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1 Introduction

1.1 Physical motivation 

Transport  phenomena  are  of  major  interest  in  several  areas  of  modern  physics  and  appear
with great  diversity in many applications  of plasma physics.  A very urgent  topic is  the  heat
and particle transport in magnetically confined plasmas used for thermonuclear fusion devices.
These  devices  are  intended  to  create  an  extremely  hot  and  dense  plasma  which  should  be
confined  for  sufficiently  long  times.  Mainly  two  different  concepts,  the  tokamak  and  the
stellarator, are being proposed at the moment to reach this objective. 

The neccessary confinement of the plasma is achieved by magnetic fields that should keep
the  particles  within  a  certain  area  of  the  machine  [1].  From the  beginning  of  the  magnetic
fusion  research,  the  problem  of  particle  transport  is  in  the  focus  of  theoretical  and
experimental  investigations.  In  the  basic  concept  of  classical  transport,  a  magnetic  field
preferentially binds the  particles  along  the  field  line  and reduces their  ability to  move  in the
perpendicular direction of the field. It  is convenient to define transport quantities, namely the
mean  square  displacement  and  the  diffusion  coefficient,  and  to  distinguish  the  transport  in
perpendicular and parallel direction. Of course, in this classical picture large magnetic guiding
fields  reduce  the  perpendicular  diffusion  decisively.  Collisions  appear  as  an obstacle  for  the
free motion along the field line and decrease the transport in parallel direction. Contrary they
increase the ability of the particles to diffusive perpendicularly, because collisions transfer the
particle to other field lines.

A  reason  for  the  extraordinary  interest  in  the  mechanisms  of  diffusion  lies  in  the
unexpected  large  losses  caused  by  anomalous  transport  [2].  The  term  anomalous  refers
hereby  to  the  strong  deviation  of  the  diffusion  rate  from  the  classical  and  neoclassical
predictions [3],  caused by fluctuations of the electric  and magnetic  field.  To  understand and
control this type of transport  is a major aim particularly with regard to  the future designs of
thermonuclear fusion reactors.

In the physics of fusion plasmas there is also an additional, very recent motivation for the
investigation  of  particles  in  stochastic  fields.  Beneath  the  intrinsic  perturbations  of  the
magnetic  field  structure,  which  are  more  or  less  unavoidable  because  of  errors  in  the  coil
arrangements  of  the  devices,  auxiliary  coils  are  being  added  to  existing  configurations  in
several  tokamaks  [4].  These  additional  coils  are  an  artificial  source  of  stochasticity  and
generate magnetic fluctuations in order to  control and observe the particle and heat loads on
the  wall.  Examples  can be  found  on the  tokamaks  Tore-Supra,  DIII-D,  and  TEXTOR,  and
are being planned for JET.

The vast majority of works dedicated to anomalous transport  starts with a Langevin type
treatment,  as  can  be  found  e.g.  in  [5],  based  solely  on  the  guiding  center  assumption.  In
common fusion reactors the magnetic  fields are sufficiently strong to  assume infinitely small
gyro-radii,  at  least  for  the  electrons.  The  question  remains  in  what  way finite  Larmor  radii
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influence the transport, especially in regions where the guiding center assumption fails. Indeed
in  tokamaks  such  areas  can  be  found  e.g.  in  the  vicinity  of  hyperbolic  points.  Our  central
intention is  the  description of  these  finite  Larmor  radius  effects  by analytical and  numerical
means.

The  knowledge  of  charged  particle  transport  is  also  a  long-standing  problem  in  many
astrophysical issues [6,7], such as low-energy cosmic ray penetration into the heliosphere, the
transport  of galactic  cosmic rays in  and out  of the  interstellar  magnetic  field,  and the Fermi
acceleration mechanism. 

 Galactic  magnetic  fields  are  parallel  to  the  galactic  disk  and  mostly  aligned  with  the
galactic spiral arms. The typical Larmor radius of a cosmic ray particle in this field is several
orders  smaller  than  the  height  of  the  galactic  disk  in  which  most  of  the  solar  systems  are
located.  In  astrophysical  plasmas  of  this  dimensions,  collisions  are  neglected  and  from  the
classcial  theory  cosmic  ray  particles  may  be  expected  to  remain  very  effectively  trapped
within the disk.  Observations do  not  agree with this picture.  Cosmic rays are  transported in
perpendicular direction at several magnitudes higher than predicted. 

Obviously a model based on entirely parallel magnetic fields is insufficient for a successful
description  of  the  cosmic  rays.  With  a  mean  field  in  parallel  direction,  there  have  to  be
additional  perpendicular  components  that  enable  the  particles  to  leave  the  galactic  plasma.
These components are induced by nonlinearities of the galactic  field  and can be regarded as
stochastic.  It  is  also  an intention of this work,  to  provide useful predictions of the diffusion
that can be introduced into the models of cosmic rays. Magnetic fields occuring in the galaxy
consist  of  very small  guiding  fields.  Then   it  is  required  to  include  the  complete  gyrational
motion.  One  of the  new important  questions  added from the  astrophysical point  of view is:
What  are the transport  properties in stochastic magnetic fields when the mean field becomes
small?  The latter case is also realized in other astrophysical situations with random magnetic
fields,  e.g.  the  Earth  magnetic  field.  In  such  plasmas  with  small  guiding  fields  the  Larmor
radius  effects  become  essential.  Obviously  in  situations  with  mean  fields  smaller  than  the
fluctuation  amplitude,  the  stochastic  component  has  to  be  regarded  as  the  dominating  one.
For this case a completely new kind of approach is needed.

Despite the special interests in both, magnetic fusion plasmas and astrophysical plasmas, a
general  aspect  of  the  transport  in  stochastic  magnetic  fields  concerns  the  structure  of  the
perturbation  field.  Due  to  the  peculiar  nature  of  the  fluctuations,  magnetic  structures  arise
under  certain  circumstances  and  disrupt  the  displacement  mechanisms  of  the  particles.
Fieldlines become trapped within areas of the magnetic flux,  the so-called fluxtubes [6],  and
the transport is changed significantly.
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1.2 Stochastic differential equations approach to anomalous transport

A common strategy to  treat  anomalous  plasma transport  is  the  use  of kinetic  theory,  which
primarily focusses on the analysis of the distribution function in phase space. The principle of
this kind of description is to  identify the state of the plasma, that  is determined by a suitable
number  of  macroscopical  physical  quantities,  and  to  find  the  law  of  evolution,  the  kinetic
equation  of  this  state  [5].  The  advantage  of  the  kinetic  description  is  the  possibility  of  a
self-consistent  model  of  the  system,  incorporating  the  alternating  interactions  between
particles and fields. Typically the electromagnetic field is linked to the distribution function by
applying  the  Maxwell  equations.  Within  such  an  approach  it  is  of  course  also  possible  to
include the effects of magnetic fluctuations. Unfortunately, the distribution function may then
contain a certain amount  of stochasticity as it  evolves now irregularly and randomly. Due to
this extremely nonlinear character of the evolution equation, it  is nearly impossible to use the
kinetic approach for the transport quantities and one needs extensive numerical efforts for the
treatment  of  fluctuating  systems.  Instead  reduced  and  simpler  models  have  become
fashionable  to  describe  such  systems  from a  different  point  of  view  and  on  a  substantially
more practicable level of mathematical expense.

A  more  feasible  way  to  find  reliable  predictions,  especially  for  transport  phenomena  is
based  on  the  use  of  stochastic  differential  equations  [8].  These  are  differential  equations  in
which one or more terms are of stochastic nature. The solution of the equation is a stochastic
value. This approach allows us to assume the magnetic field to be a random source. One has
to  abandon the self-consistent  description here for  the benefit  of a more simple formulation.
The  loss  of  the  complete  interacting  kinetic  properties  is  expressed  in  the  requirement  to
introduce  a  priori  statistical  information  about  the  stochastic  quantities  in  the  differential
equation.  Despite  this  constraints,  the  approach with  stochastic  equations  provides  a  highly
efficient access to the analytical description of anomalous transport.

Modern  fusion  devices  like  tokamaks  have  a  very  special  magnetic  configuration
containing toroidal and poloidal magnetic fields. The geometry of this fields is inhomogenous
and curved, and a global analysis is very difficult to be incorporated. Fortunately the effect of
the complex geometry often can be neglected for the involved model zones and the qualitative
understanding  of  the  underlying  physical  mechanisms  of  transport   is  studied  in  a  standard
slab  configuration  [9]:  a  guiding  field  in  z-direction  and  fluctuations  mainly  in  the
perpendicular directions x  and y .

Basically,  three  different  stochastic  quantities  can  be  identified  in  our  problem,  the
collisions,  the  magnetic  fluctuations  and,  of course,  the  velocity of the particle.  We use  the
stochastic  differential  equations  approach  based  on  the  Accelerated-(A)-Langevin  equation
[5,10]. The name denotes that the origin of the equation is the Newton-Lorentz equation for
the acceleration of a charged particle in a magnetic field B = B0 Hb0 ez + bL  with the stochastic
component b , 

(1.1)u° = W uäHb0 ez + bL - n u+ a.
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Here  W = ZeB0 ê HmcL  is  the  Larmor  frequency,  n  is  the  collision  frequency  and  a  a  white
noise acceleration process.  The latter is assumed as random acceleration with a d-distributed
correlation function. From this perspective a stochastic function like aHtL  is not determined. It
can only be described by its stochastic properties. A detailed introduction of (1.1) is presented
in Sec. 2. 

Another  option  to  treat  the  topic  theoretically  starts  from  the  Velocity-(V)-Langevin
equations [11].  In  strongly magnetized plasmas,  charged particles  move on gyrational orbits
around  the  field  lines.  Depending on the  strength of the magnetic  guiding as  well as  on the
thermal velocities of the particles, the Larmor radius may be sufficiently small. Then it may be
allowed to  replace the exact  position of a particle virtually by the position of the field line it
gyrates along. In this approach one considers stochastic equations for guiding centers of test
particles [9,10,11,12].   It  approximates the A-Langevin equation for small gyro-radii. It  can
be derived from the A-Langevin equation  by integration in time and application of the drift
approximation, yielding

(1.2)

d r¦
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
d t

= b h»» + h¦,

d z
ÅÅÅÅÅÅÅÅÅ
d t

= h»».

These  are  the  V-Langevin  equations.  Collisions  are  now  introduced  via  the  stochastic
velocities  h¦  and  h»» .  The  V-Langevin  equations  are  approximations  and  assume  large
(guiding) magnetic fields such that the guiding center picture becomes meaningful. Note that
the stochastic component of the magnetic field is usually weak, i.e. the stochastic fields alone
do  not  justify  the  drift  approximation  directly.  Only  if  a  strong  confining  magnetic  field  is
additionally  present,  such  as  in  tokamaks,  the  V-Langevin  approach  is  justified.  The  same
reason indicates that the V-Langevin equations are not suited for astrophysical applications. 

In  the  present  work,  we  concentrate  on the  solution of the  A-Langevin equation.   That
invokes the stochastic equation of motion (1.1)  for a single test  particle.  On the basis of the
solution of the equation of motion one can calculate a velocity correlation function that leads
to  the  diffusion  tensor.  Generally,  the  exact  analytical  solution  of  the  problem  is  not.
Nevertheless it  is still possible to  make some estimations in different  limiting cases assuming
that the perturbation of the magnetic field is weak.

The  main  assumptions  of  the  present  work  are  the  following.  First,  we  assume  static
magnetic disturbances and thereby neglect  the electric force on the particles.  This is justified
as  long  as  the  propagation  velocity  of  the  magnetic  fluctuations  is  small  compared  to  the
typical  velocity  of  the  particles.   Furthermore  we  assume  Gaussian  Eulerian  correlation
functions (fulfilling the constraint div B = 0). 
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1.3 Mean squared displacement and the diffusion coefficient

Transport can be systematically described in terms of two quantities: the diffusion coefficient
and  the  mean  square  displacement  (MSD),  that  is  e.g.  the  quadratic  perpendicular
displacement, averaged over a given ensemble of realizations,

(1.3)Xdx2HtL\ = X@xHtL- XxHtL\D2\ = Xx2HtL\ - XxHtL\2.

With the MSD we divide transport  roughly into  three different  regimes,  distinguished by
the dependence of the MSD on time, 

(1.4)Xdx2 HtL\~ ta.

For  a < 1  the  transport  is  subdiffusive.  The  MSD  tends  asymptotically  to  a  constant  value
and  transport  in  the  corresponding  direction  breaks  down.  Diffusive  behaviour  is  given  for
a = 1. If this kind of transport prevails and the MSD is asymptotically proportional to time, a
constant D  may be introduced as 

(1.5)Xdx2 HtL\ = 2 Dt,

which  we  call  the  asymptotic  diffusion  coefficient.  Similarly  a  quantity  called  running
diffusion coefficient is defined as DHtL = 1ÅÅÅÅ2  

dÅÅÅÅÅÅÅd t  Xdx2HtL\ . In a subdiffusive situation DHtL  would
vanish  with  increasing  time  t .  At  last,  for  a > 1  the  transport  is  called  superdiffusive.  A
typical example of such a domain of diffusion is the ballistic motion of particles. 

1.4 Lagrangian and Eulerian correlations

The  dynamical  law  that  governs  the  motion  of  the  particles,  in  our  case  namely  the
A-Langevin equation (1.1) should lead to the MSD and the diffusion coefficient. The solution
of the  A-Langevin equation is  the  velocity of a  particle.  An ensemble  averaged  product  of
two  particle  velocities  at  two  different  points in space  is  called Eulerian velocity correlation
function  (we  will  also  refer  to  correlation  functions  as  correlations,  correlators,  or  the
Eulerian)  and  can  be  directly  deduced  from the  solution  of  (1.1).  Eulerian  correlations  are
well established quantities [10,11]. They can often be calculated directly for a given problem
and even their measurement is possible.

Another,  much  more  complicated  quantity  is  directly  related  to  the  transport  properties
we  are  interested  in:  the  Lagrangian  velocity  correlation  function  [13,14].  Contrary  to  the
Eulerian correlation, it  is calculated as the averaged product of two velocities of the particle,
that  lie  exactly on the trajectory at  two  times.  The  spatial dependence has been replaced by
the trajectory and the correlation is only time-dependent. If the correlation function is known,
the Green-Kubo  formalism provides an elegant  way to  relate  it  with the MSD in form of an
ordinary differential equation in time.
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One of the major difficulties we are confronted with in this work is the derivation of the
Lagrangian correlators.  An exact  calculation of this quantity would require the evaluation of
the  dynamical  equation  (1.1)  for  each  realization  of  the  stochastic  terms,  which  is  an
impossible  task.  Estimates  are  needed  to  find  a  relation  between  Lagrangian  and  Eulerian
correlations.

We  will  discuss  two  different  approximations  in  order  to  find  expressions  for  the
Lagrangian  velocity  correlators.  The  first  one,  well-known  throughout  various  areas  of
theoretical  turbulence  research,  is  the  Corrsin  approximation  [13,15].  It  provides  a  very
intuitive and straightforward way to derive the Lagrangian correlator from the corresponding
Eulerian. Unfortunately it  is restricted to a specific domain of turbulence, defined in terms of
the  Kubo  number  [17,18],   which  is  defined  as  the  ratio  of  the  distance  which  a  particle
travels during an autocorrelation time and the correlation distance. This is expressed in terms
of the  fluctuating  velocity V = bl»» ê Hb0 tcL ,  the  decorrelation time  tc  and  the  perpendicular
correlation length l¦ , 

(1.6)k =
V tc
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
l¦

=
bl»»
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
b0 l¦

.

Here b  is  the  fluctuation amplitude,  b0  the  dimensionless strength parameter  of the guiding
field,  l»»  the  parallel  correlation  length  of  the  magnetic  field  and  l¦  the  perpendicular
correlation length.  The Kubo  number is  a dimensionless parameter,  which we use frequently
to  specify the degree of magnetic turbulence.  High Kubo numbers characterize systems with
strong  turbulence.  With  l»»  and  l¦  two  different  length  scales  are  introduced  that  have
decisive impact, not only on the transport itself, but also on the choice of the method required
to find the Lagrangian correlator. The second way to find the Lagrangian correlation is called
the decorrelation trajectory method (DCT) [18,19,20].  It  is  a rather  new and more complex
method than the Corrsin approximation, which includes effects of the magnetic structure into
the correlator. The DCT has no restrictions for the values of the Kubo number.
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1.5 Percolation structures of the flux function

A  very  recent  topic  discussed  in  the  context  of  anomalous  diffusion  is  the  occurance  of
certain  magnetic  flux  structures  [6]  that  can  change  the  transport  behaviour  decisively
[20,21,22]. The pertubations can be regarded to be generated from a stochastic flux function.
In  some  cases  that  are  related  to  Kubo  numbers  greater  than  one,  the  flux  function  gets
percolative  contours  [23].  Additionally  in  such  a  case  the  field  lines  are  forced  to  move
around this contour lines [24]. This can lead to the very interesting fact, that a certain number
of field  lines  are  trapped  within the  percolative  map  of the  flux function and  can no  longer
contribute  to  transport.  On  the  other  hand,  larger  Larmor  radii help  the  particles  to  detach
from these field lines more efficiently. The method used in connection with this systems is the
DCT mentioned in 1.4, developed by Vlad et al. in [20]. 

Since  neither  a  complete  review  of  the  percolation  regime  on  the  basis  of  stochastic
differential  equations  was  not  discussed  in  detail  nor  a  consequent  comparism between  the
Corrsin approximation and the DCT was not done so far, it is a central intention of our work
to  provide  an  analytical  relation  between  the  Corrsin  correlation  functions  and  the  DCT
correlation  functions,  as  well  as  an  in  depth  investigation  of  the  combined  effects  of
percolation structures and finite Larmor radii.

1.6 Overview of this work

The  phenomenon  of  anomalous  transport  has  been  under  investigation  for  a  long  time.
Several previous works covered this  topic by concentrating on guiding center motions alone.
For  any  rigorous  description  and  understanding  of  anomalous  transport  in  plasmas,  it  is
neccessary to  include the complete motion of the particles.  A detailed analysis starting from
the  complete  A-Langevin equation was  not  done  so  far,  but  appears  unavoidable as  we  are
primarily interested in the particle transport and not in the deviation of neighboring field lines.
Furthermore,  we want  to  identify especially the influence of the particle  gyration around the
field line, namely the Larmor radius effect.

Consequently a couple of important questions come into the focus of interest:

How do the fluctuations contribute to the diffusion of the particles? 

What is the influence of the Larmor radius on the diffusion? 

What happens with the transport if a mean guiding field is not present? 

Is the diffusion affected by the percolative structure of the perturbation field? 

Throughout  the  following  investigations  we  will  answer  these  questions  and  give
analytical as well as numerical descriptions of the anomalous transport in stochastic plasmas.

This work is composed of 6 sections and is organized as follows: 
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In  Sec.  2  we  solve  the  A-Langevin  equation  with  a  sequence  of  transformations  and
derive an explicit  expression for  the velocity of a  particle that  experiences collisions and the
effects  of  the  perturbative  magnetic  field.  From  this  expression  we  calculate  unaveraged
correlation  functions,  namely  the  products  of  velocities  at  two  different  times.  The
Green-Kubo  formalism  is  presented  and  illustrated  with  the  example  of  classical  transport.
With the assumption of strong guiding fields a series expansion of the correlation function is
obtained, where the zeroth order represents the guiding center motion and the higher orders
correspond to the Larmor radius effects.

Section  3  deals  with  the  diffusion  regimes  for  small  Kubo  numbers.  The  Corrsin
approximation is explained and applied.  It transfers the correlation function (derived in   Sec.
2)  to  Lagrangian  coordinates.  Using  the  Green-Kubo  formalism  we  discuss  the  diffusion
regimes  of  anomalous  transport  analytically.  First,  the  quasilinear  limit  is  presented  and  the
corresponding Larmor radius correction is determined. Here we show in detail how estimates
for the diffusion can be derived. Another, somehow artificial regime, the subdiffusive situation
is  reviewed,  which  regards  to  a  case  where  the  diffusion  coefficient  has  a  zero  asymptotic
value  and  the  transport  stops.  The  well-known  Rechester-Rosenbluth  diffusion  scaling
follows  from the  present  analysis.  By  numerical  simulations  of  the  Green-Kubo  differential
equation we  integrate finite  Larmor  radius  effects and  discuss their  impact  on the  diffusion.
Two further regimes due to Kadomtsev and Pogutse are also shown to be reproduced by the
A-Langevin  approach.  The  last  part  of  Sec.  3  is  dedicated  to  the  transport  in  dominant
stochastic  magnetic  fields,  where  no  mean  field  is  present.  A  three-dimensional  stochastic
perturbation alone is considered in the A-Langevin equation. We give also analytical formulas
for the diffusion coefficient and the MSD in such a scenario.

