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ZUSAMMENFASSUNG 

Hohe Thermostabilität ist eine erwünschte Eigenschaft von Proteinen, insbesondere für deren 

Einsatz in der industriellen Biokatalyse. Ein Biokatalysator mit erhöhter Thermostabilität 

ermöglicht die Durchführung einer Katalyse bei höheren Temperaturen und dadurch die 

Erhöhung der Reaktionsgeschwindigkeit. Allerdings sind die meisten Proteine in der Natur 

nicht dafür optimiert, harten industriellen Prozessbedingungen, einschließlich hoher 

Temperaturen, zu widerstehen. Daher wendet man häufig Protein-Engineering an, um 

thermostabile Varianten existierender Proteine zu erzeugen. Jedoch kann nur ein kleiner Teil 

der vielen theoretisch möglichen Varianten eines Proteins experimentell hinsichtlich 

Thermostabilität getestet werden. Daher sind computergestützte Ansätze zur Vorhersage von 

Weak Spots, Aminosäureresten deren Mutation die Thermostabilität eines Proteins 

voraussichtlich erhöht, vielversprechend für Protein-Engineering-Projekte zur Verbesserung 

der Thermostabilität. In dieser Arbeit entwickelte ich solche computergestützten Ansätze, 

eine Aufgabe die drei Teile umfasste: I) Die Identifikation der wichtigsten nicht-kovalenten 

Wechselwirkungen, welche die Thermostabilität eines Proteins bestimmen. II) Die 

Entwicklung und Verbesserung von Ansätzen zur Vorhersage thermostabilisierender Protein-

Mutationen auf Grundlage der Erkenntnisse aus Teilaufgabe I. III) Die Validierung dieser 

Ansätze durch ihre retrospektive und prospektive Anwendung auf Testsysteme. 

In dieser kumulativen Arbeit zeigte ich, dass die hydrophobe Wechselwirkungsenergie der 

wichtigste Faktor bei der Unterscheidung von mesophilen und (hyper)thermophilen Protein-

Homologen ist. Auf Basis dieser Information entwickelte ich einen Ansatz zur Vorhersage 

von Weak Spots auf Grundlage der hydrophoben Wechselwirkungsenergien einzelner 

Aminosäurereste (Publikation I). Erstmals zeigte ich, dass die Größe von Aminosäurerest-

Clustern, die anhand hydrophober Wechselwirkungsenergien einzelner Aminosäurereste 

identifiziert wurden, ein wesentlich besseres Unterscheidungsmerkmal für mesophile und 

(hyper)thermophile Proteine ist als allein das Vorhandensein oder die Größe hydrophober 

Aminosäurerest-Cluster. Auf Grundlage dieser Erkenntnis verbesserte ich den auf der 

Rigiditäts-Theorie basierenden Constraint Network Analysis (CNA) Ansatz, um durch die 

temperaturabhängige Modellierung hydrophober Interaktionen und zusätzlich Ensemble-

basierte CNA die Thermostabilität und Weak Spots von Proteinen vorherzusagen 

(Publikation II). Zur einfachen Vorbereitung und ausführlichen Analyse von CNA-

Berechnungen, wurde ein Software-Paket, ein Web-Service als auch eine graphische 

Benutzeroberfläche entwickelt, welche das Protein-Engineering zur Verbesserung der 
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Thermostabilität unterstützen. (Publikationen III–V). Ich verwendete sodann CNA zur 

retrospektiven Untersuchung der Beziehung zwischen der strukturellen Rigidität von 

Proteinen und deren thermodynamischer Thermostabilität, wobei Lipase A von Bacillus 

subtilis (BsLipA) als Testfall mit literaturbekannten thermodynamisch thermostabilisierten 

Varianten diente (Publikation VI). Meine vergleichenden Untersuchungen von BsLipA 

Varianten zeigten, dass eine thermodynamische Thermostabilisierung eindeutig mit einer 

erhöhten strukturellen Rigidität einhergeht. Diese Erkenntnis wurde in einer prospektiven 

Studie ausgenutzt: um den CNA-basierten Ansatz zu validieren, entwickelte ich eine 

computergestützte Strategie zur Vorhersage thermostabilisierender Mutationen und wendete 

diese auf BsLipA an. Experimentelle Tests bestätigten die vorhergesagte 

Thermostabilisierung für drei von zwölf mutierten BsLipA Varianten (Publikation VII). 

Diese Studie zeigte erstmals, dass CNA prospektiv zur Anreicherung thermostabilisierender 

Protein-Mutationen verwendet werden kann. 

Ich bin davon überzeugt, dass die Geschwindigkeit und Vorhersagegenauigkeit dieser neuen 

und verbesserten computergestützten Ansätze es ermöglichen werden, die Grundlagen der 

Thermostabilität von Proteinen zu erforschen, thermostabilisierende Mutationen 

vorherzusagen und dadurch die Wirksamkeit und Effizienz von Protein-Engineering-

Projekten zu verbessern. 
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ABSTRACT 

High thermostability is a desired property for proteins, in particular for their use in industrial 

bio-catalysis. A bio-catalyst with elevated thermostability allows carrying out catalysis at 

higher temperatures and, thus, to increase the rate of a reaction. However, most proteins in 

nature are not optimized to withstand harsh industrial process conditions including high 

temperatures. Therefore, engineering existing proteins by mutagenesis is often employed in 

order to produce thermostable variants. However, only a minor fraction of the large number 

of theoretically possible mutated variants of a protein can be tested experimentally for their 

thermostability. Computational approaches that predict weak spots, residues that are more 

likely to increase a protein’s thermostability upon mutation, are hence promising for protein 

engineering projects aimed at improving thermostability. In this thesis, I developed such 

computational approaches, a task that was subdivided in three main parts: I) To identify the 

most significant non-covalent interactions that determine a protein’s thermostability. II) To 

develop and improve approaches for predicting thermostabilizing mutations on a protein 

based on the outcome of part I. III) To validate these approaches by their retrospective and 

prospective application on test systems. 

In this compilation thesis, I showed that hydrophobic interaction energy is the most 

discriminating factor between mesophilic and (hyper)thermophilic protein homologs. Using 

this information, I developed an approach for predicting weak spots based on residue-wise 

hydrophobic interaction energies (Publication I). For the first time, I showed that the size of 

residue clusters that are identified based on residue-wise hydrophobic interaction energies 

discriminates mesophilic and (hyper)thermophilic proteins much better than the existence or 

size of clusters of hydrophobic residues alone. Based on this finding, I improved the rigidity 

theory-based Constraint Network Analysis (CNA) approach for predicting protein 

thermostability and weak spots by modeling hydrophobic interactions in a temperature-

dependent manner, in addition to performing an ensemble-based CNA (Publication II). For 

an easy setup and extensive analysis of CNA calculations, we developed a software package, 

a web service, as well as a graphical user interface that facilitate protein engineering for 

improving thermostability (Publications III-V). Next, I used CNA to study the relation of a 

protein’s structural rigidity and its thermodynamic thermostability using BsLipA as a test 

case for which thermodynamically thermostabilized variants are reported in the literature 

(Publication VI). For the first time, my systematic comparative study of BsLipA variants 

revealed that thermodynamic thermostabilization is unequivocally accompanied by increased 
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structural rigidity, leading to a significant and good correlation between structural rigidity 

and thermodynamic thermostability of these variants. Finally, in order to validate the CNA 

approach, I developed a computational strategy for predicting thermostabilizing mutations 

and applied it to lipase A from Bacillus subtilis (BsLipA) prospectively. Experimental testing 

confirmed the predicted thermostabilization for three out of twelve mutated BsLipA variants 

(Publication VII). This study demonstrated, for the first time, that CNA can be applied 

prospectively for enriching thermostabilizing mutations on a protein. 

I am confident that the speed and prediction accuracy of these new and improved 

computational approaches will allow to investigate the basis of protein thermostability, to 

predict mutations that increase thermostability, and thus to improve the efficacy and 

efficiency of protein engineering projects. 
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1 INTRODUCTION 

Proteins are central in carrying out biological functions. In order to carry out their functions, 

proteins are required to fold in a complex three-dimensional structure in order to interact with 

their binding partners.1 Several extrinsic factors including temperature,2-8 pressure,9-13 and 

solvent14-20 affect a protein’s stability by disrupting its folded structure.21 Among these 

factors, effect of temperature has been extensively studied owing to its significance in 

industrial applications.22-27 Thermostable enzymes are sought after in biotechnological 

industry because these allow carrying out biocatalysis at elevated temperatures.28,29 Enzymes 

found in nature are not always optimized to withstand extreme industrial process conditions 

including high temperature.30 Therefore, the identification and development of thermostable 

enzymes is an important aspect of research in biotechnology.25 

In general, enzymes from (hyper)thermophiles*, i.e., organisms that grow optimally at 

temperatures above 50°C (85°C), show a higher temperature tolerance than their orthologs 

from mesophiles, i.e., organisms with an optimal growth temperature (Tog) of 25-50°C.28,31 

Consequently, identifying thermostable enzymes by screening metagenomes is an obvious 

approach. Screening large metagenomes is often highly cumbersome, and a thermostable 

variant of the desired protein is not necessarily available in nature, however.32 This makes 

engineering of existing enzymes for improving their thermostability a valuable alternative.33 

Protein engineering approaches for improving thermostability include random mutagenesis 

and recombination followed by screening for thermostable mutants,34 rational design,35 and 

data-driven approaches.36 On the one hand, random mutagenesis has a limitation in that only 

a restricted sequence space can be experimentally tested owing to the large combination of 

mutations that are theoretically possible;37 on the other hand, rational design of a protein 

requires a thorough knowledge of the mechanisms underlying thermostabilization of the 

protein.35 As a compromise, data-driven approaches are being pursued for reducing the 

library size for mutagenesis based on suggestions of interesting residue positions that, when 

mutated, would lead to a more thermostable variant of the protein.36 These data-driven 

approaches rely upon knowing the most important intrinsic factor(s) that improve 

thermostability of a protein. Comparisons of pairs of meso- and (hyper)thermophilic proteins 

have revealed several such factors,38,39 including improved hydrogen bonding,40 ion pair and 

                                                 
* Hereinafter, “mesophilic protein” is used as a synonym for a protein from a mesophilic organism and, 
similarly, “(hyper)thermophilic protein” is used as a synonym for a protein from a (hyper)thermophilic 
organism. 
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salt bridge networks,39 better hydrophobic packing,41 shortening of loops,42 and higher 

secondary structure content.43 Factors contributing to protein thermostability are reviewed by 

several authors.4,44-47 The multitude of the factors that contribute to protein thermostability 

poses a pertinent question: which of these factor(s) is (are) most significant for protein 

thermostability? The answer to the question will enable us to improve data driven 

computational approaches by emphasizing the most significant interactions while modeling a 

protein. 

Data-driven approaches that restrict the mutant library size for a protein using the available 

knowledge are frequently being used for improving protein thermostability.36 These 

approaches exploit information derived from sequence and/or structure of proteins. In one of 

the sequence-based data-driven approaches, amino acids in a target mesophilic protein are 

substituted with the ones from a (hyper)thermophilic homologue using site-directed 

mutagenesis.48,49 Other methods involve generating a consensus sequence of the target 

protein from a multiple sequence alignment (MSA) of several mesophilic sequences of the 

same protein by keeping consensus amino acids from the alignment at every sequence 

position.50-52 Several structure-based data-driven approaches predict the change in ΔGFU 

(difference between the Gibbs free energy of folded and unfolded state of a protein) upon 

mutation of a target protein by employing empirical or knowledge-based potentials53-58 or 

machine learning.59,60 These methods can be employed to identify a set of potential mutations 

that can be experimentally evaluated. Taking advantage of high performance computing, free 

energy calculations for mutations using thermodynamic integration is also pursued to 

improve protein thermostability.61 

In another structure-based data-driven approach introduced by M. T. Reetz et al.,62 saturation 

mutagenesis was performed in an iterative manner on those residues of Bacillus subtilis 

lipase A (BsLipA) with the highest crystallographic B-factors leading to development of 

significantly more thermostable variants compared to wild type (WT) by screening less than 

8000 colonies. This followed the guiding principle that thermostable proteins usually show a 

higher degree of structural rigidity than their counterparts from mesophilic organisms; hence, 

preferentially stabilizing the most mobile regions should increase thermostability. 

Following the same guiding principle to exploit the link between rigidity and protein 

thermostability, S. Radestock and H. Gohlke developed a graph theory-based rigidity analysis 

approach termed Constraint Network Analysis (CNA) for protein thermostability prediction 
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and identification of weak spots.63,64 In CNA, a protein is modeled as a constraint network 

where atoms (sites) are connected by covalent and noncovalent interactions (constraints).65 

Then rigidity analysis of the protein network is performed using the pebble game algorithm 

wherein the network is decomposed into rigid parts and flexible links between them.66,67 By 

successively removing hydrogen bonds from the network in increasing order of strength, a 

thermal unfolding simulation is carried out.64,68 So far, hydrophobic interactions have not 

been considered in a temperature-dependent manner and, accordingly, hydrophobic 

constraints were kept constant throughout the thermal unfolding simulation. Next, a phase 

transition point Tp at which a largely rigid network becomes largely flexible is identified that 

relates to the (thermodynamic) thermostability of the protein and can be compared to Tm 

values. In addition to this, weak spots are identified as the residues that become flexible 

during the phase transition.45,46 

It has been found in several studies that thermophilic proteins have a more rigid fold than 

their mesophilic homologs.63,64,69,70 As an opposing view, proteins from thermophilic 

organisms have been reported to be as flexible as or even more flexible than their homologs 

from mesophilic organisms.71-74 These different views on the relation between protein 

thermostability and structural rigidity have been a matter of ongoing discussion,69,75-80 and 

may be related to that, from a mechanistic point of view, the general term “protein 

thermostability” embraces at least two different meanings:30,81 (1) thermodynamic 

thermostability describes the folded-unfolded equilibrium of a protein, and (2) kinetic 

thermostability refers to the length of time a protein remains active before undergoing 

irreversible denaturation at an elevated temperature. When the folded structure of a protein is 

energetically more stable than its unfolded structure, the protein is said to be 

thermodynamically thermostable. A kinetically thermostable protein is less prone to 

precipitation and aggregation and, hence, is not readily inactivated at high temperatures. We 

hypothesize that a lack of differentiation between thermodynamic and kinetic 

thermostabilization contributes in part, to the opposing views of “increased vs. decreased 

structural rigidity” and “protein thermostability. 

In the present thesis, I identified the most significant determinants of protein thermostability 

and used this information to improve constraint modeling in the CNA approach. The CNA 

approach was also improved by devising a way to incorporate a structural ensemble as input, 

rather than a single protein structure as done before. Next, we developed software packages 
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for performing CNA calculations and analyzing results from CNA in an interactive manner. 

Furthermore, a web service was developed for allowing setting up and running CNA 

calculations from a web browser. Next, we studied the link between structural rigidity and 

protein thermostability. This was done using BsLipA as test case because several kinetically 

and thermodynamically thermostabilized mutants of BsLipA have been reported in the 

literature.62,82-88 Finally, the CNA approach and software packages were validated by 

predicting thermostabilizing mutants of BsLipA and subsequent experimental thermostability 

estimation. 
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2 BACKGROUND 

2.1 Protein thermostability 

Proteins are complex three-dimensional molecular machines that carry out biological 

functions. A folded form of a protein brings key amino acids together to catalyze an 

enzymatic reaction. However, several adverse conditions including high temperature and 

presence of denaturants, solvents, and extreme pH can transform a protein into a form that is 

not active. The term thermostability refers to the ability of a protein to resist adverse effects 

of high temperature by preserving its tertiary active structure. Unfolding of a protein in to an 

inactive, disordered polypeptide chain, which can be reversible, is termed denaturation.81 

Another term inactivation refers to an irreversible loss of activity of a protein over time due 

to physical, biological, or chemical factors.81 These factors include precipitation and 

aggregation,89-93 deleterious reactions on amino acid side-chains,94 and proteolysis.95,96 

Two concepts of thermostability arise out of these deleterious phenomena: thermodynamic 

and kinetic thermostability. Thermodynamic thermostability refers to the stability of the 

folded form of a protein in comparison to its unfolded form: Thermodynamically 

thermostable proteins have lower free energy of unfolding (ΔGFU) than less thermostable 

proteins. In contrast, a kinetically thermostable protein resists the process of inactivation, and 

does not necessarily need to be thermodynamically stable.30,81 However, a 

thermodynamically less stable protein is usually also kinetically less stable because an 

unfolded protein is more susceptible to factors responsible for kinetic instability than the 

folded form. These concepts of thermostability can be expressed in a simplistic scheme (eq. 

(1))30,81 

ࡷ   
ࡺ ⇌ ࢁ →  ࡵ

(1)

where N, U, and I represent the native, unfolded and inactivated form of a protein, 

respectively. The equilibrium constant K belongs to the reversible folded-unfolded transition 

(related to thermodynamic thermostability), and the rate constant k governs the 

transformation of an unfolded form to an inactivated form (related to kinetic stability). 

However, multiple (n) relatively stable intermediates can occur on the path of the folded-

unfolded transformation with distinct equilibrium constants K1 to Kn, and each stable 

intermediate can convert into an inactivated form with a distinct rate constant k1 to kn.
30 
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2.2 Protein thermostability and rigidity 

Structural rigidity (or flexibility) is an important property of proteins, and has been associated 

with their thermostability,69 in addition to molecular recognition as well as catalysis.97,98 

Rigidity of proteins has been frequently characterized experimentally using X-ray 

crystallography, cryo-electron microscopy, single molecule fluorescence, nuclear magnetic 

resonance (NMR) spectroscopy, amide hydrogen/deuterium exchange (HDX) etc.99-104 It has 

been observed that thermophilic proteins have an increased structural rigidity than their 

mesophilic counterparts.63,64,69,70 However, a delicate balance in rigidity and flexibility is 

required for an optimal function of a protein. On the one hand, an overall rigid fold provides 

resistance to the unfolding at high temperatures; on the other hand, a flexible active site is 

required for carrying out catalysis.105-108 This phenomenon has a profound implication in the 

field of protein engineering aimed at improving thermostability in that a thermostable mutant 

that improves global rigidity of the fold should retain the active site flexibility to allow its 

function. As an opposing view, proteins from thermophilic organisms have been reported to 

be as flexible as or even more flexible than homologs from mesophilic organisms.71-74 G. 

Hernández and D. M. LeMaster observed that the HDX rates are comparable for most parts 

of mesophilic and thermophilic rubridoxin at 23°C with latter showing even higher flexibility 

in multiple-turn region.71 Similarly, J. Fitter and J. Heberle found comparable rates of slowly 

exchanging amide protons for mesophilic and thermophilic α-amylase and a higher flexibility 

for the latter with respect to motions on shorter time scales.73 These different views on the 

relation between protein thermostability and structural rigidity have been a matter of ongoing 

discussion.69,75-80 

The difference in the temporal resolution of the experimental technique or computational 

analysis used to detect protein flexibility99,100,102-104,109,110 contribute, in part, to the opposing 

views of “increased vs. decreased structural rigidity” and “protein thermostability”. In the 

present thesis, we address the question of the relation between protein thermostability and 

structural rigidity using the rigidity theory-based CNA approach, which characterizes protein 

rigidity and flexibility as static properties thereby in a time-independent manner. 

(Publication VI). 

2.3 Factors contributing to protein thermostability 

Proteins from (hyper)thermophilic organisms (Tog > 50ºC(85ºC)) often have a very similar 

fold to and an identical function as the mesophilic homologs (Tog < 50ºC).28,31 However, they 
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retain their activity at higher temperatures where their counterparts from mesophilic 

organisms are usually denatured or inactivated. By comparing proteins from mesophilic 

organisms with their thermophilic homologs, several intrinsic factors have been identified 

that improve thermodynamic thermostability of proteins. These factors include improved 

hydrogen bonding,40 ion pair and salt bridge networks,39 better hydrophobic packing,41 

shortening of loops,42 higher secondary structure content43, and increased rigidity of a 

protein.63,64,69,70,111 Overall, an optimized network of these interactions/determinants makes 

the fold of a thermodynamically thermostable protein energetically more favorable than its 

unfolded form.69,112 These determinants can also improve kinetic thermostability of a protein 

by reducing the rate of unfolding, when incorporated at unfolding initiation sites of the 

protein.113 

The multitude of the factors that contribute to protein thermostability poses a pertinent 

question: which of these factor(s) are most significant for protein thermostability. The answer 

to the question will enable us to more accurately tune data-driven approaches aimed at 

predicting weak spots on a protein i.e., residues that are more likely to improve protein 

thermostability upon mutation. We hypothesize that the reason why different determinants of 

thermostability have been revealed in previous studies39-43,63,64,69,70,111 lies in that the focus of 

these analyses has been on structural factors. At variance from these studies, in the present 

thesis, we identify the most significant factors responsible for improved thermostability of 

proteins using a large test set of 132 pairs of mesophilic/thermophilic and 149 pairs of 

mesophilic/hyperthermophilic homologous protomers by comparing the quality (energy) of 

different non-covalent interactions (Publication I). 

2.4 Experimental measures and methods of thermostability characterization 

Thermodynamic stability refers to the stability of the folded form of a protein in comparison 

to its unfolded form. Hence, thermodynamic stability can be measured by monitoring the 

reversible folded-unfolded transition of a protein when applying a gradient temperature ramp. 

The most commonly used technique for measuring thermodynamic stability is circular 

dichroism (CD) spectroscopy that estimates secondary structure content of a protein by 

measuring change in the ellipticity using a circularly polarized light.114 On the ellipticity vs. 

temperature curve, the melting temperature (Tm) is then identified as the temperature that 

indicates when half of the protein is unfolded. The folded-unfolded transition can also be 

identified by measuring the intensity of fluorescence emitted by hydrophobic amino acids, 
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particularly Trp.115-117 Another method is differential scanning fluorimetry (DSF), which 

measures the intensity of fluorescence emitted by a dye upon binding to hydrophobic residues 

that usually form the core of a globular protein.118-121 Protein unfolding can be quantitatively 

estimated by measuring the intensity of the fluorescence: the more a protein unfolds the more 

of the dye binds to hydrophobic residues that are exposed and, hence, more intensity is 

recorded. Similar to CD spectroscopy, Tm values can be calculated on the intensity vs. 

temperature curves in the case of fluorescence and DSF experiments. The DSF can be carried 

out in a high throughput manner in any machine that provides a temperature ramp and 

accurate measurement of fluorescence intensity, e.g., it can be performed in well plates using 

a real time polymerase chain reaction machine.119,122 Differential scanning calorimetry (DSC) 

is another technique used to characterize protein thermostability. In DSC, heat capacity at 

constant pressure (Cp) is measured as a function of temperature. The resulting Cp vs. 

temperature curve is used to calculate enthalpy of unfolding and Tm.123-125 Free energy of 

unfolding (ΔGFU) is a thermodynamic measure of a protein’s stability. Using eq. (2), ΔGFU 

can be calculated from a protein’s denaturation curve (e.g., fluorescence vs. denaturant) 

obtained using thermal or chemical (e.g., urea/guanidinium HCl) denaturants.126 Since ΔGFU 

is a thermodynamic measure of protein stability, it is essential that the measurements are 

done when equilibrium is attained and the unfolding reaction is reversible.126 

ிܩ߂  ൌ െܴܶ ln ܭ ൌ െܴܶ ln ൬ ݂

1 െ ݂
൰ (2)

Here R, T, Keq, and fD are the gas constant, temperature, folded-unfolded equilibrium constant, 

and the fraction of protein that is unfolded, respectively. 

When a protein denatures irreversibly due to events leading to a rapid deformation of the 

unfolded form, such as aggregation or proteolytic degradation, the kinetic stability becomes a 

more important indicator of its thermostability than the thermodynamic stability. In such 

cases, the free energy difference between the folded and the transition states on the folded-

unfolded path becomes more important because once a protein becomes unfolded, it is 

exposed to an irreversible denaturation. Kinetic thermostability of a protein is measured by 

the rate at which the protein is inactivated. One of the measures of kinetic stability, the half-

life is the time required to reduce activity of a protein to its half-maximal activity at a given 

temperature (or other condition).127 Other measures for thermostability include the 

temperature required for half inactivation of a protein in time t (T50
	t ),62 residual activity at a 
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fixed time and temperature,128,129 and temperature of maximum activity (Topt).
2 A higher T50

	t  

indicates that the protein can resist (half) inactivation at a higher temperature when a larger 

fraction of the protein is in unfolded form than at a lower temperature. Topt indicates kinetic 

stability indicating a trade-off between the gain in activity and the increased susceptibility for 

inactivation as temperature rises. 

2.5 Modes of protein thermostabilization 

A protein can be either intrinsically stabilized by incorporating thermostabilizing mutations 

or alternatively, by modulating extrinsic factors. Frequently, as an extrinsic mode of protein 

stabilization, engineering buffer conditions of a protein with respect to salt concentration, salt 

type, and pH is carried out leading to an increase in thermostability of a protein.130 Intrinsic 

stabilization involves mutating residues of a protein with an aim to identify thermostable 

variant; this process is termed protein engineering. In nature, over the years, proteins have 

evolved by selecting advantageous mutations to suit environmental conditions of the host 

organisms. In an approach of protein engineering termed directed evolution, the natural 

evolution is mimicked in that the proteins are randomly mutated under a selection pressure 

(e.g., ability to be active at high temperatures).34 This process can be carried out iteratively 

generating variants that are more thermostable than the members of their parent generation in 

each cycle. Several successful attempts of directed evolution aimed at improving 

thermostability have been reported.88,131-137 Directed evolution has a limitation, however, in 

that only a restricted sequence space can be tested for the desired activity.37 Based on 

extensive (preferably structural) knowledge about the protein of interest and its mechanism of 

thermostability, rational design involves site-directed mutagenesis of residues that destabilize 

the protein.138-141 Rational design requires an understanding of important factors of protein 

thermostability identified by studying structures and sequences of thermophilic proteins and 

comparing those against mesophilic proteins (see Chapter 4). However, such detailed 

knowledge is not always available for each protein.35 Data-driven approaches are being 

pursued as a promising alternative to directed evolution and rational design. In data-driven 

approaches, the library size for mutagenesis is reduced by suggesting interesting residue 

positions that, when mutated, would lead to a more thermostable protein.36 Several successful 

data-driven approaches for protein thermostability have been reported in literature.62,142,143 

Apart from protein engineering and medium engineering, immobilization of protein on a 

solid support is also pursued to impart thermostability to a protein. Immobilization is 

achieved either via covalent or ionic interactions with the solid support or via cross-linking or 
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entrapment.130 Modes of protein thermostabilization are reviewed in detail by A. S. 

Bommarius and M. F. Paye.130 

2.6 Computational approaches for protein thermostabilization 

Experimental testing of mutants of a protein for a desired thermostability in directed 

evolution34 is limited by the large number of theoretically possible mutations a protein can 

harbor: The number of possible single point site-saturation mutants is n×19 for a protein 

sequence of length n. The number exponentially grows when one considers mutations at 

multiple sites together: For a double mutant, the number of possible mutants would be 

n×(n−1)×192/2 = 7,183,900 for a protein of 200 residues. This necessitates data-driven 

approaches that restrict the library size for experimental testing by employing all available 

structural and sequence information of the target protein and computational models.36 Data-

driven approaches differ from the rational protein design in that it does not require a deep 

understanding of the forces contributing to the free energy of unfolding and the mechanism of 

thermostabilization of the target protein.35 Computational data-driven approaches that can 

predict the effect of a mutation on the stability of a protein or to suggest weak spots mutating 

which would more likely improve a protein’s thermostability are frequently employed to 

assist protein engineering projects. Computational approaches aimed at improving 

thermostability can be broadly divided into structure-based and sequence-based approaches; 

selected approaches are briefly described here. 

2.6.1 Structure-based computational approaches 

Several structure-based computational approaches rely upon calculating the change in ΔGFU 

upon mutations using energy functions. Six of such methods, CC/PBSA,144 EGAD,145 

FoldX,146 I-mutant2.0,147 Rosseta,148 and Hunter149 were surveyed by V. Potapov et al.150 

These six methods use three different classes of energy functions: I) Physical-based 

potentials, which are based on the analyses of the forces between atoms (CC/PBSA and 

EGAD).151 II) Knowledge-based potentials, which rely on statistical analysis of geometric 

properties extracted from a large set of protein structures (FoldX and Hunter).152 III) Support 

vector machine-based regression, which is a supervised machine learning technique 

(I-Mutant2.0).153 Rosetta uses a hybrid physical-based and knowledge-based potential.148 

EGAD energy function employs OPLS-AA force field154 along with generalized Born 

continuum model for polar solvation energy,155 and a solvent-accessible surface area-

dependent term for hydrophobic effect. CC/PBSA energy function differs from that of EGAD 
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in that it uses GROMOS96 force field156 and Poisson-Boltzmann equation for calculating 

polar solvation energy157 apart from using an entropy term based on quasi-harmonic 

approximation.158 V. Potapov et al used a large data set of 2156 mutations that were modeled 

by these six methods independently, although all methods employ a “fixed backbone” 

approach while modeling a mutation. A single structure of the mutated variant was used for 

calculating the change in ΔGFU in all methods except for CC/PBSA in which structural 

ensemble of mutated variants was built using Concoord.159 Finally, a different sub-set of 

mutations were used evaluating each method due to three reasons: I) For each method, the 

mutations that were originally used for training were discarded; II) Disallowed mutations 

e.g., mutations to or from Cys, Gly or Pro are not allowed in EGAD owing to the fixed 

backbone approach; III) Modeled structures with steric clashes were discarded in EGAD and 

Rosetta. The authors found that the correlation coefficients (r) between experimental and 

predicted changes in ΔGFU for the six methods ranged between 0.26 (Rosetta) and 0.59 

(EGAD). However, the methods were found to be good on average: the correlation 

coefficients increase up to 0.96 when the change in ΔGFU is compared in bins of 1 kcal mol-1. 

In summary, these methods could not correctly predict the stability changes in detail; 

however, they were able to predict a correct trend. A. Fischer et al. introduced a 

computational saturation mutagenesis protocol (CoSM) for predicting a stability change upon 

a single point mutation at a protein interface using an artificial (βα)8-barrel protein as a test 

case.160 The unfolded structures of the WT and the mutants were approximated by virtually 

splitting the (βα)8-barrel into two (βα)4-half barrels, and energies of the folded and unfolded 

forms were calculated using the MAB force field.161 For fourteen single point mutants at 

residue V234 covering all amino acid classes, the authors obtained a good correlation 

between changes in ΔGFU and the calculated stability differences (R2 = 0.85).160 However, the 

method has a shortcoming when it comes to smaller proteins or proteins with a complicated 

topology that cannot be virtually cut into two stable parts. At a distinction with methods 

based on calculation of changes in stability upon mutation, A. V. Gribenko et al. focused on 

improving surface charge-interactions for improving protein thermostability.162 In their 

approach, surface charge distribution was optimized using the Tanford–Kirkwood surface 

accessibility genetic algorithm (TKSA-GA).163-165 The authors demonstrated that the 

sequences of human acylphosphatase and cell-division cycle factor 42 GTPase predicted to 

have the largest increase in the favorable energy of charge-charge interactions also showed 

increased thermostability without compromising activity.162 Since their method only 
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considers charge-charge optimization of surface residues, mutations that thermostabilize a 

protein by other mechanisms cannot be identified. 

2.6.2 Sequence-based computational approaches 

The most common sequence-based approach for thermostabilization involves substituting 

amino acids in a mesophilic protein sequence with amino acids found at the same positions in 

a (hyper)thermophilic homolog.48,49 This approach follows the hypothesis that 

(hyper)thermophilic proteins have evolved from mesophilic proteins.* Hence, mutations in 

the (hyper)thermophilic proteins with respect to the mesophilic proteins confer thermo-

tolerance to the (hyper)thermophilic proteins. However, this approach can only be used when 

a sequence of a thermophilic homolog is available. This limitation is overcome by a 

consensus sequence approach that does not necessarily require sequence(s) of 

(hyper)thermophilic homolog(s) of the target protein. Here, using a MSA of several 

mesophilic sequences, a new consensus sequence of the target protein is generated keeping 

consensus amino acid at every sequence position. This approach follows the idea that every 

amino acid of a protein contributes to some extent to the protein’s overall stability, and 

therefore, optimizing a considerable number of residues together would be advantageous. For 

optimizing the sequence for improved thermostability, residues that have proven their fitness 

in several homologous proteins, i.e., consensus amino acids are considered for each sequence 

position. This is based on the hypothesis that consensus amino acids contribute more to the 

stability of a protein than the non-consensus amino acids. Employing the consensus sequence 

approach, highly thermostable phytase variants were developed by M. Lehmann et al.50-52  

E. Bae et al. developed an approach termed “improved configurational entropy” (ICE) for 

designing thermostable sequences of a protein using a MSA; the fitness of the designed 

sequences is then assessed using structural information of a large dataset of proteins.167 The 

approach requires two or more homologous sequences to the target protein as an input. In 

ICE, all possible sequences are created by varying the variable sequence positions with the 

substitutions observed at that position in an MSA. Finally, sequences with the lowest average 

local structural entropy168 calculated for all tetramers (four consecutive amino acids in the 

sequence) based on their frequency of occurrence in different secondary structure elements 

are considered thermostable. Using ICE, two thermostable variants of adenylate kinase (AK) 

                                                 
* The hypothesis that (hyper)thermophilic proteins have evolved from mesophilic proteins does not hold for all 
proteins; there are examples of organisms that originated directly as hyperthermophiles, e.g., Pyrococcus 
furiosus.166 
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that showed 11.6ºC and 12.5ºC increase in Tm were produced with a sequence alignment of a 

mesophilic and a psychrophilic AK.167 

2.7 Constraint Network Analysis 

In this work, I used and further developed a structure-based computational approach termed 

CNA introduced by S. Radestock and H. Gohlke.63,64 Note that one should distinguish 

between the “CNA approach”, which is originally developed by S. Radestock and H. 

Gohlke63,64 and improved by us (Publication II), and the “CNA software”, which is 

implemented by us during this thesis work (Publication III). CNA is a graph-theory based 

rigidity analysis approach wherein a biomolecule is modeled as a network (graph) of atoms, 

represented as sites (vertices), and interactions between them, represented as constraints 

(edges). Loosely put, in CNA, thermal unfolding of biomolecular networks of atoms and 

interactions is performed by successively removing non-covalent interactions from the 

network in increasing order of their strengths. During the thermal unfolding simulation, local 

(residue level) and global rigidity indices are calculated. Using global rigidity indices, phase 

transition points Tp (melting points) and unfolding nuclei (structural weak spots that should 

improve thermostability upon mutation) are identified. At a distinction with the 

computational approaches described in section 2.6.1, effect of a mutation on a protein’s 

stability is not estimated in terms of the change in ΔGFU in CNA approach. Rather, in CNA 

approach, weak spots are predicted as the residues from where unfolding of a protein begins 

at the phase transition point. Development of the CNA approach was inspired by the works of 

D. J. Jacobs et al. (introduction of the graph theory-based method for protein flexibility 

prediction), and B. M. Hespenheide et al.169 and A. J. Rader et al.68 (thermal unfolding 

simulation of protein constraint networks). 

The CNA approach has been successfully applied for discriminating mesophilic and 

thermophilic homologous protein pairs, identifying weak spot residues and linking flexibility 

and function of proteins.63,64 Despite these successful applications of the CNA approach, 

advancements both in technical and methodological domains were required. To the former, 

software packages for carrying out thermal unfolding simulations of proteins and interactive 

analysis of the results were required. To the latter, improved modeling of hydrophobic 

interactions and an ensemble-based version of the CNA to reduce sensitivity to the input 

structure were needed. Finally, the CNA approach needed to be validated by prospective 

prediction of thermostable mutants and subsequent experimental testing. 
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The CNA approach has been described in detail by us elsewhere (Publication 0).170 In the 

following, the theory and methods behind the CNA approach are briefly described; the text 

comes mainly from the ref.170 

2.7.1 Introduction to rigidity theory 

The quest to identify rigid and flexible regions in networks (graphs) of sites (vertices) and 

constraints (edges) dates back long. In 1864, Maxwell proposed an approximate method to 

calculate the number of floppy modes F in a d-dimensional generic network, i.e., a network 

without any symmetries like collinear constraints.171 The term “floppy modes” denotes 

(independent) internal degrees of freedom in which the sites of the network can move without 

violating any of the constraints. For a network with N sites lacking any constraint, F = dN – 

d(d+1)/2, with the subtrahend denoting the global degrees of freedom (overall translation and 

rotation) of the d-dimensional network. Each added constraint, if independent of all other 

constraints, removes one floppy mode. Thus, if all constraints in the network were 

independent, as assumed by Maxwell, the number of floppy modes (Fmxw) in a network with 

Nc constraints can be calculated by eq. (3). 

 
ெௐܨ ൌ ݀ܰ െ ܰ െ

݀ሺ݀  1ሻ

2
 (3)

Usually, this underestimates F because in reality not all constraints are independent: if a 

constraint is placed between two already mutually rigid sites, it does not decrease the number 

of floppy modes any further and, thus, is a redundant constraint. Taking into account the 

number of redundant constraints Nr then leads to eq. (4).  

 
ܨ ൌ ݀ܰ െ ሺ ܰ െ ܰሻ െ

݀ሺ݀  1ሻ

2
 (4)

Incorporating a redundant constraint introduces stress in the network; network regions with 

such constraints are thus called over-constrained or stressed. In contrast, a region with fewer 

constraints than internal degrees of freedom is called under-constrained. Finally, in a region 

with as many independent constraints as internal degrees of freedom, F = 0; this region is 

called isostatically rigid. 

In 1970, a theorem by G. Laman172 had a major impact in that it allowed to precisely 

determine the degrees of freedom in a two-dimensional network, even in the presence of 

redundant constraints, by applying constraint counting to all subgraphs within the network. 
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As such, a generic two-dimensional network does not have a redundant constraint if and only 

if for all subgraphs of size n ≥ 2, the number of constraints in the subgraph Ncs ≤ 2n – 3. By 

applying Laman’s theorem, a network can be decomposed into rigid regions and flexible 

links in between. This constraint counting can be extended to a certain subtype of three-

dimensional networks with a molecule-like character, so-called "bond-bending networks" or 

"molecular frameworks".173,174 In these networks, bond angles (distances between second-

nearest neighbor sites) are constrained in addition to bond lengths (distances between first-

nearest neighbor sites), which makes them particularly applicable to biomolecules. 

For both the two-dimensional and three-dimensional bond-bending networks, combinatorial 

algorithms called pebble games were devised that allow determining network flexibility and 

rigidity according to eq. (4).66,67,175 These algorithms have been implemented in ProFlex 

(http://www.bch.msu.edu/~kuhn/software/proflex) and in early versions of the FIRST 

(http://flexweb.asu.edu) software package. As an example, bond-bending networks of two 

molecules are depicted in Figure 1. In both networks, fixed bond lengths and angles are 

modeled as distance constraints between nearest and next-nearest neighbor atoms. Free 

rotation about the bond between atom 1 and atom 2 in molecule M1 results in one floppy 

mode and two rigid clusters of three atoms each (Figure 1 a-c). A double bond is modeled by 

placing an additional distance constraint between third-nearest neighbors (Figure 1e), which 

results in molecule M2 being a single rigid cluster (Figure 1d-f) 

A more recent implementation of FIRST uses a body-and-bar representation of three-

dimensional networks where every atom is considered as a rigid body having six degrees of 

freedom.176 Any number of bars between one and six can be placed between two such atoms, 

and every such bar removes one degree of freedom. The number of floppy modes is then 

computed according to eq. (5). 

ܨ  ൌ 6ܰ െ ܰ െ 6 (5)

Here, Nibar represents the total number of independent bars in the network. In the body-and-

bar network representation, covalent single bonds are modeled as five bars between two 

atoms leaving one degree of freedom, the dihedral rotation (Figure 1c). Double bonds are 

modeled with six bars locking the rotation (Figure 1f). Apart from algorithmic advantages 

over the bond-bending representation, the body-and-bar representation also has a 

methodological advantage that lies in the fact that constraints can be modeled semi-
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However, it has also been found that the phase transition can become first order for self-

organized networks where locally stressed regions or small rings of bonds are suppressed.179 

Biomolecular networks can be considered similar to network glasses, and the melting of the 

network can be realized by consecutively removing non-covalent bonds, which is equivalent 

to a thermal unfolding of the biomolecule. However, the percolation behavior of protein 

networks is usually more complex, and multiple transitions can be observed (Figure 3). This 

is due to the fact that protein structures are modular because they are assembled from 

secondary structure elements, subdomains, and domains. These modules often spontaneously 

break away from the largest rigid cluster as a whole giving rise to multiple transitions. 

In the CNA approach, thermal unfolding simulations are carried out by sequentially removing 

non-covalent constraints from the initial network representation generating new network 

states, and subsequently rigidity analyses on all such newly generated networks are 

performed.63,64,68,169 That is, for a given network state s = f(T) with hydrogen bond energy 

cutoff Ecut,s, hydrogen bonds (including salt bridges) with an energy EHB > Ecut,s are removed 

from the network.181 This follows the idea that stronger hydrogen bonds will break at higher 

temperatures than weaker ones. To convert the original, geometry-based hydrogen bond 

energy scale EHB
181 into a temperature scale T, S. Radestock and H. Gohlke proposed a 

simple linear fit (eq. (6)) by comparing computed phase transition temperatures for pairs of 

homologous mesophilic and thermophilic proteins with experimental melting 

temperatures.63,64 The temperatures should be considered relative values only because the 

absolute values may depend on the size and architecture of the analyzed protein. In the 

original version of the CNA approach,63,64 hydrophobic interactions were not modeled in a 

temperature-dependent manner; rather, the number of hydrophobic contacts was kept 

constant during the thermal unfolding. As such, a hydrophobic constraint was added between 

carbon or sulfur atoms, if the distance between these atoms is less than the sum of their vdW 

radii (C: 1.7 Å and S: 1.8 Å), plus a distance cut off Dcut. This was done because the strength 

of hydrophobic interactions remains constant or even increases with increasing 

temperature.182 This presented an opportunity to improve CNA by modeling the increase in 

the strength of hydrophobic interactions with a rise in temperature;183,184 this was taken up by 

us in the present thesis (Publication II). 
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2.7.4 CNA on ensembles of network topologies 

In principle, CNA can be performed on a single three-dimensional structure of a biomolecule. 

However, different conformations of a protein structure can lead to different results of the 

rigidity analysis as observed in previous studies.185,186 This sensitivity arises from the facts 

that I) proteins are generally marginally stable187 and II) different protein conformations can 

lead to different numbers of constraints being included based on geometric criteria. 

Consequently, as the protein network is already close to the rigidity percolation threshold 

(due to I), a few constraints more or less (due to II) can result in the network being largely 

rigid or already floppy. Apart from pointing out that the results from rigidity analyses are 

highly sensitive to the input structure used, these studies185,186 also presented ways to tackle 

this by using information from a structural ensemble in rigidity analyses. We extended the 

concept of applying molecular dynamics (MD) simulation-based ensembles in rigidity 

analyses by H. Gohlke et al.185 to CNA. In ensemble-based CNA developed by us, multiple 

conformations of a protein extracted from a MD simulation-derived trajectory (or any other 

source) are used as input, and CNA is run on each conformation in the ensemble 

(Publication II). Results obtained from different conformations are then averaged over the 

entire ensemble. This approach has the advantage that CNA is based on a thermodynamic 

ensemble of conformations. However, a computationally expensive MD simulation is 

required to generate the input. As an alternative, C. Pfleger and H. Gohlke have developed an 

approach termed ENTFNC in which an ensemble of network topologies is generated from a 

single input structure by modulating noncovalent constraints using fuzzy constraint 

definitions.188 As such, in the original implementation of ENTFNC, flickering of hydrogen 

bonds was achieved by deriving probabilities from MD simulations with which a hydrogen 

bond persists in an ensemble of network topologies. Furthermore, energies of hydrogen bonds 

EHB in the new network topologies were reset by adding Gaussian white noise to their 

original energies. As to hydrophobic contacts, a probability distribution p(dij) for including a 

hydrophobic constraint between a pair of carbon or sulfur atoms in a network topology is 

derived using a Gaussian function with a squared distance dependency (eq. (7)). 

 

൫݀൯ ൌ ݁
ିభమ൮

ቀೕషೡೈቁ
మ

ವೠ
మ ൲

మ

 
(7)

Here, dij is the distance between the hydrophobic atoms i and j, dvdw is the sum of vdW radii 

of the two atoms, and Dcut determines the full width at half maximum of the Gaussian. All 
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parameters for modulating noncovalent constraints in the network were derived from MD 

simulations of HEWL structures.188 

2.7.5 Indices to characterize flexibility and rigidity 

The CNA software package developed by us (Publication III) calculates several local and 

global flexibility/rigidity indices developed and formalized mainly by C. Pfleger and S. 

Radestock.189 All of these indices share the common feature that they are derived by 

analyzing a thermal unfolding simulation of a constraint network. A detailed description of 

these indices can be found in the original publication by the authors.189 

To describe global rigidity percolation of a network, the microstructure of the network, i.e., 

properties of the set of clusters generated during the thermal unfolding simulation can be 

analyzed. CNA calculates the floppy mode density Φ, the rigidity order parameter P∞, the 

cluster configuration entropy H (eq. (8)), and the mean rigid cluster size S.189 Among these 

global indices, H has been used to predict protein thermostability before.63,64 

H has been introduced by C. Andraud et al. as a morphological descriptor for heterogeneous 

materials,190 and has been adapted from Shannon’s information theory; thus, it is a measure 

of the degree of disorder in the realization of a given state. 

