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Coprime Modules and
Comodules

by

Indah Emilia Wijayanti

A thesis submitted to the
Faculty of Mathematics and Natural Sciences

University of Düsseldorf

June, 2006



iv



Contents

Introduction vii

1 Prime and Coprime Modules 1

1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Prime modules . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Coprime modules . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Endo-prime modules . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5 Endo-coprime modules . . . . . . . . . . . . . . . . . . . . . . . 19

1.6 Fully prime modules . . . . . . . . . . . . . . . . . . . . . . . . 21

1.7 Fully coprime modules . . . . . . . . . . . . . . . . . . . . . . . 24

1.8 Strongly prime and coprime modules . . . . . . . . . . . . . . . 30

1.9 Colocalization in σ[M ] . . . . . . . . . . . . . . . . . . . . . . . 35

2 Prime and Coprime Comodules 43

2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2 Annihilator conditions for comodules and coalgebras . . . . . . . 49

2.3 Prime comodules . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.4 Coprime comodules . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.5 Endo-prime comodules . . . . . . . . . . . . . . . . . . . . . . . 58

2.6 Endo-coprime comodules . . . . . . . . . . . . . . . . . . . . . . 59

2.7 Fully prime comodules . . . . . . . . . . . . . . . . . . . . . . . 60

2.8 Fully coprime comodules . . . . . . . . . . . . . . . . . . . . . . 62

2.9 Strongly prime and strongly coprime comodules . . . . . . . . . 64

2.10 Wedge Product of Subcomodules . . . . . . . . . . . . . . . . . 67

2.11 Review of coprime coalgebras over field . . . . . . . . . . . . . . 70

2.12 Colocalization in MC . . . . . . . . . . . . . . . . . . . . . . . . 73

2.13 Colocalization of coalgebras . . . . . . . . . . . . . . . . . . . . 77

v



Bibliography 82

Index 87

vi



Introduction

From the very beginning the study of coalgebras was motivated by the existing
theory of algebras and rings. Many notions and results could be formulated
easily by transferring the corresponding knowledge from algebras to coalgebras
and from modules to comodules. However, despite of its importance in ring
theory, the notion of primeness for rings and modules did not find an adequate
counterpart in the coalgebraic setting. This may be due to the finiteness theorem
for comodules which says that for a coalgebra C over a field (ring) R, any finitely
generated C-comodule is also a finitely generated R-module. So to some extent
the behaviour of coalgebras is similar to that of finite dimensional algebras and
for those primeness means just simplicity.

In this context one of the questions one may ask is when the dual algebra
C∗ = HomR(C,R) (with the convolution product) of an R-coalgebra C is a
prime algebra. Perhaps the first paper to consider this was by Xu, Lu, and Zhu
[41] who observed that this is the case if C is a coalgebra over a field k and
(C∗ ∗ f) ⇀ C = C for any non-zero element f ∈ C∗. Another approach in this
direction can be found in Jara, Merino, Ruiz [17] and Nekooei-Torkzadeh [26]
where coprime coalgebras (over fields) are defined by using the wedge product
and it is shown that these are characterized by the primeness of C∗.

Dualizing primeness condition, coprimeness can also be defined for modules
and algebras. The purpose of this thesis is to investigate the resulting notions for
modules and then transfer them to comodules and coalgebras over commutative
rings. Notice that for any algebra A, coprimeness implies that A is simple but
for a coalgebra C the condition to be coprime is not so restrictive.

For prime rings localization techniques were developed to construct rings of
quotients. These were also extended to modules. Thus the question arises if
there is anything like colocalization to construct a coalgebra of quotients. Such
theories have been considered in module categories, we apply them to comodules
and coalgebras.
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A large part of our research is based on the fact that for any coalgebra C
over a commutative ring R, comodule categories can be considered as module
categories over the ring C∗ provided an appropriate (weak) condition is imposed
on the R-module structure of C (locally projective, α-condition). In this case
the category of right C-comodules is equivalent to the category σ[C∗C] of those
left C∗-modules which are subgenerated by C.

Thus in the first part of the thesis we reconsider categories of type σ[M ]
where M is any module over a ring R. Already known notions like prime, endo-
prime, coprime, fully and strongly prime modules are recalled and we prove
new properties of interest for the application to comodules. Strongly and fully
coprime modules are defined and studied. If M is prime, then every projective
module P in σ[M ] is prime (1.2.7). If Soc(M) 6= 0 and M is prime, then
R := R/AnnR(M) is a left primitive ring (1.2.12). A result in the dual situation
is : If M is coprime with Rad(M) 6= M , then R := R/AnnR(M) is a left
primitive ring (1.3.10). Moreover, if p : P →M is a small epimorphism in σ[M ]
and M is a coprime and faithful R-module, then P is coprime (1.3.11). If M is
fully prime with Soc(M) 6= 0, then M is a homogeneous semisimple module and
R := R/AnnR(M) is a primitive ring (1.6.9). The dual situation of this is : If
M is fully coprime with Rad(M) 6= M , then M is generated by a module that is
cogenerated by a simple module and R := R/AnnR(M) is a left primitive ring
(1.7.15). If P is a projective hull of M and M is strongly coprime, then M ' P
(1.8.11). It turns out that for a self-injective self-cogenerator module M , the
notions endo-coprime, fully and strongly coprime coincide (1.7.12 and 1.8.12).

These results are then applied to comodules. We observe that primeness
conditions on comodules with non-zero socle and coprimeness conditions on
comodules with proper radicals lead to trivial situations. For coalgebras over
fields this was also seen by Rodrigues [29] and many of her results follow as
corollaries from our propositions.

For comodules, coprimeness conditions are more interesting and we provide a
series of theorems on these cases. Eventually we consider these conditions on the
coalgebra C itself. For example, if C is prime as a right C-comodule, then C is
finitely generated as an R-module and C∗ is a prime algebra (2.3.6). Moreover,
if C is prime as a right C-comodule with Soc(C) 6= 0, then C∗ is a simple algebra
and finitely generated R-module (2.3.8). If C is coprime as a right C-comodule
and Rad(C) 6= C, then C∗ is a simple algebra and finitely generated R-module
(2.4.4). If C is fully prime as a right C-comodule and Soc(C) 6= 0, then C
is semisimple (2.7.6). Let p : P → C be a small epimorphism in MC . If P
is self-projective as C∗-module, then P is strongly coprime. Moreover, if P is
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projective in MC , then C ' P (2.9.8).
Over a field, C is a self-injective self-cogenerator as C∗-module and hence the

various coprimeness conditions are the same and also equivalent to the primeness
of C∗ (as mentioned above). Moreover, C is fully coprime as a right C-comodule
and coprime as a left (right) C-comodule if and only if C = (C∗∗f) ⇀ C for any
non-zero element f ∈ C∗ (2.11.7), a characterization found by Xu et.al. [41].

Studies of localization and colocalization of coalgebras over a field have been
done, for example, by Nǎstǎsescu and Torrecillas in [24], [25], Gómez-Torre-
cillas, Nǎstǎsescu and Torrecillas in [12] and Jara, Merino, Navarro and Ruiz in
[18]. They are mainly interested in colocalization with respect to coidempotent
subcoalgebras of C. Their methods heavily depend on the base ring being a
field. To avoid this restriction we first give an outline of colocalization in module
categories and then apply it to comodules and coalgebras.

Notice that in abelian categories the existence of a colocalization functor
depends on the presence of enough projectives in the category. We transfer
the technique of colocalization in the category of R-modules to the comodule
situation. In particular we consider the question when the comodule arising
from colocalization of C allows for a coalgebra structure.

We show that for cohereditary torsion theories induced by some C-comodule
P which is finitely generated and projective as C∗-module, a coalgebra structure
can be defined on P ⊗S P

∗ and the colocalization P ⊗S P
∗ → C is a coalgebra

morphism (2.13.6).
In module categories of type σ[M ] the torsion theory induced by the injec-

tive hull of M is of particular interest and primeness of the module leads to a
special structure of the module of quotients. A special case of this theory is the
localization of the prime Z-module Z yielding the quotient module (ring) Q.

Thus the question arises about the role of a projective hull of a subgenerator
in the dual case. However, no comparable constructions are possible in this sit-
uation. In fact, the existence of a projective hull of a strongly coprime coalgebra
implies that Rad(P ) = 0 and C ' P (2.12.16).
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Chapter 1

Prime and Coprime Modules

In the category of left R-modules there exist various notions of prime objects
which generalize the well known notion of a prime associative ring R. In this
section some of these notions and their duals are considered : prime and coprime,
endo-prime and endo-coprime, fully prime and fully coprime, strongly prime and
strongly coprime modules. These notions will be applied to define primeness and
coprimeness for comodules and coalgebras.

1.1 Preliminaries

In commutative ring theory, the notion of a prime ring plays an important role,
mainly due to the fact that it can be embedded into a field. Generalizing the
notions to modules has been done in various ways, for example by Johnson
([19], [20]) and Dauns [8]. Wisbauer in [37] studied the primeness conditions on
modules, and moreover in [39] outlined the localization theory in σ[M ] induced
by the singular modules.

Some notions we will use later are given in this section. Unless explicitely
stated, throughout this chapter R is an associative ring with unit, M usually
will be a left R-module. The category of left R-modules is denoted as RM. The
morphisms are written on the right side of the module and if it is needed, we
use the ¦ for the composition of mappings written on the right side. The usual
composition is denoted by ◦ and thus (u)f ¦ g is equal to g ◦ f(u) when writing
the maps on the left side.

An ideal T in a ring R is said to be prime if T 6= R and, for ideals I, J ⊆ R,
if IJ ⊆ T then I ⊆ T or J ⊆ T . The ring R itself is called prime if 0 is a prime
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ideal of R. For this we have the following well-known characterization :

1.1.1 Lemma. For a ring R the following assertions are equivalent :

(a) R is a prime ring.

(b) For any left ideals I, J of R, IJ = 0 implies I = 0 or J = 0.

(c) For any finitely generated left ideals I, J of R, IJ = 0 implies I = 0 or
J = 0.

(d) For any a, b ∈ R, aRb = 0 implies a = 0 or b = 0.

We recall some familiar properties of a prime ring.

1.1.2 Lemma. Let R be a ring.

(i) If R is prime, then for any idempotent element e, eRe is also a prime
ring.

(ii) If R is commutative and A is a prime R-algebra, then R := R/AnnR(A)
is prime.

(iii) If R is commutative and A is a simple algebra that is finitely generated,
projective and faithful as R-module, then R is a field.

Proof. (iii) Let I be a proper ideal in R. Then by 18.9 of [38], IA 6= A.
However, IA = 0, since A is a simple algebra. Thus I = 0. tu

1.1.3 Generators and cogenerators. Let U be a set of R-modules. An
R-module N is called U-generated if there exists an epimorphism

⊕
Λ Uλ → N

where Uλ ∈ U .
For an R-module N , the submodule

Tr(U , N) =
∑

{Im h | h ∈ HomR(U,N), U ∈ U} ⊆ N

is called the trace of U in N . Thus N is U -generated if and only if Tr(U , N) = N .
An R-module M is called a self-generator if M generates all its submodules.

N is called U-cogenerated if there exists a monomorphism N → ∏
Λ Uλ where

Uλ ∈ U . For an R-module N , the submodule

Rej(N,U) =
⋂
{Ker f | f ∈ HomR(N,U), U ∈ U} ⊆ N

is called the reject of U in N . Thus N is U -cogenerated if and only if Rej(N,U) =
0. An R-module is called a self-cogenerator if it cogenerates all its factor
modules.
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1.1.4 The category σ[M ]. For two R-modules M , N , we say N is subge-
nerated by M if N is isomorphic to a submodule of an M -generated module.
The full subcategory of RM whose objects are the modules subgenerated by M
is denoted by σ[M ]. For a family {Nλ}Λ of modules in σ[M ], the product in
σ[M ] exists and is given by

∏M
Λ Nλ := Tr(σ[M ],

∏
ΛNλ). For more details on

these notions see [38].

1.1.5 Annihilators. For a non-empty subset K ⊂M denote by

AnnR(K) := {r ∈ R | rk = 0, for all k ∈ K}
the (left) annihilator of K. Notice that for any R-modules M and N , if N ∈
σ[M ], then AnnR(M) ⊆ AnnR(N).

We observe some properties of annihilators that will be used to analyse the
primeness and coprimeness of modules later on.

1.1.6 Lemma. For any submodule K of M ,

AnnR(K)AnnR(M/K) ⊆ AnnR(M).

Proof. Take any x ∈ AnnR(K), y ∈ AnnR(M/K). We have yM ⊂ K and
xyM ⊂ xK = 0. tu

1.1.7 Proposition. Let R, S be rings and M be an (R, S)-bimodule. Then
the following assertions are equivalent :

(a) R = R/AnnR(M) is a prime ring.

(b) For any submodule K of M , AnnR(K) = AnnR(M) or AnnR(M/K) =
AnnR(M).

(c) For any (R,S)-subbimodule K of M , we have AnnR(K) = AnnR(M) or
AnnR(M/K) = AnnR(M).

Proof. (a) =⇒ (b) is obvious by Lemma 1.1.6.
(b) =⇒ (c) is trivial.
(c) =⇒ (a) Take any two ideals I, J of R with IJ ⊂ AnnR(M). Then IJM =

0. Since JM is an (R, S)-bimodule, by assumption AnnR(JM) = AnnR(M) or
AnnR(M/JM) = AnnR(M).

If JM = M , then AnnR(M/JM) 6= AnnR(M), hence I ⊂ AnnR(JM) =
AnnR(M).

If JM 6= M and I 6⊂ AnnR(M), then I ⊂ AnnR(JM) 6⊂ AnnR(M). Thus
J ⊂ AnnR(M/JM) = AnnR(M). tu
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1.1.8 Corollary. Let R, S be rings and M be an (R,S)-bimodule. If RM is
faithful, then the following assertions are equivalent :

(a) R is a prime ring.

(b) For any submodule K of M , AnnR(K) = 0 or AnnR(M/K) = 0.

(c) For any (R,S)-subbimodule K of M , AnnR(K) = 0 or AnnR(M/K) = 0.

Let S := EndR(M), K ⊂ M a submodule and I ⊂ S a left ideal. Denoting
by πK : M →M/K the canonical projection, we put

AnnS(K) := {f ∈ S | (K)f = 0} = πK ¦ HomR(M/K,M),

Ker I :=
⋂
{Ker f | f ∈ I}.

It always holds : K ⊆ Ker AnnS(K) and I ⊆ AnnS(Ker I). For equality,
injectivity or cogenerator properties of a module M are needed. Recall that
M is called a self-injective module if it is M -injective and M is called a self-
projective module if it is M -projective.

From 28.1 part (2) and (4) of [38] we recall :

1.1.9 Lemma. Let M be a module and S = EndR(M).

(i) For any submodule K ⊆M ,

Ker AnnS(K) = Ker πK ¦ HomR(M/K,M) = K

if and only if M is a self-cogenerator module.

(ii) If M is self-injective, then for every finitely generated right ideal I ⊆ S,

HomR(M/Ker I,M) = I.

The following definition is helpful for our investigations.

1.1.10 Dual orthogonal. Let M be an R-module, M∗ = HomR(M,R). For
any submodule K ⊂M and any subset I ⊂M∗, put

K⊥M∗
:= {f ∈ M∗| (K)f = 0} = πK ¦ HomR(M/K,R) ⊂M∗,

I⊥M :=
⋂
{Ker f | f ∈ I} ⊂M,

where πK : M →M/K is the canonical projection.

Let K be a submodule of M . If for any f ∈ EndR(M), (K)f ⊆ K, K is
called a fully invariant submodule of M .

4



1.1.11 (∗) and (∗∗)-conditions. Consider the following conditions for an
R-module M :

(∗) For any non-zero submodule K of M , AnnR(M/K) 6⊂ AnnR(M).

(∗fi) For any non-zero fully invariant submodule K of M , AnnR(M/K) 6⊂
AnnR(M).

(∗∗) For any proper (fully invariant) submoduleK ofM , AnnR(K) 6⊂ AnnR(M).

The conditions (∗) and (∗fi) are not necessarily equivalent, since there are
R-modules M which satisfy (∗fi), but do not satisfy (∗) :

Consider Q as a Z-module. Notice that EndZ(Q) ' Q and hence Q has no
non-zero fully invariant submodules. Thus (∗fi) holds trivially. However, for
Z ⊂ Q, 0 = AnnZ(Q/Z) = AnnZ(Q), i.e., (∗) does not hold.

1.1.12 Retractable and coretractable. M is called retractable if for any
non-zero submodule K of M and S = EndR(M),

HomR(M,K) = {f ∈ S | (M)f ⊆ K} 6= 0.

A module M is called fi-retractable if for any non-zero fully invariant submodule
K of M ,

HomR(M,K) = {f ∈ S | (M)f ⊆ K} = AnnS(M/K) 6= 0.

Dually, M is called coretractable if for any proper submodule K of M ,

πK ¦ HomR(M/K,M) = {f ∈ S | (K)f = 0} 6= 0.

M is called fi-coretractable if for any proper fully invariant submodule K of M ,

πK ¦ HomR(M/K,M) = {f ∈ S | (K)f = 0} = AnnS(K) 6= 0.

Let S = EndR(M) and consider the module M as a right S-module. If MS

satisfies (∗) as an S-module, then it is fi-retractable as an R-module. If MS

satisfies (∗∗) as an S-module, then it is fi-coretractable as an R-module.
Any self-generator module is retractable, and any self-cogenerator module is

coretractable.

1.1.13 Proposition. Let M be a coretractable R-module and S = EndR(M).
The following are equivalent :

5



(a) S has no zero-divisor.

(b) For any proper submodule K of M , HomR(M,K) = 0.

(c) For any 0 6= f ∈ S, (M)f = M (any non-zero endomorphism is an
epimorphism).

Proof. (a) =⇒ (b) For any proper submodule K of M , it holds

HomR(M,K) ¦ πK ¦ HomR(M/K,M) = 0,

where πK : M → M/K is the canonical projection. By coretractibility we have
HomR(M/K,M) 6= 0. By (a), HomR(M,K) has to be zero.

(b) =⇒ (a) Take any f, g ∈ S such that fg = 0. Assume g 6= 0. Then
Im f ⊂ Ker g 6= M and f ∈ HomR(M,Ker g) = 0. Thus f = 0.

(b) ⇐⇒ (c) Assume there exists 0 6= f ∈ S such that (M)f = K 6= M . But
f ∈ HomR(M,K) = 0, a contradiction. tu

1.1.14 Proposition. Let M be a fi-coretractable R-module and denote S =
EndR(M). The following are equivalent :

(a) S is a prime ring.

(b) For any proper fully invariant submodule K of M , HomR(M,K) = 0.

(c) For any 0 6= f ∈ S, (M)fS = M .

(d) For any ideal 0 6= I ⊂ S, MI = M .

Proof. (a) =⇒ (b) It is similar to the proof of Proposition 1.1.13.

(b) =⇒ (c) Assume U = (M)fS 6= M for some f ∈ S. Clearly, U is a
fully invariant submodule of M , Mf ⊂ U and (M/U)f = 0. Clearly fS ⊂
HomR(M,U) and hence by (b), HomR(M,U) = 0, thus f = 0.

(c) =⇒ (d) Assume MI 6= M for some non-zero ideal I ⊂ S. Then MI is a
fully invariant submodule of M , since MIS ⊆MI. By (c), MI = M .

(d) =⇒ (a) Take any ideals I, J of S such that IJ = 0. If I 6= 0, then by
(d), MI = M and MIJ = MJ = 0. Thus J = 0. tu

6



1.1.15 Proposition. Let M be a retractable R-module and S = EndR(M).
The following are equivalent :

(a) S has no zero-divisor.

(b) For any non-zero submodule K of M , HomR(M/K,M) = 0.

(c) For any 0 6= f ∈ S, Ker f = 0 (any non-zero endomorphism is a
monomorphism).

Proof. Dual to the proof of Proposition 1.1.13. tu

1.1.16 Proposition. Let M be a fi-retractable R-module and S = EndR(M).
The following are equivalent :

(a) S is a prime ring.

