propagate events to the wrapper, like for example active database sys-
tems without enhanced activity. The Event Monitor obtains information about
the data items to be scanned from the repository. Using this information it pe-
riodically scans relevant parts of the data stock for modifications. In the case of
a relational database a monitoring schedule in the repository could contain the
name of a relation and the time period in which the relation should be scanned.
The overall meta data required for monitoring data modifications depends on the
change detection algorithm implemented by the Event Monitor, which in turn

6.2 Event Detection Subsystem 87

depends on the type of local data source. The Event Monitor is executed as
a subprocess (thread) at startup of the wrapper and does not provide any op-
erational interface to the remaining wrapper components. Like the Controller,
the Event Monitor uses the query functions of the Query Manager to access the
data source. If a relevant data modification is detected, the modified data items
are extracted from the data source and reported to the Event Processor. For a
detailed description of the design and functionality of the Event Monitor we refer
to Section 4.1.1.

Notification Interface: The Notification Interface is the passive component
of the event detection subsystem of our wrapper architecture. It receives all
update notifications directly from an EADBS via Active Event Notifications (see
4.3 for details). It consists of a source-specific set of functions, which are called
by the underlaying EADBS. After a change has been signaled to the Notification
Interface, the modified data items are reported to the Event Processor.

Event Processor: All events, monitored by the Event Monitor or signaled
by the Notification Interface, are processed by the Event Processor. It receives
modified data items and converts them into the exchange format using the Con-
verter component. Afterwards, it forwards the changes directly to the wrapper
controller.

6.2 Event Detection Subsystem

Since the ability to react on events on a component database is essential for many
information system architectures, we have included an event detection subsys-
tem into the wrapper architecture. It comprises the Event Monitor, the Event
Processor, and the Notification Interface described above. The event detection
subsystem is adjustable to all data source activity classes and data models so that
basically all monitoring technique presented in Section 4.1 can be implemented
depending, of course, on the capabilities of the underlaying data source. We
distinguish between two main task of the event detection subsystem: pull-based
event polling for data sources without enhanced activity, and push-based Active
Event Notifications for enhanced active databases. The implementation of both
tasks within the wrapper is sketched in the following:

Event Polling: The Event Monitor executes the change extraction process us-
ing a source-specific change capture method. This method is implemented in a
set of query functions provided by the Query Manager. According to the event
detection phases we have identified in Section 4.1.1, the extraction of changes
has to be triggered by a certain event during the notification phase. Referring to
Figure 6.1, the pointed arrows depict the notification channels for the notification

88 6. Tightly coupled Wrappers

phase in our wrapper architecture. Depending on the concrete delivery schedule
this could be a clock in the monitor that triggers periodic updates, a request
from an application or user via the wrapper controller, or an Active Event No-
tification from an EADBS for real-time change delivery. Data sources without
enhanced activity are monitored using a pull-based capture method providing
deferred or periodic change delivery. The connection between the wrapper and
the source is unidirectional, which means that the source has no knowledge of
the encapsulating wrapper component. However, our wrapper also supports im-
mediate pull-based notifications from Enhanced Active Databases. The sequence
diagram (Figure 6.2) depicts the interaction of the components during a pull-
based asynchronous notification (4.3.1) for relation R starting with the execution
of the ENP.

Figure 6.2: Asynchronous pull-based notification in the wrapper

The ENP connects to the NI and signals the update immediately after it
occurred on R. The NI asynchronously forwards the notification to the Event
Monitor which thereupon initiates the extraction phase. It uses the query func-
tions in the Query Manager to capture the changes ∆R in the source, for example
using a trigger-based incremental capture method. Thus, access to the source is
controlled by the Query Manager hiding source-specific implementation details
from the Event Monitor. The changes are forwarded directly to the Event Pro-
cessor where they could be put into an event queue (as recommended for asyn-
chronous updates) and converted into a common representation format using the
Converter. Afterwards, the Controller decides how to react on the updates.

Push-based Notification: During the push-based notification, the data source
pushes changed records to the wrapper. The ENP connects to the NI and trans-
fers the changes using the synchronous or asynchronous notification mechanisms
(4.3.2 and 4.3.3) depending on the application field. The push-based approach
does not need interaction with the Event Monitor or Query Manager since the
updates are already sent to the wrapper as part of the notification phase.

Figure 6.3 depicts the sequence diagram for a synchronous push-based no-
tification process as required for global integrity maintenance. A relation R is
updated and a trigger subsequently executes the ENP to push the updates (∆R)

6.3 Application Fields 89

Figure 6.3: Synchronous push-based notification in the wrapper

to the Notification Interface. The messages between all components are sent
synchronously. Thus, the update transaction is blocked until a return value is re-
ceived from the Controller. From the NI, the updates are forwarded to the Event
Processor and processed like in the pull-based approach. During synchronous no-
tifications the Event Processor has to synchronously inform the Controller about
the updates which, in turn, has to decide how to react. For example, it could
use the mediator interface to contact a constraint manager in the federation layer
or directly contact a remote component database to evaluate a partial integrity
check. Please note that during a synchronous notification process all messages
must be sent synchronously throughout the wrapper and external components.

In both examples, the data source actively communicates with its wrapper
component to signal a change of state via an External Notification Program. Due
to this bidirectional communication we say that the wrapper is tightly coupled to
its data source. A tightly coupled wrapper is perfectly suitable for event-based
federated information systems. They can detect changes in various data sources,
convert them into a common representation format, and actively propagate them
to the federation layer.

6.3 Application Fields

The wrapper architecture presented in this chapter is especially designed for fed-
erated information systems and loosely coupled database federations. The event
detection subsystem allows interactions between the participating data nodes
triggered by data manipulations in the sources, which is a crucial task in many
autonomous information sharing environments. The architecture adapts both
design patterns, an adapter to provide a unified interface for the mediation layer
and a decorator which allows the extension of the functionality of the wrapped
data source. Possible applications for our architecture could be, but are not
limited to:

Event publishing: One application field of our wrapper architecture is the pub-
lishing of events in federated information systems. It can be used to signal
data modifications to event brokers, constraint managers, or global rule

90 6. Tightly coupled Wrappers

managers in the federation layer. Events are converted into a common rep-
resentation format and propagated to the federation layer via the mediator
interface as synchronous or asynchronous messages.

P2P-based information system: The wrapper architecture is part of a loosely
coupled multidatabase architecture (see Chapter 7). The system achieves
a reasonable tradeoff between autonomy and information sharing among
the participating databases. Each data source decides autonomously which
kind of information to share. The data sources are organized as a P2P sys-
tem and communicate using push- and pull-based protocols. Data and
schema modifications are actively propagated to subscribing databases,
which are herewith able to maintain a local up-to-date replica of the data
required.

Mobile databases: The architecture is ideal for the implementation of wrap-
pers for mobile databases [8, 9]. As long as the mobile device is connected to
the network we can use the event detection subsystem to synchronize data
modifications on the mobile database with the backend. If the device is
disconnected from the network, the updates can be accumulated in a cache
on the mobile device to synchronize with the backend when the network
connection is reestablished.

We have evaluated our wrapper architecture for a set of relational databases
(DB2, Oracle, MySQL) in Java using JDBC as the source-specific query interface.
A detailed description of the Event Monitor is given in [68]. The multi-threaded
monitor periodically scans relations using an implementation of the snapshot dif-
ferential algorithm for relational databases. The Notification Interface to support
Active Event Notifications by EADBSs was implemented and evaluated in [113].
External notification programs were created as Java Stored Procedures for DB2
and Oracle whereas the communication between the ENPs and the Notification
Interface was realized using Java RMI.

6.4 Related Work

In this section we give an overview of existing projects relating to wrapper archi-
tectures where the wrappers are mainly developed as part of a complex system.
In this overview we focus on general wrapper architectures providing query and
data translation. For a discussion of event detection architectures we refer to
Section 4.2.

Two well-known wrapper-based information systems are TSIMMIS [85] and
Garlic [99]. In both architectures the focus lays on the processing and optimiza-
tion of queries. TSIMMIS provides a toolkit for the rapid development of wrapper

6.4 Related Work 91

components for different data sources. Based on a Query Description and Trans-
lation Language (QDTL) description that is used to describe the queries that are
supported by the underlaying source, a converter component in the architecture
decides if a query is directly, logically, or indirectly supported by the source. Be-
sides a QDTL description, a wrapper implementor provides a source driver and
a definition of the source output and the information required. The wrapper is
queried using a specific query language MSL and returns results in the Object
Exchange Model (OEM) as common data model. The TSIMMIS wrapper ar-
chitecture does not comprise an event detection module. The Garlic wrappers
provide an object-oriented view on the underlaying repository to the GARLIC
middleware. Actual data is received using method invocations on these Gar-
lic objects. The wrapper furthermore participates in query planning and finally
executes queries on the source. Garlic objects are defined in the Garlic Data Lan-
guage (GDL), which is a variant of the ODMG’s Object Description Language.
Like TSIMMIS, Garlic wrappers do not implement event detection mechanisms.
More recent work on wrappers focuses on the formalization, automatic gener-
ation, and maintenance of wrapper components, especially for semi-structured
data [24, 98].

Contrary to the approaches just mentioned, we do not restrict our consider-
ations to a specific query language or representation model. We rather describe
the conceptual units that are required to implement the intended functionality.
Query language translation and model conversion are performed by the Converter
component and depend on the concrete application field and type of the encap-
sulated data source. However, the related concepts can be used to simplify speed
up the wrapper implementation for different data sources.

92 6. Tightly coupled Wrappers

Chapter 7

The D́ıgame Architecture

In this chapter we present an architecture for a federated information system that
uses tightly coupled wrappers to interconnect a collection of autonomous and het-
erogeneous data sources based on peer-to-peer concepts. It achieves a reasonable
tradeoff between autonomy and information sharing among both, permanently
available and volatile data sources. Each data node decides autonomously which
kind of information to share. Data availability, query performance, and up-to-
dateness on each participating data node is improved using a push-based repli-
cation strategy, which propagates data modifications over multiple nodes. The
content of this chapter is based on papers originally published as [89, 90, 94].

We start with a short introduction to our architecture in Section 7.1 followed
by a description of its basic functionality using a motivating example. Section
7.3 presents the main architectural components with a particular focus on the
location of the required schemas definitions. The main characteristics of D́ıgame
are discussed in Section 7.4. Section 7.5 describes the extensions required for
the basic tightly coupled wrapper to implement the D́ıgame functionality. The
chapter closes with an overview of related work.

7.1 Introduction

Peer-to-peer is a promising concept for building up highly dynamic, flexible, and
extensible information systems. Although designed for a huge number of users,
those systems are particularly useful for dynamic information sharing among a
manageable number of equal partners. The architecture of a company wide in-
formation system has to be applicable to the data policy of the company and vice
versa. The question of data ownership determines the composition of the infor-
mation platform, while it has to ensure a high level of consistency and fail-safety.
Following this argumentation we are basically able to classify the structure of a
corporation according to the classification of multidatabases in Sheth and Larson
[102], i.e. in loosely coupled or tightly coupled companies. This classification is

94 7. The D́ıgame Architecture

applicable to both, intra- and inter-enterprise collaboration. The latter includes
virtual corporations, fused solely for specific business purposes. Departments
within a loosely coupled corporation possess a high degree of local autonomy be-
ing able to decide by themselves on their global participation level. On the other
hand, tightly coupled corporations are controlled and administered by a strong
centralized management, hence their departments have only a few administrative
rights, but rather collect or process data. High availability and data quality build
the basis for decision making, using e.g. a company wide workflow management
system to control and organize processes or to check and reduce costs, thus to en-
sure competitiveness. Cooperating departments need shared access to consistent
data to be able to increase their productivity.