ܪ  ൌ െݓ௦ lnݓ௦
௦

 (8)

It is defined as a function of the probability (ws, eq. (9)) that an atom is part of a rigid cluster 

of size s (s-cluster). Where 
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with ns being 

 
݊௦ ൌ

Number of clusters of size s

ܰ
 (10)

and N being the total number of atoms. For Htype1, which corresponds to the original 

definition by C. Andraud et al., a linear cluster size (k = 1) is used. By the modified version 

Htype2 that considers a quadratic cluster size (k = 2), later phase transition points during the 

thermal unfolding simulation are potentiated and, hence, are preferentially identified. These 
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Local rigidity indices characterize the network rigidity down to the bond level.189 The rigidity 

index ri is derived for each covalent bond in the network by monitoring the hydrogen bond 

energy cutoff Ecut,s during a thermal unfolding simulation at which the bond switches from 

being rigid to flexible (Figure 5a and b). Phrased differently, ri monitors when a bond 

segregates from any rigid cluster. For a Cα atom-based representation of a protein structure, 

the average of the ri values of the two backbone bonds is taken. Another local rigidity index, 

the percolation index pi monitors the percolation behavior (i.e., the loss of rigidity when 

diluting the constraint network) of a biomolecule allowing identification of the hierarchical 

break-down of the giant percolating cluster during a thermal unfolding simulation. The giant 

percolating cluster is the largest rigid cluster present at the highest Ecut value (i.e., at the 

lowest temperature at the beginning of a thermal unfolding simulation) with all constraints in 

place. More technically, pi monitors the Ecut at which a bond segregates from the giant 

percolating cluster during a thermal unfolding simulation. For a Cα atom-based 

representation, the lower of the pi values of the two backbone bonds is considered. 

 A Stability map rcij is a two-dimensional generalization of the rigidity index (Figure 5c and 

d). To derive a stability map, “rigid contacts” between two residues, represented by their C 

atoms, are identified. A rigid contact exists if two residues belong to the same rigid cluster. 

During a thermal unfolding simulation, stability maps are then constructed in that, for each 

residue pair, Ecut,s is identified at which a rigid contact between the two residues is lost. That 

way, a contact’s stability relates to the microscopic stability in the network and, combined, 

the microscopic stabilities of all residue-residue contacts result in a stability map. Thus, 

stability maps denote the distribution of rigidity and flexibility within the system, they 

identify regions that are flexibly or rigidly correlated across the structure, and they provide 

information on how these properties change with temperature. A filtered “neighbor stability 

map”, where stability values of residue pairs separated by more than 5 Å are masked, 

provides useful information about the stability of short range contacts in a biomolecule 

(lower triangles in Figure 5c and d). For an ensemble based CNA, average local indices 

values are calculated (Figure 5b and d). 
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or Bndlst (http://kinemage.biochem.duke.edu/software/utilities.php) for identifying hydrogen 

bonds and similar to FIRST a geometry-based empirical function181 for calculating hydrogen 

bond energies. The strength of hydrophobic interactions is measured in terms of either the 

distance between hydrophobic atoms (C or S), as in FIRST,65 or pairwise vdW energies 

calculated using a Lennard-Jones potential with parameters taken from the AMBER parm99 

forcefield.194,195 . KINARI calculates the rigidity of a protein in a state with specified 

hydrogen bond energy cutoff and either the distance or energy cutoff for hydrophobic 

contacts. However, unlike the CNA, KINARI does not allow thermal unfolding simulations 

and calculations of rigidity indices. Using KINARI-based rigidity analysis, F. Jagodzinski et 

al. developed a web service termed KINARI-Mutagen for predicting changes in rigidity of a 

protein upon mutation.196 KINARI-mutagen models the mutation of a residue to Gly (termed 

as excision) by removing hydrogen bonds and hydrophobic interactions due to side-chain of 

the residue from the protein's molecular model. Rigidity analyses of the excised structure and 

the WT structure are subsequently carried out and compared. The residues that affect the 

rigidity of the protein upon excision mutation are then inferred to be critical for the stability 

of the protein. As such, the authors predict an excision mutation as destabilizing if the rigidity 

analysis reveals that the largest rigid cluster in the mutated structure is smaller than the same 

for the WT. Out of 48 destabilizing single-point substitutions to Gly among 14 proteins 

extracted from the ProTherm database,197 22 mutations were correctly identified as such. 

However, the KINARI-Mutagen fails to predict destabilization in cases where no hydrogen 

bonds or hydrophobic contacts are detected for the mutated residue (13 cases), mutations 

occurring on solvent-exposed residues (8 cases), and mutations on hydrophobic residues 

(Val, Leu, Met, and Phe) for which too few hydrophobic contacts were detected by KINARI 

than expected for these residues in most protein cores (4 cases). Apart from these limitation, 

we note that the approach only predicts destabilizing mutations and that too when a residue is 

substituted by Gly. 

Another rigidity analysis approach, the Distance Constraint Model (DCM), has been 

developed by D. J. Jacobs et al.198 in which an ensemble of constraint topologies is generated 

by considering mean-field probabilities of hydrogen bonds and torsion constraints in a Monte 

Carlo sampling. Using the Pebble game algorithm,66,67 flexibility of each network in the 

ensemble is then characterized. Finally, the equilibrium properties are characterized by 

averaging over the thermodynamic ensemble. An accurate estimation of the free energy is 

required for the ensemble averaging, which is done using a free energy decomposition 
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scheme199,200 considering nonadditivity of conformational entropy components.201,202 Here, 

the conformational entropy of a protein is estimated by considering the independence or 

redundancy of each constraint. As such, placement of a constraint in an already rigid region 

(i. e., a redundant constraint) does not lead to an entropy cost. Accordingly, a lowest upper 

bound estimate for the conformational entropy of the system is given as the sum over entropy 

contributions from all non-redundant constraints. Constraints are added in the network in 

decreasing order of their strengths (a stronger constraint that reduces entropy the most is 

added before a weaker constraint), and rigidity analysis is recursively applied to determine 

whether or not the constraint being added is redundant. Protein thermodynamics is then 

described using the free energy landscape defined by two order parameters given by the 

number of native hydrogen bonds, and the number of native backbone and side-chain torsion 

angles within a given macrostate.200 Using mean field theory and Monte Carlo sampling for 

each macrostate, the partition function is then calculated from which all thermodynamic 

properties of interest, including Cp, can be calculated numerically. Because empirical 

parameters with the free energy function accounting for protein size, architecture, and solvent 

effect are not known, DCM requires knowledge of experimentally determined Cp curves for a 

protein-specific parameterization of the model.200,203 Owing to the fact that several 

approximations were made, the approach is termed minimal DCM (mDCM).200 

Using the mDCM, Cp curves were accurately reproduced for ubiquitin at five different pH 

conditions and for histidine binding protein in the apo and holo forms.200 In another study, 

using the mDCM, in agreement with known experimental data, the authors  

identified residues of an orthologous Ribonuclease H pair that are important for stability and 

function.203 Furthermore, different enthalpy-entropy compensation mechanisms with respect 

to the unfolding process are determined that lead to globally similar stability and flexibility 

profiles between the pair at their respective Tm.203 Recently, the mDCM was applied to study 

allostery in three bacterial CheY orthologs.204 The authors demonstrated that residues likely 

to be involved in the transmission of allosteric information are both conserved and variable 

across the three CheY orthologs studied. Moreover, they predicted the strongest allosteric site 

to be located on the β4/α4 loop, which is known as a critical link in the intramolecular 

communication within CheY. In yet another study employing mDCM, D. Verma et al. 

demonstrated that mutation in human c-type lysozyme results in frequent, large, and 

sometimes long-ranged changes in the flexibility.205 The authors observed that the frequency, 
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scale and complexity of the change in the flexibility are consistent with multiple NMR 

characterizations of mutant dynamics in a variety of proteins, including lysozyme. Despite 

these successful applications, the general applicability of the mDCM is limited by the 

requirement of Cp curves of the system being investigated. 

Recently, L. C. González et al. have developed an ensemble-based rigidity analysis approach 

termed virtual pebble game (VPG), which similar to the ENTFNC approach uses a single 

conformation of the system and does not require actual sampling of conformations.206 Unlike 

ENTFNC, an average constraint network over a Monte Carlo-derived ensemble is used in that 

the number of bars between all pair of bodies in the network (see section 2.7.2) is averaged 

over all network conformations in the ensemble. VPG then counts constraints and degrees of 

freedom to real numbers, allowing for fractional degrees of freedom. On a non-redundant 

dataset of 272 protein structures, rigidity characteristics computed by VPG were comparable 

with the ensemble-averaged characteristics computed by the regular pebble game.206 We note 

that a drawback of the VPG approach is that it is less accurate at the rigidity percolation 

threshold rendering it less suitable for identifying Tp values during thermal unfolding 

simulations. This is because all hydrogen bonds are treated equally here disregarding their 

energies and, accordingly, the largest fluctuation in network topology occurs at rigidity 

percolation thresholds leading to the greatest differences between the regular pebble game 

and VPG results. 
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3 SCOPE OF THE THESIS 

The main goal of this thesis was to develop knowledge-driven computational approaches for 

predicting thermostabilizing mutations on a protein. For a successful prediction of 

thermostabilizing mutations on a protein, computational approaches require knowledge of the 

factors that determine protein thermostability. From the literature survey, it became clear that 

a multitude of such factors are responsible for protein thermostability (see sections 2.3). 

However, it was not known which of these factors of protein thermostability are the most 

significant. Hence, I set out to identify the most significant determinants of protein 

thermostability; results of this are reported in Chapter 4 (Publication I). An approach for 

predicting weak spots, residues that are more likely to increase a protein’s thermostability 

upon mutation, was developed based on the most significant determinant identified in this 

study. From Chapter 4, it became clear that hydrophobic interactions are the most significant 

determinants of protein thermostability; however, they were not modeled in a temperature-

dependent manner in the Constraint Network Analysis (CNA) approach (see section 2.7.3). 

Furthermore, another limitation of CNA lies in that different conformations of a protein 

structure can lead to different results due to its sensitivity to minor changes in the input 

structure (see section 2.7.4). Therefore, I set out my next goal to improve CNA with respect 

to these two limitations by incorporating temperature-dependent hydrophobic interaction 

modeling as well developing an ensemble-based CNA. These results are reported in Chapter 

5 (Publication II). Since a software for carrying out CNA along with automatic calculation 

of rigidity indices, phase transition points, and weak spots (see section 2.7) was not available, 

we set out our next goal to develop a command-line software packages for CNA. These 

results are reported in Chapter 6 (Publication III). In the backdrop of the fact that the results 

from CNA are highly information-rich in that it computes several local and global rigidity 

indices, rigid cluster decompositions of protein structures, phase transition points, and weak 

spots (see section 2.7.5), our next goal was to develop a web service and a GUI, which allow 

running CNA and extensive analysis of results in a user-friendly manner. The outcomes of 

this goal are reported in Chapter 6 (Publication IV and V). Next, I used CNA to study the 

relation between structural rigidity and protein thermostability. Results of this study on 

thermodynamically and kinetically thermostabilized variants of BsLipA are reported in 

Chapter 7 (Publication VI). Finally, with the finding from Publication VI that CNA is able 

to correctly predict thermodynamic thermostability of closely related variants, I set out to 

validate CNA by a prospective application aimed at improving thermostability. Results of 

this on lipase A from Bacillus subtilis (BsLipA) are reported in Chapter 8 (Publication VII). 
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4 PRIORITIZING FACTORS INFLUENCING PROTEIN THERMOSTABILITY 

(PUBLICATION I)* 

4.1 Background 

Identification of (the) dominant determinant(s) of protein thermostability is an important 

aspect of research in biotechnology because knowledge of this will facilitate rational design 

and data-driven approaches aimed at improving protein thermostability. Comparisons of pairs 

of meso- and (hyper)thermophilic proteins have revealed several such determinants, 

including improved hydrogen bonding,40 ion pair and salt bridge networks,39 better 

hydrophobic packing,41 shortening of loops,42 higher secondary structure content,43 and 

increased rigidity of a protein (see section 2.3).63,64,69,111 This indicates that a multitude of 

factors makes a protein more stable. This raises a pertinent question: which of these 

determinants of protein thermostability are the most significant. The answer to this question 

would help focusing on (the) most important determinant(s) when predicting protein 

thermostability and weak spots (as done in Chapter 5). 

4.2 Methods 

In Publication I, rather than analyzing thermostability in terms of structural or geometric 

properties, we focused on energetic factors with the aim to identify (the) most significant 

determinant(s) of protein thermostability. For a large dataset of 132 pairs of 

mesophilic/thermophilic and 149 pairs of mesophilic/hyperthermophilic homologous 

protomers, we calculated several residue-wise interaction energy components including 

electrostatic, vdW, hydrogen bond, and hydrophobic interaction energies. Initially, 

probability density functions (PDFs) of these energy components were compared on a global 

level to identify which of the interactions show on average a more favorable residue-wise 

energy in (hyper)thermophilic proteins. Next, we investigated (differences in) the spatial 

distribution of residue-wise interaction energies in pairs of mesophilic/(hyper)thermophilic 

protomers. Our hypothesis is that a larger cluster of residues with lower energies than a given 

energy cutoff exists in (hyper)thermophilic proteins than their mesophilic homologs. To test 

our hypothesis, we performed a hierarchical clustering of residues with respect to different 

interaction energy components, such that all neighboring residues with an energy component 

lower than a cutoff EC for the respective clustering level are grouped in the same cluster. 

                                                 
* Part of this work was done at Department of Modeling and Formulation Research, BASF, Ludwigshafen, 
Germany during an internship under supervision of Dr. H. Wolfgang Höffken. 
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Thus, clusters grow in size as EC increases (i.e., the energy component becomes less 

favorable). For each EC, the fraction of residues that is part of the largest cluster (FLC) was 

calculated. According to our hypothesis, a correct distinction of a (hyper)thermophilic protein 

from a mesophilic protein would be the presence of a larger cluster of residues in the 

(hyper)thermophilic protein compared to its mesophilic counterpart at identical EC values. 

Furthermore, based on this clustering approach, weak spots on a protein were identified as 

residues that have high energies and are spatially close to a large cluster of residues. 

4.3 Results 

Comparison of the PDFs of residue-wise electrostatic, vdW, hydrogen bond, and hydrophobic 

energies differ between mesophilic and (hyper)thermophilic protomers. (Hyper)thermophilic 

protomers showed a higher probability densities at more negative (i.e., more favorable) 

energies except in the case of vdW energies for mesophilic/hyperthermophilic pairs. The 

observed differences are statistically significant (p < 0.05 for the hypothesis of equality) 

except for hydrogen bond energies in the case of mesophilic/hyperthermophilic protomers. 

According to the p-values, the most significant difference between PDFs of 

mesophilic/thermophilic and mesophilic/hyperthermophilic protomers is found in the case of 

residue-wise hydrophobic energies (p < 0.0001 for both cases). This was also reflected in the 

magnitudes of the median differences in the hydrophobic energies: On average, a residue in a 

thermophilic (hyperthermophilic) protomer has a hydrophobic interaction energy that is more 

favorable by 0.82 (1.27) kcal mol-1 than that of a residue in a mesophilic protomer. Next, 

clustering based on residue-wise hydrophobic interaction energies correctly discriminated 

83% of the pairs of mesophilic/thermophilic protomers and 76% of the pairs of 

mesophilic/hyperthermophilic protomers (Figure 6). These discrimination accuracies are 

significantly (p < 0.001) different from the one of a random discrimination (50% correct 

discrimination). In contrast, when we used distance-based clustering of hydrophobic residues 

(Ala, Cys, Ile, Leu, Met, Phe, Trp, and Val) as a discriminator, only 53% and 62% pairs of 

mesophilic/thermophilic and mesophilic/hyperthermophilic protomers, respectively, could be 

successfully discriminated. 

Finally, we used this information for prediction of weak spots that should improve a protein’s 

thermostability upon mutation. As such, residues that have unfavorable (high) hydrophobic 

energies and are spatially close to a large cluster of residues comprising 50% of residues 

(FLC = 0.5) were considered weak spots. We chose FLC = 0.5 because we visually observed 
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 Using clustering based on residue-wise hydrophobic energy components, we correctly 

discriminated 83% (76%) of the pairs of mesophilic/thermophilic 

(mesophilic/hyperthermophilic) protomers. 

 For a prospective application, a method of identifying weak spots was developed that 

yielded a classification accuracy of almost 70% on the test set of 22 mutants of E. coli 

DHFR. 

 All in all, our approach highlights the importance of quality (energy) of hydrophobic 

interactions in protein thermostability and provides a way to identify weak spots that 

should be preferentially mutated for protein engineering aimed at improving 

thermostability. The results and the computational efficiency of our approach position 

it as a valuable complement to existing approaches for knowledge-driven protein 

engineering for improving thermostability. 
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5 IMPROVING THE CNA APPROACH USING CITRATE SYNTHASE AS A 

TEST CASE (PUBLICATION II) 

5.1 Background 

Finding that the energy/quality of hydrophobic interactions is the most important 

discriminator of protein thermostability (see Chapter 4) prompted us to improve the CNA 

approach with respect to modeling hydrophobic interaction. Earlier, only hydrogen bonds 

were removed from the network during the thermal unfolding simulation to simulate the 

temperature rise, while the number of hydrophobic contacts remained constant (see 

section 2.7.3).63,64 We used citrate synthase protein as a test case for validating the improved 

CNA here. 

Citrate synthase (CS) is a homodimeric protein found in nearly all living cells, which 

catalyzes the first step of the Krebs cycle that synthesizes citrate using acetyl CoA and 

oxaloacetate. CS is one of the rare proteins for which X-ray crystal structures from several 

organisms living at temperatures from 0ºC to 100ºC are available in the PDB. This makes CS 

a highly valuable test case for validating CNA by thermostability prediction and weak spot 

identification. CS profoundly exists in two different conformations in which the active site is 

either open or closed depending on whether or not substrates are bound. CS structures in an 

open conformation from five different organisms living at temperatures from 37ºC to 100ºC 

were used in this study; they are referred hereinafter by abbreviations with their optimal 

growth temperatures (Tog): Sus scrofa: PigCS_37, Thermoplasma acidophilum: TaCS_59, 

Thermus thermophilus HB8: TtCS_75, Sulfolobus solfataricus: SsCS_87, and Pyrobaculum 

aerophilum IM2: PaCS_100.  

5.2 Results 

CNA calculations on single input structures did not correctly predict thermostabilities of five 

CSs. In fact, no correlation between experimental thermostabilities (Tog) and predicted 

thermostabilities (Tp) was obtained (R2 < 0.01). Next, ensemble-based CNA (see 

section 2.7.4) developed in this study* was performed on 200 conformations of each CS 

structure extracted from a trajectory of an MD simulation of 10 ns length. This resulted in an 

improvement in thermostability prediction when compared to the one using single structures 

(R2 = 0.27, p = 0.374, Figure 7); however, the prediction was still far from being satisfactory. 

                                                 
* Ensemble-based CNA was developed by S. Radestock. 
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thermostable CS. We observed that weak spot residues predicted by us are preferentially 

mutated in the next more thermostable CS except in the case of SsCS_87 vs. PaCS_100 

comparison. However, PaCS_100 adopts a rare mechanism of thermostabilization where a 

disulfide bond within each monomer results in a topological cross-link of the two chains; 

such a mechanism is not expected to be considered by our weak spot prediction approach. 

Furthermore, we observed that the amino acids substituted at the weak spot positions in a 

more thermostable CS were not generally conserved across a multiple sequence alignment 

(MSA) of 549 CS sequences. This makes weak spot prediction by CNA all the more 

significant, indicating that the weak spot positions were not substituted merely by chance. 

Finally, we explained the mechanism of weak spot reinforcement in atomic detail when going 

from a less thermostable to a more thermostable CS. As such, a better hydrogen bonding 

network, formation of aromatic clusters, and improved hydrophobic contacts at dimer 

interface were identified as mechanisms of weak spot reinforcement in the stepwise thermal 

adaptation of CSs. 

5.3 Conclusions and significance 

 The present study for the first time applies CNA to compare a series of five proteins 

from organisms with Tog in the range of 37–100ºC; so far, CNA was only applied to 

pairs of mesophilic/thermophilic proteins. Not only did this provide a thorough 

validation of the CNA approach but also allowed deciphering to what extent nature 

applies different mechanisms for achieving protein thermostability at different 

temperature ranges. 

 The CNA approach was improved in that for the first time, I) Extending the concept 

of ensemble-based rigidity analysis introduced by H. Gohlke et al.,185a structural 

ensemble-based CNA was introduced that alleviates the sensitivity of the CNA results 

on the input structures (see section 2.7.4) and II) based on our finding that the 

energy/quality of hydrophobic interactions is the key determinant of thermostability 

(see Chapter 4), we refined the model underlying thermal unfolding simulations in 

that now hydrophobic contacts are also modeled in a temperature-dependent manner. 

 Using the improved CNA, thermostabilities of a series of five homologous CS 

structures from organisms living at temperatures between 37ºC to 100ºC were 

correctly predicted: A very good correlation between experimental (Tm) and predicted 

thermostabilities (Tp) was obtained (R2 = 0.88, p = 0.017). 
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 It was observed that high ranking weak spots predicted by CNA are more often 

mutated in a more thermostable CS than low ranking weak spots. This has an 

important implication for applying CNA in data-driven protein engineering projects 

aimed at improving protein thermostability: Mutations at high ranking weak spots are 

expected to more likely improve a protein’s thermostability. 

 Apart from the methodological advances, the mechanism of stepwise thermal 

adaptation CS in an atomic detail was analyzed. It was found that different 

mechanisms are in play during the stepwise thermal adaption of CSs: As such, a better 

hydrogen bonding network, formation of aromatic clusters, and improved 

hydrophobic contacts at the dimer interface were identified as ways of weak spot 

reinforcement in CSs. 
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6 DEVELOPMENT OF SOFTWARE PACKAGES AND A WEB SERVICE FOR 

THE CNA APPROACH (PUBLICATIONS III − V) 

6.1 Background 

A protein’s flexibility (and its opposite, rigidity) plays a central role in its stability as well as 

function. Consequently, in order to relate a protein’s structure to its activity and stability, one 

needs to characterize its flexibility at a great detail. Owing to their time- and resource-

intensive nature, experimental methods including X-ray crystallography, cryo-electron 

microscopy, single-molecule fluorescence, and NMR cannot be routinely applied for 

biomolecular flexibility characterization. Hence, computational flexibility prediction methods 

come handy (see section 2.7and 2.8). One of such computational methods is implemented in 

the FIRST program65 that characterizes the flexibility of a biomolecule by modeling it as a 

network (graph) wherein atoms and interactions between them are considered sites (vertices) 

and constraints (edges), respectively. The CNA approach was developed by S. Radestock and 

H. Gohlke63,64 and improved by us (see Chapter 5) carries out thermal unfolding simulations 

of proteins for linking their flexibility with their function and stability. However, for 

application of the CNA in a user-friendly manner, a software package was required that, apart 

from carrying out thermal unfolding simulations, automatically predicts phase transition 

points and weak spots residue, and computes local and global rigidity indices. To this end we 

developed a command line CNA software package.191 

The results from CNA are highly information-rich and require intuitive, synchronized, and 

interactive visualization for a comprehensive analysis. For instance, the data needs to be 

visualized as plots showing global and local flexibility indices and weak spots as well as 3D 

graphics representations of the biomolecule, the constraint network, and the decomposition 

into rigid and flexible regions. Furthermore, the speed of CNA allows performing real-time 

rigidity analyses on biomolecules. Thus, a workflow of interactive mutation of a protein and 

calculation of thermostability of the mutant on-the-fly is possible. Such a workflow would be 

very useful in protein engineering projects aimed at improving thermostability. With this in 

mind, we developed VisualCNA, an intuitive, easy-to-use graphical user interface (GUI) for 

CNA for synchronized and interactive visualization of the CNA results and protein 

engineering. 

Finally, to allow a wider scientific community to use CNA we developed the CNA web 

service that allows setup of CNA calculations in the web browser in a user-friendly manner 
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1. The CNA is computationally very efficient; the analysis of a single protein structure by 

CNA usually takes only a few seconds for systems of several hundred residues on a single 

core. The runtime for analyses of ensembles of network topologies linearly increases 

depending on the number of network topologies. 

Table 1. Important modules of the CNA program and their functions 

Module Description 
CNAnalyis Parses input options and running requested calculations 
pdb Parses PDB files 
dilution Prepares different network states during the thermal unfolding 

simulations 
ensemble Performs CNA on ensembles of PDB structures 
fnc Performs CNA on ensembles of network topologies generated using 

fuzzy non-covalent constraint definitions 
network_analyisis Computes local and global flexibility indices 
transitions Identifies folded-unfolded phase transition points 
unfolding_nuclei Identifies weak spots 
output_results Writes out the results 

6.2.2 Showcase example: Flexibility characteristics of hen egg white lysozyme† 

The usage of the CNA software package has been shown on HEWL as an example. The 

results from CNA runs of HEWL agree with the experimental findings. Rigid cluster 

decompositions during the thermal unfolding simulation of HEWL agree, in reverse order, 

with the fast track folding pathway described in refs.210,211 Unfolding nuclei identified in 

helix B of HEWL are in agreement with the view that this helix plays a crucial role in 

stabilizing the tertiary structure of HEWL.212 As for the local flexibility characteristics, the 

stable regions identified for residues 53 and 62-65 are in very good agreement with those 

identified by high protection factors in HDX exchange experiments for the native and 

denatured states of HEWL.213 Furthermore, the hinge region predicted by CNA coincides 

with that suggested by J. A. McCammon et al.214. From stability maps, very weak contacts 

were identified for residues 81-87 that partially form a 310 helix; this is in agreement with 

results from NMR experiments that showed a disordered structure in this region.215 

                                                 
† The calculation and analysis of flexibility of HEWL using the CNA software was done by C. Pfleger. 
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6.3 The CNA web service (Publication IV) 

6.3.1 Design and implementation of the web service‡ 

The CNA web service was implemented in the Python programming language; it provides a 

layer of user-friendly input and output interfaces around the CNA software. As input, the web 

server only requires a PDB code or user-provided PDB file(s) of the input structure(s), and 

choosing the thermal unfolding simulation type on the submission page of the web service 

(Figure 9a). The web service supports analysis on a single structure as well on an ensemble of 

structures using ensemble-based CNA developed by us (see Chapter 5). Furthermore, it 

allows running CNA on an ensemble of network topologies generated using a single input 

structure using ENTFNC approach developed by C. Pfleger and H. Gohlke188. Results are 

presented in the browser in an interactive manner using plots (Figure 9 b-d) and the 3D 

structure using the JmolApplet (Figure 9e). The first part of the results page contains a 

summary of input parameters used during the run. The second part contains a table that 

provides information about identified phase transition points. In the case of single-network 

analysis, plots for six global indices (see section 2.7.5) including Htype2 (Figure 9d) are 

presented with the identified phase transition points. The third part contains plots of two local 

(residue-wise) indices: the rigidity index ri (Figure 9b) and the percolation index pi (see 

section 2.7.5). In the case of an ensemble-based analysis, the standard errors are also depicted 

in addition to the mean values of the local indices. Furthermore, both the local indices are 

mapped onto the input structure in a color-coded fashion using JmolApplets. Finally, the 

fourth part presents a stability map rcij (Figure 9c) and information about weak spots 

identified on the protein (see section 2.7.5). Information about weak spots is mapped onto the 

3D structure of the input protein in a JmolApplet: in the case of a single-network analysis, 

identified weak spots are marked by red spheres (Figure 9e); in the case of an ensemble-

based analysis, the frequency of a residue for being a weak spot across the entire ensemble is 

depicted using color coding. The CNA web service is accessible at http://cpclab.uni-

duesseldorf.de/cna. 

                                                 
‡ The CNA web service was implemented by D. M. Krüger building on two previous web services, DrugscorePPI 
and NMSim (http://cpclab.uni-duesseldorf.de/webservices). 



Figure 9
(TLP) as
identified
preceding
colors in
strong rig
box with
Htype2 dur
vertical l
represent

6.3.2 

In the P

(TLP) 

hierarch

D

9. Screenshots
s an example
d phase transit
g Gly residue

ndicate pairs o
gid contacts. T
h the broken l
ring thermal u
line indicates 
ted by red sph

Showcase 

protease 

Publication

from B. su

hical fashio

Developmen

 of the CNA 
e. Rigidity in
tion point and

es (residues 1
of residues wh
The black box
line indicates 
unfolding of T

identified ph
heres (e). Figu

example: 

n IV, we de

ubtilis as a 

on as reflect

nt of softwar

web service s
ndex ri plot w
d the working
36–154) are e
here no or onl
x with a contin

a rigid cluste
TLP as a funct
hase transition
ure adapted fro

Predictin

escribed rigi

test case. 

ted by the p

re packages

40 

submission pa
wherein red-
g temperature 
enclosed in a 
ly a weak rig
nuous line cov
er in the C-ter
tion of the hyd

n point Tp (d)
om ref.208 

ng stability

idity analys

The decay

presence of

s and a web 

age (a) and ou
and green-da
of TLP, respe
red rectangle

id contact exi
vers the N-term
rminal domai
drogen bondin
. Weak spots 

y characte

sis results u

y of the gi

f multiple s

service for

utput using the
ashed horizon
ectively. The c
e (b). Stability
ists. In contra
minal giant rig
in (c). Cluster
ng energy cut
identified on

eristics of 

using thermo

iant rigid c

steps in the 

r the CNA a

ermolysin-like
ntal lines repr
central α-helix
y map rcij wh

ast, blue color
gid cluster, wh
r configuratio
toff Ecut where
n the TLP stru

f thermoly

olysin-like p

cluster occu

Htype2 plot 

approach 
 

 

 

e protease 
resent the 
x and two 
herein red 
rs indicate 
hereas the 

on entropy 
ein the red 
ucture are 

ysin-like 

protease 

urs in a 

(Figure 



Development of software packages and a web service for the CNA approach 
 

 
41 

9d). The reason for this percolation behavior is that the structure of TLP is composed of 

multiple sub-domains (N-terminal β-sheet domain and C-terminal α-helical domain 

connected by a central helix) that segregate from the giant cluster independently from each 

other. A phase transition point was identified at Ecut = −2.55 kcal mol−1 (equivalent to 351 K) 

on the Htype2 curve, which is 20 K lower than its thermophilic homologue thermolysin from 

Bacillus thermoproteolyticus. For TLPs, the central α-helix (residues 139–154) and the 

preceding Gly136 and Gly137 are important with respect to a postulated hinge bending 

motion.216,217 In line with this postulation, these residues were identified as being flexible at 

the working temperature of TLP (Ecut = −2.1 kcal mol−1) equivalent to 342 K, on the rigidity 

index plot (Figure 9b). Furthermore, contacts of these residues with other residues of TLP are 

less stable than contacts between residues of the giant cluster (black box with continuous 

line) and contacts between residues of a large rigid cluster in the C-terminal domain (black 

box with broken line) as identified by stability map (Figure 9c). Finally, several of the weak 

spots identified by CNA in the N-terminal β-sheet domain of TLP (Figure 9e) have been 

shown to improve thermostability upon mutation in previous studies.218-221 

6.4 VisualCNA: A GUI for interactive Constraint Network Analysis and protein 

engineering (Publication V)§ 

6.4.1 Description 

VisualCNA is implemented in the Python programming language as a PyMOL plug-in for 

Linux operating systems. It uses the external modules NumPy, SciPy, Matplotlib, Biopython, 

tkintertable, and Open Babel. Apart from these external modules, VisualCNA requires CNA 

and FIRST for rigidity analysis, which are distributed independently. 

The VisualCNA GUI consists of four panels: Setup, Analyze, Modify, and Mutate. The Setup 

panel presents a form for preparing and running single network64 or ensemble-based70,188 

variants of thermal unfolding simulations in a user-friendly manner. The Analyze panel shows 

CNA results as interactive plots of global and local flexibility indices and weak spots; these 

are synchronously linked to the 3D structure visualized in PyMOL in that the state of the 

thermal unfolding shown and residues selected in PyMol are annotated on the plots. 

Constraints are visualized as cylinders of different colors according to their type and are 

grouped by their associated rigid cluster or flexible region to aid visualization and selection. 

                                                 
§ The programming code for VisualCNA was equally written by D. Mulnaes and me. 
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The Modify panel allows modifying the constraint network of the protein by adding or 

deleting constraints in multiple ways including a table of constraints (check boxes to enable 

or disable constraints) and text fields (for entering atom ids to add constraint). The Mutate 

panel is the most important panel of VisualCNA from an application point of view. It allows 

interactive protein engineering for improving thermostability aided by multiple sequence 

alignment (MSA) of related proteins. Selecting a residue on the sequence conservation plot 

and a mutation in the substitution frequency plot (both plots are generated automatically from 

a user-provided MSA) constructs a model of the corresponding mutant using the PyMOL 

mutation tool, which allows the user to select an appropriate rotamer for the mutant. The 

mutants can be automatically submitted to CNA and compared to the WT facilitating 

interactive analysis of the effect of point mutations to optimize the protein structure towards 

increased thermostability. 

6.4.2 Application scenarios 

VisualCNA is an intuitive, easy-to-use graphical interface for CNA for an effortless rigidity 

analysis of biomolecules and interactive protein engineering even for non-bioinformaticians. 

With the richness of VisualCNA’s functionality, it can be applied in a variety of scenarios 

from as basic as performing a simple CNA run to a very complex task of modifying the 

constraint network. A non-exhaustive list of tasks that can be performed using VisualCNA 

follows. 

 Setting up and running CNA on a single structure or a structural ensemble. 

 Interactive analysis of CNA results to identify critical constraints that break at 

transitions involving major loss of structural rigidity during thermal unfolding. The 

analysis helps identifying weak spots that should potentially be mutated to improve 

stability of the protein. 

 Comparison of CNA results of two or more systems, e.g., a WT and a mutant or a 

mesophilic and thermophilic homologous protein pair to unravel mechanism of 

thermostabilization, identify weak spots on the mesophilic protein, and understanding 

functionally important residues by comparing active site flexibility. 

 Modification of protein constraint network by deletion and addition of constraints 

when constraints are not correctly identified for ligands, ions, or non-standard 

residues automatically when studying the effect of ligand binding on the flexibility of 

proteins. 
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 Engineering an existing protein for improving its thermostability using an interactive 

workflow of mutation modeling → CNA run of the mutant → comparison with the 

WT. 

6.5 Conclusions and significance 

 A command-line based CNA software package was developed that efficiently 

characterizes a biomolecule’s flexibility and links it to stability and function. The 

software allows setting up a variety of constraint network representations, processing 

the results obtained from FIRST, and calculating global and local indices for 

quantifying biomolecular stability. 

 The CNA software incorporates several methodological advances in the field of 

rigidity analysis: (I) Analysis of ensembles of network topologies derived from a 

structural ensemble (see Chapter 5) or from a single structure using fuzzy non-

covalent constraint definitions developed by C. Pfleger and H. Gohlke188 giving more 

robust results that are not sensitive to the conformation of input structure; (II) 

temperature-dependent modeling of hydrophobic constraints that improves 

thermostability prediction (see Chapter 5), (III) automatic identification of small 

molecule constraints; (IV) automatic detection of phase transition points and weak 

spots for assisting protein engineering. 

 Using the CNA software, we analyzed flexibility characteristics for the example 

HEWL that are in agreement with experimental findings including its unfolding 

pathway, residue flexibility inferred from HDX experiments, and disordered regions 

identified using NMR experiments. 

 For a user-friendly application of CNA and interactive analysis of the results, a web 

service is developed. The CNA web service provides an input interface for easy setup 

of CNA calculations in the web browser. The results are graphically displayed in the 

form of plots and on the 3D structures allowing an in-depth analysis. 

 CNA web service was validated in that flexibility characteristics of TLP predicted 

using the web service agree well with experimental findings. 

 Finally, VisualCNA, a GUI for CNA was developed for allowing an easy setup of 

CNA calculations and interactive analysis of results using synchronized plots of 

rigidity indices (see section 2.7.5) and 3D structure showing rigid cluster 

decompositions and the constraint network (see section 2.7.2). 
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 The two most striking features of VisualCNA are: I) Facility for manual editing of 

constraint network, which is very useful when modeling non-standard residue, 

ligands, ions, etc. II) Workflow for interactive protein engineering involving 

computational mutagenesis followed by thermostability estimation using CNA; the 

workflow can be run iteratively until a mutant with desired thermostability is found. 

 Given their speed and prediction accuracies, these software and the web service are 

valuable tools for protein engineering projects in general, particularly for the projects 

aimed at improving thermostability. Furthermore, VisualCNA and the web service 

allow application of CNA in a user-friendly manner making CNA studies amenable to 

non-bioinformaticians interested in rigidity analysis of proteins. 
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7 STRUCTURAL RIGIDITY AND THERMOSTABILITY OF BACILLUS 

SUBTILIS LIPASE A (PUBLICATION VI) 

7.1 Background 

Understanding the mechanism of elevated thermostability is of fundamental importance in 

protein science because it would allow engineering proteins for withstanding high 

temperatures.28,29 Opposing views on increased or decreased structural rigidity of the folded 

state have been put forward in this context.63,64,69-74 In part, they have been related to different 

mechanisms of thermostabilization76 and the temporal resolution of the experimental 

technique or computational analysis used to measure protein flexibility.99,100,102-104,109,110 In 

the Publication VI, we address the question of the relation between structural rigidity and 

protein thermostability by analyzing directly the static properties of a well-characterized set 

of 16 mutants of lipase A from Bacillus subtilis (BsLipA). We do so by applying CNA on 

ensembles of network topologies (ENTFNC),188 thereby considering the BsLipA variants to be 

in static equilibrium. Therefore, the rigidity and flexibility characteristics derived that way 

are time-independent. This is the first time that we apply CNA on several closely related 

variants of a protein; earlier only pairs of meso-/thermophilic homologs63,64 or a series of 

homologous proteins from five different organisms were studies using CNA (see Chapter 5). 

BsLipA is an important member of the lipase class of enzymes and used in diverse 

biotechnological applications.222,223 Owing to its importance, BsLipA has been extensively 

studied with respect to structure224-227 and thermostability62,82,85-88,228. As to the latter, M. T. 

Reetz et al. applied iterative saturation mutagenesis on the most flexible amino acids as 

identified by crystallographic B-factors, which resulted in BsLipA mutants that were more 

thermostable than the WT showing an increase in T50
60 (the temperature required to reduce 

the initial enzymatic activity by 50% within 60 min) of  45 K.62 Subsequent biophysical 

characterization of the three most thermostable mutants revealed that the improved activity 

retention resulted from a reduced rate of protein unfolding as well as a reduced precipitation 

of the unfolding intermediates, i.e., due to kinetic reasons.83 In contrast, N. M. Rao et al. 

sequentially developed several thermostable BsLipA mutants using directed evolution 

assisted by structural information. These mutants were shown to be more thermostable than 

the WT due to predominantly thermodynamic reasons;82,84-88 the most thermostable mutant 

displayed an increase in the melting temperature Tm of ~22 K. Apart from being a valuable 

test set for analyzing the relation between structural rigidity and thermostability, this also 
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forms a very good test set for validation of CNA to evaluate whether CNA can sense 

differences in thermostability between structures that are highly similar (pairwise sequence 

identity > 93% and pairwise RMSD < 0.38 Å). 

7.2 Results 

The loss of rigidity percolation of the WT BsLipA during thermal unfolding as identified 

using CNA was in agreement with experimental findings on unfolding of proteins with an α/β 

hydrolase fold229,230 in that it showed an early loss of α-helices during unfolding. The correct 

identification of the unfolding pathway of WT BsLipA strongly indicates that side-chain-

mediated interactions between amino acids are correctly represented by the ENTFNC-based 

CNA and hence thermostability predictions can be relied upon. Next, using ENTFNC
, 

188 a 

significant (p = 0.002) correlation between predicted (Htype2-derived Tp) and experimental 

(Tm) thermostabilities with R2 = 0.58 was obtained for thermodynamically thermostabilized 

mutants if the two structures with the lowest and highest Tm were considered outliers (Figure 

10a). The reason for misprediction of the two outliers was traced to their different unfolding 

pathway distribution (derived by clustering of the percolation index (pi) profiles of individual 

networks of the ensemble) compared to that of other variants. We propose the similarity 

(dissimilarity) in the unfolding pathways as an indicator for a reliable (unreliable) prediction 

of relative thermostabilities of proteins by CNA. As an alternative measure, which is less 

sensitive to the underlying unfolding pathways, we defined the median stability of rigid 

contacts between residue-neighbors ݎܿ , calculated from neighbor stability maps (see 

section 2.7.5) for predicting thermodynamic thermostability. A significant and fair correlation 

of ݎܿ , with Tm values of the thermodynamically stable mutants from N. M. Rao et 

al. was obtained (R2 = 0.46, p = 0.004) with the two previous outliers being correctly ranked 

now (Figure 10b). Based on these findings, we recommend using Htype2-derived Tp values for 

comparing thermostabilities of proteins unless the underlying unfolding pathways of the 

proteins are dissimilar; in that case, we recommend using ݎܿ ,. 

To probe the sensitivity of the ENTFNC to the input structure used, we computed ݎܿ , 

using the ENTFNC approach for five additional crystal structures of WT BsLipA (Figure 10b). 

The standard error of the mean in ݎܿ , over all six WT BsLipA structures is 0.57 K, 

which is likely within the experimental uncertainty, confirming previous results of robust 

rigidity analyses with ENTFNC
.
188 Kinetically stabilized mutants from M. T. Reetz et al. are 

found to have a lower thermodynamic thermostability than the WT both in Tp-based and 
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 We introduced the similarity/dissimilarity of unfolding pathways as a measure for 

judging thermostability predictions from CNA. 

 A new measure ݎܿ ,was introduced for predicting thermodynamic 

thermostability. This measure is less sensitive to details of the unfolding pathway and, 

hence, CNA-predicted thermostabilities of the mutants that have dissimilar unfolding 

pathways can also be reliably compared. 

 Finally, the mechanism of thermostabilization of thermodynamically thermostabilized 

mutants was rationalized based on the distribution of rigidity and flexibility on their 

structures: Thermodynamically stabilized mutants were unequivocally characterized 

by an overall increased structural rigidity; whereas, kinetically thermostabilized 

mutants showed a reduced rigidity. 
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8 PREDICTING THERMOSTABILIZING MUTATIONS ON BACILLUS 

SUBTILIS LIPASE A (PUBLICATION VII) 

8.1 Background 

High thermostability is a desired characteristic for proteins, more so when they are used in 

bio-technology industry because it allows bio-processes being carried out at high 

temperatures.28,29 Engineering an existing protein for improving its thermostability via 

mutagenesis25 is frequently attempted because not all enzymes in nature are optimized to 

withstand high temperature conditions.30 A commonly used technique for improving a 

protein’s thermostability, directed evolution, aims at simulating natural evolution of proteins 

in laboratory by performing cycles of random mutagenesis and selection of thermostable 

variants.88,131-137 However, the approach is limited in that only a handful of all possible 

mutations of a protein can be experimentally tested.37 To this end, data-driven approaches 

restrict the library size for screening by suggesting weak spots on a protein, i.e., amino acid 

positions that are most likely to improve thermostability upon mutations. One such data-

driven approach termed Constraint Network Analysis (CNA) for identifying weak spots has 

been developed by S. Radestock and H. Gohlke63,64 and improved by us (see Chapter 5). The 

approach has been validated in retrospective studies63,64 wherein the order of thermostabilities 

of mesophilic/thermophilic protein homologs was correctly predicted and so were the weak 

spots. Furthermore, I showed that CNA can successfully predict changes in thermodynamic 

thermostability arising out of a handful of mutations (see Chapter 7). As a logical next step to 

validate CNA prospectively, in the Publication VII, we developed a novel, unique, and 

highly efficient strategy employing weak spot prediction using structural ensemble-based 

CNA (see section 2.7.4 and Chapter 5). This strategy is assisted by information on sequence 

conservation in a multiple sequence alignment (MSA), and ANOLEA-based233,234 quality 

assessment of the substituted amino acid at the weak spots. The present strategy, going one 

step further than merely predicting weak spot residues, also predicts optimum substitutions at 

these weak spots. The strategy was applied to develop thermostable variants of BsLipA. 

8.2 Strategy for predicting thermostabilizing mutations 

Thermal unfolding simulation of a structural ensemble of BsLipA obtained from MD 

simulations was carried out using ensemble-based CNA developed by us (see section 2.7.4 

and Chapter 5; Figure 12 I and II). At variance with the previous way of weak spot 

identification only at the  last  major  phase  transition  point  related  to the  terminal  loss  of  
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rigidity in the protein (see section 2.7.5),63,64,70 in the present study we identified weak spots 

at all major transitions involving a substantial loss of rigidity during the thermal unfolding. 

The procedure followed here has the advantage that it allows evaluating whether 

strengthening residues that segregate from the largest rigid cluster in the early steps of 

thermal unfolding also stabilizes a protein. Such phase transitions were identified by visual 

inspection of the unfolding trajectory with the help of the VisualCNA software developed by 

us (see Chapter 6). On all such five major phase transitions, potential weak spots were 

identified as those residues that are spatially close to the largest rigid cluster from which they 

segregated (Figure 12 III). From this list of potential weak spot residues, highly conserved 

residues (≥ 80% sequence identity in a MSA of 296 lipase class 2 sequences obtained from 

the Pfam database235) were removed (Figure 12 IV). This was done because conserved 

residues are important for function and stability of a protein and, hence, should not be 

mutated.50,51,236,237 Next, structures of all possible mutations at each weak spot residue were 

generated by the SCWRL program238 using WT BsLipA (PDB ID: 1ISP) as a template (Figure 

12 V). Variant structures with mutated residues unfavorably embedded in the surroundings of 

the protein as judged by the ANOELA energy233 were discarded (Figure 12 V). In such 

structures, the mutation apparently does not fit into the environment of the other residues. 

Then, the phase transition point Tp was predicted for each variant using ensemble-based 

ENTFNC approach developed by C. Pfleger and H. Gohlke (see section 2.7.4).188 Finally the 

variants were prioritized based on their ΔTp (Tp (variant) − Tp (WT)) values resulting in 

twelve BsLIpA variants for experimental evaluation (Figure 12 VI): For each weak spot 

residue and all mutations with ΔTp > 1 K, the mutation with the highest Tp was chosen for 

experimental validation. The sole exception is G104 located in the active site, for which two 

mutations were chosen. 

8.3 Results* 

The thermostability of BsLipA variants was quantified by T′50 values; these values report on 

the temperature at which the fraction of the activity to the initial activity (at 40ºC) is 50% 

after incubation for 30 min. This is different from the T50 values normally used for 

characterizing the thermostability of proteins62,239,240 in that the activity here is measured at 

the temperature of incubation, not at room temperature after cooling. T′50 thus reports on the 

thermo-tolerance of an enzyme during operational bioprocesses carried out at elevated 

                                                 
* All non-computational experiments were performed by Alexander Fulton in the group of Prof. Dr. Karl-Erich 
Jaeger at the Institute of Molecular Enzymtechnology (IMET), Heinrich Heine University, Düsseldorf. 
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F58I and WT depicted on the variant structure (b). Two residues form a “rigid contact” if they belong to one 
rigid cluster. A red (blue) stick connecting Cα atoms of two residues indicates that a rigid contact in the variant 
is more (less) stable than in the WT (see color scale). Only those contacts of variant F58I that are stabilized or 
destabilized by ≥ 2 K are shown for clarity; for the same reason, contacts between two residues of the same 
secondary structure element are not shown. The mutated residue I58 is displayed by magenta sticks. 

