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Zusammenfassung

Im Laufe dieser Arbeit wurde die Lorentz-Invarianz getestet, indem die Di�erenz
der Resonanzfrequenzen von zwei kryogenen optischen Resonatoren aus Saphir als
Funktion der räumlichen Orientierung gemessen wurde.

Die Spezielle Relativitätstheorie ist eine der fundamentalen Theorien in der
Physik. Die experimentelle Überprüfung ihrer Prinzipien und Vorhersagen ist nicht
nur für die Wissenschaft von groÿem Interesse, sondern auch für die moderne Tech-
nik.

In diesem Experiment werden zwei Nd:YAG-Laser Frequenz-stabilisiert auf die
Resonanzfrequenzen zweier gekreuzten ultra-stabiler optischer Resonatoren. Dadurch,
dass sie aus reinem Saphir (Al2O3) bestehen, zeichnen sie sich durch einen sehr
kleinen Wärmeausdehnungskoe�zienten aus. Das reduziert ihre Anfälligkeit für
Temperaturschwankungen. Mit einem Puls-Rohr-Kühler sind die Resonatoren auf
3,4 K abgekühlt worden. Diese Technik ist ausgewählt worden, um die Störun-
gen zu vermeiden, die mit dem periodischen Wiederau�üllen bei herkommlichen
Flüssighelium-Kryostaten einhergehen. Die vom Kryokühler verursachten Vibratio-
nen konnten durch Vibrationsisolierung, Faserkopplung der Laserstrahlen in die Res-
onatoren und Dekorrelation der Schwebungsfrequenz mit Hilfe der Fourier-Analyse
bei der Kompressionsfrequenz in seinem Relevanz reduziert werden.

Um die Statistik zu verbessern und einen experimentellen Wert für einen zuvor
ungemessenen Parameter einer dynamischen Testtheorie zu bestimmen, der für die
Lorentz-Invarianz charakteristisch ist, ist der gesamte Aufbau aktiv rotiert worden.

Die systematischen E�ekte auf Grund von Veränderungen der Neigung der Re-
sonatoren sind gemessen und dekorreliert worden. Die systematischen E�ekte auf
Grund von Temperaturschwankungen oder Leistungsschwankungen der einfallenden
Laserstrahlen auf die Resonatoren sind mit Hilfe aktiver Regelung verringert worden.

Die Daten sind gemäÿ der kinematischen Testtheorie von Robertson, Mansouri
und Sexl analysiert worden und ergeben eine Verbesserung des vorherigen Ergeb-
nisses um eine Gröÿenordnung. Wir erhalten eine obere Grenze von (β− δ− 1/2) =
(0, 5± 3± 0, 7) · 10−10, was einer Verletzung der Lorentz-Invarianz für eine Isotropie
des Raums von δc

c
= 6, 4 · 10−16 entspricht.

Die Daten sind darüber hinaus auch gemäÿ einer dynamischen Testtheorie, einer
Erweiterung des Standard-Modells der Teilchenphysik, analysiert worden. Dieses
Modell zeichnet sich aus durch eine Erweiterung der Maxwell-Gleichungen um Terme,
welche die Lorentz-Invrianz verletzen. Ein Ergebnis dieses Experiments war die erst-
malige Messung eines Parameters, der für die Lorentzverletzung charakteristisch ist.
Dieser Koe�zient kann nur mit einem aktiv rotierenden Aufbau gemessen werden.
Für diesen Parameter erhalten wie eine obere Grenze von |(κ̃e−)ZZ | ≤ 3 · 10−14, ein
Wert, der durch jüngste Messungen anderer Gruppen bestätigt werden konnte.

Die Ergebnisse der Arbeit wurden publiziert:
1. P. Antonini, M. Okhapkin, E. Göklü and S. Schiller, Phys. Rev. A 71, 050101(R)
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(2005);
2. P. Antonini, M. Okhapkin, E. Göklü and S. Schiller, Phys. Rev. A 72, 066102
(2005);
3. Schiller et al., e-print physics/0510169, Lecture Notes in Physics, edited by J.
Ehlers and C. Lämmerzahl (to be published).
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Abstract
In the course of this work a test of Lorentz invariance was performed by comparing
the resonance frequencies of two cryogenic sapphire optical resonators as a function
of their orientation in space.

The Special Relativity is one of the most fundamental theories in Physics. The
need to experimentally test its principles and results is not only of (great) scienti�c
interest, but also technical.

In the experiment presented here two Nd:YAG lasers were frequency-stabilised
to the resonance frequencies of two crossed ultra-stable optical resonator. Made of
pure sapphire (Al2O3), they are characterised by a very small thermal expansion
coe�cient. This reduces their sensitivity to temperature variations. A pulse-tube
cooler was used to cool the resonators down to 3.4 K. This technique was chosen to
avoid the disturbances connected to the periodic re�lls in traditional liquid-helium
cryostats. The vibrations induced by the cryo-cooler were reduced by use of vibration
insulation, �bre-coupling of the laser beams to the resonators, and decorrelation of
the beat frequency by use of Fourier analysis at the frequency of pumping.

In order to improve the statistics and to put an experimental value to a previ-
ously unmeasured parameter of a dynamical test theory, which characterises Lorentz
invariance, the whole setup was actively rotated.

The systematic e�ects caused by variations in tilts of the resonators were mea-
sured and decorrelated, and systematic e�ects caused by temperature variations or
variations in power of the incident laser bemas on resonators were diminished by
use of active control.

The data were analysed in the kinematical test theory of Robertson, Mansouri
and Sexl, improving the previous result of one order of magnitude. We set the limit
(β−δ−1/2) = (0.5±3±0.7) ·10−10, which corresponds to a violation of the Lorentz
invariance for the isotropy of space of δc

c
= 6.4 · 10−16.

The data were also analysed in a dynamical test theory, and extension of the
Standard Model of particle physics. This model is characterised by an extension of
the Maxwell equations with terms that violates the Lorentz invariance. A result of
this experiment was the measurement, for the �rst time, of one of the parameters
that characterise the Lorentz violation. This coe�cient can only be measured with
an actively rotating setup. We set for this parameter the upper limit: |(κ̃e−)ZZ | ≤
3 · 10−14. A value con�rmed by more recent measurements by other groups.

The results of the work are published:
1. P. Antonini, M. Okhapkin, E. Göklü and S. Schiller, Phys. Rev. A 71,

050101(R) (2005);
2. P. Antonini, M. Okhapkin, E. Göklü and S. Schiller, Phys. Rev. A 72, 066102
(2005);
3. Schiller et al., e-print physics/0510169, Lecture Notes in Physics, edited by J.
Ehlers and C. Lämmerzahl (to be published).
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Chapter 1

Theory

1.1 Introduction
This year the 100th anniversary of the theory of Special Relativity is celebrated
worldwide, not only in the Physics community. Only very few other scienti�c theories
have had such a big resonance outside the scientists. This is not only because of
the outstanding personality of his creator, but also because of the revolutionary
character of the theory. Although the results of the theory have always been proved
by experiments, there is today a big interest in new experiments to test the validity
of the Special and General Relativity. There are several reasons for this interest.

First of all, not only Special and General Relativity describe phenomena like
propagation of light, measurements of time and gravitational interactions, Relativity
provides the framework in which (at least in principle) every model of physics is
based.

Even in the everyday life of the most technological societies Relativity must be
taken into account: a common example is the Global Positioning System (GPS)
that would make errors at the level of about km per day, without the corrections of
Relativity.

Back to Science, Relativity is also important for Metrology: �rst of all the meter
is de�ned as the distance covered by light in 1/299 792 458 seconds. In addition, all
other units of the SI standard (a part from the kelvin) are dependent on Relativity.

E�orts to develop a theory that would unify the Standard Model and Gravitation
resulted in Lorentz-violating new theories, such as the Standard Model Extension,
explained in details in this thesis. The necessity to test the theory added motivation
for new precise tests of Special Relativity in several labs around the world.

The Special Relativity will be treated in this thesis on two ways:
(1) kinematically, when the focus is on the description of the transformation

between di�erent inertial systems, and
(2) dynamically, when the speed of light is derived as a consequence of the

Maxwell equations.
Already before the invention of the theory of special relativity in 1905 [1], mea-

1



2 CHAPTER 1. THEORY

surements on the speed of light and its dependence on the orientation and motion
of the reference frame were performed. New experimental techniques permitted to
increase the precision of these experiments signi�cantly over the course of time.
The development of laser techniques measurements allowed huge improvements in
measurements accuracy [2, 3, 4, 5, 6]. See Fig. 1.1 for a collection of accuracies of
experiments on isotropy and dependence on the relative speed of reference frames.
of the speed of light.

Figure 1.1: Limits for variation of the speed of light for Michelson-Morley and Kennedy-
Thorndike experiments. The horizontal line `cmb' represents the theoretic observable e�ect
in case of a preferred frame in which the lab moves with the velocity of 370 km/s (speed
of the Earth respect to the cosmic microwave background). The line `ether' represents the
theoretic observable e�ect for the classical ether theory, corresponding to the ration (v/c)2,
were v is the speed of the Earth respect to the Sun, see Fig. 1.5

The �rst precision measurement, demonstrating the isotropy of light propagation,
was performed by Michelson and Morley in 1887. Local Lorentz Invariance (LLI),
isotropy and constancy of the speed of light, is incorporated as a fundamental sym-
metry into the accepted theories of the fundamental forces, General Relativity [7]
and the Standard Model. Numerous experiments have tested LLI with respect to
matter and to the electromagnetic �eld and have upheld its validity until to date
[8]. For electromagnetic waves the isotropy of space has so far been veri�ed a the
level of a few parts in 1015 [2, 3, 4, 5, 6].

New generations of tests of LLI and of other fundamental symmetries like Weak
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Equivalence Principle, Local Position Invariance, CPT (charge conjugation, parity
inversion, and time reversal) symmetry are seen as one important approach in the
quest for a deeper understanding of the forces of nature [8]. They might provide
useful inputs for the development of a theory able to describe gravity at the quantum
level. In these theories, violations of fundamental symmetries are being considered.
Thus, the theoretic models call for improved experiments to either validate LLI at
much higher precision levels, or to uncover its limits of validity.

1.1.1 The Michelson-Morley experiment
Michelson-Morley experiment using an interferometer
The Maxwell equations and the Galilei relativity together require the presence of
a `ether', a medium in which the electromagnetic wave of light can propagate. A
reference frame (if any) in which the ether would be at rest should be taken as an
absolute `rest frame'. In order to �nd with which speed and in which direction the
Earth was moving through the ether many experiments were planned at the end of
the 19th century, but the only one that had high enough sensitivity to reveal that
the hypothesis of the ether was wrong was performed by Michelson and Morley in
1887 [9]. As depicted in the left side of Fig. 1.2, in this experiment a beam of light
from the source was separated in two parts by a semitransparent mirror (that today
is usually called a beam-splitter). Thus a part of the beam follows the path I to
mirror M1, and back to the beam-splitter. Then a part of this beam goes on through
the beam-splitter back to the source, and the other part is re�ected from the beam-
splitter and thus sent to the observer. The second path (II) is �rst deviated by the
beam-splitter towards mirror M2, re�ected back to the beam-splitter, and the part
that is not sent back to the source is superimposed to the beam coming from path I
on the observer view. The observer will see the interference pattern produced by the
di�erence of time of arrival between the parts of the two paths that are separated,
namely L1 and L2.

We can now calculate the displacement of the interference lines as function of
the path lengths L1 and L2, and of the velocity v of the interferometer through the
`ether'.

For the path I the time needed (in both cases we neglect the parts of the path
that are in common) from BS to M1 and back is [10]:

t1 =
L1

c + v
+

L1

c− v
=

2L1

c2 − v2
=

2L1

c

1

1− v2

c2

(1.1)

For the path II we must consider the path covered through the ether:

2s = 2

√
L2

2 +

(
vt2
2

)2

= ct2
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Figure 1.2: Right: Scheme of the Michelson interferometer. The beam is divided in
two paths I and II by the beam splitter (BS). In the path I the beam goes from BS to
mirror M1 and back to BS. In the path II the beam goes from BS to the mirrors M2 and
back to the beam-splitter. A part of the two beams is superimposed on the beam-splitter
and reach the observer where it produces the interference pattern. The rest goes back
to the source. In the real experiment the beams were re�ected many times in order to
create longer paths that increased the sensitivity of the experiment, see Eq. (1.5). Left:
The interference pattern of the two pathes depends on the velocity of the interferometer
respect to the ether due to the distance vt2 covered by the interferometer during the time
needed by the beam to go from the beam-splitter to the mirror M2 and back.

t2 =
2L2√
c2 − v2

=
2L2

c

1√
1− (

v
c

)2
, (1.2)

thus the time di�erence is:

∆t = t2 − t1 =
2

c


 L2√

1− (
v
c

)2
− L1

1− (v
c
)2




After a rotation of the interferometer of 90◦, the time di�erence is:

∆t′ = t′2 − t′1 =
2

c


 L2

1− (v
c
)2
− L1√

1− (
v
c

)2




thus the rotation changed this di�erence by:
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∆t′ −∆t =
2

c

[
L1 + L2

1− (v
c
)2
− L1 + L2√

1− (v
c
)2

]

we can use the binomial expansion and drop the terms higher than the second-order:

∆t′ −∆t ∼= 2

c
(L1 + L2)

[
1 +

v2

c2
− 1− 1

2

v2

c2

]
=

(
L1 + L2

c

)
v2

c2
(1.3)

Now the number of fringes that move past the observer are

∆N =
c[∆t′ −∆t]

λ
, (1.4)

the displacement of the interference pattern is found substituting Eq. (1.3) in (1.4):

∆N ≈ L1 + L2

λ

(v

c

)2

(1.5)

where λ is the wavelength of the beam. We can see that the sensitivity of the
experiment increases with the lengths of the paths. The paths can be increased only
as long as the beams are still coherent through the whole paths.

Michelson Morley experiment using a laser stabilised to a resonator
In the modern Michelson-Morley experiments the interferometers are not anymore
used. Instead the resonance frequency of ultrastable resonators in microwave or
optic frequencies are used. Two con�gurations are possible: the comparison of the
resonance frequencies of two crossed resonators, Fig. 1.3, or the comparison of the
resonance frequency of a stabilised resonator with a stable reference, Fig. 1.4.

The advantages respect to the interferometers are principally two: the interfer-
ometers are much more limited by the mechanical stability of the payload on which
the source, the beam-splitters and the mirrors lye, and the fact that using a laser or
a maser (that produced coherent radiation for a long time) and resonators of very
high �nesse (related to the quality factor) the photons inside the resonators can
bounce several thousands of times, being so equivalent to an interferometer whose
arms have a length of order of magnitude of the kilometer, in fact according to
Eq. (1.5) the sensitivity depends on the length of the interferometer.

For optical resonators usually the quality of the resonator as an oscillator is
expressed as �nesse F , which is related to the quality factor Q by the equation:

Q =
2L

λ
F .

The �nesse in turn is dependent on the optical losses of the resonator (predominantly
at the mirror's coating).

The �rst Michelson-Morley-type experiment using a laser instead of an interfer-
ometer was performed by Jaseja et al. in 1964 [11]. In that case the accuracy was
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Figure 1.3: Modern Michelson-Morley experiments are performed using laser or microwave
generators and ultra-stable resonators instead of interferometers.

limited by the fact that the etalon of length was the laser cavity itself, and a big
systematic frequency shift of 275 kHz was observed correlated to the rotation of
the setup. For more than twenty years the most accurate experiment was that per-
formed by Brillet and Hall in 1979 [2, 12]. There a He-Ne (wavelength λ = 3.39 µm)
was servostabilised to a highly stable Fabry-Perot resonator. The laser, the servo
and the resonator were rotated and the frequency of the stabilised laser compared
to the frequency of a second CH4-stabilised He-Ne laser.

In 2003 Müller et al. [5] improved about three times the result of Brillet and
Hall, using two crossed sapphire resonators. The use of two resonators doubles
the hypothetical signal amplitude, and provides some common-mode rejection of
systematic e�ects. The same cavity used for that experiment were also used for
the Kennedy-Thorndike experiment of Braxmaier et al. [13] (see Sect. 1.1.2). The
fractional frequency shift reported was of (2.6± 1.7) · 10−15.

In 2004 Wolf et al. [14] improved the measurement using cryogenic sapphire
resonators operating in Whispering Galleries modes with a resonance frequency of
11.93 GHz, compared to the frequency of a Hydrogen maser, obtaining a �nal result
of (1.2± 1.9± 1.2) · 10−15.

