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Abstract

In this thesis, the mechanical and structural properties of disordered binary
granular packings in three dimensions are investigated. Experiments and
the associated data analysis techniques are developed and used to extract
the essential information from these granular systems.

X-ray tomography is used to monitor granular packings of glass spheres
and an image processing algorithm is developed and used to extract the
individual particle positions. The pair correlation function g(r) is calculated
for these restricted binary mixtures of glass spheres for asymmetrical and
weakly asymmetrical mixtures. For all size ratios three clearly distinguish-
able peaks are observed. The heights and the positions of the peaks depend
strongly on the size and mixing ratio of the investigated systems. Further-
more an indication of rattlers is observed by applying the pair correlation
function to a compressed granular system. A cartridge for an X-ray radiog-
raphy device is developed and used in a parabolic flight. In this experiment,
monodisperse packings of glass spheres are investigated under micrograv-
ity and a novel regime of cooling is observed.

Granular stress-birefringence is developed for three dimensions. A pro-
duction method is developed for producing stress birefringent spheres. The
transition density from a loose to a dense granular packing, the bulk mod-
ulus and the inner development of stresses are obtained from the data.
For packings with strongly asymmetric packings a jump/peak in the sys-
tem properties like transition density and bulk modulus is observed. For
weakly asymmetric packings no pronounced jump/peak appears in the sys-
tem properties. In addition, rattlers in a three dimensional monodisperse
granular system consisting of stress birefringent particles are observed in a
microgravity environment.

Sound transmission in binary granular packings of glass spheres is investi-
gated. A significant increase of the speed of sound is observed for binary
mixtures of glass spheres with strongly asymmetric size ratios. The data for
weakly asymmetric packings show no pronounced behavior.
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Zusammenfassung

In dieser Arbeit werden die mechanischen und strukturellen Eigenschaften
von dichten binären ungeordneten Granulatpackungen in drei Dimensionen
untersucht. Auswertealgorithmen werden entwickelt und angewendet.

Mit Hilfe der Röntgentomographie werden granulare Packungen rekon-
struiert und die Positionen der Teilchen in dem System bestimmt. Sowohl
für stark als auch für schwach asymmetrische binäre granulare Packungen
werden die strukturellen Eigenschaften mittels der Paarverteilungsfunk-
tion g(r) untersucht. Hier kann gezeigt werden, dass die Paarverteilungs-
funktion für binäre granulare Packungen drei Peaks aufweist, die in ihrer
Höhe und in ihrem Abstand zueinander stark von den Größen- und Mis-
chungsverhältnissen der untersuchten Packung abhängen. Des Weiteren
können Rattler mit Hilfe der Paarverteilungsfunktion identifiziert werden.
Ein Einschub für eine Rötgenquelle wird entwickelt und unter Mikrogravi-
tation in einem Parabelflug eingesetzt. In diesem Experiment wird das gran-
ulare Kühlen untersucht und es kann ein neuartiges Gebiet bei langsamer
Kühlung nachgewiesen werden.

Granulare Spannungsdoppelbrechung wird zur Bestimmung der inneren
und äußeren Spannungszustände in einem binären dreidimensionalen gran-
ularen System entwickelt. Hierfür werden spannungsdoppelbrechende
Kugeln hergestellt, die im Experiment die jeweiligen Spannungszustände
wiedergeben. Außerdem ist es mit diesem Experiment möglich, die Über-
gangsdichte von einer losen zu einer dichten granularen Packung zu bes-
timmen. In den gemessenen Daten für stark asymmetrische Mischungen
kann ein Sprung in den Packungseigenschaften, wie z.B. der Dichte und
den inneren Spannungen des Systems, nachgewiesen werden. Diese Tech-
nik wird ebenfalls unter Mikrogravitationbedingungen eingesetzt und es
können Rattler im granularen System nachgewiesen werden.

In einem weiteren Experiment wird die Schallgeschwindigkeit in binären
granularen Systemen untersucht. In diesem Experiment kann eine deut-
liche Erhöhung der Schallgeschwindigkeit in den granularen Systemen für
stark asymmetrische binäre Mischungen nachgewiesen werden.
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Chapter 1

Introduction

1.1 Granular Matter

Granular matter can be defined as an agglomeration composed of macro-
scopic particles where the particle size is large enough to show no thermo-
dynamic motion1. There are lots of familiar examples for granular matter
like sand, powders, grains and boulders which appear in our everyday live.
Even the rings of the Saturn can be described as a granular composition.
We often don’t pay attention to the presence of granular problems such as
milling coffee beans to a powder or using an hourglass. But it is remark-
able how little such systems are understood. For industrial applications the
lack of knowledge about the static and dynamic behavior of granular matter
makes it difficult and expensive to deal with this material. For instance
mixing two or three different components from a powder reservoir in a pill
with a constant concentration, designing a grain silo with the lowest costs
or designing a mineral mill.
Another typical granular phenomenon shows up when pouring a pile of
sand or grain on a table. During the flow out of the container onto the table
the material behaves like a liquid. Hitting the surface it forms a heap and
behaves like a solid. These examples show that granular matter has a wide
range in length scale and lots of different phenomenological appearances.
These arguments indicate the importance and relevance for both scientific
research and application.

To gain systematic access to granular systems it is reasonable to distinguish
between dense granular packings where static properties dominate the sys-

1Consider a particle at T = 300K. If you define thermal motion of the particle as negligible when the thermal
energy ET =

3
2 kBT ≈ 6.21 ∗ 10−21 J is not able to lift the particle higher than 10−4 ∗ r (r is the radius of the particle),

you can define an accumulation of the considered particle as a granular system, when the individual particles

have a radius not bigger than r = 4

√
ET

4
3 ∗π∗ρ∗g∗10−4 ≈ 5μm, with ρ = 2.5 g

cm3 for SiO2 material.
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tem and dilute granular systems where dynamical mechanisms dominate
the system.

For investigating the dynamics of granular matter it is possible and useful to
define analogies to classical liquids or gases such as a granular temperature
T = 3

2 < v2 > with the particle velocity v or a pressure P. For a limited
validity it is possible to apply fluid mechanics or kinetic gas equations to
describe the dynamics [1]. But one intrinsic property of a granular gas or
fluid is dissipation due to inelastic particle-particle collisions which limits
the range of application for fluid mechanical or kinetic theories. A granular
gas or fluid needs a driving mechanism to constantly inject energy into the
system to sustain a steady state (the system is never in a state of thermo-
dynamic equilibrium). Without such a mechanism to excite the grains the
energy quickly dissipates and the granular gas or fluid sediments under
gravity or forms clusters in microgravity conditions [2]. When the energy
is completely lost, a granular gas or liquid comes to rest and behaves like a
solid.

1.2 Random-Close Packing

Solid granular systems are called random close packed (rcp) when the par-
ticles are on the one hand in a static state with the highest possible packing
fraction ϕrcp, which is defined by the ratio of volume occupied by particles
to the total system volume, and on the other hand have a random position
distribution [3]. For well prepared monodisperse particle packings the tran-
sition density ϕrcp from a loose to a dense system is ϕrcp ≈ 0.64. Due to the
lack of thermal fluctuations a granular system can stay in metastable states
indefinitely and it can remain in that configuration for a long period of time.
The two statements above trigger some questions: what does “highest pos-
sible packing fraction” for a “random position distribution” mean and what
does “well prepared particle packing” mean? To get a universal valid answer
it is necessary to well-define the random close packed state of a disordered
granular packing. Unfortunately there is no generally accepted definition
and computer simulations yield that ϕrcp depends on the preparation proto-
col and varies between ϕrcp ≈ 0.64 and ϕrcp ≈ 0.68 [4]. A thought experiment
further illustrates this packing behavior. When putting monodisperse par-
ticles one by one in a container the assembly will create a packing with a
long range order such as an fcc-lattice and thereby a packing fraction of
ϕfcc =

π
3
√

2
≈ 0.74. However, when filling all particles together in the con-

tainer no long-ranged order can be created and the packing fraction will be
ϕrcp ≈ 0.64. Thus, the reality is somewhere in between and it is not possible
to give a definite answer to the question: “What is a random distribution of
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particles?” and what is its “highest possible packing fraction”? However,
there are some approaches to find a satisfying answer, the loophole for this
ill defined problem is to follow a clear and reproducible preparation protocol
to get a “well prepared particle packing”. Several experiments, including
this thesis, for monodisperse granular assemblies in three dimensions the
random close packing transition density ϕrcp is found as ≈ 0.64 and the re-
sults are stable against small variations in the preparation protocol [5, 6].
Therefore it seems reasonable to investigate random close packing as long
as rather “well prepared” preparation protocols are used. However, it is
still an open question how to properly define random close packing. As
a substitute for a definition the following convention is used in this thesis:
random-close packing is that state which is produced by agitating a random
assembly of particles until a structure emerges which is mechanically stable
against perturbations and able to carry load [4].
This thesis deals with granular static packings which are composed of one
or two spherical particles sizes. With three different measurement tech-
niques which all deal with granular material, different packing properties
are investigated:

• The first experiment gives a broad overview about density anomalies for
different particle size ratios δ (see definition in section 1.3). In particular
experiments are performed for δ = 0.15, δ = 0.18, δ = 0.28, δ = 0.35,
δ = 0.47, δ = 0.55, δ = 0.67, and δ = 0.78. For packing preparation,
glass spheres from the WIWOX GmbH Surface Systems company are
used. Furthermore an algorithm is developed and applied to extract
center positions for each individual sphere in the packing from X-ray
tomography data. The pair correlation function g(r) is calculated for
size ratios δ = 0.35, δ = 0.55 and δ = 0.7.
In addition X-ray radiography is used in microgravity for investigating
granular cooling.

• The second experiment focuses on measuring the mechanical properties
such as the random-close packing (rcp) transition density from a dilute
to a dense bidisperse granular system and the inner stress development
during compaction of such systems. Packings of strongly and weakly
asymmetrical partical sizes are investigated with soft stress-birefringent
silicone particles. In particular data are analyzed for size ratios δ = 0.18,
δ = 0.3, δ = 0.4 and δ = 0.8.
Stress birefringence is also used in microgravity for detecting rattlers in
a monodisperse granular system.

• In the third experiment, sound transmission in granular systems is
investigated. Under hydrostatic pressure a sound signal is transmitted
through binary mixtures of glass spheres. In this experiment three
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different size ratios δ = 0.2, δ = 0.3 and δ = 0.5 have been experimentally
performed.

1.3 Binary Mixtures

Systems composed of two different particle sizes are called binary or bidis-
perse mixtures. For such systems three control parameter are necessary for
their description. In this thesis big particle are called A with radius rA and
number of particles nA and small particle are called B with radius rB and
number of particles nB. The mixture is then characterized by

• size ratio δ = rB
rA

. Per definition w.l.o.g. rB ≤ rA.

• volume mixing ratio x̂B =
nBVB

nAVA+nBVB
.

with VA =
4
3πr3

A and VB =
4
3πr3

B.

• packing fraction ϕ = nAVA+nBVB
VC

with VC for the container volume.

Binary mixtures seem to influence the properties of granular packings com-
pared to monodisperse systems. For instance, it has been experimentally
proven that for binary mixtures in three dimensions a transition density ϕrcp
can be achieved, which is significantly higher than ϕrcp ≈ 0.64 in a monodis-
perse sample [7]. In this work it is shown that for a granular system with a
size ratio δ = 0.5 a maximum of ϕrcp ≈ 0.66 is reachable. For δ = 0.25, de-
pending on x̂B, the maximum increases to a value ofϕrcp ≈ 0.71. For both size
ratios the measured functionsϕrcp(x̂B) start withϕrcp(x̂B = 0) ≈ 0.63 , increases
strictly up to a maximum, and then decreases strictly untilϕrcp(xB = 1) ≈ 0.63
is reached. These results could be confirmed in the present thesis. This is
also what one would naively expect: Mixed granular systems consisting of
particles of different sizes can be packed denser than monodisperse samples,
since voids between large particles can be filled by smaller particles that fit
into the voids (compare Appendix A.1). However, it is also an open ques-
tion what happens withϕrcp(x̂B) when the small particles in a mixed granular
system become bigger than the voids between the big particles. It is an in-
teresting question if the function ϕrcp(x̂B) has always the same shape similar
to the one described above or if for other size ratios the shape shows a qual-
itatively different behavior. Furthermore questions arises if other properties
of a three dimensional granular packing like the transition behavior from
dilute to dense packed granular systems or sound transmission, change with
δ and x̂B.

Experimentally it turns out that the preparation of random close packing
in binary granular mixtures is less difficult than in monodisperse systems.
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Monodisperse systems tend to crystallize during compression protocols. In
bidisperse packings, crystallization is less likely because usually no simple
crystal structures such as fcc-lattice are possible. Therefore, slightly bidis-
perse systems are typically used when investigating random close packing
in order to make sure that a disordered state is preserved [8, 9, 10].
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Chapter 2

X-ray Tomography and
Radiography

2.1 Experimental Setup

The following experiment investigates bidisperse granular packings consist-
ing of glass spheres. To obtain a full 3D position data set for such systems,
three steps are necessary:

• sample preparation

• X-ray tomography and 3D reconstruction of the packing

• center point detection of each particle based on the 3D reconstruction
data

2.1.1 Sample Cell

A cylindrical plexiglass tube is used as sample cell, because plexiglas has a
low coefficient of absorption for X-rays and is therefore almost invisible in
the received images. The inner diameter of the tube is 10mm and the outer
diameter is 13mm. The plexiglass tube is sealed by polyvinyl chloride (PVC)
or aluminum caps (see Fig. 2.1). The caps are also used to fix the sample
cell in the three jaw chuck of the X-ray tomograph . The total height of the
sample cell is about 50mm with a volume of ≈ 3.93cm3.
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Figure 2.1: Plexiglass tubes with an inner diameter of 10mm and an outer diameter of 13mm.
The heights of the sample cells are≈ 50mm. Left tube: bottom and top aluminum cap, filled
with a binary mixture of glass spheres with size ratio δ = 0.55 (∅A = 530μm,∅B = 290μm)
and mixing ratio x̂B = 0.25. Right tube: bottom PVC cap and half filled with glass spheres
∅ 0.4 mm (top cap removed).

2.1.2 Sample

The binary mixtures were created by mixing glass spheres which consist of
lime-natron glass because of their high coefficient of absorption for X-rays at
a wavelength of λ = 10nm. Different diameters of the spheres where used,
which were obtained via sieving (see Table 2.1).

spheretype ∅[μm] Δ∅[μm] %deviation
a 90 ±10 ±11.1
b 112 ±12.5 ±11.2
c 175 ±25 ±14.3
d 218 ±6 ±2.8
e 290 ±10 ±3.4
f 412 ±12.5 ±3
g 530 ±30 ±5.7
h 615 ±15 ±2.4

Table 2.1: Used sizes of glass spheres obtained via sieving.
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Table 2.2 shows the size ratios δ which can be mixed from the sphere types
listed in Table 2.1.

a b c d e f g h
a 1 0.8 0.51 0.41 0.31 0.22 0.17 0.15*
b 1 0.64 0.51 0.39 0.27 0.21 0.18*
c 1 0.8 0.6 0.42 0.33 0.28*
d 1 0.75 0.53 0.41 0.35*
e 1 0.7* 0.55* 0.47*
f 1 0.78* 0.67*
g 1 0.86
h 1

Table 2.2: Possible size ratios δmixable with the spheres listed in table 2.1. The size ratios δ
marked with “*” are the basis for investigation in this experiment. In particular it is δ = 0.15,
δ = 0.18, δ = 0.28, δ = 0.35, δ = 0.47, δ = 0.55, δ = 0.67, δ = 0.7 and δ = 0.78.

The size ratios δ marked with “*” in Table 2.2 are used for the setup in this
experiment. Specifically δ = 0.15, δ = 0.18, δ = 0.28, δ = 0.35, δ = 0.47,
δ = 0.55, δ = 0.67, δ = 0.7 and δ = 0.78 were utilized.

2.1.3 Mixing Procedure

During the mixing procedure it is important to avoid the following three
major error sources:

• Care must be taken to ensure that the packing is not crystallizing during
the preparation. Especially for x̂B ≈ 0 or x̂B ≈ 1 this could be the case.

• Separation of the two sphere types needs to be prevented. This is more
likely for smaller than for larger size ratios.

• During the filling process it is essential that the mixing ratio x̂B stays
constant over the entire height of the sample cell.

Crystallization can be avoided by protecting the sample cell from violent
shocks and severe vibration after filling, so that there is not enough energy
for the particles to rearrange their structure.
The separation of components in two or multi component mixtures with low
size ratios δ is gravitationally driven [11]. Hence, a mixing procedure via
shaking or vibrating is not desired, because a separation of the entire or even
part of the sample cell cannot unambiguously be avoided. Furthermore, it
is impossible to get a homogeneously mixed sample with a constant mixing
ratio over the entire height of the sample cell by simply shaking the sample
tube.
To prepare granular binary mixtures under gravitational conditions and to
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avoid the error sources described above, a mixing apparatus is developed
in order to mix the volume flows of two particle sizes.

Figure 2.2: Mixing apparatus for binary mixtures under gravitational conditions. Left
picture: mixing apparatus with power supply; Right picture: mixing apparatus with (1)
filling funnel, (2) aperture with variable opening, (3) mixing hopper, (4) vibration damper,
(5) mixing nozzle, (6) vibration motor

Figure 2.3: Mixing nozzle: plastic tube containing an interrupted helical particle rotating
device. The tube has a length of ≈200mm and a diameter of ∅ ≈ 6mm.

The pictures in Fig. 2.2 show that the mixing apparatus contains two sepa-
rated filling funnels in which the glass spheres can be filled. At the bottom
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of each funnel an aperture is installed, which allows to control the flow rate
of the particles via changing the opening diameter of the apertures (these
apertures are adapted from camera lenses). The two particle flows are com-
bined in a mixing hopper which has a common outlet. The actual mixing
happens in the mixing nozzle (see Fig. 2.3). The mixing nozzle is a plas-
tic tube, which contains an interrupted helical particle rotating device. The
incoming particles are mixed in three steps, which are repeated several times

1. The combined particle flow is separated into two volume flows.

2. The separated flows are rotated 180 degrees via an interrupted helical
particle rotating device.

3. The two rotated particle flows are then combined again and this proce-
dure is repeated several times.

On exiting the nozzle the mixed particle flow fills into the sample cell.
To avoid particle jamming in the filling funnels and/or mixing nozzle, the
whole apparatus vibrates during the filling process. The vibration is gen-
erated by an eccentric vibration motor (see (6) in Fig. 2.2). The damper
(see (4) in Fig. 2.2) ensures that a minimum of vibration can be transmitted
to the sample cell during the mixing process to avoid any possible packing
influence.

Figure 2.4: Mixing nozzle outlet with the sample cell.

This apparatus allows for producing granular binary mixtures satisfying the
boundary conditions described above.
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2.2 X-ray Tomography

The raw data for the 3D volume reconstruction of binary mixtures is obtained
by using X-ray tomography [12, 13, 14, 15]. The Nanotom 160 NF tomograph
from Phoenix X-ray Systems which was in use for the measurements has a
voltage range of 0-160 kV and a current range of 0-0.16 μA. This corresponds
to a maximal output power of 25.6 Watt. The detector that was used is a
digital flat sensor from HAMAMATSU. It consists of 2400 x 2400 pixel with
50 x 50 μm per pixel. The path from the X-ray source to the detector is
approximately 500mm and the free useable space is 300mm in the beam
direction and 130mm perpendicular to the beam direction. In addition,
the X-ray tomograph has a 360 degree rotary object stage with a three jaw
chuck. The detector has a bit depth of 12-bit and creates with EDR (Extended
Dynamic Range) images with a depth of 16-bit.
With the used sample cell it is possible to achieve a resolution of 4.48 μm.
Consequently the sample is illuminated at a height of about 11 mm and
thus has a volume of about 700mm3. This volume contains a total number of
detectable particles from around 3500 (for 615μm particles) to around 300000
(for 90μm particles) depending on the size ratio δ and the mixing ratio x̂B.
The working principle of the Nanotom is displayed in Fig. 2.5.