In this chapter we present the D́ıgame architecture, a Dynamic Information
Grid in an Active Multidatabase Environment, which interconnects heteroge-
neous and autonomous data sources to support loosely coupled intra- and inter-
enterprise collaboration. We have enhanced the multidatabase architecture of
Heimbigner and McLeod [52] with Peer-to-Peer (P2P) concepts to offer a flexible
information grid with high data availability to provide each participating node
of this grid with all the data required. Extending the approach of Heimbigner
and McLeod, our architecture enables the sharing of information among both,
permanently available and volatile data sources (e.g. mobile databases [8]) with-
out any central component. For that we have included a push-based replication
mechanism into our architecture that propagates data modifications over mul-
tiple nodes. Thus, we are able to ensure high availability of data, even if the
original data source is temporarily unreachable. Additionally, the replication of
data increases query performance, since we do not have to query remote data
sources. An information sharing environment, which comprises the information
shared by interconnecting heterogeneous and autonomous data peers using our
architecture, shall in the following be referred to as an information or data grid
[25].

7.2 Basic Functionality

We start with the basic functionality of our enhanced multidatabase architecture
using a motivating example.

Consider a worldwide operating company planning the launch of a new prod-
uct (Fig. 7.1). We assume that there are three departments involved in this busi-
ness process: the executive board (management), the sales office, and the product
engineering department. Each department manages its own database to store the
information for which it is responsible in an autonomous way. The management
produces basic data of the product (A) including deadlines, descriptions, work-
flows, and additional objectives. This management information is substantial for
the further product development and the work in the participating departments.

7.2 Basic Functionality 95

CB

AB

B

Sales (B)

AC

C

Product
Engineering (C)

CA

BA

A

Management (A)

Product
Launch

Consulting (D)

CD

BD

AD

D

Figure 7.1: Collaborative Work with D́ıgame

The product engineering department uses a predefined part of that management
data (AC) as basic conditions for the concrete implementation and technical re-
alization of the product. Local applications create additional data which has to
be stored separately (C). According to the product engineering the sales depart-
ment enriches the authoritative management data (AB) with concrete concepts
for the upcoming product launch (B). Furthermore concrete development plans
of the product engineering are required to prepare sales strategies (CB). Both,
sales and product engineering departments, concretize the strategic guidelines
of the management in their specific assignment. To keep track of the costs and
the progress of the project, it is indispensable for the management to access the
product engineering and sales department’s relevant information just mentioned
(BA, CA).

Sharing data within this company using our architecture is realized using a
push-based replication strategy to improve data availability, query performance,
and up-to-dateness on each participating data node. Hence, the data source
actively propagates data updates to relevant peers, which are herewith able to
maintain an up-to-date replica of the imported data. For example, the creation
of a new replica of management data on department B is realized as follows:
each data source of the departments A, B and C is wrapped by a source-specific
wrapper component. These wrappers build up a communication layer, which en-
ables the departments to interact pair-wise using a common protocol. This union
adopts Peer-to-Peer concepts and operates without any central administrative
instance. Due to these characteristics the combination of such a data source and
its related wrapper component can be named as a (data) peer.

The administrator of peer A makes a subset of its own local data accessi-

96 7. The D́ıgame Architecture

ble using the administrative interface of the wrapper component. The export
schema [52] created this way is managed by the wrapper component and specifies
the information that the department is willing to share. The information con-
cerning the access control to local data by remote peers is attached to the export
schema. Peer B is now able to import the data into its local database subscribing
to a specific part (AB) of the published data, i.e. the data required by the de-
partment. During this subscription process the data target (subscriber) informs
the data source (publisher), which subset of the export schema it is willing to
import. The data stock AB is then transferred to the subscriber to perform an
initial filling. If a data or schema modification is detected by the wrapper of the
publisher, all relevant subscribers have to be informed. To determine whether
the subscribers, including peer B, have to be notified about this modification,
the wrapper queries all export schemas in the repository. The modified data or
schema items are then pushed actively to the relevant subscribers using a seman-
tically rich representation format. Each data peer is herewith able to maintain an
up-to-date replica of the data and schema items required by local applications.

Now the management department has decided to involve an external consult-
ing group D to analyze and optimize the productivity within corporate workflows.
Therefore the consultants need access to the entire management data, including
the data of departments B and C. Instead of negotiating separate data exchanges
with every single department, our architecture enables the consulting group to
obtain all data required from only one data source, the management department.
This can be realized, since our architecture supports the sharing of data imported
from other nodes. Please note, that the export of imported data must explicitly
be allowed by the administrator of the management department. After the con-
sulting has subscribed to the entire management data, data updates in B and C
are propagated to A as usual. Node A delivers updates on its own data stock and
additionally those coming from nodes B and C to its subscriber D. Due to this
characteristic, node A becomes a Data Hub for the consulting group according
to the Link Pattern Catalog introduced in [95].

We distinguish two different types of update propagation: direct and indi-
rect updates. After an update is detected on local data of a data source, it is
propagated to the relevant subscribers. Referring to our example, B gets direct
updates, whenever modifications occur on the data stock of node C. If a node
explicitly shares a previously imported data stock, its modifications are in turn
propagated to other subscribers. Referring to our example, node A shares previ-
ously imported data from peers B and C, which is subscribed by the consulting
group node D. If an update occurs on B or C, it is first propagated to node A,
which in turn propagates it to its subscriber D. This sequence of update propa-
gation is called a cascading update. Further partners may join this collaboration
at any time. In fact, each peer can be provided with any data concerning the
product launch stored in one of the collaborating data nodes without interfering
with existing data flows. The data source maintained by the partner can on the

7.3 D́ıgame Architecture Components 97

...

A11 A1a

...

Wrapper 1

XS11 XS1b
... IS11 IS1e

...

Component 1

ES11 ES1d
...

Database 1

PS1CS1
IS11 IS1e

...

A21 A2f

...

Wrapper 2

XS21 XS2g
... IS21 IS2j

...

Component 2

ES21 ES2i
...

Database 2

PS2CS2
IS21 IS2j

...

An1 Ank

...

Wrapper n

XSn1 XSnm
... ISn1 ISno

...

Component n

ESn1 ESnp
...

Database n

PSnCSn
ISn1 ISno

...

ISno = XS21

IS : Import schema z of component yyz

CS : Conceptual schema of component yy

PS : Private schema of component yy

XS : Export schema z of component yyz

A : Application z accessing component yyz

ES : External schema z of component yyz

exemplary interconnections

Figure 7.2: D́ıgame Architecture

other hand be easily connected to the existing data grid sharing its own data.
If a peer is no longer willing to share its data, it can easily be removed from
the data grid, notifying all its subscribers to remove the replicas from their local
data stocks. The support of this temporary collaboration makes our D́ıgame
architecture particularly suitable for virtual cooperations.

7.3 D́ıgame Architecture Components

In this section we discuss the components of our D́ıgame architecture (Fig. 7.2).
The data grid DG := (P, C) created by our architecture is a directed graph,
which consists of a set of peers P := {p1,pn} and a set of connections C,
where a connection c = (pi, pj) ∈ C links exactly two peers, representing a data
flow from pi to pj.

As already mentioned, each peer consists of a component database and a
corresponding wrapper component. These components which are both required
for establishing data flows between communicating peers are described in the
following:

Wrapper: The core of our data grid is the wrapper component, which provides
a uniform interface to the heterogeneous component databases. It is re-
sponsible for negotiating and establishing communication among peers and
coordinates the data and schema exchanges after a communication channel
has been set up. Each wrapper maintains a repository in its correspond-
ing data source to store information about subscribers, export and import
schemas, access control lists, and delivery schedules.

Each wrapper has to realize two major tasks: exporting and importing
data and schema items. To export local data from a peer p, a set of export

98 7. The D́ıgame Architecture

schemas XSp := {XSp1, ..., XSpi} is maintained by the wrapper of p. To
allow indirect updates, those export schemas have to be based on the entire
conceptual schema CSp of the database, excluding RSp, the schema of
the repository stored on p, i.e. ∀XS ∈ XSp : XS ⊆ CSp \ RSp. They
are required to determine, which peers have to be informed about data
modifications. To import data from a remote peer p, the wrapper on a peer
q (p 6= q) maintains a set of import schemas ISq := {ISq1, ..., ISqj}, where

∀q ∈ P ∀IS ∈ ISq ∃1p ∈ P ∃1XS ∈ XSp : IS = XS ∧ p 6= q

and

∀p ∈ P ∀XS ∈ XSp ∃1q ∈ P ∃1IS ∈ ISq : XS = IS ∧ q 6= p

After the initial import of subscribed data, each data and schema modifica-
tion propagated by remote peers is reproduced locally in the workspace of
the wrapper. Since exporting peers actively propagate the data and schema
to relevant subscribers, they must be able to detect modifications on their
local data stock and support different data delivery schedules. This func-
tionality is provided by a wrapper with event detection subsystem based
on our tightly coupled wrapper architecture. For implementation details of
the D́ıgame wrapper component we refer to Section 7.5.

Autonomous Component Databases: According to the Three Schemas Ar-
chitecture and the architecture for loosely coupled multidatabases [52], each
component database on a peer q contains several types of schemas (see Fig.
7.2). The private schema PSq stores data, which is locally produced and
maintained. It is controlled exclusively by the local database administra-
tor. Other peers do not have direct access to this data. Besides the private
schema, the conceptual schema CSq comprises the disjoint union of the
import schemas and the repository mentioned above, i.e.

CSq := (
⋃̇

IS∈ISq

IS) ∪ PSq ∪RSq with IS ∩ PSq = ∅.

Local applications Aq1, ..., Aqf can now access and process the data of the
conceptual schema excluding the repository information as usual using a
set of external schemas ESq := {ESq1, ..., ESqd}. The only limitation is the
read-only access to data derived from the imported schema.

Please keep in mind that the imported data and the repository are exclu-
sively managed by the wrapper component and should never be modified by the
local administrator or applications, although this would be possible due to the
local autonomy. In fact, future implementations could support such multi-master
replication techniques.

7.4 Characteristics 99

7.4 Characteristics

We now discuss the main characteristics of our D́ıgame architecture including
the advantages and limitations related to its implementation.

Autonomy and Heterogeneity: Our architecture is based on the concept of
loosely coupled multidatabases of Heimbigner and McLeod [52] using import and
export schemas for data exchanges. The aim of this architecture is to achieve a
feasible trade-off between local autonomy and a reasonable degree of information
sharing. A data source is basically free to decide on its own level and form of
participation. This includes the ability to decide which data it is willing to ex-
port, which data is imported, and during which periods services are provided.Our
architecture supports the integration of principally any kind of data source using
a wrapper component tailored to that specific data source. The wrapper provides
an uniform interface for the D́ıgame system, where communication is performed
using a standardized protocol and exchange format.

No Central Authority: Any information sharing environment based on our
D́ıgame architecture interconnects autonomous and previously isolated data
peers. Each participating data node keeps full control over its own data, i.e.
there is no central authority imposing certain restrictions. Contrary to other
approaches like [125] we do not use any central component, where publications
or subscriptions are managed. In our system, peers subscribe directly to data
published by other nodes. The information on the data offered is not managed
centrally, but stored exclusively on the corresponding peers.

Wrapper organized similar to P2P systems: We have enhanced the mul-
tidatabase architecture with P2P concepts. The wrappers in our architecture
interact similar to classical P2P networks. Data exports and imports are exclu-
sively negotiated pairwise, whereas each peer is basically able to interact with
any number of data nodes. The entire communication is realized without any
central authority, resulting in a network of self-responsible peers, where members
are basically able to join or leave at any time.