8.4 Conclusions and significance 

 A novel, unique, and efficient strategy for predicting thermostabilizing mutations for 

a protein was developed, which involves ensemble-based CNA, information on 

residue conservation in an MSA, and ANOLEA233,234 based quality assessment of the 

substituted amino acid at the weak spot residues. 

 Of the twelve predicted variants harboring a single mutation, three variants, V54H, 

F58I, and V96S, increased T′50 by 5.7, 6.6 and 3.6ºC, respectively. 

 This 25% enrichment is extraordinary considering the fact that only 3% of all possible 

single point mutants of BsLipA showed an increased detergent stability in another 

study (A. Fulton, J. Frauenkron-Machedjou, P. Skoczinski, S. Wilhelm, U. 

Schwaneberg, and K.-E. Jaeger; unpublished results). 

 All three thermostabilizing mutations were predicted on the weak spots identified at 

late transitions supporting the reasoning that the late phase transition(s) involving the 

final decay of the rigid core during thermal unfolding determine(s) the thermostability 

of a protein.63,64 We recommend considering only residues segregating from the 

largest rigid cluster at such late transitions as weak spots in future studies. 

 According to our study on how structural rigidity is related to protein thermostability 

(see Chapter 7), we expect our variants to be more thermostable due to 

thermodynamic reasons because these variants are more rigid than the WT. 

 We showed for the first time that CNA can be successfully applied to assist protein 

engineering projects aimed at improving thermostability to reduce the time and efforts 

required in such projects. 
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9 SUMMARY AND PERSPECTIVES 

In the present thesis, we developed software tools and computational approaches for 

predicting thermostabilizing mutations on proteins. One approach developed by us in this 

thesis is based on the clustering of residue according to their hydrophobic interaction 

energies, while the other approach that we improved is a graph-theory based Constraint 

Network Analysis (CNA) originally developed by S. Radestock and H. Gohlke.63,64 Using the 

former approach, we correctly predicted thermostabilizing and -destabilizing residues with a 

classification accuracy of ~70% in a retrospective analysis. With a scheme based on the latter 

approach, we prospectively developed three thermostable variants of BsLipA that showed an 

increase in T′50 values as high as 6.6ºC. 

Based on our finding that the energy/quality of hydrophobic interaction is the most 

significant determinant of protein thermostability (see Chapter 4; Publication I), we 

improved the CNA approach50,51 by modeling the temperature-dependence of hydrophobic 

interactions; only hydrogen bonds had been modeled in a temperature-dependent manner 

before.183,184 Furthermore, by extending the concept of ensemble-based rigidity analysis from 

H. Gohlke et al,185 we developed ensemble-based CNA. These improvements resulted in a 

promising prediction of thermostabilities of five citrate synthase structures yielding a 

significant (p = 0.017) correlation between predicted and experimental thermostabilities 

(R2 = 0.88; see Chapter 5; Publication II). We envisage incorporating effects of hydrogen 

bond cooperativity242 in constraint modeling and developing novel ways of weak spot 

prediction as future improvements for CNA. 

Significance of the work carried out in this thesis is also evident from the development of two 

software tools and a web service for CNA. The CNA command line software offers 

calculation of local and global rigidity indices, identification of weak spot residues, and 

prediction of protein thermostability (see Chapter 6; Publication III); VisualCNA, a GUI to 

the CNA software, allows synchronized, interactive, and detailed analysis of CNA results and 

protein engineering for improving thermostability (see Chapter 6; Publication V). The CNA 

web service allows running CNA calculations and analyzing results graphically in a web 

browser (see Chapter 6; Publication IV). A future extension of VisualCNA by integrating a 

homology modeling module would increase the scope of CNA by allowing CNA on proteins 

for which no experimental structure is available. 
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Next, we ventured in to studying the relation between structural rigidity and protein 

thermostability. BsLipA was an obvious test case for this since several thermostable mutants 

for this are reported in the literature.62,82-88 The main outcome of this work is the finding of a 

good correlation between the structural rigidity of all BsLipA variants and their 

thermodynamic thermostability. On the way, we carefully probed for the sensitivity of the 

results with respect to the input structures and developed an approach for detecting outliers 

based on differences in the pathways of thermal unfolding. We furthermore introduced a local 

stability measure for predicting thermodynamic thermostability, which complements the 

detection of the (global) phase transition point Tp (see Chapter 7; Publication VI). Although 

it remains to be shown how one can predict kinetic thermostabilization; a scheme involving 

generation of unfolded ensemble of a protein and subsequent prediction of its aggregation 

propensity should answer this. 

With the motivation from the correct prediction of thermodynamic thermostabilities of 

sequentially closely related BsLipA variants, we developed a scheme for predicting 

thermostabilizing mutations on a protein based on predictions by CNA assisted by 

information on residue conservation in a multiple sequence alignment. Applying this scheme 

on BsLipA, three out of the twelve predicted single point mutants showed an improved 

thermostability (see Chapter 8; Publication VII). As a future step, we envisage to 

characterize the origin of the thermostability of these variants and construct multiple mutants 

combining single point mutations to evaluate how individual increases in thermostability add 

up. As a further advancement to our approach, a method to predict the effect of a mutation on 

the activity of a protein would be highly useful. 

I believe that the findings of this work and the tools developed will prove valuable in protein 

engineering projects in general and specifically in projects aimed at improving 

thermodynamic thermostability. 
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ABSTRACT: Identifying determinant(s) of protein ther-
mostability is key for rational and data-driven protein
engineering. By analyzing more than 130 pairs of
mesophilic/(hyper)thermophilic proteins, we identified
the quality (residue-wise energy) of hydrophobic inter-
actions as a key factor for protein thermostability. This
distinguishes our study from previous ones that inves-
tigated predominantly structural determinants. Consider-
ing this key factor, we successfully discriminated between
pairs of mesophilic/(hyper)thermophilic proteins (dis-
crimination accuracy: ∼80%) and searched for structural
weak spots in E. coli dihydrofolate reductase (classification
accuracy: 70%).

Thermostable enzymes are sought after in industrial
biotechnology because they allow carrying out biocatalysis

at elevated temperatures, leading to an increase in reaction rates
and, thus, making industrial processes economically more
favorable.1,2 Proteins from thermophilic and hyperthermophilic
organisms tend to be more thermostable than their counter-
parts from mesophilic organisms.1,3 This makes identifying and
using enzymes from (hyper)thermophilic organisms an obvious
approach in industrial biotechnology.4,5 Screening large
metagenomic libraries in search of a protein with desired
properties is cumbersome, however.6 Engineering proteins to
improve thermostability is a promising alternative.7 Directed
evolution,8 rational design,9 and data-driven approaches10 have
been successfully applied for this.
The latter two approaches require knowledge of the

mechanisms of how a protein can be made more thermostable.
Comparisons of pairs of meso- and (hyper)thermophilic
proteins have revealed several such mechanisms,11,12 including
improved hydrogen bonding,13 ion pair and salt bridge
networks,12 better hydrophobic packing,14 shortening of
loops,15 higher secondary structure content,16 and increased
rigidity of a protein.17−21 As this list indicates, the focus of these
analyses has been on structural factors, which may be the

reason why different determinants of thermostability have been
revealed.
In the present study, we systematically analyze a large data

set of 132 pairs of mesophilic/thermophilic and 149 pairs of
mesophilic/hyperthermophilic homologous protomers with the
aim to identify the dominant determinant(s) of protein
thermostability. To do so, we compared residue-wise
interaction energy components and developed a hierarchical
3-D clustering of residues in a protein structure based on the
energy components for discriminating mesophilic and (hyper)-
thermophilic proteins. The clustering reveals that (hyper)-
thermophilic proteins have larger clusters of residues of good
hydrophobic contacts than their mesophilic counterparts.
Compared to previous studies,12,14,22,23 our results thus
emphasize the quality (energy) of hydrophobic interactions as
a discriminating factor rather than the sheer size of a cluster of
hydrophobic residues. Thereby, our approach also allows
suggesting residues where mutations should be incorporated
for improving thermostability, as we demonstrate below.
The data set used here is an updated version of the one

described in a previous study by Taylor et al.21 in that it does
not have duplicate (hyper)thermophilic protomers. The
protomers in this data set are characterized by a high
crystallographic quality (crystallographic resolution ≤ 2.2 Å
and R-factor ≤ 0.23) and a high sequence diversity (sequence
identity < 30% between structures of two different pairs).
Furthermore, structures of a pair in the data set (I) show root-
mean-square deviations less than 4 Å, (II) lead to structural
alignments that include greater than or equal to 80% of each
structure, and (III) have identical or closely related EC
numbers or functional annotations (see Tables S1 and S2,
Supporting Information (SI), for PDB IDs and chain IDs of
protomer pairs in the data set). Finally, the data set we used is
highly diverse in that the structures come from a variety of
structural classes and vary in size (67−732 residues) (Figure S1,
SI).
Rather than analyzing thermostability in terms of structural

or geometric properties, we focused on energetic factors with
the aim to identify (the) most significant determinant(s) of
protein thermostability. Initially, we calculated for all protomers
in the data set several residue-wise components to the
interaction energy, i.e., electrostatic, van der Waals (vdW),
hydrophobic, and hydrogen bond parts (supplemental
experimental procedures, SI). We chose these interaction
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energy components because these were identified as determi-
nants for protein thermostability in previous studies using a
small number of proteins.13,14,24,25 All energy terms except the
hydrogen bond energy were calculated using the Prime module
version 3.0 of the Schrödinger software (Schrödinger, LLC,
New York, NY, 2011).26,27 The hydrogen bond energy
(including charge-assisted hydrogen bonds) EHB was calculated
using a geometry-based energy function developed for protein
design28 as implemented in the FIRST software,29 and then
energies of all hydrogen bonds of a residue were summed.
In order to identify (the) dominant determinant(s) of

protein thermostability, we initially compared distributions of
residue-wise energy components at a global level, i.e., between
all mesophilic and (hyper)thermophilic protomers. For this,
probability density functions (PDFs) of these distributions
were obtained from kernel density estimation,30 which is a

nonparametric way to estimate a PDF from a distribution based
on a finite data sample. The PDFs of residue-wise electrostatic
energies, vdW energies, hydrogen bond energies, and hydro-
phobic interaction energies differ between mesophilic and
(hyper)thermophilic protomers with (hyper)thermophilic
protomers showing higher probability densities at more
negative (i.e., more favorable) energies (Figure 1); exceptions
are the electrostatic (in the case of mesophilic/thermophilic
pairs) and vdW energies (in the case of mesophilic/hyper-
thermophilic pairs) where the differences in the median
energies of mesophilic and (hyper)thermophilic protomers
(Δ̃E) are close to zero. A favorable difference in residue-wise
electrostatic energies in the case of mesophilic/hyperthermo-
philic protomers but not in the case of mesophilic/thermophilic
protomers is in line with results that ion pair interactions
become preferentially stabilizing at higher temperatures because

Figure 1. PDFs obtained by kernel density estimation of residue-wise energy components: electrostatic energy (a and b), van der Waals energy (c
and d), hydrogen bond energy (e and f), and hydrophobic interaction energy (g and h) for pairs of mesophilic/thermophilic (a, c, e, g), as well as
mesophilic/hyperthermophilic (b, d, f, h) protomers. A normal kernel function with an optimal smoothing parameter45 at each data point was used
for calculating the PDFs. The residue-wise energy values were trimmed to exclude values <1 percentile and >99 percentile. The statistical significance
of the difference of two PDFs was calculated by a bootstrap hypothesis test of equality generating 10000 bootstrap samples as implemented in the
“sm” package46 of the R program (http://www.r-project.org). Δ̃E indicates the difference between median residue-wise energies for
(hyper)thermophilic and mesophilic protomers calculated from the kernel estimates.
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of a reduced desolvation penalty.31 The observed differences
are statistically significant (p < 0.05 for the hypothesis of
equality; Figure 1a−e, g, h) except for hydrogen bond energies
in the case of mesophilic/hyperthermophilic protomers (Figure
1f). The statistical significance of the differences between two
PDFs was calculated by a bootstrap hypothesis test of equality
generating 10000 bootstrap samples. Here, during each
bootstrap run, two new PDFs are generated by randomly
choosing values from the combined set of values of the two
data series. P-values are then calculated as the fraction of
bootstrap samples that showed an equal or higher difference in
the two new PDFs than the difference between the two original
PDFs.
According to the p-values, the most significant difference

between PDFs of mesophilic/thermophilic (Figure 1g) and
mesophilic/hyperthermophilic (Figure 1h) protomers is found
in the case of residue-wise hydrophobic energies (p < 0.0001
for both cases). This is also reflected in the magnitudes of the
respective Δ̃E values. On average, a residue in a thermophilic
(hyperthermophilic) protomer has a hydrophobic energy that is
more favorable by 0.82 (1.27) kcal mol−1 than that of a residue
in a mesophilic protomer. The shoulder in the PDFs for
hydrophobic interaction energies at around −24 kcal mol−1 is a
result of the larger hydrophobic interaction energies of large
hydrophobic and/or aromatic amino acids (Ile, Leu, Met, Phe,
Trp, Tyr, and Val). These amino acids are not enriched in
(hyper)thermophilic proteins (for our data set, we do not see a
significant increase in the number of these amino acids in
(hyper)thermophilic proteins compared to the mesophilic
homologues; data not shown). Rather, the hydrophobic
interaction energies of these residues are more favorable in
the case of (hyper)thermophilic proteins. Overall, this
demonstrates an energetically better hydrophobic packing in
thermophilic proteins than in mesophilic proteins and an even
better packing in hyperthermophilic proteins, which reflects
that hydrophobic interactions become stronger with increasing
temperature.32,33 Note that, in contrast to previous stud-
ies12,14,22,23 where the size of a cluster of hydrophobic residues
was considered, our finding emphasizes the quality (energy) of
residue-wise hydrophobic interactions as a discriminating
factor.
Next, we investigated (differences in) the spatial distribution

of residue-wise vdW, hydrogen bond, and hydrophobic
interaction energies (i.e., where Δ̃E < 0 for both thermophilic
and hyperthermophilic protomers compared to mesophilic
protomers) in pairs of mesophilic/(hyper)thermophilic proto-
mers. Following the idea of Protein Energy Networks
introduced by Vijayabhaskar et al.,34 our hypothesis is that a
larger cluster of residues with lower energies than a given cutoff
EC exists in (hyper)thermophilic proteins than in their
mesophilic homologues. However, in contrast to the study of
Vijayabhaskar et al.,34 we analyze residue-wise energy
components rather than the total inter-residue interaction
energy. This will allow us to identify, coupled to spatial
resolution, which energy components are most determining for
protein thermostability. To test our hypothesis, we performed a
hierarchical clustering of residues with respect to vdW,
hydrogen bond, and hydrophobic interaction energy compo-
nents, respectively, such that all neighboring residues with an
energy component lower than EC for the respective clustering
level are grouped in the same cluster (Figure 2). Thus, clusters
grow in size as EC increases (i.e., the energy component
becomes less favorable). For each EC, the fraction of residues

that is part of the largest cluster (FLC) was calculated. With
increasing EC, FLC increases from 0, when no residue is part of
the largest cluster, to 1, when all residues belong to the largest
cluster. If our hypothesis were true, the EC vs FLC curve of a
(hyper)thermophilic protein should be shifted downward
(toward lower EC values) from the one of a mesophilic
homologue; this is shown in Figure 2 for the case of
phosphotyrosyl phosphatase (PDB IDs: 1XWW and 2CWD)
considering the hydrophobic interaction energy (see caption of
Figure 2 for more details). When analyzed across our data set,
this finding holds for 83% of the pairs of mesophilic/
thermophilic protomers and 76% of the pairs of mesophilic/
hyperthermophilic protomers (Figure 3). These discrimination
accuracies are significantly (p < 0.001) different from the one of
a random discrimination (50%). This demonstrates that for the
majority of (hyper)thermophilic proteins it is the size of
clusters of residues with good hydrophobic contacts that is the
dominant factor responsible for a high thermostability. Still, for
approximately 20% of the pairs, this factor does not lead to a
successful discrimination. Identifying other mechanisms of
thermostabilization is not unequivocal, however. If residue-wise
vdW energies are used for the clustering, a correct
discrimination was obtained for 52% of mesophilic/thermo-
philic and 78% of mesophilic/hyperthermophilic pairs; the
corresponding discrimination accuracies were 53% and 63% in
the case of the hydrogen bond energy (Figure 3). Thus, only in
the case of vdW energies applied to pairs of mesophilic/
hyperthermophilic protomers, a discrimination accuracy similar
to the one obtained with hydrophobic interaction energies was

Figure 2. Discriminating mesophilic and (hyper)thermophilic proteins
based on clusters of residues with good residue-wise energy
components. Residues are clustered together if they are neighbors
and if their values of the residue-wise energy components are below a
cutoff EC (largest clusters for selected EC values are shown in the
structures on the top as blue sticks). Residues are considered
neighbors if the distance between the closest pair of atoms is less than
or equal to 4 Å. EC is increased in a stepwise manner, and the
clustering is repeated. As a result, a hierarchical clustering is obtained
where clusters become larger as EC increases. For each EC value, the
fraction of residues that is part of the largest cluster with respect to all
protein residues (FLC) is calculated. As a descriptor for the
discrimination, the area between the respective EC vs FLC curves for
the (hyper)thermophilic and mesophilic proteins (black stripes) is
then determined for the range of FLC ∈ [0.2, 0.6] (gray shading). If
this value is negative, clusters of equal relative size have better residue-
wise energy components in the case of the (hyper)thermophilic
protein than in the case of the mesophilic protein. Preliminary tests
showed that using other ranges of FLC values for determining the area
between the EC vs FLC curves does not result in significantly different
discrimination accuracies than the best discrimination accuracies
obtained with FLC ∈ [0.2, 0.6].
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found (see Tables S3 and S4, SI, for p-values related to the
significance of differences between all discrimination accuracies
including random discrimination). In contrast, residue-wise
hydrogen bond and vdW energies do not allow discriminating
between pairs of mesophilic/thermophilic protomers.
We repeated the hierarchical clustering based only on inter-

residue spatial distances; now all residues of the type
“hydrophobic” (Ala, Cys, Ile, Leu, Met, Phe, Trp, and Val)
were clustered together that are within a distance cutoff for
each clustering level. This resulted in discrimination accuracies
of 53% (62%) for pairs of mesophilic/thermophilic (meso-
philic/hyperthermophilic) protomers, with only the discrim-
ination accuracy for the mesophilic/hyperthermophilic proto-
mers being significantly different from the one of a random
discrimination (p = 0.0369) (see Table S5, SI, for
discrimination accuracies and their statistical significances).
This result is remarkable in that it demonstrates that it is the
quality (energy) of hydrophobic interactions that discriminates
mesophilic from (hyper)thermophilic proteins rather than the
sheer size of the largest cluster of hydrophobic residues. One of
the reasons is that with the criterion of hydrophobic interaction
energy, residues that would usually not be classified as
hydrophobic can also be considered part of the largest cluster:
We observe that the largest cluster at FLC = 0.5 also includes
Arg (average fraction with respect to the number of residues in
the cluster: 7.61%), Asn (0.54%), Asp (0.65%), Gln (2.06%),
Glu (3.78%), His (2.09%), Pro (5.71%), Ser (1.63%), Thr
(5.33%), and Tyr (6.31%) apart from residues of type
“hydrophobic”.
We further evaluated whether the state of a protein structure

influences the outcome of the discrimination between pairs of
mesophilic/(hyper)thermophilic proteins. So far, we had
analyzed single chains of a protein. Now, we investigated
protein pairs in terms of the biological assemblies such that
interactions at protein interfaces are also considered. For this,
only those pairs were used where both biological assemblies
had the same oligomeric state and no residues were missing in
the structures. This resulted in 67 mesophilic/thermophilic
pairs as well as 67 mesophilic/hyperthermophilic pairs of
biological assemblies. When performing the hierarchical

clustering of residues based on the residue-wise hydrophobic
energies, the discrimination accuracies are 87% (78%) for pairs
of mesophilic/thermophilic (mesophilic/hyperthermophilic)
biological assemblies. These results are not significantly
different from the ones found for protomers (p > 0.4 for a
hypothesis of equality using 10000 bootstrap samples) (see
Figure S2, SI, for the accuracy of discrimination between
mesophilic and (hyper)thermophilic biological assemblies).
This means that for most (hyper)thermophilic proteins better
hydrophobic packing within a protomer (rather than across the
interface of a biological assembly) is the dominant factor
responsible for a high thermostability.
In order to evaluate the robustness of our method with

respect to the data set composition, we divided the data set in
groups of protomer pairs based on sequence- or structure-
related properties (sequence length, sequence identity,
resolution, oligomeric state, presence of structural ions,
SCOP class, and CATH class); then, we reanalyzed the results
obtained from hierarchical clustering of residues based on the
residue-wise hydrophobic interaction energies. We did not
observe a pronounced influence of any of the properties on the
discrimination accuracy except for the sequence length (Figure
S1, SI). Longer protein chains result in higher discrimination
accuracy. Likely, this is because larger proteins have larger
hydrophobic clusters in which more residues with good
hydrophobic interactions can be found in the case of
(hyper)thermophilic proteins compared to mesophilic proteins.
Overall, these results demonstrate that discriminating meso-
philic and (hyper)thermophilic proteins based on clusters of
residues with good hydrophobic interactions is highly robust
with respect to the properties of the protein pairs considered.
Finally, we turned to investigating whether our finding that a

larger cluster of residues with good hydrophobic interaction
energies results in a more thermostable protein can be
exploited prospectively for data-driven protein engineering by
predicting structural weak spots, i.e., residues that when
mutated would improve protein thermostability. As in a real-
life scenario, we only used the structural information of the
mesophilic protein for this. To predict such residues, EC was set
such that half of the protein’s residues belong to the largest

Figure 3. Discrimination accuracy between mesophilic and (hyper)thermophilic protomers based on clusters of residues with good residue-wise
energy components. Lines connecting two bars indicate if the difference in discrimination accuracies for the two respective energy components is
statistically significant. Marks at the bottom of a column indicate if the discrimination accuracy is significantly different from a random discrimination
(50%). The statistical significance of the difference in discrimination accuracies is computed in both cases by a bootstrap hypothesis test of equality
generating 10000 bootstrap samples. The significance levels are marked by ***: p < 0.001; **: p < 0.01; and ns: p > 0.05.
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cluster (i.e., FLC = 0.5). We chose FLC = 0.5 because we visually
observed that the cluster at this point represents the
“hydrophobic core”, and residues forming this should not be
mutated. Residues in the immediate neighborhood of this
cluster have a high (unfavorable) hydrophobic interaction
energy, and mutating them should likely lead to a larger cluster
of residues with good hydrophobic interaction energies. Hence,
we consider these spatially close residues weak spot candidates.
In order to prune the number of candidates, we ranked them by
their hydrophobic interaction energies such that the weakest
spot (highest energy) has the highest rank. After ranking, the
top 25% with respect to the total number of residues of the
protein are finally considered weak spots. In doing so, we use
the ranking to enrich sites where a mutation should more likely
improve thermostability. In addition to the site of mutagenesis,
the actual outcome of a mutation on a protein’s thermostability
also depends on the types of residues exchanged. Thus, one
cannot expect the weak spot rank alone to quantitatively
correlate with the effect of a mutation on thermostability.
We evaluated this weak spot prediction first using Escherichia

coli dihydrofolate reductase (DHFR) from our data set as an
example. Several mutants of E. coli DHFR have been
experimentally evaluated for their thermostability; the Pro-
therm database (http://www.abren.net/protherm/)35 lists
eight (14) residues that stabilize (destabilize) the protein
upon single-point mutation(s) (Table 1; see Table S6, SI, for
individual mutants and their difference in thermostability from
the wild-type). Three out of the eight thermostabilizing
residues were correctly predicted as weak spots by our
approach (Table 1; Figure 4). In turn, 12 out of the 14
destabilizing residues were correctly predicted as nonweak
spots (Table 1; Figure 4). This yields a classification accuracy of

almost 70%, with our approach being more accurate in
identifying nonweak spots (specificity: 85%) than weak spots
(sensitivity: 38%). Of the five weak spots missed, two (D27N,
L28R) resulted in a more thermostable protein upon mutation
to equally polar or even more polar residues. Thus, expecting to
identify these residues as weak spots appears to be beyond the
scope of our approach. In fact, these residues were assigned low
weak spot ranks (87, 71), indicating that improving hydro-
phobic interactions at these spots might not lead to a more
thermostable protein. Regarding two further weak spots missed

Table 1. Experimental Validation of Predicted Weak Spots on E. coli DHFR

residuea mutation(s) weak spot rankb referencec

Stabilizing mutations
G15 A 35 36
W22 L −d 36
D27 N 87 37
L28 R 71 37
L54 V −d 36
P66 A 15 38
V88 I, A −d 39
G95 A 32 40
Destabilizing mutations
P21 L −d 36
L24 V −d 36
W30 M, Y, A, R, N, S, H, E −d 41
F31 V, A −d 36,37
T35 A −d 36
P39 C −d 42
V40 I, L, A, R, M, F, N, S, H −d 41
G43 A 34 36
W74 F −d 43
T113 V −d 37
D122 A 29 36
E139 K, Q 64 44
S148 A, E, K, N, P, R, T, V −d 41
I155 A, L, A, D, E, K, L, Q, R, S, T, V, W, Y −d 36,41

aResidue IDs in bold indicate a true positive or a true negative weak spot prediction. bWeak spot rank based on the hydrophobic interaction
energies; high ranks (low numbers) indicate weaker spots in comparison to residues with a low ranks. cStudies reporting thermostability evaluations
of mutants. dResidue is not identified as a weak spot at any rank.

Figure 4. Predicted weak spots mapped onto the structure of E. coli
DHFR. Residues are colored by a rainbow color ramp according to
their hydrophobic interaction energies. The largest cluster with
FLC = 0.5 observed at a cutoff of the hydrophobic interaction energy
EC = −9.5 kcal mol−1 is enclosed by a transparent surface. Cα atoms of
weak spot residues are represented as spheres. Weak spots that have
been validated in the literature are marked by a large sphere.
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(W22L, L54V), mutations to smaller hydrophobic residues
there led to a more thermostable protein. Because our method
is particularly suited for identifying weak spots that when
mutated to residues with improved hydrophobic interactions
should lead to improved thermostability, missing these two
weak spots thus is not unexpected either. E. coli DHFR in our
data set is a rare example for which comprehensive sets of
single mutants leading to stabilization or destabilization have
been recorded in the Protherm database. For further validation
of our weak spot prediction, we thus resorted to two systems
for which only stabilizing or only destabilizing mutants have
been reported. For Bacillus subtilis adenylate kinase, two
thermostabilizing multiple mutants have been reported in the
Protherm database, incorporating in total 26 mutations. We
correctly predicted nine out of 19 mutations (excluding
mutations involving the exchange of one hydrophobic residue
with another) as weak spots (sensitivity: 47%; see Table S7, SI,
for details). As a counter example, we considered the E. coli
maltose binding protein (MBP) for which all but one (Gly to
Cys mutation at position 19) of the 16 destabilizing single-
point mutations reported in the Protherm database were
correctly predicted as nonweak spots (specificity: 93.75%; see
Table S7, SI, for details). Note that this result is not trivial as
one might be tempted to think considering that all but one
(Tyr to Asp mutation at position 283) of the correct
predictions involve mutations of larger hydrophobic residues
to smaller ones. Rather, even without considering the actual
outcome of a mutation on a protein’s thermostability, our
method suggests that for improving thermostability these
nonweak spot residues should not be mutated because they are
already part of the “hydrophobic core” with good hydrophobic
interaction energies. Finally, considering the results for all three
systems shows that our method is more accurate in identifying
nonweak spots than weak spots. In our view, these results are
encouraging given, first, the fact that we could reliably exclude
the majority of nonweak spots and, second, the ease of
computation with which this classification is obtained. The
former would already result in a much reduced experimental
effort when performing site saturation mutagenesis for
identifying thermostable mutants; the latter suggests that our
approach can be used as a prefilter for further rational design
approaches where more rigorous (and costly) prediction
methods are applied. In particular, as our approach focuses
on identifying weak spots where improving hydrophobic
interactions should lead to improved thermostability, we
recommend combining it with other approaches for weak
spot prediction that focus on different mechanisms of
thermostabilization.
In summary, in the present study, we aimed at identifying

dominant determinant(s) of protein thermostability. On the
basis of one of the largest data sets investigated in this context
and thorough statistical evaluation, our results substantiate the
importance of the quality (energy) of hydrophobic interactions
for protein thermostability. Considering residue-wise hydro-
phobic interaction energies at a global level, an energetically
better hydrophobic packing in thermophilic proteins than in
mesophilic proteins is detected, and an even better packing in
hyperthermophilic proteins. Accordingly, by identifying clusters
of residues with good hydrophobic interaction energies alone,
we were able to successfully discriminate between pairs of
mesophilic/(hyper)thermophilic proteins with an accuracy of
∼80%. These results are robust with respect to the properties of
protein pairs considered. Considering the size of clusters of

hydrophobic residues instead resulted in at most a weak
discriminatory power. Finally, we successfully applied the
criterion of clusters of residues with good hydrophobic
interaction energies to search for structural weak spots, which
will allow guiding data-driven protein engineering. These
results and the computational efficiency position our approach
as a valuable complement to existing approaches for analyzing
proteins with respect to thermostability and identifying
structural weak spots.
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Supplemental experimental procedures 

Preparation of protein structures 

All proteins in the dataset were downloaded from the Protein Data Bank (PDB)1, and if 
required, the desired chain was extracted from the PDB file. All water molecules, ligands, 
and ions were removed from the structures. The command line version of the protein 
preparation wizard2 of the Schrödinger software (Schrödinger, LLC, New York, NY, 2011) 
was used to prepare the protomer structures in order to I) add hydrogen atoms, II) add 
missing side chain atoms, and III) build disulphide bridges. Protein bio-assemblies were 
downloaded from the PDB and prepared in an identical manner as the protomers. 
 

Calculation of residue-wise energy components 

Protomers (and bio-assemblies) were minimized using the Prime module3,4 version 3.0 of the 
Schrödinger software (Schrödinger, LLC, New York, NY, 2011) using default settings. Then, 
residue-wise electrostatic, van der Waals, and hydrophobic interaction energy components 
were calculated for the minimized structures by Prime. The hydrogen bond (including charge 
assisted hydrogen bonds) energy was calculated using a geometry-based energy function 
developed for protein design5 as implemented in the FIRST software6. The energies of all 
hydrogen bonds for a residue were summed for calculating residue-wise hydrogen bond 
energies. 
 

Clustering of residues by residue-wise energy components 

Residues in a protein structure are clustered together if they are neighbors and if their values 
of the residue-wise energy components are below a cutoff EC. Residues are considered 
neighbors if the distance between the closest pair of atoms is  4 Å. EC is increased in a 
stepwise manner, and the clustering is repeated for each new EC. As a result, a hierarchical 
clustering is obtained where clusters become larger as EC increases. For each EC value, the 
fraction of residues that is part of the largest cluster with respect to all protein residues (FLC) 
is calculated. EC was increased from an initial value of ─30 kcal mol-1 to a final value of 0 
kcal mol-1 with a step size of 0.5 kcal mol-1. 

 

Clustering of hydrophobic residues by inter-residue distances 

Residues in a protein structure are clustered together if they belong to the type “hydrophobic” 
(Ala, Cys, Ile, Leu, Met, Phe, Trp, and Val) and are within a distance cutoff DC. The distance 
between the closest atoms of two residues was considered the distance between these 
residues. DC is increased in a stepwise-manner, and the clustering is repeated for each new 
DC. As a result, a hierarchical clustering is obtained where clusters become larger as DC 
increases. For each DC value, the fraction of residues that is part of the largest cluster with 
respect to all protein residues (FLC) is calculated. DC was increased from an initial value of 1 
Å to a final value of 5 Å with a step size of 0.05 Å. 
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Supplemental tables 

Table S1. PDB ID and chain identifier of pairs of mesophilic/thermophilic proteins. 

Thermoph. Mesoph. Thermoph. Mesoph. Thermoph. Mesoph. Thermoph. Mesoph. 

1nw2_A 1fb6_A 1hbn_B 1e6y_B 1odk_B 1vhw_A 2cuy_A 1mla_A 

1urd_A 1anf_A 2f2b_A 1z98_A 1uay_A 1e6w_D 2cwd_A 1xww_A 

2hm7_A 1lzl_A 2q5b_A 2cj3_A 1ub3_A 1p1x_A 2d1y_C 2zat_A 

2sqc_A 1w6j_A 2v08_A 1ls9_A 1ufy_A 1dbf_A 2d29_A 2vig_A 

1c9o_A 2es2_A 1ugp_B 2cz1_B 1ug6_A 1e4i_A 2d4e_A 2ve5_D 

2b5a_A 1y7y_A 1b06_A 1bsm_A 1ui0_A 2c2q_A 2d4p_A 1s3z_A 

1b4b_A 2p5m_A 1mp9_A 1qna_A 1uir_B 2pt9_A 2d5b_A 1pfv_A 

1g2w_A 1iye_A 1thm_A 2tec_E 1uj5_A 2f8m_A 2d5c_A 1nyt_A 

1gtf_A 1wap_A 3tec_I 1cse_I 1ulr_A 1urr_A 2d5w_A 1zu0_A 

1hvx_A 3bh4_A 1h1n_A 1a3h_A 1umd_A 2ozl_A 2d8d_A 1ecm_A 

1lqy_A 2okl_A 1i1x_A 1ta3_B 1umd_B 2ozl_B 2dt9_A 2dtj_A 

1r2z_A 1xc8_A 1mtp_A 1sek_A 1v37_A 2a6p_A 2e7u_A 2hp1_A 

1tqh_A 3dlt_A 2fla_A 1b0y_A 1v6s_A 1hdi_A 2ebj_A 1aug_A 

1whi_A 1vqo_K 1bqc_A 1a3h_A 1v8f_A 1n2e_A 2eg4_A 1h4k_X 

1y51_A 1ptf_A 1tf4_A 1ga2_B 1v8m_A 3ees_A 2eiy_B 1iye_A 

1zdr_A 3dau_A 1tml_A 1dys_A 1v98_A 1fb6_A 2ekp_A 2zat_A 

1zin_A 2eu8_A 1tib_A 3tgl_A 1vbi_A 1wtj_A 2fk5_A 1e4c_P 

2bkm_A 2qrw_B 1yna_A 2dfb_A 1vc3_B 1uhe_A 2is8_A 1ihc_A 

2exi_A 1y7b_A 2dte_A 1uzn_A 1vcd_A 1ktg_A 2j07_A 1owl_A 

2tlx_A 1bqb_A 1my6_A 1xre_A 1ve1_A 2pqm_A 2p5y_A 1ek6_A 

2bd0_A 1oaa_A 2c41_A 2c2u_A 1vef_A 2oat_A 2prd_A 2bqx_A 

1aoh_A 1g1k_A 1esw_A 1x1n_A 1vfj_A 2pii_A 2pwy_A 1i9g_A 

1cem_A 1v5d_A 2ng1_A 2qy9_A 1wlu_A 1q4u_A 2qhs_A 1w66_A 

1h6y_A 1gny_A 1b5p_A 1asd_A 1wmw_A 2f94_F 2yqu_A 3lad_A 

1nbc_A 1g43_A 1bxb_A 1oad_A 1wo8_A 1b93_A 2yvp_A 1g0s_B 

1xyz_A 1e0w_A 1gd7_A 2q2i_A 1wur_A 1a8r_A 2z1a_A 1hpu_A 

2b59_A 1qzn_A 1iv3_A 1h47_A 1wz8_A 2zqq_A 2z1y_B 1j32_A 

2olj_A 1b0u_A 1iz9_A 2hjr_A 1x1o_A 2jbm_C 2zc8_A 1sjd_A 

2q8x_A 1uqz_A 1j33_A 1l5o_A 1yya_A 2dp3_A 2zdb_A 3d0s_A 

3d60_A 1gyh_A 1j3n_A 1oxh_A 1z54_A 1s5u_A 2zdh_A 1iow_A 

1eje_A 3bnk_A 1j3w_A 1vet_B 2b3f_A 1anf_A 3cm0_A 3adk_A 

1ep0_A 2ixc_A 1n97_A 1bu7_A 2bhq_A 2o2r_A 3hrx_A 1dci_A 

1g5c_A 1ylk_A 1nza_A 2zfh_A 2cuk_A 2gcg_A 3mds_A 1xre_A 
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Table S2. PDB ID and chain identifier of pairs of mesophilic/hyperthermophilic proteins. 

Hyper-
thermoph. 

Mesoph. Hyper-
thermoph. 

Mesoph. Hyper-
thermoph.

Mesoph. Hyper-
thermoph. 

Mesoph. 

1h2b_A 1n8k_A 3c7b_B 2v4j_B 1zjj_A 2c4n_A 2z30_A 1st3_A 

1n7k_A 1p1x_A 3cnu_A 2qzt_B 2cun_A 1hdi_A 1eu8_A 1anf_A 

1tyo_A 1pb1_A 3do8_B 1coz_A 2cwp_A 3ers_X 1wst_A 2r2n_A 

2fc3_A 1zwz_A 1g6h_A 2ff7_A 2d69_A 1rbl_A 1uxt_A 1euh_A 

2yvu_A 2pez_A 1l2t_A 2ff7_A 2dbb_A 2qz8_A 2r91_A 2v8z_A 

1c3p_A 1t64_A 1pkh_A 2qxx_A 2dr1_A 1w23_A 1d1g_A 3fq0_A 

1hqk_A 2c92_A 1snn_A 1k4i_A 2dxe_A 1npk_A 1inl_C 2o07_B 

1mzh_A 1p1x_A 1twi_A 1ko0_A 2e5f_A 1moq_A 1kq3_A 1ta9_B 

1tz7_A 1x1n_A 2eb0_B 1k20_A 2e5w_A 2pt9_A 1nf2_A 1rkq_A 

1ulz_A 2w70_A 2j9d_C 2pii_A 2ekn_A 2eey_A 1o0x_A 1y1n_A 

1wwr_D 2b3j_A 2pa6_A 2akz_A 2hun_B 1r66_A 1o0y_A 1p1x_A 

2e55_A 1bd3_A 2yww_A 2fzc_B 3cg3_A 3cfx_A 1o4s_A 1asd_A 

2e8e_A 1n2f_A 2z02_A 2gqs_A 1ais_A 1qna_A 1oh4_A 1pmj_X 

2ebd_A 1zow_A 2z8u_B 1qna_A 1mxd_A 3bh4_A 1p1m_A 2i9u_A 

2egj_A 1s5u_A 1ftr_A 1m5s_A 1b7g_O 1u8f_R 1tmy_A 3chy_A 

2ehh_A 3di1_A 1vcv_A 1p1x_A 1io7_A 3bdz_A 1tzx_A 1eyv_A 

2ehs_A 1l0i_A 1ml4_A 1ekx_A 1je1_C 1vhw_A 1vbu_A 1ta3_B 

2eja_A 3gw0_A 1aj8_A 1csh_A 1nto_A 1n8k_A 1vc1_A 1h4y_A 

2hk9_A 1nyt_A 1gtm_A 1bgv_A 1uwr_A 2e3z_A 1vj0_A 1n8k_A 

2omd_A 2q5w_E 1jg1_A 1i1n_A 1vph_A 1vmh_A 1vl8_A 1gee_A 

2pbq_A 2g4r_A 1nnh_A 12as_A 1xtt_A 1bd3_A 1vlc_A 1cnz_A 

2pbr_A 1e9e_A 1pvv_A 1oth_A 2f5g_A 2vjv_A 1vlg_C 1eum_A 

2pnf_A 1q7b_A 1vkc_A 2fe7_B 2i6j_A 1fpz_A 1vlh_B 1qjc_A 

2r75_1 2vxy_A 1ybz_A 1ecm_A 2var_C 1rkd_A 1vlj_A 1ta9_B 

2yvl_A 1i9g_A 2dsk_A 2uy3_A 3f8p_D 1trb_A 1vm7_A 2fv7_A 

2yvw_A 1uae_A 1gde_A 2r5e_A 1vgm_A 2h12_B 1vma_A 2qy9_A 

2yw2_A 3g8c_A 1iu8_A 1aug_A 1wlt_A 2ixc_A 1vmj_A 1vmh_A 

2z1m_A 1rpn_A 1lk5_A 1m0s_A 1wrj_A 1sfe_A 1vp2_A 1ex2_A 

1coj_A 1bsm_A 1ub9_A 1r1u_A 1x0u_A 1on3_A 1vq0_A 1vzy_A 

1jji_A 1lzl_A 1udd_A 2qcx_B 1x25_A 1qd9_A 1w2t_A 1y4w_A 

1lbv_A 2qfl_A 1uku_A 2zfh_A 2e0q_A 1fb6_A 1w3j_A 1e4i_A 

1p1l_A 2nuh_A 1v96_B 2h1c_A 2e7x_A 2qz8_A 1wa3_A 1wbh_A 

1txg_A 1n1e_A 1w2i_A 1urr_A 2ehg_A 1jl1_A 1wos_A 1wsr_A 

1vi6_A 3bch_A 1wqa_A 1k2y_X 2ekl_A 1dxy_A 2e54_A 2oat_A 

2a5w_A 2v4j_C 1wr8_A 1s2o_A 2ggs_A 1n2s_A 2fnc_A 1anf_A 

2b2h_A 3bhs_A 1wwk_A 1dxy_A 2bo1_A 1vqo_F 2h3h_B 2dri_A 

2cyb_A 2yxn_A 1wy1_A 2zhz_A 1mgt_A 1sfe_A 2p3n_A 2qfl_A 

3c7b_A 2v4j_A       
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Table S3. p-values regarding equality in discrimination accuracies between mesophilic and 
(hyper)thermophilic protomers for clustering based on different residue-wise energy 
components versus a random discrimination.[a] 
 Hydrogen 

bond 
van der 
Waals 

Hydrophobic 
interaction 

Rando
m 

Hydrogen bond - [b] 0.3245 <0.0001 0.2196
van der Waals 0.0005 - [b] <0.0001 0.8056
Hydrophobic 
interaction 

0.0042 0.5829 - [b] <0.0001

Random 0.0610 <0.0001 <0.0001 - [b]

[a] The discrimination analysis is based on clustering by residue-wise energy components. The 
p-values were computed by a bootstrap hypothesis of equality generating 10000 bootstrap 
samples. Values in shaded shells correspond to mesophilic/hyperthermophilic protomers, 
other values correspond to mesophilic/thermophilic protomers. 
[b] Not determined. 

 

 

Table S4. p-values regarding equality in discrimination accuracies between mesophilic and 
(hyper)thermophilic protein bio-assemblies for clustering based on different residue-wise 
energy components versus a random discrimination. [a] 

 Hydrogen 
bond 

van der 
Waals 

Hydrophobic 
interaction 

Rando
m 

Hydrogen bond - [b] 1.0000 <0.0001 0.6020
van der Waals 0.0572 - [b] <0.0001 0.6068
Hydrophobic 
interaction 

0.0534 1.0000 - [b] <0.0001

Random 0.1141 0.0004 0.0007 - [b]

[a] The discrimination analysis is based on clustering by residue-wise energy components. The 
p-values were computed by a bootstrap hypothesis of equality generating 10000 bootstrap 
samples. Values in shaded shells correspond to mesophilic/hyperthermophilic protein bio-
assemblies, other values correspond to mesophilic/thermophilic protein bio-assemblies. 
[b] Not determined. 

 

 

Table S5. Discrimination between mesophilic and (hyper)thermophilic protomers when 
clustering residues of type “hydrophobic” by inter-residue spatial distance. 

Pairs Discrimination accuracy[b] p-value[a]

Mesophilic/thermophilic 53.03 0.6175

Mesophilic/hyperthermophilic 61.74 0.0369
[a] The p-values were computed by a bootstrap hypothesis of equality between the given 
discrimination accuracy and a random discrimination (50% correct discrimination) generating 
10000 bootstrap samples. 
[b] In %.  
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Table S6. Thermostability of E. coli DHFR mutants. 

Mutant ΔΔG (H2O) [kcal mol-1][a] Mutant ΔΔG (H2O) [kcal mol-1] [a]

G15A 0.70 W74F -1.20
P21L -0.10 V88I 0.75
W22L 0.10 V88A 0.39
L24V -1.90 G95A 1.30
D27N 1.40 T113V -1.20
L28R 1.72 D122A -1.60
W30M -2.03 E139Q -0.42
W30Y -2.16 E139K -1.00
W30A -2.33 S148K -0.26
W30R -2.49 S148P -0.26
W30N -2.52 S148V -0.33
W30S -2.74 S148A -0.47
W30H -2.78 S148T -0.51
W30E -2.89 S148E -0.52
F31V -1.50 S148R -0.75
F31A -1.90 S148N -0.89
T35A -1.10 I155V -0.58
P39C -3.00[b] I155L -2.27
V40I -0.85 I155L -2.80
V40L -1.35 I155E -3.26
V40A -1.55 I155R -3.28
V40R -1.72 I155T -3.30
V40M -2.00 I155K -3.35
V40F -2.15 I155Y -3.64
V40N -2.17 I155A -3.82
V40S -2.52 I155Q -3.86
V40H -3.27 I155S -3.93
G43A -0.40 I155A -4.00
L54V 0.40 I155D -4.10
P66A 1.30 I155W -4.31
[a] ΔG (mutant) ─ ΔG (wildt-ype) where ΔG is the free energy of unfolding in water, 
determined by denaturant (urea; guanidine hydrochloride; glutathione disulfide/glutathione; 
guanidinium thiocyanate) denaturation of proteins and extrapolation of the data to zero 
concentration of the denaturant. A positive value (marked in bold) indicates that the mutant is 
more thermostable than the wild-type. 
[b] Tm (mutant) ─ Tm (wild-type) in K where Tm is the melting temperature identified as a mid-
point temperature at which half of the protein is unfolded in a thermal unfolding method. 
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Table S7. Additional validation of weak spot prediction. 

