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1 Introduction

1.1 Physical motivation

Transport phenomena are of major interest in severa areas of modern physics and appear
with great diversity in many applications of plasma physics. A very urgent topic is the heat
and particle transport in magnetically confined plasmas used for thermonuclear fusion devices.
These devices are intended to create an extremely hot and dense plasma which should be
confined for sufficiently long times. Mainly two different concepts, the tokamak and the
stellarator, are being proposed at the moment to reach this objective.

The neccessary confinement of the plasma is achieved by magnetic fields that should keep
the particles within a certain area of the machine [1]. From the beginning of the magnetic
fusion research, the problem of particle transport is in the focus of theoretica and
experimental investigations. In the basic concept of classical transport, a magnetic field
preferentially binds the particles along the field line and reduces their ability to move in the
perpendicular direction of the field. It is convenient to define transport quantities, namely the
mean square displacement and the diffusion coefficient, and to distinguish the transport in
perpendicular and parallel direction. Of course, in this classical picture large magnetic guiding
fields reduce the perpendicular diffusion decisively. Collisons appear as an obstacle for the
free motion along the field line and decrease the transport in parallel direction. Contrary they
increase the ability of the particles to diffusive perpendicularly, because collisions transfer the
particle to other field lines.

A reason for the extraordinary interest in the mechanisms of diffusion lies in the
unexpected large losses caused by anomalous transport [2]. The term anomalous refers
hereby to the strong deviation of the diffusion rate from the classica and neoclassical
predictions [3], caused by fluctuations of the electric and magnetic field. To understand and
control this type of transport is a magjor aim particularly with regard to the future designs of
thermonuclear fusion reactors.

In the physics of fusion plasmas there is also an additional, very recent motivation for the
investigation of particles in stochastic fields. Beneath the intrinsic perturbations of the
magnetic field structure, which are more or less unavoidable because of errors in the coil
arrangements of the devices, auxiliary coils are being added to existing configurations in
several tokamaks [4]. These additional coils are an artificial source of stochasticity and
generate magnetic fluctuations in order to control and observe the particle and heat loads on
the wall. Examples can be found on the tokamaks Tore-Supra, DIII-D, and TEXTOR, and
are being planned for JET.

The vast mgjority of works dedicated to anomalous transport starts with a Langevin type
treatment, as can be found e.g. in [5], based solely on the guiding center assumption. In
common fusion reactors the magnetic fields are sufficiently strong to assume infinitely small
gyro-radii, at least for the electrons. The question remains in what way finite Larmor radii
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influence the transport, especially in regions where the guiding center assumption fails. Indeed
in tokamaks such areas can be found e.g. in the vicinity of hyperbolic points. Our central
intention is the description of these finite Larmor radius effects by analytical and numerical
means.

The knowledge of charged particle transport is also a long-standing problem in many
astrophysical issues [6,7], such as low-energy cosmic ray penetration into the heliosphere, the
transport of galactic cosmic rays in and out of the interstellar magnetic field, and the Fermi
acceleration mechanism.

Galactic magnetic fields are paralel to the galactic disk and mostly aligned with the
galactic spiral arms. The typical Larmor radius of a cosmic ray particle in this field is several
orders smaller than the height of the galactic disk in which most of the solar systems are
located. In astrophysical plasmas of this dimensions, collisons are neglected and from the
classcial theory cosmic ray particles may be expected to remain very effectively trapped
within the disk. Observations do not agree with this picture. Cosmic rays are transported in
perpendicular direction at several magnitudes higher than predicted.

Obviously a model based on entirely parallel magnetic fields is insufficient for a successful
description of the cosmic rays. With a mean field in parallel direction, there have to be
additional perpendicular components that enable the particles to leave the galactic plasma.
These components are induced by nonlinearities of the galactic field and can be regarded as
stochastic. It is also an intention of this work, to provide useful predictions of the diffusion
that can be introduced into the models of cosmic rays. Magnetic fields occuring in the galaxy
consist of very small guiding fields. Then it is required to include the complete gyrational
motion. One of the new important questions added from the astrophysical point of view is:
What are the transport properties in stochastic magnetic fields when the mean field becomes
small? The latter case is also realized in other astrophysical situations with random magnetic
fields, e.g. the Earth magnetic field. In such plasmas with small guiding fields the Larmor
radius effects become essential. Obvioudy in situations with mean fields smaller than the
fluctuation amplitude, the stochastic component has to be regarded as the dominating one.
For this case a completely new kind of approach is needed.

Despite the specia interests in both, magnetic fusion plasmas and astrophysical plasmas, a
general aspect of the transport in stochastic magnetic fields concerns the structure of the
perturbation field. Due to the peculiar nature of the fluctuations, magnetic structures arise
under certain circumstances and disrupt the displacement mechanisms of the particles.
Fieldlines become trapped within areas of the magnetic flux, the so-called fluxtubes [6], and
the transport is changed significantly.
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1.2 Stochastic differential equations approach to anomalous transport

A common strategy to treat anomalous plasma transport is the use of kinetic theory, which
primarily focusses on the analysis of the distribution function in phase space. The principle of
this kind of description is to identify the state of the plasma, that is determined by a suitable
number of macroscopical physical quantities, and to find the law of evolution, the kinetic
equation of this state [5]. The advantage of the kinetic description is the possibility of a
self-consistent model of the system, incorporating the aternating interactions between
particles and fields. Typically the electromagnetic field is linked to the distribution function by
applying the Maxwell equations. Within such an approach it is of course also possible to
include the effects of magnetic fluctuations. Unfortunately, the distribution function may then
contain a certain amount of stochasticity as it evolves now irregularly and randomly. Due to
this extremely nonlinear character of the evolution equation, it is nearly impossible to use the
kinetic approach for the transport quantities and one needs extensive numerical efforts for the
treatment of fluctuating systems. Instead reduced and simpler models have become
fashionable to describe such systems from a different point of view and on a substantialy
more practicable level of mathematical expense.

A more feasible way to find reliable predictions, especialy for transport phenomena is
based on the use of stochastic differential equations [8]. These are differential equations in
which one or more terms are of stochastic nature. The solution of the equation is a stochastic
value. This approach alows us to assume the magnetic field to be a random source. One has
to abandon the self-consistent description here for the benefit of a more simple formulation.
The loss of the complete interacting kinetic properties is expressed in the requirement to
introduce a priori statistical information about the stochastic quantities in the differential
equation. Despite this constraints, the approach with stochastic equations provides a highly
efficient access to the analytical description of anomalous transport.

Modern fusion devices like tokamaks have a very specia magnetic configuration
containing toroidal and poloidal magnetic fields. The geometry of this fields is inhomogenous
and curved, and a global analysis is very difficult to be incorporated. Fortunately the effect of
the complex geometry often can be neglected for the involved model zones and the qualitative
understanding of the underlying physical mechanisms of transport is studied in a standard
dab configuration [9]: a guiding field in z-direction and fluctuations mainly in the
perpendicular directions x and .

Basically, three different stochastic quantities can be identified in our problem, the
collisions, the magnetic fluctuations and, of course, the velocity of the particle. We use the
stochastic differential equations approach based on the Accelerated-(A)-Langevin equation
[5,10]. The name denotes that the origin of the equation is the Newton-Lorentz equation for
the acceleration of a charged particle in a magnetic field B = By (bg €, + b) with the stochastic
component b,

U= Qux(bge,+b) —vu+a (1.1
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Here () = ZeBy/(mc) is the Larmor frequency, v is the collison frequency and a a white
noise acceleration process. The latter is assumed as random acceleration with a ¢-distributed
correlation function. From this perspective a stochastic function like a(t) is not determined. It
can only be described by its stochastic properties. A detailed introduction of (1.1) is presented
in Sec. 2.

Another option to treat the topic theoreticaly starts from the Velocity-(V)-Langevin
equations [11]. In strongly magnetized plasmas, charged particles move on gyrationa orbits
around the field lines. Depending on the strength of the magnetic guiding as well as on the
thermal velocities of the particles, the Larmor radius may be sufficiently small. Then it may be
allowed to replace the exact position of a particle virtually by the position of the field line it
gyrates along. In this approach one considers stochastic equations for guiding centers of test
particles [9,10,11,12]. It approximates the A-Langevin equation for small gyro-radii. It can
be derived from the A-Langevin equation by integration in time and application of the drift
approximation, yielding

dr.
dt

=bm+n,,

dz B

(1.2)

These are the V-Langevin equations. Collisons are now introduced via the stochastic
velocities , and 7. The V-Langevin equations are approximations and assume large
(guiding) magnetic fields such that the guiding center picture becomes meaningful. Note that
the stochastic component of the magnetic field is usually wesak, i.e. the stochastic fields alone
do not justify the drift approximation directly. Only if a strong confining magnetic field is
additionally present, such as in tokamaks, the V-Langevin approach is justified. The same
reason indicates that the V-Langevin equations are not suited for astrophysical applications.

In the present work, we concentrate on the solution of the A-Langevin equation. That
invokes the stochastic equation of motion (1.1) for a single test particle. On the basis of the
solution of the equation of motion one can calculate a velocity correlation function that leads
to the diffusion tensor. Generally, the exact analytical solution of the problem is not.
Nevertheless it is still possible to make some estimations in different limiting cases assuming
that the perturbation of the magnetic field is weak.

The main assumptions of the present work are the following. First, we assume static
magnetic disturbances and thereby neglect the electric force on the particles. This is justified
as long as the propagation velocity of the magnetic fluctuations is small compared to the
typical velocity of the particles. Furthermore we assume Gaussian Eulerian correlation
functions (fulfilling the constraint div B = 0).
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1.3 Mean squar ed displacement and the diffusion coefficient

Transport can be systematically described in terms of two quantities: the diffusion coefficient
and the mean square displacement (MSD), that is eg. the quadratic perpendicular
displacement, averaged over a given ensemble of realizations,

(OXZ(1)) = ([X(1) — (XY = (D)) — (D). (1.3)

With the MSD we divide transport roughly into three different regimes, distinguished by
the dependence of the MSD on time,

(6%2 (1)) ~17. (1.4)

For a < 1 the transport is subdiffusive. The MSD tends asymptoticaly to a constant value
and transport in the corresponding direction breaks down. Diffusive behaviour is given for
a = 1. If thiskind of transport prevails and the MSD is asymptotically proportional to time, a
constant D may be introduced as

(6%2 (1)) = 2 Dt, (1.5)

which we cal the asymptotic diffusion coefficient. Similarly a quantity called running
diffusion coefficient is defined as D(t) = % % (6x?(t)). In a subdiffusive situation D(t) would
vanish with increasing time t. At last, for @ > 1 the transport is called superdiffusive. A
typical example of such adomain of diffusion is the ballistic motion of particles.

1.4 Lagrangian and Eulerian correlations

The dynamical law that governs the motion of the particles, in our case namely the
A-Langevin equation (1.1) should lead to the MSD and the diffusion coefficient. The solution
of the A-Langevin equation is the velocity of a particle. An ensemble averaged product of
two particle velocities at two different points in space is called Eulerian velocity correlation
function (we will aso refer to correlation functions as correlations, correlators, or the
Eulerian) and can be directly deduced from the solution of (1.1). Eulerian correlations are
well established quantities [10,11]. They can often be calculated directly for a given problem
and even their measurement is possible.

Another, much more complicated quantity is directly related to the transport properties
we are interested in: the Lagrangian velocity correlation function [13,14]. Contrary to the
Eulerian correlation, it is calculated as the averaged product of two velocities of the particle,
that lie exactly on the trajectory at two times. The spatial dependence has been replaced by
the trgjectory and the correlation is only time-dependent. If the correlation function is known,
the Green-Kubo formalism provides an elegant way to relate it with the MSD in form of an
ordinary differential equation in time.



1 Introduction

One of the major difficulties we are confronted with in this work is the derivation of the
Lagrangian correlators. An exact calculation of this quantity would require the evaluation of
the dynamical equation (1.1) for each realization of the stochastic terms, which is an
impossible task. Estimates are needed to find a relation between Lagrangian and Eulerian
correlations.

We will discuss two different approximations in order to find expressions for the
Lagrangian velocity correlators. The first one, well-known throughout various areas of
theoretical turbulence research, is the Corrsin approximation [13,15]. It provides a very
intuitive and straightforward way to derive the Lagrangian correlator from the corresponding
Eulerian. Unfortunately it is restricted to a specific domain of turbulence, defined in terms of
the Kubo number [17,18], which is defined as the ratio of the distance which a particle
travels during an autocorrelation time and the correlation distance. This is expressed in terms
of the fluctuating velocity V = B/ (by 7¢), the decorrelation time 7. and the perpendicular
correlation length A,

_ VTC _ ﬂA”
AL boA.

(1.6)

K

Here B is the fluctuation amplitude, by the dimensionless strength parameter of the guiding
field, A, the paralel correlation length of the magnetic field and A. the perpendicular
correlation length. The Kubo number is a dimensionless parameter, which we use frequently
to specify the degree of magnetic turbulence. High Kubo numbers characterize systems with
strong turbulence. With A, and A. two different length scales are introduced that have
decisive impact, not only on the transport itself, but also on the choice of the method required
to find the Lagrangian correlator. The second way to find the Lagrangian correlation is called
the decorrelation trgjectory method (DCT) [18,19,20]. It is a rather new and more complex
method than the Corrsin approximation, which includes effects of the magnetic structure into
the correlator. The DCT has no restrictions for the values of the Kubo number.



1 Introduction 7

1.5 Percolation structures of the flux function

A very recent topic discussed in the context of anomalous diffusion is the occurance of
certain magnetic flux structures [6] that can change the transport behaviour decisively
[20,21,22]. The pertubations can be regarded to be generated from a stochastic flux function.
In some cases that are related to Kubo numbers greater than one, the flux function gets
percolative contours [23]. Additionaly in such a case the field lines are forced to move
around this contour lines[24]. This can lead to the very interesting fact, that a certain number
of field lines are trapped within the percolative map of the flux function and can no longer
contribute to transport. On the other hand, larger Larmor radii help the particles to detach
from these field lines more efficiently. The method used in connection with this systems is the
DCT mentioned in 1.4, developed by Vlad et al. in [20].

Since neither a complete review of the percolation regime on the basis of stochastic
differential equations was not discussed in detail nor a consequent comparism between the
Corrsin approximation and the DCT was not done so far, it is a central intention of our work
to provide an anaytical relation between the Corrsin correlation functions and the DCT
correlation functions, as well as an in depth investigation of the combined effects of
percolation structures and finite Larmor radii.

1.6 Overview of thiswork

The phenomenon of anomalous transport has been under investigation for a long time.
Several previous works covered this topic by concentrating on guiding center motions alone.
For any rigorous description and understanding of anomalous transport in plasmas, it is
neccessary to include the complete motion of the particles. A detailed analysis starting from
the complete A-Langevin equation was not done so far, but appears unavoidable as we are
primarily interested in the particle transport and not in the deviation of neighboring field lines.
Furthermore, we want to identify especialy the influence of the particle gyration around the
field line, namely the Larmor radius effect.

Consequently a couple of important questions come into the focus of interest:

How do the fluctuations contribute to the diffusion of the particles?

What isthe influence of the Larmor radius on the diffusion?

What happenswith the transport if a mean guiding field is not present?

Isthe diffusion affected by the percolative structure of the perturbation field?

Throughout the following investigations we will answer these questions and give
analytical as well as numerical descriptions of the anomalous transport in stochastic plasmas.

Thiswork iscomposed of 6 sections and is organized as follows:
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In Sec. 2 we solve the A-Langevin equation with a sequence of transformations and
derive an explicit expression for the velocity of a particle that experiences collisions and the
effects of the perturbative magnetic field. From this expression we calculate unaveraged
correlation functions, namely the products of velocities at two different times. The
Green-Kubo formalism is presented and illustrated with the example of classical transport.
With the assumption of strong guiding fields a series expansion of the correlation function is
obtained, where the zeroth order represents the guiding center motion and the higher orders
correspond to the Larmor radius effects.

Section 3 deds with the diffuson regimes for small Kubo numbers. The Corrsin
approximation is explained and applied. It transfers the correlation function (derived in - Sec.
2) to Lagrangian coordinates. Using the Green-Kubo formalism we discuss the diffusion
regimes of anomalous transport analytically. First, the quasilinear limit is presented and the
corresponding Larmor radius correction is determined. Here we show in detail how estimates
for the diffusion can be derived. Another, somehow artificial regime, the subdiffusive situation
is reviewed, which regards to a case where the diffusion coefficient has a zero asymptotic
value and the transport stops. The well-known Rechester-Rosenbluth diffusion scaling
follows from the present analysis. By numerical simulations of the Green-Kubo differential
equation we integrate finite Larmor radius effects and discuss their impact on the diffusion.
Two further regimes due to Kadomtsev and Pogutse are also shown to be reproduced by the
A-Langevin approach. The last part of Sec. 3 is dedicated to the transport in dominant
stochastic magnetic fields, where no mean field is present. A three-dimensional stochastic
perturbation alone is considered in the A-Langevin equation. We give also analytical formulas
for the diffusion coefficient and the MSD in such a scenario.