(b) For any non-zero fully invariant submodule K of M , HomR(M/K,M) = 0.

(c) For any 0 6= f ∈ S, Ker Sf = 0.

(d) For any ideal 0 6= I ⊂ S, Ker I = 0.

Proof. For any left ideal 0 6= I ⊂ S, Ker I is a fully invariant submodule of M .
Hence the dual of the proof of Proposition 1.1.14 applies here. tu

As a consequence we obtain :

1.1.17 Corollary. Let M be a retractable and coretractable R-module, S =
EndR(M). The following are equivalent :

(a) S has no zero-divisor.

(b) M is a simple module.

(c) S is a division ring.

Proof. (a) =⇒ (b) By Proposition 1.1.13, for any proper submodule K of M ,
HomR(M,K) = 0. But M is retractable and hence there is no non-zero proper
submodule K of M .

(b) =⇒ (c) By Schur’s Lemma, M is simple implies S is a division ring.
(c) =⇒ (a) It is obvious. tu

A small submodule K of M is denoted by K ¿M . We observe some relation
between projectivity and retractibility.
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1.1.18 Pseudo-projective modules. AnR-module P is called pseudo-projective
in σ[M ] if any diagram in σ[M ] with exact bottom line

P

f
²²

N
p // L // 0

can be extended non trivially by some s ∈ EndR(P ) and g : P → N to the
commutative diagram

P
s //

g

²²

P

f

²²
N

p // L // 0,

that is, gp = sf 6= 0.

An epimorphism p : P → M is a pseudo-projective hull of M in σ[M ] if P is
pseudo-projective in σ[M ] and Ker p¿M .

1.1.19 Lemma. Let P be a module in σ[M ].

(i) If P is pseudo-projective in σ[M ], then for any non-small submodule U ⊂
P , HomR(P,U) 6= 0.

(ii) If P is pseudo-projective in σ[M ] with Rad(P ) = 0, then P is retractable.

Proof. (i) Consider any proper non-small submodule U ⊂ P and let V ⊂ P
be a proper submodule such that U + V = P . Then there is an epimorphism
f : U → P/V by the composition U → (U + V )/V → P/V . There is a
commutative diagram

P
t //

g

²²

P

h
²²

U
f // P/V // 0,

where h : P → P/V is the canonical projection and gf = th 6= 0. Hence
0 6= g : P → U and HomR(P,U) 6= 0.

(ii) is clear from (i). tu

Notice that Lemma 1.1.19 is also true for self-projective modules with a similar
proof.

The following observation from ([27], Lemma 17) will be useful for our in-
vestigations.
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1.1.20 Lemma. Let M,N be R-modules and f ∈ HomR(M,N) an epimor-
phism.

(i) If Ker f is fully-invariant and L is a fully-invariant submodule of N , then
(L)f−1 is a fully-invariant submodule of M .

(ii) If M is self-projective and U is a fully-invariant submodule of M , then
(U)f is a fully-invariant submodule of N .

Proof. (i) Let L be a fully-invariant submodule of N , K := Ker f be fully-
invariant and g ∈ EndR(M). Since f is an epimorphism and Kg ⊆ K, there is
h ∈ EndR(N) such that gf = fh and Lh ⊆ L. Therefore (L)f−1fh ⊆ L and
hence (L)f−1gf ⊆ L. Thus (L)f−1g ⊆ (L)f−1.

(ii) Let U be a fully-invariant submodule of M and h ∈ EndR(N). Then
there is g ∈ EndR(M) such that gf = fh and hence (U)fh = (U)gf ⊆ (U)f . tu

1.1.21 Corollary. Let M be an R-module, K ⊂ U ⊂ M submodules of M ,
K ⊂ M fully invariant. If U/K is a proper fully-invariant submodule of the
factor module M/K, then U is a proper fully invariant submodule of M .
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1.2 Prime modules

We begin our investigations with an overview of primeness and coprimeness
conditions of modules which will be discussed in the next sections. The following
list shows the definitions we use here. LetM be an R-module and S = EndR(M).

If for any fully invariant then we call M
submodule K of M ,

AnnR(K) = AnnR(M), K 6= 0 prime
AnnR(M/K) = AnnR(M), K 6= M coprime
AnnS(K) = 0, K 6= 0 endo-prime
AnnS(M/K) = 0, K 6= M endo-coprime
M is K-cogenerated, K 6= 0 fully prime
M is M/K-generated, K 6= M fully coprime
M ∈ σ[K], K 6= 0 strongly prime
M ∈ σ[M/K] , K 6= M strongly coprime
M ∈ σ[K] or M ∈ σ[M/K] duprime

Let us point out some elementary relations between the prime and coprime
notions : If M is fully prime or strongly prime, then it is prime. If M is fully
coprime or strongly coprime, then it is coprime. If M is strongly prime or
strongly coprime, then it is duprime.

We will consider all the cases mentioned above and repeat the definitions
explicitely.

1.2.1 Definition. M is called prime if for every non-zero fully-invariant sub-
module K of M , AnnR(K) = AnnR(M).

The following properties characterize the primeness of a module M .

1.2.2 Prime modules. For a module M the following are equivalent :

(a) M is a prime module.

(b) AnnR(K) = AnnR(M) for any non-zero submodule K of M .

(c) R/AnnR(M) is cogenerated by K for any non-zero submodule K of M .

(d) R/AnnR(M) is cogenerated by K for any non-zero fully-invariant submod-
ule K of M .
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Proof. (a) ⇐⇒ (b) We have a trivial implication from (b) to (a). Conversely,
let K be a submodule of M . Then KS is a fully-invariant submodule of M and
AnnR(K) = AnnR(KS) = AnnR(M).

(b) ⇐⇒ (c) For any R-module M , R/AnnR(M) is M -cogenerated. By as-
sumption in (b) we have R/AnnR(M) is cogenerated byK for every 0 6= K ⊆M .
Conversely, by assumption in (c) we know that K is a faithful R/AnnR(M)-
module, thus AnnR(K) = AnnR(M) for any submodule K of M .

(a) ⇐⇒ (d) is similar to the previous proof. tu

The following proposition is a slight modification of 13.1 of [39].

1.2.3 Proposition. Let M be an R-module, S = EndR(M) and we denote
R := R/AnnR(M).

(i) If M is prime, then R is a prime ring.

(ii) If R is a prime ring and M satisfies (∗fi), then M is prime.

(iii) If RM is prime and satisfies (∗fi), then MS is prime (and S is a prime
ring).

Proof. (i) Assume M to be prime, i.e., AnnR(K) = AnnR(M) for every non-
zero fully-invariant submodule K ⊂M . Then by Proposition 1.1.7, R is prime.

(ii) Assume R to be prime. By assumption and Proposition 1.1.7, for any
non-zero fully invariant submodule K of M holds AnnR(K) = 0. It is equivalent
to AnnR(K) = AnnR(M). Thus M is prime.

(iii) Let RM be prime and K be an S-submodule of M . For any f ∈
AnnS(K) = AnnS(RK), (AnnR(M/RK))Mf ⊂ (RK)f = 0. Since RM is
prime and AnnR(M/RK) 6= 0, we have Mf = 0 and f has to be zero. tu

A faithful module over a prime ring need not be prime :

1.2.4 Example. Consider the Z-module T :=
⊕

n∈N Z/nZ. It is a faithful
Z-module. For the proper submodule Z/3Z, AnnZ(Z/3Z) 6= 0. Thus T is not
prime.

The product of faithful prime modules is again prime.

1.2.5 Lemma. Let {Mλ}Λ be a family of faithful modules, Λ an index set.
Then

∏
ΛMλ is prime if and only if each Mλ is prime.
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Proof. (=⇒) Let
∏

ΛMλ be prime. Consider any submodule U ⊂ Mµ ⊂∏
ΛMλ. Then AnnR(U) = AnnR(

∏
ΛMλ) = 0.

(⇐=) Let each Mλ be prime and V ⊂ ∏
ΛMλ. There is a non-zero canonical

projection (V )πλ0 ⊂ Mλ0 , for some λ0 ∈ Λ. Since (V )πλ0 is faithful, V is also
faithful. tu

1.2.6 Corollary. If the ring R is prime, then submodules of an R-cogenerated
module are prime. In particular, every projective module is prime.

Proof. Every R-cogenerated module is a submodule of some RΛ. According to
Lemma 1.2.5, if R is prime, then RΛ is prime.

Every projective module P is a direct summand of some R(Λ) ⊂ RΛ. If R is
prime, then P is prime. tu

If M is prime, then it implies the primeness of projective modules in σ[M ].

1.2.7 Proposition. Let M be prime. Then

(i) every M-cogenerated module is prime;

(ii) every projective module P in σ[M ] is prime.

Proof. (i) According to Lemma 1.2.5, MΛ is prime and hence anyM -cogenerated
module is prime.

(ii) Any projective module P in σ[M ] is isomorphic to a submodule of some
M (Λ), Λ index set, hence P is prime. tu

1.2.8 Proposition. Let M be a projective module in σ[M ]. If every non-zero
submodule of M cogenerates M , then EndR(M) is a prime ring.

Proof. Let J ⊂ S := EndR(M) be a finitely generated proper left ideal.
By assumption, M is MJ-cogenerated, i.e., there is a short exact sequence
0 → M → (MJ)Λ. Applying HomR(P,−) to this exact sequence yields the
commutative diagram

0 // HomR(P, P ) //

=

²²

HomR(P, (PJ)Λ)

'
²²

0 // S // JΛ,

since HomR(P, (PJ)Λ) = HomR(P, (PJ))Λ and, by projectivity, HomR(P, PJ) =
J (see 18.4 part 3i [38]). Thus J is a faithful left S-module, i.e., EndR(P ) is a
(left) prime ring. tu
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As a consequence, we obtain Proposition 1.3 of [15] :

1.2.9 Corollary. Let P be a projective R-module. If the ring R is prime, then
EndR(P ) is prime.

Proof. Since R is prime, RΛ is also prime for some index set Λ and hence
P ⊂ RΛ is prime and faithful. Let K be a non-zero submodule of P . Then K
cogenerates R (by 1.2.2 part (c)). But R cogenerates P , thus K cogenerates P .

Now we apply Proposition 1.2.8 to prove EndR(P ) is prime. tu

An essential submodule N of M is denoted by N £ M . Primeness of the
module M extends to essential extensions.

1.2.10 Lemma. Let M be a faithful R-module. The following assertions are
equivalent:

(a) M is a prime module.

(b) Every essential extension of M is a prime module.

(c) The injective hull M̂ of M in σ[M ] is a prime module.

(d) The injective hull E(M) of M in RM is a prime module.

Proof. (a) =⇒ (b) Let M ′ be an essential extension of M . Assume that M is
prime, i.e., AnnR(K) = 0 for any 0 6= K ⊂ M , and let 0 6= L ⊂ M ′. Then
L ∩M 6= 0 since M is essential in M ′ and

AnnR(M ′) ⊆ AnnR(L) ⊆ AnnR(M ∩ L) = AnnR(M) = 0.

Thus AnnR(M ′) = AnnR(L), M ′ is prime.

(b) =⇒ (c) =⇒ (d) Follow from M £ M̂ £ E(M).
(d) =⇒ (a) If E(M) is prime, then the submodules of E(M) are also prime.

In particular, M is prime. tu

1.2.11 Lemma. Let M be a faithful self-generator R-module, S = EndR(M)
and B = End(MS). If BM is prime, then RM is prime.

Proof. By 15.6 of [38], every R-submodule of M is a B-submodule. We have
an injective ring homomorphism ϕ : R→ B, r 7→ [ϕ(r)(m) := rm], and for any
R-submodule K of M , AnnR(K) ⊂ AnnB(K) = 0. tu
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1.2.12 Proposition. Let M be a module with Soc(M) 6= 0. If M is prime,
then R := R/AnnR(M) is a left primitive ring. If, in addition, R is commuta-
tive, then R is a field.

Proof. By assumption, there is a simple R-submodule K of M which is faithful,
thus R is left primitive. If R is commutative and primitive, then R is a field. tu

1.3 Coprime modules

Dual to prime modules, we define coprime modules in the following way.

1.3.1 Definition. M is called coprime if for every proper fully-invariant sub-
module K of M , AnnR(M/K) = AnnR(M).

We characterize the coprimeness of a module M in

1.3.2 Coprime modules. For a module M the following are equivalent :

(a) M is a coprime module.

(b) AnnR(M/K) = AnnR(M) for any proper submodule K of M .

(c) R/AnnR(M) is cogenerated by M/K for any proper submodule K of M .

(d) R/AnnR(M) is cogenerated by M/K for any proper fully-invariant sub-
module K of M .

Proof. (a)⇐⇒ (b) We only need to prove one direction. Let K be a submodule
of M and assume I := AnnR(M/K) 6⊂ AnnR(M). Then 0 6= IM ⊂ K, and IM
is fully invariant since (IM)S = I(MS) = IM . By (a), I ⊂ AnnR(M/IM) =
AnnR(M), a contradiction.

(b) ⇐⇒ (c) and (a) ⇐⇒ (d) are obvious. tu

The condition (b) of 1.3.2 is used to define coprime modules in Annin [2]. Notice
that any module which has no proper fully invariant submodule is coprime.

1.3.3 Lemma. Let M be an R-module.

(i) If M is coprime, then R is prime.

(ii) If R is prime and M satisfies (∗∗), then M is coprime.
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Proof. (i) Assume M to be coprime, i.e., AnnR(M/K) = AnnR(M) for every
proper (fully-invariant) submodule K ⊂ M . Then by Proposition 1.1.7, R is
prime.

(ii) By (∗∗), AnnR(K) 6= AnnR(M) for any proper (fully-invariant) submod-
ule K ⊂ M . Now AnnR(K)AnnR(M/K) ⊆ AnnR(M) and R is prime implies
AnnR(M/K) = AnnR(M), hence M is coprime. tu

The example M = ZZ illustrates that without condition (∗∗), assertion (ii)
in the lemma above does not hold.

1.3.4 Example. As a Z-module, Z is faithful and Z is a prime ring. For any
n ∈ N, Z/nZ is a Z-torsion module with AnnZ(Z/nZ) 6= 0, hence AnnZ(Z) 6=
AnnZ(Z/nZ). Thus Z is not a coprime module over Z.

1.3.5 Example. Prüfer group. Recall that for any prime number p, the p-
component of Q/Z is the Prüfer group Zp∞ . Any non-zero factor module Zp∞/K
of Zp∞ is isomorphic to Zp∞ itself. Thus Zp∞ is coprime. Moreover, a proper
submodule K ⊂ Zp∞ is of the form K = Z{ 1

pk + Z} for some k ∈ N, thus it is
not faithful. Hence Zp∞ is not prime.

1.3.6 Example. For any ring R, AnnR(R/I) = I for any ideal I of R. Thus

RR is a coprime module if and only if R is a simple ring.

1.3.7 Example. Q is a prime Z-module and is a coprime Z-module, since it
does not have any non-trivial fully-invariant submodule.

The coprimeness of a module is preserved by some factor module.

1.3.8 Proposition. If M is coprime and K is a proper fully invariant sub-
module of M , then M/K is coprime.

Proof. Take any proper fully invariant submodule U/K of M/K, where K ⊂
U ⊂M are proper submodules and K is fully invariant. By Corollary 1.1.21, U
is fully invariant in M . Thus (M/K)/(U/K) 'M/U is faithful, i.e.

AnnR((M/K)/(U/K)) = AnnR(M/U) = AnnR(M) = AnnR(M/K). tu

The direct sum of a family of faithful coprime modules is again coprime.
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1.3.9 Lemma. Let {Mλ}Λ be a family of faithful modules, Λ an index set.
Then

⊕
ΛMλ is coprime if and only if each Mλ is coprime.

Proof. (=⇒) There is an epimorphism f :
⊕

ΛMλ → Mµ/L for any proper
submodule L ⊂ Mµ. Hence Mµ/L ' (

⊕
ΛMλ)/K for some submodule K ⊂⊕

ΛMλ and

AnnR(Mµ/L) = AnnR((
⊕

Λ

Mλ)/K) = 0.

(⇐=) Let each Mλ be coprime and denote by eλ the canonical idempotents
in EndR(

⊕
ΛMλ). For any proper fully-invariant submodule U ⊂ ⊕

ΛMλ, U =∑
Ueλ and Ueλ 6= Mλ for some λ. Thus

⊕
ΛMλ/U =

⊕
Λ(Mλ/Ueλ) 6= 0 and

AnnR((
⊕

Λ

Mλ)/U) = AnnR(
⊕

Λ

(Mλ/Ueλ)) =
⋂

AnnR(Mλ/Ueλ) = 0. tu

The following observation is dual to an observation for prime modules (see
Proposition 1.2.12).

1.3.10 Proposition. If M is coprime and Rad(M) 6= M , then :

(i) R := R/AnnR(M) is a left primitive ring.

(ii) If R is commutative, then R is a field.

Proof. (i) By assumption there is a maximal submodule K in M . Consider
the fully invariant submodule Rej(M,M/K) ⊂ K 6= M . By coprimeness of
M , M/Rej(M,M/K) is a faithful R-module and is cogenerated by the simple
module M/K (see 14.5 of [38]). Thus M/K is also a faithful R-module. Thus
R has a faithful simple left module, i.e., R is a left primitive ring.

(ii) If R is commutative and primitive, then R is a field. tu

Without the condition Rad(M) 6= M , Proposition 1.3.10 does not hold. For
example, the Prüfer group Zp∞ is a coprime Z-module which has no maximal
submodule.

1.3.11 Proposition. Let p : P → M be a small epimorphism in σ[M ]. If M
is a faithful R-module and coprime, then P is coprime.
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Proof. Consider a proper fully-invariant submodule L ⊂ P and K := Ker p.
Since K ¿ P , L + K 6= P and (L)p ⊂ M is proper. Consider the following
commutative diagram with exact rows :

0 // K // P
p //

²²

M ' P/K //

²²

0

P/L // P/(K + L) // 0.

P/(K +L) 6= 0 and by the coprimeness of M , AnnR(P/(K +L)) = 0 and hence
AnnR(P/L) = 0. tu

1.4 Endo-prime modules

The primeness condition for the ring R can be expressed in the following way :
any non-zero fully invariant submodule of RR is faithful over the endomorphism
ring EndR(R) ' R. Haghany and Vedadi [13] generalized this property to
modules.

1.4.1 Definition. A module M with S = EndR(M) is called endo-prime if for
any non-zero fully invariant R-submodule K, AnnS(K) = 0.

An endo-prime left R-module M can be considered as a prime module over
its endomorphism ring EndR(M). An interesting question is to look at the
interdependence of endo-primeness of modules and primeness of the ring of en-
domorphism. The following is a modification of Proposition 1.3 of [13].

1.4.2 Endo-prime modules. Let M be a left R-module with S = EndR(M).

(i) RM is endo-prime if and only if MS is prime.

(ii) If RM is endo-prime, then S is a prime ring.

(iii) If RM is fi-retractable and S is a prime ring, then RM is endo-prime.

(iv) If N is simple, then N (Λ) is endo-prime for any set Λ.

(v) If RM is endo-prime and fi-retractable, then AnnR(M) is a prime ideal of
R.

Proof. (i) If MS is prime, then for any non-zero fully invariant submodule K
of M holds AnnS(K) = 0. Thus RM is endo-prime.
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Now assume RM is endo-prime, and let K be a non-zero S-submodule of
M . Then RK is a fully-invariant R-submodule and AnnS(K) = AnnS(RK) = 0
showing that MS is prime.

(ii) RM is endo-prime means AnnS(K) = 0 for any non-zero fully invariant
submodule K. If we consider M as a right S-module, Corollary 1.1.8 applied to
MS yields that S is a prime ring.

