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® Zusammenfassung

lll. Zusammenfassung

Ein entscheidender Faktor fiir die sichere und effektive Pharmakotherapie von
Kindern ist die Charakterisierung der optimalen Arzneistoffdosis. Die physiologie-
basierten pharmakokinetischen (PBPK) Modelle stellen hierbei einen besonders
vielversprechenden und adulerst innovativen Ansatz dar, um Hiirden in der Arzneimittel-
entwicklung zu Uberwinden. In dieser Arbeit wird systematisch herausgearbeitet, wie
diese mathematischen Modellbildungen entwickelt und validiert werden sollten. Fir drei
kardiovaskulare Arzneimittel wurden padiatrische PBPK-Modelle etabliert, sowei die
aktuellen Moglichkeiten und Grenzen dieses Ansatzes analysiert. Zusatzlich wurde eines

dieser Modelle zur Dosisfindung fir eine konkrete klinische Studie mit Kindern genutzt.

Auf Grund der hohen Dichte an experimentellen Sotalol-Daten bei Erwachsenen
und Kindern wurden anfangs mit zwei namhaften Computerprogrammen PBPK-Modelle
entwickelt und die Pradiktivitat der oralen Arzneimittelexposition Gber den kompletten
padiatrischen Altersbereich Uberpriift. Hierbei zeigte sich, dass insgesamt eine
zuverlassige Vorhersage der Pharmakokinetik erzielt werden konnte. Jedoch war die
Ubereinstimmung der realen Expositionen der Neugeborenen mit deren Vorhersagen
geringer als in allen anderen Altersgruppen. Innerhalb der Analyse stellte sich heraus,
dass altersspezifische anatomischen und funktionellen Parametern innerhalb der
Absorptionsmodelle der genutzten Software starkere Bericksichtigung finden sollten. Die
Pradiktivitat von PBPK Modellen beziglich oral applizierter Arzneiformen vor allem bei
Neugeborenen kénnte so optimiert werden. Im zweiten Teil wurde ein PBPK Modell fur
Amiodaron basierend auf klinischen Daten von Erwachsenen entwickelt und
anschlieRend fur die padiatrische Anwendung skaliert. Diese stellt in der klinischen Praxis
aufgrund verschiedener Faktoren eine besondere Herausforderung dar. Amiodaron zeigt
unter anderem ein komplexes, von extensiver Verteilung ins Fettgewebe und extrem
hoher Plasmaeiweibindung gepragtes pharmakokinetisches Verhalten. Anhand dieses
Modelles konnte der mechanistische Einfluss von pathophysiologischen Verdanderungen
sowie Enzym-Polymorphismen auf die Amiodaronexposition von Kindern untersucht
werden, um das Verstandnis der padiatrischen Pharmakologie von Amiodaron zu
verbessern. AbschlieBend wurde fir den If-Kanalblocker Ivabradin mittels eines
spezifischen PBPK Modells konkrete Dosisempfehlungen fiir geplante , first-in-children”
Studien getatigt. Da jegliche experimentelle Daten bei Kindern fehlten, verdeutlicht

dieser Ansatz die Wichtigkeit und den herausragende Beitrag des Modelles.

Zusammenfassend zeigt diese Dissertation die vielseitige Anwendbarkeit von
PBPK in der Simulation padiatrischer Pharmakotherapien hervor und identifiziert

zuklnftige Entwicklungsmoglichkeiten dieser innovativen Methode.




* Summary

IV. Summary

A decisive factor for a safe and effective pharmacotherapy in children is the
determination of the optimal drug dose. The physiologically based pharmacokinetic
(PBPK) models represent here a particularly promising and highly innovative approach to
overcome hurdles in the clinical drug development process and accrelerate the research
in the vulnerable pediatric population. This thesis introduces novel pediatric PBPK models
for three cardiovascular drugs in order to explore and analyze the current capabilities and
limitations, and illustrate how such models can be used to support pharmaceutical
industry in the dose selection for “first-in-children” clinical trials. It also proposes a
systematic methodology for the development and validation of PBPK models to be used

as a guidance when extrapolating adult data to children.

In the first part, a PBPK model for sotalol, one of few substances for which a large
set of observed pharmacokinetic (PK) data in both adult and children already exists, was
developed to evaluate the accuracy of predicting oral drug exposure over the entire
pediatric age range. The model identified neonates as the age group for which a priori
predictions still have to be used with caution, but encouraged a wider and more confident
use of such predictions in children over one year of age. It was also shown that the
absorption models incorporated in the available modeling software packages still lack
age-specific data for some of their anatomical and physiological parameters, and that
more focus should be placed on addressing this drawback in the future. In the second
part, a pediatric model for the prediction of amiodarone exposure was developed. The
sparse pediatric PK data, the unfavorable side effects, as well as the complex PK profile of
amiodarone hinder its optimal use in routine pediatric clinical practice and complicate the
conduct of informative pediatric PK studies. The presented model can overcome these
obstacles to provide valuable insights into amiodarone fate in children. It was also
possible to demonstrate the potential effect of the pathophysiological changes, enzyme
polymorphisms, and undocumented dosing changes on amiodarone exposure. In the last
part, recommendations on dose selection for “first-in-children” trials of the heart rate-
lowering drug ivabradine were proposed as a complete dosing scheme from birth to
adolescence. It was shown that in order to obtain a relatively constant drug exposure,
dose adaptation must be undertaken for children of different ages, and that, for example,
children between 4 months and 4 years of age require double the adult weight-

normalized dose to achieve the desired therapeutic levels.

In summary, this thesis demonstrates the versatility of PBPK in the simulation of
pediatric pharmacotherapies and identifies future aspects of development of this

innovative method.
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IX. Motivation, Rationale, and Aim of the Thesis

Physiologically based pharmacokinetic (PBPK) modeling is an innovative
technique that can bridge drug pharmacokinetics from adults to children, and
explore, a priori, age-related PK changes, thereby offering many advantages for
healthcare providers and researchers in the field of pediatrics. However,
uncertainty and debate persist on whether data generated through PBPK modeling
are suitable for use across all pediatric age groups, and the extent to which the
complexity of the PK profile of a drug can influence the data. This thesis aims to fill
important gaps in this knowledge by exploring current limitations of PBPK modeling
in pediatric populations, demonstrating applications, and highlighting areas for
improvement in order to ensure proper and wider implementation of this

technique in routine pediatric clinical practice, research, and drug development.

In order to achieve this objective, it was necessary to establish a
comprehensive base of background information on the structure, possible
applications, general limitations, and available modeling software tools and
packages (Chapter 1). In the second chapter, the first challenge was to identify the
pediatric age groups for which PBPK model-generated data still have to be used
with caution. This was done by evaluating the accuracy of the model in predicting
the dose-exposure relationship after oral administration across the entire pediatric
age/development continuum using two commonly used PBPK modeling software
packages. Another challenge was addressed in the third chapter by exploring
whether a pediatric PBPK model can be developed to predict the systemic exposure
of amiodarone, a very effective drug that is used in refractory cases but which
possesses a complex PK and side effect profile, in severely ill pediatric patients. A
model for such a drug can not only explore age-related PK changes, but also aid in
optimizing therapy of individual patients. In the last chapter, a PBPK model was
developed to provide a priori data to support dose selection for “first-in-children”
trials of the heart rate-lowering drug ivabradine. Such information can be
integrated into the pediatric investigation plan (PIP), since the regulatory agencies
do recognize modeling and simulation (M&S) as an important part of any submitted

documents.
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Chapter 1 ¢ Overview of PBPK modeling methodology and concept

Chapter 1:
Physiologically Based Pharmacokinetic Modeling: Methodology,
General Applications, and limitations

1.1. Introduction

Modeling and simulation is an acknowledged methodology by industry,
academia, and regulators to support and optimize clinical trials and/or to be used
as a data analysis tool during various stages of the drug-development process
(Bellanti and Della Pasqua 2011; Manolis and Pons 2009; Rowland et al. 2011). The
terms “modeling” and “simulation” are closely related; however, modeling is the
science of using mathematics to describe and quantify a system or a process,
whereas “simulation” refers to the use of these models to make quantitative
predictions (Manolis et al. 2011). In the field of pharmacokinetics, one has to
differentiate between the conventional PK compartmental modeling, the so-
called top-down approach, and the PBPK modeling, the bottom-up approach. Both
of these approaches can be extended to incorporate a pharmacodynamic

component and, thus, to link drug exposure with a certain effect.

The conventional PK compartmental models have important clinical
applications particularly in establishing therapeutic dosage regimens and
addressing responsible factors for the observed variability in drug behavior in a
certain population. However, such models are inherently limited in the
information they provide, as they are data-driven, i.e., dependent in their
structure and parameters on the experimental data available. In addition, they do
not have an obvious relationship with the anatomical structure or the
physiological function of the species under study. This makes these models
unsuitable to be used beyond the experimental data, e.g., for age extrapolation,
or to explore changes in drug pharmacokinetics under different physiological,

pathological, or pharmacological conditions.

In contrast, PBPK models are mechanistic models that are independent of
the measured concentrations but are elaborated based on the known anatomy

and physiology of the living organism being modeled; PBPK models utilize actual
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anatomical and physiological measures that are involved in the complex
absorption, distribution, metabolism, and excretion processes (Khalil and Laer
2011). Such physiologically realistic models provide a rational basis for inter-
species, inter-individual, or across-age scaling, and are able to offer greater insight
into drug disposition in the body, as they can describe the time course of drug
concentration in various body tissues. PBPK models can also be used as a
predictive tool to a priori explore changes in drug behavior under altered
physiological conditions or in pathological conditions. For these reasons, PBPK
models are considered superior to classical compartmental models in many

respects.

Although the concept of PBPK modeling was introduced years ago, it had
not achieved the scope of development and implementation that it deserves until
recently, as evidenced by the large increase in publications in this field over the
past few years (Nestorov 2007). The general concept of PBPK modeling is to
mathematically describe relevant physiological, physicochemical, and biochemical
processes that determine the PK behavior of a compound in as much detail as is
appropriate or needed. In order to accomplish this, principles of anatomy and
physiology are employed to represent the species to be modeled as a structure
composed of physiologically relevant compartments, with each compartment
often representing a single organ or tissue. Following the anatomical structure of
the organism, these compartments are interconnected via the blood circulation
loop, and the mass-balance equations for each compartment describing the fate
of the substance within it are established. To solve these equations, the PBPK
model uses physiological and substance-specific parameters. In the end, PBPK
models can describe and/or predict drug pharmacokinetics in certain individuals,
or under certain physiological or pathological conditions, where the primary result
of a simulation is a set of concentration-time curves illustrating the temporal
behavior of the drug in blood/plasma and/or other relevant organs. Figure 1-1

illustrates the general concept behind a PBPK model.

The objective of this chapter (Khalil and Laer 2011) is to introduce the

necessary background information on this modeling technique by providing a
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simplified general overview of the structure of PBPK models as well as the various
software packages that can be used in model development. | have also highlighted
some of the technique’s weaknesses and provided an overview of its multiple

applications that show the potential of PBPK models.
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Figure 1-1. The concept for building a PBPK model modified according to Willmann et al. (2003).
(A): Organisms (e.g., humans of different ages or populations) are the basis for the model. (B): The
organism is divided into a number of compartments, each representing a single organ. To describe
the distribution of compounds in the body, the organs are connected via their arteries and veins
to the arterial and venous blood pool. The rate of inter-compartmental mass transport is
determined by organ-specific blood flow rates. The organs are mathematically connected. (C):
Division of each organ into three sub-compartments representing the vascular space with blood
cells and the interstitial and cellular space. The interstitial space is assumed to be in direct contact
with the plasma. The exchange of substances between the cellular and interstitial compartment
can occur by permeation across the membranes via passive diffusion as well as active influx and
efflux transport processes governed by saturable Michaelis-Menten (MM) kinetics with Vax and
Km as parameters. Metabolism of substances (Metal, Meta2) occurs via active enzymes (MM-
kinetics). Finally, the model consists of a large number of coupled differential equations. (D):
Output of the model: Concentration-time curves shown are simulated and observed ciprofloxacin
concentrations in various organs after ciprofloxacin 5mg/kg was intravenously administered to a
rat.
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1.2. PBPK model development

Generally, the five major steps in PBPK model development include: 1)
specifying general model structure, 2) specifying the tissue being modeled, 3)
writing model equations, 4) defining model parameters, and 5) simulations and/or

parameter estimation.

1.2.1. Overall model structure

PBPK models emulate the structure of the living organism being studied
and represent the various organs and tissues as compartments that are connected
via a blood circulation loop which is subdivided into arterial and venous pools. The
natural basis for the choice of compartments is the available data on the anatomy
and physiology of the biological system from the cellular to the organismal levels.
However, this does not by itself determine how many body regions, or
compartments, are needed, since the important aspects of the drug’s PK events
must be evaluated. The choice also depends upon the model’s purpose and the
physicochemical (e.g., binding, lipid solubility, ionization) and pharmacological
(e.g., mechanism of transport, site[s] of action) properties of the modeled drug
(Bischoff 1975). For example, if the drug is not lipid soluble, the details of the
adipose tissues of the body are not particularly important and if only the
absorption of the drug is of interest, a model that includes only those body tissues
or organs involved in the absorption process may be sufficient. The complexity of
the models and the amount of incorporated information increase with an
increasing number of represented tissues/organs; however, due to the fact that
the main features of drug distribution can often be described with models that
have surprisingly few details, a common strategy in structuring PBPK models,
called “lumping,” is implemented (Nestorov et al. 1998; Brochot et al. 2005).
Tissues that share similar physiological, physicochemical, and biochemical
properties are grouped as one compartment, while tissues with distinct
properties—such as the liver, where metabolism occurs, or target tissues—are
separated from the lumped compartments. Eventually, PBPK models do vary,

ranging from partial-body PBPK models, which only include certain body systems
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or tissues, to whole-body PBPK models where almost all body tissues are included

and represented either as separated or lumped compartments.

1.2.2. Specification of tissues/organs to be modeled

Following the determination of the overall model structure, modeling of
each particular tissue or organ must subsequently be specified (i.e., sub-
compartments representing each organ/tissue must be identified and described).
The vast majority of PBPK models involve one to four compartments for each
tissue or organ. The compartmentalization decision is based on existing
information regarding tissue kinetics and the biochemical processes involved once
the drug gets into the tissue (Nestorov 2007). It is important to distinguish

between the different assumptions made at this level.

A perfusion rate-limited tissue model assumes that, on entry with the
blood circulation, the drug is distributed freely and instantly across the
membranes without diffusion barriers; thus, it is the rate of delivery by the blood
that is rate limiting. If, on the other hand, diffusion barriers to the distribution of
a compound in the tissue are presumed and can be physiologically identified—for
example, capillary membranes (such as the blood-brain barrier for some
hydrophilic molecules) or cellular membranes, or both—the more complex
permeability rate-limited tissue model is used with at least a two-compartment
tissue structure. Furthermore, the assumption of a well-stirred model is that there
is no concentration gradient within a tissue/organ compartment. This contrasts
with the dispersion model, in which a diffusion barrier cannot be identified but
concentration gradients nevertheless exist. Examples of a perfusion rate-limited,
well stirred, one-compartment tissue model and a permeability rate-limited, two-

compartment tissue model are given in Figure 1-2.
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Figure 1-2. Diagrams and equations for a perfusion rate limited, one compartment model (Left
Panel, A) and a permeability rate limited, two compartment model with the permeability at the
vascular membrane (Right Panel, B) of noneliminating organs, adapted from Nestorov et al. (1998).
Q= blood flow; C= concentration; V= volume; Kp= tissue:plasma distribution coefficient; PS=
permeability surface area coefficient; subscripts T, ART, VEN, V and EV indicate tissue, arterial,

venous, vascular compartment and extravascular compartment respectively.

1.2.3. Writing the PBPK model equations

The PBPK model equations are derived from the law of mass action—i.e.,
they are mass balance equations, as the kinetic processes are mass transfer
phenomena. Four types of mathematical descriptions of the tissues within PBPK
models have been used (Nestorov 2003): i) algebraic, which are used when the
processes are assumed to equilibrate instantly and can be considered static (e.g.,
alveolar and inhaled air concentrations); ii) linear ordinary differential, which are
the most commonly used descriptions in describing dynamic PK processes; iii) non-
linear differential, which are used to represent non-linear processes within a
particular tissue (e.g., concentration-dependent clearance and/or binding); and iv)
partial differential, which are used with the dispersion tissue model. Examples of
the types of differential equations that can be used in a PBPK model are shown in

Figure 1-2.
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1.2.4. PBPK-model parameterization

Once model equations are written, their parameters must be specified
and/or estimated. The parameters for incorporation into PBPK models are

generally either physiological or compound-dependent.

Physiological parameters characterize the anatomical structure and
physiological processes of the species being modeled, and include parameters
such as organ/tissue volumes, cardiac output and blood flows, tissue composition,
surface area, pH values, and/or transit times for the gastrointestinal tract. The
values of these parameters are known to vary among species and subjects, or with
age and physiological/pathological state. Despite the large volume of available
literature reporting such physiological data in numerous species—notably, annals
of the International Committee on Radiological Protection (ICRP) for human values
(Valentin 2002) and Brown et al. for animal values (Brown et al. 1997)—allometric
scaling (i.e., extrapolation from another species or another age group) is still used
when various physiological parameters that are needed for a PBPK model are
incomplete or entirely lacking. Although physiological parameters are most often
assumed to be compound-independent, drugs can sometimes affect the
physiology of the biological system as seen, for example, in the change of cardiac
output and blood flow due to the induction of anesthesia (Wada et al. 1996; Sasaki
and Wagner, Jr 1971). Therefore, the potential pharmacological effects of some
compounds on physiological variables must be accounted for in such

circumstances.

The second set of parameters necessary for a PBPK model are compound-
dependent and include information such as permeability-surface area products
(PxSA) and partitioning of the substance between body tissues and the
blood/plasma (KpT). These parameters can be obtained either from in vitro
experiments, by extrapolating the experimental in vivo values from animals to
humans, or by estimation/prediction using specific algorithms. Multiple
specialized PBPK modeling software programs include such algorithms to calculate

tissue:plasma partition coefficients —for instance, those developed by Poulin and
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Theil, Rodgers and Rowland, or Schmitt (Poulin and Theil 2000; Rodgers and
Rowland 2006; Schmitt 2008). In the latter case, easily obtained compound
characteristics such as molecular weight (MW), lipophilicity (logP or logD value),
ionization (pKa value), and plasma fraction unbound (f,) are alternative inputs
since these algorithms use the previous information along with tissue composition

(lipids, proteins, water) to estimate partition coefficients.

Clearance is a compound/species-specific parameter that greatly
influences the PK behavior of a drug; thus, a measure of clearance is a necessary
PBPK model input. It is up to the researcher to decide how to provide the PBPK
model with this information. An experimental blood or plasma clearance is often
used as a direct input; however, as many PBPK models are able to perform in
vitro—in vivo extrapolations (IVIVE), in vitro data can also be used—e.g., data from
in vitro experiments on microsomes or hepatocytes (in the form of half-lives or
residual fractions). In the latter case, depending on the type of input parameter,
PBPK models use additional information such as liver volume, liver blood flow, or

microsomal binding to calculate the in vivo hepatic intrinsic clearance.

1.2.5. PBPK modeling software for simulation and parameter estimation

In the last step, the entire system is coupled and equations that describe
the model are coded in a particular software language for subsequent parameter
estimation and/or simulation. Several commercial software tools for developing
PBPK models are available; however, it is important to distinguish between
general mathematical and engineering modeling software and specialized PBPK

modeling software packages.

General modeling software packages, such as MATLAB® (MATLAB),
ModelMaker™, Berkeley Madonna™, and acsIX™ provide a programming
language for the model code, numerical solutions for the ordinary differential
equations that define the system being modeled, and a graphical output of the
simulation results. These software packages offer much flexibility to the PBPK
model developer, but more advanced modeling and programming skills and

experience are required; thus, they are less suitable for beginners. However, both
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acsIX™ and Berkeley Madonna™ software attempt to incorporate features to
make them more intuitive for beginners by providing, for example, a graphical

interface and a PBPK library to assemble models from already programmed code.

PK-Sim® (PK-Sim), Simcyp® (Simcyp), and GastroPlus™ (Gastroplus), which
are specialized PBPK modeling software packages, provide less flexibility in model
development. However, they also require less mathematical and modeling
experience. Such software tools provide the user with either a click-and-drag
assembly of the model structure or an already built model, and can either simulate
particular PK-relevant processes (e.g., intestinal absorption or metabolism) or
constitute a generic whole body PBPK model. Many packages offer additional
features; for example, Simcyp® and PK-Sim® allow simulation of complex
absorption, distribution, metabolism, and excretion outcomes involving multiple
drug interactions as well as parent drug and metabolite profiles. They also allow
the simulation of virtual patient populations such as obese/morbidly obese
individuals and patients with renal impairment or liver cirrhosis, and include a
clearance prediction model that incorporates knowledge about growth,
development, and maturation of various organs and tissues involved in drug
metabolism and elimination across pediatric age groups to predict clearance in
children using values from adults (Jamei et al. 2009a; Willmann et al. 2003;
Willmann et al. 2005). However, although specialized PBPK modeling software
packages do not require the programming skills required by general purpose
software packages, they are still relatively complex to use. This is not only due to
the diversity of input options and many menus/windows that require knowledge
about these parameters, where they are located, and how to work with them, but
also because users of such software tools are required to have a substantial
background knowledge of clinical pharmacology — for instance, pharmacokinetics
topics such as absorption, distribution, metabolism, and the elimination processes
of drugs as well as pharmacogenetics, pharmacodynamics (PD), and the molecular
processes involved in these topics — to understand the differences among the
various models offered and the model equations and assumptions so that the

appropriate models are used to conduct PK analysis.