Replication: The replication of data is one of the main features of our D́ıgame
architecture. Data availability is improved in the information grid allowing a data
stock to be directly or indirectly replicated over multiple peers. This means, that
required data is accessible, even if the original data node is temporary unavail-
able. Furthermore query performance is increased, since all the required data
is stored locally. The refreshment strategies for updating the replicas depend
on the application field. We are basically not limited to a single delivery sched-
ule, but able to provide specific replication strategies depending on the needs

100 7. The D́ıgame Architecture

of each subscribing peer. Generally, the preferred delivery schedule is an imme-
diate propagation of updates, but other possible delivery schedules can be, but
are not limited to periodical or even aggregated propagation. The replication is
managed by the wrapper component, which holds information about each sub-
scribing database and its corresponding delivery schedule in its corresponding
repository. D́ıgame uses lazy replication protocols with one single master and
multiple read-only replicas.

Push-based Protocol: A further central characteristic of our architecture is
the push-based propagation of data and schema modifications to subscribing
peers. At first a data peer subscribes to data offered by a data source, whereupon
it receives once a complete copy of the requested data. Afterwards the data
source pushes all relevant updates directly to the subscribers according to their
specific delivery schedule. This modifications are passed on to further subscribers
using indirect updates, until all replicas are updated. Each peer maintaining a
replica of remote data is herewith able to access data, which is as up-to-date
as possible, even if the original data source is temporary not available. If a
replica can not be updated, because a subscriber is currently not reachable, we
have decided to include a pull-based fallback mechanism into our architecture.
After the communication has been reestablished, the data target can then actively
query the data source whether data updates have occurred since their last contact.
Thereupon lost updates are propagated once again to the data target.

Standardized Exchange Format: The dynamic interconnectivity of data
peers requires a standardized exchange format, suitable for both, data and schema
representation. Using knowledge representation techniques we can guarantee that
every single data peer understands data and schema updates without explicitly
arranging an exchange format. The additional integration of identifiers for data
items (e.g. [87]) within the data exchange process simplifies data maintenance,
especially if data is imported from multiple sources. This meta information may
furthermore be useful for detecting and solving conflicts within the data. We
have decided to use the Web Ontology Language OWL as the common repre-
sentation format for our architecture, since it provides several advantages over
classical (semi)structured exchange formats. Based on a meta representation
of (relational) databases we can describe the schema of virtually any database.
Thereupon the schema representation itself can be used as an OWL ontology, to
base the representation of the actual data on. This flexible and powerful tech-
nique is only possible due to the possibilities given by OWL Full to interpret an
instance of a metamodel as a novel ontology. The representation of relational data
and schema with the Web Ontology Language OWL entails several advantages
over classical (semi)structured exchange formats like XML.

7.5 Implementation Details 101

Local Integration: As already mentioned above, each peer may subscribe to
multiple data sources. For each subscription it obtains an exact copy of the
relevant remote data and schema items. Since we do not have a global schema,
the imported data is integrated individually following local integration strategies,
which are not provided by our D́ıgame architecture. Having all required data
stored in the local database, we are particularly able to associate local and re-
mote data with integrity constraints provided by the database, e.g. foreign keys.
Furthermore index structures can be created on imported data to optimize data
access according to local query requirements.

7.5 Implementation Details

The implementation of the D́ıgame architecture demands for an intelligent and
sophisticated wrapper component. Push-based event delivery requires event de-
tection mechanisms to propagate events to interested subscribers. These require-
ments are perfectly met by our tightly coupled wrapper component presented in
Chapter 6. With the event detection subsystem included in the wrapper architec-
ture we are able to react on local events and specifically support real-time update
delivery provided by Enhanced Active Databases. Unlike other event-based sys-
tems there is no central event broker for event publishing available. Due to the
P2P nature of the architecture, each wrapper has to maintain a repository of
current subscribers and event delivery queues. A subscriber shall only receive
events for which it registered and according to its individual delivery schedule.
The implementation of the D́ıgame functionality in the tightly coupled wrapper
requires the following extensions:

Subscriber Repository: The wrapper has to implement a repository for sub-
scribers, the events they are interested in, their individual delivery schedule
(immediate, periodic), and permissions.

Access Control: The wrapper has to implement a user management to secure
access to the data source. Subscribers may have different permissions on
different parts of the data and therewith different parts of the update in-
formation. For example, consider one of the project databases presented in
Table 5.2. One subscriber might be allowed to retrieve updates including
information about the project budget BA, whereas another subscriber must
not see the budget information.

Event Processor Update Queue: All events that are detected either by the
Event Monitor or Notification Interface are forwarded to the Event Pro-
cessor. In an environment using asynchronous messages like D́ıgame all
events are places in a chronological update queue for further processing.

102 7. The D́ıgame Architecture

The Controller sequentially pops the events from the queue and prepares
them for propagation to the subscribers.

Subscriber Update Queues: From the list of all updates provided by the
Event Processor Queue, the Controller maintains individual update queues
for each subscriber according to their specified events of interest and deliv-
ery schedule. The subscriber queues are necessary, since the propagation
process to the subscribers might fail due to system errors or network break-
downs. An update may only be removed from the subscriber queue, if it
was successfully transfered to the target system. Otherwise the transmis-
sion has to be repeated.

Client/Server Interface: Since a wrapper in D́ıgame can concurrently send
and retrieve messages it requires both, a server and client component in
the Mediator Interface to establish communication. The server listens for
incoming connections from client components of remote wrappers. Com-
munication channels could be established using sockets, remote procedure
calls, or protocols provided by communication frameworks like JXTA [63].
The size of the messages should be optimized using compression algorithms
whereas the channels could be secured using public key encryption tech-
niques.

A promising language for the implementation of the D́ıgame wrapper surely
is Java. It provides all state-of-the-art solutions for the problems we encounter
in this distributed and heterogeneous environment. A wide spectrum of existing
libraries and frameworks like JDBC, RMI, JavaBeans, and JXTA allows us to
create a robust, flexible, extensible, and most of all portable piece of wrapper
software.

7.6 Related Work

The first generation of grid computing emerged in the mid 1990s with the de-
mand for high performance applications, which could not be satisfied by single
computers. De Roure et al. [100] divide the evolution of grid computing into
three generations: the first generation with its primitive architecture, which tried
to distribute computing onto different computers a trivial way. With the sec-
ond generation of grid computing middleware systems emerged, and finally the
current third generation tries to facilitate global collaboration.

Simultaneously some efforts arose to use distributed resources for informa-
tion retrieval. Although the Information Grid of Rao et al. [97] is focused on
giving an integrative user interface for distributed information, this approach
can be seen as an early forerunner of the so called Data Grid of Chervenak et
al. [25], a specialization and extension of grid computing. Its intention is to

7.6 Related Work 103

create an architecture of integrated heterogeneous technologies in a coordinated
fashion. Although Chervenak et al. act on the assumption of a heterogeneous
conglomerate of data sources, they force the introduction of a centralized meta-
data repository, e.g. an LDAP directory [107]. This aim is quite catchy especially
in a grid consisting of completely autonomous databases changing their schemas
frequently. Although we admit that a global metadata repository would sim-
plify many of the challenges, we abstain from that effort of re-centralization, as
it causes many difficulties, e.g. every schema change has to be replicated to the
global schema directory. The effect is a single point of failure, exactly the op-
posite of what we wanted to construct. We thus prefer to keep the databases as
they are: autonomous, loosely coupled, and without a single point of failure.

With the raise of filesharing systems like Napster or Gnutella [22] the database
community started to seriously adopt the idea of P2P Systems to the formerly
known loosely coupled database systems. Contrary to the data grid, P2P databa-
se systems do not have a global control in form of a global registry, global services,
or a global resource management, but multiple databases with overlapping and
inconsistent data. These P2P databases resemble heterogeneous and distributed
databases, also known as multidatabases [13, 47]. Currently the database com-
munity makes a great effort in investigating P2P databases. Worth mentioning
is especially the Piazza [49] project, where a P2P system is built up with the
techniques of the Semantic Web [12] with local point-to-point data translations
rather than mapping to common mediated schemas or ontologies. Halevy et
al. focus on processing and rewriting queries on XML data throughout multiple
peers. Contrary to this approach, we deal mainly with relational data and do not
have a global schema, since every peer may have its own import-/export-schema
combination. As a result every peer has its own integrated schema as basis for
queries. Beyond this, Piazza can only deal with data updates as long as the peers
are online. As soon as one peer is disconnected from the network data consis-
tency cannot be guaranteed any more. Like in most P2P approaches, peers may
not have all the information required for their queries stored locally, so they have
to deal with query and result rewriting. This is superfluous in our architecture,
since all the data required is cached on that peer. Similar to our approach, Piazza
allows only data updates in its origin. Hoschek follows a quite different approach
[55], since his goal is to let the loosely coupled databases appear to be a single
data source and thus has to deal with distributed query processing. For a more
general glimpse on data mappings in P2P systems see [65].

Our strategy allows data to be exchanged among distributed databases con-
nected through a lazy network. This means, that although a running network
may not be guaranteed and thus some data broadcasts may be lost, the system
heals itself. This challenge resembles the problems known from environments
with mobile databases. Current research covers synchronous mobile client syn-
chronization, i.e. data changes are propagated periodically (every t seconds) and
not just in time of the data change. Current systems have two main problems

104 7. The D́ıgame Architecture

which arise with the synchronous replication: clients have to be contacted every
t seconds, no matter if changes have occurred and in the worst-case changes have
to be delayed for t seconds. For a more detailed discussion we refer to [51], as
most push-based technologies base on the idea of broadcast disks [2, 3]. In con-
trast to the broadcast disks, our model ensures that data is only broadcasted to
the clients when changes occur, unless the communication between both peers
crashes. Hence our approach resembles a push-based system with a pull-based
fallback, similar to [2] with the major difference that our approach is not based
on broadcast disks, but on the Observer’s Pattern (see below).

There has been much effort in the research of better and more efficient tech-
niques for data propagation, caching, and replication. The evolution of these
methods started with early papers like [62] for classical database systems and
goes to more recent publications for mobile clients like [8, 9, 51]. For a classifica-
tion of database replication techniques see [122]. As mentioned above, we have
decided to use a push-based replication strategy, which resembles the software
engineering’s Observer-Pattern [39]. This pattern gives us a prototype of how
to notify all interested databases about data updates [51]. This communication
is only started, if a data update has occurred and a database is interested. In
consequence, data broadcasts are minimized.

Following the argumentation in [45] and [25] our model provides only single-
master replication, the only guarantor for data stability and clear defined data
flows.

Chapter 8

Link Patterns

The development of novel information platforms like D́ıgame, demand for appro-
priate modeling and description techniques, especially when they resemble P2P
concepts. In this chapter we propose the Link Pattern Catalog as a modeling
guideline for recurring problems appearing during the design or description of
information grids and P2P networks. Link Patterns are represented using the
Data Link Modeling Language, a language for describing and modeling virtually
any kind of data flows in information sharing environments.

After a short motivation in Section 8.1, we introduce DLML in Section 8.2.
The language consists of only a few components and allows the intuitive modeling
of data flows in information sharing environments like our D́ıgame architecture.
Section 8.3 introduces Link Patterns by giving a description of their structure and
a possible classification. Link Patterns are graphically represented in DLML. The
Link Pattern Catalog presented in Section 8.4 contains a collection of elementary,
data independent, and data sensitive Link Patterns together with a detailed de-
scription of a representative of each class. Section 8.5 provides an example for
the usage of Link Patterns and DLML, whereas Section 8.6 concludes with an
overview of related work. The content of this chapter is based on work originally
published in [95].

8.1 Motivation

With the rise of filesharing systems like Napster or Gnutella the database com-
munity started to seriously adopt the idea of P2P systems to the formerly known
loosely coupled databases. While the original systems were only designed to share
simple files among a huge amount of peers, we are not restricted to these data
sources any more. New developments allow peers to share virtually any data, no
matter if it is originated from a relational, object-oriented, or XML database. In
fact, the data may still come from ordinary flat files.