Section  4  extends  our  insights  to  high  Kubo  numbers.  The  latter  correspond  to  certain
magnetic structures that  have great  impact  on the diffusion. We give a short  introduction on
the  stochasticity of  the  flux  function and  on  the  percolative  structures  that  are  imposed  for
high Kubo  numbers.  The occurance of flux tubes is  demonstrated and their  connection with
the  diffusion  rate  is  explained.  An  involved  method,  the  decorrelation  trajectory
approximation,  is  used  to  derive  enhanced Lagrangian correlation functions  that  contain the
effects  of  percolative  flux  structures.  The  explicit  analytical  relation  between  Corrsin
correlators  and  DCT  correlators  is  presented.  Finite  Larmor  radius  corrections  are  included
into  the analysis and the effects of the magnetic  structure in combination with finite Larmor
radii is investigated.

A  numerical  verification of  the  efforts  of  Secs.  3  and  4  is  presented  in  Sec.  5.  Using  a
Monte-Carlo  simulation  code  of  the  A-Langevin  equation  we  confirm  our  analytical
predictions by the exact computer model. 

The work is concluded in Sec.  6 by a summary of the efforts and results.  We also give a
short outlook for future activities on the topic of anomalous transport.

8 1 Introduction



2 Velocity correlations based on the A-Langevin equation

2.1 The velocity of a particle in a stochastic magnetic field with collisions

2.1.1 General magnetic geometry and the description with the A-Langevin equation

In general, we consider a magnetic field of the form

(2.1)B ª B0 Hb0 ez + bx ex + by ey + bz ezL.
composed  of  a  guiding  field  B0 b0  in  z-direction  and  a  perturbation  field  b.  Here  the
parameter  b0  and  and  the  vector  b  are  dimensionless.  The  factor  B0  takes  care  of  the
dimension of the magnetic field and will sometimes be referred to as  magnetic field reference
strength. We call the x- and y-components of b = Hbx, by, bzL the perpendicular components.

Obviously we have to distinguish different realisations of the magnetic environment:

è The  first  case  corresponds to  a  situation with  a  strong magnetic  guiding  field,  b0 p bz .
We  can  neglect  the  fluctuation  in  the   z-direction  and  restrict  to  perpendicular
fluctuations. For tokamak applications it will be appropriate to assume such a strong field.
The B-Field is then proposed in the simpler form, 

(2.2)B ª B0 Hb0 ez + bx ex + by eyL.
In this  case,  it  is  expected  that  results  derived from the A-Langevin equation will  agree
with those from the V-Langevin equation to the lowest order in the Larmor radius. 

è The second situation is defined by a weak magnetic guiding field b0 ` 1. In that case we
have only contributions of the stochastic field components and we will call it the vanishing
guiding field regime. The B-Field is given as

(2.3)B ª B0 Hbx ex + by ey + bz ezL.
Guiding center theories do not cover this situation [7].

We define a gyro-frequency unit W = Z e B0ÅÅÅÅÅÅÅÅÅÅÅÅÅÅm c . Here m  is the test-particle (ion or electron) mass
and Ze  is the total charge. With this definition, the typical Larmor frequency is given, e.g. for
the  guiding  field  by  WL = W b0 .  The  Larmor  radius  is  defined  as
rL = vt ê HWb0 +W » b »L º vt ê HWb0L, introducing the thermal velocity vt .  

The  A-Langevin  equation  (ALE)  is  the  equation  of  motion  for  a  single  particle,  which
experiences  the  effects  of  the  magnetic  field  and  it´s  stochastic  contributions  as  well  as
random collisions a HtL,
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(2.4)u°  HtL = Z e
ÅÅÅÅÅÅÅÅÅÅÅ
m c

 u HtLä8B0@b0 ez + b HtLD< - n u HtL + a HtL.
Similar  to  the  theory  of  Brownian  motion  [8],  a  term characterized  by  the  parameter  n

mimicks the friction caused by the collisions. So far we will keep the most general form of the
B-Field  (2.1).  The  approach with  stochastic  equations  requires  additional postulates  on the
statistics of the random processes that are involved, so our mathematical description has to be
completed  by suitable  assumptions on  the averages and  correlations of the  initial velocities,
the random collisions and the perturbation field.

Initial velocities in all direction obey a three dimensional Gaussian distribution, 

P Hu0L = p-3ê2 vt
-3 exp 

ikjjj- u0
2

ÅÅÅÅÅÅÅÅÅÅÅ
vt

2

y{zzz,
so the average 

Xu0\u0
ª ‡ u0 PHu0L du0 = 0

vanishes and  Xu0
2\ =vt

2 /2. vt  is the thermal velocity of the particles. Here we also introduced
a common bracket notation for the average. We denote the brackets with an index regarding
to the stochastic variable which is averaged.

The white noise collisional events are modelled by a sharp d-distributed correlation

(2.5)Xa HtL\ = 0, Xa Ht1L a Ht2L\ = 1 A d Ht1 - t2L,
introducing  a  free  constant  A .  The  assumption  of the  d-correlation  is  a  quite  usual  way to
describe  events  with  instantaneous  correlation  and  which  are  uncorrelated  everywhere  else.
We will use the free constant  to ensure that the correlation function is a function of the time
difference t = t1 - t2  and therefore stationary.
   The stochastic properties of the magnetic field are defined by 

(2.6)Xb Ht1L≈b Ht2L\ = b2 �M  HtL, t = t1 - t2,

where  we  introduced  the  Lagrangian  correlation  function  of  the  magnetic  field.  That  is  the
correlation of the stochastic field components determined at two different times t1  and t2 . 

The  matrix  �M  is  principally  unknown  [11]  and   it  is  required  that  the  magnetic  field
correlation  is  stated  in  the  co-moving  frame  of  reference,  the  Lagrangian  coordinates.  We
dedicated  Secs.  3  and  4  to  find  appropriate  expressions  for  the  Lagrangian  correlation
functions. The average of the magnetic field vanishes, XbHtL\ = 0.

2.1.2 The solution of the A-Langevin equation

A couple of mathematical tools are helpful for the solution the ALE. Especially the rotational
matrices RiHaL, a base of the SO H3L  group,
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(2.7)R1 ª
i
k
jjjjjjj

1 0 0

0 cosa -sina

0 sina cosa

y
{
zzzzzzz, R2 ª

i
k
jjjjjjj

cosa 0 sina

0 1 0

-sina 0 cosa

y
{
zzzzzzz, R3 ª

i
k
jjjjjjj

cosa -sina 0

sina cosa 0

0 0 1

y
{
zzzzzzz,

and their infinitesimal generators  

(2.8)L1 =
i
k
jjjjjjj

0 0 0

0 0 -1

0 1 0

y
{
zzzzzzz, L2 =

i
k
jjjjjjj

0 0 1

0 0 0

-1 0 0

y
{
zzzzzzz , L3 =

i
k
jjjjjjj

0 -1 0

1 0 0

0 0 0

y
{
zzzzzzz, L ª

i
k
jjjjjjj

L1

L2

L3

y
{
zzzzzzz.

provide  an  elegant  way  to  rewrite  the  vector-product  in  the  ALE  using  the  identity
aäb = -Hb LL a,

u°  HtL = -Wb0 L3 u - W b HtL L u HtL - n u HtL + a HtL.
Obviously the constant factors can be handled easily and by substituting,

u HtL = e-W0 b0 L3 t-nt ué  HtL = R- ué  HtL,
one obtains a simpler form of the ALE, 

ué
°
 HtL = - R+ W0 b L R-  ué + R+ a HtL.

The  operator  R≤  makes  use  of  the  rotational  matrices  and  is  given  by
R≤ HtL ª R3 H≤W0 b0 tL e≤nt.  We introduce the operator V  (see also App. A.1), defined by 

(2.9)V = - W0 R
+ Hb LL R-,

as well as aè = R+ ent  aHtL  and recover the typical differential equation of the Brownian motion
problem, 

ué
°
= V ué + aè ,

yielding the solution

(2.10)ué  HtL = G HtL u0 + ‡
0

t

 G Ht, tL aè  HtL dt.
The latter is given in terms of the Green´s function GHt2, t1L, [25]

(2.11)G Ht2, t1L ª TBexp :‡
t2

t1

 V  HqL dq>F, G Ht1L ª G H0, t1L,
where T  is the time-ordering operator. All neccessary details of the operator V  are presented
in Appendix A.1. In the original variables, one obtains 
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(2.12)u HtL = R- G HtL u0 + R- ‡
0

t

 G Ht, tL R+ a HtL dt.

Three  fundamental  influences  dominate  the  motion  of  the particle:  the  gyration  around  the
field lines, the random collisions and the fluctuating perturbation component of the magnetic
field. A special solution exists when this last perturbation is not present b = 0,

(2.13)h HtL ª u HtL »b=0 = R- u0 + R- ‡
0

t

 R+ a HtL dt.

To mark the importance of this special solution for vanishing perturbation fields, we denote it
with the letter h, distinguishing again the two possible orientations h¦ = Hhx, hyL  and hz . The
average of this stochastic quantity is zero, XXh\u0

\
a
= 0. The velocities hi  are equivalent to the

random collisional velocities that appear in the V-Langevin [10].
  One further  step  is  the  calculation of the  trajectory of a  single  particle,  which requires an
additional integration in time, 

(2.14)R HtL = r0 +‡
0

t

 u Ht 'L d t '.

RHtL  is  the  trajectory  vector  and  should  not  be  confused  with  the  rotational  matrices.  For
vanishing perturbations the condition

(2.15)lim
bÆ0

RHtL = RH0LHtL,
holds, where RH0L  is given by the classical damped helical particle motion,

(2.16)RH0L HtL = r0 + ‡
0

t

h Ht 'L d t '.

Figure  2.1  shows  the  trajectory  of  a  particle  that  experiences  collisions  and  magnetic
fluctuations.  The  gyro-motion  is  extremely  disturbed  by  the  stochastic  pertubations.
Collisions relocate the particle at once in form of an spontaneous random acceleration and the
perpendicular fluctuations lead to additional deviations from the unperturbed orbit.
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Figure  2.1:  Sketch  of  a  particle  trajectory,  undergoing  collisions  in  the  presence
magnetic fluctuations.

We  make  now  contact  between  the  unperturbed  and  the  perturbed  solution  of  the  ALE.
Solving eqs. (2.12) and (2.13) for u0 , we can identify the influence of the perturbation field in
form of an propagation equation,

(2.17)u HtL = R- G H0, tL R+ h - R- G H0, tL ‡
0

t

 R+ a HtL dt + R- ‡
0

t

 G Ht, tL R+ a HtL dt.

which essentially simplifies by the cancellation of the last two terms on the right hand side,

(2.18)u HtL = R- G H0, tL R+ h HtL.
The  perturbation field  b  acts  as  propagator  on  h.  All  effects  of  b  are  contained  in  G.  For
small values b` b0 , we can expand G in a power series

(2.19)GHt2, t1L º 1+‡
t2

t1

V HqL dq, für t1 > t2,

and use the properties of V  from the previous Sec.,
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(2.20)u HtL = h HtL + ‡
0

t

 V Ht - t, tL h HtL dt .

The latter formula is the starting point for our derivation of the velocity correlation functions.
It is not applicable for vanishing guiding fields, because the condition b` b0  is not valid any
more.  In  this  case  we  have  to  use  the  more  general  Eq. (2.18).  The  relation  between  the
velocity uHtL  of the  A-Langevin equation and the collisional velocities h  was not  derived  in
any previous work.

14 2 Velocity correlations based on the A-Langevin equation



2.2 Velocity products from the A-Langevin solution

2.2.1 The Green-Kubo formalism as link between correlation function and transport

We are interested in the macroscopic transport  properties of ensembles with a large number
of particles. The intention of our efforts is therfore to derive suitable descriptions of the mean
square displacement Xdri

2HtL\ and the running diffusion coeffiecient DHtL, which are related by

(2.21)
1
ÅÅÅÅÅ
2
 

d
ÅÅÅÅÅÅÅÅ
d t

 Xdri
2 HtL\ = D HtL.

This  relation  can   be  deduced  in  the  diffusive  regimes  from  the  VCF  in  Lagrangian
coordinates.  Once  the  Lagrangian  correlation  function  (LCF)  is  known,  the  mean  square
displacement (MSD) and the running diffusion coefficient DHtL  are typically obtained from the
Green-Kubo formula,

(2.22)
d2

ÅÅÅÅÅÅÅÅÅÅÅ
d t2

 Xdri
2 HtL\ = 2 

d
ÅÅÅÅÅÅÅÅ
d t

 D HtL = Xui Ht1Lui Ht2L\.
This  equation should  be solved with the initial conditions DH0L = 0  and XdriH0L\ = 0.  In this
formalism,  the problem of the determination of transport  properties has been reduced to the
problem of finding the correct Lagrangian correlation function. 
  It should be noted, that  the Green-Kubo formula is the one of the most essential equations
for our analysis. Further details on the formalism can be found in [5].

2.2.2 Classical transport and the classical diffusion coefficients

We  summerize  the  results  from  the  Green-Kubo  formalism for  classical  transport.  The
correlations of the velocity h with the stochastic properties of the collisions a, are given by

(2.23)
Xh¦ Ht1L h¦ Ht2L\¦ = vt

2

ÅÅÅÅÅÅÅÅÅÅ
2

 e-n »t1-t2» cos HWb0 » t1 - t2 »L,
Xh»» Ht1L h»» Ht2L\»» = vt

2

ÅÅÅÅÅÅÅÅÅÅ
2

 e-n »t1-t2».
Details on the calculation are given in App. A.2. The constant A = nvt

2  is determined by the
restriction,  that  the  correlation  function  should  only  depend  on  the  time  difference
t = » t1 - t2 » .  Otherwise  an  unphysical  dependence  on  the  absolute  times  t1  or  t2  would
occur. Finally the MSD and the diffusion coefficient are completely detemined by the velocity
correlation  functions  and  derived  by  the  Green-Kubo  formula.  The  integration  is
straightforward and yields the following asymptotical results for classical transport,
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(2.24)Xdx2 HtL\ = vt
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
n2 +W2 b0

2
 nt = 2 c¦ t, Xdz2 HtL\ = vt

2

ÅÅÅÅÅÅÅÅÅÅ
n

 t = 2 c»» t.

Here the classical diffusion coefficients are defined as

(2.25)c¦ =
vt

2 n
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 Hn2 +W2 b0

2L º
vt

2 n
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 W2 b0

2
, c»» = vt

2

ÅÅÅÅÅÅÅÅÅÅ
2 n

.

With  the  information  about  the  classical  transport  data,  Wang  et  al.  suggested  in  [11]  a
suitable  approximation of h¦ , to take care of the difficult oscillating terms induced by Wb0 ,

(2.26)Xh¦ Ht1L h¦ Ht2L\¦ = c¦ n e-n »t1-t2», Xh»» Ht1L h»» Ht2L\»» = c»» n e-n »t1-t2».
In  further  derivations  it  will  be  convenient  to  use  these  correlation  functions.  Of  course
correlations between different directions vanish, e.g. XhxH0L hyHtL\¦ = 0.

2.2.3 Velocity correlation functions in the limit of strong guiding fields

Our observations of disturbed orbits of the trajectories motivate the question, how magnetic
fluctuations  do  contribute  to  the  transport  of  the  particles.  So  we  extend  the  ideas  of  the
previous section and include magnetic fluctuations. The velocity products for  strong guiding
fields are obtained from the solution (2.20),

(2.27)

u Ht1L≈u Ht2L = h Ht1L≈h Ht2L
+·

0

t1

V  Ht1 - t1, t1L h Ht1L dt1≈‡
0

t2

V  Ht2 - t2, t2L h Ht2L dt2.

They  will  also  be  refered  to  as  correlation  function (or  to  be  more  precisely,  unaveraged
correlation function). In Appendix A.1 we present the entries of the matrix V  and some useful
properties. Substituting the Vi j  we immediately find the perpendicular correlation

(2.28)

ux Ht1L ux Ht2L = hx Ht1L hx Ht2L
+ W2 hz Ht1L hz Ht2L ‡

0

t18sin@W b0 Ht1 - t1LD bx Ht1L + cos@W b0 Ht1 - t1LD by Ht1L< dt1

ä‡
0

t28sin@W b0 Ht2 - t2LD bx Ht2L + cos@W b0 Ht2 - t2LD by Ht2L< dt2

+W2 hz Ht1L hz Ht2L ‡
0

t1

‡
0

t2

bz Ht1L bz Ht2L dt1 dt2.

16 2 Velocity correlations based on the A-Langevin equation



and  for the parallel component

(2.29)

uz Ht1L uz Ht2L = hz Ht1L hz Ht2L
+ W2 hx Ht1L hx Ht2L ‡

0

t18-sin@W b0 Ht1 - t1LD bx Ht1L - cos@W b0 Ht1 - t1LD by Ht1L< dt1

ä‡
0

t28-sin@W b0 Ht2 - t2LD bx Ht2L - cos@W b0 Ht2 - t2LD by Ht2L< dt2

+W2 hy Ht1L hy Ht2L ‡
0

t18 cos@W b0 Ht1 - t1LD by Ht1L - sin@W b0 Ht1 - t1LD bx Ht1L< dt1

ä‡
0

t28 cos@W b0 Ht2 - t2LD by Ht2L - sin@W b0 Ht2 - t2LD bx Ht2L< dt2.

Note  the  important  fact  that  the  two  expressions  (2.28)  and  (2.29)  coincide  for
b0 Ø 0. Without  the  guiding  field,  there  is  no  preferred  direction,  and  the  transport
coefficients for  parallel and perpendicular  transport  are evidently equal.  In [7]  this tendency
was observed numerically. It is an essential advantage of the A-Langevin approach to include
this  limiting  case  consistently.  Any method  based  on  the  guiding  center  assumption  fails  to
describe this transition. 
   Using  the  approximation  method  for  large  b0  sketched  in  Appendix  A.3,  we  find  the
functions

(2.30)

ux Ht1L ux Ht2L = hx Ht1L hx Ht2L
+

1
ÅÅÅÅÅÅÅÅÅÅÅ
b0

2
 hz Ht1L hz Ht2L by Ht1L by  Ht2L + 1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
W2 b0

4
 bx ' Ht1L bx ' Ht2L+� HW-4 b0

-6L,
and

(2.31)

uz Ht1L uz Ht2L = hz Ht1L hz Ht2L + @hx Ht1L hx Ht2L + hy Ht1L hy Ht2LD
ä: 1

ÅÅÅÅÅÅÅÅÅÅÅ
b0

2
 by Ht1L by Ht2L + 1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
W2 b0

4
 bx ' Ht1L bx ' Ht2L> +� HW-4 b0

-6L.
This case corresponds to the situation bx,y p bz , so the influence of the z-components of the
perturbation field can be neglected.  The velocity correlation functions still require averaging
with respect to the stochastic variables,
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(2.32)

XXXux Ht1L ux Ht2L\b\¦\»» = Xhx Ht1L hx Ht2L\¦
+

1
ÅÅÅÅÅÅÅÅÅÅÅ
b0

2
 Xhz Ht1L hz Ht2L XXby Ht1L by Ht2L\b\¦\»»

+
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
W2 b0

4
 Xhz Ht1L hz Ht2L XXbx ' Ht1L bx ' Ht2L\b\¦\»» +� HW-4 b0

-6L.
The influences of the magnetic perturbations appear explicitly. We shall call the contributions
of the perturbations the anomalous contribution, thereby distinguishing between the classical
transport  already discussed  in  the  previous  section  and  the  anomalous transport  due  to  the
magnetic  fluctuations.  The  fluctuations  are  stochastically  determined  by  the  productsXbiHt1L b jHt2L\  and  Xbi ' Ht1L b j ' Ht2L\  .   We  identify  the  anomalous  parts  (denoted  with  the
symbol � for Lagrangian),

(2.33)XXXux Ht1L ux Ht2L\b\¦\»»AN ª �H0L +�H1L.
designating the functions �H0L  and �H1L ,

(2.34)�H0L@Xdri
2 HtL\, y»», j»», tD =

1
ÅÅÅÅÅÅÅÅÅÅÅ
b0

2
 Xhz Ht1L hz Ht2L XXby Ht1L by Ht2L\b\¦\»»,

(2.35)�H1L@y»», j»» y¦, j»», tD =
rL

2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
vt

2 b0
2
 Xhz Ht1L hz Ht2L XXbx ' Ht1L bx ' Ht2L\b\¦\»».

A specific order of averages occurs. The average of the parallel collisional velocities, covered
by hz ,  is especially involved since we must  also  include all dependencies on hz  remaining in
the  perturbation  fields  b.  The  first  term  on  the  right  hand  side  of  (2.33),  �H0L ,  does  not
include  any  effects  of  the  finite  Larmor  radii.  Correlation  functions  similar  to  �H0L  were
derived  in  [12]  and in  [17,18,19]  with the  V-Langevin framework  based  on a  pure  guiding
center perspective.