10
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1.3. PBPK modeling applications

1.3.1. Overview of the general scope of application

Although PBPK modeling was originally generated in the pharmaceutical
field, it has more applications in environmental toxicology and risk assessment,
and has become a commonly and widely used technique. However, PBPK
modeling can be used for a variety of other purposes and is becoming more
popular in the fields of pharmacology and drug development (Parrott and Lave
2008; Rowland et al. 2011; Espie et al. 2009). Even during early drug discovery
programs and the preclinical phase, PBPK modeling can be used, together with in
vitro data and physicochemical characteristics, to anticipate the pharmacokinetics
of potential drug candidates in animals, which may permit a reduction of
unnecessary animal testing and significant time savings (Germani et al. 2007).
Another example of the use of PBPK modeling demonstrated the utility of a
PBPK/pharmacodynamic model in the selection of the most promising compound
from five potential clinical candidates (Parrott et al. 2005). Given that PBPK
models integrate relevant information from various sources, including those that
are substance-dependent and physiologically relevant, they have been widely
used for in IVIVE of drug kinetics in different species or for different routes of
administration (Parrott et al. 2005; Shiran et al. 2006; Buck and Mackie 2007). The
PBPK modeling technique has also emerged as a learning tool that can help users
understand the influence of different processes and/or parameters involved in
determining drug disposition and PK behavior (Sun and Pang 2010). PBPK
modeling is widely used in describing and/or predicting drug PK profiles by
simulating different dosing regimens that allows established therapies to be
evaluated and optimized. It also has been used to describe and/or predict drug
pharmacokinetics under different physiological and pathological conditions; for
example, in pregnancy (Hays et al. 2000; Kawahara et al. 1998; Ward et al. 1997;
Andrew et al. 2008), under surgery (Bjorkman et al. 2001), and in liver cirrhosis
(Edginton and Willmann 2008; Johnson et al. 2010). The effects of food (Jones et
al. 2006), aging (Li and Gwilt 2003; Yang et al. 2006), rest and physical exertion
(Dennison et al. 2005; Hamelin et al. 2005; Reddy et al. 2003), and gender

11



Chapter 1 ¢ Overview of PBPK modeling methodology and concept

differences (Clewell et al. 2004) have also been explored using PBPK modeling.
Another application of PBPK modeling is in the estimation of the PK of both a
parent drug and its metabolite (Clewell et al. 2000; Clewell et al. 2001; El-Masri
and Kenyon 2008). It has also been used successfully to predict the magnitude of
complex drug-drug interactions and to clarify the change in drug pharmacokinetics
upon concomitant drug administration (Rowland et al. 2010; Vossen et al. 2007;
Zhang et al. 2009), which is important within the pharmaceutical industry to
improve safety and reduce the attrition rate of new drugs. Additionally, PBPK
models are advantageous in that they enable prediction of exposure to a drug
and/or toxic substances not only in the plasma or blood, but also in remote and/or
inaccessible compartments such as the brain (Liu et al. 2005) or tumor tissues
(Gallo et al. 2004). It is easy to quantify drug concentrations in different tissues
and/or body fluids when simulating and/or predicting using Simcyp® or PK-Sim®

modeling software.

1.3.2. PBPK modeling applications in pediatric populations

Interest in in-silico PBPK modeling in the field of pediatric drug
development has been increasing since the initiation of the Pediatric Exclusivity
Program in 1997 by the US Food and Drug Administration (FDA), which was later
followed by new regulations on medicinal products for pediatric use in both the
USA and the European Union. This interest is because PBPK modeling provides a
useful tool to bridge pediatric and adult pharmacology. A child-specific PBPK
model can deliver information about age-dependent changes in the
pharmacokinetics of drugs in children, explore “what if” scenarios to determine
the most likely cause of altered pharmacokinetics, and potentially help in guiding
pediatric clinical trials by suggesting, for example, first dose/dose range or optimal

sampling times (Parrott and Lave 2008; Grass and Sinko 2002).

1.3.2.1. Building a pediatric PBPK model to perform simulations and
predict drug pharmacokinetics in children

This important application of PBPK models will be discussed in more detail

in this thesis. The scope of Chapters 2 and 3 is to develop and evaluate pediatric

12
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PBPK models to perform simulations and predict the pharmacokinetics of two
different antiarrhythmic drugs: sotalol and amiodarone. These models show an
important application of PBPK modeling to predict drug exposure in children of
different ages and to explore age-related changes in the PK behavior for two drugs
that possesses different physicochemical and PK profiles. Moreover, the different
routes of administration of sotalol and amiodarone allow us to examine the ability
and the limits of such models to predict systemic drug exposure after oral and

intravenous (IV) dosing.

1.3.2.2. Using the pediatric PBPK model to suggest dosing in children

An example of how a pediatric PBPK model can be used to suggest age-
specific dose recommendations to support drug development research will be
given in Chapter 4 for the heart rate-lowering drug, ivabradine. The pediatric PBPK
model will be developed and used to run simulations in virtual pediatric
populations of different ages to estimate the exposure after a weight-normalized
dose based on adult data. This will detect any necessary age-specific dose
adaptations required to achieve a relatively constant drug exposure in adults and
children (Chapter 4). The suggested dosing adjustments across pediatric age
groups in this example of ivabradine are yet to be validated with prospectively
collected data and are, therefore, hypothetical. Nevertheless, upon establishing
and validating the use of PBPK modeling for this purpose, the data generated may
help clinical trials become more “confirmatory” rather than “exploratory.” The
modeling exercise will thus potentially save time and effort, and reduce the

number of trials needed to be performed in children

1.3.2.3. Using the pediatric PBPK model to suggest sampling times

Willmann (2009) provides an example of using a PBPK model to determine
optimal sampling times in children, comparing the possible difference between
suggested pediatric sampling times based on adult concentration-time data and
suggested sampling times based on simulations by a PBPK model (Figure 8). The
latter, as shown in the study, can potentially help detect the best sampling times

for a PK analysis and help avoid taking blood samples when the drug concentration
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is out of detection range. This is of great importance, especially in neonates and
infants, as taking blood samples is more difficult than in adults and poses the main
challenge in conducting pediatric clinical trials. The primary reason for using a
PBPK model to provide such information in advance is to help conduct these trials
optimally. Whether these techniques can reduce the number of children required

for clinical trials and thereby save time, effort, and costs remains to be proven.

Recommended

Plasma concentration (log)

Adult Newborn

3-Year-old child

Time
Figure 1-3. Schematic drawing of a potential application of PBPK simulations for children of
different ages to find optimal blood sampling time points for PK investigations in a future pediatric
trial according to Willmann (2009). Arrows indicate optimal sampling time for a 3-year-old child, a
newborn, and an adult. LOQ: Limit of quantification.

Finally, it is worth mentioning that the ultimate gold standard is to
prospectively validate predictions/simulations generated by pediatric PBPK

models. To our knowledge, in vivo data for validation had been collected up to
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now before the predictions of the models had been made. To qualify a model
ultimately, data should be collected after predictions are made and then
compared. Unfortunately, there is a definite shortage of clinical examples that
verify the use of PBPK models prospectively. Such examples need to be developed

to gain confidence in using PBPK models in clinical situations.

1.4. Limitations of PBPK modeling

A salient feature of PBPK modeling is that it requires comprehensive data
about the physiological, biochemical, and physicochemical processes that occur in
biological systems in different age groups or under specific physiological and
pathological conditions. These data are not available from a single source, which
may lead to some confusion and to a problem in establishing a reliable source of
accurate and consistent information. The PBPK models reflect current scientific
knowledge and while some processes are known to be well characterized, others
are partly or poorly characterized as a consequence of information gaps that may
exist. Information gaps or poor characterization of some physiological processes,
such as the abundance of transporters or the absorption process in newborns and
infants, may cause the model to fail to optimally describe the PK behavior of some
drugs in these populations. It is therefore important to emphasize that the validity
and quality of the simulations depend on the corresponding model and its
incorporated data as well as its purpose, and uncertainty concerning the data used
to build the model should be properly described. Moreover, as simulations are
associated with prediction errors and uncertainty, they require accurate judgment
and interpretation of their inferences to frame them in the right context. In
addition, simulation results should be supported by experimental data, and should
not be used to replace data from well-conducted studies as the primary source of
evidence (Manolis and Pons 2009). It should be recognised that poor quality
modeling and simulation practices could lead to a biased model or overestimation
of the predictive power of the model. An extensive and continuous evaluation of
the model will help minimize bias and enable early identification of biased models.
Finally, the researcher/user of this modeling technique should understand the

physiological and pharmacological rationale behind the model and should be
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aware that PBPK modeling, despite its potential benefits and various
manifestations, does not provide the ultimate solution and should recognize that
there remains a shortage of prospective examples that verify that this technique

is as good in clinical practice as in theory.
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1.5. Conclusion

This chapter provided a brief overview of the methodology, applications,
and limitations of PBPK modeling. The applications of the PBPK modeling
technique are diverse, as PBPK models can potentially be used at different stages
of drug development from early discovery phases and preclinical development up
to clinical phase studies. Simulations by PBPK models are developed to potentially
save time, effort, and costs, avoid unnecessary experimentation in animal models,
explore the effect of various factors on drug pharmacokinetics, address the
magnitude of drug-drug interactions, and help optimize the conduct of clinical
trials in special populations such as neonates and infants where optimal planning
is needed to minimize and overcome the multiple ethical and technical difficulties.
Modeling is therefore an essential key for success of drug development efforts.
However, prospective examples that assure the clinical value of such a modeling
technique are needed and are important to increase the acceptance of these
techniques in the planning phases of clinical trials or for the practical application
of the individual drug treatment. The PBPK models do have inherent limitations
and weaknesses. For instance, because they reflect current scientific knowledge,
some physiological processes are poorly characterized and information gaps may
exist. In addition, the validity of the simulations depends on the corresponding
model and its incorporated data, and obtained results are associated with
prediction errors and uncertainty. The use of PBPK modeling techniques is still
relatively narrow, but the introduction of many universally applicable software
tools with a more user-friendly interface that do not require an extensive
modeling and/or mathematical background has facilitated its use and contributed
significantly to its wider implementation in different scientific areas over the last
few years. Researchers need, however, to have a substantial background
knowledge of clinical pharmacology, pharmacokinetics, and PD, as well as the
molecular processes involved in these topics to understand the differences
between the various models offered and the model equations and assumptions
so that the appropriate models are used to conduct PK analysis and to accurately

interpret and apply the results.
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Chapter 2:
Pediatric physiologically based models to predict oral drug
exposure across the entire pediatric age range

2.1. Introduction and rationale for this project

Physiologically based pharmacokinetic (PBPK) models can deliver
valuable information during various stages of drug development and research
(Parrott and Lave 2008; Rowland et al. 2011; Espie et al. 2009; Johnson and
Rostami-Hodjegan 2011). Their ability to incorporate information about
maturation, growth, and age-dependent changes in anatomical and physiological
processes facilitates their use to extrapolate drug pharmacokinetics from adults
to children and to explore age-related changes (Khalil and Lder 2011; Bouzom und
Walther 2008). In recent years, the implementation of PBPK models in pediatric
drug development has become more attractive (Lder et al. 2009; Bellanti and Della
Pasqua 2011; Jadhav and Kern 2010; Manolis et al. 2011; Barrett et al. 2012),
encouraged by an increased awareness of and interest in pediatric research,
especially after the new regulations on medicinal products for pediatric use in
both the United States and the European Union (International Conference on

Harmonisation 2000; Commission of the European Communities 2006).

Despite the marked potential of PBPK models, uncertainties still exist in
the pediatric community about the accuracy of their predictions, especially after
oral drug administration in pediatric patients of different ages (Barrett et al. 2012).
The lack of sufficient published pediatric PBPK models evaluated adequately for
the prediction of oral drug absorption and disposition is the main reason for this
uncertainty. For the IV application, 6 pediatric whole-body PBPK models evaluated
with a total of 10 different drugs have already been reported (Ginsberg et al. 2004;
Bjorkman 2005; Edginton et al. 2006b; Kersting et al. 2012; Maharaj et al. 2013).
In contrast, there are only 2 publications with reported pediatric PBPK model
predictions evaluated for 6 drugs after oral drug application as of the date of
writing (Johnson and Rostami-Hodjegan 2011; Parrott et al. 2011), of which only
one of them evaluated the model with neonatal experimental data for the

modeled drug (Parrott et al. 2011). In addition, there are other reported pediatric
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PBPK models that were, however, either not evaluated with experimental data
(Dumont et al. 2013; Edginton and Ritter 2009), or focused only on one aspect of
the drug PK with no comprehensive concentration-time profiles or information
about predicted drug absorption or exposure (e.g., the model may have predicted
only the clearance of the drugs) (Johnson et al. 2006; Edginton et al. 2006a). Given
all of these facts, more examples of evaluated pediatric PBPK models for oral drugs

are still needed.

In recognition of this unmet need, a PBPK model drug with an already
available large-scale clinical PK data set that covers all pediatric age groups is
preferable. Sotalol, an orally administered antiarrhythmic drug used in the
treatment of supraventricular tachycardia, and which has >90% oral bioavailability
and almost complete renal elimination, has been very well studied in both adults
and children and fulfills this requirement (Hanyok 1993; Tjandramaga 1980;
Anttila et al. 1976; Salazar et al. 1997; Uematsu et al. 1994; Somberg et al. 2010;
Rehm et al. 1987; Poirier et al. 1990; Kimura et al. 1996; Kahela et al. 1979; Ochs
et al. 1985; Laer et al. 1997; Liebau 1999; Lier et al. 2005). The extensive pediatric
data on sotalol facilitate a good assessment of the model predictability from
adolescents down to neonates, and provide individual full concentration-time
profiles with information on drug absorption. On the other hand, the rich adult
data after both IV and oral administration will enable the validation of the model
first in adults before scaling it to children, thus forming a solid basis for age
extrapolation. Finally, because commercial PBPK modeling packages are often
used nowadays by researchers as a basis for their models, and because no single
source for the integrated data currently exists, the decision to use two commonly
used modeling software tools for model development has been taken to minimize
bias introduced by software and to examine the extent to which the use of

different modeling software packages can influence the results obtained.

2.2. Objective of this project

This study (Khalil and Laer 2014) was undertaken to investigate how

whole-body PBPK models developed using two dedicated PBPK modeling tools can
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describe the oral pharmacokinetics of sotalol from adults to neonates, and to
detect the pediatric age groups for which the model predictability is the lowest. A
secondary goal was to observe any differences in the performance of these two

models during routine use by researchers in this field.
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2.3. Methods

2.3.1. Literature review about the modeled drug (Sotalol)

Sotalol is an antiarrhythmic drug with Class Il (beta-adrenoreceptor
blocking) and Class Il (cardiac action potential duration prolongation) properties
that is used for the treatment of supraventricular and ventricular arrhythmia in
adults and children, and which has been shown to be successful in the treatment

of refractory cases.

2.3.1.1. Physicochemical properties of sotalol

Sotalol is a relatively small hydrophilic compound with a molecular weight
of 272.36 (g/mol) (PubChem Compound CID= 5253). Multiple measures of sotalol
lipophilicity are already reported in the literature in terms of LogP or LogD: 0.03
(Taylor and Cruickshank 1985), 0.039 (Woods and Robinson 1981; McDevitt 1987),
0.2 (PubChem Compound CID=5253), and 0.37 (Yang et al. 2007). Sotalol does not
bind to plasma proteins (Anttila et al. 1976) and has pK, values of 9.72 and 8.28
for the basic and acidic functions, respectively (Cheymol et al. 1997). Sotalol is a
chiral drug that is marketed as the racemate D,L-sotalol. It has already been
demonstrated that D,L-sotalol and D-sotalol have similar PK properties in humans

(Carr et al. 1992; Funck-Brentano 1993; Poirier et al. 1990).

2.3.1.2. Sotalol pharmacokinetics in adults

The apparent volume of distribution of sotalol has been reported in
various literature reviews to be 1.34 |-kg* (Poirier et al. 1990), 1.3 I-kg* (Riddell et
al. 1987), and 1.2-2.4 |-kg* (Hanyok 1993; McDevitt 1987; Antonaccio and Gomoll
1990; Funck-Brentano 1993; Sundquist et al. 1979). No significant
biotransformation of sotalol takes place in humans since sotalol does not undergo
any metabolism in the liver. The primary route of sotalol elimination is renal
excretion, with more than 90% of each dose being excreted unchanged in the
urine (Hanyok 1993; Antonaccio and Gomoll 1990). Therefore, appropriate
adjustment of the dose must be made for patients with impaired renal function or

increased renal blood flow (e.g., in pregnancy). A small amount is thought to be
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excreted in the feces, bile, or other intestinal secretions (Hanyok 1993; Antonaccio
and Gomoll 1990). The total clearance of sotalol has been reported to range
between 0.09 and 0.328 I-h"*-kg™?; for example, it has been reported to be 0.13 |-h-
Lkg? (Poirier et al. 1990), 0.15 I-h"t-kg™* (Rehm et al. 1987), 0.13 I-h"*-kg* (Liebau
1999), 0.09 I-h"t-kg? (Tjandramaga 1980), 0.12 I-h"*-kg™* (Kowey et al. 1997; Meier
1982),0.14 |-h1-kg* (Riddell et al. 1987), and 0.09-0.328 |-h1-kg* (McDevitt 1987)
in various studies. The reported values of sotalol half-life (ty) range between 7 and
18 h; for example, the half-life has been reported to be 7.45 h (Poirier et al. 1990),
6.85 and 7.21 h (Rehm et al. 1987), 5-13 h (Tjandramaga 1980), 7-15 h (Meier
1982), 7.5-15 h (Riddell et al. 1987), 7-18h (McDevitt 1987; Antonaccio and Gomoll
1990; Funck-Brentano 1993), 8.06 (Laer et al. 1997), and 8.46 h (Liebau 1999).

Sotalol shows linear pharmacokinetics over the therapeutic dose range.

Sotalol is almost completely absorbed after oral administration and
undergoes no first-pass hepatic metabolism, as a result of which its absolute
bioavailability is 90-100% (Hanyok 1993; Tjandramaga 1980), and the drug is
classified as a Biopharmaceutics Classification System (BCS) class | drug with a high
permeability/high solubility profile (Yang et al. 2006; Alt et al. 2004). Sotalol
reaches its maximum concentration within 2 to 4 hours after an oral dose (Laer et
al. 1997; Liebau 1999). Sotalol exposure given as the area under the plasma
concentration time curve (AUC) after a typical oral dose of 160 mg has been

reported to be 15.6-15.9 mg-h-I"! in healthy adults (Lier et al. 1997; Liebau 1999).

2.3.2. PBPK modeling software and model parameterization

To develop a whole-body PBPK model of sotalol, two specialized modeling
software tools were used separately: software package 1 was Simcyp® simulator
(v.12.1 [academic license]; Simcyp Ltd, Sheffield, UK) for adults and pediatrics
(Simcyp), while software package 2 was PK-Sim® (v.4.2.2 [academic license]; Bayer
Technology Services GmbH, Leverkusen, Germany) with its integrated clearance
scaling module (PK-Sim). In brief, these tools provide a general PBPK model
structure to describe drug absorption and disposition in the body and incorporate

a large data set of anatomical and physiological parameters with their age-
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dependencies to the extent permitted by the current scientific knowledge. The

detailed structure and methodology of these PBPK models have been published

elsewhere (Jamei et al. 2009a; Willmann et al. 2003).

To complete the model parameterization, the required physicochemical

properties of sotalol, along with other drug-dependent parameters, were

collected from a comprehensive literature search. Both models used the same

values for molecular weight, lipophilicity (octanol-water partition coefficient

[logP] value), acid dissociation constant (pKa), fraction unbound (fu), and

clearance (CL), as listed in Table 2-1, which summarizes the final model input

parameters.

Table 2-1. Input parameters for sotalol PBPK models using both modeling software

packages

Parameter Simcyp®-value PK-Sim®-value Ref. value Reference

Molecular weight (g/mol)  272.36 272.36 272.36 PubChem 5253

LogPow) 0.37 0.37 0.2,0.37 PubChem 5253,
Yang 2007

lonization constant pKa1= 8.28° pKa1= 8.28* pKa1= 8.28° Rodgers 2007

pKa2=9.72 pKa2=9.72 pKa2=9.72

fu 1 1 1 Hanyok 1993,
McDevitt 1987

Blood:plasma ratio 1.02 0.86 1.07 Rodgers 2007

CLu, total 7.875L/h 0.1125 L/h/kg 0.09-3.2 L/h/kg  Poirier 1990,
Riddell 1987

Fraction of renal clearance 100% 100% 90-100% Hanyok 1993,
Tjandramaga
1980

Permeability (cm/s)t 2.01 x 10+ 12.6 x 10°°t - -

LogP= octanol-water partition coefficient; fu= fraction unbound; CLy, ttai= total intravenous clearance.

? pKa= acid dissociation constant; pKai: for acidic function; pKaz: for basic function.

+ Human jejunum permeability (Petr, man) as permeability measure in software 1; In vitro intestinal permeability (Papp) as
permeability measure in software2. Both measures were manually adjusted to give the same value of fraction-absorbed (f.)

and a bioavailability of 90%.

The total clearance of sotalol was set to be 0.1125 L/h/kg and assigned to

be cleared completely through the renal route. Both the value and the route of
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clearance are consistent with the literature (Hanyok 1993; Tjandramaga 1980;
Poirier et al. 1990). The partition coefficients in the tissues were calculated with
both software packages using Rodgers and Rowland’s distribution model (Rodgers
and Rowland 2006). The input values assigned to the blood-to-plasma
concentration (B:P) ratio differed between software 1 and software 2 (1.02 versus
0.86, respectively), since these values gave the best visual fit during the IV model
development (see Modeling strategy). However, the models predicted similar Vs
values of 1.3 and 1.22 L/kg, respectively, in an average adult male weighing 70 kg,
both of which are in good agreement with the reported literature values (Hanyok
1993; Poirier et al. 1990; McDevitt 1987; Riddell et al. 1987). Drug absorption was
predicted by the advanced dissolution, absorption, and metabolism (ADAM)
model in Simcyp® (Jamei et al. 2009b), and by a built-in absorption model in PK-
Sim (Willmann et al. 2004), with various input measures offered by the two
software packages to account for the drug intestinal permeability. Sotalol is
known to be a biopharmaceutics classification system (BCS) Class | drug with high
solubility and high permeability profile. However, the in vitro measured apparent
permeability coefficient (Papp) of sotalol is very low and does not correlate with
the high values of the absorbed dose fraction (>90%) obtained from PK studies in
humans (Yang et al. 2007; Alt et al. 2004). Therefore, the value of the intestinal
permeability measure for each model was adjusted separately in order to give the
same absorbed fraction and a bioavailability of 90% in adults. Finally, the default
mean values used in both models for gastric emptying time (GET) and small

intestinal transit time (SITT) were 0.5 h and 4 h, respectively.