Apparently we have to deal with a very heterogeneous environment of data

106 8. Link Patterns

sources sharing data, referred to as an information or data grid [25]. If we allow
participants to join or leave information grids at any time (e.g. using P2P concepts
[21]), we must take a constantly changing constellation of peers into account.
Any information grid built up by these peers can either evolve dynamically or be
planned beforehand. In both cases we need a concept in order to describe and
understand the interactions among the peers involved. Having such a mechanism,
we could not only detect single data exchanges, but even model and optimize
complex data flows of the entire system.

We adopt commonly used methods for designing data exchanges among peers
as Link Patterns, suitable especially for information grids and P2P networks.
Analogous to the intention of the Design Pattern Catalog used for object-oriented
software development [39] we want to provide modeling guidelines for engineers
and database designers, engaged in understanding, remodeling, or building up an
information grid. Thus information grid architects are provided with a common
vocabulary for design and communication purposes. Up to now data flows in
information grids were designed without having a formal background leading to
individual solutions for a specific problem. These were only known to a circlet
of developers involved into that project. Other designers, engaged with a sim-
ilar problem would never get in contact with these results and thus make the
same mistakes again. Different modeling techniques make it difficult to exchange
successfully implemented solutions.

Link Patterns do not claim to introduce novel techniques for sharing, access-
ing, or processing data in shared environments, but a framework for being able
to understand, describe, and model their data flows. They provide a description
of basic interactions between data sources and operations on the data exchanged,
resulting in a catalog of reusable conceptual units. A developer may choose Link
Patterns to model and describe complex data flows, to identify a single point of
failure, or to avoid or consciously insert redundant data exchanges. The com-
position of Link Patterns is an essential feature of our design method. It gives
us the possibility to represent a structured visualization not only of single data
linkages, but of the entire information platform.

8.2 The Data Link Modeling Language (DLML)

8.2.1 Introduction

The Data Link Modeling Language (DLML) is based on the Unified Modeling
Language (UML) [39] notation, but slightly modifies existing components, adds
additional elements, and thus extends its functionality. It is a language for mod-
eling, visualizing, and optimizing virtually any kind of data flows in information
sharing environments.

Modeling: DLML is a language, suitable for modeling, planning, and re-engi-

8.2 The Data Link Modeling Language (DLML) 107

neering data flows in information sharing environments, e.g. information
grids, systematically. A Data Link Model built up using this language re-
flects the logical and not the physical structure of the entire system. It
enables the developer to specify the properties and the behavior of existing
and novel systems, in order to describe and understand their basic func-
tionalities.

Visualizing: Visualizing data flows is an important assistance in understanding
the structure and behavior of an information platform. The impact of
ER [91] and UML has proved, that a system is easier to grasp and less
error-prone, if a graphical visualization technique is provided, which uses a
well-defined set of graphical symbols, understood by a broad community.
Especially within the analysis of systems with distributed information, it is
favorable to have a method, suitable for drawing up a map of relationships
between the participating peers, in order to depict global data flows.

Optimizing: Besides the modeling and visualization of an information sharing
environment, DLML can be useful to optimize the whole distributed data
management. Redundant data flows and data stocks can systematically be
detected and removed, leading to a higher performance of the entire system.
Of course, redundancy may explicitly be wanted, in order to achieve a higher
fail-safety or a faster access to the data.

Due to the characteristics mentioned above, the Data Link Modeling Lan-
guage is especially suitable for visualizing data flows in distributed information
grids. It may furthermore be employed to model data management in enter-
prise information systems, data integration and migration scenarios, or data
warehouses, i.e. wherever data has to be accessed across multiple different data
sources.

8.2.2 DLML Components

Since DLML is based on UML, its diagrams are constructed in an analogous
manner, using a well-defined set of building blocks according to specific rules.
The following components may be used in DLML (Fig. 8.1) to build up a Data
Link Model:

Nodes: Nodes are data sources, data targets, or applications, usually involved in
a data exchange process. They may either be isolated or connected through
at least one data flow. A data source may be a database (e.g. relational),
a flat file (e.g. XML), or something similar, offering data, whereas a data
target receives data and stores it locally. An application is a software unit,
which accesses or generates data, without maintaining an own physical
data stock. Physical data stocks are represented in DLML by Data Nodes,
applications by Application Nodes.

108 8. Link Patterns

Data Node CommentApplication Node

Data Flow

<< copy >>

Data Node
with Role

G

Location

Label

NodeName:DataStockName

{location = Server A}

Figure 8.1: DLML Components

Label: Each node can have a label. It consists of generally two parts separated
by a colon: the node name and the data stock name or application name
respectively. The data stock name identifies the combination of data and
schema information stored at this node. If this data is replicated as an
exact and complete copy to another node, the data target has to use the
same data stock name. The application is identified by the application
name. Analogous to the data stock name, any further instances of the
same application have the same application name. In both cases we use the
node name to distinguish nodes with the same data stock or application
name. Otherwise the node name is optional.

Location: The optional location tagged value specifies the physical location of
the node. It either specifies an IP address, a server name, or a room number,
helping the developer to locate the Data or Application Node.

Role: A node providing a certain functionality on the data processed, may have
a functional role (e.g. filtering or integrating data). This role will usually be
implemented as a kind of application, operating directly on the incoming or
outgoing data. The name of the role or its abbreviation is placed directly
inside the symbol of the node. This information is not only useful for
increasing the readability of the model, but also for being able to identify
complex relationships.

Data Flow: The data exchange between exactly one data source and one data
target is called data flow. The arrow symbolizes the direction, in which
data is being sent. A node may have multiple incoming and outgoing data
flows. Optionally each data flow may be labeled concerning its behavior,
i.e. if the data is being replicated (<<copy>>) to the data target or if it is
just accessed (<<access>>). If data is being synchronized, both data flow
arrows may be replaced by one single arrow with two arrowheads.

Comment: A comment may be attached to a component, in order to provide
additional information about a node or a data flow. These explanations
may concern a node’s role, filter criteria, implementation hints, data flow

8.3 Link Patterns 109

<< copy >>

hq:products

{location = hq.myserver.com}

branch:products

{location = Server A}

:managementApp

{location = New York}

:customersDial-up connection

synchronized twice

a day

Figure 8.2: DLML Example

properties, or further annotations important for the comprehension of the
model.

8.2.3 Example

We now illustrate the usage of the Data Link Modeling Language with a simplified
example. Consider a worldwide operating wholesaler, with an autonomous over-
seas branch. The headquarters is responsible for maintaining the product catalog
(hq:products) with its price list, while the customers database (:customers) is
administrated by the branch itself (Fig. 8.2).

The overseas branch is connected to the headquarters by a dial-up connection,
not sufficient for accessing the database permanently. For this reason, the product
catalog is replicated to the branch twice a day (branch:products), where the
data may be accessed by the local employees. The branch management uses
a special application (:managementApp) to access both data stocks in order to
generate the annual report for the headquarters.

8.3 Link Patterns

In order to be able to provide a catalog of essential Link Patterns it is necessary
to understand what a Link Pattern is. Therefore we present the elements a Link
Pattern is composed of, including its name, its classification, or its description.
For graphical representation we use the Data Link Modeling Language, specified
above.

110 8. Link Patterns

8.3.1 Elements of a Link Pattern

In this section we present the description of the Link Pattern structure. It is
based on the Design Pattern Catalog from Gamma et al. [39], which has reached
great acceptance within the software engineering community. Thus a developer
is able to quickly understand and adopt the main concept of each Link Pattern
for his own purposes. Each Link Pattern is described by the following elements:

Name: The name of a Link Pattern is its unique identifier. It has to give a first
hint on how the pattern should be used. The name is substantial for the
communication between or within groups of developers.

Classification: A Link Pattern is classified according to the categories described
in Section 8.3.2. The classification organizes existing and future patterns
depending on their functionality.

Motivation: Motivating the usage of the pattern is very important, since it
explains the developer figuratively the basic functionality. This is done
using a small scenario, which illustrates a possible application field of the
pattern. Therewith the developer is able to understand and follow the more
detailed descriptions in the further sections.

Graphical Representation: The most important part of the pattern descrip-
tion is the graphical representation. It is a DLML diagram and describes
the composition and intention of the pattern in an intuitive way. The de-
veloper is advised to adopt this representation, wherever he has identified
the related functionality in his own information grid model.

Description: The composition of the Link Pattern is described in-depth in this
section, including every single component and its detailed functionality.
The explanation of the local operations on each node and data flows between
the components involved, points up the intended functionality of the whole
pattern described. This description shall give the user both, a guidance
through the identification process and instructions for its proper usage.

Challenges: Besides the general instructions given in the prior section, this sec-
tion shall give hints for sources of error in the implementation process of this
pattern. The developer shall get ideas, of how to identify and avoid pitfalls,
arising in a certain context (e.g. interaction with other Link Patterns).

8.3.2 Classification

A classification of the Link Pattern Catalog shall provide an organized access
to all Link Patterns presented. Patterns situated in the same class have similar

8.3 Link Patterns 111

structural or functional properties, depending on the complexity of their imple-
mentation. Although a categorization of a very limited number of patterns may
seem superfluous, we have decided to include this into our Link Pattern Catalog,
since it may help developers to allocate and evaluate the pattern required. Fur-
thermore it should stimulate the developer to find and rate novel patterns, not
yet included in the catalog.

Figure 8.3: Link Pattern Catalog Classification

Figure 8.3 depicts the classification of our Link Pattern Catalog we have cho-
sen. The patterns presented can be divided into two main categories, Elementary
Link Patterns and Composed Link Patterns. In fact this classification is not
completed, but shall provide a starting point for further extension.

Elementary Link Pattern

An Elementary Link Pattern is the smallest unit for building up an information
grid model. It consists of exclusively one single node and at least one data flow
connected to it. Each Data Link Model is composed of several Elementary Link
Patterns, linked together with data flows in an appropriate way. Please note, that
a single Elementary Link Pattern is not yet a reasonable Data Link Model, since
any data flow must have at least one node offering data and one node receiving
data.

Elementary Link Patterns are easy to understand and easy to implement,
since they concern only a single node, a small set of data flows, and do not
include basically any data processing logic. It must be pointed out, that the
Elementary Link Patterns consist only of two main patterns, the Basic Data
Node and the Basic Application Node, and its derivatives (e.g. Publisher and
Generator, discussed in section 8.4).

Composed Link Pattern

Composed Link Patterns are built up by combining at least two Elementary
Link patterns in a specific way, in order to realize a particular functionality.
A Composed Link Pattern may hereby be composed out of both, Elementary
or other Composed Link Patterns. A pattern has to represent a prototype or

112 8. Link Patterns

solution for a recurring sort of problem. Please keep in mind, that an arbitrary
combination of different patterns will not automatically lead to a reasonable
Composed Link Pattern. In contrast to the Elementary Link Patterns, we have
to deal in this context with a more complex kind of patterns. They do not only
include more nodes, but may even represent a quite sophisticated way of linking
them. Besides, each node may additionally process the data received or sent. The
fact, that it may act differently depending on the data involved, is an essential
property of Composed Link Patterns and justifies the creation of two subclasses:

Data Sensitive Link Pattern: As soon as a node included in a Composed
Link Pattern acts depending on the data it processes, the entire pattern
is called a Data Sensitive Link Pattern. This data processing logic imple-
mented on such a node may depend on and be applied to incoming and/or
outgoing data. The operations of this application can either create, alter,
or filter data.

Data Independent Link Pattern: Any Composed Link Pattern, not classi-
fied as Data Sensitive, belongs to this class. In contrast to the patterns
described above, data is not being modified, but sent or received as is. A
rather crucial topic is the topology of the nodes and data flows involved,
which is most relevant for the creation and functionality of this kind of
patterns.