Protein Mutations[a] % correct 
prediction  

Comment Ref. 

B. subtilis 
adenylate 
kinase 

Stabilizing mutations 
 
L3I, G17A, D23K, 
K69R, G73S, D75S, 
I99S, Y103M, K105R, 
E114Q, D118E, V119E, 
M121I, E122A, S169T, 
Q180A, D184A, S187D, 
E188S, G190E, Y191V, 
A193V, Y205F, D210V, 
L211I, K217Q 
 

34.61% 
(47.36% excluding 
mutations involving 
the exchange of one 
hydrophobic residue 
with another) 

Mutations in two 
multiple-mutants that led 
to an increase of 11.6ºC 
and 12.5ºC in the melting 
temperature Tm 
compared to the wild 
type 

7 

E. coli 
maltose 
binding 
protein 

Destabilizing 
mutations 
 
V8G, W10A, G19C, 
I59A, I108A, L115A, 
L147A, P159A, I161A, 
L192A, L195A, I226A, 
A276G, Y283D, 
V347A, L361A 

93.75% Single point mutations 
that led to a decrease in 
the Tm in a range of 0.1 
to 7.5ºC or in the free 
energy of unfolding ΔG 
in a range of 0.3 to 5.5 
kcal mol-1 compared to 
the wild type 

8-11 

[a] A correctly predicted mutation site is marked in bold. A mutation in italic involves the 
exchange of one hydrophobic residue with another.  
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a  b  s t r a c t

We  apply Constraint  Network  Analysis  (CNA)  to investigate  the  relationship  between structural  rigid-

ity  and  thermostability of five  citrate synthase  (CS)  structures  over a  temperature  range from  37 ◦C to

100 ◦C.  For the  first  time, we introduce  an  ensemble-based  variant of CNA and model  the  temperature-

dependence  of hydrophobic  interactions  in the constraint  network.  A  very  good  correlation  between  the

predicted  thermostabilities  of CS  and  optimal  growth temperatures  of their source organisms (R2 =  0.88,

p  =  0.017)  is obtained,  which  validates  that  CNA  is able  to quantitatively  discriminate  between  less and

more  thermostable  proteins  even  within  a series  of orthologs. Structural  weak  spots  on  a  less ther-

mostable  CS, predicted  by  CNA  to  be  in the  top 5%  with  respect  to the  frequency  of occurrence  over

an  ensemble, have  a  higher mutation  ratio  in a  more thermostable  CS than  other  sequence  positions.

Furthermore,  highly ranked weak spots  that are  also  highly conserved  with  respect  to  the  amino  acid

type  found at that  sequence  position  are  nevertheless  found  to  be  mutated in the  more  stable  CS.  As

for  mechanisms  at an  atomic  level  that  lead  to a reinforcement  of  weak  spots  in  more  stable  CS,  we

observe  that  the thermophilic  CS  achieve  a higher thermostability  by  better  hydrogen bonding networks

whereas  hyperthermophilic  CS  incorporate  more  hydrophobic  contacts  to reach  the  same goal.  Overall,

these  findings suggest  that  CNA  can  be  applied  as  a pre-filter  in data-driven  protein  engineering  to  focus

on  residues  that are  highly  likely  to improve  thermostability  upon  mutation.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Thermostability is  an important property of an enzyme as

increasing it can widen the enzyme’s scope in biotechnological

processes (Demirjian et al., 2001; Van den Burg, 2003). In general,

enzymes from (hyper)thermophiles, i.e., organisms that grow opti-

mally at a temperature of more than 50 ◦C (85 ◦C), show a higher

temperature tolerance than their orthologs from mesophiles, i.e.,

organisms with an  optimal growth temperature, Tog,  of  25–50 ◦C

(Demirjian et al., 2001; Vieille and Zeikus, 2001). However, not

all enzymes found in  nature are optimized to withstand extreme

industrial process conditions including high temperature (Polizzi

et al., 2007). The identification and development of thermostable

enzymes is therefore an  important aspect of research in  biotechnol-

ogy (Haki and Rakshit, 2003). Identifying thermostable enzymes

Abbreviations: CNA, Constraint Network Analysis; CS, citrate synthase; DCM,

distance constraint model; TUS, thermal unfolding simulation; RCD, rigid cluster

decomposition;  MD, molecular dynamics; PDB, protein data bank; WSMR,  weak spot

mutation ratio.
∗ Corresponding author at: Universitätsstr. 1, 40225 Düsseldorf, Germany.

Tel.: +49 211 8113662; fax: +49 211 8113847.

E-mail address: gohlke@uni-duesseldorf.de (H. Gohlke).

by  screening metagenomes is  often problematic because of  an

insufficient and biased expression of the cloned genes in the expres-

sion systems (Uchiyama and Miyazaki, 2009). Engineering existing

enzymes for improved thermostability is  therefore a  valuable alter-

native (Leisola and Turunen, 2007). The latter approach includes

random mutagenesis and recombination followed by screening for

thermostable mutants (Eijsink et  al., 2005), rational design (Eijsink

et al., 2004), and data-driven approaches (Chaparro Riggers et al.,

2007). While random mutagenesis has a  limitation in  that only

a restricted sequence space can be tested for the desired activity

(Lehmann and Wyss, 2001), a  rational design requires a thorough

understanding of the mechanisms underlying thermostabilization

(Eijsink et  al., 2004). As a compromise, data-driven approaches are

being pursued for reducing the library size for mutagenesis based

on suggestions of interesting residue positions that, when mutated,

would lead to a  more thermostable protein (Chaparro Riggers et al.,

2007).

One such data-driven approach has been introduced by Reetz

et al. (2006). In that study, saturation mutagenesis was performed

in an iterative manner on those residues of lipase A from Bacillus

subtilis with the highest B-factors. This followed the guiding prin-

ciple that thermostable proteins usually show a  higher degree of

structural rigidity than their counterparts from mesophilic organ-

isms; hence, preferentially stabilizing the most mobile regions

0168-1656/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.jbiotec.2012.01.027
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should increase thermostability. In fact, a significantly more sta-

ble variant of lipase A  was identified by  screening less than 8000

colonies.

Following the same guiding principle, we have developed a

graph theory-based approach termed Constraint Network Analy-

sis (CNA) that predicts protein thermostability by characterizing

the mechanical rigidity of  a  protein structure (Klein et al., 2011;

Radestock and Gohlke, 2008, 2011; Rathi et al., 2011). For this,

hydrogen bonds are removed in  the order of  increasing strength

from a constraint network representation of  a  protein, which sim-

ulates a thermal unfolding of the protein (Hespenheide et al.,  2002;

Rader et al., 2002). At  a  phase transition temperature, Tp, the

mechanical rigidity of the network is  lost. At this point, the net-

work represents an unfolded protein and, thus, Tp can be related to

the melting temperature, Tm,  of  the system. When applied to a data

set of 20 pairs of orthologs from meso- and thermophilic organ-

isms, for 2/3 of the pairs a  higher Tp was observed, in  agreement

with experiment. Furthermore, the approach allows understand-

ing and exploiting the relationship between microscopic structure

and macroscopic stability. Thus, it can be used in data-driven pro-

tein engineering to increase protein thermostability by introducing

mutations at regions that are crucial for macroscopic stability.

These regions are referred to as unfolding regions or  weak spots. For

thermolysin-like protein and 3-isopropylmalate-dehydrogenase,

predicted weak spots were indeed involved in  improving the

proteins’ thermostability as demonstrated by  comparison to muta-

genesis experiments in  a  retrospective analysis. CNA was also used

in a prospective manner on phytase for identifying weak spots

that were subsequently mutated, leading to an increase in  ther-

mostability in some cases (Radestock, 2010). A related approach

is provided by the distance constraint model (DCM) (Jacobs et al.,

2003) where an ensemble of constraint topologies is generated by

considering mean-field probabilities of  hydrogen bonds and torsion

constraints in a Monte Carlo sampling. Average stability character-

istics are then computed by  performing a  FIRST analysis on each

constraint topology in  the ensemble. Note, however, that DCM

requires knowledge of experimentally determined heat capacity

curves for a protein-specific parameterization of  the model (Jacobs

and Dallakyan, 2005).

Here,  we extend our previous studies in three major aspects.

(I) So far, CNA has been applied to  only pairs of orthologs. In the

present study, we analyze and compare a series of five citrate

synthase (CS) proteins from organisms with Tog in  the range of

37–100 ◦C. First, from a  methodological point of view, this set of

structures provides a  thorough test for whether the model underly-

ing CNA applies throughout this temperature range. Second, from a

structural biology point of view, this set allows deciphering to what

extent nature applies different mechanisms for achieving protein

thermostability at different temperature stages. (II) Rather than

applying CNA to a single crystal structure as  done previously, here

we introduce an ensemble-based CNA using ensembles generated

by molecular dynamics (MD) simulations. The incentive for this is

to circumvent the sensitivity of  CNA with respect to details in  the

input structure (Jacobs et al., 2001) and, thus, to provide a  more

robust way of analysis. Using ensembles of  protein conformations

has already been shown to  yield more robust results in the case

of analyzing changes in protein flexibility upon protein-protein

complex formation (Gohlke et al., 2004) as well as  in  the case of

predicting the intrinsic flexibility of a  protein (Mamonova et al.,

2005). Furthermore, the ensemble-based analysis allows ranking

predicted weak spots with respect to their frequency of occurrence

in the ensemble. When related to  information on the frequency

of mutations, this allows analyzing whether nature preferentially

mutates structural weak spots identified by  CNA to achieve higher

thermostability. When going from a less thermostable CS to  a

more thermostable one, it also allows to  understand the stepwise

thermal  stabilization of CS. (III) We refine the model underly-

ing thermal unfolding simulations (TUS) in that now hydrophobic

contacts in the constraint network are modeled in a temperature-

dependent manner, as has been done so far already for hydrogen

bonds and salt bridges. This accounts for the fact that hydropho-

bic interactions become stronger with increasing temperatures

(Privalov and Gill, 1988).

2. Materials and methods

2.1.  Data set

CS  is one of the rare  examples for which crystal structures are

available in  the Protein Data Bank (PDB) (Berman et al., 2000) from

organisms whose living temperatures span an extreme tempera-

ture range from 0 ◦C to 100 ◦C (Bell et al., 2002). This makes CS  a

particularly valuable model for understanding the thermal adap-

tation of proteins. CS  is a homodimeric protein with two active

sites; each monomer consists of a  small and a large sub-domain

(Fig. 1). CSs have been crystallized in two different conformations,

an “open” holo and a  “closed” apo form (Remington et al., 1982). CS

proteins for this study were selected from more than 40 CS  entries

in the PDB based on the following criteria: (I) Only structures in

the open form were considered. (II) Structures whose quality were

scored “bad” according to  the PDBREPORT database (Hooft et al.,

1996) were excluded. (III) More than one structure was available

from organisms with Tog =  37 ◦C.  Only one structure was  chosen

from this temperature range.

This resulted in four structures from organisms with Tog = 37 ◦C,

75 ◦C, 87 ◦C, and 100 ◦C, respectively. A CS structure in the open

form was not available from any  organism having a Tog between

37 ◦C and 75 ◦C. Hence, a homology model of CS  from Thermoplasma

acidophilum (Tog = 59 ◦C) in the open form was built using the MOD-

ELLER software (Sali and Blundell, 1993). For this, the closed form

of this CS (PDB ID:  2r26) was  used as a  template to model the large

sub-domain, and the CS in  the open form from Sulfolobus solfatar-

icus (PDB ID: 1o7x) was  used as a  template to model the small

sub-domain. The final data set contained five CS  structures, which

are summarized in Table 1. All  water molecules and ligands were

removed from the structures. All  structures were protonated, and

side chains of  Asn, Gln, and His were flipped if necessary to optimize

the hydrogen bond network, using REDUCE (Word et al., 1999).

The following abbreviations will be used to refer to CSs, includ-

ing the Tog of their source organisms, throughout this manuscript:

Sus scrofa: PigCS 37, T.  acidophilum: TaCS 59, Thermus thermophilus

HB8: TtCS 75, S.  solfataricus: SsCS 87 and Pyrobaculum aerophilum

IM2: PaCS 100.

2.2.  Generation of the structure ensemble

MD simulations of all five CS structures were performed using

the AMBER 10 suite of programs (Case et al., 2005) together with

the parm99 force field (Cornell et  al.,  1995) with a modification

suggested by Simmerling et al. (2002). The system was  neutral-

ized by adding sodium counter-ions and solvated with a truncated

octahedral box  of TIP3P water molecules (Jorgensen et al., 1983)

such that the distance between the edges of the water box and the

closest atom of the protein was at least 11 Å. The particle mesh

Ewald method (Darden et al.,  1993) was  used with a  direct-space

non-bonded cutoff of 8 Å. Bond lengths involving hydrogen atoms

were constrained using the SHAKE algorithm (Ryckaert et al.,  1977),

and the time step for all simulations was 2  fs. After equilibration,

a production run of unrestrained MD  in  the canonical ensemble

(NVT) was performed to generate a trajectory of  10 ns length, with
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Fig.  1. Cartoon representation of SsCS 87 as an  example for  CS structures. Two  different views (a and  b) differ from each other by a  rotation of ∼90◦ about  a  horizontal axis.

N-  and  C-termini are represented as blue and red  spheres, respectively. In (a), two  monomers  are represented in different colors with the  small  sub-domains  colored in a

lighter  shade. Two  active sites are represented by arcs (a). In (b), CS is  colored by secondary structure elements (�-helices in red, �-sheets in yellow, and loops  in green).

�-helices  referred to in the  text are  labeled, with �-helices of the  small sub-domain denoted  in lower case letters. All  figures of CS structures were generated with PyMOL

(www.pymol.org).

conformations extracted every 40 ps from the last 8 ns.  This

resulted in 200 conformations that were subjected to CNA.

2.3.  Construction of constraint networks and rigid cluster

decomposition

The folded state of  a  protein is  stabilized by non-covalent inter-

actions (Dill, 1990), and proteins can be modeled as molecular

networks to study these stabilizing features (Böde et al., 2007;

Greene and Higman, 2003). In this study, we go beyond a  topo-

logical network representation by modeling proteins as constraint

networks (also referred to  as molecular frameworks). As such, a

protein structure is  modeled as a  body-and-bar network where

each atom is considered as a rigid body having six degrees of free-

dom (Hespenheide et al., 2004). Any number of bars between one

and six can be placed between two such atoms to  represent an

interaction, and every such bar removes one degree of freedom.

A covalent bond is  modeled as five bars, allowing for a  dihedral

rotation about it. Peptide bonds and double bonds are modeled

with six bars, disallowing any bond rotation. Hydrogen bonds and

salt bridges, together referred to as hydrogen bonds in this study,

were modeled with five bars whereas hydrophobic interactions

were modeled with two bars. Weaker interactions such as van der

Waals interactions are not modeled as constraints. These constraint

networks were constructed using the FIRST software (version6.2)

(Jacobs et al., 2001). A hydrogen bond energy Ehb is  calculated using

a geometry-based empirical function (Dahiyat et al., 1997), and only

hydrogen bonds with a  lower energy (i.e., a  higher stability) than

a certain cutoff Ecut,hb are included in  the network. Hydrophobic

contacts are considered between all carbon and sulfur atoms sep-

arated by a distance less than the sum of their van der Waals radii

(1.7 Å for C and 1.8 Å for S) plus a  certain cutoff Dcut,hp.  Cutoff values

for inclusion of hydrogen bonds and hydrophobic contacts can vary

with temperature, as described in more detail in  Section 2.4.

The pebble game algorithm (Jacobs, 1998; Jacobs and

Hendrickson, 1997; Jacobs and Thorpe, 1995) implemented in the

FIRST program (Jacobs et  al., 2001) is  then applied to characterize

the rigidity of such networks by constraint counting. FIRST deter-

mines whether a  bond is  either flexible or  rigid and, subsequently,

decomposes the constraint network into rigid clusters and flexible

regions. A rigid cluster is a set of atoms that move together as  a  rigid

body in any floppy motion. Atoms that are not part of a rigid cluster

are in a  flexible region. The size of a  rigid cluster is defined by  the

number of atoms in it. This approach has been successfully applied

for characterizing rigidity in  proteins (Ahmed and Gohlke, 2006;

Gohlke et al., 2004; Gohlke and Thorpe, 2006; Hespenheide et al.,

2002; Jacobs et al., 2001; Rader and Bahar, 2004; Rader et al., 2002),

RNAs (Fulle and Gohlke, 2008, 2009a), and the ribosome (Fulle and

Gohlke, 2009b).

2.4.  Thermal unfolding simulation

During  the thermal unfolding of  a protein, non-covalent bonds

are broken sequentially until the protein becomes unfolded with

very few non-covalent interactions remaining. This can be sim-

ulated by gradually removing non-covalent constraints from the

constraint network and applying the pebble game algorithm to each

of the resulting networks (Hespenheide et al., 2002; Rader et al.,

2002; Radestock and Gohlke, 2008, 2011).

In previous studies, only hydrogen bonds were removed from

the network in the order of  increasing strength to simulate an

increase in  temperature. As such, at a  temperature T, all hydro-

gen bonds with Ehb ≥ Ecut,hb = (300 K − T) × (kcal mol−1)/20 K  were

removed. The relation between T  and Ecut,hb had been determined

previously (Radestock and Gohlke, 2008, 2011). For hydropho-

bic contacts, a  temperature-independent Dcut,hp = 0.25 Å was  used

(Radestock and Gohlke, 2008, 2011). We  will refer to this type of

thermal unfolding simulation as TUS1.

Table  1
CS  proteins used in this study.

PDB  ID Source organism Tog
a Sequence length Resolutionb Reference

3ENJ  Sus scrofa 37  437  1.78 Larson et  al. (2009)

2R26c Thermoplasma acidophilum 59  384  2.50d Darland  et  al. (1970)

1IOM  Thermus thermophilus HB8  75  377  1.50 Oshima and  Imahori (1974)

1O7X  Sulfolobus solfataricus 87  377  2.70 Bell et al. (2002) and Zillig et  al. (1980)

2IBP  Pyrobaculum aerophilum IM2  100  409  1.60 Boutz  et al.  (2007) and  Volkl  et al. (1993)

a In ◦C.
b In Å.
c A homology  model  in the  open form was  used.
d Resolution of the  structure in the  closed form upon  which the  model  in the  open  form was built.
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In the present study, we modify the TUS procedure by mod-

eling hydrophobic contacts as temperature-dependent, too. As

the strength of hydrophobic interactions increases with increas-

ing temperature (Privalov and Gill, 1988; Schellman, 1997), we

include more and more hydrophobic contacts into the network

by increasing Dcut,hp with increasing temperature. Preliminary

tests showed that the number of  hydrophobic contacts per atom

increases roughly linearly when modifying Dcut,hp from 0.25 Å to

0.40 Å. Dcut,hp > 0.40 Å resulted in very rigid networks that were not

amenable to TUS. Therefore, we decided to  linearly increase Dcut,hp

from 0.25 Å at 300 K  to 0.40 Å at 420 K. We will refer to this new

type of thermal unfolding simulation as TUS2.

2.5. Identification of the folded-unfolded transition and of weak

spots

When  going from a  rigid network at low temperature to  a

flexible network at high temperature, a  rather pronounced phase

transition is observed. At  this point, the percolating (“giant”) rigid

cluster stops dominating the network, and many smaller rigid

clusters appear. Such a percolation can be observed in  both net-

work glasses (Rader et  al.,  2002) and proteins (Rader et al., 2002;

Radestock and Gohlke, 2008, 2011). However, the percolation

behavior of proteins is more complex than that of  glasses in  that

multiple phase transitions can be observed in the former (Rader

et al., 2002; Radestock and Gohlke, 2008, 2011), in  contrast to

a single transition in  the latter (Rader et al., 2002). This can be

understood by the fact  that protein structures are modular, i.e.,

they consist of secondary structure elements, sub-domains, and

domains, which often break away from the giant cluster as  a  whole.

As demonstrated by  us, the last one of  these transitions is most

relevant from a structural biology point of view in that this tran-

sition relates to a protein going from the folded to  the unfolded

state (Radestock and Gohlke, 2011). The temperature Tp related to

this phase transition is identified as the inflection point in a curve

of the cluster configuration entropy H versus T, after fitting a  five-

parameter double sigmoid function (Cairns et al.,  2008) to  value

pairs (H, T) determined by TUS. H  has been introduced by Andraud

et al. (1994) as a morphological descriptor for heterogeneous mate-

rials and is adapted from Shannon’s information theory. Here, the

definition of H as given in Radestock and Gohlke (2008, 2011) is

used.

Once the biologically relevant folded-unfolded transition is

observed, locally weak regions (weak spots) in  the constraint net-

work are identified. For this, rigid cluster decompositions (RCD)

directly before and after this folded-unfolded transition are com-

pared. Residues for which C� atoms are part  of  the giant cluster

before the transition, and that become flexible afterwards, are con-

sidered weak spots. Here, a  residue is considered flexible if its C�

atom is either in a flexible region or  part of  a  small rigid cluster

of less than four atoms. The identification of weak spots is car-

ried out for each snapshot of  the ensemble individually. This leads

to a set of residues being predicted as  weak spots for each snap-

shot. These sets do not necessarily contain the same residues across

different snapshots as the RCD may  vary with the conformation

of the protein. The frequency of all residues being predicted as a

weak spot throughout the ensemble is counted and, finally, all weak

spots are assigned a  rank according to the decreasing order of their

frequency.

The thermal unfolding simulation, determination of  Tp,  and

identification of weak spots is performed by the CNA software pack-

age developed in our group (Radestock and Gohlke, 2008, 2011;

Rathi et al., 2011), which functions as a  front- and back-end to the

FIRST software (Jacobs et al., 2001).

2.6.  Mutation ratio of  weak spot residues

For validating the weak spots predicted by CNA and tracing the

stepwise thermal stabilization of CS, a weak spot mutation ratio

(WSMR) is computed for each weak spot up to rank r  by comparing

pairs of proteins with distinct thermostability.

WSMRr =
∑r

i=1
Resi,mutated

∑r
i=1

Resi,conserved

× total conserved residues

total mutated residues
(1)

Here, Resi,mutated is  the number of residues in a  weak spot of

rank i of  the protein with lower thermostability that have been

mutated in  the more thermostable protein; conversely, Resi,conserved

is  the number of residues in  a weak spot of rank i of the pro-

tein with lower thermostability that are  conserved in  the more

thermostable protein. The second term is  a normalization factor

regarding the total numbers of mutated and conserved residues

between both proteins, irrespective of their assignment to weak

spots. For determining whether a residue has been mutated or

remained conserved between pairs of CS structures, a multi-

ple sequence alignment of  549 CS sequences extracted from the

UniProt database (http://www.uniprot.org)  was used.

If  WSMRr > 1, residues in weak spots up to rank r  have been found

to be more frequently mutated on going from the less thermostable

to the more thermostable protein compared to  the average muta-

tion ratio for this pair of proteins. Conversely, if WSMRr <  1,  weak

spots up  to  rank r  have a  mutation ratio that is lower than the

average mutation ratio for this pair of proteins.

2.7. Position-specific conservation of residues

We calculated the conservation of an amino acid a at position i,

independent of all other positions, for all amino acids in  the multi-

ple sequence alignment. The conservation was  calculated in  terms

of a  relative entropy, D(a)

i
(Cover and Thomas, 2006) as  also used

by Ranganathan and coworkers (Halabi et al., 2009; Lockless and

Ranganathan, 1999). D(a)

i
is the divergence of the observed fre-

quency of a at i (f (a)

i
) from the background frequency of a in all

proteins and rises more and more steeply as f (a)

i
approaches one

(see Halabi et al.,  2009 for more details). This was done to  validate

the weak spot prediction on the account that a prediction of  a  highly

conserved amino acid as  a  weak spot in  a  less stable CS, which is

then mutated in a  more thermostable CS, is  more significant than

if the weak spot were predicted at a  position that has already been

mutated in many CSs.

3.  Results and discussion

3.1. Data set

The  data set used for this study contains CSs from five differ-

ent organisms, which have Tog from 37 ◦C to  100 ◦C (Table 1). Only

structures in the open form are considered for the analysis because

this is  the prevalent form in  solution as evident from the crystalliza-

tion of CS in the open form in the absence of a  ligand (Remington

et al., 1982; Wiegand and Remington, 1986); in turn, a  closed form

is only adopted when the substrate oxaloacetate is  bound. This

has also been supported by  a molecular dynamics study that sug-

gested that the closed form is  separated from the open form by  a

large energy barrier, and, hence, is inaccessible to  the open form

without substrate binding (Daidone et al., 2004). Thus, the open

state predominantly determines the overall stability of  CS. Unfor-

tunately, melting temperatures (Tm) were not  available for all five

CSs, and, hence, the Tog of their source organisms were used as a

descriptor of thermostability to which Tp predictions by CNA will be
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Fig. 2. Rigidity percolation of a  TtCS 75 structure monitored by an H  versus T

plot  (continuous line). Rigid clusters just before (a  and c)  and after (b and d) the

two-phase  transitions and at  a  temperature of 420 K (e) have been depicted as uni-

formly colored bodies. The  blue body represents the largest (“giant”) cluster. The

folded–unfolded transition (Tp)  is  identified by the inflection point of  the second

sigmoid (broken line) on the temperature axis.

compared. Optimal growth temperatures have previously been

used in studies comparing meso- and thermophilic proteins

(Gromiha et al., 1999; Radestock and Gohlke, 2008, 2011). CSs are

almost entirely �-helical with the PigCS 37 containing 20 �-helices,

four more than any other CS. The dimer interface of all CSs primar-

ily consists of an eight-fold �-helical sandwich composed of four

antiparallel pairs of helices (F, G, M  and L). Additionally, N- and

C-termini make interactions with the respective other monomer

(Fig. 1). The CS structures (except TsCS 59, which is a homology

model) have a resolution in the range of 1.60–2.70 Å.  All CSs used

in this study are structurally very similar as shown by C� atom

root mean-square deviations of 1.22–2.32 Å.  The pairwise sequence

identities lie between ∼20 and ∼60%.

3.2. Loss of rigidity percolation in CS structures upon thermal

unfolding

In  general, the loss of rigidity in  proteins appears as  multiple

phase transitions on going from a  folded to  an unfolded state, owing

to the modular architecture of protein structures. For most con-

formations of CSs, two  prominent transitions are observed in  the

plot of H versus T  (Fig. 2). The first transition corresponds to the

appearance of a rigid core formed by helices G, I, L, M,  S and loops

connecting these (which are all part of the large sub-domain) from

both monomers (RCD (b) in Fig. 2), originating from an almost rigid

network (RCD (a) in  Fig. 2). This rigid core across the dimer interface

suggests strong interactions at the interface. Active site residues

from the large sub-domain are also part of this rigid core. This par-

ticular transition is  not relevant here because the protein network

after the transition still reflects a structurally stable protein, not

an unfolded one. The second transition involves a  breakdown of

this rigid core (RCD (c) in  Fig. 2) into many smaller rigid clusters

and flexible links in between (RCD (d) in Fig. 2) so that now the

rigidity across the interface is lost and no folding core is left. After

this transition, the network becomes largely flexible. Thus, this sec-

ond transition is the relevant one with respect to going from a

Fig. 3.  Correlation between Tp and Tog .  Tp values obtained with TUS1 are marked by

empty squares whereas filled squares denote Tp values obtained with TUS2. Error

bars represent the standard error in the mean. Least squares fit lines have been

drawn  for both the correlations.

structurally stable, folded state of the protein to an unfolded one, so

that the temperature Tp associated with it relates to the experimen-

tal Tm and indicates the thermostability of the protein (Radestock

and Gohlke, 2008, 2011). Finally, at a very high temperature, the

network becomes fully flexible (RCD e) in Fig. 2.

3.3. Macroscopic analysis of constraint networks: thermostability

prediction

From the TUS, the thermostability for all CSs was predicted

according to the computed Tp values, which are ensemble aver-

ages over 200 conformations per CS  structure. When correlated to

Tog values, no significant correlation (R2 =  0.27, p  =  0.374) was  found

if the thermal unfolding simulation type TUS1 was  applied (Fig. 3).

An even worse correlation (R2 = 3 × 10−5,  p = 0.992) was obtained if

only the single X-ray structures (or the homology model in the case

of TaCS 59) were used instead of the ensembles of structures. The

absolute values of predicted Tp were lower in  comparison to  Tog

with a  slope of  0.12 for five CSs analyzed. In particular, the phase

transition temperatures of  the hyperthermophilic CSs, SsCS 87 and

PaCS 100, were predicted too low when compared to  the respec-

tive Tog,  whereas TtCS 59  was predicted as the most stable CS. A

reason for this may  be that the Tp rely on the empirical relationship

between E and T  given in  Section 2. This relationship has been deter-

mined for a  dataset of orthologous meso- and thermophilic protein

pairs with Tog in the range of 30–83 ◦C. The deviation indicates that

a system-specific reparametrization might be necessary here. Note

however, that our primary goal here is to predict a  correct rank

ordering of the CS structures according to  their thermostabilities.

Initially, we examined the first transition points on the H vs. T

curves (Fig. 2) for all CSs to see if these provide a  better correla-

tion with Tog than the Tp values (obtained for the last transition).

No significant improvement of the correlation was  found, however

(data not shown). Then, we  anticipated that the misprediction may

arise from neglecting the effect of temperature on the strength of

hydrophobic contacts in  the constraint network model underly-

ing TUS1. While this model has worked well for predicting relative

thermostabilities for pairs of meso- and thermophilic proteins

(Radestock and Gohlke, 2008, 2011), we note that in neither of

these studies proteins with a Tm or Tog as high as 100 ◦C were

included, nor were differences in  the thermostability as large as
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Fig. 4. Mapping  of predicted weak spots on  CS structures using  a color  range from red (highest ranking weak  spot) to blue (lowest ranking  weak spot). Weak  spots for four

CSs  are presented: PigCS  37  (a), TaCS 59 (b), TtCS 75 (c), and  SsCS 87 (d).

63 ◦C considered, in contrast to the present study. Notably, the con-

tribution of hydrophobic interactions to the free energy of protein

folding increases with increasing temperatures (Privalov and Gill,

1988). Accordingly, we  have devised a new constraint network rep-

resentation for thermal unfolding simulations, which now takes

into account the strengthening of  hydrophobic contacts in  that the

number of these contacts linearly increases with temperature (see

Section 2).

Thermal unfolding simulations of type TUS2 on single X-ray

structures (or the homology model in the case of  TaCS 59) of

CS still resulted in an insignificant correlation between Tp and

Tog (R2 = 0.35, p = 0.295). However, the thermostability prediction

for the CS structures improves considerably when applying TUS2

to ensembles of CS structures: the Tp for SsCS 87 and PaCS 100

increase by ∼24 ◦C, whereas the Tp for the three  less stable CS

(PigCS 37, TaCS 49 and TtCS 75) increase by  only ∼15 ◦C on aver-

age. This results in a  significant and very good correlation with

respect to experimental Tog (R2 = 0.88, p =  0.017) (Fig. 3). The abso-

lute values of predicted Tp were higher than Tog for PigCS 37,

TaCS 59, and TsCS 75, indicating that an estimate of absolute Tp

might need to consider both Ecut,hb and Dcut,hp (rather than rely on

Ecut,hb only as in the present empirical relationship). However, it

is more important for this study that the order of  thermostability

was correctly predicted except for TtCS 75  and SsCS 87, the Tp of

which were computed to  be roughly equal. Notably, the analysis

of the constraint networks at a macroscopic level already suggests

that the hyperthermophilic CS adapt to  high temperature by incor-

porating more hydrophobic contacts, that way rigidifying their

structures. Indeed, the constraint network of PaCS 100 contains,

as an average over 200 conformations, 437 hydrophobic contacts

at Dcut,hp = 0.25 Å, which are at least 20 (∼5%) more than in  any other

CS constraint network.

3.4.  Microscopic analysis of constraint networks: weak spot

prediction

Once the biologically relevant folded-unfolded transition is

identified, structurally weak regions can be located in the protein

structures. The weak spots are identified as those residues for which

C� atoms are part of the giant cluster before the transition but are in

a flexible region afterwards. The weak spots are ranked according

to  their frequency of occurrence throughout the structural ensem-

ble of the CS. Thus, higher ranked weak spots occur more often

and, hence, should be primarily considered as  sites for performing

(saturation) mutagenesis in order to  generate a  more thermostable

variant of the protein.

Weak  spots for four of the CS structures for which a  correspond-

ing more thermostable CS was analyzed are shown in Fig. 4.  The

weak spots of PigCS 37 and TaCS 59 are  found in  similar regions

of the structures, i.e., the structurally weakest regions are  found

in both cases on the helixes I and S, which are located directly

below helices L, M,  G and F at the dimer interface (Fig. 4a and b).

Note that the weak spot locations do not necessarily mean that

helices themselves weakened upon temperature increase; rather

(tertiary) interactions with surrounding helices were broken at Tp,

which causes the decay of the giant cluster. The finding of  weak

spots in  similar regions supports the principle of “correspond-

ing states” (Jaenicke and Böhm, 1998; Somero, 1978) according to

which homologs from mesophilic and thermophilic organisms are

in corresponding states of similar rigidity and flexibility at their

respective optimal temperatures. Additionally, TaCS 59 has a  few

prominent weak spots on the interfacial helix L (Fig. 4b). However,

in general, the other interfacial helices are  more rigid than other

structural parts in these two  structures. Surprisingly, weak spots of

TtCS 75 predominantly lie on the helices G, L, and M at the dimer

interface (Fig. 4c) rather than within the monomers as found for

PigCS 37 and TaCS 59; these interface regions have been reinforced

in ScCS 87 by incorporating, on average, four additional hydropho-

bic contacts. Finally, a loop K–L is  predicted to be the weakest part

in SsCS 87  apart from residues on helix R  (Fig. 4d). Thus, the spatial

Fig. 5. Weak spot mutation ratios for PigCS 37 vs. TaCS  59 (a), TaCS  59 vs.  TtCS 75

(b), TtCS  75  vs. SsCS 87 (c), and  SsCS 87 vs. PaCS  100  (d).



Publicaion II 
 

 
98 

  

P.C. Rathi et al. /  Journal of  Biotechnology 159 (2012) 135– 144 141

Fig. 6. Top ranking weak spots in a  less stable (green) CS are compared with mutated residues in a  more stable CS (yellow) for PigCS 37 vs. TaCS 59 (a and b), TaCS 59 vs.

TtCS 75 (c), and TtCS 75  vs. SsCS 87 (d). Hydrogen bonds are represented as red lines whereas hydrophobic contacts are represented with blue lines.

distribution of weak spots in SsCS 87 resembles those in  PigCS 37

and TaCs 59 in that the interface is  stable whereas weak spots are

predominantly found on helices within the monomers.

3.5. Validation of weak spot predictions by analyzing sequence

information on stepwise CS thermal adaptation

To validate the weak spot predictions by CNA and to trace the

stepwise thermal adaptation in  the series of CS structures, the

sequence of a less stable CS is  compared to that of the next more

stable CS (i.e., PigCS 37  vs. TaCS 59, TaCS 59  vs. TtCS 75, TtCS 75

vs. SsCS 87, and SsCS 87 vs. PaCS 100) with respect to whether

residues  in weak spots are more frequently mutated than others.

For this, the pairwise sequence alignments were extracted from a

multiple sequence alignment of 549  CS  sequences. For each weak

spot rank, a cumulative weak spot mutation ratio WSMRr (see Sec-

tion 2.6) was  computed. WSMRr > 1  shows that, for weak spots up

to rank r, residues in  these weak spots are more frequently mutated

on going from the less thermostable to the more thermostable pro-

tein compared to the average mutation rate for this pair of proteins.

Phrased differently, WSMRr >  1 means that CNA successfully identi-

fied those (structurally weak) parts of CS  where (thermostabilizing)

mutations occur more preferentially. This ratio has been plotted

against the number of top ranked weak spots in Fig. 5.
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Remarkably, WSMR  for the top 9  weak spot ranks (∼5% of the

total number of residues) are consistently larger than 1 for all con-

secutive CS pairs except SsCS 87 vs. PaCS 100 (Fig. 5), with average

WSMR values over the top 9 weak spots ranks of 1.71 (PigCS 37

vs. TaCS 59), 1.30 (TaCS 59 vs. TtCS 75), 2.07 (TtCS 75 vs. SsCS 87),

and 0.62 (ScCS 87 vs. PaCS 100). This observation has an important

implication for applying CNA in data-driven protein engineering:

It suggests for the first three pairs that if only the top 9 weak

spots had been considered for (saturation) mutagenesis in a  less

stable CS, those residues would have been preferentially picked

that also show an above-average mutation rate in  the correspond-

ing, more thermostable CS  found in nature. As these weak spots

comprise at most 5% of the CS  residues, restricting mutations to

weak spots apparently leads to focusing on those residues that

have a high propensity to improve thermostability upon mutation.

For PaCS 100, a rare mechanism of thermostabilization has been

reported where a strategically placed disulfide bond within each CS

monomer results in a topological cross-link of the two chains. This

abrogates the separability of the chains and so leads to an increase

in the thermostability (Boutz et  al., 2007). It may  thus come as no

surprise that WSMRr > 1 is  only found for a  few (r =  3) weak spots in

the case of the SsCS 87  vs. PaCS 100 pair (Fig. 5).

3.6. Validation of weak spot prediction considering sequence

conservation across multiple sequences

For further verification of the weak spot predictions, we  ana-

lyzed the complete multiple sequence alignment based on the

following account: The finding that a  residue in a  weak spot of a less

stable CS is mutated in a  more stable CS is  all the more significant

the higher the degree of sequence conservation for this residue is at

this position across the multiple sequence alignment. The sequence

conservation was calculated in  terms of a  relative entropy (see Sec-

tion 2.7). We  considered a  residue highly conserved at its position

if the value of D is greater than 1.0 in  the multiple sequence align-

ment, which corresponds to a frequency of occurrence of >40% for

the least frequent amino acid Trp and to a frequency of occurrence

of >65% for the most frequent amino acid Ala. Indeed, residues in

such weak spots that showed a  high degree of sequence conser-

vation are predicted at high ranks, i.e., at ranks 1,  2,  4, and 7 for

PigCS 37, at ranks 1, 3,  6, and 10 for TaCS 59 and at ranks 1, 12, and

18 for TtCS 75. For SsCS 87, such weak spots are still found at ranks

9, 13, and 19. Identifying such generally conserved amino acids as

weak spots that are then mutated in a more thermostable CS is sig-

nificant in that such positions constitute <4% of the total number of

residues of CS. Thus, these identified weak spots at highly conserved

sequence positions do  strongly affirm the predictive power of CNA.

Furthermore, as it would be difficult to  identify such positions from

sequence information alone, this demonstrates the added value of

applying a structure-based approach as done with CNA.

3.7. Structural basis of weak spot reinforcement

Finally, we analyzed in  atomic detail by what mechanisms weak

spots are reinforced in  more thermostable CS. This was  done for

those pairs of structures for which the prediction of weak spots

was successful, i.e., where WSMR  >  1.0 was found for weak spots on

high ranks. For the analysis, interactions of weak spot residues in

the less stable CS were compared to  interactions of the residue at

the same positions in  the corresponding, more stable CS.

In  the case of PigCS 37 vs. TaCS 59, a  better hydrogen bond-

ing network and the formation of an aromatic cluster contribute

to the higher thermostability. As such, residue Lys181 (helix I)  in

PigCS 37, which is highly conserved (D = 1.87) and predicted to  be in

a weak spot of rank two, has only one hydrogen bond with Arg117

(loop E–F) (besides one additional hydrogen bond within its own

helix).  In contrast, Arg130 at the same position in TaCS 59 forms a

hydrogen bond with Tyr207 (helix M)  and another one with Glu110

(loop G–I) (Fig. 6a), that way  connecting two parts of the structure

that are topologically distant. As another pronounced mutation,

Gly218 (loop J–K) in  PigCS 37, predicted to be in  a  weak spot of

rank two, is replaced by Phe165 in TaCS 59. The side chain of the

latter engages in  the formation of an aromatic cluster (Fig. 6b).

The formation of such aromatic clusters has been described to

be among the major factors that lead to  higher thermostability

(Kannan and Vishveshwara, 2000; Puchkaev et al., 2003). In the

case of TaCS 59 vs. TtCS 75,  residue Gln349 (helix S) in TtCS 75 is

involved in a hydrogen bond with Arg114 (helix I),  whereas no such

interaction is found for the corresponding Val356 in TaCS 59, pre-

dicted to  be in  a weak spot of rank three (Fig. 6c). Additionally,

a highly conserved residue Thr21 (D  =  1.69) in  TaCS 59 predicted

at weak spot rank three is mutated into Cys in  TtCS 75, which is

tightly packed to  neighboring carbon atoms to  form hydropho-

bic contacts. Finally, the top ranking weak spots in  TtCS 75 are

predicted to  be  at the dimer interface. Accordingly, six interfacial

hydrophobic contacts have been identified in  SsCS 87, in contrast

to only two hydrophobic contacts in  TtCS 75  (Fig. 6d). Notably, the

highly conserved residues Met92 (D =  3.37) and Val99 (D  =  1.10) in

the interfacial helix cluster of  TtCS 75 are mutated in SsCS 87. The

higher degree of hydrophobicity at the SsCS 87  dimer interface has

also been reported in a  comparison of five CSs by Bell et al. (2002).

The latter finding, based on analyzing microscopic properties in

the constraint networks, points again to an increased number of

hydrophobic contacts as a  mechanism of hyperthermophilic CSs to

maintain their structural rigidity at high temperature; this is similar

to the above finding, based on analyzing macroscopic properties in

terms of phase transitions, according to which appropriate Tp could

only be predicted after strengthening hydrophobic contacts at high

temperature.

4. Conclusions

In  this study, we have analyzed and compared the stepwise ther-

mal adaptation of CSs from five different organisms with Tog from

37 ◦C to 100 ◦C using the graph theory-based Constraint Network

Analysis (CNA). In this way, the present study extends our previous

studies (Radestock and Gohlke, 2008, 2011) wherein only pair-wise

comparisons between orthologous proteins from a mesophilic and

a thermophilic organism were performed. From a methodological

point of  view, CNA is  advanced in  that now multiple conforma-

tions of a  protein (generated from MD  simulations, but they could

also be  taken from an  experimental source) are analyzed in  order

to circumvent the problem of sensitivity of  CNA on the quality of

the input structure. Indeed, this procedure allowed applying CNA

to a  homology model of TaCS 59 and correctly predicting its ther-

mostability along with four other CSs. A further methodological

advancement in CNA has been to model the effect of temperature

on hydrophobic interactions during TUS, which helped correctly

predicting the thermostability of (hyper)thermophilic CSs.

CNA  correctly predicted the thermostability of five CSs with a

correlation of R2 =  0.88 between Tp and Tog.  Most significantly, for

the first time, we have analyzed weak spots predicted by  CNA with

respect to the mutation ratio at these locations on going from a less

thermostable to a more thermostable CS. We  have also analyzed the

weak spots with respect to their degree of conservation in  a multi-

ple sequence alignment. Remarkably, weak spots predicted by CNA

for a less stable CS were found to be indeed more often mutated in

a more stable CS in three out of four cases. Even more convincingly,

weak spots at very high ranks and that are highly conserved were

nevertheless mutated in the more stable CS. These predictions ren-

der CNA a useful pre-filter in protein engineering projects that aim
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at developing thermostable mutants because that way  the number

of residues where mutations should be  preferentially introduced

can be significantly (to just ∼5% of the total number of  residues in

the case of CS) reduced. Hence, even suggestions for multiple muta-

tions are in place because the number of possible combinations

still remains small that way. Finally, the present study elucidates

mechanisms at an atomic level that lead to  a  reinforcement of weak

spots in more stable CS  and, hence, to improved thermostability.

As such, we observed that the thermophililic CSs achieve a  higher

thermostability by better hydrogen bonding networks whereas

hyperthermophilic CSs incorporate more hydrophobic contacts to

reach the same goal.

As for shortcomings of our  method, we  note that a structure of

high quality is a prerequisite for a  meaningful analysis although the

ensemble approach introduced here alleviates this to a large extent.

Another limitation lies in the fact that all hydrogen bonds remove

the same number of  degrees of freedom from the network, irrespec-

tive of their strength, and so do the hydrophobic contacts. Refining

the constraint network in  terms of constraints with varying influ-

ence on the structural flexibility/rigidity will likely be a valuable

goal to pursue. As yet another limitation, extrinsic factors like glyco-

sylation, salt concentration, pressure effects, and solvent viscosity,

which may  influence the thermostability of a  protein, are not con-

sidered in CNA. Finally, CNA does not  yet predict actual amino acid

substitutions at  the weak spots that would improve the thermosta-

bility. Despite all this, we are convinced that being able to identify

weak spots in proteins of low thermostability already makes CNA

a valuable method for prospective studies that  aim at improving

the thermostability of a  protein by  means of data-driven protein

engineering.
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ABSTRACT: For deriving maximal advantage from information on
biomacromolecular flexibility and rigidity, results from rigidity analyses
must be linked to biologically relevant characteristics of a structure. Here,
we describe the Python-based software package Constraint Network
Analysis (CNA) developed for this task. CNA functions as a front- and
backend to the graph-based rigidity analysis software FIRST. CNA goes
beyond the mere identification of flexible and rigid regions in a
biomacromolecule in that it (I) provides a refined modeling of thermal
unfolding simulations that also considers the temperature-dependence of
hydrophobic tethers, (II) allows performing rigidity analyses on ensembles
of network topologies, either generated from structural ensembles or by
using the concept of fuzzy noncovalent constraints, and (III) computes a
set of global and local indices for quantifying biomacromolecular stability.
This leads to more robust results from rigidity analyses and extends the application domain of rigidity analyses in that phase
transition points (“melting points”) and unfolding nuclei (“structural weak spots”) are determined automatically. Furthermore,
CNA robustly handles small-molecule ligands in general. Such advancements are important for applying rigidity analysis to data-
driven protein engineering and for estimating the influence of ligand molecules on biomacromolecular stability. CNA maintains
the efficiency of FIRST such that the analysis of a single protein structure takes a few seconds for systems of several hundred
residues on a single core. These features make CNA an interesting tool for linking biomacromolecular structure, flexibility,
(thermo-)stability, and function. CNA is available from http://cpclab.uni-duesseldorf.de/software for nonprofit organizations.