Section 4 extends our insights to high Kubo numbers. The latter correspond to certain
magnetic structures that have great impact on the diffusion. We give a short introduction on
the stochasticity of the flux function and on the percolative structures that are imposed for
high Kubo numbers. The occurance of flux tubes is demonstrated and their connection with
the diffuson rate is explaned. An involved method, the decorrelation traectory
approximation, is used to derive enhanced Lagrangian correlation functions that contain the
effects of percolative flux structures. The explicit analytical relation between Corrsin
correlators and DCT correlators is presented. Finite Larmor radius corrections are included
into the analysis and the effects of the magnetic structure in combination with finite Larmor
radii isinvestigated.

A numerical verification of the efforts of Secs. 3 and 4 is presented in Sec. 5. Using a
Monte-Carlo simulation code of the A-Langevin equation we confirm our analytical
predictions by the exact computer model.

The work is concluded in Sec. 6 by a summary of the efforts and results. We also give a
short outlook for future activities on the topic of anomalous transport.
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2 Velocity correlations based on the A-L angevin equation

2.1 Thevelocity of a particlein a stochastic magnetic field with collisions

2.1.1 General magnetic geometry and the description with the A-Langevin equation

In general, we consider a magnetic field of the form
B=Bo(bpe,+byec+bye +Db,e,). (2.1)

composed of a guiding fieldyby in z-direction and a perturbation fiell. Here the
parameterby and and the vectob are dimensionless. The fact®; takes care of the
dimension of the magnetic field and will sometimegdferred to as magnetic field reference
strength. We call the- andy-components ol = (b, by, b,) the perpendicular components.

Obviously we have to distinguish different realisatiohthe magnetic environment:

e The first case corresponds to a situation with a gtmagnetic guiding fieldby > b,.
We can neglect the fluctuation in thez-direction and restrict to perpendicular
fluctuations. For tokamak applications it will be approgrig assume such a strong field.
The B-Field is then proposed in the simpler form,

B =Bo(bpe, +bye+byey). (2.2)

In this case, it is expected that results derived ftbenA-Langevin equation will agree
with those from the V-Langevin equation to the lowaster in the Larmor radius.

e The second situation is defined by a weak magnetic gufaitd by < 1. In that case we
have only contributions of the stochastic field comgas and we will call it the vanishing
guiding field regime. Th&-Field is given as

B = By (bxex+byey+b,e,). (2.3)

Guiding center theories do not cover this situation [7].

- _ ZeBo . . .
We define a gyro-frequency urit = === . Herem is the test-particle (ion or electron) mass

m
andZe is the total charge. With this definition, the typicarmor frequency is given, e.g. for
the guiding field by Q_=Qbg. The Larmor radius is defined as

oL =Ve/(Qbg+ Q| b]) ~ vi/(Qhy), introducing the thermal velocity.

The A-Langevin equation (ALE) is the equation of motfon a single particle, which
experiences the effects of the magnetic field argl stochastic contributions as well as
random collisions (t),
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z
0= 2 u©x(Bolboe, + bOI = vu(® + (). (2.4)

Similar to the theory of Brownian motion [8], a tercharacterized by the parameter
mimicks the friction caused by the collisions. Soviar will keep the most general form of the
B-Field (2.1). The approach with stochastic equations regj@dditional postulates on the
statistics of the random processes that are invos@aour mathematical description has to be
completed by suitable assumptions on the averages arelations of the initial velocities,
the random collisions and the perturbation field.

Initial velocities in all direction obey a three dins®onal Gaussian distribution,

_ 32, -3 Up®
Pug)=n Vi Cexp _v_tz’

so the average
(Uo)y, = fuo P(up)dup =0

vanishes and(ug?) =Vvi2/2. v, is the thermal velocity of the particles. Here weoahtroduced
a common bracket notation for the average. We dehetdriackets with an index regarding
to the stochastic variable which is averaged.

The white noise collisional events are modelled bigarpo -distributed correlation

@) =0, (a(tpa(y))=1A0(t -1, (2.5)

introducing a free constak. The assumption of thé&-correlation is a quite usual way to
describe events with instantaneous correlation andhwdre uncorrelated everywhere else.
We will use the free constant to ensure that thee@iron function is a function of the time
differencer = t; —t, and therefore stationary.

The stochastic properties of the magnetic fielddafmed by

bt)@bt))= FZLu(r), T=t-1, (2.6)

where we introduced the Lagrangian correlation functibthe magnetic field. That is the
correlation of the stochastic field components detezthat two different timets andt,.

The matrix £y is principally unknown [11] and it is required that thagmetic field
correlation is stated in the co-moving frame ofrefce, the Lagrangian coordinates. We
dedicated Secs. 3 and 4 to find appropriate expressamshé Lagrangian correlation
functions. The average of the magnetic field vanistigs, = 0.

2.1.2 Thesolution of the A-Langevin equation

A couple of mathematical tools are helpful for the soluthe ALE. Especially the rotational
matricesR; (@), a base of th80 (3) group,
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1 0 0 cosa 0 sina cosa —-sina O
Ri=|0 cosa -sina |, R, = 0 1 0 |,Ry=]|sina cosa 0], (2.7)
0 sina cosa —sinae 0 cosw 0 0 1
and their infinitesimal generators
00 O 0 01 0 -10 Ly
le[o 0 —1], Lo=| 0 0 o], L3=[1 0 o], L= Lz]. (2.8)
01 O -1 00 0O 0 O L3

provide an elegant way to rewrite the vector-product ha ALE using the identity
axb=-(bl)a,

u@)y=-QbglLzu — Qb)) Lu(t) —vu(t)+a().
Obviously the constant factors can be handled easiyog substituting,
u(t) = e @Pb™g ) = R A,
one obtains a simpler form of the ALE,
0 =-R QobLR 0 +Ra(.

The operator R* makes use of the rotational matrices and is given by
R* (1) = Ry (x Qg bg t) e, We introduce the operatdr (see also App. A.1), defined by

V=-0R (OLR, (2.9)

as well asa = R* @' a(t) and recover the typical differential equation of threvignian motion
problem,

ﬁ:VG+a

yielding the solution
t
() =Gt ug+ f G(r, H)a(r) dr. (2.10)
0

The latter is given in terms of the Green’s funct®in, t,), [25]

151

Gtz ty) = T|exp{ [ V@ da}], Gty =GO, t), (211)

193

whereT is the time-ordering operator. All neccessary detdilhe operatoV are presented
in Appendix A.1. In the original variables, one obtains
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UM =R G®Uo+R fG(T, HR*a(r) dr. (2.12)
0

Three fundamental influences dominate the motion ofpénticle: the gyration around the
field lines, the random collisions and the fluctuatpegturbation component of the magnetic
field. A special solution exists when this last perttidmais not presertt = 0,

N =u® [ o=R U+R fR+ a(r)dr. (2.13)
0

To mark the importance of this special solution famistaing perturbation fields, we denote it
with the lettern, distinguishing again the two possible orientatigns- (1, 17y) andn,. The
average of this stochastic quantity is z&kgy,, ), = 0. The velocities; are equivalent to the
random collisional velocities that appear in the Vgewin [10].

One further step is the calculation of the trajgctf a single particle, which requires an
additional integration in time,

t

R(t)=r0+fu(t')dt'. (2.14)

0

R(t) is the trajectory vector and should not be confuséd the rotational matrices. For
vanishing perturbations the condition

; _ RO
lim R(t) = R(), (2.15)

holds, whereR© is given by the classical damped helical particle motio
t
RO @) = ro+fn(t')dt'- (2.16)
0

Figure 2.1 shows the trajectory of a particle that e®pees collisions and magnetic
fluctuations. The gyro-motion is extremely disturbed the stochastic pertubations.
Collisions relocate the particle at once in fornanfspontaneous random acceleration and the
perpendicular fluctuations lead to additional deviations file@runperturbed orbit.
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Figure 2.1: Sketch of a particle trajectory, undergoing collisidnsthe presence
magnetic fluctuations.

We make now contact between the unperturbed and therlpeuit solution of the ALE.
Solving egs. (2.12) and (2.13) fag, we can identify the influence of the perturbatiordfiel
form of an propagation equation,

UH=R GOHR 7 -R GO [Ramdr+R [Gr R amdr.  (217)
0 0

which essentially simplifies by the cancellatiortlod last two terms on the right hand side,
ut)=R G(0,t) R p(t). (2.18)

The perturbation field acts as propagator an All effects ofb are contained . For
small valueg3 <« by, we can expan@ in a power series

ty

G(tp, ty) ~ 1+fV(q)dq, fur t; > t, (2.19)

tz

and use the properties \6ffrom the previous Sec.,
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u =g +fV(r—t, tHn®dr. (2.20)
0

The latter formula is the starting point for our detitva of the velocity correlation functions.
It is not applicable for vanishing guiding fields, becatlseconditions <« by is not valid any
more. In this case we have to use the more genera{ZEL8). The relation between the
velocity u(t) of the A-Langevin equation and the collisional vdiesin was not derived in
any previous work.
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2.2 Velocity products from the A-L angevin solution

2.2.1 The Green-Kubo formalism aslink between correlation function and transport

We are interested in the macroscopic transport pregeofi ensembles with a large number
of particles. The intention of our efforts is thedfido derive suitable descriptions of the mean
square displacemetdr;?(t)) and the running diffusion coeffiecieB(t), which are related by

1d )

CRrTS @ri= (1)) = D (). (2.21)
This relation can be deduced in the diffusive regimesnfithe VCF in Lagrangian
coordinates. Once the Lagrangian correlation functlo@Fj is known, the mean square
displacement (MSD) and the running diffusion coefficiBit) are typically obtained from the
Green-Kubo formula,

2 d
5@ (O (0) =2 DO = U (tu (). (2.22)
This equation should be solved with the initial conditiD(0) = 0 and{dr;(0)) = 0. In this
formalism, the problem of the determination of tramspooperties has been reduced to the
problem of finding the correct Lagrangian correlatiorcfiom.
It should be noted, that the Green-Kubo formula ésdhe of the most essential equations

for our analysis. Further details on the formalismlzafiound in [5].

2.2.2 Classical transport and the classical diffusion coefficients

We summerize the results from the Green-Kubo formaliem classical transport. The
correlations of the velocity with the stochastic properties of the collisiangre given by

vV 2
M, t)n, (), = % et cos(Qby |ty —t3 ]),
(2.23)

vi? v [ti—ta
(m ) my (L)) = —- &0

Details on the calculation are given in App. A.2. ThestantA = vv;? is determined by the
restriction, that the correlation function should yordepend on the time difference
7= |t —tp|. Otherwise an unphysical dependence on the absolute tjimer t, would
occur. Finally the MSD and the diffusion coefficiene @ompletely detemined by the velocity
correlation functions and derived by the Green-Kubomida. The integration is
straightforward and yields the following asymptoticaiules for classical transport,
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Vi 2

2
(6% (1)) = Svt=2x.t, (622 (1) = V%t =2t (2.24)

V2 + QZ bo
Here the classical diffusion coefficients are defiasd

X B Vtzv N Vtzv X _ Vtz (2 25)
T 202+02b%)  202b2 " ' '

With the information about the classical transportadad/ang et al. suggested in [11] a
suitable approximation of , to take care of the difficult oscillating terms indudsdby,

(. (). (). = xove 72y )y (), = xyve v (2.26)

In further derivations it will be convenient to useesh correlation functions. Of course
correlations between different directions vanish, @g0) ny(t)), = 0.

2.2.3 Velocity corrélation functionsin the limit of strong guiding fields

Our observations of disturbed orbits of the trajeemotivate the question, how magnetic
fluctuations do contribute to the transport of the pledicSo we extend the ideas of the
previous section and include magnetic fluctuations. THheckg products for strong guiding
fields are obtained from the solution (2.20),

u(ty)u(t) =n(t)dn(tr)
1 to

+fV(7'1—t1, Tl)’](tl)d71®fv(7'2_t21 7o) 17 (t2) d7o.

0 0

(2.27)

They will also be refered to as correlation functi@mmn to be more precisely, unaveraged
correlation function). In Appendix A.1 we present the estof the matriy/ and some useful
properties. Substituting thé; we immediately find the perpendicular correlation

Uy (T1) Ux (t2) = 17x (t1) nx (T2)

ty
+ 021, ()2 (1) f{sin[ﬂ o (11 — ty)] by (1) + codQbg (r1 —ty)] by (1)} dry
0

to

Xf{Sirino(Tz—tz)] by (12) + c0gQ b (12 — )] by (12)} dr

0

(2.28)

Lt

£ 2, (t) s (1) f f by (1) b, (v2) dry d7s.
00
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and for the parallel component

Uz (t1) Uz (t2) = nz (1) 02 (t2)

ty
+ Q21 (t) 1y (B) f{—sin[ﬂ bo (11 — ty)] by (r1) — codQbg (71 —ty)] by (1)} dry
0

tp

x f{—sir[ﬂ bo (T2 = )] by (12) — coqQ g (12 = tp)] by (72)} dro
; (2.29)

ty
+Q%ny (t) ny (t2) f{ cogQ by (11 —ty)] by (1) — SN bg (71 — )] by (71)} dry
0

tp

Xf{ cogQ by (12 — )] by (12) —siN[Q g (72 = t2)] by (12)} dro.
0

Note the important fact that the two expressions (2.28) #B®9) coincide for
by —» 0. Without the guiding field, there is no preferred directicand the transport
coefficients for parallel and perpendicular transporteuidently equal. In [7] this tendency
was observed numerically. It is an essential advartégige A-Langevin approach to include
this limiting case consistently. Any method basedtlee guiding center assumption fails to
describe this transition.

Using the approximation method for larbe sketched in Appendix A.3, we find the
functions

Uy (T1) Ux (t2) = 17x (t1) nx (1)

1 . . g 2.30
o TR by Wby ()¢ o bW () 0@ by,
and
Uz (t1) Uz (t2) = 12 (1) 2 (t2) + [11x (t2) nx (12) + 1y (1) 77y (T2)]
1 (2.31)

1
x{? by (1) by (1) + —

7 b ()b ()} + 0O by ™).
0

This case corresponds to the situatipp > b,, so the influence of the-components of the
perturbation field can be neglected. The velocity daticn functions still require averaging
with respect to the stochastic variables,
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(U (t1) Ux (22))p) . = (x (t) mx (t2))

1
+ b2 (nz(t1) 2 (t2) Kby (t2) by (2))) ), (2.32)

(2 (t) n2 (t2) (" (t) by (D)), )y + O (2 by ™).

+
02 by*

The influences of the magnetic perturbations appear elypld/e shall call the contributions
of the perturbations the anomalous contribution, thed#tinguishing between the classical
transport already discussed in the previous section f@ncriomalous transport due to the
magnetic fluctuations. The fluctuations are stochalticdétermined by the products
(bi(ty) bj(tz)) and (b;'(ty) bj'(ty)) . We identify the anomalous parts (denoted with the
symbol £ for Lagrangian),

(g (ty) Uy ()Yp) ™ = L@+ LD (2.33)

designating the function§©® and£®,

1
LOWSTZ ), vy, ¢, t] = ? (12 (t2) 12 (t2) Kby (t2) By (©2))p) ), (2.34)
2
LYYy, oy, ¢y, 1l = vzli) 5 (112 (1) 172 (t2) (B (1) b () L)y (2.35)
2 o

A specific order of averages occurs. The average gbdrallel collisional velocities, covered
by n,, is especially involved since we must also includedeflendencies om, remaining in
the perturbation fieldd. The first term on the right hand side of (2.3%)9, does not
include any effects of the finite Larmor radii. Coat@n functions similar ta£©® were
derived in [12] and in [17,18,19] with the V-Langevin framekvbased on a pure guiding
center perspective.

First order Larmor radius effects are included in theosd term£® (all higher order
corrections can also be found by the method sketchégpendix A.3). At this stage we are
left with the problem to insert appropriate expressiongte Lagrangiaib-field correlations,
respectively the correlations for the derivationghefb-fields.

Lagrangian correlation functions appear as the the aleinfyredient for the description of
anomalous transport. These are correlations of tlities evaluated at two points along
the trajectory. An exact calculation is impossiblecduse it would be neccessary to solve the
dynamical equation (2.4) for all realizations of thechastic quantities.