(iii) Equivalent to the primeness of S is that for any fully-invariant submodule
K of RM holds AnnS(K) = 0 or AnnS(M/K) = 0 (see Corollary 1.1.8). But

RM is fi-retractable, i.e. AnnS(M/K) 6= 0, hence AnnS(K) = 0.
(iv) If N is simple, then N (Λ) is fi-retractable and S = EndR(N (Λ)) is a

primitive ring, hence prime. Then we apply (iii).
(v) Let I, J be ideals of R with I 6⊆ AnnR(M), J 6⊆ AnnR(M) but IJ ⊆

AnnR(M). It means IM 6= 0, JM 6= 0 and IJM = 0. Since RM is fi-retractable,
there is a non-zero f ∈ S such that Mf ⊆ JM and hence IMf = 0. By endo-
primeness of M we conclude that f = 0, a contradiction. tu

With some additional conditions we get some relationships between prime-
ness and endo-primeness of a module.

1.4.3 Corollary. Let M be an R-module.

(i) If RM is prime and satisfies (∗fi), then it is endo-prime.

(ii) Let R be a commutative ring. If M is a faithful R-module, endo-prime
and fi-retractable, then RM is prime.

(iii) If M is a faithful self-generator R-module and endo-prime, then RM is
prime.

Proof. (i) This follows by Proposition 1.2.3.
(ii) Let K be a fully-invariant submodule of M . RM is endo-prime implies S

is prime (see 1.4.2). Since M is fi-retractable and AnnS(M/K) 6= 0, AnnS(K) =
0. Now R ⊂ S implies AnnR(K) = 0.

(iii) As a self-generatorM is fi-retractable, i.e., satisfies (∗fi) as an S-module.
By assertion (i) and assumption, BM is prime, where B = End(MS). Now by
Lemma 1.2.11, RM is prime. tu

1.4.4 Example. Let P be a projective R-module satisfying (∗fi). If the ring
R is prime, then P is prime (see Corollary 1.2.6). By Corollary 1.4.3 part (i), P
is endo-prime.
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For M = R we obtain Proposition 1.4 of [13].

1.4.5 Proposition. The following statements are equivalent for a ring R.

(a) R is prime.

(b) There exists a faithful retractable endo-prime left (right) R-module.

Proof. Consider R as a left R-module and apply Corollary 1.4.3. tu

As an immediate consequence we extend Corollary 1.6 of [13].

1.4.6 Corollary. For RM suppose that at least one of the following conditions
holds :

(i) RM is retractable and satisfies the (∗) condition,

(ii) RM satisfies the (∗) condition and R is commutative,

(iii) RM is finitely generated free (i.e. M ' RR
n for some n).

Then RM is prime if and only if RM is endo-prime if and only if AnnR(M) is
a prime ideal.

1.5 Endo-coprime modules

Dual to endo-prime modules, we define :

1.5.1 Definition. A module M with S = EndR(M) is called endo-coprime if
for any proper fully invariant R-submodule K, AnnS(M/K) = 0.

In 1.4.2 properties of endo-prime modules are considered. Here we give the
corresponding properties for

1.5.2 Endo-coprime modules. Let M be a left R-module and S = EndR(M).

(i) RM is endo-coprime if and only if MS is coprime.

(ii) If RM is endo-coprime, then S is prime.

(iii) If RM is fi-coretractable and S is prime, then RM is endo-coprime.

(iv) If R is commutative and RM is endo-coprime, then R/AnnR(M) is prime.
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Proof. (i) Let K be a proper (R, S)-submodule of M . Then AnnS(M/K) = 0
since MS is coprime and thus RM is endo-coprime.

Assume now RM to be endo-coprime and letK be a proper right S-submodule
of M . Assume AnnS(M/K) = J 6= 0. Then MJ ⊂ K is an (R,S)-submodule
and J ⊂ AnnS(M/MJ) = 0, a contradiction.

(ii) Assume RM to be endo-coprime and hence MS is coprime by (i). Then
we use Corollary 1.1.8 to conclude that S is prime.

(iii) M is fi-coretractable means AnnS(K) 6= 0 for any fully-invariant sub-
module K of M . Since S is prime, according to Corollary 1.1.8, AnnS(M/K) =
0. Thus RM is endo-coprime.

(iv) Since R is commutative and S is prime, by Lemma 1.1.2 part (ii),
R/AnnR(M) is prime. tu

The following lemma is dual to Lemma 1.8 of [13].

1.5.3 Lemma. Let M be an R-module and K be a proper fully-invariant sub-
module of M . Consider the group homomorphism ψ : EndR(M) → EndR(M/K)
with f 7→ ψ(f) = f , where fπK = πKf , πK is the canonical projection M →
M/K.

(i) If M is endo-coprime, then ψ is injective.

(ii) If M is self-projective, then ψ is surjective.

Proof. (i) Let f ∈ EndR(M) = S, 0 6= K ⊂ M be a submodule and consider
the diagram

M
f //

πK

²²

M

πK

²²
M/K M/K.

There exists ψ(f) = f ∈ EndR(M/K) such that fπK = πKf and (m)fπK =
(m)πKf for any m ∈M , hence (m+K)f = (m)f +K.

Assume M is endo-coprime, i.e., AnnS(M/K) = 0 for any proper fully-
invariant submodule K of M . Let f ∈ Ker ψ, ψ(f) = f = 0, (M/K)f = 0,
(M)f ⊂ K. Hence f ∈ AnnS(M/K) = 0 and thus f = 0.

(ii) Let α ∈ EndR(M/K). We have the diagram

M
πK // M/K //

α

²²

0

M πK

// M/K // 0.
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Since M is self-projective, there is a homomorphism g ∈ EndR(M) such that
πKα = gπK . In other words, ψ(g) = α, i.e. ψ is surjective. tu

1.6 Fully prime modules

1.6.1 Definition. A module M is called fully prime if for any non-zero fully
invariant submodule K of M , M is K-cogenerated.

In order to characterize fully prime modules, we recall a notion of product
of fully invariant submodules of M studied by Raggi, Rı́os, Rincón, Fernández-
Alonso and Signoret [27].

For any fully invariant submodules K,L of M , consider the product

K ∗M L := KHomR(M,L).

1.6.2 Remark. In the language of torsion theory, for any fully invariant sub-
module K of M , and for any module N , define a preradical

αM
K (N) :=

∑
{(K)f | f : M → N}.

Then for any fully invariant submodules K and L, we have K ∗M L = αM
K (L).

Notice that such a product is defined in Bican et.al. [4] for every pair of
submodules K,L ⊂ M (not necessary fully-invariant). That product is used
to define ”prime module” and the condition is more restrictive than the one
we consider here. For example, Q has no non-trivial fully invariant submodule,
hence it is a fully prime module. However, it is not necessary a ”prime module”
in the sense of Bican, since Q is not cogenerated by the submodule Z of Q.

Some characterizations are given in Proposition 2.3 of [4] and we have similar
characterizations here.

1.6.3 Fully prime modules. The following are equivalent for an R-module
M :

(a) M is a fully prime module.

(b) Rej(M,K) = 0 for any non-zero fully-invariant submodule K ⊂M .

(c) K ∗M L 6= 0 for any non-zero fully-invariant submodules K,L ⊂M .

(d) Rej(−,M) = Rej(−, K) for any non-zero fully-invariant submodule K of
M , i.e., any M-cogenerated module is also K-cogenerated.
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Proof. (a) ⇐⇒ (b) ⇐⇒ (d) are obvious by the definition of cogenerating.
(b) =⇒ (c) For any nonzero fully-invariant submodules K,L ⊂ M assume

KHomR(M,L) = 0. Then 0 6= K ⊂ Rej(M,L).
(c) =⇒ (b) Assume Rej(M,K) = U 6= 0 for some non-zero fully-invariant

submodule K ⊂M . Then UHomR(M,K) = U ∗M K = 0. tu

Based on the ∗M -product we define

1.6.4 Fully prime submodules. A fully invariant submodule N of M is
fully prime in M if for any fully invariant submodules K,L of M , the relation
K ∗M L ⊆ N implies K ⊆ N or L ⊆ N .

Thus the module M is fully prime if the zero submodule is fully prime in M .
Proposition 18 of [27] provides a relationship between a fully prime submod-

ule N of M and the factor module M/N .

1.6.5 Proposition. Let N be a proper fully-invariant submodule of M .

(i) If N is fully prime in M , then M/N is a fully prime module.

(ii) If M is self-projective and M/N is fully prime, then N is a fully prime
submodule in M .

Proof. (i) Let K/N,L/N be fully-invariant submodules of M/N such that
K/N ∗M/N L/N = 0. By Corollary 1.1.21, K and L are fully-invariant sub-
modules of M with K ∗M L ⊆ N and hence K ⊆ N or L ⊆ N , that is K/N = 0
or L/N = 0.

(ii) Let K,L be fully-invariant submodules of M such that K ∗M L ⊆ N . By
Lemma 1.1.20 part (ii), K ′ = (K+N)/N and L′ = (L+N)/N are fully-invariant
submodules of M/N such that K ′ ∗M/N L′ = 0. Hence K ′ = 0 or L′ = 0, that is
K ⊆ N or L ⊆ N . tu

Consider R as a left R-module and let I, J be ideals of R. Then I ∗R J = IJ .
Since every ideal of R is a fully invariant R-submodule, we get :

1.6.6 Proposition. The following are equivalent for a two-sided ideal I :

(a) R/I is a prime ring.

(b) I is a fully prime submodule in R.

(c) I is a prime ideal.
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In general prime modules need not be fully prime. For the following rela-
tionship we adopt the proof of [39], Proposition 13.2.

1.6.7 Proposition. For an R-module M with (∗fi), the following are equiva-
lent :

(a) M is prime and fi-retractable.

(b) M is fully prime.

Proof. (a) =⇒ (b) By assumptionM satisfies (∗fi), hence following Proposition
1.2.3 part (iii), S is prime. Hence, for non-zero fully invariant submodules K,L
of M , by fi-retractibility we have HomR(M,L) 6= 0, HomR(M,K) 6= 0 and

LHomR(M,K) ⊃MHomR(M,L)HomR(M,K) 6= 0,

thus L ∗M K 6= 0. By 1.6.3, M is K-cogenerated, i.e., M is fully prime.
(b) =⇒ (a) By assumption, Rej(M,K) = 0 for all non-zero fully-invariant

submodule K ⊂ M . Thus HomR(M,K) 6= 0. Moreover, K is a faithful
R/AnnR(M)-module, i.e. M is prime. tu

Notice that for any ring R, EndR(R) ' R and as a left R-module, R satisfies
(∗fi) and is fi-retractable. If M = R, Proposition 1.6.7 yields

1.6.8 Corollary. For the ring R the following assertions are equivalent :

(a) R is a prime ring.

(b) RR is a prime module.

(c) RR is a fully prime module.

1.6.9 Proposition. Let M be a module with Soc(M) 6= 0. If M is fully prime,
then

(i) M is cogenerated by a simple module.

(ii) R := R/AnnR(M) is a left primitive ring.

Proof. (i) Let K be a simple submodule of M . Then Tr(K,M) is a fully
invariant submodule and hence M is Tr(K,M)-cogenerated. Tr(K,M) is K-
cogenerated, and hence M is K-cogenerated.

(ii) R is cogenerated by M and hence by the simple module K (from (i)).tu

Notice that (ii) is also a consequence of Proposition 1.2.12, since M is fully prime
implies M is prime.
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1.7 Fully coprime modules

1.7.1 Definition. A module M is called fully coprime if for any proper fully
invariant submodule K of M , M is M/K-generated.

An inner coproduct of fully invariant submodules of M can be defined in the
following way. For any fully invariant submodules K,L ⊂M , put

K :M L :=
⋂
{(L)f−1 | f ∈ EndR(M), K ⊆ Kerf} (1.1)

= Ker πK ¦ HomR(M/K,M) ¦ πL, (1.2)

where πK : M → M/K and πL : M → M/L denote the canonical projections.
K :M L is also a fully invariant submodule with the properties (see Raggi et.al.
[28]):

(i) K + L ⊂ K :M L.

(ii) If N ⊂M is a fully invariant submodule with K,L ⊂ N , then

K :N L ⊂ K :M L

Notice that such a coproduct is considered in Bican et.al. [4] for any pair of
submodules K,L ⊂ M (not necessary fully invariant) and then a definition of
”coprime modules” is derived from this coproduct.

The difference with our definition is, for example, shown by the Z-module
Q. Q has no non-trivial fully-invariant submodules, hence it is trivially fully
coprime. Indeed, it is not necessarily a ”coprime module” in the sense of Bican,
since Q is not generated by Q/Z.

The Prüfer group Zp∞ is a fully coprime module which has many fully in-
variant submodules. A fully coprime ring is nothing but a simple ring.

1.7.2 Remark. In the language of torsion theory, for any fully invariant sub-
module K of M , and for any module N ∈ σ[M ], define a preradical

ωM
K (N) =

⋂
{(K)g−1 | g : N →M} ⊂ N.

For any two preradicals τ, ρ there is a coproduct defined by

(τ : ρ)(M)/τ(M) = ρ(M/τ(M)).

With this notation, for any fully invariant submodules K,L of M , (see Raggi
et.al. [28])

K :M L = (ωM
K : ωM

L )(M).
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We characterize fully coprime modules in the proposition below. This is
similar to Proposition 4.3 of [4] but here we consider proper fully invariant
submodules.

1.7.3 Fully coprime modules. The following are equivalent for an R-module
M :

(a) M is a fully coprime module.

(b) If K :M L = M , then K = M or L = M , for any fully invariant submod-
ules K,L of M .

(c) K :M L 6= M for any proper fully invariant submodules K,L of M ;

(d) Tr(M/K,−) = Tr(M,−) for any proper fully invariant submodules K of
M , i.e. any M-generated module is also M/K-generated.

Proof. (a) ⇐⇒ (d) and (b) ⇐⇒ (c) are trivial.
(c) =⇒ (a) Let K ⊂M be a proper fully invariant submodule such that

N = Tr(M/K,M) = (M) πK ¦ HomR(M/K,M) 6= M.

Then 0 = (M) πK ¦ HomR(M/K,M) ¦ πN and K :M N = M .
(d) =⇒ (c) Let K,L be any proper fully invariant submodules of M and

assume (M) πK ¦ HomR(M/K,M) ¦ πL = 0. Then

M = Tr(M,M) = Tr(M/K,M) ⊂ L. tu

1.7.4 Fully coprime rings. For the ring R the following are equivalent :

(a) RR is coprime.

(b) RR is fully coprime.

(c) R is a simple ring.

1.7.5 Lemma. Let M be fully coprime, S = EndR(M). Then M is indecom-
posable as (R, S)-bimodule.

Proof. Assume M = U ⊕ V where U, V are (R, S)-subbimodules of M . Then
HomR(U, V ) = 0. Since M is fully coprime, M is generated by M/U ' V . It
means V also generates U , thus contradicts HomR(U, V ) = 0. tu

A module M is called semilocal if M/Rad(M) is semisimple. Obviously, a
semisimple module is semilocal.
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1.7.6 Corollary. Let M be a fully coprime module. If M is semilocal, then
M is homogeneous semisimple.

Proof. Rad(M) is a fully invariant submodule of M , hence M is generated by
M/Rad(M) which is semisimple. Thus M is semisimple and now apply Lemma
1.7.5. tu

Similar to fully prime submodules we define

1.7.7 Fully coprime submodules. A fully invariant submodule N ⊂ M
is called fully coprime in M if for any fully invariant submodules K,L ⊂ M ,
N ⊆ K :M L implies N ⊂ K or N ⊂ L.

By 1.7.3, M is fully coprime if and only ifM is fully coprime inM . An immediate
consequence of the definition is (compare with Proposition 1.6.7)

1.7.8 Proposition. If a module M is fully coprime, then M is coprime and
fi-coretractable.

Proof. If M is M/K-generated, it is clear that AnnR(M/K) = AnnR(M) and
HomR(M/K,M) 6= 0. tu

In view of later use for comodules and coalgebras (wedge product), we con-
sider another coproduct of two proper fully invariant submodules K,L ⊂ M .
Put

K ∧M L := Ker πK ¦ HomR(M/K,M) ¦ πL ¦ HomR(M/L,M) (1.3)

= Ker (AnnS(K) ¦ AnnS(L)), (1.4)

a fully invariant submodule of M . The relation between the coproducts (1.1)
and (1.3) is obviously,

K :M L ⊆ K ∧M L.

The next result shows when equality holds.

1.7.9 Proposition. Consider the following assertions for a module M :

(a) M is a fully coprime module.

(b) If K ∧M L = M , then K = M or L = M , for any fully invariant
submodules K,L of M .

26



(c) K ∧M L 6= M for any proper fully invariant submodules K,L of M .

(d) Tr(M/K,−) = Tr(M,−) for any proper fully invariant submodules K of
M , i.e. an M-generated module is also an M/K-generated module.

Then we have (a) ⇐⇒ (d), (b) ⇐⇒ (c) and (c) =⇒ (a).
If M is a self-cogenerator, then (d) =⇒ (c) and

K :M L = K ∧M L.

Proof. (c) ⇐⇒ (b) is trivial and (a) ⇐⇒ (d) is known (see 1.7.3).
(c) =⇒ (a) If K :M L = M , then K ∧M L = M .
(d) =⇒ (c) AssumeM is a self-cogenerator. LetK,L be proper fully invariant

submodules of M and assume

(M) πK ¦ HomR(M/K,M) ¦ πL ¦ HomR(M/L,M) = 0.

Since M is a self-cogenerator, we obtain by Lemma 1.1.9,

(M) πK ¦ HomR(M/K,M) ⊂ Ker πL ¦ HomR(M/L,M) = L,

and M = Tr(M,M) = Tr(M/K,M) ⊆ L, a contradiction. tu

1.7.10 Proposition. Let M be a self-cogenerator and S = EndR(M). If S is
prime, then M is fully coprime.

Proof. Let K,L be proper fully invariant submodules of M which satisfy M =
K :M L. By assumption we have

(M) πK ¦ HomR(M/K,M) ¦ πL ¦ HomR(M/L,M) = 0.

Since S is prime, πK ¦HomR(M/K,M) = 0 or πL ¦HomR(M/L,M) = 0. Hence
K = M or L = M since M is a self-cogenerator. tu

Let I, J be ideals in EndR(M) and put Ker I = K, Ker J = L. Then

I ⊆ Hom (M/K,M), J ⊆ Hom (M/L,M). (1.5)

For the converse of Proposition 1.7.10 the equalities in (1.5) are of interest.
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1.7.11 Proposition. Let M be a self-cogenerator and S = EndR(M).

(i) If M is self-injective and fully coprime, then S is prime and M is endo-
coprime.

(ii) If M is endo-coprime, then M is fully coprime.

Proof. (i) Let M be a fully coprime module and I, J finitely generated right
ideals in S with IJ = 0. Put K = Ker I and L = Ker J . Then by Lemma
1.1.9, Hom(M/K,M) = I and Hom(M/L,M) = J and K :M L = M . Then
M = K or M = L, thus I = 0 or J = 0. Hence the ring S is prime. Since RM
is fi-coretractable, M is endo-coprime (see 1.5.2).

(ii) We assume that MS is coprime, hence S is prime. Then the assertion
follows from Proposition 1.7.10. tu

1.7.12 Corollary. If M is a self-injective self-cogenerator and S = EndR(M),
then the following assertions are equivalent :

(a) M is fully coprime.

(b) M is endo-coprime.

(c) S is a prime ring.

Proof. The equivalence holds by Proposition 1.7.10 and Proposition 1.7.11. tu

1.7.13 Proposition. ([28], Proposition 4.9) For a module M , let K ⊆ H ⊆M
be submodules such that K is fully invariant in H and H is fully invariant in
M .

(i) If K is fully coprime in M , then K is fully coprime in H.

(ii) If K is fully coprime in M , then K is a fully coprime module.

In Lemma 1.2.10 relations between primeness and injectivity are considered. A
partial converse of Proposition 1.7.13 yields a relationship between coprimeness
and injectivity.

1.7.14 Proposition. ([28], Theorem 4.10) Let M ⊆ Q be a fully invariant
submodule of a self-injective module Q. Then M is a fully coprime module if
and only if M is fully coprime in Q.
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1.7.15 Proposition. Let M be a fully coprime module with Rad(M) 6= M .
Then :

(i) M is generated by a module that is cogenerated by a simple module.

