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Chapter 1

Introduction

The energy demand and consumption of our society has increased considerably in the
past decades and it will increase even stronger in the next ones. A clean and efficient
power source, which is independent of fossil fuels, is needed to secure the energy supply
for the future. Fusion is a very promising candidate. One kilogram of Deuterium-Tritium
fuel would release about 108 kWh of energy, which is sufficient for one day of operation
of an 1 GW power plant. The fusion reaction produces Helium, which is the only waste
product except of some radioactive isotopes in the containment structure, created by
energetic neutrons. But compared to the waste products of nuclear fission, these isotopes
have very small half-life periods.

The fusion reaction can only take place within high temperature plasmas at temper-
ature levels of about 10− 20 keV. Further on, the Lawson criterion [1] has to be fulfilled.
It demands for the energy confinement time τE: nTτE ≥ 3 × 1021 m−3 keV s, which is
necessary to get stable fusion reactions inside the plasma at the given temperature and
typical densities of about n = 1014 cm−3. Due to this demand, a good plasma confine-
ment is needed. The tokamak, which uses magnetic plasma confinement, created by a
strong helical field of about 2− 4 T, is one of the most advanced concepts. There are also
other approaches like stellerators or laser induced fusion, but we will concentrate on the
tokamak regime here.

On the other hand, the confinement of the plasma has to be controllable in such a way
that the Helium can be removed from the plasma, while new Deuterium and Tritium is
applied. Also the heat and particle deposition at the wall has to be regulatable to extract
the excess energy from the plasma as well as to protect the wall from overheating and
destruction. For this purpose the dynamic ergodic divertor, DED, was developed [2, 3]
for the tokamak TEXTOR, Torus EXperiment for Technology Oriented Research, at the
Forschungszentrum Jülich. The DED is a system of 16 helical coils, which creates a
stochastic magnetic perturbation field at the edge of the tokamak [4, 5]. The DED field is
a special external perturbation, but stochastic fields are also created by error fields, caused
by misalignments within the geometry or the main coils. Therefore, stochastic magnetic
fields are present in almost all fusion machines. Additionally, special designed external coil
systems are often used to directly influence particle motion to a wall of a fusion machine,
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6 Chapter 1. Introduction

to indirectly influence the heat and particle loads via suppression of ELMs, edge localized
modes, or to change the plasma parameters in fusion plasmas like temperature profiles,
toroidal rotation, etc [6, 7]. This makes the analysis of stochastic magnetic fields, the
corresponding transport mechanisms (in principle externally produced) and the created
wall patterns a highly relevant topic to nuclear fusion.

In this thesis, we discuss the statistics of stochastic magnetic fields by using discrete
maps. As it is well known, magnetic field lines represent a 11

2
-dimensional continuous

Hamiltonian system. The main goal of mapping models is to replace the original con-
tinuous dynamical system, the magnetic field lines, by a discrete iterative map, which
runs much faster then the small-step numerical integration [4, 8, 9, 10]. Mappings should
be symplectic (or flux-preserving). They should have the same periodic points as the
Poincaré map of the original system, and they should show the same regular and chaotic
regions as the continuous magnetic field line evaluation. For global maps, a magnetic axis
should be mapped to itself, and the magnetic flux should be always positive [11]. Thus,
the transition to useful discrete maps is by no means trivial. We will use the mapping
technique in its symmetrical form as derived by S. Abdullaev et al. [4, 5, 7, 8, 9, 10].

On the basis of the Hamiltonian mapping technique, presented in Sec. 2.2, we will
study the transport mechanisms of heat and particles in stochastic fusion plasmas. We
will analyze the chaotic motion inside the plasma as well as the wall patterns, created
by open chaotic systems like the DED at TEXTOR. This leads to the following main
questions, this thesis is dealing with:

• How are chaotic layers formed?

• What are the mechanisms of chaotic transport in stochastic magnetic fields?

• What are the transport mechanisms of heat and particles to the wall in open chaotic
systems like the TEXTOR-DED?

• How are the structures of the wall patterns formed and what is the dominant influ-
ence?

• What are additional particle effects, especially for high energetic particles?

In order to get a better understanding of stochastic magnetic fields and their dynamics,
regarding the questions above in particular, we will use the concept of the stable and
unstable manifolds of unstable objects such as hyperbolic periodic points [12]. Many
nonlinear phenomena can be explained by understanding the behavior of the unstable
dynamical objects, which are present in the dynamics. The stable and unstable manifolds
of hyperbolic points have recently attracted the attention of groups dealing with stochastic
magnetic fields in tokamak fusion machines, especially the group of Todd Evans, who deals
with the stable and unstable manifolds in the DIII-D [13, 14].

Due to the enormous relevance of these manifolds, we will study their structures and
dynamics in several steps. First we will use a basic model to get a better understanding of
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their connections to chaos in principle. Then we will shift to a simplified realistic model,
which can still be calculated analytically: the cylindrical DED model. At the end we will
generalize to the real toroidal TEXTOR-DED model, including particle drift effects.

To investigate the topics above, following the outlined path, this thesis is organized
as follows: In the first chapter the symmetric tokamap will be derived from a continuous
Hamiltonian system, using the mapping technique, to principally determine the relation
between the stable and unstable manifolds and the formation of chaotic layers and the
transport within. We will compare the tokamap in its symmetric form with the non-
symmetric one [11, 15, 16, 17], originally proposed by Balescu [11], by analyzing their
statistical properties. We will show that, in addition to common properties, there are
some fundamental differences. The structures and the effects of the stable and unstable
manifolds will be studied for the symmetric tokamap model with monotonic and non-
monotonic, reversed shear, q-profile [18]. The latter corresponds to the revtokamap [15].
In the next chapter we will shift to a more realistic model, a simplified cylindrical model
for magnetic fiel lines in TEXTOR-DED, which can be calculated totally analytical. The
magnetic field and the Hamiltonian for the DED system will be derived [5]. We will
characterize the structures of the open chaotic DED system by its statistical properties,
especially by the mean square displacement and the Lyapunov exponents. Considering the
stable and unstable manifolds and the results from the tokamap regime, the transport,
especially to the wall, will be analyzed for the magnetic field lines. We will show the
typical structures of the DED system and their connection to the stable and unstable
manifolds. In chapter 4 we will extend the DED model to the real toroidal geometry and
include relativistic particle drift effects. Starting with the relativistic Hamiltonian for a
particle in an electromagnetic field, the Hamiltonian for the guiding-center will be derived
and a 4-dimensional mapping procedure for explicit time depending particle drifts will be
constructed. The drift effects will be studied for the unperturbed and the perturbed
case. The latter includes the stochastic DED field. We will show the non-relativistic
limit, to compare with [19] and [20]. At the end we will calculate, analyze and explain
real measurements of heat flux patterns at the divertor plates of the TEXTOR-DED
theoretically, using the stable and unstable manifolds.
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Chapter 2

Formation of chaos in the symmetric
tokamap regime

In order to get a better understanding of the complex dynamics within chaotic layers, es-
pecially transport mechanisms, we first have to investigate how chaotic layers are formed,
how the chaotic layers of different island chains act on each other and how the chaotic
dynamics, especially the transport, change with changing perturbation strengths. The
stable and unstable manifolds of hyperbolic periodic points are a new and very promising
concept. So first we have to analyze the connection of the stable and unstable manifolds
to the chaotic layers and their dynamics in principal. Many interesting mappings have
been proposed [4, 11, 21, 22]. Discrete maps are often used to reduce the description of dy-
namical systems to algebraic iteration procedures. The standard map [23] is for example
well known, which describes the dynamics of a kicked rotator. Another interesting map
is the discrete Schrödinger map, see Appendix A, which reduces the discrete nonlinear
Schrödinger equation [24] to a generalized form of the standard map. As shown in the
appendix, this map can be used to construct solitary solutions of the discrete nonlinear
Schrödinger equation.