Estimates are required to find a relation [16] betwd®n Lagrangian and the Eulerian
correlations. We will therefore proceed with an itiei method that helps us to approximate
the Lagrangian correlations.
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3 Transport for small Kubo numbers

3.1 The Corrsin approximation for Lagrangian correlation functions

3.1.1 The Lagrangian coordinate system

In the Eulerian frame of reference a certain physieadle of a particle, let it be(r, t), is
given as function of its position and the time. Sucbrdmates have a fixed origin, for
example realized in the laboratory system. Lagrang@ordinates are given within the
co-moving frame of reference. The particles cerstehe origin of the coordinates. Obviously
both systems are connected with each other byrdfectory of the particle, which means the
valuea in the Eulerian domain leads to the vaki® = a(R(t), t) in the Lagrangian domain.
The transformation is in principle,

At) = o[R(), t] = fdra(r —Rt)a(r, ), (3.1)

as long as the complete trajectd®yt) is known. This imposes the following problem: the
integration of the Green-Kubo formula becomes implicit.

3.1.2 Corrsin’s independence hypothesis

The situation becomes notably more complicated wleneke involved variables are

stochastic. Averaging methods have to be applied sirtdlathe ones presented in the
indroductory section. Of course, the trajectory becorstchastic as well and the

transformation (3.1) has to be evaluated in a diffevesny. Especially the average over the
fluctuating magnetic field requires an advanced approachidaly adopted approximation

due to Corrsin [13] assumes that the correlation funaiwhthe trajectory can be averaged
independently. Details of this procedure can also be faurj@l5]. The approximation was

confirmed and applied in many works of Balescu etldl,]1]. Saffman et al. [17] performed

tests of the Corrsin approximation for various cases.

Appropriate estimates for the Lagrangian correlationtfandave been intensively discussed
in literature. Common approaches start with the Eulet@rrelation function (ECF) of the
magnetic field,

0 1- X 21, 21”2

1- 2% 0 2 \R2
<bL(r>bL(0>>=8[r(t>]=ﬂ2[ - 2 ]exp[—x Yz ) (3.2)

which describes the correlation within the laboratirame. Here we explicitly assume the
Eulerian correlator to have a Gaussian form. Two itgwdr length scales define the
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stochastic magnetic field, the correlation lengtheindA. . Several authors covered the topic
of relating Eulerian and Lagrangian functions, e.g. [18]e Eulerian correlator fulfills the
condition for the complete magnetic field: &= 0.

It is convenient to introduce also the Fourier tramafofb(r),

b(r):fb(k) exp(—ikr (t)) dk. (3.3)
Now the complete dependence on the traject@jyis capsuled in the exponential term and

further collisional averages can be applied more easilyg the cumulant expansion. The
integration vector i& = (ky, Ky, k;). The correlation spectrum of the ECF is given by

(b(ky) b(kp)) =& (K) 6 (ky + ko), (3.4)

defining the Eulerian correlation functionkrspace,
EM) =26 -k k)AK S &K = KAK), (3.5)

and the correlation function of the vector potentid-space,
-32y 4y p2 1 2,2 1 2
A(k) =(2m) AL A” ﬂ exp(—E k.“A.°— E kz A” ) (36)

Our rigorous analysis of the procedure follows [14]. Usimg formula (3.1), we transform
from Eulerian to Lagrangian space

b(t):fdr b(r)é (r — R(t)). (3.7)
The representation of tldefunction ink-space allows us to write the latter as
b(t) = 1 fdkl fdr b(r) gkar-tkaR® (3.8)
2m)¥? '
Let b(k,) be the Fourier transform bft,), then the backtransformation yields
b(t) = fdklb(kl) g laRO, (3.9)

So far we simply succeeded in rewritibg) in a distinct form. Next we concentrate on the
unaveraged correlation,

b(ty) b(ty) = f f dky dko b (ke) b (kp) etk RED-keR ) (3.10)

The average over the fluctuation fiéldleads to
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mﬂﬂmw%=jjhhdbmmﬂMbmWWMHbm%m (3.11)

and causes a severe problem in the integrand. The itng@jgendencies oR(t) andb rule
out any possibility to average the last terms. Iixacdy the next step, which is called Corrsin
approximation or sometimes independence hypothesis tocawe this problem. By
assumption we demand the stochastic independence of dleicphb(k,) b(ky) and the
exponential function in the last term. Averaging bagnms separately, the situation is
simplified to

Please note that the independence assumption only tefetise average over magnetic
fluctuations. The correlation of the fluctuating magnefield is given in the Corrsin
approximation by

(bt b))y, = f dk & (k) ( e KREHkR L)y, (3.13)

Since the trajectory depends gn it has to be included in further averaging procedures
regarding parallel and perpendicular motion. Perpendiculdsia@as can hereby be included
easily using the cumulant expansion,

(eTKRO-TKR()y s ik (=20 () g 3 ko 6 (). =3 ky* O (D). (3.14)

3.1.3 Correlation function of the derivative of the perturbationfield

We know that the VCF presented in 2.2.3 also contdiescbrrelation function of the
magnetic field derivatives. We differentiate Eq. (3.3),

b'() = ~i [dkyb(ky) (- R ®) €7RO. (3.15)
and use the Corrsin method again to find

(bt b’ t2)) = (-1) [dkE (K

—ikz ffﬂz () dt’
x (K 1 (t) 17 (t2) + Ky 7y (t1) 1y (82) + K 1z (t) 72 (B2) € (3.16)

ty ty
—iky [mx (®)dt—iky [y (t)dt
xe b te .
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This expression is far more complicated than Eqg. (3A®&rages over; cannot be applied
directly, because products of the exponential functionthed;; appear. We will proceed
with this averages, after we substituted Eq. (3.16) irgacthrelation function.
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3.2 Lagrangian velocity correlations

3.2.1 The guiding field term£©@

At the end of Sec. 2 we derived the anomalous parts,
(uy () U (t)p). )™ = LO+ LB + O (L. (3.17)

which are caused by the magnetic fluctuations. We igeatierm£© in the zeroth order of
the Larmor radius, connected to the guiding center limit,

1
LOUSTZ O, vy, @ t] = —

= b (12 (t2) 12 (t2) Kby (t2) By (©2))p) ), (3.18)

and an additional perturbation tegf®
2

PL
Vtz b02

LYYy, oy, ¢y, 1l = (2 (t) 72 (t2) (Cby" (t2) by (t2))p). )y, (3.19)

which shows quadratic scaling with the Larmor radius. Willenow calculate£© and apply
the Corrsin approximation for the magnetic field,

~ ik, T”Z () dt'
Wbyt by L)), = [dkE(e & e zk @-zkio @, (3:20)

This transforms the correlation function into thetangian frame of reference,

ty
—ik; [n,(t)dt
£0= [akEw [ mtae 0N gptetotioro. (320)
I

We will now introduce two functions which are closedyated with they motion. Both are
supplementary stochastic functions helping to gener#igeconcept of the MSD and the
running diffusion coefficient. In general, one defines

ea= [@tya@®)do= [@@)a)de,
’ ’ (3.22)

S

va= [ [@@pab2)do;doy.

Lt

For the classical transport these functions are diyen
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ty
o () = f (2 ()02 (02) dbz = xy (L—e7),

t2

. (3.23)
P (0= [t mx (02 d6; = y . (L-e™,
2}
ot
O ff@]z (61) 12 (62)) 61 d6, = @ (vr—1+€"7),
¥ (t)_}}<77 (01) 7x (62)) d61 6 2Xs (vr-1+e7) -
L = x \U1) 1]x (G2 1Ub2 = - .
N

bt

The variableyp . represents the running diffusion coefficient and equals the MSD. We
use this kind of notation to be consistent with thegamity of contributions in the literature,
see e.g. [11,12,18,19,20].

Note that the (§x?) and (6y?) terms in (3.20) and (3.21) stil contain the influences
respectively anomalous transport and should not beusedfwith the classicat . terms.
The combined average of the parallel motion is pedarmsing the prescription shown in
Appendix B.1,

2
L0 = f dk & (k) {% et _ P 90”2} e 1 kU g 3 k(0 ()3 k7 Oy () (3.25)

Performing thek-integration we finally find the Lagrangian correlatiemdtion of the guiding
center motion,

5 e
LO=— My ve” — = M2 N. 3.26
02 {Xn ¥ } (3.26)

In the last step we used the symmetry of the systéf) = (5y?). Hereby the functions
andN are defined by

1 1
M=riio—————— N=-
12 2 2 3.27

Equation (3.26) can now be introduced into the Green-Kobwmdlism (2.22), to obtain a
differential equation for the transport data. The tem(8.26) have the following interesting
properties: Infinite limits of the correlation lengtteziuce the terms to unity as

M/l”aoo = 1| N/\Laoo = 1 (328)
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3.2.2 The Larmor radius correction term £®

In the case of strong guiding fields, the main advantdgde A-Langevin approach is the
capability to calculate finite Larmor radius correciorAs long as the guiding center
approximation can be applied, the system is determined®y For smaller guiding fields,
the gyration around the field lines contributes tottaasport, and finite values of the Larmor
radius must be taken into account. Depending on the fatiw of fluctuations and the
guiding field, the finite Larmor radius effects becomepamiant. Forby > 3, the Larmor
radius is identified by, = v;/(Qbg). Finite Larmor radii change the transport behaviat an
appear in (3.17) via the additional (first order) perturlmaterm £, We will still assume
that the guiding field is predominantly stronger than fthetuations and that higher order
corrections may still be neglected. We can use our soapproximated results of the
derivative of the correlation function. Applying theeaage over perpendicular and parallel
collisions leads to the rather complicated formula

LY = (1217 (1) (O () ' (o). = (=) | {ew

x((ke® 7x (W) 1x (82) + kyP 1y (t) 1y (B2)) € 2

L

ty ty
—i ke [ () dt=i ky [y () dt'>
ta

ik, T”Z ) dt
“(ntnate =) (3.29)

) -ik, fnz ) dt
I e =)

e § @ -1k oy (r»} dk.

The major difficulty in the derivation of the terfi® was the complicated combined average
of the product of;, and the exponential function. This kind of averages appere in three
different forms. Although the calculation of this termssnot trivial it just requires the
prescription from Appendix B.1 to solve the averaglés step by step,
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Vi L2 2
IO 5 —(27r)'3/2 f(% eVt _ kzz ‘Pllz) e 2k W+ ) dk,
{ f Ik o v et — ket o, 2] @7 K Wl e kTl gl dk,
+ f o2k o v e — kg, 2l @2 kWD g3 T ik (3.30)
—(2m)¥2 fmz V%: e 2 MW g,
N f k2 ek 0arld g d 0 g dk,,

The last term on the right-hand side of Eq. (3.29) wamatgd by

62 (12 (n? @ L0 v enpl- 5 ket

This approximation has been verified a posteriori. liatang the integrals leads to the
correction terms for the correlator,

2 4 L2 18
t> bo (1+ A:Z) AL < (14 /1:2)
p|_2 ﬂz v2 (3.31)

bo? 5 PRE w2
anP(1+ 5] (14 &)
Here,£©@, ., means the result for the zeroth order, in the limit> oo, which corresponds
to the correlation function that describes the quasilidimit in combination with collisions.
LY is a correction term, affecting each regime predibed@. For small Larmor radii this
correction vanishes.

Only a few diffusion regimes allow the analytical exion of this correction formula.
Principially it describes a reduction of the diffusiomr R, > A, it will be always negative.
Small values of, lead to states where the correction formula magdsative and amplifies
the diffusion. Such states are ruled out by the conditiahthe Kubo number has to be small.
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3.3 Diffusion regimes

3.3.1 The A-MSD-equation for the description of anomalous tramport

The Green-Kubo formalism (2.22) allows us to find the DM&nd the running diffusion
coefficient of anomalous transport by the solutioambrdinary differential equation,

2
% (6% (1)) = 2 % D)=L+ £V, (3.32)
In the following we will sometimes refer to this eqoatas A-MSD equation to denote that it
originates from the A-Langevin equation. The completiigldn coefficient consists of both,
the classical diffusion rate and the diffusion ratéhef anomalous transport. Equation (3.32)
refers to anomalous transport only. Substituting ouresgions forZ/© and£®, we find the
explicit form

2
& oty =

dt2
, 4 D (t) = B [ xipvert  gf 1 ] 1
dt bo? (1 + oy )1/2 A (1+ v 00 )3/2 (1+ <5ngt)> )2
_% o [ 4y.ve”t g2 18 | (3.33)
2 + 700 3 4 4
vi2 by 1+ &) A7 (1 )
_ pL? B2 V2

>2'

Without constraints, the A-MSD equation cannot be embhanalytically and has to be
evaluated by numerical methods. Note that (3.33) repseskatmost general form of the
equation, of course containing all of the different difagegimes.

Fortunately, it is possible to find analytical ults within certain limits and under special
assumptions, which simplify the A-MSD equation. The mdasportant and famous
anomalous transport regimes (for small Kubo numbers) paesented in the upcoming
sections.

V.
2

bo® an?(1+ %)3/2(“ :

3.3.2 The quasilinear limit

The quasilinear regime [11] refers to a domain in whirgh gerpendicular correlation length
tends to infinity,A, - oo and collisions are absent= 0. It is the manifested test regime for
any theory describing anomalous transport. The furgtignandy, can be expanded in
power series at = 0, yielding
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Vtz Vtz 2
= —1, - — 1= 3.34
v1== Vi == (3.34)
Obviously, only a ballistic motion along the fieidds prevails, because the z-motion is not
disrupted by collisions. No implicit dependence on the pelipelar MSD remains within the
Green-Kubo formula,

& L, 0o ,d Vi B2 1
W <6X (t)> =2 a Dq| (t) - b02 V2t 3/2° (335)
(1+ 5 Mz)

Additionally the conditionk <1 always holds forA, - co and the results of Corrsin
approximation are valid. The latter equation can be tijrextegrated,

(o]

Vtz ﬂz 1
Dy = dt, (3.36)
V2b 2 V2 t2 32
0 y (1+ an)
to find the asymptotic diffusion coefficient for paréslin the quasilinear limit,
v B
©) t b
[ — [ 3.37

So far, we retrieved the famous quasilinear scaliog four £© correlation function. But the
assumptions for this regime simplify also the correcterms. For the first order correction,
we substitutel®, ., into the Green-Kubo equation,

(o]

2 2 1
DyV = - - zﬁ . 75 dt. (3.38)
42, by (1+ vt2t2)

0 202

applying the same integral as above, and obtain theat@m

Vi p 2ﬂ2
Dy® = - ——=———. (3.39)
4+/2 by? A
Introducing dimensionless quantities, by substituting
— D | A”
T=Qbot, Dy= —— andl, = — 3.40
T oL " (340)

and using the rati@ = 8/by, Eq. (3.33) for the anomalous parts in the quasilineat lim
becomes,
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d — o1 g2 g2
2—D | (T) = —
dr ¢ 2 V32 o 2 \32 (3.41)
(1+ ZX”2) 4% (1+ 2an)
yielding the results

~o_ 1 .- =~ &
Dg =—=¢"4 and Dy~ ' =-——. 3.42
Tz T T4y, (3:42)

The analytical predictions and the dimensionless rgnuiffusion coefficientDy(t) as a
function of time are shown in Fig. 3.1. F@j - o both curves coincide. An obvious
reduction of the diffusion can be observed, when congpahnia guiding center result and the
Larmor corrections. Equations (3.42) is also a good aeallgstimate for other regimes, as
it shows that the effect of the gyro-radii vanistesldrge, .

0.03
~0)
Dql
0.02r =(0+1)
= Pa
G
la
0.01} .
0“””\ ' L] L Ll L L
10" 10° 10" 10°

Figure 3.1: Solution of Eq. (3.41) (blue) foh; =1 and ¢=0.2. The dashed line
describes the corresponding quasilinear result witholte fioarmor corrections. The
constant lines are the analytical predictions (3.42).

3.3.3 Occurance of a subdiffusive situation

Contrary to the quasilinear regime, we now include sioitis along the the field lines. This
assumption is somehow artificial as we still keepdbieditionA, — oo, i.e. no decorrelation
in the perpendicular dimension. As a matter of facs t@se is also not affected by any
insufficiency of the Corrsin approximation. The patallelisions induce a diffusive transport
in the z-direction. Usingy = % (vt—1+e") ~ 2y t, we have to solve the equation
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d? o_.,d B Ve et @ 1

— (X (1)) =2 — Deu? (t) = - :

de dt bo? {2(1+ BOPE N (1 ‘””—“))3/2} o
P P

This differential equation yields subdiffusive behavior fithe perpendicular transport.
Introducing the dimensionless quantities

2 X~ Dsub

T=vwt, ¥.=——— andDsy= : 3.44
YIS NPy (3.44)
the Eq. (3.43) leads to
2 2 —T 2— 2 _ — T 2
d_z o = Ziﬁsub(m = —— vz Tt es/z) (3.45)
dt dr (1+x,7) 4(1+x,7)

Note that we use different ways to introduce dimensionlesstijigs. Especially our
definition of D differs in each regime and is therefore denoted aitlindex, referring to the
specified regime.