1.1.2 The Kennedy-Thorndike experiment
Less famous than the Michelson-Morley experiment is the Kennedy-Thorndike [15].
The Michelson-Morley experiment is a measurement of the isotropy of the speed
of light, that is the dependence of the speed of light on the direction of propaga-
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tion. The Kennedy-Thorndike experiment (performed for the �rst time in 1932) is a
measurement of the constancy of the speed of light, or its dependence on the speed
(`boost') of the lab through the ether. In the classical con�guration the principle
of the Kennedy-Thorndike experiment was an interferometer with arms of di�erent
lengths: the beam of light that is divided into two components and recombined
to interfere after that the two components have covered paths of di�erent lengths,
their relative phases will depend (according to the ether theory) on the translational
velocity of the interferometer through the ether. The modern realisation of the ex-
periment, using lasers and atomic clocks is drawn in Fig. 1.4. It consists of a laser

Figure 1.4: One version of the modern Michelson-Morley experiment consists in a laser
or a microwave generator locked (servo) to the resonance frequency of a stable cavity. The
resonance frequency of the cavity is compared to the output frequency of a stable atomic
clock. The same setup can be used for a Kennedy-Thorndike experiment

or a microwave generator locked to the resonance frequency of a stable cavity. The
resonance frequency of the cavity is compared to the output frequency of a stable
atomic clock, such as a maser, a Cs clock, a laser stabilised to the transition of
some molecule, etc. The frequency di�erence between the resonator and the clock
is correlated to the velocity of the lab respect to some reference frame, that could
be the Sun system, or the cosmic microwave background.

To measure the dependency on velocity of the frequency di�erence between the
resonator and the clock a variation of the velocity of the experimental apparatus is
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necessary. There are at least three possibilities, represented in Fig. 1.5:

1. to exploit the variation of velocity ve of the Earth in its revolution around
the Sun, of about 30 km/s. To use the orbital velocity of the Earth implies a
measurement that spans over at least six months;

2. to exploit the circumferential velocity vd of the lab due to the rotation of the
Earth (taking into account the latitude). This implies a measurement that
spans over one day;

3. to set up the experiment in a satellite. This permits to choose (within the
technical possibilities) to choose the most suitable orbit, and possibly to have
a drag-free experiment, that is, the experimental setup is in microgravity en-
vironment. A description of a possible realisation of this experiment can be
found in Sect. 4.1.2.

Figure 1.5: To modulate the velocity of the experimental set-up and exploit this modula-
tion for a Kennedy-Thorndike experiment there are at least three possibilities: to exploit
the rotation Ω⊕ of the Earth around the Sun, or the rotation ω⊕ of the Earth around its
axis, or to setup an experiment in a satellite. This last solution is a big technical challenge,
but the expectations are of an improvements of three order of magnitude respect to the
best Earth-based experiments.
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In the case of a Earth-based experiment the velocity of the experimental setup can
be written as:

v(t) = vs + ve sin[Ωy(t− t0)] cos φE + vd sin[ω⊕(t + td)] cos φA

where: vs is the velocity of the Sun in the reference frame, t0 and td are determined by
the phase and start date at the begin of the measurement, respectively. Here φA = 8◦

is the angle between the equatorial plane and the speed of the Sun through the
cosmic microwave background (cmb), φE = 6◦ is the declination between the plane
of the Earth's orbit and the direction of the Sun through the cmb, 2π/Ω⊕ = 1 year,
2π/ω⊕ = 1 sidereal day (23 hours and 56 min.). We are interested in the second
order e�ect, then:

(v

c

)2

≈
(vs

c

)2

+
2vevs

c2
sin[Ω⊕(t− t0)] cos φE +

2vdvs

c2
sin[ω⊕ + td] cos φA. (1.6)

Using the values: vS = 377 km/s, vE = 30 km/s, vP = 330 m/s, we have:
(v

c

)2

= 1.57 · 10−6 + 2.48 · 10−7 sin[Ω⊕(t− t0)] + 2.74 · 10−9 sin[ω⊕(t + td)]. (1.7)

We see directly from Eq. (1.7) that an experimental setup designed to exploit
the circumferential velocity of the Earth needs a stability two orders of magnitude
bigger that an experimental setup that exploits the rotation of the Earth around
the Sun. In the second case the experimental setup must remain stable in the time
span of one year instead than of a one day. The best experimental results obtained
so far were obtained measuring over one year.

1.1.3 The Ives-Stilwell experiment
The Ives-Stilwell experiment measured the time-dilation. The outcome of the exper-
iment is a positive e�ect, instead of the null e�ect of the Michelson-Morley and the
Kennedy-Thorndike experiments. The scheme of the setup is depicted in Fig.1.6.

The result of the experiment was the displacement of the lines of the Hβ lines
of hydrogen at 486.1 nm. To get rid of the �rst-order Doppler e�ect the measured
quantity was the displacement of the centre of mass of the sum of the lines emitted
in the direction parallel (θp = 0) to the motion of the hydrogen particles with the
lines emitted in the direction antiparallel (θa = π), by means of the mirror M in
Fig. 1.6. The hydrogen particles were accelerated at a velocity 0.005 c by means of
a potential of 30 kV at the accelerating electrodes A and B in �gure.

The respective second-order Doppler shifts are:
ν0 = γ(1− β cos θp,a)ν0 (1.8)

where ν0 is the transition frequency when the particles are at rest in the frame of
the lab. The multiplication of the two equations (1.8) (one for θp and one for θa)
yield the velocity independent relation νpνa = ν0, if special relativity is valid.

Modern Ives-Stilwell experiments are performed accelerating 7Li+ ions at v =
0.064 c (13.3 MeV) in a storage ring, using collinear saturation spectroscopy [16].
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Figure 1.6: The electrodes A and B accelerated the H2 or H3 double or triple atomic
hydrogen produced in the �lament F. The mirror M, placed at 7◦ respect to the direction
of the particles re�ected the light emitted antiparallel, superimposing it to the light emitted
parallel. A spectrograph G resolved the lines on a photographic plate P.

1.1.4 Local Position Invariance
That experimental setup used in [13] was also used to set a limit on local position
invariance (LPI), the gravitational red-shift due to a change in the gravitational
potential interacting with the clock. According to the General Relativity, the rate
of a clock depends on the gravitational potential: if ν(x1) is the rate of a clock
collocated in the gravitational potential U(x1) in the space point x1, then the rate
of the same clock ν(x2) in the gravitational potential U(x2) in the point x2 is:

ν(x2) = ν(x1)(1 +
U(x2)− U(x1)

c2
), (1.9)

but the rate change does not depend on the type of clock. If LPI is not valid, then
the rate change can depend on the type of clock through the parameter αclock:

ν(x2) = ν(x1)(1 + αclock
U(x2)− U(x1)

c2
), (1.10)

with αclock 6= 1. To test it two di�erent clocks are compared, exploiting the di�erence
in the gravitational potential due to the di�erent distance between Earth and Sun
at di�erent times of the year (or of the orbit of a satellite). Then if the frequency
shift depends on the type of clock, this di�erence is proportional to the gravitational
potential:

∆ν1

ν1

− ∆ν2

ν2

=
∆U

c2
(αclock1 − αclock2). (1.11)

Braxmaier et al. comparing a cryogenic optical resonator (one of the two used
for this work) to a Nd:YAG laser locked to a transition of the I2 molecule set a
limit for (αres − αmol) ≤ 4 · 10−2. The most precise measurement for the relation of
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Eq. 1.10 is αclock ≤ 7 · 10−5 [17], comparing the frequencies of a hydrogen maser in
a satellite at 10 000 km above the Earth surface and a maser at ground.

1.2 Kinematic test theories
Violations of LLI can be interpreted using so-called test theories. A kinematic
test theory commonly applied is that by Robertson, Mansouri and Sexl (RMS)
[18, 19, 20, 21]. Here, light propagation is described relative to a preferred frame
(`ether frame') Σ in which there is no preferred direction and thus the speed of light
c0 is rectilinear, isotropic and constant. Usually the frame in which the cosmic mi-
crowave background is isotropic is assumed to be this frame. Lorentz transformations
between a laboratory frame S and Σ are replaced by general linear transformations
which depend on the velocity ~v of the lab frame with respect to Σ and on three
phenomenological parameters.

1.2.1 The Robertson test theory
In a paper appeared in 1949 [18], H. P. Robertson stated that three second-order
experiments (second-order in (v/c)) enable to replace the Einstein's (second) postu-
late on universality of c. These three experiments are the Michelson-Morley [9], the
Kennedy-Thorndike [15] and the Ives-Stilwell [22, 23] experiments.

Robertson postulated the existence of a reference frame Σ, an Einstein's `rest
system', in which light is propagated rectilinearly and isotropically in vacuum with
a constant speed c. He also postulated that the 3-dimensional space is Euclidean,
that all clocks that are at rest in Σ are synchronised, and that the speed of light in
free space is independent of the motion of the source. Also assigned is a metric dσ2

de�ned by:

dσ2 = Σγµνdξµdξν = dτ 2 − (dξ2 + dη2 + dζ2)/c2 (1.12)
for the coordinates (τ ; ξ, η, ζ). Here τ is the time coordinate and the other three

the spatial coordinates. This metric is useful to:

1. measure time intervals;

2. measure space intervals;

3. characterise all beams of lights passing through an event E as the generator
of the cone dσ = 0 with E as vertex.

Next he postulated a second reference frame S, a `moving system', which is
moving with a constant velocity dξα/dτ = vα, of magnitude v < c. The frame S
is provided of the coordinates (xi) = (t; x, y, z), and also the spatial 3-dimensional
space (x, y, z) in S be Euclidean. No other assumption is made concerning the
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velocity of light or other physical law in S, that will be derived from results of
experiments and from the laws postulated in Σ.

We must then �nd the transformation T : (t; x, y, z) → (τ ; ξ, η, ζ) that relates
the measurements on S with the measurements in Σ. This transformation should
only depend on the relative velocity vα between the two systems, and reduce to
identity when vα 7→ 0. Moreover, limiting ourselves in the space-time neighborhood
of a given event, the transformation T can be assumed linear.

Choosing that event as the common origin of the coordinates, the transformation
simpli�es:

T = ξµ =
3∑

i=0

aµ
i x

i (1.13)

For the clock synchronisation will be assumed the Einstein's clock synchronisa-
tion, described at the end of this section.

De�ning dσ = 0 as the light cone we determine the normalisation imposed on
the coe�cients of T . We can write the metric (1.12) in the coordinates xi as:

dσ2 = gijdxidxj (1.14)

with

gij = γµνa
µ
i a

ν
j

the repeated indexes imply summation over their range. Proper choice of orientation
of the axis and Einstein's synchronisation lead to the form




a0
0 va1

1/c
2 0 va1

3/c
2

va0
0 a1

1 0 a1
3

0 0 a2
2 a2

3

0 0 0 a3
3


 (1.15)

for the transformation T .
We can write the metric (1.14) as:

dσ2 = g2
0dt2 − [g2

1dx2 + g2
2(dy2 + dz2)]/c2 (1.16)

where
g0 = a0

0

√
1− v2/c2

g1 = a1
1

√
1− v2/c2,

g2 = a2
2



 (1.17)

In order to completely de�ne the transformation T we need the dependence of
the three parameters a0

0, a1
1 and a2

2, or alternatively g0, g1 and g2 on the magnitude
of v. We know that they must reduce to 1 when v 7→ 0, and the fact that the light
paths in S are generators of the cones dσ2 = 0 only establish the ratios between
these parameters, using observations involving the speed of light.
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The result of the Michelson-Morley experiment, stating that the total time re-
quired for light to traverse a distance l and back is independent of its direction
implies for the above mentioned parameters, that

g2(v) = g1(v), (1.18)
or

a2
2 = a1

1

√
1− v2/c2 (1.19)

and is equivalent to a length contraction of
√

1− v2/c2.
The result of the Kennedy-Thorndike experiment, stating that the total time

required for light to traverse a closed path in S is independent of the velocity v of
S relative to Σ delivers g1/g0 = 1.

Equations (1.16), (1.18) and (1.19) give then:

g0(v) = g1(v) = g2(v) := g(v)

a0
0 = a1

1 = g(v)√
1−v2/c2

a2
2 = g(v)





(1.20)

This means that the Michelson-Morley and Kennedy-Thorndike experiments to-
gether imply that the two-way speed of light in vacuum, measured in S, is equal to
c, independently of its direction and of the relative velocity between S and Σ. The
metric becomes then

ds2 = dσ2/g2(v) = dt2 − 1

c2
(dx2 + dy2 + dz2) (1.21)

Using Eq. (1.16) and (1.17) the transformation assumes the usual Lorentz form

T :=





τ = g(t+vx/c2)√
1−v2/c2

ξ = g(vt+x)√
1−v2/c2

η = gy
ζ = gz

(1.22)

No experiment involving only the velocity of light in S is useful to determine
the unknown parameter g(v). Einstein postulated it to be unity. The Ives-Stilwell
experiment [22, 23], stating that the frequency of a moving atomic clock is altered
by the factor

√
1− u2/c2, being u the velocity of the clock to respect to the ob-

server, determines the parameter g(v) as unity, within the experimental accuracy,
see Sect. 1.1.3.

Conclusion of the Robertson theory was then that the three experiments together
replace almost completely the Einstein's postulates with experimental results, de-
livering the metric:

ds2 = dσ2 = dt2 − 1

c2
(dx2 + dy2 + dz2). (1.23)
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The Einstein's synchronisation

Einstein de�ned simultaneity by postulating the constancy of the speed of light. To
de�ne the Einstein synchronisation, consider two points A and B. The clock in A
can only be used to measure time di�erences between events that happen near A,
and the clock in B can only be useful near B. This de�nes an `A time' and a `B
time'. To have a common time both for A and B, we de�ne that the time for a light
signal to go from A to B and the time to go from B to A are equal. If we put a
mirror in B and send a light signal from A to B at t = 0, that comes back to A
at time t = t0, then the time at which the signal reaches B is de�ned as t0/2. This
de�nes a procedure for synchronising clocks in all the space. A corollary for this
de�nition is that the speed of light in vacuum has always the same value [24]. This
is the Einstein's synchronisation.

1.2.2 The Mansouri-Sexl test theory
The Robertson's theory is too general to be used to compare di�erent kind of experi-
ments concerning the isotropy and constancy of the speed of light. A more practical
test theory was achieved by the development of the Robertson's theory by Reza
Mansouri and Roman U. Sexl in a series of three papers in 1977 [19, 20, 21].

There as `ether frame' was considered the cosmic background microwave radia-
tion. In the same year of the publication of these papers, moreover, an anisotropy
of the cosmic background radiation was measured by Smooth et al. [25]. This
anisotropy was interpreted as Doppler shift produced by the motion of the Earth
relative to the inertial frame in which the radiation is assumed to be isotropic. This
motion is given by the motion of the Sun (377 km/s) ± the motion of the Earth
around the Sun (30 km/s). This gives a point to considering as reference frame that
one in which the microwave background radiation is isotropic.

Mansouri and Sexl considered these assumptions:

(L1) The velocity of light is independent of the motion of the source;

(Σ1) In the preferred frame Σ the Einstein synchronisation and the synchronisation
by slow clock transport agree;

(S1) There is no preferred direction in Σ.

The conditions (Σ1) and (S1) imply in the three dimensional case that the ve-
locity of light is isotropic in Σ. The condition (Σ1) does not de�ne Σ uniquely.
Then the second frame S is considered having a velocity v < c with respect to Σ.
It also implies that the time dilation factor be exactly the Special Relativity factor
a(v) =

√
1− (v/c)2 in the transformation between the two systems:
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TS = a(v)TΣ + e(v)ZS

XS = d(v)XΣ

YS = d(v)YΣ

ZS = b(v)(ZΣ − vTΣ)

(1.24)

that must be linear because the world-line of a free falling body is a straight line in
the space-time in each inertial system.

The function e(v) de�nes the clock synchronisation. With the Einstein synchro-
nisation it is e(v) = −v/(c2(1 − v2)). As consequence of the isotropy of space, the
functions a, b and d are even in v. This theory restricts itself only to kinematic
aspects, and becomes cumbersome for very high velocities, but for v ¿ c we can
write:

a(v) = 1 + α(v
c
)2 +O

(
v4

c4

)

b(v) = 1 + β(v
c
)2 +O

(
v4

c4

)

d(v) = 1 + δ(v
c
)2 +O

(
v4

c4

) (1.25)

The relativity implies:
α = −1

2
, β = 1

2
, δ = 0.

Some calculations yield the �nal equation, that is the useful relation of the test
theory:

c

c(θ)
= 1 +

(
β + δ − 1

2

) (v

c

)2

sin2 θ + (α− β + 1)
(v

c

)2

+O
(

v4

c4

)
(1.26)

where the coe�cient A = (β + δ − 1
2
) can be constrained with a Michelson-Morley-

like experiment, and the coe�cient B = (α− β + 1) with Kennedy-Thorndike. The
parameter α is measured with Ives-Stilwell-like experiments.