Figure 2.5: Schematic of X-ray tomography: X-ray source (left), divergent beam through
the sample cell (middle) and detector (right) ( c©)phoenix|x-ray Systems GmbH.

11



The X-ray beam illuminates the sample and a two dimensional transmission
absorption image is captured by the detector. The CNC object stage rotates
the sample step by step and the images are taken for each step. The Nan-
otom is a full-protection device and therefore it is not necessary to take any
additional precautionary measures. Pictures 2.6 and 2.7 display the set up
of the Nanotom.

Figure 2.6: X-ray tomography device. Left picture: Nanotom with radiation protection
shell. Right picture: inner structure with (1) X-ray source, (2) CNC object stage and (3)
detector

Figure 2.7: CNC rotation table with three jaw chuck and a sample cell filled with glass
spheres
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2.3 Reconstruction Method

2.3.1 Transmission Absorption Image

To produce optimal projection images with the Nanotom (see Fig. 2.8), it
is necessary to adjust the correct ratio between the X-ray source and the
absorption profile of the detector depending on the sample in the beam.
In the optimization trials of the current experiment the optimal parameter
setup had a voltage of 100 kV , a current of 120 μA, and an exposure time of
5000 ms.

Figure 2.8: Typical absorption image made by the Nanotom. The image shows a granular
packing of glass spheres in the sample cell with a size ratio of δ = 0.35 and a mixing ratio
of xB = 0.72. The big spheres have a diameter of ∅ ≈ 615μm and the small spheres have a
diameter of ∅ ≈ 218μm
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Figure 2.9: Histogram of image 2.8. Energy absorption of the particles is represented by
the left peak and absorption of the sample tube is represented by the right peak in the
histogram (16-bit depth see text).

Fig. 2.9 illustrates the absorbed beam intensity. It shows that the detected
beam intensity is not running out of the detector range during measurement.
In the middle of the sample cell the X-ray absorption has its maximum and
the corresponding histogram (see Fig. 2.8) has its highest peak with a gray
value of ≈ 700. For more eccentric positions of the cell the absorption is
smaller and the histogram reveals higher gray values. The second peak
identifies the absorption of the sample tube and has a gray value of 1400. To
improve the quality of the projection image and to minimize side effects like
afterglow of the detector, it has proven to be helpful to skip the measurements
of the first two images at the beginning of each rotation step and to average
over three images afterwards. For a full 360◦ 3D volume reconstruction it is
necessary to take 800 images (0.45◦/step), which leads to a total measuring
time of about 5 hours and 30 minutes.

2.3.2 3D Reconstruction

Based on the projection images described in the previous subsection a 3D
reconstruction of the three dimensional volume is generated. Due to the loss
of depth information in the projection images, it is necessary to use the 360◦

14



rotation information to reconstruct the sample into a three dimensional im-
age. The mathematical tool that can be used to obtain the three dimensional
image is the Radon transformation [16]. The reconstruction process of the
images is largely automated and take several corrections like artifacts or a
divergent beam line into account. In Fig. 2.10 and 2.11 are representatives
of a 3D reconstructed granular binary mixture consisting of glass spheres.

Figure 2.10: Reconstructed 3D image for a sample with a size ratio of δ = 0.35 and a mixing
ratio of xB = 0.72. Particle diameters are ∅A = 615±15 μm and ∅B = 218±6 μm. The section
has a volume of 2150 px × 2150 px × 460 px = 2.1× 109 data points (voxels).

Figure 2.11: Close-up from the 3D image in Fig. 2.10. The big particles have a diameter of
∅A 137 px with a volume of 1.3× 106 voxels. The small particles have a diameter of ∅B 48
px with a volume of 0.6× 106 voxels.
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2.3.3 Slice Images

The 3D tomogram is now available and with suitable commercial programs
it is possible to separate the volume data in slices with different orientations
such as axial, radial or diagonal slices. For further data analysis it is suitable
to use radial sliced images. VGStudio Max (Phoenix|X-ray Systems software)
was used for slicing the volume data.

Figure 2.12: Exemplary slice image of Fig. 2.10.

2.4 3D Position Detection

The key to detailed analysis of granular packing is the knowledge about the
3D positions of each particle in the system.
The program described in the following automates the detection of the par-
ticle positions and generates a sufficiently precise data set which is suitable
to serve as a basis for further structural analysis of granular binary mixtures.

To generate the desired particle positions the raw data are processed in two
steps. First the slice images will be binarized and compressed by a program
called nano. Subsequently, the particles positions are detected using the
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program dreiDposition (The codes are described in detail in Appendix
A.2). All codes are written in IDL. The first step is to generate a histogram,
which shows the gray value distribution in the area of the particle location.
Therefor a mask is imprinted to the slice image in order to exclude boundary
errors such as the sample tube or other artifacts (see Fig. 2.13).

Figure 2.13: Slice images for a binary mixed sample. The image show a granular packing
with a size ratio of δ = 0.55 and a mixing ratio of xB = 0.54. Left: original image, Right:
image with mask.

grayvalue

Figure 2.14: Histogram of the slice image with mask in Fig. 2.13

Fig. 2.14 shows the histogram of the slice image with mask in Fig. 2.13.
For analysis the computer code nano expects a histogram with two peaks
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for each image and therefore a minimum between the two maxima. The
value of this minimum is the value for the threshold for binarization. After
binarization center detection of the particles is processed. The working
procedure for the computer codes are described in appendix A.2.

In Fig. 2.15 the compressed image outputted from the computer code
nano is shown. Fig. 2.16 is the same image as shown in Fig. 2.15 after it
has been processed by the computer code dreiDposition. The detected big
particles are outlined in red and the small ones are outlined in green. For
every small and big particle 3D space coordinates are determined.

Figure 2.15: Slice picture from a bidisperse sample.
The picture show a packing with a size ratio of δ =
0.35 and a mixing ratio of x̂B = 0.72.

Figure 2.16: Same picture as shown in Fig. 2.15
with particle detection. Big particles are outlined
in red, small particles are outlined in green. For
every small and big particle 3D space coordinates
are determined.

2.5 Determine the Deviation of the Mixing Ratio x̂B over the

Sample Height

For determing the deviation of the actual mixing ratio x̂B over the entire
sample height after preparation (compare section 2.1.3) the obtained position
data are used. Exemplary one dataset is separated into three sections (see
Fig. 2.17 (left)). For every section the mixing ratio x̂B 1,2,3 is calculated. The
results are listed in Fig. 2.17 for a granular packing with size ratio δ = 0.35
and several mixing ratios x̂B.
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Figure 2.17: Deviation of the actual mixing ratio x̂B over the entire sample height after
preparation for a granular system of glass spheres with a size ratio δ = 0.35 and mixing
ratio x̂B = 0.013, x̂B = 0.022, x̂B = 0.035, x̂B = 0.049 and x̂B = 0.105. Left: the separation
convention is shown. Right: the results for the determined deviation are listed in the table.

2.6 Density Consistency Check for ϕrcp Packings

In order to provide a consistency check and to give a broad overview to the
density evolution of bidisperse granular systems, a series of experiments
(see Table 2.2) is performed. The used sample cell is the same as described
in subsection 2.1.1. The sample tapped softly three times after filling. To
calculate the resulting packing density the next step after filling is to sepa-
rate the two sphere components via sieving and determine their individual
weights. With the density of the material (which is ρ = 2.45 for lime-natron
glass) and the sizes of the spheres it is possible to calculate the number of par-

ticles. Now the packing density can be calculated via ϕ =
4
3πr3

AnA+
4
3πr3

B∗nB

Vsamplecell
with

rA, rB radii of the spheres, nA,nB number of particles and Vsamplecell volume of
the sample cell. Fig. 2.18 show the results of these measurements.
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Figure 2.18: Density for bidisperse packings of glass spheres. The curves show the density
distribution for binary mixtures with size ratio δ = 0.15, δ = 0.18, δ = 0.28, δ = 0.35, δ = 0.47,
δ = 0.55, δ = 0.67 and δ = 0.78.

The majority of the curves in Fig. 2.18 starts with a packing fraction of
around 63% at x̂B = 0. This value is slightly lower than an expected value
of ϕrcp ≈ 64% for monodisperse random close packed granular systems. A
reasonable explanation for this behaviour is the influence of friction between
the particles. Systems with friction can create significantly lower packing
fractions as systems without friction [17]. For all measurements the gran-
ular systems are consisting of high number of particles. Table 2.3 show an
example for measured packing properties including the number of particles
for big and small spheres nA, nB and the friction coefficient μs. For the other
measured size ratios shown in Fig. 2.18 the packings consists of comparable
statistics.
The curve for δ = 0.15 in Fig. 2.18 shows a clear maximum at x̂B = 0.353 with
ϕrcp = 0.797. For increasing size ratios δ the curves flatten until the maxima
disappear.
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μs glass/glass δ x̂B ϕrcp nA nB
0.9-1 0.15 0.026 0.647 20000 170000

0.879 0.665 2500 5850000

Table 2.3: Packing properties for the granular system of glass spheres shown in Fig. 2.18
(black dots). The parameter for the system are size ratio δ = 0.15 with particle diameter
∅A = 615μm and ∅B = 90μm. The listed paticle numbers for the big spheres nA and small
spheres nB give an overview about the measured statistics.

2.7 Pair Correlation Function g(r)

The inner structure of random close packed systems based on the data
obtained from the procedure described in section 2.1 is analysed by using
the pair correlation function g(r) [13, 18, 19, 20].
The pair correlation function g(r) indicates how density varies as a function
of distance from a reference particle and is defined as:

g(r) :=
1

Nϕ

∫
points

∫
points
δ(|
p − 
q| − r)

1
4πr2 d
pd
q (2.1)

for systems with infinity boundary conditions. In equation 2.1 ϕ stands for
the system density, N is the total number of particles, 
p is the position vector
of point p which applies also for 
q and q. A pair of 
p and 
q have the distance
|r|.
To make formula 2.1 applicable for restricted systems it is necessary to
discretize the expression:

g(r) =
1

Nφ

∑

p∈points

∑

q∈points

θ((|
p − 
q| − r) ∗ (r + b − |
p − 
q|)) 1
4πr2b

(2.2)

where N is the total number of particles and φ is the density of the restricted
system. The expression b is known as binning of the calculation and it
applies for the calculation radius |r| = b ∗ n with n ∈ N. The fraction 1

4πr2b is
approximately the volume of a hollow sphere with inner radius r and outer
radius r + b whereupon the heavysidefunction θ ensure that only pairings
of points p and q between r and r + b are possible. The restricted density φ
is given by:

φ =
N

(cZ1 − cZ0)πc2
R

(2.3)

where cR is the radius of a cylinder and cZ0, cZ1 are the lower and upper
limits (note that cR is the defined cylinder radius for calculation and not the
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cylinder radius of the experiment container). The principle for calculating
g(r) in a restricted system is illustrated in Fig. 2.19.

Figure 2.19: Principle of calculating g(r) in a restricted system. Transparent gray is the
cylinder which contains the scatter plot (not illuminated). Dark transparent gray is the
volume of a hollow sphere with inner radius r and outer radius r + b. 
p and 
q are the
position vectors of point p and q with distance |r|. |r| has to be between the inner radius r
and outer radius r + b of the hollow sphere to fulfill the boundary conditions for pairing p
and q.

When investigating g(r) in restricted systems it is important that the nor-
malization of g(r) as described in equation 2.2 is only valid when the inner
radius of the hollow sphere with its position vector 
p is at least r + b away
from the system boundaries. If 
p has a closer distance to the system bound-
aries it is possible that a pairing between p and q is calculated which is not
allowed because q can have a value greater than the system boundaries.
Hence the normalization has to be done with partial volumes. In this case
the normalization has to be corrected and the sum

∑

q∈Punkte

θ((|
p − 
q| − r) ∗ (r + b − |
p − 
q|)) 1
4πr2b

from equation 2.2 has to be replaced by
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∑

q∈Punkte

θ((|
p − 
q| − r) ∗ (r + b − |
p − 
q|)) 1
VP
. (2.4)

where 1
VP

stands for the corrected normalization. Two cases must be distin-
guished when calculating g(r) for systems with cylindrical boundary con-
ditions and partial volume normalization: first 
p is close to the area of the
surface in radial direction, second 
p is close to the area of the surface in axial
direction. To avoid a complicated analytical solution for calculating the par-
tial volume VP the boundary value problem is simplified. In the first case a
wedge is defined in which the scatter plot as well as the partial volume is
excluded for calculating g(r). For case two an additional volume has to be
excluded. Both cases are shown in Fig. 2.20 and the detailed calculation is
described in [21].

C
C

C

x

y

z

r

r+b

r

z1

z0

q
p

Figure 2.20: Boundary volume correction for g(r) calculation in a restricted granular system.
The figure visualize the idea behind the simplification of the boundary value problem when
calculating the pair correlation function g(r) for restricted systems. Transparent gray is the
cylinder which contains the scatter plot (not illuminated). Bright yellow is the volume of
the hollow sphere with inner radius r and outer radius r + b with excluded calculation
volume.
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2.8 Analysis of the Pair Correlation Function g(r)

In Fig. 2.21 a pair correlation function g(r) is shown which is calculated based
on a granular system with size ratio δ = 0.35 and mixing ratio x̂B = 0.013.
The pair correlation function is plotted against r/dA where |r| is the distance
between vector 
p and 
q and dA is the diameter of the big sphere. This means
that the distance between two big spheres (hereinafter to be referred to as
A-A-distance) is normalized to r/dA = 1.
Three major peaks are distinguishable in the diagram: the first peak (from
left to right) appears at r/dA = 0.35 which indicates the distance of two
small spheres (hereinafter to be referred to as B-B-distance), the second peak
appears at r/dA = 0.675 and indicates the distance between a small and a big
sphere (hereinafter to be referred to as A-B-distance) and the third peak is at
r/dA = 1 and indicates the A-A-distance as mentioned above. The first peak
at r/dA = 0.35 indicates also the size ratio δ = 0.35 which is a consequence of
the chosen normalization.

Figure 2.21: Calculated g(r) for a restricted bidisperse granular system of glass spheres
with size ratio δ = 0.35 and mixing ratio x̂B = 0.013. The curve show three major peaks
at r/dA = 0.35, r/dA = 0.675 and r/dA = 1 which indicates the possible particle-particle
distances between the spheres.
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The pair correlation function g(r) can be interpreted as probability distribu-
tion function to find a particle at distance |r| from a chosen point p [19]. The
probability is consequently zero for hard spheres as long as the relation |r| <
B-B-distance is fulfilled. At the first peak g(r) has a value g(r) < 1 which
is a consequence of the small mixing ratio x̂B = 0.013. This means that the
system consist of only a few small particles and hence a low probability for
having two small particles in contact. The second peak increases to a value
of g(r) ≈ 3 which indicates a higher probability for A-B particle contacts.
The highest peak has a value of g(r) ≈ 5 which means that A-A particle con-
tacts dominates the structure of these granular system. For higher r/dA > 1
the pair correlation function asymptotically approaches a value of g(r) = 1
which means that the probability for large distances |r| is only dependent on
the density ϕ of the system.

The figures 2.22, 2.23 and 2.25 show the g(r) calculation results for granular
systems with size ratio δ = 0.35, δ = 0.55 and δ = 0.7 respectively. The
binning value is chosen to b = 4 in order to smooth the curves. The general
structure of the curves are the same as described for Fig. 2.21. The three
major peaks appear depending on the sizes of the spheres in the granular
packing. The height of the peaks show the probability of a pair correlation
between two spheres.
In Fig. 2.22 g(r) is shown for three different mixing ratios x̂B. The curve for
the smallest x̂B = 0.013 (blue line) has a peak at r/dA = 0.35 with a value
g(r) < 1 which means that the probability is low to find a B-B-contact in
the system. The next peak at r/dA = 0.675 increases to a value g(r) ≈ 3 and
hence the probability to find a A-B-contact in the system. The last peak
at r/dA = 1 with its value g(r) ≈ 5 indicates that the system is dominated
by A-A particle contacts (it is the same curve as shown in Fig. 2.21). The
opposite is shown in the curve for the mixing ratio x̂B = 0.105 (red). There
the system is dominated by B-B particle contacts. The calculation result for
the intermediate mixing ratio x̂B = 0.022 is visible as dashed black line with
stars in the diagram and has the same interpretation as described above.
Note that between x̂B = 0.013 (blue line) and x̂B = 0.105 (red line) the volume
mixing ratio x̂B increases only about ≈ 10%.
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Figure 2.22: Calculated g(r) for a restricted bidisperse granular system of glass spheres with
size ratio δ = 0.35 and three different mixing ratios x̂B = 0.013, x̂B = 0.022 and x̂B = 0.105.
The curve show three major peaks at r/dA = 0.35, r/dA = 0.675 and r/dA = 1 which indicates
the particle-particle distances between the spheres.

In Fig. 2.23 g(r) is shown for size ratio δ = 0.55 and three different mixing
ratios. Note that between x̂B = 0.04 (blue line) and x̂B = 0.555 (red line) the
volume mixing ratio is about≈ 50% here. By comparing the diagram for size
ratio δ = 0.35 in Fig. 2.22 and δ = 0.55 and in Fig. 2.23 it is mentionable that
the g(r) values for comparable mixing ratios show different trends. In Fig.
2.22 the curve for x̂B = 0.105 (red line) indicates a granular system which is
dominated by B-B particle contacts. The curve in Fig. 2.23 for x̂B = 0.104
(black dashed line with stars) indicates a different situation for the random
distribution of spheres in a granular packing. Here the system is dominated
by A-B particle contacts with an also high possibility for A-A contacts. These
A-A contacts are almost vanished in the system with size ratio δ = 0.35 at
x̂B = 0.105 (red line) shown in Fig. 2.22.
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Figure 2.23: Calculated g(r) for a restricted bidisperse granular system of glass spheres with
size ratio δ = 0.55 and three different mixing ratio x̂B = 0.04, x̂B = 0.104 and x̂B = 0.555. The
curve show three major peaks at r/dA = 0.55, r/dA = 0.775 and r/dA = 1 which indicates the
particle-particle distances between the spheres.

Fig. 2.25 show the g(r) results for a granular packing with size ratio δ = 0.7
and three different mixing ratios. Here the interval of x̂B goes from x̂B = 0.056
to x̂B = 0.937 with a value in between of x̂B = 0.636. The two peaks for
x̂B = 0.056 (blue line) and x̂B = 0.937 (red line) show almost the same height
for g(r) with a value g(r) ≈ 5.5. Interesting to mention is that for very small
x̂B’s (blue line) there is still a possibility for B-B particle contacts. In contrast
to very large x̂B’s (red line) where the possibility for A-A and A-B particle
contacts is vanished. Which means that in packings with a small mixing
ratio (blue line) are still enough small particles to create B-B particle contacts,
whereas in packings with large mixing ratios (red line) the big particles are
so understaffed that they don’t create A-A particle contacts and only a not
significant number of A-B particle contacts. The curve with a mixing ratio
x̂B = 0.636 is chosen in order to show that in a granular system with size
ratio δ = 0.7 the system lose their possibility for A-A contacts which can be
seen in the almost vanished g(r) value for A-A particle contacts. Furthermore
additional peaks appear in the curves for x̂B = 0.056 (blue line) and x̂B = 0.937
(red line). They indicate the particle distance which are described in Fig.
2.24 [20, 22].
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Figure 2.24: Particle arrangement with four spheres of diameter d where distance s =
√

3d
is shown (left). Particle arrangement with three spheres in a row where distance g = 2d is
shown (right).

The distance s has the values s =
√

3d and g is g = 2d where d is the diameter
of the sphere. The peaks are marked with s and g in Fig. 2.25. The peaks for
s and g distances can also be seen in the results for size ratio δ = 0.35 in Fig.
2.22 (x̂B = 0.04, blue line) and for size ratio δ = 0.55 in Fig. 2.23 (x̂B = 0.013,
blue line).