One of the basic models for chaotic dynamics in tokamaks is the so called tokamap
model [11, 15, 16, 17]. The tokamap was proposed by Balescu et al. [11] to describe the
global behavior of magnetic field lines in tokamaks. It was constructed as an iterative
discrete map, which is compatible with the toroidal geometry. Balescu et al. [11] pre-
supposed that it represents the Poincaré map of a continuous magnetic field line system.
For a Poincaré map, a toroidal cross section ϕk = 2πk mod 2π of the tokamak is chosen.
Then, at the intersection of the magnetic field line, the toroidal flux coordinate ψ (being
proportional to the minor radius of the torus) is plotted against the poloidal angle θ mod
2π.
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10 Chapter 2. Formation of chaos in the symmetric tokamap regime

2.1 The tokamap

Magnetic field lines are three-dimensional curves, ~x(s) = (x(s), y(s), z(s)), tangent to a

magnetic field ~B, determined by a set of equations, d~x/ds = ~B, where ds = | ~B|−1dl is
related to the element of length along a field line, i.e. dl = (dx2 + dy2 + dz2)1/2.

Ideally, in magnetically confined plasmas such as tokamaks and stellarators, magnetic
field lines are lying on nested toroidal surfaces (magnetic surfaces) wound around a circular
closed magnetic field line, the so called magnetic axis. The toroidal flux ψ is defined as
the magnetic flux through the section of magnetic surface perpendicularly to the magnetic
axis (ψ = 0). The field line coordinate on the magnetic surface is uniquely determined
by a poloidal angle θ (the short way around the torus) and a toroidal angle ϕ (the long
way around the torus). We use the magnetic flux ψ normalized to its value at the plasma

boundary, i.e. ψ = 1 is at the plasma boundary. The divergence-free magnetic field ~B
can be always presented in the Clebsch form [25] using these variables

~B = ∇ψ ×∇θ −∇H ×∇ϕ . (2.1.1)

Using the total differentials, which can be calculated by the directional derivatives

dψ = ~B · ∇ψ = −(∇H ×∇ϕ) · ∇ψ = −(
∂H

∂θ
∇θ ×∇ϕ) · ∇ψ = −∂H

∂θ
(∇ψ ×∇θ) · ∇ϕ

dθ = ~B · ∇θ = −(∇H ×∇ϕ) · ∇θ = −(
∂H

∂ψ
∇ψ ×∇ϕ) · ∇θ =

∂H

∂ψ
(∇ψ ×∇θ) · ∇ϕ

dϕ = ~B · ∇ϕ = (∇ψ ×∇θ) · ∇ϕ ,

one can derive equations for the magnetic field lines, which are of Hamiltonian form

dψ

dϕ
= −∂H

∂θ
,

dθ

dϕ
=
∂H

∂ψ
, (2.1.2)

where a pair of variables (θ, ψ) represents canonical variables, and the toroidal angle ϕ
plays the role of a time-like variable. The Hamiltonian H = H(ψ, θ, ϕ) is the poloidal flux.
Using the Clebsch form, we can always derive a Hamiltonian description of magnetic fields.
The equilibrium magnetic field configuration with nested magnetic surfaces ψ(x, y, z) =
constant follows from a ”time”– independent Hamiltonian H = H(ψ). Then, the field line

equations (2.1.2) are integrable: ψ = constant, θ = (ϕ−ϕ0)/q(ψ), where q(ψ) = 1/∂H0(ψ)
∂ψ

is known as the safety factor.

In the presence of non-axisymmetric magnetic perturbations, the poloidal flux H can
be presented as a sum of the unperturbed flux H0(ψ) and the perturbed part εH1 =
εH1(ψ, θ, ϕ), depending on the poloidal and toroidal angles,

H = H0(ψ) + εH1(ψ, θ, ϕ) , H0(ψ) =

∫
dψ

q(ψ)
. (2.1.3)
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Here the dimensionless perturbation parameter ε stands for the relative strength of the
magnetic perturbations. The perturbation Hamiltonian H1 is a 2π-periodic function of θ
and ϕ, which can be always presented as a Fourier series

H1(ψ, θ, ϕ) =
∑
m,n

Hmn(ψ) cos(mθ − nϕ+ χmn) . (2.1.4)

The integers m and n are called the poloidal and toroidal mode numbers, respectively.
The constants χmn represent their phases.

The most powerful tool to study magnetic field lines is the Poincaré map, which
replaces the continuous system (2.1.2) by the discrete one

(ψk+1, θk+1) = P̂ (ψk, θk) . (2.1.5)

It relates the k−th intersection point, (ψk, θk), of the field line with the poloidal section
ϕ = constant to the next one (ψk+1, θk+1) after one toroidal turn, i.e. it is a return map
of variables (ψ, θ) to a certain poloidal section ϕ = constant. Such a map should be
flux-preserving, i.e. |∂(ψk+1, θk+1)/∂(ψk, θk)| = 1.

To avoid time-consuming small-step integrations of field line equations, different an-
alytical mapping models for the Poincaré map (2.1.5) have been proposed (see [8] for
references). Such a map, the tokamap, being compatible with the toroidal geometry, has
been proposed by Balescu et al. [11]. It is of the following form

ψk+1 = ψk − ε
ψk+1

1 + ψk+1

sin(θk) , (2.1.6)

θk+1 = θk +
2π

q(ψk+1)
− ε

1

(1 + ψk+1)2
cos(θk) . (2.1.7)

It should be emphasized that it has not been rigorously derived from a continuous Hamil-
tonian system such as (2.1.2), (2.1.3), and (2.1.4).

Here we gave a short outline of the tokamap model by Balescu. In general, the pos-
tulated model is not an appropriate ansatz to analyze chaotic systems systematically.
We need to derive a mapping procedure from the physically motivated Hamiltonian sys-
tem like (2.3.1) in a more systematic way. For this, we will use the symmetric mapping
technique by S. Abdullaev et al.