2.3.3. Pharmacokinetic/clinical data in adults

The MEDLINE database was searched for PK studies of sotalol in healthy
adults with known age, gender, height, and weight information, as well as clear
dosing information and available plasma concentration-time profiles. The search
retrieved a total of 27 data sets originating from 11 clinical trials published by 8
different scientific groups between 1976 and 2010 in 5 countries. These data were
used in model development and evaluation (Tables 2-2, 2-3) (Anttila et al. 1976;
Salazar et al. 1997; Uematsu et al. 1994; Somberg et al. 2010; Rehm et al. 1987;
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Poirier et al. 1990; Kimura et al. 1996; Kahela et al. 1979; Ochs et al. 1985; Laer et
al. 1997; Liebau 1999). Each experimental data set represents a mean observed
concentration-time profile in an average of 5-6 healthy volunteers who received
either IV or oral doses of sotalol-HCI. These data were either provided by the
author (Laer et al. 1997; Liebau 1999) or were scanned from the figures in the
respective publications (Anttila et al. 1976; Salazar et al. 1997; Uematsu et al.
1994; Somberg et al. 2010; Rehm et al. 1987; Poirier et al. 1990; Kimura et al. 1996;
Kahela et al. 1979; Ochs et al. 1985).
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Table 2-2. Demographics and dosing information of the population in clinical studies of intravenously administered sotalol

Study reference A;Elsizd Duration of IV S::‘;'f::s corcri'l(:)::iet:on Age (years) Height (cm) Weight (kg)
dose (% males) Mean ( Range) Mean (Range) Mean (Range)
Anttila et al. 1976 20 mg 5 min 8 50% (24-53) NR (58-86)
Rehm et al. 1987 1.5 mg/kg 5 min 100% 25 (21-32) 179 (169-185)  67.8 (57-78.8)
Rehm et al. 1987 2 mg/kg 5 min 8 100% 25 (21-32) 179 (169-185)  67.8 (57-78.8)
Poirier et al. 1990 2 mg/kg 5 min 6 100% 23.8 (22-25) NR 69.5 (59-77)
Uematsu et al. 1994+ 1 mg/kg 10 min 100% 32.5(22-43) NR 61.7 (47.9-77)
Uematsu et al. 1994+ 1.5 mg/kg 10 min 6 100% 32.5(22-43) NR 61.7 (47.9-77)
Salazar et al. 1997 0.5mg/kg 2 min* 4 100% 25 (18-36) 177 (168-188) 76.5 (68.6-86.2)
Salazar et al. 1997 1.5 mg/kg 2 min* 4 100% 25 (18-36) 177 (168-188) 76.5 (68.6-86.2)
Salazar et al. 1997 3 mg/kg 2 min* 4 100% 25 (18-36) 177 (168-188) 76.5 (68.6-86.2)
Salazar et al. 1997 0.5mg/kg 2 min* 4 0% 35 (28-38) 163 (155-166) 65 (53.9-81)
Salazar et al. 1997 1.5 mg/kg 2 min* 4 0% 35 (28-38) 163 (155-166) 65 (53.9-81)
Salazar et al. 1997 3 mg/kg 2 min* 4 0% 35 (28-38) 163 (155-166) 65 (53.9-81)
Somberg et al. 2010 75 mg 25h 15 40% 32 (19-45) 166.1 (152-178)  69.6 (60-80.5)

All of these studies are single dose studies conducted in healthy volunteers.

NR= not reported
T Japanese population

* Average value of the duration of the infusion
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Table 2-3. Demographics and dosing information of the population in clinical studies of orally administered sotalol

Applied

No. of

Gender

Study reference Dose (meg) Condition subjects composition Age (years) Height (cm) Weight (kg)
(% males) Mean ( Range) Mean (Range) Mean (Range)
Anttila et al. 1976 160 mg fasting 8 50% (24-53) NR (58-86)
Kahela et al. 1979 160 mg fasting 5 80% 28-56 NR (74-86)
Ochs et al. 1985 320 mg fasting 9 89% 21-29 NR NR
Poirier et al. 1990 100 mg fasting 5 100% 23.8 (22-25) NR 69.5 (59-77)
Uematsu et al. 1994+ 50 mg fasting 18+ 100% 32.5(22-43) NR 61.7 (47.9-77)
Uematsu et al. 1994+ 100 mg fasting 18+ 100% 32.5 (22-43) NR 61.7 (47.9-77)
Uematsu et al. 1994+ 200 mg fasting 18+ 100% 32.5(22-43) NR 61.7 (47.9-77)
Uematsu et al. 1994+ 300 mg fasting 18+ 100% 32.5(22-43) NR 61.7 (47.9-77)
Kimura et al. 1996+ 40 mg fasting 6 100% 22-45 NR 52.4-69.8
Kimura et al. 1996+ 80 mg fasting 6 100% 22-45 NR 52.4-69.8
Kimura et al. 1996+ 160 mg fasting 6 100% 22-45 NR 52.4-69.8
Laer et al. 1997 160 mg fasting 7 100% 26 (24-30) 185 (178-192) 73 (63-80)
Liebau 1999 160 mg fasting 9 100% 27 (23-34) 187 (184-192) 78 (72-86)
Somberg et al. 2010 80 mg fasting 15 40% 32 (19-45) 166.1 (152-178) 69.6 (60-80.5)

All of these studies are single dose studies conducted in healthy volunteers.

NR=not reported

T Japanese population

* Total number of subjects in the study
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2.3.4. Pharmacokinetic/clinical data in children

Data from 80 pediatric patients of different age groups with known age,
gender, height, weight, dosing information, and measured plasma profiles were
used. The majority of these data are already published (Lder et al. 2005). These
patients, ranging from age 11 days to 17.7 years (average: 3.51 years, including 13
premature infants) received various doses of sotalol (1.0-9.9 mg/kg/day) for the
treatment of supraventricular tachycardia. The demographics for each age group
are presented in Table 2-4, while the height and weight of these children plotted
against age are presented in Figure 2-1. This pediatric data set was classified using
a system similar to the WHO classification, however, using 6 different age groups:
a) Neonates: 0-28 days, n = 14; b) Infants: 1-11 months, n = 33; c¢) Toddlers: 12-23
months, n = 6; d) Preschoolers: 2-5 years, n = 10; e) School-aged: 6-11 years, n =
13; and f) Adolescents: 12-18 years, n = 4. This classification was used for
presenting results in children. Finally, the raw data of the measured concentrations

are shown in Figures 2-2 and 2-3.

Table 2-4. Demographics of the simulated children classified into age groups

Age Group Nr. of Gender Age (years) Height (cm) Weight (kg)
children

(% M) Mean (Range)  Mean (range) Mean (Range)
Newborns 14 71% 0.05 (0.03-0.07) 50.3 (35-65) 3.3(2.1-4.3)
Infants 33 76% 0.40 (0.08-0.97) 61.2 (45.5-79) 5.8(2.2-9.7)
Toddlers 6 83% 1.35(1.05-1.69) 79.5 (74-88) 9.8 (7.7-12.3)
Preschooler 10 30% 3.33(2.1-4.2) 96.4 (84-139) 14.9 (10.6-31)
School-aged 13 62% 9.08 (6.4-11.7) 136 (120-158) 35.8(22.1-78.4)
Adolescents 4 75% 14'4107(;?'0_ 162 (142-183) 53.5(30.1-84.3)

% M = percentage of males in each age group
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Figure 2-1. The height and/or weight (dots) of each of the 80 children (boys: n=54, left panel; girls:

n=26, right panel) in the observed population originally exposed to sotalol. In addition, lines show

pediatric age- and gender-specific percentiles (3¢, 10%, 50, 90", and 97%"), which represent the

normal values of a representative German population (Kromeyer-Hauschild 2001). The inlay panels

show the demographics of the segment from birth to the end of the first year to highlight the values

of newborns and infants.
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Figure 2-2. Plots of the observed sotalol plasma concentration profiles in children, ID=1-40. Concentrations are measured in steady-state.
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Figure 2-3. Plots of the observed sotalol plasma concentration profiles in children, ID=41-80. Concentrations are measured in steady-state.
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2.3.5. Modeling strategy and simulation conditions

The adopted modeling strategy is shown in Figure 2-4. An adult model was
first developed for the IV application, as this allows for the kinetics of drug
disposition to be simulated in the absence of the complexities of the absorption
process. Thus, the best set of input parameters, the most suitable distribution
model, and the most appropriate clearance that collectively gave the best visual
description of the observed data used at this stage were assigned. For the oral
application, parameter values from the previous step were retained and the
values of additional parameters that control and influence drug absorption, such
as intestinal permeability, GET, and SITT were added. In the previously mentioned
steps (i.e., model building), only one fifth (n=5) of the collected adult data set was
used, whereas the remaining data (n=22) were used later for a subsequent model
verification. The adult model was slightly refined with regard to logP and CL inputs
before the evaluation of the final model. The final adult model was then scaled
down for applicability to children, taking into consideration the age-dependencies
of anatomical and physiological processes/parameters and the ontogeny of
clearance pathways—which are already integrated into the modeling software—

to predict pediatric sotalol exposure (see also: clearance scaling).

The comparison of model results with observed data was based on
simulations of virtual populations, where the main results of these simulations are
concentration-time profiles. In adults, each virtual population consisted of 100
virtual subjects having the same age range, race, gender composition, and dosing
as their corresponding real population. The resulting mean predicted plasma
concentrations were then compared with the mean observed concentrations for
model evaluation. Population simulations performed with a higher number of
virtual subjects (n=1000) did not produce any significant difference from the
previous ones which used 100 replicates, and did not influence any differences
seen between the results of both models. In children, a similar approach was used
by performing a population simulation of 100 virtual children each with the same
age, race, gender, and dosing information as that of a real child; however, the

resulting median plasma concentrations were used along with the individual
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observed concentrations in the model evaluation. For all previous simulations,

variability ranges for CL, GET, and SITT were assigned to account for the inter-

individual variability. These values were either set by the software, as in the case

of software 1 as follows: CL: mean value * 30% CV, GET: mean value * 38% CV,

SITT: Weibull distribution around the mean value with a=2.92 and f=4.04, or were

assigned manually based on a comprehensive literature search as in the case of

software 2 as follows: log-normal distribution with geometric standard deviation

of 1.3 for CL, GET: uniform distribution of 0.2—1.9 h in adults (Graff et al. 2001;

Gentilcore et al. 2006), 0.2-2.1 h in children (van Den Driessche and Veereman-

Wauters 2003; Barbosa et al. 2005; Barnett et al. 1999; Staelens et al. 2008), and

SITT: normal distribution with a mean value of 4 £+ 1 h in both adults and children

(Graff et al. 2001; Khin et al. 1999).

Workflow for sotalol PBPK model

Compound-specific PBPK modeling software with incorporated Experimental
parameters anatomical and physiological parameters PK data
OH
NH
O\\ //o Sotalol Y i
A
NH T n=5
Adult model building
IV application
PO application

\
<| Adult model verification | n=22

| Adult model refinement|

| Adult model evaluation | =21

Adult model scaled to children

Age specific Age specific Age specific
anatomical parameters clearance physiological parameters

v

Pediatric model

Explore oral sotalol exposure in children | n=80

Pediatric model evaluation

Figure 2-4. Schematic workflow of the developed PBPK models
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2.3.6. Clearance scaling

The modeling tools used here employ a physiology-based scaling of adult
clearance to children. In short, data-sets of experimentally obtained clearances of
various substances which were primarily eliminated through one process were
previously collected and used to develop and validate ontogeny patterns
accounting for the maturation of various elimination pathways—including renal
elimination pathways—over the pediatric age continuum (Johnson et al. 2006;
Edginton et al. 2006a). These ontogeny profiles are incorporated into the used
modeling tools and employed along with age-specific differences in bodyweight
and composition (i.e., percentages of water, phospholipids, and neutral lipids),
weight of and blood flow through eliminating organs, and protein binding in order
to scale adult clearance values (model inputs) to children of different ages. This
physiology-based scaling of clearance was shown to accurately predict clearance
in children from birth to adolescence (Johnson et al. 2006; Edginton et al. 2006a),

and was found to be superior to allometric scaling.

2.3.7. Evaluation of model performance

2.3.7.1. Graphical analysis and comparison of PK parameters

Visual predictive checks for superimposed predicted and observed plasma
concentration-time profiles, as well as goodness of fit plots were used for the

graphical analysis of each model results.

Moreover, the area under the plasma concentration-time curve from the
first to the last concentration point (AUCpst), the maximal concentration (Cmax)
with the time to reach it (tmax), and the elimination-rate constant (ke) were
calculated via a non-compartmental analysis for each observed profile and its
corresponding predicted value from each model. These parameters were chosen
as the primary parameters to be calculated for pediatric PK data as the drug was
given orally and the plasma concentration-time profile was measured under
steady-state conditions. AUC.st was calculated via the trapezoidal method, ke as

the slope of the last 3 concentrations on a natural logarithmic scale (in children:
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only for plasma profiles observed for over 10 hours, n=66/80), whereas Cmax and
tmax Were manually determined as in the definition. An observed/predicted ratio
(ratioobs/pred) Was then calculated and the final results were reported as mean
ratios(obs/pred) With @ nonparametric 95% confidence interval (Cl) derived from
10,000 bootstrap repetitions. A two-fold error range from the observed values for
model predictions was set as a reference. Such a range is commonly reported by
other researchers and is considered appropriate for a predictive model (Ginsberg

et al. 2004; Edginton et al. 2006b; Parrott et al. 2011).

In addition, further PK parameters were also calculated and reported for
adult data, as these data were obtained after single doses of both IV and oral
application, which further facilitated the ability of the developed model to reflect
sotalol disposition in the body. First, the AUCj.st was extrapolated to infinity (AUCo.
inf) by adding the terminal AUC calculated by dividing the last measured
concentration (Cst) by the calculated elimination  rate-constant
(AUCterminai=Ciast/ke). As a result, the clearance was calculated as Dose/AUCq.int. If
the previous clearance calculation was made for oral drug plasma concentration
profiles, the calculated value indicates an oral clearance (CL/F). Finally, the

elimination half-life (t;) was calculated as ke/In2.

2.3.7.2. Statistical and numerical evaluation

Statistical calculations were performed using MATLAB 2012a (The
Mathworks Inc., Natick, MA). To numerically describe the predictive performance
of the model, various numerical metrics were reported in order to quantify either

the model accuracy or precision (Sheiner and Beal 1981).

Mean Error (ME), Mean Percentage Error (MPE), and Median Percentage
Error (MDPE) serve to measure the accuracy of the model. The closer the value of
any of these metrics is to 0, the better the model accuracy. For example, a value
of 0% for either MPE or MDPE indicates the absence of a bias towards under- or
over-prediction of sotalol concentrations when compared to observed data. The
ME indicates the average absolute value of error for each simulated concentration

point.
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On the other hand, Mean Absolute Error (MAE), Mean Absolute
Percentage Error (MAPE), and Median Absolute Percentage Error (MDAPE) serve
to measure the precision of the model. The closer the value of any of these metrics
is to 0, the better the model accuracy. A value of 0% indicates that predicted and

observed values for sotalol are identical.

Mean Error (ME) was calculated as the mean of all errors for each concentration
point. Errors (= residuals) were calculated for every concentration point in each

drug administration in adults and children as follows:

E= (CPRED — C s ) Equation (2-1)

Mean Absolute Error (MAE) was calculated as the mean for all absolute errors for

each concentration point. Absolute errors were calculated as:

AE =|Copp — Cogs | Equation (2-2)

The Mean and the Median Percentage Errors (MPE and MDPE) were also
calculated. Percentage error (PE) was calculated for all concentration points in

each drug administration as follows:

PE:MXIOO% Equation (2-3)

OBS

The mean and the median of all absolute percentage errors (MAPE and MDAPE)
were also reported. Absolute percentage errors (APE) were calculated for all

concentration points in each drug administration as follows:

Coprn—C
APE = ZPRED _ ZO0BS| + 100% Equation (2-4)

OBS

Nonparametric 95% confidence intervals derived from 10,000 repetitions of
random data sampling and recalculation (bootstrap repetitions) were additionally
reported for the median percentage error (MDPE) and median absolute

percentage error (MDAPE), respectively.
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2.4. Results
2.4.1. Simulation results in adults

A total of 11 different adult single-dose PK studies of either IV or oral
sotalol were collected. Because some of these studies investigated sotalol
pharmacokinetics after different doses or type of application, or in different
individuals, the total number of obtained adult data sets was 27. For each of these
data sets, sotalol exposure was simulated using both models developed by

SIMCYP® (software 1) or PK-SIM® (software 2).

A visual comparison between mean simulated and mean observed plasma
concentration-time profiles for four representative data sets in adults is shown in
Figure 2-5. In general, the 2 presented models were able to accurately describe
sotalol exposure after IV and oral application over a total dose range of 20 to 320
mg (0.2-4.5 mg/kg body weight [BW]), and for both Caucasians and Asians. The
resulting AUCiast ratios(obs/pred) Were within 0.8-1.25 in 100% (27/27) and in 92.6%
(25/27) of the observed values using software packages 1 and 2, respectively, and
with all predictions contained within the range 0.5-2. Moreover, the adult model
did not show any difference in the predictability of sotalol exposure after IV or oral
application. The mean AUCst ratiopns/eredy for all simulated data sets using
software 1 was 0.997 and 0.94 after IV and oral applications, respectively. These
results were similar using software 2 as the mean AUCjast ratio(obs/pred) Was 0.94 for
the IV and 0.987 for the oral application. Figure 2-6 shows the predicted vs

observed plots for plasma concentrations, AUCiast, Cmax, tmax, and Ke.

The calculated numerical metrics indicate good accuracy of both models
(Table 2-5). Software package 1 showed no bias with a MDPE value (95t bootstrap
Cl) of 1.36% (-1.37-3.17), in comparison to a slight bias of 3.17% (1.63-5.23) in the
model generated using software package 2, which is, however, minimal and has
no clinical relevance. Finally, both models showed similar precision (deviation less
than 10%) as the MDAPE for all predicted concentration points was 9.91% (8.79-
10.96), and 9.76% (8.56-10.85) using software packages 1 and 2, respectively
(Figure 2-6).

37



Chapter 2 ® PBPK modeling of oral drug exposure (sotalol as a model drug)

Results using Simcyp Results using PK-Sim

10° 20 mg IV, Antilla etal. 1976 (A,) 10’ 20 mg IV, Antilla et al. 1976 (A,)
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Sotalol plasma concentrations [ug/ml]

Time [h]

Figure 2-5. Comparison of predicted (lines; mean, 5-95% percentile, min/max) and mean observed
(dots; * standard deviation [SD]) concentrations of IV and oral sotalol after various dosing
strategies in both Caucasians [(a), (b)] and Asians [(c), (d)]. Simulations were performed using
software 1 (SIMCYP®, left column, filled circles) and software 2 (PK-Sim®, right column, empty
circles). Observed data are obtained from four different single dose PK studies in healthy adult
volunteers.
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Figure 2-6. Goodness of fit plots for simulations of adult data by both sotalol PBPK models. a)
Predicted vs observed concentrations plot, (b—e) predicted vs. observed AUCst, Cmax, tmax, and ke
plots. Results are obtained by using software 1 (SIMCYP®, left column, filled circles) and software
2 (PK-Sim®, right column, empty circles). Line= Line of unity; dashed lines= twofold error range;
MDPE= median percentage error (95% confidence interval [Cl]); MDAPE= median absolute
percentage error (95% Cl).
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Table 2-5. Numerical model evaluation for both developed models in adults

Study Dose ME (pg/ml) MAE (ug/ml) MPE (%) MAPE (%) MDPE (%) MDAPE (%)
(mg)  Simcyp PKSIM Simcyp PKSIM Simcyp PKSIM Simcyp PKSIM Simcyp PKSIM Simcyp  PKSIM
Anttila 1976 207 0.003 0.036 0.007 0.039 -1.488  10.897 5.332  17.007 -1.692 2.470 5.369 9.741
Rehm 1987 105t -0.143 0.064 0.190 0.064 9.823 37.321 22.026 37.321 9.528 14.237 16.155 14.237
Rehm 1987 140t -0.144 0.131 0.223 0.131 22.807 62.448 33.029 62.448 14.081 19.784 20.066 19.784
Poirier 1990 140t -0.051 0.067 0.111 0.072 -1.685 6.159 8.477 7.104 -1.385 6.303 7.052 6.303
Uematsu 1994 70t -0.263 -0.051 0.275 0.080 -11.213  2.592 16.440 8.369 -4.926 4.593 12.283 7.744
Uematsu 1994  105% -0.127 -0.018 0.127 0.054 -8.534  -0.231 8.534 4.204 -7.520 0.070 7.520 4.134
Salazar 1997* 35+ -0.122 -0.045 0.122 0.076 -19.833  -4.698 19.833  9.870 -11.324  -3.732 11.324 6.422
Salazar 1997* 105t -0.026 0.059 0.041 0.105 -8.188  -0.428 9.282  10.508 -4.313 -3.535 4.636 9.751
Salazar 1997* 210t -0.652 -0.254 0.668 0.384 -16.034 -2.471 16.987 8.578 -4.794 0.758 4.877 6.569
Salazar 1997 35+ -0.098 -0.041 0.115 0.056 -2.863 2.225 26.411 19.823 -4.455 -9.321 16.542 13.444
Salazar 1997 105t -0.139 -0.073 0.158 0.079 1.506 0.149 16.636 15.133 0.498 -6.924 6.481 8.766
Salazar 1997 210t -0.317 0.013 0.440 0.200 3.363 7.009 17.795 10.003 4.363 2.433 11.742 3.063
Somberg 2010  75% 0.053 0.161 0.055 0.161 18.816  52.364 21.689 52.364 15.977 43.679 19.062 43.679
Anttila 1976 160% 0.075 0.158 0.099 0.173 10.469 20.436 18.157 27.117 8.856 10.756 14.515 13.395
Kahela 1979 160% 0.009 0.066 0.045 0.083 1.836 8.406 6.545 11.513 2.350 0.114 6.344 3.366
Ochs 1985 320% -0.003 0.163 0.161 0.284 -5.477  12.588 18.907 24.764 -4.985 4.454 19.104 14.176
Poirier 1990 100% 0.011 0.045 0.041 0.060 3.678 14.999 17.068 23.236 8.665 4.042 12.329 10.878
Uematsu 1994  50% -0.012 -0.019 0.024 0.024 -3.727  -8.251 8.655 9.454 -2.808 -9.769 6.818 9.769
Uematsu 1994  100% 0.004 0.007 0.039 0.062 0.022 -1.374 7.944  15.307 3.138 -6.444 6.825 10.483
Uematsu 1994  200% 0.034 0.009 0.091 0.154 9.558 6.606 13.146 21.182 4.395 -9.961 7.181 12.398
Uematsu 1994  300% 0.231 0.214 0.243 0.255 58.050 61.971 58.523 64.068 22.308 18.808 22.308 18.808
Kimura 1996 40% 0.011 0.001 0.029 0.011 13.111 3.423 22.033  7.690 8.016 -3.114 16.315 3.397
Kimura 1996 80% 0.032 0.022 0.056 0.031 14.567 9.012 20.529 15.314 12.150 3.277 12.745 4.621
Kimura 1996 160% 0.006 0.071 0.059 0.083 6.684 11.466 10.848 18.293 6.300 -0.488 8.959 7.684
Laer 1997 160% 0.021 0.132 0.058 0.141 4.587 15.330 7.869  19.848 6.655 11.412 7.781 13.376
Liebau 1999 160% -0.020 0.010 0.064 0.053 -1.758  -2.974 9.383 9.858 -3.691 0.839 8.513 5.716
Somberg 2010  80% 0.037 0.056 0.050 0.062 13.204 16.140 26.288 29.249 11.968 14.201 17.225 19.606

T 1V drug application; * female group; # Oral drug application; ME= Mean Error; MPE=Mean Percentage Error; MDPE= Median Percentage Error; MAE= Mean Absolute Error; MAPE= Mean
Absolute Percentage Error; MDAPE= Median Absolute Percentage Error. Simcyp= predicted value by Simcyp® software; PKSIM=predicted value by PK-Sim® software.
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The results of a comprehensive PK analysis that was performed for each observed
profile and its corresponding predicted values by each PBPK model after IV and oral drug
administrations are reported in Table 2-6 and Table 2-7, respectively. This
comprehensive analysis was necessary to characterize the processes of sotalol
absorption, distribution, and elimination in the human body in order to insure a proper
reflection of these processes by the adult model prior to its extrapolation to the pediatric

age.