(ii) For any projective module P in σ[M ], Rad(P ) = 0.

(iii) R := R/AnnR(M) is a left primitive ring.

Proof. (i) By assumption there is a maximal submodule K in M . Consider
the fully invariant submodule Rej(M,M/K) ⊂ K 6= M . By assumption M
is M/Rej(M,M/K)-generated, where M/Rej(M,M/K) is cogenerated by the
simple module M/K.

(ii) By (i), P is subgenerated by M/Rej(M,M/K) which is cogenerated
by M/K. Hence P is subgenerated by a product Q of copies of (M/K), and
P ⊂ Q(Λ), for some index Λ (see 18.4 of [38]). Thus P is M/K-cogenerated and
Rad(P ) = 0.

(iii) It is a consequence of Proposition 1.3.10, since M fully coprime implies
that M is coprime. tu

By Lemma 1.2.10, a module M is prime if and only if its M -injective hull is
prime. Thus the question arises : If M is fully coprime, when is its projective
hull (if it exists) also fully coprime?

1.7.16 Proposition. Let p : P → M be a small epimorphism in σ[M ]. As-
sume that P is M-generated and M is fully coprime.

(i) If P is self-projective, then P is fully coprime.

(ii) If P is projective in σ[M ], then M is projective in σ[M ], i.e. M ' P .

Proof. (i) (Compare with Proposition 1.3.11) Consider a proper fully invariant
L ⊂ P and K := Ker p. Since K ¿ P , L + K 6= P and (L)p ⊂ M is proper.
The morphism p induces an epimorphism p̂ such that the following diagram is
commutative.

P
p //

π1

²²

M

π2

²²
P/L

bp // M/(L)p

By Lemma 1.1.20 part (ii), (L)p is fully invariant. Since M is fully coprime, M
is generated by M/(L)p and hence P is P/L-generated. Thus P is fully coprime.

(ii) By the projectivity of P , Rad(P ) 6= P (see [38], 22.3). By (i), P is fully
coprime. By Proposition 1.7.15, Rad(P ) = 0 and hence Ker p = 0. We obtain
M ' P . In particular M is projective. tu
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1.8 Strongly prime and coprime modules

A ring R is left strongly prime if for every left ideal I ⊂ R there is a monomor-
phism R → Ik for some k ∈ N (Handelman-Lawrence [14]). This notion was
extended to left modules in Beidar-Wisbauer [3].

1.8.1 Definition. A module M is called strongly prime if for any non-zero
fully invariant submodule K ⊆M , M ∈ σ[K].

We recall some characterizations of these modules (see [39], 13.3).

1.8.2 Strongly prime modules. For an R-module M with M-injective hull
M̂ , the following are equivalent :

(a) M is a strongly prime module.

(b) M is subgenerated by each of its non-zero submodules.

(c) M̂ is generated by each of its non-zero (fully invariant) submodules.

(d) M is contained in every non-zero fully invariant submodule of M̂ .

(e) M̂ has no non-trivial fully invariant submodules.

If these conditions are satisfied, then M̂ is fully coprime (trivially).

1.8.3 Lemma. Let MΛ be the product of Λ copies of M in σ[M ] (see 1.1.4),
for any index set Λ. MΛ is strongly prime if and only if M is strongly prime.

Proof. (=⇒) Let MΛ be strongly prime. Consider any submodule U ⊂ M ⊂
MΛ. Then M ⊂MΛ ∈ σ[U ] and hence M is strongly prime.

(⇐=) Let M be strongly prime and V ⊂ MΛ. There is some non-zero
canonical projection (V )πλ0 ⊂M . Thus M ∈ σ[(V )πλ0 ] which implies M ∈ σ[V ]
and hence MΛ ∈ σ[V ]. tu

1.8.4 Proposition. Let M be strongly prime. Then

(i) every M-cogenerated module in σ[M ] is strongly prime;

(ii) every projective module in σ[M ] is strongly prime;

(iii) for every finitely generated projective module P in σ[M ], EndR(P ) is
strongly prime.
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Proof. (i) According to Lemma 1.8.3, MΛ is strongly prime. Let U be a non-
zero (fully invariant) submodule of an M -cogenerated module N . Then N ⊂
MΛ ∈ σ[U ].

(ii) Consider a projective module P in σ[M ]. Then P ' X ⊆M (Λ) for some
Λ. P is strongly prime.

(iii) Let J ⊂ EndR(P ) be a proper finitely generated left ideal. Since P
is strongly prime (by ii), PJ is a subgenerator in σ[P ] and hence P ⊂ (PJ)k,
k ∈ N. Since P is finitely generated projective, HomR(P, PJ) = J (see [38],
18.4) and

EndR(P ) ⊂ HomR(P, (PJ)k) ' HomR(P, (PJ))k = Jk

showing that EndR(P ) is (left) strongly prime. tu

1.8.5 Proposition. Let M be a module with Soc(M) 6= 0. If M is strongly
prime, then

(i) M is homogeneous semisimple.

(ii) R := R/AnnR(M) is primitive.

Proof. (i) Let K be a simple submodule of M . Then Tr(K,M) is a fully
invariant submodule and hence M ∈ σ[Tr(K,M)]. Thus M is K-generated, i.e.,
homogeneous semisimple.

(ii) It is a consequence of Proposition 1.2.12, since M is strongly prime
implies M is prime. tu

For example, locally artinian modules ( i.e., modules whose finitely gener-
ated submodules are artinian) have non-zero socle. Thus a locally artinian and
strongly prime module is homogeneous semisimple.

Dual to strongly prime, we define

1.8.6 Definition. A module M is called strongly coprime if for any proper
fully invariant submodule K ⊂M , M ∈ σ[M/K].

1.8.7 Proposition. If M is a strongly coprime module and K is a proper fully
invariant submodule of M , then M/K is strongly coprime.
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Proof. Let K be a fully invariant submodule of M . We take any proper fully
invariant submodule U/K of M/K, where K ⊂ U ⊂M . By Corollary 1.1.21, U
is fully invariant. Thus M ∈ σ[M/U ] and M/K ∈ σ[M/U ] = σ[(M/K)/(U/K)].
tu

1.8.8 Proposition. M is strongly coprime if and only if M (Λ) is strongly
coprime for any index set Λ.

Proof. (=⇒) Let V ⊂ M (Λ) be a proper fully invariant submodule. For some
λ0 ∈ Λ, πλ0 : M (Λ) → Mλ0 such that (V )πλ0 ⊂ Mλ0 = M . Denote ελ0 : Mλ0 →
M (Λ). Then

(V )πλ0ελ0EndR(M (Λ))πλ0 ⊂ (V )πλ0 ⊂Mλ0 ,

hence (V )πλ0 is a fully invariant submodule of Mλ0 . Thus

M (Λ) ∈ σ[M/(V )πλ0 ] ⊂ σ[M (Λ)/V ].

(⇐=) Let U be a proper fully invariant submodule of M . Then U (Λ) is a
proper fully-invariant submodule of M (Λ) and M (Λ)/U (Λ) = (M/U)(Λ). Thus
M ⊂M (Λ) ∈ σ[(M/U)(Λ)] = σ[M/U ]. tu

1.8.9 Proposition. Let M be a strongly coprime and semilocal module. Then
M is homogeneous semisimple.

Proof. Rad(M) is a fully invariant submodule of M , hence M is subgenerated
by M/Rad(M) which is semisimple. Thus M is semisimple and hence every
module in σ[M ] is injective. Now a proof similar to the proof of Lemma 1.7.5
shows that M is homogeneous semisimple. tu

1.8.10 Proposition. Let M be a module with Rad(M) 6= M . If M is strongly
coprime, then :

(i) M is subgenerated by a product of copies of some simple module.

(ii) For any projective module P in σ[M ], Rad(P ) = 0.

(iii) R := R/AnnR(M) is primitive.

Proof. (i) By assumption there is a maximal submodule K in M . Consider
the fully invariant submodule Rej(M,M/K) ⊂ K 6= M . By assumption M is
M/Rej(M,M/K)-subgenerated, where M/Rej(M,M/K) is cogenerated by the
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simple module M/K (product in σ[M ]). Thus M is (M/K)Λ-subgenerated for
some index set Λ.

(ii) SinceM is strongly coprime and Rad(M) is a fully invariant submodule of
M , M ∈ σ[M/Rad(M)]. By definition of the radical, M/Rad(M) is cogenerated
by simple modules (see 14.5 of [38]). The projectivity of P implies that P ⊂
(M/Rad(M))(Λ) for some index set Λ, and hence Rad(P ) = 0.

(iii) It is a consequence of Proposition 1.3.10, since M strongly coprime
implies that M is coprime. tu

The strong coprimeness of modules transfers to small epimorphisms.

1.8.11 Proposition. Let p : P →M be a small epimorphism in σ[M ] and M
strongly coprime.

(i) If P is self-projective, then P is strongly coprime.

(ii) If P is projective in σ[M ], then M ' P .

Proof. (i) Consider any proper fully-invariant submodule L ⊂ P and K :=
Ker p. Since K ¿ P , L+K 6= P and (L)p ⊂M is a fully-invariant submodule
by Lemma 1.1.20 part (ii). By hypothesis, M ∈ σ[M/(L)p] ⊆ σ[P/L]. Since
P ∈ σ[M ] and σ[M ] ⊆ σ[P/L], we have P ∈ σ[P/L].

(ii) By the projectivity of P , Rad(P ) 6= P (see [38], 22.3). By (i), P is
strongly coprime and by Proposition 1.8.10, Rad(P ) = 0. Thus Ker p = 0 and
M ' P . tu

M is called duprime if for any fully-invariant submodule K of M , M ∈ σ[K]
or M ∈ σ[M/K] (see [34] and [35]). By definition it is clear that any strongly
coprime module is duprime. The convers is true for self-injective modules.

1.8.12 Proposition. If M is a self-injective R-module, then :

(i) M is duprime if and only if it is strongly coprime.

(ii) The following are equivalent :

(a) M is fully coprime;

(b) M is strongly coprime;

(c) M is duprime.

33



Proof. (i) Let K be a proper fully invariant submodule of M . By assumption,
M ∈ σ[K] or M ∈ σ[M/K]. If M ∈ σ[K] then M is K-generated, since M
is self-injective. But Tr(K,M) = KEndR(M) = K ⊂ M , hence M is not
K-generated, i.e., M 6∈ σ[K]. Thus M ∈ σ[M/K].

(ii) (a)⇐⇒ (b) It is clear that if M/K generates M then M ∈ σ[M/K]. Now
let M/K be a subgenerator of M . Since M is injective, it is M/K-generated.
This is based on the fact that any injective module is generated by subgenerators
in σ[M ].

(ii) (b) =⇒ (c) by definition, (c) =⇒ (b) by (i). tu

Compare the proposition above with Corollary 1.7.12. Notice that if M is
projective in σ[M ] or M is polyform, then M is duprime if and only if M is
strongly prime (see [34], Theorem 3.3).

1.8.13 σ[M ] = RM. Assume σ[M ] = RM. Then :

(i) If M is prime, then R is prime.

(ii) If M is coprime, then R is prime.

(iii) If M is endo-prime and fi-retractable, then R is prime.

(iv) Let R be a commutative ring. If M is endo-coprime, then R is prime.

(v) If M is fully prime, then R is prime and for any non-zero fully invariant
submodule K ⊆M , R is K-cogenerated.

(vi) If M is fully coprime, then R is prime.

(vii) If M is strongly prime, then R is a left strongly prime ring.

(viii) If M is strongly prime and Soc(M) 6= 0, then R is a simple ring.

(ix) If M is strongly coprime, then R is a submodule of a strongly coprime
module.

Proof. Recall that σ[M ] = RM is equivalent to R ⊂ Mk for some k ∈ N and
implies that M is a faithful R-module.

(i) By Proposition 1.2.7.
(ii) By Lemma 1.3.3, R is prime.
(iii) By Proposition 1.4.2.
(iv) By Proposition 1.5.2.
(v) By definition, M is fully prime implies M is prime. Hence according to

(i), R is prime. Since R is M -cogenerated, then for any non-zero fully invariant
submodule K ⊆M , R is K-cogenerated.
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(vi) By definition, M is fully coprime implies M is coprime. To prove the
assertion, see (ii).

(vii) is clear from Proposition 1.8.4.
(viii) is clear from Proposition 1.8.5
(ix) By Lemma 1.8.8, Mk is strongly coprime for any k ∈ N. tu

1.9 Colocalization in σ[M ]

Let R be a ring with unit and let τ be a preradical in RM (or in a category
σ[M ] for some M ∈ RM). The class of modules N with τ(N) = N is called the
torsion class Tτ of τ , and the modules X with Hom(N,X) = 0 for all N ∈ Tτ

form the torsion free class Fτ of τ . If τ is a hereditary torsion radical then Tτ

is closed under submodules, direct sums, quotients and extensions. Hereditary
torsion theories allow to define a localization functor (quotient modules).

Dually, for any projective module P in RM the class

FP = {Y ∈ RM |Hom(P, Y ) = 0}
can be taken as the torsion free class of a cohereditary torsion theory. In this case
the torsion theory is determined by the trace ideal T = Tr(P,R), an idempotent
ideal in R, and the torsion class consists of the P -generated modules. Such
theories can be applied to define a colocalization functor ([16],[22]).

Localization theories in categories of type σ[M ], M an R-module, is outlined
in Wisbauer [36]. In this section we recall the basic facts about colocalization
in categories of type σ[M ] which is developed in [6]. For elementary notions of
these theories we refer to [30], [39] and [6].

If a preradical τ preserves epimorphisms, then it is said to be cohereditary.
Pseudo-projectivity of a module (see Definition 1.1.18) has an influence on the
related trace functor (see [6], 6.12).

1.9.1 Lemma. For P ∈ σ[M ] the following assertions are equivalent :

(a) P is pseudo-projective in σ[M ].

(b) The trace functor Tr(P,−) : σ[M ] → σ[M ] preserves epimorphisms.

(c) Tr(P/Tr(P,N)) = 0 for all N ∈ σ[M ] and the class

{X ∈ σ[M ] | Tr(P,X) = 0}
is closed under factor module.
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By observation 6.13 of [6] we have

1.9.2 Lemma. For a preradical τ for σ[M ] the following are equivalent :

(a) τ is cohereditary.

(b) There is a pseudo-projective module P ∈ σ[M ] such that Tτ = Gen (P ).

In RM, R is a generator and hence any cohereditary preradical τ for RM is
generated by the ideal τ(R). Moreover (see [6], 6.14) :

1.9.3 Lemma. Let τ be a preradical for RM. τ is cohereditary if and only if
for any N ∈ RM, τ(N) = τ(R)N .

In particular, pseudo-projective modules P in RM can be characterized by their
trace ideal Tr(P,R) (see [6], 6.15).

1.9.4 Lemma. For an R-module P with trace ideal T = Tr(P,R), the follow-
ing are equivalent :

(a) P is pseudo-projective in RM.

(b) The trace functor Tr(P,−) : RM → RM preserves epimorphisms.

(c) For every R-module L, Tr(P,L) = TL.

(d) P = TP .

If this conditions hold, then T = T 2 and Gen(P ) = Gen(T ).

1.9.5 Proposition. Assume that T M := Tr(σ[M ],−) is exact and let P ∈
σ[M ], then :

(i) σ[M ] is closed under small epimorphisms in RM;

(ii) if P is projective in σ[M ], then P is projective in RM;

(iii) if P is pseudo-projective in σ[M ], then P is pseudo-projective in RM.

Proof. (i) and (ii) are from 42.17 part (1) and (2) of [5].
(iii) Let P ∈ σ[M ] be pseudo-projective in σ[M ]. From the diagram with

exact sequence in RM,

P

f
²²

0 // K // N
p // L // 0.
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we construct the following commutative diagram by applying the exact functor
T M :

P
s //

t
²²

P

f ′
²²

0 // T M(K) //

²²

T M(N)
p′ //

iN
²²

T M(L) //

iL
²²

0

0 // K // N
p // L // 0.

The morphism f ′ : P → T M(L) exists since P is in σ[M ]. By pseudo-projectivity
of P in σ[M ], there exist s : P → P and t : P → T M(N) such that sf ′ = tp′ 6= 0,
hence sf = sf ′iL = tp′iL = tiNp 6= 0. Thus P is pseudo-projective in RM. tu

1.9.6 (Fτ , N)-projective. Let τ be an idempotent preradical for σ[M ] and
P ∈ σ[M ]. P is called (Fτ , N)-projective if Hom(P,−) is exact on the exact
sequences in σ[M ]

0 → K → N → L→ 0,

where K ∈ Fτ . P is called Fτ -projective in σ[M ] if it is (Fτ , N)-projective for
all N ∈ σ[M ].

1.9.7 τ-colocalization. Let τ be an idempotent preradical with associated
classes (Tτ ,Fτ ). A homomorphism g : P → N in σ[M ] is called a τ -colocalization
of N if P ∈ Tτ , P is Fτ -projective and Ker g and Coker g belong to Fτ .

Such a τ -colocalization is unique up to isomorphism. The existence of τ -colocali-
zations depend on the presence of enough projectives (see 6.25 of [6]).

1.9.8 Proposition. Suppose that there is a projective generator in σ[M ].
Then for an idempotent preradical τ for σ[M ], the following assertions are equiv-
alent :

(a) Every module in σ[M ] has a τ -colocalization, i.e. there is a τ -colocalization
functor from σ[M ] → σ[M ].

(b) τ is cohereditary, i.e., Fτ is cohereditary.

The following property (see [6], Proposition 6.28) is needed to describe τ -
colocalization.
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1.9.9 Lemma. Let P be an R-module and S = EndR(P ). Consider I =
Tr(P,R). For any N ∈ RM consider the evaluation map

ψN : P ⊗S Hom(P,N) → N, p⊗ f 7→ (p)f.

Then I ·Ker ψN = 0 and I · Coker ψN = 0.

The next theorem summarizes colocalization in RM (see Proposition 6.29 of
[6]).

1.9.10 Theorem. Let τ be a cohereditary radical for RM. Then I = τ(R) is
an idempotent ideal and

Tτ = {N ∈ RM | IN = N}, Fτ = {N ∈ RM | IN = 0}.
Let P ∈ Tτ and Fτ -projective with Tr(P,R) = I and put S = EndR(P ).

(i) For any N ∈ RM,

ψN : P ⊗S Hom(P,N) → N, p⊗ f 7→ (p)f,

is a τ -colocalization of N .

(ii) ψR : P ⊗S P
∗ → R is a τ -colocalization of R and is an (R,R)-bimodule

morphism.

(iii) Λ = P ⊗S P
∗ has a ring structure (without unit) such that ψR is a ring

morphism, and Λ = Λ2.

Notice that the τ -colocalization Λ of R can be used to describe the τ -
colocalization in RM (see [6], Proposition 6.30).

1.9.11 Lemma. Let τ be a cohereditary radical for RM, I = τ(R) and µ :
Λ → R a τ -colocalization of R. Then for any N ∈ RM, the R-linear map

ϕ : Λ⊗R N → N ,
∑

λi ⊗ ni 7→
∑

(λi)µni,

is a τ -colocalization of N .

The hereditary torsion theory in σ[M ], whose torsion free class is cogenerated

by the injective hull M̂ of M in σ[M ], is called a Lambek torsion theory. The
torsion class is

TτM
= {N ∈ σ[M ] | HomR(N, M̂) = 0},

that is the largest torsion class for which M is torsion free.
U is M-rational in N if and only if for any U ⊂ V ⊂ N , HomR(V/U,M) = 0.

M is called polyform if any essential submodule is rational in M . The dual
notions are
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1.9.12 M-corational modules. A module X ∈ σ[M ] is called M-corational
if for all Y ⊂ X, HomR(M,X/Y ) = 0. M is called copolyform if any small
submodule of M is M -corational. An epimorphism f : M → N is called an
M-corational cover if Ker f is an M -corational module.