2.2 The mapping technique

The mapping technique is an advanced procedure to calculate the so called Poincaré plot
of the system. The Poincaré plot is a two dimensional symplectic map of the action-
angle variables (ψ, θ), where each point in the map is an intersection point of a system’s
trajectory with the (ψ, θ) plane at discrete times tk, (k = 0,±1,±2, . . .), while all other
variables are fixed. Usually the Poincaré map is calculated by the numerical integration
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of the Hamiltonian equations of motion, which are a system of first order ordinary differ-
ential equations. Then the (ψ, θ) values at the discrete times tk are plotted. Using the
mapping technique, these numerical long time calculations are reduced to algebraic iter-
ation equations, where one iteration step corresponds to the integration of the equations
of motion across one time step k → k+1. Symplectic maps have been used in physics for
a long time, but the mapping technique in its general symmetric form, which has been
developed by S. Abdullaev et al. [4, 5, 9, 10], is a relatively new technique to construct a
symplectic symmetric map.

The mapping technique is based on Hamiltonian systems, described by the Hamilto-
nian H(p, q, t) with the canonical momentum p, the coordinate q and the time t. For the
reason of simplicity, we focus on a one dimensional system, which also depends explicitly
on time, a system with so called 11

2
degrees of freedom. Such a system is the system with

the least number of degrees of freedom, which can show deterministic chaotic behavior.
One application of such a system is, e.g., the Hamiltonian description of magnetic field
lines, which dynamics are of great interest. They are given by the Hamiltonian equations
of motion

dp

dt
=
∂H

∂q
and

dq

dt
= −∂H

∂p
. (2.2.1)

In the following we assume that the system is described by an integrable Hamiltonian H0,
perturbed by a small perturbation εH1 with ε� 1. Then the total Hamiltonian reads

H(p, q, t) = H0(p, q) + εH1(p, q, t) . (2.2.2)

Using the Hamilton-Jacobi theory, see e.g. [26], on the integrable part H0, we can trans-
form the variables (p, q) globally to action-angle variables (p, q) → (ψ, θ) by canonical
transformations. The transformed Hamiltonian then only depends on the action variable
ψ, meaning H0 = H0(ψ). Now we can solve the Hamiltonian equations of motion very
easily and conclude that in this case ψ is a constant of motion and

θ = θ0 +
∂H0

∂ψ
(t− t0) (2.2.3)

is the unperturbed trajectory with θ0 = θ(t0).

The perturbed system

H(ψ, θ, t) = H0(ψ) + εH1(ψ, θ, t) (2.2.4)

is usually a non-integrable system so that a global transformation to action-angle variables
can no longer be applied. Nevertheless, we can use canonical transformations to reduce
the description of the dynamics of the perturbed system from the differential equations of
motion (2.2.1) to a system of algebraic equations, the Hamiltonian map. This procedure
is called the mapping technique. The map

(θk+1, ψk+1) = M(θk, ψk) (2.2.5)
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relates the variables θk = θ(tk) and ψk = ψ(tk), given at the time tk, to the variables
θk+1 = θ(tk+1) and ψk+1 = ψ(tk+1) at the time tk+1, with tk = kτ , (k = 0,±1,±2, . . .),
where τ is a finite time interval. Within this time interval, which means tk < t < tk+1,
we can transform the variables (ψ, θ) to new variables (ξ, ϑ) in such a way that ξ is again
a constant of motion, but now only within this time interval. The generating function
F (ξ, θ, t) of this transformation then fulfills the Hamilton-Jacobi equation

H0

(
∂F

∂θ

)
+ εH1

(
θ,
∂F

∂θ
, t

)
+
∂F

∂t
= Ĥ(ξ) (2.2.6)

within this time interval, where Ĥ(ξ) is the new transformed Hamiltonian. Because the
Hamiltonian system consists of a main part and a small perturbation, proportional to ε,
we can expand the generating function F into a power series of ε

F (ξ, θ, t) = F0(ξ, θ, t) + εF1(ξ, θ, t) + . . . , (2.2.7)

where F0 describes the transformation of the unperturbed system. From the Hamilton-
Jacobi equation we obtain

F0 = θξ −H0(ξ)t+ Ĥ(ξ, t)t , (2.2.8)

with the relations between the old and new variables

ψ =
∂F0

∂θ
= ξ, ϑ =

∂F0

∂ξ
= θ − ∂H0

∂ξ
t+

∂Ĥ

∂ξ
t . (2.2.9)

This transformation is a trivial one, because the unperturbed part is already transformed
to action-angle variables, so that the resulting map

ψk+1 = ψk, θk+1 = θk +
∂H0

∂ψk+1

(tk+1 − tk) (2.2.10)

directly corresponds to the solution of the equations of motion (2.2.3).
Now we take the next order in ε of the generating function into account and we define

F1(ξ, θ, t) =: S(ξ, θ, t), calling now S the generating function. Then we can construct the
map in the following way. At the beginning of the time interval tk we transform to the
new variables (ξ, ϑ), pass the time interval according to Eq. (2.2.10) and at the end of
the interval tk+1 we transform back to the old variables (ψ, θ), but now at the time tk+1.
Therefore, we can derive the map

ξk = ψk − ε
∂Sk
∂θk

, ϑk = θk + ε
∂Sk
∂ξk

(2.2.11)

ϑk+1 = ϑk +
∂H0(ξk)

∂ξk
(tk+1 − tk) (2.2.12)

ψk+1 = ξk + ε
∂Sk+1

∂θk+1

, θk+1 = ϑk+1 − ε
∂Sk+1

∂ξk
(2.2.13)
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with Sk = S(ξk, θk, tk) and Sk+1 = S(ξk, θk+1, tk+1). This is the common form of the
iteration procedure the mapping technique is based on, and all maps presented in this
thesis are related to this form. Note, the first and the last equation are implicit ones,
which usually have to be solved numerically by using for example Newton’s method.

The most important part for the mapping technique is the determination of the
generating function S. Therefore, we expand Eq. (2.2.6) with respect to ε and obtain for
the first order

∂S

∂t
+
∂H0

∂ξ

∂S

∂θ
= Ĥ1(ξ)−H1(ξ, θ, t) . (2.2.14)

The left side of this equation is equal to the total time derivative of S along the unper-
turbed trajectory θ(t) = θ0 + ∂H0

∂ξ
(t− t0), given by the unperturbed Hamiltonian H0. So

we can integrate the equation and get

S(ξ, θ, t) = Ĥ1(ξ)(t− t0)−
t∫

t0

H1(ξ, θ(t
′), t′) dt′ (2.2.15)

with the free parameters t0 and Ĥ1(ξ), which can be chosen arbitrarily, but only some
special choices are convenient. The integration can be performed, if we assume a special
Fourier ansatz

H1(ξ, θ, t) = H
(1)
0 (ξ) +

∑
m,n

Hmn(ξ)e
imθ−inωt (2.2.16)

for the perturbation part H1 of the Hamiltonian system. With H
(1)
0 (ξ) = −Ĥ1(ξ), which

is the most convenient choice for Ĥ1, we find

S(ξ, θ, t) = −(t− t0)
∑
m,n

[a(xmn)− ib(xmn)]Hmn(ξ)e
imθ−inωt (2.2.17)

with xmn = (t− t0)[m
∂H0

∂ξ
− nω], a(x) = sinx

x
and b(x) = 1−cosx

x
.