Figure 3.2 shows subdiffusive decays of the running diffusioefficient for different
values of the characteristic parameggr

0.14

16.6

0.1r

(0)
sub(e)

D

0.06-

0.02

Figure 3.2: Solution in the subdiffusive regim@. — oo, v > 0). Diffusion coefficient
D as function of the reduced time for different valueg of

The long time asymptotics far> 1 of the running diffusion coefficier(6) is determined
by the integral
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2

= © EX| 1 1 o 1pgap

Dsup  (6) = — f do ==& x,"267Y (3.46)
8 Jor 4

verifying the dependenc@(0)~\/0-_1. This regime is also discussed in the literature [10]
using different approaches and its results are wellblkestad. Finite Larmor radius
corrections do not lead to a change of the subdiffusiugaa

3.3.4 The Rechester-Rosenbluth regime

A very important and often stated diffusion scalingsvi@und by Rechester and Rosenbluth
[26]. It is a paradigm for anomalous transport and cadeliwed from the A-MSD equation
analytically. Contrary to the limiting cases presdrabove, we now assume finite correlation
length. The differential equation for the MSD is giNsn

¢ @ 1) = £ 1 { vi’ et ¢ 1 }
dt2 b2 v 42 ® 2 P w2 (347)
(14 Lr@EO7) P14 g ) (1+ S )
Introducing the quantities,
‘- 20¢®) o 2N
- A 2 ’ - X”’J_ - A” 2V ’
" ’ b (3.48)
- [ Pll,+ = RR
l/’,J_z—;‘P,J_: andDgrg =
T T T A2y

and using the Kubo numbet= 31, /bp A, we obtain the dimensionless form of Eq. (3.47),

_1
2

d? _
T2 0@ = (CreT g T -

. 1 > (3.49)
TP A=) L) ) (L4, + 5 £W)
In the limit7 > 1 the equation becomes
d? B _ -3 _ 1 -2
T2 0= Ay T (L S E0) (3.50)

For estimates of the diffusion in this regime, we useparation method presented in [12]
based on the following argument: The motion can beadelv into two anomalous
contributions,

e a displacement-©(t) caused by the motion of the particle with the figlé alone. This
situation corresponds to the subdiffusive case and weadgl discussed in the previous
section.
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e a decorrelationi©@(t) from the field lines mainly caused by collisiongjieh is called the
Rechester-Rosenbluth diffusion.

The MSD which can be retrieved by (3.47) or (3.50) isupegposition of this two
contributions,

O (1) = @ 1) + 1@ (1.

To single out the asympotic diffusion due to the magnaiidimearity, we have to find a
solution foru(t) and introduce,

NI

d?o/dt? = -y, 2(L+y) 2, (3.51)

leading to

d? _ .3 _ _
Tz KO @ =R Ay (1= A+ £ ). (352)

In appendix B.2 we split this equation into two time demmand present a fitting method to
find a solutionu©(t) and the corresponding diffusion coefficidDkz. The result scales like
the famous Rechester-Rosenbluth diffusion coefficiadtia given by,

16k* v

= (O

Drr  (f) = ———-— . (3.53)
log® (16 V27 k3, .7}

Introducing a reduced dimensionless Larmor radius and frictio

0D, = & YV = —V
L= ab; (3.54)

the dimensionless form of the correction formula,

d2 2 4 2 18
a2 (6% (t)>(1) =- % L(O)Aﬁoo[)a ve! RN = 4 v\ ]
b v )n? A (s )
3.55
PL2 ﬂz Vi? ( )
b2 32 2]
0 4)t||2(1+ %) (1+25)
reads
d? 1 —0) 5
G2 V=PV L e A L 0 - 18 (- e ) A+ XL D7
r (3.56)

1
- E pLz IS X 1+ X T)_S/z 1+x, T)_z-
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In Fig. 3.3 the diffusion coefficient is shown as a fiow of k. We used values for that are
within the valid range of the Corrsin approximationshows the typical quadratic scaling
(3.53) for the Rechester-Rosenbluth regime in the guidingec limit. For increasing Larmor
radii the transport is (again) reduced severely.

0.2 —
0,
guiding center limit /
0.15¢
&

o O1r
0.05¢

00

Figure 3.3: Influence of the Larmor radii on the diffusion in tRechester-Rosenbluth
regime. Total diffusion coefficienDrg = DRR(O) +DRR(1) from the solution of the
dimensionless Egs. (3.42) and (3.48) for different valugs ofThe classical diffusion
rates were chosen in the typical Rechester-Rosentantie to bgr, = 0.4 andy, = 20.

Figure 3.4 shows the asymptotic dimensionless diffusi@fficient Dgg as a function of the
dimensionless Larmor radiug,. The reduction caused by (3.56) is compared with the
guiding center result (3.50) (which is a constarw,if and the parabolic deviation from the
predicted value in the zeroth order can be seen.
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including finite Larmor radii

guiding center limit
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P

Figure 3.4: Diffusion coefficient as a function of the Larmadius. Solution of the
dimensionless Egs. (3.42) and (3.48)«er0.4,y, = 0.2 andy, = 20.

3.3.5 The Kadomtsev-Pogutse -l regime

Basically, two diffusion scalings are referred to amd&mtsev-Pogutse limit. The first one
(Kadomtsev-Pogutse-I), which we will refer to as peatioh limit is characterized by an
infinite parallel correlation lengt; —» oo, [24]. The second one (Kadomtsev-Pogutse-Il)
describes collisional transport within weak stocleaigids and is discussed in detail in the
next section. Evidently the first case violates wedidity condition of the Corrsin
approximation and is assumed to give wrong predictiomstlie transport properties.
Nevertheles it is very elucidating to discuss this regime first ungeesumably wrong
assumptions. Kadomtsev and Pogutse proposed that icasesthe asymptotic diffusion
coefficient scales like

D~ v A AL (3.57)
bo
Indeed such a scaling is observed analytically, ifuse the correlation functions derived with
the independence hypothesis,

V2ﬂ2 1 VZﬁZAJ—Z
o _ t _ t
Dkp™ = b2 o2 dr = 07 D.O (3.58)
0 (1+7) 0" Dkp
3 R

leading to the asymptotic (positiv) solution @gp©,
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1 B
Dkp@ = — v — A..
KP NG b (3.59)

Unfortunately, this scaling is wrong [18]. Faf —» o, the turbulence may be regarded as
frozen. The trajectories of the particles will tHentrapped within the closed contour lines of
the stream functiop and the diffusion vanishes because a linear grow efMBD is no
longer possible. Obviously this behaviour is not rédldcin (5.10). AsD~«° which is a
Bohm-like scaling,D will be constant fok - co. Many works pointed out this failure of the
Corrsin method [18,19] for strong magnetic turbulence.

Isichenko et al. applied in [22] methods of the percatatiseory and predicted that the
diffusion coefficient depends crucially on the fractal@msionv of the contours ap,

DO = ga, «1*2, (3.60)

Numerica simulations, as shown e.g. in [27], lead to the watbdglished result for large
Kubo numbers,

DO .08, (3.61)

We shall come back to this point in Sec. 4. A detarledew of the percolation theory
approach to transport in random media can e.g. be folag8]in

3.3.6 The Kadomtsev-Pogutse-Il regime

The Kadomtsev-Pogutse-ll regime is a situation were dbllisional effects are more
important than the magnetic perturbation field. It ikenfrefered to as weakly anomalous
regime. It is characterized by the conditios > Dxp; and ¥, < ;. Obviously the
classical diffusion coefficient may not become zerdhis regime. Using the dimensionless
A-MSD equation from the last section. in its asymtémnit 7—oco, we have

d _
>dr Die2” (1) =~ 2 (L+7x, D) F L+ ¥, 72 (3.62)

which can be integrated explicitly to find the asyntigtaliffusion coefficient in form of an
expansion iy, /2,

— o _ X’ r _3 >
Dkp2 = - > f(1+7||7') 2(1+y.7n“dr
0

(3.63)

3n —

This is the well-known Kadomtsev-Pogutse-(ll)-regime vigzakly anomalous influences. It
shows the characteristﬁKppw/y”yL scaling of the diffusion constant and may be
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regarded as a boundary situation for the more generaéBeckRosenbluth regime.
We can now quantify the conditioDxp, < ¥, < ¥, Which only holds as long as
KX <X
For the higher order correctid¥ a similar equation is found and we have again one of
the rare cases in which the first order teffi can be evaluated analytically,

— 1 _ .
DKP2()=—ZﬁL2K27H f(1+7|| 1+ x, 07
0 (3.64)

3r Y.
= __/0|_2K2 —,

Xl

N

revealing the influences of the Larmor radius. In dsi@mal form, the diffusion coefficients
are given by

3n s AL X

A, ———
Dip2? = 3742 P \/Xn Y., DypoP =-— - P2k T v

We show the influence of the finite Larmor radii iig.F3.5. The anomalous diffusion rate is
magnitudes smaller than the classical diffusion coefficiStill an effect of the correction
term can be observed, that shows a quadratic reductDgeefwith p, .

1.6% 10 .
1.4¢
&
M 1.2F
[a
including finite Larmor radii
1,
0'% 0.2 0.4 0.6

I5L
Figure 3.5: Influence of the Larmor radii on the Kadomtsev-Poglitsegime. We
used here the values that lie within the conditionthisf regime ofk = 0.03, 7y, =10
andy, =0.2.
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Though the classical transport coefficients in Fig. Bd@ve similar values as in the
Rechester-Rosenbluth case, is small enough to satisfy the conditions for the
Kadomtsev-Pogutse-1l regime. Again, the reduction is apiprtional tod;.
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3.4 Particles in vanishing mean fields

3.4.1 Velocity correlation function for vanishing mean fields

So far we described the transport of particles inptesence of strong guiding fields and
additional stochastic perturbations. The situation changensiderably when the mean
(guiding) field is no longer present. The total B-fieddthhen given by (2.3), and the particle
transport takes place in a purely stochastic environn@tourse, the Larmor radius still
exists and is now given by = v¢/(28). Some remarks on this case were already proposed
in the appendix of [7]. We now present predictions forabiésional case.

The assumption of weak guiding fields simplifies the soiutof the ALE. The rotational
matrices are replaced by unity matrices and the amevatgets a simpler shape. Within this
assumption the solution of the ALE reads,

u) =G(@O,tg). (3.65)

It is not surprising that we have only one relevammhgponent, a& is significantly reduced,

t O _bz by
GO, 1) = T[exp[det]], V=-Q| b, 0 -by|. (3.66)
0 -by by O

The velocity correlator is given by the produgt)u(0) and has to be averaged over all
stochastic variables,

(U®U ) =GO, )n® ROy, - (3.67)

We assume that the averages over the collisipngve can no longer distinguish any
directions) and thb-field in G can now be applied indepently, yielding

U®UO)p. =(GO, Dy O RO, (3.68)

3.4.2 The relaxation functiony

The average of the propagator is obtained by a cumulpanson in the exponential. Using

_<by (") by (T"»b 0 0
—(bz (") b (")p
] " 0 _<bZ (Tl) bZ (T")> 0
VT)V(r =0 ° 3.69
VOV ~(bx (™) bx (T (3:69)
0 0 —(bx (t") bx ("))
_<by (") by (T"»b
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and(bx(7") by(t")), = (by(T") by(t"),, = (bA7") bA7"))p, We finally get

t ot

<G(0,t))bL”=exp{—ZQzff«b(?")b(?'"))bh ”dT'dT"} 1 (3.70)
0

0

The integration is not performed directly. We firsswase that the magnetic fluctuations
converge into a linear and diffusive state,

(G(0, 1)y, = eXp(-2Q% ). (3.71)

defining the functiory(t) as
Y= f (b b Oy, dr. (3.72)
0

We cally(t) the relaxation function. A similar definition can fsaind in the works of Kubo
[20]. With the Corrsin approximation we can find estiesafor this function, as the Kubo
number is now equal tB/by. Because there is no predominating direction in thakwield
case and all directions can be treated on equal asisne-dimensional analysis is sufficient.
The collisional diffusion cofficient for each direatias given byy = ‘2’% .With the cumulant
expansion and the assumption of collisional diffusivifx?) = 2 yt,

y = ff &K ex;{—1 kz)(r] dkdr. (3.73)
0 ka>27T 2

Essential for the calculation is a heuristic estin@ftéhe effective integration region, namely
that the Larmor radius of the particles has to be tatigen the wavelength of the modes in
(3.65). Because the particles follow the field lines mvkigeir Larmor radius is smaller than
the wavelength of the modes, we consider only the madgtbsk > 27/ . This argument
was succesfully applied by Casse et al. in [7] in a coalasituation.

The integral ovek should be evaluated as follows. Split the integraimo two parts and
neglect the intervalH27/p., 27/ pL |,

&S] (o]

y:f{ fS(k)ex;{—%kz)(T]dk

0 2n/pL (3 74)

—00

- f &K ex;{—% kZXT] dk}dr.

=27/pL

This leads to,
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T. (3.75)

7=ﬁ2f erfd Y2 ) d
1+ 4

0

This can be written as

(o]

- \/Eﬂﬁzlfmerfo[m]

pL V2rayf1+ 47

dr. (3.76)

0

The integrand can be approximated for real argumentsvidhck = 0 by erfex)/x ~ e /x
and becomes integrable,

) JEa pLeX[{ ( 27 1+% )]

pPL \/Em,/1+%

dr, (3.77)

and yields,

2\ py erfd Y2z 2 >
PApredd =X g2y erfc[\/zm]_

— SR — (3.78)
V2n X \V2r oL 02 PL

’y:

3.4.3 The transport coefficients for vanishing mean field regies

Together with the definition of the propagator, we get fihal MSD equation. Introducing
Eqg. (3.78) with (3.71) and (3.68) into the Green-Kubo formwe, immediately find
asymptotic results for the MSD, @asappears as an correction to the frictign

d2 (6x%)
dt2

2
= UOUO). = % e t-208yt (3.79)

The solution of this differential equation is equal te ifitegration for classical transport and
leads to

Vtz

2\ _
(0% = (v+2027) t

(3.80)

Small stochastic perturbation fields act like a coliisi They introduce friction-like
deviations between particle and field and reduce theisdih in the same way as the
collisional frequency. The asymptotic diffusion coefficient can be deduced {&:80),
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Vtz

We introduce dimensionless quantities, by dividing theswal diffusion coefficienty and
substituting expression (3.78),

D 1

(1+ 24— erfo(¥Z)) (3.82)

The effect of the stochastic magnetic field is shawhig. 3.6, where the diffusion coefficient
is given as a function of the dimensionless correfatengthA/p, . Diffusion is reduced,
compared to the classical rate, for a certain valfiag p_. This can be understood mainly as
an effect of the correlation length: for large caatiein lengths the magnetic field will not
change and the particles are not affected by the #elmaximum of the magnetic influences
is found forA/p, ~ 0.1. The spatial random variation of the magnetic fiekl loa responsible
for the random interactions between particle andd.fieThey induce forces that are
comparable to collisions that are described by thetiaddl virtual friction term in the
diffusion coefficient.

0.98 1

0.96r 1

Dry,

0.94 ]

0.92r ]
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Mpy

Figure 3.6: Ratio of the diffusion coefficient defined in (3.80) asfunction of the
reduced correlation lengfty p, .
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3.5 The Kubo number restriction of the Corrsin approximation

The Corrsin approximation is restricted to a certain aoraf validity, defined in terms of the
Kubo number (1.6). The Kubo number is generally definedhasratio of the distance a
particle travels during an autocorrelation time and ¢berelation distance. Large Kubo
numbersk > 1 lead to a failure of the independence hypothesis,iraritlis case Corrsin

estimates give the wrong correlation behavior. Soreeent works of Viad et.al.
[17,18,19,21] presented suitable replacements for the Cappiroximation which are also
valid for larger Kubo numbers. As a matter of facte thecorrelation trajectory method
(DCT) is more involved and its application within tieLangevin framework will be

presented in Sec. 4. Then our framework is extendecetpeitolative regimes.

For all results obtained within the Corrsin conjectweeare restricted to< 1.