After IV dosing, the adult model developed using software 1 predicted the
clearance of sotalol in the simulated studies to range from 8.77 to 11.19 L/h with an
average of 9.72 L/h, whereas the software 2 model predicted it to range from 7.57 L/h to
9.78 L/h with an average of 8.90 L/h. The model 1 software predicted the volume of
distribution and the elimination half-life in the simulated studies to average 94.94 L and
6.87 h, respectively. In contrast, the model 2 software predicted them to average 106.85
L and 8.39 h, respectively. Moreover, the average AUCo.inf Was predicted to be 0.100 and
0.107 pg/mL/h per each administered milligram of sotalol using the software 1 and
software 2 models, respectively. All of the previously mentioned results are in very good
agreement with reported values in the literature (see section 2.3.1.2) and the calculated
PK parameters for the used studies (Table 2-6). After a typical 160 mg oral dosing of
sotalol, the median values of AUCo.inf, Cmax, and tmax were predicted to be 15.72 pug/mL/h,
1.09 pg/mL, and 3 hours, respectively, by software 1 and 16 pg/mL/h, 1.30 ug/mL, and 2
hours, respectively, by the software 2 model, which were also in very good agreement
with the calculated values of the observed plasma profiles (Table 2-7). If such PBPK
models for sotalol had been available some years ago, some of the recent adult PK studies

would have been of little or no use.
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Table 2-6. Calculated PK parameters for observed and predicted sotalol plasma profiles after IV drug application in adults

Study IV Dose AUCq.inf (1g/ml/h) Clearance (L/h) Volume of distribution (L) Elimination half-life (hour)
OBS Simcyp  PKSIM OBS Simcyp  PKSIM OBS Simcyp  PKSIM OBS Simcyp  PKSIM
Anttila 1976 20 mg 2.06 1.97 2.08 9.71 10.16 9.63 103.69 101.82 94.57 7.40 6.94 6.80
Rehm 1987 1.5mg/kg 10.61 11.71 13.61 9.89 8.97 7.72 117.17 11046 113.57 8.21 8.54 10.20
Rehm 1987 2 mg/kg 13.50 15.61 18.48 10.37 8.97 7.57 101.67 110.48 114.45 6.80 8.54 10.47
Poirier 1990 2 mg/kg 16.00 15.96 16.52 8.75 8.77 8.48 112,57 105.37 115.24 8.91 8.33 9.42
Uematsu 1994 1 mg/kg 7.07 6.90 7.58 9.90 10.14 9.24 117.86 111.85 105.80 8.25 7.65 7.94
Uematsu1994 1.5mg/kg 12.01 11.08 11.94 8.74 9.48 8.79 105.75 115.46 102.68 8.39 8.44 8.10
Salazar 1997+ 0.5mg/kg  4.00 3.13 3.80 8.74 11.19 9.22 70.21 47.35 90.19 5.56 2.93 6.78
Salazar 1997+ 1.5mg/kg 11.44 10.12 10.73 9.18 10.37 9.78 85.38 89.80 102.35 6.45 6.00 7.25
Salazar 1997+ 3 mg/kg 24.65 20.58 24.03 8.52 10.20 8.74 94.80 88.33 103.75 7.71 6.00 8.23
Salazar 1997% 0.5mg/kg  3.37 3.37 3.60 10.37 10.38 9.72 114.29 54.22 109.17 7.64 3.62 7.78
Salazar 1997% 1.5mg/kg 11.00 11.48 10.82 9.54 9.15 9.70 77.46 97.27 116.83 5.62 7.37 8.34
Salazar 1997% 3 mg/kg 21.37 23.25 23.14 9.83 9.03 9.07 163.88 96.07 117.87 11.56 7.37 9.00
Somberg 2010 75 mg 6.55 7.80 9.28 11.45 9.62 8.08 155.00 105.77 102.59 9.38 7.62 8.80

AUCy.1ast= Area under the plasma concentration-time profile from time 0 to infinity. OBS= Observed value; Simcyp= predicted value by Simcyp® software; PKSIM=predicted
value by PK-Sim® software

T Female group; ¥ male group; Reference body weight used is 70 kg.
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Table 2-7. Calculated PK parameters for observed and predicted sotalol plasma profiles after oral drug application in adults

Study Dose AUCo.int (ng/ml/h) Crmax (1g/ml) tmax (h) Oral Clearance (L/h)
(mg) OBS SIMCYP PKSIM OBS SIMCYP PKSIM OBS SIMCYP PKSIM OBS SIMCYP PKSIM
Anttila 1976 160 16.32 15.72 16.00 1.25 1.21 1.43 3 3 2 9.80 10.17 10.00
Kahela 1979 160 16.72 16.58 16.92 1.20 1.09 1.30 4 2 2 9.57 9.65 9.45
Ochs 1985 320 35.85 31.92 35.23 2.55 2.18 2.59 4 3 2.5 8.93 10.03 9.08
Poirier 1990 100 11.01 10.14 10.37 0.74 0.66 0.76 4 3 2 9.08 9.86 9.64
Uematsu 1994 50 6.05 6.05 5.49 0.44 0.42 0.44 3 3 2 8.26 8.26 9.10
Uematsu 1994 100 12.16 12.11 10.93 0.90 0.84 0.91 3 3 2 8.22 8.26 9.15
Uematsu 1994 200 23.35 24.22 21.71 1.79 1.67 1.78 3 3 3 8.57 8.26 9.21
Uematsu 1994 300 30.97 37.39 34.12 2.47 2.51 2.68 4 3 3 9.69 8.02 8.79
Kimura 1996 40 3.85 4.83 4.06 0.36 0.34 0.35 3 3 2 10.40 8.29 9.86
Kimura 1996 80 8.73 9.73 8.50 0.74 0.67 0.72 3 3 2 9.16 8.22 9.42
Kimura 1996 160 16.56 17.48 16.69 1.34 1.18 1.43 3 3 2 9.66 9.15 9.59
Lier 1997 160 14.81 15.54 15.45 1.15 1.05 1.30 3 3 3 10.80 10.30 10.35
Liebau 1999 160 15.87 15.57 13.75 1.17 1.06 1.20 3 3 2 10.08 10.28 11.63
Somberg 2010 80 7.32 8.02 7.38 0.60 0.61 0.70 2 3 2.5 10.93 9.98 10.84

AUCy.1ast= Area under the plasma concentration-time profile from time 0 to infinity. Cnax= Maximum concentration in the plasma profile; tn.x= time of the maximum
concentration; Oral clearance= CL/F; OBS= Observed value; Simcyp= predicted value by Simcyp® software; PKSIM=predicted value by PK-Sim® software.
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2.4.2. Simulation results in pediatrics

Using both modeling software applications, the extrapolated model
corresponding to the pediatric population showed acceptable correlated
predictions to in vivo data in adolescents down to infants, with a pronounced
deviation in neonates. A comparison between median simulated and observed
plasma profiles for 6 representative pediatric patients of each age group is shown

in Figure 2-7.

Only in neonates, both models were unable to predict a mean ratio(obs/pred)
of all four PK parameters within the predefined two-fold error range (Figure 2-8).
Using software 1, the mean ratios(obs/pred) Were 2.56 (95% Cl: 2.10-3.49) and 2.15
(95% Cl: 1.77-2.99) for AUC.st and Cmax, respectively. Using software 2, the mean
ratio(obs/pred) Of tmax was 2.37 (95% Cl: 1.76-3.25). The elimination-rate constant
was reasonably predicted by both models as indicated by a mean ratio of 0.55 and

0.81 for the 2 software models, respectively.

In all remaining age groups, the mean ratios(obs/preq) for the chosen PK
parameters were within a two-fold error range irrespective of the model used,
which indicates a good predictive performance and a proper description of the
age-related PK changes of sotalol. The 95% Cl of the mean ratios for all PK
parameters was contained within the range of 0.5 to 2, except for tmax in some age

groups (Figure 2-8).

Furthermore, both models showed a general tendency to underestimate
sotalol concentrations as seen with the negative MDPE values in almost all age
groups and the lower accuracy and precision values when compared to the adult
model (see Figure 2-9). The least accuracy in predicting individual concentration
points was seen in neonates for software 1 (MDPE= -54.8%) and in infants for
software 2 (MDPE= 29.2%), whereas for both models the highest accuracy was
seen in adolescents. On the other hand, the pediatric model imprecision was less
than 40% in all groups except in neonates using software 1 (MDAPE = 54.8%) and

in infants using software 2 (MDAPE = 43.6%), with the best model precision seen
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in adolescents using both software packages (MDAPE = 15.7%, 15.6% for software

1 and software 2, respectively).
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Figure 2-7. Comparison of predicted (lines; median, 5-95th percentile) vs individual observed
(symbols) plasma concentrations in six representative pediatric patients from (a) adolescents to (f)
neonates, after various doses of oral sotalol given 3-4 times daily. Predictions were made using
software 1 (Simcyp®, left panel, filled circles) and software 2 (PK-Sim®, right panel, empty circles).

All observed data are taken from Laer et al. 2005.
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Figure 2-8. Comparison between the observed and predicted values of (A) the area under the plasma concentration-time curve (AUC.s), (B) maximum
concentration (Cmnax), (C) time of the maximum concentration (tmax), and (D) the elimination rate constant (k) in adults oral studies and in children. Results are
presented as mean ratios in each age group (symbols: circles for software 1 results, squares for software 2 results) with a 95% confidence interval (horizontal
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Figure 2-9. Median predicted vs individual observed concentration plots for 80 pediatric patients
stratified in 6 pediatric age groups from (a) adolescents to (f) neonates. Results are obtained using
software 1 (SIMCYP®, left column, filled circles) and software 2 (PK-Sim®, right column, empty
circles). Line= Line of unity; dashed lines= two-fold error range; MDPE= median percentage error
(95% confidence interval [CI]); MDAPE= median absolute percentage error (95% Cl).
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Table 2-8. Evaluation metrics and calculated observed to predicted ratios of AUCast, Cmax, tmax, and ke of the entire pediatric collective using both models.

Patient Age AUCst Crmax tmax ke MDPE MDAPE
Code ratiooss/prep ratiooss/prep ratiooss/prep ratiooss/prep (%) (%)

(year) Simcyp PKSIM Simcyp PKSIM Simcyp PKSIM Simcyp PKSIM Simcyp PKSIM Simcyp PKSIM
1 0.030 2.205 0.922 1.892 0.747 1.000 1.947 - - -53.237 3.417 53.237 10.130
2 0.033 2.367 1.112 2.041 0.937 2.885 2.885 - - -64.545  -16.583 64.545 37.883
3 0.036 1.737 0.711 1.417 0.542 1.000 1.739 0.586 0.853 -40.500 31.848 40.500 31.848
4 0.036 2.420 0.934 2.182 0.916 1.000 1.000 - - -56.675 8.296 56.675 10.551
5 0.036 3.252 1.273 2.717 1.032 1.331 2.500 0.495 0.738 -69.854  -28.787 69.854 30.044
6 0.038 6.253 2.846 5.234 2.282 3.000 6.000 - - -85.202  -68.200 85.202 68.200
7 0.041 2.266 0.806 1.674 0.635 2.061 3.961 0.627 1.006 -57.095 16.730 57.095 16.730
8 0.049 1.337 0.549 1.395 0.556 0.502 1.000 0.560 0.900 -26.347 83.766 26.347 83.766
9 0.049 2.828 1.259 2.037 0.837 1.938 3.479 0.456 0.613 -63.937  -26.592 63.937 31.500
10 0.052 2.187 0.831 1.796 0.713 1.545 2.957 0.460 0.744 -55.149 11.181 55.149 11.181
11 0.058 3.569 1.407 3.377 1.434 1.000 1.000 - - -71.148  -29.672 71.148 29.672
12 0.060 2.116 0.876 1.611 0.647 1.500 2.727 0.383 0.598 -49.073 9.386 49.073 21.008
13 0.068 2.071 0.947 1.695 0.820 1.000 1.000 0.637 0.947 -47.788 6.504 47.788 6.504
14 0.071 1.173 0.517 1.005 0.459 1.000 1.000 0.707 0.973 -17.056 86.477 17.056 86.477
15 0.082 3.001 1.233 2.342 0.979 1.519 2.926 0.476 0.698 -65.726  -22.757 65.726 28.443
16 0.088 2.939 1.228 2.254 1.072 1.000 1.000 0.497 0.722 -63.729  -16.606 63.729 16.606
17 0.088 4.210 1.839 2.956 1.258 1.971 3.083 0.380 0.593 -74.800 -48.468 74.800 48.468
18 0.099 2.342 1.096 1.856 0.847 1.500 1.500 0.468 0.653 -58.710  -13.236 58.710 25.634
19 0.115 1.694 0.826 1.808 0.952 1.000 1.000 0.436 0.585 -44.684 12.938 44.684 12.938
20 0.126 0.554 0.261 0.578 0.262 1.000 1.738 1.006 1.428 84.501  268.778 84.501 268.778
21 0.126 0.999 0.477 0.911 0.432 1.500 3.000 1.847 2.693 2.842 91.721 16.325 91.721
22 0.129 0.926 0.421 1.133 0.561 1.000 1.000 - - 4.420 143.397 13.302 143.397
23 0.167 1.230 0.521 0.814 0.471 3.000 1.500 0.574 0.916 -36.594 59.172 54.369 59.172
24 0.180 1.998 0.947 1.669 0.803 2.068 3.821 0.761 1.026 -57.167  -12.555 57.167 22.016
25 0.214 0.828 0.413 0.697 0.327 2.005 3.637 0.488 0.692 14.429  110.989 26.762 110.989
26 0.236 0.948 0.521 0.811 0.469 1.000 1.000 0.696 0.888 9.173 94.399 16.569 94.399
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Patient Age AUCst Crmax MDPE MDAPE
Code ratiooss/prep ratioogs/preb ratioogs/prep ratioogs/prep

(year) Simcyp PKSIM Simcyp  PKSIM Simcyp PKSIM Simcyp PKSIM Simcyp PKSIM Simcyp PKSIM
27 0.238 1.316 0.719 0.995 0.523 1.333 1.333 0.516 0.662 -24.838  29.158 24.838 29.158
28 0.247 0.881 0.488 0.851 0.463 1.000 2.000 0.944 1.263 13.541 96.234 13.541 96.234
29 0.282 0.991 0.569 0.790 0.424 1.985 3.769 0.619 0.781 -1.580 55.162 26.846 55.162
30 0.304 0.389 0.560 0.344 0.471 1.500 3.000 - - 166.767  74.530 166.767 74.530
31 0.370 1.393 3.389 1.067 2.483 1.505 1.505 0.717 0.889 -24.157  -72.069 24.157 72.069
32 0.395 0.926 0.608 0.868 0.526 1.000 1.000 - - 10.443 68.348 17.744 68.348
33 0.400 1.473 0.712 1.097 0.552 2.713 2.713 - - -36.900 27.072 36.900 27.072
34 0.411 2.255 1.383 3.208 1.724 1.000 3.000 0.553 0.660 -52.579  -29.318 52.579 29.953
35 0.422 1.518 1.000 1.289 0.797 1.000 1.000 0.892 1.072 -37.263 -7.353 37.263 8.763
36 0.433 2.000 1.140 1.550 0.900 1.500 3.000 0.715 0.905 -50.375  -18.149 50.375 23.539
37 0.482 0.748 0.647 0.581 0.428 1.499 1.499 - - 18.338 35.170 18.338 35.170
38 0.570 0.855 0.588 0.670 0.422 1.469 2.817 0.525 0.584 16.022 53.514 27.202 53.514
39 0.611 0.784 0.539 0.664 0.429 1.000 1.000 0.600 0.625 32.285 80.966 36.176 80.966
40 0.611 1.524 1.117 1.380 0.902 1.000 1.000 0.814 0.933 -35.605 -18.236 35.605 18.236
41 0.655 0.845 0.605 0.893 0.594 1.000 1.000 0.897 1.022 19.872 65.606 25.136 65.606
42 0.688 0.984 0.725 0.845 0.582 1.448 1.448 0.505 0.520 3.377 29.744 16.151 29.744
43 0.693 1.998 0.986 1.522 0.838 1.000 1.000 - - -43.723 9.389 43.723 20.497
44 0.696 1.148 0.872 1.027 0.704 1.000 1.000 0.876 0.915 -5.115 18.150 5.742 20.647
45 0.712 1.014 0.773 0.879 0.613 1.000 1.000 0.703 0.718 0.555 23.927 11.925 23.927
46 0.816 1.303 0.978 0.980 0.672 0.500 0.500 0.409 0.442 -26.069 -9.989 26.069 30.736
47 0.970 0.845 0.674 0.811 0.585 0.500 1.000 1.065 1.059 22.515 44.241 22.515 44.241
48 1.047 1.364 1.038 1.328 1.036 1.500 1.500 0.785 0.773 -32.584  -11.813 32.584 16.533
49 1.216 1.346 1.148 1.019 0.841 1.458 3.500 0.652 0.612 -29.442  -17.924 29.442 31.001
50 1.244 1.131 0.868 0.819 0.650 1.452 1.452 0.604 0.647 -20.562 5.093 26.952 24.410
51 1.318 1.204 1.088 1.104 0.940 1.500 1.500 0.984 0.860 -24.292 -14.499 24.292 19.607
52 1.584 1.601 1.362 1.367 1.169 1.000 1.000 0.654 0.671 -37.364  -25.905 37.364 25.905
53 1.693 0.621 0.547 0.627 0.567 1.579 1.579 - - 60.052 83.160 60.052 83.160
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54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

2.093
2.901
2.940
3.049
3.156
3.321
3.636
3.850
4.077
4.236
6.392
6.855
7.942
7.960
8.789
8.932
9.025
9.060
9.249
9.279
11.293
11.578
11.737
13.014
13.129
13.718
17.751

0.881
2.232
2.050
1.367
1.453
1.169
1.984
1.450
0.541
1.032
1.126
1.569
1.569
1.246
2.273
1.486
1.293
1.053
0.607
1.878
1.425
1.762
1.661
1.712
0.936
1.042
1.305
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0.804
1.315
1.825
1.376
1.329
2.180
1.742
1.171
0.519
0.953
1.039
1.338
1.362
1.065
1.961
1.346
1.102
0.871
0.565
1.561
1.234
1.624
1.569
1.610
0.877
1.016
1.116

0.805
2.308
1.808
1.124
1.056
1.184
1.479
1.133
0.429
0.960
1.150
1.281
1.256
1.122
2.316
1.290
1.140
0.908
0.619
1.730
1.232
1.786
1.357
1.613
0.898
0.992
1.329

0.766
1.260
1.683
1.104
1.011
2.213
1.359
0.970
0.409
0.902
1.093
1.226
1.137
1.046
2.057
1.190
1.016
0.799
0.569
1.477
1.140
1.681
1.325
1.550
0.968
0.997
1.159

1.000
1.000
1.500
1.000
3.125
1.000
2.041
1.660
1.938
0.495
0.500
1.000
1.459
1.000
1.000
2.304
1.500
1.000
1.000
1.500
1.000
0.539
1.000
1.000
1.000
1.000
3.000

1.000
1.000
1.500
1.000
3.125
1.000
2.041
1.660
1.938
0.495
0.500
0.502
1.459
1.000
1.000
1.352
1.500
1.000
1.000
1.500
1.000
0.539
1.000
1.000
0.500
1.000
1.500

0.774
0.881
0.759
0.725
0.579
0.688
0.929
0.885
0.900
0.774
0.694
0.613
0.702
0.665
0.895
0.796
0.652
0.921
0.573
0.555
0.735
0.792
0.954
1.058
0.406

0.813
0.946
0.672
0.805
0.602
0.811
1.034
0.920
1.085
0.873
0.823
0.713
0.830
0.753
0.953
0.909
0.806
0.966
0.616
0.755
0.825
0.931
1.144
1.207
0.407

11.690
-56.549
-57.989
-29.597
-38.674
-15.536
-56.865
-42.924
35.659

-3.644
-12.236
-34.631
-37.418
-20.841
-56.497
-34.525
-25.435

-4.429
61.482
-49.481
-30.880
-43.158
-28.036
-44.193

3.201

-3.701

-21.664

22.720
-20.813
-51.611
-28.934
-33.215
-54.811
-49.984
-27.376
39.010
3.055
-2.669
-27.419
-26.307
-6.025
-49.701
-26.941
-12.136
15.204
72.711
-37.703
-21.590
-37.822
-24.586
-40.479
15.348
0.428
-10.355

11.690
56.549
57.989
29.597
38.674
18.558
56.865
42.924
35.659
11.304
12.236
34.631
37.418
20.841
56.497
34.525
25.435
8.861
61.482
49.481
30.880
43.158
28.036
44.193
7.935
6.634
21.664

22.720
20.813
51.611
28.934
38.517
54.811
49.984
29.025
39.010
8.383
9.804
27.419
26.307
6.937
49.701
26.941
12.136
16.590
72.711
37.703
21.590
37.822
24.586
40.479
17.370
3.096
10.355

AUCy.1ast= Area under the plasma concentration-time profile from time 0 to infinity. Cnax= Maximum concentration in the plasma profile; tmax= time of the maximum
concentration; ke= elimination rate constant; MDPE= Median Percentage Error; MDAPE= Median Absolute Percentage Error; Simcyp= predicted value by Simcyp® software;
PKSIM=predicted value by PKSIM® software. In 14 patients, ke was not calculated due to a short sampling time
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2.5. Discussion

2.5.1.1. Key findings

Whole-body PBPK models for sotalol, an orally given drug, were developed
using 2 specialized modeling software packages. The presented models were able
to successfully describe sotalol pharmacokinetics in adults and over a wide range
of the pediatric age spectrum, except in neonates. The results obtained by both
models were comparable and showed differences only in children under 1 year of

age.