The parameter t0, which is a reference time within the finite time interval τ , is still
arbitrary. The proper choice of t0 decides, which kind of map is created. Choosing t0
exactly in the middle of the time interval

t0 =
1

2
(tk+1 + tk) , (2.2.18)

we get the map in its symmetric form. This type of map is called symmetric map, because
of its invariance to inversion of time. This is the mapping procedure, which will be used in
this thesis, because it is in very good agreement with the direct numerical integration of
the equations of motion [9]. There are also nonsymmetric maps, so called twist maps [4, 9],
which are created, if one chooses t0 to be the beginning tk or end tk+1 of the time interval.
But, as one can see from the references, the twist maps are of less accuracy and do not
conserve all symmetries, especially the time inversion, of the original Hamiltonian system.
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Here we have only shown the derivation of the first order generating function. One
can also calculate all higher orders of F successively from the expansion of Eq. (2.2.6).
Including higher orders of the generating function would improve the accuracy, but, due
to the smallness of the perturbation, these corrections are negligible small. If the accuracy
is not sufficient, one can reduce the time step size τ . Such a reduction also improves the
convergence of Newton’s method, when used on the implicit equations.

2.3 The tokamap in its symmetric form

Now we will present the so called symmetric tokamap, which is a modification of the orig-
inal tokamap model. In contrast to the originally proposed non-symmetric tokamap [11],
the symmetric tokamap is based on a continuous Hamiltonian system, consisting of an
integrable part, specified by the safety factor, and a non-integrable perturbation. The
model is close to the kicked rotator, with a nonlinear dependency of the amplitude on
the flux ψ. The Hamiltonian system has a fundamental symmetry according to the trans-
formation t → −t and H → −H. This time-reversal symmetry is not reflected in the
usual (non-symmetric) form of the original tokamap. Due to this lack of symmetry in
the non-symmetric tokamap, the symmetric tokamap was proposed [8]. The symmetric
tokamap can be easily inverted in time and the inverse map has the same structure and
Poincaré section. The symmetric tokamap is in very good agreement with the Poincaré
section of the continuous system [8].

It was supposed [27] that the tokamap corresponds to the Hamiltonian

H = H0(ψ) + εH1(ψ, θ, ϕ) =

∫
d ψ

q(ψ)
+ ε

ψ

1 + ψ
cos(θ)

∞∑
k=−∞

δ(ϕ− 2πk) . (2.3.1)

A derivation of the tokamap from the Hamiltonian (2.3.1) encounters a difficulty, related
with the presence of delta functions (see [8] and references therein). In order to avoid
these difficulties, the following regularization procedure has been proposed in Ref. [8]. Let
us consider the Hamiltonian

H = H0(ψ) + εH1(ψ, θ, ϕ) =

∫
d ψ

q(ψ)
+ ε

ψ

1 + ψ
cos(θ)

M∑
s=−M

cos(sϕ) , (2.3.2)

containing the sum of a finite number M of trigonometric functions. Using the Poisson
summation rule, it is easy to see that the Hamiltonian (2.3.1) follows from the regularized
Hamiltonian (2.3.2) in the limit M →∞.

Applying the construction of canonical mappings, presented in Sec. 2.2, to the Hamil-
tonian (2.3.2), and performing the limit M →∞, one obtains the generating function

S = −ε ψ

1 + ψ
cos(θ) , (2.3.3)
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which leads to the exact mapping [8]

ξk = ψk −
ε

2

ξk
1 + ξk

sin(θk) , ϑk = θk −
ε

2

1

(1 + ξk)2
cos(θk) , (2.3.4)

ϑk+1 = ϑk +
2π

q(ξk)
, (2.3.5)

ψk+1 = ξk −
ε

2

ξk
1 + ξk

sin(θk+1) , θk+1 = ϑk+1 −
ε

2

1

(1 + ξk)2
cos(θk+1) . (2.3.6)

This map is called the symmetric tokamap. Note, the non-symmetric tokamap (2.1.6)
cannot be derived from the Hamiltonian (2.3.2), using the regularization method. Gen-
erally, the symmetric tokamap is an implicit map, but the first equation (2.3.4) can be
explicitly resolved with respect to ξk,

ξk =
1

2

[√
P 2(ψk, θk) + 4ψk − P (ψk, θk)

]
, (2.3.7)

where

P (ψk, θk) = 1− ψk +
ε

2
sin(θk) . (2.3.8)

The ψ-equation of the non-symmetric tokamap (2.1.6) can be resolved in the same way.
The implicit equation for θk+1 cannot be solved analytically. For this purpose we use the
Newton method.

The symmetric tokamap is invariant with respect to the transformation k ↔ k + 1
when ε → −ε and q → −q. So it can easily be inverted. This property corresponds to
the symmetry of the continuous Hamiltonian system with respect to the transformations
t → −t and H → −H. Typical plots of the symmetric and non-symmetric tokamap
are shown in the Figs. 2.1 and 2.2, respectively, for the same perturbation parameter
ε = 4.5/2π and a monotonic q-profile.

We are using

q(ψ) =
4

(2− ψ)(2− 2ψ + ψ2)
(2.3.9)

for the monotonic q-profile. Later we shall generalize to a non-monotonic q-profile of the
form

q(ψ) =
qm

1− a(ψ − ψm)2
, (2.3.10)

corresponding to a reverse magnetic shear profile in a tokamak. qm is the minimum

value of q at ψ = ψm. The parameters ψm =

[
1 +

(
1−qm/q1
1−qm/q0

)1/2
]−1

and a = 1−qm/q0
ψ2

m
are

evaluated with the values q0 = q(0) and q1 = q(1). We will choose q0 = 3, q1 = 6, and
qm = 1.5, so ψm ≈ 0.5505. Further we introduce the winding number Ω(ψ) = 1/q(ψ),
given by the reciprocal value of the safety factor.
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Figure 2.1: Poincaré plot of the symmetric
tokamap with a monotonic q-profile and ε =
4.5/2π.

Figure 2.2: Same as Fig. 2.1, but now for the
non-symmetric tokamap.

2.4 Statistical properties of the tokamap

As it can be seen from the Figs. 2.1 and 2.2, there are some fundamental differences
between both forms of the tokamap. The symmetric one is less chaotic than the non-
symmetric one, which will become quantitatively more evident when we analyze the break
up of KAM surfaces. The periodic points are located at different positions. Only the fixed
points, defined by ψk+1 = ψk and θk+1 = θk, which are also periodic points with period 1,
are the same in both maps. There is one elliptic point on the equatorial plane at θ = π,
and one hyperbolic point in the center at ψ = 0 (formally at θ = π/2 and θ = 3π/2).
The periodic points, defined by ψk+n = ψk and θk+n = θk for n ≥ 2, are different. In the
symmetric tokamap the periodic points are symmetrically arranged to θ = π, and for all
island-chains there is one elliptic point at θ = π. This fact is related to the invariance
with respect to the translation θ ↔ π − θ of the symmetric tokamap, which results from
the time invariance. The non-symmetric tokamap does not show such a symmetry. The
following analysis of the statistical properties will detect more qualitative and quantitative
differences, but also common properties. It will help us to classify the chaotic system as
such.