First  order  Larmor  radius  effects  are  included  in  the  second  term  �H1L  (all  higher  order
corrections can also be found by the method sketched in Appendix A.3). At this stage we are
left with the problem to insert appropriate expressions for the Lagrangian b-field correlations,
respectively the correlations for the derivations of the b-fields.

Lagrangian  correlation  functions  appear  as  the  the  central  ingredient  for  the  description  of
anomalous  transport.  These  are  correlations  of the  velocities  evaluated  at  two  points  along
the trajectory. An exact calculation is impossible, because it would be neccessary to solve the
dynamical equation (2.4) for all realizations of the sotchastic quantities. 

Estimates  are  required  to  find  a  relation  [16]  between  the  Lagrangian  and  the  Eulerian
correlations. We will therefore proceed with an intuitive method that helps us to approximate
the Lagrangian correlations.
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3 Transport for small Kubo numbers

3.1 The Corrsin approximation for Lagrangian correlation functions

3.1.1 The Lagrangian coordinate system

In  the  Eulerian  frame of  reference  a  certain  physical value  of a  particle,  let  it  be  aHr, tL,  is
given  as  function  of  its  position  and  the  time.  Such  coordinates  have  a  fixed  origin,  for
example  realized  in  the  laboratory  system.   Lagrangian coordinates  are  given  within  the
co-moving frame of reference. The particles center is the origin of the coordinates. Obviously
both systems are connected with each other by the trajectory of the particle, which means the
value a  in the Eulerian domain leads to the value lHtL = aHRHtL, tL  in the Lagrangian domain.
The transformation is in principle, 

(3.1)l HtL = a@R HtL, tD = ‡
-¶

¶

 dr d Hr - R HtLL a Hr, tL,
as  long  as the  complete  trajectory RHtL  is  known.  This  imposes  the  following  problem:  the
integration of the Green-Kubo formula becomes implicit.

3.1.2 Corrsin´s independence hypothesis

The  situation  becomes  notably  more  complicated  whenever  the  involved  variables  are
stochastic.  Averaging  methods  have  to  be  applied  similar  to  the  ones  presented  in  the
indroductory  section.  Of  course,  the  trajectory  becomes stochastic  as  well  and  the
transformation (3.1)  has to  be evaluated  in a different way.  Especially the  average over  the
fluctuating  magnetic  field  requires  an  advanced  approach.  A widely adopted  approximation
due to Corrsin [13] assumes that  the correlation function and the trajectory can be averaged
independently.  Details  of this  procedure  can also  be found in  [15].  The  approximation  was
confirmed and applied in many works of Balescu et al. [10,11]. Saffman et al. [17] performed
tests of the Corrsin approximation for various cases.

Appropriate estimates for the Lagrangian correlation function have been intensively discussed
in  literature.  Common approaches start  with the  Eulerian correlation  function  (ECF)  of  the
magnetic field,

(3.2)Xb¦ HrL b¦ H0L\ = �@r HtLD = b2 
i
k
jjjjjjj

1- y2

ÅÅÅÅÅÅÅÅÅ
l¦

2 0

0 1- x2
ÅÅÅÅÅÅÅÅÅ
l¦

2

y
{
zzzzzzz exp 

i
kjjjj-

x2 + y2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 l¦

-
z2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 l†§2

y
{zzzz,

which  describes  the  correlation  within  the  laboratory  frame.  Here  we  explicitly  assume  the
Eulerian  correlator  to  have  a  Gaussian  form.  Two  important  length  scales  define  the
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stochastic magnetic field, the correlation lengths l»»  and l¦ . Several authors covered the topic
of  relating  Eulerian  and  Lagrangian  functions,  e.g.  [18].  The  Eulerian  correlator  fulfills  the
condition for the complete magnetic field: divB = 0.

It is convenient to introduce also the Fourier transform of bHrL, 
(3.3)b HrL = ‡ b HkL exp H-ikr HtLL dk.

Now the complete dependence on the trajectory rHtL  is capsuled in the exponential term and
further  collisional  averages  can  be  applied  more  easily using  the  cumulant  expansion.  The
integration vector is k = Hkx, ky, kzL. The correlation spectrum of the ECF is given by

(3.4)Xb Hk1L b Hk2L\ = �
è
 HkL d Hk1 + k2L,

defining the Eulerian correlation function in k -space,

(3.5)�
è
 HkL = Hk¦2 di j - ki k jL A HkL ñe.g.

�
è

y y HkL = k2 A HkL,
and the correlation function of the vector potential in k -space,

(3.6)A HkL = H2 pL-3ê2 l¦4 l»» b2 exp J- 1
ÅÅÅÅÅ
2
 k¦

2 l¦
2 -

1
ÅÅÅÅÅ
2
 kz l»»2N.

Our  rigorous analysis of the procedure follows [14].  Using the formula  (3.1),  we transform
from Eulerian to Lagrangian space 

(3.7)b HtL = ‡ d r b HrL d Hr- R HtLL.
The representation of the d-function in k -space allows us to write the latter as 

(3.8)b HtL = 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH2 pL3ê2  ‡ dk1 ‡ d r b HrL eik1r-ik1 R HtL.

Let bHk1L be the Fourier transform of bHt1L, then the backtransformation yields 

(3.9)b HtL = ‡ dk1 b Hk1L e-ik1 R HtL.

So far  we simply succeeded in rewriting bHtL  in a distinct  form. Next  we concentrate on the
unaveraged correlation,

(3.10)b Ht1L b Ht2L = ‡ ‡ dk1 dk2 b Hk1L b Hk2L e-ik1 R Ht1L-ik2 R Ht2L.

The average over the fluctuation field b  leads to
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(3.11)Xb Ht1L b Ht2L\b = ‡ ‡ dk1 dk2 Xb Hk1L b Hk2L e-ik1 R Ht1L-ik2 R Ht2L\b,

and  causes a  severe  problem in the integrand.  The implicit  dependencies of RHtL  and  b  rule
out any possibility to average the last terms. It is exactly the next step, which is called Corrsin
approximation  or  sometimes  independence  hypothesis  to  overcome  this  problem.  By
assumption  we  demand  the  stochastic  independence  of  the  product  bHk1L bHk2L  and  the
exponential  function  in  the  last  term.  Averaging  both  terms  separately,  the  situation  is
simplified to

(3.12)Xb Hk1L b Hk2L -ik1 R Ht1L-ik2 R Ht2L\b º
Corrsin

 Xb Hk1L b Hk2L\b X e-ikR Ht1L-ikR Ht2L\b.

Please  note  that  the  independence  assumption  only  refers to  the  average  over  magnetic
fluctuations.  The  correlation  of  the  fluctuating  magnetic  field  is  given  in  the  Corrsin
approximation by

(3.13)Xb Ht1L b Ht2L\b = ‡ dk�
è
 HkL X e-ikR Ht1L+ikR Ht2L\b.

Since  the  trajectory  depends  on  h,  it  has  to  be  included  in  further  averaging  procedures
regarding parallel and perpendicular  motion.  Perpendicular  collisions can hereby be included
easily using the cumulant expansion,

(3.14)XX e-ikR Ht1L-ikR Ht2L\b\¦ = e-ikz  Hz0 Ht1L-z0 Ht2LL e- 1ÅÅÅÅ2  kx
2 Xdx2 HtL\¦- 1ÅÅÅÅ2  ky

2 Xdy2 HtL\¦.

3.1.3 Correlation function of the derivative of the perturbation field

We  know  that  the  VCF  presented  in  2.2.3  also  contains  the  correlation  function  of  the
magnetic field derivatives. We differentiate Eq. (3.3), 

(3.15)b ' HtL = -i ‡ dk1 b Hk1L Hk1 ÿR ' HtLL e-ik1 R HtL.
and use the Corrsin method again to find 

(3.16)

Xb ' Ht1L b ' Ht2L\b = H-1L ‡ d k�
è
 HkL

ä Hkx
2 hx Ht1L hx Ht2L + ky

2 hy Ht1L hy Ht2L + kz
2 hz Ht1L hz Ht2LL e

-ikz Ÿ
t2

t1

hz  Ht'L d t'

äe
-ikx Ÿ

t2

t1

hx Ht'L d t'-iky Ÿ
t2

t1

hy Ht'L d t'

.
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This expression is far more complicated than Eq. (3.13). Averages over hi  cannot be applied
directly,  because  products  of  the  exponential  function  and the  hi  appear.  We  will  proceed
with this averages, after we substituted Eq. (3.16) into the correlation function.
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3.2 Lagrangian velocity correlations

3.2.1 The guiding field term �H0L  

At the end of Sec. 2 we derived the anomalous parts,

(3.17)XXXux Ht1L ux Ht2L\b\¦\»»AN ª �H0L +�H1L +� HrL
4L.

which are caused by the magnetic fluctuations. We identify a term �H0L  in the zeroth order of
the Larmor radius, connected to the guiding center limit,

(3.18)�H0L@Xdri
2 HtL\, y»», j»», tD = 1

ÅÅÅÅÅÅÅÅÅÅÅ
b0

2
 Xhz Ht1L hz Ht2L XXby Ht1L by Ht2L\b\¦\»»,

and an additional perturbation term �H1L

(3.19)�H1L@y»», j»» y¦, j»», tD = rL
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
vt

2 b0
2
 Xhz Ht1L hz Ht2L XXbx ' Ht1L bx ' Ht2L\b\¦\»»,

which shows quadratic scaling with the Larmor radius. We will now calculate �H0L  and apply
the Corrsin approximation for the magnetic field,

(3.20)XXby Ht1L by  Ht2L\b\¦ = · dk�
è
 HkL e-i kz Ÿ

t2

t1

hz  Ht'L d t'

 e-
1ÅÅÅÅ2  kx

2 Xdx2 HtL\- 1ÅÅÅÅ2  ky
2 Xdy2 HtL\¦.

This transforms the correlation function into the Lagrangian frame of reference, 

(3.21)�H0L = · dk�
è
 HkL [hz Ht1L hz Ht2L e-i kz Ÿ

t2

t1

hz  Ht'L d t'_»» e-
1ÅÅÅÅ2  kx

2 Xdx2 HtL\¦- 1ÅÅÅÅ2  ky
2 Xdy2 HtL\¦.

We will now introduce two functions which are closely related with the h  motion. Both are
supplementary  stochastic  functions  helping  to  generalize  the  concept  of  the  MSD  and  the
running diffusion coefficient. In general, one defines  

(3.22)

ja = ‡
t2

t1Xa Ht1L a HqL\ dq = ‡
t2

t1Xa HqL a Ht2L\ dq,
ya = ‡

t2

t1

‡
t2

t1Xa Hq1L a Hq2L\ d q2 dq1.

For the classical transport these functions are given by 
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(3.23)

j»» HtL ª ‡
t2

t1Xhz Ht1L hz Hq2L\ dq2 = c »» H1- e-ntL,

j¦ HtL ª ‡
t2

t1Xhx Ht1L hx Hq2L\ dq2 = c ¦ H1- e-ntL,

(3.24)

y»» HtL ª ‡
t2

t1

‡
t2

t1Xhz Hq1L hz Hq2L\ dq1 dq2 =
2 c»»
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
n

 Hnt - 1+ e-ntL,

y¦  HtL ª ‡
t2

t1

‡
t2

t1Xhx Hq1L hx Hq2L\ d q1 dq2 =
2 c¦
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
n

 Hnt - 1+ e-ntL.
The variable j»»,¦  represents  the running diffusion coefficient  and y»»,¦  equals the MSD. We
use this kind of notation to  be consistent  with the majority of contributions in the literature,
see e.g. [11,12,18,19,20].

Note,  that  the  Xdx2\  and  Xdy2\  terms  in  (3.20)  and  (3.21)  still  contain  the  influences
respectively anomalous  transport  and  should  not  be confused  with  the  classical y»»,¦  terms.
The  combined  average  of  the  parallel  motion  is  performed  using  the  prescription  shown in
Appendix B.1,

(3.25)�H0L = · dk�
è
 HkL : vt

2

ÅÅÅÅÅÅÅÅÅÅ
2
 e-n t -m2 j»»2> e- 1ÅÅÅÅ2  kz

2 y»»  e- 1ÅÅÅÅ2  kx
2 Xdx2 HtL\- 1ÅÅÅÅ2  ky

2 Xdy2 HtL\

Performing the k -integration we finally find the Lagrangian correlation function of the guiding
center motion,

(3.26)�H0L = b2

ÅÅÅÅÅÅÅÅÅÅÅ
b0

2
 � :c»» ne-n t -

j»»2
ÅÅÅÅÅÅÅÅÅÅÅ
l»»2  �

2> �.

In the last step we used the symmetry of the system, Xdx2\ = Xdy2\. Hereby the functions �
and �  are defined by

(3.27)
� =

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅJ1+ y»»  HntL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
l»»2 N1ê2

, � =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅI1+ Xdx2 HtL\ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
l¦

2 M2 .

Equation  (3.26)  can now be  introduced  into  the  Green-Kubo  formalism (2.22),  to  obtain  a
differential equation for the transport data. The terms in (3.26) have the following interesting
properties: Infinite limits of the correlation lengths reduce the terms to unity as 

(3.28)�l»»Ø¶ = 1, �l¦Ø¶ = 1.
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3.2.2 The Larmor radius correction term �H1L

In the  case of  strong guiding  fields,  the  main advantage of the  A-Langevin approach is  the
capability  to  calculate  finite  Larmor  radius  corrections.  As  long  as  the  guiding  center
approximation  can be applied,  the  system is  determined by �H0L .  For  smaller  guiding  fields,
the gyration around the field lines contributes to the transport, and finite values of the Larmor
radius  must  be  taken  into  account.  Depending  on  the  ratio  b êb0  of  fluctuations  and  the
guiding  field,  the  finite  Larmor  radius  effects  become  important.  For  b0 p b,  the  Larmor
radius is identified  by rL = vt ê HWb0L .  Finite Larmor radii change the transport  behavior  and
appear  in  (3.17)  via  the additional (first  order)  perturbation term �H1L .  We will  still  assume
that  the  guiding  field  is  predominantly  stronger  than  the fluctuations  and  that  higher  order
corrections  may  still  be  neglected.  We  can  use  our  Corrsin  approximated  results  of  the
derivative  of  the  correlation  function.  Applying  the  average  over  perpendicular  and  parallel
collisions leads to the rather complicated formula

(3.29)

�H1L = Xhz Ht1L hz Ht2L XXb ' Ht1L b ' Ht2L\b\¦\»» = H-1L · :�è  HkL
ä[Hkx

2 hx Ht1L hx Ht2L+ ky
2 hy Ht1L hy Ht2LL e-i kx Ÿ

t2

t1

hx Ht'L d t'-i ky Ÿ
t2

t1

hy Ht'L d t'_
¦

ä[hz Ht1L hz Ht2L e-i kz Ÿ
t2

t1

hz  Ht'L d t'_»»
+ kz

2 [hz Ht1L hz Ht2L hz Ht1L hz Ht2L e-i kz Ÿ
t2

t1

hz  Ht'L d t'_»»
äe-

1ÅÅÅÅ2  kx
2 Xdx2 HtL\- 1ÅÅÅÅ2  ky

2 Xdy2 HtL\> dk.

The major difficulty in the derivation of the term �H0L  was the complicated combined average
of the product of hz  and the exponential function. This kind of averages appear here in three
different  forms.  Although  the  calculation  of  this  terms is  not  trivial  it  just  requires  the
prescription from Appendix B.1 to solve the averages �H1L  step by step, 
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(3.30)

�H1L º -H2 pL-3ê2 ‡ ikjjj vt
2

ÅÅÅÅÅÅÅÅÅÅ
2
 e-n t - kz

2 j»»2y{zzz e- 1ÅÅÅÅ2  kz
2 Hy»»+l»»2L dkz

ä:‡ kx
2@kx

2 c¦ n e-n t - kx
4 j¦

2D e- 1ÅÅÅÅ2  kx
2 Hy¦+l¦2L e- 1ÅÅÅÅ2  ky

2 Hy¦+l¦2L dkx d ky

+ ‡ kx
2@ky

2 c¦ n e-n t - ky
4 j¦

2D e- 1ÅÅÅÅ2  kx
2 Hy¦+l¦2L e- 1ÅÅÅÅ2  ky

2 Hy¦+l¦2L> dkxdky

-H2 pL-3ê2 ‡ m2 
vt

4

ÅÅÅÅÅÅÅÅÅÅ
4
 e-

1ÅÅÅÅ2  m
2 Hy»»+l»»2L dkz

ä‡ kx
2 e-

1ÅÅÅÅ2  kx
2 Hy¦+l¦2L e- 1ÅÅÅÅ2  ky

2 Hy¦+l¦2L dkx dky.

The last term on the right-hand side of Eq. (3.29) was estimated by

kz
2 Zhz

2 Ht1L hz
2 Ht2L e-i kz Ÿt2

t1
hz  Ht'L d t'^»» º vt

4 kz
2 exp J- 1

ÅÅÅÅÅ
2
 kz

2 y»»N.
This  approximation  has  been  verified  a  posteriori.  Evaluating  the  integrals  leads  to  the
correction terms for the correlator,

(3.31)

�H1L = - rL
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
vt

2 b0
2
 �H0Ll¦Ø¶Bc¦ n e-n t  

4
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅI1+ y¦ÅÅÅÅÅÅÅÅÅ

l¦
2 M3 l¦2

-
j¦2

ÅÅÅÅÅÅÅÅÅÅÅÅ
l¦

4
 

18
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅI1+ y¦ÅÅÅÅÅÅÅÅÅ

l¦
2 M4 F

-
rL

2 b2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
b0

2
 

vt
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

4 l»»2 J1+ y»»ÅÅÅÅÅÅÅÅ
l»»2 N3ê2 I1+ y¦ÅÅÅÅÅÅÅÅÅ

l¦
2 M2 .

Here, �H0Ll¦Ø¶  means the result for the zeroth order, in the limit l¦ Ø¶ , which corresponds
to  the correlation function that  describes the quasilinear  limit  in combination with collisions.
�H1L  is a correction term, affecting each regime predicted by �H0L . For small Larmor radii this
correction vanishes.

Only  a  few  diffusion  regimes  allow  the  analytical  evaluation  of  this  correction  formula.
Principially it  describes a reduction of the diffusion.  For l¦ p l»»  it  will be always negative.
Small values of l¦  lead to states where the correction formula may be positive and amplifies
the diffusion. Such states are ruled out by the condition that the Kubo number has to be small.
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3.3 Diffusion regimes 

3.3.1 The A-MSD-equation for the description of anomalous transport

The  Green-Kubo  formalism  (2.22)  allows  us  to  find  the  MSD  and  the  running  diffusion
coefficient of anomalous transport by the solution of an ordinary differential equation, 

(3.32)
d2

ÅÅÅÅÅÅÅÅÅÅÅ
d t2

 Xdx2 HtL\ = 2 
d
ÅÅÅÅÅÅÅÅ
d t
 D HtL = �H0L +�H1L.

In the following we will sometimes refer to this equation as A-MSD equation to denote that it
originates from the A-Langevin equation. The complete diffusion coefficient consists of both,
the classical diffusion rate and the diffusion rate of the anomalous transport.  Equation (3.32)
refers to anomalous transport only. Substituting our expressions for �H0L  and �H1L , we find the
explicit form

(3.33)

d2

ÅÅÅÅÅÅÅÅÅÅÅ
d t2

 Xdx2 HtL\ =
2 

d
ÅÅÅÅÅÅÅÅ
d t
 D HtL = b2

ÅÅÅÅÅÅÅÅÅÅÅ
b0

2
B c»» ne-n t

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅJ1+ y»»  HntL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
l»»2 N1ê2

-
j»»2
ÅÅÅÅÅÅÅÅÅÅÅ
l»»2  

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅJ1+ y»»  HntL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
l»»2 N3ê2

F 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅI1+ Xdx2 HtL\ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

l¦
2 M2

-
rL

2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
vt

2 b0
2
 �H0Ll¦Ø¶B 4 c¦ n e-n t

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅI1+ y¦ÅÅÅÅÅÅÅÅÅ
l¦

2 M3 l¦2
-
j¦2

ÅÅÅÅÅÅÅÅÅÅÅÅ
l¦

4
 

18
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅI1+ y¦ÅÅÅÅÅÅÅÅÅ

l¦
2 M4 F

-
rL

2 b2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
b0

2
 

vt
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

4 l»»2 J1+ y»»ÅÅÅÅÅÅÅÅ
l»»2 N3ê2 I1+ y¦ÅÅÅÅÅÅÅÅÅ

l¦
2 M2 .

Without  constraints,  the  A-MSD  equation  cannot  be  solved  analytically  and  has  to  be
evaluated  by  numerical  methods.  Note  that  (3.33)  represents  the  most  general  form of  the
equation, of course containing all of the different diffusion regimes.
   Fortunately,  it  is  possible  to  find  analytical results  within certain limits  and under special
assumptions,  which  simplify  the  A-MSD  equation.  The  most important  and  famous
anomalous  transport  regimes  (for  small  Kubo  numbers)  are presented  in  the  upcoming
sections.