The parameter α is measured in the Ives-Stilwell experiment through the equa-
tion (1.8), in the form:

νpνa

ν0

= 1 + 2α(β2 + 2~βlab · ~β) +O
(

v4

c4

)
(1.27)

where ~βlab = ~vlab/c, and the other quantities were already de�ned in Sect. 1.1.3.
It was measured using laser collinear saturation spectroscopy on fast ions in a

storage ring in Heidelberg by Saatho� et al. [16]. They obtained a limit of 2.2 ·
10−7 for deviations from the time-dilation factor γ = 1√

1−( v
c
)2
.

The best measurement for the MM parameter A was (2.2±1.5)·10−9 [5], obtained
with a non-rotating setup, that was improved in this work to (0.5± 3± 0.7) · 10−10

[26]. Wolf et al. recently published a similar value of (−0.9± 2.0) · 10−10, measured
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with a rotating setup consisting in rotating microwave sapphire cryogenic resonators,
over a time span of 18 days.

The most stringent measurement on the KT parameter B to date is B = (1.6±
3.0) · 10−7 [14].

In the Robertson theory the above coe�cients correspond to:
A = |1− g1(v)

g2(v)
| and B = |1− g1(v)

g0(v)
|.

1.3 Data analysis in the RMS framework
The parameter (β − δ − 1

2
) from Eq.(1.26) is obtained by �tting the functions:

2B(t) = (1/2− β + δ)(v2/c2
0)(γ3 cos ω⊕T⊕+ (1.28)

γ4 cos 2ω⊕T⊕ + σ3 sin ω⊕T⊕ + σ4 sin 2ω⊕T⊕) ,

2C(t) = (1/2− β + δ)(v2/c2
0)(γ0 + γ1 cos ω⊕T⊕+ (1.29)

γ2 cos 2ω⊕T⊕ + σ1 sin ω⊕T⊕ + σ2 sin 2ω⊕T⊕),

the expressions for the γi and σi are given in the Table 1.1

Table 1.1: The values of the γi and σi appearing in Eqs.(1.28) and (1.29).
γ0 = 1

4
sin2 χ(3 cos2 Θ− 1)

γ1 = 1
2
cos Φ sin 2Θ sin 2χ σ1= γ1 tan Φ

γ2 = 1
4
cos 2Φ cos2 Θ(cos 2χ− 3) σ2 = γ2 tan 2Φ

γ3 = σ3 tan Φ σ3 = cos Φ sin χ sin 2Θ
γ4 = −σ4 tan 2Φ σ4 = cos2 Θ cos χ cos 2Φ

T⊕ is the time since the beginning of the data plus an o�set that accounts for a
time di�erence since the coincidence of the lab's y axis with the Ŷ axis of the Sun-
centered system [27]. The direction of the Sun's velocity ~v relative to the cosmic
microwave background is given by the right ascension Φ = 168◦ and the declination
Θ = −6◦. The systematics are modeled adding a contribution bsyst sin 2θ+csyst cos 2θ
to Eq.(1.66), and �t bsyst, csyst, β − δ − 1

2
. E�ectively, this means that only the

modulation of the {2B, 2C} amplitudes by Earth's rotation contributes to the �t
result for (β − δ − 1

2
).

1.4 The Standard Model Extension
Nowadays the strongest theoretic e�orts on Relativity are on the dynamical aspects.
In fact, the kinematical test theories require the de�nition of a preferred reference
frame (the cosmic microwave background, for example), and the transformations
could depend on the choice of the reference frame. Moreover, the kinematical test
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theories give no explanation for the violation of Lorentz invariance, they only give
the parameters to quantify the violation.

Dynamical test theories, like the Standard Model Extension, include a Lagrangian
that yields modi�ed Maxwell or Dirac equations. The coe�cients do depend on the
choice of the reference frame, but there is no necessity to de�ne a preferred frame. A
Sun-centred reference frame is chosen only for practical reasons, and the coe�cients
show a temporal dependency due to the motion of the lab relative to the Sun. For
a de�nition of a reference frame see Sect. 1.4.2 below.

The uni�cation of the fundamental forces in nature is expected to occur in the
Plank scale, that is the natural scale for a fundamental theory that includes gravity,
where quantum physics and gravity could meet. The Planck mass is de�ned by
mP =

√
hc
G

= 5.45604·10−8kg ' 1019GeV. This is the only combination of h, c and
G that results in a quantity with the dimensions of a mass. At low energy scale,
relative to Planck scale, observable violations of Lorentz invariance are described
by an extension of the Standard Model of physics, the Standard Model Extension
(SME). Among the possible mechanisms that could originate Lorentz violations one
is in the context of string and �eld theories. A Lorentz violation would be expected
to take place at the order of magnitude of mw/mP ' 10−17, where mw ' 100 GeV
is the electroweak scale, or even smaller.

A spontaneous breaking of the Lorentz symmetry can occur in string theory [28].
The idea there is that in order to have strings describe the 4-dimensional conven-
tional space-time, it is necessary that some metamorphosis occur that compacti�es
the 26 dimension (for strings) or the 10 (for the superstring) of the Poincaré symme-
try. The Lorentz invariance could be broken by the generation for Lorentz tensors
of negative square masses and from static tensor-tensor-scalar couplings.

1.4.1 The modi�ed Maxwell equations
A comprehensive dynamical test theory of Local Lorentz Invariance (LLI) violation
has been developed, the Standard Model Extension (SME) [29, 27]. It is based on
the Lagrangian of the Standard Model, extended by terms that violate LLI and
CPT. These terms describe possible violations in the behaviour of both matter and
�elds, and contain a large number of unknown parameters, that in principle can be
determined experimentally. Moreover, the SME contains the Robertson-Mansouri-
Sexl kinematical test theory as a special case [27].

The SME allows for violations of Lorentz and CPT symmetries that the Standard
Model and Einstein's Relativity do not. In fact the Standard Model allows for
violations of C, or P, or T, or CP, but not of CPT or Lorentz Invariance (isotropy
and constancy of speed of light). The Standard Model Extension allows for violations
of CPT. The CPT theorem, that links Lorentz and CPT symmetries can be used
to show that particles and antiparticles must have some common properties, such
as mass, size of charge, magnetic moment. Violations of CPT, allowed by the SME
would explain di�erences between the spectra of hydrogen and antihydrogen [30], an
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e�ect forbidden in the Standard Model. This e�ect has not yet been experimentally
demonstrated.

The Standard Model Extension extends the minimal SU(3)×SU(2)×U(1) gauge
invariant Standard Model, where the Maxwell equations can be written through the
Lagrangian:

Lmw = −1

4
FµνF

µν

where Fµν = ∂µAν − ∂νAµ.
In particular, the extended Lagrangian of the electromagnetic �eld is given by

L = −1

4
FµνF

µν +
1

2
(kAF )κεκλµνA

λF µν − 1

4
(kF )κλµνF

κλF µν . (1.30)

The coe�cient 1
2
(kAF )κ is real, has the dimension of a mass, and is CPT odd.

This coe�cient is associated with negative contributions to the energy, thus it is a
potential source of instability. Theoretic [29, 27] and experimental [31] results allow
to set it as zero, then for the following

1

2
(kAF )κεκλµνA

λF µν = 0.

We can express the Lagrangian of the photon sector in terms of the potentials
( ~A, φ) and of the �elds ( ~E, ~B):

L =
1

2

(
~E2 − ~B2

)
+

1

2
α

(
~E2 + ~B2

)
+

1

2
βjk

E EjEk

+
1

2
βjk

B BjBk +
1

2
βjk

EBEjBk (1.31)

+ k0
AF

~A · ~B − φ~kAF · ~B + ~kAF ·
(

~A× ~E
)

.

The equations of motion, remembering that we set

1

2
(kAF )κεκλµνA

λF µν = 0,

are [27]:

∂αFα
µ + (kF )µαβγ∂

αF βγ = 0 (1.32)
and these are the Lorentz-breaking extensions of the usual Maxwell equations (in
absence of sources) ∂µF

µν = 0.
In order to get the observables, it is useful to observe an analogy with the con-

ventional electrodynamics: if we de�ne the �elds ~D and ~H by the matrix equation
(

~D
~H

)
=

(
1 + κDE κDB

κHE 1 + κHB

)(
~E
~B

)
(1.33)
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where ~E and ~B are the electric and magnetic �elds obtained solving the modi�ed
Maxwell equations (1.32).

The matrices κDE, κHB, κDB and κHE are de�ned in terms of kF as

(κDE)jk = −2(kF )0j0k

(κHB)jk =
1

2
εipqεkrs(kF )pqrs (1.34)

(κDB)jk = −(κHE)kj = (kF )0jpqεkpq.

The modi�ed Maxwell equations can now be written in the familiar form of the
Maxwell equations in homogeneous anisotropic media:

~∇× ~H − ∂0
~D = 0 (1.35)

~∇× ~E + ∂0
~B = 0 (1.36)

~∇ · ~D = 0 (1.37)
~∇ · ~B = 0 (1.38)

The advantage of this substitution is that in this formalism many results of the
conventional electrodynamics still holds.

For the observables of interest here, we better introduce the coe�cients:

(κ̃e+)jk =
1

2
(κDE + κjk

HB) (1.39)

(κ̃e−)jk =
1

2
(κDE − κjk

HB)− 1

3
δjk(κll

DE) (1.40)

(κ̃o+)jk =
1

2
(κDB + κjk

HE) (1.41)

(κ̃o−)jk =
1

2
(κDB − κjk

HE) (1.42)

(κ̃tr)
ll =

1

3
(κll

DE) (1.43)

Eqs. (1.39) to (1.42) de�ne 3×3 matrices, while Eq. (1.43) de�nes a single coef-
�cient. The subscripts `e' and `o' are for (parity) even or odd respectively, the signs
± for the respective sum or di�erence in their de�nitions, and the subscript tr for
`trace'.

These parameters are the useful ones to compare the results of di�erent exper-
iments: typical laboratory experiments with electromagnetic resonators search for
rotation-violating parity even observables (κ̃e+) and (κ̃e−). Observables depending
on the leading order on the velocity are sensitive to the parity odd coe�cients, and
the last (1.43) is the only one to play role in the second order in the velocity.



20 CHAPTER 1. THEORY

The condition on the double trace of (kF )κλµν implies the tracelessness of κDB =
(κHE)T . Thus κDE and κHB have eleven independent elements and the matrix
κDB = −(κHE)T eight, for a total of nineteen independent coe�cients of kF .

The coe�cient (kF )κλµν is dimensionless and CPT even. It describes violations
of LLI and has 19 independent coe�cients. Their values are dependent on the frame
of reference; a frame in which the Sun is stationary is chosen for practical reasons.
It can be decomposed into two Lorentz-irreducible pieces, one with 10 coe�cients,
that describe polarization-dependent e�ects, the second with the remaining nine,
analogous to the trace-free Ricci-tensor. The 10 components of the �rst part can be
restricted to the level of 10−32 using astronomical observations of the polarization
of distant light sources [32], and in the following will be set as zero.

Of the remaining 9 coe�cients of the kF , one (κ̃tr) describes an asymmetry of
the one-way speed of electromagnetic waves [33], while the others describe di�erent
aspects of violations of constancy, i.e. a dependence on the direction of propagation
and on the speed of the laboratory frame of reference. These eight coe�cients can
be arranged in two traceless 3×3 matrices: the antisymmetric (κ̃o+)ij that describes
violation of boost invariance and therefore enters observable quantities weighted
by the ratio β⊕ ' 10−4 of Earth's orbital velocity and the speed of light, and the
symmetric (κ̃e−)ij quantifying anisotropy of c.

These eight coe�cients can in principle be determined by measuring the depen-
dence of the resonance frequency of an electromagnetic resonator (assuming that
particles satisfy LLI). If the electromagnetic resonator is stationary in the lab �xed
on Earth, seven coe�cients can be determined by taking advantage of the rotation
and orbital motion of Earth. Three experiments, using ultra-stable cryogenic res-
onators for microwaves and optical waves, have been performed recently along this
line. Lipa et al. [4] took data for ∼100 days and could constrain four coe�cients of
κ̃e− and four linear combinations of three coe�cients of κ̃o+. Müller et al. [5] per-
formed an experiment where the measurement duration was extended to a su�cient
duration (over 1 year) that the measurement of the 7 coe�cients was achieved. Wolf
et al. [6] extended the measurement time further and improved signi�cantly on the
limits.

The eighth coe�cient, (κ̃e−)ZZ , was �rst determined with the work described in
this thesis [26].

1.4.2 De�nition of the reference frame
In order to derive the equations that quantify the change of beat frequency between
the two resonators, let us de�ne the reference frame in which they will be calcu-
lated. The lab cannot be considered as inertial. For practical reasons a Sun-centred
system will be taken as the inertial system. In fact over the time elapsed during a
measurement this system can be considered as not accelerating.

In this system, described on [27, 34, 35], we de�ne a X̂ axis pointing towards
the vernal equinox on the celestial sphere, in the Earth's equatorial plane together
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with its orthogonal Ŷ , and Ẑ parallel to Earth's rotation axis, but along the centre
of the Sun. The Earth's equatorial plane, on which the vectors X̂ and Ŷ lie, is at
an angle of η ≈ 23◦ to the Earth's orbital plane. The time T is measured by a clock
at rest in the Earth, with origin T = 0 in the vernal equinox of the year 2004. In

Figure 1.7: The de�nition of the coordinate system: the time point T = 0 correspond to
the position of the Earth in the vernal equinox.

the laboratory frame we de�ne the x axis pointing south, the y east and z axes to
complete the orthogonal reference system (vertically upwards). The time scale is
de�ned setting T⊕ as origin of the lab time when the axis Ŷ and y coincide.

Due to the Earth's movement in space, the values of the coe�cients de�ned in
Eqs. (1.33) change accordingly to the position of the Earth, that is they show a time
dependence, that is to be taken into account.

We de�ne ω⊕ ' 2π/(23h56min) the Earth's sidereal angular frequency and Ω⊕
the angular frequency of the Earth's orbital motion, and β⊕ its speed. The angle χ
is the colatitude of the laboratory. We assume the orbit circular, the rotation from
the Sun-centred system to the laboratory frame is given by [27]:

RjJ =




cos χ cos ω⊕T⊕ cos χ sin ω⊕T⊕ − sin χ
− sin ω⊕T⊕ cos ω⊕T⊕ 0

sin χ cos ω⊕T⊕ sin χ sin ω⊕T⊕ cos χ


 . (1.44)
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The velocity 3-vector of the lab in the Sun-centred frame is then:

~β = β⊕




sin Ω⊕T
− cos η cos Ω⊕T
− sin η cos Ω⊕T


 + βL



− sin ω⊕T⊕
cos ω⊕T⊕

0


 . (1.45)

The matrices κ in the lab system will be transformed in this way:

(κDE)jk
lab = T jkJK

0 (κDE)JK − T
(jk)JK
1 (κDB)JK (1.46)

(κHB)jk
lab = T jkJK

0 (κHB)JK − T
(jk)JK
1 (κDB)JK (1.47)

with [36]

T jkJK
0 = RjJRkK and T

(jk)JK
1 = RjP RkJεKPQβQ. (1.48)

The speed βL is the speed of the lab due to the rotation of the Earth, thus
βL . 1.5 · 10−6. If the experiment is actively rotated, the rotation of the experiment
must be added.

1.4.3 Experiments with optical resonators
In the case of an experimental setup made of a laser locked to the resonance frequency
of an optical resonator in vacuum, as is the case of this work, we must �nd the
relationship between a change of that frequency with a hypothetical violation of the
Lorentz invariance. Following ref. [27], from the Eq. (1.33) the change in frequency
can be written in the frame �xed to the lab, as

δν

ν
= (MDE)jk

lab(κDE)jk
lab + (MHB)jk

lab(κHB)jk
lab + (MDB)jk

lab(κDB)jk
lab (1.49)

where the (MDE)lab, (MHB)lab and (MDB)lab are constant matrices that charac-
terise the apparatus, and that we will now determine.

For a given resonator, let ~E0, ~B0, ~D0, ~H0 be the �elds associated with a mode
resonant into the resonator, of angular frequency ω0. If the coe�cient kF is nonzero,
then in presence of a Lorentz violations these �elds will be perturbated. Let us
call ~E, ~B, ~D, ~H the perturbated �elds, and δν = δω/2π the change in the resonant
frequency. Some manipulation yields the fractional resonant frequency shift as

δν

ν
= −

(∫

V

d3x( ~E∗
0 · ~D + ~H∗

0 · ~B)

)−1

×
∫

V

d3x( ~E∗
0 · ~D − ~D∗

0 · ~E − ~B∗
0 · ~H + ~H∗

0 · ~B

− iω−1
0

~∇ · ( ~H∗
0 × ~E − ~E∗

0 · ~H))
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where V is the volume of the resonator. The expected violations of Lorentz in-
variance are small, then the last term is negligible [27] and we can expand the
last equation in the coe�cients (kF )κλµν . For a resonator in vacuum we may write
~D0 = ~E0, ~H0 = ~B0, and using (1.33) have:

~D − ~E ' κDE · ~E0 + κDB · ~B0 (1.50)
~H − ~B ' κHE · ~E0 + κHB · ~B0. (1.51)

The fractional frequency shift is:

δν

ν
= −

∫
V

d3x( ~E∗
0κDE

~E0 − ~B∗
0κHB

~B0) + 2Re( ~E∗
0κDB

~B0)∫
V

d3x( ~E0 · ~D∗
0 + ~B0 · ~H∗

0 )
. (1.52)

The denominator corresponds to 4 times the time-averaged energy stored in the
resonator.