At first we analyze the transport (diffusion) of magnetic field lines, especially for large
perturbations. Therefore, we calculate the mean square displacement (MSD)

σ(t) =
〈
(ψ(t)− 〈ψ(t)〉)2

〉
(2.4.1)

of the flux, where 〈. . .〉 stands for an averaging over initial points. Here we do not
terminate the ψ-values at ψ = 1; in later sections we shall discuss the footprints when a
wall is set at ψ = 1. The numerical calculations show that the MSD increases linearly in
time for large perturbations ε� 1, meaning normal diffusion of the flux ψ. The running
diffusion coefficient

D =
1

2

dσ(t)

dt
= const (2.4.2)
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still depends on the perturbation parameter ε. The evaluations are similar to those for
the standard map

ψk+1 = ψk +K sin(θk) , (2.4.3)

θk+1 = θk + ψk+1 . (2.4.4)

Figure 2.3: Diffusion coefficients for the symmetric tokamap (solid
line) and the standard map (dashed line), normalized with ε2/4. The
diffusion coefficient is plotted versus the perturbation parameter ε.

In Fig. 2.3 the diffusion coefficient, normalized with the quasi-linear diffusion coeffi-
cient Dql ≡ ε2

4
of the standard map, is plotted versus the perturbation parameter ε for

very large values of the latter. The solid line shows the tokamap result. As one can see,
the diffusion coefficient is proportional to ε2, but the factor is not equal to 1/4 as it is for
the standard map (dashed line). The quasi-linear diffusion coefficient for the tokamap is
given by

D ≈ 0.36 · ε
2

4
= 0.36 ·Dql . (2.4.5)

For the standard map we recognize the typical oscillations around Dql, already known
in literature [28, 23]. For the tokamap such regular oscillations are not observed. The
reason is the nonlinear winding number Ω(ψ) ∼ ψ3. Using the standard map with such
a non-linear winding number, the diffusion coefficient of the standard map also shows
irregular fluctuations and no regular oscillations around Dql. The factor 0.36 reflects the
non-even distribution of the ψ-values for large perturbations. Although the mean of ψ
goes to infinity, when time goes to infinity, the ψ-values are extremely dense at ψ = 0.

The quasi-linear diffusion coefficient for the tokamap is valid in the regions of large
perturbations, but also for moderate perturbations ε ∼ 1 and large fluxes ψ > 3. Both
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forms of the tokamap show the same quasi-linear behavior.

For small perturbations, ε < 0.7, both forms of the tokamap have (two last) intact
KAM surfaces. The lower one (near the core) separates the period-1 island core from
the chaotic sea around the period-2 island chain. The second (upper one) separates the
chaotic sea from the outside area, which roughly begins at ψ ≈ 1.

For applications, the exact values of the critical perturbations for destruction of the
KAM surfaces are highly relevant. Here we detect a major difference between the sym-
metric and the non-symmetric tokamap. The critical perturbations are:

• Symmetric tokamap:
upper KAM surface: ε = 5.414/2π , lower KAM surface: ε = 5.719/2π .

• Non-symmetric tokamap:
upper KAM surface: ε = 4.998/2π , lower KAM surface: ε = 4.857/2π .

On the one hand, the critical perturbations are definitely higher for the symmetric
tokamap than for the non-symmetric one. But more important is that the KAM surfaces
are breaking in a different order. For the symmetric tokamap the lower KAM surface near
the core is destroyed after the upper one. This means that, while the field lines within the
chaotic sea can reach the outside area and are getting lost, the core area is still protected.
For the non-symmetric map it is the other way round. The field lines near the core can
diffuse into the chaotic sea, while the whole chaotic area ψ < 1 is still confined. So there
is not only the quantitative difference that the symmetric tokamap is more robust against
perturbations. There is also the qualitative difference in the order of the break-up of KAM
surfaces. Having in mind that the symmetric tokamap has a direct link to the continuous
Hamiltonian system, resulting from physically motivated perturbations, the results from
the symmetric tokamap are more useful for quantitative predictions.

For perturbations larger than the critical one, the transport behavior of the symmet-
ric tokamap through the open KAM surface is similar to that of the non-symmetric map.
Although the surface is open, close to the critical perturbation value, the mean square
displacement (MSD) does not change for a long time, up to 106 iterations. After that time
a sudden and significant increase of the MSD can be observed. This has already been
analyzed in [29] for the non-symmetric tokamap. The same behavior can be observed for
the symmetric tokamap, as it is shown in the Figs. 2.4 and 2.5. There, the MSD is plotted
on a log-time scale for the perturbation parameters ε = 4.875/2π and ε = 6/2π, respec-
tively. In Fig. 2.4 we can see that for the symmetric tokamap the lower KAM surface is
still intact.

In the Figs. 2.4 and 2.5 we recognize that the characteristic time T when the MSD
starts increasing depends on the perturbation parameter, especially on the difference ε−εc,
where εc is the critical perturbation for the break-up of the KAM surface. The number
N of ”test-particles” (i.e. fictitious particles sticking to the field lines) staying below the
already broken KAM surface decreases exponentially in time, when ε > εc. We have

N

N0

=

{
e−λt , ε ≥ εc ,

1 , ε < εc .
(2.4.6)
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Figure 2.4: MSD of the flux, plotted versus time
(iteration number) in double log-scale, with ε =
4.875/2π for the symmetric and the non-symmetric
tokamap. We have chosen 1000 starting points at
ψ = 0.001 and 0 ≤ θ ≤ 2π.

Figure 2.5: Same as Fig. 2.4, but for ε = 6/2π.

The scaling is
λ ∼ (ε− εc)

3 ⇒ T ∼ (ε− εc)
−3 (2.4.7)

for the dependence on the perturbation parameter. This result is valid for both KAM
surfaces and both maps.

2.5 Construction of stable und unstable manifolds

As mentioned above, we will use the concept of the stable and unstable manifolds of
unstable objects, hyperbolic periodic points in our case, to obtain more information about
the formation of chaotic layers and the transport within. Although the concept of the
stable and unstable manifolds is already known [12], it has never been applied to the
tokamap model before and as we shall see, the analysis of the structures and the dynamics
of the manifolds will lead to interesting new results.

The unstable manifold of a hyperbolic periodic point is defined as the set of points
which converge under the map towards the periodic point for n → −∞. The stable
manifold is the unstable manifold of the inverse map. Each manifold has two opposite
sides, one on the left of the hyperbolic point, the other on the right of it. During the
calculation of the manifold one has to watch that one does not change the sides. When n
is the period of the hyperbolic point, then F (~x) stands for the 2n-th iteration of ~x. There
are some examples, where the right side of the manifold is projected to the left side after
n iterations. Using 2n iterations, the side of the manifold will be preserved.