3.3.2 The quasilinear limit

The quasilinear  regime [11]  refers to  a domain in which the perpendicular correlation length
tends to infinity, l¦ Ø¶  and collisions are absent, n = 0. It is the manifested test regime for
any  theory  describing  anomalous  transport.  The  functions  j»»  and  y»»  can  be  expanded  in
power series at n = 0, yielding 
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(3.34)j»» = vt
2

ÅÅÅÅÅÅÅÅÅÅ
2
 t , y»» = vt

2

ÅÅÅÅÅÅÅÅÅÅ
2
 t2.

Obviously,  only a ballistic  motion along the field  lines prevails,  because the z-motion is  not
disrupted by collisions. No implicit dependence on the perpendicular MSD remains within the
Green-Kubo formula,

(3.35)
d2

ÅÅÅÅÅÅÅÅÅÅÅ
d t2

 Xdx2 HtL\H0L = 2 
d
ÅÅÅÅÅÅÅÅ
d t
 Dql

H0L HtL = vt
2 b2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
b0

2
 

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅJ1+ vt

2 t2ÅÅÅÅÅÅÅÅÅÅÅÅ
2 l»»2 N3ê2

.

Additionally  the  condition  k` 1  always  holds  for  l¦ Ø¶  and  the  results  of  Corrsin
approximation are valid. The latter equation can be directly integrated,

(3.36)Dql
H0L = vt

2 b2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!
2  b0

2
 ·

0

¶

 
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅJ1+ vt
2 t2
ÅÅÅÅÅÅÅÅÅÅÅÅ
2 l»»2 N3ê2

 d t,

to find the asymptotic diffusion coefficient for particles in the quasilinear limit,

(3.37)Dql
H0L = vt

ÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!
2
 
b2

ÅÅÅÅÅÅÅÅÅÅÅ
b0

2
 l»».

So far, we retrieved the famous quasilinear scaling from our �H0L  correlation function. But the
assumptions for this regime simplify also the correction terms. For the first  order correction,
we substitute �H1Ll¦Ø¶  into the Green-Kubo equation,

(3.38)Dql
H1L = - rL

2 b2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 l»»2 b0

2
 ·

0

¶

 
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅJ1+ vt
2 t2
ÅÅÅÅÅÅÅÅÅÅÅÅ
2 l»»2 N3ê2

 d t,

applying the same integral as above, and obtain the correction 

(3.39)Dql
H1L = - vt rL

2 b2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 
è!!!!

2  b0
2 l»» .

Introducing dimensionless quantities, by substituting

(3.40)t = Wb0t , D
êêê

ql =
Dql
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
vt rL

andl
êê»» = l»»

ÅÅÅÅÅÅÅÅÅ
rL

and  using  the  ratio  ¶ = b êb0 ,  Eq.  (3.33)  for  the  anomalous  parts  in  the  quasilinear  limit
becomes,
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(3.41)
2 

d
ÅÅÅÅÅÅÅÅÅÅ
dt

 D
êêê

ql
H0+1L

 HtL = ¶2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅJ1+ t2
ÅÅÅÅÅÅÅÅÅÅÅÅ
2 l
êê»»2 N3ê2

-
¶2
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4 l
êê»»2 J1+ t2

ÅÅÅÅÅÅÅÅÅÅÅÅ
2 l
êê»»2 N3ê2

yielding the results

(3.42)D
êêê

ql
H0L
=

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!

2
 ¶2 l
êê»» and D

êêê
ql
H1L
= -

¶2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 
è!!!!

2  l
êê»» .

The  analytical  predictions  and  the  dimensionless  running  diffusion  coefficient  D
êêê

qlHtL  as  a
function  of  time  are  shown  in  Fig.  3.1.   For  l

êê»» Ø¶  both  curves  coincide.  An  obvious
reduction of the diffusion can be observed, when comparing the guiding center result and the
Larmor corrections. Equations (3.42) is also a good analytical estimate for other regimes, as
it shows that the effect of the gyro-radii vanishes for large l»» .

Figure  3.1:  Solution  of  Eq.  (3.41)  (blue)  for  l
êê»» = 1  and   ¶ = 0.2.  The  dashed  line

describes  the  corresponding  quasilinear  result  without  finite  Larmor  corrections.  The
constant lines are the analytical predictions (3.42). 

3.3.3 Occurance of a subdiffusive situation

Contrary to  the quasilinear  regime,  we now include collisions along the the field  lines.  This
assumption is somehow artificial as  we still keep the condition l¦ Ø¶ , i.e. no decorrelation
in  the  perpendicular  dimension.  As  a  matter  of  fact,  this  case  is  also  not  affected  by  any
insufficiency of the Corrsin approximation. The parallel collisions induce a diffusive transport
in the z-direction. Using y»» = 2 c»»ÅÅÅÅÅÅÅÅÅÅÅ

n
 Hnt - 1+ e-ntL º 2 c»» t , we have to solve the equation 
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(3.43)
d2

ÅÅÅÅÅÅÅÅÅÅÅ
d t2

 Xdx2 HtL\H0L = 2 
d
ÅÅÅÅÅÅÅÅ
d t
 Dsub

H0L HtL = b2

ÅÅÅÅÅÅÅÅÅÅÅ
b0

2
 : vt

2 e-nt

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 J1+ y»»  HtLÅÅÅÅÅÅÅÅÅÅÅÅÅ

l»»2 N1ê2
-
j»»2
ÅÅÅÅÅÅÅÅÅÅÅ
l»»2  

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅJ1+ y»»  HtLÅÅÅÅÅÅÅÅÅÅÅÅÅ

l»»2 N3ê2
>.

This  differential  equation  yields  subdiffusive  behavior  for  the  perpendicular  transport.
Introducing the dimensionless quantities

(3.44)t = nt, cêêê»»,¦ = 2 c»»,¦
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
l»»,¦2 n

and D
êêê

sub=
Dsub
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
l»»2 n ,

the Eq. (3.43) leads to

(3.45)
d2

ÅÅÅÅÅÅÅÅÅÅÅ
d t2

 sH0L = 2 
d
ÅÅÅÅÅÅÅÅÅÅ
dt

 D
êêê

sub
H0L
 HqL = ¶2 e-t

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH1+ cêêê»» tL1ê2 -
¶2 cêêê»»2 H1- e-tL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

4 H1+ cêêê»» tL3ê2 .

Note  that  we  use  different  ways  to  introduce  dimensionless  quantities.  Especially  our
definition of D

êêê
 differs in each regime and is therefore denoted with an index, referring to the

specified regime. 
Figure  3.2  shows  subdiffusive  decays  of  the  running  diffusion coefficient  for  different

values of the characteristic parameter cêêê»» . 

Figure  3.2: Solution  in  the subdiffusive regime Hl¦ Ø ¶, n > 0L .  Diffusion  coefficient
D
êêêH0L

 as function of the reduced time for different values of cêêê»» .
The long time asymptotics for  tp 1  of the running diffusion coefficient  DHqL  is determined
by the integral
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(3.46)D
êêê

sub
H0L
 HqL = - ¶2 cêêê»»2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
8

 ‡ 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHcêêê»» qL3ê2  d q =

1
ÅÅÅÅÅ
4
 ¶2 cêêê»»1ê2 q-1ê2

verifying  the  dependency  DHqL~è!!!!!!!q-1 .  This  regime  is  also  discussed  in  the  literature  [10]
using  different  approaches  and  its  results  are  well  established.  Finite  Larmor  radius
corrections do not lead to a change of the subdiffusive nature.

3.3.4 The Rechester-Rosenbluth regime

A very important  and often stated diffusion scaling was found by Rechester  and Rosenbluth
[26]. It is a paradigm for anomalous transport and can be derived from the A-MSD equation
analytically. Contrary to the limiting cases presented above, we now assume finite correlation
length.  The differential equation for the MSD is given by

(3.47)
d2

ÅÅÅÅÅÅÅÅÅÅÅ
d t2

 Xdx2 HtL\H0L = b2

ÅÅÅÅÅÅÅÅÅÅÅ
b0

2
 

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅI1+ y¦+Xdx2 HtL\H0LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

l¦
2 M2  :

vt
2 e-nt

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 J1+ y»»  HtLÅÅÅÅÅÅÅÅÅÅÅÅÅ

l»»2 N1ê2
-
j»»2
ÅÅÅÅÅÅÅÅÅÅÅ
l»»2  

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅJ1+ y»»  HtLÅÅÅÅÅÅÅÅÅÅÅÅÅ

l»»2 N3ê2
>.

Introducing the quantities,

(3.48)

x =
2 Xdx2 HtL\
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

l¦
2

, t = nt, cêêê»»,¦ = 2 c»»,¦
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
l»»,¦2 n

,

y
êê»»,¦ = y»»,¦

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
l»»,¦2

, jêê»»,¦ = j»»,¦
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
l»»,¦  and D

êêê
RR =

DRR
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
l»»2 n

and using the Kubo number k = bl»» êb0 l¦   we obtain the dimensionless form of Eq. (3.47),

(3.49)

d2

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
dt2

 xH0L HtL = Jk2 cêêê»» e-t H1+ yêê»»L- 1ÅÅÅÅ2 -

k2 cêêê»»2 H1- e-tL H1+ yêê»»L- 3ÅÅÅÅ2 N J1+ yêê¦ + 1
ÅÅÅÅÅ
2
 x HtLN-2

.

In the limit tp 1  the equation becomes 

(3.50)
d2

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
dt2

 xH0L HtL = -k2 cêêê»»2 H1+yêê»»L- 3ÅÅÅÅ2  J1+ yêê¦ + 1
ÅÅÅÅÅ
2
 x HtLN-2

.

For  estimates of the  diffusion in  this  regime,  we use a separation method presented  in [12]
based  on  the  following  argument:  The  motion  can  be  divided  into  two  anomalous
contributions, 

è a displacement sH0LHtL  caused by the motion of the particle with the field line alone. This
situation corresponds to  the subdiffusive case and was already discussed in the previous
section.
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è a decorrelation mH0LHtL  from the field lines mainly caused by collisions, which is called the
Rechester-Rosenbluth diffusion.

The  MSD  which  can  be  retrieved  by  (3.47)  or  (3.50)  is  a  superposition  of  this  two
contributions,

xH0L HtL = sH0L HtL+ mH0L HtL.
To  single  out  the  asympotic  diffusion  due  to  the  magnetic  nonlinearity,  we  have  to  find  a
solution for mHtL and introduce,

(3.51)d2 s êd t2 = -k2 cêêê»»2H1+ yêê»»L- 3ÅÅÅÅ2 ,

leading to

(3.52)
d2

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
dt2

 mH0L HtL = k2 cêêê»»2 H1+ yêê»»L- 3ÅÅÅÅ2  I1- H1+yêê¦ + x HtLL-2M.
In appendix B.2 we split this equation into two time domains and present a fitting method to
find a solution mH0LHtL  and the corresponding diffusion coefficient  D

êêê
RR.  The result  scales like

the famous Rechester-Rosenbluth diffusion coefficient and is given by, 

(3.53)D
êêê

RR
H0L
 HtL = 16 k4 cêêê»»

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
log2 I16 

è!!!!!!!
2 p  k4 cêêê»» cêêê¦-1M .

Introducing a reduced dimensionless Larmor radius and friction

(3.54)rêêL =
rL
ÅÅÅÅÅÅÅÅÅ
l»» , nêê =

n
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Wb0

the dimensionless form of the correction formula,

(3.55)
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ÅÅÅÅÅÅÅÅÅÅÅ
d t2
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4 l»»2 J1+ y»»ÅÅÅÅÅÅÅÅ
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l¦
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reads

(3.56)

d2

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
dt2

 xH1L = - 1
ÅÅÅÅÅ
2
 rêêL

2 nêê2 k2 �
êêêH0L

l¦Ø¶@4 e-t H1+ cêêê¦ tL-3 - 18 cêêê¦ H1- e-tL2 H1+ cêêê¦ tL-4D
-

1
ÅÅÅÅÅ
2
 rêêL

2 k2 cêêê»» H1+ cêêê»» tL-3ê2 H1+ cêêê¦  tL-2.
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In Fig. 3.3 the diffusion coefficient is shown as a function of k . We used values for k  that are
within  the  valid  range  of  the  Corrsin  approximation.  It  shows  the  typical  quadratic  scaling
(3.53) for the Rechester-Rosenbluth regime in the guiding center limit. For increasing Larmor
radii the transport is (again) reduced severely. 

Figure 3.3:  Influence of the Larmor radii on the diffusion in the Rechester-Rosenbluth
regime.  Total  diffusion  coefficient  D

êêê
RR = D

êêê
RR
H0L
+D
êêê

RR
H1L

 from  the  solution  of  the
dimensionless Eqs.  (3.42) and (3.48) for  different  values of rêêL .  The classical  diffusion
rates were chosen in the typical Rechester-Rosenbluth range to be cêêê¦ = 0.4 and cêêê»» = 20.

Figure 3.4 shows the asymptotic dimensionless diffusion coefficient  D
êêê

RR  as a function of the
dimensionless  Larmor  radius  rêêL .  The  reduction  caused  by  (3.56)  is  compared  with  the
guiding center result  (3.50)  (which is a constant in rêêL ) and the parabolic deviation from the
predicted value in the zeroth order can be seen. 
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Figure  3.4:  Diffusion  coefficient  as a  function  of the Larmor  radius.   Solution  of the
dimensionless Eqs. (3.42) and (3.48) for k = 0.4, cêêê¦ = 0.2 and cêêê»» = 20.

3.3.5 The Kadomtsev-Pogutse -I regime

Basically,  two  diffusion  scalings  are  referred  to  as  Kadomtsev-Pogutse  limit.  The  first  one
(Kadomtsev-Pogutse-I),  which  we  will  refer  to  as  percolation  limit  is  characterized  by  an
infinite  parallel  correlation  length  l»» Ø¶ ,  [24].  The  second  one  (Kadomtsev-Pogutse-II)
describes  collisional  transport  within  weak  stochastic  fields  and is  discussed in  detail  in the
next  section.   Evidently  the  first  case  violates  the validity  condition  of  the  Corrsin
approximation  and  is  assumed  to  give  wrong  predictions  for  the  transport  properties.
Nevertheless it  is  very  elucidating  to  discuss  this  regime  first  under presumably  wrong
assumptions.   Kadomtsev  and  Pogutse  proposed  that  in  this  case  the  asymptotic  diffusion
coefficient scales like

(3.57)D ~ vt 
b
ÅÅÅÅÅÅÅÅ
b0

l¦.

Indeed such a scaling is observed analytically, if we use the correlation functions derived with
the independence hypothesis,

(3.58)DKP
H0L = vt

2 b2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 b0

2
 ·

0

¶

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅI1+ DKPtÅÅÅÅÅÅÅÅÅÅÅÅÅ

l¦
2 M2  dt =

vt
2 b2 l¦

2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 b0

2 DKP
H0L

leading to the asymptotic (positiv) solution for DKP
H0L ,
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(3.59)DKP
H0L = 1

ÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!
2
 vt 

b
ÅÅÅÅÅÅÅÅ
b0

l¦.

Unfortunately,  this  scaling  is  wrong  [18].  For  l»» Ø¶ ,  the  turbulence  may be  regarded  as
frozen. The trajectories of the particles will then be trapped within the closed contour lines of
the  stream function  f  and  the  diffusion  vanishes  because  a  linear  grow  of  the  MSD  is  no
longer  possible.  Obviously  this  behaviour  is  not  reflected  in  (5.10).  As  D~k0  which  is  a
Bohm-like scaling, D  will be constant for k Ø ¶.  Many works pointed out this failure of the
Corrsin method [18,19] for strong magnetic turbulence. 

Isichenko  et  al.  applied  in  [22]  methods  of  the  percolation  theory  and  predicted  that  the
diffusion coefficient depends crucially on the fractal dimension n of the contours of f,

(3.60)DH0L = bl¦ k
-1ên+2.

Numerical simulations,  as  shown  e.g.  in  [27],  lead  to  the  well-established  result  for  large
Kubo numbers,

(3.61)DH0L~k-0.3.

We  shall  come  back  to  this  point  in  Sec.  4.  A  detailed review  of  the  percolation  theory
approach to transport in random media can e.g. be found in [23].

3.3.6 The Kadomtsev-Pogutse-II regime

The  Kadomtsev-Pogutse-II  regime  is  a  situation  were  the  collisional  effects  are  more
important  than  the  magnetic  perturbation  field.  It  is  often  refered  to  as  weakly  anomalous
regime.  It  is  characterized  by  the  conditions  cêêê¦ p D

êêê
KP2  and  cêêê¦ ` cêêê»» .  Obviously  the

classical  diffusion  coefficient  may not  become  zero  in  this  regime.  Using  the  dimensionless
A-MSD equation from the last section. in its asymptotic limit tØ¶, we have

(3.62)2 
d
ÅÅÅÅÅÅÅÅÅÅ
dt

 D
êêê

KP2
H0L
 HtL = -k2 cêêê»»2 H1+ cêêê»» tL- 3ÅÅÅÅ2  H1+ cêêê¦ tL-2,

which  can be integrated  explicitly to  find  the  asymptotic  diffusion coefficient  in  form of  an
expansion in cêêê¦

1ê2 , 

(3.63)

D
êêê

KP2
H0L
= -

k2 cêêê»»2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2
 ‡
0

¶H1+ cêêê»» tL- 3ÅÅÅÅ2  H1+ cêêê¦ tL-2 dt

=
3p
ÅÅÅÅÅÅÅÅÅÅ
2
k2"#############cêêê»» cêêê¦ +� Hc¦L.

This  is  the  well-known Kadomtsev-Pogutse-(II)-regime  for weakly anomalous influences.  It

shows  the  characteristic  D
êêê

KP2~"#############cêêê»» cêêê¦  scaling  of  the  diffusion  constant  and  may  be
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regarded as a boundary situation for the more general Rechester-Rosenbluth regime.
   We  can  now  quantify  the  condition  DKP2` cêêê¦ ` cêêê»» ,  which  only  holds  as  long  as
k2 cêêê»»` cêêê»» . 
   For the higher order correction DH1L  a similar equation is found and we have again one of
the rare cases in which the first order term �H1L  can be evaluated analytically,

(3.64)

D
êêê

KP2
H1L
= -

1
ÅÅÅÅÅ
4
 rêêL

2 k2 cêêê»» ‡
0

¶H1+ cêêê»» tL-3ê2 H1+ cêêê¦ tL-2

= -
3 p
ÅÅÅÅÅÅÅÅÅÅ
2
 rêêL

2 k2 $%%%%%%%%%cêêê¦ÅÅÅÅÅÅÅÅÅÅ
cêêê»» ,

revealing the influences of the Larmor radius. In dimensional form,  the diffusion coefficients
are given by

DKP2
H0L = 3p k2 l¦ÅÅÅÅÅÅÅÅÅ

l»»  
"#############c»» c¦ , DKP2

H1L = - 3 p
ÅÅÅÅÅÅÅÅÅÅ
2
 rL

2 k2 
l¦
ÅÅÅÅÅÅÅÅÅ
l»»  $%%%%%%%%%c¦

ÅÅÅÅÅÅÅÅÅÅ
c»»  n.

We show the influence of the finite Larmor radii in Fig. 3.5. The anomalous diffusion rate is
magnitudes  smaller  than  the  classical  diffusion  coefficient.  Still   an  effect  of  the  correction
term can be observed, that shows a quadratic reduction of D

êêê
KP2 with rêêL . 

Figure  3.5:  Influence  of  the  Larmor  radii  on  the  Kadomtsev-Pogutse-II  regime.  We
used here the values that lie within the conditions of this regime of k = 0.03,   cêêê»» = 10
and cêêê¦ = 0.2. 
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Though  the  classical  transport  coefficients  in  Fig.  3.5  have  similar  values  as  in  the
Rechester-Rosenbluth  case,  k  is  small  enough  to  satisfy  the  conditions  for  the
Kadomtsev-Pogutse-II regime. Again, the reduction is antiproportional to l»» . 
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3.4 Particles in vanishing mean fields

3.4.1 Velocity correlation function for vanishing mean fields

So  far  we  described  the  transport  of  particles  in  the  presence  of  strong  guiding  fields  and
additional  stochastic  perturbations.  The  situation  changes  considerably  when  the  mean
(guiding)  field is no  longer present. The total B-field is then given by (2.3),  and the particle
transport  takes  place in  a  purely stochastic  environment.  Of  course,  the  Larmor  radius still
exists and is now given by rL = vt ê HWbL.  Some remarks on this case were already proposed
in the appendix of [7]. We now present predictions for the collisional case.

The  assumption  of  weak  guiding  fields  simplifies  the  solution  of  the  ALE.  The  rotational
matrices are replaced by unity matrices and the operator V  gets a simpler shape. Within this
assumption the solution of the ALE reads,

(3.65)u HtL = G H0, tL h HtL.
It is not surprising that we have only one relevant component, as G is significantly reduced,  

(3.66)G H0, tL = TBexp 
i
k
jjjjjj‡
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t

 V dt
y
{
zzzzzzF, V = -W 

i
k
jjjjjjjj

0 -bz by

bz 0 -bx

-by bx 0

y
{
zzzzzzzz.