To apply the Eq. (1.52) to the case of an optical resonator in vacuum we write
the unperturbed �elds as

~E0(x) = ~E0 cos(ω0N̂ · ~x + φ)e−iω0t (1.53)
~B0(x) = iN̂ × ~E0 sin(ω0N̂ · ~x + φ)e−iω0t (1.54)

where N̂ is a unit vector pointing along the axis of the resonator, φ a phase, ~E0 a
vector perpendicular to N̂ that speci�es the polarisation. The resonant frequency is
ω0 = nπ/L, where n is the mode number (the number of half-wavelengths that �t
into the resonator) and L the length of the resonator.

The fractional frequency shift caused by the Lorentz violation is given by sub-
stitution of Eqs. (1.54) and (1.54) into Eq. (1.52):

δν

ν
= − 1

2| ~E0|2
[
~E∗

0 · (κDE)lab · ~E0 − (N̂ × ~E∗
0) · (N̂ × ~E0)

]
. (1.55)

From this equation we can �nally extract the matrices (MDE)lab, (MHB)lab and
(MDB)lab of Eq. (1.49):

(MDE)jk
lab = −Re(E∗

0)
j(E0)

k

2| ~E0|2
(1.56)

(MHB)jk
lab =

Re(N̂ × ~E∗
0)

j(N̂ × ~E0)
k

2| ~E0|2
(1.57)

(MDB)jk
lab = 0 (1.58)

It is so shown that in the presence of a Lorentz violation the frequency of an op-
tical resonator depends on the orientation of the resonator (through the vector
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N̂ = (cos θ, sin θ, 0) if θ is the angle between the x axis and the vector N̂) and
the polarisation of the light ( ~E0).

The matrices (MDE)lab, (MHB)lab and (MDB)lab are constant if the resonator is
�xed in the lab, but they vary in time if the resonator is rotating.

Since the de�nition of the frame, Sect. 1.4.2, the matrices can be rewritten in
the form:

(MDE)33
lab =

sin2 θ

2
(1.59)

(MHB)lab =
1

2




sin2 θ − sin θ cos θ 0
− sin θ cos θ cos2 θ 0

0 0 0


 (1.60)

(MDB)jk
lab = 0 (1.61)

This means that for every resonator the frequency shift (Eq. 1.49) is:

δν

ν
= −1

4
[2(κDE)33

lab − (κHB)11
lab − (κHB)22

lab]

−1

2
(κHB)12

lab sin(2(θ + ∆θ))

−1

4
[(κHB)11

lab − (κHB)22
lab] cos(2(θ + ∆θ))

so that for two orthogonal resonators the frequency shift is given by the di�erence
between the two expressions of the previous equation for each resonator (∆θ1 =
0, ∆θ2 = π/2):

δ(ν1 − ν2)

< ν >
= −(κHB)12

lab sin(2θ)− 1

2
[(κHB)11

lab − (κHB)22
lab] cos(2θ)− cos 2(θ) (1.62)

with < ν >= (ν1 − ν2)/2 ' ν.
For two orthogonal resonators that rotate in the lab, the vectors N̂i can be

written as:

N̂1 =




cos θ
sin θ

0


 N̂2 =




cos(θ + π/2)
sin(θ + π/2)

0


 (1.63)

and the electric �elds:

~E1 = ~E2 =




0
0
1


 (1.64)

Since the lab is not an inertial frame, we must transform the matrices in the
Sun-centred system matrices, using the rotation RjJ (1.44), and Eqs. (1.47), (1.47):

δ(ν1(t)− ν2(t))

ν
= B(t)(sin 2θ−sin 2(θ+π/2))+C(t)(sin 2θ−sin 2(θ+π/2)), (1.65)
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that is:
δ(ν1(t)− ν2(t))

ν
= 2B(t) sin 2θ(t) + 2C(t) cos 2θ(t), (1.66)

where ν1 ≈ ν2 ≈ ν (2.8 · 1014 Hz) is the average frequency.
Each amplitude 2B(t) and 2C(t) is a linear combination of the eight coe�cients,

weighted by time-harmonic factors. The amplitude B(t) contains frequency compo-
nents at 0, ω⊕, 2ω⊕, ω⊕ ± Ω⊕ and 2ω⊕ ± Ω⊕, while C(t) contains in addition one
component at the frequency Ω⊕. Here ω⊕ is Earth's sidereal angular frequency and
Ω⊕ is Earth's orbital frequency. For the determination of the individual κ̃o+ coe�-
cients a measurement extending over of at least 1 year is necessary: it requires the
ability to resolve the contribution of Earth's orbital motion in order to discriminate
between frequency coe�cients di�ering by Ω⊕.

The coe�cients B and C in Eq. (1.66) can be written as:

B = B0 + B1 sin(ω⊕T⊕) + B2 cos(ω⊕T⊕) (1.67)
+ B3 sin(2ω⊕T⊕) + B4 cos(2ω⊕T⊕)

(1.68)

C = C0 + C1 sin(ω⊕T⊕) + C2 cos(ω⊕T⊕) (1.69)
+ C3 sin(2ω⊕T⊕) + C4 cos(2ω⊕T⊕)

(1.70)

The variables ω⊕ and T⊕ were de�ned in Sect. 1.4.2.
The de�nitions of the coe�cients Bi and Ci are reported in Sect: 1.4.4.

1.4.4 Values of Bs and Cs
The following values of the coe�cients Bs and Cs of Eqs. (1.67) and (1.69) are taken
from [27] and [36]:

B1 =
1

2
sin χκ̃XZ

e− +
1

2
β⊕ sin χ[cos η sin Ω⊕T κ̃XY

o+ − sin η cos Ω⊕T κ̃Y Z
o+ ]

B2 = −1

2
sin χκ̃Y Z

e− − 1

2
β⊕ sin χ[− cos η cos Ω⊕T κ̃XY

o+ + sin η cos Ω⊕T κ̃XZ
o+ ]

B3 =
1

4
cos χ[κ̃Y Y

e− − κ̃XX
e− ]− 1

2
β⊕ cos χ[sin Ω⊕T κ̃Y Z

o+ − cos η cos Ω⊕T κ̃XZ
o+ ]

B4 =
1

2
cos χκ̃XY

e− − 1

2
β⊕ cos χ[sin Ω⊕T κ̃XZ

o+ + cos η cos Ω⊕T κ̃Y Z
o+ ]
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C0 =
3

8
sin2 χκ̃ZZ

e− −
1

4
β⊕ sin2 χ[sin Ω⊕T κ̃Y Z

e− + cos η cos Ω⊕T κ̃XZ
o+ + 2 sin η cos Ω⊕T κ̃XY

o+ ]

C1 = −1

2
sin χ cos χκ̃Y Z

e− − 1

2
β⊕ cos χ sin χ[− cos η cos Ω⊕T κ̃XY

o+ + sin η cos Ω⊕T κ̃XZ
o+ ]

C2 = −1

2
sin χ cos χκ̃XZ

e− − 1

2
β⊕ cos χ sin χ[sin Ω⊕T κ̃XY

o+ − sin η cos Ω⊕T κ̃Y Z
o+ ]

C3 =
1

4
(1 + cos2 χ)κ̃XY

e− − 1

4
(1 + cos2 χ)β⊕[sin Ω⊕T κ̃XZ

o+ + cos η cos Ω⊕T κ̃Y Z
o+ ]

C4 = −1

8
(1 + cos2 χ)[κ̃Y Y

e− − κ̃XX
e− ] +

1

4
(1 + cos2 χ)β⊕[sin Ω⊕T κ̃Y Z

o+ − cos η cos Ω⊕T κ̃XZ
o+ ]

1.4.5 The coe�cient (κ̃e−)ZZ

From the coe�cients of Sect. 1.4.4, we see that the contribution of (κ̃e−)ZZ to the
beat frequency signal is

δ(ν1(t)− ν2(t))

ν
=

3

4
(κ̃e−)ZZ sin2 χ cos 2θ(t) + ... , (1.71)

where χ is the colatitude of the laboratory, 38.8◦ for Düsseldorf.
From (1.71) follows that the this particular Lorentz-violating coe�cient (κ̃e−)ZZ

is only measurable if the resonators are actively rotated.
Three high precision experiments using ultra-stable cryogenic resonators for mi-

crowaves or optical waves have been performed recently [4, 5, 6]. These experiments
were not rotating, so they could measure only seven of the eight coe�cients.

The eighth coe�cient, (κ̃e−)ZZ , was �rst determined in the experiment described
here. A value of |(κ̃e−)ZZ | < 2 · 10−14 was reported in [26].

A modi�cation of the Coulomb potential as consequence of the Lorentz violation
results in a length change of the resonators, thus in a change of the resonance
frequency. In principle this e�ect must be taken into account, because it could
complicate the interpretation of the results of the experiment [37]: from Eq. (2.1)
it can be seen that the resonance frequency does not depend only on the speed of
light, but also on the length of the resonator. This e�ect is in fact negligible for
sapphire resonators [38].
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The experimental setup

It was mentioned in Sect. 1.4.5 that active rotation of the experimental setup is
necessary to measure the coe�cient (κ̃e−)ZZ .

Another advantage of active rotation is that the rotations are faster than the
Earth's rotation, implying less restrictive conditions to the stability of the resonators,
in contrast to stationary experiments, which must be stable over 12 h. Variations
of the beat frequency that are much slower than the rotation period can then be
eliminated in the data analysis. A rotating experiment o�ers the possibility to
determine two data points B(ti) and C(ti) for every rotation (ti is the mid-time of
the rotation period). Thus, a rotating experiment o�ers a signi�cant increase in data
acquisition rate and thus a reduction of statistical noise. An overall measurement
time of 1 year or longer is still necessary for a precise determination of all individual
coe�cients.

For these reasons the cryostat was mounted on a rotating stage, that permitted
to rotate continuously and in a controlled way the resonators.

In the next sections the experimental setup will be described.

2.1 Overview
The experimental setup can be seen on Figs. 2.1 and 2.2. Inside a cryostat two
optical resonators made of sapphire were cooled down to 3.4 K by a pulse-tube
cooler. In this way the very small coe�cient of thermal expansion of sapphire could
be exploited. Two Nd:YAG laser were frequency locked to the resonance frequency
of the TEM00 modes of the resonators.

The relationship between the resonance frequencies of the modes of a resonator
and the speed of light permits to test directly the speed of light, as long as the
distance between the mirrors, L, remains constant, at least inside the desired exper-
imental error. The relationship is:

F =
nc

2L
, (2.1)

27
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where n ∈ N is the number of half-wavelengths that �t in the resonator, c the
speed of light. In order to minimise the systematic errors in the measurements, it is
necessary to minimise variations in L. L depends on temperature and mechanical
stresses on the resonator, like variations in the pressure of the environment, which
was minimised by working in vacuum.

The beams of the lasers were coupled to the resonators via two 4-meters long
polarisation-maintaining single-mode �bres. The beat frequency between the two
lasers was compared to the output frequency of a hydrogen maser by a frequency
counter that was phase locked to the maser. A computer-controlled rotation stage
rotated the cryostat continuously over a range of 90◦. The angle of rotation of the
resonators was recorded and correlated to the beat frequency in search of violations
of the Lorentz invariance. Variations of the angle of tilt of each resonator relative
to the direction of gravity were minimised before each measurement, and measured
to decorrelated them from the beat frequency.

Figure 2.1: The experimental setup. Left: Two Nd:YAG lasers are frequency-locked to
two sapphire optical resonators located in a cryostat. The beams are fed to the resonators
via optical �bers. The TEM modes of the resonators are observed by means of two CCD
cameras. Acousto-optic modulators (AOM), stabilize the power of the beams fed to the
resonators. All components shown are mounted on a rotating table. Right: View of the
cryogenic optical components. The two resonators are contained in invar housings. On top
of the resonators are copper blocks that contain temperature sensors and heating resistors
for temperature stabilization. This is a con�guration used in the �rst measurements, small
modi�cations led to a slightly di�erent con�guration. The copper base plate is rigidly
connected to the room-temperature top �ange of the cryostat vacuum housing.

A part of the laser beams was superimposed on a fast photodiode producing
a heterodyne signal at the beat frequency (ν1 − ν2) between the two lasers, about
700 MHz. This frequency was down-mixed with a frequency generator to a frequency
of about 10 MHz, to exploit the better accuracy of the counter at lower frequencies.
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The frequency generator was phase locked to the hydrogen maser output frequency
(5 MHz). The down-loaded frequency was measured with a frequency counter, also
phase-locked to the reference output of a hydrogen maser.

Figure 2.2: The experimental setup. The octagonal table lies on a rotation stage. Over
the octagon an aluminium frame holds the cryostat, into which the pulse-tube cooler cools
two sapphire optical resonators and the optics and photodiodes necessary for the laser
stabilisation to the resonance frequency of the resonators. All the electronics for the laser
stabilisation, the frequency counter and the laser themselves were mounted to the rotating
setup, in order to minimise systematic e�ects caused by the rotations. The laser beams
were sent to the resonators via cryogenic optical �bres. The setup was mounted on a heavy
optical table (3 m × 1.5 m).
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2.2 The cryogenics
The cryogenic system consisted of a two-stage pulse-tube cooler and a cryostat.
The pulse-tube cooler reached a temperature of about 3 K in its second stage. The
cryogenic resonators were then temperature stabilised at 3.4 K.

2.2.1 The cryostat
The cryostat integrated a pulse-tube cooler with the optical experiment. It was
designed to accede the optical resonators both with free laser beams through anti-
re�ection-coated BK7 windows and through optical �bers.

A schematic drawing of the cryostat, with the pulse-tube cooler is shown in
Fig. 2.3.

Cryostat

Window

Thermal screen

Resonator

Anti-vibration

Column
cryostat-experiment

Regenerator 2nd stage

2nd stage

1st stage

Pulse-tube
2nd stage

Regenerator 1st stage

Pulse-tube
1st stage

Compressor

Rotary
valve

Reservoir 2

Reservoir 1
HP

LP

Figure 2.3: A schematic drawing of the cryostat. It was provided with three antire�ection
coated windows: two in a horizontal con�guration, and one on the bottom part, along the
axis of the cryostat that could be used to monitor the TEM mode of a third resonator. In
this �gure only one resonator is showed. The di�erent parts of the pulse-tube cooler are
also depicted. HP and LP: high- and low-pressure side of the compressor.
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A copper screen was connected to the �rst stage of the cooler (about 40 K),
that enveloped the second stage and the experiment. Anti-re�ection coated BK7
1/2 inch windows were mounted also in this screen, in correspondence of the optical
resonators, providing at the same time access for the beams emitted by the optical
resonators and thermal screen between the walls of the cryostat (at 300 K) and
the experiment (at 3.4 K). The screen and the tubes of the cooler were wrapped
into super-insulation aluminized foils to insulate them from radiations form the
cryostat walls. The second stage and the experiment were not provided of copper
screen in order to reduce the mass and the radiated surface, but were wrapped in
20 superinsulation foils, in the way shown in Fig. 2.4.

Figure 2.4: The second stage and the optical resonators were wrapped into superinsulation
foils.

During the experimental runs the external windows were covered with superin-
sulation foils, to avoid that non-uniform radiation inside the lab could result in a
angle-dependent systematic e�ect due to transmission of the radiation through the
windows.
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2.2.2 Pulse-tube cooler
A schematic of the pulse-tube cooler (PTC) used for this work was shown in Fig. 2.3.
Here its working principle will be explained.

The pulse-tube cooler (aka pulse tube refrigerator, or ori�ce pulse-tube cooler)
is the evolution of the Gi�ord-McMahon (GM) refrigerator. The most important
di�erence between the GM and the pulse-tube is the absence of the moving displacer
in the latter. This greatly reduced the vibrations that made the GM unsuitable for
many applications.

The stages of operation of a one-stage PTC are [39]:

1. A compressor compresses the room temperature helium gas, and a rotary valve
let the gas in the cooler;

2. the heated compressed gas column �ows through the regenerator, the pulse
tube and the ori�ce to the reservoir. During this travel it exchanges the heat
QH at the hot end of the pulse tube;

3. the rotary valve connects the cooler to the low pressure side of the compressor,
to expand adiabatically the helium gas in the pulse-tube;

4. the cooled low-pressure gas in the tube is forced towards the cold end of the
pulse-tube by the �ow from the reservoir into the tube via the ori�ce. As it
passes through the cold-end exchanger it picks up the heat QC .