To calculate the unstable manifold of a hyperbolic point with period n, we choose a
starting-point ~x very close to the hyperbolic point. Then all iterations of this point are
lying on the unstable manifold or extremely close to it. This can be understood by the
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way, the points are following the manifolds. We can split the directional vector whom the
point ~x follows during 2n iterations in one part along the stable manifold and one part
along the unstable manifold. Due to its unstable component, the point will follow the
unstable manifold away from the hyperbolic point. Due to its stable component, the point
will be driven closer to the unstable manifold. Therefore, the small error that the starting
point is not exactly located on the unstable manifold, will diminish rapidly during the
iteration. But the error has to be very small, meaning that the starting point must be
located very close to the hyperbolic point, which makes it absolutely necessary to know
the position of the hyperbolic point precisely, see Sec. 2.6.

When we have chosen the starting point ~x, we calculate the 2n-th iterate ~y = F (~x) of
~x. The line-element between ~x and ~y then approximates the unstable manifold very well,
because the unstable manifold is not curved that close to the hyperbolic point and as
already mentioned, the point ~y is located on or even closer to the unstable manifold than
~x. By iterating the line-element in the following way [12], we get the unstable manifold.

When Gk(~x) = F k(~x) = F (F (. . . F (~x) . . .), we start with ~x0 = ~x and k = 1. Then we
choose points on the line-element ~xi in such a way that the distance between Gk(~xi−1)
and Gk(~xi) is less than a chosen maximum distance. Is the distance between Gk(~xi−1)
and Gk(~xi) less than a chosen minimum distance, one can use a slightly larger step on the
line-element for the choice of xi+1. The transition from k to k + 1 is automatically given
by Gk(~y) = Gk+1(~x). As one can see, the step size on the line-element regulates itself so
that the distance of two neighboring points of the manifold plot is always less than the
maximum distance, but mostly larger than the minimum distance. One has to consider
that with increasing k the step size on the line-element will decrease, until it reaches the
numerical accuracy of the machine. Then the manifold can no longer be traced, but this
point highly depends on the choice of the maximum and minimum distance.

Using this method, one side of the unstable manifold can be calculated very precisely,
because numerical errors cancel themselves out, as already mentioned above. The other
side of the unstable manifold can be calculated by choosing the starting point ~x on the
other side of the hyperbolic point for example. The stable manifold is the unstable
manifold of the inverse map and can be calculated by using the inverse iteration.

2.6 Periodic points

To calculate the stable and unstable manifolds, one has to know the positions of the
periodic points very precisely. Here we outline an algorithm to determine the periodic
points of a map.

A periodic point with period n is defined through

ψ = Mn
ψ(ψ, θ) θ = Mn

θ (ψ, θ) mod 2π , (2.6.1)

with Mn
ψ and Mn

θ being the n-times iterations of the map with respect to ψ and θ,
respectively. There are two different kinds of periodic points. The elliptic ones, which
are at the centers of the islands, are stable. A trajectory very close to the elliptic point
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will iterate on an elliptic orbit around that periodic point and will always stay close to it.
These elliptic periodic points are only of low interest to us. The hyperbolic ones, i.e. the
intersection points of the unperturbed separatrix, are located between the islands. They
are unstable. A trajectory close to the hyperbolic point will follow a hyperbolic orbit
away from the periodic point. These points and their stable and unstable manifolds are
the source of chaos and anomalous transport, as we shall see later.

Finding the hyperbolic points is extremely difficult, due to their unstable character.
But they can be determined numerically, using a minimization method [29, 30]. The
problem is similar to solving a system of N nonlinear equations

Fi(~x) = Fi(x1, x2, . . . , xN) = 0 1 ≤ i ≤ N , (2.6.2)

while we only consider N = 2 here. We have to minimize

f(~x) =
N∑
i=1

(Fi(~x))
2 . (2.6.3)

Therefore, we consider the function

g(t) = f(~a+ t · ~d) , (2.6.4)

where ~a = (a1, . . . , aN) is a chosen starting point and ~d = (d1, . . . , dN) is a chosen direc-
tional vector. Now we have to find the minimum tmin of g(t). The next starting point is

then given by ~a1 = ~a + tmin · ~d, and we have to choose a new direction ~d1 in which the
one-dimensional minimization is then performed. To ensure the convergence, the proper
choice of the direction is important. The native choice for the direction would be the
gradient

~d = −∇f(~a) , (2.6.5)

but the conjugated direction method [29], which is outlined in the following, is more
effective.

For one N -dimensional minimization step, we use N sub-steps

• Sub-step 0:
For the starting point ~x0, we choose the direction

~d0 = −∇f(~x0) .

By minimizing the function

g0(t) = f(~x0 + t · ~d0)

with respect to t, we get the new starting point

~x1 = ~x0 + tmin · ~d0 .
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• Sub-step k + 1 (k < N − 1):
Using the directional vector

~dk+1 = −∇f(~xk+1) + βk ~dk

with

βk =
||∇f(~xk+1)||2

||∇f(~xk)||2
,

we minimize gk+1(t) = f(~xk+1 + t · ~dk+1) with respect to t and calculate ~xk+2 =

~xk+1 + tmin · ~dk+1.

These steps are performed up to N − 1, then the procedure starts again at sub-step 0
with ~x0 = ~xN .

The one-dimensional minimization is performed in each sub-step, using Newton’s
method to find the zero point of the first derivative g′(t). Usually the derivative of the
considered function, which is the second one g′′(t) here, is needed for Newton’s method.

With ~y = ~x+ t · ~d we obtain

g′(t) = ∇f(~y) · ~d = 2
N∑

i,j=1

∂Fj
∂xi

(~y)Fj(~y)di (2.6.6)

and

g′′(t) = 2
N∑

i,j,l=1

∂2Fj
∂xi∂xl

(~y)Fj(~y)didl + 2
N∑

i,j,l=1

∂Fj
∂xi

∂Fj
∂xl

(~y)didl . (2.6.7)

One can neglect the first term on the right side of the second derivative so that the second
derivative can be approximated by products of the first derivatives. Note, all values are
those of the actual sub-step.

Using this simplification, we can approximate tmin by

tmin = − g
′(0)

g̃′′(0)
, (2.6.8)

with

g̃′′(t) = 2
N∑

i,j,l=1

∂Fj
∂xi

∂Fj
∂xl

(~y)didl . (2.6.9)

This procedure converges very fast and will lead to both types of periodic points up to
the desired accuracy. The periodic point being found, depends on the choice of the first
starting point. The best way to find periodic points in a certain area, is to use a grid of
starting points.

This is only one possible algorithm to find periodic points. Another very good one is
the two dimensional Newton method, which will not be described here.
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2.7 Stable and unstable manifolds of the symmetric

tokamap

The statistical properties of the tokamap, which are shown in Sec. 2.4, are the visible
and measurable results of the chaotic dynamics, but they cannot explain, why the chaotic
layers are formed and how the transport is generated. The analysis of the influence of
the hyperbolic periodic points and their stable and unstable manifolds on chaotic motion,
appearing of chaos and chaotic transport is the main task.