The  velocity  correlator  is  given  by  the  product  uHtL uH0L  and  has  to  be  averaged  over  all
stochastic variables,

(3.67)Xu HtL u H0L\ = XXXG H0, tL h HtL h H0L\b \»»\¦.

We  assume  that  the  averages  over  the  collisions  h  (we  can  no  longer  distinguish  any
directions) and the b-field in G can now be applied indepently, yielding

(3.68)Xu HtL u H0L\b ¦ »» = XG H0, tL\b ¦ »» XXh HtL h H0L\»»\¦.

3.4.2 The relaxation function g

The average of the propagator is obtained by a cumulant expansion in the exponential. Using 

(3.69)XV  Ht 'L V  Ht ''L\b = W2 

i

k

jjjjjjjjjjjjjjjjjjjjjjjj

-Xby Ht 'L by Ht ''L\b
-Xbz Ht 'L bz Ht ''L\b

0 0

0 -Xbz Ht 'L bz Ht ''L\b
-Xbx Ht 'L bx Ht ''L\b 0

0 0 -Xbx Ht 'L bx Ht ''L\b
-Xby Ht 'L by Ht ''L\b

y
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and XbxHt 'L bxHt ''L\b = XbyHt 'L byHt ''L\b = XbzHt 'L bzHt ''L\b  we finally get

(3.70)XG H0, tL\b ¦ »» = exp :-2 W2 ‡
0

t

‡
0

t XXb Ht 'L b Ht ''L\b\¦ »» dt ' dt ''> 1.

The  integration  is  not  performed  directly.  We  first  assume  that  the  magnetic  fluctuations
converge into a linear and diffusive state, 

(3.71)XG H0, tL\b ¦ »» = exp H-2 W2 g tL.
defining the function gHtL as

(3.72)g HtL = ‡
0

¶XXb HtL b H0L\b\¦»» dt.
We call gHtL  the relaxation function. A similar  definition can be found in the works of Kubo
[20].  With  the  Corrsin  approximation  we  can find  estimates  for  this  function,  as  the  Kubo
number is now equal to b êb0 . Because there is no predominating direction in the weak field
case and all directions can be treated on equal basis, the one-dimensional analysis is sufficient.
The collisional diffusion cofficient  for  each direction is  given by c = vt

2

ÅÅÅÅÅÅÅÅ2 n .With the cumulant
expansion and the assumption of collisional diffusivity, Xdx2\ = 2 ct , 

(3.73)g = ‡
0

¶

‡
k rL>2 p

�
è
 HkLexpB- 1

ÅÅÅÅÅ
2
 k2 c tF dk  dt .

Essential for the calculation is a heuristic estimate of the effective integration region, namely
that  the Larmor radius of the particles has to  be larger  than the wavelength of the modes in
(3.65).  Because the particles follow the field  lines when their  Larmor  radius is  smaller  than
the wavelength of the  modes,  we consider  only the modes with k > 2 p ê rL .  This argument
was succesfully applied by Casse et al. in [7] in a comparable situation.

The integral over  k  should  be evaluated  as follows.  Split  the integration into  two  parts and
neglect the intervall ]-2 p ê rL, 2 p ê rL [, 

(3.74)
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This leads to, 
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This can be written as
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The integrand can be approximated for real arguments and with x ∫ 0  by erfcHxL ê x º e-x2 ê x
and becomes integrable,
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and yields,
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3.4.3 The transport coefficients for vanishing mean field regimes

Together  with the definition of the propagator,  we get  the  final MSD equation.  Introducing
Eq.  (3.78)  with  (3.71)  and  (3.68)  into  the  Green-Kubo  formula,  we  immediately  find
asymptotic results for the MSD, as g  appears as an correction to the friction n,

(3.79)
d2 Xdx2\
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

d t2
= Xu HtL u H0L\b ¦ »» = vt

2

ÅÅÅÅÅÅÅÅÅÅ
2
 e-n t -2 W2 g t.

The solution of this differential equation is equal to the integration for classical transport and
leads to

(3.80)Xdx2\ = vt
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHn + 2 W2 gL  t.
Small  stochastic  perturbation  fields  act  like  a  collisions.  They  introduce  friction-like
deviations  between  particle  and  field  and  reduce  the  diffusion  in  the  same  way  as  the
collisional frequency n. The asymptotic diffusion coefficient can be deduced from (3.80),
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(3.81)D =
vt
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We  introduce  dimensionless  quantities,  by  dividing  the  classical  diffusion  coefficient  c  and
substituting expression (3.78),

(3.82)
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The effect of the stochastic magnetic field is shown in Fig. 3.6, where the diffusion coefficient
is  given  as  a  function  of  the  dimensionless  correlation  length  l ê rL .  Diffusion  is  reduced,
compared to the classical rate, for a certain values of l ê rL . This can be understood mainly as
an effect  of  the  correlation  length:  for  large correlation lengths  the  magnetic  field  will  not
change and the particles are not  affected by the field. A maximum of the magnetic influences
is found for l ê rL º 0.1. The spatial random variation of the magnetic field can be responsible
for  the  random  interactions  between  particle  and  field.  They  induce  forces  that  are
comparable  to  collisions  that  are  described  by  the  additional  virtual  friction  term  in  the
diffusion coefficient.

Figure  3.6:  Ratio  of  the  diffusion  coefficient  defined  in  (3.80)  as a  function  of  the
reduced correlation length l ê rL . 
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3.5 The Kubo number restriction of the Corrsin approximation

The Corrsin approximation is restricted to a certain domain of validity, defined in terms of the
Kubo  number  (1.6).  The  Kubo  number  is  generally  defined  as  the  ratio  of  the  distance  a
particle  travels  during  an  autocorrelation  time  and  the correlation  distance.  Large  Kubo
numbers  k > 1  lead  to  a  failure  of  the  independence  hypothesis,  and  in  this  case  Corrsin
estimates  give  the  wrong  correlation  behavior.  Some  recent  works  of  Vlad  et.al.
[17,18,19,21]  presented  suitable  replacements for  the  Corrsin approximation which are  also
valid  for  larger  Kubo  numbers.  As  a  matter  of  fact,  the  decorrelation  trajectory  method
(DCT)  is  more  involved  and  its  application  within  the A-Langevin  framework  will  be
presented in Sec. 4. Then our framework is extended to the percolative regimes.

For all results obtained within the Corrsin conjecture we are restricted to k` 1.

A further, completely equivalent method is the MDIA, the modified interaction approximation
discussed by Vanden-Eijnden et  al.  in [12].  It  also  uses the independence hypothesis  and is
restricted to the same ranges of turbulence as the Corrsin approximation. 
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4 Transport in percolative magnetic environments

4.1 Percolative magnetic structures and the DCT

4.1.1 The flux function f and the trapping effect in percolative structures

We start  our  description of the  stochastic properties  of the  magnetic field b  from a slightly
different  point  of  view.  The  perturbation  field  b  is  now  assumed  to  have  only  a
two-dimensional  structure.  For  sufficiently  strong  guiding fields,  this  condition  is  always
fulfilled. Such a stochastic field b is generated by the scalar magnetic potential f Hx, zL, 

(4.1)b Hx, zL = “f Hx, zL ä ez;

f  will  be  called  flux  function  [18].  The  vector  x = Hx, yL  refers  to  the  perpendicular
coordinates,  whereas z  can be regarded as the parallel component.   Magnetic field lines are
determined by the flux function using the relation d x êd z = b. It yields two Hamiltonian-type
equations for the field line motion

(4.2)
d x
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∑f
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∑ y

,
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= -
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∑ x

.

For large Kubo numbers k = b l»» ê Hb0 l¦L  we may assume that  f  depends on z  very slowly,
so  the  partial  derivative  with  z  is  zero,  ∑f ê∑ z = 0.  From  this  condition  and  Eq.  (4.2)  it
follows that the field lines have to remain on the equipotential lines of f. We have for a field
line trajectory

(4.3)
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In Fig. 4.1 we show a typical contour plot of f   as a function of the coordinates x  and y, as
two contour lines associated with the constant levels of f. The initial value of f  will be called
f0 . Depending on this level, the above condition implies that a fictive particle may be free to
cross the topographical map (a), or may be trapped for certain f0-values, which is shown in
Fig.  4.1 as the line (b).   For  k Ø ¶ ,  trapped field lines remain trapped.  Smaller  k ,  for finite
l»» ,  may  lead  to  a  detrapping  with  increasing  z.  When  most  lines  are  de-trapped  after  a
correlation time, we are in the non-percolative limit.

Typically this situation is illustrated by the following analogy, [22,24]: f  is considered to be a
landscape composed of hills and wells, which is filled with water to the level of f0. If we start
in the maximum of f, where the landscape is completely flooded and decrease the waterlevel
f0 , the number of hills increases as well as their dimensions.
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Figure 4.1: Contourplot of f HxL  plotted in an x -y -diagram for two realisations
of field line motion,  (a)  a value of f0  near  the threshold,  where the field line
can  pass  the  complete  topographical  map  and  (b)  the  walk of  a  trapped  field
line near a potential extremum. 

At   certain  levels  the  coalescence  of  different  hills  is  observed,  because  f0  passes  the
hyperbolic points of the percolation map. Whenever such a coalescence takes place, the area
and the contourline of the hill suddenly increase and with it the area along which a field line is
allowed  to  travel.  High  Kubo  numbers  represent  f-regimes  with  distinct  extremas,  hence
many hills. The particle diffusion is reduced essentially, because a certain number of particles
remain  in  trapped  states  with  their  field  lines.  Such  a  particle  contributes  to  the  diffusion
process  again,  if  it  is  dislocated  to  a  lower  f0value  by  a  collision.  Higher  collisionality
therefore reduces the trapping effect.

Contrary a situation with less hills or many united hills, a "smooth" landscape, is realized
for  small  Kubo  numbers.  In  such  regimes  trapping  does  not  play  an  important  role  and  is
neglected. Our results from Sec. 3 belong to such a realisation.

If a potential is constant in t , or zHtL  respectively, it is called "frozen". Nearly all particles
are then trapped around the hills and wells. Subdiffusive behaviour with D Ø 0  emerges. The
structure will change as the particle moves along the trajectory.  The characteristic length of
this process is the parallel correlation length l»» .  For distances with z` l»»  the potential will
not  change at  all.  Figure  4.2 shows a  three dimensional evolution of the  x-y-contours of f
with z  for  l»» > L ,  where L  is  the maximal length in z.  A notable alteration of the potential
will  happen  on  length  scales  predominantly  longer  than  l»» .  Here  a  nearly  infinite  parallel
correlation  length  ensures  the  stability  of  the  percolation  structure  along  z.  The  lines  of
constant  f0  do  not  change  and  form  so  called  flux  tubes  [6].  Field  lines  stay  on  the
equipotential lines and are forced to remain on the surfaces of the flux tubes. 
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Figure  4.2:  Flux  structure  illustration  of  the  function  f  in  a  regime  with
infinite high Kubo numbers, l»» Ø¶ , b = 0.2  and l¦ ` 1. Here the box length
in x , y  and z  is L = 1.

In Fig. 4.3 we show the deformation of the flux tubes due to the variation of f with z. In such
a case the condition ∑fÅÅÅÅÅÅÅ

∑z º 0  is no longer valid, and field lines are no longer strictly bound to
the lines of constant f. 

Figure  4.3:  Flux  decorrelation  for  small  parallel  correlation  lengths,
l»» º l¦  1  and b = 0.2. Flux tubes start to merge and new tubes emerge. The
length of the box is L = 1.
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Additionally,  we now  observe  the  case  L > l»» .  The  tubes  and  with them their  contourlines
start to merge, so the field lines are allowed to explore larger areas of the f  map. Even new
flux tubes emerge that   join the other ones after certain distances z.  The value of l»»  belongs
to  situation with k d 1. Field lines can nearly pass freely along the whole area and this state
can be described with the Corrsin method.

Though  the  figures  provide  a  good  intuitive  approach  to  understand  the  difficulties  of  the
percolation  regime,  a  detailed  theory for  this  situation is  needed.  Effects  of the  percolation
structure have to be included on the level of the flux function f and so we proceed with the
stochastic properties of this function.

4.1.2 The stochastic properties of  the flux function f

Of course, the flux-function itself is a stochastic object, too. Its correlation function is defined
as,

(4.4)A Hx, zL = Xf H0, 0L f Hx, zL\ = b2 l¦
2 exp@-Q Hx, zLD,

with the phase Q 
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In the previous section, we derived the LCF from the Eulerian correlator of the b-field. The
Eulerian correlation of the pertubation field b is defined by 

(4.6)� ª Xb H0L≈b HxL\ = XH“äf ezL≈ H“ äf ezL\ = ikjjj
-∑y y A ∑yx A

∑x y A -∑xx A
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�xx �x y

�yx �y y

y{zzz.
Additional cross-correlations [20] between the b-field and the flux function f are given by

(4.7)�fx ª Xf H0L bx Hx, tL\ = -∑y A = -�xf , �yf = -�fx = -∑x A.

Correlations of the derivatives with respect to the time t  are denoted by a bar and are given by
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êê
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 Xbi Ht1L bi Ht2L\.
We have

46 4 Transport in percolative magnetic environments
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yielding the correlation matrix
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by applying (4.8). We also used the property of the h-velocities that cross-correlations of the
velocities, XhxH0L hyHtL\¦ = 0, vanish. The same reason causes �fb' = XfH0L bx ' HtL\ = 0, because
only single hi -elements appear.
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4.2 The decorrelation trajectory approximation (DCT)

4.2.1 The subensemble decomposition of the Eulerian correlator

We have seen in Sec. 4.1 that the f  structure influences the transport decisively. The Corrsin
approximation  lacks  the  ability  to  include  this  influence.  The  position  in  the  f-map,
characterized  by  f0, bx

0  and  by
0  determines  whether  the  field  line  can  pass  through  large

areas or is trapped. Now we collect a set of trajectories with the same distinct potential level
f0  and  b-field b0  at the position x = 0. This set will be refered to as a subensemble SHf0, b0L
[18,19,20]. An infinite number of these subensembles exists to include any possible magnetic
field  configuration.  Indeed  there  will  be  ensembles  with  certain  values  of  the  magnetic
parameters that allow trapping. 

The ECF is now separated into contributions from each of these subensembles S Hf0, b0L
with  the  initial  conditions  f0 = fH0L  and  b0 = bH0L.  The  complete  ECF  has  then  to  be  the
superposition of all possible subensembles, expressed in terms of the integral

(4.11)� HxL = ‡
-¶

¶

 ‡
-¶

¶

 df0 db0 P Hb0, f0L Xb H0L≈ b Hx, zL\S.

The probability PHb0, f0L  is  given in terms  of standard  Gaussian distributions and describes
the probability to find the parameters f0  and b0  as well as it measures the contribution of the
subensemble  to  the  integral.  All  possible  configurations in  f0  and  b0  are  covered  by  the
integration.  So  far  we have only the subensemble  description of the  magnetic  field  alone,  a
pure  magnetic  field correlation function.  We recall the velocity correlation found for  strong
guiding fields, 

(4.12)XXXux  Ht1L ux Ht2L\b\¦\»» ª Xhx Ht1L hx Ht2L\¦ +�H0L@x, z, tD +�H1L@x, z, tD,
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It  is  evident,  that  the  parallel collisional  velocity modelled  by hz  have also  to  be taken into
account.  The  subensemble  representations of  the  contributions from anomalous  transport  in
the Eulerian correlator should read
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We  added  the  index  DCT  to  denote  the  origin  of  the  approximation  technique  and  to
distinguish the new correlation functions from the ones derived in Sec. 3.

Until this point  Eqs.  (4.15) and (4.16) remain exact  and no approximation has been applied.
Unfortunately,  the  same problem occurs that  we encountered  in the Corrsin approximation:
We  do  not  know  the  exact  trajectory  r = Hx, zL.  But  the  decomposition  leads  to  a  slightly
different  view.  In  each  subensemble,  the  values  of  f0  ,  h0  and  b0  are  fixed.  Within  a
subensemble  we  can  determine  each  trajectory  for  a  mean  field  XbHx, zL\s  by  solving  the
A-Langevin equation. The crucial simplification of this technique is that all contributions from
the magnetic field are non-stochastic values.

The major  approximation of the DCT [18]  and therefore the transition from the Eulerian to
the  Lagrangian  perspective,  is  to  evaluate  the  formulas  (4.15)  or  (4.16)  by  estimating  the
unknown trajectory xHtL with the decorrelation trajectory,

(4.16)x HtL º X  HtL.
XHtL  is the fictitious trajectory, along which a particle would travel if it is introduced into the
subensemble magnetic mean field, is called the decorrelation trajectory.  It  is then substituted
into the expression for the averaged field XbHx = X , zL\s  and with the trajectory XHtL  given by
the  A-Langevin  equation,  Eqs.  (4.15)  and  (4.16)  determine   the Lagrangian  velocity
correlator. Our first task is now to find the average Xb Hx, zL\S  in each subensemble defined by
b0  and f0.  Additionally we need expressions for the averages occuring in the DCT equations.

The DCT itself is given by the A-Langevin equation

(4.17)X
–
 HtL = U

°
 HtL = Z e

ÅÅÅÅÅÅÅÅÅÅÅ
m c

 U  HtLä8B0@b0 ez + Xb Hx, zL\SD< - nU  HtL + a HtL,
containing the non-stochastic subensemble average Xb Hx, zL\S .  Of course the collisions a  are
still a stochastic quantity. In Fig. 4.4 we illustrated two solutions of this equation for a fixed
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value  of   Xb Hx, zL\S .  Two  cases  are  shown,  (a)  without  collisions  and  (b)  with  collisions.
Beneath the typical Larmor orbit rL , we observe in both cases an additional cyclic (in x  and y
directions)  motion  due  to  the  averaged  perturbation  field. Of  course,  decorrelation
trajectories from the V-Langevin equations do not  contain the gyro-motion and are given by
the motion of the trapped field line alone.

Figure 4.4:  Two examples of decorrelation  trajectories derived by a numerical
solution of (4.18). The vector RHtL  is plotted for (a) no collisions n = 0   and (b)
with  collisions  n = 0.02.  We  used  an  area  of  a  random  magnetic  potential  in
which  already  trapping  is  observed.  The  smaller  cyclic  motion  represents  the
Larmor orbit of the particle. 

We already connected  the  winding  of  the  field  lines  around  the  f-maximums to  a  trapping
effect.  Case (b)   confirms our  heuristic argument  that  the collisions will reduce the trapping
because the winding goes not on forever. It is stopped by the frictional term in (4.18).

4.2.2 Averaged b-field in a subensemble

 Each  subensemble  has  an  averaged  b-field.  We  can  calculate  this  average  by  using  the
conditional  probability  to  be  within  the  subensemble  defined  by  f0  and  b0  and  having  a
b-field b at the position x,

(4.18)Xb Hx, zL\S = ‡
-¶

¶

 db b P Hb, x » f0 b0L,
introducing,
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.
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We  want  to  simplify  this  expression  further  and  evaluate  the  terms  with  the  Fourier
transformation of the d -function,

(4.20)

Xd Hb- b Hx, tLL d Hf0 -f H0LL d Hb0 - b H0LL\ =
‡
-¶

¶

 ‡
-¶

¶

 ‡
-¶

¶

 exp Hia1b + ia2b0 + ia3f
0L

äXexp H-ia1b HxL- ia2b H0L- ia3f H0LL\ da1 da2 da3 .

The  exponential  function  from the  Fourier  representation  helps  us,  similar  as  in  Sec.  3,  to
apply the cumulant expansion,

(4.21)

Xexp H-ia1b HxL - ia2b H0L - ia3f H0LL\ =
= exp :- 1

ÅÅÅÅÅ
2
 XHa1b HxL + a2b H0L + a3f H0LL2\>

= exp :- 1
ÅÅÅÅÅ
2

@a1,i
2 Xbi bi\ + a2,i

2 Xbi bi\ +
+a3

2 Xf f\+ 2 a3 a1,i Xfbi\+ 2 a3 a2,i Xf, bi\+ 2 a1,i a2, j Xbi b j\D>.

We can substitute  this  result  into  the integration (4.21), which yields similar  as in appendix
C.1 a mean perturbation field,

(4.22)Xb Hx, yL\S =
i
kjjjj

bx
0 �xx + by

0 �x y + f
0 �fx

bx
0 �yx + by

0 �y y +f0 �fy

y
{zzzz.