8.3.3 Usage

This section describes how Link Patterns can be useful to develop, maintain,
analyze, or optimize both, straightforward and complex data flows in information
grids. There are basically two methods, how Link Patterns can improve the work
of developers:

Analyzing existing systems: Many existing information grids have arisen dur-
ing the years without being planned centrally or consistently. Even if they
were planned initially, they usually tend to spread in an uncontrolled way.
In such an environment it is vital to have supporting tools, helping to un-
derstand and later optimize an existing system.

First of all a map or model of the existing system has to be created, e.g.
with DLML presented in Section 8.2. Afterwards we examine successively
smaller parts of the model, in order to match them to existing Link Pat-
terns of the Catalog. As a result we get a revised model containing basic
information on the composition and functionality of subsystems, including
their data processing and data flows. With this information in mind, we
are now able to derive information on data flows and interaction of nodes
inside the Data Link Model. This enables us to perform optimizations like
detecting and eliminating vulnerabilities or handling redundancies.

8.4 Link Pattern Catalog 113

Link Patterns may thus not replace human expertise for understanding
existing information grids, but give support in the process of recognizing
global data flows and therewith interpret the purpose of the entire system.

Composing new models: As already mentioned a Link Pattern may not only
improve the process of understanding an existing information grid, but is
also a support for modeling new systems. An information grid architect
needs to have a clear idea of what the system should do. Depending on the
data sources available, the local requirements on the nodes, and the results
he wants to achieve, he can combine nodes and data flows, according to
Link Patterns, until the entire system realizes the intended functionality.
Link Patterns hereby guarantee a common language, understood by other
developers, not yet involved in the modeling. Each developer is thus able
to quickly get a general idea of the system modeled at any time. Fur-
thermore they accelerate the development process, since they provide well
tried solutions for recurring problems, leading to an efficient system of high
quality.

8.4 Link Pattern Catalog

In this section we finally give an introduction into the Link Pattern Catalog.
This includes a graphical overview over the main Link Patterns in DLML, as
well as a detailed description of selected patterns. As mentioned beforehand the
Link Patterns can be classified according to the classification presented in section
8.3.2. Since any Composed Link Pattern either belongs to the Data Sensitive or
to the Data Independent Link Patterns, we organize the catalog as follows:

Elementary Link Patterns

The Elementary Link Patterns are the basic building blocks of a Data Link Model.
They consist of the two basic patterns, described below, and its derivatives. All
Elementary Link Patterns are depicted in Figure 8.4.

Basic Data Node

Classification: Elementary Link Pattern

Motivation: This pattern is one of the basic building blocks of a Data Link
Model. Each incoming or outgoing data flow of a Data Node is modeled
using this Link Pattern.

Graphical Representation: See Figure 8.4

114 8. Link Patterns

Description: A Basic Data Node is a DLML Data Node, which receives data
through incoming data flows, stores it locally, and simultaneously propa-
gates data, held in its own data stock. If a Basic Data Node does only
have outgoing or incoming data flows, it applies the Publisher Pattern or
the Subscriber Pattern respectively. If it does neither have any incoming,
nor any outgoing data flows, the Data Node is called isolated.

Challenges: One of the main challenges to take in this pattern is the proper
coordination of incoming and outgoing data flows. At first all incoming
data has to be stored permanently on the local data stock, without violating
any constraints, before it may be propagated again to other nodes.

Basic Data Node Subscriber Publisher

ConsumerBasic Application Node Generator

Figure 8.4: Elementary Link Patterns

Basic Application Node

Classification: Elementary Link Pattern

Motivation: This pattern is one of the basic building blocks of a Data Link
Model. All applications, relevant for a Data Link Model, are based on this
pattern.

Graphical Representation: See Figure 8.4

Description: An application interacting with arbitrary Data or Application
Nodes, is represented by this pattern. The application does not only re-
ceive, but also propagate data. If a Basic Application Node does only have
outgoing or incoming data flows, it applies the Generator Pattern or the
Consumer Pattern respectively. If it does neither have any incoming nor
any outgoing data flows, the Application Node is called isolated.

Challenges: Propagated data can either be received or generated. All data
manipulations on incoming data, which have to be propagated, have to be
processed in real-time, without storing data locally.

8.4 Link Pattern Catalog 115

Data Independent Link Patterns

The Data Independent Link Patterns belong to the Composed Link Patterns.
These patterns describe a functionality, which only depends on their structure, i.e.
the way nodes and data flows are combined. A graphical overview of the patterns
in this class is given in Figure 8.5, of which the Data Backbone is described
exemplarily.

Publisher - Subscriber Synchronize

<< copy >>

Data Hub

Data Processor

Data Backbone

Distributor Fallback

<< copy >>

Fallback connection,

activate only in case

of failure

Figure 8.5: Data Independent Link Patterns

Data Backbone

Classification: Data Independent Link Pattern

Motivation: A Data Backbone is used, wherever a centralization of data sharing
or data access has to be realized. This is typically required, if data stocks
are re-centralized, a central authority wants to keep track on all data flows,
or data exchanges have to be established among multiple data stocks and
applications.

Graphical Representation: See Figure 8.5

Description: The Data Backbone Pattern consists of several nodes, linked to-
gether in a specific way. A designated node, called Data Backbone, is either
data source or data target for all data flows in this pattern. All nodes, in-
cluding the Data Backbone itself, can be data stocks or applications. Data
is always propagated from data sources to the Data Backbone, where it
may be accessed or propagated once again to other target nodes. Direct
data flows between nodes, which are not the Data Backbone, are avoided.

Challenges: Since the Data Backbone is involved in all data flows, it has a
crucial position in this part of the information grid. Thus, a Data Backbone
node has to provide a high quality of service, concerning disk space, network

116 8. Link Patterns

connection, and processing performance. If the quality of service required
cannot be provided, the Data Backbone may easily become a bottleneck.
Furthermore a breakdown of this node could lead to a collapse of the entire
data sharing infrastructure, which makes it to a single point of failure.

Data Sensitive Link Patterns

Contrary to the Data Independent Link Patterns, the patterns described in this
section are not only classified according to their structural properties, but partic-
ularly because of their data processing functionality. A graphical representation
of these Data Sensitive Link Patterns can be found in Figure 8.6, while a detailed
description is only given for the Gatekeeper Pattern.

Aggregator

A

Cleaner

C

Integrator

I

<< access >>

Gatekeeper

G

<< access >>

Switch

S

Figure 8.6: Data Sensitive Link Patterns

Gatekeeper

Classification: Data Sensitive Link Pattern

Motivation: A Gatekeeper is used to control data flows according to specific
rules (e.g. Access Control Lists), stored separately from the data processed.
It is responsible for providing the target nodes with the accessible data
required. The application of this pattern is not limited to data security
matters. It may actually be applied to any node, which has to supply
different target nodes with specific (e.g. manipulated or filtered) data flows.

Graphical Representation: See Figure 8.6

Description: A Gatekeeper is a designated node, which distributes data accord-
ing to specific rules, eventually stored separately. Local or incoming data of
a Gatekeeper is accessed by target nodes. Before this access can be admit-
ted, the Gatekeeper has to check the permissions. Thus, corresponding to
the rules processed, neither all data stored in the Gatekeeper, nor all data
requested by the target nodes has to be transmitted.

8.5 Example 117

Challenges: The rules and techniques, which are used by the Gatekeeper in or-
der to secure access to the data, have to be robust and safe. The Gatekeeper
needs a mechanism to identify and authenticate the target nodes (e.g. IP
address, public key, or username and password), which may be stored in a
separated data stock. Due to its vital position in the exchange process, this
information has to be protected from unauthorized access. The Gatekeeper
must be able to rely on the correctness, authenticity, and availability of the
rules required.

8.5 Example

This section provides an example of how to model a new information grid of a
worldwide operating company. The headquarters of the company are located in
New York. It has additionally branches in Düsseldorf (head office of the European
branches), Paris, Bangalore, and Hong Kong. Each branch maintains its own
database containing sales figures, collected by local applications. For backup
and subsequent data analysis, this data has to be replicated to the headquarters.
Additionally, the Düsseldorf branch needs to be informed about the ongoing sales
activities of the Paris branch. To simplify the centralized backup, the company
has decided to forbid any data exchanges between the single branches.

The central component of this infrastructure is the backup system in New
York. It collects the sales data from all branches, without integrating them.
Additionally it provides the Düsseldorf branch with all the information required
from Paris. Since the headquarters in New York want to analyze the entire data
stock of the company, a data warehouse, based on the data of the backup system,
is set up. Having a certain local autonomy, the data provided by the European
branches and the remaining branches have some structural differences. For this
reason, the data has to be integrated prior to the aggregation required for the
data warehousing analysis. Using the Link Patterns, we are now able to model
the enterprise information grid as depicted in Figure 8.7.

The local applications, which maintain the local sales databases, are modeled
using the Data Processor. This data is replicated to the backup system in New
York, realized as a Gatekeeper. It thus controls the data flows from the branches
to the data warehouse and to the Düsseldorf branch. It must be guaranteed, that
the data targets get only their designated data, i.e. neither data from Bangalore,
nor from Hong Kong is accessible for the European head office in Düsseldorf.
The data warehouse is realized by a node, which integrates several data sources
using common integration strategies (Integrator Pattern) and aggregates the data
afterwards (Aggregator Pattern), in order to provide OLAP applications with
a homogeneous data stock. Please keep in mind, that the Data Link Model
presented in Figure 8.7 reflects the logical structure of the information platform,
not the physical. This means, that the nodes of the model do not have to be

118 8. Link Patterns

I,A

data stock backup

no integration so far

<< access >>

<< copy >>

<< copy >>

<<
co

py
>>

<<
copy

>>

<<
copy

>>

G

:SalesD

{location = Düsseldorf}

:SalesP

{location = Paris}

:SalesB

{location = Bangalore}

:DW

:SalesP

:OLAPApp

{location = New York}

:SalesH

{location = Hong Kong}

{location = New York}

Figure 8.7: Example using Link Patterns

located on different machines.

8.6 Related Work

Data Flow analysis and modeling has been a focus of researchers for decades.
Earlier work concentrates mainly on data flows in computer architectures and
software components (e.g. [123, 26]). Later on, data flows were also used for
query processing and optimization in database systems. For instance, Teeuw
and Blanken [114] compare control versus data flow mechanisms controlling the
execution of database queries on parallel database systems. Dennis and Misunas
present in [32] a Basic Data-Flow language, which expresses graphically the data
dependencies within a program. In this data flow graph model, instructions
are represented by nodes and paths stand for data or control flows. Although
this language was originally designed for software development, it may be seen
as an early forerunner, in designing data flows among different data sources.
A specialized data flow graph is introduced by Eich and Wells [35], which can
be used for scheduling database queries within multiprocessor environments or
databases distributed over a network [15]. Thus, both approaches apply data
flow concepts to database processing.

The Link Patterns are tightly coupled to the Design Patterns of the object-
oriented software design [39, 19] and Enterprise Application Integration (EAI)
[54], since they represent prototypes or solutions for recurring problems. Contrary
to these patterns, Link Patterns are not intended to solve recurring problems in
software design or EAI, but to provide modeling and description guidelines for

8.6 Related Work 119

information grids, focusing exclusively on data flows. As a possible application
field of our Link Patterns we suggest modeling or visualizing information grids, i.e.
heterogeneous environment of data sources sharing data or modern information
infrastructures, based on P2P concepts like D́ıgame (described in Chapter 7) or
Piazza [49].

120 8. Link Patterns

Chapter 9

Conclusion and Future Work

9.1 Summary

The ability of modern active database systems to execute external programs writ-
ten in a standalone programming language from within its DBMS offers new per-
spectives to data management in federated information systems. We have defined
Enhanced Active Databases as a new subclass of active databases that provide
external program calls as an enhanced active functionality. Databases of this
activity class are thus able to interact with external software or hardware compo-
nents, whereas communication is established using client/server socket connec-
tions, remote procedure calls, or database connections provided by the external
programming language. In the context of this work we have focused on external
programs that are executed from within triggers as a reaction to an update event
occurring in the database. Besides the definitions and notations used throughout
this thesis and a detailed description of of the execution of external routines, we
have introduced remote state queries, injected transactions, and external notifi-
cations as the enhanced functionalities required for our concepts.