Figure 2.25: Calculated g(r) for a restricted bidisperse granular system of glass spheres with
size ratio δ = 0.7 and mixing ratio x̂B = 0.056, x̂B = 0.636 and x̂B = 0.937. The curve show
three major peaks at r/dA = 0.7, r/dA = 0.85 and r/dA = 1 which indicates the particle-
particle distances between the spheres. Also shown are the distances s =

√
3d and g = 2d

(see Fig. 2.24) for the the mixing ratios x̂B = 0.056 and x̂B = 0.937
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2.9 Rattler Detection via g(r) Calculation

Particles in a dense packed granular system which are not fully arrested are
called rattlers. An indication of the number of rattlers in such a system can be
determined by analyzing the pair correlation function g(r). For measuring
these value a granular sample with size ratio δ = 0.7 and mixing ratio
x̂B = 0.512 is investigated. Three different preparation protocols have been
performed for the same sample:

• preparation 1: A bidisperse granular mixture has been produced with
the method described in section 2.1.3. For structural analysis, the parti-
cle positions have been determined based on X-ray tomography volume
reconstruction data as described in section 2.2. The result is named “un-
tapped” and is shown in Fig. 2.26 (black line).

• preparation 2: The same sample as describe in preparation 1 was pro-
cessed again after soft tapping on a table. The result is named “tapped”
and is shown in Fig. 2.26 (red line).

• preparation 3: The same sample as described in preparation 2 was
processed again after hard compressing the packing with a bolt. The
result is named “compressed” and is shown in Fig. 2.26 (blue line).

Figure 2.26: g(r) for a bidisperse granular system of spheres with a size ratio δ = 0.7 and a
mixing ratio x̂B = 0.512. The three curves show the calculation results for the same sample
which was manipulated in three different ways during preparation. The peak at r/dA = 0.7
shows a significant increase in height for the compressed sample which indicates that the
rattlers loose their voids in the packing.
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The peaks for A-A and B-A particle distances (see Fig. 2.26) are not changing
in height for the three different preparation protocols. The first peak at r/dA =
0.7 increases significantly in height from g(r) ≈ 2.12 for the untapped/tapped
sample to g(r) = 2.67 for the compressed sample which means g(r) increases
about ≈ 25% after compressing. This indicates that the B-B particle contacts
increases during compression and it also indicates that predominantly small
particles are the rattlers in this granular system.

2.10 Outlook

Figure 2.27: Radiography images of the sample cell (see Fig. 2.1 with aluminum caps)
for rattler detection before (left) and after (right) rotation. The two images show the same
granular packing of glass spheres with a size ratio of δ = 0.18 and a mixing ratio of
x̂B = 0.056. The particle sizes are: big spheres ∅A ≈ 615μm, small spheres ∅A ≈ 112μm.
Visible are also the three tracer particles in both pictures. They consist of metal and have a
diameter of ∅trace ≈ 900μm.

For further rattler investigations a new detection technique is developed, but
needs to be analysed. In the new method two position data sets have to be
available for each mixing ratio: the first data set is obtained after preparing
the granular packing with the same experimental protocol as described in
section 2.1. The second data set is obtained after the X-ray tomography for
the first data set was produced. For the second tomography the sample cell
needs to be rotated by 180◦ around an axis through the cylinder surface (see
sample cell in Fig. 2.1 with aluminum caps)). In that situation the rattles
move most likely the maximum distance in their pockets in the system.
Some tracer particles which are slightly bigger than the biggest spheres in
the granular packing and have a different coefficient of absorption for X-rays
as the packing particles, for instance metal spheres in an environment of glass
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spheres, are introduced during preparation. These tracer particles help to
identify the exact positions before an after the sample rotation and they are
most likely no rattlers because of their bigger sizes. After obtaining both data
sets it is possible to compare the data due to the knowledge of the positions
of the tracer particles before and after rotation. When now superimposing
both data sets, most of the particle positions should be identical except the
rattlers. By assuming the pockets of the rattlers have comparable sizes, so
that the spheres move predominantly the same distances during rotation
of the sample cell, an additional peak should appear in a pair correlation
analysis. Fig. 2.27 show two radiography images produced as described
above.

2.11 Monitoring Three-Dimensional Packings in Micrograv-

ity

In addition to the lab work in this thesis a parabola flight campaign (DLR-
22) took place in April 2013. The experiment was built as a cooperation
between different groups from the Institut of Material Science in Space at
DLR. It is a X-ray source with a detector and a sample chamber for replace-
able cartridges. During my thesis I supported Alexander Börngen who did
his engineering master thesis on this topic. I supported him during the con-
struction of the cartridge for the experiment and introduced him to X-ray
measurement techniques. Peidong Yu analyzed the acquired data. The ex-
perimental technique which was used in the parabolic flight and the results
are published in Granular Matter Journal [23].

2.11.1 Microgravity

Experiments with granular matter in microgravity allow access to regions
in control-parameter space that are otherwise not accessible. Microgravity
prevents the sedimentation of a loose non-agitated granular assembly and
hence enables the long-term study of such states. For agitated granular
matter, experiments in microgravity can reduce the inhomogeneity of driven
states; and for particles in contact, the absence of gravity eliminates the
pressure gradient in the packings. To what extent these goals can be realized
in a specific experiment depends largely on the quality of the microgravity
conditions found on specific platforms. Experiments have been performed
for granular gases [2, 24, 25] as well as dense systems under shear [26, 27] . In
the following sections, it will be shown how the microgravity environment
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of a parabolic flight can be utilized for investigating granular packings.
Results will be elaborated for X-ray radiography.
Microgravity environments are typically hard to obtain and require years of
preparation. In contrast to experiments in space, parabolic flight campaigns
offer a reasonably frequent opportunity to perform experiments under mi-
crogravity conditions. While not offering the best microgravity quality in
terms of rest-accelerations, cf. discussion below, parabolic flights can help to
test phenomena that depend on a distinction between top and bottom. One
such phenomenon is convection. For a granular system under shear, convec-
tion was found perpendicular to the direction of shear along the direction
of gravity [28] . On a parabolic flight however, it was observed recently,
that in the absence of a distinction between top and bottom such convection
disappears [26].
The limitation of such experiments on parabolic flights is the presence of
rest-accelerations – called g-jitter – which drastically restrict the time the
particles can stay in a granular gas without being collectively driven against
the container walls within around a second. For dense granular matter,
the g-jitter imposes a minimum necessary confinement for keeping granular
packings confined.
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Figure 2.28: Distribution of rest accelerations averaged over a typical single parabola of
22 seconds on the third day of parabolic flight campaign DLR-22. Data are shown for the
x- (circles, forward direction of the airplane), y- (diamonds, wing-to-wing direction of the
airplane), and z-directions (squares, floor-to-ceiling direction of the airplane).
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Fig. 2.28 shows the distribution of rest accelerations on a parabolic flight,
averaged over a single parabola. The x-direction is defined from the tail
to the front of the plane, the y-direction is from the left to the right wing
when looking from the cabin to the cockpit, and the z-direction points from
the floor to the ceiling of the cabin. Given the rather uncontrolled nature
of the rest-accelerations, it is remarkable how well they follow reasonable
distributions. The full width of the distributions at half maximum in units
of g is 0.005 for the x-direction, 0.01 for the y-direction, and 0.04 for the z-
direction. In addition to the width of the distributions showing rather large
qualitative differences, also the maximum values in x- and z-directions show
deviations from zero, a0

x/g ≈ 0.0025 (forward bias) a0
z/g ≈ −0.012 (downward

bias). The y-direction is on average symmetric. Data for a single parabola
typically look similar to Fig. 2.28 while being somewhat variable between
individual parabolas.
Rather than trying to avoid the influence of the rest-accelerations, in the
following experiments the g-jitter is utilized for providing agitation for dense
granular systems.

2.11.2 X-Ray Radiography

The use of X-ray illumination facilitates the visualization of otherwise opti-
cally opaque samples. The simplest use of a combination of an X-ray source
and a detector is by recording the transmission images after absorption from
the sample in a radiography setup. X-ray radiography has been used to in-
vestigate hopper flow of sand [29] as well as the dynamics of granular matter
in fluidized beds [30, 31, 32] .
The aim of the present study using X-ray radiography is to investigate the
compaction of a granular assembly into a dense packing. On ground the
compaction is dominated by gravity-induced sedimentation and takes place
rather rapidly within a fraction of a second and also comparably violently
with shock waves traveling through the system [33] . In microgravity, the
energy loss is still driven by inter particle collision but the rapid sedimenta-
tion is replaced by the compaction from the container walls which is chosen
here to be rather moderate in speed.
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Figure 2.29: Experimental setup for the parabolic flight (DLR-22, April 2013) for X-ray
radiography. The top panel shows a schematic view from left to right of the X-ray tube,
the experiment chamber with sample cartridge, a spacer ring, and the detector. The central
panel exhibits the sample chamber with the replaceable cartridge for granular experiments
which is shown in the photograph of the bottom panel. The granular cartridge has two
motorized pistons of cross-section 15mm×5mm and an X-ray ruler with a mm-scale on top.

Fig. 2.29 shows the setup of the radiography device. The source produces
a divergent X-ray beam that irradiates a sample before being registered
by the detector (CCD-/COOL-1100XR) with pixel size 9μm×9μm recording
with a resolution of 2008×1340 pixels and 16-bit depth at 4 fps (frames per
second). The placement of the sample between source and detector as well
as their overall distance determines the magnification. Additional spacer
rings can be used to increase the possible magnification. In the following,
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a magnification factor of 2 was chosen. The actual sample cell is placed
in a sample chamber in the form of a replaceable cartridge. In addition to
changing granular samples easily, also samples other than granular matter
can be used with the device. As seen in the bottom panel of Fig. 2.29,
the granular sample cell contains the sample material inside a rectangular
volume that can be changed by pistons on two sides. An X-ray ruler with
a millimeter scale is used to calibrate the volume and hence the packing
fraction of the experiments.

Figure 2.30: Radiography images from parabola number 1. The original transmission image
(upper left) shows the pile of glass particles (diameter 500μm) in the 2-g phase before the
microgravity experiment. Gravity acts perpendicular to the plane of the image. Darker
particles singled out by red circles are steel particles (diameter 200μm) acting as tracers.
The difference image (upper right) shows the motion between two successive frames due
to g-jitter at the beginning of compaction (recording at four frames per second). A similar
image (middle left) shows the differences immediately after motion of the pistons together
with a rectangular frame for the enlarged selection shown on the next difference image
(middle right). The fourth difference image (lower left) shows the absence of detectable
motion after compaction and cooling of the arrested sample. The final difference image
(lower right) illustrates the motion of four rattler particles at the transition from the 0g to
the 2g-phase.
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The device described above was used in the parabolic flight campaign DLR-
22 in April 2013. The orientation of the X-ray beam was chosen in the
z-direction of the airplane, so the largest dimensions of the sample cell were
in the x-y-plane of the aircraft where the least overall bias of the g-jitter could
be expected. The sample volume was filled with around 8000 glass particles
of diameter 500μm (estimated coefficient of restitution ε ≈ 0.7). Tracer
particles of diameter 200μm were added to have access to individual particle
trajectories. These particles were made from steel to ensure good contrast
which is seen in the first panel of Fig. 2.30. The choice of tracer particles much
smaller than the particles of the host system was motivated by the resolution
limitations in both space and time: Smaller particles are more likely to be
rattlers, i.e. show appreciable motion even inside an arrested state. The
volume was filled with particles on ground and compacted with the pistons
to form a stable packing without deforming the particles. Afterwards the
pistons were retracted symmetrically and left the granular particles in a
pile as seen in the upper left panel of Fig. 2.30 with more particles in the
center than closer to the pistons. This asymmetry vanishes immediately after
entering the microgravity phase where the g-jitter redistributes the particles
homogeneously in the sample volume.
After agitation of the granular particles by g-jitter, the system was slowly
compressed by the pistons from a packing fraction of around ϕ = 0.43
until the arrested state around ϕ = 0.6 was reached. The reported packing
fractions are calculated from dividing the volume of the particles by the
full available volume of the test cell. For the packed state we estimate
the deviation of the true bulk packing fraction from the nominal one as
follows: We subtract from the particle volume the sum of the half spheres
of a completely covered layer of particles at the walls. From the cell volume
we subtract the corresponding sum of half-cubes. The resulting boundary-
corrected value for the packing fraction at the arrested state, ϕ = 0.6, is
found at ϕ̃ = 0.615, i.e. a deviation of 2.5% for the bulk value inside the
sample. Since this correction is not reasonable for more dilute assemblies
down to nominal packing fraction of 0.43, the nominal values are reported
in the following. Even accounting for the outlined boundary correction, the
arrested sample does not reach values for the packing fraction commonly
reported for random-close packing of around ϕ = 0.64. The lower packing
fraction at the arrested state in our samples is explained by the comparably
high friction among the particles.
The difference image in the upper right panel of Fig. 2.30 shows the absolute
intensity variation from one frame to the successive one and hence charac-
terizes the overall motion across the sample. It is found that the particles
at the initial volume are quite well agitated. The volume of particles in that
difference image is distinguished well from the container walls which do
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not move and appear black plus some noise. The middle panels of Fig. 2.30
show the motion immediately after compression by the pistons which is
visible by the two trapped tracer particles on the lower-left and upper-right
corners. While on the right wall a whole layer of particles is displaced to-
gether, on the left wall the energy input yields a more random pattern. This
difference is not very surprising as the particle density at both walls is not
necessarily the same before the particles are packed densely. A rectangular
frame in the middle left panel indicates an area in the full test cell that is
shown magnified by a factor of seven in the middle right panel. It is clear
from the enlarged image that in the setup individual tracer particles can be
resolved.
Once the final close-packed volume is reached, the motion in the sample
cell vanishes as seen by the completely dark difference image in the lower
left. Container and particle packing are then indistinguishable. The final
difference image in Fig. 2.30 shows the observations at the transition from
microgravity to 1.8g at the end of a parabola: As both new and old position
of a particle show up brightly, four individual particles can be identified as
moving on the timescale of a quarter second. We interpret these as rattlers
that have lost all their energy during cooling inside the packing and are now
pulled downwards by the 2g acceleration.
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Figure 2.31: Dynamics of the granular particles during the slow compaction process. The
plots display the overall brightness of successive difference imagesΔ(t) on the left axes over
time during the microgravity phase for a representative compaction run within 10 seconds
(parabola 10, upper panel) and a run within 13 seconds (parabola 1, lower panel). The
respective right axes display the evolution of the packing fraction for the full curve. The
two curves for Δ(t) show the average over the full sample (filled circles) and the center of
the cell without boundaries (diamonds). Vertical arrows indicate a region of slow cooling
(see text).

The time evolution of the brightness in the difference images can serve as
an estimate of the granular system’s kinetic energy and hence the decrease
in brightness signals granular cooling. This evolution of the brightness is
shown in Fig. 2.31. The brightness of the difference images Δ(t) is defined
by the averaged greyvalue per pixel over a region of interest. The region of
interest is taken either for the entire probe-cell volume (with the trade-off
of including the pistons for the later part of the compaction) shown as dia-
monds as well as over only the central quadratic region filled with particles
after compaction without any boundaries shown by the filled circles (with
the trade-off of missing some particles close to the walls at the earlier part).
Both definitions of the region of interest yield no qualitative difference in
the observed data, so it seems both definitions capture the particle dynamics
reasonably well and the dynamical features are dominated by the behavior
in the bulk. The origin of the time scale is set to the beginning of the 0g phase.
The compaction is seen by the evolution of the packing fraction over time.
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The overall packing fraction is reduced by Δϕ/Δt = 0.017/s for compaction
in 10s and by Δϕ/Δt = 0.013/sfor compaction in 13s, respectively. For those
slow compaction rates, data from 10 parabolas was used. Similar five runs
have been obtained for a fast compaction rates of Δϕ/Δt = 0.04/s which is
not shown in the figure but discussed below.
For slow compaction, at both reported compaction rates the reproducible
observations can be summarized as follows.

(1) Throughout all the runs, both for the beginning when particles are at
rest in 1.8g and at the end of compaction when still in a noisy 0g environment,
the background value is always Δ0 = 20. There is no observable drift in Δ0
and in the Δ(t) over different runs. Faster overall motion of the particles as
apparent from the original images is reflected in a higher amplitude of Δ.

(2) At the start of 0g, the system is shaken strongly and exhibits strong
fluctuations in Δ(t) seen by the large peaks in both panels of Fig. 2.31 on
the respective left sides. The fluctuations are not affected by the compaction
which is setting in after a few seconds in 0g.

(3) Around ϕ = 0.5 (indicated by vertical arrows in Fig. 2.31) fluctuations
are dampened and the evolution ofΔ(t) suggests a regime a granular cooling.
This cooling regime was found for 10 out of 11 runs with slow compaction.
For the single exception the pistons got stuck and snapped before a cooling
regime can be identified in the data. A reminiscence of that stick-slip piston
behavior can be seen around 10s in the lower panel of Fig. 2.31 in the curve
for the packing fraction.

(4) The cooling regime shows up similarly for both definitions of a region
of interest; the more restricted region of interest (diamonds) is used for the
quantitative analysis in the following. The slow cooling can be described by
a linear law Δ(t)−Δ0 = Δ̃γt where Δ̃ describes the overall amplitude, i.e. the
equivalent of granular temperature, at the beginning of the cooling. For the
amplitude we obtain Δ̃ = 40 for the upper panel in Fig. 2.31 and Δ̃ = 30 for
the lower panel. Parameter γ describes a normalized cooling rate that turns
out to be well reproducible across all 10 parabolas for slow cooling with no
significant difference for different compaction rates: γ = 0.13 ± 0.02/s.