Following this methodological approach, PBPK models of sotalol were first
developed and evaluated in adults. Both models were able to accurately and
reliably predict sotalol exposure after a wide range of IV and oral dosing (Figures
2-5, 2-6), which indicates that they adequately captured the major processes
driving sotalol pharmacokinetics. The initial development and validation of the
model in adults presents a modeling strategy that forms a solid basis for age
extrapolation to increase the accuracy of the pediatric model predictions. Such a
strategy is common in the development of pediatric models and has already been
used by other researchers (Edginton et al. 2006a; Kersting et al. 2012; Parrott et
al. 2011).

In adolescents down to infants, the pediatric models seemed to properly
reflect the age-related changes in sotalol pharmacokinetics, as indicated by the
adequate description of the experimental plasma profiles, which was further
supported by the numerical metrics and a good prediction of AUCtiast, Cmax, tmax,
and ke indicated by a mean ratio(obs/pred) Within a two-fold error range (Figures 2-
7, 2-8, 2-9). The only exception was for tmax, Where the calculated 95% Cl exceeded
the two-fold error range in some age groups; however, this could be explained,
except for infants, by the relatively low number of included children. Our results
are similar to those reported by Parrot et al., whose pediatric model for orally
administered oseltamivir and its metabolite revealed a predicted AUC in infants

that was within a two-fold range of the observed value (Parrott et al. 2011).
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In neonates, no model was able to predict a mean ratio(obs/rreq) for all reported PK
parameters (AUCiast, Cmax, tmax, and ke) within the predefined two-fold error range,
as a result of which the results were judged as inadequate (Figure 2-8). The
noticed deviation was seen for parameters reflecting the extent and rate of drug
absorption (AUC)ast, Cmax, O tmax) rather than drug disposition (ke). In the previously
mentioned model developed by Parrot et al., a difference of more than two-fold
was obtained upon AUC prediction of oseltamivir and its metabolite in neonates,
which is similar to our findings (Parrott et al. 2011). A mean ratio(obs/rred) higher
than 2 for any PK parameter—as in our results—implies that the model predicts a
value that is, on average, less than half of the experimentally observed one.
Nevertheless, the clinical relevance of such results should be eventually judged
after also taking into consideration the intended use of the generated data, and
the allowable error for that particular drug (e.g., low for drugs with narrow
therapeutic window). For example, this deviation seen in neonates would be of
more clinical relevance if the model is intended to be used to make dose
recommendations than to suggest sampling times. In the former case, any
recommendations in neonates based on such low predicted AUC, in comparison
to the observed AUC, could lead to recommending higher therapeutic doses than
necessary, with potential toxicity (e.g., torsades de pointes with sotalol) as a

clinical consequence.

Both of the presented models performed similarly in adults and in almost
all pediatric age groups with the only discrepancy seen in children less than 1 year
of age. First, whereas the software 1 model tended to under-predict plasma
concentrations in all age groups, including infants and neonates (negative MDPE),
the software 2 model under-predicted plasma concentrations only in children over
1 year of age. Finally, in neonates, the software 1 model was unable to accurately
predict the extent of drug absorption as indicated by a mean ratio(obs/pred)
exceeding 2 for AUCj.st and Cmax, Whereas the software 2 model did not adequately

predict the rate of drug absorption (tmax) in the same age group.

We suggest that the inaccuracy of the predictions seen in neonates is

attributed to the absorption rather than elimination or distribution processes. This
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is because the major factors that influence sotalol disposition (e.g., maturation of
the renal function, the age-related differences in body composition, tissue
volumes, and blood flows) are well characterized over the entire pediatric age
range and are successfully implemented in the used modeling tools, which should
make the scaled information (e.g., clearance) a good estimate. In this exercise,
both models were able to acceptably predict the elimination rate constant in all
pediatric age groups (Figure 2-8). However, the marginally accepted low mean
ratio(obs/ered) for ke in neonates obtained using software package 1 indicate
relatively high predicted values that are most probably attributed to high
predicted clearance in this age group. As a result, the potential influence of any
inaccuracy in clearance scaling on the obtained results in neonates should not be

completely excluded.

In contrast, the absorption process is more complex and involves many
factors apart from the pharmaceutical formulation of the drug. The first set of
factors are anatomical and physiological, such as gastrointestinal organ volume
and blood flow, radius, length and effective surface area, pH, GET, SITT,
metabolizing enzymes, transporters, and fluid secretion. Influenced, in part, by
difficulties in obtaining age-specific information in the literature, an age specific
value is not incorporated for all of these factors in the pediatric absorption models
integrated within the used modeling tools, which makes them an area in need of
improvement (Table 2-9). For instance, the ADAM model used by software 1 to
predict the oral drug absorption is under further improvement to fill such gaps
with age-specific values (e.g., for metabolizing enzymes, transporter, pH profile,
and volume of secreted fluids). As sotalol is not metabolized or actively
transported throughout the gastrointestinal tract and is highly soluble, an age-
related change in the pH profile could be the sole possible factor from this list to

influence its extent of absorption.

The second set of parameters is drug dependent, such as solubility, pKa,
volume/size of the molecule, and its intestinal permeability. Concerning the latter,
Yang et al. suggested that paracellular transport plays a major role in sotalol

permeability (Yang et al. 2007). Dahan et al. stated that, in adults, sotalol shows a
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unique permeability pattern as a combination of a basic moiety with pK; and logP
values within a critical range, and that sotalol permeability in the distal small
intestine is high and compensates for its low permeability in the proximal
segments (Dahan et al. 2010). This explains the low in vitro measured jejunal
permeability of sotalol, a BCS class | drug. In recognition of this information, the
predictions of software 1 model in neonates would have been improved if a higher
permeability of sotalol is assumed and incorporated into the model, as it has
already been reported that paracellular transport is higher in neonates than in
adults due to wider tight junctions (Edginton and Fotaki 2010). On the other hand,
the findings of Dahan et al. highlight the role of higher pH values in sotalol
absorption, and points to a rationale for incorporation of different values of
permeability throughout the intestinal segments, which could improve software 2
model predictions. Running simulation scenarios using the presented PBPK
pediatric models would clarify, reject, or confirm these assumptions and would

help in detecting the most influential factor on sotalol absorption.
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Table 2-9. List of the anatomical, physiological, and drug-specific parameters that are
involved in the drug absorption with the availability of corresponding age-specific values,
as default, in the used pediatric absorption models

Software 1 (Simcyp®)

Software 2 (PK-Sim®)

I. Anatomical and physiological parameters

GIT organs volumes

GIT organs blood flows

Radius of the intestinal segments
Length of the intestinal segments

Effective surface area of intestinal
segments
Gastric pH

Intestinal pH

Gastric emptying time (GET)
Small intestinal transit time (SITT)
Intestinal enzyme ontogeny
Intestinal enzyme abundance
Intestinal Transporter ontogeny

Intestinal Transporter abundance

Fluid secretion volume

Scaled with age specific data
Scaled with age specific data
Scaled with age specific data
Scaled with age specific data

Scaled with age specific data

Not scaled (adult values) #°
Not scaled (adult values)?
Not scaled (adult values)?
Not scaled (adult values)?
Scaled for CYP3A4 and UGT
Not scaled (adult values)©
Not scaled (adult values)©

Not scaled (adult values)©

Not scaled yet®

Scaled with age specific data
Scaled with age specific data
Scaled with age specific data
Scaled with age specific data

Scaled with age specific data

Not scaled (adult values)?
Not scaled (adult values)?
Not scaled (adult values)?
Not scaled (adult values)?
Scaled for CYP3A4 and UGT
Not scaled (adult values)®
Not scaled (adult values)©

Not scaled (adult values)©

Volumes are scaled
according to length and
radius of intestinal segments

Il. Drug specific parameters

Molecular weight of the molecule
pKa value

Lipophilicity

Solubility

Permeability coefficient in the gut
wall

Unchanged
Unchanged
Unchanged
Unchanged

Unchanged

Unchanged
Unchanged
Unchanged
Unchanged

Unchanged

This list does not include factors related to the pharmaceutical formulation

2 Values and variability ranges could be manually assigned. In software 2, various distribution types of the variability could
be assigned during the simulations of virtual populations

®To be incorporated in the upcoming versions

¢ No sufficient literature of specific pediatric data
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2.5.2. Limitations

The two presented models were not completely identical in their input
parameters (Table 2-1); however, the different input values of B:P ratio and
intestinal permeability measures resulted eventually in similar Vs and
bioavailability values and are therefore not likely to be responsible for any major
finding. Second, although the work presented here would contribute to a better
understanding, and thus to a more correct use of the PBPK model-generated data
in the pediatric population, sotalol is a drug with a relatively simple PK profile (i.e.,
renally excreted, not metabolized, unbound to plasma proteins, and has no known
active transporters [Hanyok 1993; Tjandramaga 1980]); therefore, the used
software tools may not necessarily do as well with predictions for drugs with more
complex PK characteristics. In addition to that, sotalol is a BCS class | drug with a
high solubility and permeability profile, which means that this exercise will give no
information on the accuracy of the drug absorption in the lower intestinal
segments and its age dependence. As a result, further examples with drugs that
possess different PK profiles (e.g., hepatic elimination with first-pass effect or with
involvement of transporters) and physicochemical properties (e.g., belonging to

different BCS groups) are still needed.

2.5.3. Implications and generalizations

This work was not designed to investigate new insights into the
pharmacokinetics of sotalol, as this has already been extensively studied in both
adults and children (Hanyok 1993; Tjandramaga 1980; Anttila et al. 1976; Salazar
et al. 1997; Uematsu et al. 1994; Somberg et al. 2010; Rehm et al. 1987; Poirier et
al. 1990; Kimura et al. 1996; Kahela et al. 1979; Ochs et al. 1985; Lier et al. 1997;
Liebau 1999; Laer et al. 2005). However, the current work is planned to support a
future pediatric clinical trial, which will aim to develop a safe IV dosing regimen as
a substitute for oral sotalol in children with supraventricular tachycardia by
providing the necessary sampling times for an optimal PK analysis. Additionally,
such validated models could play a role in supporting clinical decision making in

individual patients, for example, with reduced renal function.
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The obtained results in infants through adolescents indicate good model
predictability and thus substantiate the use of PBPK models to generate data a
priori for this age group, saving time, effort, and resources. This could probably be
generalized to other orally administered drugs that share a similar PK profile as
sotalol. On the other hand, the lower model predictability of sotalol
pharmacokinetics seen in neonates indicates the need for a more cautious use of
model-generated data in this age group, acknowledging that the final judgment

depends on the purpose of the model and the properties of the modeled drug.

2.6. Conclusion

In summary, the PBPK models presented in this study have shown good
predictability of observed data in adults and in almost all pediatric age groups,
except in neonates where a lower predictive performance was seen, which
suggests a more cautious use of model-generated data in this age group. These
results encourage the use of PBPK models, especially when adult data are
available to validate the basic model, to predict oral drug exposure in a wide range
of pediatric ages, which can aid in supporting pediatric clinical trials and,

potentially, clinical decision making for individual children.
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Chapter 3:
A Pediatric PBPK model to predict amiodarone intravenous
exposure in severely ill pediatric patients

3.1. Introduction and rationale for this project

Amiodarone is an effective antiarrhythmic drug used in the treatment of
multiple forms of heart dysrhythmias refractory to, or in patients intolerant of,
other antiarrhythmic agents. Amiodarone is used “off-label” in children where
very little is known about the pharmacokinetics of this drug in this vulnerable
population. The lack of pediatric PK data, the potential side effects of amiodarone
therapy, as well as its complex PK profile hinder its optimal use in routine pediatric
clinical practice and complicate the conduct of any informative pediatric PK
studies. A safety and observational PK study was recently published (Ramusovic
et al. 2013). Although the previous study was not able to conduct an informative
PK analysis, its reported PK data can be used to evaluate a pediatric PBPK model
for amiodarone. Developing such a PBPK model for amiodarone could help
optimize its use in pediatric drug therapy by exploring the impact of age-
dependent changes in the body composition and organ functions on its systemic
exposure. Furthermore, an evaluated model, if proven able to adequately reflect
amiodarone pharmacokinetics in children, could be used to support physician
decisions in treating individual pediatric patients by providing information about

the expected drug exposure in advance.
3.2. Objectives of this project

The main objective of this project was to develop a pediatric PBPK model
for amiodarone and then to evaluate its ability to predict amiodarone
concentrations in a pediatric population in order to use the model in the future to
explore the impact of age-related physiological changes on amiodarone

pharmacokinetics from birth to adolescence.

58



Chapter 3 ® PBPK modeling of intravenous drug exposure (amiodarone)

3.3. Methods

3.3.1. Literature search - the modeled drug

3.3.1.1. Basic physicochemical properties of amiodarone

Amiodarone is a basic drug with a molecular weight of 645.31 g/mol
(PubChem Compound CID= 2157) and reported pKa values ranging from 6.56 to
9.12 (Bonati et al. 1984; Chatelain and Laruel 1985). Amiodarone is very lipophilic,
and high LogP values were reported in the literature: 6.66 (Chatelain and Laruel
1985), 7.6 (PubChem Compound CID= 2157), 7.8 (Ruell et al. 2004), 7.9 (Wang),
and 8.8 (Zhi et al. 2003).

3.3.1.2. Amiodarone disposition

Amiodarone is extensively metabolized in the liver by various CYP
isoenzymes. It has been reported that CYP3A4, CYP2C8, CYP1A2, CYP2D6, and
CYP2C19 are involved in catalyzing the N-deethylation of amiodarone (Ohyama et
al. 2000). Although the relative contribution of these enzymes to amiodarone
metabolism remains to be determined, CYP3A4 is considered the major enzyme
responsible for it; CYP2C8, especially at low amiodarone concentrations, is also
reported to be significantly involved (Ohyama et al. 2000). Multiple PK studies
have reported the total plasma clearance of amiodarone to be 1.9 mL/min/kg
(Holt et al. 1986), 2.63 mL/min/kg (Vadiei et al. 1997), 229 mL/min (~ 3.27
mL/min/kg), 3.33 mL/min/kg (Shiga et al. 2011), and 3.67 mL/min/kg (Bradley et
al. 1996). Due to the highly lipophilic nature of amiodarone, its volume of
distribution is high and was reported to be 45 L/kg (Shiga et al. 2011), 57 L/kg
(Vadiei et al. 1997), or 65.8 L/kg (Holt et al. 1986), with a terminal elimination half-
life in adults of 40-55 days (range 26-107 days) [DI]. The therapeutic concentration
range of amiodarone is reported to be 0.55-2.5 mg/L (Drug Information Handbook

2013).

3.3.1.3. Amiodarone binding to plasma proteins

Amiodarone binds extensively to plasma proteins. Lalloz et al. stated that

both albumin and lipoproteins are the main binding proteins (Lalloz et al. 1984).
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The in vitro estimation of the extent of amiodarone binding to plasma proteins
was performed by various researchers who reported it to be <0.1 (Paixao et al.
2010), <0.001 (Austin et al. 2002), or 0.0002 (Veronese et al. 1988). The
differences seen in these reported values are attributed to differences in the used
methods and experimental conditions; however, all of them indicate a very small

fraction of unbound amiodarone concentrations in the systemic circulation.

Moreover, the study conducted by Venerose et al. showed that the free
fraction of amiodarone was independent of the total drug concentration, and of
the albumin level (Veronese et al. 1988). The latter finding can be explained by the
non-specific binding of amiodarone to plasma proteins other than albumin (e.g.,

lipoproteins).

3.3.2. Used modeling software and model parameterization

All simulations were carried out using Simcyp® simulator (v.12.2 [academic
license]; Simcyp Ltd, Sheffield, UK) for adults and pediatrics (Simcyp) that provided
the basic model structure and a large database of anatomical and physiological

parameters with their age dependencies as required for the pediatric simulations.

A comprehensive literature search was conducted to collect the
additionally needed physicochemical properties and other model input data for
the description of the substance distribution and clearance (see overview of the
modeled drug). Table 3-1 summarizes the final model input parameters. The used
fraction unbound (fy) was 0.00015, which is in good agreement with the reported
value by Venerose et al. (Veronese et al. 1988). The clearance was described over
the enzyme kinetics with CLin: values of the involved enzymes obtained via the
retrograde model by using an in vivo IV clearance of 14 L/h and a percentage
contribution of 65%, 25%, 6%, 2%, and 2% for CYP3A4, CYP2C8, CYP1A2, CYP2D6,
and CYP2C19, respectively (see Retrograde model for amiodarone clearance
description for more information about the model). The previously mentioned
input of the IV in vivo clearance is consistent with the reported values in the
literature (Shiga et al. 2011), whereas the assigned percentage contribution for

the sub-enzymes was guided by reports of CYP3A4 being the main contributing
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enzyme in amiodarone metabolism, followed by CYP2C8, and finally CYP1A2,
CYP2D6, and CYP2C19 playing a minor role.

Table 3-1. Input parameters for the basic amiodarone PBPK model

Parameter Unit Model input value Reference value Reference

Physicochemical properties

Molecular weight g/mol 645.31 645.31 PubChem 2157
Molecular type - Monoprotic Base Monoprotic Base Holt 1983
logP log unit 7.6 7.6,7.8 PubChem 2157,
Ruell 2004
pKa - 8.47 - ADMET predictor
f, - 0.00015 0.0002, <0.001 Venerose 1988,
Austin 2002
Clearance
Cly L/h 14 13.74,13.9  Pollak 2000, Shiga
2010
Clearance pathway - Hepatic metabolism - -
via CYP enzymes
Renal elimination - None None Paixao 2012
CL proportion (via CYP3A4) % 65 - -
CL proportion (via CYP 2C8) % 25 - -
CL proportion (via CYP1A2) % 6 - -
CL proportion (via CYP2D6) % 2 - -
CL proportion (via CYP2C19) % 2 - -
Distribution
Used distribution model - Rodgers and - -
Rowland
Blo'od: plasma concentration i 056 0.73 Holt 1983
ratio
Vol f distribution i
olme ot AIStTbUtion | g 456 45 Shiga 2010

steady state

LogP= octanol-water partition coefficient; pKa= acid dissociation constant; fu= fraction unbound; CLy, totai= total
intravenous clearance.
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3.3.3. Specific features of the adopted modeling strategy

The modeling strategy is similar to that reported previously for sotalol,
with initial model development and evaluation in adults before scaling to children,
and the use of population simulation as the main model results. However, this
model restricted itself for the IV drug application, and therefore, no evaluation
with oral data was performed. In addition, two unique aspects of the amiodarone

model are mentioned in the next two sections.

3.3.3.1. Retrograde model for amiodarone clearance description

The retrograde model is one of the models incorporated in Simcyp®, and
allows for the calculation of intrinsic clearance values of the involved metabolizing
enzymes from an in vivo measured clearance. In order to do that, the retrograde
model utilizes in the first step: 1) an in vivo measured value of the adult IV or oral
clearance including fractions of hepatic, renal, or any additional clearance, 2) drug
fraction unbound (f,), 3) B:P ratio, and 4) the liver blood flow to calculate the

hepatic intrinsic clearance as given in the equation of the well-stirred liver model:

Q,y xCL,

CLlnt = fu
b X (QH - CLH )

Equation (3-1)

In a second step, this hepatic CLin: value is divided between the involved
hepatic elimination pathways (i.e., the different CYP enzymes) using input
information about the percentage contribution of these metabolizing enzymes in

the drug clearance.

3.3.3.2. Model adjustment for protein binding

As amiodarone is a drug highly bound in plasma, the age-related changes
in the levels of the binding proteins will influence its unbound fraction, and thus,

its disposition within the body.

By default in the pediatric simulator in the used modeling software tool,
the drug fraction unbound (f.) is scaled down to children by utilizing: 1) the

average concentration of the binding protein in the pediatric age, 2) the average
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concentrations of the binding protein in adult, and 3) the model input value of the

unbound fraction in adults as described by Johnson et al. (Johnson et al. 2006):

1
(l - fu Adult ) X [P]Pediatrie
[P ]Adult X U g

fuPediatric = Equation (3-2)

1+

Where [P] is the concentration of the plasma protein in adults or children and f,

Adult is the unbound fraction of the drug in adults.

However, for a group of patients who have low total protein levels (n=11),
the use of the average values of the binding proteins, instead of the individual
ones, may not be appropriate and could lead to a lower predicted fraction
unbound than in patients and thus to a lower volume of distribution. Therefore,
this predicted pediatric unbound fraction was adjusted by using the measured
median values of the total protein levels instead of the normal average pediatric
levels. This modification has led to a slightly higher pediatric f, in this patient
collective, and to a slight improvement of the model predictions compared with

the standard model results.

3.3.4. Amiodarone pharmacokinetic and clinical data in adults

Data from three different PK studies of IV amiodarone in adults were used
for basic amiodarone model development and evaluation (Shiga et al. 2011,
Cushing et al. 2009; Pourbaix et al. 1985). All the subjects enrolled in these studies
were healthy and received a single IV dose of amiodarone. The original data of
one study was provided by the author (Shiga et al. 2011), including individual
plasma concentration-time profiles after 3 different IV doses, whereas the mean
plasma concentrations of the other two studies (Cushing et al. 2009; Pourbaix et
al. 1985) were scanned from the publications figures. Table 3-2 gives an overview

of the populations and the administered dosing in the used adult studies.

3.3.5. Amiodarone pharmacokinetic and clinical data in children

The original PK and anthropometric data of 20 pediatric patients that were

reported in a published pediatric observational safely study were kindly provided
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by the author (Ramusovic et al. 2013) and were used as part of model evaluation

data.

In addition to the previously mentioned pediatric data, amiodarone
concentrations were investigated in 7 pediatric patients and are presented here
for the first time. The newly investigated patients received amiodarone during
their hospitalization in the intensive care unit, mostly due to post-operative
supraventricular arrhythmias. The age of these patients ranged from 14 days to
10.68 years, with an average of 2.91 years. The weight and height ranged from
3.97 to 18 kg and from 49 to 115 cm, respectively. The amiodarone treatment
consisted of an initial loading IV bolus of 5 mg/kg over 30 minutes, followed by an
infusion of 10 mg/kg/day, with potential additional bolus doses of 5 mg/kg if
indicated by the clinical condition. As a result, the total given dose of amiodarone

differed among the patients and ranged from 235.94 mg to 2012.50 mg.