The regenerator acts to precool the incoming high-pressure pulse before it reaches
the cold end. It is normally composed of a stack of metal gauze discs or spheres. The
material for the regenerator is of great importance for the e�ciency of the cooler.
ErNi, Er3Ni, ErNi0.9Co0.1 or Pb are commonly used for their large volumetric speci�c
heat at low (4 K) temperatures [40]. The reservoir volume (1.2 litre) is su�cient
to reduce pressure oscillations during the �ow. The result of the pressure cycling
is to transfer heat from the cold end toward the closed (hot) end. A scheme of a
one-stage PTC is depicted in Fig. 2.5.

Pulse-tube coolers are usually described as `low vibrations' or `low noise' devices,
especially respect to the older generation of mechanical coolers, like the Gi�ord-
McMahon (GM) refrigerators. This is motivated by the absence of the moving
displacer in the cold tube. It is true that the pulse-tube coolers are much quieter
and less vibrating that the GM refrigerators. For this reason they �nd a spread use
in applications that need cryogenic temperatures and low vibrations, e.g. SQUIDs
(super conducting quantum interference devices) or Mössbauer spectroscopy. Nev-
ertheless, the cold head of such a cooler still presents vibrations at the frequency of
the helium wave and its harmonics, although as small as 1.5 · 10−4 g [41].

Pulse-tube coolers do not use liquid cryogens, but waves of helium gas. This
avoids the deformations due to re�lls, and the closed cycle of helium gas makes so
that the only costs are due to the electrical power to the 6 kW helium compressor.
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Figure 2.5: Schematic diagram of an one-stage pulse tube cooler. HP is the high-pressure
side of the compressor, LP is the low-pressure side of it. QC is the heat that the cooler
picks up, and QH the heat that the cooler gives to the environment. The symbol

⊗
is for

the rotary valve, HP and LP for the high- and low-pressure sides of the compressor.

Moreover, the absence of moving parts in the cold side makes them suitable for
applications that need low magnetic interference, as SQUIDs.

The pressure modulations generated in a pulse-tube cooler cause a periodical
deformation of the regenerator and pulse tubes. These vibrations were measured
by Lienerth et al. [42] in a one-stage pulse-tube cooler at level of 6µm, and with a
vibration compensation reduced to 0.5µm.

A part from vibrations and noise, a possible problem of a pulse-tube cooler is an
instability in its temperature. One of the main reasons of instability is a DC-�ow,
that is a small continuous �ow of gas through the tubes, instead of a pure cylindrical
column that travels back and forth inside the cooler [43]. The DC �ow is a small
amount (mg/s, instead of g/s of the AC-�ow) of unregenerated room temperature
gas that reaches the cold stage, increasing the heat load.

When this happens the pro�le of the gas column degrades, and this eventually
results in an increasing of the working temperature of the cold stage (up to 15 K),
accompanied by an instability of the order of a few kelvin. This probably happens
due to some contamination of the helium gas (that has to be of purity grade 5.0) that
enters into the helium cycle, most probably in the rotary valve. The rotary valve
itself can contaminate the helium gas if it becomes too hot, outgassing the lubricants
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that serve for its rotation. When this happens the cooler must be switched o� and
both cooler and compressor must be evacuated and new helium gas must be �lled.
A cam-operated valve was proposed [44] to overcome this problem, but it has not
yet a commercial application.

A compressor with a big adsorber is necessary to ensure a long duty time. The
adsorber blocks impurities in the helium cycle.

The cooling powers of the two stages of the pulse-tube cooler used for this ex-
periment are shown in Fig. 2.6. The values of the cooling powers were measured
applying a heat load to the stages, and measuring the temperatures as function of
the heating power. It can be noted that the increase of temperature in one stage
causes the decrease of temperature in the other.

Figure 2.6: The cooling power of the two stages of the pulse-tube cooler. The values were
obtained applying a heat load through a resistive heater to the cold end of each stage.

The next Figures show the temperature stability of the �rst stage, in a time scale
of few hours (Fig. 2.7) and a week (Fig. 2.8).

The Fig. 2.9 plots the same temperature recorded six months before. It can be
seen that the behaviour is quite di�erent. Such di�erences in the behaviour if the
cooler caused drifts in the frequency measurements, that were di�cult to control.

The rotating table could rotate over 360◦, but due to the helium connections
between the compressor and the pulse-tube cooler the cryostat mounted on the table
only rotate a maximum of 180◦. To reduce forces on the rotating frame containing
the cryostat due to tension of these connections, the cryostat was rotated only within
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Figure 2.7: Temperature of the 1st stage
over a time span of 3 hours. These data
and the data used for the next plot were
recorded in February 2005, during the
measurements used for the test of Lorentz
invariance.

Figure 2.8: Temperature of the 1st stage
over a time span of one week.

a range of 90◦, which was enough for the scope of this experiment.

Heat sink
To avoid a thermal short-cut between the feed-through (at 300 K) and the experi-
ment (at 3.4 K), the coaxial cables connecting the photodiodes to the preampli�ers,
the wires for the temperature sensors and for the resistive heaters had to be an-
chored to several points of the regenerators, in order to gradually decrease their
temperatures. This to avoid that a wire with too high temperature could give an
unnecessary thermal load to the second stage of the pulse-tube cooler, degrading
the stability of the system.

The heat sink of the optical �bers was more problematic. Mechanical deforma-
tion of the optical �bers causes phase shifts that resulted in frequency shifts. Since
the quantity of interest in our experiment was the di�erence between the frequencies
of the two lasers, great care was taken to avoid this e�ect.

With a set-up consisting of two separated �bers, heat-sinked in several points of
the cooler, it was noted that the di�erence frequency between the two lasers su�ered
of some modulations correlated with the temperatures of these points. Due to its
complicated thermodynamics, the temperatures of some points of the cooler can
change within several kelvin even at regime. Thus in the �nal set-up the optical
�bers were heat-sinked only at the cold end of the �rst stage (whose temperature
was constant within 0.5 K in one day, see Figs. 2.8 and 2.10) and at the cold end of
the second stage (that was temperature stabilized). For some time the �rst stage was
also temperature stabilized, but that did not improve the results of the experiment.
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Figure 2.9: Temperature of the 1st stage in the time span of 20 days.

Figure 2.10: Temperature of the 2nd stage in the time span of 20 days.
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2.3 The resonators
The two optical resonators were made of pure sapphire (Al2O3). Each consists of a 3
cm long cylindrical spacer with inner diameter 0.1 cm, outer diameter 0.26 cm, c axis
of the sapphire crystal parallel to the axis of the cylinder and two sapphire mirrors
(1 m radius) that were optically contacted to each spacer. The mirrors were coated
for high re�ection at 1064 nm. The resonators [45] were high-re�ection coated for
wavelengths around 1µm.

The free spectral range is de�ned as

FSR =
c

2L
=

3 · 108m/s

2 · 3 · 10−2m
= 5 GHz

where c is the speed of light, and L the distance between he mirrors. The linewidth
∆ν of the resonators was measured as 100 kHz, the beamwaist 200 µm.

These resonators were already used for laser stabilization [45, 46] and relativity
tests [47, 13].

Sapphire was chosen because of its very low thermal expansion coe�cient, that
makes the resonators less sensitive to changes in the environment temperature. For
crystals, the thermal expansion coe�cient drops as T3 for T 7→0. The coe�cient for
sapphire interpolated at 3.4 K using the value from [48] is (7.67± 0.15) · 10−11 K−1.

The thermal expansion coe�cient for the resonators was measured in [45]. This
value is not the coe�cient for sapphire, because it also involves the interaction of
the resonator with its holder. Interpolating the value found at 4.2 K to 3.4 K we
�nd: α = 2.86 · 10−11 K−1, a value three times smaller.

2.3.1 Elastic distortions due to inclination
A tilt of a resonator changes its length for two reasons:

1. the change of the component of the gravitational force in the direction orthog-
onal to the axis of the resonator;

2. the appearance of a component of the gravitational force in the direction of
the axis.

To estimate the magnitude of the e�ects, imagine a solid in absence of gravity.
Be in this case its length L and its hight h. If now the gravity force F⊥ is applied,
the solid will be compressed of the quantity:

∆h =
Fgh

ES
(2.2)

where E is the Young's modulus (300 GPa for sapphire) and S the surface of the
solid on the plane parallel to the direction of gravity. The relative contraction will
be:

∆h

h
=

F

ES
. (2.3)
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But Fg = mg = gρV = gρLS, being m the mass of the material the solid is made
of, ρ its density (4 g/cm3 for sapphire), and V the volume. The relative expansion
in the orthogonal direction (from zero gravity to Earth's gravity) is, for sapphire:

∆L

L
= ν

ρLSg

ES
= ν

ρLg

E
= 4 · 10−9, (2.4)

being ν the Poisson's number (about 0.16 for sapphire [49]). This e�ect is depicted
in Fig. 2.11.

Figure 2.11: When the force of gravity Fg acts on a solid that in absence of gravity has the
dimensions represented by the dashed line, the solid is compressed in the direction of the
force of the quantity ∆h, and as consequence the solid becomes longer in the orthogonal
direction of the quantity ν∆h, here ν is the Poisson's number, see text for details.

Orthogonal component of the gravity, F⊥

When the solid is tilted the component F⊥ of the force decreases of (1 − cos α),
consequently the solid will expand in the L direction of the same quantity, see
Fig. 2.12. That is, for a tilt of 1 µrad:

Figure 2.12: The tilt of the solid decreases the component F⊥ of the force that compresses
the solid in the h direction, as consequence the solid will expand in the L direction of the
quantity (1− cosα), respect to the solid in a perfectly horizontal position.

∆L

L
= 6.4 · 10−10(1− cos α) = 6.4 · 10−10 · 5 · 10−13 = 3.2 · 10−22. (2.5)
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This e�ect is negligible.

Parallel component of the gravity, FII

The e�ect that plays a role in the tilt of the resonators is the appearance of the
component parallel to the optical axis of the resonator, FII in Fig. 2.12. To under-
stand what happens, imagine the resonator laying on its centre. In case of tilt, the
lower part will be pulled away from the centre by the gravity, causing an elonga-
tion, whereas the upper part will be compressed towards the centre, reducing thus
the length of the resonator. In case of a perfectly symmetric mount the two length
changes compensate exactly, otherwise the relative length change will be [50]

∆L

L
=

ρgL

E

(
λ− 1

2

)
. (2.6)

The parameter λ is zero if the resonator is mounted at the lower end (compression),
1 if mounted at the other end (expansion) and 1/2 if mounted exactly in the centre
(perfect compensation).

For this experiment the sensitivity of the beat frequency (and then via Eq. (2.1)
of the length of the resonators) was measured as (∆ν/ν)/∆α = 0.06Hz/µrad, that
corresponds to (∆L/L)/∆α = 2.2 · 10−16/µrad, see Sect. 2.9.1 for details.

This correspond to the parameter λ = 0.5 + 0.04, that is the mounting is sym-
metric within 8%.
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2.4 Resonator mounting
To reduce the transfer of vibrations from the pulse-tube cooler cold end to the
experiment, a vibration isolation in the same style as [42] was used. The optics of
the experiment (the housings for the optical resonators, �bers outcouplings, mirrors,
beam-splitters and photodiodes) where mechanically �xed to a OFHC1 copper disc
rigidly connected the internal part of the cryostat by use of three stainless steel rods,
350 mm long, 10 mm diameter. The copper disc was then thermally decoupled from
these rods by use of Te�on insulating material. Flexible copper braids thermally
connected the copper disc to the cold end of the second stage of the pulse-tube
cooler.

How to �x the resonators to the cold end of the pulse-tube cooler was a crucial
part of the work. A schematic drawing of the housing is shown in Fig. 2.16. The
housings were coated with a 5 µm-thick layer of gold. Gold was used to obtain good
contact surface between the resonators and the housing. The resonators were then
�xed to the housing using for each a thin copper strap. The straps were not tightly
blocked, to avoid the risk of squeezing the resonators with the contraction of the
straps during cooling down. The resonators were placed as symmetric as possible
on the housings, for the reasons explained in Sect. 2.3.1.

The optical setup inside the cryostat can be seen in Fig. 2.13 and Fig. 2.14.
Fig. 2.13 shows the setup in an older con�guration. The resonator housings were

not gold-coated. Indium foils provided thermal coupling between the resonators and
their housings,and temperature control was realised using two independent control
loops heating two heating resistors,each connected to a resonator, visible as copper
blocks on the top of the resonators.

Fig. 2.14 shows the setup used for the measurements analysed in this work. The
indium foils between resonators and housings were removed. The cooper blocks on
the resonators were also removed. The housings were gold coated. This improved
the stability of the resonators, and thus the quality of the measurements.

1OFHC: oxygen-free high conductivity.
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Figure 2.13: Upper view of the housing, before they were gold-coated. The beamsplitters
were glued to the housings. It is possible to see the photodiodes used for the frequency-
and power-stabilisation, as well as the beam outcouplers for the optical �bres, and the
mirrors for the mode-matching of the beams to the resonators, cfr. with the schematic
Fig. 2.1.
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Figure 2.14: In the last con�guration the resonators holders were coated with 5 µm gold,
and the copper blocks on the resonators were eliminated. The beamsplitters were reglued
to the housings after the coating process. The temperature stabilisation was provided by
a resistive heater under the copper plate.
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2.4.1 Temperature stabilisation and temperature sensitivity
Without any temperature stabilisation, the cold part of the experiment, connected to
the second stage of the pulse-tube cooler has short-time (10 s) temperature stability
of 4 mK. The temperature of the stage has instabilities at the level of 50 mK over
10 hours. These come from instabilities of the system itself, and from a dependence
of the temperature of the stage from the temperature in the lab.

The dependence of the temperatures of the �rst and the second cold stages on
the temperature of the lab were measured. Acting on the air conditioning system
of the lab the temperature around the experiment was changed of 1.4 K, and a
temperature change on the �rst stage of 2.1 K was measured. As it can be seen in
Fig. 2.15, the second stage also follows the temperature changes of the room. This
is not surprising, because the pulse-tube cooler exchanges heat with the air around
the cryostat, then the e�ciency of the cooler increases when the lab is colder. It
was then found 1.5 mK/K for the second stage.

The temperature of the resonators were stabilised using a resistive heater screwed
under the copper disc on which the resonators lay, Fig. 2.16. The heater was
placed equidistant from the two resonators, and a temperature sensor (Cernox by
Lakeshore) in thermal contact with one of the two resonator's housings was used
to monitor the temperature, controlled by a commercial cryogenic temperature con-
troller.

The root Allan Variance of the temperatures of the experiment with the tem-
perature controller on is shown in Fig. 2.17

The stabilization of the resonators through a commercial temperature controller
was at level of 1 mK for short times, and less than 45 µK for integration times of
300 s.

We measured a dependence of the beat frequency on simultaneous changes of
the temperature of both resonators of the order of 1.5 Hz/mK. The temperature
controller stabilised the temperature of the whole cryogenic optical setup, not of
the two resonators separately. A temperature change of 1 mK of only one resonator
would result in a relative frequency change of 1 ·10−3 ·2.86 ·10−11 = 2.86 ·10−14 which
corresponds to about 8 Hz. We see then that we have a common mode rejection of
the temperature at level of 8/1.5 = 5 times.
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Figure 2.15: Changes of the temperature of the lab result in changes of the temperatures of
the �rst and second stages, due to increasing e�ciency of the cooler when the temperature
around the cryostat is decreased
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Temperature Sensor
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Figure 2.16: The temperature stabilisation of the resonators. The resonators were placed
in an invar housing, and �xed to it by means of a copper wire. A temperature sensor �xed
to the housing of the resonator B monitored the temperature, controlled by means of a
resistive heater placed under the copper plate that held both housing.

Figure 2.17: The root Allan Variance of the temperature of the cold part of the experiment.
The plateau between 100 and 200 s is due to the time constant of the temperature controller.
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2.5 The Lasers
Two diode-pumped monolithic non-planar ring oscillator 1064 nm Nd:YAG lasers
were locked to the resonance frequencies of the two resonators by means of a �rst-
harmonic Pound-Drever-Hall re�ection locking scheme [51].

The laser stablisation can be analysed as a feedback system. The gain of the
di�erent parts of the system determine the ability of the stabilisation system to
suppress the noises that act do deviate the frequency of the laser from the resonance
frequency of the resonator.

The Fig. 2.18 is a schematic of the laser stabilisation. The controlled quantity
is the laser frequency ν, perturbed by the noises Sf,laser (the spectral density of
frequency noise associated with the laser). Other noises are added by the control
system: Sv,discr, the noise of the resonator (produced by the changes in length of the
resonator, discussed below), Sv,servo, the noise introduced by the servo.