(5) The linear regime for slow cooling is terminated upon reaching the
final packing fraction by a fast cooling regime where within around 1s the
complete dynamics comes to rest, i.e. Δ(t) = Δ0. The limited time resolution
of the data does not allow a more quantitative statement, but the fast cooling
regime is always identified clearly, the linear regime for slow cooling does
not extend all the way to Δ0. After the fast cooling regime, the sample is
arrested. Note that the appearance of rattlers as seen in Fig. 2.30 is not visible
above the noise level in Δ(t). Observations (1) to (5) as elaborated above are
found for all realizations of slow compaction for 10 parabolas. In particular,
the limit of ϕ = 0.5 where fluctuations become smaller and cooling sets in,
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is reproducible across the available data. If the compaction is around four
times faster as investigated for additional five parabolas, no such limit exists
and no such regime of slow cooling can be identified. Also, in Fig. 2.31 one
observes that the range of validity for the linear law shrinks from 6.5s for
compaction rate Δϕ/Δt = 0.013/s to 4.5s for Δϕ/Δt = 0.017/s. Hence, we
conclude that the existence of a slow cooling regime depends on the balance
between energy input (from g-jitter and the compaction process) and the
rate of dissipation (given by ε) and can be tuned by the rate of compaction.
For fast enough compaction, the slow cooling regime vanishes.
The averages of the cooling dynamics for all available data from the parabolic
flight are shown in Fig. 2.32. For the small compaction rate Δϕ/Δt = 0.013/s,
data from parabolas P0, P1 (cf. lower panel in Fig. 2.31), P2, P3, P4, and P5
are first rescaled in time to overlap in the evolution regarding the packing
fraction ϕ with ϕ = 0.5 chosen as t = 0. Then the data for Δ(t) is averaged
over the 6 data sets and shown for the full range of pixels as open circles
(upper panel of Fig. 2.32) as well as open diamonds (lower panel of Fig. 2.32).
Running averages in time are used to obtain the somewhat smoother corre-
sponding full curves. Data for compaction rate Δϕ/Δt = 0.017/s is treated
similarly and displayed as filled circles (upper panel) and filled diamonds
(lower panel). From the averaged dynamics, linear cooling laws can be
obtained that are consistent with the results from the single runs described
above: Compaction rate 0.013/s is described by Δ(t) − Δ0 = 10 − 1.33t while
compaction rate 0.017/s follows Δ(t) − Δ0 = 12.5 − t in the upper panel. The
different slopes in those laws follow the variation of the overall amplitude
of Δ(t) varies by around 25%. In the lower panel the corresponding laws
read Δ(t) − Δ0 = 2.2(10 − 1.33t) and Δ(t) − Δ0 = 2.2(12.5 − t), respectively.
Hence, the limitation to the pixels in the selected region only introduces an
additional amplitude.
The linear law is valid for around 4s for Δϕ/Δt = 0.017/s and for 8s for the
compaction rate 0.013/s which may be accidental. Also for the averaged data,
the slow linear cooling is followed by a more rapid decay of Δ(t). Again,
the final rapid collapse takes place within a second and it is observed in
Fig. 2.32 that the final decays may be scaled on top of each other for different
compaction rates. It is possible to interpret the data for different compaction
rates by a roughly constant decay rate γ and a shrinking range of validity
in time after which the final collapse terminates the slow cooling. The fits
of the individual decay curves for Δ(t), cf. Fig. 2.31, yield such a constant
γ when averaged. It is also possible to imagine that the cooling regime
vanishes by a decreasing slope γ whereby the increased energy input at
higher compaction rates can overcompensate for the dissipation. The latter
scenario is consistent with the finding that in the fits of the averaged Δ(t) in
Fig. 2.32, a slight decrease in the value of γ is obtained.
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Figure 2.32: Averages over the particle dynamics during the slow compaction process
evaluated for all pixels (top panel) and the selected region of pixels (bottom panel). The
origin of time is set to the time when ϕ = 0.5 for each run. The open symbols in both panels
represent the average over parabolas P0 to P5 (compaction rate Δϕ/Δt = 0.013/s) while the
full symbols show results from parabolas P6 to P10 (compaction rateΔϕ/Δt = 0.017/s). Full
curves are corresponding running averages in time over 0.5s, i.e. the average of three data
points. Dashed straight lines display the linear laws Δ(t) = Δ̃γt.
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Chapter 3

3D Stress-Birefringence

3.1 Theoretical Background and Calibration

3.1.1 Stress Birefringent Technique

Materials are called birefringent if their index of refraction depends on the
direction of the polarization of passing light. These properties can be found
in many minerals in nature such as quartz, boron nitride, or calcite. A ma-
terial is called stress birefringent if the index of refraction depends on the
polarization of light only when mechanical stress is applied to the mate-
rial. Such materials show no birefringent behavior as long as no force is
applied. One can say that the degree of birefringence depends on the ap-
plied stress. The basic mechanism behind this phenomenon is that stress
birefringent materials consist of optically anisotropic molecules which are
randomly orientated. All these molecules show birefringent behavior but
macroscopically this effect is averaged out due to the random orientation of
these molecules. If stress is now applied to the material, a preferred direction
arises. In this situation the microscopic optical anisotropy of each molecule
is not averaged out any more and the material shows a birefringent behavior
depending on the applied force [34].
This intrinsic stress birefringent property can be used to visualize forces in
granular packings when the particles are made of suitable material [35, 36,
37, 38, 39].

3.1.2 Polariscope

The forces in a three dimensional granular packing consisting of stress bire-
fringence particles can be visualized by using polarized light transmitting
through the sample and an analyzer to identify the phase shift caused by the
material in the sample. Such a setup is known as a polariscope. The easiest
way to analyze stresses in a sample is to use a linear polariscope setup. It
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consists of two crossed linear polarizers with the sample in between. When
no stresses are applied, the sample is not birefringent and no light is passing
through the second polarizer. As soon as stresses are present, the sample
becomes birefringent and a fraction of the polarized light changes the polar-
ization direction. This fraction of light passes through the second polarizer.
The transmitted light intensity I can be calculated by:

I = I0sin2(2α)sin2
(Δφ

2

)
(3.1)

Where I0 is the incoming light intensity, α is defined as the angle between
the directions of the first linear polarizer and the internal principal stress
axes of the sample and Δφ is the phase shift caused by the material in the
sample.
However, the α dependence in the expression I ∝ sin2(2α) is undesired (see
equation 3.1) because for every α = kπ, k ∈ N it partially suppresses the
information about the phase shift Δφ.
To get rid of the expression I ∝ sin2(2α) it is possible to use a circular
polariscope with a circular polarizer instead of a linear polarizer. A circular
polarizer consists of a linear polarizer and a λ

4 -retarder plate. The slow
and the fast axis of the λ4 -plate need to have an angle of 45◦ relative to the
direction of the polarization defined by the first linear polarizer. Consider
two circular polarizers which are set in a row and orientated as

1st polarizer – 1st λ4 -plate/sample/ 2nd λ
4 -plate – 2nd polarizer.

This system can also be described as one left handed and one right handed
circular polarizer setup (see Fig. 3.1).

Figure 3.1: Sketch of a circular polariscope. (adapted from c©Viashay Measurement Corp.)
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Together both λ
4 -plates flip the polarization of the light transmitted from the

first linear polarizer by 90◦. Hence the light is completely blocked by the
second linear polarizer. As compared to the linear polarizer setup, the light
arriving at the stress birefringent material is now circularly polarized. Thus,
the interaction between the incident light and the sample should be invariant
when rotating the sample around the optical axis of the polariscope. Con-
sequently the angle dependence α in equation 3.1 does not occur any more.
The transmitted light intensity I for a circular polariscope can be calculated
by:

I = I0sin2
(Δφ

2

)
(3.2)

Where I0 is the incoming light intensity and Δφ is the phase shift caused by
the material of the sample.

3.1.3 Phase Shift Δφ for a Diametrically Loaded Sphere

The phase shift Δφ in equation 3.2 can be calculated via Δφ = 2πRt
λ , where λ

is the wave length of light and Rt is the retardation caused by the sample. In
two dimensions the stress-optic law gives a relation between the retardation
Rt and the stress tensor σ of the material.

Rt = Cst(σ1 − σ2), (3.3)

where Cs is the stress-optical coefficient and σ1, σ2 are the eigenvalues of the
two dimensional stress tensor.

In the following, the general approach for calculating the stress tensor and
thus the retardation for a three dimensional, diametrically loaded sphere of
radius a will be demonstrated. The stress calculation is described in [40].
Due to the symmetry of the problem, a description in spherical coordinates
is suitable. The stress tensor in spherical coordinates σr,θ,φ has the expression
(see also Fig. 3.2):

σr,θ,φ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
σr τrθ τrφ

τθr σθ τθφ
τφr τφθ σφ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Figure 3.2: Stress tensor visualized in a sphere referring to spherical polar coordinates.

Assuming that the deformation of the sphere is small compared to the size
of the sphere and its material is homogeneous and isotropic. In case that the
stress components depend linearly on the strain components of the loaded
sphere (Hook’s law) it is possible to describe the relation through Lamé’s
parameters which are directly related to the elastic constants of Young’s
modulus E and Poisson’s ratio ν:

σi j = 2μεi j + λtr(ε)δi j (3.4)

where σi j is the stress tensor, εi j is the strain tensor, λ = νE
(1+ν)(1−2ν) is Lamé’s

first parameter and μ = E
2(1+ν) Lamé’s second parameter (also known as shear

modulus). Under these conditions it is possible to find a solution for the
components of the stress tensor which only depend on the elastic constants of
the material. The stress components in the sphere must satisfy the following
equations:

∂σr

∂r
+

1
r
∂τrθ

∂θ
+

1
r

(2σr − σθ − σφ + τrθcotθ) = 0 (3.5)

∂τrθ

∂r
+

1
r
σθ
∂θ
+

1
r

((2σθ − σφ)cotθ + 3τrθ) = 0 (3.6)

∂τφr

∂r
+

1
r
τθφ
∂θ
+

1
r

(3τrφ + 2τθφcotθ) = 0 (3.7)

45



owing to the equilibrium of forces and the symmetric argument that any
stress component has to be independent of φ (see Fig.3.2). From the extrema
r = 0 and r = a ( a is the diameter of the sphere) two conditions can be
derived :

• For r = 0 every stress component must take a finite value and therefore
the terms with 1

rn , 1
rn+1 and 1

rn+2 in the equations (3.8)-(3.13) should be zero.

• For r = a it applies τrθ = τθφ = τθr = 0.

In order to avoid singularities for sharp point forces a pressure with a finite
area p = F

2πa2(1−cosθ0) is being defined. If the pressure acts normally and
uniformly on the surface of the sphere and is rotationally symmetrical with
respect to the z-axis and the direction of the load is diametrically opposed
and centered, an angle θ0 can be defined which corresponds to the loaded
area (see Fig. 3.3). For the stress tensor component σr:

(σr)r=a =

{
p for 0 ≤ θ ≤ θ0 , π − θ0 ≤ θ ≤ π
0 for θ0 < θ < π − θ0

Figure 3.3: Sketch showing a diametrically loaded sphere with radius a. Pressure p is
applied diametrically to an area defined by θ0
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When the displacements of r, θ, and φ are described by Δr, Δθ and Δφ
respectively, the components of the stress tensor look like:

σr =
λ

r2sinθ

(
∂
∂r

(r2Δrsinθ) +
∂
∂θ

(rΔθsinθ)
)
+ 2μ

∂Δr

∂r
(3.8)

σθ =
λ

r2sinθ

(
∂
∂r

(r2Δrsinθ) +
∂
∂θ

(rΔθsinθ)
)
+ 2μ

(1
r
∂Δθ
∂θ
+
Δr

r

)
(3.9)

σφ =
λ

r2sinθ

(
∂
∂r

(r2Δrsinθ) +
∂
∂θ

(rΔθsinθ)
)
+ 2μ

(
Δr

r
+
Δθ
r

cotθ
)

(3.10)

τrθ = μ
(
∂Δθ
∂r

− Δθ
r
+

1
r
∂Δr

∂θ

)
(3.11)

τθφ = μ
(1

r
∂Δφ
∂θ

− Δφ
r

cotθ
)

(3.12)

τφr = μ
(∂Δφ
∂r

− Δφ
r

)
(3.13)

When satisfying the boundary conditions, the solution (see [40]) of the equa-
tions (3.8)-(3.13) leads to a system of Legendre polynomials, Pn(x). Specifi-
cally, the solutions of the stress tensor components in spherical coordinates
are:

σr =

∞∑
i=0

[
Pn(cos(θ)

(
− (4n2 − 2n − 3)λ + (2n + 1)(2n − 2)μ

(4n + 3)
r2n

+
4n2(2n + 1)λ + 2n(4n2 + 4n − 1)μ

(2n + 1)(4n + 3)
a2r2n−2

)

×
(−(4n + 3)(4n + 1)(cosθ0P2n(cosθ0) − P2n−1(cosθ0))

((8n2 + 8n + 3)λ + (8n2 + 4n + 2)μ)a2n

)
p
]

(3.14)
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σθ =
∞∑

i=0

[(
P2n(cos(θ)

( (2n + 3)λ − (2n − 2)μ
4n + 3

r2n

+
4n2(2n + 1)λ + 2n(4n2 + 4n − 1)μ

(2n − 1)(2n + 1)(4n + 3)
a2r2n−2

)

+
∂2P2n(cosθ)
∂θ2

(
− (2n + 3)λ + (2n + 5)μ

(2n + 1)(4n + 3)
r2n

+
2n(2n + 2)λ + (4n2 + 4n − 1)μ

(2n − 1)(2n + 1)(4n + 3)
a2r2n−2

))

×
(−(4n + 3)(4n + 1)(cosθ0P2n(cosθ0) − P2n−1(cosθ0))

((8n2 + 8n + 3)λ + (8n2 + 4n + 2)μ)a2n

)
p
]

(3.15)

σφ =
∞∑

i=0

[(
P2n(cos(θ)

((2n + 3)λ − (2n − 2)μ
4n + 3

r2n

+
4n2(2n + 1)λ + 2n(4n2 + 4n − 1)μ

(2n − 1)(2n + 1)(4n + 3)
a2r2n−2

)

+cot(θ)
∂P2n(cosθ)
∂θ

(
− (2n + 3)λ + (2n + 5)μ

(2n + 1)(4n + 3)
r2n

+
2n(2n + 2)λ + (4n2 + 4n − 1)μ

(2n − 1)(2n + 1)(4n + 3)
a2r2n−2

))

×
(−(4n + 3)(4n + 1)(cosθ0P2n(cosθ0) − P2n−1(cosθ0))

((8n2 + 8n + 3)λ + (8n2 + 4n + 2)μ)a2n

)
p
]

(3.16)

τrθ =

∞∑
i=0

[∂P2n(cosθ)
∂θ

(−r2n + a2r2n−2) +
2n(2n + 2)λ + (4n2 + 4n − 1)μ

(2n + 1)(4n + 3)

×
(−(4n + 3)(4n + 1)(cosθ0P2n(cosθ0) − P2n−1(cosθ0))

((8n2 + 8n + 3)λ + (8n2 + 4n + 2)μ)a2n

)
p
]

(3.17)

τθφ = 0 (3.18)

τφr = 0 (3.19)

These are the solutions for the stress tensor components for a diametrically
loaded sphere, subject to a pressure p under the boundary conditions de-
scribed above.
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3.1.4 Analytical Calculation and Experiment

With the help of Dr. Peidong Yu, who implemented the analytical solution
for the diametrically loaded sphere as described in section 3.1.3 in a com-
puter code, the calculated results are compared with the results from the
experiment.

Analytical Calculation

The strategy to generate a two dimensional light intensity map which is
comparable to those of the experiment is to discretize the sphere into a series
of small cubes. For each cube the phase retardation of the polarization of
the transmitting light, caused by the stresses in the sphere, is calculated and
serves as the initial polarization to the next cube in beam direction. At the
end of each series the resulting polarization state and thereby the intensity
is determined.
In technical terms, it is necessary to first transform the stress tensor σr,θ,φ in
an expression in cartesian coordinates σx,y,z

σx,y,z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
σx τxy τxz

τyx σy τyz

τzx τzy σz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = Aσr,θ,φAT

with the transformation matrix A

The polarization statues of the light beam is fully represented by the Stokes
vector, 
S. If the light ellipse is described by the amplitudes of the electric
field vector components Ex and Ey in the transverse direction (the light beam
propagates in the z-direction) and by their phase shift Δ, the Stokes vector
has the expression:


S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
S0
S1
S2
S3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E2
x + E2

y

E2
x − E2

y

2ExEycosΔ
2ExEysinΔ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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To be able to transform the Stokes vector depending on the stresses in the
sphere the Mueller matrix {mij} can represent the stress tensor σx,y,z. The
Stokes vector for the emergent light is named 
Se and for the incident light it
is 
Si, the transformation can be described by (see [41]):


Se = {mij}
Si (3.20)

The intensity I of an electromagnetic wave is proportional to the amplitude
of the square I ∝ E2. Hence the intensity of the electromagnetic wave is
proportional to the Stokes parameter I ∝ S0 and we can directly use this
value to map the intensity.

Comparing Calculation and Experiment

The sphere for the comparison experiment was made by a two component
resin and hardener system obtained from the VISHAY Micro-Measurements
company. Specifically, in the present experiment PL-3 Liquid Plastic was
used, which was casted in a casting mold. For index matching the same
procedure as described in section 3.4 was applied. In the case of PL-3 the
index match liquid combination of Diethyl phthalate (C12H14O4) with an
index of refraction of 1.501 and cassia oil from the SAFCTM company with an
index of refraction of 1.614 was used. The sphere had a diameter of∅30mm.
The measurement was performed with the same setup as described in section
3.4. Fig. 3.4 shows a picture series which compares the analytical result with
the experimental data. Sixteen pictures are presented for different forces.
On the left side the experimental pictures are shown and on the right side
the related analytical solutions.
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Figure 3.4: Picture series comparing experimental picture with related analytical solution
for a diametrically loaded stress birefringent sphere. Left: experimental picture and right:
related analytical solution. The sphere for the experiment is made by PL-3 from VISHAY
Micro-Measurements company and has a diameter of ∅30mm.

3.1.5 Stress Optical Calibration

The solution for a diametrically loaded sphere presented in section 3.1.3
describes only a fraction of possible contacts of a sphere in a three dimen-
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sional complex packing. To interpret all measurable contact distributions
of a sphere in a three dimensional granular system with analytical calcula-
tions, including force resolution for individual particles, the method needs
improvement.
Nevertheless to get access to some essential information of the measured
packing data such as the random close packing transition density ϕrcp a ca-
libration for the overall light intensity have been used in this thesis.
Assuming that during compaction a granular system reacts linear to the ap-
plied pressure and hence the contact forces F at each individual particle, the
components of the stress tensor are proportional to the contact forces σ ∝ F.
On the other hand an elastic sphere to sphere force contact can be described
by the Hertzian contact law

F =
4
3

E∗R
1
2 d

3
2 . (3.21)

with E∗ = E
2(1−ν) where E is Young’s modulus and ν is Poissons ratio. This

applies to R : 1
R =

1
R1
+ 1

R2
where R1 is the radius of the first sphere, R2 is the

radius of the second sphere and d is the indentation. Figure 3.5 show the
data for the force response of a Polydimethylsiloxan (PDMS) sphere with a
radius of 8mm (see subsection 3.3.1) to an increasing indentation from 0 to
1mm. In the diagram F2

R vs d3 is plotted in order to make a linear fit to the
data. The slope of the fit enables to calculate the Youngs’s modulus for the
specific material in use. For PDMS with a Poissons ratio of approximately
0.5 (literature value) the Youngs’s modulus is E≈0.684 MPa.

Figure 3.5: Hertzian force contact for a Polydimethylsiloxan (PDMS) sphere of radius 8mm.
The linear fit to the F2

R vs d3 data plot enables to calculate the Youngs’s modulus for the
measured material.

52



In case δ = d
R is inserted as the relative indentation into the equation the

Hertzian contact law looks like

F(δ) =
4
3

E∗R2δ
3
2 . (3.22)

The Hertzian contact law can be combined with the equation (see also equa-
tion 3.2 and 3.3):

I ∝ sin2
(Csπ
λ

RF
)

(3.23)

Where Cs is the stress-optical coefficient, λ is the wavelength of light and R is
the thickness of the material. When substituting equation 3.22 into equation
3.22, we get a relation for the intensity:

I ∝ sin2
(
R3Fδ

3
2

)
(3.24)

Fig. 3.6 show the comparison between the experimental measured (see
section 3.4) mean intensity of a PDMS sphere (see subsection 3.3.1) with
a diameter of ∅ = 8mm and the calculated mean intensity results for the
calculation as described above. The sphere in the calculation have had the
same parameter like diameter and Poissons ratio as the experimental sphere.

Figure 3.6: Comparison between experimental measured mean intensities for a stress bire-
fringent sphere with a diameter of 8mm, and calculated intensity results. For both curves
the same parameters like diameter, applied force and Poissons ratio of the material (PDMS)
are valid.
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3.2 Experimental Concept for the Determination of Mechan-

ical Properties in Bidisperse Granular Packings

In this experiment the mechanical properties like the random close pack-
ing transition density ϕrcp(δ, x̂B) from a loose to a dense bidisperse granular
system or the inner stress development during compaction in three dimen-
sional granular packings are investigated. As discussed in section 3.1.1, a
very convenient way to measure these properties is to use the stress bire-
fringent technique. An appropriate polarizer setup, as described in section
3.1.2, should be implemented in a way that makes it possible to take images
of the stress-optical signal of the sample for different packing fractions. The
number of particles in the packing should be as large as possible to reduce
finite size effects and provide a good statistics.

3.3 Stress Birefringent Materials

A great variety of materials shows stress birefringence such as glass and
several transparent plastics. The material used in the present experiment
needs to fulfill certain requirements. In order of priority the requirements
are:

• The material has to be transparent and needs to show stress birefringent
behavior.

• Spherically shaped particles with different sizes consisting of stress
birefringent material are necessary.

• The material needs to be processed without producing frozen in stresses.
Frozen-in stresses remain permanently in the material and thus change
the way the stress tensor σ reacts to external forces. The stress tensor is
a non-additive quantity and it is very complicated to extract the stresses
caused by external forces even if frozen-in stresses are known.

• The particles have to be resistant against index matching fluids (e.g.
frozen-in stresses can be caused by index matching fluids).