As a result, data from a total collective of 27 pediatric patients were used
for the pediatric model evaluation. The demographics, dosing, and laboratory

findings of this cohort are summarized and presented in Tables 3-3 and 3-4.
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Table 3-2. Summary of the characteristics of the used PK studies for the development of
the amiodarone adult model

Reference stud Pourbaix et Cushing et al.,, Shigaetal,, Shiga et Shiga et

v al., 1984 2009 2010 al., 2010 al., 2010
No. of Subjects 12 78 6t 10+ 10+
Applied dose

5 mg/k 150 m 1.25 mg/k 2.5 mg/k 5 mg/k
[mg or ma/ke] g/kg g g/kg g/kg g/kg
Application IV Infusion IV Infusion IV Infusion Vinfusion IV Infusion
. . . over 15 over 15
type over 20 min. over 10 min. over 15 min. . i
min. min.
Gender
75% ~65% 100% 100% 100%
[% male]
Age [years]
+
meant SD 23+ 2 374119 (20-32)* (20-32)* (20-32)*
(18-59)

(range)
Height [cm]
meanz SD 1808 NR NR NR NR
(range)
Weight [kg] 50.9-
meanz SD 73+12 NR 50.9-69.5* 50.9-69.5* 69.5*
(range) '
Last measured  , 72 240 336 1848
conc. [h]
Analytical HPLC-UV LC/MS/MS HPLC-UV HPLC-UV  HPLC-UV
method
LOQ [ng/mL] 5 ng/mL NR NR NR NR
LOD [ng/mL] <1ng/mL 10 ng/mL 5 ng/mL 5ng/mL 5 ng/mL

All these studies were single dose IV studies conducted in healthy individuals.
IV=Intravenous; NR=not reported; LOQ= Limit of quantification of the used analytical method; LOD= Limit of detection of
the used analytical method.
T Japanese population.

“ The reported range for age and weight is for the entire study population.
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Table 3-3. Demographics and dosing information of the entire pediatric cohort used for
the amiodarone model evaluation

Patient Agein Gender Weight BSA BMI Given dose Number

Code [years] (m?) [kg/m?] [mg] of given
boluses

1 5.62 ol 16 0.683 14.51 235.00 1

2 0.49 ol 4.44 0.277 11.55 66.56 1

3 0.33 Q 4.7 0.280 13.06 74.48 1

4 0.21 Il 4.3 0.259 13.71 216.42 4

5 15.03 ol 22 0.989 8.59 575.69 3

6 0.04 ol 4 0.243 14.24 297.71 1

7 0.40 d 6.1 0.329 14.89 245.83 3

8 0.11 Q 4.7 0.268 15.54 88.06 3

9 0.28 Q 3.75 0.242 11.96 62.50 2

10 0.02 Q 2.77 0.194 11.54 144.62 3

11 0.08 Il 3.88 0.248 11.94 382.78 3

12 0.24 Q 4 0.240 14.79 394.94 4

13 2.08 ol 12.6 0.574 14.26 201.25 1

14 0.05 Q 2.77 0.196 11.08 280.00 3

15 0.34 Il 6 0.329 14.20 371.25 2

16 0.04 Il 4.43 0.265 13.63 162.63 1

17 0.02 Q 2.5 0.173 13.52 159.72 3

18 0.02 Q 3.89 0.235 14.96 203.13 1

19 3.74 ol 18 0.728 16.02 975.00 2

20 0.17 ol 3.44 0.225 12.25 138.77 1

21 0.04 ol 3.97 0.242 14.13 373.06 3

22 0.66 Q 6 0.329 14.20 357.19 2

23 10.68 ol 18 0.758 13.61 2102.50 3

24 4.97 Q 17 0.714 14.57 377.19 1

25 0.04 d 2.66 0.190 11.08 235.94 4

26 0.80 d 9.8 0.437 20.00 399.31 1

27 3.19 Q 17.2 0.705 15.90 915.52 2

Q: female; &: male
BMI= Body-Mass Index; BSA= Body surface area.
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Table 3-4. Laboratory findings of the entire pediatric cohort used for the amiodarone
model evaluation

Patient BSA CREAT  Protein  Albumin AST ALT Y-GT CRP
Code (mg/dL) (g/dL)  (g/dL)  (U/L) (U/L)  (u/L)  (mg/L)
1 0.68 0.37 6.40 3.95 41 16.5 38 4.6

2 0.28 0.44 6.24 2.92 35 16 50 194
3 0.28 0.29 4.97 3.13 17 10.5 38 91.7
4 0.26 0.64 4.70 2.81 185.5 34.5 17.5 15.3
5 0.99 0.10 6.00 2.90 93.5 24.5 55 56

6 0.24 1.59 5.32 3.57 41 24 24 19.1
7 0.33 0.29 4.92 3.32 73 39 16.5 39.9
8 0.27 0.89 5.20 3.30 126 70 34 75.3
9 0.24 0.31 5.63 3.58 419 51 39 29.85
10 0.19 0.56 4.68 2.98 16 11 22 17.1
11 0.25 0.34 4.60 2.95 40 25 53 15.7
12 0.24 0.37 4.47 2.81 153 53 14 43.6
13 0.57 0.23 5.45 3.65 39 18 8 2.65
14 0.20 0.34 5.29 3.20 235 36 39.5 1

15 0.33 0.25 6.30 3.52 32 27 69 2.7
16 0.26 0.34 4.85 2.88 154 28.5 14.5 46.25
17 0.17 0.68 4.30 2.87 36 66 46 24.9
18 0.23 1.66 4.15 2.48 114 26 21 20

19 0.73 0.28 5.50 3.45 23 14 18 22.6
20 0.23 0.56 4.45 3.07 382 80 61 38.5
21 0.24 1.82 6.10 3.63 29 10 21.5 39.55
22 0.33 0.34 5.04 3.38 45 16 9 52.7
23 0.76 0.54 5.64 2.62 92 29 71 29.6
24 0.71 0.73 6.13 3.83 413 43 24 98.8
25 0.19 0.59 3.74 241 101 21.5 61 42.25
26 0.44 0.37 5.63 3.20 158 19 21 44.4
27 0.70 0.60 4.76 3.00 2045 35 15.5 85.35

CREA= serum creatinine levels; AST= Aspartate Aminotransferase; ALT= Alanine transaminase; y-GT= Gamma glutamyl
transpeptidase; CRP= C-reactive protein.

67



Chapter 3 ® PBPK modeling of intravenous drug exposure (amiodarone)

3.3.5.1. Sample collection and amiodarone assay

Serum concentrations of amiodarone and its metabolite,
desethylamiodarone (DEA), were measured using a HPLC-UV standard kit (RECIPE
Chemicals & Instruments GmbH, Miinchen, Germany). The lower limit of
quantification (LLOQ) of the assay is 0.1 pug/mL for both analytes, with an intra-
assay precision of 2.1% and 2.5% and an inter-assay precision of 4.0 and 4.2% for
amiodarone and DEA, respectively. Finally, the accuracy of the assay is 95-105%.

The measured plasma concentration-time profiles are presented in Figure 3-1.

3.3.6. Evaluation of model performance

Model evaluation was based on simulations. Visual predictive checks were
performed with superimposed simulated and observed concentration-time
profiles. The area under the concentration-time curve from 0 to last (AUCjast) was
calculated via the trapezoidal rule for both the observed and simulated data and
an observed-to-predicted ratio was then reported. Percentage errors for model
predictions of individual concentration points were calculated as the difference
between the predicted and observed values. Mean prediction error was then
reported as a measure of the model accuracy, whereas mean absolute prediction
error was reported as a measure of the model precision. These metrics were

discussed in more detail in Chapter 2.
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Figure 3-1. The measured plasma concentration-time profiles (dots and lines) of amiodarone in

the 7 newly investigated pediatric patients. Triangles represent an administration of an IV bolus.
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3.4. Results

3.4.1. Model simulation results in adults

The obtained model results were in very good agreement with the
observed data, indicating that the presented model is able to adequately describe
amiodarone exposure in adults, thus permitting an age extrapolation to children.
The adult model evaluation metrics are contained in Table 3-5. A visual predictive
check of observed and simulated data for five different amiodarone dosing
regimens in 3 published PK studies is shown in Figure 3-2. The measured
amiodarone profile differed in the length of blood sampling, and amiodarone was
measured in one group (Shiga et al. 5 mg/kg) over 1848 h (i.e., 77 days) with mean
values only available over the first 1008 hours of observation. The only deviation
seen between the model predictions and the observed concentrations was for
those measured after 700 hours of the dose application. This was the case only in
the previously mentioned group in the Shiga study (Shiga et al. 2010). However,
as the observed data clearly show, the measured concentrations were almost
equal to the reported lower limit of detection (LOD= 5 ng/mL; concentrations
ranged from 6.9 to 11 ng/mL), and were almost constant from over a period from
30 to 77 days. For this reason, the accuracy of these measured concentrations is
doubtful and this deviation was judged not to indicate a shortcoming in the

present model.

Table 3-5. Model simulation results of IV amiodarone application in adults

Study Dose AUCo.tast MPE (%) MAPE (%)
OBS PRED Ratio

Shiga 2010 1.25 mg/kg 4.429 5.573 0.795 9.543 29.012

Shiga 2010 2.5 mg/kg 9.823 12.102 0.812 7.727 35.551

Shiga 2010 5 mg/kg 26.582 28.759 0.924 -4.669 35.970

Cushing 2009 150 mg 8.114 6.517 1.245 -17.908 20.939
Pourbaix 1984 5 mg/kg 15.240 15.788 0.965 14.185 26.330

AUCotast= Area under the plasma concentration time profile from 0 to the last measured concentration point;
OBS=0bserved; PRED=Predicted; Ratio=Observed to predicted ratio; MPE= mean percentage error; MAPE= mean absolute
percentage error.
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Figure 3-2. The simulated systemic concentrations (dashed line) of intravenously administered amiodarone in
comparison to observed (dots) values in adult. Data are presented on a double-logarthmic scale.
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3.4.2. Model simulation results in pediatrics

The previously developed and evaluated adult model formed the basis for
the amiodarone pediatric model, which was used to predict amiodarone exposure
in a total collective of 27 pediatric patients. The pediatric cohort consisted of 9
neonates, 11 infants, 5 preschool-aged children, 1 school-aged child, 1 adolescent,
and no toddlers. This skewed distribution of the children between the different
age groups made it difficult to compare the accuracy of the model predictions
across the pediatric age groups, and was one reason for a different data analysis

than that established and presented in the previous chapter.

First, a comparison of model predictions of amiodarone concentrations
superimposed with the experimentally measured values is presented in Figures 3-
3 to 3-5 for a visual predictive check. It can be seen that the presented pediatric
model is able to reasonably predict amiodarone concentrations in the majority of
the patients (n=22, 81.48%) despite some shortcomings in hitting the initial
concentration points shortly after the given bolus. On the other hand, the model
seems to fail in accurately describing the measured amiodarone exposure in 5
patients (ID= 1, 4, 5, 16, and 18; i.e., in 18.5% of the entire collective). The
calculated prediction errors for each concentration point that were plotted for
each patient and ordered in an ascending rank based on MPE enabled the
confirmation of the previous finding regarding the 5 patients, for whom the
concentrations were not accurately predicted as seen by a median calculated
prediction error exceeding the acceptable 2-fold error range (Figure 3-6). In
addition, sorting the prediction errors according to age showed that the model’s
prediction accuracy is mostly independent of the age of the patient as the deviant

predictions were distributed across the age spectrum (Figure 3-6).

However, for the majority of the deviant data (i.e., in 4 of the 5 patients),
there were some suspected reasons. For example, in one patient who suffered
from a severe muscular dystrophy and weighed only 22 kg at the age of 15.03
years (0.1 percentile weight for his age), it might be the case that a smaller

distribution volume of amiodarone is responsible for the high measured
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amiodarone plasma concentrations in this patient, suggesting that incorporating

this physiological change may lead to improvement of the model predictions. The

PBPK models are mechanistic and data independent, which encourages the use of

these models to explore such “what-if” scenarios and investigate the influence of

each suspected reason for deviation from the norm on systemic exposure of

amiodarone. Therefore, all of these suspected scenarios were incorporated into

subsequent simulations and their impact on model predictions was quantified.

The suspected reasons as well as the change in model evaluation metrics are both

given in Table 3-6.

Table 3-6. List of the suspected reasons of the deviations in 4 pediatric patients together
with their impact on the calculated model evaluation metrics

Patient Observed . o Suspected reason . o
ID deviation AUCratio  MPE (%) for this deviation AUCratio  MPE (%)
Standard Scenario
4 Higher observed 4271 -61.284 Double dose was 2.560 -21.275
concentrations given to the patient
4 Higher observed 4.271 -61.284 existent 3.468 -54.614
concentrations polymorphism of
CYP 2C8
5 Higher observed 6.991 -70.876 Impact of Duchenne 3.616 -27.541
concentrations muscular dystrophy
16 Low observed 0.392 187.862 IV infusion stopped 0.720 55.373
concentrations in after 24 h
maintenance
phase
18 Low observed 0.351 230.929 Infusion was not 0.836 55.296

concentrations in
maintenance
phase

started until day 2
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Figure 3-3. Results of simulations using the pediatric amiodarone model (patients 1-9).
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Figure 3-4. Results of simulations using the pediatric amiodarone model (patients 10-16).
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Figure 3-5. Results of simulations using the pediatric amiodarone model (patients 19-27).
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(A) Percentage errors of model predictions of AMI conc.
sorted by child and ascending order of MPE values
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(B) Percentage errors of model predictions of AMI conc.
sorted by child and ascending order of age
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Figure 3-6. Boxplots of percentage errors of model predictions of amiodarone (AMI)
concentrations in each individual pediatric patient sorted by: a) ascending value of the mean
percentage error (MPE) and b) ascending age with the corresponding age group. The numbers on
the x-axis indicate the patient code in the study. The shadowed area indicates the acceptable 2-
fold error range between -50 and +100.
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The numerical model evaluation of the pediatric model for each individual child
is given in Table 3-7.

Table 3-7. Model evaluation metrics of pediatric simulation of intravenous amiodarone
in 27 children

Child Code Gender Age (year) Age group AUCoss/pre0 MRE (%)  MARE (%)

1 g 5.62 Preschool 4.359 -61.4 61.4
2 g 0.49 Infant 1.603 -35 41.7
3 Q 0.33 Infant 1.125 -15 17.2
4 g 0.21 Infant 4271 -61.3 61.3
5 g 15.03 Adolescent 6.991 -70.9 79.3
6 Il 0.04 Neonate 0.849 44.8 54.5
7 g 0.40 Infant 1.078 15.4 51.5
8 Q 0.11 Infant 1.006 40 595
9 Q 0.28 Infant 1.260 12.5 48.4
10 Q 0.02 Neonate 1.149 -3 22.2
11 I3 0.08 Neonate 0.812 7.4 33.9
12 Q 0.24 Infant 0.935 51.5 67.1
13 g 2.08 Preschool 0.607 83.7 87.9
14 Q 0.05 Neonate 1.053 50.6 79.2
15 g 0.34 Infant 2.866 4.8 78.4
16 I 0.04 Neonate 0.392 187.9 187.9
17 Q 0.02 Neonate 0.690 35.1 54.4
18 Q 0.02 Neonate 0.351 230.9 250.9
19 g 3.74 Preschool 1.012 9.7 42
20 g 0.17 Infant 1.015 -171 38
21 g 0.04 Neonate 0.716 32 58.6
22 Q 0.66 Infant 1.060 239.2 278.9
23 g 10.68 School-aged 1.837 -18.1 32.6
24 Q 4.97 Preschool 1.706 -33.6 39.7
25 I3 0.04 Neonate 1.150 4.4 411
26 d 0.80 Infant 1.524 -17 34.5
27 Q 3.19 Preschool 0.991 27.9 443

AUCoss/prep= Ratio of observed to predicted area under the concentration-time profile from 0 to the last measured
concentration; MPE= mean percentage error as a metric for model accuracy; MAPE= mean absolute percentage error as a
metric for model precision.
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3.4.3. Results of the pediatric model modified for low protein levels

In the used pediatric collective, only 11 children had total protein levels
that were not within the normal reference range (as reported by the laboratory)
and where the low protein levels persisted for more than one day (see Table 3-4).
Low protein levels could lead to an increase in the drug unbound fraction and thus
an increase in its volume of distribution and elimination from the body, which is
observed as a decrease in amiodarone plasma concentrations. The model was
therefore adjusted for this factor. Figure 3-7 shows a comparison between the
calculated prediction errors between the results of the standard model (without
adjustment for low/high total protein levels) and the final adjusted model.
Incorporating these individual total protein levels led to a slight improvement in
model predictions, and although both the MPE and MAPE of the whole collective
remained almost constant, the mean AUCosgs/prep ratio dropped from 1.67 to 1.57

in the adjusted model.
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Figure 3-7. Comparison between the standard and the protein-adjusted model of IV amiodarone
prediction errors presented as boxplots
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3.5. Discussion

A PBPK model for amiodarone that is able to adequately reflect its PK
behavior in humans was developed and evaluated with available adult and
pediatric PK data. This model will be the tool to explore the age-related PK changes
of amiodarone across the entire pediatric developmental continuum, in order to
provide additional insights into the pharmacokinetics of a substance for which few
pediatric PK data are available, and for which the conduct of pediatric clinical trials

is complicated by an unfavorable PK and safety profile.

In adults, the model was shown to adequately predict the measured
amiodarone profiles reported in 3 different publications as shown by the visual
predictive checks and the comparison of calculated observed and predicted
AUCosgs/prep (Figure 3-2, Table 3-5). This is the first reported physiologically based
model for amiodarone. The model showed that despite its high binding to plasma
proteins, amiodarone possess a large volume of distribution of about 45 L/kg,
which is a result of its high lipophilicity and high affinity to bind to tissue proteins
and adipose tissues. This adult model formed the basis for an age-extrapolated

pediatric model.

After extrapolation to children, the model was shown to adequately
predict amiodarone exposure in 81.48% of the pediatric population that received
IV doses for the treatment of post-surgical supraventricular and ventricular
tachycardia in the intensive care unit. This finding was supported by visual
predictive checks of the plasma concentration-time profiles, and the calculated
AUCogs/prep ratios and the MPE and MAPE values (Table 3-7). A comparison
between the model predictions across the different age groups was possible, as
the available pediatric data was not large enough to cover each pediatric age
group with adequate number of children. However, it seems that the accuracy of
model predictions is independent of the age of the child (Figure 3-6). To put these
results in other words, for 4 out of every 5 pediatric patients to be treated, this
model is able to a priori and adequately explore the resulting exposure after any

given IV dosing regimen within an acceptable error margin of maximal 2-fold error,
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regardless of the age of the child. This ability enables the model to support the
clinical decision of the treating physician by providing a valuable insight into the
expected drug exposure in advance, thus enhancing the efficiency of the drug

therapy.

On the other hand, in 5 of the 27 enrolled patients (18.5%), the
physiologically based model seemed unable to adequately predict their
amiodarone exposure at first glance; however, such results should be judged
keeping in mind the nature of this pediatric cohort that have multiple
pathophysiological factors that could influence amiodarone fate in the body, as
well as the fact that sudden modifications in the administered drug therapy
frequently occur, guided by the patients’ clinical condition, safety concerns, and
the pharmacological response. The latter necessitate an increased accuracy in
documenting any changes in drug administration. Nevertheless, there were
potential suspected reasons for this observed deviation in 4 of these 5 patients
(Table 3-6). PBPK models are mechanistic and data independent, which
encourages the use of these models to explore such “what-if” scenarios and
investigate the influence of each suspected reason on amiodarone systemic

exposure.

The impact of the patient’s clinical condition on amiodarone disposition
was suspected to be large enough to make the initial model predictions
inadequate in one child (patient ID=5). The patient was suffering from Duchenne
muscular dystrophy, a progressive neuromuscular disorder characterized by
muscle weakness associated with muscle wasting and therefore weighed only 22
kg at the age of 15 years. This abnormally low weight is associated with reduced
muscle mass and altered body composition (i.e., water, fat and muscle
proportions). These physiological changes were implemented in the model and
the simulations were run again to investigate the impact of the reduced muscle
mass on amiodarone concentrations in this patient. Incorporating these changes
led to improvement in predictions as a result of a lower volume of distribution and
an increase in drug plasma concentrations (Figure 3-8). However, this seems to

only explain a part of the observed deviation.
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Figure 3-8. The impact of abnormally low body weight and decreased muscle mass on amiodarone

systemic concentrations as simulated by the PBPK model.

It is also known that all members of the CYP2C gene subfamily, namely
CYP2C8, CYP2C9, CYP2C18, and CYP2C19 are polymorphic, and that 4 mutations
are already known for CYP2C8 with a reported frequency of 30% among
Caucasians (Martinez et al. 2005). These mutations are reported to be associated
with impaired drug metabolism as seen with paclitaxel or ibuprofen (Martinez et
al. 2005). In the present model, 25% of drug clearance was attributed to
degradation by CYP2C8. Therefore the low predicted concentrations could be, at
least theoretically, attributed to CYP2C8 polymorphisms, although there is no
information on the genotype of these patients. As a result, the possible impact of
the existence of such mutations on amiodarone disposition in the 2 patients who
expressed much higher concentrations than expected (i.e., patients with ID
numbers 4 and 5), was investigated with additional virtual simulations. These
simulations showed clearly that there is no impact of such polymorphisms, even
if they existed, on the predicted drug exposure in these 2 patients. This could be
explained by the fact that distribution, rather than elimination, is the main driving

process for amiodarone disposition during this relatively short duration of drug
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level monitoring. These results did not change even if the proportion of
amiodarone metabolised by CYP2C8 was further increased to more than 50%.
Nevertheless, this may make clear to researchers the importance of considering
genetic factors when investigating drugs with unclear or complicated metabolism
profiles and alert them to the potential impact of polymorphic enzymes. For
instance, they could consider drawing an extra blood/saliva sample to perform

genotyping and screen for enzyme polymorphisms from the very beginning.