■ INTRODUCTION

The concepts of biomacromolecular flexibility and its opposite,
rigidity, are crucial for understanding the relationship between
biomacromolecular structure, (thermo-)stability, and function.
In the field of statics, flexibility and rigidity denote the
possibility (or impossibility) of internal motion but are not
associated with information about directions and magnitudes of
movements. Identifying and modulating the heterogeneous
composition of biomacromolecules in terms of flexible and rigid
regions is becoming increasingly important for successful
protein engineering and rational drug-design.1−5 Several
computational approaches have been developed that identify
flexible and rigid regions by either determining spatial variations
in the local packing density6 or representing and analyzing a
structure as a connectivity network of interacting atoms or
residues.7−12 The approaches benefit from being computation-
ally highly efficient. A related concept has been introduced by
Jacobs et al.13 Here, biomacromolecules were initially
represented as bond-bending networks in which each atom
has three degrees of freedom representing the dimensions of
motion in 3-space. In later versions, the equivalent body-bar
representation is used where atoms are modeled as bodies with
six degrees of freedom.13−15 By adding constraints (represent-
ing covalent and noncovalent bonds in a biomacromolecular

context) between the bodies, internal motions become
restricted. Each constraint is modeled as a set of bars, and
each bar removes one degree of freedom. According to the type
of interaction, the number of bars varies in that stronger
interactions are modeled with a higher number of bars than
weaker ones. Noncovalent interactions such as hydrogen bonds,
salt bridges, hydrophobic tethers, and stacking interactions
contribute most to the biomacromolecular stability; hence,
these interactions are modeled as constraints in addition to
covalent bonds. Once the network is constructed, the Pebble
Game algorithm, available within the FIRST (Floppy Inclusions
and Rigid Substructure Topography) software, efficiently
decomposes the network into rigid clusters and flexible hinge
regions from the number and spatial distribution of bond-
rotational degrees of freedom.16,17 A rigid region is a collection
of interlocked bonds allowing no relative motion of the bodies.
Such a region can either be overconstrained, if it has redundant
constraints, or is isostatically rigid. In a flexible region, dihedral
rotation is not locked in by other bonds. The theory underlying
this approach is rigorous18 and has been applied in different
areas of biomacromolecular research.5,19−35
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We developed the command-line Python-based software
package Constraint Network Analysis (CNA) for analyzing
structural features of biomacromolecules that are important for
the molecule’s stability. CNA functions as a front- and backend
to the FIRST software and allows (I) setting up a variety of
constraint network representations for analysis by FIRST, (II)
processing the results obtained from FIRST, and (III)
calculating seven indices for quantifying biomacromolecular
stability, both globally and locally.36 As to the latter, the indices
are calculated by monitoring changes of the network stability
along a thermal unfolding simulation. The thermal unfolding is
simulated by consecutively removing hydrogen bond (including
salt bridge) constraints from the network with increasing
temperature. Thermal unfolding simulations have been
successfully applied in several studies on proteins, RNAs, and
the ribosome in order to understand how flexibility and rigidity
is linked to biomacromolecular stability and func-
tion.4,5,14,19,28,31,34,35,37

CNA goes beyond the mere identification of flexible and
rigid regions in a biomacromolecular structure in that it allows
linking results from constraint network analysis to biologically
relevant characteristics of a structure. This is key for deriving
maximal advantage from information on biomacromolecular
flexibility and rigidity. Here, we describe the design and
implementation of the CNA software package. We then
demonstrate its application scope in a showcase example on
Hen Egg White Lysozyme (HEWL) structures. The CNA
software package is available under an academic license from
http://cpclab.uni-duesseldorf.de/software.

■ METHODS AND IMPLEMENTATION
General Overview. The CNA software package allows

three different types of rigidity analysis: (I) based on a single
network topology generated from a single input structure, (II)
based on an ensemble of network topologies generated from a
conformational ensemble provided as input,21,35 and (III) based
on an ensemble of network topologies generated from a single
input structure by considering fuzzy noncovalent constraints
(FNC) (C. Pfleger, H. Gohlke, to be published elsewhere). The
last variant mimics that noncovalent constraints thermally break
and reform even in the native state of a biomacromolecule.38 In
short, we developed a system-independent parametrization of
fuzzy noncovalent constraints by analyzing the atom type and
location-dependent persistence characteristics of noncovalent
constraints (hydrogen bonds, salt-bridges, and hydrophobic
tethers) during MD simulations. With this, the number and
distribution of noncovalent constraints are modulated by
random components within certain ranges, simulating thermal
fluctuations of a biomacromolecule without actually moving
atoms. In the related distance constraint model (DCM),
ensembles of network topologies are generated considering
mean-field probabilities of hydrogen bond and torsion
constraints in a Monte Carlo sampling.20,39 Average stability
characteristics are then calculated by constraint counting on
each topology in the ensemble.40 As a downside, the DCM
approach requires experimental data for a system-specific
parametrization of the model.
The analysis of a single network topology by CNA consists of

the following steps. Initially, a constraint network is generated
from the input structure by placing covalent and noncovalent
constraints according to rules described in refs 13−15. Next, a
thermal unfolding simulation is carried out by sequentially
removing noncovalent constraints from the network (see

section Thermal Unfolding Simulation for details). For each
network during the simulation, a rigidity analysis by FIRST is
performed and then post-processed to calculate global and local
indices to characterize biomacromolecular flexibility and
rigidity. The workflow of the software is illustrated in Figure
1. In the case of analyzing an ensemble of network topologies,
these steps are repeated for each network, and the results are
averaged over the ensemble.

Upon running a thermal unfolding simulation (a) phase
transition(s) can be identified at which the network changes
from mainly rigid to flexible. For this, the change in the global
indices is monitored during the simulation. Four different
global indices are implemented in CNA. They monitor (I) the
normalized number of independent internal degrees of freedom
(floppy mode density, Φ), (II) the fraction of the network
belonging to a rigid component (rigidity order parameter, P∞),
(III) the degree of disorder in the network (cluster
configuration entropy, H), and the rigid cluster size distribution
(mean rigid cluster size, S). In addition, CNA calculates three
local indices that characterize the flexibility and rigidity at the
bond level: (I) the percolation index pi monitors the
percolation behavior of a biomacromolecule on a microscopic
level and thus allows the identification of the hierarchical
organization of the giant percolating cluster during a thermal
unfolding simulation, (II) the rigidity index ri monitors when a
bond segregates from a rigid cluster, (III) a stability map is a
two-dimensional itemization of the rigidity index ri and is
derived by identifying “rigid contacts” between two residues.
Exact definitions of these indices and guidelines for when to use
them are given in ref 36. Furthermore, the CNA software
identifies unfolding nuclei, i.e., those residues that break apart
from the giant cluster at the phase transition point.4,28,35 The
unfolding nuclei can be considered weak spots in the structure;
accordingly, this knowledge can be exploited in data-driven
protein engineering to focus on residues that are highly likely to
improve thermostability upon mutation.

Figure 1. Schematic workflow of the CNA software.
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CNA is implemented as a Python-based software package
making use of an object-oriented design (Figure 2). Third party
software is required for full functionality (Table 1): (I) The

Biopython package41 is needed to parse input PDB files and
provides information on secondary structure from a DSSP
analysis.42,43 (II) For statistical analysis and detecting the phase
transitions, the Numpy44 and SciPy45 extensions for Python are
required. (III) The Open Babel46,47 Python-bindings are
required to determine the bond order of small-molecule
ligands. To facilitate the installation of the CNA software
package, the third party software is provided with the CNA
source tree except for the DSSP program, which is available at
http://swift.cmbi.ru.nl/gv/dssp/. The CNA source tree also
contains a comprehensive documentation detailing the
installation and usage of the software and a suite of test cases
to check the validity of the installation. CNA is a command-line
based software that is called by the shell script CNA.sh. A
“--help” argument lists all available options and required
arguments, their descriptions, default values, and the range of
allowed values. An erroneous argument set for an option
produces an informative error message. The CNA software has

been successfully tested on Debian, OpenSuse, and CentOS
Linux platforms.

Constraint Network Analysis Is the Core Module. The
CNAnalysis module is the core of the CNA software. The
CNAnalysis module consists of a single class ConstraintNet-
workAnalysis. Upon creating an instance of the type
ConstraintNetworkAnalysis, it (I) parses the command line
options that specify the analysis type, (II) checks whether the
values of the command line arguments conform to the desired
data-type, and (III) performs the requested analysis. Depending
on the type of analysis, the ConstraintNetworkAnalysis instance
creates an instance of the class Dilution if the analysis of a single
network topology is requested. Otherwise, it creates an instance
of the class Fnc or Ensemble, which then creates instances of
the class Dilution for each network of the ensemble. The
command line options provided by the user are checked for
validity by the module Parameter; this module also contains
default values for the options and internal constants.

PyFIRST as an Interface. We developed the pyFIRST
interface module to directly access the functionality of the
FIRST software (available at http://flexweb.asu.edu) within the
Python environment of CNA. The interface module was
implemented using the SWIG (Simplified Wrapper and
Interface Generator) software tool (http://www.swig.org/).48

SWIG automatically generates a wrapper code for C/C++
programs that then acts as an interface for other high level
programming languages such as Python. The SWIG interface
file is written in C++ and contains a single class pyFIRST. The
class contains methods that are later on accessible within the
Python environment of CNA. Upon instantiating a pyFIRST
object, a data structure is generated that represents the
constraint network topology of the input structure. Addition-
ally, the pyFIRST object provides methods that are used to (I)
read constraint information (covalent bonds, hydrogen bonds,
salt bridges, hydrophobic tethers, and stacking interactions)
from the network topology, (II) remove constraints from the
network with respect to all or a certain type of constraints, and

Figure 2. Hierarchical structure of the CNA software. All modules that contain (a) class definition(s) are shown in rectangles. The core module
CNAnalysis is highlighted by a bold frame. Modules colored in gray contain the simulation methods for analyzing a single network topology and an
ensemble of network topologies. Modules that solely contain methods are shown as ellipses. An arrow indicates the call of a module by another
module.

Table 1. External Software Needed by the CNA Software

name version description and use

Python 2.73 Python interpreter used by the CNA software
package

Biopython 1.58 for reading PDB files using the Bio.PDB package and
parsing results from the DSSP program using the
Bio.DSSP package

NumPy 1.6.1 for statistical analyses
SciPy 0.11.0 for statistical analyses

Open Babel 2.3.1 for identifying the connectivity and bond orders of
ligand molecules

DSSP for computing secondary structure information that
is required by the FNC approach

SWIG 2.0.8 for compiling the pyFIRST interface module
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(III) perform a rigid cluster decomposition. Finally, methods
are available that return warnings issued by FIRST when
initializing the data structure for the constraint network
topology. Note that the pyFIRST interface module has been
written such that it can be used in any other Python-based
application requiring a rigidity analysis by FIRST, thus
providing a general Python interface to FIRST.
Structural Information as Input. Single or multiple (in

case of a conformational ensemble) input structures for CNA
must be in PDB format.49 Although the validity of the input
structure(s) is checked upon creating an instance of the class
PDB, we recommend subjecting only complete structures
without missing residues or atoms. Hydrogen atoms must be
present, too, because otherwise the identification of hydrogen
bond and salt bridge constraints cannot be performed. Ligand
molecules, if present, are extracted from the input structure
and, subsequently, analyzed to determine the bond order by
means of Open Babel.46,47 The last step requires the presence
of hydrogen atoms at the ligand. All identified rotatable bonds
(single bonds) are then modeled by five bars, whereas
nonrotatable bonds (double, triple, amide, and aromatic
bonds) are modeled by six bars.15 Finally, the covalent
constraint information for the ligand is merged with the
covalent and noncovalent constraint network of the bio-
macromolecule also generating noncovalent constraints be-
tween them. Ions, water, and buffer molecules are handled by
FIRST. If an NMR structure is used as input, only the first
model is considered. Furthermore, Amber-conform residue
names (HIE, HID, HIP, and CYX) are replaced by standard
residue names (HIS and CYS) in order to allow the use of PDB
structures extracted from molecular dynamics (MD) trajecto-
ries created by the Amber software.50 In the case of a
conformational ensemble, a PDB object is instantiated for each
conformation. Apart from checking the validity of and
preparing the input structure, the PDB class provides several
functions that can be used to work with the structure in terms
of getting single atom and residue objects, finding neighbor
residues within a certain distance cutoff, and writing out
structures (including biomacromolecules and ligand molecules)
in the PDB format.
Accessing the Network Topology. The output_network

and input_network modules of CNA contain the OutputNet-
work and InputNetwork class definitions. Upon instantiating an
object, these classes are used to write and read the constraint
network topology of a single structure or of each conformation
of an ensemble. This is particularly useful for adding user-
defined constraints that are not identified automatically, for
example, constraints between ions and protein atoms. In the file
containing the constraint network topology, each entry of a
covalent constraint contains the identifiers of the involved
atoms and number of bars of the constraint. For constraints
representing hydrophobic or stacking interactions, in addition
to the atom identifiers, the distance between the atoms is given
plus an indicator whether the constraint occurs within a protein
or between protein and ligand. For hydrogen bond and salt
bridge constraints, the energy and type of interaction is written
instead of the distance and indicator. This file can be modified
and used as input for CNA again. In this case, user-defined
constraints will overwrite constraint information identified from
the input structure(s).
Thermal Unfolding Simulation. The thermal unfolding

simulation allows analyzing changes in the network stability
upon removing hydrogen bond (including salt bridge)

constraints from the network.4,14,28 To do so, the energy of a
hydrogen bond EHB is determined by an empirical energy
function.51 Then, during the thermal unfolding simulation,4,28

intermediate networks σ are created such that hydrogen bonds
with an energy EHB > Ecut(σ) are removed from the network.51

This follows the idea that stronger hydrogen bonds will break at
higher temperatures than weaker ones. By means of an
empirically determined linear function, Ecut can be related to
a temperature T.28

Consequently, the simulation mimics a rise in the temper-
ature by analyzing a range of networks having many hydrogen
bonds (equivalent to low temperatures) to having few
hydrogen bonds (equivalent to high temperatures). Note that
the temperatures should be considered relative values only
because the absolute values may depend on the size and
architecture of the analyzed protein.4 Still, the temperatures are
very helpful, for example, when it comes to comparing the
thermostability of two or more homologous proteins or the
stability of a wild-type with its mutant.4,28,35 An alternative
concept grounded in mean-field theory directly connects
network rigidity and absolute temperature; while appealing, it
requires experimental data for a system-specific parametriza-
tion.20,40 Each of the intermediate networks σ is then subjected
to rigidity analysis by FIRST. While the principal idea of the
thermal unfolding simulation has been adapted from the FIRST
software,13 the method implemented here allows for additional
settings that are not available in the FIRST implementation.
These include specifying the energy range and step-size for
removing hydrogen bonds. Furthermore, a modified method
has been implemented that also considers the temperature
dependence of hydrophobic tethers along the thermal
unfolding simulation.35 This approach follows the idea that
hydrophobic interactions become stronger with increasing
T.52,53 Accordingly, more hydrophobic tethers are added to the
network by linearly increasing the distance cutoff for including
hydrophobic tethers Dcut(σ) from a starting value of 0.25 Å at
300 K to an ending value of 0.40 Å at 420 K. Doing this has
been shown to improve thermostability predictions of citrate
synthases.35

The thermal unfolding simulation is done by the dilution
module containing the Dilution class. Upon instantiating an
object of this class, the object creates new intermediate
networks σ and passes the networks through FIRST by
instantiating a pyFirst object. Subsequently the module
networkAnalysis is used to calculate the global and local indices
(see section Analyzing the Results from the Rigidity Analysis).
Via the global indices, phase transition(s) are identified by an
object of the class Transitions. Finally, unfolding nuclei are
identified by an object of the class UnfoldingNuclei.

Analyzing the Results from the Rigidity Analysis. The
network_analysis module comprises in total four classes that
process the results from the FIRST rigidity analysis. The main
class NetworkAnalysis contains methods to calculate the size
and size distribution of rigid clusters and to identify the actual
largest rigid cluster as well as the giant percolating cluster of the
network. The giant percolating cluster is the largest rigid cluster
present at the highest Ecut value (i.e., at the lowest temperature)
with all constraints in place. During the thermal unfolding
simulation, the melting of the giant percolating cluster is
monitored, and the largest rigid subcluster of the previous giant
percolating cluster becomes the new giant percolating cluster of
the present network state σ. Subsequently, the NetworkAnalysis
object is passed to three classes for calculating the global and
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local indices called GlobalIndices, LocalIndices, and Local-
StabilityMaps.
The class GlobalIndices contains all methods that are

required to calculate the floppy mode density Φ, the rigidity
order parameter P∞, the cluster configuration entropy H, and
the mean rigid cluster size S.36 Apart from this, the class
GlobalIndices also instantiates objects of the classes Transitions
and UnfoldingNuclei that are required for the identification of
phase transition points and unfolding nuclei of the structure.
For identifying phase transition points, two methods have been
implemented that make use of the data of the global indices:
fitting of a mono/double sigmoid curve and interpolating with a
smoothed spline. By default, phase transition points are
identified by the double sigmoid curve.35 However, the user
can choose as an option that Akaike’s information criterion54 be
used to identify whether a mono or double sigmoid curve gives
better fitting results. Finally, if more than two phase transitions
are expected or shall be identified, interpolation with the
smoothed spline is recommended. Multiple transitions can
occur in multimeric proteins. The transition point is then
identified for each global index as the point at which the
maximal rigidity loss occurs in the structure. Occasionally, a
Transitions object does not return a transition point; this
occurs if no “sharp” transition can be detected or if multiple
transitions with comparable rigidity losses are present.
The class LocalIndices is used to calculate the percolation

index pi and the rigidity index ri. Both reflect structural stability
on a per-residue basis36 and, thus, can be used to identify the
location and distribution of structurally weak or strong parts in
biomacromolecules. Finally, the class LocalStabilityMaps is
used to calculate the two-dimensional itemization of the rigidity
index ri, the stability map, and a so-called “neighbor stability
map”, where values of the stability map of residue pairs
separated by more than 5 Å are masked. That way, the latter
map provides useful information about the stability of
neighboring residues only, which can be used for focusing on
short-range weak and strong connections within a biomacro-
molecule.
Writing the Analysis Results. The module output_results

is used to write results files containing information about global
and local indices, phase transition points, and unfolding nuclei.
For a phase transition point, the hydrogen bond energy cutoff
Ecut and the respective temperature are listed. Unfolding nuclei
are written out as a text file and PDB file; in the latter, the B-
factor column is used to record whether or not a residue is an
unfolding nucleus by setting the values to one or zero. If the
analysis is performed on an ensemble of network topologies, an
additional file summarizing the average local indices and
standard deviations is written. Similarly, for the phase transition
points, mean, median, and standard error are provided in
addition. Furthermore, the percentage of network topologies in
which a residue is predicted to be an unfolding nucleus is
recorded.
Showcase Example: Flexibility Characteristics of

HEWL. In a showcase example, we applied the CNA software
to a HEWL structure. We show the results for two analysis
types, analyzing a single network topology derived from a single
input structure (PDB ID: 3LZT) and analyzing an ensemble of
network topologies derived from a conformational ensemble.
The conformational ensemble was generated by extracting 1500
conformations from a trajectory of 300 ns length obtained by
MD simulations starting from an X-ray structure of HEWL
(PDB ID: 3LZT). The MD simulation was carried out in

explicit solvent at 300 K with the AMBER 11 package of
molecular simulation programs.50 The detailed simulation
protocol is described elsewhere (C. Pfleger, H. Gohlke, to be
published elsewhere). Water molecules were removed from
each conformation before the ensemble was subjected to CNA.
Analyzing a single network topology took about 40 s, and the
ensemble of 1500 conformations required ∼11 h on a single-
core workstation computer, which demonstrates the computa-
tional efficiency of CNA and FIRST.
Snapshots from the thermal unfolding simulation of the

single input structure are depicted in Figure 3. They show the

loss of rigidity in terms of the decay of rigid clusters with
increasing temperature. The first transition relates to the
beginning of the collapse of the giant rigid cluster, which occurs
in the interface region of the α- and β-domains. At this state,
the network is dominated by two large rigid components.
During the next transition, the rigid cluster covering the α-
domain collapses, and the helical elements remain as single
rigid clusters. Finally, during the last transition, the rigid cluster
covering the β-domain collapses, and nearly the whole system
becomes flexible. The results from the thermal unfolding
simulation agree, in reverse order, with the “fast track” folding
pathway described in refs 55 and 56. Here, both domains of
HEWL fold concurrently but with a slight preference to initially
form native contacts in the β-domain.57 Alternatively, a “slow
track” folding reaction of HEWL has been described,56,58,59 in
which the majority of the protein molecules populate an
intermediate state with persistent structures in only the α-
domain.57 Still, parts of the α-domain need to unfold again to
enable the subsequent folding of the β-domain.
As an example for a global index, the cluster configuration

entropy H is shown, which monitors the loss of network
stability during the thermal unfolding simulation. In the analysis
of the single network topology (Figure 4a), an early phase
transition at 319 K indicates the beginning decay of structural
stability, with most of the network still being captured in rigid
clusters. The dominant phase transition at 343 K then refers to
the point at which the network loses its ability to carry stress

Figure 3. Rigid cluster decompositions along the thermal unfolding
simulation of the showcase example HEWL. Rigid clusters are shown
as uniformly colored bodies connected by flexible hinge regions
(black). The roman numbers relate to three major steps of rigidity
loss.
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and, hence, corresponds to the folded−unfolded transition. The
last transition indicates the loss of the remaining rigid
components. In the case of analyzing the ensemble of network
topologies, the frequency distribution of the identified phase
transition points is shown (Figure 4b). From this, a median
transition temperature of 358 K is revealed, which is 15 K
higher than the dominant phase transition point identified from
analyzing a single network topology. Note that, in general,
phase transitions identified using a single input structure can be
different from ensemble results, as shown in a previous study
on citrate synthase.35 We thus recommend performing CNA
analyses on ensembles of network topologies, in particular,
when quantitative results are desired. At the transition point,
unfolding nuclei are identified (Figure 4c). Almost all unfolding
nuclei are located in the β-domain of HEWL, which
disintegrates at the dominant phase transition (Figures 3 and
4c). Furthermore, for the ensemble of network topologies, the
probability of a residue being found as an unfolding nucleus
over the entire ensemble is provided (Figure 4d). The higher
this probability the more likely will it be that rigidifying this
residue will improve protein stability. The ensemble results are
more detailed than the ones from the single structure in that
now unfolding nuclei are not only located in the β-domain but
also in helix B, which agrees with the view that this helix plays a
crucial role in stabilizing the tertiary structure of HEWL.60

As for local indices, we exemplary show the rigidity index ri,
which characterizes the stability of the HEWL structure down
to the bond level (Figure 5a, b). As such, ri monitors the point
when a residue segregates from a rigid cluster along the thermal
unfolding simulation: the lower ri the longer is a residue part of
a rigid cluster. Secondary structure elements are generally

found to be more stable than loop regions. Furthermore,
averaging ri values over the ensemble of network topologies
leads to a smoother ri curve and to the spike located at residue
78 becoming less pronounced than in the case of analyzing the
single network topology. The spike reveals a region that is
highly stabilized by hydrophobic interactions; these regions
only melt at a late stage of the thermal unfolding simulations.
Notably, the stable regions identified for residues 53 and 62−65
are in very good agreement with those identified by high
protection factors in H/D experiments for the native and
denatured states of HEWL.61 During the catalytic cycle, HEWL
undergoes a reorientation of the α- and β-domains due to a
bending movement around a central hinge region.62 Along
these lines, the identified flexible hinge regions (Figure 5a, b)
are in agreement with those suggested by McCammon et al.62

and coincide with results obtained from Gaussian network
models and MD simulations.60,63 Such a decomposition into
rigid clusters and flexible regions is used as a first step in a
normal mode-based geometric simulation approach (NMSim)
working on a coarse-grained protein representation.64 With
this, stereochemically and energetically favorable conformations
of HEWL were generated previously.64

As yet another local index, stability maps rcij are two-
dimensional itemizations of the ri and report when a “rigid
contact” between two residues of the network vanishes during
the thermal unfolding simulation. The upper triangles of Figure
5c and d show the stability maps for the single network
topology and the ensemble of network topologies, respectively.
Again, blocks of stable contacts are pronounced for secondary
structures elements. In contrast, very weak contacts are
identified for residues 81−87 that partially form a 310 helix.
This is in agreement with results from NMR experiments that
reveal a disordered structure of this region.65 The lower
triangles of Figure 5c and d show a modification of the stability
map that highlights solely those residue pairs with a “rigid
contact” where the residues are within a distance of 5 Å. This
map is referred to as “neighbor stability map”. Accordingly, a
rigid contact in such a map that melts early in the thermal
unfolding simulation is a prominent target for rigidification and,
hence, for improving protein stability.

■ CONCLUSIONS
In recent years, there has been encouraging progress in
characterizing the flexibility and rigidity of biomacromolecules
down to the residue level by graph theoretical approaches.
However, for deriving maximal advantage from information on
biomacromolecular flexibility and rigidity, results from rigidity
analyses must be linked to biologically relevant characteristics
of a structure, such as (thermo-)stability and function. This
provided the incentive for us to develop the CNA software
package presented here. CNA functions as a front- and backend
to the FIRST software and allows setting up a variety of
constraint network representations, processing the results
obtained from FIRST, and calculating global and local indices
for quantifying biomacromolecular stability.
Thus, while CNA relies on FIRST as a core engine, it goes

beyond the mere identification of flexible and rigid regions in a
biomacromolecular structure. Major advancements in that
respect include (I) a refined modeling of thermal unfolding
simulations that considers the temperature-dependence of
hydrophobic tethers, (II) the ability to perform rigidity analyses
on ensembles of network topologies, either generated from
structural ensembles provided as input or by using the concept

Figure 4. (a) Cluster configuration entropy H (type 2) derived from
the single network topology. The entropy is plotted as a function of
the temperature, and the roman numbers correspond to the three
major steps depicted in Figure 3. The phase transition automatically
identified by CNA is marked by the red vertical line. (b) Frequency
distribution of phase transitions identified from analyzing the
ensemble of network topologies. The median is marked with a red
vertical line. (c) Weak spot detection for the single network topology.
Green spheres highlight the identified weak spot residues in the
HEWL structure. (d) Weak spot detection over the ensemble of
network topologies. For depicting the probability of being a weak spot,
each residue is colored according to a color scale ranging from blue
(low probability) to red (high probability).
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of fuzzy noncovalent constraints, and (III) computing a set of
global and local indices for characterizing biomacromolecular
flexibility and rigidity, three of which have been introduced only
recently by us.36 The advancements allow (I) modeling in a
more detailed manner the thermal unfolding of biomacromo-
lecules, (II) obtaining more robust results from rigidity analyses
due to a reduced sensitivity to the structural input, and (III)
extending the application domain of rigidity analyses in that
phase transition points (“melting points”) and unfolding nuclei
(“structural weak spots”) are determined automatically. Such
advancements are important for data-driven protein engineer-
ing, for example, for identifying structural parts that influence
protein thermostability.28 Furthermore, CNA robustly handles
small-molecule ligands in general. This is important when it
comes to estimating the influence of ligands on biomacromo-
lecular stability, for example, for probing signal transmission
across a protein structure for understanding and predicting
“dynamic allostery”66 and in assessing (changes in) flexibility
characteristics of binding sites and interface regions.67 How
CNA can be applied in that respect has been demonstrated in a
showcase example on HEWL.
CNA maintains the efficiency of FIRST. This has been

achieved by linking CNA and FIRST via the pyFIRST interface
module, minimizing the I/O overhead. The analysis of a single

protein structure by CNA usually takes only a few seconds for
systems of several hundred residues on a single core. The
runtime for analyses of ensembles of network topologies, which
is in the order of hours currently, could be further reduced
given that processing individual members of such an ensemble
is trivially parallelizable. Finally, the hierarchical design of the
software makes CNA highly adaptable and extensible, for
example, by adding new index definitions.
Overall, we believe that these unique features make CNA an

interesting tool for linking biomacromolecular structure,
flexibility, (thermo-)stability, and function.
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Figure 5. (a) Rigidity index ri determined by analyzing the single network topology and (b) ensemble of network topologies plotted against a residue
identifier and color coded onto the structure (range of color code: red (flexible) to blue (rigid)). In addition, the plot in (b) shows the standard
deviation as a gray area. Blue rectangles and blue arrows in panels (a) and (b) highlight structurally stable regions for which high protection factors
have been determined by H/D experiments. Red rectangles and red arrows in panels (a) and (b) highlight structurally flexible regions that are
associated with hinge regions of HEWL. Stability maps (upper triangle) and neighbor stability maps (lower triangle) determined by analyzing the
single network topology (c) and the ensemble of network topologies (d). The color depicts how stably two residues are connected and ranges from
white (low stability) to blue (high stability). Red arrows highlight regions that reveal a disordered structure in NMR experiments. Gray areas in the
neighbor stability map are displayed when residues are more than 5 Å away from each other.
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ABSTRACT

The Constraint Network Analysis (CNA) web server
provides a user-friendly interface to the CNA
approach developed in our laboratory for linking
results from rigidity analyses to biologically
relevant characteristics of a biomolecular structure.
The CNA web server provides a refined modeling of
thermal unfolding simulations that considers the
temperature dependence of hydrophobic tethers
and computes a set of global and local indices for
quantifying biomacromolecular stability. From the
global indices, phase transition points are identified
where the structure switches from a rigid to a floppy
state; these phase transition points can be related to
a protein’s (thermo-)stability. Structural weak spots
(unfolding nuclei) are automatically identified, too;
this knowledge can be exploited in data-driven
protein engineering. The local indices are useful
in linking flexibility and function and to understand
the impact of ligand binding on protein flexibility. The
CNA web server robustly handles small-molecule
ligands in general. To overcome issues of sensitivity
with respect to the input structure, the CNA web
server allows performing two ensemble-based
variants of thermal unfolding simulations. The web
server output is provided as raw data, plots and/or
Jmol representations. The CNA web server, access-
ible at http://cpclab.uni-duesseldorf.de/cna or
http://www.cnanalysis.de, is free and open to all
users with no login requirement.

INTRODUCTION

Proteins carry out their biological functions by interacting
with other biomacromolecules or smallmolecules (1). These

interactions require a certain degree of conformational
adaptation to better complement the binding partners.
That way, structural flexibility of proteins is linked to mo-
lecular recognition and catalysis (2). Additionally, flexibil-
ity (and its opposite, rigidity) also plays a central role for a
protein’s structural stability (3). Particularly, thermophilic
proteins are in general more rigid than their mesophilic
homologues to retain their fold at higher temperatures
(4). Hence, knowing what can move in a protein is import-
ant for linking a protein’s structure to its function and
(thermo-)stability. Finally, information on protein flexibil-
ity is increasingly incorporated in computer-aided drug dis-
covery and design projects (5).

X-ray crystallography, cryo-electron microscopy, single
molecule fluorescence and nuclear magnetic resonance
spectroscopy are experimental means from which the flexi-
bility of a protein can be inferred (6–9). As an alternative,
computational methods such as molecular dynamics
(MD) simulations (10) and normal mode analysis are
used to probe protein flexibility and dynamics (11). As yet
another computational approach, a computationally
highly efficient graph theory-based rigidity analysis for
probing protein flexibility has been implemented in the
Floppy Inclusions and Rigid Substructure Topography
(FIRST) software (12). FIRST builds a constraint
network from a biomolecular structure and then decom-
poses this network into rigid clusters and flexible regions
by using the pebble game algorithm (13,14). In the
constraint network, atoms are represented as bodies, and
covalent bonds and non-covalent interactions (including
hydrogen bonds, salt bridges, stacked rings, and hydropho-
bic tethers) are represented as bars (constraints) between
them. Building on the ideas of Rader et al. (15) on
diluting non-covalent constraints in a constraint network,
our group has developed the Constraint Network Analysis
(CNA) approach that performs thermal unfolding simula-
tions of proteins (16). CNA goes beyond the mere identifi-
cation of rigid clusters and flexible regions in a biomolecule
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in that it (i) provides a refined modeling of thermal unfold-
ing simulations that also considers the temperature depend-
ence of hydrophobic tethers; (ii) allows performing rigidity
analyses on ensembles of network topologies, either
generated from structural ensembles or by using the
concept of fuzzy non-covalent constraints; and (iii)
computes a set of global and local indices for quantifying
biomacromolecular stability (17). Furthermore, CNA
robustly handles small-molecule ligands in general. CNA
has been successfully used for investigating protein
thermostability, identifying unfolding nuclei (‘structural
weak spots’), and linking protein flexibility and function
(18–20).

In this study, we present the CNA web server that allows
(i) setting up a variety of constraint network representa-
tions of proteins from either single structures or ensembles
of structures; (ii) performing rigidity analyses and thermal
unfolding simulations on these networks; and (iii) process-
ing the results. For that, the CNA web server provides a
layer of user-friendly input and output interfaces around
the CNA software. As input, the web server only requires a
Protein Data Bank (PDB) code or user-provided PDB
file(s) of the input structure(s), and choosing the simulation
type. Results are presented in the browser in an interactive
manner. For global indices, plots are provided; for local
indices, plots and mappings onto the 3D structure [via a
JmolApplet (http://jmol.sourceforge.net)] are provided.
Weak spots predicted for a protein structure are also
mapped onto the 3D structure. To the best of our know-
ledge, there are no other web servers that allow performing
and analyzing thermal unfolding simulations of proteins in
asmuch detail as the CNAweb server does. Of the twomost
closely related web servers, KINARI (http://kinari.cs.
umass.edu/Site/kinariWeb.html) (21) only performs rigid
cluster decompositions, but no thermal unfolding simula-
tions. Flexweb (http://flexweb.asu.edu/software/first/) does
allow performing thermal unfolding simulations; however,
it neither supports the use of ensembles of structures (which
leads tomore robust results from rigidity analyses) nor does
it automatically determine phase transition points (‘melting
points’) and unfolding nuclei (which extends the applica-
tion domain of rigidity analysis to data-driven protein
engineering). Thus, in addition to characterizing the distri-
bution of flexible and rigid regions in a protein, the CNA
web server can be used for probing changes in the flexibility/
(thermo-)stability of a protein due to mutations or on
ligand binding, and it aids in identifying structural weak
spots in a protein that, when mutated, may improve the
protein’s (thermo-)stability. Note that the CNA web
server solely characterizes what can move in a protein but
does not simulate actual protein movements. To do the
latter, the user is referred to the NMSim web server
(http://cpclab.uni-duesseldorf.de/nmsim/ or http://www.
nmsim.de) developed by us (22).

MATERIALS AND METHODS

Constructing a constraint network

Proteins are modeled as body-and-bar networks where
each atom is represented as a body with six degrees of

freedom (23). Interactions between the atoms (covalent
and non-covalent bonds) are modeled as a set of bars
that restrict internal motion between the atoms. A
covalent single bond is modeled with five bars allowing
for the dihedral rotation about it; peptide and double
bonds are modeled with six bars, disallowing any bond
rotation. For example, a diatomic molecule with a single
bond, owing to the five constraints, has seven degrees of
freedom (6� 2� 5), six of which represent the trivial
overall rotations and translations and one of which repre-
sents the internal rotation around the single bond. Non-
covalent interactions, which contribute significantly to
protein stability, are also modeled as bars. As such,
hydrogen bonds (and salt bridges) are modeled with five
bars, whereas hydrophobic and ring stacking interactions
are modeled with two and three bars, respectively (24).
Figure 1A shows the structure of thermolysin-like
protease (TLP; PDB code: 1NPC) from which a body-
and-bar network is then generated (Figure 1B).

Performing a rigid cluster decomposition

Once the constraint network of a protein is built, the pebble
game algorithm (13,14) as implemented in the FIRST
software (12) decomposes the network into rigid clusters
and flexible regions (Figure 1C). The pebble game algo-
rithm then computes the rigidity of the protein network
at a bond level by determining whether a bond is part of
a rigid cluster or a flexible region. As such, a rigid cluster is a
set of atoms for which no internal motions are allowed and
that move together in a collective manner.

Simulating thermal unfolding

By successively removing non-covalent constraints from a
biomolecular constraint network, new network represen-
tations at elevated temperatures are constructed. To do so,
for a given network state s=f(T), hydrogen bonds
(including salt bridges) with an energy Ehb>Ecut,hb are
removed from the network (25). This follows the idea
that stronger hydrogen bonds will break at higher tem-
peratures than weaker ones. The hydrogen bond energy
scale Ehb (25) is converted into a temperature scale T,
using a linear equation proposed by Radestock and
Gohlke (19). By default, the number of hydrophobic
tethers is kept constant during the thermal unfolding
simulation. However, as the strength of hydrophobic
interactions increases with increasing temperature
(26,27), hydrophobic tethers can also be treated in a tem-
perature-dependent manner on request (20). Finally, a
rigid cluster decomposition is performed on each con-
straint network state s to compute global and local flexi-
bility indices (Figure 1C).

Computing global and local flexibility indices

The CNAweb server computes in total six global and three
local flexibility indices. Detailed definitions of the global
and local flexibility indices are given elsewhere (17). In
short, the global indices represent the macroscopic
network flexibility (and rigidity) of each network state
s: (i) The floppy mode density F refers to the number of
internal independent degrees of freedom that are associated
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with dihedral rotations, normalized by the number of
overall internal degrees of freedom associated with the
total number of bodies in the network; (ii) the mean rigid
cluster size S is computed with the size of the largest rigid
cluster always being excluded; (iii) & (iv) the rigidity order
parameter P1 denotes the fraction of the network belong-
ing to the giant percolating cluster (type 1) or the actual
largest rigid cluster (type 2). The giant percolating cluster is
the largest rigid cluster in the network state at the lowest
temperature, i.e. with all constraints in place. During the
thermal unfolding simulation, the melting of the giant
percolating cluster is monitored, and the largest rigid
subcluster of the previous giant percolating cluster
becomes the new giant percolating cluster of the present
network state s. In contrast, the actual largest rigid

cluster is the largest cluster present at a network state s,
irrespective of its evolutionary history during the thermal
unfolding simulation; (v) & (vi) the cluster configuration
entropy H (type 1 and type 2) is a measure of the degree of
disorder in the realization of a given network state.

Local indices characterize the flexibility of network at
the bond level by monitoring the change in the flexibility
for each bond during the thermal unfolding simulation: (i)
the percolation index pi is determined for each covalent
bond by the Ecut,hb value during the thermal unfolding
simulation at which the bond segregates from the giant
percolating cluster; (ii) the rigidity index ri is determined
for each covalent bond by the Ecut,hb value during the
thermal unfolding simulation at which the bond changes
from rigid to flexible. For a Ca atom-based representation

Figure 1. Covalent and non-covalent interactions in a protein structure (A) are modeled as bars in a body-and-bar network (B). A rigid cluster
decomposition is carried out for all network states during a thermal unfolding simulation (C) and then post-processed to calculate flexibility indices,
phase transitions, and weak spots. (D) Submission page to the CNA web server.
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of a protein structure, the lower of the pi values (the
average of the ri values) of the two backbone bonds is
taken; (iii) a stability map rcij is a 2D itemization of the
rigidity index ri and is derived by identifying the Ecut,hb

value during the thermal unfolding simulation at which a
rigid contact between a pair of residues represented by
their Ca atoms is lost. Two residues are in rigid contact
if they are part of the same rigid cluster.

Identifying phase transitions and unfolding nuclei

The global flexibility indices are used for identifying phase
transitions during the thermal unfolding simulation
when the network switches from being largely rigid to
flexible. Such transitions (‘melting points’) can be related
to the (thermo-)stability of proteins (18–20). The CNAweb
server provides phase transition points for four of the global
indices: P1, type 1 and 2 andHtype 1 and 2. A smoothed spline
fitted to the global indices is used to identify the phase tran-
sition points except for Htype2, for which a double sigmoid
curve is fitted. The phase transition points are identified
as the maximum in the first derivative in the case of the
smoothed spline and the maximum of the differences in
the asymptote pairs in the case of the double sigmoid
curve. The phase transition points can be further exploited
to identify structural weak spots in the network fromwhere
an unfolding begins: these are residues that are part of the
largest rigid cluster before the phase transition and become
flexible afterwards. Weak spots provide hints as to where
introducing mutations in a structure may improve a
protein’s (thermo-)stability.

Simulating thermal unfolding of a network ensemble

Results from rigidity analyses are in general sensitive to the
input structure in that small changes in the conformation
can lead to a different rigid cluster decomposition (28,29).
To overcome this drawback, an ensemble-based variant of
CNA has been developed that makes use of an ensemble of
structures derived fromMD simulations (20,28). Structural
ensembles from any other sources can be used as input, too.
As yet another alternative, the CNA web server provides
an option to create an ensemble of networks from a sin-
gle input structure by using fuzzy non-covalent constraints
(Pfleger, C., Gohlke, H., unpublished data). Here, the
number and distribution of non-covalent constraints are
modulated by random components within certain ranges,
that way simulating thermal fluctuations of a biomolecule
without actually moving atoms. This approach avoids
the use of computationally expensive MD simulations.
For ensemble-based CNA, averages are computed over
the entire ensemble for phase transition points and local
indices. In the case of weak spots, the frequencies of occur-
rence across the entire ensemble are reported.

DESCRIPTION OF THE WEB SERVER

Input

The submission page to the CNA web server is shown in
Figure 1D. The CNA web server requires either a single
structure of a protein provided as a PDB file or a PDB-ID
(in which case the PDB file will be downloaded from the

Research Collaboratory for Structural Bioinformatics re-
pository), or multiple protein structures provided as PDB
files in a compressed folder (allowed file formats are *.tgz,
*.tar.gz or *.zip) or as a ‘multi-PDB file’ using MODEL/
ENDMDL cards. Furthermore, the web server requires
selection of an analysis type and input of a given
security code to prevent misuse. Analyses can be per-
formed on a single constraint network derived from a
single structure, on an ensemble of networks derived
from a single structure or on an ensemble of networks
derived from a structural ensemble. According to the
selected analysis type, default parameters will be
provided that have been successfully used in previous
studies (17–20). In addition, the user can request the
time-consuming computation of a stability map. An
email address can be provided in which case a link to
the results will be sent to that address. In either case, a
link to a results page is provided after job submission for
monitoring the progress of the computations and viewing
the results in the web browser. The results will also be
stored on the server for 10 days and can be accessed via
the provided link.
If the user provides a PDB ID, missing sidechain and

hydrogen atoms will be automatically added by the leap
program of the AMBER suite (30). For amino acid
sidechains, a standard protonation state is assumed, i.e.
Asp and Glu are treated as deprotonated, and Arg and
Lys as protonated. By default, His is singly protonated
with the hydrogen on the epsilon nitrogen. Alternate
sidechain conformations are allowed, but only the first
conformation is considered. Water molecules and ligands
will be removed.
To have complete control on the input structure(s), a

user can upload a/multiple PDB file(s). In that case, water
molecules and ligands are considered, and correct bond
orders for ligands are identified automatically using the
Open Babel wrapper (Pybel) for Python (31,32). The
correct identification of ligand bond orders is important
to accurately set up covalent constraints for the network.
In this case (i) hydrogen atoms must have been added
already, (ii) alternate side-chain conformations are not
allowed; and (iii) the protein structure must be complete,
i.e. no missing sidechains are allowed. Finally, if the
analysis is based on an ensemble of structures, all
protein structures must be identical except for the coord-
inates. Otherwise, an error message will be issued.

Output and representation of results

A typical analysis run of the CNA web server for a con-
straint network of a single structure takes a few minutes;
for the analysis of an ensemble, several hours of
computing time may be required. After the start, the pro-
gression of the analysis is reported on the results page. On
completion of a job, the results are presented in the web
browser and, if an address is provided by the user, an
email is sent with a link to the results, too.
The first part of the results page contains a summary of

input parameters that were provided by the user and a
download link to the modified input file. The modified
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input file contains all changes made during preparation of
the uploaded structure.
The second part of the results page contains a table that

provides information about identified phase transition
points. In the case of a single-network analysis, six plots
of the global flexibility indices are depicted: floppy
mode density F (Figure 2A), mean rigid cluster size
S (Figure 2B), rigidity order parameter P1, type 1 and 2

(Figure 2C and D) and cluster configuration entropy
Htype 1 and 2 (Figure 2E and F). Identified phase transition
points are marked by red vertical lines. In the case of an
ensemble-based analysis, a summary of the identified
phase transition points is presented instead. In any

case, a file with the raw data can be downloaded by a
link given next to the headline of the chapter for further
evaluation.

The third part contains two plots of the local flexibility
indices for each residue: percolation index pi (Figure 3A)
and rigidity index ri (Figure 3B). In the case of an
ensemble-based analysis, the standard errors are
depicted in gray in addition to the mean values.
Furthermore, both indices are mapped onto the input
structure in a color-coded fashion and shown in
JmolApplets. A file with the raw data can be downloaded
by a link given next to the headline of the chapter for
further evaluation as can be two PDB files. These PDB

Figure 2. Global indices for the thermal unfolding of TLP as a function of the hydrogen bonding energy cutoff Ecut,hb: (A) floppy mode density F;
(B) mean rigid cluster size S; rigidity order parameter P1 (C) type 1 and (D) type 2; cluster configuration entropy H (E) type 1 and (F) type 2. The
red vertical lines (C–F) correspond to the identified phase transitions.
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Figure 3. (A) Percolation index pi for TLP. The lower pi the longer is a residue part of the giant percolating cluster during the thermal unfolding
simulation. (B) Rigidity index ri for TLP. The lower the ri, the longer is a residue part of a rigid cluster during the thermal unfolding simulation.
Red- and green-dashed horizontal lines represent the identified phase transition point and the working temperature of TLP, respectively. The central
�-helix and two preceding Gly residues (residues 136–154) residues are enclosed in a red rectangle. On the right, the respective indices are mapped
onto the input structure in a color-coded manner. (C) Stability map rcij for TLP. Red colors indicate pairs of residues where no or only a weak rigid
contact exists. In contrast, blue colors indicate strong rigid contacts. The black box with a continuous line covers the N-terminal giant rigid cluster,
whereas the box with the broken line indicates a rigid cluster in the C-terminal domain. (D) Weak spots in the TLP structure are represented by red
spheres.
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files contain the modified input structure of the protein
with the respective index values of Ca atoms in the
B-factor column.
The fourth part contains a stability map rcij (Figure 3C)

(if requested) and information about weak spots identified
in the protein (Figure 3D). For rcij, the color code reveals
for each residue pair if the rigid contact is weak (red) or
strong (blue). Information about weak spots is mapped
onto the input structure and displayed in a JmolApplet:
in the case of a single-network analysis, identified weak
spots are marked by red spheres; in the case of an
ensemble-based analysis, the frequency of a residue for
being identifed as a weak spot across the entire ensemble
is depicted. This information is provided as a plot, too.
Again, two files can be downloaded by links given next to
the headline of the chapter for further evaluation: a file
with the raw data and a PDB file containing the modified
input structure of the protein with the respective frequency
values in the B-factor column.