• The particles have to be sufficiently stiff that means the deformation
of the particles caused by the inter-particle forces stays linear, hence
reversible, during compaction and decompaction.

After several pilot tests with different materials a PDMS-elastomer from
Dow Corning SYLGARD company described in section 3.3.1 was chosen.
This silicone turned out to be the best compromise to fulfill the require-
ments described above. Together with Peidong Yu and Matthias Sperl we
submitted a patent on this subject [42].
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3.3.1 Particle Production

The 184 Silicone Elastomer KIT from Dow Corning SYLGARD company was
used as raw material. This is a Polydimethylsiloxan (PDMS), which means
a polymer based on silicone (see Fig. 3.7).

Figure 3.7: Chemical formula for Polydimethylsiloxan (PDMS). In brackets: monomer unit
of the molecule with n repetitions

Due to the nonpolar character of the CH3 methyl group at the end of
each anorganic chain, PDMS has a low surface energy. Consequently, the
molecule is a hydrophobic substance. Furthermore PDMS is chemically in-
ert against salt (NaCl). These two properties make PDMS processable for a
water and saltwater based production method described in the following.

3.3.2 Water Based Production Method

The basic concept of this sphere production method is the density difference
between pure water (H2O) and Saltwater (H2O +NaCl). The density of H2O
is � ≈ 1 and � of a saturated salt solution is � ≈ 1.359 at 25◦C. The density of
PDMS has a value of � ≈ 1.05 measured with the pycnometer AccuPyc II 1340
V1.05 from the micromeritics R© company consequently PDMS sinks in pure
H2O and floats on a saturated H2O+NaCl solution. If H2O and a H2O+NaCl
solution is now layered on top of each other in one box a diffusion layer is
formed. This diffusion layer has two advantages for producing spherical
particles

• the density gradient of the diffusion layer supports the surface tension
of PDMS to form a sphere

• the diffusion layer is stable for several hours and can keep the PDMS
during the hardening process, which takes typically 12 hours at 25◦C.
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Diffusion

Diffusion is the transport of mass on the atomic scale and it can, for in-
stance, be driven by gradients in composition and/or gradients in den-
sity. The diffusion in our case is driven by the gradient in composition
(or chemical diffusion) as long as the salt solution is in gravitational
direction lower than the pure water. Otherwise diffusion would be
gravitationally and chemically driven [43].
If we assume a unit area of a plane perpendicular to the direction of
diffusion per unit time the flux of mass passing through the area is
described by Fick’s first law:

J = −D
∂c
∂z
, (3.25)

where c is the concentration of mass and D the diffusion coefficient. The
continuity equation of mass is described by

∂c
∂t
= −∂J
∂z

(3.26)

and gives us in combination with equation 3.25 Fick’s second law:

∂c
∂t
= D
∂2c
∂z2
. (3.27)

Solutions of the equation 3.27 depend on the boundary and initial con-
ditions of each specific problem. Furthermore, note that D in equation
3.25 and 3.27 has to be independent of the concentration.
Fig. 3.8 shows a PDMS sphere with 10mm in diameter imbedded in
the diffusion layer (left). To the right the density gradient depending
on diffusion �(C(z, t)) is plotted for three different times. The black
curve shows a density profile after 1 second of diffusion. The red curve
shows the density profile after 12 hours diffusion time and the green
line indicates the density profile after 14 days of diffusion. The green
curve illustrates the situation when the PDMS sphere starts floating.
The length scale in both pictures are the same and the black dot indi-
cates the height and density position of the sphere. The plot in Fig. 3.8
shows that the density gradient is not vanishing during the hardening
process of PDMS, which typically takes 12 hours at 25◦C (note that only
the chemical diffusion is calculated!).
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Figure 3.8: Density distribution of NaCl in H2O depending on diffusion calculated for
three diffusion times. Left: PDMS sphere with ∅ ≈ 13mm imbedded in a diffusion
layer of NaCl in H2O. Right: density profile depending on the concentration of NaCl
for three different diffusion time intervals. The scales of the z-axes in both the picture
and the plots are the same.

In the following the solution for the density distribution depending on
diffusion shown in Fig. 3.8 is presented. The reservoir of the H2O+NaCl
solution at the bottom and H2O on top can be considered as infinity com-
paring to the height of the diffusion layer. Hence, the concentrations
at the opposite far ends of the liquids stays constant during production
time. For our specific problem [44] provides a solution of Fick’s second
law.
Fortunately, the density of a salt solution depends linearly on the
amount of NaCl dissolved in H2O. Hence, we are able to calculate the
density �(C(z, t)) for the diffusion layer depending on the concentration
of NaCl in the layer with:

�(C(z, t)) =MC(z, t) + �0 (3.28)

The concentration of NaCl in the diffusion layer is defined by

C(z, t) =
CNaCl

2
+

CNaCl

2
er f
{

z − z0√
4Dt

}
(3.29)

where C(z, t) is concentration in the diffusion layer, which is dependent
on the position in z-direction and time. CNaCl is the initial concentration
of salt in the H2O + NaCl solution and D is the diffusion coefficient of
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salt in water. The center of the diffusion profile is specified by z0 and
er f denotes the error function.
To be able to calculate �(C(z, t)), we need to determine the necessary
constants: D is the diffusion coefficient of salt in water, CNaCl is the
concentration of NaCl in H2O, M is the constant of proportionality, and
�0 is the initial density of water.
When pouring a salt crystal into water the NaCl molecule separates
into a Na+-ion and a Cl--ion and the diffusion of the NaCl molecule
is dependent on the diffusion coefficient of each ion. The diffusion
coefficients for Na+ and Cl- have not the same value but the numbers
can be combined to a diffusion coefficient for salt in water. DNaCl can be
calculated from the diffusion coefficients DNa+ and DCl- for the single
ions with equation [45]:

DNaCl =
(z+ + |z−|)DNa+DCl-

z+DNa+ + |z−|DCl-
(3.30)

where z+/− is the charge on the ions. The diffusion coefficients at 25◦C
are DNa+ = 1.334 ∗ 10-5 cm2

s and DCl- = 2.032 ∗ 10-5 cm2
s . DNaCl can be

calculated applying the equation 3.30:

DNaCl = 1.6106 ∗ 10-5 cm2
s .

When dissolving solid NaCl in water, the concentration in units of mass
fraction CNaCl can be defined as:

CNaCl =
mNaCl

mNaCl +mH2O
. (3.31)

where m is the mass of each component. To prepare a saturated salt
solution one needs to stir 359g of NaCl in one liter of H2O at 25◦C. The
dissolved ions do not significantly increase the volume of the solvent.
The concentration of 359g NaCl in one liter of water in units of mass
fraction is:

CNaCl =
359g

359g+1000g = 0.26.

The constant of proportionality M can be calculated by

M =
�NaCl+H2O − �H2O

CNaCl
=

0.36
0.26

= 1.38. (3.32)

With z0 = 0 and �0 = 1 for H2O we can calculate the density profile with
equation 3.28 and the results are shown in Fig. 3.8.
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Applying this method spheres with five different diameters were pro-
duced. Table 3.1 lists the existing spheres.

shperetype ∅[mm] Δ∅[mm] #spheres
a 2.4 ±0.1 6200
b 4 ±0.1 1900
c 5 ±0.1 1000
d 6 ±0.1 600
e 13 ±0.1 50

Table 3.1: List of PDMS spheres produced by Water Based Production Method. The diameter
of the sphere is determine via individual measurements with a caliper.

Table 3.2 shows which kind of size ratios δ are mixable from the sphere
types of Table 3.1.

a b c d e
a 1 0.6 0.48 0.4* 0.18*
b 1 0.8 0.67 0.3*
c 1 0.8* 0.38
d 1 0.46
e 1

Table 3.2: Possible size ratios δmixable with the spheres listed in Table 3.1.

The size ratios δ marked with “*” in Table 3.2 are the basis for inves-
tigating mechanical properties of dense packed granular systems. In
particular, packings with size ratios δ = 0.18, δ = 0.4, δ = 0.3 and δ = 0.8
are measured.

Fig. 3.9 shows some PDMS spheres immersed in a H2O+NaCl diffusion
layer during the hardening process. Fig. 3.10 gives an overview about
the produced sphere sizes (left) and shows an accumulation of ≈ 2500
spheres with diameter ∅2.4 mm (right)
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Figure 3.9: PDMS spheres imbedded in a diffusion layer of H2O+NaCl during the hardening
process. Seven spheres with a diameter of∅6mm and one sphere with a diameter of∅13mm
are visible.

Figure 3.10: Detailed view of some produced spheres with diameter of ∅2.4mm, ∅4mm,
∅5mm, ∅6mm and ∅13mm (left) respectively and an accumulation of ≈ 2500 spheres with
diameter ∅2.4mm (right)

60



3.4 Experimental Setup

An apparatus is designed that makes it possible to measure and adjust
packing properties like packing density, overall pressure and light in-
tensity with a very accurate resolution. Fig. 3.11 show the setup.
A micrometer screw at the bottom of the machine (not visible in Fig.
3.11) can adjust the volume of the sample and another micrometer screw
(see (5) in Fig. 3.11) can adjust the angle of the sample to achieve an
aligned optical light path. From the top the overall pressure can be
measured with a Chatillon R© force gauge (see (7) in Fig. 3.11), which
has a range from 0 − 50N and a resolution of two decimal places. For
measuring the intensity a circular polariscope as described in section
3.1.2 is in use. The polariscope contains the following components all
visible in Fig. 3.11: a light source with a green LED panel (3), the first
circular polarizer (4), the sample container (1), and a Nikon D3 camera
(2) with a second circular polarizer (6) in front of a 60mm focal length
objective. The sample container is a 5x5x5cm3 glass cube (1).

Figure 3.11: Experimental setup for 3D stress birefringence packing experiments. (1)
sample container containing dry not index matched spheres, (2) Nikon D3 camera, (3)
light source containing a green LED light panel, (4) circular polarizer, (5) micrometer
screw for angle adjustment, (6) circular polarizer in front of a camera objective with
60mm focal length, (7) Chatillon R© force gauge
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Index Match for Transparent Spheres

The images taken by the Nikon D3 camera (2) in Fig. 3.11 are the ba-
sis for analyzing the light intensity passing through the polariscope.
Therefore it is essential that no refraction is induced during measure-
ment. To avoid these effects it is necessary to surround the spheres
by a background liquid, which has the same index of refraction as the
spheres. This procedure is called index matching.
The idea to achieve the same index of refraction as the spheres is rather
simple: Two liquids, one with a higher index of refraction and one with
a lower index of refraction as the particles are being mixed together
and varying their mixing ratio until the desired index of refraction is
achieved. Note that the liquids being used are not aggressive in the
sense that they are not inducing frozen-in stresses to the particle mate-
rial. PDMS spheres have an index of refraction of 1.4118. Water with an
index of refraction of 1.333 and glycerol with an index of 1.4729 were
used in the present experiment for index matching. The mixing ratio is
44% water and 56% glycerol in mass%.
Water has a density of ρwater = 1 g

cm3 and glycerol of ρglycerol = 1.261 g
cm3 .

With the previously mentioned mixing ratio the resulting liquid has a
density of 1.146 g

cm3 . As a consequence the PDMS spheres with a density
of 1.05 g

cm3 are slightly floating. Fig. 3.12 shows the difference between
a dry and an index matched sample.

Figure 3.12: PDMS spheres in a glass container with and without index matching
liquid. Left picture: dry sample container with ≈ 350 PDMS spheres of diameter
∅6mm. Right picture: same spheres as shown on the left side in an index matched
environment of ≈ 44% pure water and ≈ 56% glycerol.
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3.4.1 Operation of Experiment

Packings with four different size ratios δ, which are marked with a "*"
in Table 3.2, are investigated in the present experiment. Table 3.3 gives
an overview of the performed mixing ratios x̂B for each size ratio δ.

size ratio δ mixing ratio x̂B
0.18 0; 0.1; 0.2; 0.3; 0.35; 0.38; 0.39; 0.42; 0.43; 0.44; 0.45; 0.46; 0.47; 0.49;

0.5; 0.6; 0.7; 0.8; 0.9; 1
0.3 0; 0.1; 0.2; 0.3; 0.35; 0.38; 0.4; 0.42; 0.43; 0.434; 0.44; 0.45; 0.454; 0.46; 0.47;

0.5; 0.6; 0.7; 0.8; 0.9; 1
0.4 0; 0.1; 0.2; 0.28; 0.38; 0.4; 0.42; 0.44; 0.46; 0.48

0.5; 0.6; 0.7; 0.8; 0.88; 1
0.8 0; 0.1; 0.2; 0.3; 0.4;

0.5; 0.6; 0.7; 0.8; 0.9; 1

Table 3.3: List of size ratios δ and mixing ratios x̂B for the 3D stress birefringent experiment.

A measuring procedure starts with preparing the specific number of
particles for each mixing ratio x̂B by weighting the two components A
and B (A stands for the big spheres and B for the small ones). After
inserting the correct amount of A and B in the sample container, the
sample needs to be index matched (see Fig. 3.12). A homogeneous
mixing ratio x̂B of the components A and B is achieved by carefully
mixing the spheres using a stirring stick. The slightly floating property
of the spheres in the liquid prevents the packing from sedimenting and
keeps it in a loose state until the packing fraction increases to the transi-
tion point ϕrcp. The measurement starts at a packing fraction of ϕ0 ≈ 0.6
and it increases between Δϕ ≈ 0.002 and Δϕ ≈ 0.01 per step depending
on the protocol. The measurement ends when the overall light inten-
sity has reached a certain brightness, which makes it obvious that the
transition has already happened. For each step one stress-optical image
is taken by the Nikon D3 camera (see (2) in Fig. 3.11). Due to the liquid
environment and the smooth surface of the PDMS material, the sphere
to sphere interaction has low influence of friction. At some packing
fraction the system starts to show force chains percolating through the
system. This behavior indicates that the granular system passes the
transition from a loose to a dense packing. Fig. 3.13 visualize a typical
experimental run.
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Figure 3.13: Typical picture series (1-12) from a stress birefringent measurement run. A
packing with a size ratio of δ = 0.4 and mixing ratios of x̂B = 0.38 is shown.The random
close packing transition happens between picture (5) and (6) at a packing fraction of
ϕrcp ≈ 0.676 (see also results in chapter 3.5.1). Packing fractions for the pictures
are ϕ(1)=0.649; ϕ(2)=0.656; ϕ(3)=0.663; ϕ(4)=0.667; ϕ(5)=0.674; ϕ(6)=0.676; ϕ(7)=0.68;
ϕ(8)=0.685; ϕ(9)=0.689; ϕ(10)=0.692; ϕ(11)=0.697; ϕ(12)=0.704.

Three compression cycles are performed for each mixing ratio x̂B to
provide some statistical information. The pictures can be evaluated by
an image processing computer code.
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3.4.2 Volume and Intensity Detection

For volume and intensity detection an image processing algorithm
which is written in C++was used. In order to avoid solving the distor-
tion problem for the taken images [46] a value ξ is defined which can
be determined by four characteristic points of each image.
Fig. 3.14 shows an exemplary calibration picture for a height of 23mm.
The characteristic points A, B, C and D can be detected by the image
processing algorithm (see also blue points in Fig. 3.17) and ξ is defined

as ξ = (AD+BC)
AB

.

Figure 3.14: Reference for calibration with a height of 23mm. Characteristic points
A,B,C, and D can be detected via an image processing algorithm.

In Fig. 3.15 a fit for different calibration heights in order to optimize the
height detection for the image processing is shown.
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Figure 3.15: Height calibration. The black line shows ξ(h) fitted to the calibration
measurements. Every black dot stands for a height h, which was adjusted by spacers.

Fig. 3.16 is a raw image of the experiment taken by the Nicon D3
camera.

Figure 3.16: Raw image of the experiment for determine the ϕrcp density. The picture
show a packing with parameter: size ratio δ = 0.4, mixing ratio x̂B = 0.42 and is
compressed by a pressure of ≈ 16.2 kPa.
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In Fig. 3.17 a typical image processed by the image processing algorithm
is shown. The algorithm is working as described in the following. The
first step is to convert the colored raw data into a gray value image.
In the present experiment a green LED light source is used. Hence
the rgb raw data show negligible fraction of red and blue colors. For
gray scaling the algorithm ignores red and blue and converts the green
values in a gray shade. The Second step is to select the corners of the
characteristic points A,B,C and D using a self made corner detection
program based on a Sobel filter (see [46]). The third step is the selection
of the area (see (5) in Fig. 3.17) where the mean intensity is to be
calculated. This area is manually chosen for every experimental run
once in order to avoid the detection of scattered light, artifacts like
bubbles, mirror effects from the container walls and exclude finite size
effects.

Figure 3.17: Image processed by the image processing algorithm (same image as
shown in Fig. 3.16) In close-up views the selected corners A,B,C,D (blue dots) are
shown
1: top of the sample cell connected to the Chatillon R© force gauge
2: sample container
3: base plate of the experiment
4: particles
5: selected area for mean intensity determination (green)
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3.4.3 Stress-Optical Analysis I

The mean intensity value Imean =
∑

grayvalue∑
pixel is determined for the selected

area ((5) in Fig. 3.17) of each image. In Fig. 3.18 the intensity values for
three different runs are plotted.

Figure 3.18: Mean intensity plot for three different experimental runs with size ra-
tio δ = 0.4 and mixing ratio x̂B = 0.88. The intersection of the linear fit with the
background level indicates the transition density ϕrcp. In particular it is for run1:
ϕrcp = 0.6461, run2: ϕrcp = 0.6314 and run3: ϕrcp = 0.6385.

Three different sections can be distinguished from the plots in Fig. 3.18.
For low densities ϕ the intensity is almost zero (here the background
intensity is already subtracted). When increasing ϕ, at some point
the mean intensity starts to grow slowly. By further increasing ϕ the
growth becomes linear. The packing fraction where the fit line intersects
the background level is considered to be ϕrcp. Note that for steeper
increases of the mean intensity values after ϕrcp an overestimation of
the transition density could be determined. For every mixing ratio x̂B
three runs are performed in experiment and the mean value ϕrcpmean =
ϕrcprun1+ϕrcprun2+ϕrcprun3

3 gives the transition density for this particular mixing
ratio x̂B. The values ϕrcprun1 , ϕrcprun2 and ϕrcprun3 give the error distribution
for ϕrcpmean and are shown in the resulting diagrams as black, red and
green dots, respectively.
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3.4.4 Stress-Optical Analysis II

In the second analysis of the stress optical signal measured as described
in section 3.4.1 the slope η of the increasing mean intensity after ϕrcp
is analysed. The procedure for analyzing the data is comparable to
the approach described in subsection 3.4.3. The mean slope ηmean is
calculated as ηmean =

ηrun1+ηrun2+ηrun3

3 from the measurements run1, run2
and run3 respectively. The values ηrun1, ηrun2 and ηrun3 give the error
distribution for ηmean and are shown in the resulting diagrams as black,
red and green dots respectively. In Fig. 3.19 the procedure is illustrated.
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Figure 3.19: Mean intensity plot for three different experimental runs with size ratio
δ = 0.4 and mixing ratio x̂B = 0.48. The increasing mean intensity after ϕrcp is fitted
by a linear law. The slope of this line is analyzed for two different size ratios δ = 0.18
and δ = 0.4 and different mixing ratios x̂B.