Introducing  the  expressions  for  the  �i j  and  separating  the  parallel  dependencies  in  the
averaged b-field, using

(4.23)Xb Hx, yL\S = F HxL e-Q H0,zL
the components of F are given by

(4.24)
Fx Hx, l¦L = - b2

ÅÅÅÅÅÅÅÅÅ
l2

8y l¦
2 f0 + Hy2 - l¦

2L bx
0- x y by

0< e-Q Hx,0L ,
Fy Hx, l¦L = b2

ÅÅÅÅÅÅÅÅÅ
l2

8x l¦2 f0 + x y bx
0 + Hl¦2 - x2L by

0< e-Q Hx,0L .
In our analysis of the DCT terms, we need only the y-component of F . In summary: 

è We  derived  a  subensemble  decomposition  of  the  Eulerian  correlation  function  for  the
magnetic field and for the velocity of a particle.

è Both decompositions depend on the averaged b-field in each subensemble.

æ This average, F , is given as a function of x and z. 

4 Transport in percolative magnetic environments 51



A very similar result is obtained for the averaged derivative in the subensemble,

(4.25)Xb ' Hx, yL\S =
i
kjjjj

bx '0 �x'x' + by '0 �x'y'

bx '0 �y'x' + by '0 �y'y'

y
{zzzz.

Note  that  the  f0-part  vanishes.  Using  the  definitions  of  the  derivative  correlations  we
immediately find for the x-component 

(4.26)Xbx ' Hx, yL\S = 8T1 HxL hx
0 hx HtL + T2 HxL hy

0 hy HtL + T3 HxL hz
0 hz HtL< e- z2

ÅÅÅÅÅÅÅÅÅÅÅÅ
2 l»»2 ,

with the definition

(4.27)

T1 Hx, l¦L = i
kjjjj

x2 y2 b2 bx '0
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

l¦
6

-
x2 b2 bx '0
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

l¦
4

-
y2 b2 bx '0
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

l¦
4

+
b2 bx '0
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
l¦

2
-

x3 y b2 by '0
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

l¦
6

+
3x y b2 by '0
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

l¦
4

y
{zzzz äe-

x2
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 l¦2 -

y2

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 l¦2 ,

(4.28)

T2 Hx, l¦L = i
kjjjj

y4 b2 bx '0
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

l¦
6

-
6 y2 b2 bx '0
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

l¦
4

+
3 b2 bx '0
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
l¦

2

-
x y3 b2 by '0
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

l¦
6

+
3x y b2 by '0
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

l¦
4

y
{zzzz äe-

x2
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 l¦2 -

y2
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 l¦2 ,

(4.29)

T3 Hx, l¦L = i
kjjjj
b2 bx '0
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
l»»2 -

z2 b2 bx '0
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

l»»4 -
y2 b2 bx '0
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
l»»2 l¦2

+
y2 z2 b2 bx '0
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
l»»4 l¦2

+
x y b2 by '0
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
l»»2 l¦2

-
x y z2 b2 by '0
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
l»»4 l¦2

y
{zzzz äe-

x2
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 l¦2 -

y2

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 l¦2 .

4.2.3 Conditional averages for perpendicular and parallel motion

The perpendicular average

We  will  explain  the  averaging  procedures  by  beginning  with  a  simple  example  for  a  one
dimensional  case.  The  average  of  perpendicular  collisions is  incorporated  in  the  following
way: We use the coordinate transformation, see e.g. [20],  xè  HtL = x HtL + xx HtL  and define xx  to
be  responsible  for  all  perpendicular  deviations  from  the  trajectory.  With  this  definition  an
arbitrary Eulerian correlation function � has to be calculated by 

(4.30)X� Hx, zL\¦ = ‡
-¶

¶

� Hx + xxL Xd Hxx - xx HtLL\¦ dxx .
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This formulation is identical to the relation derived within the Corrsin approximation. Indeed
we apply an  independence assumption here  for  the  perpendicular part  of the  motion.  Using
the Fourier representation of the d function we can easily find

(4.31)Xd Hxx - xx HtLL\¦ = 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!!!!!!!!

2 p Xx2 HtL\  exp 
ikjjj- xx

2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 Xx2 HtL\¦ y{zzz ª P¦ HxxL,

i.e. Gaussian distribution in xx  denoted by the symbol P¦HxxL.  Because of symmetry reasons
we  have  Xxx

2\ = Xxy
2\ ª Xx2HtL\.  For  the  zeroth  order  we  can apply the  average  at  the  very

beginning of the calculation, namely on the Eulerian correlator,

(4.32)

XA Hx, z; l¦L\¦ =
‡
-¶

¶

‡
-¶

¶

b2 l¦
2 expB- Hx + xxL2 + Hy+ xyL2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 l¦

2
-

z2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 l»»2 F P HxxL P HxyL dxx dxy,

This gives the averaged Eulerian correlation in the form,

(4.33)XA Hx, z; l¦L\¦ =�DCT A Hx, z; l¦ + Xx2 HtL\L,
with

(4.34)�DCT =
ikjjj1+ Xx2 HtL\

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
l¦

2

y{zzz
-1

,

which was already encountered in Sec. 3 in a similar form with the Corrsin method. Here the
exponent  of �DCT  differs from the term found with the Corrsin approximation.  This scaling
does not change the scalings derived with � -term.

Subensemble conditional averages

Now we  focus  on  the  combined  averages  needed  in  the  DCT  equations.  The  subensemble
averages are obtained by accounting for the conditional averages in the following way: 

(4.35)

XXh»» HtL b@x HtL, z HtL, tD\S \
¦
= ‡

-¶

¶

‡
-¶

¶

‡
-¶

¶ Xhz HtL d Hz- z HtLL d Hhz
0- hz H0LL\»»

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
P Hh0L

ä
XXd Hb - b Hx + x, z, tLL d Hf0 - f H0LL d Hb0 - b H0LL\S d Hxx - xx HtLL d Hxy - xy HtLL\¦ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅXd Hf0- f H0LL d Hb0 - b H0LL\S

ä dxx dxy d z,

as well as
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(4.36)

XXh»» HtL b '@x HtL, z HtL, tD\S\¦ = ‡
-¶

¶

‡
-¶

¶

‡
-¶

¶ Xhz HtL d Hz- z HtLL d Hhz
0 - hz H0LL\»»

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
P Hh0L

ä
XXd Hb '- b ' Hx+ x, z, tLL d Hb '0- b H0LL\S d Hxx - xx HtLL d Hxy - xy HtLL\¦ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅXd Hb0- b H0LL\S

 dxx dxy d z.

The procedure of averaging will be performed as follows: The first conditional average term
in  both  expressions  depends  on  hz  and  takes  the  parallel  motion  into  account  that  appears
within the b-field  as  well as  in  the velocity correlator  itself.  Similar  to  the treatment  of  the
Corrsin  approximation  we  are  not  allowed  to  make  an  stochastic  independence  assumption
for these terms. Perpendicular averaging is performed by applying two d functions for xx  and
xy  and  finally using  the method  presented  above.  Unfortunately this  method becomes  more
elaborate  for  the  derivative  average.  Because  of  the  hx  and  hy  product  terms  in  (4.27)  we
need the same procedure as for the parallel motion. The subensemble averages of the b  field
and its derivation were already calculated in the previous section.

Combined average for parallel motion

Next, we determine the conditional average for the parallel motion. Starting with the leading
term in the integrals (4.35) and (4.36), 

(4.37)M»» HzL ª Xhz HtL d Hz- z HtLL d Hhz
0- hz H0LL\»»

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅXd Hhz
0- hz H0LL\»» ,

we basically have to find a generalization to the method found in appendix B.2. The Fourier
representation of the d functions helps us to rewrite the stochastic data in form of exponential
functions and yields the following integrations, 

(4.38)M»» HzL = 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 pP Hh0L  ‡ ‡ exp@-ikz- iqhz

0D Xhz HtL exp@ikz HtL + iqhz H0LD\»» dkdq.

To simplify the last expression, we define the function

(4.39)XH»»\»» ª Xexp@ahz HtL + ikz HtL + iqhz H0LD\»».
It is related to the unknown average by 

(4.40)Xhz HtL exp@ikz HtL + iqhz H0LD\»» = B[ ∑
ÅÅÅÅÅÅÅÅÅÅ
∑a

 H»»_»»Fa=0

.

In this form the parallel average is applied to H  by the standard cumulant expansion,
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(4.41)

XH»»\»» = exp 
ikjjj- a2

ÅÅÅÅÅÅÅÅ
2
 Xhz HtL hz HtL\»» - k2

ÅÅÅÅÅÅÅÅ
2
 Xz2 HtL\»» - q2

ÅÅÅÅÅÅÅÅ
2
 Xhz H0L hz H0L\»»

+ iaq Xhz H0L hz HtL\»» - kqXz HtL hz H0L\»» + iakXz HtL hz HtL\»»y{zzz
in which the well-known stochastic properties of hz  can be identified,

(4.42)

Xhz HtL hz HtL\»» = Xhz H0L hz H0L\»» = 1,Xhz Ht1L hz Ht2L\»» = c»» n e-n »t1-t2» ª C»» HtL,Xz HtL hz HtL\»» = Xz HtL hz H0L\»» = j»» HtL,Xz2 HtL\»» = y»» HtL.
The average H»»  simplifies to

(4.43)XH»»\»» = exp 
ikjjj- a2

ÅÅÅÅÅÅÅÅ
2
-

k2

ÅÅÅÅÅÅÅÅ
2
 y»» HtL - q2

ÅÅÅÅÅÅÅÅ
2
+ iaqC»» HtL - kqj»» HtL + iakj»» HtLy{zzz,

and the derivative at a = 0 is then 

(4.44)
∑
ÅÅÅÅÅÅÅÅÅÅ
∑a

 XH»»\»» ƒƒƒƒƒƒƒƒ
a=0

= @iq C»» HtL+ ikj»» HtLD exp 
ikjjj- q2

ÅÅÅÅÅÅÅÅ
2
-

k2

ÅÅÅÅÅÅÅÅ
2
 y»» HtL - kqj»» HtLy{zzz.

Returning to the original problem to find M»» .  We use the definition of H»»  in the expression
for M»»  

(4.45)

M»» HzL = 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 pP Hh0L  ‡ ‡ @iq C»» HtL + ikj»» HtLD exp@-ikz- iqhz

0D
äexp 

ikjjj- q2

ÅÅÅÅÅÅÅÅ
2
-

k2

ÅÅÅÅÅÅÅÅ
2
 y»» HtL - kqj»» HtLy{zzz dkdq .

Performing the integration over q leads to

(4.46)

M»» HzL = 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!

2 p  P Hhz
0L  ‡ @hz

0 C»» HtL - ik HR- 1L j»» HtLD
äexp 

ikjjj- 1
ÅÅÅÅÅ
2
 Hhz

0 - ikj»» HtLL2- ikz-
k2

ÅÅÅÅÅÅÅÅ
2
 y»» HtLy{zzz dk.

Finally the integration over k  yields
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(4.47)

M»» HzL = i
kjjjj

hz
0 C»» HtL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHy»» HtL -j»»2 HtLL1ê2 +
j»» HtL H1-C»» HtLL Hz- hz

0 j»» HtLL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHy»» HtL- j»»2 HtLL3ê2

y
{zzzz

äexp 
i
k
jjjj hz

02

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
2

-
z2 + y»» HtL hz

02
- 2 z hz

2 j»» HtL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 Hy»» HtL - j»»2 HtLL
y
{
zzzz.

Some algebraic manipulations lead to

(4.48)

M»» HzL = i
kjjjj

hz
0 C»» HtL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHy»» HtL -j»»2 HtLL1ê2 +
j»» HtL H1-C»» HtLL Hz- hz

0 j»» HtLL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHy»» HtL- j»»2 HtLL3ê2

y
{zzzz

äexp 
i
k
jjjj- Hz- hz

0j»» HtLL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 Hy»» HtL -j»»2 HtLL

y
{
zzzz.

The last result can be expressed in terms of a probability distribution P»»HzL, 
(4.49)M»» HzL = :hz

0 C»» HtL - hz
0 j»»2 HtL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHy»» HtL - j»»2 HtLL @1-C»» HtLD> P»» HzL,
using the subensemble average of the position XzHtL\ = hz

0 j»»HtL and

(4.50)P»» HzL = 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"#####################################2 p Hy»» HtL -j»»2 HtLL  exp 

ikjjj- Hz- Xz HtL\SL2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 Hy»» HtL -j»»2 HtLL y{zzz.

Equation  (4.50)  can also  be  found  in  [20].  There  it  was  derived  for  a  DCT approximation
within the context of the V-Langevin equations.

Combined average for perpendicular motion

The conditional average of the perpendicular motion is found analogously,

(4.51)M¦ HxxL ª Xhx  HtL d Hxx - xx HtLL d Hhx
0 - hx H0LL\¦ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅXd Hhx

0 - hx H0LL\»» .

Due to the symmetry the same arguments hold for M¦HxyL. Designating 

(4.52)
Xhx  HtL hx  HtL\¦ = Xhx H0L hx H0L\¦ = 1,Xhx Ht1L hx Ht2L\¦ = c¦ n e-n »t1-t2» ª C¦ HtL,

and using the results for the classical transport, 

(4.53)Xxx HtL hx HtL\¦ = Xxx HtL hx H0L\¦ = j¦ HtL,
we find a similar result for M¦HxL as (4.49),
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(4.54)M¦ HxxL = :hx
0 C¦ HtL - j¦ HtL@1-C¦ HtLD d

ÅÅÅÅÅÅÅÅÅÅÅÅ
dxx

> P¦ HxxL.
Here P¦HxxL is as given in Eq. (4.50). 

4.2.4 The DCT approximation for �H0L  and the structure function �0 HtL

The  Lagrangian  correlations  are  retrieved  from Eq.  (4.15)  and (4.16).  In  �H0L  we  need  the
subensemble contribution

(4.55)

YXXh»» HtL by@x HtL, z HtL, tD\S \»»]¦ =
‡
-¶

¶

 ‡
-¶

¶

 ‡
-¶

¶

 M»» HzL Xby Hx+ x, z, tL\S P HxxL P HxyL dxx d xy d z.

The  perpendicular  integrals  are  performed  and  we  use  the  prescriptions  from the  previous
Sec. leading to

(4.56)YXXh»» HtL by@x HtL, z HtL, tD\S \»»]¦ =� F¦ Hx; l¦ + Xx2 HtL\L ‡
-¶

¶

F»» HzL M»» HzL d z.

Note the appearance of the Corrsin term �, which does not depend on the DCT. Within this
picture the decorrelation trajectory itself appears only in the perpendicular coordinates x  and
y.  The further integration can also be performed directly. With the results from the previous
section the z-integration can be carried out, inserting the expression for M»»HzL,

(4.57)

YXXh»» HtL by@x HtL, z HtL, tD\S \»»]¦ =
F¦  Hx, l¦ + Xx2 HtL\L �  

i
kjjjjh0 � c»» ne-nt -

h0 j»»2@1- c»» ne-ntD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

l»»2  �3y{zzzz e
- Xz HtL\S

2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 l»»2  �2

.

In the latter equation we introduced the Corrsin term,

(4.58)� =
i
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Hy»» - j»»2L
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.

At  this  stage  the  previous  Corrsin  result  can  be  recognized  as  a  special  case.  Only  the
integrations for the DCT are left.  We split  this integration into two parts and apply the main
approximation of the DCT Hx º XL, 
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(4.59)
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to find the following result,

(4.60)�DCT
H0L = � HtL�DCT� 

i
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ÅÅÅÅÅÅÅÅÅÅÅ
l»»2

y
{zzzz.

At  last  we apply the perpendicular  average as shown in the previous section and after some
algebraic  manipulations  and  performing  the  perpendicular  average  the  Lagrangian  can  be
written as 

(4.61)�DCT
H0L HtL = �0 HtL �Corrsin

H0L HtL.
Here we used the Lagrangian correlation function derived with the Corrsin approximation, 
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but  using �DCT  instead of � .  This is allowed, because the difference between �DCT  and �
does not change the correlation function significantly. A factor appears which we will call the
structure function �0HtL,
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In most cases this function has to be evaluated numerically. We comment on the details of the
structure  function  later.  A  suitable  algorithm to  calculate�0  is  described  in  Appendix  D.4.
The decorrelation trajectory is needed as an input for �0HtL. 
4.2.5 The DCT approximation for �H1L

Averaging procedure for the correction term

Next we evaluate the correction term �H1L , which is more complicated than the zeroth order,
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(4.64)
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We  proceed  in  a  similar  way  as  for  �H0L  and  introduce  the  derivative  average  forXbx '@x HtL, z HtL, tD\S  and the averaging integration for the parallel motion into the definition,

(4.65)
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We apply the perpendicular averages and get 

(4.66)
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where we can identify equivalent  terms to  the Corrsin approximation applied for  Eq. (3.30).
Especially  the  last  expression  requires  the  same  approximation  on  the  quadratic  velocity
terms, namely the stastistic independence between the average Yhz

02
hz

2]»» º vt
4  and the rest of

the T3  terms,  which allows us to  calculate the average by the integration of the distribution
PHzL. In the following, rather lengthy calculation, we present details on the averaging method
and derive expressions for the terms involving the Ti  functions. 
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The �i -terms

We  split  the  integration  in  different  contributing  terms  beginning  with  the  T1  term,  and
evaluate  the  integrals  using  means  of  analytical  software  (due  to  the  vast  amount  of  terms
within the Ti ), yielding the result

(4.67)
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We have introduced the notation
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These  terms  are  already  written  in  a  special  way,  for easier  comparism  with  the  Corrsin
results.  The  functions  �i  are  dimensionless  as  they  are  normalized  with  the  corresponding
length l¦ .  Furthermore, the numerical factors have been resorted so that  �iØ1 for l¦ Ø¶ .
Of course, the calculation of the integrations for the T2  term are similar and yield
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(4.70)
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The last  term has a slightly simpler  form,  because the integration involves only the gaussian
distributions PHxxL, PHxyL and PHzL,

(4.73)
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The structure functions �i  for �H1L

We return to  our  calculation of �H1L  and use the results for  the Ti  integrations and perform
the remaining integrals over hz

0  and f0  leading to
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given in terms of �l¦Ø¶
H0L  which corresponds to the quasilinear limit  including collisions. The

structure functions are defined as,

(4.76)
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The correction function �H1L  found with the DCT has the same form like the function found
within  the  Corrsin  method.  The  functions   �i  and   �i  are  dimensionless,  the  correction
function  appears  therfor  in  the  same  dimension  as  the  Corrsin  result.  The  influence  of  the
percolation  structure  is  here  also  capsuled  in  the  functions  �i  which  still  contain  the
complicated  integrals  of  the  �i  over  the  b-field  derivatives.  This  functions  have  to  be
evaluated numerically.
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4.2.6 Properties of the �i HtL structure functions in certain limits

Though a general treatment of �0 HtL  and the other structure integrals appears impossible, we
can  still  find  asymptotic  values  in  selected  limits.  We  know  already  that  the  perpendicular
correlation length is responsible for the percolation structure of the magnetic field. Therfore it
is appropriate to discuss the �i HtL  for different limits of l¦ . For  l¦ Ø¶  the structure terms
become equal to one, 

(4.77)lim
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which  holds  for  all  i.  This  reflects  the  fact  that  for  small  Kubo  numbers  no  effect  of  the
magnetic  structure  should  be  observed  and  our  results  from the  Corrsin  method  are  valid.
Contrary to this limit we have
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due to the dependence on the Eulerian correlator, e.g. in �0
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It  decreases  exponentially  with  decreasing  l¦  and  makes  the  structure  term  vanish.  This
explains  the  well-known  problem that  for  high  Kubo  numbers  the  diffusion  is  expected  to
decay to zero as more and more field lines are trapped in the structures. Of course, this effect
can be  compensated by the collisions for large collisional frequencies n, because X ~e-nt  and
Y~e-n t . 

We  can  compare  the  numerical  values  of  the  structure  functions  in  this  limit  with  the
numerical  values  presented  in  Sec.  3  within  the  Corrsin  approximation.  They  are  exactly
equal.  This result  shows that  the Corrsin results can be interpreted as the k Ø 0 limit  of the
DCT. Especially the relations 

(4.80)lim
l¦Ø¶

�DCT
H0L = �Corrsin

H0L, lim
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�DCT
H1L = �Corrsin

H1L

hold,  neglecting  small  differences  in  the  exponents  of  the  correlation  terms.  This  important
fact was not covered by any other work on the DCT so far.
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4.3 Diffusion within the DCT approximation

In the end of Sec. 3 we gave an overview of various transport regimes found with the Corrsin
approximation and presented details on some selected cases. The DCT tells us now, that  the
correlation  functions  from the  Corrsin  method  are  principially  correct,  but  they  have  to  be
equipped  with  certain  numerical  factors  which  take  care  of  the  magnetic  fields  percolation
structure.  For  increasing  Kubo  numbers  k = bl»» ê Hb0 l¦L > 1  these factors  become relevant.
Indeed the parameter l¦  has been identified to be the most crucial input value of the structure
terms.

Two important questions remain, that are closely related to each other: 

Does the percolative structure of high Kubo numbers always lead to a trapping and a 
reduction of the diffusion? 