An undocumented deviation from the study protocol dosing is suspected
in 3 of these 5 patients (ID= 4, 16, 18). For most of the patients, the medication
administration records of the pediatric ward were checked, when available,
against the reported study dosing documentations in order to increase confidence
in the dosing information of each child. This check-up revealed some deviations
(e.g., infusion rate reduction or infusion stoppage) which were not correctly
reported in the standard documentations of the study dosing. However, for some
patients (e.g., patients with ID numbers 4, 16, and 18), these medication
administration records were not available during the entire duration of
amiodarone therapy. Therefore, the accuracy of the study dosing documentation
was relied on, with the possibility of undocumented protocol deviations being

very real.

In the patient with ID number 4, the suspicion was that a double bolus dose
(i.e., 10 mg/kg instead of the planned 5 mg/kg bodyweight) could have been
administered to the patient, as the observed plasma concentrations were much
higher than the simulated ones. In contrast, in patients with ID numbers 16 and
18, the suspicion was that amiodarone infusion could have been stopped
completely or temporarily during the drug therapy, as indicated by the changes in
the observed heart rate profile as well as the shape of the measured
concentration-time profile. The new simulations, which incorporate the suspected
dosing changes, showed a significant improvement in the description of the
measured concentrations, the AUCogs/prep ratios and the calculated MPE (Table 3-
6). These assumptions remain hypothetical despite some indications that they

may be plausible; however, they highlight the importance of a careful and

83



Chapter 3 ® PBPK modeling of intravenous drug exposure (amiodarone)

accurate documentation of any changes undertaken from the intended study
protocol in order to avoid misinterpretations of the effects of these deviations.
Therefore, proper training and education of the medical staff responsible for the
administration, sampling, and documentation of the study drug therapy and any
unplanned changes should not be ignored and should be an integral part of any

future clinical trials in order to maximize their accuracy and benefit.

The present model incorporates age-related changes in the levels of
binding proteins and the consequent age-related changes in the fraction unbound
(fu), @ main driving parameter for the drug distribution in the body. However, this
does not reflect abnormal protein levels for the different age groups. In the
pediatric cohort that was used to evaluate the model, 11 patients had total protein
levels that were, in median, abnormally low for their age during the duration of
amiodarone treatment. The model was therefore further adjusted in order to
reflect the low protein levels in these individual patients. Modifying the model to
individual protein levels in these patients did not seem to have a major impact on
the results (Figure 3-7). However, the model predictions were slightly improved,
as seen by the model evaluation parameters (the mean AUCosgs/prep ratio dropped
from 1.67 to 1.57). The absence of a large impact of modification of the model is
mostly explained by the fact that the decrease in total protein levels in these
patients in the collective was marginal (on average 9.5% less than the lower

normal level), with all but 1 patient having levels within 15% of normal.

In this study, a pediatric PBPK model of amiodarone was developed and
validated with pediatric data. The model can now be used to construct as many
PK pediatric virtual studies as desired in order to report detailed information
about the age-related changes of amiodarone distribution and elimination in
children. Moreover, the present model could potentially be extended for oral drug
application, and could be used to form the basis for a subsequent coupled
PBPK/PD model of amiodarone and/or a coupled PBPK model of substrate-

metabolite.
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Figure 3-9. A comparison between simulated (dashed line) and observed (dots and line)
concentrations of IV amiodarone in 3 pediatric patients, and the impact of suspected
undocumented protocol deviations on model results. The left panel depicts simulation results of
the patients following the default study dosing protocol for each patient. The right panel depicts
the simulation results if the suspected protocol deviation scenario is applied: A) Patient with a
suspicion of having received double the dose; B) Patient with a suspicion of infusion stoppage after
24 hours; and C) Patient with a suspected start delay. The simulation results are shown on a

semilogarithmic scale.
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3.6. Conclusions

Development of a PBPK model for amiodarone, a very effective drug in the
treatment of cardiac dysrhythmia, was described in this chapter. The importance
of such a model lies in its ability to take advantage of the few available PK data of
amiodarone, a substance that possesses an unfavorable PK and safety profile that
complicates the conduct of pediatric clinical trials, to further explore its age-
related PK changes. The developed model was able to adequately describe
amiodarone systemic exposure in adults and in 4 out of 5 pediatric patients
irrespective of their age, which is a success keeping in mind the nature of this
pediatric cohort that has multiple pathophysiological factors that could influence
amiodarone fate in the body and in view of the fact that sudden modifications in
the administered drug therapy frequently occur based on the patients’ clinical
condition, safely concerns, and the pharmacological response, with the resulting
likelihood of undocumented dosing changes. The “what-if” scenarios modeled in
this study investigated the impact of plausible reasons for prediction deviations in
5 patients for whom the model was unable to adequately predict amiodarone
concentrations. These included undocumented changes in amiodarone dosing,
CYP2C8 polymorphism, and reduced muscle mass due to Duchenne muscular
dystrophy. The impact of possible CYP2C8 polymorphism, for instance, was seen
to be negligible. Moreover, some valuable learning experiences were presented
by the findings of this study. For example, undocumented violation of the study
protocol is an important aspect to consider during conduct of such studies. It is
therefore advisable to minimize the likelihood of violation of study protocols in
advance by training and educating the nursing and medical staff involved in drug
administration, dosing documentation, and sample collection in future trials.
Moreover, it is also suggested, when performing PK trials for drugs that are
extensively metabolized, that an extra sample (e.g., blood or saliva) be withdrawn
for genotyping, as polymorphisms in the metabolizing enzyme could influence the

drug disposition.
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Chapter 4:

Ivabradine dose selection in “first-in-children” trials: an application
of a pediatric PBPK model to support the clinical drug development
process

4.1. Introduction

Ivabradine is a pure heart rate-lowering agent that acts by inhibiting Is, an
important ionic current involved in the pacemaker activity in the cells of the sino-
atrial node and in the physiological regulation of heart rate (Tardif et al. 2009).
Ivabradine does not show negative inotropic activity or depress intracardiac
conduction (Camm and Lau 2003) and has only minor effects on blood pressure,
which makes it a promising therapeutic option in the pharmacotherapy of
cardiovascular diseases. Ivabradine has been recommended for the medical
management of patients with stable angina pectoris who are intolerant of beta-
blockers, or in whom these agents are contraindicated (Smith, JR et al. 2006).
Another indication for ivabradine is in the pharmacotherapy of heart failure (HF).
A recent randomized controlled clinical trial showed that heart rate reduction with
ivabradine can be important for improving clinical outcomes in HF, and that it is
associated with a pronounced reduction in the risk of repeated hospitalizations
for worsening heart failure (Borer et al. 2012). Although pediatric patients may
also benefit from such a drug, for example, in the treatment of supraventricular
tachycardia (SVT), pediatric clinical trials must be first performed in order to

license ivabradine for this indication.

The technique of PBPK modeling, with its ability to take into consideration
information about the maturation, growth, and age dependence of anatomical
and physiological processes, can facilitate extrapolation of information on drug
pharmacokinetics from adults to children. In doing so, PBPK modeling can help
explore age-related changes in drug pharmacokinetics. Valuable PK information
gained through such modeling can then be used to support future pediatric clinical
trials and potentially reduce costs and the required number of enrolled children.

For example, information about drug exposure generated a priori by such a
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modeling exercise can help establish a rational dosing scheme in children of

different ages.
4.2. Objective of this project

The aim of this project was to predict hypothetical IV ivabradine exposure
from birth to adolescence in order to guide dose selection of future “first-in-

children” trials to be performed by the pharmaceutical industry.
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4.3. Methods

4.3.1. Adult clinical data

Original data on the demographics, dosing information, and observed PK
profiles following IV administration of ivabradine to a patient collective were
provided by a pharmaceutical company. The doses given to the patients in this
collective ranged from 6.3 to 15.4 mg in total. The most frequently given dose was
10 mg of ivabradine administered as a 5 mg IV bolus followed by a 5 mg IV infusion
over 8 hours (i.e., 480 minutes), with 25 patients receiving this dosing regimen.
Table 4-1 shows the general characteristics of this collective. This data set was
divided into 2, with one-half being used for model development and internal
validation and the other half being kept for later external validation of the

developed model.

Table 4-1. General characteristics of the patient collective receiving IV ivabradine (n =
48)

Number of patients who received n=48

Ivabradine

Age (years) 41-81

Gender Male and female (39 M, 9 F)

Height (cm) 155-189

Weight (kg) 47-100

Given dose (mg) 6.3-15.4

Application type Combination of IV bolus and infusion

4.3.2. Model parameterization and characterization

The modeling software used (PK-Sim® version 4.2 [commercial license];
Bayer Technology Services GmBH, Leverkusen, Germany) provides the user with
the general structure of a PBPK model as well as its necessary physiological and
anatomical parameters (PK-Sim; Willmann S et al. 2003). However, in order to

complete the parameterization of an ivabradine PBPK model, physicochemical
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properties of ivabradine along with other drug-specific information (e.g.,
clearance and blood:plasma ratio) are needed. Such information was either

provided with the original data or was obtained from the literature.

Ivabradine is a weak base with a molecular weight of 468.58 g/mol
[PubChem Compound CID = 132999] and a pKa value of 8.59 (Baruscotti et al.
2005). Ivabradine lipophilicity has been reported as a LogP value of 2.4 [PubChem
Compound CID = 132999] or 2.25 (provided with the original data). There was no
significant difference seen with the use of either value during drug development.
Ivabradine is approximately 70% plasma protein bound (EMA 2013), which is in
good agreement with the fraction unbound (f,) value of 0.37 provided with the
original data and which was used in our model. The partition coefficients in the
tissues were calculated using the Rodgers and Rowland distribution model
(Rodgers and Rowland 2007; Rodgers et al. 2005). The B:P ratio used was 0.78,
which was between the value of 0.693 provided with the original data and the
value of 1.08 calculated by PK-Sim® based on the physicochemical properties of

ivabradine.

Drug clearance can be described using either an in vivo plasma or blood
clearance value or in vitro values for Km and Vmax of the metabolizing enzymes.
Ivabradine is extensively metabolized (80-82.5%) by oxidation through
cytochrome P450 3A4, and its renal clearance constitutes about 17.5-20% of the
total clearance (EMA 2013; Portoles et al. 2006), which is reported to be 400
mL/min (EMA 2013). Two modeling studies have estimated the total clearance to
be 616 mL/min (after a 10 mg IV bolus) and 27.4 L/h (or 457 mL/min) (Duffull et
al. 2000; Ragueneau et al. 1998). Therefore, the total clearance value of ivabradine
is expected to range between 400-616 mL/min. During the development of our
model, the initial value assigned for total clearance was 400 mL/min (EMA 2013).
However, a satisfactory visual representation of the mean data (see step 1 of the
model development strategy, section 4.3) was reached at a value of 405 mL/min
taking into consideration the percentages of hepatic and renal clearances
reported in the literature. The final set of input parameters used in our model is

summarized in Table 4-2.
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Table 4-2. Input parameters for the ivabradine PBPK model developed using PK-Sim®

Parameter Model input Reference value Reference

Molecular weight (g/mol) 468.58 468.58 PubChem 132999

LogP(o/w) 2.40 2.40 Baruscotti 2005

lonization constant (pK,) 8.59t 8.59t Company data

Fraction unbound (f,) 0.37 0.3-0.37 EMA 2013, Company data

Blood: plasma conc. ratio 0.78 0.68 Company data

CLeotal 6 mL/min/kg ~ 400-616 mL/min  EMA 2013, Duffull et al.
(~420mL/min) 2000, Ragueneau et al.

1998

Percentage of CLy (%) 80 80-82.5% EMA 2013, Portoles 2006

Percentage of CLg (%) 20 17.5-20% EMA 2013, Portoles 2006

Distribution model Rodgers - -

Tas base; CLy =Hepatic clearance; CLz = renal clearance
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4.3.3. Model development strategy

An adult model of IV ivabradine was first developed and validated before
extrapolation to children. The workflow for the development of the model
resembles the one presented previously in Chapter 2, with the exception that this

model was only developed for the IV application.

The first step in the development of the adult model was the choice of the best
set of model input parameters. However, for some parameters (e.g., LogP), two
or more reference values were available. In this case, and in order to choose a
single input value, the mean observed concentration-time profile of members of
the patient collective who received 10 mg ivabradine (n = 25) was used to choose

the reference value that gave the best visual fit.

The developed model with its final set of input parameters—i.e., without
changing any of the basic input parameters—was then used to simulate individual
plasma concentration profiles using individual data on dosing, age, height, weight,
and gender. This was first done for all the patients who received 10 mg total
ivabradine (n = 25) and then for the remaining patients who received doses other
than 10 mg (n = 23). The simulated results in both cases were compared with the
observed individual data, followed by a graphical and statistical analysis. Because
the mean values of the former group in the collective—i.e., those who received
10 mg ivabradine in total—was used in the first step of model development and
parameterization, this set of individual data was considered to form the internal
validation set. Consequently, data from the latter group—i.e., those who received
doses other than 10 mg—had not been previously used in any step of model

development and was therefore considered as an external validation set.

4.3.4. Model evaluation

The evaluation of the model was performed using a combination of graphical and
statistical analyses, and resembles the one already established and presented in
detail in Chapter 2. However, we additionally reported 2 metrics on general model

predictability: Root Mean Square Error (RMSE) and the Mean Relative Deviation
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(MRD). RMSE was calculated as the square root of the average of calculated
squared errors, whereas MRD was calculated as follows: MRD= 10x, where x =

square root of the average of the logarithm of all square errors.

All of the metrics listed above were calculated separately for a) the internal
validation set, which includes all the patients who received 10 mg total of
ivabradine (n = 25), b) the external validation set, which includes all the patients
who received doses of ivabradine other than 10 mg (n = 23), and c) for all adult

patients who received ivabradine (n = 48).

The PK parameters were calculated via a non-compartmental analysis. The
elimination rate constant (ke) was calculated as the slope of the logarithm of the
last 3 concentrations in the terminal phase. Half-life (tx) was then calculated as
t¥= In2/ke. The area under the plasma concentration-time curve to the last
concentration point (AUCiast) was first calculated via the trapezoidal rule and then
extrapolated to infinity (AUCo.inf) by adding the terminal area (Ciast/ke). Using the
total dose (IV bolus plus infusion) as the applied dose, further calculations were
performed and reported as clearance (CL) = Dose/AUC, and volume of distribution

(Va) = CL/ke.

4.3.5. Investigating age-related differences in ivabradine exposure

After establishing and evaluating an adult model that is capable of
describing ivabradine pharmacokinetics in adults, the adult clearance was scaled
to the pediatric population using the clearance-scaling module that is integrated
within PK-Sim®. The resulting pediatric clearance—along with other age-specific
anatomical and physiological parameters (e.g., tissue volumes and blood flows)
already incorporated into the model—enabled us to explore the hypothetical
pediatric exposure of IV ivabradine across the entire pediatric age spectrum. This
was performed by simulating the administration of a uniform weight-normalized
adult dose to a virtual pediatric population comprised of hypothetical patients of
different ages. The population simulations for each pediatric age group consisted
of 1000 virtual children of the same age and incorporated inter-individual

variability ranges for renal and hepatic clearances. The main outputs of these
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pediatric simulations are plasma concentration-time profiles. As a result, a range
of total drug exposure (AUCo.inf) values (minimum, median, and maximum, as well
as the 5%, 25t 75t and 95t percentiles) was calculated and then compared with
the reference adult values. This enabled us to detect any age-specific differences
in systemic exposure of ivabradine. Based on that, a preliminary recommendation
for an age-specific dose adaptation was suggested. The simulations were then

repeated after incorporation of these dose adaptations.
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4.4. Results

4.4.1. Predictibility of IV ivabradine pharmacokinetics by the basic adult

model

The first simulations of ivabradine basic model for the IV application
involved the use of the mean values (age, weight, height, and plasma
concentrations) of the internal validation set (i.e., the 25 individuals who received
a total of 10 mg ivabradine). In this section, the ability of the basic model to reflect
ivabradine fate in the body was examined by comparing the resulted mean values
of various PK parameters predicted by the basic adult model to the mean

calculated observed values of the real adult population.

As previously mentioned, the PK parameters were calculated via a non-
compartmental analysis in which the total dose (IV bolus plus infusion) were used
to estimate a value for CL and V4. The latter calculations may not be completely
accurate for a physiological interpretation. However, as these calculations were
performed identically for both observed and simulated data, they were deemed
to be suitable for a comparison between the two sets. The results of this

comparison are shown in Table 4-3.

Table 4-3. Comparison between the PK parameters of simulated plasma concentration-
time data (by PK-Sim®) and mean values of the observed data (n = 25) after the
administration of a 10 mg total dose of ivabradine?

PK Parameter Mean observed Mean simulated
AUCo.int (mg.h/L) 0.473 0.43

ke (h) 0.164 0.183

tx (h) 4.23 3.78

Clotal (L/h) 21.14 23.25
Cliotal (ML/min) 352.33 387.5

Vg (L) 129.22 127.08

*The total dose was given as a 5 mg IV bolus followed by an IV infusion of 5 mg over 480 minutes.
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4.4.1.1. Simulation results in individual patients (n = 25, internal
validation)

Based on the developed IV model, plasma concentration-time profiles of
ivabradine were individually simulated for patients who received 10 mg total
ivabradine (internal validation set, n = 25) by entering the individual dosing,
gender, age, height, and weight for each patient. The resulting simulated plasma
concentration-time curve for each individual was compared with the

corresponding observed data for that individual (Figure 4-1).

As can be seen by visual inspection of these results, the model was able to
adequately simulate the individual observed concentrations in a majority of
patients in this collective. However, in some patients (e.g., patients 27 and 72),
the observed concentration-time course does not correlate with the expected
time course after administration of an IV bolus followed by infusion and shows
obvious deviation from the results obtained for the rest of the patients. This could
indicate errors in analytical determination or a protocol deviation, and might
explain the deviation of the model results from the expected predicted values.

Examples of deviations are given in Section 4.4.1.6.
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Figure 4-1. Comparison of individual observed (solid line) and predicted (dashed line) plasma concentration-time profiles of ivabradine in
adults (internal validation set). Data are shown on a semilogarithmic scale.
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4.4.1.2. Simulation results in individual patients (n = 23, external
validation)

For the external validation, plasma concentration-time profiles were
simulated in all patients who received doses other than 10 mg total ivabradine
(n=23) by entering the individual dosing, gender, age, height, and weight for each
patient. The resulting simulated plasma concentration-time curve was compared

with the observed data for each individual (Figure 4-2).

The results show that the predictions by the PBPK model presented here
were in good agreement with the individual observed concentrations for the
majority of the individual patients in the external validation set despite some
deviations seen in patients 29, 34, 46, 47, and 67. Apart from the quality of the
model, a few additional factors could potentially be responsible for these
deviations. For example, inter-individual variations in both hepatic and renal
clearance were not included in these individual predictions since the basic model
utilized a unique clearance value that was weight-normalized in mL/min/kg in all
of these simulations. Other potential reasons for the observed variations include
errors in the analytical determination of the observed concentration, protocol

deviations, and unknown factors.
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Figure 4-2. Comparison of individual observed (solid line) and predicted (dashed line) plasma concentration-time profiles of ivabradine in
adults (internal validation set). Data are shown on a semilogarithmic scale.
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Parameters that were individualized and those that form a probable
reason for the deviation of simulated data from the observed data are
summarized in Table 4-4. To investigate the effect of incorporating the inter-
individual variability in hepatic and renal clearance into the model, a population
simulation in adults in the internal validation group (n = 25)—used because they
had received the same dose—was performed and compared with the observed
data in the section titled ‘Population simulation of ivabradine in adults.’ To
investigate the impact of any undocumented protocol devaitions, four examples
of presumptive protocol violation scenarios are shown in the section titled

‘Possible protocol violation scenarios.’

Table 4-4. List of individualized and fixed input value parameters with possible sources of
variation/deviation

Parameter Individualized Fixed input value Possible source of
input value (weight-normalized) variation

Age v

Gender v

Height 4

Weight 4

Applied dose 4

Dosing/application type 4

Hepatic clearance v 4

Renal clearance v v

Undocumented protocol 4

deviation

Analytical assay 4

Unknown (others) 4

4.4.1.3. Results of model graphical analyses

Individual predicted vs observed plots for the plasma concentrations allow

us to assess the goodness of fit of our model (Figure 4-3, panels A1-A3). The line
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of identity indicates an ideal model with perfect prediction of the data. Dashed
lines on either side of the line of identity indicate a 2-fold error range. Therefore,
the model is ideal when all the points fall either on the line of identity or very close

toit.

The ‘residuals vs predicted concentrations’ and ‘residuals vs time’ plots for all data
reveal 7 clear outliers out of the total number of points (n = 275) for which the
calculated residual was >100 ng/mL (Figure 4-3, panels B1-B3 and C1-C3). The last
2 outliers of the observed data (concentrations of 814 and 422 ng/mL,
respectively) are for the same individual (ID No. 67). We have no clear explanation
for the exceptionally high-observed data seen at all time-points for this particular
individual. As for the remaining outliers (5 points, each from a different individual),
they are concentrations measured within the first 20 or 40 minutes of drug
administration (4 points at 20 minutes and 1 point at 40 minutes). The low
predicted value vis-a-vis the observed value might be attributable to an

undocumented delay in the administration of the bolus dose.

As can be seen from Figure 4-3, the majority of the calculated weighted
residuals are contained within a range of 0.5 to 2 (dashed lines), which indicates a
2-fold error range in the predictions. However, based on this weighted residual
analysis, 7 outliers out of a total of 275 data points (2.5%) with a weighted residual
>4 can be detected. These outliers are best seen in the last two figures (Figure 4-
3, panels D1-D3 and E1-E3). Three out of these 7 outliers belong to the same
patient (ID No. 34), while an additional 3 outliers were for concentrations

measured during the first hour of drug administration.
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Figure 4-3. Summary of the goodness of fit plots: A) Predicted [PRED] vs Observed [OBS] plots, B) Residuals vs Predicted
plots, C) Residuals vs Time plots, D) Weighted Residuals vs Predicted plots, and E) Weighted residuals vs Time plots. The
first row presents data for the internal validation set, the second row presents data for the external validation set, and
the third row presents all data together.
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4.4.1.4. Results of model statistical analyses

The obtained residuals and weighted residuals for every predicted

concentration point after the IV ivabradine exposure in the adult patient collective

were used as the basis to calculate various metrics for a numerical evaluation of

the model accuracy, precision, and general predictive performance of the model.

Table 4-5 presents the results of the statistical analyses of the ivabradine model.