3.5 Results

3.5.1 Results for Packing Fraction ϕrcp(x̂B) Measurements

Packings with four different size ratios δ = 0.18, δ = 0.3, δ = 0.4 and
δ = 0.8 and different mixing ratios x̂B are experimentally performed.
The results are shown in the figures 3.20, 3.21, 3.22 and 3.23. The plotted
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mean values in Fig. 3.20, 3.21, 3.22 and 3.23 are connected with a black
dashed line. The error bars with black, red and green dots represent
the deviation of the transition density ϕrcpmean for run1, run2 and run3
respectively. For some mixing ratios one error point in the error bar is
missing (e.g. for δ = 0.4 with a x̂B = 0.37), due to not detectable edges
from the analysis software. All data are listed in Table A.1, A.2, A.3 and
A.4.
In Fig. 3.20 the transition density progression for size ratio δ = 0.18 is
shown. The packing consists of big particles with diameter∅A = 13mm
and small particles with diameter ∅B = 2.4mm. For x̂B = 0 the curve
starts at a density ϕrcp lower than ≈ 55% packing fraction and increase
rapidly to a value of ≈ 63% for x̂B ≈ 0.2. Between x̂B ≈ 0.2 and x̂B ≈ 0.4
the transition density decreases and increases slightly. After x̂B ≈ 0.4
the curve increases rapidly again until the maximum density of ϕrcp =
0.7106 for a mixing ratio x̂B = 0.49 is reached. From this maximum to
the end of the curve the density values decrease monotonously until
ϕrcp = 0.6236 at x̂B = 1 is reached.
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Figure 3.20: Random close packing transition density for a granular packing with
size ratio δ = 0.18. The measured packing consists of PDMS particles with diameters
∅A = 13mm and ∅B = 2.4mm. The black dashed line connects the mean values.
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The Fig. 3.21 show the data for size ratio δ = 0.3 with particle diameter
∅A = 13mm and ∅B = 4mm. For the first part of the curve between
x̂B = 0 and x̂B ≈ 0.4 the data increases strictly from ϕrcp ≈ 0.56 to
ϕrcp ≈ 0.7. Between x̂B ≈ 0.4 and x̂B ≈ 0.44 the data exhibits a small
jump in tne transition density from ϕrcp ≈ 0.7 to ϕrcp ≈ 0.72. From
x̂B ≥ 0.44 to the last point at x̂B = 1 the curve decreases strictly to its
ending point with a density of ϕrcp ≈ 0.64.
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Figure 3.21: Random close packing transition density for a granular packing with
size ratio δ = 0.3. The measured packing consists of PDMS particles with diameter
∅A = 13mm and ∅B = 4mm. The black dashed line connects the mean values.

The measured data for size ratio δ = 0.4 with particle diameter ∅A =
6mm and ∅B = 2.4mm are visualized in Fig. 3.22. The curve starts with
a packing density of ϕrcp = 0.6276. For increasing x̂B the curve growth
slowly to its maximum point at x̂B ≈ 0.5 with a density ϕrcp = 0.687 and
decreases again to a density of ϕrcp = 0.6256 at x̂B = 0.5.
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Figure 3.22: Random close packing transition density for a granular packing with
size ratio δ = 0.4 The measured packing consists of PDMS particles with diameter
∅A = 6mm and ∅B = 2.4mm. The black dashed line connects the mean values.

In Fig. 3.23 the data for size ration δ = 0.8 with particle diameter
∅A = 5mm and ∅B = 4mm are presented. In contrast to the values
shown in Fig. 3.20, 3.21 the curve in Fig. 3.23 shows no pronounced
maximum.
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Figure 3.23: Random close packing transition density for a granular packing with
size ratio δ = 0.8 The measured packing consists of PDMS particles with diameter
∅A = 5mm and ∅B = 4mm. The black dashed line connects the mean values.

3.5.2 Discussion

The first data points of the curves in Fig. 3.20 and 3.21 from x̂B = 0 to
x̂B ≈ 0.2 do not represent a packing with randomly distributed spheres.
Due to the dimension of the sample container and the sphere sizes it
is most likely that the measured values are subject to finite size effects
(see section finite size effects 3.5.5). For example the first two points at
x̂B = 0 and x̂B = 0.1 in Fig. 3.20 are measured based on a total number
of particles nA = 42; nB = 0 and nA = 42; nB = 728 respectively (see also
Table A.1 and A.2).

3.5.3 Results for the Slope η Analysis

As described in subsection 3.4.4 the slope η of the linear fit to the
increasing part of the mean intensity curves is analysed. Data for
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packings with size ratios δ = 0.18 and δ = 0.4 are analyzed for different
mixing ratios x̂B.
Fig. 3.24 shows the results of the slope analysis for the packing with size
ratio δ = 0.18 (all values are listed in Table A.5). The curve shows two
outliers for x̂B = 0 and x̂B = 1 (these values are in brackets) which are
most likely caused by the influence of finite size effects (see discussion
3.5.5) and crystallization. The slope values from x̂B = 0.1 to x̂B = 0.42
creates a slightly increasing curve from ηmean ≈ 2940 at x̂B = 0.1 to
ηmean ≈ 2250 at x̂B = 0.42. Between x̂B = 0.42 to x̂B = 0.5 a peak arises
with its maximum ηmean ≈ 4160 at x̂B = 0.5. For x̂B ≥ 0.5 the slope values
decreases strictly to the ending point at x̂B = 0.9 with a slope value of
η ≈ 3200.
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Figure 3.24: Mean intensity slope of the stress birefringent packing measurements.
The data are measured based on a packing with size ratio δ = 0.18. Data in brackets
are outliers (see text).

Fig. 3.25 shows the results of the slope analysis for packings with size
ratio δ = 0.4 (all values are listed in Table A.6). The curve starts (from
left to right) at a slope value ηmean ≈ 3300 for x̂B = 0 and x̂B = 0.1.
After a dip at x̂B = 0.28 with a slope value of ηmean ≈ 2950 the curve
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growth to its maximumg ηmean ≈ 3460. Then the curve levels again for
x̂B = 0.6 and x̂B = 0.7 at ηmean ≈ 3300. The slope values for x̂B = 0.8
and x̂B = 0.9 decreases monotonously to ηmean ≈ 3120 and ηmean ≈ 2920
respectively. In contrast to the curve in Fig. 3.24 the curve in Fig.
3.25 show no pronounced maximum. The last value for x̂B = 1 is
shown in brackets to emphasize the influence of finite size effects and
crystallization. Against a systematically argumentation the slope value
for x̂B = 0 show no conspicuous behavior.
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Figure 3.25: Mean intensity slope of the stress birefringent packing measurements.
The data are measured based on a packing with size ratio δ = 0.4. Data in brackets
are outliers (see text).

3.5.4 Results for Bulk Modulus κ(x̂B) Measurements

The experimental setup described in section 3.4 provides a pressure
measurement for every volume fraction. With these values the bulk
modulus κ = −V dP

dV is calculated. To determine the derivative dP
dV a

straight line is plotted to the linear increasing pressure values after
the rcp-transition, assuming that before the transition at ϕrcp the bulk
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modulus κ is zero and after the transition κ has a finite constant value.
From the slope of the fitted line the derivative value dP

dV is calculated
(see Fig. 3.26). The volume data which are used for bulk modulus
analysis are the same as used in section 3.5.1 for determine the packing
fraction. For volume calculation the mean volume from the fitted line
(see Fig. 3.26) is used. In Fig. 3.27, 3.28, 3.29 and 3.30 the values for the
calculated bulk modulus are shown. The mean values are calculated
as κmean =

κrun1+κrun2+κrun3
3 and the values for the single runs serves as

errors. In all diagrams for the bulk modulus results it stands out, that
the error bars are mostly greater than the error bars in the diagrams
for the transition densities (see Fig. 3.20 to 3.23). Furthermore some
data points which are shown in the transition densities diagrams are
missing in the diagrams for the bulk modulus analysis. The reason is
that the measuring protocol was not initially optimized for measuring
the bulk modulus, hence it was not possible to fit a reasonable linear
function to all data series because of less measurement points after the
rcp-transition.

Figure 3.26: Linear fit to the experimental pressure data in order to determine the
derivation for the bulk modulus calculations. The measured data are based on a
granular packing with size ratio δ = 0.4 and mixing ratio x̂B = 0.042.

Fig. 3.27 show the data for the calculated bulk modulus for packings
with size ratio δ = 0.18. The first data points until x̂B ≈ 0.2 are based on
packings with high influence of finite size effects (see also discussion in
section 3.5.1). Although the data show comparable values for the bulk
modulus on the outer ends of the curve (see also table A.7), the errors
have a high deviation from its mean value. It is remarkable that the
error bars for mixing ratios x̂B ≤ 0.5 in the curves for size ratios δ = 0.18
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(see Fig.3.27) and δ = 0.3 (see Fig.3.28) exhibits greater variations than
the data for mixing ratios x̂B > 0.5. Also the data for size ratios δ > 0.3
show smaller error bars.
The data exhibit a maximum at x̂B ≈ 0.7 with κ ≈ 0.31MPa. This means
that the maximum bulk modulus is around 30% higher than for the
starting and ending values.
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Figure 3.27: Bulk modulus determined for a granular packing with size ratio δ = 0.18.
The measured packing consists of PDMS particles with diameter ∅A = 13mm and
∅B = 2.4mm. The black dashed line connects the mean values.

Fig. 3.28 present the bulk modulus data for size ratio δ = 0.3. After a
increasing progression until mixing ration x̂B ≈ 0.4 a peak at x̂B ≈ 0.45
with κ ≈ 0.32MPa appears (see also Table A.7). From x̂B ≈ 0.5 until
x̂B = 0.6 the curve decreases to κ ≈ 0.3MPa and does not change much
until the end at x̂B = 1.
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Figure 3.28: Bulk modulus determined for a granular packing with size ratio δ = 0.3.
The measured packing consists of PDMS particles with diameter ∅A = 13mm and
∅B = 2.4mm. The black dashed line connects the mean values.

The bulk modulus data for packings with size ratio δ = 0.4 are plotted in
Fig. 3.29. Here the progression of the curve show an slowly increasing
behavior until x̂B = 0.8 with κ ≈ 0.28MPa and decreases again to κ ≈
0.24MPa at x̂B = 1 which is almost the same κ as for x̂B = 0 with
κ ≈ 0.23MPa.
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Figure 3.29: Bulk modulus determined for a granular packing with size ratio δ = 0.4.
The measured packing consists of PDMS particles with diameter ∅A = 6mm and
∅B = 2.4mm. The black dashed line connects the mean values.

The last diagram for the bulk modulus (see Fig. 3.30) shows the data of
a granular packing with size ration δ = 0.8. It starts with κ ≈ 0.2MPa
at x̂B = 0 increases and decreases slightly until a small peak appears at
x̂B = 0.52 with κ ≈ 0.21MPa. Decreases and increases again to the end
value κ ≈ 0.22MPa for x̂B = 1. In the range of the error bars the curve
shows no significant maximum or peak such as the curves in Fig. 3.27,
3.28 and 3.29.
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Figure 3.30: Bulk modulus determined for a granular packing with size ratio δ = 0.8.
The measured packing consists of PDMS particles with diameter ∅A = 5mm and
∅B = 4mm. The black dashed line connects the mean values.

3.5.5 Finite Size Effects

Finite size effects have been investigated for restricted granular systems
experimentally [47] and in computer simulations [48]. It is shown, that
packing properties of a granular system are influenced by the container
walls. For instance, spheres might arrange in the corner of a container
like a regular lattice (see Fig. 3.31) which leads to a local packing fraction
of π6 ≈ 0.524.

80



Figure 3.31: Ordered packing of spheres in a corner of a rectangular sample cell.

This packing fraction is significantly smaller than packing fractions
which can be achieved in a disordered inner region of a packing. This
behavior has been investigated in computer simulations for two- and
three-dimensional systems [48]. K. W. Desmond et al. found a fit-
ting law for simulated data which shows the density progression for a
three dimensional packing depending on the distance from the system
boundaries. For simulations they use bidisperse mixtures with size
ratio δ = 0.71 and mixing ratio x̂B = 0.5. They defined finite boundary
conditions in one direction and infinite boundary conditions in the two
other directions. The following formula was obtained:

ϕ′rcp = ϕrcp − C
SL

(3.33)

whereϕ′rcp is the critical packing fraction which appears near the system
boundaries while ϕrcp is the packing fraction which could be measured
in an infinitely large system. SL is the distance between the system
boundaries and is given in multiples of sphere diameter. The constant
C is determined as C = 0.233. Although the assumptions of equation
3.34 are not fully fulfilled by the packings investigating in the present
thesis, it may still provide a good estimate for the finite size effects.
Boundary errors are calculated for the granular packing consisting of
PDMS spheres with size ratio δ = 0.18 and mixing ratios x̂B = 0 and
x̂B = 1 where the big spheres have a diameter of ∅A = 13mm and the
small ones have ∅B = 2.4mm. The length L of the system is chosen as
50mm (this is the size of the sample container) and the boundary errors
are calculated with
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Δϕ = 4
C
SL

(3.34)

where Δϕ is Δϕ = ϕrcp − ϕ′rcp and the factor 4 is introduced because the
present system has 6 instead of 2 container walls:

x̂B =

{
0 : Δϕ = 4 ∗ 0.233 ∗ 13mm

50mm ≈ 0.24
1 : Δϕ = 4 ∗ 0.233 ∗ 2.4mm

50mm ≈ 0.04

With an estimated packing fraction ofϕrcp ≈ 0.64 for an infinite monodis-
perse system the values for the calculated packing fraction ϕ′rcp show a
deviation of ≈ 26% from the measured data for the mixing ratio x̂B = 0.
For the mixing ratio x̂B = 1 the deviation is ≈ 3.8%. The calculated and
measured results are listed in Table 3.4:

size ratio δ mixing ratio x̂B ϕ′rcp calculated ϕ′rcp measured deviation
0.18 0 0.4 0.5416 ≈ 26%

1 0.6 0.6236 ≈ 3.8%

Table 3.4: Calculated and measured packing fraction for a restricted granular system. The
list show the calculated and measured packing fraction for a granular system of PDMS
spheres consisting of particles with diameter ∅A = 13mm and ∅B = 2.4mm contained in a
glass container with size 50 ∗ 50 ∗ 50mm.

3.6 Outlook

For further investigation it is recommendable to improve the measure-
ment statistics in order to get a better overview of the error deviations
especially for packings where the critical jumps in the properties are
observed. Furthermore it is recommendable to measure the properties
of the packings for small mixing ratios x̂B < 0.3 with a larger sample
container in order to avoid measuring finite size effects.
The data for the slope analysis provides an information of the inner
stresses of a granular packing during compaction. For deriving more
comparable values to other scientific results from these data, they need
to be analysed regarding to for instance the preasure P which is de-
fined as the trace of the Cauchy stress tensor. Furthermore it would be
interesting to detect the individual particle contacts.
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3.7 Rattler Observation via Rest Acceleration under Mi-

crogravity Conditions using Stress Birefringence

Some introductory words to microgravity research environments can be
seen in section 2.11. Another parabola flight campaign (DLR-13) took
place in February 2009 with an experiment using stress birefringent
technique. The experimental principals are the same as described in
section 3.1.1, but the experimental setup was adapted for parabolic
flights with its special requirements (for full description and results see
publication [23]). The setup can be seen in Fig. 3.32.

Figure 3.32: Experimental setup for the parabolic flight (DLR-13, February 2009).
Stress-birefringent particles inside a sample container with cross section 5cm x 5cm
and two pistons movable by servo motors #1 and #2 are illuminated by an LED
panel from behind and recorded between crossed polarizers by a camera (Nikon D3).
Compression and recording is operated by an NXT controller and initiated wireless
via a bluetooth signal from a cell phone (Nokia 6131). The entire setup is enclosed
in an aluminum box, weighs 10kg in total, and is left free-floating for distances up to
50cm inside the cabin.

The sample particles consists of gelatine and have an irregular shape
with a mean diameter of around 9mm. They are surrounded by an index
matching environment of pure water. Unfortunately the measured
packing transition data are not analyzed so far but an observation of
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a rattler in the observed system could be detected. Fig. 3.33 show an
image of the dense packed granular system captured from the camera
during a parabola. The packing consists of around 300 fully arrested
particles with only a single particle having the space to be a rattler in
a pocket formed by the arrested particles. Fig. 3.33 visualizes also
the shape of the rattler particle at its initial (0, green) and end (1, red)
position. The trajectory (yellow) is obtained by comparing a sequence
of 50 pictures which were captured during a 20 second microgravity
parabola. The overall travel distance of the rattler is about half its
diameter. The differences in the shapes of the outline in the beginning
and in the end of the trajectory are due to the rotation of the rattler in
its pocket.

Figure 3.33: Rattler motion observed against the force-network in a granular packing
visualized by stress-birefringence. The outlines indicate the rattler at its initial (0,
green) and end (1, red) position. The trajectory (yellow) shows the distance traveled
and is obtained by comparing a sequence of 50 pictures which were captured during
a 20 second microgravity parabola.
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Chapter 4

Sound Transmission

This chapter addresses the question how granular packings transmit
sound [49, 50, 51, 52, 53]. In the present work sound transmission in
bidisperse granular systems have been investigated. The measurement
took place during a campaign at Ruhr-Universität Bochum where mea-
surements for three different size ratios δ and several mixing ratios x̂B
(see table 4.1) had been performed. For preparing the granular pack-
ing, lime-natron glass spheres with diameter ∅ = 0.2mm , ∅ = 0.3mm,
∅ = 0.5mm and ∅ = 1mm where used.

size ratio δ ∅particle [mm] mixing ratio x̂B
0.2 ∅A = 1 0; 0.07; 0.12; 0.19; 0.25; 0.35; 0.41; 0.42; 0.45; 0.5;

∅B = 0.2 0.55; 0.65; 0.83; 0.88; 1;
0.3 ∅A = 1 0.13; 0.16; 0.23; 0.3; 0.35; 0.38; 0.4; 0.41; 0.47;

∅B = 0.3 0.56; 0.68; 0.77; 1;
0.5 ∅B = 1 0.1; 0.22; 0.32; 0.4; 0.42; 0.45;

∅B = 0.5 0.53; 0.64; 0.72; 1;

Table 4.1: List of performed size ratios δ and mixing ratios x̂B for the sound transition
measurement in granular media.

4.1 Experimental Setup

The core element of the sound transmission setup is the triaxial com-
pression cell with two ultrasonic transducers. One is attached to the
bottom of the sample and acts as the wave generator. The other one is
attached to the top of the sample and acts as the receiver. Furthermore a
pressure control together with a force loading mechanism is necessary
to provide triaxial compression ≥ 1 bar. The measurement chain from
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the sound wave generator to the received sound signal had already
been installed and calibrated. Fig. 4.1 shows the entire setup.

Figure 4.1: Sound transmission setup with the triaxial compression cell. Compression
cell (1), pressure control with a force loading mechanism (2), and measurement chain
with sound wave generator and receiver (3).

4.1.1 Triaxial Compression Cell

The triaxial compression cell contains and compresses the sample dur-
ing the measurement procedure (see Fig. 4.2). Two shells are necessary
to achieve a constant and homogenous pressure distribution. The inner
shell is a cylindrical flexible latex membrane with a height of 200mm,
a diameter of ∅100mm and a thickness 1mm (see Fig. 4.6). This inner
shell contains the sample, is closed on the top and on the bottom with
the ultrasonic transducer heads, and is sealed by rubber sealing rings,
hose clips, and silicone grease. The outer shell is a plexiglass cylinder
with a height of 350mm, a diameter of ∅250mm, and a wall thickness
of 15mm. The plexiglass cylinder is closed by aluminum plates with
sealing rings and distance screws. The aluminum plates have connec-
tions for a pressure sensors, ultrasonic transducers, vacuum, and water
hoses.
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Figure 4.2: Triaxial compression cell for sound transmission measurement in granular
media. The cell is not filled with water. (1) Latex membrane containing the sample
(glass beads with size ratio δ = 0.2 and mixing ratio x̂B = 0.23), (2) ultrasonic trans-
ducer receiver, (3) ultrasonic transducer wave generator, (4) Computerized Numeri-
cal Controlled (CNC) force loading mechanism, (5) plexiglass cylinder, (6) aluminum
plates with (9) pressure sensors, (7) vacuum hoses, and (8) water hoses. (10) mixing
apparatus as described in subsection 2.1.3
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4.1.2 Force Loading Mechanism and Pressure Control

To generate a homogenous triaxial pressure distribution on the sur-
face of the sample, the sample is loaded with a well controlled vertical
force/pressure from the top. The resulting pressure at the cylindrical
surface of the sample caused by the vertical force is controlled. This
control mechanism is described below. For this purpose the volume
between the inner shell (latex membrane) and the outer shell (plexi-
glass cylinder) is filled with water. Due to the fact that water is almost
incompressible, the pressure of the volume can be controlled by small
changes in the water volume. These small volume changes are gener-
ated by a cylinder (see Fig. 4.3) which is driven by a stepper motor. This
motor is connected to a computer via RS-232 interface. The cylinder
has an inner diameter of ∅50mm and a stroke length of ∅250mm. The
model being used is the DNC-50-250-P-S11 from Festo R© company. The
stepper motor is a MCD EPOS 60 W from Maxon R©, which provides
a torque of 54mNm. Thus, the maximum pressure of the triaxial cell
can be adjusted to 2.7 bar. To load the sample in vertical direction an
upgraded testing machine from the DOLI Elektonik GmbH was used.
It has a mechanically driven stamp and can reach ±50kN as the vertical
force and a torque of ±300Nm. During testing only vertical force was
used. The pressure sensor (see (9) in Fig. 4.2), which has a measurement
range of 0-5 bars provides a feedback of the pressure status in the cell.
The sensor is from the Sensortec company. All devices are LabVIEW
controlled.