If Ker f is an M -corational module then Ker f ¿M . If M is pseudo-projective
in σ[M ], then any N ∈ σ[M ] with HomR(M,N) = 0 is an M -small module (see
[6], 8.14).

The dual of the Lambek torsion theory has been studied, for example, by
Lomp [21] and Talebi-Vanaja [32], [33].

We denote the class of M -corational modules in σ[M ] by

CrM = {X ∈ σ[M ] | HomR(M,X/Y ) = 0, for all Y ⊂ X}

and define the corresponding torsion class

Cr◦M = {N ∈ σ[M ] | HomR(N,X) = 0, for all X ∈ CrM}.

The classes (Cr◦M , CrM) can be characterized in the following way (compare
with [6], Proposition 9.3).

1.9.13 Proposition. Assume there is a small epimorphism f : P →M where
P ∈ σ[M ] is pseudo-projective. Then:

(i) (Cr◦M , CrM) is a cohereditary torsion theory and CrM is closed under pro-
ducts in σ[M ].

(ii) CrM = {X ∈ σ[M ] | HomR(P,X) = 0}, that is, for any module in σ[M ],
M-corational is the same as P -corational.

For any pseudo-projective module P in RM and I = Tr(P,R), using Lemma
1.2 and Proposition 1.3 of [22], we can characterize the cohereditary torsion
theory induced by Tr(P,−) as

Cr◦P = {N ∈ σ[M ] | IN = N}, CrP = {N ∈ σ[M ] | IN = 0}.

By Proposition 9.5 of [6], if f : P → M is a pseudo-projective cover in
σ[M ], then P/Tr(P,Ker f) → M is a corational cover. Therefore, related to
the cohereditary torsion theory (Cr◦M , CrM), we colocalize the module M in the
following way (see [6], 9.16).
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1.9.14 Proposition. Let f : P → M be a projective cover in σ[M ]. Then
Tr(P,−) induces the M-corational torsion theory, P/Tr(P,Ker f) is a CrM -
projective module, and P/Tr(P,Ker f) → M is the Tr(P,−)-colocalization of
M .

The following observation relates coprimeness with copolyform modules.

1.9.15 Proposition. If the module M is endo-coprime and pseudo-projective,
then M is copolyform.

Proof. Assume M is endo-coprime, that is, for any fully-invariant submodule
K, AnnS(M/K) = 0. Equivalently, HomR(M,K) = 0. Since Rad(M) is a
fully-invariant submodule of M , HomR(M,Rad(M)) = 0.

For any small submodule L ¿ M , L ⊂ Rad(M). Thus HomR(M,L) = 0
and by pseudo-projectivity of M , HomR(M,L/L′) = 0 for any L′ ⊂ L, i.e., L is
M -corational. tu

1.9.16 Corollary. Let M be self-projective and S = EndR(M).

(i) If M is fi-coretractable and S is prime, then M is copolyform.

(ii) If M is a self-injective self-cogenerator and fully coprime, then M is copoly-
form.

(iii) If M is a self-injective self-cogenerator and strongly coprime, then M is
copolyform.

Proof. (i) By 1.5.2 part (iii), M is endo-coprime. Now apply Proposition 1.9.15.
(ii) If M is a self-injective self-cogenerator, then endo-coprimeness is equiv-

alent to fully coprimeness (see Corollary 1.7.12).
(iii) By Proposition 1.8.12, if M is self-injective and strongly coprime, then

it is fully coprime. We apply the result (ii). tu

For any modules M and N , we define :

∇(M,N) := {f ∈ HomR(M,N) | (M)f ¿ N}.

1.9.17 Proposition. Let P be a projective module in σ[M ] and assume that
Rad(M) 6= M . If the module M is fully coprime or strongly coprime, then P is
copolyform.
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Proof. By Proposition 1.7.15 and Proposition 1.8.10, Rad(P ) = 0. By 9.26 of
[6], Jac(EndR(P )) = ∇(P, P ) = 0. Therefore P is copolyform. tu

1.9.18 Proposition. Let p : P →M be a projective hull in σ[M ].

(i) If M is endo-coprime and pseudo-projective, then P is copolyform.

(ii) If M is strongly coprime, then M ' P .

(iii) If P is M-generated and M is fully coprime, then R/AnnR(P ) is a left
primitive ring.

Proof. (i) By Proposition 1.9.15, M is copolyform. Now apply 9.26 of [6] to
get P is copolyform.

(ii) By Proposition 1.8.11 part (ii).
(iii) By Proposition 1.7.16 P is also fully coprime (e.g. coprime). Then we

apply Proposition 1.3.10. tu
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Chapter 2

Prime and Coprime Comodules

In this chapter R will always denote a commutative ring. Let C be an R-
coalgebra and C∗ = HomR(C,R). Any right C-comodule M can be considered
as a left C∗-module and there is a faithful functor from the category of right
C-comodules MC to the category of left C∗-modules C∗M. We need the α-
condition on C to make MC = σ[C∗C] a full subcategory of C∗M. This gives us
the possibility to apply the results of primeness and coprimeness in the category
σ[M ] to the category MC .

We transfer the various notions of primeness and coprimeness for modules to
comodules. These definitions extend the definitions of primeness of comodules
and coalgebras which have been studied by several authors (for example Ro-
drigues [29] and Ferrero-Rodrigues[11]). In particular we study the coprimeness
of the coalgebra itself. It is a generalization of the study of coprime coalgebras
over fields in Xu et.al [41], Nekooei-Torkzadeh [26] and Jara et.al. [17].

The basic definitions and properties of comodules and coalgebras will be
given in the first part of this section. The theory of coalgebras over fields and
their comodules is discussed in various text books (see for example Abe [1],
Montgomery [23], Sweedler [31] and Dǎscǎlescu et.al. [7]). The study of coalge-
bras over commutative rings is presented in Brzeziński-Wisbauer [5].

2.1 Preliminaries

2.1.1 Coalgebras. Throughout R denotes a commutative and associative ring
with unit. An R-coalgebra is an R-module C with R-linear maps

∆ : C → C ⊗R C and ε : C → R
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called (coassosiative) coproduct and counit respectively, with the properties

(IC ⊗∆) ◦∆ = (∆⊗ IC) ◦∆ and (IC ⊗ ε) ◦∆ = IC = (ε⊗ IC) ◦∆.

We use Sweedler’s notation, that is for any c ∈ C, we write ∆(c) =
∑
c1 ⊗ c2.

A coalgebra (C,∆, ε) is said to be cocommutative if ∆ = tw ◦∆, where

tw : C ⊗R C → C ⊗R C , a⊗ b 7→ b⊗ a,

is the twist map.
For any coalgebra C and R-algebra A, HomR(C,A) is an R-algebra by the

convolution product, that is for any f, g ∈ HomR(C,A) and c ∈ C define

f ∗ g = µ ◦ (f ⊗ g) ◦∆, i.e. f ∗ g(c) =
∑

f(c1)g(c2).

In particular, C∗ = HomR(C,R) is called the dual algebra of C.

2.1.2 Example. Let (A, µ, ι) be an R-algebra and assume RA to be finitely
generated and projective. Then there is an isomorphism

A∗ ⊗R A
∗ → (A⊗R A)∗, f ⊗ g 7→ [a⊗ b 7→ f(a)g(b)]

and the functor HomR(−, R) = (−)∗ yields a coproduct

µ∗ : A∗ → (A⊗R A)∗ ' A∗ ⊗R A
∗,

and a counit (as the dual of the unit of A)

ε := ι∗ : A∗ → R , f 7→ f(1A).

This makes A∗ an R-coalgebra which is cocommutative provided µ is commu-
tative. Notice that (A∗)∗ = A. If A is prime and a faithful R-module, then the
ground ring R is prime (see Lemma 1.1.2).

2.1.3 Coalgebra morphisms. Let (C,∆, ε) and (C ′,∆′, ε′) be R-coalgebras.
An R-linear map f : C → C ′ is said to be a coalgebra morphism provided

∆′ ◦ f = (f ⊗ f) ◦∆ and ε′ ◦ f = ε,

i.e. for all c ∈ C,
∑

f(c1)⊗ f(c2) =
∑

f(c)1 ⊗ f(c)2 and ε′ ◦ f(c) = ε(c).
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2.1.4 Kernel of coalgebra morphisms. The kernel of a coalgebra map
f : C → C ′ is related to the kernel of f ⊗ f in the category of R-modules MR.
If f is surjective,

Ker (f ⊗ f) = Ker f ⊗R C + C ⊗R Ker f ⊂ C ⊗R C.

The kernel of a surjective coalgebra morphism f : C → C ′ is called a coideal of
C.

2.1.5 Comodules over coalgebras. A right C-comodule is an R-module M
with an R-linear map %M : M → M ⊗R C called a right C-coaction , with the
properties

(IM ⊗∆) ◦ %M = (%M ⊗ IC) ◦ %M and (IM ⊗ ε) ◦ %M = IM .

To denote the action of %M on elements of M we write %M(m) =
∑
m0 ⊗m1.

2.1.6 Comodule morphisms. Let M and N be right C-comodules. An R-
linear map f : M → N is called a comodule morphism or a morphism of right
C-comodules if

%M ◦ f = (f ⊗ IC) ◦ %M .

Denote by HomC(M,N) the set of C-comodule morphisms from M to N .

The class of right comodules over C together with the comodule morphisms
form an additive category which is denoted by MC .

2.1.7 Subcomodules. An R-submodule K of a right C-comodule M is called
a C-subcomodule of M provided K has a right comodule structure such that
the inclusion is a comodule morphism. In general, the fact that K is an R-
submodule of M does not imply that K ⊗R C is a submodule of M ⊗R C, since
the tensor functor is not left exact. However, if K is a C-pure R-submodule of
M then K ⊗R C ⊂M ⊗R C, and K is a subcomodule of M provided %M(K) ⊂
K ⊗R C ⊂M ⊗R C.

2.1.8 Subcoalgebras. An R-submodule D ⊂ C is called a subcoalgebra pro-
vided D has a coalgebra structure and the inclusion map is a coalgebra mor-
phism. Notice that a pure R-submodule D ⊂ C is a sub-coalgebra provided

∆(D) ⊂ D ⊗R D ⊂ C ⊗R C.
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The restriction of the counit ε to D becomes a counit for D.
A pure submodule D of C is a subcoalgebra if and only if it is a left and

right C-subcomodule, since in this case (see Intersection property 40.16 of [5])

∆(D) ⊂ D ⊗R C ∩ C ⊗R D = D ⊗R D ⊂ C ⊗R C,

so that D has a coalgebra structure for which the inclusion is a coalgebra mor-
phism as required.

2.1.9 Semisimple comodules. A right C-comodule M is called semisimple
in MC if every C-monomorphism N → M is a coretraction, and M is called
simple if all these monomorphisms are isomorphisms. Proposition 4.13 of [5]
shows that if we assume that C is flat as an R-module, any comodule M is
simple if and only if M has no nontrivial subcomodules. Furthermore, M is
semisimple if and only if every subcomodule of M is a direct summand.

2.1.10 Projective comodules. A comodule P is projective in MC if for any
epimorphism M → N in MC , the canonical map HomC(P,M) → HomC(P,N)
is surjective. There is a relationship between the projectivity of a comodule and
its projectivity as an R-module (see Lemma 3.22 of [5]): If P is projective in
MC , then P is projective in MR. If RC is flat, P is projective in MC if and only
if HomC(P,−) : MC → MR is exact.

2.1.11 Hom-tensor relations. Similar to the classical Hom-tensor relations
(e.g. [38]), there are Hom-tensor relations in MC (see [5], 3.10). For any M ∈
MC the R-linear map

φ : HomC(M,X ⊗R C) → HomR(M,X), f 7→ (IX ⊗ ε) ◦ f,

is bijective, with inverse map h 7→ (h⊗ IX) ◦ ρM .

For X = R and M = C the isomorphism φ describes the comodule endo-
morphisms of C. There is an algebra anti-isomorphim

φ : EndC(C) → C∗, f 7→ ε ◦ f

with inverse map h 7→ (h⊗ IC) ◦∆, and h ∈ C∗ acts on c ∈ C from the right by

c ↼ h = (h⊗ IC) ◦∆(c) =
∑

h(c1)c2.
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Moreover, there is an algebra isomorphim

φ′ : CEnd(C) → C∗, f 7→ ε ◦ f

with inverse map h 7→ (IC ⊗ h) ◦∆, and h ∈ C∗ acts on c ∈ C from the left by

h ⇀ c = (IC ⊗ h) ◦∆(c) =
∑

c1h(c2).

2.1.12 C-comodules as C∗-modules. Any coalgebra C can be considered
as a right C-comodule, and there is a close relationship between comodules of
C and modules of C∗.

Any M ∈ MC is a (unital) left C∗-module by

⇀: C∗ ⊗R M →M, f ⊗m 7→ (IM ⊗ f) ◦ %M(m) =
∑

m0f(m1)

and any morphism h : M → N in MC is a left C∗-module morphism, i.e.,

HomC(M,N) ⊂ C∗Hom(M,N).

C is a subgenerator in MC , that is all C-comodules are subgenerated by C as
C-comodules and C∗-modules.

Denote by C∗M the category of left C∗-modules. The above observation
shows that there is a faithful functor from MC to C∗M. MC is a full subcategory
of C∗M when all the (left) C∗-linear maps between right C-comodules arise from
(right) C-comodule morphisms, or when MC is isomorphic to σ[C∗C], that is the
full subcategory of left C∗-modules whose objects are C∗C-subgenerated.

C is said to satisfy the α-condition if the map

αN : N ⊗R C → HomR(C∗, N), n⊗ c 7→ [f 7→ f(c)n],

is injective for every N ∈ MR.

2.1.13 Proposition. ([5], 4.2) The following are equivalent for an R-coalgebra
C :

(a) C satisfies the α -condition.

(b) For any N ∈ MR and u ∈ N⊗RC, (IN⊗f)(u) = 0 for all f ∈ C∗, implies
u = 0.

(c) C is locally projective as an R-module.
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In particular this implies that C is a flat R-module and cogenerated by R.
In the category of comodules, the importance of the α-condition becomes

clear from the following observation.

2.1.14 Proposition. ([5], 4.3) The following are equivalent :

(a) MC = σ[C∗C].

(b) MC is a full subcategory of C∗M.

(c) for all M,N ∈ MC, HomC(M,N) = C∗Hom(M,N).

(d) RC is locally projective.

2.1.15 (C∗, C∗)-bimodules. Since C is a left and right C-comodule, we can
study the structure of C as a (C∗, C∗)-bimodule by

⇀ : C∗ ⊗R C → C, f ⊗ c 7→ f ⇀ c = (IC ⊗ f) ◦∆(c)

↼ : C ⊗R C
∗ → C, c⊗ g 7→ c ↼ g = (g ⊗ IC) ◦∆(c),

where f, g ∈ C∗, c ∈ C. The multiplication between two elements in C∗ has the
following properties :

f ∗ g(c) = f(g ⇀ c) = g(c ↼ f).

As a left and right C∗-module, C is faithful. If C is locally projective, then C
is a balanced (C∗, C∗)-bimodule, i.e., writing right comodule morphisms on the
right side,

C∗End(C) = EndC(C) ' C∗ ' CEnd(C) = EndC∗(C) (2.1)

In this case a pure R-submodule D ⊂ C is a subcoalgebra if and only if D is a
left and right C∗-submodule.

Let the coalgebra C satisfy the α-condition and let f : M → N be a comodule
morphism. If L is a subcomodule of N , then (L)f−1 is a subcomodule of M . If
U is a subcomodule of M , then (U)f is a subcomodule of N . By these facts,
Lemma 1.1.20 yields :

2.1.16 Lemma. Let M,N be C-comodules, f ∈ HomC(M,N) an epimorphism
and assume the coalgebra C satisfies the α-condition.

(i) If Ker f is a fully invariant subcomodule of M and L is a fully-invariant
subcomodule of N , then (L)f−1 is a fully-invariant subcomodule of M .

(ii) If M is self-projective and U is a fully invariant subcomodule of M , then
(U)f is a fully-invariant subcomodule of N .

Throughout C will be assumed to satisfied the α-condition.
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2.2 Annihilator conditions for comodules and

coalgebras

As for modules, we define the following annihilators for comodules. For a C-
subcomodule K ⊆M and an ideal I ⊆ S := EndC(M), set

AnnS(K) := {f ∈ S | (K)f = 0} = πK ¦ HomC(M/K,M)

Ker I :=
⋂
{Ker f | f ∈ I},

where πK : M →M/K is the canonical projection comodule homomorphism.
By Lemma 1.1.9 we get

2.2.1 Lemma. Let M be a C-comodule and S = EndC(M).

(i) For any C-subcomodule K ⊆M ,

Ker AnnS(K) = Ker πK ¦ HomC(M/K,M) = K

if and only if M is a self-cogenerator comodule.

(ii) If M is self-injective, then for every finitely generated right ideal I ⊆ S,

HomC(M/Ker I,M) = I.

(iii) If C is self-injective, then for any finitely generated right ideal I of the
dual algebra EndC(C) ' C∗,

HomR(C/Ker I, R) ' HomC(C/Ker I, C) = I.

Recall dual orthogonal (e.g. 1.1.10) and notice that A ⊂ (A⊥C∗)⊥C always
holds. To get the equality, we apply the properties of annihilators ([38], 28.1).

2.2.2 Lemma. If every factor module of C is R-cogenerated, then for any
R-submodule A of C, Ker HomR(C/A,R) = A. Thus A = (A⊥C∗)⊥C.

For any subsets I, J of C∗ with I ⊆ J , obviously J⊥C ⊆ I⊥C . The following
lemma uses this fact and Lemma 2.2.2.

2.2.3 Lemma. Let C be any R-module and C∗ its dual module. If every factor
module of C is R-cogenerated, then for any R-submodules A,B of C, A ⊆ B if
and only if B⊥C∗ ⊆ A⊥C∗.
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The properties of the annihilator and the kernel are given in the two lemmas
below.

2.2.4 Lemma. ([5], 6.2) Let A ⊂ C be an R-submodule.

(i) If A is a left C∗-submodule of C, then A⊥C∗ is a right C∗-submodule.

(ii) If A is a (C∗, C∗)-subbimodule of C, then A⊥C∗ is an ideal in C∗.

(iii) If A is a coideal of C, then A⊥C∗ is a subalgebra of C∗.

2.2.5 Lemma. ([5], 6.3) Let I ⊂ C∗ be an R-submodule.

(i) If I is a right (left) ideal in C∗, then I⊥C is a left (right) C∗-submodule of
C.

(ii) If I is an ideal in C∗, then I⊥C is a (C∗, C∗)-subbimodule of C.

Assume R to be a semisimple ring. Then

(i) If I is a subalgebra, then I⊥C is a coideal.

(ii) A ⊂ C is a coideal if and only if A⊥C∗ is a subalgebra.

We need the following well-known fact from Linear Algebra to see properties
of the wedge product to be defined later on.

2.2.6 Lemma. Let M , N be vector spaces over a field k and u ∈ M ⊗k N .
Denote M∗ = Homk(M,k) and N∗ = Homk(N, k). The following assertions are
equivalent :

(a) M∗ ⊗k N
∗(u) = 0.

(b) (M ⊗k N)∗(u) = 0.

(c) u = 0.

For subsets A ⊆ C and I ⊆ C∗, putting

AnnC∗(A) := {f ∈ C∗ | f ⇀ A = 0}
AnnC(I) := {c ∈ C | I ⇀ c = 0},

we have the following relationship :

2.2.7 Lemma. Let C be a coalgebra and A ⊂ C.

(i) If A is an R-submodule of C, then AnnC∗(A) ⊂ A⊥C∗.

(ii) If A is a left and right subcomodule (a left and right C∗-submodule) of C,
then A⊥C∗ = AnnC∗(A).
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Proof. (i) Let g ∈ AnnC∗(A). Then g ⇀ a = 0 for any a ∈ A and (IC ⊗ g) ◦
∆(a) = 0. Applying ε we obtain

0 = ε((IC ⊗ g) ◦∆(a)) =
∑

ε(a1g(a2))

=
∑

ε(a1)g(a2) = g
∑

(ε(a1)a2) = g(a).