Have finite Larmor radii also significant effect on the diffusion in this regime? 

We  answer  these  questions  by  numerical  solutions  of  the Green-Kubo  formula  for  the
anomalous transport contributions,

(4.81)
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d t2

 Xdx2 HtL\ = 2 
d
ÅÅÅÅÅÅÅÅ
d t
 D HtL = �DCT

H0L +�DCT
H1L,

incorporated in an algorithm that solves also the DCT and the structure functions �i .

First, we are interested wether the DCT really reproduces the same gyro-radius effects as the
Corrsin approximation.  Therefore,  we integrate  Eq.  (4.82)  in time and show the asymptotic
diffusion coefficient  as a function of the Kubo number k  in Fig. 4.5. A first  result  is that  the
diffusion in the guiding  center  theory as well as  in the case with Larmor  radius corrections
starts with the analytical values of Dql

H0L  and Dql
H0+1L  derived in Sec. 3.3. Here, we used Dql

H0L
as a normalization factor. It can be seen from Fig. 4.5 that for small Kubo numbers within the
DCT approximation the same influence of the Larmor radii occurs: a severe reduction of the
diffusion  rate.  The  magnitude  of  this  reduction  is  of  the  same  magnitude  as  the  examples
shown  for  the  Corrsin  approximation  and  shows  very  good  agreement  with  our  previous
results.
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Figure  4.5:  Solution  of  Eq.  (4.82)  for  n = 0,  l»» º rL  and  b0 = 1.  The  curves
originate in values given for the quasilinear limit presented in Sec. 3.3. 

Next  we  investigate  high  Kubo  numbers.  In  Fig.  4.6  we  present  the  running  diffusion
coefficient normalized to the quasilinear coefficient (without Larmor radius corrections) in the
collisionless  case  as  a  function  of  the  time  t  (in  units  1êW)  for  two  values  of  the  Kubo
number.  The  guiding  center  result,  that  is  a  simulation  of  the  zeroth  order  term  in  (4.82)
alone,  is  compared  with  the  complete  integration  of  (4.82)  yielding  the  Larmor  radius
influences.  It  can  be  seen,  that  for  a  larger  Kubo  number  a  smaller  diffusion  rate  occurs.
Additionally,  and  probably  even  more  important:  in  this situation  the  finite  Larmor  radius
terms lead to higher transport than predicted guiding center theory. Obviously guiding center
theories will in such cases underestimate the diffusion dramatically.

Contrary  we  investigate  a  collisional  situation  to  analyze  in  what  way  collisions  may
compensate  this  amplification  effect.  Figure  4.7  shows  the  again  the  normalized  diffusion
coefficient,  but  now  we  have  collisions  defined  by  the  reduced  collisional  frequency
n êW = 0.2. Note that the Kubo numbers are larger compared to Fig. 4.5. Obviously the effect
that the guiding center prediction is exceeded by the corrected results appears now for higher
Kubo numbers. The qualitative result of an amplification of transport at high Kubo numbers is
not changed by the collisions. Indeed, extreme high collisionalities may remove any influence
of the structure as the the occurance of the amplification is shifted to infinite Kubo numbers.
So far we note, that  for a fixed value of n êW  a certain Kubo number can be found at which
diffusion is amplified by the Larmor radius effects.
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Figure  4.6:  Solution  of (4.82).  The ratio of DHtL  and DQL  is  presented in  the
collisionless  case  for  two  different  Kubo  numbers,  k = 2.5  and  k = 3.6,  and
compared with the guiding center theory. The time appears here in units 1êW .
As stochastic valuesl»» = 25 rL  and b ê b0 =0.1 were used.

Figure  4.7:  Solution  of  (4.82).  The  ratio  of  DHtL  and  DQL  is  presented  in  a
collisional  case  with  n êW = 0.2  for  two  different  Kubo numbers,  k = 4.2  and
k = 6.25, and compared with  the guiding center theory. The time appears here
in units 1êW . The stochastic values were defined by l»» = 25 rL  and b ê b0 =0.1.
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An overview of the functional dependency between diffusion coefficient and Kubo number is
presented  in  Fig.  4.8,  where  we show  the effect  of the  finite  Larmor  radii.  For  large  Kubo
numbers,  the  increase of  the  diffusion occurs due to  the Larmor  radius.  The Larmor  radius
corrections  lead  to  a  strong  amplification  of  the  diffusion  for  very  high  Kubo  numbers.  A
maximum between k = 100  and k = 1000  occurs.  Of  course,  in  the  limit  k Ø ¶  both rates,
the  guiding  center  diffusion  and  the  corrected  diffusion,  decay  to  zero.  If  collisions  were
included, the effect would still prevail.

Figure  4.8:  Amplification  of the diffusion  caused by finite Larmor  radii  for  a
collisionless situation n = 0. The normalized diffusion coefficient is plotted as a
function  of  the  Kubo  number,  using  b ê b0 = 0.1,  r = 2  measured  in  units  of
vt ê HWb0L . The guiding center diffusion was also calculated within the DCT.

Our results can be interpreted as follows: 

First  of all,  the qualitative result from Isichenko et  al. [22] could be reproduced. Namely the
guiding center  diffusion gradually decreases with Kubo number. It  becomes zero  for  infinite
Kubo  numbers.  In such a  regime  all field lines are  trapped in the structures which are  very
small, because of l¦ Ø 0.  

The situation  is  changed  when we take  Larmor  radius effects  into  account.  Though the
qualitative result  of Isichenko et al. remains, the diffusion tends to zero for k Ø ¶ , a distinct
maximum of  the  diffusion  is  found  in  a  certain  area  of  the  Kubo  number.  In  this  area,  the
diffusion  rate  is  dramatically  higher  than  predicted  by  the  guiding  center  theory.  While  the
field lines are entangled in the percolation structure, the particles are able to detach from this
trapped state and contribute to the diffusion.

Another  important  conclusion  from this  analysis  is  the  fact,  that  the  transport  is  always
diffusive,  despite  the  very  special  case  k Ø ¶.  So  even  in  higher  Kubo  number  regimes  a
linearly time-dependence of the MSD prevails.
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è For  very  small  Larmor  radii  and  high  Kubo  numbers  the  diffusion  is  reduced.  Infinite
Kubo numbers lead to an extinction of diffusion.

è The influence of large Larmor radii is essential. The qualitative reduction of the transport
at high Kubo numbers is now turned into a significant increase of the diffusion. 

Our investigations so far concerned the physics that underlies the anomalous transport. From
a  more  mathematical  point  of  view  [28,29,30],  it  is  interesting  to  compare  both  methods
involved and to find estimates for the range of validity for the Corrsin approximation [17]. In
Fig.  4.9  the results of both theories are compared.  Indeed for  k Ø 0  the difference between
both approximations vanishes. But for increasing Kubo numbers, a strong deviation is found
around  k t 0.3.  Of  course,  qualitative  results,  such  as  principial  scalings  derived  with  the
Corrsin  approximation,  remain valid.  Even the  amplification  effect  discussed  above (though
several times higher) can also be observed within the Corrsin treatment.

Figure  4.9:  Comparism  of  the  diffusion  coefficients  derived  with  the  Corrsin
approximation  and  the  DCT.  We  used  a  parameter  regime  with  n = 0,
l¦ = 50 rL , b = 0.4 and b0 = 1. 
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5 Numerical simulations of the A-Langevin equation
Various analytical predictions are presented in Secs.  3  and 4 for  the diffusion.  We will now
compare  these  analytical  results  with  numerical  simulations  of  the  A-Langevin  equation.  A
special interest  lies in the effect  of the correction terms. Though these corrections appear  in
small order, our numerical solution and the analytical predictions are in great agreement.

5.1 Verification of the diffusion predictions for small Kubo numbers

5.1.1 Motivation for numerical analysis

In order to independently check the analytical predictions for the anomalous transport and the
finite  Larmor  radius  corrections,  we  performed  numerical  simulations  of  the  complete
A-Langevin  equation.  The  results  of  this  simulations  are  compared  with  the  formulas  and
models presented in Secs. 3 and 4. 

Though  various  works  covered  separate  aspects  of  the  anomalous  transport  problem,  e.g.
starting  from  the  V-Langevin  equations  [11],  numerical  simulation  have  (so  far)  not  been
performed with the original A-Langevin equation. The following verification of our results is
also  a  proof  of  quality  for  the  used  stochastic  methods  and  approximations.  Especially  the
Corrsin method turns out to be highly accurate, within the permitted range of turbulence and
Kubo numbers. 

5.1.2 Comparisms in the Rechester-Rosenbluth parameter regime

In Sec. 3 we derived a model equation for the MSD and the running diffusion coefficient, the
A-MSD-equation.  It  was shown that  this equation leads to  all well-known diffusion regimes
in certain  limits.  Now we use the  simulation of the complete  A-Langevin equation to  verify
the prediction of the A-MSD-equation. The parameters are mainly chosen to fit into the most
famous diffusion regime, the Rechester-Rosenbluth scaling. It  can be regarded as a paradigm
of transport regimes. 

Figure  5.1  shows  the  MSD  as  a  result  of  a  direct  A-Langevin  integration  and  from  the
prediction  of  the  A-MSD-equation,  respectively.  First  parameters  are  chosen  such  that  the
guiding  center  approximation applies.  The  noisy character  of the  simulation curve  is  due  to
the random values introduced by the Monte-Carlo method.
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In Fig. 5.2 we reduced the guiding field b0  to values that allow the observation of transport in
a domain where Larmor radius effects occur. We see a clear deviation from the guiding center
result.  The  latter  overestimates  the  diffusion.  Instead,  the  solution of  the  A-MSD-equation,
including  the  higher  order  correction  terms,  shows  a  very  good  coincidence  with  the
simulation. The MSD of the simulation has nearly the same dependence as our prediction. We
observed  this  effect  for  all  simulations  with  small  guiding  fields,  though  the  Larmor  radius
correction may sometimes be small. Indeed the parameters in    Fig. 5.2 are adjusted to values
at which the effect of the correction terms can be clearly recognized.

Figure  5.1:  Numerical  simulation  of  the  Rechester-Rosenbluth  regime  within
the  guiding  center  limit  compared  with  the  anayltical  prediction.
l¦ = l»» = 15 rL , b = 0.7, b0 = 5, and n êW = 0.4.
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Figure 5.2: Numerical  simulation of the A-Langevin  equation and comparison
with the analytical predictions, for the case of a strong guiding field. Shown is
the  MSD  (in  unit  vt

2 êW2 )  versus  time  (in  units  W-1 ).  The  parameters  are
l»» = l¦ = 2 [vt êW], ¶ = b ê b0 = 0.4, b0 = 1.5 and n êW=0.05.

Of course, we also investigated further regimes with our numerics such as the quasilinear and
the subdiffusive regime. We found the same agreement.

5.1.3 Verification of the regime with dominant stochastic fields

A second  major  result  was  the  analytical prediction  of the  diffusion for  zero  guiding  fields.
There  are  not  many  predictions  in  the  literature  covering  this  regime.  We  compared  our
formula  for  the  diffusion  coefficient  with  the  simulation  and  present  in  Fig.  5.3  presents  a
comparison  between  the  standard  classical  diffusion  and  the  diffusion  with  a  stochastic
perturbation field. 
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Figure 5.3:  Numerical  simulation,  with  and without  stochastic magnetic field,
respectively,  in  the  case  of  no  guiding  field.  Straight  lines  indicate  the
analytical predictions. Shown is the MSD (in unit vt

2 êW2 ) versus time (in unit
W-1 ).  The  parameters  are  l = 0.1[vt êW ],  b = 0  and  b = 0.9,  respectively,
b0 = 0 and n êW=0.2.

Though the effect of the perturbation field is small, it can be clearly seen from the simulation.
The  classical  diffusion  coefficient  is  now  given  by c = vt

2 ê H2 nL  for  all  directions.  Random
fields appear as additional interactions for the particles and can be accounted for a new virtual
friction. This additional friction reduces the diffusion coefficient to values below the classical
diffusion.

72 5 Numerical simulations of the A-Langevin equation



5.2 Numerical simulations in the percolation regime

5.2.1 Test of the predicted reduction of the diffusion rate for high Kubo numbers 

We first  investigate the reduction of the diffusion caused by high Kubo numbers.  In Fig.  5.4
we have got k = 438  which would reduce the anomalous diffusion to zero in the collisionless
case.  We  therefore  use  a  collisional  frequency  of  n êW = 0.1  to  achieve  a  visible  reduction
effect, which still leaves the anomalous transport greater than the classical diffusion.

Figure  5.4:  Numerical  simulation  for  high  Kubo  number  (grey  dots)  and
comparism  of  the  DCT  results  and  the  Corrsin  estimates.  b0 = 5,  b = 0.9,
l»» = 365 rL ,  l¦ = 0.85 rL  k = 438  and  n/W=0.1.  The  dashed  line  shows  the
classical diffusion coefficient.

Note  the  result  by  the  Corrsin  approximation.  It  overestimates  the  diffusion  and  gives  the
wrong result: the gradient  of the Corrsin MSD curve is twice as large as the gradient  of the
DCT  line.  There  is  also  quantitative  agreement  with  the  results  of  Isichenko  et  al.  [22]  in
regimes were the predictions for the percolation threshold hold.
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5.2.2 Validation of the diffusion rates for high Kubo numbers and large Larmor radii

Large Larmor  radii were found to  be  responsible for  an increase  of the diffusion in systems
with a high Kubo  number.  Figure 5.5 presents a  simulation of the A-Langevin equation and
the predictions of the DCT. We compare the DCT results with Larmor radius corrections to
the DCT results for guiding center diffusion. The Larmor radius is in this example even larger
than  the  perpendicular  correlation  length.  The  diffusion  is  found  to  be  much  larger  than
proposed  by  the  guiding  center  theory.  In  contrast  to  other  works  about  the  DCT,  our
simulation  in  Fig.  5.5  was  performed  in  a  collisional  regime,  proofing  the  existence  of  the
predicted amplification of the diffusion also for system with n ∫ 0.

Figure  5.5:  A  simulation  for  a  high  Kubo  number  and  large  values  of  rL .
Comparism  of  the  DCT  results  and  the  guiding  center  estimates.  b0 = 1,
b = 0.5,  l»» = 50 rL ,  l¦ = 0.2 rL  k = 125  and  n/W=0.2.  Straight  lines  indicate
the analytical  predictions for  the DCT with  Larmor  radius corrections and the
guiding center limit (also calculated with the DCT).

Of course  in  this  case,  the  Corrsin  method  with Larmor  effects  would  have  predicted  even
larger  values  for  the  diffusion.  Nevertheless  the  typical  guiding  field  theory  dramatically
underestimates the transport in this regime. 
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We verified our predictions and found in all cases extremely good coincidences between the
analytical  formulas  and  the  numerical  simulations.  It  shows  not  only  the  reliability  of  our
theory,  but  also the quality of the applied approximations,  the Corrsin method and the DCT
technique. Both yield very good results,  where the Corrsin results have to  be taken only for
small Kubo  numbers.  The results  in the high Kubo number  regime are also  an evidence that
the criterion for the Corrsin approximation used in many other works is correct, as far as only
the DCT is capable of producing consistent behaviour.

5 Numerical simulations of the A-Langevin equation 75



76 5 Numerical simulations of the A-Langevin equation



6 Conclusion
The  aim  of  this  work  was  a  theory  of  anomalous  test  particle  transport  in  the  presence
stochastic  magnetic  fields.  Therefore,  we  were  mainly  interested  in  analytical  equations  for
the mean-square-displacement and the running diffusion coefficient. 

In  contrast  to  other  works  based  on  the  guiding  center  assumption,  we  used  the  more
general A-Langevin equation,  a stochastic  differential equation for the velocity of a  particle,
to incorporate also the Larmor motion of the particles and to  extend the range of regimes to
the vanishing guiding field limit. 

To  achieve  our  aim,  we  solved  the  A-Langevin  equation  in  Sec.  2  and  found  an
expression  for  the  perpendicular  velocity  correlation  function.  The  general  velocity
correlation  functions  showed  analytically  the  coincidence  of  perpendicular  and  parallel
diffusion  in  the  case  of  vanishing  guiding  fields.  We  approximated  this  function  for  strong
mean  fields.  The  finite  Larmor  radius  effects  appeared  as  higher  order  corrections  to  the
results of the guiding center approximation. The Green-Kubo formalism was presented as the
method of choice for the relation between Lagrangian correlation functions and the transport
properties. 

Depending  on  the  Kubo  number,  the  fundamental  parameter  that  defines  the  state  of
turbulence  in  the  stochastic  system,  we  divided  our  investigation  into  two  parts,
distinguishing  between  small  and  high  Kubo  numbers.  Two  different  approximations  were
applied  to  transform  the  correlation  functions  to  the  Lagrangian  frame  of  reference:  the
Corrsin  approximation  for  small  Kubo  numbers,  presented  in  Sec.  3  and  the  Decorrelation
Trajectory Method for high Kubo numbers, as shown in Sec. 4.

In Sec. 3 we transformed the correlation function to the Lagrangian frame of reference by
applying the more intuitive Corrsin approximation.  Introduced into  the Green-Kubo  formula
the Lagrangian correlators lead to ordinary differential equations for the transport properties,
the A-MSD-equations.

How do the fluctuations contribute to the diffusion of the particles? 

In  the  range  of  small  Kubo  numbers  we  recovered  well-known  diffusion  regimes  of
anomalous transport,  including the Rechester-Rosenbluth regime, as results of a zeroth-order
treatment of the A-MSD equations. The fluctuations lead to diffusion rates much higher than
predicted by the classical transport theory. 

What is the influence of the Larmor radius on the diffusion? 

Finite  Larmor  radii were  discovered  to  reduce  the  diffusion.  We  presented  analytical  as
well as numerical estimates for the quantitative description of this reduction. Additionally for
higher  Kubo  numbers  the  transport  was  serverely  enhanced  by  taking  the  gyration  into
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account. It  also insistently proves our claim that a rigorous treatment of anomalous transport
has to start with a dynamical equation that includes the complete movement of the particle.

What happens with the transport if the mean field is not present? 

In  the  limit  of  zero  guiding  fields  we  presented  analytical  expressions  for  the  diffusion.
The  magnetic  perturbation  field  acts  then  as  an  additional  virtual  friction  and  reduces  the
diffusion in a similar manner as the collisional frequency.

Is the diffusion affected by the percolative structure of the perturbation field? 

Large  Kubo  numbers  correspond  to  the  percolation  regime,  a  regime  in  which
complicated  trapping  processes  and  additional  decorrelations  can  appear.  In  Sec.  4  we
investigated  this  regime  and  found  the  Corrsin  results  to  be  the  limiting  cases  of  the  more
general  DCT  method.  An  explicit  analytic  relation  between  the  Corrsin  correlators  and  the
DCT  correlators  was  derived,  leading  to  the  conclusion that  the  Corrsin  results  have  to  be
multiplied with a certain structure function given by the DCT to remain valid in the high Kubo
number regimes. 

Generally, the influence of the percolation structure alone leads to a dramatic reduction of
the diffusion, caused by a trapping of field  lines within the maxima of the flux function.  We
observed this reduction and found the diffusion decreasing to zero as the Kubo number tends
to  infinity.  These results confirmed the predictions of Isichenko et  al.,  where the percolation
theory was used to find the scaling of the diffusion coefficient. 

Finite  Larmor  radii  lead  to  important  corrections.  The  coincidence  of  a  percolation
structure  with  high  Kubo  numbers  and  relevant  Larmor  radius  effects  can also  increase  the
diffusion to decisively elevated levels. 

In  Sec. 5 we verified our results with a numerical simulation of the A-Langevin equation.
First  we  showed  in  the  guiding  center  limit  the  general  agreement  of  the  transport  data
derived from the direct simulation and the predictions of the A-MSD equations. Then we also
resolved the deviations due to finite Larmor radii at smaller guiding fields and found excellent
agreement with our correction formulas.

The  predictions  for  the  percolation  regime  were  also  compared  with  the  complete
simulation.  The  increase due  to  finite  Larmor  radii and the  decrease   of the diffusion in  the
guiding center limit due to the field line trapping were also verified. 

A possibility for  future works would be the inclusion of fluctuating electric fields,  which
are still not covered by the common theory.

Summarizing  we  can  state  the  major  results  as  follows:  Based  on  the  A-Langevin
equation a framework for the description of transport in stochastic plasmas was derived. The
approach  allows  the  treatment  of  finite  Larmor  radius  effects.  We  investigated  diffusion
regimes  for  different  Kubo  numbers  and  found  an  significant  decrease  of  the  transport  for
large Larmor radii when the Kubo numbers are small and an increase of the diffusion for large
Kubo numbers. 
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Appendix A

A.1 Neccessary properties of the matrix V

Here, we evaluate the matrix V ,

(A.1)V = -WR+ b L R-.