Figure 4.3: Pressure control for generating triaxial compression. (1) DNC-50-250-P-
S11 cylinder from the Festo R© company and (2) a stepper motor MCD EPOS 60 W from
the Maxon R© company

4.1.3 Measurement Chain

The measurement chain (see schematics in Fig. 4.4) starts with a fre-
quency generator from the Tektonix R© company. The model AFG3101
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generates an amplitude of ±5V in the pulse modus and a frequency be-
tween 1mHz and 50MHz. An additional trigger signal allows to identify
the start of the pulse. The initial start signal together with the received
signal allows to determine the time of flight. The initially generated
signal is pre-amplified by a factor of 200 via an amplifier from Ciprian R©
company and with this output signal the ultrasonic transducer from the
company Olympus generates the sound pulse. The ultrasonic generator
and the receiver have a central frequency of 100kHz and a maximum
input voltage of ±400V. After passing the sample the received signal
is re-amplified. The used re-amplifier is the model 5077PR from the
Panametrics-NDT company and the emitted and received signal are
combined in a Wavesurfer 24Xs-A oscilloscope from LeCroy R© company.
The data are saved via LAN form the oscilloscope on a computer.

Figure 4.4: Schematics of the measurement chain for the sound transmission setup.

For more details see also the diploma thesis of Michael Krause [54].
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4.1.4 Sample and Measurement Preparation

To get reproducible results, each sample needs to be prepared in a com-
parable and accurate way. The most challenging part of the preparation
is the fixation of the granular system in the flexible latex membrane (see
Fig. 4.8). The whole procedure is described in the following sections.

Preparation of the Latex Membrane

An aluminum cylinder ensures a cylindrical shape of the latex mem-
brane (see Fig. 4.6). This cylinder consists of two halves, which are
screwed together.
The latex membrane is vacuum sealed to the ultrasonic transducer gen-
erator on the bottom of the cylinder (see Fig. 4.5). After evacuation
of the air between the aluminum cylinder and the latex membrane the
membrane takes on the shape of the aluminum cylinder (see Fig. 4.6).

Figure 4.5: Ultrasonic transducer generator defines the bottom of the sample. Green
are the hoses for the vacuum connection for later evacuation of the sample.
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Figure 4.6: Picture series to visualize the latex membrane stabilization. Upper left:
latex membrane with a height of 200mm, a diameter of ∅100mm, and thickness
of 1mm. Upper right: aluminum cylinder with vacuum connection in the middle.
Lower left: installed and vacuum sealed latex membrane with aluminum cylinder on
top of the ultrasonic transducer. Lower right: latex membrane pressed on the inner
aluminum cylinder surface due to evacuation, the ultrasonic transducer is visible on
the bottom.

Filling and Closing the Sample

The filling procedure for bidisperse granular mixtures has the same
protocol as described in section 2.1.3 and uses the same machine (see
also (10) inFig. 4.2). After filling the sample the latex membrane has
to be closed and vacuum sealed with the ultrasonic transducer receiver
(see Fig. 4.7).
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Figure 4.7: Picture series showing the closing process for the sound measurement
sample cell. Left: filled latex membrane with a bidisperse mixture of glass beads
(δ = 0.2 and x̂B = 0.23). Middle: closed sample with the ultrasonic transducer
receiver. Right: vacuum sealed sample with rubber sealing rings and silicone grease
(not visible).

In order to stabilize the granular packing in the latex membrane the
inner volume of the sample has to be evacuated. Afterwards the outer
aluminum cylinder can be removed and the sample has a stable form
(see Fig. 4.8).

Figure 4.8: Closed sound measurement sample cell. Left: evacuated granular sample
in a stable form (δ = 0.2 and x̂B = 0.23). Right: same sample with a measured height
of ≈ 95mm. Note that the fold in the middle of the latex membrane is only on the
surface and has no influence to the measurement results.
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Closing the Triaxial Compression Cell

Now the triaxial compression cell can be closed by the outer plexiglas
cylinder and the space between the latex membrane and the plexiglass
cylinder can be filled with water (see Fig. 4.9).

Figure 4.9: Picture series showing the water filling process. Left: installed and
bottom sealed plexiglass cylinder. Middle: closed plexiglass cylinder with aluminum
top plate and half filled with water. Right: fully filled triaxial compression cell.

Triaxial Compression Adjustment

First the force loading mechanism comes into contact with the ultrasonic
transducer receiver (see Fig. 4.10) and we can adjust the overall force
with which the sample is planed to be loaded. The force and pressure
control depend on each other and have to be adjust carefully. The
decisive risk during triaxial compression is to deform the sample. For
more details see [54]. After reaching a triaxial pressure of one bar the
measuring procedure can start.
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Figure 4.10: Force loading mechanism on top of the triaxial compression cell. (1)
Force loading mechanism in contact with (3) the ultrasonic transducer head. A metal
sphere with a diameter of ∅ ≈ 40mm serves for compensating angular displacement.
(2) is the pressure sensor for measuring the water pressure of the triaxial compression
cell.

Measurement Parameter

The following settings are required to generate trustworthy and repro-
ducible data and to prevent damage to the apparatus. Table 4.2 show
the settings for the frequency generator.

parameter: select:
run mode burst mode

number of cycles 1
trigger interval 5ms

frequency 10 kHz
amplitude ±2V

type of signal pulse

Table 4.2: Selected parameter for the frequency generator.

The burst mode together with the number of cycles and the trigger
interval control adjust the running time of the transducer so that the ul-
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trasonic transducer can be effectively protected. The frequency is set to
100 kHz for all experiments. The ultrasonic transducer can work with a
maximal voltage of ±400V and the pre-amplifier intensifies the incom-
ing signal by 200 times, hence the amplitude of the frequency generator
is set to ±2V. There are several types of signals available and definable
such as sinusoidal signal, Ricker signals and rectangular pulse signal.
For the present experiment the rectangular pulse signal was chosen,
because it generates the best Time Of Flight (TOF) measurements.

4.1.5 Time Of Flight (TOF) Measurement

The TOF for longitudinal waves have been measured in this experiment
[52, 55, 51]. These waves are called P-waves and are generated and
received by two ultrasonic P-wave transducers. The speed of sound is
calculated by

c =
s
t

(4.1)

with s= travel distance through the sample and t=TOF. The time of
flight has to be corrected due to two plexiglass cover sheets on top of
each ultrasonic transducer which have a thickness of 1.18 cm. With
speed of sound for plexiglass cplexi = 2670m

s (literature value) one have
to subtract

TOFplexi =
2 ∗ 0.0118m

2670m
s
= 9μs (4.2)

from the the total time of flight.
Several characteristic points are suitable for calculating TOF Fig. 4.11
show a schematic picture of a first arrival peak. The different points
naturally differ for total values but deliver comparable results by using
the same characteristic point for every measurement.
Three different granular systems with size ratio δ = 0.2, δ = 0.3 and
δ = 0.5 and different mixing ratios x̂B are performed experimentally
(all values are listed in Table A.11 to A.13) and the measured sound
transmission data show a clear first arrival peak for all experimental
runs (see Fig. 4.12). In order to achieve good and comparable results
the “First Maxima” is chosen for analyzing speed of sound in bidisperse
granular media.
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Figure 4.11: Schematic picture of a first arrival peak. Characteristic points for deter-
mine Time Of Flight (TOF): 1. First Arrival Transit Time, 2. Threshold Transit Time
10%, 3. First Maximum, 4. First Zero Crossing Transit Time

Figure 4.12: Typical sound transmission curve for a measured sound pulse in bidis-
perse granular media with size ration δ = 0.3 and mixing ratio x̂B = 0.13. The packing
consists of particles with ∅A = 1mm and ∅B = 0.3mm. The curve show the average
over 800 sound pulses measurements.

For First Maximum detection a standard peak finder tool “peakfinder.m”
is used, which is written for matlab.
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4.2 Sound Transmission Results

In Fig. 4.13, 4.14 and 4.15 the values for the speed of sound measure-
ments are plotted against the mixing ratio x̂B for δ = 0.2, δ = 0.3 and
δ = 0.5 respectively.
The curve in Fig. 4.13 starts (form left to right) with a speed of sound
value of cpacking ≈ 508m

s at x̂B = 0 and until x̂B = 0.35 the speed of sound
values are in a range of cpacking = 607 ± 15m

s . Between x̂B = 0.35 and
x̂B = 0.5 a clear peak with its maximum at x̂B = 0.42 and cpacking = 601.5m

s
is visible. From x̂B = 0.5 to the end of the curve the measured speed
of sound levels at about the same values as measured for the mixing
ratios from x̂B = 0 to x̂B = 0.35 see also table A.11).
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Figure 4.13: Speed of sound vs. x̂B for a granular packing with size ratio δ = 0.2. The
curve show the measurement results for sound transmission speed in a bidisperse
granular packing. The system consists of glass spheres with ∅A = 1mm and ∅B =
0.2mm.

The curve in Fig. 4.14 increases from cpacking ≈ 510m
s at x̂B = 0 to cpacking ≈

570m
s at x̂B = 0.41. The maximum appears at x̂B = 0.47 with

cpacking ≈ 635m
s . From x̂B = 0.56 to x̂B = 0.77 the data show a plateau
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with cpacking ≈ 575m
s . The last point of the curve decreases to a value of

cpacking ≈ 520m
s . This is comparable to the measured sound transmission

speed for the starting points from x̂B = 0 to x̂B = 0.23.
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Figure 4.14: Speed of sound vs. x̂B for a granular packing with size ratio δ = 0.3. The
curve show the measurement results for sound transmission speed in a bidisperse
granular packing. The system consists of glass spheres with ∅A = 1mm and ∅B =
0.3mm.

In Fig. 4.15 the data show no characteristic peak compared to the
values shown in Fig. 4.13 and 4.14. From x̂B = 0 to x̂B = 0.32 the values
increases slowly from cpacking ≈ 514m

s to cpacking ≈ 554m
s . From x̂B = 0.32

to x̂B = 0.6 the data show a plateau with cpacking ≈ 550m
s and decreases

again to cpacking ≈ 521m
s for x̂B = 1.
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Figure 4.15: Speed of sound vs. x̂B for a granular packing with size ratio δ = 0.5. The
curve show the measurement results for sound transmission speed in a bidisperse
granular packing. The system consists of glass spheres with ∅A = 1mm and ∅B =
0.5mm.
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Chapter 5

Conclusion

An essential selection of the measurement results for glass sphere pack-
ings (see Fig. 2.18), for packings consisting of stress birefringent parti-
cles (see Fig. 3.20, 3.22, 3.24, 3.25, 3.27 and 3.29) and for sound transmis-
sion measurements (see Fig. 4.13 and 4.15) are presented in the figure
on page 103. All data presented in this figure are plotted against the
volume mixing ratio x̂B.
The curves in the bottom panels show the results for the density mea-
surements of glass sphere packings with size ratio δ = 0.18 (left panel)
and δ = 0.35 (right panel) obtained from the experiment described in
section 2.6. The data for the size ratio δ = 0.18 (left panel) exhibit a
pronounced maximum at a mixing ratio of x̂B ≈ 0.3. This maximum
broadens for increasing size ratios which can be seen in the data for the
size ratio δ = 0.35 (right panel, see also Fig. 2.18.).
On top of these panels two results are shown which are based on stress
birefringent measurements (see section 3.4) for packings with size ratio
the δ = 0.18 and δ = 0.4 (see also Fig. 3.20 and 3.22). These measure-
ments provide also information about the density of a random close
packed granular system comparable to the results shown in the bottom
panels. The difference is here that the obtained data are based on soft
PDMS spheres (elastic modulus E≈0.68 MPa) in an liquid environment.
Although friction can influence the density of granular systems [17] the
measured data for size ratio δ = 0.35 in the bottom panel and δ = 0.4 in
the panel above (right panels) show comparable results for the density
values at x̂B = 0 and x̂B = 1 with ϕ ≈ 0.63. Also comparable is the
maximum density reached in both data sets with a value of ϕ ≈ 0.69.
Only the shape differs from each other. The packing of glass spheres
(bottom right panel) has its maximum region between x̂B ≈ 0.25 and
x̂B ≈ 0.55 and the packing of PDMS spheres (upper right panel) has its
maximum region between x̂B ≈ 0.4 and x̂B ≈ 0.7. Different from the data
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for the size ratios δ = 0.35 and δ = 0.4 the densities for the data with
size ratio δ = 0.18 (left bottom panel and above) show only comparable
results for the densities at mixing ratios x̂B > 0.5 except some under-
estimation of the total densities for the packings with PDMS particles
(upper left panel). For size ratios x̂B < 0.5 both data sets exhibit dif-
ferent evolutions. The densities for the glass sphere packing increases
steeply but steady from x̂B = 0.1 to the maximum at x̂B ≈ 0.3 while the
densities for the PDMS spheres exhibits a jump from densityϕ ≈ 0.62 at
x̂B = 0.4 to ϕ ≈ 0.71 at x̂B = 0.5 (note that the data points between x̂B = 0
and x̂B = 0.2 are not shown, see discussion 3.5.2). This is a surprising
result because one would expect that also for concentrations x̂B < 0.5
both data should be comparable. One possible explanation is that in
the region between x̂B = 0 and x̂B = 0.5 finite size effects dominate the
packings. But K. W. Desmond et al. predicts in [48] a smooth transition
from a packing influenced by finite size effects to packings which are
not influenced by finite size effects which stands in contradiction to the
measured data, where rather a corner than a smooth curve appears.
Furthermore the data for packings with size ratio δ = 0.3 consisting
of PDMS particles (see Fig. 3.21 not visible in the figure on page 103)
exhibits also a small jump in density at a mixing ratio of approximately
0.45. This leads to the explanation that the stress birefringent measure-
ments are more precise and sensitive by measuring the transition from
a loose to dens granular system. It also leads to the assumptions that
there could be a density-density transition for close packed bidisperse
granular systems, reminiscent of glass-glass transitions [56, 57, 58]. An-
other alternative explanation could be that the measured packings for
size ratios δ < 0.4 (see Fig. 3.20 and 3.21) exhibits a transition from
an ordered to a disordered system. With that assumption both curves
should show a clear distinction in the densities between ordered and
disordered packings. Such a distinction can be interpreted in the curve
for size ratio δ = 0.18 where a clear jump is visible (upper left panel and
Fig. 3.20). The data for packings with size ratio δ = 0.3 (see Fig. 3.21)
show a constantly increasing behavior between mixing ratio x̂B = 0 and
x̂B = 0.4 followed by a small jump between x̂B = 0.4 and x̂B = 0.45 which
stands in contradiction to the assumption.
In the middle of the figure on page 103 the left and the right panel show
the results for the slope η analysis (see also 3.24 and 3.25) for pack-
ings with size ratio δ = 0.18 and δ = 0.4, respectively. The measured
packings are based on PDMS spheres and the outliers are not visible in
the diagrams. These curve provide information about the inner stress
states of the packing by varying the mixing ratio. The data for size ratio
δ = 0.18 (left panel) exhibits a pronounced maximum between x̂B = 0.45
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and x̂B = 0.55. This maximum is about 30% higher than the values at
both ends of the curve. In contrary to the curve for size ratio δ = 0.18
the curve for size ratio δ = 0.4 (right panel) show no pronounced maxi-
mum. That suggests that the inner stress states of a bidisperse granular
packing depends strongly on size and mixing ratios of the system.
On top of the diagrams for the slope analysis two panels are shown
which visualize the results for the bulk modulus κ analysis (see also
Fig. 3.27 and 3.29). The measurements are based on packings consist-
ing of PDMS particles with size ratios δ = 0.18 and δ = 0.4 (left and right
panel respectively). The bulk modulus data for size ratio δ = 0.18 (left
panel) show a pronounced maximum region between x̂B = 0.45 and
x̂B = 0.8 with a yump at x̂B = 0.45 (note that the data points between
x̂B = 0 and x̂B = 0.2 are not shown, see discussion 3.5.2). The data for
size ratio δ = 0.4 (right panel) exhibits a constantly flat increasing until
the maximum at x̂B = 0.8 is reached. The curve starts and ends at higher
total values compared to the bulk modulus data for packings with size
ratio δ = 0.18 (left panel) and show no pronounced jump.
The top panels show the results for the sound measurements for size
ratios δ = 0.2 (left panel) and δ = 0.5 (right panel). In the curve of the
data with size ratio δ = 0.2 a clear peak is visible at a mixing ratio of
x̂B ≈ 0.4 where the speed of sound jumps from cpacking ≈ 510[m

s ] to a
maximum value of cpacking ≈ 610[m

s ]. The peak vanishes in the diagram
for size ratio δ = 0.5 (right panel) and the range for higher speed of
sound values broaden to a plateau between mixing ratio x̂B = 0.2 and
x̂B = 0.65. Also the maximum speed of sound decreases to a value of
cpacking ≈ 555[m

s ].
In summary, based on all measured data in this thesis related to the
mechanical properties of jammed disordered binary granular packings,
it seems safe to state that for granular packings with size ratio δ < 0.4
a novel transition from a loose to dense state exists which is located
between mixing ratio x̂B = 0.4 and x̂B = 0.5.
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Two experiments were performed on parabolic flights (DLR-13 and
DLR-22) in order to get access to microgravity. The results are published
in [23]. In these experiments it has been shown that stress-birefringence
allows the observation of the compaction of a granular packing in micro-
gravity. Remarkably, the conditions on parabolic flights are especially
suitable to observe rattlers that are agitated by the rest-accelerations
without destroying the packings. The method can identify reliably the
motion of a small fraction of rattler particles among the network of
particles that form the backbone of the packing. While not enough data
is currently available for an elaborate analysis of rattler dynamics from
3D stress-birefringence, the results show nevertheless that microgravity
experiments give access to new phenomena not observable on ground.
For the X-ray radiography data it is possible to quantify the bulk dy-
namics in the samples, resulting in much more reliable statistics. Using
the time gradient by analyzing the difference images from the detector,
a quantity Δ(t) can be obtained to characterize the motion of the par-
ticles. Δ(t) allows the distinction between agitated and arrested states.
In addition, it is possible to identify a novel regime of cooling quantita-
tively for low rates of compaction. This is only possible in microgravity
as under the dominating influence of gravity granular gases collapse
quite rapidly [33]. The newly identified cooling extends over several
seconds and is described reasonably well by a linear decay of Δ(t).
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Chapter 6

Summary

In this thesis three independent measurement techniques are applied
for investigating different properties of disordered granular packings
in three dimensions. Specifically in this thesis the used techniques
are X-ray radiography and tomography, stress birefringent and sound
transmission. The experiments were performed on ground for bidis-
perse packings with a comprehensive parameter space in size δ and
mixing ratio x̂B and on parabolic flights for monodisperse packings.