Figure 2.18: The frequency stabilisation of a laser can be treated in the control theory.
The output quantity is the laser frequency, perturbed by the noise produced by the laser
Sf,laser, by the resonator Sv,discr, and by the servo itself Sv,servo. From [52].

The spectral density of frequency noise is a measure of the rms laser frequency
�uctuation in a 1 Hz bandwidth, therefore has the units of Hz/

√
Hz.

The resonator is the discriminator, that determines the desired value of frequency,
and produces a signal in volts proportional to the frequency di�erence between the
laser and the resonance frequency. The proportionality is the gain of the discrimina-
tor, DV , in V/Hz. This error signal is ampli�ed and compensated in the servo, with
a gain G(V/V), which is frequency dependent. This ampli�ed voltage is negatively
fed back to the laser through the actuator to the laser. In order to have a negative
feed-back the phase is the important quantity.

The total closed-loop linear spectral density of frequency noise is [52]:
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Sf,cl =

√
S2

f,laser + |KSv,servo|2 + |KGSv,discr|2
|1 + KGDv| , (2.7)

that in the limit of very high servo gain becomes

Sf,cl =
Sv,discr

Dv

. (2.8)

That is, in this limit the noise properties of the system are dominated by the noise
of the discriminator (the resonator).

Let us now analyse the di�erent sources of noise.

Shot noise
The limiting frequency stability is:

σ =
δνc

νJ0(β)

√
hν

8ηPτ
(2.9)

where: h is the Eisenberg's constant, P is the power incident on the resonator, η the
quantum e�ciency of the detector, ν the frequency of the incident light, J0(β) the
zeroth order Bessel function of the phase modulation depth β (the optimum value
for β is 1.08), and δνc is the cold oscillation linewidth of the laser resonator (about
100 MHz by Nd:YAG non-planar ring oscillator laser), and τ is the integration time.

If the level of the noise on the current of the photodetector is higher than the shot-
noise level assumed above, then the minimum instability will be correspondingly
higher. The Fig. 2.19 shows the lock instability estimated from these considerations.

Thermal noise
The in�uence of the thermal noise in an optical resonator was treated by Taylor et
al. [50]. In a recent paper, Numata et al. [53] showed that thermal noise (Brown-
ian motion) of the material the resonator is made of set a limit on the frequency
stabilisation of a laser to a Fabry-Perot resonator. In particular, the one-side power
spectrum of the displacement of a mirror (that determines through the length of
the resonator the resonance frequency of the resonator, Eq. 2.1) is dominated by the
mirrors themselves, because at the frequency region below the mechanical resonance
(about 30 kHz for sapphire, [50]) only the losses around the beam spot contribute
to the thermal noise. Therefore the loss of the spacer does not greatly contribute to
the thermal noise.

The power spectrum Gx(f) can be written as [53]:

Gx(f) = −4kBT

ω
Im[H(ω)], (2.10)
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Figure 2.19: Expected frequency lock instability resulting from the noise produced by the
photodetector, as a function of the integration time. The lower line plots the quantum
noise of the laser power (`shot noise limit), and the upper line the actual level, as measured
in Fig. 2.25.

where x is the displacement, kB the Boltzmann constant, T the temperature, ω the
angular frequency. H(ω) is the transfer function from the force f(t) applied to the
observing point to displacement x(t) de�ned through the Fourier transforms X̃(ω)
of x(t) and F̃ (ω) of f(t), H(ω) = X̃(ω)/F̃ (ω). Im[H(ω)] is proportional to the loss
of the system.

For a mirror with Poisson's ratio ν (see Sect. 2.3.1), beam radius w0, loss φsub of
the substrate and Young's modulus E we obtain:

Gmir(f) =
4kBT

ω

1− σ2

√
πEw0

φsub. (2.11)

Here we see the advantage of using cryogenic sapphire resonator, because of the
win of two order of magnitude at cryogenic temperatures respect to 300 K, and
because of the high Young's modulus of sapphire (300 GPa compared to 68 GPa of
ULE, for instance). Another consequence of Eq. (2.11) is that noise decreases with
a larger beam radius, or lower loss substrate.

Uncertainty principle
Also the Eisenberg's uncertainty principle could be considered. In fact, the res-
onator is a unit of length. The uncertainty of the length of the resonator can be
estimated considering the uncertainty in energy of the fundamental acoustic mode
of its structure. The result is [50]:

σE =

√
h

2πEL3τ
(2.12)
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where E is the Young's modulus of the material the resonator is made of. For our
3 cm long sapphire resonator this gives:

σE =
9 · 10−21

√
τ

,

a value that is negligible compared to the shot noise.

2.5.1 Frequency stabilisation
Both lasers have two ways to control the output frequency, both relying on changes
in the dimension of the laser crystal: one coarse and slow (time scale of seconds),
having as actuator the temperature of the crystal, that was modulated by one output
of the lock system we used (tuning coe�cient 1 GHz/◦C), and a fast one in which
a piezoelectric actuator compressed the crystal in the vertical direction, obtaining
consequently changes of the horizontal dimensions, thus of the path of the standing
wave inside the crystal (tuning coe�cient 1 MHz/V, range 0 - 150 V). The piezo-
electric actuator was used also to produce the sidebands, adding a AC modulating
signal to the DC signal of the control signal [54]. This con�guration was preferred
to the alternative of modulating the laser beam with an electro-optic modulator
(EOM), because it produced a smaller residual amplitude modulation (AM) than
the EOM, although a disadvantage is that is not possible to avoid the sidebands in
the beat signal between the lasers. The residual amplitude modulation is generated
by imperfections in the production of the phase modulation. The e�ect of AM is
to shift the error signal of an o�set, that the lock system interprets as a di�erence
between the laser frequency and the resonance frequency of the resonator, even if
the laser frequency exactly corresponds to the resonance. Since the AM can change
in time due to intrinsic changes of the e�ect that generated it, it is highly desirable
to avoid any additional source of AM, that's why modulation of the laser beam using
the piezoelectric actuator was preferred.

The scheme of the optics is shown in Fig. 2.21. The scheme of the lock-box is
shown in Fig. 2.22, and the corresponding Bode diagram in Fig. 2.23.

The lock-box was made in this con�guration to achieve three characteristics:
1. high gain for low frequencies;

2. the gain for frequencies higher that 10 kHz be smaller than unity;

3. the slope of the Bode plot where the gain is unity is -6dB/octave.
The �rst requirement is necessary to improve the stability for low frequencies.

The requirement that the gain for frequencies higher than 10 kHz be smaller than
unity is a consequence of the presence of several mechanical resonances of the piezo-
electric actuator at frequencies higher than 10 kHz. It is then necessary to avoid
ampli�cation at these frequencies, otherwise the system would oscillate. The re-
quirement that the slope at unity gain be -6dB/octave comes from the stability
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criterion: a slope of -12dB/octave would result in a phase di�erence between input
and output of 180 degrees, resulting then in positive feedback instead of negative
feedback, that is, in oscillations in the system [55, 56].

The dispersion error signal produced by demodulation of the �rst harmonics of
the sidebands is shown in Fig. 2.20. The signal shown is taken at room temperature.
Demodulation at the third harmonics was also realised, but not used, because the
signal-to-noise ratio was too small, then the beat frequency was too unstable for the
goals of the experiment.

Figure 2.20: Up: signal transmitted through the resonator. Down: dispersion error
signal generated by demodulation of the �rst harmonics of the modulation sidebands.

The setup for the frequency lock is shown in more detail in Fig. 2.24.
For a high precision Michelson-Morley experiment a very accurate lock of the

lasers to the resonators is very important. This implies maximising the signal-to-
noise ratio of the error signal, using photodetectors (photodiodes and preampli�ers)
of low intrinsic noise. The preampli�ers were developed at the Institut für Experi-
mentalphysik of the University of Düsseldorf. Their noise properties were measured,
and plotted in Fig. 2.25.

The Pound-Drever-Hall [51] frequency-lock system operates at the frequencies
321 kHz and 308.5 kHz respectively for laser 1 and laser 2.
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Figure 2.21: Optical scheme for the coupling to the resonators.
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Figure 2.22: The scheme of the frequency lock for the two lasers.
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Figure 2.23: The calculated Bode diagram of the stabilisation system shown in Fig. 2.22.



54 CHAPTER 2. THE EXPERIMENTAL SETUP

 

 

DBM 

Fibre 
Frequency  
counter 

AOM 
driver 

AOM PZT 

T °C 

T °C 
Fibre Res B 

PD 

AOM 

Res A 

PD PD 

BS 

BS 

Laser 1 
Nd:YAG 

Laser 2 
Nd:YAG 

Power 
servo 

PD 

Σ 

Σ 

Frequency 
servo 

Frequency 
servo DBM 

AOM 
driver 

Power 
servo 

Local 
oscillator 

Local 
oscillator 

PZT 

Figure 2.24: Setup for the frequency stabilisation of the lasers to the optical resonators.
AOM: acousto-optic modulator; DBM: doubly-balanced mixer; BS: beams splitter; PD:
photodiode; PZT: piezoelectric actuator; T: input for the temperature control of the laser
crystal.
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Figure 2.25: Noise of the photodetector as a function of frequency. The curve `Laser noise'
was measured with a power of 50 µW impinging on the photodiode. The curve `PD noise'
is the noise measured when the laser is o�, and the lower curve is the proper noise of the
spectrum analyser used for this measurement. The peak at 290 kHz is a measurement of
the relaxation oscillation of the Nd:YAG laser. The resolution bandwidth is 1 kHz.
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2.5.2 Power Stabilisation
The dependence of the resonator resonance frequencies on the power of the beam
impinging to the resonators was measured (see Sect. 2.9.2 for details). The depen-
dence was at level of 10 Hz/µW. The power of both beams were actively stabilized
using acousto-optical-modulators (AOM) at a relative level of 10−4. The scheme is
shown in Fig. 2.26, and the corresponding Bode plot in Fig. 2.27.

Figure 2.26: The scheme of the power lock for the two lasers through acousto-optic
modulators.

The AOMs also served as optical isolators. The signals required to monitor
the instantaneous laser powers were obtained from photodiodes placed inside the
cryostat, just before the resonators. At a typical working power of 100 µW, the
in�uence of residual power changes was thus reduced to the level of 1 Hz (3.5 ·
10−15).

Fig. 2.28 shows the characterisation of the typical drift of the laser power at the
output of the �bres, and the e�ect of the power stabilisation.
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Figure 2.27: The Bode plot of the stabilisation of the power of the beam impinging to the
resonators.

Figure 2.28: Active power stabilisation of the power of the laser power. In this plot is
not the power impinging on the resonators (where powers at the level of 100 µW where
used. This plot is made of data taken during the test of the lock. Before t = 60 min the
stabilisation is o�, afterwards they were turned on.
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2.5.3 Results of the stabilisation
In the Fig. 2.29 the error signal of the lock of one resonator is shown, during a
cryogenic run. The gain of the discriminator was 4·10−5 V/Hz, and the error signal,
over an integration time of 100 seconds (comparable with the time elapsed during a
rotation) has a width of 1·10−5 V, resulting in an instability of 0.25 Hz.

Figure 2.29: Error signal of stabilised laser

A similar measurement performed one year later over 60 000 seconds (16.7 hours)
showed a similar behaviour, see Fig. 2.30. The lock signal compared to the tem-
perature of the lab shows that the frequency-lock electronics is not very sensitive to
the external temperature.

The Allan Variance of the beat frequency was measured with rotations (300 s
for 90◦). The result is in Fig. 2.31, solid line. It can be compared with the Allan
Variance measured when the cryostat does not rotate, in the same Figure, dashed
line.

The beat frequency between the two lasers was compared to the 5 MHz output of
a hydrogen maser, by means of a phase lock of the frequency counter to the maser.

The hydrogen maser was supplied by the company Vremia-CH. The sensitivity
of the maser from changes of the external temperature is 5 · 10−15/◦C, which is
negligible in the time scale of a measurement run: 10 minutes for a rotation and 12
hours for a complete measurement. The relative drift of the maser output frequency
in one day is less than 10−16.
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Figure 2.30: Error signal of stabilised laser, compared to the temperature of the lab.
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Figure 2.31: Solid line: The root Allan Variance of the beat frequency with rotations.
Dotted line:The root Allan Variance of the beat frequency without rotations.
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2.6 Drift of the resonators
The drift between the two resonators is of the order of 1 Hz just after the start of
the cooling, and reduces to 0.02 Hz after some weeks of operation.

With the setup consisting of three resonators shown in section 2.6.1 the drift
between di�erent resonators was estimated.

2.6.1 Three resonators and two �bres
In order to characterise and understand the drift in the beat frequency for some
time a third optical resonator, nominally identical to the other two was mounted in
the same setup. It was mounted on a second platform, a copper disc identical to
the one already described, under it, as it can be seen in Fig. 2.32. Also this third
resonator was �bre-coupled, by means of a third optical �bre, similar to the other
two already mounted. The TEM mode coupled to the resonator could be monitored
though a window in the lower part of the cryostat and a CCD camera. In Fig.2.33
it can be seen in the center of the disc the mirror, tilted of 45◦, that bent the beam
from horizontal to vertical.

With this setup the drift of the di�erent resonators was measured. In Figs. 2.34,
2.35, 2.36 the drifts between the di�erent couples of resonators are shown:

of DAB = � 0.57 Hz/s between resonators A and B,
of DBC = + 0.65 Hz/s between resonators B and C,
of DAC = + 0.81 Hz/s between resonators A and C.
The data used to plot the Figs. 2.34, 2.35 and 2.36 were recorded over a time

span of two days.
It is to be noted that the relationship between the three drifts should be: DAC =

±DAB ± DBC , the signs ± depending on which laser of the couple was locked to
the mode of higher frequency. For instance, if the resonator A had (to simplify)
no drift, and resonator B an absolute positive drift, the beat frequency between A
and B would have a positive drift if the laser locked to A was stabilised at a lower
frequency than the laser locked to B (the two frequencies diverge), and negative if the
frequency of the laser locked to A would have a higher frequency (then laser B would
approach laser A). From our data we do not have any of the combinations above,
this is due to an instability of the temperature of the pulse-tube cooler at that time
(the problem of the stability of the cooler was solved only later): this measurement
is to be considered only as the estimate of the drift trends for the resonators, not
as a precise measurement. This measurement was made to see whether there was
some big di�erence of the drift or the stability between the resonators.

There was also the program to use the third resonator as alternative to one of
the other two (or in presence of a third Nd:YAG laser, together) for the Michelson-
Morley experiment, but it was seen that the presence of the second copper disc
resulted in an increased mass that caused additional vibrations during the rotation
of the cryostat. These vibrations spoiled the results of the experiment, for this
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Figure 2.32: The setup with three resonators

reason after the measurements presented in this section the third resonator was
unmounted.
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Figure 2.33: A detail of the setup: the third resonator.

Figure 2.34: Drift between resonators A and B.
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Figure 2.35: Drift between resonator B and resonator C.

Figure 2.36: Drift between resonators A and C.
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2.7 Comparison of a resonator with the frequency
comb

A frequency comb provides a link between an ultra-stable microwave frequency (in
the range of GHz), like the output of a cs clock or (like in our case) of a hydrogen
maser and optical frequencies (THz). The basic idea is that the pulses circulating
in the cavity of a pulsed laser can be Fourier-transformed in a series of frequencies,
that represent a periodic spectrum in the frequency space with periodicity fr = 1/T ,
where fr is the repetition rate of the laser pulses, and T = 2l/vgr the pulse repetition
time for a cavity of length l and a group velocity vgr for the pulses. Stabilisation of
the cavity's length and of an o�set frequency fceo (through extension of the spectrum
via self phase modulation in an optical �bre) provides an `optical ruler' that links the
radio frequencies fr and fceo to the optical frequencies fn, fn = nfr+fceo [57, 58, 59].

The drift of one of the B resonator was estimated measuring its absolute fre-
quency by means of a frequency comb locked to the hydrogen maser. The resonator
was at 3.4 K since 4 months. The beam of the laser 2, locked to the resonator B
was fed through a �bre to the frequency comb, that was operated in another lab,
some 50 meters apart.

The experimental setup is shown in Fig. 2.37.
The result of the measurement is that the drift, 4 months after the cooling down,

is at the level of 10 mHz/s, and it is shown in Fig. 2.38.
The Root Allan Variance of the beat frequency between the frequency comb and

the resonator is plotted in Fig. 2.39.
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Figure 2.37: The experimental setup used to measure the drift of the resonator B with
comparison to a frequency comb. The dotted lines mean that the frequency comb and the
hydrogen maser were set-up in di�erent labs that the cryogenic experiment described so
far.