Thus AnnC∗(A) ⊂ A⊥C∗ .
(ii) It is sufficient to prove that A⊥C∗ ⊂ AnnC∗(A). Take any f ∈ A⊥C∗ , that

is f(a) = 0 for any a ∈ A. Then

f ⇀ a =
∑

(IC ⊗R f) ◦∆(a) =
∑

a1f(a2) = 0,

since ∆(a) ∈ C ⊗R A. Thus A⊥C∗ ⊂ AnnC∗(A). tu
Notice that for any subcoalgebra A of C holds A⊥C∗ = AnnC∗(A), since by 2.1.7,
A is a left and right subcomodule of C.

2.2.8 Lemma. Let C be a coalgebra and J ⊂ C∗.

(i) If J is an R-submodule of C∗, then AnnC(J) ⊂ J⊥C.

(ii) If J is a two-sided ideal of C∗, then J⊥C = AnnC(J).

Proof. (i) Let c ∈ AnnC(J). Then h ⇀ a = 0 for any h ∈ J and (IC⊗h)◦∆(c) =
0. Applying ε we obtain

0 = ε((IC ⊗ h) ◦∆(c)) =
∑

ε(c1h(c2))

=
∑

ε(c1)h(c2) = h
∑

(ε(c1)c2) = h(c).

Thus AnnC(J) ⊂ J⊥C .
(ii) Notice that by Lemma 2.2.5 part (ii), J⊥C is a (C∗, C∗)-subbimodule of

C. It is sufficient to prove that J⊥C ⊂ AnnC(J). Take any c ∈ J⊥C , that is
l(c) = 0 for any l ∈ J . Then

l ⇀ c =
∑

(IC ⊗R l) ◦∆(c) =
∑

c1l(c2) = 0,

since ∆(c) ∈ C ⊗R J
⊥C . Thus J⊥C ⊂ AnnC(J). tu

2.2.9 Lemma. For any proper (C∗, C∗)-subbimodule A of C, if C/A is R-
cogenerated, then AnnC∗(A) 6= 0 and equivalently C satisfies condition (∗∗) as
a C∗-module. Thus if R is a cogenerator in RM, then AnnC∗(A) 6= 0.

Proof. Since C/A is R-cogenerated, there is some f̃ : C/A → R such that
0 6= f := πA ¦ f̃ : C → R. Thus AnnC∗(A) 6= 0. tu
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2.3 Prime comodules

The study of prime and strongly prime comodules has been investigated by
Rodrigues [29] mainly for coalgebras over a field k. The definition of prime
comodules over an R-coalgebra C is the following.

2.3.1 Definition. A right C-comodule M is called prime if M is prime as a
left C∗-module.

From 1.2.2 we have characterizations of prime comodules.

2.3.2 Prime comodules. For a right C-comodule M , the following are equi-
valent :

(a) M is a prime comodule.

(b) AnnC∗(K) = AnnC∗(M) for any subcomodule K of M .

(c) C∗/AnnC∗(M) is cogenerated by K for any subcomodule K of M .

(d) C∗/AnnC∗(M) is cogenerated by K for any fully invariant subcomodule K
of M .

If these conditions hold, then :

(i) C∗ is a prime algebra which is finitely generated as an R-module.

(ii) R/AnnR(C∗) is a prime ring.

If M is a faithful C∗-module, then the conditions (a)-(d) are also equivalent to
the injective hull E(M) of M in C∗M being a prime C∗-module.

Proof. Transfer from Lemma 1.2.10.
(i) Consider a cyclic C∗-submodule of M , say U := C∗ ⇀ m, for some

m ∈ M . According to the Finiteness Theorem 2 ([5],4.12), U is a finitely
generated R-module with generators say {u1, . . . , uk}. Define a mapping

ϕ : C∗ → Uk, f 7→ (f ⇀ u1, . . . , f ⇀ u1) = f ⇀ (u1, . . . , uk) ∈ Uk.

If f ⇀ (u1, . . . , uk) = 0, then f ⇀ ui = 0 and f ⇀ (r1u1 + . . . + rkuk) = 0 for
any ri ∈ R, i = 1, 2, . . . , k. Thus f ⇀ U = 0, i.e., f ∈ AnnC∗(U) = 0, since M
is prime. It means that the map ϕ is a monomorphism and C∗ is a submodule
of a finitely generated R-module and moreover, C∗ is a comodule. Thus C∗ is
a finitely generated C∗-module and, by the Finiteness Theorem 2, is a finitely
generated R-module.

(ii) By Lemma 1.1.2. tu
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The following is the adopted version of Proposition 1.2.3.

2.3.3 Proposition. Let M be a comodule which satisfies condition (∗fi) as
C∗-module, S = EndC(M) and C∗ = C∗/AnnC∗(M).

(i) M is prime if and only if C∗ is a prime ring.

(ii) If M is prime then MS is prime (and S is a prime ring).

2.3.4 Proposition. Let M be a comodule with Soc(M) 6= 0. If M is prime,
then C∗ is a simple artinian algebra and finitely generated as an R-module. Thus
M is a homogeneous semisimple comodule.

Proof. Consider a simple C∗-submodule of M , say V := C∗ ⇀ m, for some
m ∈ M . Then by 2.3.2 part (i), C∗ is a direct summand of the homogeneous
semisimple C∗-module V k, i.e., C∗ is a simple artinian algebra.

Notice that if M is a faithful C∗-module, then C∗ is a simple artinian algebra
and finitely generated as an R-module. tu

Proposition 3.2 of [11] is a corollary of our Proposition 2.3.4.

2.3.5 Corollary. If R is a perfect ring and M is a prime comodule over the
R-coalgebra C, then C∗/AnnC∗(M) is a simple artinian algebra.

Proof. If R is a perfect ring, then M satisfies the descending chain condition
for finitely generated R-submodules. The Finiteness Theorem then implies the
descending chain condition on finitely generated C-subcomodules (see [5], 4.16).
Thus Soc(M) 6= 0, then apply Proposition 2.3.4. tu

2.3.6 Prime coalgebras. For a coalgebra C, the following are equivalent :

(a) C is prime as a right C-comodule.

(b) AnnC∗(A) = 0 for any non-zero right subcomodule A of C.

(c) C∗ is cogenerated by A for any non-zero right subcomodule A of C.

(d) C∗ is cogenerated by A for any non-zero (C∗, C∗)-subbimodule A of C.

(e) The injective hull Ĉ of C in C∗M is a prime C∗-module.

If these conditions hold, then :

(i) C is a finitely generated R-module and MC = C∗M.

(ii) Every C-cogenerated comodule is prime.
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(iii) Every projective comodule P is prime.

(iv) C∗ is a prime algebra and finitely generated as R-module.

Proof. Considering C as a right C-comodule we get the equivalences and (iv)
from 2.3.2.

(i) By 2.3.2, C∗ ∈ MC and hence C is finitely generated as R-module. Now
apply 4.7 of [5].

(ii)-(iii) Transfer the situation of Proposition 1.2.7 into MC . tu

The following is a special case of Proposition 2.3.3.

2.3.7 Proposition. Let C be a coalgebra and for any non-zero (C∗, C∗)-
subbimodule A of C, AnnC∗(C/A) 6= 0.

(i) C is prime as right C-comodule if and only if C∗ is prime.

(ii) If C is prime as right C-comodule, then C is prime as left C-comodule
(and C∗ is prime).

2.3.8 Proposition. Let C be a coalgebra and prime as right C-comodule. If
Soc(C) 6= 0, then

(i) C∗ is a simple algebra and finitely generated as R-module.

(ii) If C is cocommutative, then C∗ is a field.

Proof. (i) By Proposition 2.3.4. (ii) By Corollary 1.2.12. tu

If C is prime as right C-comodule, then for any fully invariant subbicomodule
A of C, AnnC∗(A) = A⊥C∗ = 0 (see Lemma 2.2.7).

2.3.9 Example. Let R be a commutative ring. Consider the free R-module
T := Rn, where n ∈ N, T is a finitely generated and projective R-module.
C := T ∗ ⊗R T is a coalgebra (see [9]) and moreover, as R-module,

C = (Rn)∗ ⊗R R
n ' EndR(Rn

R),

that is the matrix coalgebra of all n × n matrices over R, which we denote as
Mn(R). Let {eij}1≤i,j≤n be the canonical basis of Mn(R). Then the coproduct
and counit of C are

∆ : Mn(R) → Mn(R)⊗R Mn(R), eij 7→
n∑

k=1

eik ⊗R ekj.

ε : Mn(R) → R, eij 7→ δij.
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For the dual algebra of C, there are anti-algebra morphisms :

C∗ ' EndR((Rn)∗R) ' EndR((R∗)n
R) 'Mn(EndR(R∗R)) 'Mn(R),

the matrix ring of all n × n matrices over R. Thus if R is prime then C∗ is a
prime algebra.

The fully invariant subcomodules of C = Mn(R) are (C∗, C∗)-subbimodules,
that is the two-sided ideals of Mn(R), and hence are of the form Mn(I), where
I is an ideal of R.

Since AnnMn(R)(Mn(R)/Mn(I)) 6= 0, C satisfies (∗fi), and thus C is prime
as C∗-module (by Proposition 1.2.3 (ii)).

2.4 Coprime comodules

2.4.1 Definition. A right C-comodule M is called coprime if M is coprime
as a C∗-module.

Here 1.3.2 and Lemma 1.3.3 read as follows.

2.4.2 Coprime comodules. Let M be a right C-comodule with S = EndC(M).

(i) The following assertions are equivalent :

(a) M is a coprime comodule.

(b) AnnC∗(M/K) = AnnC∗(M) for any proper subcomodule K of M .

(c) C∗/AnnC∗(M) is cogenerated by M/K for any proper subcomodule
K of M .

(d) C∗/AnnC∗(M) is cogenerated by M/K for any proper fully invariant
subcomodule K of M .

(ii) If M is coprime, then C∗/AnnC∗(M) is prime.

(iii) If C∗/AnnC∗(M) is prime and for any proper (fully invariant) subcomodule
K of M holds AnnC∗(K) 6= AnnC∗(M), then M is coprime.

By Proposition 1.3.8 and Lemma 1.3.9, factor comodules and the direct sums
of copies of a coprime comodule are again coprime.

2.4.3 Proposition. Let M be a right C-comodule

(i) If M is coprime and K is a proper subcomodule of M , then M/K is
coprime.
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(ii) M (Λ) is coprime if and only if M is coprime.

(iii) If M is coprime and Rad(M) 6= M , then C∗ := C∗/AnnC∗(M) is a simple
algebra and finitely generated as R-module.

Proof. (iii) By Proposition 1.3.10, C∗ := C∗/AnnC∗(M) is a primitive algebra.
Then the proof is similar to 2.3.4. tu

Applying 2.4.2 to a coalgebra C yields the first part of the next observation.

2.4.4 Coprime coalgebras. Let C be a coalgebra.

(1) The following are equivalent :

(a) C is coprime as a right C-comodule.

(b) AnnC∗(C/A) = 0 for any proper right subcomodule A of C.

(c) C∗ is cogenerated by C/A for any proper right subcomodule A of C.

(d) C∗ is cogenerated by C/A for any proper (C∗, C∗) subbimodule A of
C.

(2) If the conditions (a)-(d) hold, then :

(i) C∗ is prime.

(ii) If C is cocommutative, then C∗ is an integral domain.

(iii) For any proper fully-invariant (C∗, C∗)-subbimodule A of C, C/A is
coprime as C∗-module.

(iv) Rad(C) 6= C implies C∗ is a simple algebra and finitely generated as
R-module.

(v) If C is cocommutative with Rad(C) 6= C, then C∗ is a field.

(3) If C∗ is prime and for any proper (C∗, C∗)-subbimodule A of C holds
AnnC∗(A) 6= 0, then C is coprime as a right C-comodule.

Proof. 2(i) and 3 follow from 2.4.2.
(ii) C∗ is prime and commutative.
(iii) and (iv) follow Proposition 2.4.3.
(v) is a consequence of (iv). tu

By Proposition 1.3.11 we have

2.4.5 Proposition. Let p : P → C be a small epimorphism in MC. If C is
coprime as comodule, then P is a coprime comodule.
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A coalgebra C with C∗ prime may not be coprime if it does not satisfy
the condition (∗∗), i.e., for any proper (C∗, C∗)-subbimodule A of C holds
AnnC∗(A) 6= 0. We can see this in the following example.

2.4.6 Example. Divided power coalgebra. Let H be a free R-module
with basis {cm | m ∈ N}. Define the comultiplication

∆ : H → H ⊗R H, cm 7→
∑

i=0,m

ci ⊗ cm−i

and the counit by ε(cm) = δ0,m. H is a coalgebra and the dual algebra H∗ has
multiplication for f, g ∈ H∗,

(f ∗ g)(cm) :=
∑

i=0,m

f(ci)g(cm−i)

and unit u : R→ H∗ where u(α)(cm) = αδ0,m for any α ∈ R, m ∈ N.

There is an isomorphism (see Example 1.3.8 of [7])

Φ : H∗ → R[[X]], f 7→
∑
m≥0

f(cm)Xm.

Notice that the formal power series ring R[[X]] is prime provided R is a prime
ring.

As a special case one may take H = R[X] with comultiplication

∆ : R[X] → R[X]⊗R R[X], Xm 7→
∑

i=0,m

X i ⊗Xm−i,

and the counit is ε(Xm) = δ0,m.

If R is a field, then R[[X]] is a prime ring, and R[X] is a coprime comodule
by 2.4.4 part (3).

For R = Z, the primeness of Z[[X]] does not imply the coprimeness of Z[X],
since for the subcomodule nZ[X], for 0 6= n ∈ N,

AnnZ[X]∗(Z[X]/nZ[X]) 6= 0.
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2.5 Endo-prime comodules

2.5.1 Definition. A right C-comodule M is called endo-prime if for any non-
zero fully invariant subcomodule K of M , AnnS(K) = 0, where S = EndC(M).

An endo-prime comodule M can be considered as a prime right module over its
endomorphism ring EndC(M). Now 1.4.2 yields :

2.5.2 Endo-prime comodules. Let M be a right C-comodule with S =
EndC(M).

(i) M is endo-prime if and only if MS is prime.

(ii) If M is endo-prime, then S is a prime ring.

(iii) If the comodule M is fi-retractable and S is a prime ring, then M is endo-
prime.

(iv) If N is a simple comodule, then N (Λ) is endo-prime for any set Λ.

2.5.3 Proposition. Let the comodule M satisfy (∗fi) as C∗-module. If M is
a prime comodule then it is an endo-prime comodule.

Proof. By Proposition 2.3.3. tu

The coalgebra C is endo-prime provided it is prime over the EndC(C) ' C∗

acting from the right. Thus 2.5.2 yields :

2.5.4 Endo-prime coalgebras. Let C be a coalgebra.

(i) C is prime as a left C-comodule if and only if C is endo-prime.

(ii) If C is endo-prime, then C∗ is prime.

(iii) If C is fi-retractable as a right C∗-module and C∗ is a prime ring, then C
is endo-prime.

2.5.5 Example. Recall Example 2.3.9 and take Z as the ground ring, C =
Mn(Z), n ∈ N, i.e., a matrix coalgebra of all n × n matrices over Z. The dual
algebra of C is C∗ 'Mn(Z), hence it is prime.

For any ideal Mn(I) of Mn(Z), where I is an ideal of Z, holds

AnnMn(Z)(Mn(Z)/Mn(I)) 6= 0.

Thus C is prime as C∗-module and by Corollary 2.5.3, C is endo-prime. tu
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2.6 Endo-coprime comodules

2.6.1 Definition. A comodule M is called endo-coprime if for any proper fully
invariant subcomodule K of M , AnnS(M/K) = 0, where S = EndC(M).

2.6.2 Endo-coprime comodules. Let M be a comodule and S = EndC(M).

(i) M is endo-coprime if and only if MS is coprime.

(ii) If M is endo-coprime, then S is prime.

(iii) If M is fi-coretractable and S is prime, then M is endo-coprime.

Proof. By 1.5.2.

Notice that any simple C-comodule M is endo-coprime.
The coalgebra C is endo-coprime as comodule provided it is coprime over

the EndC(C) ' C∗ acting from the right. We apply 2.6.2 to characterize

2.6.3 Endo-coprime coalgebras. Let C be a coalgebra.

(i) C is coprime as a left C-comodule if and only if C is endo-coprime.

(ii) If C is endo-coprime, then C∗ is prime.

(iii) If C is fi-coretractable and C∗ is prime, then C is endo-coprime.

2.6.4 Proposition. Let R be a cogenerator in RM and C an R-coalgebra.
Then the following are equivalent :

(a) C is coprime as a left C-comodule.

(b) C is endo-coprime as a left C-comodule.

(c) C is coprime as a right C-comodule.

(d) C is endo-coprime as a right C-comodule.

(e) C∗ is a prime algebra.

Proof. (a) ⇐⇒ (d) By Proposition 2.6.3 part (i).
(b) ⇐⇒ (c) is symmetric to (a) ⇐⇒ (d).
(c) ⇐⇒ (e) Recall Lemma 2.2.9 and 2.4.4 part (3).
(a) ⇐⇒ (e) is symmetric to (c) ⇐⇒ (e). tu
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2.7 Fully prime comodules

2.7.1 Definition. A comodule M is called fully prime if for any non-zero fully
invariant subcomodule K of M , M is K-cogenerated.

A product of fully invariant subcomodules of M is defined by

K ∗M L := KHomC(M,L).

2.7.2 Fully prime comodules. The following are equivalent for a comodule
M :

(a) M is a fully prime comodule.

(b) Rej(M,K) = 0 for any non-zero fully invariant subcomodule K ⊂M .

(c) K ∗M L 6= 0 for any non-zero fully invariant subcomodules K,L ⊂M .

(d) Rej(−,M) = Rej(−, K) for any non-zero fully invariant subcomodule K
of M , i.e., any M-cogenerated comodule is also K-cogenerated.

If these conditions hold and Soc(M) 6= 0, then

(i) M is semisimple.

(ii) C∗ := C∗/AnnC∗(M) is a simple artinian algebra and finitely generated as
R-module.

Proof. From 1.6.3 we get the equivalences. M is fully prime implies it is prime.
Now apply Proposition 2.3.4 to get (i) and (ii). tu

2.7.3 Fully prime subcomodules. A fully invariant subcomodule N of M
is called fully prime in M if for any fully invariant subcomodules K,L of M , the
relation K ∗M L ⊆ N implies K ⊆ N or L ⊆ N .

By the characterization of fully prime comodule above, the comodule M is fully
prime if zero is a fully prime subcomodule .

With some additional condition, we can characterize a prime comodule as
a comodule which is cogenerated by any of its subcomodules (compare with
Proposition 1.6.7).

2.7.4 Proposition. For a comodule M with (∗fi) as a C∗-module, the follow-
ing are equivalent :

(a) M is a prime comodule and fi-retractable as a C∗-module.
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(b) M is a fully prime comodule.

Applying Proposition 1.6.5 and Lemma 2.1.16 yields

2.7.5 Proposition. Let N be a proper fully-invariant subcomodule of M .

(i) If N is fully prime in M , then M/N is a fully prime comodule.

(ii) If M is self-projective and M/N is fully prime, then N is fully prime in
M .

For M = C the assertions in 2.7.2 yields

2.7.6 Fully prime coalgebras. The following are equivalent for a coalgebra
C :

(a) C is fully prime as a right C-comodule.

(b) Rej(C,A) = 0 for any non-zero (C∗, C∗)-subbimodule A of C.

(c) A ∗C B 6= 0 for any non-zero (C∗, C∗)-subbimodules A,B of C.

(d) Rej(−, C) = Rej(−, A) for any non-zero (C∗, C∗)-subbimodule A of C,
i.e., any C-cogenerated coalgebra is also A-cogenerated.

If these conditions hold and Soc(C) 6= 0, then

(i) C is a semisimple C∗-module.