Implementation

The CNA web server has been implemented in Python, as
have been the underlying CNA routines (16). All plots are
generated with Gnuplot. Given the low computational
demand of our approach, up to 10 submitted jobs can
be run in parallel at present.

APPLICATION TO TLP AS A TEST CASE

In a previous study from our group, the CNA approach
has been shown to link protein rigidity and
thermostability by correctly predicting which one of two
proteins is more thermostable for two thirds of a data set
of 19 pairs of proteins from mesophilic and thermophilic
organisms (18). In the same study, we showed that struc-
tural weak spots identified by CNA agreed with the pos-
itions of thermostabilizing mutations for two systems
investigated. Extending the application domain of CNA
one step further, the local flexibility and rigidity distribu-
tions in the active sites of 3-isopropylmalate dehydrogen-
ase and TLP were then linked to enzymatic activity at
different temperatures (19). Recently, using CNA on
citrate synthases with distinct thermostabilities, we
showed that thermostabilizing mutations preferentially
occur at structural weak spots with a high mutation
ratio (14).
Here, we demonstrate the application of the CNA web

server to TLP from Bacillus cereus (PDB code: 1NPC)
using a single-network approach with default settings.
These results are also available as a sample run on the
web server. Plots for global indices are shown in Figure
2. The decrease in network rigidity of TLP with increasing
temperature (equivalent to a decreasing Ecut,hb) is evident
from the plots of all six global indices. Interestingly, the
decay of the giant rigid cluster occurs in a hierarchical
fashion as reflected by the presence of multiple steps in
the P1 and H profiles (Figure 2C–F). The reason for this
percolation behavior is that the TLP structure is
composed of multiple sub-domains (N-terminal �-sheet
domain and C-terminal �-helical domain connected by a

central helix) that segregate from the giant cluster inde-
pendently from each other. Phase transition points at
which the TLP structure sharply loses rigidity on
thermal unfolding are then identified: an early phase tran-
sition point at Ecut,hb=�1.14 kcalmol�1 is identified from
the P1 and Htype1 profiles when the C-terminal �-helical
domain segregates from the giant cluster; in contrast,
Htype 2 fosters the identification of a late transition at
Ecut,hb=�2.55 kcalmol�1 [or, equivalently, 351K (19)],
which represents the final substantial decay of the rigid
core. Such late transitions have been found to best relate
to the melting of a protein. The temperatures of the tran-
sition points should be considered relative values only
because the absolute values may depend on the size and
architecture of the analyzed protein (19). Still, the tem-
peratures are helpful, e.g. when it comes to comparing
the thermostability of two or more homologous proteins
or the stability of a wild-type with its mutant (18–20).
Accordingly, the Htype 2 phase transition point for a
thermophilic homologue of TLP, thermolysin from
Bacillus thermoproteolyticus, was found at 373K (24),
�20K higher than for the mesophilic homologue
investigated here.

The percolation index plot depicts the percolation
behavior of TLP at a residue level (Figure 3A). The
C-terminal �-helical domain segregates from the giant
cluster early during the thermal unfolding simulation at
Ecut,hb&�1.1 kcalmol�1. The giant percolating cluster,
which then consists of mainly the �-sheet region and an
�-helix in the N-terminal domain, disintegrates into
smaller clusters at the later phase transition point
(Ecut,hb=�2.55 kcalmol�1). Unsurprisingly, the rigidity
index, which monitors the flexibility at a residue level,
shows secondary structure elements to be more rigid than
loops. As an exception, residues 117–120 forming a loop in
the N-terminal domain are always part of a rigid cluster
throughout the thermal unfolding simulation owing to a
network of hydrophobic tethers. For TLPs, the central �-
helix (residues 139–154) and the preceding Gly136 and
Gly137 are important with respect to a postulated hinge
bending motion (33,34), suggesting that these residues
should be flexible at the working temperature of TLP
[342K, equivalent to Ecut,HB=�2.1 kcalmol�1 (19)].
This is also found in the rigidity index profile (Figure
3B). Furthermore, contacts of these residues with other
residues of TLP are less stable than contacts between
residues of the giant cluster (black box with continuous
line) and contacts between residues of a large rigid cluster
in the C-terminal domain (black box with broken line) as
identified by the stability map (Figure 3C). This is again in
line with the hinge character of the central a-helix. Finally,
several of the weak spots identified by CNA in the N-
terminal �-sheet domain of TLP (Figure 3D) have been
shown to improve the protein’s thermostability on
mutation in previous studies (35–38).

CONCLUSIONS

Increasing evidence of the importance of protein flexibility
has warranted the development of efficient and accurate
computational tools for characterizing protein flexibility

W346 Nucleic Acids Research, 2013, Vol. 41, Web Server issue

 at U
niversitaetsbibliothekD

uesseldorf on A
ugust 20, 2013

http://nar.oxfordjournals.org/
D

ow
nloaded from

 



Publication IV 
 

 
120 

 

at global and local levels. To this end, the CNA approach
has been developed for deriving maximal advantage from
information on biomolecular flexibility and rigidity by
linking results from rigidity analyses to biologically
relevant characteristics of a structure, such as (thermo-)
stability and function (16). In particular, CNA provides a
refined modeling of thermal unfolding simulations that
also considers the temperature dependence of hydropho-
bic tethers, allows performing rigidity analyses on ensem-
bles of network topologies and computes a set of global
and local indices for quantifying biomacromolecular sta-
bility. Furthermore, CNA robustly handles small-
molecule ligands in general. To make these computations
available for users even with only minimal or no prior
knowledge of structural bioinformatics techniques, we de-
veloped the CNA web server. It provides a user-friendly
interface, requires minimal input and displays the results
intuitively both as plots and mappings onto the protein
structure via JmolApplets. As a typical analysis run of the
CNA web server for a constraint network of a single struc-
ture only takes a few minutes, we strongly believe that the
CNA web server will be a valuable (interactive) tool for
data-driven protein engineering and estimating the influ-
ence of ligand molecules on biomolecular stability.
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ABSTRACT 

Summary: Constraint Network Analysis (CNA) is a graph theo-
rybased rigidity analysis approach for linking a biomolecule’s struc-
ture, flexibility, (thermo)stability, and function. Results from CNA are 
highly information-rich and require intuitive, synchronized, and inter-
active visualization for a comprehensive analysis. We developed 
VisualCNA, an easy-to-use PyMOL plug-in that allows setup of CNA 
runs and analysis of CNA results linking plots with molecular 
graphics representations. From a practical viewpoint, the most 
striking feature of VisualCNA is that it facilitates interactive protein 
engineering aimed at improving thermostability.
Availability and Implementation: VisualCNA and its dependencies 
(CNA and FIRST software) are available free of charge under GPL 
and academic licenses, respectively. VisualCNA and CNA are avail-
able at http://cpclab.uni-duesseldorf.de/software; FIRST is available 
at http://flexweb.asu.edu. 
Contact: Gohlke@uni-duesseldorf.de 

1 INTRODUCTION  
Structural flexibility (and rigidity) is important for a protein’s 
function and stability. Being able to accurately predict protein 
flexibility is thus instrumental in protein-science and -engineering 
as well as drug design. Our group developed the Python-based 
software package Constraint Network Analysis (CNA) (Pfleger et 
al., 2013) for characterizing biomolecular flexibility both at the 
global and residue level. CNA functions as a front- and back-end 
to the graph theory based rigidity analysis software FIRST (Jacobs
et al., 2001) and has been used to predict protein thermostability, 
identify structural weak spots (Radestock and Gohlke, 2008; 
Radestock and Gohlke, 2011; Rathi et al., 2012), and link protein 
flexibility and function, including allosteric regulation (Pfleger and 
Gohlke, unpublished results). CNA models a protein as a body-
and-bar constraint network in which bodies (atoms) are connected 
by bars (covalent and non-covalent interactions). A rigidity 
analysis is then performed using the pebble game algorithm 
(Jacobs and Thorpe, 1995), resulting in a decomposition of the 
network into rigid and flexible regions. By removing non-covalent 
constraints from the network in the order of increasing strength, 

*To whom correspondence should be addressed. 
†The authors wish it to be known that in their opinion, the first two authors 
should be regarded as joint First Authors. 

CNA simulates thermal unfolding. From the unfolding trajectory, 
CNA calculates several global and local flexibility indices (Pfleger
et al., 2013). From the global indices, phase transition points are 
identified at which the network switches from rigid to flexible. 
These points are used to predict the thermostability of a protein 
and identify structural weak spots. Local indices describe intrinsic 
biomolecular flexibility at the level of bonds and can be compared 
with quantitative data from experiments on biomolecular mobility. 

The output from CNA is highly information-rich. For a compre-
hensive analysis, the data needs to be visualized as plots (showing 
global and local flexibility indices) as well as 3D graphics repre-
sentations of the biomolecule, the constraint network, and the 
decomposition into rigid and flexible regions. Furthermore, the 
speed of CNA allows performing real-time rigidity analyses on 
biomolecules. Thus, interactive structural modifications and/or 
editing of the constraint network followed by a re-analysis of the 
biomolecule’s flexibility can be performed iteratively. With this in 
mind, we developed VisualCNA, an intuitive, easy-to-use graph-
ical interface for CNA built as a plug-in for the molecular viewer 
PyMOL (The PyMOL Molecular Graphics System, Version 
1.5.0.3 Schrödinger, LLC.). VisualCNA supports scientists inter-
ested in the rigidity analysis of biomolecules by a synchronized 
and interactive visualization of the CNA output. It also enables 
interactive protein engineering for improving thermostability by 
iteratively mutating identified weak spots, performing a subsequent 
rigidity analysis, and automatically comparing CNA output from 
wild type and mutant structures. 

2 IMPLEMENTATION 
VisualCNA is implemented in the Python programming language 
as a PyMOL plug-in for Linux operating systems. It uses the exter-
nal modules NumPy, SciPy, Matplotlib, Biopython, tkintertable, 
and Open Babel. All modules and the PyMOL source code are 
packaged alongside VisualCNA for easy installation. VisualCNA 
requires CNA and FIRST for rigidity analysis, which are distribut-
ed independently. User manual and tutorial videos are also distrib-
uted with VisualCNA. 

3 DESCRIPTION 

The VisualCNA GUI consists of four panels: Setup, Analyze,
Modify, and Mutate. The Setup panel allows preparing variations 
of thermal unfolding simulations, i.e., based on a single network 
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Fig. 1. A: Illustration of VisualCNA's iterative work flow for optimization of protein thermostability. B: PyMOL window showing the 3D protein structure 
at the melting point. Rigid clusters are shown as uniformly colored semi-transparent bodies. Constraints due to hydrogen bonds, salt bridges, and hydropho-
bic contacts are shown as red, magenta, and green sticks. A mutation is shown in yellow stick representation. Flexible regions are shown in grey. C: The 
VisualCNA Analyze panel showing a comparison of multiple graphs from wild-type (black) and mutant (red) analyses. 1: Global indices with transition
points indicated as vertical lines. 2: Local index with a red circle indicating the mutation and a horizontal red line showing the unfolding state. 3: Difference 
stability map between wild-type and mutant. 4: Likelihood of a residue of being a structural weak spot with the mutant shown in red.

derived from a single input structure (Radestock and Gohlke, 
2008), an ensemble of networks derived from a single structure 
using definitions of fuzzy non-covalent constraints (Pfleger and 
Gohke, 2013), or a structural ensemble (Rathi et al., 2012). 

In the Analyze panel (Fig. 1C), CNA output from multiple 
thermal unfolding simulations can be shown simultaneously, which 
helps comparing wild type and mutants. CNA results are shown as 
interactive plots of global and local flexibility indices and weak 
spots. In parallel, an interactive 3D protein structure (Fig. 1B) is 
visualized in PyMOL in terms of states corresponding to the steps 
of the thermal unfolding trajectory. The trajectory can be played as 
an interactive movie and is linked with the flexibility indices by 
annotations in the plots. Clicking either the plots or the structure 
changes the appearance of both to focus on the selected residue 
and/or the corresponding unfolding state. Constraints are grouped 
by their associated rigid cluster or flexible region to aid 
visualization and selection. Constraints about to break in a given 
state are grouped, too, facilitating the identification of residues that 
could be mutated to stabilize these. 

The Modify panel contains several ways to modify the constraint 
network of the protein, which is useful when modeling the effect of 
ligands, ions, or non-standard residues. An interactive table of 
constraints uses check boxes to enable or disable constraints, and a 
search box allows navigation. User defined constraints can be 
added by specifying atom pairs in text fields or the 3D structure. 

The Mutate panel is central to the interactive protein engineering 
capability of VisualCNA. After loading an alignment of multiple 
sequences, the residue conservation and substitution frequencies 
are calculated for each residue. Clicking a bar in the conservation 
plot and a mutation in the substitution frequency plot then mutates 
the corresponding residue and updates the constraint network. The 
mutation is done using the PyMOL mutation tool, which allows the 
user to select an appropriate rotamer for the mutant. The new 
structure can be automatically submitted for unfolding simulation 
and compared to the wild type. In this way, the effect of point 

mutations can be iteratively analyzed to optimize the protein 
structure towards increased thermostability (Fig. 1A). 

In summary, the CNA approach derives maximal advantage 
from information on biomolecular flexibility by linking results 
from rigidity analyses to relevant structural characteristics. With 
VisualCNA, an intuitive, easy-to-use graphical interface is 
available that makes CNA studies amenable to non-
bioinformaticians interested in rigidity analysis of biomolecules 
and interactive protein engineering. 
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Abstract 

Understanding the origin of thermostability is of fundamental importance in protein 
biochemistry. Opposing views on increased or decreased structural rigidity of the folded state 
have been put forward in this context. They have been related to differences in the temporal 
resolution of experiments and computations that probe atomic mobility. Here, we find a 
significant and good correlation between the structural rigidity of a well-characterized set of 
16 mutants of lipase A from Bacillus subtilis (BsLipA) and their thermodynamic 
thermostability. We apply the rigidity theory-based Constraint Network Analysis (CNA) 
approach, analyzing directly and in a time-independent manner the statics of the BsLipA 
mutants. We carefully validate the CNA results on macroscopic and microscopic 
experimental observables and probe for their sensitivity with respect to input structures. 
Furthermore, we introduce a robust, local stability measure for predicting thermodynamic 
thermostability. Our results complement work that showed for pairs of homologous proteins 
that raising the structural stability is the most common way to obtain a higher thermostability. 
Furthermore, they demonstrate that related series of mutants with only a small number of 
mutations can be successfully analyzed by CNA, which suggests that CNA can be applied 
prospectively in rational protein design aimed at higher thermodynamic thermostability. 

Author summary 

Protein stability is relevant for biological function, molecular evolution, and biotechnological 
applications. Hence, understanding the origin of protein thermostability is of exceptional 
interest. One of the factors frequently associated with elevated thermostability is an increase 
in the mechanical stability of the native, folded protein. However, opposing cases have also 
been reported. We applied an approach originating from structural engineering to analyze the 
statics of a set of 16 mutants of the biotechnologically important lipase A from Bacillus 
subtilis. Within this closely related series, we observe a good correlation between the 
mechanical stability and the thermostability of mutants that results from making the native, 
folded state more favorable over the unfolded state. This result complements earlier work that 
showed for many pairs of homologous proteins from mesophilic and thermophilic organisms 
that raising the structural stability is the most common way to obtain a higher thermostability. 
Our results also suggest that the applied approach can be used prospectively in rational 
protein design aimed at higher thermodynamic thermostability. 
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Introduction 

Sufficiently high thermostability of proteins is important for both organisms living in high 
temperature environments and for biotechnological applications where enzymes are used as 
biocatalysts under often harsh reaction conditions [1,2]. From a mechanistic point of view, 
“protein thermostability” embraces at least two different meanings [3,4]: (1) thermodynamic 
thermostability describes the folded-unfolded equilibrium of a protein, and (2) kinetic 
thermostability refers to the length of time a protein remains active before undergoing 
irreversible denaturation at an elevated temperature. Several factors have been frequently 
attributed to elevated protein thermostability including improved hydrogen bonding [5], ion 
pair and salt bridge networks [6], better hydrophobic packing [7], shortened loops [8], and 
higher secondary structure content [9], in all favoring an increased structural rigidity of the 
folded state [10-13]. As an opposing view, proteins from thermophilic organisms have been 
reported to be as flexible as or even more flexible than homologs from mesophilic organisms 
[14-17]. 

These different views on the relation between protein thermostability and structural rigidity 
have been a matter of ongoing discussion [10,18-23]. In particular, it has been argued that 
atomic movements, which are the primary mobility data from which information on protein 
statics (rigidity and flexibility) is derived, cover a wide range of timescales within a protein 
[15,24,25]. Hence, depending on the temporal resolution of the experimental technique or 
computational analysis used to detect such movements, (parts of) a protein can come out as 
rigid or flexible [26-32]. Here, we address the question of the relation between protein 
thermostability and structural rigidity by analyzing directly the static properties of a well-
characterized set of 16 mutants of lipase A from Bacillus subtilis (BsLipA). We do so by 
applying the rigidity theory-based Constraint Network Analysis (CNA) approach developed 
by us [33-35], thereby considering the BsLipA variants to be in static equilibrium. Therefore, 
the rigidity and flexibility characteristics derived that way are time-independent. 

BsLipA is an important member of the lipase class of enzymes and used in diverse 
biotechnological applications [36,37]. Owing to its importance, BsLipA has been extensively 
studied with respect to structure [38-41] and thermostability [42-48]. As to the latter, Reetz et 
al. applied iterative saturation mutagenesis on the most flexible amino acids as identified by 
crystallographic B-factors, which resulted in BsLipA mutants that were more thermostable 
than the wild type showing an increase in T50

60 (the temperature required to reduce the initial 
enzymatic activity by 50% within 60 min) of  45 K [42]. Subsequent biophysical 
characterization of the three most thermostable mutants revealed that the improved activity 
retention resulted from a reduced rate of protein unfolding and a reduced precipitation of the 
unfolding intermediates, i.e., due to kinetic reasons [49]. In contrast, Rao et al. sequentially 
developed several thermostable BsLipA mutants using directed evolution assisted by 
structural information. These mutants were shown to be more thermostable than the wild type 
due to predominantly thermodynamic reasons [44-48,50]; the most thermostable mutant 
displayed an increase in the melting temperature Tm of ~22 K. 
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In the CNA approach, a protein is modeled as a constraint network where bodies 
(representing atoms) are connected by sets of bars (constraints, representing covalent and 
noncovalent interactions) [51]. A rigidity analysis performed on the network [52,53] results 
in a decomposition into rigid parts and flexible links in between. By analyzing a series of 
“perturbed” networks in which noncovalent interactions are included in a temperature-
dependent manner [11,13,54], the thermal unfolding of a protein is simulated [12,13,54]. 
Results of these analyses can be linked to biologically relevant characteristics of a 
biomolecular structure by a set of global and local indices [55]. In particular, a phase 
transition point Tp can be identified during the thermal unfolding simulation at which a 
largely rigid network becomes almost flexible; this phase transition point has been related to 
the thermodynamic thermostability of a protein [11-13]. For improving the robustness of the 
analyses, the rigidity analyses are performed on ensembles of network topologies (ENTFNC) 
[56]. That way, thermal fluctuations of a protein are considered without actually sampling 
conformations.  

The main outcome of this work is the finding of a significant and good correlation between 
the structural rigidity of all BsLipA variants and their thermodynamic thermostability. On the 
way, we carefully probed for the sensitivity of the results with respect to the input structures 
and developed an approach for detecting outliers based on differences in the pathways of 
thermal unfolding. We furthermore introduced a local stability measure for predicting 
thermodynamic thermostability, which complements the detection of the (global) phase 
transition point Tp. As the BsLipA variants are sequentially closely related, these results have 
important implications for applying CNA in a prospective manner in rational protein design 
aimed at higher thermodynamic thermostability. Finally, we discuss our results in terms of 
potentially different mechanisms underlying the increased protein thermostabilities of 
mutants isolated by Reetz et al.and Rao et al. 

Materials and methods 

Data set 

The wild type structure of BsLipA with the highest resolution (PDB ID: 1ISP; 
resolution = 1.3 Å) was obtained from the Protein Data Bank (PDB; www.pdb.org) [57]. For 
probing the sensitivity of the CNA results on the conformation of the input structures, five 
additional crystal structures of wild type BsLipA were analyzed (PDB IDs: 1I6W, 1R4Z, 
1R50, 2QXT, 2QXU). We included in our study all mutants from Rao et al. for which Tm 
values were determined [44-48]. In addition, we included the three most thermostable 
mutants developed in the last rounds of iterative saturation mutagenesis by Reetz et al. [42]. 
Models of mutant structures for which crystal structures were not available in the PDB were 
generated with the SCWRL program [58], using the respective BsLipA structure as a 
template that is closest in sequence to the mutant. SCWRL constructs mutant models by 
predicting backbone-dependent side chain conformations with the help of a rotamer library; 
coordinates of backbone atoms remain unchanged. Conformations of side chains of all 
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residues within 8 Å of a mutated residue were re-predicted in order to allow for a local 
structural relaxation. For all structures, hydrogen atoms were added using REDUCE [59]; 
side chains of Asn, Gln, and His were flipped in this stage if necessary to optimize the 
hydrogen bond network. All water molecules, buffer ions, and crystal solvents were removed 
from the structures. Finally, all structures were minimized by 5000 steps of conjugate 
gradient minimization (including an initial steepest descent minimization for 100 steps) or 
until the root mean-square gradient of the energy was < 1.0·10-4 kcal mol-1 Å-1. The energy 
minimization was carried out with Amber11 [60] using the Cornell et al. force field [61] with 
modifications for proteins (ff99SB) [62] and the GBOBC generalized Born model [63]. All 
variants of BsLipA used in this study are summarized in Table 1. 

Construction of the constraint network and rigidity analysis 

As described in the previous section, only the protein part was considered for network 
construction, i.e., all non-protein molecules including water molecules were discarded. This 
was done based on previous findings that including water molecules does not significantly 
change the rigidity analysis results [64,65]. Proteins were modeled as constraint networks in a 
body-and-bar representation (see section “Body-and-bar networks” in the File S1) [66,67] 
using the CNA software [35] that acts as a front- and back-end to the Floppy Inclusion and 
Rigid Substructure Topography (FIRST) program [51]. Once the constraint network is built, 
rigidity analysis is carried out, which identifies (rigid) clusters of atoms with no internal 
motion and flexible links in between, using the pebble game algorithm [52,53] as 
implemented in the FIRST software [51]. 

Thermal unfolding simulation 

By sequentially removing non-covalent constraints from a network, one can simulate a loss of 
structural rigidity due to a temperature rise. Specifically, hydrogen bonds were removed from 
the network in increasing order of their strength following the idea that stronger hydrogen 
bonds break at higher temperatures than weaker ones [69]. As such, only hydrogen bonds 
with an energy EHB ≤ Ecut(σ) were included in the network of state σ. A thermal unfolding 
trajectory of 60 network states was generated for each input network by decreasing Ecut from 
−0.1 kcal mol−1 to −6.0 kcal mol−1 with a step size of 0.1 kcal mol−1. According to the linear 
relationship between Ecut and the temperature T introduced by Radestock and Gohlke [12,13], 
the range of Ecut used in this study is equivalent to increasing the temperature of the system 
from 302 K to 420 K with a step size of 2 K. Because hydrophobic interactions remain 
constant or become even stronger as the temperature increases [70,71], the number of 
hydrophobic tethers were kept unchanged throughout the thermal unfolding simulation. 
Rigidity analysis was performed on all such generated network states, and then local and 
global rigidity characteristics were calculated (see section “Local and global rigidity indices” 
in the File S1). The setup of the thermal unfolding simulation and the subsequent rigidity 
analysis were performed using the CNA software [35], which is available from 
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http://cpclab.uni-duesseldorf.de/software. A web service for performing CNA analysis can be 
accessed via http://cpclab.uni-duesseldorf.de/cna [34]. 

Ensemble of networks generated by using fuzzy noncovalent constraints 

For improving the robustness of rigidity analyses, CNA is generally carried out on an 
ensemble of structures (e.g., generated by molecular dynamics (MD) simulations), and then 
results are averaged [11,64]. The preceding MD simulation compromises the efficiency of the 
rigidity analysis, however. To overcome this drawback, Pfleger et al. [56] recently introduced 
an approach that performs rigidity analyses on an ensemble of network topologies (ENTFNC) 
generated from a single input structure by using fuzzy noncovalent constraints. Here, the 
number and distribution of non-covalent constraints (hydrogen bonds and hydrophobic 
tethers) are modulated by random components within certain ranges, thus simulating thermal 
fluctuations of a biomacromolecule without actually moving atoms. An ensemble of 2000 
network configurations was generated using these definitions of fuzzy noncovalent 
constraints for all BsLipA variants, respectively. Finally, average local indices were 
calculated, as were average phase transition temperatures identified by the global index 
cluster configuration entropy Htype2. The index Htype2 monitors the degree of disorder in the 
realization of a given network state σ: As long as a network is dominated by a very large rigid 
cluster, Htype2 tends to be low because there are only a few configurations of a system with a 
large rigid cluster possible; Htype2 increases when larger rigid clusters break down in smaller 
clusters (see section “Local and global rigidity indices” in the File S1 and ref. [55] for 
details). 

Clustering of unfolding pathways 

Recently, we showed that curves of the rigidity order parameter, which characterizes the 
general percolation behavior of a constraint network during thermal unfolding, for mesophilic 
proteins and their thermophilic counterparts are almost identical except for a shift of the 
curve of the thermophilic protein to higher temperatures [12]. This finding supported the 
hypothesis of corresponding states according to which mesophilic and thermophilic enzymes 
are in corresponding states of similar rigidity and flexibility at their respective optimal 
temperature [12]. The percolation index pi is a local analog to the rigidity order parameter. It 
monitors for each bond when it segregates from the largest rigid cluster present at the 
beginning of a thermal unfolding simulation (see section “Local and global rigidity indices” 
in the File S1 and ref. [55] for details). That way, a residue-wise pi profile of a protein, 
generated by taking the lower of the pi values of the two backbone bonds for each residue, 
expresses the hierarchical break-down of the largest rigid cluster during a thermal unfolding 
simulation. 

We thus reasoned that the (dis)similarity of unfolding pathways of BsLipA variants can be 
measured by Manhattan distances between their respective pi profiles. We used this distance 
measure for clustering the network topologies of all BsLipA variants into 10 clusters using 
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the Partitioning Around Medoids algorithm [72] as implemented in the R program 
(http://www.r-project.org). This optimal number of clusters was chosen based on monitoring 
the change in the objective function of the clustering (the mean of the dissimilarities of all 
objects to their nearest medoids) as a function of the number of clusters (Figure S1 in the File 
S1) and visual inspection of cluster medoids for their dissimilarity to other medoids (residue-
wise pi profiles for medoids of the 10 clusters are shown in Figure S2 in the File S1). A 
clustering in more than 10 clusters essentially created additional clusters that were very 
similar to other clusters. From this, the cluster distribution (frequencies of network topologies 
in each of the 10 clusters out of in total 2000 network topologies) for each BsLipA variant 
was calculated by counting the number of networks that belongs to each of the 10 clusters. A 
high (low) correlation between cluster distributions for two BsLipA variants then indicates 
that both variants unfold in a similar (different) manner. Finally, a matrix of all pairwise 
correlations of cluster distributions of BsLipA variants was generated. 

Results 

Data set 

BsLipA is a protein of 181 amino acids with a minimal / hydrolase fold; in this fold, a 
central parallel β-sheet of six β-strands is surrounded by six α-helices. Ser77, Asp133, and 
His156 constitute the catalytic triad (Fig. 1). Unlike other lipases, the catalytic site in BsLipA 
is not covered with a lid. Hence, BsLipA does not show interfacial activation [40]. The data 
set used in this study contains structures of the wild type BsLipA, thirteen mutants from Rao 
et al. [44-48], and three mutants from Reetz et al. [42,49] (Table 1). The mutants differ from 
the wild type by three to twelve mutations, i.e., the sequence identity is > 93%. Models for 
the mutants for which X-ray structures were not available were built using the SCWRL 

program. As the number of mutations in the modeled variants is  7 with respect to the 
template structures (< 4% with respect to the sequence length) (Table 1), an overall similar 
backbone confirmation can be expected as can be an overall reliable modeling of side chain 
conformations by SCWRL. This was also evident from a very good structural alignment and 
low root-mean-square deviations (RMSD) between the wild type and those mutants for which 
crystal structures were available (Cα atom-based RMSD values between the wild type and the 
mutants < 0.38 Å). The high structural similarity allows a direct comparison of results from 
rigidity analyses for these structures [11-13].  

The melting temperature Tm of the wild type is 329.15 K. The Tm values of the mutants of 
Rao et al. range from 334.35 to 351.35 K (Table 1). For the mutants of Reetz et al. no Tm 
values are available. Rather, unfolding initiation temperatures Ti were reported, which are 
lower by 2.5 to 6.2 K than that of the wild type. This suggests that mutants of Reetz et al. are 
thermodynamically less thermostable than the wild type [49], in contrast to mutants from Rao 
et al. [44-48]. However, we note that, while Tm reports on the temperature at which 50% of 
the protein is unfolded and, hence, properly describes the folded-unfolded equilibrium of a 
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protein, Ti only reports on the temperature at which the unfolding transition begins. 
Therefore, we will only consider relations within mutants of Rao et al. and to the wild type 
and distinguish those from relations within mutants of Reetz et al. and to the wild type. 
Finally, the T50

t values of the mutants of Reetz et al. are higher than that of the wild type 
(Table 1), showing that these mutants more efficiently refold upon cooling after incubation at 
high temperatures than does the wild type. The location of mutations in all of the mutants 
investigated in this study is shown in Fig. 1; all mutations are located on the protein surface. 

--- Table 1 --- 

--- Fig. 1 --- 

Thermal unfolding pathway of BsLipA 

From monitoring the loss in rigidity percolation during thermal unfolding simulations, major 
phase transitions in the protein can be identified that relate to the unfolding pathway [11-
13,54,73]. Here, we describe the loss of rigidity percolation of the wild type BsLipA (PDB ID 
1ISP) as an example. Similarity or dissimilarity, respectively, of the unfolding pathways 
across all variants is described below. During the thermal unfolding, a giant rigid cluster that 
exists at low temperature (equivalent to a high Ecut) breaks down in smaller sub-clusters until, 
finally, the whole protein becomes flexible at a high temperature (Fig. 2; see also Video S1 
showing the loss of rigidity percolation during the thermal unfolding of the wild type). As 
such, nearly the entire protein structure constitutes a single giant rigid cluster initially (at 302 
K; Fig. 2). As the temperature increases, loops segregate first from the giant rigid cluster. 
Then, at 314 K, α-helix D (αD) and αE segregate to form individual small rigid clusters (Fig. 
2), as do αA and αF at 318 K. The giant rigid cluster at this temperature is formed by the 
central β-sheet region and the two helices αB and αC (Fig. 2). Next, the β-sheet region 
becomes sequentially flexible, beginning with β4 and β8 at 320 K (Fig. 2). Then, the 
remaining β-strands become flexible in the order β3, β7, and β5−β6, leading to a completely 
flexible β-sheet region at 332 K (Fig. 2). The immediate next step at which αB and αC 
become two separate rigid clusters is identified as a phase transition point: Now most of the 
structure has become flexible. This transition is most prominent with respect to going from a 
structurally stable wild type BsLipA to an unfolded one (Figure S3 in the File S1). After this 
phase transition point, the remaining rigidity is sequentially lost, and the structure finally 
becomes completely flexible at 374 K (Fig. 2). 

During the thermal unfolding of BsLipA, helices segregate from the giant rigid cluster as 
independent small rigid clusters. This is due to two reasons: First, in the body-and-bar 
network representation, a helix with a minimum of seven amino acids is already rigid by 
itself due to constraints arising from covalent and backbone hydrogen bonds [66]. Second, 
with the current energy function EHB [69], all backbone hydrogen bonds are assigned a very 
similar strength, irrespective of their location along a helix. Thus, a helix will persist as an 
independent rigid cluster during the thermal unfolding simulation until all backbone 
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hydrogen bonds break almost simultaneously at a high temperature, which most likely 
represents an overstabilization of a helix [74]. Considering this behavior, the unfolding 
pathway identified for the wild type BsLipA is in good agreement with respect to the early 
segregation of α-helices with experimental findings on the unfolding of proteins with an α/β 
hydrolase fold [75,76]. This indicates that side chain-mediated interactions between amino 
acids are well represented by the applied definitions of non-covalent constraints in the 
network. This is important as we want to detect effects of changes in such interactions due to 
mutations. 

--- Fig. 2 --- 

Prediction of thermodynamic thermostability of BsLipA variants based on the global 

index Htype2 

From the thermal unfolding simulations, the temperature of the phase transition point Tp was 
identified as described in the section “Local and global rigidity indices” in the File S1. Note 
that Tp values determined that way should be considered relative values only, as stated in 
previous studies [12,34,35]. Initially, we calculated phase transition points using single 
network topologies generated from the input structures of wild type BsLipA and mutants of 
Rao et al.; however, this resulted in a very poor prediction of thermodynamic thermostability 
with a coefficient of determination (R2) for a linear fit between experimental Tm and predicted 
Tp of 0.22 (data not shown). We anticipated that this result reflects the high sensitivity of 
CNA on the conformation of the input structures as also found previously [11,56,64,65]. We 
thus resorted to averaging Tp values over an ensemble of BsLipA, applying the recently 
developed ENTFNC approach. This approach generates an ensemble of network topologies 
from a single input structure and has been shown to yield results of rigidity analyses both at 
the local and global level that agree almost perfectly with those obtained from MD 
simulations-generated ensembles of structures [56]. However, this yielded a significant 
(p = 0.002) correlation between Tp and Tm with R2 = 0.58 only if the two structures with the 
lowest (wild type) and highest (mutant 6B) Tm were considered outliers (Fig. 3A; see below 
for an explanation regarding the outliers; note that removing the two outliers in the case of 
using single network topologies only marginally improved R2 from 0.22 to 0.29). The 
mutants IX, X and XI of Reetz et al. were predicted to be slightly less thermostable than the 
wild type (Fig. 3A). This is in line with experimental findings by Reetz et al. that suggest that 
these mutants are thermodynamically less stable than the wild type [49]. In summary, these 
results demonstrate that CNA coupled with the ENTFNC approach can sense effects on the 
thermodynamic thermostability that arise from only a few sequence variations (pairwise 
sequence identity > 93%; pairwise RMSD < 0.38 Å). However, the false predictions for wild 
type BsLipA and mutant 6B are dissatisfying. 

--- Fig. 3 -- 
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Difference in unfolding pathways explains outliers 

Next, we investigated why the thermostabilities of the wild type and the mutant 6B were 
predicted falsely. Since the precision of the computations shown in Fig. 3A is high (the 
standard error in the mean is < 0.38 K in all cases), we reasoned that the false prediction must 
arise from a systematic difference between the wild type and 6B versus all other mutants of 
Rao et al. Thus, we mutually compared all unfolding pathways of the systems as described in 
“Materials and methods”. After partitioning unfolding pathways of BsLipA variants 
characterized on a residue basis by the percolation index pi into 10 clusters (see Figure S2 in 
the File S1 for the pi profiles of the 10 cluster medoids), we calculated correlation 
coefficients from the resulting cluster distributions for all pairs of variants (Fig. 4; Table S1 
and S2 in the File S1). 

These results revealed that the wild type enzyme shows an unfolding pathway distribution 
very distinct from other BsLipA variants from Rao et al. with correlation coefficients r 
ranging from −0.69 to 0.54 (Fig. 4, Table S1 in the File S1). The average r value for the wild 

type against all other variants from Rao et al. is −0.06  0.14 (mean  SEM), which is lower 
than that of the other variants (≥ 0.16 except for the outlier 6B) (Table S1 in the File S1). The 

second outlier, mutant 6B, has an average r value of 0.12  0.16 when comparing its 
unfolding pathway distribution to those of other variants from Rao et al. This average r value 
is lower than the corresponding average r values of all other mutants from Rao et al. 
(Table S1 in the File S1). The thermal unfolding pathway of 6B is shown in Figure S4 in the 
File S1. While the overall unfolding pathway of 6B is comparable with that of the wild type 
BsLipA in that the helices segregate from the giant rigid cluster as individual rigid clusters in 
the early phase of unfolding, they do so in a different order (αD, αA−αF, αE, αB−αC; Figure 
S4 in the File S1). A probability density function (PDF) of r values of unfolding pathway 
distributions of the two outliers wild type and mutant 6B with all other variants shows a 
bimodal distribution and is shifted towards lower r values compared to the PDF of the r 
values of other mutants from Rao et al. Furthermore, about half of this distribution is related 
to negative r values (Figure S5 in the File S1). In all, this suggests that the two outliers have 
unfolding pathways different from all other mutants from Rao et al. for which the prediction 
of thermodynamic thermostability was successful. Finally, we note that the unfolding 
pathway distributions of the wild type and the three mutants from Reetz et al. are highly 
similar to each other (r > 0.79; p ≤ 0.001; Table S2 in the File S1). 

These findings have important implications: First, the results strongly suggest that the 
misprediction of the thermostabilities of the wild type and mutant 6B arises from them 
showing different unfolding pathways from all of the remaining mutants from Rao et al.. 
Apparently, the present approach of identifying phase transition points by monitoring the 
global index Htype2 (see section “Local and global rigidity indices” in the File S1) is too 
sensitive with respect to the details of such pathways. Consequently, alternative methods 
should be explored (see section “Median stability of rigid contacts between residue neighbors 
as a new measure for predicting thermodynamic thermostability”). Second, the results 
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suggest that the history of the generation of the BsLipA structures may play a role for the 
observed differences in the unfolding pathways: generally, the most similar unfolding 
pathways (Table S1 and Table S2 in the File S1) (and then the most coherent Tp predictions) 
are found for those variants that originate from a common structural “ancestor” (Table 1). 
Third, the results propose to apply the similarity/dissimilarity of unfolding pathway 
distributions as a measure to judge the reliability of thermostability predictions in future 
studies: the lower the similarity for two variants, the less confident should one be that relative 
thermostability predictions are correct. Finally, we cannot exclude at the present stage that 
thermostabilizing mutations lead to an unfolding pathway that is different from the one of the 
wild type. Considering that intrinsic and extrinsic modifications in other systems that led to 
thermostabilization have been shown to influence not just the folded state but the entire 
(un)folding free energy landscape [77,78], this possibility also exists for BsLipA mutants 
[45,47]. 

Median stability of rigid contacts between residue neighbors as a new measure for 

predicting thermodynamic thermostability 

The above findings called for predicting the thermodynamic thermostability in a way that is 
less sensitive to the details of the unfolding pathway than the present approach relying on the 
global index Htype2. The sensitivity arises here from the need to accurately identify the phase 
transition point from the percolation behavior of the constraint network as the most 
pronounced jump in Htype2 during the unfolding (Figure S3 in the File S1). As shown 
previously, however, the percolation behavior of networks from protein structures is complex 
[13] (in contrast to that of network glasses [54,79]), reflecting that a protein structure is 
hierarchical and composed of modules. As a consequence, often more than one pronounced 
jump in Htype2 is observed, which then makes it difficult to assign a phase transition point 
(Figure S3 in the File S1). 

As an alternative, we set out to characterize thermodynamic thermostability at the local level 
[55], i.e., by monitoring residue pair-wise descriptors of local stability within a protein 
structure as a function of the temperature. The most comprehensive information in that 
direction is provided by stability maps [12], which depict when a rigid contact between two 
residues ceases to exist along a thermal unfolding trajectory. As such, a stability map denotes 
the distribution of flexibility and rigidity within the system, identifies regions that are flexibly 
or rigidly correlated across the structure, and provides information how these properties 
change during thermal unfolding [12,55]. To stress the locality of interactions within a 
protein, we focused on the stability of rigid contacts between structurally close residues only 
(i.e., those residues where at least one pair of respective atoms is within 5 Å distance). From 
this neighbor stability map, the median stability of rigid contacts ݎܿ , is defined as a 

new measure for predicting thermodynamic thermostability. With the ENTFNC approach used 
here, ݎܿ , were finally averaged over the entire ensemble of 2000 constraint 

networks. 
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A significant and fair correlation of ݎܿ , with Tm values of the thermodynamically 

stable mutants from Rao et al. is obtained (R2 = 0.46, p = 0.004; Fig. 3B). No outlier is 
observed now, indicating that our definition of an average local stability correctly reflects 
differences in the thermodynamic thermostability. As before, the mutants from Reetz et al. 
are found to have a lower thermodynamic thermostability than the wild type, in very good 
agreement with experimental findings (see above and Table 1) [49]. The ݎܿ ,-based 

measure is apparently less sensitive to differences in the unfolding pathway because the wild 
type and mutant 6B are now much better ranked. However, comparing the prediction of 
thermostabilities by ݎܿ , and Htype2, the latter yields a better correlation with Tm for 

mutants with similar unfolding pathways. From an application point of view, we thus 
recommend using Htype2-derived Tp values for comparing thermostabilities of variants of a 
protein unless the underlying unfolding pathways are dissimilar; in that case, we recommend 
using ݎܿ ,. 

When applied to hen egg white lysozyme the ENTFNC approach has been shown to 
significantly improve the robustness of rigidity analyses with respect to the conformation of 
the input structures [56]. To probe if this also holds for BsLipA investigated here, we 
computed ݎܿ , using the ENTFNC approach for five additional crystal structures of 

wild type BsLipA (see section “Materials and methods”). The standard error of the mean in 
ܿݎ , over all six wild type BsLipA structures is 0.57 K (Fig. 3B) including PDB ID 

1ISP discussed so far. This error is likely within the experimental uncertainty, confirming our 
previous results of robust rigidity analyses with ENTFNC [56]. Still, if the average 
ܿݎ , over all six crystal structures (315.9 K; see horizontal line in Fig. 3B; Table 1) is 

considered for the ݎܿ , versus Tm correlation, the quality of the correlation improves 

considerably to R2 = 0.55 (p = 0.001) compared to if only ݎܿ , of PDB ID 1ISP is 

used (see above). This indicates that the use of multiple input structures in connection with 
the ENTFNC approach further increases the accuracy of thermostability predictions. 

Influence of mutations on local structural rigidity 

Considering that the average local stability defined above correctly reflects differences in the 
(macroscopic) thermodynamic thermostability, we analyzed on a residue basis how changes 
in thermostability relate to changes in local structural stability (rigidity). First, we compared 
stability maps of variants from Rao et al. with distinct thermostabilities to analyze the effect 
of mutations on the local rigidity. In particular, we compared the wild type to a more 
thermostable variant 1-14F5 and the most thermostable variant 6B. We averaged stability 
maps of the six wild type structures (see above and Fig. 3B) and used this average for 
comparison against the thermostable variants of BsLipA. Difference stability maps for 
1-14F5/wild type (Fig. 5A) and 6B/wild type (Fig. 5B) pairs demonstrate that mutations in 
general improve the strength of rigid contacts to and in between neighboring residues of the 
mutations (lower triangles in Fig. 5A and B) but also in between residue pairs not in contact 
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distance (upper triangles in Fig. 5A and B). This effect is more pronounced for 6B/wild type 
than 1-14F5/wild type. 

In more detail, the four mutations (indicated by arrows in Fig. 5A and shown in Fig. 5D) on 
1-14F5 stabilize contacts of αD with its neighboring helix αC and contacts of αA with αF 
(Fig. 5A, D). More importantly, the contacts of helices αA and αF with their neighboring β-
strands in the central β-sheet region are stabilized, which delays the early loss of these helices 
observed during the thermal unfolding of the wild type (Fig. 2). Similarly, the contacts 
between αB and the central β-sheet region also become stronger, which delays the decay of 

structural stability of the -sheet during thermal unfolding. On average, contacts between all 
residue neighbors are ~−0.1 kcal mol−1 or ~2 K more stable in 1-14F5 than in the wild type. 

Residues mutated in 6B (indicated by arrows in Fig. 5B and shown in Fig. 5E) include the 
mutations already found in 1-14F5. This explains a strengthening of inter-helical contacts and 
of the contacts between α helices and the central β-sheet region as discussed already for 
1-14F5 (Fig. 5D, E). However, the additional mutations in 6B stabilize contacts between 
other α-helices (αD and αE) and the central β-sheet region and further reinforce those 
between αA or αF and the β-sheet. On average, contacts between all residue neighbors are 
~−0.4 kcal mol−1 or ~8 K more stable in 6B than in the wild type (Fig. 5E). 

Taken together, contacts between peripheral helices and the central β-sheet region are 
stronger in 6B than in 1-14F5. This delays the loss of α-helices during thermal unfolding 
(Fig. 2) to a larger extent in 6B than in 1-14F5, explaining at a structural level why 6B is 
more stable than 1-14F5. Remarkably, many of these stabilizations must arise from the long-
range aspect of rigidity percolation [52,64,80,81], because almost all mutations in 6B are on 
the surface, i.e., far from the central β-sheet region. In contrast, inter-helical contacts of the 
αB/αC helix pair become weaker in the mutants than in wild type (Fig. 5D, E) indicating that 
the strengthened stability between these helices and the central β-sheet region is sufficient to 
keep the structure folded. At last, for all other thermodynamically more thermostable 
mutants, a similar profile of changes in contact stability between various secondary structure 
elements was observed (Figure S6 in the File S1). Not unexpected, the increase in contact 
stability compared to wild type (Figure S6 in the File S1) was generally the more pronounced 
the higher the thermodynamic thermostability is of the mutant (Table 1). 