Figure 2.38: The frequency of the resonator B measured with the frequency comb. The
drift of the frequency is reported on the plot: - 13 mHz/s. The measurement is short
because of the limited stability of the frequency comb.
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Figure 2.39: The Root Allan Variance of the beat frequency between the resonator B and
the frequency comb.
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2.8 Rotation table
The mechanical rotation stage consisted of a computer-controlled precision rotating
table. The rotation stage itself rested on an optical table that was not �oated.
During rotations the set-up changes its axis, due to mechanical stress on the bearings
of the rotation stage.

A vibration sensor was set up on the rotation stage, with the experiment mounted
on it. The spectra of the vibrations were recorded for di�erent rotation speeds, and
plotted in Fig. 2.40.

The sensor was not calibrated, thus the spectra are not in units of g, but in mV.
Important are the amplitudes as function of rotation velocity (frequency in number
of rotation per hour, in the plot). These amplitudes are plotted in Fig. 2.41.
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Figure 2.40: The spectra of vibrations of the experiment during rotations. The back-
ground was measured with the setup non rotating. To obtain the plots the background
was subtracted from the measured spectra. The values are in mV, the sensor was not
calibrated.
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Figure 2.41: The amplitudes of vibrations, as function of the number of rotations per
hour. It can be seen that when the frequency is higher than 3 rotations per hour the
vibrations increase fast. For this reason we used for our rotations a frequency of about 3
rotations per hour (300 sec. per 90◦).
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2.9 Overall set-up: systematics
This sections is dedicated to the details of the various sources of systematic distur-
bances of the beat signal. Sources for systematic disturbances are:

1. shifts of the frequency due to changes of the temperature of resonators;

2. orientation of the resonators with respect to the gravity;

3. power of the laser beams impinging to the resonators;

4. vibration of the experimental apparatus due to the rotations or to the pulse-
tube cooler;

5. the temperature in the lab.

The temperatures of the lab and at several points of the pulse-tube cooler can
vary during the time of the rotations, and the tilts of the cryostat could only be
minimised, not set to zero, due the absence of an active tilt compensation. Fig. 2.42
shows the temperatures of the second stage of the cooler (named `KK2'), of the �rst
stage (named `KK1'), of the centre of the two pulse tubes, of the lab, and the tilts
(1 mV corresponds to 0.5 µrad) in a typical measurement run.

Fig. 2.42 shows the measurements of the temperatures of various point of the
pulse-tube cooler, of the tilts and of the external temperature. The corresponding
change in beat frequency, and the temperatures of the resonators and of the lab,
for the same data set, are plotted in Fig. 2.43. The di�erence in temperature be-
tween the cold stage and the resonators is due to an error in the calibration of the
temperature sensor of the resonators.

The in�uence of the various e�ects are collected in the Table 2.1.

Table 2.1: The table of systematics. Inst means the instability of the system , it applies
for the temperature in the lab, the temperature of the resonators and the power of the laser
beams, mod is the range in which the tilt of the resonators modulated during a rotation.
E�ect Inst/mod Sensitivity Systematic Relative
Tilt 50 µrad 0.06 Hz/µrad 3 Hz 1.1 · 10−14

Temp. in the Lab. 0.025 ◦C 75 Hz/◦C 2 Hz 0.7 · 10−14

Temp. Resonators 45 µK 1.5 Hz/mK 0.1 Hz 0.4 · 10−15

Power Laser beam 10 nW 50 Hz/µW 0.5 Hz 1.8 · 10−15
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Figure 2.42: Temperatures of the 1st and of the 2nd stages, of the regenerator of the 1st

stage, of the middle of the second pulse-tube, and of the lab near the tilt-sensor. The tilts
for a typical rotation are also plotted.
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Figure 2.43: The raw data. The Allan variance of the frequency was calculated from raw
data (upper curve) and from data after removing of the drift (lower curve, in the same
plot). The linear drift is �2·10−2 Hz/s. Lower right is the Root Allan variance of the
temperature of the resonators.
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2.9.1 Tilt of the resonators
The importance of the tilt of the resonator in this experiment was explained in
Sect. 2.3.1. The sensitivity of the beat frequency between the two resonators on the
orientation of the cryostat was measured. As explained later in the data analysis,
the frequency shift caused by this e�ect could be subtracted from the raw data
before analysis.

The experiment lay on an optical table that was not �oated. Instead of the
common air-pressure controlled feet, the table lay on a metal frame. The length of
the four feet of the table could be changed by acting on screws.

Before each measurement the frequency shift as a function of the change in the
angle of the axis of the cryostat in two orthogonal directions (referred to as x and y
in the plots) was quanti�ed acting on these screws to change the orientation of the
optical table and thus of the resonators, that were �xed inside the cryostat. The
tilt-sensor (Applied Geomechanics, Miniature Sensor 755) was screwed to a platform
�xed to the cryostat.

The Fig. 2.44 shows a typical measurement of this kind. From plots of this kind
were measured the coe�cients, in Hz/µrad, in both directions. After the measure-
ment of the tilt sensitivity of the resonators the table was set in the con�guration
in which the variations of angle during a rotation were minimal.

Figure 2.44: A typical measurement of the sensitivity of the beat frequency between the
two resonators on the angle of the platform on which the cryostat was �xed.

We obtained a sensitivity of about 0.06 Hz/µrad. The value is the same for both
resonators. The resolution of the tilt sensor is 0.1 µrad.
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2.9.2 Power of the beam impinging on the resonators
The dependence of the beat frequency on the power of the beam impinging on
the resonators was measured, keeping the power of one laser constant, and varying
the power of the second one. The dependence could reliably be measured only for
relativelylarge power changes (> 5 µW).

The Fig. 2.45 shows the variations of the beat frequency for the resonator B as
result of variations of the power of the laser beam impinging on the resonator.

Figure 2.45: Up: Raw data from the measurement of the dependence of the beat frequency
for variations of the power of the laser beam impinging on the resonator B. Down: The
dependence of the beat frequency for variations of the power of the laser beam impinging
on the resonator B.

For resonator A a smaller e�ect was observed. The di�erences between the
coe�cients for the two resonators are due to di�erent coupling e�ciency (mode
coupling) of the beams in the resonators. We set then a conservative upper limit at
50 µW.
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2.9.3 Vibrations
The displacements of the resonators due to vibrations of the pulse-tube cooler were
measured, with a CCD camera �xed to the cryostat and pointing to the output beam
from one of the resonators. The beam had a diameter of 1 mm, its image on the
screen, produced by the CCD camera had a diameter of 10 cm. It was thus possible
to detect lateral movements of about of 1±1 µm, and vertical movements of the same
amplitude, resulting in a periodic movement at 45 degrees respect to the axis of the
cooler at the frequency of the pulses of the cooler (1.1 Hz). This is in agreement with
ref. [41], that reports that the longitudinal and transverse mechanical vibrations of
a pulse-tube cooler are approximately of the same magnitude. This value is bigger
than the value measured in [42], but in that case the measurement was performed on
a one-stage pulse-tube cooler. It may be that a two-stage pulse-tube cooler has wider
elongations, due to the longer tube it needs for the second stage. The displacement
also depends on the pressure di�erence between the high and low pressure side of
the compressor.

Since the optical �bres were �xed to the same copper disc where the resonator's
housings were �xed to, it is not possible to estimate how much the resonators moved
because of this modulation. Although the copper wire strap that �xed the resonators
to the housings were not too tight, they were already at room temperature not loose
enough to let the resonators move, and after cooling down they are expected to be
even less loose (although still not tight), because of the bigger thermal expansion
coe�cient for copper than sapphire and invar. This gives a point to assume that the
relative movements between the resonators and the laser beam be smaller than 1 µm.
Müller et al. measured the frequency change of the laser locked to the resonator for
a misalignment of the beam. From the graph plotted in [60] it can be interpolated
a coe�cient of about 0.3 Hz/µm. Then the frequency change due to misalignment
is assumed here negligible.

The 200 Hz modulation signal seen in the beat frequency exactly at the frequency
of the pumping of the pulse-tube cooler (1.1 Hz) is then probably originated by
changes of the dimension of the resonator due to transfer of the vibrations to it.
These are then calculated as:(

δL

L

)

vib

=
δν

ν0

=
200 Hz

3 · 1014 Hz
= 6.7 · 10−13.

That could be decorrelated by Fourier analysis of the beat signal, o�-line.
From Eq. 2.6 we can calculate which acceleration to a single resonator would

result in the same relative instability. We place a instead of g and rewrite (2.6) as:

σ =
∆ν

ν
=

ρa(0.5− λ)

E
(2.13)

we solve (2.13) for a and obtain:

a =
σE

ρ(0.5− λ)
= 0.2m/s2 = 2 · 10−2g (2.14)
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Thus the instability at the frequency of 1.1 Hz is due not only to vibrations of the
cold end of the pulse-tube cooler, that are less than 10−4g, see pag. 32. Other sources
of instabilities related to the vibrations from the pulse-tube cooler are misalignment
of the mode-matching coupling optics [50].

2.9.4 Temperature in the lab
As can be seen in Fig. 2.46, the temperature near the cryostat during one rotation
had a modulation of about 0.025 ◦C. It was due to the temperature gradient inside
the lab. This modulation resulted in a systematic e�ect observed in the beat signal.
In contrast to the systematic caused by the variation of tilts, it was not possible to
decorrelate this e�ect from the raw data. It is responsible for the greater part of the
nonzero signal in the Lorentz violation signal.

Figure 2.46: Temperature measured near the cryostat. The modulation period is of 300
s, the rotation half-period.

The sensitivity of the beat frequency to changes of the temperatures in the
lab was measured modulating the room temperature acting on the air conditioning
system of the lab. A change in the beat frequency of 75 Hz/◦C was measured, see
Fig. 2.47.

In Sect. 2.4.1 it was noted that a change of the temperature of the lab results in
a change of the temperature of the cold stage.The frequency change measured here
is not a consequence of this e�ect, because the temperatures of the resonators was
stabilised, making them independent of the temperature of the room. This can be
seen in the Fig.2.47,where the temperature of the resonators during the measurement
is also plotted.
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Figure 2.47: A change of the temperature of the lab results in a change of the beat
frequency, most probably due to sensitivity of the optical �bres. During the measurement
the temperature of the resonator remained constant, see plot up right.
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2.10 Two resonators and one optical �bre
In a �rst stage of the experiment both lasers were coupled to the resonators through
a single optical �bre. First the polarisations of the two beams were set orthogonal
to each other, then they were superimposed via a beamsplitter to the �bre. Before
each resonator was installed a polarisator, to block the undesired beam and let the
other one through. A scheme of the setup is depicted in Fig. 2.48.

Figure 2.48: A scheme of the optical setup for the early experiment with two optical
resonators and only one optical �bre. A picture of this scheme is in Fig. 2.49.

This con�guration gives a common-mode rejection of systematic e�ects caused
by external changes to the �bres. In fact such e�ects were later seen with the
setup with two �bres, see Sect. 2.9.4. This scheme could not be used, because in
the error signal of the frequency lock of the two lasers it was often possible to see
the interference with the other beam. This means that although the beams were
crossed-polarised, in each resonator there was also a part of the beam that had to
be blocked. I believe that the strong temperature gradient in the cryogenic part of
the �bre (300 K in two meters) caused mechanical stresses in the glass, that resulted
in a rotation of the polarisations of the two beams. Thus in the �bre-outcoupler
in the cryogenic part of the experiment the two beams were not orthogonal or not
linear-polarised anymore. For this reason a second �bre were mounted to couple
each laser through one �bre. A picture of the setup is shown in Fig. 2.49.
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Figure 2.49: The optical setup with two optical resonators and one �bre



Chapter 3

Data analysis

The data set was collected at 1 s intervals during very stable operation from 4
February 2005 to 8 February 2005 for 76 hours.

Two computers were used to collect the data. The clocks of both computers were
synchronised through the internet to the o�cial time. One computer controlled the
rotation angle and rotation speed of the experiment, recorded the beat frequency
and the temperature of the optical resonators, by means of a program written in
LabView. The second computer recorded the tilts values fed by the tilt sensor,
and several temperatures at di�erent points of the pulse-tube cooler. An example
was plotted in Figs. 2.42 and 2.43. The tilt values were then used in the data
analysis as explained below, the temperatures were used to monitor the system.
Two temperatures in the lab were recorded, near the tilt sensor and near the optical
�bres. In fact the optical �bres induced a temperature-dependent shift in the beat
frequency, as explained in Sect. 2.9.4, and the tilt sensor showed a small dependence
of the output on the temperature. The e�ect on the tilt sensor was suppressed by a
passive temperature insulation of the sensor.

The two �les produced by the two computers were synchronised and merged
into a single �le. The tilts of the cryostat were weighted with the measured beat
frequency sensitivities and the resulting frequencies were subtracted from the beat
frequency of the raw data. Then the beat modulation at 1.1 Hz caused the pulse-
tube cooler was removed.

The edited beat frequencies were coupled to the corresponding angle of rotation,
appearing in the form of Fig. 3.1 with the corresponding measurement without tilt
decorrelation.

After manual removal of very few (less that 1%) clearly disturbed rotations, the
remaining 432 rotation periods θ = [0◦; 90◦; 0◦] (labeled by i) were each least-squares
�tted with functions

ait + 2B(ti) sin 2θ(t) + 2C(ti) cos 2θ(t),

where the coe�cients ai quantify a (slowly varying) linear drift.

81
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Figure 3.1: Up: The edited beat frequency: the frequency shift caused by the tilts (in
the two directions, x and y) was subtracted from the raw data beat frequency, and the
1.1Hz modulation caused by the pulse-tube cooler was also subtracted by Fourier-analysis
of the signal. The result of a typical beat frequency recorded during one rotation, and the
rotation angle are shown here. Down: The same measurement, but without decorrelation.
The tiny legend does not contain useful information.

The obtained amplitude sets {2B(ti)}, {2C(ti)} are shown in Fig. 3.2. The data
were analyzed following the Robertson-Mansouri-Sexl test theory, and according to
the Standard Model Extension.
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3.1 Analysis in the RMS framework
The amplitude sets {2B(ti)}, {2C(ti)} were �tted with the functions (1.28) and
(1.29), obtaining the coe�cient for the violation of the isotropy of the speed of light:
the results of the �t is (β − δ − 1

2
) = (+0.5 ± 3) · 10−10. Due to the experimental

error in the determination of the tilt sensitivities there is an additional (systematic)
error of ±0.7 · 10−10. We obtain then

(β − δ − 1
2
) = (+0.5± 3± 0.7) · 10−10

This result is about factor 10 lower than the previous best results (−1.2± 1.9±
1.2) · 10−9 [14] and (−2.2± 1.5) · 10−9 [5].1

A parameter A = (β − δ − 1
2
) = (+0.5± 3± 0.7) · 10−10 corresponds to

δc
c

= 6.4 · 10−16,

taking β2 = v2/c2 = 1.52 · 10−6 in Eq. (1.26).

3.2 Analysis in the SME test theory
Using all our data we can obtain a �t of the 5 Fourier amplitudes of 2C(t∗) at the
time t∗ ' 6 February 2005, see Table 3.1.

Table 3.1: Fourier amplitudes determined from the experiment. All quantities are in units
of 10−16.

Basis Value Statistical error Systematic error
C0 1 −59 3.4 3.0
C1 sin (ω⊕T⊕) −3 1.5 0.5
C2 cos (ω⊕T⊕) 11 2.0 0.5
C3 sin (2ω⊕T⊕) 1 2.0 0.5
C4 cos (2ω⊕T⊕) 0.1 2.0 0.2

These amplitudes are linear combinations of the κ̃e− and κ̃o+ coe�cients, where
the weights of the latter depend on Earth's orbital phase (see Appendix E of [27]).
For the �t the approximate relationship between the functions B(t) and C(t) was

1Note added in proof: after the submission of this thesis it was analysed a larger set of data,
extending over 183 hours that contained 940 rotations, grouped in 5 sets. The 5 sets yielded the
result:

(β − δ − 1/2) = (−0.6± 2.1± 1.2)× 10−10.

Results published in [61, 62]
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Figure 3.2: Measured 2Bν and 2Cν amplitudes of spatial anisotropy for individual rota-
tions, and corresponding histograms. The �t error for each data point is less than 1Hz.
Full line: SME model plus systematic e�ect. Dashed line: RMS model plus systematic
e�ect. Mean values: 〈2Bν〉= 2.8 Hz, 〈2Cν〉= -3.3Hz.

used. The Fourier amplitudes of the B data can be obtained from the C amplitudes
if the contributions due to the velocity of the laboratory with respect to the Earth's
center, βL ≈ 10−6, are neglected. Then B0 = 0, B1 = −C2/ cos χ, B2 = C1/ cos χ,
B3 = −2C4 cos χ/(1 + cos2 χ) and B4 = 2C3 cos χ/(1 + cos2 χ).