A further, completely equivalent method is the MDIAe tinodified interaction approximation
discussed by Vanden-Eijnden et al. in [12]. It also ukesindependence hypothesis and is
restricted to the same ranges of turbulence as thai€approximation.
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4 Transport in percolative magnetic environments

4.1 Percolative magnetic structures and the DCT

4.1.1 Theflux function ¢ and thetrapping effect in percolative structures

We start our description of the stochastic propertieth@fmagnetic field from a slightly
different point of view. The perturbation fieltt is now assumed to have only a
two-dimensional structure. For sufficiently strong guidiiglds, this condition is always
fulfilled. Such a stochastic fiel is generated by the scalar magnetic potegtial 2),

b(x,2=Ve¢(X, 2 xe,; (4.1)

¢ will be called flux function [18]. The vectok = (X, y) refers to the perpendicular
coordinates, whereascan be regarded as the parallel component. Magneiticlifies are

determined by the flux function using the relatebx/dz = b. It yields two Hamiltonian-type
equations for the field line motion

dx d¢ dy  9¢
dz  dy’ dz  ax’ (4.2)

For large Kubo numbers= A, /(bpA.) we may assume thagt depends oz very slowly,
so the partial derivative witlz is zero,d¢/dz= 0. From this condition and Eq. (4.2) it
follows that the field lines have to remain on dwuipotential lines of. We have for a field
line trajectory

ds 99 dx 09 dy _dy dx  dx dy

~ i e O
dz X dzJr oy dz dz dzJr dz dz (4.3)

In Fig. 4.1 we show a typical contour plot ®f as a function of the coordinatesandy, as
two contour lines associated with the constant $eo&p. The initial value ofp will be called

#°. Depending on this level, the above condition imgles a fictive particle may be free to
cross the topographical map (a), or may be trappedefain#°-values, which is shown in
Fig. 4.1 as the line (b). Far— o, trapped field lines remain trapped. Smadlerfor finite

A, may lead to a detrapping with increasing\When most lines are de-trapped after a
correlation time, we are in the non-percolativetlimi

Typically this situation is illustrated by the followgranalogy, [22,24] is considered to be a
landscape composed of hills and wells, which is filgith water to the level of°. If we start
in the maximum of, where the landscape is completely flooded and dectbaseaterlevel
#°, the number of hills increases as well as their d#isss.
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g
Figure 4.1: Contourplot ofp (x) plotted in anx-y-diagram for two realisations
of field line motion, (a) a value af° near the threshold, where the field line

can pass the complete topographical map and (b) the ofia@ktrapped field
line near a potential extremum.

At certain levels the coalescence of differentshi$ observed, becaus passes the
hyperbolic points of the percolation map. Whenever sucbalescence takes place, the area
and the contourline of the hill suddenly increase aitld fvthe area along which a field line is
allowed to travel. High Kubo numbers represeéntegimes with distinct extremas, hence
many hills. The particle diffusion is reduced essegticause a certain number of particles
remain in trapped states with their field lines. Saclparticle contributes to the diffusion
process again, if it is dislocated to a lowgtvalue by a collision. Higher collisionality
therefore reduces the trapping effect.

Contrary a situation with less hills or many unitelts,ha "smooth" landscape, is realized
for small Kubo numbers. In such regimes trapping doesplagt an important role and is
neglected. Our results from Sec. 3 belong to such aatatis

If a potential is constant iy or z(t) respectively, it is called "frozen". Nearly all pels
are then trapped around the hills and wells. Subdiffusar@viour withD — 0 emerges. The
structure will change as the particle moves along tdyedtory. The characteristic length of
this process is the parallel correlation length For distances witlz < A;; the potential will
not change at all. Figure 4.2 shows a three dimensevmdlition of thex-y-contours ofg
with z for A > L, whereL is the maximal length ia. A notable alteration of the potential
will happen on length scales predominantly longer thanHere a nearly infinite parallel
correlation length ensures the stability of the peomh structure along. The lines of
constant¢® do not change and form so called flux tubes [6]. Flelds stay on the
equipotential lines and are forced to remain on thesesfof the flux tubes.
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Figure 4.2: Flux structure illustration of the functiop in a regime with
infinite high Kubo numbers); - o, §=0.2 andA. < 1. Here the box length
inx,yandzisL=1.

In Fig. 4.3 we show the deformation of the flux tubes dudeovariation ofp with z. In such
a case the conditioé% ~ 0 is no longer valid, and field lines are no longeicdy bound to
the lines of constant.

Figure 4.3: Flux decorrelation for small parallel correlation ndghs,
Ay~ AL <1 andp=0.2. Flux tubes start to merge and new tubes emerge. The
length of the box i& = 1.



46

4 Transport in percolative magnetic environments

Additionally, we now observe the cake> A;. The tubes and with them their contourlines
start to merge, so the field lines are allowed tplae larger areas of th2 map. Even new
flux tubes emerge that join the other ones aftefaredistanceg. The value ofy; belongs

to situation withk < 1. Field lines can nearly pass freely along the etswka and this state
can be described with the Corrsin method.

Though the figures provide a good intuitive approach to uratetsthe difficulties of the
percolation regime, a detailed theory for this situai® needed. Effects of the percolation
structure have to be included on the level of the fincfion¢ and so we proceed with the
stochastic properties of this function.

4.1.2 The stochastic propertiesof theflux function ¢

Of course, the flux-function itself is a stochastigech too. Its correlation function is defined
as,

A(X, 2)=(¢(0, 0 ¢ (X, 2) = f*A. 2 exg-0O (X, 2], (4.4)

with the phas®
o= XY T 45
o202 22 (4-3)

In the previous section, we derived the LCF from tiMefan correlator of thé-field. The
Eulerian correlation of the pertubation fidlds defined by

—,y A 6yXA)_(8XX sxy) @)

as<b(0>®b(x>>=<(Vx¢ez>®(VX¢eZ’>=(a A —duA) &y &
Xy XX yX Yy

Additional cross-correlations [20] between thidield and the flux functiow are given by

Correlations of the derivatives with respect to theet are denoted by a bar and are given by

2

&i =0 b’ M) = G

(bi (tp) by (t2)). (4.8)

We have
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_ d?
A=( AX(t) - X (1), z(ty) - Z(tz)))

dtl dt2 tlzt
t,=0
(4.9)
X2 ﬁZ y2 ﬁZ ﬁZ AZ 22 ﬁZ AZ
2{(ﬂ2_ 2 )Uxonx(t)"‘(ﬁz_ 2 )Uyoﬂy(t)+( z - 14 )Uzonz(t)}
xexp—-0 (X, 2)],
yielding the correlation matrix
_ (=0yA OyA
g=| 7 (4.10)
axyA _axxA

by applying (4.8). We also used the property ofrjheelocities that cross-correlations of the
velocities,(nx(0) ny(t)), = 0, vanish. The same reason causgs= (¢(0) b,'(t)) = 0, because
only singlen;-elements appear.
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4.2 The decorrelation trajectory approximation (DCT)

4.2.1 The subensemble decomposition of the Eulerian correlator

We have seen in Sec. 4.1 that ¢ghetructure influences the transport decisively. The orr
approximation lacks the ability to include this influencehe position in theg-map,
characterized by®, b’ and by0 determines whether the field line can pass througie lar
areas or is trapped. Now we collect a set of trajedavith the same distinct potential level
#° and b-field b° at the positiorx = 0. This set will be refered to as a subensersaé, b°)
[18,19,20]. An infinite number of these subensembles etasisclude any possible magnetic
field configuration. Indeed there will be ensembleshwiertain values of the magnetic
parameters that allow trapping.

The ECF is now separated into contributions from exfdiese subensembl&g¢®, b°)
with the initial conditions¢® = ¢(0) and b® = b(0). The complete ECF has then to be the
superposition of all possible subensembles, expressedmns bf the integral

8uhifjﬁwmfmww%m©®bmax. (4.11)

—00 —O0

The probabilityP(b®, ¢°) is given in terms of standard Gaussian distributiors describes
the probability to find the paramete® andb® as well as it measures the contribution of the
subensemble to the integral. All possible configurationg® and b’ are covered by the
integration. So far we have only the subensemble igéscr of the magnetic field alone, a
pure magnetic field correlation function. We recall ttedocity correlation found for strong
guiding fields,

((uy (t2) Ux (22))p) )y = (1x (G mx (T2)) . + LO[x, z,t] + LP[X, z 1], (4.12)

with

1
L(O) — F <772 (ty) 12 (ty) <<by[X (ty)] by[X (t2)] >b>J_>||!
0 (4.13)

2
Lm=j%?mmmmw«mwmnwwmm¢%
t

It is evident, that the parallel collisional velocityodelled byr, have also to be taken into
account. The subensemble representations of the lmatiaris from anomalous transport in
the Eulerian correlator should read
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o o0

o= = [ [ [Parp@)p@rn,
bo” J. (4.14)

-0 —00

x (O by[x (1), Z(V), th)g), dn,’db®dgP,

and

2 o0 o0 o0 o0 o0
Lo = (L [ [ [ [ [PadPadPaspe® P«
t~ MO

x 72y (1) by X (1), (1), t]ygdn®dny® dn,2 db©dgP) .

(4.15)

.

We added the index DCT to denote the origin of the apmaiion technique and to
distinguish the new correlation functions from the osexsved in Sec. 3.

Until this point Egs. (4.15) and (4.16) remain exact an@maroximation has been applied.
Unfortunately, the same problem occurs that we encoathte the Corrsin approximation:
We do not know the exact trajectory= (x, 2. But the decomposition leads to a slightly
different view. In each subensemble, the valuespbf, n° and b° are fixed. Within a
subensemble we can determine each trajectory for an rieeld (b(x, 2)); by solving the
A-Langevin equation. The crucial simplification of thishaeique is that all contributions from
the magnetic field are non-stochastic values.

The major approximation of the DCT [18] and therefdre transition from the Eulerian to
the Lagrangian perspective, is to evaluate the formdlads) or (4.16) by estimating the
unknown trajectory(t) with the decorrelation trajectory,

X () ~ X (t). (4.16)

X(t) is the fictitious trajectory, along which a partigkeuld travel if it is introduced into the
subensemble magnetic mean field, is called the deatiorltrajectory. It is then substituted
into the expression for the averaged fidddk = X, 2)); and with the trajector¥(t) given by
the A-Langevin equation, EqQs. (4.15) and (4.16) determine L#grangian velocity
correlator. Our first task is now to find the averdgeéx, 2))g in each subensemble defined by
b° and¢®. Additionally we need expressions for the averages orir the DCT equations.

The DCT itself is given by the A-Langevin equation
. . Ze
XMO=U(@®-= e U (t)x{Bolbo €, + (b (X, 2)sl} —vU (1) +a(), (4.17)

containing the non-stochastic subensemble avetage 2))s. Of course the collisiona are
still a stochastic quantity. In Fig. 4.4 we illustratee solutions of this equation for a fixed
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value of (b(x, 2)s. Two cases are shown, (a) without collisions andwbth collisions.
Beneath the typical Larmor orhi{ , we observe in both cases an additional cyclix @ndy
directions) motion due to the averaged perturbation fi€d. course, decorrelation
trajectories from the V-Langevin equations do not dari@e gyro-motion and are given by
the motion of the trapped field line alone.

e
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Figure 4.4: Two examples of decorrelation trajectories derivedabyumerical
solution of (4.18). The vectd®(t) is plotted for (a) no collisiong=0 and (b)
with collisionsy = 0.02. We used an area of a random magnetic potential in
which already trapping is observed. The smaller cywlation represents the
Larmor orbit of the particle.

We already connected the winding of the field linesuad theg¢-maximums to a trapping
effect. Case (b) confirms our heuristic argument thatcollisions will reduce the trapping
because the winding goes not on forever. It is stoppékeblyictional term in (4.18).

4.2.2 Averaged b-field in a subensemble
Each subensemble has an averabdald. We can calculate this average by using the

conditional probability to be within the subensembldingd by ¢° and b® and having a
b-field b at the positiorx,

(b(x, 2)s= fdbb P(b, x| ¢°b%, (4.18)

introducing,

(6 (b-b(x,21)5(¢°-¢(0)5 (0 -b(0))s

P(b, x| ¢°b° =
(6 (¢° - (0)) 6 (b° = b(0)))s

(4.19)
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We want to simplify this expression further and evau#ite terms with the Fourier
transformation of thé-function,

(6 (b-b(x, 1)5(¢°—¢(0)5 (B’ -b(0) =

oo o0

fffexp(ia1b+ia2b°+ia3¢°) (4.20)

-0 —00 —00

x{exp(—ia;b(x) —iaxb(0) —iaz¢ (0)))da; da, dag .

The exponential function from the Fourier represemaltielps us, similar as in Sec. 3, to
apply the cumulant expansion,

(exp(—ia1b(x) —iaxb(0) —iaze (0)) =

1
= exp{~5 (@b () + 8D (0) + a0 (02}
) (4.21)
—E[a1,i2 (bi by + @%by byy +

25 (§9) + 2820, (1) + 2802, (8, bi) + 2 2 by b))}

= exp{

We can substitute this result into the integration (4.@hjich yields similar as in appendix
C.1 a mean perturbation field,

b (X, =
< (X y))S [ bxo Syx " byo Syy " ¢0 8¢y

Introducing the expressions for ti&; and separating the parallel dependencies in the
averaged-field, using

(b(x, y)ys=F (x) e ®O®? (4.23)

the components df are given by

2
ﬂZ (4.24)
Fy( ) = 25 (XA 2% +X ybl+ (1.2 =32 b0 e ®*0

In our analysis of the DCT terms, we need onlyyfmmponent of . In summary:

e We derived a subensemble decomposition of the Euleoarelation function for the
magnetic field and for the velocity of a particle.

e Both decompositions depend on the averdgéeld in each subensemble.

@ This averagef, is given as a function of andz.
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A very similar result is obtained for the averaged @¢rre in the subensemble,

0 & + by Egys
(b'(X, Y))g = [ . o )

. . (4.25)
by Eyx + by 0 Eyy

Note that the ¢°-part vanishes. Using the definitions of the derieatorrelations we
immediately find for thex-component

2
By (% s = {T1 )y (0) + T2 ()7, °ny (V) + Ta (X)L 2 ()} € 247, (4.26)

with the definition

T 1) = X2 y? B by X B by yzﬁszlo
1(X’ J')_ A 6 N A 4 N A 4
4.27
B2b0 Ry 3xypbyC) e (4.27)
+ —_ + X 2. 21,
2.2 2.8 A4 e
T L) = y* B2 by © ~ 6y b 382Db°
4.28
Xy p2by,®  3xypPby®) e (4.28)
_ s + A4 X@ 2.7 207
AL N
SO il N k- D 4 e S A ik
o A2 A AZAL? A*AL?
4.29
Xypib,°  xyZpib,°\ ¢ (4.29)
— x@ 202 207
A” AL 4t AL

4.2.3 Conditional averagesfor perpendicular and parallel motion

The perpendicular average

We will explain the averaging procedures by beginning witsimple example for a one
dimensional case. The average of perpendicular collisgmscorporated in the following
way: We use the coordinate transformation, see e.g. p2@] = x(t) + &4 (t) and define, to
be responsible for all perpendicular deviations from ttlagectory. With this definition an
arbitrary Eulerian correlation functi@has to be calculated by

(o]

E X ), = f E(x+ ) (6 (€ — & (D), déy. (4.30)

—00
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This formulation is identical to the relation derivedhin the Corrsin approximation. Indeed
we apply an independence assumption here for the perpengiamanf the motion. Using
the Fourier representation of théunction we can easily find

2
V2 (&2 () 2= ().
i.e. Gaussian distribution i, denoted by the symbd®l, (¢x). Because of symmetry reasons

we have(£?) = <§y2> = (£2(t)). For the zeroth order we can apply the average avehe
beginning of the calculation, namely on the Euleriamedator,

(0(Ex— &)L = ) = P. (¢, (4.31)

(A(X, ZAL))., =

(o]

A (X+&EP2+(y+€)2 2 (4.32)
| [rrzed- o —ZAHZ]P(&)P(fy)dfxdfy,

—00 —O&0

This gives the averaged Eulerian correlation in thenfor

(A(X, Z L)), = Npct A(X, Z A+ (€2 (1)), (4.33)
with
2 -1
NDCT = (1 + <§A (;» ) , (4.34)

which was already encountered in Sec. 3 in a sifalan with the Corrsin method. Here the
exponent ofNpct differs from the term found with the Corrsin approxima. This scaling
does not change the scalings derived witlterm.