X-ray tomography is used to visualize bidisperse packings of glass
spheres. From the obtained data the positions of the individual par-
ticles are extracted and the packing structure is analyzed by applying
the pair correlation function g(r) for three different size ratios δ = 0.35,
δ = 0.55 and δ = 0.7 and different mixing ratios x̂B.
For all three size ratios three clearly distinguishable peaks are observed.
The heights of the peaks depends strongly on the mixing ratios of the
investigated systems and give an indication of the contact probability
between two spheres.
In addition a split peak with two sub peaks is found for mixing ratios
close to monodisperse systems like x̂B = 0.056 and x̂B = 0.937 in the
curve with size ratio δ = 0.7.
For rattler detection a significant increase in g(r) of ≈ 25% for B-B parti-
cle contacts is found for a hard compressed sample which indicates that
the rattlers loose their voids in the packing. In addition a new method
is developed for detecting rattlers in a packing.
For monodisperse packings of glass spheres a novel regime of granular
cooling could be observed with X-ray radiography under microgravity
condition.

Stress birefringent spheres are used to visualize the inner and outer
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stress of granular binary mixtures in three dimensions. In this thesis
a measurement technique is developed which includes particle pro-
duction, developing the experimental setup and the data analysis. The
experiment is performed for packings with size rations δ = 0.18, δ = 0.3,
δ = 0.4 and δ = 0.8 and several mixing ratios. Three different packing
properties are analyzed: first the transition density from loose to dens
packings, second the inner stress states of the packings and third the
bulk modulus of the packings. In all results it can be seen very well
that there is a significant change in the packing properties by varying
the size ratio δ and the mixing ratio x̂B. For size ratio δ < 0.4 (except for
bulk modulus δ = 0.3) the data exhibits a clear visible jump whereas
the values for size ratios δ > 0.4 show no pronounced jump or peak.
The jumps appear between x̂B = 0.4 and x̂B = 0.5 in all measurements.
In addition rattler motion could be observed in a packing consisting of
stress birefringent particles under microgravity condition.

Speed of sound measurements have been applied to bidisperse gran-
ular systems of glass spheres. Measurements with size ratios δ = 0.2,
δ = 0.3, δ = 0.5 and several mixing ratios x̂B were performed. The
results show a significant increase in the speed of sound for packings
with size ratio δ < 0.4 at mixing ratios between x̂B = 0.4 and x̂B = 0.5.
For packings with size ratio δ > 0.4 the speed of sound values exhibits
no pronounced peak.
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Appendix A

A.1 Smallest Voids Between Hard Spheres

The smallest possible voids within hard spheres with a radius r is to be
calculated. Assuming four hard spheres with diameter r are distributed
to their closest arrangement. In such a system the spheres touch each
other and have the minimum distance 2r. The voids between the four
spheres have two characteristic sizes. On the one hand the voids where
a small particle with radius ri can slip though the arrangement and on
the other hand the voids where a small sphere with radius rj touches
all other spheres. These two radii ri and rj can be calculated as follows
(see Fig. A.1).

Figure A.1: The radii ri and rj of the largest small sphere which can fit in the two
characteristic voids between an arrangement of three/four big spheres with radius r
is to be calculated.

We calculate the radius ri first: the volume of the void is used in an
optimal way when the small sphere touches three of the four big spheres
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(see upper left and lower left image in Fig. A.1). Hence the center of
the small sphere should have the equal distance g = r+ ri to the centers
of the three big spheres. The center point-to-point connections of the
big spheres creates an equilateral triangle with side length f = 2r. The
length g can be calculated by the Law of Cosine:

f 2 = 2g2 − 2g2cosγ (A.1)

With f = 2r andγ = 120◦ equation A.1 can be solved and a value g = 2√
3
r

is obtained. Now ri can be calculated as follows:

ri = g − r = r(
2√
3
− 1) ≈ 0.155r. (A.2)

Now we calculate rj as follows: In an arrangement where all four
big spheres with radius r touches each other, the center point-to-point
connections creates a tetrahedron which is shown in Fig. A.1 (see upper
right and lower right images). The edge central angle (also called
tetrahedral angle) of a tetrahedron is given by arccos(γ) = arccos(− 1

3 ).
With this information rj can be calculated with the Law of Cosine:

f 2 = g2(2 − 2cosγ) =
8
3

g2 (A.3)

With f = 2r equation A.3 can be solved and g =
√

3
2r is obtained. Now

rj can be calculated:

rj = g − r = r(

√
3
2
− 1) ≈ 0.225r (A.4)

In other words: A small sphere can slip through the smallest void
between three big spheres if the size ratio δslip fulfills the inequality:

δslip <
2√
3
− 1 ≈ 0.155 (A.5)

A small sphere touches all four big spheres in a tetrahedral arrangement
when the size ration δtouch fulfills the relation:

δtouch =

√
3
2
− 1 ≈ 0.225 (A.6)

A.2 Working Method for Binarisation and Position De-

tection of the X-ray Slice Images

A.2.1 Program Description nano

1. First slice image data are loaded in upward z-direction.
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2. The histogram h(I) of each image is determined ( h(I) means the
total number of pixel h in the image with the gray value I).

3. The gray value mx1i of the global maximum h(mx1i) in the histogram
is detected.

4. To find the lower maximum in the histogram two conditions have
to be fulfilled

– h(mx2i) has to be greater than the number of pixel h in the direct
neighborhood of the global maximum peak at the gray value
mx1i.

– The distance d = |mx1i −mx2i| should be sufficiently large.
To fulfill both conditions in the same way mx2i is defined to maxi-
mize the expression

mx2i =: |mx1i −mx2i| ∗ h(mx2i)

Small deviations are possible but by experience it has only negligi-
ble effects to the result.

5. Now the gray value mni for the minimum between the two maxima
can be detected. mni is defined as the gray value between the two
maxima at gray value mx1i and mx2i where h(mni) has its minimum.
So:

mni =: min(I|I ∈ [min(mx1i,mx2i) : max(mx1i,mx2i)])

6. The slice image can now by binarized with the threshold mni.

This method is probably not the most comprehensive one, but it is
sufficient to determine a threshold for binarization and fast. In the
following it is described how the compression algorithm works:

1. A reduction factor faktor has to be defined.
2. The variable sx and sy has to be defined as the resolution of the

slice images and sz as the variable for the number of slices.
3. With threshold mni the images are binarized and saved in an array

array.
4. After all images are processed the array is reduced by the value

f actor with the IDL specific function congrid

The original data set is now reduced by the value f actor from 2150 ∗
2150 ∗ 2100 ≈ 1010 voxel to value of 2150∗2150∗2100≈1010

f actor3 .
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A.2.2 Program Description dreiDposition

dreiDposition

On the basis of the data output of the program “nano” the program
dreiDposition is able to detect the positions of the small and big parti-
cles. dreiDposition outputs the position data set and a control image
for each slice of the array (see Fig. 2.16).
The program works in particular as follows:

1. The data from “nano” are loaded. Furthermore the diameter of
the big and small spheres da and db the thresholds thresh_A_white,
thresh_B_white, thresh_B_black and B_circ has to by set (described in
more detail below).

2. A mask big with the diameter da (for a big sphere) is created.
3. The 3D array from nano is now convoluted with the mask big. This

is done by a IDL routine convol. The result of the convolution is
a new array in which every voxel has a value between zero and
the total number of ones detected in the mask big within the radius
da. Therefore the voxel with te highest value is the center of a big
sphere and is called avol.

4. All voxel with a value smaller than avol ∗ thresh_A_white are set to
zero. thresh_A_white serves as a threshold for determining the error
for calculating the maximum value in the new array.

5. Now the voxel with the highest value is saved as a center point of
a big particle and all voxel within a radius of da/2 and the voxel
itself are set to 0. This sequence is repeated until no higher values
than 0 are found. Now all center points of the big particles are
determined.

6. The original 3D image is loaded again and all voxel within a radius
of da/2 around the center positions of the big spheres are set to 0.
That means the big particles shall be removed and the new array is
saved as array2.

7. The same algorithm as previous described for detecting the big
particles are applied for detecting the small particles (with the as-
sociated variables).

8. After this procedure the detected particle positions are saved and
outputted as a text file. For an eye based error control images are
taken for each slice in the array.
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A.3 Lists of Measurement Results forϕrcp Densities Mea-

sured with Stress Birefringent Technique

x̂B ϕrcpmean ϕrcprun1 ϕrcprun2 ϕrcprun3 nA nB
0 0.5416 0.552 0.538 0.534 42 0

0.1 0.5868 0.5925 0.586 0.582 42 728
0.2 0.629 0.643 0.622 0.622 39 1573
0.3 0.6155 0.621 0.61 0.615 34 2291
0.35 0.623 0.637 0.595 0.637 31 2705
0.38 0.625 0.645 0.615 0.615 30 2993
0.42 0.6488 0.647 0.647 0.6525 27 3298
0.43 0.668 0.673 0.658 0.673 27 3401
0.44 0.652 0.645 0.649 0.662 26 3427
0.45 0.675 0.71 0.663 0.652 25 3427
0.46 0.697 0.7025 0.686 0.7025 25 3516
0.47 0.701 0.715 0.715 0.673 25 3663
0.49 0.7106 0.709 0.709 0.714 24 3663
0.5 0.7053 0.703 0.71 0.703 23 3856
0.6 0.6856 0.68 0.695 0.682 18 4511
0.7 0.6726 0.675 0.668 0.675 13 5143
0.8 0.662 0.66 0.664 0.662 8 5773
0.9 0.644 0.65 0.65 0.632 3 5773
1 0.6236 0.625 0.623 0.623 0 5773

Table A.1: Data summary for the intensity measurements for size ratio δ = 0.18.
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x̂B ϕrcpmean ϕrcprun1 ϕrcprun2 ϕrcprun3 nA nB
0 0.5593 0.556 0.56 0.562 42 0

0.1 0.6103 0.624 0.591 0.616 42 157
0.2 0.639 0.619 0.648 0.65 39 315
0.3 0.6856 0.667 0.7 0.69 34 472
0.35 0.694 0.712 0.692 0.678 32 581
0.38 0.7053 0.702 0.705 0.709 31 643
0.4 0.7007 0.6853 0.714 0.703 30 690
0.42 0.7165 0.72 0.713 0.7165 28 722
0.43 0.7103 0.707 0.709 0.715 28 739

0.434 0.7213 0.726 0.718 0.72 28 702
0.44 0.7183 0.723 0.715 0.717 27 739
0.45 0.7185 0.72 0.7153 0.7203 26 739

0.454 0.7186 0.7201 0.7203 0.7155 26 756
0.46 0.7202 0.7203 0.7205 0.72 26 791
0.47 0.715 0.718 0.715 0.712 25 791
0.5 0.7153 0.713 0.716 0.717 25 852
0.6 0.7136 0.7103 0.71365 0.717 19 996
0.7 0.702 0.7 0.71 0.696 15 1133
0.8 0.694 0.69 0.698 0.694 9 1252
0.9 0.661 0.668 0.658 0.659 5 1252
1 0.642 0.653 0.635 0.631 0 1252

Table A.2: Data summary for the intensity measurements for size ratio δ = 0.3.

x̂B ϕrcpmean ϕrcprun1 ϕrcprun2 ϕrcprun3 nA nB
0 0.6276 0.615 0.626 0.642 394 0

0.1 0.6395 0.64 0.639 394 582
0.28 0.648 0.663 0.65 0.631 394 1309
0.37 0.676 0.681 0.671 319 2743
0.42 0.6693 0.676 0.671 0.661 300 3066
0.437 0.6785 0.682 0.676 290 3209
0.44 0.679 0.69 0.667 290 3239
0.48 0.684 0.681 0.681 0.69 265 3496
0.5 0.687 0.69 0.681 0.69 255 3642
0.6 0.6836 0.686 0.679 0.686 206 4370
0.7 0.6816 0.683 0.683 .679 156 5088
0.8 0.664 0.671 0.675 0.646 105 5815

0.88 0.6386 0.6461 0.6314 0.6385 57 5940
1 0.6256 0.649 0.617 0.611 0 5940

Table A.3: Data summary for the intensity measurements for size ratio δ = 0.4.
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x̂B ϕrcpmean ϕrcprun1 ϕrcprun2 ϕrcprun3 nA nB
0 0.6433 0.652 0.658 0.62 808 0

0.1 0.6416 0.635 0.641 0.649 723 167
0.21 0.6425 0.6457 0.638 0.644 634 339
0.31 0.648 0.65 0.642 0.65 554 498
0.41 0.6483 0.658 0.652 0.635 476 650
0.52 0.642 0.641 0.636 0.651 393 828
0.62 0.642 0.631 0.646 0.649 313 988
0.71 0.641 0.65 0.643 0.631 234 1141
0.81 0.644 0.648 0.651 0.634 154 1300
0.92 0.645 0.652 0.647 0.638 68 1473

1 0.643 0.642 0.639 0.649 0 1599

Table A.4: Data summary for the intensity measurements for size ratio δ = 0.8.

A.4 Lists of Measurement Results for Slope Analysis

x̂B ηrcpmean ηrcprun1 ηrcprun2 ηrcprun3 nA nB
0 3942.63 3865 4102.2 3860.7 42 0

0.1 2937.1 2940.3 3124.2 2746.8 42 728
0.2 3065.93 2732.9 3146.8 3318.1 39 1573

0.38 3182.53 3434 3104 3009.6 30 2993
0.42 3249.6 3060.1 3299.2 3389.5 27 3298
0.43 3837.43 4123.5 3511.1 3877.7 27 3401
0.47 3631.16 3727.7 3824 3341.8 25 3663
0.5 4164.66 3927.2 3991.4 4575.4 23 3856
0.6 3647.2 3602.7 3646.7 3692.2 18 4511
0.7 3374.36 3276.9 3432.1 3414.1 13 5143
0.8 3211.26 3374.4 2949.2 3310.2 8 5773
0.9 3173.96 3321.6 3283.1 2917.2 3 5773
1 2491.86 2495.5 2616.9 2363.2 0 5773

Table A.5: Data summary for the slope analysis for size ratio δ = 0.18.
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x̂B ϕrcpmean ϕrcprun1 ϕrcprun2 ϕrcprun3 nA nB
0 3282.93 2655.7 3867.6 3550.7 394 0

0.1 3291.83 3462.3 2862.5 2826.4 394 582
0.28 2955.33 3314.3 2725.3 2826.4 394 1309
0.42 3193.26 3120.2 3273.8 3185.8 300 3066
0.5 3462.26 3149.4 3658.1 3579.3 255 3642
0.6 3283.76 3487.9 3081.3 3282.1 206 4370
0.7 3278 3255.1 3453.8 3125.1 156 5088
0.8 3119.13 3189 3530 2638.4 105 5815
0.88 2923.23 2791.1 3154.6 2824 57 5940

1 2380.13 2735.2 2082.1 2323.1 0 5940

Table A.6: Data summary for the slope analysis for size ratio δ = 0.4.

A.5 Lists of Measurement Results for Bulk Modulus

x̂B κmean[Pa] κrun1[Pa] κrun2[Pa] κrun3[Pa] nA nB
0 199964.16 172832.09 215647.92 211665.31 42 0

0.2 220415.71 154915.11 245608.3 261988.81 39 1573
0.38 241889.37 361730.4 189262.62 169765.98 30 2993
0.43 268013.43 278796.35 270885.88 254265.96 27 3401
0.45 272137.45 275872.39 288050.41 246363.67 25 3427
0.46 274491.32 285079.04 282189.59 256232.58 25 3516
0.47 275022.13 264865.05 301442.84 257299.62 25 3663
0.5 301254.93 240219.31 321153.25 342044.9 23 3856
0.7 307400.21 275072.75 329913.41 317653.25 13 5143
0.8 289505.13 324130.64 256229.03 288336.82 8 5773
1 191312.37 185112.75 194178.17 194706.81 0 5773

Table A.7: Data summary for the bulk modulus analysis for size ratio δ = 0.18.
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x̂B κmean[Pa] κrun1[Pa] κrun2[Pa] κrun3[Pa] nA nB
0 235665.66 277324.98 194082.58 42 0

0.1 247129.06 281691.46 211043.83 262189.86 42 157
0.2 270255.01 203800.71 334033.11 269638.1 39 315
0.3 283756.84 261852.22 304784.64 290973.36 34 472

0.35 285963.98 261551.36 310376.6 32 581
0.38 280162.26 285602.32 274718.87 31 643
0.43 285529.76 290652.08 270525.45 291774.93 28 739
0.434 288443.2 281738.52 292983.97 290652.08 28 702
0.44 275774.38 243431.92 276550.58 307600.51 27 739
0.45 317523.67 290271.01 377295.58 284604.17 26 739
0.46 288582.04 307683.2 302857.23 254897.53 26 791
0.6 296183.36 307512.87 284956.89 19 996
0.7 252159.78 213149.31 242864.77 300061.26 15 1133
0.8 254424.3 253140.39 254428.11 255673.94 9 1252
0.9 266746.78 238781.06 313618.34 247837.53 5 1252
1 256416.96 227097.55 304495.65 236887.55 0 1252

Table A.8: Data summary for the bulk modulus analysis for size ratio δ = 0.3.

x̂B κmean[Pa] κrun1[Pa] κrun2[Pa] κrun3[Pa] nA nB
0 228476.98 219820.6 0 237253.73 394 0

0.1 230002.44 251930.09 198008.1 240017.5 394 582
0.28 237729.55 230610.75 230487.03 252360.42 394 1309
0.37 255859.82 283319.59 228279.33 319 2743
0.42 254700.19 227792.16 275909.65 260563.11 300 3066
0.44 262653.6 262341.29 262849.44 290 3239
0.5 266489.46 238394.98 281694.88 279512.82 255 3642
0.6 274210.25 301630.78 238625.79 281859.46 206 4370
0.7 281260.7 271914.59 293569.23 278271.66 156 5088
0.8 281085.79 292977.29 308590.25 239241.89 105 5815
0.9 250559.17 231888.41 272889.62 247223.68 57 5940
1 236974.3 237487.46 213226.36 259519.13 0 5940

Table A.9: Data summary for the bulk modulus analysis for size ratio δ = 0.4.
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x̂B κmean[Pa] κrun1[Pa] κrun2[Pa] κrun3[Pa] nA nB
0 198842.65 198842.65 193422.29 204063.02 808 0

0.1 206290.1 202157.65 224642.47 191733.32 723 167
0.21 197790.34 190733.35 219959.42 182061.17 634 339
0.31 187376.7 172144.45 203558.23 186534.54 554 498
0.41 192889.71 203459.23 175371.1 199853.01 476 650
0.52 213401.09 240683.6 201419.15 197725.25 393 828
0.62 197386.03 187174.57 176814.11 228032.16 313 988
0.81 194395.54 207967.73 170734.25 204360.78 154 1300
0.92 211849.87 170275.22 228009.95 236577.54 68 1473

1 219589 209707.71 237810.63 211113.72 0 1599

Table A.10: Data summary for the bulk modulus analysis for size ratio δ = 0.8.

A.6 Lists of Measurement Results for Sound Transmis-

sion

size ratio δ mixing ratio x̂B speed of sound cpacking [ m
s ]

0.2 0 508.73
0.07 495.21
0.12 501.9
0.19 522.37
0.25 493.04
0.35 512.14
0.41 574.89
0.42 601.5
0.45 570.12
0.5 521.69
0.55 486.9
0.65 518.28
0.83 503.27
0.88 520.32

1 506.68

Table A.11: Data summary for the speed of sound measurements for size ratio δ = 0.2.
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size ratio δ mixing ratio x̂B speed of sound cpacking [ m
s ]

0.3 0 510.13
0.13 513.9
0.16 518.08
0.23 510.95
0.3 550.27
0.35 545.98
0.38 578.33
0.4 569.86
0.41 571.25
0.47 634.55
0.56 566.81
0.68 570.87
0.77 582.01

1 519.71

Table A.12: Data summary for the speed of sound measurements for size ratio δ = 0.3.

size ratio δ mixing ratio x̂B speed of sound cpacking [ m
s ]

0.5 0 513.54
0.1 523.94
0.22 550.7
0.32 553.52
0.4 545.16
0.42 542.25
0.45 550.7
0.53 555.01
0.64 558.64
0.72 532.39

1 521.12

Table A.13: Data summary for the speed of sound measurements for size ratio δ = 0.5.

A.7
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