---Fig. 5--- 

Second, we compared the mutants from Reetz et al. to the wild type. Regarding mutant X, 
seven residues have been mutated (indicated by arrows in Fig. 5C and shown in Fig. 5G). In 
stark contrast to what was observed for the thermodynamically thermostabilized mutants, this 
mutant showed a destabilization of rigid contacts both locally and globally (Fig. 5C and F; 
see also Figure S7 in the File S1, where a similar finding is depicted for mutants IX and XI). 
For mutant X, the average decrease in stability over all residue neighbors is ~0.06 kcal mol-1 
or ~1.2 K. The destabilization found on the local scale agrees with results of a lower Tp found 
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when analyzing the mutants globally. Furthermore, the results are in line with experimental 
findings which suggest that the mutants are thermodynamically less stable than the wild type 
(Table 1) [49]. Our findings are also in good agreement with results obtained by comparative 
crystal structure analysis of wild type and variant X [49]: Loop region 14-21, for which lower 
B-factors in X than in the wild type structure were observed, shows increased contact 
stabilities with its neighboring residues in X (Fig. 5C and F; Figure S8 in the SI). Likewise, 
regions 129-153 and 177-181, for which higher B-factors in X than in the wild type structure 
were observed, show decreased contact stabilities with their neighboring residues in X (Fig. 
5C and F; Figure S8 in the SI). However, region 60-70 shows increased contact stabilities in 
X (Fig. 5C, F and Figure S8 in the SI) despite higher B-factors observed in the comparative 
crystal structure analysis. The latter may reflect increased motions of a stabilized region as a 
whole, taking into consideration that B-factors can report on rigid body motions of a 
structurally stable part [82]. 

Discussion 

Understanding the origin of thermostability is of fundamental importance in protein 
biochemistry. Here, we have probed the relation between protein thermostability and 
structural rigidity by directly analyzing static properties of a well-characterized set of 16 
BsLipA mutants. The main outcome of this work is the finding of a good correlation between 
the structural rigidity of all BsLipA variants and their thermodynamic thermostability. This 
finding of a quantitative relation between structural rigidity and thermodynamic 
thermostability within a series of closely related protein variants complements a previous 
study that showed for pairs of homologous proteins from thermophilic and mesophilc 
organisms that raising the structural stability is the most common way (~77% of all cases) to 
obtain a higher thermostability [84]. 

Intense discussions are ongoing regarding the question if elevated protein thermostability is 
related to increased or decreased structural rigidity of the folded state [10,18-23]. Part of this 
discussion is related to how information on structural rigidity is derived from information on 
mobility, in particular with respect to the temporal resolution of the experimental techniques 
and computational analysis [26-32]. In this context, the finding we describe here is highly 
relevant. As the rigidity theory-based CNA approach applied characterizes rigidity and 
flexibility of proteins directly, i.e., without the requirement of information on atomic 
movements, it does not suffer from such time dependence. Another part of the discussion is 
related to the fact that changes in the enthalpy, entropy and/or heat capacity can lead to 
thermodynamic stabilization; these changes can be linked to distinct effects on the structural 
stability of the folded state [19]. It was thus instructive to observe that the general increase in 
rigidity in the mutants of Rao et al. is accompanied by certain inter-helical contacts becoming 
weaker than in the wild type; these weakened contacts between the “modular” helices may 
increase the entropy of the folded state and so may further contribute to the overall stability 
of the systems [17,84,85]. This finding again calls attention to analyzing the origin of 
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thermostability with methods that cover a wide range of temporal and spatial resolution 
because otherwise one effect may be hidden beneath another.  

Our results are backed up with a careful validation of the accuracy and robustness of the 
CNA approach on the data set both from a macroscopic and microscopic point of view. As to 
the former, good and statistically significant correlations between experimental melting 
temperatures (Tm) of mutants of Rao et al. and predicted thermodynamic thermostabilities 
have been found based on two independent measures (Htype2 and ݎܿ ,), as was 

correctly predicted that the thermodynamic thermostability of the mutants of Reetz et al. is 
lower than that of the wild type. Furthermore, ݎܿ ,-based predictions of the 

thermodynamic thermostability on six crystal structures of wild type BsLipA revealed a 
standard error of the mean likely within experimental error, confirming previous results of 
robust rigidity analyses when applying the ENTFNC approach [56]. As to the latter, the 
detailed analysis of the unfolding pathway of wild type BsLipA revealed a good agreement 
with respect to the early segregation of α-helices with experimental observations on other 
proteins with an α/β hydrolase fold. These findings are in line with previous successful 
applications of CNA in predicting melting temperatures and identifying structural weak spots 
[11-13]. 

From a methodological point of view, some additional comments are in order. First, in the 
present study we successfully predicted the thermodynamic thermostability for mutants that 
differ by as few as three to twelve mutations from the wild type. Compared to previous 
applications of CNA on either pairs of mesophilic and thermophilic homologues [12,13] or a 
series of homologous proteins from different organisms living at varying temperatures [11], 
this finding considerably broadens the application domain of CNA towards data-driven 
protein engineering: There, related series of mutants with only a small number of respective 
mutations will be the major focus of investigations. Second, we introduced a measure for the 
similarity/dissimilarity of unfolding pathways of mutants and used it for explaining false 
thermostability predictions. This suggests to use the measure in future studies as a 
significance criterion to judge the reliability of thermostability predictions from CNA. Third, 
we introduced the median stability of rigid contacts as a new local measure for predicting 
thermodynamic thermostability and showed that this measure is less sensitive to details of the 
unfolding pathway. The measure is thus recommended for comparing thermostabilities of 
mutants the underlying unfolding pathways of which are dissimilar. 

Finally, regarding the subset of mutants of Reetz et al., we find a decreased local rigidity 
compared to wild type, in line with findings of lower unfolding initiation temperatures, yet 
the mutants are more “thermostable” than the wild type in that they preserve enzymatic 
activity better after subjecting them to higher temperatures [42]. It would have been tempting 
to investigate how this relates to a potential kinetic stabilization of the mutants. However, we 
refrained from doing so due to the lack of direct experimental evidence for such a kinetic 
stabilization [49]. In turn, this finding draws attention to the fact that the term “protein 
thermostability” is often used in a non-discriminating sense, i.e., data reported in the 
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literature does not allow to establish whether a protein is thermodynamically or kinetically 
stable [49]. This adds another layer of complexity to the question of the relation between 
protein thermostability and structural rigidity as it may be required to decouple observations 
on “increased vs. decreased structural rigidity” from the general description of “protein 
thermostability” in future studies. 
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Figure legends 

Fig. 1. Cartoon representation of wild type BsLipA with mutated residues indicated by 

spheres of their C atoms (mutations from Rao et al. [44-48]: magenta; Reetz et al. [42,49]: 
orange; mutations common in both data sets: cyan). The catalytic triad (Ser77-Asp133-
His156) is shown in stick representation with yellow carbons. The protein is colored 
according to secondary structure (α-helices: red; β-sheets: yellow; loops: green). The right 
view (B) differs from the left (A) by an anti-clockwise rotation of ~90° about a horizontal 
axis. All figures of BsLipA structures were generated with PyMOL (http://www.pymol.org). 

Fig. 2. Average loss of structural rigidity of the wild type BsLipA during a thermal unfolding 
simulation. Rigid clusters are depicted as uniformly colored bodies, with the largest rigid 
cluster shown in blue and smaller rigid clusters in the order of the colors green, magenta, 
cyan, orange, and violet. Temperatures are indicated for each depiction of a rigid cluster 
decomposition. At the beginning of the thermal unfolding simulation (302 K), almost the 
complete structure is part of the giant rigid cluster; in contrast, the structure becomes 
completely flexible at temperatures ≥ 374 K. The right views differ from the left ones by an 
anti-clockwise rotation of ~90° about a horizontal axis. Important secondary structure 
elements are labeled. Note that the unfolding pathway shown here represents an average loss 
of rigidity percolation calculated from a stability map (see section “Local and global rigidity 
indices” in the File S1) averaged over all unfolding trajectories obtained for the ensemble of 
2000 network topologies. Hence, the temperature at the phase transition point identified that 
way (Figure S3) cannot be compared to the average phase transition temperature, which is 
obtained from 2000 individual Tp values and used for predicting the thermodynamic 
thermostability of BsLipA variants (see section “Prediction of thermodynamic thermostability 
of BsLipA variants”). 

Fig. 3. Correlation between predicted and experimental thermostabilities (Tm values) of 
BsLipA variants; for the predictions, the ENTFNC approach was used. A: Correlation between 
Tp derived from the global index Htype2 and Tm values for thermodynamically 
thermostabilized mutants from Rao et al. Data points colored red were considered outliers 
(see main text for explanation) and excluded when calculating R2 values and the correlation 
lines. B: Correlation between ݎܿ , and Tm values for thermodynamically 

thermostabilized mutants from Rao et al. Data points shown as empty squares represent 
ܿݎ , values for five additional wild type crystal structures (see main text for details; 

two of the squares closely overlap; mean ݎܿ , over all six data points for wild type 

structures is shown as a small horizontal line: 315.9  0.6 K). A and B: Error bars represent 
the standard error in the mean. Tp and ݎܿ , values for kinetically thermostabilized 

mutants from Reetz et al. are marked by arrows on the corresponding ordinates. 

Fig. 4. Pairwise correlations of cluster distributions (using 10 clusters) of unfolding pathways 
of wild type BsLipA and mutants from Rao et al. The upper triangle shows pairwise 
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correlation coefficients as dial plots where a filled portion of a pie indicates the magnitude of 
the correlation (r) and blue (red) color indicates a positive (negative) correlation. The lower 

triangle shows 68% data ellipses (depicting the bivariate mean  1 standard deviation) [86] 
and scatterplots of the respective cluster distributions (frequencies of network topologies in 
each of the 10 clusters) of the two BsLipA variants as red lines smoothed by locally-weighted 
polynomial regression [87]. Axes for the plots in the lower triangle are omitted for clarity. 
The figure was generated using the “corrgram” package [88] of the R program (http://www.r-
project.org). 

Fig. 5. Differences in the stability of rigid contacts between wild type and mutants of 
BsLipA. Maps depict differences between stability maps of the respective mutants and an 
average stability map of the six wild type structures (see the main text for explanation) for A: 
mutant 1-14F5, B: mutant 6B, and C: mutant X. A red (blue) color indicates that a rigid 
contact in the mutant is more (less) stable than in the wild type (see color scale at the 
bottom). The upper triangles show differences in the stability values for all residue pairs; the 
lower triangles show differences in the stability values only for residue pairs that are within 
5 Å of each other, with values for all other residue pairs colored gray. Secondary structure 
elements as computed by the DSSP program [89,90] are indicated on both abscissa and 
ordinate and are labeled: α-helix (red rectangle), β-strands (green rectangle), loop (black 
line). Arrows represent the mutation positions with respect to the wild type sequence: 
Common mutations in 1-14F5 (A) and 6B (B) are shown in magenta, unique mutations in 6B 
(B) are shown in green, and mutations in X (C) are shown in orange. The differences in the 
stability of rigid contacts for residue neighbors is also displayed on the structures of the 
mutants by sticks connecting Cα atoms of residue pairs colored according to the color scale of 
the maps for D: 1-14F5, E: 6B, and F: X. Only those contacts that are stabilized by ≥ 4 K or 
destabilized by ≥ 3 K are shown for clarity; for the same reason, contacts between two 
residues of the same secondary structure element are not shown. Mutated residues are shown 
as sticks and a sphere at their Cα atoms (D, E, and F) in the same color used for arrows (A, B, 
and C). 
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Tables 

Table 1: Summary of BsLipA variants used in the study. 

BsLipA 
variant[a] 

PDB 
ID[b] 

Resolu
tion[c] 

Mutations Tm (K) Ti (K)
[d] 

T50 (K) ݎܿ , 
(K) [e] 

Refere
nce 

Wild 
type 

1ISP 1.3 − 329.15 324.95 321.15[f] 317.4 
(315.9)[h] 

[39,42,
44] 

IX 1ISP* − K112D, M134D, 
Y139C, I157M 

− 318.75 335.95[g] 313.5 [42,49] 

X 1ISP* − R33Q, D34N, 
K35D, K112D, 
M134D, Y139C, 

− 321.65 362.15[f] 314.5 [42,49] 

XI 1ISP* − R33G, K112D, 
M134D, Y139C, 
I157M 

− 322.45 366.15[f] 314.9 [42,49] 

TM 1T2N 1.8 L114P, A132D, 
N166Y 

334.35 − − 317.6 [44] 

1-14F5 1T2N* - TM + N89Y 336.15 − − 319.5 [44] 

1-17A4 3D2A 1.73 TM + I157M 336.55 − − 319.9 [44] 

1-8D5 1T2N* − TM + F17S 337.55 − − 316.3 [44] 

2D9 3D2B 1.95 TM + F17S, 
N89Y, I157M 

340.55 − − 319.7 [44] 

3-18G4 3D2B* − 2D9 + G111D 341.55 − − 318.5 [44] 

3-11G1 3D2B* − 2D9 + A20E 341.75 − − 319.6 [44] 

3-3A9 3D2B* − 2D9 + A15S 341.85 − − 317.5 [44] 

4D3 3D2C 2.18 2D9 + A15S, 
A20E,G111D 

344.35 − − 323.6 [44] 

5-D 3D2C* − 4D3 + S163P 345.35 − − 320.0 [45] 

5-A 3D2C* − 4D3 + M134E 346.05 − − 319.4 [45] 

5-B 3D2C* − 4D3 + M137P 347.25 − − 320.5 [45] 

6B 3QMM 1.89 4D3 + M134E, 
M137P, S163P 

351.35 − − 324.0 [47] 

[a] Names of BsLipA structures are taken from the respective references. 
[b] A PDB ID marked with an asterisk indicates that the model of the corresponding variant 

was built using the structure with that PDB ID as a template. 
[c] In Å. 
[d] The temperature at which the unfolding transition begins. 
[e] Median stability of rigid contacts between residue neighbors computed by applying the 

ENTFNC approach (see section “Median stability of rigid contacts between residue 
neighbors as a new measure for predicting thermodynamic thermostability”). 

[f] T50
60 values, i.e., the temperature required to reduce the initial enzymatic activity by 50% 

within 60 min. 
[g] T50

15 values, i.e., the temperature required to reduce the initial enzymatic activity by 50% 
within 15 min. 

[h] Average ݎܿ , over six wild type structures (see the main text for details). 
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Supplemental Methods 

 

Body-and-bar networks 

In body-and-bar networks, atoms are considered bodies with six degrees of freedom, and 

each bar between two bodies removes one degree of freedom. Depending on the strength of 

an interaction between two atoms, a constraint can be modeled as any number of bars 

between one and six with six bars completely freezing the motion between two atoms [1,2]. 

As done previously [3-6], covalent bonds were modeled with five (single bonds) and six 

(peptide and double bonds) bars, whereas hydrophobic tethers and hydrogen bonds (including 

salt bridges; together referred to as hydrogen bonds here) were modeled with two and five 

bars, respectively. A modified version of the potential by Mayo and coworkers [7] as 

described in ref. [8] was used to calculate hydrogen bond energies EHB; hydrogen bonds with 

energies lower than a certain cutoff Ecut were included in the network (see “Thermal 

unfolding simulation” section in the main text for details). Hydrophobic constraints were 

considered between pairs of carbon and/or sulfur atoms according to a Gaussian probability 

function depending on the distances between the atoms (dij), the sum of their van der Waals 

(dvdw) radii (C: 1.7 Å; S: 1.8 Å), and the full width at half maximum Dcut (eq. S1; see ref. [3] 

for details). 

 

 
(S1)

 

Local and global rigidity indices 

From a thermal unfolding trajectory, one can calculate both residue-level (local) and overall 

(global) rigidity characteristics of a protein [9]. Local indices can be used to investigate 

specific questions regarding the stability and activity of a protein. In the present study, the 

stability map rcij introduced by us in ref. [5] was used to characterize the local rigidity of 

BsLipA and to understand the influence of mutations. A stability map is derived by 

identifying “rigid contacts” between two residues i and j that are represented by their Cα 

atoms. A rigid contact exists if the two residues belong to the same rigid cluster. During a 

thermal unfolding simulation, stability maps are then constructed in that, for each residue 

pair, Ecut (or, equivalently, a temperature derived from the relationship T = f(Ecut) described in 
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refs. [4,5]) is identified at which a rigid contact between these residues is lost. In that respect, 

the stability map is a two-dimensional itemization of the local rigidity index as detailed in ref. 

[9]. When filtered such that only rigid contacts between residues that are 5 Å apart from each 

other (measured as the distance between the closest atom pair from the two residues) are 

considered, a neighbor stability map results. This map helps focusing on short-range residue 

contacts that can be directly modulated by mutagenesis with the aim to stabilize them for 

improving the overall stability of a protein. 

In addition, the (local) percolation index pi introduced by us in ref. [9] was used to 

characterize thermal unfolding pathways of the BsLipA structures. The percolation index 

monitors the percolation behavior (i.e., the loss of rigidity when diluting the constraint 

network) of a biomolecule on a microscopic level and so allows identifying the hierarchical 

break-down of the giant percolating cluster during a thermal unfolding simulation. The giant 

percolating cluster is the largest rigid cluster present at the highest Ecut value (i.e., at the 

lowest temperature at the beginning of a thermal unfolding simulation) with all constraints in 

place. More technically, pi monitors the Ecut at which a bond segregates from the giant 

percolating cluster during a thermal unfolding simulation. For a Cα atom-based 

representation, the lower of the pi values of the two backbone bonds is considered. 

Global indices help identifying phase transition temperatures Tp at which a network switches 

from being largely rigid to largely flexible. Previously, we showed that Tp identified by a 

modified cluster configuration entropy Htype2 [4,9] can be used for predicting the 

thermodynamic thermostability of and identifying structural weak spots in a protein [4-6]. 

The cluster configuration entropy has originally been introduced by Andraud et al. [10] as a 

morphological descriptor for heterogeneous materials and is adapted from Shannon’s 

information theory. Htype2 monitors the degree of disorder in the realization of a given 

network state: As long as a network is dominated by a very large rigid cluster, Htype2 tends to 

be low because there are only a few configurations of a system with a large rigid cluster 

possible; Htype2 increases when larger rigid clusters break down in smaller clusters. The Htype2 

versus T curve obtained from a thermal unfolding simulation was fitted with a double 

sigmoid [11] as done previously [6], and the temperature Tp was identified as the inflection 

point of the sigmoid with the larger difference in the asymptote values. This way, in most 

cases, a late transition involving the final decay of the giant percolating cluster is identified as 

Tp [5].  
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Table S2. Pairwise Pearson correlation coefficients r (upper triangle) and corresponding p 
values (lower triangle) between cluster distributions of unfolding pathways of wild type 
BsLipA and mutants from Reetz et al. 

 
Wild type IX X XI 

Wild type 0.86 0.91 0.87 
IX 0.001 0.87 0.79 
X < 0.001 0.001 0.97 
XI 0.001 0.007 < 0.001 
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Abstract 

Protein thermostability is a crucial factor for biotechnological enzyme applications. Protein 
engineering studies aimed at improving thermostability have successfully applied both 
directed evolution and rational design. However, for rational approaches, the major challenge 
remains the prediction of mutation sites and optimal amino acid substitutions. Recently, we 
showed that such mutation sites can be identified as structural weak spots by rigidity theory-
based thermal unfolding simulations of proteins. Here, we describe and validate a novel, 
unique, ensemble-based, yet highly efficient strategy to predict optimal amino acid 
substitutions at structural weak spots for improving a protein’s thermostability. For this, we 
exploit the fact that in the majority of cases an increased structural rigidity of the folded state 
has been found as the cause for thermostability. When applied prospectively to the lipase A 
from Bacillus subtilis, we achieved both a high success rate in predicting thermostabilized 
lipase variants based on a single amino acid mutation and a remarkably large increase in 
those variants’ thermostability. The results suggest that our strategy is a valuable complement 
to existing methods for rational protein design aimed at improving thermostability. 
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Introduction 

Thermostability is a crucial factor for a wealth of biotechnological enzyme applications in 
chemical, environmental, cleaning, sensory, and pharmaceutical processes.1, 2 Protein 
engineering aimed at improving thermostability is thus an important field of research in 
biotechnology. 3, 4 In this context, methods of directed evolution are usually applied, which 
mimic natural evolution by employing cycles of random mutagenesis/expression/selection 
leading to variants with desired properties.5-13 However, directed evolution is limited by the 
fact that out of the extraordinarily large number of possible variant proteins, usually only a 
small subset can be experimentally tested for thermostability.14 Alternatively, rational 
approaches have been successfully pursued,15-18 but the major challenge here remains the 
prediction of mutation sites and the optimal amino acid substitution.19, 20 

Regarding the prediction of mutation sites, we developed the rigidity theory-based Constraint 
Network Analysis (CNA) approach and implemented it as a web service (http://cpclab.uni-
duesseldorf.de/cna/),21-26 which allows identifying residues in a protein that are structural 
“weak spots”. For this, a protein is modeled as a network of sites (atoms) and constraints 
(covalent and noncovalent interactions),27 and then rigid atom clusters and flexible regions in 
between are rigorously determined by rigidity analysis.28-30 By successively removing non-
covalent constraints from the network, the thermal unfolding of the protein is simulated.21-23, 

31 From the thermal unfolding trajectory, a phase transition temperature Tp is identified, 
which relates to the (thermodynamic) thermostability, as are the weak spots. Mutating such 
weak spots should highly likely improve a protein’s thermostability.21-23 

Here, we describe and validate a novel and unique strategy based on the CNA approach to 
predict optimal amino acid substitutions at these weak spots for improving a protein’s 
thermostability. For this, we exploit the fact that in the majority of cases an increased 
structural rigidity of the folded state has been identified as the underlying cause for 
thermostability.32 We do so by adding a highly efficient, ensemble-based second step 
consisting of the generation of structural models of single-point site-saturation mutations at 
identified weak spots, the filtering of the models with respect to their structural quality, and 
the screening for variants with increased structural rigidity. Using a recently developed 
approach33 that performs rigidity analyses on an ensemble of network topologies generated 
from a single input structure, rather than a structural ensemble, this second step only takes 
about 1 h per variant and can be performed in parallel for multiple variants. We have applied 
this approach prospectively using as a model enzyme the lipase LipA from Bacillus subtilis 
(BsLipA), which is the smallest lipase known (consisting of 181 amino acids) and has 
considerable biotechnological importance.34, 35 Out of 589 BsLipA variants screened in silico, 
twelve were suggested for experimental testing. Of these, three showed a significant increase 
of up to 6.6°C in thermostability with respect to the wild-type enzyme (WT). We thus 
achieved both a high success rate in predicting thermostabilized lipase variants and a 
remarkably large increase in the thermostability of such variants. This demonstrates the value 
of this innovative approach, which extends the existing portfolio of methods for rational 
protein design aimed at improving thermostability. 
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Materials and methods 

Predicting protein thermostability by Constraint Network Analysis 

Constraint Network Analysis (CNA) predicts rigid and flexible regions within a biomolecule, 
which allows linking these static characteristics to the molecule’s stability and function.25, 26 
CNA has been described in detail in refs.25, 26, 33, 36 The approach has been used previously to 
predict the (thermodynamic) thermostability of proteins and to identify weak spot residues 
that, when mutated, are likely to improve thermostability.21-23 In CNA, a protein is modeled 
as a body-and-bar network of bodies (atoms) and bars (covalent and noncovalent 
interactions). Each atom has six degrees of freedom, and each bar removes one degree of 
freedom.27 An interaction between two atoms can be modeled as any number of bars between 
one and six depending on the strength of the interaction. Here, single covalent bonds (double 
and peptide bonds) were modeled as five (six) bars, hydrogen bonds and salt bridges 
(together referred to as “hydrogen bonds”) as five bars, and hydrophobic interactions as two 
bars. For hydrogen bonds a hydrogen bond energy EHB is computed by a modified version of 
the potential by Mayo and coworkers 37 as described in ref. 31. 

By successively removing noncovalent constraints from a network, a thermal unfolding of the 
protein is simulated.21-23, 31 Hydrogen bonds are removed from the network in increasing 
order of their strength,37 i.e., hydrogen bonds with an energy EHB > Ecut(σ) are discarded from 
the network of state σ. In the present study, Ecut values ranging from −0.1 kcal mol−1 to 
−6.0 kcal mol−1 with a step size of 0.1 kcal mol−1 were used. Ecut can be converted to a 
temperature using a linear relation introduced by Radestock and Gohlke,21, 22 according to 
which the range of Ecut used in this study is equivalent to increasing the temperature of the 
system from 302 K to 420 K with a step size of 2 K. The rigidity of each network state σ 
during the thermal unfolding simulation is analyzed by the pebble game algorithm28, 29 as 
implemented in the FIRST program.30 From these analyses, the change in the global rigidity 
characteristics are monitored by the cluster configuration entropy Htype2.

36 Finally, a phase 
transition temperature Tp is identified as the temperature when a largely rigid network 
becomes largely flexible. We showed that Tp can be used for predicting the thermodynamic 
thermostability of and identifying structural weak spots in a protein.21-23 Usually, multiple 
phase transitions occur during the thermal unfolding of a protein because of its modular 
architecture, i.e., secondary structure elements can segregate from the largest rigid cluster as 
a whole.22 In contrast to global indices, local indices monitor rigidity at a residue level. One 
such index, the rigidity index ri, is defined for each covalent bond i between two atoms as the 
Ecut value during the thermal unfolding simulation at which the bond changes from rigid to 
flexible.36 For a Cα atom-based representation, the average of the two ri values of the two 
backbone bonds is taken. As a two-dimensional itemization of ri, a stability map rcij indicates 
for all residue pairs the Ecut value at which a rigid contact between the two residues i, j is lost, 
i.e., when the two residues stop belonging to the same rigid cluster. From rcij, a rigid cluster 
decomposition, i.e., a set of rigid clusters and flexible links in between, can be computed for 
each network state σ during the thermal unfolding simulation. 
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Rigidity analyses are sensitive with respect to the input structure.38, 39 For improving the 
robustness, CNA is carried out on a structural ensemble derived from molecular dynamics 
(MD) simulations, and then results (Tp values and stability maps) are averaged.23 

Generation of a structural ensemble of wild-type BsLipA 

MD simulations of WT BsLipA were performed using the GPU accelerated version of 
PMEMD40 of the AMBER 11 suite of programs41, 42 together with the ff99SB force field.43 
The X-ray crystal structure of BsLipA with the highest resolution (PDB ID: 1ISP; resolution 
1.3 Å) was used as input structure.44 Hydrogen atoms were added using the REDUCE 
program45 during which side-chains of Asn, Gln, and His were flipped if necessary to 
optimize the hydrogen bond network. Then, the system, neutralized by addition of sodium 
counter-ions, was solvated by a truncated octahedral box of TIP3P46 water such that a layer of 
water molecules of at least 11 Å width covers the protein surface. The particle mesh Ewald 
method47 was used with a direct-space non-bonded cutoff of 8 Å. Bond lengths involving 
hydrogen atoms were constrained using the SHAKE algorithm,48 and the time step for the 
simulation was 2 fs. After equilibration, a production run of unrestrained MD in the canonical 
ensemble (NVT) was performed to generate a trajectory of 100 ns length, with conformations 
extracted every 40 ps from the last 80 ns resulting in a structural ensemble of 2000 
conformations. 

Weak spot identification and prioritization 

The structural ensemble of 2000 conformations of WT BsLipA (see above) was submitted to 
CNA (Figure 1-I). A thermal unfolding trajectory showing average rigid cluster 
decompositions during the thermal unfolding simulation was reconstructed from the average 
stability map (Figure 1-II). The thermal unfolding trajectory was visually inspected for 
identifying transitions at which the rigidity of WT BsLipA is substantially reduced. For the 
inspection, the VisualCNA software, a graphical user interface for CNA, (P. C. Rathi, D. 
Mulnaes, H. Gohlke, unpublished results) was applied. The inspection was done with a view 
that rigidifying contacts between the largest rigid cluster and residues that segregate at these 
substantial phase transitions should improve the thermostability of the protein by delaying the 
disintegration of the largest rigid cluster. Accordingly, at every transition, residues that are in 
the neighborhood of, and whose side-chains point towards the largest rigid cluster from 
which they segregated, were identified as potential weak spots (Figure 1-III). Weak spot 
residues that showed a high sequence conservation (≥ 80% identity) in a multiple sequence 
alignment of 296 lipase class 2 sequences obtained from the Pfam database49 were not 
considered any further (Figure 1-IV). 

--- Figure 1--- 

Modeling of single-point site-saturation mutations 

Structures of all possible mutations at each weak spot residue were generated by the SCWRL 
program50 using WT BsLipA (PDB ID: 1ISP) as a template (Figure 1-V). SCWRL constructs 
variant models by predicting backbone-dependent side-chain conformations with the help of 



Publication VII 

 
173 

a rotamer library; coordinates of backbone atoms remain unchanged. Conformations of side-
chains of all residues within 8 Å of a mutated residue were re-predicted in order to allow for a 
local structural relaxation. The goodness of fit of the mutated side-chain in its environment 
was assessed using the ANOLEA server,51 which provides residue-wise non-local (with 
respect to sequence space) interaction energies using a knowledge-based potential of mean 
force.52 A variant was discarded if its average ANOLEA energy of the neighboring residues 

( 5 Å of the mutation) is higher than the average energy of the same residues in WT by 

 2 kcal mol-1. For all variant structures, hydrogen atoms were added using REDUCE45 in an 
identical way as done for WT BsLipA. Finally, the structures were minimized by 2000 steps 
of conjugate gradient minimization (including an initial steepest descent minimization for 
100 steps) or until the root mean-square gradient of the energy was < 1.0·10-4 kcal mol-1 Å-1. 
The energy minimization was carried out with Amber1141 using the ff99SB force field43 and 
the GBOBC generalized Born model 53 for modeling solvation effects. 

Thermostability prediction and prioritization of variants 

In order to circumvent compute-intensive MD simulations for generating structural 
ensembles of each of the BsLipA variants, the more efficient ENTFNC approach introduced 
recently by Pfleger et al.33 was used in connection with thermal unfolding simulations as 
implemented in the CNA software25. Here, rigidity analyses are performed on an ensemble of 
network topologies generated from a single input structure by using fuzzy noncovalent 
constraints. Ensembles of 1000 network topologies of all single point variants of BsLipA 
were analyzed; for consistency, the WT BsLipA structure was treated in the same way 
(including an energy minimization as described above). For each variant and WT, Tp was 
automatically identified as the inflection point of the sigmoid with the larger change in Htype2 
using a double sigmoid function23 fitted to Htype2 vs. T curves. That way, in most cases, a late 
transition involving the final decay of the largest rigid cluster is identified as Tp 

22 except 
when a very large loss of rigidity occurs during an early transition. Based on ensemble-
averaged Tp (Figure 1-VI), variants were selected for experimental characterization of their 
thermostability. Table S1 in the Supporting Information (SI) summarizes the computing times 
required for the weak spot identification, site saturation mutagenesis, and screening for 
increased structural rigidity. 

Materials 

Phusion high fidelity polymerase, dNTPs, and the BCA protein quantification kit were 
obtained from Thermo Scientific (St. Leon Rot, Germany). Plasmid isolation and PCR 
cleanup was performed using the purification kits from Analytik Jena (Jena, Germany). 
Sequencing and synthesis of oligonucleotides was carried out by MWG eurofins (Ebersberg, 
Germany). The substrates for activity assays (p-nitrophenyl-palmitate (pNPP), p-nitrophenyl-
decanoate (pNPD)) were purchased from Sigma Aldrich (Hamburg, Germany). Ni-NTA 
superflow resin and disposable PD-10 desalting columns were purchased from Macherey-
Nagel (Düren, Germany). 
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Site directed mutagenesis 

The lipA gene from B. subtilis encoding lipase without its signal sequence was cloned into 
pET22b+ (Novagen) with an N-terminal hexahistidine-tag fusion for purification. The site 
directed mutations (Table S2 in the SI) were introduced with a modified Quikchange® 
protocol.54 The amplification was carried out in two separate 25 µl reactions with each 10-50 
ng of template, 0.2 pM of either the forward or reverse primer (Table S2 in the SI), 0.2 mM 
dNTPs, 3% DMSO (v/v), and 1 U of Phusion polymerase in Phusion GC-buffer containing 
7.5 mM MgCl2. PCR conditions as follows: initial denaturation at 98°C for 10 min followed 
by 23 cycles of 98°C for 1 min, 55°C for 1 min, and 68°C for 3.5 min followed by final 
elongation at 68°C for 7 min. The PCR was paused after 5 cycles to combine the forward and 
reverse primer reaction and continued for the remaining 18 cycles. Template DNA was 
removed with 30U DpnI at 37°C for 16 h. The hydrolysis reaction was stopped at 75°C for 20 
min followed by a PCR clean up and eluted into 10 µl ddH2O. An aliquot of 1 µl was 
transformed into E. coli DH5α electrocompetent cells and plated on selective LB plates. The 
plasmid DNA of the positive transformants was isolated and sequenced to ensure the 
successful site directed mutagenesis. Plasmid DNA with the desired mutation in lipA was 
stored at -20°C. 

Cultivation and protein purification 

The wild-type enzyme LipA and twelve variants were expressed in E. coli BL21(DE3) from a 
T7 promoter. An aliquot of 50 µl chemically competent E. coli BL21(DE3) was transformed 
with 1 µl of plasmid DNA, and cells were grown overnight in 10 ml selective LB media. This 
preculture was used to inoculate the main expression culture in 250 ml of TB autodinducing 
media in a 5 l shaking flask, shaken at 150 rpm for 3 h at 37°C followed by 72 h at 15°C. 
Cells were collected by centrifugation for 45 min at 5000 rpm and lysed by passing three 
times through a French pressure cell at 500 bar (lysis buffer: 50 mM NaH2PO4, 300 mM 
NaCl adjusted to pH 8). The soluble fraction was incubated 30 min under mild agitation with 
1 ml Ni-NTA Superflow Resin (Qiagen). The resin was then washed with 50 ml of 20 mM 
imidazole on a gravity flow column after which the protein was eluted with 250 mM 
imidazole into fractions of 1.5 ml each until there was no absorption detectable at 280 nm. 
The fractions with the highest absorption at 280 nm were applied to a disposable PD-10 
desalting column according to manufacturer’s description to remove imidazole. The protein 
concentration of the desalted sample was measured using the Micro BCA protein assay 
reagent (Thermo scientific), with bovine serum albumin in concentrations of 25 – 2000 µg/ml 
as a standard.55 The sample purity was analyzed by SDS-PAGE (Figure S1 in the SI). 

Thermostability assay 

The protein concentration was adjusted to 0.3 mg/ml in 10 mM glycine buffer pH 11 as 
determined by a BCA measurement. The enzyme stock was diluted 10-fold into 50 µl of 
50 mM NaPi/KPi pH 7 and incubated at different temperatures between 40°C to 60°C in a 
PCR cycler. The lipase activity was measured with a pNPP substrate solution56 (1.6 mM 
pNPP, 10% isopropanol, 50 mM NaPi/KPi pH 7, 1 mg/ml gum arabic, 2 mg/ml sodium 
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desoxycholate) warmed up in a separate PCR cycler 5 min prior to the measurement. For the 
measurement 50 µl of substrate solution were added to 50 µl of the sample, and the 
hydrolysis rate was quantified by the change in absorption at 410 nm for the duration of 5 
min in a SpectraMax Plus plate reader (Molecular Devices, Sunnyvale, CA). 

Michaelis-Menten kinetics 

The initial rates of hydrolysis as a function of the substrate concentration were measured by 
following the change in absorption at 410 nm for 60 s with 10 s lag time in 1 ml disposable 
cuvettes using a SpectraMax Plus plate reader with a built in cuvette port (Molecular 
Devices, Sunnyvale, CA). The substrate pNPP is thermostable and was thus chosen for the 
thermostability assays; however, its low solubility at higher concentrations did not allow 
determining kinetic parameters. Therefore, kinetic constants were determined using the 
substrate pNPD, which is less stable but soluble also at higher concentrations. The 
measurement was started by mixing 990 µl of a 40°C substrate solution (6 – 1600 µM pNPD 
in 10% isopropanol, 50 mM NaPi/KPi pH 7, 1 mg/ml gum arabic, 2 mg/ml sodium 
desoxycholate) with 10 µl of room temperature enzyme solution (0.05 mg/ml in 50 mM 
NaPi/KPi pH 7, 1 mg/ml gum arabic, 2 mg/ml sodium desoxycholate). The KM and kcat values 
for each variant were derived by nonlinear fitting of the Michaelis–Menten curve using the 
software Graphpad PRISM (GraphPad Software, Inc., San Diego, CA) and the protein 
concentration from a BCA measurement as described earlier. 

Results and discussion 

Weak spot identification for BsLipA 

BsLipA is a protein of 181 amino acids with a minimal α/β hydrolase fold; in this fold, a 
central parallel β-sheet of six β-strands is surrounded by six α-helices. Ser77, Asp133, and 
His156 constitute the catalytic triad.57 For identifying weak spots on WT BsLipA, initially, a 
thermal unfolding simulation was carried out by CNA on an ensemble of 2000 WT BsLipA 
structures extracted from a MD trajectory of 100 ns length. The ensemble-based CNA was 
pursued to increase the robustness of the rigidity analyses.23, 33, 38, 39 An average unfolding 
trajectory was then reconstructed from the average stability map (Figure 2). The unfolding 
involves early segregation of loops from the largest rigid cluster, followed by the segregation 
of α-helices and, finally, the segregation and disintegration of the β-sheet region. This order 
of segregation is in agreement with experimental findings on the unfolding of α/β hydrolase 
proteins:58, 59 Unfolding studies of human placental alkaline phosphatase59 and 1H-3-
hydroxy-4-oxoquinaldine 2,4-dioxygenase58 showed an early loss of α helices, but only very 
little change in β-strand content until the late stage of the unfolding. The apparently realistic 
description of WT BsLipA thermal unfolding encouraged us to identify weak spots at major 
phase transitions along the unfolding trajectory. The procedure is at variance with previous 
studies in which weak spots were identified only at the last major phase transition related to 
the terminal loss of rigidity in the protein.21-23 The procedure followed here has the advantage 
that it allows evaluating whether strengthening residues that segregate earlier from the largest 
rigid cluster will also lead to a protein’s thermostabilization. 
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By visual inspection of the unfolding trajectory, we identified five major transitions (T1-T5) 
at which secondary structure elements αA, αF, αD and αE, αB, as well as αC and the central 
beta sheet segregate from the largest rigid cluster at temperatures 316, 318, 334, 336, and 338 
K, respectively (Figure 2 and Table 1). Note that the reported temperatures should be 
considered relative values only as stated previously.22, 24, 25 Weak spot residues were then 
identified as those residues that are in the neighborhood of the largest rigid cluster from 
which they segregate at the respective major transition. This follows the rationale that these 
residues are particularly promising for increasing BsLipA’s thermostability considering that 
their mutation can improve the interaction strength with the largest rigid cluster and, hence, 
delay the disintegration of that cluster with increasing temperature. In total, 36 weak spots 
were identified, which are located on α-helices and loops joining α-helices and β-strands 
(Figure 2). The weak spot residues are very diverse in size (ranging from Gly to Trp) and 
physicochemical properties (charged, uncharged polar, and hydrophobic) (Table 1). Finally, 
weak spot residues at highly conserved sequence positions were discarded (Table 1, Figure 
S2 in the SI). This was done because conserved residues are usually important for function 
and/or stability of a protein and, hence, should not be mutated.60-63 

---Figure 2--- 

---Table 1--- 

Variant construction and prioritization 

For each of the remaining 31 weak spots (~17% of all BsLipA residues), computational site 
saturation mutagenesis was performed by generating structures of all possible single-point 
amino acid substitutions using the SCWRL program. This resulted in 589 single point 
variants. Structures with a single point mutation can be reliably modeled using SCWRL 
because a single-point mutation should not grossly change the conformation of the backbone 
as evidenced by a very low Cα atom root mean-square deviation (< 0.40 Å) between the 
crystal structure of WT BsLipA and seven variants (incorporating ≤ 12 mutations) deposited 
in the Protein Data Bank (PDB codes: 1T2N, 1T4M, 3D2A, 3D2B, 3D2C, 3QMM, and 
3QZU).64 67 variant structures with mutated residues unfavorably embedded in the 
surroundings of the protein as judged by the ANOELA energy (see above) were discarded 
(Figure S2 in the SI). In such structures, the mutation apparently does not fit into the 
environment of the other residues. 

The remaining 522 variants were subjected to thermal unfolding simulations using the 
ENTFNC approach33 implemented in CNA. Differences in the phase transition temperatures 
ΔTp = Tp (variant) − Tp (WT) were averaged over 1000 simulations started from different 
network topologies for each variant as described in the “Materials and methods” section. A 
map of ΔTp values of all variants is shown in Figure S2 in the SI. Of the 239 single point 
mutations at the 13 weak spots identified from early transitions at low temperatures (T1 and 
T2), only four resulted in a higher Tp than WT BsLipA (Figure S2 in the SI); two of these 
increases were statistically significant (p < 0.05 according to Welch’s t-test65). This is in line 
with the fact that Tp is identified as the temperature of the late transition that involves the 
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final decay of the largest rigid cluster; strengthening interactions of residues involved in the 
disintegration of the largest rigid clusters at earlier transitions thus would only result in a 
profound increase in Tp if the strengthening also changed the order of disintegration steps. At 
five weak spots identified at transition T3, seven mutations resulted in higher Tp values than 
WT BsLipA (Figure S2 in the SI); three of these increases were statistically significant. The 
most pronounced predicted thermostabilization both in terms of the number of variants 
showing increased Tp values (55, of which 27 were significant) and the magnitude of the Tp 
increase (Figure S2 in the SI) was observed for mutations at the nine weak spots identified at 
transition T4. Finally, nine mutations at four weak spot residues identified at the last 
transition T5 resulted in an increase in Tp compared to WT BsLipA; six of these increases 
were significant. In total, this results in a predicted thermostabilization with respect to WT 
BsLipA for 75 out of the 522 mutations (~14%) investigated. 

In order to further reduce the number of mutations for experimental validation, variants were 
prioritized based on their ΔTp values and the weak spot residue that is mutated: For each 

weak spot residue and all mutations with ΔTp > 1, the mutation with the highest Tp was 
chosen for experimental validation. The sole exception is G104 located in the active site, for 
which two mutations were chosen. This resulted in twelve lipase variants of which the most 
are associated with weak spot residues on helix αB identified during the late transition T4 
(Table 2 and Figure S2 in the SI). 

---Table 2--- 

Thermostability of BsLipA variants 

Initially, specific activities of WT BsLipA and the twelve variants (Table 2) for hydrolysis of 
pNPP were measured at temperatures between 40 and 60ºC after keeping them at the 
respective temperatures for 5 min. Under these conditions, WT BsLipA showed the highest 
specific activity (246 U/mg) among all BsLipA variants at the temperature of maximum 
activity Tmax (40ºC) (Figure S3 in the SI). At temperatures above 55°C, the activity begins to 
drop, which is probably due to an unfolding already within 5 min of preincubation. Notably, 
two variants, F58I and V96S, showed higher activities than the WT at temperatures above 
58ºC (Figure S3 in the SI), which may originate from them being more stable at high 
temperatures. Next, thermostability was assessed by measuring the activity of each BsLipA 
variant at temperatures between 40 and 60ºC after incubating the respective variant at these 
temperatures for 30 min. Three variants, V54H, F58I, and V96S, were more thermostable 
than WT; they consistently showed higher activities than the WT at temperatures above 48ºC 
(Figure 3A and Figure S4 in the SI). Other variants, however, were found to be less 
thermostable than the WT (Figure S4 in the SI). The largest differences between 
thermostabilities of WT and variants of BsLipA was observed at 53.5ºC where the activities 
of V54H and V96S were twice as a high as those of the WT, and the activity of F58I was four 
times higher (Figure 3B). At low temperatures, F58I and V96S showed similar activities as 
the WT, and V54H showed half the activity of the WT (Figure 3B). Finally, the kinetic 
constants of these variants were derived from initial rate measurements for hydrolysis of 
pNPD at 40°C (see section “Materials and methods”). No significant impact on the Michaelis 
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constants (KM) was observed, and the turnover numbers (kcat) were reduced by at most 25% 
(Table S3 in the SI). Thus, the thermostability of the variants has been increased without 
significantly influencing kcat / KM at 40°C. 

The thermostability of BsLipA variants was quantified by T′50 values; these values report on 
the temperature at which the fraction of the activity to the initial activity (at 40ºC) is 50% 
after incubation for 30 min. This is different from the T50 values normally used for 
characterizing the thermostability of proteins20, 66, 67 in that the activity here is measured at the 
temperature of incubation, not at room temperature after cooling. T′50 thus reports on the 
thermo-tolerance of an enzyme during operational bioprocesses carried out at elevated 
temperatures for a longer duration of time, e.g., as done in the lipid processing industry.68 The 
three variants V54H, F58I, and V96S showed T′50 values higher by 5.7, 6.6, and 3.6ºC, 
respectively, than WT BsLipA (Figure 3C and Table 2). The predicted ∆Tp values for these 
variants were similar to each other, in agreement with the similar T′50 values found, but at the 
lower end of all predicted ∆Tp, suggesting that ΔTp as computed in this study is more suitable 
for prioritizing variants than for ranking them (Table 2). 

The three thermostable variants involve mutations at weak spots identified at later phase 
transitions T4 and T5 during the thermal unfolding simulation. This finding supports our 
previous reasoning that it is the late phase transition(s) involving the final decay of the rigid 
core during thermal unfolding that determine(s) the thermodynamic thermostability of a 
protein.21, 22 Accordingly, mutations that strengthen connections of weak spot residues 
identified at late phase transitions, and, hence, increase the local stability of the folding core, 
should particularly improve thermostability. A sound discussion of this implication requires 
X-ray structural data of the variants, which is not yet available. Still, using the modeled 
variant structures, we observed that the three variants V54H, F58I, and V96S have in general 
stronger rigid contacts between neighboring residues than the WT: On average, the mutations 
V54H, F58I, and V96S increased the strength of rigid contacts of neighboring residues by 
2.0, 1.2, and 0.4 K, respectively, compared to WT (Figure S5 in the SI; see section “Pairwise 
contact stability of neighboring residues” in the SI for an explanation how these values were 
calculated).  