We will show that the hyperbolic points are the source of chaos. Due to the slight-
est perturbation, the ideal unperturbed separatrix splits into the stable and unstable
manifolds.

Figure 2.6: Homoclinic unstable manifold (solid
line) of the period-1 hyperbolic point at ψ = 0 and
θ = π/2 of the symmetric tokamap, with mono-
tonic q-profile and ε = 4.5/2π.

Figure 2.7: Heteroclinic right-hand-sided unsta-
ble manifold of the period-2 hyperbolic point at
ψ = 0.431 and θ = 1.324 of the symmetric tokamap
with monotonic q-profile and ε = 4.5/2π. The hy-
perbolic points are marked by crosses.

Figure 2.6 shows the unstable manifold (solid line) of the period-1 hyperbolic point at
ψ = 0 and θ = π/2 of the symmetric tokamap, with monotonic q-profile and ε = 4.5/2π,
plotted very close to the periodic point, and Fig. 2.7 shows the right-hand-sided unstable
manifold (solid line) of the period-2 hyperbolic point at ψ = 0.431 and θ = 1.324. The
manifolds are plotted only up to a certain length to ensure the visibility of their behavior.
The total manifold fills the entire chaotic area and has an infinite length.

As one can see, the unstable manifold starts oscillating, when it approaches another
hyperbolic point (heteroclinic) or the same (homoclinic), and the amplitude increases
strongly. When the amplitude becomes large enough so that the loops also come close
to a hyperbolic point, the loops start oscillating too. In this way the unstable manifold
becomes dense in the chaotic area for a closed chaotic system. The stable manifolds
show the same oscillatory behavior close to hyperbolic points. Important is the fact that
unstable manifolds never intersect with each other, but the stable manifolds intersect with
the unstable ones. Their oscillations intersect infinite times, while the area enclosed by
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the intersection is preserved. Field lines within such enclosed areas are iterating from
one area to another [13]. These areas are getting very long and extremely thin. Due to
their stable components, they are iterating towards the hyperbolic point, while due to
their unstable components, they are elongated in the directions of the unstable manifold.
Close to hyperbolic points (note the increasing amplitude of the oscillations and the
area preserving property) two neighboring field lines are always located in such different
areas and therefore iterate in completely different ways. Assuming that two field lines
are located in the same area, this area iterates towards the hyperbolic point, as described
above, and comes automatically into regions of a higher rate of intersection. The structure
formed by the intersections of stable and unstable manifolds is a fractal one. This means
that similar initial conditions always leads to totally different results. Chaos appears
around the hyperbolic points.

Figure 2.8: Intersection of the unstable manifold of the
period 9/5 island chain (blue line) and the stable manifold
of the period 2/1 island chain (green line) at a perturba-
tion of ε = 4.1/2π.

Figure 2.9: Sketch of the progression of the
iteration of a field line within the intersec-
tion area of two manifolds.

Increasing the perturbation leads to an increase of the oscillations and the splitting
of the manifolds, resulting in an increase of the chaotic area. By further increasing the
perturbation, the stable and unstable manifolds of two neighboring island chains start
overlapping. Figure 2.8 shows the intersection of the unstable manifold of the period 9/5
island chain (blue line) with the stable manifold of the period 2/1 island chain (green
line). Between two neighboring island chains, whose manifolds are not intersecting at the
given perturbation level, a transport barrier is located. On the other hand, due to the
intersection of the stable manifold of one island chain with the unstable manifold of the
other island chain, field lines can iterate from the one to the other and back again, since
the area enclosed by the intersecting manifolds belongs to the chaotic areas of both island
chains. The chaotic areas around the islands are connected by the intersecting manifolds.
So, transport between both island chains occurs as sketched in Fig. 2.9 [13]. In this figure
a field line, marked as solid circle, iterates from position 1 to position 10. At position 1 the
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field line first follows the stable manifold of the small island and then the unstable manifold
to position 5, where the unstable manifold of the small island chain intersects with the
stable manifold of the large island chain. Then the field line follows the stable, and later
the unstable manifold of the large island chain to position 10. Particles, following this field
line, are transported from the small island chain to the large island chain. The necessary
perturbation for an overlap of the manifolds of neighboring island chains corresponds to
the critical one for the break-up of the intact KAM surface in between, determined for
the two last intact surfaces in the previous section. Is the perturbation slightly above
the critical one, the manifolds of the neighboring island chains intersect only at the very
edge of the chaotic layers. This means that field lines in the chaotic layer of the one
island chain have to follow its manifolds for a very long time, until they reach the area of
intersection and are transported to the other island chain. It will take very long iteration
time to see relevant transport effects. Increasing the perturbation also increases the areas
of intersection so that the transport from one island chain to the other occurs much faster.
This clearly explains the developing of the MSD, shown in Figs. 2.4 and 2.5.

So, the appearance of chaotic motion and transport can be explained by the stable
and unstable manifolds. Also the existence of transport barriers and their destruction
with increasing perturbation can be explained by the overlapping of the stable manifolds
with the unstable ones. The manifolds are playing a fundamental role in understanding
and influencing of chaotic transport.

2.8 The question of spontaneously inverted q-profiles

Misguich et al. [29] reported for the non-symmetric tokamap an inversion of the q-profile
near the magnetic axis due to the perturbation. However, our calculations show that the
q-profile remains equal to one inside the main magnetic island around the magnetic axis,
and increases outside. So there is no inversion of the q-profile near the magnetic axis. This
results from precise numerical calculations. It is valid for both, the symmetric and the
non-symmetric tokamap. Figure 2.10 shows several island chains of the non-symmetric
tokamap. Some of them are inside the main island core around the magnetic axis, with
q = 1. In the figure the periodicities of the island chains are marked. One can see that
inside the main island core the toroidal periodicity is equal to the poloidal one, meaning
that q = 1 is valid inside the whole island. Outside the island, the q-profile increases with
the distance to the magnetic axis. So there is no spontaneous inversion of the q-profile.

Figure 2.11 shows the perturbed q-profile, solid line, of the non-symmetric tokamap
for ε = 4.5/2π along the θ = π axis from ψ = 0.06 up to ψ = 1, compared to the
unperturbed q-profile, Eq. (2.3.9), given by the dashed line. The perturbed q-profile is
still a monotonic one, while q remains constant inside of islands. The fluctuations at
the edges of the constant parts are caused by the chaotic layer, which surrounds the
islands. Within these chaotic layers, q, given by the fraction of the toroidal and poloidal
periodicities, is no longer numerically calculatable, because the periods are infinite.
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Figure 2.10: Several island chains of the non-
symmetric tokamap at a perturbation level of ε =
4.5/2π.

Figure 2.11: The q-profile of the non-symmetric
tokamap for ε = 4.5/2π. Shown are the q-values
along the path θ = π starting from ψ = 0.06. The
broken line depicts the unperturbed q-profile.