We have proposed several concepts and architectures that are specifically de-
veloped for Enhanced Active Databases to support information sharing in the au-
tonomous and heterogeneous environment of federated information systems. We
have shown that an Enhanced Active Database that participates in a federation
as a component database can contribute to the interoperability and consistency
in federated architectures.

As a basic functionality we have introduced Active Event Notifications that
enable EADBSs to actively signal changes in their data stock to external com-
ponents like an event broker or constraint manager. We are thus able to imple-
ment a truly immediate change delivery using a push-based delivery mode and
synchronous messages. A local update transaction is blocked until the notifica-
tion process has finished which makes this feature unique for Enhanced Active
Databases.

122 9. Conclusion and Future Work

One application field of synchronous update notifications is global integrity
maintenance in federated information systems. We have introduced the notion of
Active Component Database Systems based on EADBS which are able to com-
municate with other component databases to which their data is semantically
related to. They are no longer just passive data providers but actively partici-
pating in global integrity maintenance. Global integrity constraints are composed
of sets of partial integrity constraints for each component database that is affected
by the constraint. The partial constraints are evaluated using local and remote
checks which are implemented entirely on a local site. We have described the
requirements and basic functionality of our architecture and provided examples
for partial constraints for commonly used classes of global constraints. As an
extension to this concept we have proposed an external constraint manager that
is synchronously notified of updates by the component databases and performs
the partial constraint checks instead.

To support Active Event Notifications for general processing in a federated
information system, we have extended a wrapper component with an event de-
tection subsystem. The wrapper architecture particularly supports Active Event
Notifications from EADBS which makes him tightly coupled to the encapsulated
database. Furthermore, it comprises components required for monitoring other
types of data sources like passive databases or flat files. This makes the wrapper
perfectly suitable for event-based federated systems with real-time data process-
ing.

Based on our tightly coupled wrapper components we have presented an ar-
chitecture for a P2P-based information system. Our D́ıgame architecture en-
hances the well-known multidatabase architecture with P2P concepts, in order
to support dynamic intra- and inter-enterprise collaboration. Local administra-
tors decide themselves on their level of participation, since the local autonomy is
preserved. Data provided by other peers can be subscribed and integrated into
the local database as needed. The data source actively propagates changes on
the subscribed data and schema items to the relevant peers via a standardized
exchange format resulting in a replication of the data demanded locally. Peers
participating in the data grid interact pairwise without being managed by any
central authority.

Finally, we have presented Link Patterns as guidelines for modeling and
describing data flows between nodes in information sharing environments like
D́ıgame. The Link Pattern Catalog consists of prototypes or solutions for re-
curring problems and therewith supports developers to model, describe, and un-
derstand complex information grids. Furthermore the Link Patterns provide a
common vocabulary for design and communication purposes, enabling developers
to exchange successfully implemented solutions. Additionally we have introduced
the Data Link Modeling Language (DLML) for modeling, visualizing, and opti-
mizing data flows, especially suitable for information grids. This language based
on UML consists of a well-defined set of building blocks, representing data nodes,

9.2 Future Work 123

application nodes and data flows between them. They can be combined accord-
ing to specific rules, to build up the Data Link Model of an information sharing
environment.

9.2 Future Work

In the context of this thesis we have focused on only a small set of possible en-
hanced functionalities to improve interoperability in federated information sys-
tems. We believe that the full potential of Enhanced Active Databases, that
enables a tight coupling of database layer and application layer, has still to be
released. Using external program calls, we are able to use the entire spectrum
of the external programming language to establish communication channels and
manipulate remote data. However, referring to the concepts we have presented
in this work, there are several aspects that would require further investigations.

The push-based synchronous update notification mechanism has some limi-
tations that need further considerations. Depending on the database we could
develop a mechanism that fully exploits DBMS-specific capabilities to push up-
dates to external components. The main problem herewith is the access to the
delta sets from within the triggers. Possible solutions to this problem could pass
the entire delta set as a parameter to the external routine.

Another problem is the usage of injected transactions during partial referen-
tial integrity checks. We have to cope with the problem of atomic commit to
ensure a consistent global state. This could be realized using an external trans-
action manager similar to the Constraint Manager in COMICS that implements
centralized transaction management according to the redo, retry, or compensate
approach.

The development of tools to assist administrators and users to create, deploy,
and monitor external programs for federated information systems would be an-
other contribution. Furthermore, the concepts have to be tested for new EADBSs
that will surely emerge in the near future.

The Link Patterns we have presented are ideal to generate a static model of
data and application nodes with their corresponding data flows. Future work
could consider dynamically changing and evolving environments, in which nodes
constantly join or leave the grid. This may not only affect the Link Pattern Cat-
alog, but also the Data Link Modeling Language. Furthermore the Catalog has
to be enhanced, in order to include novel Link Patterns, not yet identified. The
entire Link Pattern Catalog shall provide developers with an extensive reference
guideline for modeling information sharing environments.

124 9. Conclusion and Future Work

Bibliography

[1] Serge Abiteboul, Sophie Cluet, and Tova Milo. Querying and Updating the
File. In Proceedings of the 19th International Conference on Very Large
Databases, pages 73–84. Morgan Kaufmann, 1993.

[2] Swarup Acharya, Michael Franklin, and Stanley Zdonik. Balancing Push
and Pull for Data Broadcast. In Proceedings of the 1997 ACM SIGMOD
International Conference on Management of Data, pages 183–194. ACM
Press, 1997.

[3] Swarup Acharya, Michael J. Franklin, and Stanley B. Zdonik. Dissemi-
nating Updates on Broadcast Disks. In Proceedings of 22th International
Conference on Very Large Data Bases, pages 354–365. Morgan Kaufmann,
1996.

[4] Maria Sueli Almeida, Kirk Condon, Michael Fischer, and Julian Stuhler.
DB2 Java Stored Procedures - Learning by Example. http://ibm.com/
redbooks, 2000.

[5] Rafael Alonso and Daniel Barbará. Negotiating Data Access in Federated
Database Systems. In Proceedings of the 5th International Conference on
Data Engineering, pages 56–65. IEEE Computer Society, 1989.

[6] ANSI/ISO/IEC 9075-2 Information Technology - Database Language SQL
- Part 2: Foundation (SQL/Foundation), 1999.

[7] Lance Ashdown. Oracle 10g - Application Developer’s Guide - Fundamen-
tals. Oracle Press, 2005.

[8] Daniel Barbará. Mobile Computing and Databases - A Survey. Transac-
tions on Knowledge and Data Engineering, 11(1):108–117, 1999.

[9] Daniel Barbará and Tomasz Imielinski. Sleepers and Workaholics: Caching
Strategies in Mobile Environments. In Proceedings of the 1994 ACM SIG-
MOD International Conference on Management of Data, pages 1–12. ACM
Press, 1994.

126 BIBLIOGRAPHY

[10] Daniel Barbará-Millá and Hector Garcia-Molina. The Demarcation Pro-
tocol: A Technique for Maintaining Constraints in Distributed Database
Systems. The VLDB Journal, 3(3):325–353, 1994.

[11] Hernando Bedoya, Daniel Lema, Cintia Marques, and Vijay Marwaha.
Stored Procedures and Triggers. http://ibm.com/redbooks, 2001.

[12] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web.
Scientific American, 284:35–43, 2001.

[13] Philip A. Bernstein, Fausto Giunchiglia, Anastasios Kementsietsidis, John
Mylopoulos, Luciano Serafini, and Ilya Zaihrayeu. Data Management for
Peer-to-Peer Computing: A Vision. In Proceedings of the 5th International
Workshop on the Web and Databases, pages 89–94, 2002.

[14] Indrajit Bhattacharya and Lise Getoor. Relational Clustering for Multi-
type Entity Resolution. In Proceedings of the 4th International Workshop
on Multi-relational Mining, pages 3–12. ACM Press, 2005.

[15] Lubomir Bic and Robert L. Hartmann. AGM: A Dataflow Database Ma-
chine. ACM Transactions on Database Systems, 14(1):114–146, 1989.

[16] Kenmore S. Brathwaite. Resolution of Conflicts in Data Ownership and
Sharing in a Corporate Environment. ACM SIGBDP Data Base, 15(1):37–
42, 1983.

[17] Yuri Breitbart, Hector Garcia-Molina, and Abraham Silberschatz. Over-
view of Multidatabase Transaction Management. The VLDB Journal,
1(2):181–240, 1992.

[18] M. W. Bright, Ali R. Hurson, and Simin H. Pakzad. Automated Resolu-
tion of Semantic Heterogeneity in Multidatabases. ACM Transactions on
Database Systems, 19(2):212–253, 1994.

[19] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and
Michael Stal. Pattern-Oriented Software Architecture: A System of Pat-
terns. John Wiley & Sons, Inc., 1996.

[20] Susanne Busse, Ralf-Detlef Kutsche, Ulf Leser, and Herbert Weber. Fed-
erated Information Systems: Concepts, Terminology and Architectures:
Forschungsbericht des Fachbereichs Informatik 99-9. Technical report, TU
Berlin, Fachbereich 13 Informatik, 1999.

[21] Mario Cannataro and Domenico Talia. Semantics and Knowledge Grids:
Building the Next-Generation Grid. IEEE Intelligent Systems, 19(1):56–63,
2004.

BIBLIOGRAPHY 127

[22] Bengt Carlsson and Rune Gustavsson. The Rise and Fall of Napster - An
Evolutionary Approach. In Proceedings of the 6th International Computer
Science Conference - Active Media Technology, pages 347–354. Springer,
2001.

[23] Sudarshan S. Chawathe and Hector Garcia-Molina. Meaningful Change De-
tection In Structured Data. In Proceedings of the 1997 ACM SIGMOD In-
ternational Conference on Management of Data, pages 26–37. ACM Press,
1997.

[24] Liangyou Chen, Hasan M. Jamil, and Nan Wang. Automatic Composite
Wrapper Generation for Semi-structured Biological Data based on Table
Structure Identification. SIGMOD Record, 33(2):58–64, 2004.

[25] Ann Chervenak, Ian Foster, Carl Kesselman, Charles Salisbury, and Steven
Tuecke. The Data Grid: Towards an Architecture for the Distributed Man-
agement and Analysis of Large Scientific Datasets. Journal of Network and
Computer Applications, 23(3):187–200, 2000.

[26] Lori A. Clarke, Andy Podgurski, Debra J. Richardson, and Steven J. Zeil.
A Formal Evaluation of Data Flow Path Selection Criteria. IEEE Trans-
actions on Software Engineering, 15(11):1318–1332, 1989.

[27] Gregory Cobena, Serge Abiteboul, and Amélie Marian. Detecting Changes
in XML Documents. In Proceedings of the 18th International Conference
on Data Engineering, pages 41–52. IEEE Computer Society, 2002.

[28] COBOL ACCESS. www.rldt.fr, 2006.

[29] Latha S. Colby, Akira Kawaguchi, Daniel F. Lieuwen, Inderpal Singh Mu-
mick, and Kenneth A. Ross. Supporting Multiple View Maintenance Poli-
cies. In Proceedings of the 1997 ACM SIGMOD International Conference
on Management of Data, pages 405–416. ACM Press, 1997.

[30] Stefan Conrad. Föderierte Datenbanksysteme: Konzepte der Datenintegra-
tion. Springer, Berlin, 1997.

[31] Stefan Conrad, Ingo Schmitt, and Can Türker. Dealing with Integrity
Constraints During Schema Integration. In Proceedings of the International
Workshop of Engineering Federated Database Systems, pages 13–22. Otto-
von-Guericke-Universität Magdeburg, 1997.