Table 4-5. lvabradine model evaluation metrics

Metrics of Accuracy Metrics of Precision Additional
Metrics
ME MPE MDPE MAE MAPE MDAPE RMSE  MRD
[ng/mL]  [%] [%] [ng/mL] [%] [%]
All data concentration points included in the evaluation
Internal set 0.08 53.97 8.19 11.15 80.50 32.10 19.58 1.95
External set -8.04 46.38 14.53 23.72 75.47 35.98 79.17 2.15
All -3.76 50.38 10.58 17.09 78.12 34.22 56.26 2.04
Excluding outliers (n=13 out of 275 concentration points [4.7 %])
Internal set -0.68 12.93 6.63 10.54 39.84 30.78 18.50 1.75
External set 3.47 26.54 14.98 9.77 50.50 32.34 15.64 1.70
All 1.20 19.11 10.53 10.19 44.70 32.17 17.26 1.76

ME = Mean Error, MPE = Mean Percentage Error, MDPE = Median Percentage Error, MAE = Mean Absolute Error, MAPE =
Mean Absolute Percentage Error, MDAPE = Median Absolute Percentage Error, RMSE = Root Mean Square Error, MRD =
Mean Relative Error. An outlier was defined when either the calculated absolute residual of a concentration prediction is >

100 ng/mL, or the calculated weighted residual of a concentration prediction is > 4 fold.

As can be seen in the table, the model shows on average a slight bias

towards an under-prediction of the observed concentrations (as indicated by a
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mean error [ME] of -3.76 ng/mL) and tends to predict every concentration with
an average error of 50% (as indicated by a mean percentage error [MPE] of
50.38%) if all the data points are included in the statistical analysis. However, the
median values of percentage and absolute percentage errors could be better
predictors for model accuracy and precision than the mean values, as some
obvious outliers do exist (also detected by the graphical residual analysis) and can
greatly influence the previously reported average values. The median percentage
error (MDPE) for the complete data set is 10.58% and the median absolute
percentage error (MDAPE) is 35.98%, both of which indicate good accuracy and
precision for a predictive model. Nevertheless, and in order to further investigate
the effect of these outliers on the numerical metrics set, the statistical analysis
was repeated after exclusion of these outliers (n=13, 4.7%). Results of this repeat

analysis are reported in the same table.

4.4.1.5. Population simulation of ivabradine in adults

As was earlier discussed in Section 4.4.1.2, inter-individual variability was
not incorporated into the previously reported individual predictions. A population
simulation for patients who received 10 mg ivabradine (n = 25) was therefore
performed. The population module (“PK-Pop”) is an extension of the PBPK
software, PK-Sim®. Its goal is to describe the PK behavior of a chemical substance
in a physiologically diverse set of individuals. Information about the dependence
of the physiological parameters relevant for PK-Sim® (e.g., organ weights, blood
flow rates, and tissue composition) on age, gender, body weight, and body mass
index have been collected through a comprehensive literature search and are
included in the population parameters database of the software (PK-Sim).
Population simulations in adults facilitate the inclusion of inter-individual
variations in many physiological parameters including hepatic and renal clearance
into modeling studies. For this reason, a virtual group of patients (n=1000) with
the same characteristics as the real patients who received a 10 mgivabradine dose
(n=25) was created, and a 30% inter-individual variation in the clearance (inserted
into the model as 1.3 log-normal deviations around the mean) was assigned. The

results of the population simulation were then compared with the observed data
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to see if the model is capable of accurately describing the PK behavior of IV
ivabradine following incorporation of inter-individual variations in physiological
parameters. Characteristics of both the virtually simulated and real populations
are summarized in Table 4-6. The results of the simulation are depicted in Figure

4-4,

Table 4-6. Characteristics of the virtual population created via PK-Sim® (n = 1000) and the
real population (n = 25) from which the observed data were obtained

Parameter Simulated Population Observed Population
Number of individuals 1000 virtual individuals 25 real individuals

Race European -

Gender Male (84%), female (16%) Male (84%), female (16%)
Age (years) 41-80° 41-81

Height (cm) 155-185 155-185

Weight (kg) 52-100 52-100

Dose (mg) 5 mg IV bolus followed by 5 5 mg IV bolus followed by 5

mg IV infusion over 8 hours  mg IV infusion over 8 hours

An inter-individual variation (log-normal distribution, 1.3 deviations around the mean) was assigned for both renal and
hepatic clearance in this virtual population.
280 years is the upper limit for age input in PK-Sim”.
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Figure 4-4. Comparison of simulated population (geometric mean [thick solid line], Min/Max
[shaded area] and 5-95% Percentile [dashed lines]) and experimentally obtained (thin solid lines,
individual data) plasma concentration-time profiles of ivabradine after administration of 5 mg IV
bolus followed by 5 mg IV infusion over 8 hours. (A) linear concentration scale and (B) logarithmic
concentration scale.
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4.4.1.6. Possible protocol violation scenarios

Despite the ability of the model to make good predictions for a majority of
the patients, there were still some deviations from the observed data. These
deviations could be, in part, due to potential errors in the analytical determination
assay of drug concentrations, or result from undocumented deviations from the
study protocol (e.g., study dosing). The latter assumption is supported by the fact
that in some patients (n=4), the shape of the observed plasma concentration-time
course curve of ivabradine either did not correspond to the distinct shape
resulting after the administration of a combined IV bolus and infusion regimen, or
differed clearly from the rest of the observed data set. In silico simulations
performed using the developed PBPK model can investigate the potential effect
of such factors. In Figure 4-5, we present possible protocol violation scenarios of
4 different patients in whom we suspect different dosing conditions from those
documented in the study protocol. These examples demonstrate the utility of a
PBPK model in highlighting and simulating the effect of factors that could account
for discrepancies between the drug exposure predicted by in silico simulations and

the actually observed exposures.
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Figure 4-5. A comparison between simulated (dashed line) and observed (dots and solid line)
concentrations of IV ivabradine in 4 adult patients, and the effect of suspected undocumented
protocol deviations on model results. The left panel depicts simulation results of the patients
following the default study dosing protocol of ivabradine, which is the administration of a fixed
loading dose of 5 mg IV bolus followed by another dose as an IV infusion over 8 hours (5 mg: patient
A; 5.10 mg : patient B; or 10 mg: patients C and D). The right panel depicts the simulation results
if the suspected protocol deviation scenario is applied: A) Patient with a suspicion of a missed bolus
dose (i.e., only a dose of 5 mg IV infusion is given); B) Patient with a suspicion of having been
administered the total amount as infusion only instead of a combination of bolus and infusion; C)
and D) Patients with a suspicion of belonging to a group which received a 5 mg IV infusion instead
of the supposed 10 mg as listed in the patient information. The simulation results are shown on a

linear scale. Inlay graphs show the same results on a semilogarthmic scale.
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4.4.2. Ivabradine clearance scaling to children

The clearance scaling module that is integrated into PK-Sim®, the modeling
software package used in this study, combines integrated information about
ontogeny and maturation of eliminating organs and clearance pathways with
information on age-specific differences in organ blood flows and protein binding
in order to scale down drug clearance from adults to any pediatric age of interest.
In this instance, the clearance scaling was carried out on the previously developed
IV adult PBPK model, assuming the hepatic in vivo clearance to be fully
attributable to CYP3A4. Figure 4-6 illustrates the modeled time course of both
renal and hepatic clearance of ivabradine across the entire pediatric age

spectrum.
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Figure 4-6 Time course of ivabradine clearance through all pediatric age groups: total (bold line),
hepatic (dashed gray line) and renal clearance (bottom orange line).
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4.4.3. Hypothetical ivabradine exposure in children

Multiple simulations of ivabradine administration to virtual pediatric
populations of different age groups were performed using the scaled pediatric
model. As previously mentioned, these simulations permit the examination of any
age-related differences in ivabradine exposure and disposition between adults
and children, and enable the detection and recommendation of any necessary
adjustments to the dosing regimens in children, which are usually chosen to be

weight-normalized to the same adult dose.

As a result, 32 different population simulations were performed for the following

ages:
- 0,1,2,3,7, and 14 days
- 1,3,4,4.5,5, 6, and 9 months

- 1,15,2,3,4,5,6,7,8,9,10,11, 12, 13, 14, 15, 16, 17, and 18 years

Each age group-specific simulation included 1000 virtual children of both
genders (50% male, 50% female) who received the same adult weight-normalized
dose. This dose was chosen to be 0.14 mg/kg, derived from the most common
adult total dose of ivabradine (10 mg) and the mean weight (72.2 kg) of the
individuals who received this dose in the original input data. The ivabradine was
also administered, as in the adult population, as a combination of an initial bolus
of 0.07 mg/kg followed by an IV infusion of 0.07 mg/kg that began 1 minute later
and continued for 8 hours. No specific weight or height boundaries were assigned
to these virtual populations. To account for inter-individual variations in renal and
hepatic clearance, a value of 1.3 log-normal deviations around the mean age-
specific clearance was assigned. Results of these simulations are shown in Table

4-7 and depicted in Figure 4-7.
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Table 4-7. Predicted Ivabradine Exposure (in Terms of AUCo.inf) Across the Pediatric Age

Range
Age AUCo.inf (mg.h/L)
Average Geo. Min. Max. 5% 25t 50t 75t 95th
Mean Prct Prct Prct Prct Prct
od 0.97 096 054 184 0.71 0.84 0.96 1.08 1.3
1d 0.8 0.79 0.46 1.27 0.59 0.71 0.8 0.89 1.04
2d 0.7 069 041 133 0.51 0.61 0.69 0.77 0.91
3d 0.65 0.64 04 0.99 0.48 0.57 0.63 0.72 0.84
7d 0.61 0.6 0.37 1.03 0.6 0.54 0.6 0.67 0.8
14d 0.53 0.52 0.29 089 0.39 0.47 0.52 0.59 0.69
1m 0.39 0.38 0.23 0.67 0.28 0.34 0.38 0.43 0.52
3m 0.32 031 0.19 055 0.24 0.28 0.31 0.35 0.42
4m 0.19 0.19 0.12 0.31 o0.14 0.17 0.19 0.21 0.25
5m 0.2 0.2 0.12 0.33 0.15 0.18 0.2 0.23 0.27
6m 0.18 0.18 0.12 029 0.14 0.16 0.18 0.2 0.23
9m 0.18 0.18 0.12 0.31 o0.14 0.16 0.18 0.2 0.23
ly 0.21 0.21 0.13 0.35 0.16 0.19 0.21 0.23 0.27
15y 0.21 0.2 0.12 0.34 0.16 0.18 0.2 0.23 0.26
2y 0.21 0.21 0.13 0.32 o0.16 0.19 0.21 0.23 0.27
3y 0.2 0.2 0.12 0.32 0.15 0.18 0.2 0.22 0.26
4y 0.17 0.17 0.1 0.3 0.13 0.15 0.17 0.19 0.23
45y 0.24 0.24 0.15 041 0.18 0.22 0.24 0.27 0.32
5y 0.29 0.29 0.17 047 0.22 0.26 0.29 0.33 0.39
6y 0.35 035 0.23 0.58 0.26 0.31 0.35 0.39 0.46
7y 0.28 0.28 0.18 047 0.22 0.25 0.28 0.32 0.36
8y 0.33 032 0.19 0.61 0.25 0.29 0.32 0.36 0.42
9y 0.27 026 0.19 043 0.2 0.24 0.26 0.3 0.35
10y 0.32 032 0.2 0.55 0.24 0.28 0.32 0.36 0.42
11y 0.35 035 0.21 0.61 0.26 0.31 0.34 0.39 0.47
12y 0.38 037 0.21 0.64 0.28 0.33 0.37 0.42 0.48
13y 0.33 032 0.2 0.55 0.25 0.29 0.32 0.36 0.43
14y 0.38 038 0.22 063 0.29 0.34 0.38 0.42 0.49
15y 0.37 036 0.21 0.68 0.28 0.33 0.36 0.4 0.48
l6y 0.43 0.42 0.26 0.68 0.32 0.38 0.42 0.47 0.56
17y 0.44 0.43 0.26 0.76 0.33 0.38 0.43 0.48 0.57
18y 0.45 0.45 0.28 0.71 0.35 0.4 0.45 0.5 0.59
Adults 0.41 0.4 0.19 0.78 0.27 0.34 0.4 0.47 0.59

The administered dose was a unique total dose of 0.14 mg/kg given as an IV bolus injection (0.07 mg/kg) followed by an IV
infusion (0.07 mg/kg) over 8 hours (extrapolated from the adult total dose of 10 mg). Results obtained from paediatric
population simulations. The reference adult group is of 41-80 years, which is the age range of the observed adult

population.
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Figure 4-7 Comparison of ivabradine exposure (AUCq.inf) in different pediatric age groups after the administration of a unique
total dose of 0.14 mg/kg. The dose was extrapolated from the adult total dose of 10 mg and given as a 0.07 mg/kg IV bolus
injection followed by a 0.07 mg/kg IV infusion over 8 hours; n = 1000 virtual children; 50:50 M:F. Inter-individual variation for
renal and hepatic clearance were assigned (log-normal distribution, 1.3 deviations around the mean). Reference population
age is 41-80 years, which is the age range of the observed adult population. The bold dashed line indicates the average
exposure in the reference adult population. The shadowed area indicates the the range between the 5™ and 95 percentiles
of the exposure in the reference adult population.
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As can be seen, the administration of the same weight-normalized adult
dose to children without any age adaptation results in variable ivabradine
exposures (from -57.5% to +140% of the corresponding adult exposure) with a
clear pattern. In comparison to the adults, ivabradine exposure was higher in
newborns especially during the first 2 weeks, but much lower in children aged 4
months through 4 years. A higher exposure can be associated with drug toxicity,
whereas a lower exposure can be associated with sub-therapeutic concentrations
and consequent failure of therapy. These differences in the degree of drug
exposure are mainly due to different weight-normalized clearance values across
the pediatric age spectrum. For example, children between the ages of 4 months
and 4 years show higher weight-normalized clearance values in comparison with
adults. Therefore, 95% of the simulated profiles in children within this age range
showed an AUCq.inf Which was under the 5™ percentile of the adult AUCo.inf,

indicating the need for a higher weight-normalized dose than in adults.
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4.4.4. Recommendations for age-specific dose adaptation in children

The previously presented results of the simulations in the pediatric
population show that an age-specific dose adaptation is necessary to achieve a
relatively constant drug exposure across the pediatric age spectrum similar to that
seen in adults. Therefore, preliminary recommendations on age-specific dose
adaptation have been given guided by the previous findings, and doses
recommended for pediatric administration in order to achieve the same exposure

as in the case of adults are listed in Table 4-8.

Table 4-8. Model-predicted pediatric doses needed to achieve the same |V ivabradine

exposure as in adults

Pediatric Age Recommended dose to be given

First 2 weeks of life 0.07 mg/kg BW?

Neonates aged 14 days-infants aged 3 months 0.14 mg/kg BW

Infants aged 4 months-children aged 4 years 0.28 mg/kg BW
Children aged 5 through 14 years 0.18 mg/kg BW
Adolescents aged 15 through 18 years 0.14 mg/kg BW or an absolute dose

of 10 mg total IV ivabradine

?BW = Body weight. These doses are recommended to achieve a similar exposure to that achieved by a reference adult
dose of 10 mg intravenous ivabradine (~0.14 mg/kg IV). The recommended doses are the total doses for a combined IV
bolus and an IV infusion.

To investigate whether these dose adaptations could lead to a more
constant exposure in the pediatric population resembling that obtained in adults,
the entire set of simulations was repeated using the dose adaptations suggested
above. The results showed a significant reduction in the variability of pediatric
drug exposure when compared to that of adults (without dose adaptations
varioations of -57.5% to +140%, with dose adaptations variations of -30% to

+30%). The results of representative groups are shown in Figure 4-8.
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Figure 4-8. Comparison of hypothetical ivabradine exposure (A) after administration of the same
adult “weight-normalized” dose to all age groups, and (B) after administering age-adjusted doses
for the different age groups. Ivabradine was administered as a combined IV bolus and infusion just
as in the case of adults. Newborns represent neonates on the day of birth. The shadowed area
indicates the the range between the 5" and 95 percentiles of the exposure in the reference adult

population.
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4.5. Conclusion

The final chapter of this thesis presented a physiologically based PK model
for the heart-rate lowering drug ivabradine, a drug that could be used in the
treatment of SVT in children. A PBPK model for this drug was first developed and
validated in adults and then extrapolated to children. The adult model described
the observed data in 48 adult patients with adequate accuracy and precision, as
indicated by visual inspection of the predicted and observed plasma profiles and
by the calculated numerical model metrics. This model was then scaled to children
to explore the hypothetical ivabradine exposure from birth to adolescence after
IV administration of the drug. The model simulations showed that administering
the same weight-normalized adult dose to children resulted in variable ivabradine
exposures across the pediatric age spectrum, reflecting age-related PK changes
and indicating the need for an age-specific dose adaptation. For example,
newborns needed lower weight-normalized doses whereas children aged 4
months to 4 years old needed higher weight-normalized doses compared to adults
in order to achieve the same exposure seen in adults. As a result, a dosing scheme
of ivabradine was recommended in order to achieve a similar adult drug exposure
obtained by the commonly given dose of 10 mg total IV ivabradine. This
information will not only guide dosing in children, but will also help future PK trials
to be confirmatory rather than exploratory, thus reducing both the costs and the

total number of children to be enrolled.
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X. Final summary of the thesis and perspectives

This thesis presents a comprehensive overview of the concept, structure,
and applications of PBPK modeling and describes a systematic methodology for
PBPK model development and validation that could help guide similar efforts in
the future, particularly when extrapolating findings to pediatric applications. It
also introduces newly evaluated pediatric PBPK models for 3 cardiovascular drugs.
These models were developed to address the limitations of currently available
models, to improve clinical drug therapy and knowledge of age-related drug PK
changes, or to support the drug development process and clinical trials in the field

of pediatric cardiology.

In the first part of the thesis, a PBPK model of sotalol was developed and
evaluated for accuracy of prediction of the drug exposure in both adults and
pediatric patients over the entire pediatric age range using observed PK data from
a large patient collective. Neonates were identified as the age group in which the
predictions of drug pharmacokinetics were least accurate using models developed
with 2 leading PBPK modeling software packages. The findings indicated the need
for additional caution while using prediction results from neonates for clinical
purposes; however, the final decision should take into consideration both the
purpose of the modeling practice as well as the drug safety profile. On the other
hand, the good predictions obtained for the remaining pediatric age groups (i.e.,
children over one year of age), encourage a wider and more confident use of such
models to support pediatric clinical trials by running ‘what if’ scenarios and
exploring age-related differences in drug absorption and disposition. However,
these results may not yet be able to be generalized to all drugs, as this work should
be complemented by PBPK models of other drugs of different physicochemical
and PK properties and with involvement of different metabolizing enzymes and
transporters. Finally, it was seen that the absorption models incorporated into the
available modeling software packages still lack age-specific data for some of their
anatomical and physiological parameters, which indicates that more focus should
be placed on improving them in the future, especially in view of the fact that oral

route is the most frequently used route of drug administration.
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In the second part, a pediatric PBPK model for amiodarone was developed
and shown to be able to capture the complex pharmacokinetics of amiodarone
and adequately predict its exposure after IV administration in adults and in 4 out
of every 5 pediatric patients regardless of their age. This is a success keeping in
mind the nature of this pediatric cohort whose constituents have multiple
pathophysiological factors that could influence amiodarone fate in the body and
in view of the fact that sudden modifications to the administered drug therapy
frequently occur due to the patients’ clinical condition, safety concerns, or the
pharmacological response, with a resulting possibility of undocumented dosing
changes. The “what-if” scenarios performed to explain the deviations observed in
18.45% of the children showed that possible undocumented deviations from study
dosing protocol could have occurred. It is therefore recommended that such
undocumented deviations be minimized as much as possible, for example, by
training and educating the nursing and medical staff responsible for drug
administration, by comprehensive documentation of dosing, and by improving
sample collection (including collection of additional samples to prevent sample
loss) in future trials. In addition, these “what-if” scenarios showed that the
potential impact of CYP2C8 polymorphismes, if they exist, is negligible and does not
influence the observed amiodarone plasma-concentration-time profile, as
distribution processes rather than elimination drive amiodarone plasma
concentration-time profiles during the first few days of therapy. Nevertheless, it
may be advisable to consider obtaining an extra sample (e.g., blood or saliva) for
genotyping to factor in the potential role played by enzyme polymorphisms when
performing PK trials of drugs that are metabolized primarily by polymorphic
enzymes, since any such polymorphisms could influence the drug disposition and
since the availability of such information in advance will enable a more accurate
and informative PK analysis. The potential influence of the pathophysiological
changes associated with Duchenne muscular dystrophy on amiodarone exposure
were also investigated in 1 patient, with the results showing that these changes
do influence amiodarone disposition, thus partly explaining the observed
deviation. This model can not only be used to support the rationale for adjustment

of therapy for individual patients by exploring the dose-exposure relationship in
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advance, but could also be extended to a coupled PBPK/PD model to maximize the

clinical benefit of such modeling efforts.

In the third part, recommendations on dose selection for “first in children”
trials of the heart-rate lowering drug ivabradine were proposed as a complete
dosing schema from birth to adolescence. It was shown, using a validated PBPK
model, that age-dependent changes in body composition and in organ functions
doinfluence ivabradine disposition, and that dose adaptation must be undertaken
for children of different ages in order to obtain a relatively constant drug
exposure. As a result, children between 4 months to 4 years of age required
double the adult weight-normalized dose to achieve the desired therapeutic
concentrations, whereas children in the first few weeks of life did not need more
than half the adult weight-normalized dose. These age-appropriate dose
recommendations could be incorporated as part of the pediatric investigation plan
to be submitted to the regulatory authorities to license ivabradine for use in

children.

As has been seen, all of the findings discussed in this thesis, together with
the presented examples and applications, point to the same conclusion: the
capacity of the PBPK modeling approach to help increase the efficiency of
pediatric clinical drug research and development in this vulnerable patient
population is significant, which should encourage its utilization on a larger scale
taking into consideration the knowledge of its current shortcomings and
strengths. It would not be surprising if we soon witness a scenario in which every
planned pediatric PK clinical trial is first simulated using the technique of PBPK
modeling in order to optimize its design and outcomes, thus saving time, effort,
and the need for a large number of trial participants. Moreover, validated PBPK
models, especially for drugs with a narrow therapeutic window, could find their
way into being integral components of clinical decision support systems for
physicians in pediatric wards. Although implementation of the latter possibility
may seem to be ambitious at this time, health care providers should not neglect
any promising approach that could enhance therapeutic outcomes in routine

clinical practice, especially given that many of these models could be, after
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validation, extended to a coupled PBPK/PD model that will further encourage their

implementation in routine clinical practice.
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