(ii) C∗ is a simple artinian and finitely generated as R-module.

We apply Proposition 2.7.4 to obtain

2.7.7 Proposition. Let C be a coalgebra. If for any (C∗, C∗)-subbimodule A
of C holds AnnC∗(C/A) 6= 0, then the following are equivalent :

(a) C is a prime coalgebra and fi-retractable as C∗-module.

(b) C is a fully prime coalgebra.

Applying Proposition 2.7.5 yields

2.7.8 Proposition. Let A be a proper (C∗, C∗)-subbimodule of C.

(i) If A is a fully prime subcomodule in C, then C/A is a fully prime right
C-comodule.

(ii) If C is self-projective in MC and C/A is a fully prime right C-comodule,
then A is fully prime in C.
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2.8 Fully coprime comodules

2.8.1 Definition. A comodule M is called fully coprime if for any proper fully
invariant subcomodule K of M , M is M/K-generated.

For any fully invariant subcomodules K,L ⊂ M , we have the internal co-
product (see coproduct 1.1)

K :M L :=
⋂
{(L)f−1 | f ∈ EndC(M), K ⊆ Kerf}

= Ker πK ¦ HomC(M/K,M) ¦ πL.

We characterize fully coprime comodules :

2.8.2 Fully coprime comodules. Let M be a C-comodule and S = EndC(M).
The following are equivalent :

(a) M is a fully coprime comodule.

(b) If K :M L = M , then K = M or L = M , for any fully invariant subco-
modules K,L of M .

(c) K :M L 6= M for any proper fully invariant subcomodules K,L of M .

(d) Tr(M/K,−) = Tr(M,−) for any proper fully invariant subcomodules K
of M , i.e. any M-generated comodule is also M/K-generated.

If these conditions hold, then :

(i) M is coprime, fi-coretractable and indecomposable as (C∗, S)-bimodule.

(ii) If Rad(M) 6= M , then C∗ := C∗/AnnC∗(M) is a simple algebra and finitely
generated as R-module. Moreover, M is homogeneous semisimple.

Proof. By 1.7.3 we get the equivalences.
(i) By Proposition 1.7.8 and Lemma 1.7.5.
(ii) By Proposition 1.7.15 part (iii), C∗ := C∗/AnnC∗(M) is a primitive

algebra. Then the proof is similar to 2.3.4. tu

2.8.3 Fully coprime subcomodule. Let M be a comodule and N ⊂ M be
a fully invariant subcomodule. We say that N is fully coprime in M if for any
fully invariant subcomodules K,L ⊂M , N ⊆ K :M L implies N ⊂ K or N ⊂ L.

By 2.8.2, M is a fully coprime comodule if and only if M is fully coprime in M .
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2.8.4 Proposition. Let M be a self-cogenerator right comodule and S =
EndC(M).

(i) If S is prime, then M is fully coprime.

(ii) If M is self-injective and fully coprime, then M is endo-coprime and hence
S is prime.

(iii) If M is endo-coprime then M is fully coprime.

Proof. By Lemma 1.7.10 and Lemma 1.7.11. tu

As a consequence of Proposition 2.8.4, notice that if M is a self-injective
self-cogenerator, then fully coprimeness and endo-coprimeness of M coincide,
and it is equivalent to S being a prime ring.

Putting M = C we obtain from 2.8.2 :

2.8.5 Fully coprime coalgebras. The following are equivalent for a coalgebra
C :

(a) C is fully coprime as a right C-comodule.

(b) If A :C B = C, then A = C or B = C, for any (C∗, C∗)-subbimodules
A,B of C.

(c) A :C B 6= C for any proper (C∗, C∗)-subbimodules A,B of C.

(d) Tr(C/A,−) = Tr(C,−) for any proper (C∗, C∗)-subbimodule A of C, i.e.
any C-generated coalgebra is also C/A-generated.

If these conditions hold, then :

(i) C is indecomposable as (C∗, C∗)-bimodule.

(ii) If Rad(C) 6= C, then C∗ is a simple algebra and finitely generated as
R-module. Moreover, C is homogeneous semisimple as a comodule.

(iii) For any projective comodule P in MC, Rad(P ) = 0.

Proof. (iii) See Proposition 1.7.15 part (ii). tu

2.8.6 Proposition. Let C be a fully coprime coalgebra, P a C-generated co-
module and p : P → C a small epimorphism in MC.

(i) If P is self-projective, then P is fully coprime.

(ii) If P is projective in MC, then C is projective in MC, i.e. C ' P .

Proof. By Proposition 1.7.16. tu
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2.9 Strongly prime and strongly coprime co-

modules

2.9.1 Definition. A comodule M is called strongly prime if it is strongly
prime as C∗-module.

This property extends to the self-injective hull and we have

2.9.2 Strongly prime comodules. For a comodule M denote its injective
hull in MC as M̂ . The following are equivalent :

(a) M is a strongly prime comodule.

(b) M is subgenerated by each of its non-zero subcomodules.

(c) M̂ is generated by each of its nonzero (fully-invariant) subcomodules.

(d) M̂ has no non-trivial fully invariant subcomodules.

If these conditions hold and SocM 6= 0, then

(i) M is homogeneous semisimple.

(ii) C∗ := C∗/AnnC∗(M) is a simple algebra and finitely generated as R-
module.

Proof. Apply 1.8.2 to get the equivalences.
(i) and (ii) follow Proposition 1.8.5 and the finitely generation is obtained

similarly to the proof of Proposition 2.3.4. tu

As an immediate corollary of 2.9.2 we obtain Theorem 3.3 and Corollary 3.5
of [11].

2.9.3 Corollary. Let C be an R-coalgebra, R a perfect ring. Then the follow-
ing are equivalent:

(a) M is a prime comodule.

(b) M is a strongly prime comodule.

(c) M is generated by each non-zero subcomodule of M .

(d) M has no non-trivial fully invariant subcomodules.

(e) M is a homogeneous semisimple right C-comodule.

(f) C∗/AnnC∗(M) is a simple artinian ring and finitely generated R-module.
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Proof. R is a perfect ring implies Soc(M) 6= 0. Now we apply Proposition
2.9.2. tu

For M = C, 2.9.2 yields

2.9.4 Strongly prime coalgebras. For a coalgebra C with C-injective hull
Ĉ, the following are equivalent :

(a) C is strongly prime as a right C-comodule.

(b) Ĉ is generated by each of its nonzero subcomodules.

(c) Ĉ has no non-trivial (C∗, C∗)-subbimodule.

If these conditions hold and Soc(C) 6= 0, then

(i) C is homogeneous semisimple.

(ii) C∗ is simple and finitely generated as an R-module.

(iii) Every comodule is strongly prime.

(iv) For any finitely generated projective comodule P , EndC(P ) ' EndC∗(P )
is strongly prime.

Proof. (iii) and (iv) follow Proposition 1.8.4. tu

2.9.5 Corollary. Let C be an R-coalgebra, R a perfect ring. Then the follow-
ing assertions are equivalent:

(a) C is prime as a right C-comodule.

(b) C is strongly prime as a right C-comodule.

(c) C is homogeneous semisimple.

(d) C∗ is a simple ring and a finitely generated R-module.

Proof. By Corollary 2.9.3. tu

2.9.6 Definition. A comodule M is called strongly coprime if it is strongly
coprime as C∗-module.

2.9.7 Strongly coprime comodules. Let M be a strongly coprime comodule.

(1) For any proper fully-invariant subcomodule K of M , M/K is strongly
coprime.
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(2) If Rad(M) 6= M , then :

(i) M is homogeneous semisimple.

(ii) C∗ := C∗/AnnC∗(M) is a simple algebra and finitely generated as
R-module.

Proof. (1) By Proposition 1.8.7.
(2) By Proposition 1.8.10, C∗ := C∗/AnnC∗(M) is a primitive algebra. Then

similar to the proof of 2.3.4 we get C∗ is a simple algebra. tu

The coproduct of copies of a strongly coprime comodule is again strongly coprime
(Lemma 1.8.8). Recall that M is duprime if for any fully invariant subcomodule
K of M holds M ∈ σ[K] or M ∈ σ[M/K]. By definition it is obvious that
any strongly coprime comodule is duprime. The convers will be true if that
comodule is self-injective.

2.9.8 Strongly coprime coalgebras. Let C be strongly coprime as a right
C-comodule.

(1) If Rad(C) 6= C, then :

(i) C is homogeneous semisimple.

(ii) C∗ is a simple algebra and finitely generated as R-module.

(2) Let p : P → C be a small epimorphism in MC. Then :

(i) If P is self-projective as C∗-module, then P is strongly coprime.

(ii) If P is projective in MC, then C ' P .

Proof. (1) By 2.9.7. (2) By Proposition 1.8.11. tu

2.9.9 Proposition. Let C be a self-injective C∗-module. Then the following
assertions are equivalent :

(a) C is fully coprime as a right C-comodule.

(b) C is strongly coprime as a right C-comodule.

(c) C is duprime as a right C-comodule.

If R is a cogenerator in RM, then these conditions are equivalent to C∗ being a
prime algebra.
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Proof. By Proposition 1.8.12 we get the equivalences. Moreover, C is fully
coprime as a right C-comodule implies it is coprime as a right C-comodule.

If R is a cogenerator in RM, then C satisfies (∗∗)-condition as C∗-module
(by Lemma 2.2.9) and is a self-cogenerator.

We apply Proposition 2.6.4 to get that C is coprime as a right C-comodule
if and only if C∗ is a prime algebra.

Moreover, by Corollary 1.7.12, C∗ is prime if and only if C is fully coprime
as a C-comodule, as required. tu

2.10 Wedge Product of Subcomodules

2.10.1 Wedge product of subcomodules. For any two fully invariant sub-
comodules K,L ⊂M , put

K ∧M L := Ker πK ¦ HomC(M/K,M) ¦ πL ¦ HomC(M/L,M) (2.2)

= Ker (AnnS(K) ¦ AnnS(L)). (2.3)

Notice that it is always true that K :M L ⊆ K ∧M L, where ”=” holds provided
M is a self-cogenerator (see Proposition 1.7.9).

For any two (C∗, C∗)-subbimodules A,B ⊂ C we have

A ∧C B := Ker πA ¦ HomC(C/A,C) ¦ πB ¦ HomC(C/B,C) (2.4)

= Ker πA ¦ HomC∗(C/A,C) ¦ πB ¦ HomC∗(C/B,C) (2.5)

and as a direct consequence :

2.10.2 Lemma. Let A and B be (C∗, C∗)-subbimodules of the coalgebra C.
Then A :C B ⊆ A ∧C B, where ”=” holds provided C is a self-cogenerator as
C-comodule.

Recall a property from 2.1.15 : for any f, g ∈ C∗ and c ∈ C,

f ∗ g(c) = f(g ⇀ c) = g(c ↼ f).

Thus for any proper subbicomodules A,B of C, (C/A)∗ ∗ (C/B)∗ is a two-sided
ideal in C∗. By Lemma 2.2.5 part (ii), ((C/A)∗ ∗ (C/B)∗)⊥C is a (C∗, C∗)-
subbimodule of C.

From 3.12 of [5] we know that for any β, γ ∈ EndC(C) and c ∈ C holds

(c)(β ¦ ε) ∗ (γ ¦ ε) = (c)(β ¦ γ ¦ ε).
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Take any proper subbicomodule A of C and any f̃ ∈ (C/A)∗. There is
α := ∆ ¦ (πA ¦ f̃ ⊗ IC) ∈ EndC(C), such that

(∆ ¦ (πA ¦ f̃ ⊗ IC)) ¦ ε = πA ¦ f̃ ∈ C∗,

and (A)α = (A)∆¦(πA¦f̃⊗IC) = 0. Moreover for these α, there is α̃ : C/A→ C
such that α = πA ¦ α̃, i.e., there is a commutative diagram

C
α //

πA

²²

C
ε // R

C/A

α̃

=={{{{{{{{ f̃

77nnnnnnnnnnnnnn
.

Consider now

(A⊥C∗ ∗B⊥C∗)⊥C =
⋂
{Ker f ∗ g | f ∈ A⊥C∗ , g ∈ B⊥C∗}

=
⋂
{Ker ∆ ¦ (f ⊗ g) | f ∈ A⊥C∗ , g ∈ B⊥C∗}.

By definition, A⊥C∗ ∗B⊥C∗)⊥C = ((C/A)∗ ∗ (C/B)∗)⊥C

2.10.3 Lemma. Let C be a coalgebra. For any (proper) subbicomodules
A,B ⊂ C,

A ∧C B = (A⊥C∗ ∗B⊥C∗)⊥C .

Proof. Consider the coalgebra C as a left C∗-module and comodule morphisms
as C∗-module homomorphisms. We want to show that

Ker πA ¦ HomC(C/A,C) ¦ πB ¦ HomC(C/B,C) ⊆ ((C/A)∗ ∗ (C/B)∗)⊥C .

Let

u ∈ Ker πA ¦ HomC(C/A,C) ¦ πB ¦ HomC(C/B,C)

and take any f̃ ∈ (C/A)∗, g̃ ∈ (C/B)∗. Then using the notation above, there
are α := ∆ ¦ (πA ¦ f̃ ⊗ IC) and β := ∆ ¦ (πB ¦ g̃ ⊗ IC) in EndC(C) such that

(u)(πA ¦ f̃) ∗ (πB ¦ g̃) = (u)(α ¦ ε) ∗ (β ¦ ε)
= (u)(πA ¦ α̃ ¦ ε) ∗ (πB ¦ β̃ ¦ ε)
= (u)(πA ¦ α̃ ¦ πB ¦ β̃) ¦ ε = 0.
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Conversely, we want to show that

((C/A)∗ ∗ (C/B)∗)⊥C ⊆ Ker πA ¦ HomC(C/A,C) ¦ πB ¦ HomC(C/B,C).

((C/A)∗ ∗ (C/B)∗)⊥C is a (C∗, C∗)-subbimodule of C.
Let v ∈ ((C/A)∗∗(C/B)∗)⊥C . Then v ∈ AnnC((C/A)∗∗(C/B)∗) (by Lemma

2.2.8) and we have

0 = (v)∆ ¦ (IC ⊗ πA ¦ f̃ ∗ πB ¦ g̃)
= (v)∆ ¦ (IC ⊗ α ¦ ε ∗ β ¦ ε)
= (v)∆ ¦ (IC ⊗ πA ¦ α̃ ¦ ε ∗ πB ¦ β̃ ¦ ε)
= (v)∆ ¦ (IC ⊗ πA ¦ α̃ ¦ πB ¦ β̃ ¦ ε)
= (v)∆ ¦ (IC ⊗ πA ¦ α̃ ¦ πB ¦ β̃) ¦ (IC ⊗ ε)

= (v)(πA ¦ α̃ ¦ πB ¦ β̃) ¦∆ ¦ (IC ⊗ ε)

= (v)(πA ¦ α̃ ¦ πB ¦ β̃),

as needed. tu
Let A and B be (C∗, C∗)-subbimodules of C and consider Ker ∆ ¦ (πA ⊗ πB).

Over any commutative ring, it always holds

Ker ∆ ¦ (πA ⊗ πB) ⊆ (A⊥C∗ ∗B⊥C∗)⊥C .

To see this, take any c ∈ Ker ∆ ¦ (πA ⊗ πB). By definition,

(c)(f ∗ g) = (c)∆ ¦ (f ⊗ g) = (c)∆ ¦ (πA ⊗ πB) ¦ (f̃ ⊗ g̃) = 0,

thus c ∈ (A⊥C∗ ∗B⊥C∗)⊥C .
The convers is true for coalgebras over fields. We give a short proof of this

well-kown fact.

2.10.4 Lemma. Let A,B be subcoalgebras of C. If C is a coalgebra over a
field k, then

Ker ∆ ¦ (πA ⊗ πB) = (A⊥C∗ ∗B⊥C∗)⊥C . (2.6)

Proof. Let d ∈ (A⊥C∗ ∗ B⊥C∗)⊥C . For all f ∈ A⊥C∗ and g ∈ B⊥C∗ , writing
f = πA ¦ f̃ and g = πB ¦ g̃, where f̃ ∈ (C/A)∗ and g̃ ∈ (C/B)∗ such that

0 = (d)(f ∗ g) = (d)∆ ¦ (f ⊗ g) = (d)∆ ¦ (πA ⊗ πB) ¦ (f̃ ⊗ g̃).

By Lemma 2.2.6 we conclude that (d)∆ ¦ (πA ⊗ πB) = 0. This implies d ∈
Ker ∆ ¦ (πA ⊗ πB). tu
The wedge product of subcoalgebras of a coalgebra over a field has been inves-
tigated by Sweedler in [31].

69



2.11 Review of coprime coalgebras over field

Coprime coalgebras over a field k were defined by the wedge product (see for
example Jara, Merino, Ruiz [17] and Nekooei-Torkzadeh [26]). We call it wedge
coprime to distinguish it from other notions of coprime.

2.11.1 Definition. A subcoalgebra D of a coalgebra C over a field k is called
wedge coprime in C if for any subcoalgebras A,B of C, D ⊆ A ∧C B implies
D ⊆ A or D ⊆ B. The coalgebra C is called wedge coprime if it is wedge
coprime in C.

Recall Lemma 2.10.2 and Lemma 2.10.3 for self-cogenerator coalgebras C.
Take any (C∗, C∗)-subbimodules A and B of C, then

A :C B = A ∧C B = (A⊥C∗ ∗B⊥C∗)⊥C .

If C is over a field k, any subbimodule is a subcoalgebra and Ker ∆¦(πA⊗πB) =
A ∧C B (see Lemma 2.10.4). Hence the wedge coprime coalgebras defined in
[17] and [26] are special cases of the fully coprime coalgebras in our work.

2.11.2 Lemma. If C is a coalgebra over a field, then the following assertions
are equivalent :

(a) C is coprime as a right (left) C-comodule.

(b) C is fully coprime as a right (left) C-comodule.

(c) C is endo-coprime as a left (right) C-comodule.

(d) C∗ is a prime ring.

Proof. Over a field, C is a self-injective self-cogenerator. Now apply Corollary
1.7.12 and Proposition 2.6.3. tu

We have the following identities :

2.11.3 Proposition. If C is a coalgebra over a field and I, J are two-sided
ideals that are finitely generated as right ideals in C∗, then

I⊥C ∧C J⊥C = (I ∗ J)⊥C , (I⊥C ∧C J⊥C)⊥C∗ = ((I ∗ J)⊥C)⊥C∗ = I ∗ J.
Proof. Applying 2.2.1 part (iii) to coalgebras over a field yields I = (I⊥C)⊥C∗ .
For any finitely generated ideals I, J of C∗ and by Lemma 2.10.4 we have

I⊥C ∧C J⊥C = ((I⊥C)⊥C∗ ∗ (J⊥C)⊥C∗)⊥C = (I ∗ J)⊥C . tu
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For any finitely generated right ideal I of C∗, (I⊥C)⊥C∗ = I. Moreover
we obtain a relationship between prime ideals in C∗ and its dual orthogonal
subcomodules in C.

2.11.4 Proposition. Let C be a coalgebra over a field k. Let D be a subcoal-
gebra of C. If for any subcoalgebras A,B of C, D ⊆ A ∧C B implies D ⊆ A
or D ⊆ B, then D⊥C∗ is a prime ideal in C∗.

Proof. Let I, J ⊆ C∗ be finitely generated ideals with I ∗ J ⊆ D⊥C∗ , then as
((D⊥C∗)⊥C)⊥C∗ = D⊥C∗ we have

(D⊥C∗)⊥C ⊆ (I ∗ J)⊥C

((I ∗ J)⊥C)⊥C∗ ⊆ ((D⊥C∗)⊥C)⊥C∗ = D⊥C∗

By Proposition 2.11.3, (I⊥C ∧C J⊥C)⊥C∗ = ((I ∗ J)⊥C)⊥C∗ ⊆ D⊥C∗ . Therefore
D ⊆ I⊥C ∧C J⊥C and either D ⊆ I⊥C , which implies I ⊆ (I⊥C)⊥C∗ ⊆ D⊥C∗ or
D ⊆ J⊥C which implies J ⊆ (J⊥C)⊥C∗ ⊆ D⊥C∗ . tu

Recall Proposition 1.2 of [26].