Subensemble conditional averages

Now we focus on the combined averages needed in the [@@dtiens. The subensemble
averages are obtained by accounting for the conditaveaibges in the following way:

( M(m<ﬂ05@—2ﬂ»6(£_ ,(0))
() bIX (D), (1), tDS)*:fff ’7 N2 -1 (),
R, P (170)

(O b=bx+£,20)0 (¢ =6 (0)0 (B ~bON)s (= éx )0 (& =& D), (4.35)
(0 (¢° - (0)) 6 (0° — b(0)))s
x déxdéydz,

as well as
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C o C0068@-21)6 0L 1,(0))
(O B'Ix (), z(), the), = fff T Mz~ 1 I
- P (170)

(4.36)
(b -b'(x+£, 2 0)0 (b =0 (0))50 (&x — & (1) 5 (£y — &y (D)),
(6 (0° - b(0))s

dé, dé, dz

The procedure of averaging will be performed as folloWse first conditional average term
in both expressions depends pnand takes the parallel motion into account that appears
within the b-field as well as in the velocity correlator itsefimilar to the treatment of the
Corrsin approximation we are not allowed to make achststic independence assumption
for these terms. Perpendicular averaging is performeapplying twoé functions foré, and

&y and finally using the method presented above. Umfately this method becomes more
elaborate for the derivative average. Because ofjthandn, product terms in (4.27) we
need the same procedure as for the parallel motionsilensemble averages of thdield
and its derivation were already calculated in the preseaton.

Combined average for parallel motion

Next, we determine the conditional average for the panaltgion. Starting with the leading
term in the integrals (4.35) and (4.36),

M (1) 6(z—21) 6 (L -1, O))

M, (2) = ’
12 (6 (2 20Ny,

(4.37)

we basically have to find a generalization to thehme found in appendix B.2. The Fourier
representation of the functions helps us to rewrite the stochastic datarim fof exponential
functions and yields the following integrations,

M (2) = 27P00) f f exp—ikz—i0n°] (n, (1) explikz(t) + iqn, (0)]), dkdq.  (4.38)

2n P(
To simplify the last expression, we define the function
(Hyp, = (exdan, (t) + ikz(t) +ign, (0)]). (4.39)

It is related to the unknown average by

. . 0
(nz (1) explikz(t) +iqnz (0]); = [<— H||>

—Hi) | (4.40)

[I"a=0

In this form the parallel average is appliedHdy the standard cumulant expansion,
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a2 K2 e
<H||>|| = eXp(‘? Mz nz () — > (Z O - > (n2(0) 2 (0)),
(4.41)
+iaqnz (0) nz (V) — ka(z () n2(0)), +iak(z(t) n, (t)>||)
in which the well-known stochastic propertiesygpfcan be identified,
Mz nz (O =m0, (O, =1,
(2 (t) 7 ()Y = xg ve™ 7 = Gy (v), (4.42)
(Z® nz (V) = 2O n(0)) = ¢ (D,
Z O =¥y (V).
The averagél simplifies to
a2 K2 e
(Hpy, = exp(— > 70—+ iaqCy (t) — kg (1) + iake (t)), (4.43)
and the derivative & = 0 is then
i<H> =[iqC, () +ik t]ex(—q—z—k—2 t)—k t)
3 iy ‘ =[19C; (V) +1key (D] exp > 2l/’||() Qey (V) |- (4.44)

a=0

Returning to the original problem to find,. We use the definition dfl; in the expression
for M”

1 . . . .
M@= 55 [ [1iaC @) +ikey (] exi-ikz-ian )

o 2 (4.45)
xexp(— TR Yy () — kagy (t)) dkdq.
Performing the integration overleads to
M@= ——— f[nzo Ci (1) —ik(R=1) ¢ (1)]
0
V2r Pd) (4.46)

1 . K
xexp(— > 0~ kg t)° —ikz— ¥ (t))dk.

Finally the integration ovek yields
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0 — _n0
M (2) = [ nz- G (t) N o @A-Cy ) (z—n ¢ 1) )

Wy () — @2 @)Y Wy () - @2 ()

2y -2zn 010 )

(4.47)
Xexp[ 2 2 (=92 (V)

Some algebraic manipulations lead to

0 - _ .0
My (Z)=[ 2 G O LA O A-C M) (Z-n. ¢ (t)))

Wy () — @2 @)Y Wy () — @2 ()

(z— L@ (O
2y () =2 ) )

(4.48)

X exp[—

The last result can be expressed in terms of a prapalsitrioution Py (2),

nL @2 (t)

1-C 1Py (2, 4.49
Wy (1) — @)% (1) [ 1€ )]} 12 (4.49)

M (2 = {Uzo Ci®-

using the subensemble average of the positidy) = 1,° ¢;(t) and

Pi(@=

1 (- (z(1))9)’
ex ( > ) (450)

p —_
V27 Wy ) -2 ) 2y (0 — @2 (D)

Equation (4.50) can also be found in [20]. There it wasvee@rfor a DCT approximation
within the context of the V-Langevin equations.

Combined average for perpendicular motion

The conditional average of the perpendicular motionuadoanalogously,

(1x (D (6x = &) 8 (1 = mx (0).,

M. (&) = .
& e~ 1 O, @5y
Due to the symmetry the same arguments hold/fo,). Designating
Mx O nx ). =xO0)nx (0)), =1,
4.52
(¢ () 7x (1)), = . ve™ il = CL (), (4.52)
and using the results for the classical transport,
Ex O O) . = ExOnx Q) =@ (D), (4.53)

we find a similar result foM_ (x) as (4.49),
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d
} P. (£0. (4.54)

M. @) = {m°C. (0 -6, O11-C. 0]

HereP, (&x) is as given in Eq. (4.50).

4.2.4 TheDCT approximation for £© and the structure function Sg (t)

The Lagrangian correlations are retrieved from Edql5¢and (4.16). In£© we need the
subensemble contribution

(<am O byx (©), 2(V), ths),)

.

(o]

f f f M” (Z) <by (X+§; Z, t))sp(é:x) P(fy) dfxdfydz-

—00

(4.55)

The perpendicular integrals are performed and we use #serfptions from the previous
Sec. leading to

(¢ 0 by[x (1), z(D), t]>5>H>L = N F.(X; AL + & 1) f Fi(@M;(@dz (4.56)

Note the appearance of the Corrsin teNnwhich does not depend on the DCT. Within this
picture the decorrelation trajectory itself appears anlhe perpendicular coordinatesand

y. The further integration can also be performed dyedtlith the results from the previous
section thez-integration can be carried out, inserting the expoedsir M, (2),

(¢am ) bylx (D), (1), the),) =
° ¢ ?[1- x ve™] M3) - g (4.57)
Allz .

F. (X, AL+ <§2 (t))) N[?]O MX” ve‘Vt -
In the latter equation we introduced the Corrsin term,

W - )_1/2_ (4.58)

M=|1+ ——=
[ A7

At this stage the previous Corrsin result can be rezednas a special case. Only the
integrations for the DCT are left. We split this gptation into two parts and apply the main
approximation of the DCTx ~ X),



58

4 Transport in percolative magnetic environments

Locr® = b_12 f f f by® F.. (X, A, + € (©) P (b, ) db,*db, dg°
0

o0 (4.59)
0p2[1— y, ve ™ _am
y fnzo P(UZO) [nZOMX||Ve_Vt . Nz @ [ - 2/\/II ] Ms)e 22 MzanO,
e [
to find the following result,
2
Loct@ =8 ®) NDCTM[XII ve "t MP (xvet - 1) %) (4.60)
[

At last we apply the perpendicular average as shown iprngous section and after some
algebraic manipulations and performing the perpendicularage the Lagrangian can be
written as

Lot ) = So () Leorsin® (0). (4.61)

Here we used the Lagrangian correlation function derivddtive Corrsin approximation,

2 2
_ Y
Leorsin® = _bﬂz M{Xn ve "t — —AHZ Mz} Nber, (4.62)
0 Il

but usingNpct instead ofN. This is allowed, because the difference betwiggr and N
does not change the correlation function significalyactor appears which we will call the
structure functiorSy(t),

oo o0

1 (o]
So)= ———— f f f by’ FL (X; AL+ (&2 ®) P (b, ¢)db db,’d¢’. (4 g3

[+ %55)

—00 —00 —00

In most cases this function has to be evaluated nuatigrid/e comment on the details of the
structure function later. A suitable algorithm to caltedsy is described in Appendix D.4.
The decorrelation trajectory is needed as an inpusddy.

4.25 TheDCT approximation for £®
Averaging procedure for the correction term

Next we evaluate the correction tegf®, which is more complicated than the zeroth order,
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LDCT<1>=<V2b2 f f f f f P @) P (1) P (") P (b*) P (¢°)
t~ Mo

- - (4.64)
x 7 by iy () (b Tx (1), 2(), thg), A’ dpy® dp,® db* dg®

L

We proceed in a similar way as faf©® and introduce the derivative average for
(by'[x (1), z(1), t])s and the averaging integration for the parallel motima the definition,

LDCT(D_T fffffP(nxo)P(nyo)P(nzo)P(b )P (g%
Vi© Do

—00 —00 —00 —00 —00

x 772 bx f {T1 (X, AL) 77x nx () +Ta(X, AL) 77y ny (D} e 2"”2 M, (2dz (4.65)

+ <bx'0 T3 (X, AL) 77202 Nz (O e_E%>II} >

L

We apply the perpendicular averages and get

(o]

2 o0 o0 o0 o0
Lo = Ly [ [ ][ [rasranpasredre
t

(o]

OpRp 0 0 C 0 _EAi[
Db (n® [ [ [ Taocre) Mo@oP. &) My @€ T dsde, dz

+1y° f

[ [ Texee Pigor @ Pi@e T dsdy ]

9 ) (4.66)
[ TP @M @) @€ T dsdsy o)

I
#0 [

dnxo dnyo dnzo db® d¢0,

where we can identify equivalent terms to the Coragiproximation applied for Eq. (3.30).
Especially the last expression requires the same apmbtoimon the quadratic velocity
terms, namely the stastistic independence betweervelnaQ;«e(nzo2 7722>” ~ V¢* and the rest of
the T3 terms, which allows us to calculate the average byiritegration of the distribution

P(2). In the following, rather lengthy calculation, we mesdetails on the averaging method
and derive expressions for the terms involvingTth&inctions.
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The 7;-terms

We split the integration in different contributing terrbeginning with thel; term, and
evaluate the integrals using means of analytical soéwdue to the vast amount of terms
within theT;), yielding the result

©0 00 00 00

f PO 1, f f f T (x4 ) M. (&) P. (&) M @ & 27 déy dé, dzdn,®

— o —00 —00 —00

_ {_/Szc;(tyrlal(x)+ 35%¢.%(1=C. (1) T1p(X) } (4.67)

3 5/2 3/2
1+9722 @+ 1P+ 00"

0,,2r1 _ —vt
X{UZOMXH yer ol 2X|| ve’l Ms}.
Ay
We have introduced the notation
1
Tia(X) = —— A2+ (E) D) A2+ E) - Y b°
(1+ 5 ) A
- L (4.68)
2 2 N Xty
+ Xy(3AJ_ + 3<§ >— X )by ]exp(—m),
T1p(X) =
1
[ - P+ LB (@ + A+ 0. (3D - 6D R
3(1+ )8

+X 6D =X A2+ 3L+ B6((ED) - R+ 1D .2+ 3. %)
+XY (€2 +2.2) by° (15<g2>2 +x*—10%%A.2+152.4
—10¢£%) (¢ =312 +5¢.%(6(£% - 2X° +61.°+3¢.9))]
X2 y2
2+ 1.2 +0.2)  2((E2)+A.2) )

(4.69)

X exp(—

These terms are already written in a special way,efsier comparism with the Corrsin
results. The functiong; are dimensionless as they are normalized with threesponding
lengthA. . Furthermore, the numerical factors have been gt that/; -1 for A, — .
Of course, the calculation of the integrations forTheerm are similar and yield
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©0 00 00 00

f P (1, y° f f f T (x+6) M. (&) P. (&) My (2 € 77 dé, dé, dzdy,°

—00

_ {_ 3B2C.(T2a(0) , 158%¢.2(1-C. (1) T2 (X) } (4.70)
U@ e @)1y @y
2.2 + + 2.2 2.2
0, ,2r1 _ —vt
X{UZOMXH N 2X|| ve’l Ms}.
A
with
Taa(X) = (36" + ¥ -6 Y212 +30.4 - 6(£2) (y* - 1.9) b ®

3(1+ )",
(1+37) (4.71)

2 2
3(&£2) - 31.9Db,° (—L)
+XYB(E%) -y + 3.5 by |exp @D

1

15(1+ Erelyy 8

n

Tab(X) = -

x[-xyby® (%) + 1.2+ 0.2 (15D + y* - 10y? 1.2 + 151, *
—10¢€%) (¥ - 30D +5¢.% (6(¢%) - 2y? + 6.7 + 3¢.?))
— (€5 + 1.2 b °
(15(6%)7 —45(6%)% Y +15(2) y — P + 15(3(2)° — 6(£2) Y2 + yH) A2
+45((E) — Y)A4+150.5+150.2(3¢) - 62 y2 + y*
+6((E) - YA 2 +3. 4+ 3D - Y+ 1D .2 +0.Y)]
X2 y?
20+ 1.7 2((E)+1.2+¢.2) )

(4.72)

X exp(—

The last term has a slightly simpler form, becauseirtegration involves only the gaussian
distributionsP(éy), P(£y) andP(2),

©0 00 00 00

f P10) 1,° f f f Ts(x+€) P. G0 P. (6, P, (D €

—00

o 0
2 dé‘x dé‘y dZd?]Z

(4.73)
Vit B2 T3 (X)

N (1 2 )19y

Here
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(4.74)

2 \2
T3(X) = le [((Z) - Y+ 2.2 b° + xyby ] exp(— Xty )

2% + 1.2
The structure functions S; for £®

We return to our calculation of® and use the results for tfAg integrations and perform
the remaining integrals oveg’ and¢® leading to

w_ PEBLY | C. () (S1a () +3S2a (1)

LocT

Vi? bo® (1+ 22,2
_ 30.2A-C.)S1p®  15¢.2(1-C. (1) Szp(X) |
VAL OGP Ly @t PR a1y G (g @R (4.75)
_ pL? B2V S3(X)

bo? 2 3
4 ¥ A (&2
A \/ 1+ 1% \/ 1+ _1+“fT”z (1+-%)

given in terms ofﬂﬁ)ﬁm which corresponds to the quasilinear limit includindisiohs. The

structure functions are defined as,

(o] (o]

Siat) = f P(b®) T1a () db®, Spa (t) = f P(b®) T5a (x)db®,

—00 —00

(o] (o]

Sip(t) = f P(b®) T1p () db®, Sy (1) = f P(b®) 755 (x)db®, (4.76)

—00 —00

(o]

S3(t) = fP(b'O)‘]'g(x)db'o.

—00

The correction function”™® found with the DCT has the same form like the fumcfiound
within the Corrsin method. The functiong; and S; are dimensionless, the correction
function appears therfor in the same dimension as tresi@ result. The influence of the
percolation structure is here also capsuled in the fwmetS; which still contain the
complicated integrals of th@; over theb-field derivatives. This functions have to be
evaluated numerically.
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4.2.6 Propertiesof the S; () structurefunctionsin certain limits

Though a general treatment 8§ (t) and the other structure integrals appears impossible, we
can still find asymptotic values in selected limk8e know already that the perpendicular
correlation length is responsible for the percolativacture of the magnetic field. Therfore it

is appropriate to discuss tt&(t) for different limits ofA, . For A, —» oo the structure terms
become equal to one,

AHTDO Si(t) =1, (4.77)
which holds for alli. This reflects the fact that for small Kubo numbecs effect of the
magnetic structure should be observed and our resuits the Corrsin method are valid.
Contrary to this limit we have

lim i) =0, (4.78)

due to the dependence on the Eulerian correlator, eSg. in

2
x ﬁ—z XA 2%+ xyb% + (A% = x%) by}

L

(4.79)

2 2
xexp(— %) P (b, ¢)db’db,® d¢°.

L

It decreases exponentially with decreasing and makes the structure term vanish. This
explains the well-known problem that for high Kubo nursbtre diffusion is expected to
decay to zero as more and more field lines are trajppdne structures. Of course, this effect
can be compensated by the collisions for largesamiial frequencies, becauseX ~e™t and
Y~et,

We can compare the numerical values of the structuretidmscin this limit with the
numerical values presented in Sec. 3 within the Gomapiproximation. They are exactly
equal. This result shows that the Corrsin results eaimterpreted as the— 0 limit of the
DCT. Especially the relations

; 0 0 H 1 1
/\"Ln LDCT( ) = LCorrsin( ); lim LDCT( ) = LCorrsin( ) (4.80)

AL—00

hold, neglecting small differences in the exponentshefcorrelation terms. This important
fact was not covered by any other work on the DCTaso
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4.3 Diffusion within the DCT approximation

In the end of Sec. 3 we gave an overview of variousspart regimes found with the Corrsin
approximation and presented details on some selecsed.cihe DCT tells us now, that the
correlation functions from the Corrsin method arengpially correct, but they have to be
equipped with certain numerical factors which take cdrth® magnetic fields percolation
structure. For increasing Kubo numbers A, /(bpA.) > 1 these factors become relevant.
Indeed the parameter. has been identified to be the most crucial input valubeostructure
terms.