It has an anti-symmetric structure induced by the Li -generators and can be calculated directly
by inserting the magnetic pertubation vector b,

(A.2)V  Ht ', t ''L = -W0 
i
k
jjjjj

0 -Vz Ht ''L Vy Ht 'L
Vz Ht ''L 0 -Vx Ht 'L
-Vy Ht 'L Vx Ht 'L 0

y
{
zzzzzzz.

yielding the entries 

(A.3)

Vx Ht 'L = cos Ha Ht 'LL bx Ht 'L- sin Ha Ht 'LL by Ht 'L,
Vy Ht 'L = sin Ha Ht 'LL bx Ht 'L + cos Ha Ht 'LL by Ht 'L

Vz Ht ''L = bz Ht ''L,
with  aHtL = Wb0 t .  Note  the  different  variables  t '  and  t ''.  We  will  sometimes  write
V Ht ', t '' = t 'L ª V Ht 'L. For b0 Ø 0 the matrix reduces to the simple expression,

(A.4)V = -W b L , Vx Ht 'L = bx Ht 'L, Vy  Ht 'L = by Ht 'L , Vz Ht ''L = bz Ht ''L.
The Eigenvalues of  V  are 

(A.5)l0 = 0, l≤ = ≤iW » b » .

Next we investigate how V HtL  transforms by multiplication with the rotational matrices. First
we let Ri

≤  act at the same time as V ,

(A.6)R- HtL V  HtL R+ HtL = -Wb L = -W0 

i
k
jjjjjjjj

0 -bz by

bz 0 -bx

-by bx 0

y
{
zzzzzzzz.

Obviously this operation cancels all guiding field entries in V . The effect is different when we
apply rotations at arbitrary times, 

(A.7)R- HtL V  Ht, tL R+ HtL = V  Ht - t, tL.
Now the rotation matrices cause a timeshift in the perpendicular entries of V .
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A.2 The rotational  group SOH3L

The  rotational  group  SOH3L  turns  out  to  be  a  useful  tool  in  constructing  a  solution of  the
ALE. Let us define the following matrices, 

(A.8)R1 ª
i
k
jjjjjjj

1 0 0

0 cosa -sina

0 sina cosa

y
{
zzzzzzz, R2 ª

i
k
jjjjjjj

cosa 0 sina

0 1 0

-sina 0 cosa

y
{
zzzzzzz, R3 ª

i
k
jjjjjjj

cosa -sina 0

sina cosa 0

0 0 1

y
{
zzzzzzz.

Then the RiHaL  are a base of the SO(3) and can be expressed in terms of the generators Li  of
an infinitesimal rotation, 

(A.9)Ri HaL = eLi  a

using

(A.10)L1 =
i
k
jjjjjjj

0 0 0

0 0 -1

0 1 0

y
{
zzzzzzz, L2 =

i
k
jjjjjjj

0 0 1

0 0 0

-1 0 0

y
{
zzzzzzz , L3 =

i
k
jjjjjjj

0 -1 0

1 0 0

0 0 0

y
{
zzzzzzz, L ª

i
k
jjjjjjj

L1

L2

L3

y
{
zzzzzzz.

The vector-product  of two vectors a  and b  is given by the operator representation involving
the vector of the generators L ,

(A.11)aäb = -Hb ÿLL a.

In  the  most  cases  we  will  drop  the  argument  in  Ri .  Finally  we  define  a  set  of
damped-rotational-operators,  

(A.12)R≤ HtL ª R3 H≤W0 b0 tL e≤nt.

That  can  be  used  to  solve  the  ALE.  As  often  as  possible  we  will  use  the  short  notation
a ª aHtL = W0 b0 t  for the argument. In the special case b0 Ø 0  the rotational matrices reduce
to the unity matrix, and 

(A.13)R≤ Ha HtLL »b0Ø0 = I e≤n t,

is  left.  A  further  helpful  representation  of  R≤  is  found  by transformation  into  the  complex
space by using the vector q = Hx + i y, zL 

(A.14)R≤ q =
ikjje≤iWb0 t-nt 0

0 e-nt
y{zz ikjjx + i y

z
y{zz.

The  original  variables  can,  of  course,  be  recovered  by  x = �HqxL, y = �HqxL  andHR≤ rLx = �@HR≤ qLxD , HR≤ rLy = �@HR≤ qLxD .
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A.3 Short review of the velocity correlation function for classical transport

The solution of the A-Langevin equation without magnetic fluctuations reads

(6.15)h HtL = R- u0+ R- ‡
0

t

 R+ a HtL dt,
and we can calculate the velocity correlation functions by successively apply our information
about  the  stochastic data of a  and u0 .  The product  of two perpendicular  velocities is given
by, 

(A.16)
Xhx Ht1L hx Ht2L\a = @cos HWb0 t1L cos HWb0 t2L u0 x

2+ sin HWb0 t1L sin HWb0 t2L u0 y
2D

äexp@-nHt1+ t2LD + A
ÅÅÅÅÅÅÅÅÅÅ
2 n

@1- exp H-nt2LD cos HWb0 Ht1 - t2LL.
Here  we used already the correlation of the  random velocities  Xa Ht1L a Ht2L\ = 1 A d Ht1 - t2L.
The  choice  of  the  constant  A  is  still  at  our  disposal  [5].  Next  we  assume  a  Maxwellian
distribution of the initial velocities, 

(A.17)P Hu0L = p-3ê2 vt
-3 exp 

ikjjj- u0
2

ÅÅÅÅÅÅÅÅÅÅÅ
vt

2

y{zzz,
and average the initial velocities, yielding

(A.18)XXhx  Ht1L hx Ht2L\a\u0
= ikjj A
ÅÅÅÅÅÅÅÅÅÅ
2 n
 e-n»t1-t2» + 1

ÅÅÅÅÅ
2
 ikjjvt

2 -
A
ÅÅÅÅÅÅÅ
n

y{zz e-n»t1+t2»y{zz cos HWb0 Ht1 - t2LL.
Obviously  this  correlation  function  is  not  stationary in  time,  it  still  depends  on  t1  and  t2
separately.  To  fulfill  the  constraint  [10],  that  XXhx Ht1L hx  Ht2L\a\u0

 should  depend only on  the

difference of two times, t = t1- t2 , we choose the constant A  to be 

(A.19)A = vt
2n.

Substituting this value for A , we directly find the relations presented in the main text. 

A.4 Multiscale perturbation series for strong guiding fields

The  evaluation of  the  correlation  functions needs  an approximation  [31]  for  strong  guiding
fields.  We  present  here  a  suitable  method  to  estimate  the  integrals  up  to  the desired  order.
Following types of integrals have to be solved,

(A.20)I1 = ‡
0

t

cos J t - t
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
¶

N by HtL dt, I2 = ‡
0

t

sin J t - t
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
¶

N bx HtL dt.
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For  b0 p 1  we  use  the  smallness  parameter  ¶ = HWb0L-1 .  Substituting  x = ¶-1Ht - tL  and
expanding in ¶ leads to

(A.21)

I1 = ‡
-¶-1 t

0

cos HxL by Ht + ¶ xL d x º ¶ by HtL@sin HxLD-¶-1 t
0

-¶2 ‡
-¶-1 t

0

sin HxL by ' Ht1+ ¶ xL d x.

A  second  partial  integration  by  path  enables  us  to  derive  an  approximation  to  the  second
order of ¶,

(A.22)I1 = ¶by HtL sin H¶-1 tL - ¶2 bx ' HtL - ¶2 bx ' cos H¶-1 tL+� H¶3L.
The second integral can be estimated in the same way, 

(A.23)I2 = -¶by  HtL - ¶by HtL cos H¶-1 tL + ¶2 by ' HtL sin H¶-1 tL +� H¶3L.
Due  to  the  fast  oscillations  the  trigonometric  terms  vanish  and  the  contribution  of  the
perturbation field b are found to be 

(A.24)I1 º -¶
2 bx ' HtL, I2 º -¶by HtL.
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Appendix B

B.1 Combined average

The  average  of  mixed  terms  combined  of  the  stochastic  function  and  the  characteristic
function   is  more  involved  [31,32]  than  the  standard  cumulant  expansion.  Let
sHt1, t2L = XaHt1L aHt2L\, we can calculate the combined average as, 

(B.1)

[a Ht1L a Ht2L exp :-i k ‡
t2

t1

a HqL dq>_ = 1
ÅÅÅÅÅÅÅÅ
k2
 
∑2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ t1 ∑ t2

 [exp 
i
k
jjjjjj-ik‡

t2

t1

a HqL dqy{
zzzzzz_

=
1
ÅÅÅÅÅÅÅÅ
k2
 
∑2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ t1 ∑ t2

 exp 
i
k
jjjjjj- 1
ÅÅÅÅÅ
2
 k2 ‡

t2

t1

‡
t2

t1Xa Hq1L a Hq2L\ dq1 dq2y
{
zzzzzz

= :sa Ht1, t2L - k2 ·
t2

t1

sa Ht1, q2L dq2 ‡
t2

t1

sa Hq1, t2L dq1>ä
exp :- 1

ÅÅÅÅÅ
2
 k2 ‡

t2

t1

 ‡
t2

t1

 sa Hq1, q2L dq2 d q1>.

which can be written with the using ja  and ya  from the main text, defined in (3.22), 

(B.2)[a Ht1L a Ht2L exp :-i k ‡
t2

t1

a HqL dq>_ = 8sa Ht1, t2L - k2 ja
2< exp :- 1

ÅÅÅÅÅ
2
 k2 ya>.

This  prescription can also  be found in [10,12]  and is  used throughout  the  derivation of the
Lagrangian  correlation  functions.  A  more  generalized  procedure  for  mixed  or  combined
averages is presented in Sec. 4.2.

B.2 Analytical derivation of the Rechester-Rosenbluth diffusion coefficient

The derivation follows Vanden-Eijnden et  al.  [12] where a detailed treatment of the method
and the calculation can be found.  In order  to  derive  the asymptotic diffusion coefficient  for
the MSD mH0L  given by 

(B.3)
d2

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
dt2

 mH0L HtL = k2 cêêê»»2 J1+ cêêê»» t - 1
ÅÅÅÅÅ
2
 cêêê»»N-

3ÅÅÅÅ2
 
ikjjj1- J1+ cêêê¦ Jt - 1

ÅÅÅÅÅ
2

N + 1
ÅÅÅÅÅ
2
 mH0L HtLN-2y{zzz,

we approximate (B.3) with 
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(B.4)
d2

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
dt2

 mH0L HtL = q Jt - 1
ÅÅÅÅÅ
2

N- 3ÅÅÅÅ2
 
ikjjj1- J1+ cêêê¦ Jt - 1

ÅÅÅÅÅ
2

N + 1
ÅÅÅÅÅ
2
 mH0L HtLN-2y{zzz,

for cêêê»» t 1. q = k2 cêêê»»1ê2 .  This Eq. should be solved with the initial conditions mH0LH1L º 0  and
dÅÅÅÅÅÅÅdt  m

H0LHtL »t=1 º 0. A solution can now be found by dividing the evaluation of the differential
Eq. (B.4) into  two parts. First  we solve (B.4) for cêêê¦ Ht - 1ÅÅÅÅ2 L + 1ÅÅÅÅ2  m1

H0L HtL` 1.  In this case,
the last term in (B.4) can be approximated using the expansion

(B.5)J1+ cêêê»» Jt - 1
ÅÅÅÅÅ
2

N+ 1
ÅÅÅÅÅ
2
 x HtLN-2

º 1- 2 cêêê¦ Jt - 1
ÅÅÅÅÅ
2

N- mH0L HtL,
which leads to the differential equation (in the regime 1), 

(B.6)
d2

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
dt2

 m1
H0L = q Jt - 1

ÅÅÅÅÅ
2

N H2 cêêê¦ têê + m1
H0L HtLL.

using têê = t - 1ÅÅÅÅ2 . The solution of this Eq., 

(B.7)m1
H0L = -2 cêêê¦ t

êê + cêêê¦ 
è!!!!
têê  9c1 I2A4 è!!!

q  têê1ê4E+ c2 K2A4 è!!!
q  têê1ê4E=,

is given in terms of the modified Bessel functions I2  and K2 .  The coefficients c1  and c2  are
found by using the inital conditions, 

(B.8)c1 =
è!!!!

2 @a K1 HaL + 4 K2 HaLD, c2 =
è!!!!

2 @aI1 HaL - 4 I2 HaLD, a = 27ê4 è!!!
q .

We use the asymptotic expansions of the Bessel functions, 

(B.9)K2~$%%%%%%%%%pÅÅÅÅÅÅÅÅÅÅ
2 x
 e-x , I2~

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!

2 px
 ex, for xp 1.

With this substitution, the solution (B.7) simplifies to

(B.10)m1
H0L + 2 cêêê¦ t

êê~
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 

è!!!!!!!
2 p
 cêêê¦ t
êê3ê8 q-1ê4 c1 exp I4 è!!!

q  têê1ê4M,
if we assume 

è!!!
q  têê1ê4 p 1. The second regime is defined by the condition

(B.11)cêêê¦ Jt - 1
ÅÅÅÅÅ
2

N+ 1
ÅÅÅÅÅ
2
 m2

H0L HtLp 1,

and leads to a very simple differential equation of the form,

(B.12)
d2

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
d têê2

 m2
H0L = qtêê-3ê2,

which can be integrated once in time,
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(B.13)
d
ÅÅÅÅÅÅÅÅÅÅÅ
d têê
 m2

H0L = D- qtêê-1ê2.
In  the  latter  formula  the  diffusion  coefficient  appears  as  a  principially unknown  integration
constant. Obviously both regime have to matched at a certain time têê* , where we assume that
both approximation are valid. Using (B.6) and (B.12) we get

(B.14)1=
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 

è!!!!!!!
2 p
 cêêê¦ t
êê*3ê8 q-1ê4 c1 exp I4 è!!!

q  têê*1ê4M,
as  a  a  defining  equation  for  the  fitting  time  têê* .  (B.10)  leads  together  with  (B.13)  to  the
matching relation,

(B.15)D - qtêê*-1ê2 = 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 

è!!!!!!!
2 p
 cêêê¦ t
êê*-3ê8 q1ê4 c1 exp I4 è!!!

q  têê*1ê4M º 0.

One obtains the matching time 

(B.16)têê*-1ê2 = D
ÅÅÅÅÅÅÅ
q

.

Introducing this matching time into (B.14) gives us an implicit equation for D, 

(B.17)1=
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 

è!!!!!!!
2 p
 cêêê¦ D

-3ê4 q-1ê2 c1 exp H4 q D-1ê2L,
which  can  be  iterated  around  D º 16 q2 ,  reproducing  the  famous  Rechester-Rosenbluth
diffusion coefficient as it can be found in the main text, 

(B.18)D =
16 q2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
log2A16 

è!!!!!!!
2 p  q2 cêêê¦

-1E .
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Appendix C

C.1 Conditional probabilities in the DCT

We  present  here  a  simple  example  to  explain  the  calculation  of  the  involved  conditional
probabilities  in  the  DCT  [33,34,35].  Therefore  we  concentrate  in  finding  the  subensemble
average of the form, 

(C.1)Xb\S = ‡
-¶

¶

 b P Hb » f0L db.

b may be one dimensional and fH0L = 0 the only condition. For PHb » f0L  we use

(C.2)P Hb » f0L = Xd Hb- b HxLL d Hf0- f H0LL\
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅXd Hf0- f H0LL\ .

Next  we  define  the  correlation  between  bHxL  and  fH0L  as  Cbf = XbHxL fH0L\.  All  other
correlations are either one or zero, e.g. XbHxL bHxL\ = 1. Inserting the Fourierrepresentation of
the Deltafunction and applying the cumulant expansion in the exponent, we arrive at 

(C.3)P Hb » f0L = 1ÅÅÅÅÅÅÅÅÅÅ4 p2  Ÿ dk Ÿ d l exp@ikb + ilf0- 1ÅÅÅÅ2  k
2 - 1ÅÅÅÅ2  l

2- klCbfD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

1ÅÅÅÅÅÅÅÅ2 p  Ÿ dm exp@imf0- 1ÅÅÅÅ2  m
2D .

The integration is straightforward and yields, 

(C.4)P Hb » f0L = 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"###########################2 p H1-Cbf

2L  exp 
i
kjjjj-

Hb -CbfL2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 H1-Cbf

2L y
{zzzz.

Performing also the last integration we find the ensemble average to be

(C.5)Xb\S = f
0 Cbf.

Of  course,  the  extension  of  Eq.  (C.2)  with  more  conditional  terms  is  straightforward  and
leads to similar expressions like Eq. (C.5).  The probabilities used in the main text are derived
by the same method as presented here. Some details and further examples can be found in the
works of Vlad et.al. [18,19,20]. 
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Appendix D

D.1 The Matlab7 environment

All  algorithms  are  programmed  and  implemented  in  the  mathematical  interpreter  language
Matlab7. The major advantage of the interpreter environment is the possibility to use internal
random  generators  and  differential  equation  solvers  which  are  very  fast  and  reliable.
Subroutines  are  placed  in  separate  program modules  to  provide individual  maintenance  for
single  parts  of  the  calculation  and  the  possibility  to  exchange  or  reuse  single  modules  for
other purposes. 

The guided user interface patric@Matlab7 was developed. It  automatically controls all steps
of the ALE integration process and the corresponding Green-Kubo model equations. 

D.2 Numerical solution of the A-Langevin equation

Principle

The ALE is a second order stochastic  differential equation for the trajectory r  of a particle. It
is  solved  by  a  direct  Monte-Carlo  integration  [36].  Calculating  the  differential  equation
system  is  straightforward  and  is  performed  with  a  standard  fourth  order  Runge-Kutta
procedure with fifth-order error correction. The stochastic values are basically provided by a
random generator that produces distributed or correlated random numbers. 

Integration of the trajectory

An ensemble  of  particles is  propagated  through the system,  solving  the  ALE once for  each
particle. With fixed values of the magnetic field and the acceleration, the ALE is, of course,
equal to a damped and accelerated 3D-Lorentz equation system. To establish useable results,
the number of trajectories should be large enough.  Every single particle is equipped with an
individual random starting point and a random starting velocity in each direction. The random
data have a Gaussian distribution. These data are used as initial condition for the integration.
We found that  the precision of the calculation is no longer significantly increased using more
than 50 particles. So, typically, we propagate around 50 to 100 particles for our statistics.

Stochastic collisions

Within  the  steps  of  the  numerical  integration,  an  acceleration  a  is  provided  by  a  random
generator. It  models the collisional events a particle will experience along its trajectory.  The
strength of  the  collisions is  scaled  by the  factor  

è!!!!
A = vt 

è!!!
n ,  as  derived  in Sec.  2.  As the

collisions appear now at each integration step, the friction parameter n  requires rescaling with
the step size of the integrator. 

Stochastic magnetic field
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The magnetic fluctuation field b  is also changed randomly, but it is still correlated by the rules
of the Eulerian correlation function. We generate the perturbation field at a position X HiL, by
using the state of the perturbation field at  X Hi - 1L  and adding a random number scaled with
the inverse of the correlation value at the position X HiL  [36,37]. The latter is possible, because
the position of the particle is always known at the temporary point of integration.

Polynomal fitting and transport properties

A set  of trajectories is  obtained and the numerical analysis  is  completed  by averaging  these
trajectories to  provide the MSD.  From the MSD other  transport  properties  can be derived.
To derive numerical data on the diffusion coefficient, a polynomal fitting routine is applied to
take care of noise and oscillation of the MSD data, causing large derivatives in the calculation
of the diffusion.

D.3 Integration of the Green-Kubo differential equations

In most cases the Green-Kubo equations are solved by an internal Matlab7 routine. It is based
on  an  explicit  Runge-Kutta  method  using  the  Dormand-Prince  pair  and  is  an  4th  order
integrator with a 5th order error correction [38]. In some rare cases the differential equation
is stiff.  Then the algorithm is switched to an integrator for stiff equations, applying a second
order Rosenbrock formula.

D.4 Monte-Carlo integration of the DCT structure function

Principle

The numerical calculation of the DCT structure function requires an efficient and fast way to
solve the triple integral for f0  and b0 . This is a non-trivial task, because for each integration
step Hfi

0, bi
0L, the decorrelation trajectory Xi Ht; fi

0, bi
0L  has to be retrieved by an additional

integration of the non-stochastic 3D-Lorentz differential equation system determining Xi . 

Monte-Carlo method

The basic idea of the Monte-Carlo integration (more precisely, it should be called quadrature
here)  is to  replace the integration with a  summation [36,38].  But  instead of using  a regular
grid  to  cover  the  integration  points  in  fixed  steps,  we choose  a  random set  of  fi

0and  bi
0 .

Again the number of random points has to be large enough to find precise results. Due to the
special characteristics of the integral,  we generate the values for fi

0and bi
0  from a Gaussian

distribution  and  select  in  that  way only numbers  with  maximal  contribution  to  the  integral.
The algorithm has proven to be extremely efficient. 
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