[32] Jack B. Dennis and David P. Misunas. A Preliminary Architecture for a
Basic Data-Flow Processor. In Proceedings of the 2nd Annual Symposium
on Computer Architecture, pages 126–132. ACM Press, 1975.

128 BIBLIOGRAPHY

[33] Weimin Du, Ahmed K. Elmagarmid, and Won Kim. Effects of Local Au-
tonomy on Heterogeneous Distributed Database Systems. Technical Report
ACT-OODS-EI-059-90, Microelectronics and Computer Technology Corp.,
1990.

[34] Yann Dupont. Resolving Fragmentation Conflicts in Schema Integration. In
Proceedings of the 13th International Conference on the Entity-Relationship
Approach, pages 513–532. Springer, 1994.

[35] Margaret H. Eich and David L. Wells. Database Concurrency Control Using
Data Flow Graphs. ACM Transactions Database Systems, 13(2):197–227,
1988.

[36] D. Fang, J. Hammer, and D. McLeod. The Identification and Resolution
of Semantic Heterogeneity in Multidatabase Systems. In Proceedings of the
First International Workshop on Interoperability in Multidatabase Systems,
pages 136–143. IEEE Computer Society, 1994.

[37] I.P. Fellegi and A. B. Sunter. A Theory for Record Linkage. Journal of the
American Statistical Association, 64:1183–1210, 1969.

[38] Michael Franklin and Stan Zdonik. ”Data in your face”: Push Technology
in Perspective. In Proceedings of the 1998 ACM SIGMOD International
Conference on Management of Data, pages 516–519. ACM Press, 1998.

[39] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements od Reusable Object-Oriented Software. Addison-Wesley
Professional Computing Series. Addison-Wesley Publishing Company, New
York, NY, 1995.

[40] Hector Garcia-Molina and Boris Kogan. Node Autonomy in Distributed
Systems. In Proceedings of the First International Symposium on Databases
in Parallel and Distributed Systems, pages 158–166. IEEE Computer Soci-
ety, 1988.

[41] Hector Garcia-Molina, Yannis Papakonstantinou, Dallan Quass, Anand Ra-
jaraman, Yehoshua Sagiv, Jeffrey D. Ullman, Vasilis Vassalos, and Jennifer
Widom. The TSIMMIS Approach to Mediation: Data Models and Lan-
guages. Journal of Intelligent Information Systems, 8(2):117–132, 1997.

[42] Manuel Garćıa-Solaco, Felix Saltor, and Malu Castellanos. A Structure
Based Schema Integration Methodology. In Proceedings of the 11th Inter-
national Conference on Data Engineering. IEEE Computer Society, 1995.

[43] Gartner Press Release May 2005. http://www.gartner.com/press releases/
asset 127553 11.html, 2005.

BIBLIOGRAPHY 129

[44] Lorena G. Gomez. An Active Approach to Constraint Maintenance In A
Multidatabase Environment. PhD thesis, Arizona State University, 2002.

[45] Jim Gray, Pat Helland, Patrick O’Neil, and Dennis Shasha. The Dangers of
Replication and a Solution. In Proceedings of the 1996 ACM SIGMOD In-
ternational Conference on Management of Data, pages 173–182, Montreal,
Canada, 1996. ACM Press.

[46] Paul W. P. J. Grefen and Jennifer Widom. Integrity Constraint Checking
in Federated Databases. In Proceedings of the International Conference on
Cooperative Information Systems, pages 38–47. IEEE Computer Society,
1996.

[47] Steven Gribble, Alon Halevy, Zachary Ives, Maya Rodrig, and Dan Su-
ciu. What Can Databases Do for Peer-to-Peer? In Proceedings of the 4th
International Workshop on the Web and Databases, 2001.

[48] Lifang Gu, Rohan A. Baxter, Deanne Vickers, and Chris Rainsford. Record
Linkage: Current Practice and Future Directions. Technical Report 03/83,
CSIRO Mathematical and Information Sciences, Canberra, Australia, 2003.

[49] Alon Y. Halevy, Zachary G. Ives, Peter Mork, and Igor Tatarinov. Piazza:
Data Management Infrastructure for Semantic Web Applications. In Pro-
ceedings of the 12th International Conference on World Wide Web, pages
556–567, 2003.

[50] Alon Y. Halevy, Zachary G. Ives, Dan Suciu, and Igor Tatarinov. Schema
Mediation in Peer Data Management Systems. In Proceedings of the Inter-
national Conference on Data Engineering, pages 505–517, 2003.

[51] Takahiro Hara. Cooperative Caching by Mobile Clients in Push-based In-
formation Systems. In Proceedings of the 11th International Conference on
Information and Knowledge Management, pages 186–193, 2002.

[52] Dennis Heimbigner and Dennis McLeod. A Federated Architecture for
Information Management. ACM Transactions on Information Systems
(TOIS), 3(3):253–278, 1985.

[53] Ludmila Himmelspach. Portierbarkeit von Partiellen Integritätsbedingun-
gen. Bachelor’s Thesis. Heinrich-Heine-Universität Düsseldorf, 2005.

[54] Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns. Addison-
Wesley, 2003.

[55] Wolfgang Hoschek. A Unified Peer-to-Peer Database Framework for Scal-
able Service and Resource Discovery. In Proceedings of the Third Interna-
tional Workshop on Grid Computing, pages 126–144, 2002.

130 BIBLIOGRAPHY

[56] Cheng Hsu and Laurie Rattner. Metadatabase Solutions for Enterprise
Information Integration Problems. ACM SIGBDP Data Base, 24(1):23–35,
1993.

[57] James W. Hunt and Thomas G. Szymanski. A fast Algorithm for Com-
puting Longest Common Subsequences. Communications of the ACM,
20(5):350–353, 1977.

[58] IBM DB2 Online Manuals: Introduction to Replication and Event Publish-
ing. http://www.ibm.com, 2006.

[59] IBM Homepage. http://www.ibm.com, 2006.

[60] IBM Software - Informix Product Familiy. www.ibm.com/software/data/
informix, 2006.

[61] H. V. Jagadish, S. Al-Khalifa, A. Chapman, L. V. S. Lakshmanan, A. Nier-
man, S. Paparizos, J. M. Patel, D. Srivastava, N. Wiwatwattana, Y. Wu,
and C. Yu. TIMBER: A Native XML database. The VLDB Journal,
11(4):274–291, 2002.

[62] Paul R. Johnson and Robert H. Thomas. RFC 677: Maintenance of Dupli-
cate Databases. http://www.rfc-archive.org, 1975.

[63] JXTA Project Homepage. http://www.jxta.org, 2006.

[64] Vasiliki Kantere, John Mylopoulos, and Iluju Kiringa. A Distributed Rule
Mechanism for Multidatabase Systems. In On The Move to Meaningful In-
ternet Systems 2003: CoopIS, DOA, and ODBASE, pages 56–73. Springer,
2003.

[65] Anastasios Kementsietsidis, Marcelo Arenas, and Renée J. Miller. Map-
ping Data in Peer-to-Peer Systems: Semantics and Algorithmic Issues. In
Proceedings of the 2003 ACM SIGMOD International Conference on Man-
agement of Data, pages 325–336. ACM Press, 2003.

[66] Arne Koschel and Ralf Kramer. Configurable Event Triggered Services for
CORBA-based Systems. In Proceedings of the 2nd International Enterprise
Distributed Object Computing Workshop, pages 306–318, 1998.

[67] Thomas Kudrass, Andreas Loew, and Alejandro P. Buchmann. Active
Object-Relational Mediators. In Proceedings of the International Confer-
ence of Cooperative Information Systems, pages 228–239, 1996.

[68] Krasimir Kutsarov. Entwicklung eines Wrapper-Teilsystems zur Erkennung
von Ereignissen in passiven Datenquellen. Bachelor’s Thesis. Heinrich-
Heine-Universität Düsseldorf, 2005.

BIBLIOGRAPHY 131

[69] Wilburt Labio and Hector Garcia-Molina. Efficient Snapshot Differential
Algorithms for Data Warehousing. In Proceedings of the 22th International
Conference on Very Large Data Bases, pages 63–74. Morgan Kaufmann,
1996.

[70] Justin Langseth. Real-time Data Warehousing: Challenges and Solutions.
http://dssresources.com/papers/features/langseth/langseth02082004.html,
2004.

[71] Ki Yong Lee and Myoung Ho Kim. Optimizing the Incremental Mainte-
nance of Multiple Join Views. In Proceedings of the 8th ACM International
Workshop on Data Warehousing and OLAP, pages 107–113. ACM Press,
2005.

[72] Christoph Liebig, Marco Malva, and Alejandro P. Buchmann. Integrating

Notifications and Transactions: Concepts and X2TS Prototype. In Proceed-
ings of the 2nd International Workshop on Engineering Distributed Objects,
pages 194–214. Springer, 2000.

[73] Kevin Loney and Bob Bryla. Oracle Database 10g, DBA Handbook.
McGraw-Hill/Osborne, 2005.

[74] Kevin Loney and George Koch. Oracle8i: The Complete Reference.
Osborne/McGraw-Hill, 2000.

[75] Jayant Madhavan, Philip A. Bernstein, and Erhard Rahm. Generic Schema
Matching with Cupid. In Proceedings of 27th International Conference on
Very Large Data Bases, pages 49–58, 2001.

[76] MSDN Library. www.microsoft.com/germany/msdn, 2006.

[77] James G. Mullen, Ahmed K. Elmagarmid, Won Kim, and Jamshid Sharif-
Askary. On the Impossibility of Atomic Commitment in Multidatabase
Systems. In Proceedings of the 2nd International Conference on System
Integration, pages 625–634. IEEE Computer Society, 1992.

[78] Craig S. Mullins. DB2 Developer’s Guide. Sams, 2004.

[79] Peter Muth and Thomas C. Rakow. Atomic Commitment for Integrated
Database Systems. In Proceedings of the 7th International Conference on
Data Engineering, pages 296–304. IEEE Computer Society, 1991.

[80] Wolfgang Nejdl, Wolf Siberski, and Michael Sintek. Design Issues and
Challenges for RDF- and Schema-based Peer-to-peer Systems. SIGMOD
Record, 32(3):41–46, 2003.

132 BIBLIOGRAPHY

[81] Tho Manh Nguyen and A. Min Tjoa. Zero-Latency Data Warehousing for
Heterogeneous Data Sources and Continuous Data Streams. In Proceedings
of the 5th International Conference on Information Integration and Web-
based Applications Services, volume 170 of books@ocg.at. Austrian Com-
puter Society, 2003.

[82] Oracle Homepage. http://www.oracle.com, 2006.

[83] Oracle Technology Network. http://otn.oracle.com, 2006.

[84] M. Tamer Özsu and Patrick Valduriez. Principles of Distributed Database
Systems. Prentice Hall, 1999.

[85] Yannis Papakonstantinou, Ashish Gupta, Hector Garcia-Molina, and Jef-
frey D. Ullman. A Query Translation Scheme for Rapid Implementation of
Wrappers. In Proceedings of the 4th International Conference on Deductive
and Object-Oriented Databases, pages 319–344. Springer, 1995.

[86] Norman W. Paton and Oscar Dı́az. Active database systems. ACM Com-
puting Surveys (CSUR), 31(1):63–103, 1999.

[87] Cristian Pérez de Laborda and Stefan Conrad. A Semantic Web based Iden-
tification Mechanism for Databases. In Proceedings of the 10th International
Workshop on Knowledge Representation meets Databases (KRDB 2003),
Hamburg, Germany, September 15-16, 2003, volume 79 of CEUR Work-
shop Proceedings, pages 123–130. Technical University of Aachen (RWTH),
2003.