Two important questions remain, that are closelyedlad each other:

Does the percolative structure of high Kubo numbers always lead to a trapping and a
reduction of the diffusion?

Have finite Larmor radii also significant effect on the diffusion in this regime?

We answer these questions by numerical solutions ofGreen-Kubo formula for the
anomalous transport contributions,

2

d d
dt2 (6% (1)) = 2 at D)= Loct® + Loct®, (4.81)

incorporated in an algorithm that solves also the @64 the structure functiods;.

First, we are interested wether the DCT really rdpoes the same gyro-radius effects as the
Corrsin approximation. Therefore, we integrate Eq. (4i82jme and show the asymptotic
diffusion coefficient as a function of the Kubo numkein Fig. 4.5. A first result is that the
diffusion in the guiding center theory as well as in thse with Larmor radius corrections
starts with the analytical values Bf® andDy®*? derived in Sec. 3.3. Here, we udeg®

as a normalization factor. It can be seen from Fig.tdat for small Kubo numbers within the
DCT approximation the same influence of the Larmori @acturs: a severe reduction of the
diffusion rate. The magnitude of this reduction is of siane magnitude as the examples
shown for the Corrsin approximation and shows verydgagreement with our previous
results.
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Figure 4.5: Solution of Eq. (4.82) for =0, A ~ p. andby = 1. The curves
originate in values given for the quasilinear limit prdésd in Sec. 3.3.

Next we investigate high Kubo numbers. In Fig. 4.6 we preskatrunning diffusion

coefficient normalized to the quasilinear coeffici@nithout Larmor radius corrections) in the
collisionless case as a function of the tinéin units 1/) for two values of the Kubo
number. The guiding center result, that is a simulatibthe zeroth order term in (4.82)
alone, is compared with the complete integration o82).yielding the Larmor radius
influences. It can be seen, that for a larger Kubo munabsmaller diffusion rate occurs.
Additionally, and probably even more important: in thitiation the finite Larmor radius
terms lead to higher transport than predicted guidingecéheory. Obviously guiding center
theories will in such cases underestimate the diffugiamatically.

Contrary we investigate a collisional situation toalgme in what way collisions may
compensate this amplification effect. Figure 4.7 shoes dgain the normalized diffusion
coefficient, but now we have collisions defined bye theduced collisional frequency
v/ =0.2. Note that the Kubo numbers are larger compared to4Fg Obviously the effect
that the guiding center prediction is exceeded by theectd results appears now for higher
Kubo numbers. The qualitative result of an amplificatiotrafsport at high Kubo numbers is
not changed by the collisions. Indeed, extreme higlisioolalities may remove any influence
of the structure as the the occurance of the ampiificas shifted to infinite Kubo numbers.
So far we note, that for a fixed valueofQ) a certain Kubo number can be found at which
diffusion is amplified by the Larmor radius effects.
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Figure 4.6: Solution of (4.82). The ratio dd(t) andDg_ is presented in the
collisionless case for two different Kubo numbets; 2.5 and« =3.6, and
compared with the guiding center theory. The time appsans in units 1.
As stochastic valugg = 25p, andf/by =0.1 were used.
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Figure 4.7: Solution of (4.82). The ratio dD(t) and Dg_ is presented in a
collisional case withv/Q = 0.2 for two different Kubo numberg,= 4.2 and
k = 6.25, and compared with the guiding center theory. The tippears here
in units 1/ Q2. The stochastic values were defined\py 25p, andg/bg =0.1.



4 Transport in percolative magnetic environments 67

An overview of the functional dependency between diffusioefficient and Kubo number is
presented in Fig. 4.8, where we show the effect offitfitie Larmor radii. For large Kubo
numbers, the increase of the diffusion occurs due tdéineor radius. The Larmor radius
corrections lead to a strong amplification of thdudibn for very high Kubo numbers. A
maximum betweem = 100 andx = 1000 occurs. Of course, in the limit> co both rates,

the guiding center diffusion and the corrected diffusidecay to zero. If collisions were
included, the effect would still prevalil.

DCT with Larmor radius correction

0.01 1 100

Figure 4.8: Amplification of the diffusion caused by finite Larmoadii for a
collisionless situatiory = 0. The normalized diffusion coefficient is plottedaas
function of the Kubo number, using/bg=0.1, p =2 measured in units of
Vi / (Qbg). The guiding center diffusion was also calculated withinDCT.

Our results can be interpreted as follows:

First of all, the qualitative result from Isichenkoatt [22] could be reproduced. Namely the
guiding center diffusion gradually decreases with Kubo nunibdrecomes zero for infinite
Kubo numbers. In such a regime all field lines are trdgpethe structures which are very
small, because af, - 0.

The situation is changed when we take Larmor radiustsefieto account. Though the
gualitative result of Isichenko et al. remains, theudiin tends to zero for— oo, a distinct
maximum of the diffusion is found in a certain areatted Kubo number. In this area, the
diffusion rate is dramatically higher than predicted g guiding center theory. While the
field lines are entangled in the percolation structthve,particles are able to detach from this
trapped state and contribute to the diffusion.

Another important conclusion from this analysis ie fact, that the transport is always
diffusive, despite the very special case» co. So even in higher Kubo number regimes a
linearly time-dependence of the MSD prevails.
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e For very small Larmor radii and high Kubo numbers théuglon is reduced. Infinite
Kubo numbers lead to an extinction of diffusion.

e The influence of large Larmor radii is essential. Goalitative reduction of the transport
at high Kubo numbers is now turned into a significaatease of the diffusion.

Our investigations so far concerned the physics thaénlies the anomalous transport. From
a more mathematical point of view [28,29,30], it is intérg to compare both methods
involved and to find estimates for the range ofdiglifor the Corrsin approximation [17]. In
Fig. 4.9 the results of both theories are compared. thiteex —» O the difference between
both approximations vanishes. But for increasing Kubimbrers, a strong deviation is found
aroundk z 0.2. Of course, qualitative results, such as principial rsgsliderived with the
Corrsin approximation, remain valid. Even the amplifama effect discussed above (though
several times higher) can also be observed withiCtresin treatment.

ql

D/D
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10 ¢
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DCT approximation

-
-
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-
-
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Figure 4.9: Comparism of the diffusion coefficients derived wttie Corrsin
approximation and the DCT. We used a parameter regimb wit 0O,

A.=50p,=04 andog = 1.
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5 Numerical simulations of the A-L angevin equation

Various analytical predictions are presented in Secs. 3 and 4 for the diffusion. We will now
compare these analytical results with numerical smulations of the A-Langevin equation. A
special interest lies in the effect of the correction terms. Though these corrections appear in
small order, our numerical solution and the analytical predictions are in great agreement.

5.1 Verification of the diffusion predictions for small Kubo numbers

5.1.1 Motivation for numerical analysis

In order to independently check the analytical predictions for the anomalous transport and the
finite Larmor radius corrections, we performed numerical simulations of the complete
A-Langevin equation. The results of this simulations are compared with the formulas and
models presented in Secs. 3 and 4.

Though various works covered separate aspects of the anomalous transport problem, e.g.
starting from the V-Langevin equations [11], numerical simulation have (so far) not been
performed with the original A-Langevin equation. The following verification of our results is
also a proof of quality for the used stochastic methods and approximations. Especialy the
Corrsin method turns out to be highly accurate, within the permitted range of turbulence and
Kubo numbers.

5.1.2 Comparismsin the Rechester-Rosenbluth parameter regime

In Sec. 3 we derived a model equation for the MSD and the running diffusion coefficient, the
A-MSD-equation. It was shown that this equation leads to all well-known diffusion regimes
in certain limits. Now we use the simulation of the complete A-Langevin equation to verify
the prediction of the A-MSD-equation. The parameters are mainly chosen to fit into the most
famous diffusion regime, the Rechester-Rosenbluth scaling. It can be regarded as a paradigm
of transport regimes.

Figure 5.1 shows the MSD as a result of a direct A-Langevin integration and from the
prediction of the A-MSD-equation, respectively. First parameters are chosen such that the
guiding center approximation applies. The noisy character of the simulation curve is due to
the random values introduced by the Monte-Carlo method.
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In Fig. 5.2 we reduced the guiding field by to values that allow the observation of transport in
adomain where Larmor radius effects occur. We see a clear deviation from the guiding center
result. The latter overestimates the diffusion. Instead, the solution of the A-MSD-equation,
including the higher order correction terms, shows a very good coincidence with the
simulation. The MSD of the smulation has nearly the same dependence as our prediction. We
observed this effect for all smulations with small guiding fields, though the Larmor radius
correction may sometimes be small. Indeed the parametersin  Fig. 5.2 are adjusted to values
at which the effect of the correction terms can be clearly recognized.

simulation

0.55r

0.5¢

(D))

0.45r

0.41

5 7.5 10 12.5 15
t
Figure 5.1: Numerical simulation of the Rechester-Rosenbluth regime within

the guiding center limit compared with the anayltical prediction.
AL =/\|| = 15,0|_,ﬂ= 0.7, bo =5, andv/ﬂ=04
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guiding center approximation -

(A1)

Figure 5.2: Numerical simulation of the A-Langevin equation and comparison
with the analytical predictions, for the case of a strong guiding field. Shown is
the MSD (in unit vi?/Q?) versus time (in units Q™1). The parameters are
N =2.=2[v/Q],e=B/by=04,by=15andv/Q=0.05.

Of course, we also investigated further regimes with our numerics such as the quasilinear and
the subdiffusive regime. We found the same agreement.

5.1.3 Verification of the regimewith dominant stochastic fields

A second major result was the analytical prediction of the diffusion for zero guiding fields.
There are not many predictions in the literature covering this regime. We compared our
formula for the diffusion coefficient with the simulation and present in Fig. 5.3 presents a
comparison between the standard classical diffuson and the diffusion with a stochastic
perturbation field.
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Figure 5.3: Numerical simulation, with and without stochastic magnetic field,
respectively, in the case of no guiding field. Straight lines indicate the
analytical predictions. Shown is the MSD (in unit v;?/Q?) versus time (in unit
Q1). The parameters are A =0.1[v;/Q], S=0 and S =0.9, respectively,
bg=0andv/Q=0.2.

Though the effect of the perturbation field is small, it can be clearly seen from the simulation.
The classical diffusion coefficient is now given by y =v;?/(2v) for al directions. Random
fields appear as additional interactions for the particles and can be accounted for a new virtual
friction. This additional friction reduces the diffusion coefficient to values below the classical

diffusion.
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5.2 Numerical simulationsin the percolation regime

5.2.1 Test of the predicted reduction of the diffusion rate for high Kubo numbers

We first investigate the reduction of the diffusion caused by high Kubo numbers. In Fig. 5.4
we have got « = 438 which would reduce the anomalous diffusion to zero in the collisonless
case. We therefore use a collisional frequency of v/ = 0.1 to achieve a visible reduction
effect, which till leaves the anomalous transport greater than the classical diffusion.

0.52 .

Corrsin approximation

05¢F \

0.48

DCT approximation

(AC(D)

0.46

0.44

0 0.5 1 L5
t

Figure 5.4: Numerical smulation for high Kubo number (grey dots) and
comparism of the DCT results and the Corrsin estimates. by =5, 8=0.9,
A =365p., A. =0.85p. k=438 and v/Q=0.1. The dashed line shows the
classical diffusion coefficient.

Note the result by the Corrsin approximation. It overestimates the diffusion and gives the
wrong result: the gradient of the Corrsin MSD curve is twice as large as the gradient of the
DCT line. There is also quantitative agreement with the results of Isichenko et a. [22] in
regimes were the predictions for the percolation threshold hold.
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5.2.2 Validation of the diffusion ratesfor high Kubo numbersand large Larmor radii

Large Larmor radii were found to be responsible for an increase of the diffusion in systems
with a high Kubo number. Figure 5.5 presents a simulation of the A-Langevin equation and
the predictions of the DCT. We compare the DCT results with Larmor radius corrections to
the DCT results for guiding center diffusion. The Larmor radiusis in this example even larger
than the perpendicular correlation length. The diffusion is found to be much larger than
proposed by the guiding center theory. In contrast to other works about the DCT, our
simulation in Fig. 5.5 was performed in a collisonal regime, proofing the existence of the
predicted amplification of the diffusion also for system with v + 0.

3 .
2 : 8 . - -
DCT approximation with
Larmor radius correction
2.6 \
o 24
4

/

guiding center limit with DCT

! 1.5 2 25 3
t

Figure 5.5: A simulation for a high Kubo number and large values of p .
Comparism of the DCT results and the guiding center estimates. by =1,
=05, 4,=50p, A. =0.2p_ =125 and v/Q=0.2. Straight lines indicate
the analytical predictions for the DCT with Larmor radius corrections and the
guiding center limit (also calculated with the DCT).

Of course in this case, the Corrsin method with Larmor effects would have predicted even
larger values for the diffusion. Nevertheless the typical guiding field theory dramatically
underestimates the transport in this regime.
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We verified our predictions and found in all cases extremely good coincidences between the
analytical formulas and the numerical simulations. It shows not only the reliability of our
theory, but also the quality of the applied approximations, the Corrsin method and the DCT
technique. Both yield very good results, where the Corrsin results have to be taken only for
small Kubo numbers. The results in the high Kubo number regime are also an evidence that
the criterion for the Corrsin approximation used in many other works is correct, as far as only
the DCT is capable of producing consistent behaviour.
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6 Conclusion

The aim of this work was a theory of anomalous test particle transport in the presence
stochastic magnetic fields. Therefore, we were mainly interested in analytical equations for
the mean-sguare-displacement and the running diffusion coefficient.

In contrast to other works based on the guiding center assumption, we used the more
general A-Langevin equation, a stochastic differential equation for the velocity of a particle,
to incorporate also the Larmor motion of the particles and to extend the range of regimes to
the vanishing guiding field limit.

To achieve our am, we solved the A-Langevin equation in Sec. 2 and found an
expression for the perpendicular velocity correlation function. The genera velocity
correlation functions showed analytically the coincidence of perpendicular and parallel
diffusion in the case of vanishing guiding fields. We approximated this function for strong
mean fields. The finite Larmor radius effects appeared as higher order corrections to the
results of the guiding center approximation. The Green-Kubo formalism was presented as the
method of choice for the relation between Lagrangian correlation functions and the transport
properties.

Depending on the Kubo number, the fundamental parameter that defines the state of
turbulence in the stochastic system, we divided our investigation into two parts,
distinguishing between small and high Kubo numbers. Two different approximations were
applied to transform the correlation functions to the Lagrangian frame of reference: the
Corrsin approximation for small Kubo numbers, presented in Sec. 3 and the Decorrelation
Trajectory Method for high Kubo numbers, as shown in Sec. 4.

In Sec. 3 we transformed the correlation function to the Lagrangian frame of reference by
applying the more intuitive Corrsin approximation. Introduced into the Green-Kubo formula
the Lagrangian correlators lead to ordinary differential equations for the transport properties,
the A-MSD-equations.

How do the fluctuations contribute to the diffusion of the particles?

In the range of small Kubo numbers we recovered well-known diffuson regimes of
anomalous transport, including the Rechester-Rosenbluth regime, as results of a zeroth-order
treatment of the A-MSD equations. The fluctuations lead to diffusion rates much higher than
predicted by the classical transport theory.

What isthe influence of the Larmor radius on the diffusion?

Finite Larmor radii were discovered to reduce the diffusion. We presented analytical as
well as numerical estimates for the quantitative description of this reduction. Additionally for
higher Kubo numbers the transport was serverely enhanced by taking the gyration into
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account. It also insistently proves our claim that a rigorous treatment of anomalous transport
has to start with a dynamical equation that includes the complete movement of the particle.

What happenswith the transport if the mean field is not present?

In the limit of zero guiding fields we presented analytical expressions for the diffusion.
The magnetic perturbation field acts then as an additional virtual friction and reduces the
diffusion in a similar manner as the collisional frequency.

Isthe diffusion affected by the percolative structure of the perturbation field?

Large Kubo numbers correspond to the percolation regime, a regime in which
complicated trapping processes and additional decorrelations can appear. In Sec. 4 we
investigated this regime and found the Corrsin results to be the limiting cases of the more
general DCT method. An explicit analytic relation between the Corrsin correlators and the
DCT correlators was derived, leading to the conclusion that the Corrsin results have to be
multiplied with a certain structure function given by the DCT to remain valid in the high Kubo
number regimes.