2.11.5 Proposition. Let C be a coalgebra over a field k. A subcoalgebra D of
C is wedge coprime in C if and only if D⊥C∗ is a prime ideal of C∗.

Notice that for an arbitrary prime ideal in C∗, its dual orthogonal need not
be a wedge coprime subcoalgebra in C. However, it is true for the zero ideal
and we obtain

2.11.6 Corollary. Let C be a coalgebra over a field k and C∗ its dual algebra.
C is a wedge coprime coalgebra if and only if C∗ is a prime algebra.

Proof. Use Proposition 2.11.5 and take D = C. tu

Xu, Lu, Zhu [41] investigated the properties of a coalgebra by describing
properties of its dual algebra. Theorem 3 of [41] is included in

2.11.7 Coprime coalgebras over fields. Let C be a coalgebra over a field
k. Then the following are equivalent :

(a) C is a wedge coprime coalgebra.

(b) C is coprime as a left (right) C-comodule.
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(c) C is fully coprime as a right C-comodule.

(d) C is a strongly coprime as a right C-comodule.

(e) C∗ is a prime algebra.

(f) For any proper (C∗, C∗)-subbimodule A of C, HomC(C,A) = 0.

(g) For any 0 6= f ∈ C∗, C = C ↼ (f ∗ C∗).
(h) For any ideal 0 6= I ⊂ C∗, C = C ↼ I.

(i) For any 0 6= f ∈ C∗, C = (C∗ ∗ f) ⇀ C.

(j) For any ideal 0 6= I ⊂ C∗, C = I ⇀ C.

Proof. The coalgebra C over a field k is a self-cogenerator and hence fi-coretrac-
table. By the isomorphism EndC(C) ' C∗ we have (C)EndC(C) = C ↼ C∗.
Now apply Proposition 1.1.14 to get the equivalences (e) ⇐⇒ (f) ⇐⇒ (g) ⇐⇒
(h).

(a) ⇐⇒ (c) Over a field, the wedge product and :C coincide.
(b) ⇐⇒ (c) ⇐⇒ (e) C is a self-injective self-cogenerator, hence we can apply

Corollary 2.11.2.
(c) ⇐⇒ (d) By Proposition 2.9.9.
(e) ⇐⇒ (i) is symmetric to (e) ⇐⇒ (g). It also follows by Theorem 3 of [41].
(e) ⇐⇒ (j) is symmetric to (e) ⇐⇒ (h). tu

Recall that our definition of coprimeness was related to fully invariant subco-
modules A ⊂ C. Now we observe some properties of (not necessarily fully
invariant) subcomodules of the coalgebra C as follow.

2.11.8 Proposition. Let C be a coalgebra over a field k. The following are
equivalent :

(a) C∗ has no zero-divisor.

(b) For any proper left C∗-submodule A of C, HomC(C,A) = 0.

(c) For any 0 6= f ∈ C∗, C ↼ f = C.

Proof. The coalgebra C over a field k is a self-cogenerator and hence core-
tractable. By the isomorphism EndC(C) ' C∗ we have (C)EndC(C) = C ↼ C∗.
Now apply Proposition 1.1.13.

The implication (a) ⇐⇒ (c) also follows by the Corollary in [41]. tu
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2.11.9 Example. ([26], Example 1.1) Let C be a vector space over k with
basis {ci}∞i=0. If ∆(ci) = ci ⊗ ci and ε(ci) = 1, i = 1, 2, . . ., then C is a k-
coalgebra. A =< ci > is a subcoalgebra of C generated by a single element and
A is a simple subcoalgebra. Thus it is a wedge coprime subcoalgebra.

2.11.10 Example. ([26], Example 1.2) Let C be a free module with basis
{ci}∞i=0. ∆(ci) =

∑i
j=0 cj ⊗ ci−j and ε(ci) = δi,0, i = 1, 2, . . ., then (C,∆, ε) is a

coalgebra. The subcoalgebra < c0 > is a simple subcoalgebra then it is coprime.
Since the subcoalgebra generated by {c0, c1, . . . , ci}, i = 1, 2, . . . is not coprime
and the subcoalgebra generated by ci is equal to the subcoalgebra generated by
{c0, c1, . . . , ci}, the only wedge coprime subcoalgebras are < c0 > and C.

Examples of wedge coprime path coalgebras over a field are studied by Jara
et.al. ([17], Example 3.2).

2.12 Colocalization in MC

Studies of localization and colocalization of coalgebras over a field have been
done by some authors, for example Nǎstǎsescu and Torrecillas ([24] and [25]),
Gómez-Torrecillas, Nǎstǎsescu, and Torrecillas [12], Jara, Merino, Navarro, and
Ruiz [18].

The main objective of this section is to apply colocalization in the category
MC . Throughout this section we assume again C to satisfy the α-condition,
that is, we identify MC ' σ[C∗C].

2.12.1 Rational Functor. The subfunctor of the identity

RatC : C∗M → MC ,M 7→ RatC(M),

where RatC(M) = T C(M) =
∑{Im f | f ∈ HomC∗(U,M), U ∈ MC}, is called

the rational functor. RatC(M) = M for M ∈ C∗M if and only if M ∈ MC .
MC = C∗M if and only if RC is finitely generated and projective (see [5], 4.7).

A coalgebra C is called right semiperfect if every simple right comodule has
a projective hull in MC .

Notice that the exactness of the functor RatC is closely related to the exis-
tence of enough projective in MC . For coalgebras over QF-ring the two proper-
ties are in fact equivalent (see 9.6 of [5]).
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2.12.2 Proposition. Let R be a QF-ring and C an R-coalgebra. C is a right
semiperfect coalgebra if and only if the functor RatC is exact.

As observed in Lemma 1.9.1, pseudo-projective comodules imply special
properties of the trace functor. In our setting this reads as follows :

2.12.3 Lemma. For P ∈ MC the following are equivalent :

(a) P is pseudo-projective in MC.

(b) The trace functor Tr(P,−) : MC → MC preserves epimorphisms.

(c) Tr(P/Tr(P,N)) = 0 for all N ∈ MC and the class

{X ∈ MC | Tr(P,X) = 0}

is closed under factor modules.

By Lemma 1.9.2 we obtain

2.12.4 Lemma. For a preradical τ for MC, the following are equivalent :

(a) τ is cohereditary.

(b) There is a pseudo-projective module P ∈ MC such that Tτ = Gen (P ).

By applying Lemma 1.9.4, pseudo-projective comodules P in C∗M can be
characterized by their trace ideal Tr(P,C∗) ⊆ C∗.

2.12.5 Lemma. For a comodule P with trace ideal I = Tr(P,C∗), the follow-
ing are equivalent :

(a) P is pseudo-projective in C∗M.

(b) For every C∗-module L, Tr(P,L) = IL.

(c) P = IP .

If these conditions hold, then I2 = I and Gen(P ) = Gen(I).

Transferring Lemma 1.9.5 yields

2.12.6 Lemma. Assume that RatC is exact, then

(i) MC is closed under small epimorphisms in C∗M.

(ii) If a comodule P is projective in MC, then P is projective in C∗M.

(iii) If a comodule P is pseudo-projective in MC, then P is pseudo-projective
in C∗M.
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By Proposition 1.9.8 applied to MC , the existence of colocalization of a
comodule in the category of C-comodules is guaranteed in the following case.

2.12.7 Proposition. Suppose there is a projective generator comodule in MC.
Then for an idempotent preradical τ for MC, the following assertions are equiv-
alent :

(a) Every comodule in MC has a τ -colocalization, i.e., there is a τ -colocali-
zation functor from MC → MC.

(b) τ is cohereditary, i.e. Fτ is cohereditary.

2.12.8 Proposition. Let f : P →M be a pseudo-projective cover in MC and
I = Tr(P,C∗). If the rational functor RatC is exact, then I is an idempotent
ideal of C∗ and IP = P .

Proof. Assume RatC is exact. From Lemma 2.12.6, P is also pseudo-projective
in C∗M. Thus we apply Lemma 2.12.5 to get that I is idempotent. It is clear
from Lemma 1.9.4 that IP = P . tu

As a special case, if the coalgebra C is a finitely generated projective R-
module, i.e., MC = C∗M, then the assertions in Proposition 2.12.8 are fulfilled
(see 2.12.1). We have the following property from Lemma 1.9.9.

2.12.9 Lemma. Let P be a right C-comodule, S = EndC∗(P ) ' EndC(P ) and
I = Tr(P,C∗). For any M ∈ MC let

ψM : P ⊗S HomC(P,M) →M, p⊗ f 7→ (p)f.

Then I ⇀ Ker ψM = 0 and I ⇀ Coker ψM = 0.

τ -colocalization of any comodule M is given by Proposition 1.9.10 :

2.12.10 Proposition. Let τ be a cohereditary radical for MC, assume that
I = τ(C∗) is an idempotent ideal, and put

Tτ = {M ∈ MC | I ⇀ M = M}, Fτ = {M ∈ MC | I ⇀ M = 0}.
Let P ∈ Tτ and Fτ -projective with Tr(P,C∗) = I and put S = EndC(P ). For
any M ∈ MC,

ψM : P ⊗S HomC(P,M) →M, p⊗ f 7→ (p)f,

is a τ -colocalization of M .
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If the rational functor RatC is exact and P is pseudo-projective in MC ,
then by Proposition 2.12.8, the condition in Proposition 2.12.10 are satisfied for
τ = Tr(P,−).

2.12.11 Remark. For coalgebras C over a field k, colocalization in the cate-
gory MC induced by a coidempotent subcoalgebra B ⊂ C (i.e. B ∧C B = B)
is studied by Nǎstǎsescu-Torrecillas [25]. Their techniques and results depend
heavily on the fact that they are working over a base field.

2.12.12 The class of M-corational comodules. As for R-modules, the
class of M -corational comodules in MC is defined by

C̃rM = {X ∈ MC | HomC(M,X/Y ) = 0, for all Y ⊂ X}

and the corresponding torsion class is

C̃r◦M = {N ∈ σ[M ] | HomC(N,X) = 0, for all X ∈ CrM}.

Moreover, if there exists a pseudo-projective cover f : P → M in MC , by
Proposition 1.9.13 we can characterize the class C̃rM as

C̃rM = {X ∈ MC | HomC(P,X) = 0}

and P/Tr(P,Ker f) → M is a corational cover. Furthermore, by assuming
I = Tr(P,C∗) to be idempotent, we have the cohereditary torsion theory

C̃r◦M = {N ∈ MC | I ⇀ N = N}, C̃rM = {N ∈ MC | I ⇀ N = 0}.

For the cohereditary torsion theory (C̃r◦M , C̃rM), we colocalize the comodule M
in the following way (see Proposition 1.9.14).

2.12.13 Proposition. Let f : P → M be a projective hull in MC. Then
Tr(P,−) induces the M-corational torsion theory, P/Tr(P,Ker f) is a C̃rM -
projective module, and P/Tr(P,Ker f) → M is the Tr(P,−)-colocalization of
M .

By Proposition 1.9.15 and Corollary 1.9.16 we have
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2.12.14 Proposition. Let M be a self-projective comodule and S = EndC(M).

(i) If M is an endo-coprime comodule, then it is copolyform.

(ii) If M is fi-coretractable and S is prime, then M is copolyform.

(iii) If M is a self-injective self-cogenerator and fully coprime, then M is copoly-
form.

(iv) If M is a self-injective self-cogenerator and strongly coprime, then M is
copolyform.

2.12.15 Proposition. Let C be an R-coalgebra with Rad(C) 6= C and P a
projective comodule in MC. If C is fully or strongly coprime as C∗-module, then
Rad(P ) = 0 and P is copolyform.

Proof. By Proposition 1.9.17. tu

2.12.16 Projective hull of C. Let C be an R-coalgebra and p : P → C a
projective hull in MC.

(i) If C is coprime as a right C-comodule, then C∗ := C∗/AnnC∗(P ) is a
simple algebra and finitely generated as R-module.

(ii) If C is endo-coprime and pseudo-projective, then P is copolyform.

(iii) If C is strongly coprime as a right C-comodule, then C ' P .

(iv) If P is C-generated and C is fully coprime as a right C-comodule, then
C∗ is a simple algebra which is finitely generated as an R-module.

Proof. (i) Since C is coprime, P is also coprime. By projectivity, Rad(P ) 6= P .
By Proposition 2.4.3 part (iii), C∗ is a simple algebra and finitely generated as
R-module.

(ii) By Proposition 1.9.18 part (i).
(iii) By 2.9.8 part 3(ii).
(iv) By Proposition 2.8.6 part (ii). tu

2.13 Colocalization of coalgebras

Replacing the comodule M in Proposition 2.12.13 by the coalgebra C yields the
Tr(P,−)-colocalization for C.
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2.13.1 Proposition. Let f : P → C be a projective hull in MC. Then
Tr(P,−) induces the C-corational torsion theory, P/Tr(P,Ker f) is a C̃rM -
projective comodule, and P/Tr(P,Ker f) → C is the Tr(P,−)-colocalization of
C.

Moreover, by Lemma 2.12.10 we get

2.13.2 Lemma. Let τ be a cohereditary radical for MC, assume that I =
τ(C∗) is an idempotent ideal, and put

Tτ = {M ∈ MC | I ⇀ M = M}, Fτ = {M ∈ MC | I ⇀ M = 0}.

Let P ∈ Tτ and Fτ -projective with Tr(P,C∗) = I and put S = EndC(P ). For
the coalgebra C,

ψC : P ⊗S HomC(P,C) → C, p⊗ f 7→ (p)f,

is a τ -colocalization of C.

One may ask if P ⊗S HomC(P,C) allows for a coalgebra structure and the
map ψC in Lemma 2.13.2 can be understood as a morphism of coalgebras. By
the fact that HomC(P,C) ' HomR(P,R) = P ∗ (see Lemma 2.1.11) we may
focus on the question if P ⊗S P

∗ allows for a coalgebra structure.
It is well known that this is the case if P is a finitely generated and projective

R-module and this structure was extended to direct sums of modules of this type.
For the investigation of direct sums of modules the following technical obser-

vation is helpful (see [40], Section 6). For a direct sum of modules P =
⊕

Λ Pλ,
denote by ελ : Pλ → P and πλ : P → Pλ the canonical injections and projections.
Recall that the identity of P can be written as the formal sum

∑
Λ πλελ.

For any direct sum P =
⊕

Λ Pλ of finitely generated C-comodules Pλ and
any C-comodule N (e.g. Section 51 of [38]),

ĤomC(P,N) = {f ∈ HomC(P,N) | (Pλ)f = 0 for almost all λ ∈ Λ},

and T := ÊndC(P ). Then ĤomC(P,N) is a left T -module and

ĤomC(P,N) '
⊕

Λ

HomC(Pλ, N) ' T ⊗S HomC(P,N), (2.7)

where S = EndC(P ) (see [38], 51.2).
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2.13.3 Lemma. ([40], Lemma 6.1) With the notation above,

P ⊗T (
⊕

Λ

HomC(Pλ, N)) ' P ⊗T (T ⊗S HomC(P,N)) ' P ⊗S HomC(P,N).

With this isomorphism the comodule structure of modules that are finitely
generated and projective as R-modules can be extended to direct sums of mod-
ules of this type.

2.13.4 P ⊗S P
∗ as left comodule. Consider a family {Pλ}Λ of comodules

Pλ ∈ MC such that each Pλ is finitely generated and projective as R-module.
Then P =

⊕
Λ Pλ is in MC . Since all P ∗λ are left C-comodules (see 3.11 of [5]),

their direct sum
⊕

Λ P
∗
λ is a left C-comodule. For S = EndC(P ), Lemma 2.13.3

yields the isomorphism P ⊗S P
∗ ' P ⊗T (

⊕
Λ P

∗
λ ) which makes P ⊗S P

∗ to a
left C-comodule.

The construction of coalgebras for finitely generated projective R-modules
can also be extended to direct sums of modules of this type.

2.13.5 Coalgebra structure on direct sums. Consider a family {Pλ}Λ of
right C-comodules that are finitely generated and projective as R-modules with
dual basis pλi

∈ Pλ, πλi
∈ P ∗λ , λi ∈ Iλ, λ ∈ Λ.

By Lemma 2.13.3 and using the notation above there is an isomorphism

P ⊗S P
∗ ' P ⊗T ĤomR(P,R).

Let p⊗T f ∈ P ⊗T ĤomR(P,R).

We define a coproduct and a counit for P ⊗T ĤomR(P,R) by

∆(p⊗T f) =
∑

λi

p⊗T πλi
⊗R pλi

⊗T f,

ε(p⊗T f) = (p)f.

Notice that the sum in the expression for ∆ is finite.
By properties of the dual basis,

(ε⊗ I) ◦∆(p⊗T f) =
∑

λi

(p)πλi
pλi

⊗ f = p⊗T f,

(I ⊗ ε) ◦∆(p⊗T f) =
∑

λi

p⊗T πλi
⊗R (pλi

)f

= p⊗T

∑

λi

πλi
(pλi

)f = p⊗T f.
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The coassociativity follows from

(I ⊗∆) ◦∆(p⊗T f) =
∑

λi,µj

p⊗T πλi
⊗R pλi

⊗T πµj
⊗R pµj

⊗T f

= (∆⊗ I) ◦∆(p⊗T f).

Thus P ⊗S P
∗ is a coalgebra.

The coalgebra structure on P ⊗S P
∗ as given here was considered in [10]

(where it is called infinite comatrix coalgebra) and [40].

2.13.6 Theorem. Let {Pλ} be a family of finitely generated C-comodules
which are projective in C∗M and P =

⊕
Λ Pλ, S = EndC(P ). Then the colocal-

ization of C with respect to Tr(P,−) is

ψ : P ⊗S P
∗ → C, p⊗ f 7→ (p)f.

P ⊗S P
∗ has a coalgebra structure and ψ is a coalgebra morphism.

Proof. By Lemma 2.13.2 and 2.13.5, P ⊗S P
∗ has a coalgebra structure. It is

pointed out in the proof of 6.4 of [40], ψ is a coalgebra morphism. tu

Recall that a module N ∈ σ[M ] is called semihereditary in σ[M ] if every
finitely generated submodule of N is projective in σ[M ]. A ring R is called left
semihereditary if RR is semihereditary in RM.

In the following case there is a generating set of comodules with the properties
required in 2.13.5.

2.13.7 Lemma. Consider the following condition on a ring R and a coalgebra
C.

(i) R is left semihereditary and C is projective as an R-module.

(ii) R is von Neumann regular and C is projective as R-module.

(iii) R is a semisimple ring (e.g., a field).

(iv) MC has a set of finitely generated projective generators.

Then MC has a generating set of comodules which are finitely generated and
projective as R-modules.
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Proof. (i) The finitely generated subcomodules of C(N) form a generating set;
they are finitely generated R-submodules of the projective right R-module C(N)

(see 39.13 of [38]).

(ii),(iii) These conditions imply the conditions in (i) (see 37.3 of [38]).

(iv) If M ∈ MC is finitely generated and projective as comodule, then it is
also finitely generated and projective as R-module. tu

For a ring A, the Lambek torsion theory is induced by the injective hull E(A)
of A and the correspondence torsion class is

Tτ = {N ∈ AM | Hom(N,E(A)) = 0}.

Localization of A yields the maximal ring of quotients. For commutative prime
rings A this yields the quotient field. This theory can be transferred to module
categories of type σ[M ] and the resulting quotient of prime modules are of
interest.

Thus the question arises if dually the existence of a projective hull of M in
σ[M ] leads to a colocalization of strongly coprime modules. In particular, does
the existence of a projective hull P → C of the strongly coprime coalgebra C
as comodule yield a colocalization? This is not the case for the following reason
: If C is a strongly coprime comodule, then P is also strongly coprime. By the
projectivity of P , Rad(P ) 6= P and by Proposition 1.8.10, Rad(P ) = 0. Thus
C ' P .
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