[88] Cristian Pérez de Laborda and Stefan Conrad. Relational.OWL - A Data
and Schema Representation Format Based on OWL. In Sven Hartmann and
Markus Stumptner, editors, Second Asia-Pacific Conference on Concep-
tual Modelling (APCCM2005), Newcastle, Australia, volume 43 of CRPIT,
pages 89–96. ACS, 2005.

[89] Cristian Pérez de Laborda, Christopher Popfinger, and Stefan Conrad.
D́ıgame: A Vision of an Active Multidatabase with Push-based Schema
and Data Propagation. In Proceedings of the GI-/GMDS-Workshop on En-
terprise Application Integration (EAI’04), volume 93 of CEUR Workshop
Proceedings, pages 49–56, 2004.

[90] Cristian Pérez de Laborda, Christopher Popfinger, and Stefan Conrad.
Dynamic Intra- and Inter-Enterprise Collaboration Using an Enhanced
Multidatabase Architecture. In DEXA Workshop Proceedings of the 16th
Intl. Workshop on Web Based Collaboration (WBC 2005), August 22 -
26, Copenhagen, Denmark, pages 626–631. IEEE Computer Society Press,
2005.

BIBLIOGRAPHY 133

[91] Peter Pin-Shan Chen. The Entity-Relationship Model - Toward a Unified
View of Data. ACM Transactions on Database Systems (TODS), 1(1):9–36,
1976.

[92] Christopher Popfinger and Stefan Conrad. Maintaining Global Integrity
in Federated Relational Databases using Interactive Component Systems.
In On the Move to Meaningful Internet Systems 2005: CoopIS, DOA, and
ODBASE, volume 3760 of Lecture Notes in Computer Science, pages 539–
556. Springer, 2005.

[93] Christopher Popfinger and Stefan Conrad. Tightly-coupled Wrappers with
Event Detection Subsystem for Heterogeneous Information Systems. In
DEXA Workshop Proceedings of the 8th Intl. Workshop on Network-Based
Information Systems (NBiS 2005), August 22 - 26, Copenhagen, Denmark,
pages 62–66. IEEE Computer Society Press, 2005.

[94] Christopher Popfinger, Cristian Pérez de Laborda, and Stefan Conrad.
D́ıgame: A Push-based P2P Database. In L.M. MacKinnon, A.G. Burger,
and P.W. Trinder, editors, BNCOD21 (21st Annual British National Con-
ference on Databases), Proceedings Volume 2, pages 45–46. Heriot Watt
University, 2004.

[95] Christopher Popfinger, Cristian Pérez de Laborda, and Stefan Conrad. Link
Patterns for Modeling Information Grids and P2P Networks. In Il-Yeol
Song and Stephen W. Liddle and Tok Wang Ling and Peter Scheuermann,
editor, Conceptual Modeling - ER 2004, 23rd International Conference on
Conceptual Modeling, Shanghai, China, November 8-12, 2004, volume 3288
of Lecture Notes in Computer Science, pages 388–401. Springer, 2004.

[96] PostgreSQL Homepage. http://www.postgresql.org, 2006.

[97] Ramana Rao, Stuart K. Card, Herbert D. Jellinek, Jock D. Mackinlay, and
George G. Robertson. The Information Grid: A Framework for Information
Retrieval and Retrieval-Centered Applications. In Proceedings of the 5th
Annual Symposium on User Interface Software and Technology (UIST’92),
pages 23–32, 1992.

[98] Juan Raposo, Alberto Pan, Manuel Álvarez, and Ángel Viña. Automatic
Wrapper Maintenance for Semi-structured Web Sources using Results from
Previous Queries. In Proceedings of the 2005 ACM Symposium on Applied
Computing, pages 654–659. ACM Press, 2005.

[99] Mary Tork Roth and Peter M. Schwarz. Don’t Scrap It, Wrap It! A Wrap-
per Architecture for Legacy Data Sources. In Proceedings of the 23rd In-
ternational Conference on Very Large Data Bases, pages 266–275. Morgan
Kaufmann, 1997.

134 BIBLIOGRAPHY

[100] David De Roure, Mark A. Baker, Nicholas R. Jennings, and Nigel R. Shad-
bolt. The Evolution of the Grid. In Fran Berman, Geoffrey Fox, and Tony
Hey, editors, Grid Computing: Making the Global Infrastructure a Reality,
pages 65–100. John Wiley & Sons Inc., New York, April 2003.

[101] SD Times Survey: Relational Databases Rule the Roost.
http://www.sdtimes.com, 2004.

[102] Amit P. Sheth and James A. Larson. Federated Database Systems for
Managing Distributed, Heterogeneous, and Autonomous Databases. ACM
Computing Surveys, 22(3):183–236, 1990.

[103] Jacob Slonim, Fred J. Maryanski, and Paul S. Fisher. Mediator: An Inte-
grated Approach to Information Retrieval. In Proceedings of the First In-
ternational ACM SIGIR Conference on Information Storage and Retrieval,
pages 14–36. ACM Press, 1978.

[104] Stefano Spaccapietra and Christine Parent. View Integration: A Step For-
ward in Solving Structural Conflicts. Transactions on Knowledge and Data
Engineering, 6(2):258–274, 1994.

[105] Stefano Spaccapietra, Christine Parent, and Yann Dupont. Model Inde-
pendent Assertions for Integration of Heterogeneous Schemas. The VLDB
Journal, 1(1):81–126, 1992.

[106] Mark Spenik and Orryn Sledge. Microsoft SQL Server 2000 DBA Survival
Guide. Sams, 2003.

[107] Heinz Stockinger. Distributed Database Management Systems and the Data
Grid. In Proceedings of the 18th IEEE Symposium on Mass Storage Sys-
tems and 9th NASA Goddard Conference on Mass Storage Systems and
Technologies, San Diego, CA, 2001.

[108] Sandra Suljic. Fehleranalyse bei ’Injected Transactions’. Bachelor’s Thesis.
Heinrich-Heine-Universität Düsseldorf, 2005.

[109] Radhakrishnan Sundaresan, Tahsin M. Kurç, Mario Lauria, Srinivasan
Parthasarathy, and Joel H. Saltz. A Slacker Coherence Protocol for Pull-
based Monitoring of On-line Data Source. In 3rd IEEE International Sym-
posium on Cluster Computing and the Grid (CCGrid 2003), pages 250–257.
IEEE Computer Society, 2003.

[110] Sybase Homepage. http://www.sybase.com, 2006.

[111] Sybase Transact-SQL User’s Guide - Application Server Enterprise 15.0.
http://infocenter.sybase.com, 2005.

BIBLIOGRAPHY 135

[112] Igor Tatarinov, Zachary Ives, Madhavan Jayant, Alon Halevy, Dan Suciu,
Nilesh Dalvi, Xin Dong, Yana Kadiyska, Gerome Miklau, and Peter Mork.
The Piazza Peer Data Management Project. SIGMOD Record, 32(3), 2003.

[113] Alexander Tchernin. Aktive Ereignisübermittlung in einer eng gekoppel-
ten Wrapper-Architektur. Bachelor’s Thesis. Heinrich-Heine-Universität
Düsseldorf, 2005.

[114] W. B. Teeuw and H. M. Blanken. Control Versus Data Flow in Parallel
Database Machines. IEEE Transactions on Parallel Distributed Systems,
4(11):1265–1279, 1993.

[115] Can Türker and Stefan Conrad. Towards Maintaining Integrity of Feder-
ated Databases. In Data Management Systems, Proceedings of the 3rd Int.
Workshop on Information Technology, BIWIT’97, July 2–4, 1997, Biarritz,
France, pages 93–100, Los Alamitos, CA, 1997. IEEE Computer Society
Press.

[116] Marshall van Alstyne, Erik Brynjolfsson, and Stuart Madnick. Why not one
big database?: Principles for data ownership. Decision Support Systems,
15(4):267–284, 1995.

[117] Günter von Bültzingsloewen, Arne Koschel, and Ralf Kramer. Active In-
formation Delivery in a CORBA-based Distributed Information System. In
On The Move to Meaningful Internet Systems 1996: CoopIS, DOA, and
ODBASE, pages 218–227. Springer, 1996.

[118] Yuan Wang, David J. DeWitt, and Jin-yi Cai. X-Diff: An Effective Change
Detection Algorithm for XML Documents. In Proceedings of the Interna-
tional Conference of Data Engineering, pages 519–530, 2003.

[119] Seth White, Maydene Fisher, and Rick Cattell. JDBC API Tutorial and
Reference. Addison Wesley, 2001.

[120] Gio Wiederhold. Mediators in the Architecture of Future Information Sys-
tems. IEEE Computer, 25(3):38–49, 1992.

[121] Janet L. Wiener, Himanshu Gupta, Wilburt Labio, Yue Zhuge, Hector
Garcia-Molina, and Jennifer Widom. A System Prototype for Warehouse
View Maintenance. In Proceedings of the Workshop on Materialized Views:
Techniques and Applications, pages 26–33, 1996.

[122] Matthias Wiesmann, Fernando Pedone, André Schiper, Bettina Kemme,
and Gustavo Alonso. Database Replication Techniques: a Three Param-
eter Classification. In Proceedings of 19th IEEE Symposium on Reliable
Distributed Systems (SRDS2000), pages 206–215. IEEE Computer Society,
2000.

136 BIBLIOGRAPHY

[123] Elizabeth Winey. Data Flow Architecture. In Proceedings of the 16th An-
nual Southeast Regional Conference, pages 103–108. ACM Press, 1978.

[124] William Winkler. The State of Record Linkage and Current Research Prob-
lems. Technical report, Statistical Research Division, U.S. Bureau of the
Census, Wachington, DC, 1999.

[125] Jian Yang, Mike P. Papazoglou, and Bernd J. Krämer. A Publish/Subscribe
Scheme for Peer-to-Peer Database Networks. In On The Move to Meaning-
ful Internet Systems 2003: CoopIS, DOA, and ODBASE, pages 244–262.
Springer, 2003.

[126] Xin Zhang, Lingli Ding, and Elke A. Rundensteiner. Parallel Multisource
View Maintenance. The VLDB Journal, 13(1):22–48, 2004.

[127] Yue Zhuge, Hector Garcia-Molina, Joachim Hammer, and Jennifer Widom.
View Maintenance in a Warehousing Environment. In Proceedings of the
1995 ACM SIGMOD International Conference on Management of Data,
pages 316–327. ACM Press, 1995.

List of Figures

2.1 Basic architecture of federated information systems (based on [20]) 7
2.2 Five-level schema architecture of an FDBS [102] 21
2.3 Architecture of mediator-based information systems [41, 20] . . . 23
2.4 Architecture of Peer-to-peer information systems 24

3.1 Schematic overview of an external program call 29

4.1 Interaction of the Event Monitor. 38
4.2 Pull-based asynchronous Active Event Notification. 50
4.3 Push-based synchronous event notification. 54
4.4 Notification via schema-specific ENPs. 55
4.5 Active notification with a single ENP. 56
4.6 Push-based asynchronous event notification. 58

5.1 Global integrity maintenance with Active Component Systems . 64
5.2 Interaction between two ACDBSs during a partial constraint check 65
5.3 Federated Information System with COMICS Constraint Manager 76
5.4 Constraint checking with COMICS 79

6.1 Wrapper architecture with event detection subsystem. 84
6.2 Asynchronous pull-based notification in the wrapper 88
6.3 Synchronous push-based notification in the wrapper 89

7.1 Collaborative Work with D́ıgame 95
7.2 D́ıgame Architecture . 97

8.1 DLML Components . 108
8.2 DLML Example . 109
8.3 Link Pattern Catalog Classification 111
8.4 Elementary Link Patterns . 114
8.5 Data Independent Link Patterns 115
8.6 Data Sensitive Link Patterns . 116
8.7 Example using Link Patterns . 118

138 LIST OF FIGURES