Considering the most thermostable variant F58I in more detail, the strengthening holds true 
for local contacts as well as contacts that arise from a long-range stabilization. As to local 
contacts, Ile at position 58 along with residues of the neighboring loop β4-αB (A38, V39, 
D40) are part of a rigid cluster, which persists to a temperature ~3 K higher than the rigid 
cluster formed by F58 of WT and the same loop residues (Figure 4A, B; Figure S5B and S6A 
in the SI). From the input structure for the thermal unfolding simulations using the ENTFNC 
approach,33 one can derive that the longer persistence of these loop residues in the rigid 
cluster in variant F58I results from their better side-chain packing than in WT. In particular, 
in F58I, V39 forms four hydrophobic contacts with three different residues (V7, S16, F41), 
whereas in WT it only forms two such hydrophobic contacts (Figure 4C). However, not all 
F58I mutation-induced changes lead to a stabilization: Contacts of the C-terminus of loop β4-
αB with neighboring residues become less stable owing to a different conformation of W42 
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in F58I (Figure 4C); likewise, contacts between N-terminal residues of loop β4-αB and αB 
are weakened (Figure 4C). As to contacts that arise from a long-range stabilization, residues 
of several pairs of secondary structure (αA/β strands 3,4,5; αB/αC; loop αB-β5/loop αC-β6; 
loop αC-β6/loop αD-β7) remain part of one rigid cluster for temperatures 2-5 K higher in the 
variant F58I than in WT (Figure 4D; Figure S5B and S6 B-E in the SI). This demonstrates the 
inherent long-range aspect to rigidity percolation [43,55,70,71], i.e., a local change on one 
end of a network can affect the stability all across the network. 

Five mutations at weak spots identified at transitions T4 and T5 resulted in lower T′50 values 
than that of WT BsLipA (Table 2). This result appears to contradict our reasoning that 
mutations which strengthen connections of weak spot residues identified at late phase 
transitions should particularly improve thermostability. In each case, however, a small amino 
acid was substituted by a large amino acid, which likely could not be accommodated by the 
fold. This calls for improved modeling approaches for the variant construction in future 
studies, e.g., by applying comparative modeling rather than side-chain placement only. Along 
the same lines, the two variants G104I and G104L out of the three variants that showed a 
complete loss of activity after 30 min incubation at temperatures between 40-60°C involved a 
residue located in the active site. While at the opposite side of the catalytic triad, introducing 
larger residues there may occlude the substrate binding region. Such weak spots can be 
filtered out in future studies based on their location in the protein.70 

Conclusions 

We developed a novel rational approach based on increasing structural rigidity for improving 
a protein’s thermostability and applied it prospectively to BsLipA. The approach combines 
ensemble- and rigidity theory-based weak spot prediction by CNA, filtering of weak spots 
according to sequence conservation, computational site saturation mutagenesis, assessment of 
variant structures with respect to their structural quality, and screening of the variants for 
increased structural rigidity by ensemble-based CNA. Two reasons account for the high 
computational efficiency of our approach: In the first step, the number of potential mutation 
sites is dramatically reduced due to concentrating only on structural weak spots. In the second 
step, ensembles of network topologies, rather than structural ensembles, are employed 
alleviating the need for costly conformation sampling. As a result, about one mutation per 
hour can be processed once weak spots have been detected (Table S1 in the SI), and this task 
is furthermore trivially parallelizable for multiple single point mutations. 

As to the application to BsLipA, our approach resulted in three out of twelve experimentally 
tested single-point mutations with significantly increased thermostability with respect to WT, 
yielding a success rate of 25% and 6.6°C as the largest increase in thermostability. Due to the 
lack of appropriate data, the success rate for thermostabilization associated with random 
mutations on BsLipA is unknown. However, it is instructive to compare our results to a 
complete site saturation mutagenesis of BsLipA and subsequent testing of each possible 
variant for improved detergent stability: Over 3439 single point mutations, the success rate 
amounts to 3% there (A. Fulton, J. Frauenkron-Machedjou, P. Skoczinski, S. Wilhelm, U. 
Schwaneberg, K.-E. Jaeger, unpublished results). The effectiveness of our approach is also 
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demonstrated when comparing it to the study by Reetz and coworkers20 applying iterative 
saturation mutagenesis to BsLipA. The largest increase in T50 they have found for a single 
point variant in the first step was 4.3°C, and about 8000 colonies needed to be screened to 
result in two variants carrying five and seven mutations after five steps of optimization with 
an increase of T50 by 45°C. It should be noted that the study of Reetz et al. differs from ours 
in a fundamental aspect: Reetz et al. chose as weak spots those residues that showed the 
highest crystallographic B-factors, i.e., were most mobile. In contrast, weak spots in our 
study constitute residues that are rigid until shortly before the folding core ceases to exist. 
Subsequent work by the Reetz group71 showed that their variants became more thermostable 
due to kinetic reasons. As our approach is based on increasing the structural rigidity of the 
folded state, we speculate that our variants are more thermostable due to thermodynamic 
reasons. In summary, these results suggest that our approach is a valuable complement to 
existing methods for rational protein design aimed at improving thermostability. The more 
thermostable variants can then serve as starting points for further engineering of substrate 
scope and/or enantioselectivity by directed evolution, exploiting that enhanced 
thermostability promotes the ease of evolvability.72 
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Tables 

Table 1. Phase transition points at which weak spot residues are identified during the thermal 
unfolding simulation of BsLipA. 

Phase 
transition 

Temperature 
of the phase 
transition[a] 

Major secondary structures 
segregating from the giant 
rigid cluster 

Weak spot residues[b] 

T1 314-316 αA I22, L26, W31 
T2 316-318 αF D133, V136, G158, L159, 

L160, S163, V165, N166, 
I169, G172, L173 

T3 332-334 αD and αE G103, G104, A105, N106, 
T109, S141 

T4 334-336 αB N48, N51, G52, V54, L55, 
F58, V59, V62, L63, E65, 
T66, V71 

T5 336-338 αC and central β sheet T83, L84, I87, V96 
[a] In K. 
[b] Residues in bold are highly conserved in the multiple sequence alignment; see the main 

text for details. 
 
Table 2. BsLipA variants characterized experimentally. 
BsLipA 
variant[a] 

Location of 
mutation on 
secondary 
structure 
element 

Phase transition of weak 
spot identification 

Predicted 
∆Tp

[b] 
T′50

[c] 

Wild type -  - 49.10
I22W αA T1 2.80 44.89
N51F αB T4 4.30 46.05
G52M αB T4 16.47 49.59
V54H αB T4 2.09 54.80
L55F αB T4 3.48 47.62
F58I αB T4 2.27 55.65
V59F αB T4 11.95 49.44
I87W αC T5 4.91 -[d]

V96S β6 T5 2.36 52.65
G104I Loop β6- αD T3 1.98 -[d]

G104L Loop β6- αD T3 5.07 -[d]

L160H αF T2 2.25 43.30
[a] Variants highlighted in bold show a significant increase in T′50 with respect to WT. 
[b] Difference phase transition temperatures Tp (variant) − Tp (WT); in °C. 
[c] The temperature at which the fraction of the activity to the initial activity (at 40ºC) is 50% 
after incubating for 30 min; in °C. 
[d] No activity after 30 min incubation at temperatures of 40-60ºC. 
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Figure captions 

Figure 1. Strategy to rationally predict mutations that increase structural rigidity and 
thermostability. A structural ensemble of the respective protein is generated by MD 
simulations (I). The average thermal unfolding trajectory depicting a decomposition into rigid 
clusters (in the order of decreasing size colored in blue, green, magenta, cyan, orange, and 
violet) for each step of the unfolding simulation is created by subjecting the structural 
ensemble to CNA (II). For every major transition during the thermal unfolding, weak spot 
residues (depicted as a sphere for the Cα atom and sticks for the side-chain) are identified as 
residues that segregate from the largest rigid cluster and can potentially interact with the then 
largest rigid cluster upon mutation (III). Weak spot residues identified in step III that are 
highly conserved in a multiple sequence alignment of the protein family (≥ 80% identity) are 
removed from the weak spot list (IV). For each remaining weak spot, structures of single-
point variants involving mutations to all other 19 amino acids (termed M1-M19) are 
generated using the SCWRL program.50 Mutations that lead to energetically unfavorable 
structures (indicated by red discs around the mutated residue in the case of M18) as 
calculated by the ANOLEA server51 are not considered further (V). Finally, for each variant, 
the phase transition temperature Tp is computed using CNA; a higher Tp value than that of the 
WT protein indicates a thermostabilizing mutation (VI). All figures of BsLipA structures in 
this publication were generated with PyMOL (http://www.pymol.org). 

Figure 2. Thermal unfolding trajectory of WT BsLipA showing transitions for which weak 
spot residues were identified. Uniformly colored bodies represent rigid clusters; for clarity, 
only the largest rigid cluster (blue) is shown for the first four transitions (T1-T4), and the two 
largest rigid clusters (blue and green) are shown for the last transition (T5). C atoms of the 
identified weak spot residues are shown as spheres, and side-chain atoms are shown in stick 
representation. Weak spot residues are colored according to the rigid cluster they are part of 
(rigid clusters are assigned blue, green, magenta, cyan, and orange colors in the descending 
order of their size in terms of the number of residues); a weak spot residue colored in gray 
indicates that it is part of a rigid cluster composed of less than three residues. Weak spot 
residues that are highly conserved in the multiple sequence alignment of the lipase family 
(see the main text) are not shown. Important helices that segregate from the largest rigid 
cluster at the respective transition are labeled. 

Figure 3. Thermostability of WT (black) and variants V54H (blue), F58I (green), and V96S 
(red) shown as activity vs. temperature curves. The activity was measured at indicated 
temperatures after incubating for 30 min at these temperatures. Curves show absolute specific 
activity (A), activity normalized by the activity of WT (B), and the residual activity after 
30 min compared to the initial activity after 5 min incubation (C). 

Figure 4. Structural origin of differences in the thermostability of WT and F58I, shown by a 
rigid cluster decomposition of WT (A) and F58I (B) at 316 K. Rigid clusters are colored 
using the same color scheme as in Figure 2. The mutation site (residue 58), shown by a cyan 
(A) and a magenta (B) surface, is part of the largest rigid cluster (blue) in both WT and F58I. 
Hydrophobic contacts in the proximity of the mutation site between carbon atom pairs at 
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most 3.8 Å apart are sown as green (WT) and red (F58I) dashed lines (C). Residues involved 
in making such contacts are shown as cyan (WT) and magenta (F58I) sticks. Differences in 
the stability of “rigid contacts” between variant F58I and WT depicted on the variant 
structure (D). Two residues form a “rigid contact” if they belong to one rigid cluster. A red 
(blue) stick connecting Cα atoms of two residues indicates that a rigid contact in the variant is 
more (less) stable than in the WT (see color scale). Only those contacts of variant F58I that 
are stabilized or destabilized by ≥ 2 K are shown for clarity; for the same reason, contacts 
between two residues of the same secondary structure element are not shown. The mutated 
residue I58 is displayed by magenta sticks. Blow-ups of panel D showing the contact stability 
between secondary structure pairs mentioned in the main text can be found in Figure S6 in 
the SI. 
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Supplemental methods 

Pairwise contact stability of neighboring residues 

From a thermal unfolding trajectory, stability maps rcij can be calculated that characterize the 

local (residue-pairwise) rigidity of a protein by indicating for all residue pairs (i, j) the 

temperature at which the two residues stop being part of the same rigid cluster, i.e., the “rigid 

contact” between these two residues then breaks (see also section “Predicting protein 

thermostability by Constraint Network Analysis” in the main text and supplemental ref.1 for 

details). When filtered such that only rigid contacts between residues that are at most 5 Å 

apart from each other (measured as the distance between the closest atom pair of the two 

residues) are considered, a neighbor stability map results. This map helps focusing on short-

range rigid contacts that can be directly modulated by mutagenesis with the aim to stabilize 

them for improving the overall stability of a protein. 

Here we use neighbor stability maps to analyze the (local) effect of mutations on the stability 

of rigid contacts of neighboring residues (Figure S5). The increase in the strength of rigid 

contacts is calculated as the average over differences in rcij of the variant versus WT for all 

neighboring residue pairs (lower triangles in Figure S5). The increase in the strength is 

measured in K. 
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Supplemental tables 

Table S1. Computing times for weak spot identification, site saturation mutagenesis, and 
screening for increased structural rigidity 
Step[a] Time required Comment
I) MD simulation  ~78 h 100 ns long MD simulation on a 

single GPU 
II) Thermal unfolding simulation  4 h and 35 min Structural ensemble of 2000 

structures run on one CPU core
III) Weak spot detection 2 h Manual identification by visual 

inspection 
IV) Filtering weak spots Instantaneous Highly conserved weak spots were 

discarded 
V) Variant modeling by SCWRL < 1 s For a single mutation 
VI) ENTFNC run ~ 1h and 10 min For a single mutation applying 

1000 network topologies  
[a] Steps are according to Figure 1 in the main text. 

 

Table S2. BsLipA variants and mutagenesis primer sequences 
Mutation Forward primer sequence Reverse Primer sequence 

G104I GTCGTGACGCTTGGCatcGCGAACCGTTTGACG CGTCAAACGGTTCGCgatGCCAAGCGTCACGAC 

G104L GTCGTGACGCTTGGCctgGCGAACCGTTTGACG CGTCAAACGGTTCGCcagGCCAAGCGTCACGAC 

L55F AACAATGGACCGGTAttcTCACGATTTGTGCAA TTGCACAAATCGTGAgaaTACCGGTCCATTGTT 

V59F GTATTATCACGATTTttcCAAAAGGTTTTAGAT ATCTAAAACCTTTTGgaaAAATCGTGATAATAC 

I122W CAGATCCAAATCAAtggATTTTATACACATCC GGATGTGTATAAAATccaTTGATTTGGATCTG 

L160H GGACACATCGGCCTTcatTACAGCAGCCAAGTC GACTTGGCTGCTGTAatgAAGGCCGATGTGTCC 

N51F GGCACAAATTATAACttcGGACCGGTATTATCA TGATAATACCGGTCCgaaGTTATAATTTGTGCC 

G52M CACAAATTATAACAATatgCCGGTATTATCACGA TCGTGATAATACCGGcatATTGTTATAATTTGTG 

V54H TATAACAATGGACCGcatTTATCACGATTTGTG CACAAATCGTGATAAatgCGGTCCATTGTTATA 

F58I CCGGTATTATCACGAatcGTGCAAAAGGTTTTA TAAAACCTTTTGCACgatTCGTGATAATACCGG 

I87W GAACACACTTTACTACtggAAAAATCTGGACGGC GCCGTCCAGATTTTTccaGTAGTAAAGTGTGTTC 

V96S GACGGCGGAAATAAAagcGCAAACGTCGTGACG CGTCACGACGTTTGCgctTTTATTTCCGCCGTC 

 
 

Table S3. Kinetic parameters of BsLipA variants and wildtype 
Variant KM

[a] 

(µM) 
kcat 

(s-1) 
kcat / KM 

(µM-1 * s-1) 
Wildtype 34.72 ± 6.49 926.40 ± 38.81 26.68 ± 6.10 
V54H 40.02 ± 8.64 784.60 ± 38.97 19.51 ± 5.18 
F58I 36.71 ± 7.83 690.50 ± 33.35 18.80 ± 4.91 
V96S 32.30 ± 7.39 785.00 ± 39.73 24.30 ± 6.79 
[a] Kinetic parameters were derived from experiments conducted at 40°C using pNPD as 
substrate. 
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Statics of Biomacromolecules
Prakash C. Rathi, Christopher Pfleger, Simone Fulle, Doris L. Klein, and Holger Gohlke

18.1
Introduction

Proteins, DNAs, and RNAs are the ultimate functional units that carry out biological
functions by interacting with other biomacromolecules or small molecules [1].
Almost all of these interactions come along with a certain degree of conformational
adaptation to attain complementarity of the binding partners. This structural
flexibility of biomacromolecules has been associated with molecular recognition as
well as with catalysis [2, 3]. The first binding model for enzymes, the �lock and key�
model, assumed the enzymes to have a rigid catalytic site [4]; in contrast, the �induced
fit� model highlighted the importance of flexibility in enzyme action [5]. An
extension to the induced fit model came in the form of the �conformational selection
and population shift� model, which states that biomacromolecules are in a state
of continuous conformational fluctuation; a binding partner binds preferentially to
one of the conformations, which shifts the conformational ensemble towards that
state [6, 7]. Overall, binding to biomacromoleculesmay involve one or a combination
of these phenomena. Apart from implications for function, flexibility is also linked to
the structural stability of biomacromolecules [8]. In particular, it has been observed
that thermophilic proteins are in general more rigid than their mesophilic homologs
in order to preserve the structural integrity at higher temperature [9]. Hence,
knowing what can move, and how in a biomacromolecule is instrumental in under-
standing themolecule�s flexibility/stability and, thus, its function. The flexibility and
mobility of biomacromolecules have been frequently investigated using X-ray
crystallography, cryo-electronmicroscopy, single-molecule fluorescence, and nuclear
magnetic resonance (NMR) spectroscopy [10–13]. Crystallographic B-factors, atomic
fluctuations derived from NMR structural ensembles, NMR relaxation measure-
ments, and residual dipolar couplings are the main source of information about
flexibility and mobility of biomacromolecules [14, 15].
Alternatively, computational methods, such as molecular dynamics (MD)

simulation or normal mode analysis, are widely used to obtain deeper insights
into the dynamics of biomacromolecules. Nevertheless, MD simulation is still too

Modeling of Molecular Properties, First Edition. Edited by Peter Comba.
� 2011 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2011 by Wiley-VCH Verlag GmbH & Co. KGaA.
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time-consuming to investigate conformational transitions that occur on a millisec-
ond time scale on a routine basis [16, 17], while normal mode analysis generally
tends to describe conformational changes in the vicinity of the starting structure
only [18–20]. As yet another alternative, a fast, graph theory-based approach for
characterizing the biomacromolecular flexibility and its opposite, rigidity, will be
discussed in this chapter. This approach has been implemented into the FIRST
program (Floppy Inclusions and Rigid Substructure Topography), and allows the
determination of biomacromolecular flexibility from a single input structure [21].
It should be noted that flexibility and rigidity are static properties – that is, a rigidity
analysis determines those parts of a molecule that can potentially move, but says
nothing about the direction or amplitude of a motion [22]. The approach has already
been applied in several areas of computational biomacromolecular research, includ-
ing the sampling of biomacromolecular conformational space [23–26], analyzing
structural determinants of thermostability [27, 28], identifying folding cores of
proteins [29, 30], assessing complex structural stability [31, 32], linking flexibility
and function [33],finding putative binding sites [34], understanding allostery [35, 36],
investigating large biomacromolecules such as the ribosome [35], and predicting
thermodynamic properties [37].

18.2
Rigidity Theory and Analysis

18.2.1
Introduction to Rigidity Theory

The quest to identify rigid and flexible regions in networks (graphs) of sites (vertices)
and constraints (edges) dates back many years. In 1864, Maxwell proposed an
approximate method to calculate the number of floppy modes F in a d-dimensional
generic network – that is, a network without any symmetries such as collinear
constraints [38]. The term �floppy modes� denotes (independent) internal degrees
of freedom in which the sites of the network can move without violating any of the
constraints. For a network with N sites lacking any constraint, F ¼ dN�dðdþ 1Þ=2,
with the subtrahend denoting the global degrees of freedom (overall translation and
rotation) of the d-dimensional network. Each added constraint, if independent of all
other constraints, removes one floppy mode. Thus, if all constraints in the network
were independent, as assumed by Maxwell, the number of floppy modes (Fmxw) in a
network with Nc constraints can be calculated by Eq. (18.1):

Fmxw ¼ dN�Nc�dðdþ 1Þ=2 ð18:1Þ
Usually, this underestimates F because, in reality, not all constraints are indepen-

dent: if a constraint is placed between two already mutually rigid sites, it does not
decrease the number of floppy modes any further and, thus, is a redundant
constraint. Taking into account the number of redundant constraints Nr then
leads to Eq. (18.2):
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F ¼ dN� Nc�Nrð Þ�dðdþ 1Þ=2 ð18:2Þ
Incorporating a redundant constraint introduces stress in the network; network

regions with such constraints are thus called over-constrained or stressed. In contrast, a
region with fewer constraints than internal degrees of freedom is called under-
constrained. Finally, in a region with as many independent constraints as internal
degrees of freedom, F¼ 0; this region is called isostatically rigid.
In 1970, a theorem by Laman [39] had amajor impact in that it allowed the precise

determination of the degrees of freedom in a two-dimensional (2-D) network, even in
the presence of redundant constraints, by applying constraint counting to all sub-
graphswithin the network. As such, a generic 2-Dnetwork does not have a redundant
constraint if andonly if for all subgraphsof sizen� 2, thenumberof constraints in the
subgraphNcs� 2n� 3. By applying Laman�s theorem, a network can be decomposed
into rigid regions and flexible links in between. This constraint counting can be
extendedtoacertainsubtypeof three-dimensional (3-D)networkswithamolecule-like
character – so-called �bond-bending networks� or �molecular frameworks� [40, 41].
In thesenetworks, bond angles (distances between second-nearest neighbor sites) are
constrained in addition to the bond lengths (distances betweenfirst-nearest neighbor
sites), which makes them particularly applicable to biomacromolecules.
For both the 2-D and 3-D bond-bending networks, combinatorial algorithms –

termed pebble games –were devised that allow the network flexibility and rigidity to be
determined according to Eq. (18.2) [10, 42–44]. These algorithms have been imple-
mented inProFlex [45] and in early versions of the FIRST [46] software package. As an
example, bond-bending networks of two molecules are depicted in Figure 18.1.
In both networks, fixed bond lengths and angles are modeled as distance constraints
between nearest and next-nearest neighbor atoms. Free rotation about the bond
between atom 1 and atom 2 inmoleculeM1 results in one floppymode and two rigid
clusters of three atoms each (Figure 18.1a–c). Adouble bond ismodeled by placing an
additional distance constraint between third-nearest neighbors (Figure 18.1e), which
results in molecule M2 being a single rigid cluster (Figure 18.1d–f).
Amore recent implementation of FIRSTuses a body-and-bar representation of 3-D

networks, where every atom is considered as a rigid body having six degrees of
freedom [47]. Any number of bars between one and six can be placed between two
such bodies, and every such bar removes one degree of freedom. The number of
floppy modes is then computed according to Eq. (18.3):

F ¼ 6N�Nibar�6 ð18:3Þ

where Nibar represents the total number of independent bars in the network. In the
body-and-bar network representation, covalent single bonds are modeled as five bars
between two atoms leaving one degree of freedom, the dihedral rotation
(Figure 18.1c). Double bonds are modeled with six bars locking the rotation
(Figure 18.1f). Apart from algorithmic advantages over the bond-bending represen-
tation, the body-and-bar representation also has a methodological advantage which
lies in the fact that constraints can be modeled semi-quantitatively: strong bonds are
modeled with more bars, whereas weaker bonds are modeled with fewer bars [47].

18.2 Rigidity Theory and Analysis j283  
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18.2.2
Modeling Biomacromolecules as Constraint Networks

Biomacromolecules can be effectively represented either as bond-bending or body-and-
barnetworks.Here, it is described howbiomacromolecules can be represented by the
latter representation. The atoms of the biomacromolecules are modeled as bodies,
while covalent and noncovalent bonds are modeled as bars. A covalent bond is
generallymodeled asfive bars, allowing for the dihedral rotation about it. Peptide and
double bonds are modeled with six bars, disallowing any bond rotation. Considering
that the mechanical rigidity of a biomacromolecule is largely determined by non-
covalent interactions, there is also a need to include hydrogen bonds, salt bridges, and
hydrophobic interactions as constraints in the network. Stronger interactions such as
hydrogen bonds (and salt bridges) and hydrophobic interactions are modeled as five
bars and two bars, respectively [47]. Weaker interactions such as van der Waals
interactions are not modeled as constraints. Figure 18.2 shows a network represen-
tation for hen egg-white lysozyme (PDB code: 1vb1), which is then decomposed into
rigid clusters and flexible joints by rigidity analysis using the FIRST software.

18.2.3
Simulating Folded–Unfolded Transitions in Biomacromolecules

By consecutively removing constraints from a network, it is possible to simulate the
melting of the network and to identify a phase transition where the network switches
from an overall rigid state to a floppy one. Phrased differently, at this so-called rigidity

Figure 18.1 Network representations of
molecules M1 (a) and M2 (d). In the bond-
bending networks (b, e), the double bond in M2
is modeled by placing an additional constraint
between atom 4 and 5. In the body-and-bar
networks (c, f), the bond between atom 1 and 2
in M1 is modeled by five bars, whereas six bars

are used in M2 for locking the rotation.
The atom colors represent the rigid
clusters to which they belong: M1 has two
rigid clusters and one flexible joint,
whereas all atoms of M2 belong to a
single rigid cluster. Figure adapted from
Ref. [101].
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percolation threshold, the network loses its ability to transmit stress – that is, rigidity
ceases to percolate through the network. Crosslinked covalently bonded 3-D
network glasses have been thoroughly studied in that sense, both computationally
and experimentally [48–50]. It has been observed that the phase transition
for network glasses takes place at a mean coordination value of 2.385, and is
continuous or of second order. However, it has also been found that the phase
transition can become first order for self-organized networks where locally stressed
regions or small rings of bonds are suppressed [49]. Biomacromolecular networks
can be considered similar to network glasses, and the melting of the network can be
realized by consecutively removing noncovalent bonds, which is equivalent to a
thermal unfolding of the biomacromolecule. However, the percolation behavior of
protein networks is usually more complex, andmultiple transitions can be observed.
This is due to the fact that protein structures aremodular because they are assembled
fromsecondary structure elements, subdomains, anddomains. Thesemodules often
spontaneously break away from the giant cluster as a whole, giving rise to multiple
transitions.

18.2.4
Constraint Network Analysis

TheConstraint Network Analysis (CNA) programpackage has been developed by the
present authors� group, with the aim of analyzing structural features of biomacro-
molecules that are important for the molecule�s stability. CNA functions as a front-
end to the FIRST software and allows: (i) the setting up of a variety of constraint
network representations for rigidity analysis (see also below); (ii) processing of the
results obtained from FIRST; and (iii) calculating the different indices for charac-
terizing biomacromolecular stability, both globally and locally (see Section 18.2.5).

Figure 18.2 Workflow of rigidity analysis of
biomacromolecules showing hen egg-white
lysozyme as an example. A PDB structure
with added hydrogen atoms is used as an input
(a) from which a body-and-bar network is
modeled (b). Covalent bonds are depicted in

gray, hydrogen bonds in red, and hydrophobic
interactions in green (a). Each bond is identified
either as a part of rigid region or a flexible
joint, resulting in a rigid cluster
decomposition (c) where each rigid cluster
has a unique color.

18.2 Rigidity Theory and Analysis j285  



Publication VIII 
 

 
207 

CNA can be used to carry out thermal unfolding simulations by gradually removing
noncovalent constraints from the initial network representation (see above) [27, 29,
51–53]. That is, for a given network state s¼ f(T), hydrogen bonds (including salt
bridges) with an energy EHB> Ecut,s are removed from the network [54]. This follows
the idea that stronger hydrogen bonds will break at higher temperatures than weaker
ones. To convert the original, geometry-based hydrogen bond energy scale EHB [54]
into a temperature scale T, Radestock and Gohlke proposed a simple linear fit by
comparing computed phase-transition temperatures for pairs of homologous meso-
philic and thermophilic proteins with experimental melting temperatures [27]. The
number of hydrophobic contacts is kept constant during the thermal unfolding,
because the strength of hydrophobic interactions remains constant or even increases
with increasing temperature [55]. Finally, a rigidity analysis is performed on each
constraint network state s.
In principle, CNA can be performed on a single 3-D structure of a biomacromo-

lecule. However, different conformations of a protein structure may lead to different
results of the rigidity analysis, as observed by the present authors [32] and others [56].
This sensitivity arises from the facts that: (i) proteins are generally marginally
stable [57]; and (ii) different protein conformations can lead to different numbers
of constraints being included based on geometric criteria. Consequently, as the
protein network is already close to the rigidity percolation threshold [due to point
(i) above], a few constraints more or less [due to point (ii)] can result in the network
being largely rigid or alreadyfloppy. To overcome this problem,CNA allows the use of
an ensemble of constraint networks rather than a single structure. There are twoways
in which these ensembles can be generated:

. Conformations extracted from a MD simulation-derived trajectory can be indi-
vidually subjected to CNA, and the results are then averaged over the whole
ensemble. This approach has the advantage that CNA is based on a thermody-
namic ensemble of conformations. As a downside, a computationally expensive MD
simulation is required to generate the input.

. An ensemble of network topologies can be generated by fluctuating noncovalent
constraints in a network derived from a single structure. The fluctuating
noncovalent constraints are realized by modulating the stability of the con-
straints by white noise. This is supposed to mimic variations in the constraint
stability due to the wiggling of atoms. As an advantage, this approach does not
require computationally expensive MD simulations. As a downside, the thus-
generated networks might not be very different from the network of the input
structure. Preliminary results have shown that CNA results derived in this way
are more consistent with those obtained from ensembles of experimentally
derived structures than if a single input structure is used instead (C. Pfleger, H.
Gohlke, unpublished results). Finally, as a further advantage over analyzing a
single structure, either approach allows to determine the significance of CNA
results by means of statistical testing.

It should be noted that the distance constraint model (DCM) [28, 58] also relies on
ensembles of constraint topologies, which are differently generated, however. Here,
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mean-field probabilities of hydrogen bonds and torsion constraints are used for
Monte Carlo sampling to generate such an ensemble, however, assuming that the
atom positions of the input structure are unique.

18.2.5
Indices to Characterize Flexibility and Rigidity

CNA can be used to calculate several indices to characterize the global and local
flexibility/rigidity of a biomacromolecule. All of these indices share the common
feature that they are derived by analyzing a thermal unfolding simulation of a
constraint network.

18.2.5.1 Global Indices
In order to describe the global percolation behavior of a network, themicrostructure of
the network – that is, the properties of the set of clusters generated by the bond
dilution process – can be analyzed [52]. For the rigidity order parameter (P1), the
fraction of the network belonging to the percolating (giant) rigid cluster is chosen as
an order parameter. In other words, P1 denotes the probability that an atom belongs
to the giant cluster and is zero in the floppy phase. Thus, monitoring the decay of the
giant cluster by P1 provides a global and intuitive description of the rigidity within
the protein structure during thermal unfolding (Figure 18.3a). Notably, P1 curves of
proteins are similar to P1 curves observed for network models of glasses and
amorphous solids [59, 60]. Likewise, homologous proteins have P1 curves of very
similar shape (Figure 18.3a) [27, 60].
The cluster configuration entropy (H) is another global index, which has been

introduced by Andraud et al. as a morphological descriptor for heterogeneous
materials [61]. H has been adapted from Shannon�s information theory and, thus,
is ameasure of the degree of disorder in the realization of a given state. As long as the
giant cluster dominates the system, H is low because of the limited number of
possible ways to configure a system with a very large cluster (Figure 18.3b). At the
rigidity percolation threshold, H jumps as the network is now in a partially
flexible state with many ways to configure a system consisting of (many) small
clusters.H has already been successfully applied to analyze unfolding transitions in
proteins [27, 51].

18.2.5.2 Local Indices
Local flexibility/rigidity indices characterize the network flexibility/rigidity down to
the bond level. The percolation index (p) is a local analogon to the rigidity order
parameter P1. As such, the index is derived for each covalent bond by monitoring
the hydrogen bond energy cut-off Ecut during a thermal unfolding simulation at
which this bond segregates from the giant cluster. Thus, the percolation index can be
applied to locally monitor the percolation behavior of protein structures. The rigidity
index (r) is a generalization of the percolation index p. It is derived for each covalent
bond in the network by monitoring the hydrogen bond energy cut-off Ecut during a
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thermal unfolding simulation at which this bond switches from rigid to flexible.
Phrased differently, this index monitors when a bond segregates from any rigid
cluster.
Stability maps have been introduced as a third local index by Radestock and

Gohlke [52]. A stability map is somewhat a 2-D generalization of the rigidity index.
To derive a stability map, �rigid contacts� between two residues, represented by their
Ca atoms, are identified. A rigid contact exists if two residues belong to the same rigid
cluster. During a thermal unfolding simulation, stability maps are then constructed
in that, for each residue pair, Ecut is identified at which a rigid contact between two
residues is lost. In that way, a contact�s stability relates to the microscopic stability in
the network and, taken together, the microscopic stabilities of all residue–residue
contacts result in a stability map. Thus, stability maps denote the distribution of
rigidity and flexibility within the system, they identify regions that are flexibly or
rigidly correlated across the structure, and they provide information on how these
properties change with temperature. Stability maps are comparable to cooperativity
correlation plots generated by DCM [28, 58], in that these plots identify regions that
are correlated across the entire ensemble of constraint topologies generated at a fixed
temperature.

Figure 18.3 (a) Rigidity order parameter (P1) and (b) cluster configuration entropy (H) plotted
versus temperature for thermolysin-like protease of the mesophilic organism B. cereus (gray line)
and thermolysin of the thermophilic organism B. thermoproteolyticus (black line).
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18.3
Application of Rigidity Analysis to Biomacromolecules

18.3.1
Coarse-Graining for Simulating Conformational Transitions in Proteins

Specific functions of biomacromolecules often require conformational transitions.
Such conformational changes range from the movements of single side chains and
loops to large-scale domain motions. The ability to describe and predict conforma-
tional changes of biomacromolecules is not only important for understanding their
impact on biological function, but will also have implications for modeling (bioma-
cro)molecular complex formation [62] and in structure-based drug design [63]. As
modeling (large-scale) conformational transitions of biomacromolecules is compu-
tationally challenging, coarse-grained simulationmethods have emerged as efficient
alternatives [64]. Decomposing the biomacromolecule into rigid clusters and flexible
links in between by rigidity analysis provides a natural coarse-graining [22], and has
already been used in several simulation methods [23, 25, 26, 65, 66].
Notably, a three-step approach has been developed for the multiscale modeling of

biomacromolecular conformational changes that also relies on such a coarse-grain-
ing in the first step [23, 66]. In the second step, the dynamic properties of the
biomacromolecule are revealed by the rotations–translations of blocks (RTB)
approach [67], using an elastic network model representation of the coarse-grained
protein (termed Rigid Cluster Normal Mode Analysis; RCNMA) [23]. Thus, in this
step, only rigid bodymotions are allowed for rigid clusters, while links between them
are treated as fully flexible. In the final step, the recently introduced idea of
constrained geometric simulations of diffusive motions in proteins [25] is extended.
New macromolecule conformers are generated by deforming the structure along
low-energy normal mode directions predicted by RCNMA plus random direction
components. The generated structures are then iteratively corrected regarding steric
clashes or constraint violations; thismodule is termedNMSim [66]. Constraints to be
satisfied include torsions of themain-chain and side-chains, distances and angles due
to noncovalent interactions such as hydrogen bonds or hydrophobic interactions, and
bond, angle, and planarity constraints. In total, when applied repetitively over all
three steps, the procedure efficiently generates series of conformations that lie
preferentially in the low energy subspace of normal modes.
The RCNMA approach was initially tested on a data set of ten proteins that show

conformational changes upon ligand binding [23]. In terms of efficiency, coarse-
graining the protein results in a remarkable reduction of memory requirements and
computational times by factors of 9 and 27 on average and up to 25 and 125,
respectively. In terms of accuracy, directions andmagnitudes ofmotions predicted by
this approach agree well with experimentally determined values, despite embracing
in extreme cases more than 50% of the protein into one rigid cluster. In fact, the
results of the present method are in general comparable to if no or a uniform coarse-
graining is applied, and become superior if the movement is dominated by loop or
fragment motions. This indicates that explicitly distinguishing between flexible and
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rigid regions is advantageous when using a simplified protein representation in
the second step. Finally, it should be noted that motions of atoms in rigid clusters are
also well predicted by this approach.
The NMSim approach was applied to a dataset of eight proteins with experimen-

tally observed conformational changes (A. Ahmed, H. Gohlke, unpublished results).
For proteins that show domainmotions, conformational variabilities are reproduced
very well for four out of five proteins, with correlation coefficients r> 0.70, and as
high as r¼ 0.92 in the case of adenylate kinase. In seven out of eight cases, NMSim
simulations starting from unbound structures are able to sample conformations that
are similar (RMSD¼ 1.0� 3.1A

�
) to ligand-bound conformations. Thus, the gener-

ated conformations can serve as an input to ensemble-based docking approaches, as
has been demonstrated successfully for peptide–protein docking [68] and docking
multiple small-molecule ligands to HIV-1 TAR RNA [24], using a simulationmethod
related to NMSim [25]. Remarkably, an NMSim-generated pathway of conforma-
tional change of adenylate kinase correctly describes the sequence of domain closing,
very similar to what was found in an all-atom MD simulation [69]. The NMSim
approach thus is a computationally efficient alternative to MD simulations for
conformational sampling of proteins. Pathways of conformational transitions gen-
erated by this method can serve as starting points for more sophisticated sampling
techniques, such as umbrella sampling.

18.3.2
Themostabilization of Proteins

Organisms canbe classified according to their optimal growth temperatures (Tog) into
psychrophilic,mesophilic, thermophilic, and hyperthermophilic, withTog� 5–25 �C,
25–50 �C, 50–85 �C, and >85 �C, respectively [70, 71]. Usually, proteins from
thermophilic and hyperthermophilic organisms (hereafter referred to as
�thermophilic proteins�) are thermostable, in that they retain their native fold even
at high temperatures. Enzymes with high thermostability are valuable for industri-
al [72, 73] and biotechnological applications [74]. Therefore, increasing the thermo-
stability of proteins is an important task in protein engineering.
By comparing homologs from mesophilic and thermophilic organisms, different

mechanisms have been revealed that lead to increased thermostability. Among these,
a better packing of hydrophobic regions and an increased density of salt-bridges or
charge-assisted hydrogen bonds are most frequently described [75–77]. In many
cases, a complex interplay of these mechanisms was found to be responsible for
an increased thermostability [78–80]. As a unifying concept, it was suggested
that these changes lead to an improved network of noncovalent interactions
within the structure and, thus, to an overall increase in mechanical stability/rigidity
of the structure [81].
In order to investigate and improve the thermal stability of proteins, CNA was

applied to identify structural features from which a destabilization of a protein
structure originates upon thermal unfolding [27]. These unfolding nuclei have been
investigated before by experiment and computational studies [82–84]. Unfolding
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nuclei are detected by considering themicroscopic properties of a constraint network
during a thermal unfolding simulation: unfolding nuclei are formed by residues that
are part of the giant cluster before the phase transition but are in a flexible region
afterwards. In a validation study on pairs of homologous proteins from mesophilic
and thermophilic organisms [27], unfolding nuclei identified in thermolysin-like
protease (TLP) from Bacillus cereus and thermolysin from Bacillus thermoproteolyticus
are in good agreement with sites where thermostabilizing mutations have
been successfully introduced by experiment. Likewise, a good agreement between
computed and experimentally verified unfolding nuclei was found for the homologs
3-isopropylmalate dehydrogenase (IPMDH) from Escherichia coli and Thermus
thermophilus. These results demonstrated that unfolding nuclei identified by CNA
can be used to guide data-driven protein engineering: unfolding nuclei are prom-
inent candidates for introducing mutations in order to increase thermostability.
In a subsequent study on 19 pairs of homologous proteins from mesophilic and

thermophilic organisms [52], the local distribution of flexible and rigid regions in
these proteins was analyzed with the help of stability maps, and the findings were
related to activity characteristics of the enzyme structures. Again, TLP/thermolysin
and IPMDHwere considered inmore detail. The study results revealed that adaptive
mutations in enzymes from thermophilic organisms maintain the balance between
overall rigidity (which is important for thermostability), and local flexibility (impor-
tant for activity) at the appropriate temperature at which the protein functions.
Thus, thermophilic adaptation in general leads to an increase of structural rigidity,
but conserves the distribution of functionally important flexible regions between
homologs from mesophilic and thermophilic organisms. This finding provides
direct evidence for the hypothesis of corresponding states [81, 85]. Notably, changes
in the flexibility of active-site regions, induced either by a temperature change or by
mutations, were related to experimentally observed losses of the enzyme function.
From an application point of view, this suggests that exploiting the principle of
corresponding states bymeans of CNA not only allows for successful thermostability
optimization but also for guiding experiments in order to improve enzyme activity in
protein engineering.

18.3.3
Flexibility of Antibiotics Binding Sites and Allosteric Signal Transmission in
Ribosomal Structures

18.3.3.1 Deriving a New Constraint Network Parameterization for RNA Structures
RNA structures are highly flexible biomolecules that show a remarkable ability to
undergo large, but controlled, conformational changes to achieve their diverse
functional roles [86, 87]. In contrast to globular proteins, RNAs are mostly elongated
and more loosely packed [88]. Moreover, both systems have different structural
features: the core of proteins is predominantly determined by interactions of
hydrophobic side chains [89], while the stability of RNA (and DNA) structures is
predominantly governed by hydrogen bonds, base-stacking interactions, and solva-
tion effects [88–90]. Thus, a constraint network representation that has been
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developed for proteins may not be appropriate for RNA systems. Indeed, it could
be shown that a protein-based parameterization does not capture the flexibility
characteristics of RNA structures satisfyingly, but rather leads to too-rigid RNA
structures [91]. This led to the development of a new topological network represen-
tation of RNA structures, which allows for the reliable determination of flexible and
rigid regions within these biomacromolecules [33, 91].
Starting out by analyzing the network rigidity of a canonical A-form RNA, it

became obvious that it is the inclusion of hydrophobic contacts into the RNA
topological network that is crucial for an accurate flexibility prediction, and that the
number of contacts between adjacent bases needs to be limited. Different criteria
were then thoroughly tested to include hydrophobic interactions and hydrogen
bonds in a constraint network representation of RNA structures [91]. These criteria
were adjusted based on comparing results fromrigidity analysiswith crystallographic
B-values of a tRNAASP structure and NMR order parameters of RNA hairpins.
In addition, conformational variabilities of NMR-derived ensembles of 12 RNA
structures were compared with atomic fluctuations determined from structural
ensembles. The latter ensembles were generated by constraint geometric simula-
tions (similar to the NMSim approach described in Section 18.3.1). Notably, one
parameterization was found to be optimal for both predicting infinitesimal motions,
as obtained by rigidity analysis, and finite amplitude motions, as obtained by
constraint geometric simulations. With this parameterization, it was possible to
identify those nucleotides (U8 and U48, G26 and G45) in a tRNAASP structure as
flexible that have been known to function as hinge regions by experiment [91].

18.3.3.2 Analyzing the Ribosomal Exit Tunnel
The derived parameterization was then applied to analyze the ribosomal exit tunnel
within the large ribosomal subunit [35]. The ribosome is the protein synthesis
machinery of the cell. After peptide bond formation at the peptidyl transferase center
(PTC) [92], the nascent polypeptide chain leaves the ribosome via the ribosomal exit
tunnel, which spans the entire large subunit of the ribosome and has an active role in
cotranslational processes [93–97]. Two striking results stand out from this study:

1) By determining a hierarchy of regions of varying stabilities of the large subunit, it
was possible to propose a pathway of allosteric signal transmission from the
ribosomal tunnel region to the PTC (Figure 18.4a). This finding was later
supported by cryo-electron microscopy data of a stalled ribosome structure [98]
and mutation studies [99]. The results indicate that the signal transmission is
based onmechanical coupling between specific structurally stable regions, which
is reminiscent of a tensegrity architecture, which consists of a tensed network of
structural members that resist shape distortion (Figure 18.4b). This type of
architecture particularly suitsmechanical signal transmission due to a local force,
as generated by the interactions of nascent polypeptides with the tunnel wall.

2) By investigating ribosomal structures from different organisms, characteristic
flexibility patterns were identified in the highly conserved antibiotics binding
pocket at the PTC for the different kingdoms that could be linked to antibiotics
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selectivity (Table 18.1). Whereas, the glycosidic bonds of the crevice-forming
nucleotides show a dual flexibility character in the case of the archaeal structure
(which possesses typical eukaryotic elements at the principal antibiotic target
sites), the two glycosidic bonds are structurally stable across all three analyzed
bacterial structures. These differences in flexibility characteristics are related to
differences in the crevice sizes. As such, a wider active site crevice is found for
bacterial structures than for the archaeal structure [100]. As an already open
conformation would not require any deformation energy to accommodate to the

Figure 18.4 (a) Sequence of coupled rigid
clusters that allows signal transmission from
the ribosomal exit tunnel to the peptidyl
transferase center (PTC) by mechanical
coupling between specific structurally stable
regions (depicted in surface representationwith
bluish hues; the numbering refers to E. coli
nucleotides) [35]. The signal transmission
occurs over a distance of�46 A

�
; (b) A tensegrity

structure (�obelisk�) depicting how local
forces generated from interactions of
nascent polypeptides with the tunnel wall
can produce structural rearrangements at
the PTC. The steel bars (blue) represent the
structurally stable regions in the ribosomal
structure; the tension cables (black lines)
correspond to flexible regions that support/
carry the force transfer.

Table 18.1 Flexibility characteristics of the antibiotics binding crevice at the PTC.

Group Organism Active-site crevice

Crevice sizea) Flexibilityb)

Archaea Haloarcula marismortui Too small Dual
Bacteria Deinococcus radiodurans Fits Stable

Escherichia coli Fits Stable
Thermus thermophilus Fits Stable

a) As reported in Ref. [100].
b) Flexibility characteristics of glycosidic bonds of nucleotides A2451 and C2452 (E. coli numbering)

obtained by rigidity analysis [35].
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bound conformation, this could be the reason why bacteria are more sensitive to
some of the active-site crevice antibiotics than archaea [100]. The constraint
counting results further support this hypothesis. Bacteria are vulnerable to
antibiotics because of an open conformation of the active site crevice that is
structurally stable. In contrast, archaea (eukaryotes) can only bind antibiotics if the
narrow conformation of the crevice can widen, as given by the dual flexibility
characteristics. Overall, the study results show that, in order to explain the binding
selectivity of antibiotics, it is necessary to take flexibility characteristics of the
binding sites into account.

18.4
Conclusions

During recent years, encouraging progress has been made in applying graph-
theoretical approaches for characterizing the flexibility and rigidity of biomacromo-
lecules down to the bond level, and linking this information to biological function.
The underlying theory, computational approaches, and sample applications have
been reviewed in this chapter. Rigidity analysis usually takes a few seconds on
proteins of hundreds or thousands of residues, and so can also be efficiently applied
to large biomacromolecules, such as the ribosome. Promising applications of rigidity
analysis include supporting data-driven protein engineering by identifying structural
parts that impact protein thermostability, probing signal transmission in order to
identify new putative allosteric binding sites, and assisting in the assessment of
flexibility characteristics of binding sites. These are areas of active research by the
present authors and others.
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