The coe�cient b0 in B(t) takes into account the systematic e�ects. Due to the
limited extent of the data over time, the frequencies ω⊕±Ω⊕ and 2ω⊕±Ω⊕ cannot
be distinguished and therefore it is not possible to extract the individual coe�cients
κ̃e− and κ̃o+ from the Ci coe�cients.

The results of the microwave cryogenic experiment [6] were used to set the ele-
ments of (κ̃e−) (except for (κ̃e−)ZZ) and the elements of β⊕ (κ̃o+) to be zero, and
used only the C0-coe�cient to determine (κ̃e−)ZZ , i.e. Eq.(1.71) was truncated at
the �rst term. The result is
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(κ̃e−)ZZ = (−2.9± 2.2) · 10−14 .2

The nonzero averages of the 2B and 2C amplitudes are due to a systematic
e�ect of thermal origin that could not be modeled, as mentioned in section 2.9.4.
The magnitude of the e�ect is consistent with the measured temperature sensitivity
and the temperature modulation amplitude measured at the top of the apparatus.
Thus we set for this parameter only an upper limit:

|(κ̃e−)ZZ | ≤ 3 · 10−14 .

This experiment was limited �rstly by the thermally induced systematic e�ects.
Moreover, the laser frequency lock stability is limited by the small signal-to-noise
ratio (low resonator throughput), which limits the ability to more precisely charac-
terize the systematic e�ects.

2Note added in proof: in [26] a factor 2 was inadvertently omitted when calculating (κ̃e−)ZZ

from 2C. The smaller value of the uncertainty in [26] was only statistic, whereas the uncertainty
here is dominated by the systematic e�ects.
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Chapter 4

Conclusions

Classic tests of Special Relativity were described, in order to introduce the kinematic
test-theory of Robertson, Mansouri and Sexl. An extension of the Standard Model
of particle physics, developed by A. Kostelecký and coworkers was also described.
Then the experimental setup developed at the Institut für Experimentalphysik of the
University of Düsseldorf and used to test experimentally the isotropy of the speed
of light in both the test theories was described. In this experimental setup a pulse-
tube cooler was used to cool two ultrastable cryogenic optical resonator down to
3.4 K. To my knowledge it was the �rst time that such a refrigerator was used for an
experiment in optics. The pulse-tube cooler technique was used to avoid periodical
changes on the mechanical dimensions of a cryostat using liquid helium as cryogen
due to periodic re�lls. The pulse-tube cooler on the other hand produces vibrations
at the frequency of gas helium waves used to cool the system. These vibrations
were �rst decoupled from the resonators using a vibration insulation system, and
then decorrelated from the signals used to test Relativity by Fourier analysis at the
frequency of pumping. The temperature of the resonators were stabilised at the
level of 60 µK, resulting in an instability of 13.6 · 10−16.

The beat frequency between two Nd:YAG lasers stabilised at the resonance fre-
quencies of the two optical resonators was measured and correlated with the position
of the resonators and the time. The lasers were frequency stabilised using a Pound-
Drever-Hall laser stabilisation technique, and the power of the beams impinging on
the resonators was also stabilised. The laser beams were coupled to the resonators
using optical �bres. This allowed a rejection of the instability caused by vibrations,
but introduced a systematic e�ect to the system. The e�ect consisted in a sensitivity
of the beat frequency on changes of temperature in the lab.

The complete setup, consisting of the cryostat, the lasers, the frequency stabili-
sation electronics, the temperature control, the frequency counter and the resonators
was actively rotated.

Active rotation of the system was necessary for three reasons:

• to exploit the stability of the resonators, that is best between 10 and 100
seconds, instead of developing a frequency stabilisation system for very long
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integration time, and use the rotation of the Earth to change the direction of
the axis of the resonators;

• to increase the statistics;

• to set a �rst limit to a previously unmeasured parameter of the dynamical test
theory.

For the �rst two points a high rotation speed would be advantageous, but the
system was limited by vibrations at high rotation speeds.

Rotations of the setup introduced a periodic tilt of the resonators due to me-
chanical instability of the rotation stage. The tilt of the resonators causes a change
in its dimensions resulting in a change of the beat frequency that would mimic a
violation of the Lorentz invariance, being at the same frequency of the rotations and
in phase with it. To minimise this e�ect the cryostat was set in a position in which
the variations of the tilts of the resonators were at minimum. The tilts were mea-
sured using a tilt sensor, and recorded. The calibration of the e�ect of a tilt of the
resonators as a function of the angle allowed o�-line decorrelation of the introduced
systematic e�ect.

The data were analysed using the two test-theories described.
In the Robertson-Mansouri-Sexl test theory we obtained a violation of Lorentz

invariance of (β− δ− 1/2) = (0.5± 3± 0.7) · 10−10, which corresponds to a violation
of the Lorentz invariance for the isotropy of space of δc

c
= 6.4 · 10−16. This was the

most stringent limit at the time of the measurement.
The analysis of the experimental data led to the �rst determination of the upper

limit to a previously unmeasured parameter (κ̃e−)ZZ of the dynamical test theory.
The limit is |κ̃ZZ

e− | ≤ 2 · 10−14, a value con�rmed by more recent measurements.
The result is a nonzero value. This is due to the systematic e�ect due to the
sensitivity of the beat frequency on the changes of temperature of the optical �bres.
The temperature of the �bres changed during the rotations due to a temperature
gradient in the lab. The e�ect was measured, but it was not possible to model it,
so it could not be decorrelated. The order of magnitude of the e�ect is consistent
with the nonzero value of the measured parameter.

4.1 Outlook
It was also proposed in [63] that the result of this experiment could be considered
a �rst experimental check of the ether-drift observation reported by Miller in 1923
[64]. In [63] the results of our experiment are analysed considering the vacuum within
the resonators as a physical medium whose refractive index is �xed by the general
relativity. It is then stated that the frequency shift is consistent with the assumption
of the presence of a preferred frame (Lorentz relativity instead of Einstein relativity),
and that the Earth is moving with a velocity of ≈ 200 km/s in this system. However,
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the same author of [63] points out that a real precision test has still to consider
the result of the same kind of measurement made a few months apart (August-
September), where the frequency shift would increase of 70%.

The experiment described in this thesis will not take data in September, but
other experiments are planned.

The results of this experiment and of the other experiments using cryogenic
sapphire resonators showed that sapphire cryogenic resonators are still a promising
technique. The results can still be improved, for instance setting up a more e�cient
temperature stabilisation of the lab, and an active control of the tilt of the resonators.

An active control of the �bre-coupling of the laser beams on the resonators
would also be useful to improve the stability, although after cooling down from
room temperature to 3.4 K the error signal decreases usually only of 10%. The use
of optical �bres was necessary because of the vibrations caused by the pulse-tube
cooler. To reduce the systematic e�ect caused by temperature gradients around the
�bres (see Sect. 2.9.4), the length of the �bres should be reduced, the best would
probably be to have the �bres only inside the cryostat, with coupling to the �bres
either via feed-through or through optical windows in the cryostat. Another solution
is of course an active beam stabilisation, as used in [5].

4.1.1 Room-temperature Michelson-Morley experiments

Room temperature experiments are very interesting because they allow to get rid
of the cryogenic environment. This makes easier to implement new techniques and
investigate on systematic e�ects.

With the availability of ULE resonators with a zero thermal expansion coe�-
cient at or near room temperature the conditions on temperature stability are less
stringent than in the past, and the construction of two resonators in a single block
provides a common-mode rejection of the drift of the beat frequency between two
resonators. The idea here is to put four mirrors in cross con�guration in the same
block of ULE. This gives common-mode rejection also of temperature instabilities
of the block (within the temperature gradient of the block).

Working on a room temperature system permits to have a less heavy system.
This is important because we have seen that the tilt and the vibrations have a
dramatic e�ect on the signals. A more compact setup will be easier to integrate to
an active vibration-insulation system, and tilt-control actuators.

Dr. A. Nevsky, Dr. M. Okhapkin and Mr. Ch. Eisele work on these ideas, also
with an improved laser stabilisation system. The goal is to test Lorentz invariance
improving the limits on kinematic and dynamic test theories under the 10−17 level
that is set by the ratio between mw/mP ' 10−17, where mw ' 100 GeV is the
electroweak scale and mP the Planck's mass, see pag. 17.
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4.1.2 OPTIS: a satellite-based test of Relativity
An improvement of the precision of tests of Special Relativity would be the result of
satellite based experiments. The project OPTIS [65], started as a collaboration of
the Center of Applied Space Technology and Microgravity (ZARM) of the University
of Bremen (Germany) and the Humboldt-University in Berlin and the Institut für
Experimentalphysik of the University of Düsseldorf, was planned to test Special and
General Relativity, and supported by the German Space Agency (DLR).

The idea is to use three ULE resonators, in a single block, and compare the
resonance frequencies between them, and between the resonators and an optical fre-
quency comb, in dependence of the position and velocity of the satellite. The use
of a satellite would permit to work in a microgravity environment. The goals of
the mission are to test the isotropy of light propagation (Michelson-Morley experi-
ment), the independence of the velocity of light from the velocity of the laboratory
(Kennedy-Thorndike), the universality of the gravitational red-shift (comparing an
optical resonator to an optical frequency comb).

The satellite should have a high eccentric orbit of 14 hours, with 5 months
without shadows (useful for temperature stability) and 1 month with shadow phases:

Apogee Perigee
Height from Earth's centre 3600 km 10000 km

Velocity 2.28 km/s 5.93 km/s
Gravitational potential 1.1 ·10−10 4.4 ·10−10

Gravity gradient 1.2·10−8 s−2 0.8·10−8 s−2

Figure 4.1: The basic setup for the OPTIS satellite mission. From [65].
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Figure 4.2: A scheme of the orbit of the mission OPTIS. From [65].
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Appendix A

Allan Variance

A.1 Introduction
The use of the classical variance and the standard deviation of the mean can in some
high precision measurements be unappropriate. The reason is basically that corre-
lated random noise is as likely to occur as the uncorrelated random noise. Besides,
the act of observing some physical quantity perturbs the quantity itself. The random
deviations in a series of observations may be caused by the measurement system, by
environmental coupling, or by intrinsic deviations of the measured quantity.

The assumption that each measurement of a series is independent because the
measurements are taken in di�erent times is sometimes not correct. If the series is
not random and uncorrelated, the noise spectrum can not be considered `white' [66].

In this case, more appropriated, and now universally accepted in metrology, is
the use of the Allan Variance [67].

In the general case of a frequency measurement, it is useful to de�ne:

y(t) =
ν1 − ν0

ν0

(A.1)

as the fractional frequency di�erence or deviation of an oscillator, ν1, with respect
to a reference oscillator ν0, divided by the nominal frequency ν0. Conceptually, we
can also consider the Eq. (A.1) as the free running frequency of an oscillator ν1, with
respect to its nominal value. The dimensionless quantity y(t) is useful in describing
an oscillator performance: for instance the phase deviation x(t) of an oscillator over
a period of time t is simply given by:

x(t) =

∫ t

0

y(t′)dt′ (A.2)

Almost all frequency measurements, with very few exceptions, are measurements
of phase, or of the period �uctuations of an oscillator, not of frequency.

Note that time and phase deviations are proportional, x = φ/(2πν0), where φ
denotes the phase deviation of an oscillator.
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Since it is impossible to measure instantaneous frequency, any frequency mea-
surement involves some sample time τ : a time window through which the oscillators
observed. The di�erence of two time deviations divided by the time τ gives the
fractional frequency over the period τ :

y(t) =
x(t + τ)− x(t)

τ
(A.3)

A.2 Analysis of time domain data
Since phase is the integral of frequency, we may write:

Sy(f) = (2πf)2Sx(f) (A.4)

where y = dx/dt and x represents the time deviations. For discrete data the con-
tinuous derivative y = dx/dt becomes yk = ∆xk/τ0, where k is the counting index
in the measurement time series, and ∆xk = xk+1− xk is the �rst �nite di�erence on
the time deviation series xk, with xk spaced τ0 apart.

If the �uctuations are characterized by power law spectra, that are more dis-
persive than classical white noise, then the standard deviation is a function of the
number of data points in the set. It is also a function of the dead time and of the
measurement system bandwidth. For instance, using �icker noise frequency modu-
lation as a model, as the number of data points increases, the standard deviation
monotonically increases without limit. The Allan variance is a statistical measure
that does not depend upon the data length.

The Allan variance is estimated from a �nite data set as follows:

σy(τ) =

[
1

2(M − 1)

M−1∑
i=1

(yi+1 − yi)
2

]1/2

(A.5)

where the yi are the discrete frequency averages on time τ .
If one wants to know how σy(τ) varies with the sample time τ , it is possible to

average the values for y1 and y2, and call it a new y1 and so on. This is possible
only if there is no dead time.

We can combine the equations (A.3) and (A.5) to obtain σy(τ) in terms of the
time di�erence or time deviation measurements: for N discrete time readings it may
be estimated as

σy(τ) =

[
1

2(N − 2)τ 2

N−2∑
i=1

(−xi+2 + 2xi+1 − xi)
2

]1/2

(A.6)

here the i denotes the number of readings in the set of N and the nominal spacing
between readings is τ . If there is no dead time in the data and the original data
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were taken with a sample time τ0, a set of xi's can be obtained by integrating the
yi's:

xi+1 = xi + τ0

i∑
j=1

yj (A.7)

Once we have the xi's, we can pick τ in Eq. (A.6) to be any integer multiple of
τ0, i.e. τ = mτ0:

σy(mτ0) =

[
1

2(N − 2m)m2τ 2
0

N−2m∑
i=1

(−xi+2m + 2xi+m − xi)
2

]1/2

(A.8)

To understand why it is not correct to use the classical variance, �rst of all, let's
compare the de�nitions of the two variances:

The Allan variance is de�ned as in Eq. (A.5)

σy(τ) =

[
1

2(M − 1)

M−1∑
i=1

(yi+1 − yi)
2

]1/2

(A.9)

and the standard deviation is de�ned as:

σy(N) =

[
1

N − 1

N∑

k=1

(yk − y)2

]1/2

(A.10)

where y denotes the mean value of the sample.
To show the divergent behaviour of the classical variance for correlated time

series, we write from the Parceval's Theorem:

σ2 =
1

π

∫ ∞

0

S(ω)dω (A.11)

where S(ω) is a symmetrical two-sided spectral density, and ω = 2πf . If the variable
being measured has random variations that have a power spectrum proportional to
fα, then for α = �1 the classical variance is in�nite at both limits of the integral.
This means that unless there are both high- and low-frequency cuto�s to the process
being analyzed, the classical variance is unbounded. A high-frequency cuto� always
exists, and it is determined from the measurement system. However, a low-frequency
cuto� is needed for α ≤ −1, and sometimes it is very di�cult if not impossible to
determine. If this is the case, then the classical variance is not useful in characterising
fα processes with α ≤ −1 [66].

In metrology we are often faced to processes which are correlated in time.
Processes that can a�ect the measurements are coupling to the environment, or
the aging of the physical device, or in�uence from the measurement process. As
stated, in this case the random deviations are correlated, and to interpret the re-
sults a knowledge of the spectrum is necessary.
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The normalized frequency y(t), de�ned in Eq. (A.1), will have systematic and
random deviations. The spectral density of the random deviations is well modeled
by Sy(f) = hαfα, with α = �2, �1, 0, +1, +2. The coe�cient hα is the intensity of
the particular type α of power-law process. The value for α depends on the kind of
clock considered, and on the region of Fourier frequency f or of averaging time τ of
interest. In general, α tends to decrease increasing the averaging time.

If Sy(f) = hαfα, and α = �2, �1, 0, +1, +2, then using Eq. (A.4) we can
write Sx(f) = hαfβ/(2π)2, with corresponding values of β = �4, �3, �2, �1, 0.
Table A.1 gives the names and Fourier relationships for the frequency and phase
deviations, assuming Sy(f) = hαfα. Remember that time and phase deviations are
proportional, x = φ/(2πν0), where φ denotes the phase deviation of an oscillator.

Table A.1: Functional characteristics of di�erent noise processes, from [66].
α β Frequency Phase Sy(f) Sx(f) σ2

y(τ)
modulation modulation

+2 0 Super White White PM h2f
2 h2

(2π)2
3fh

(2π)2
h2τ

−2

+1 �1 Super Flicker Flicker PM h1f
h1

(2π)2
f−1 1.3+3 ln(2πfhτ)

(2π)2
h1τ

−2

0 �2 White FM Random Walk PM h0
h0

(2π)2
f−2 1

2
h0τ

−1

�1 �3 Flicker FM Flicker Walk h−1f
−1 h−1

(2π)2
f−3 2 ln(2)h−1

�2 �4 Random Walk FM Random Run h−2f
−2 h−2

(2π)2
f−4 (2π)2

6
h−2τ
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