Generdly, the influence of the percolation structure alone leads to a dramatic reduction of
the diffusion, caused by a trapping of field lines within the maxima of the flux function. We
observed this reduction and found the diffusion decreasing to zero as the Kubo number tends
to infinity. These results confirmed the predictions of Isichenko et al., where the percolation
theory was used to find the scaling of the diffusion coefficient.

Finite Larmor radii lead to important corrections. The coincidence of a percolation
structure with high Kubo numbers and relevant Larmor radius effects can aso increase the
diffusion to decisively elevated levels.

In Sec. 5 we verified our results with a numerical smulation of the A-Langevin equation.
First we showed in the guiding center limit the general agreement of the transport data
derived from the direct smulation and the predictions of the A-MSD equations. Then we also
resolved the deviations due to finite Larmor radii at smaller guiding fields and found excellent
agreement with our correction formulas.

The predictions for the percolation regime were also compared with the complete
simulation. The increase due to finite Larmor radii and the decrease of the diffusion in the
guiding center limit due to the field line trapping were also verified.

A possibility for future works would be the inclusion of fluctuating electric fields, which
are till not covered by the common theory.

Summarizing we can state the major results as follows. Based on the A-Langevin
equation a framework for the description of transport in stochastic plasmas was derived. The
approach alows the treatment of finite Larmor radius effects. We investigated diffusion
regimes for different Kubo numbers and found an significant decrease of the transport for
large Larmor radii when the Kubo numbers are small and an increase of the diffusion for large
Kubo numbers.
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Appendix A

A.1 Neccessary propertiesof the matrix V
Here, we evaluate the mathik,
V=-OR"'bLR". (A.2)

It has an anti-symmetric structure induced bylthgenerators and can be calculated directly
by inserting the magnetic pertubation vedior

0 -Vt Vy(t)
V(1) =-Q| V2t 0 =Vt | (A.2)
“Vy () V() 0

yielding the entries

Vy (t') = cos(a (1) by (t") — sin(a (") by (1),
Vy (t') = sin(a (t") by (t") + cos(a (1) by () (A.3)
Vz (t") = bz (t");

with a(t) = Qbgt. Note the different variables' and t". We will sometimes write
V', t"=1t")=V(t"). Forby —» 0 the matrix reduces to the simple expression,

V=-QbL, Vi(t)=by(t), Vy(t)= by(t), VL") =b,(t". (A.4)
The Eigenvalues oV are
=0, A.=+iQ|b]. (A.5)

Next we investigate how/(t) transforms by multiplication with the rotational megs. First
we letR" act at the same time ¥s

O _bz by
ROVMOR t)=-0bL = -Qy| b, 0 -—b|. (A.6)
~b, b, 0

Obviously this operation cancels all guiding field emstireV . The effect is different when we
apply rotations at arbitrary times,

ROVEr, DR ) =V(r-t,1). (A.7)

Now the rotation matrices cause a timeshift in the petipalar entries oY/ .
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A.2 Therotational group SO(3)

The rotational grouBO(3) turns out to be a useful tool in constructing a soluténhe
ALE. Let us define the following matrices,

1 0 0
0 cosa -sina
0 sina cosa

cocae 0 sina
0 1 0
—-sina 0 cosx

Ry =

sine cosa O
0 0 1

1RZE ,RSE

cosa —sina 0
]. A8)

Then theR(a) are a base of th80(3) and can be expressed in terms of the generbtark
an infinitesimal rotation,

R (a)=€"® (A.9)
using
000 0 01 0 -10 Ly
L1=[0 0 —1], Lzz[ 00 o], L3=[1 0 o], LE[LZ]. (A.10)
010 -1 00 0 0O L3

The vector-product of two vectoesandb is given by the operator representation involving
the vector of the generatdrs

axb=-(b-L)a (A.11)

In the most cases we will drop the argument Rn Finally we define a set of
damped-rotational-operators,

R* (t) = Ry (£ Qg by t) €. (A.12)

That can be used to solve the ALE. As often as plessiie will use the short notation
a = a(t) = Qobgt for the argument. In the special cége~> O the rotational matrices reduce
to the unity matrix, and

R* (@ (1) Ipyo0 = | €71, (A.13)

is left. A further helpful representation & is found by transformation into the complex
space by using the vectQe (x+1Y, 2)

etiﬂbot—vt 0 )(x+|y)

R-q:( Y | (A.14)

The original variables can, of course, be recovergd x= R(qy), Y=7(0y) and
(Ri r)x = R[(Ri q)x]1 (Ri r)y = -Z~|:(Ri q)x]
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A.3 Short review of the velocity correlation function for classical transport

The solution of the A-Langevin equation without magn#ictuations reads
t
n(t) =R up+ R-fR+a(T)dr, (6.15)
0

and we can calculate the velocity correlation fumgiby successively apply our information
about the stochastic data @fandug. The product of two perpendicular velocities is given

by,

(Mx (1) 11 (t2))4 = [COS(Qbg t7) COS(Qbyg t2) Ug? + SIN(Qbg ty) SIN(Qbg t2) Ug 2]

A (A.16)
xexpg—v(ty + )] + >y [1— exp(—vty)] cos(Qbyg (t1 — 7).

Here we used already the correlation of the randowcitigls (a(ty) a(ty)y = 1 Ad (1 —to).
The choice of the constat is still at our disposal [5]. Next we assume a Maxaelli
distribution of the initial velocities,

u 2
P(ug) = 732 v 3 exp(— V_Oz) (A.17)
t

and average the initial velocities, yielding

A 1 A
((nx (t) mx (©2))a)y, = ( > et 4 5 (vtz - 7) e‘V'tl”Z')cos(Qbo (ti-t).  (A.18)

Obviously this correlation function is not stationanytime, it still depends on; andt,
separately. To fulfill the constraint [10], th&ty (t1) 7« (t2)aly, should depend only on the
difference of two timesg = t; — t,, we choose the constafitto be

A = viy. (A.19)

Substituting this value foA, we directly find the relations presented in the nbet.

A.4 Multiscale perturbation seriesfor strong guiding fields

The evaluation of the correlation functions needs ggraximation [31] for strong guiding
fields. We present here a suitable method to estithatentegrals up to the desired order.
Following types of integrals have to be solved,

t t

1= feod” 2= fonl”

0 0

(A.20)
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For by>> 1 we use the smallness parametet ((bg)~*. Substitutingx = e X(r —t) and
expanding ire leads to

0
|y = f cos(X) by (t + £x) dx ~ & by ()[siN(X)]°,1,
—e1t

(A.21)
0

—&? f sin() by' (t; + X dx.

-1t

A second partial integration by path enables us to @eaiv approximation to the second

order ofe,
l; = eby () sin(e™1t) — e2 by () — e2 b cose™ 1) + O (7). (A.22)
The second integral can be estimated in the same way,

I, = —eby (1) — by (t) cos(e™ t) + €% by () sin(e ™ t) + O (3). (A.23)

Due to the fast oscillations the trigonometric termasish and the contribution of the
perturbation field are found to be

I~ —&%by' (1), Iz~ —eby (). (A.24)
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B.1 Combined average

The average of mixed terms combined of the stoahdstiction and the characteristic
function is more involved [31,32] than the standard cumtul@xpansion. Let
o(ty, t) = (a(ty) aty)), we can calculate the combined average as,

<a(t1)a(t2) exp{—i k f a(@)d0}> - k—lz 6t1626t2 <exp[—ik f a(0)d0]>
t2

t2

1 62 1 t1 tg

= — _ 12

= k2 atlatz exp > k tj‘tf<a(01)a(02)>d01d02
2 12

(B.1)

ty ty
= {oa(ts, )~ [Ta(t, 606, [ a6, ) db |«
to to

ot

exp{—% K2 f f 0a (61, ez)dezdel}.

t to

which can be written with the usigg andy, from the main text, defined in (3.22),

ty
(atat exp{-ik [a@ o)) = oa e - el exp{-3 K va). (@2

t2

This prescription can also be found in [10,12] and is uksalighout the derivation of the
Lagrangian correlation functions. A more generalizedcg@dore for mixed or combined
averages is presented in Sec. 4.2.

B.2 Analytical derivation of the Rechester-Rosenbluth diffusion coefficient

The derivation follows Vanden-Eijnden et al. [12] wharéetailed treatment of the method
and the calculation can be found. In order to deriveagyenptotic diffusion coefficient for
the MSDu© given by

(1— (1+7L (T— l) I (t))_z), (B.3)

d 22 — 1_
g 10O =xP (Lex - 5 7) 5)* 3

2

we approximate (B.3) with
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dd—:z e 0(7’— %)_% (1— (1+7L (T— %) + % u® (t))_z), (B.4)

for ), = 1. 6 = k*x,*2. This Eq. should be solved with the initial condiigr®(1) ~ 0 and
% 1O() ;-1 ~ 0. A solution can now be found by dividing the evaluatd the differential
Eq. (B.4) into two parts. First we solve (B.4) fpr (t— 3) + 2 11 @ (r) < 1. In this case,
the last term in (B.4) can be approximated using the sigran

(1+7 (- %) + %g(t))_2 ~1-27.(r- %) — 1O ), (B.5)

which leads to the differential equation (in the regije

d? 1
q2 @ = 9(7' - E) Rx.T+m@ ). (B.6)

usingtT =71 — % . The solution of this Eq.,

1@ =-2x, T+x. VT {cr 1[4V T + ¢ Ko[4 Ve T4}, (B.7)

is given in terms of the modified Bessel functiopsandK,. The coefficients; andc, are
found by using the inital conditions,

a =V2[aKi(@+4K (@], ¢ =V2[al;(@-4l,(@], a=27v0. (B.8)

We use the asymptotic expansions of the Bessel fusgtion

1
K2~\/i X, lp~ &, forxs 1. (B.9)
2X V27X

With this substitution, the solution (B.7) simplifies to

1 _
0 - = — =3/8-1/4 —1/4
@ +2x, T~ Y. TR0 V4 e exp(4Vo T4, B.10
2\2x ( ) (.10
if we assume/6 T4 > 1. The second regime is defined by the condition
1 1

v (r= =)+ = ,@

Yo(r-5)+ 50 @>1 (B8.11)

and leads to a very simple differential equation of tnenf

d2

e 1% = 07732, (B.12)

which can be integrated once in time,
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d

— 11,9 =D -67712, (B.13)
dr

In the latter formula the diffusion coefficient appeassa principially unknown integration

constant. Obviously both regime have to matchedcatrtain timer*, where we assume that

both approximation are valid. Using (B.6) and (B.12) we get

1 _
1= ——x. 76 ¥ ciexp(ave ), (B.14)
2V2n
as a a defining equation for the fitting time. (B.10) leads together with (B.13) to the
matching relation,

1

D-67 2= —— 5, B¢ cexp(4Vo T4 ~ 0. (B.15)
42rn
One obtains the matching time
D
T = (B.16)

Introducing this matching time into (B.14) gives us an ioifpdiquation forD,

1
2V2n

which can be iterated around ~ 166?, reproducing the famous Rechester-Rosenbluth
diffusion coefficient as it can be found in the maixt te

1

Y. D ¥ 62 ¢ exp(46 D), (B.17)

B 1662
log?[16V2r 2%, Y|

D (B.18)
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Appendix C

C.1 Conditional probabilitiesin the DCT

We present here a simple example to explain the catulaff the involved conditional
probabilities in the DCT [33,34,35]. Therefore we conaetrin finding the subensemble
average of the form,

(b)s= [ bP(b]¢% db. €D

b may be one dimensional an() = 0 the only condition. FoP(b| ¢°) we use

(0(b=b(x)6(¢°-¢(0))
0 (¢°-¢(0)) '

Next we define the correlation betwedsx) and ¢(0) as Cps = (b(X) #(0)). All other
correlations are either one or zero, €lgx) b(x)) = 1. Inserting the Fourierrepresentation of
the Deltafunction and applying the cumulant expansiohdrekponent, we arrive at

P(b|¢°) = (C.2)

L [dk [dI explikb+il¢?— 1 k2 = L 12— kI Cyy]

P(b|¢°) = 4= 2 - (C.3)
5= [dmexpimg® — 1 m?]
The integration is straightforward and yields,
(b— Cy)°

P(b|¢%) = ——— exp[—— : C.4
\/27T(1—Cb¢2) 2(1_Cb¢2) ( )

Performing also the last integration we find the enge@erage to be
(b)s = ¢° Cpy. (C.5)

Of course, the extension of Eq. (C.2) with more coowdi terms is straightforward and
leads to similar expressions like Eqg. (C.5). The prdibabiused in the main text are derived
by the same method as presented here. Some detaflsrdmeat examples can be found in the
works of Vlad et.al. [18,19,20].
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Appendix D

D.1 The Matlab7 environment

All algorithms are programmed and implemented in théhemaatical interpreter language
Matlab7. The major advantage of the interpreter enment is the possibility to use internal
random generators and differential equation solvers hwisice very fast and reliable.
Subroutines are placed in separate program modules to priadigielual maintenance for
single parts of the calculation and the possibilityet@hange or reuse single modules for
other purposes.

The guided user interfageatric@Matlab7 was developed. It automatically controlstaibs
of the ALE integration process and the correspondingiiskaibo model equations.

D.2 Numerical solution of the A-Langevin equation
Principle

The ALE is a second order stochastic differential egndor the trajectory of a particle. It

is solved by a direct Monte-Carlo integration [36]. cdD&ting the differential equation
system is straightforward and is performed with andded fourth order Runge-Kutta
procedure with fifth-order error correction. The statltavalues are basically provided by a
random generator that produces distributed or correlatédmanumbers.

Integration of the trajectory

An ensemble of particles is propagated through the systelving the ALE once for each
particle. With fixed values of the magnetic field a&heé acceleration, the ALE is, of course,
equal to a damped and accelerated 3D-Lorentz equatiansysb establish useable results,
the number of trajectories should be large enough. Esirgje particle is equipped with an
individual random starting point and a random startidgoisy in each direction. The random
data have a Gaussian distribution. These data are usatiahsondition for the integration.
We found that the precision of the calculation isawgkr significantly increased using more
than 50 particles. So, typically, we propagate around 50 to X@6lgmfor our statistics.

Sochastic collisions

Within the steps of the numerical integration, an lecagon a is provided by a random
generator. It models the collisional events a partigleexperience along its trajectory. The
strength of the collisions is scaled by the factoh = v, Vv, as derived in Sec. 2. As the
collisions appear now at each integration step, theoiniparametey requires rescaling with
the step size of the integrator.

Sochastic magnetic field
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The magnetic fluctuation field is also changed randomly, but it is still correlabgdhe rules

of the Eulerian correlation function. We generatefgurbation field at a positioK(i), by
using the state of the perturbation fieldXai — 1) and adding a random number scaled with
the inverse of the correlation value at the posi¥a@n [36,37]. The latter is possible, because
the position of the particle is always known at thegerary point of integration.

Polynomal fitting and transport properties

A set of trajectories is obtained and the numemeallysis is completed by averaging these
trajectories to provide the MSD. From the MSD oth@ns$port properties can be derived.
To derive numerical data on the diffusion coefficienpodynomal fitting routine is applied to
take care of noise and oscillation of the MSD datasiog large derivatives in the calculation
of the diffusion.

D.3 Integration of the Green-K ubo differential equations

In most cases the Green-Kubo equations are solved inyesnal Matlab7 routine. It is based
on an explicit Runge-Kutta method using the Dormand-Bripair and is an 4th order
integrator with a 5th order error correction [38]. Inmeorare cases the differential equation
is stiff. Then the algorithm is switched to an intdgr for stiff equations, applying a second
order Rosenbrock formula.

D.4 Monte-Carlo integration of the DCT structure function
Principle

The numerical calculation of the DCT structure functiequires an efficient and fast way to
solve the triple integral fog® andb®. This is a non-trivial task, because for each intimna
step(¢i°, b%), the decorrelation trajectop¥; (t; ¢;°, bi®) has to be retrieved by an additional
integration of the non-stochastic 3D-Lorentz differr@quation system determining.

Monte-Carlo method

The basic idea of the Monte-Carlo integration (moexigely, it should be called quadrature
here) is to replace the integration with a summat®&8)38]. But instead of using a regular
grid to cover the integration points in fixed steps, eh@ose a random set ¢f°and b°.
Again the number of random points has to be large enoufyiidtprecise results. Due to the
special characteristics of the integral, we genetsevalues for,°andb,’ from a Gaussian
distribution and select in that way only numbers witaximal contribution to the integral.
The algorithm has proven to be extremely efficient.
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