2.9 The symmetric revtokamap

To study magnetic shear effects one has to apply a (zeroth-order) non-monotonic q-profile
as, e.g., presented in (2.3.10). This leads to the so called revtokamap. In the Figs. 2.12
and 2.13 the symmetric revtokamap and the non-symmetric revtokamap are plotted, re-
spectively.

Figure 2.12: Plot of the symmetric revtokamap
with a non-monotonic q-profile and ε = 6/2π.

Figure 2.13: Same as Fig. 2.12, but for the non-
symmetric revtokamap.

First, both forms of the revtokamap show differences between each other similar to
those already discussed for both forms of the tokamap. But, secondly, both forms of the
revtokamap show significant differences to the tokamap with a monotonic q-profile. In
the following we compare the symmetric forms of the tokamap and the revtokamap. The
main difference between them is the following. When we assume a wall at the position
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ψ = 1, field lines are terminated when they reach ψ = 1. In this case the system can
be considered as a chaotic scattering system [31]. At approximately ψ = 0.5, the main
chaotic areas of the tokamap are located around the 2/1 island chain. Close to the wall
there are still intact KAM-surfaces, as one can see in Fig. 2.1. So the field lines in the
chaotic region can never reach the wall for perturbations less than the critical one for
the break up of the last upper KAM surface, see Sec. 2.4. The tokamap is typically a
closed chaotic system. For the revtokamap the chaotic area is located at the edge of the
map, while the center remains very regular, even for very large perturbations ε ≈ 1. As
seen from Figs. 2.12 and 2.13, there is a magnetic transport barrier for field lines located
near the shearless curve ψm ≈ 0.55, where the minimum of the q−profile is reached. The
chaotic field lines above can hit the wall. So the revtokamap is an open chaotic system
at the edge with a concealed very regular interior. Such a configuration is much more
typical for tokamak fusion machines, although a monotonic q-profile, like for the tokamap
regime, is used there. Therefore, for the revtokamap it is interesting to analyze the
structure of the chaotic area according to the number of toroidal and poloidal rotations
of the field lines, until they connect the wall through this area. These so called laminar
plots are colored contour plots, where areas with the same rotation numbers are colored
in the same way. In chaotic scattering systems a trajectory may leave the system in one
of several different ways. The areas of initial coordinates corresponding to the various
exit ways are separated by a boundary, which may be fractal [31, 32]. The set of initial
conditions for which trajectories leave the system in a particular way is called the basin
of the particular mode [32]. Figures 2.14 and 2.15 show these basins for the toroidal and
poloidal rotation numbers, respectively.

Figure 2.14: Laminar plot of the symmetric
revtokamap for the toroidal rotation numbers at
ε = 6/2π.

Figure 2.15: Laminar plot of the symmetric
revtokamap for the poloidal rotation numbers at
ε = 6/2π.

From the laminar plots we can detect, how many rotations are performed for connect-
ing a point at the wall with the next intersection with the wall. It is interesting to see,
how deep field lines can penetrate into the plasma, even when they are escaping quickly
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Figure 2.16: Part of the laminar plot, Fig. 2.14,
is here analyzed by back-iterating the symmetric
revtokamap and counting the toroidal rotations
until a line hits the wall at ψ = 1. The white
line shows the unstable manifold of an hyperbolic
point of the last island chain.

Figure 2.17: Same as Fig. 2.16, but for the
forward-iteration of the symmetric revtokamap.
Now the white line depicts the stable manifold of
an hyperbolic point of the last island chain.

to the wall. Figures 2.14 and 2.15 show the fractal structures of the basins in the (θ, ψ)-
plane, characterizing wall to wall connections through n toroidal or m poloidal turns,
respectively. The symmetric structure of the laminar plots can be understood by dis-
tinguishing the transport to the wall during backward and forward iterations separately.
The back-iteration of the symmetric revtokamap is shown in Fig. 2.16. Here the basins
for toroidal turns of magnetic field lines (until they hit the wall) are shown. Together
with the corresponding forward-iteration, see Fig. 2.17, it reproduces in the superposition
Fig. 2.14 for the total rotation numbers for wall-to-wall connections. It is now interesting
to see that, in the case of Fig. 2.16, the border lines are given by the unstable manifolds
of the hyperbolic points of the last island chain. Remember, the unstable manifold is
defined as the set of points, which converge under the map towards the hyperbolic point,
when time goes to −∞. This causes that under the back-iterating map points on the
unstable manifold will never hit the wall, resulting in infinite toroidal and poloidal ro-
tation numbers. Similarly, the related stable manifolds characterize the laminar plot for
forward-iteration in the case of Fig. 2.17. Note, some parts of the shown manifolds, e.g.
upper left corner of Fig. 2.16, have already crossed the wall, causing that there are no
further structures. If we shift the wall to higher values of ψ, we would become further
basins and further borders.

From here we can also recognize the importance of the stable and unstable manifolds
for the dynamics at the edge of open chaotic systems. This will be further investigated
on more realistic models in the next sections.
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Chapter 3

Cylindrical model for magnetic field
lines in TEXTOR-DED

An existing tokamak fusion experiment is the TEXTOR, Torus EXperiment for Tech-
nology Oriented Research, of the Forschungszentrum Jülich. The dynamic ergodic diver-
tor [2, 3], DED, is a system of 16 helical coils, mounted at the inner side of the TEXTOR.
The torus has the major radius R0 = 1.75 m and the minor radius rw = 0.477 m, the
radial position of the wall, while the coils are installed at a minor radius of rc = 0.5325 m.
Each coil passes during one single toroidal rotation 0 ≤ ϕ ≤ 2π, with the toroidal angle
ϕ, the poloidal angle area π − θc ≤ θ ≤ π + θc with the poloidal angle θ. Thereby,
θ = π represents the inner side of the torus and θc = π/5 is the half width of the coil
area. The configuration is sketched in Fig. 3.1. Each coil can be connected to current
separately, whereas 15 kA is the maximum current for each coil. Due to the current, a
magnetic field is created [5], dealing as a perturbation field for the main magnetic field,
which consists of a strong constant field B0 in toroidal direction and a poloidal field due
to the plasma current, shown in Sec. 3.3. Because of the DED field, an area is created at
the torus edge, where the field lines are showing chaotic behavior, the so called ergodic
region. The purpose of this controlled perturbation is to influence and manage the heat
and particle transport to the wall. The DED system is an open chaotic system with a
regular interior, similar to the revtokamap, but, as we shall see later, with a monotonic
q-profile. Therefore, we can directly apply the results of the previous chapter to the DED
system.

We start our analysis of the DED and its field in a more simplified cylindrical model,
shown in Fig. 3.2. Due to the cylindrical model, we can concentrate on the pure effects of
the DED itself. In contrast to the system in toroidal geometry, which was presented by
S. Abdullaev et al. in [4, 5], we do not have to consider toroidal effects like the Shafranov
shift [33]. The spectrum of the perturbation and the safety factor also remain unchanged
in cylindrical geometry. In toroidal geometry, corrections have to be applied [5]. The
cylindrical model, which can be calculated completely analytical, is therefore a good ap-
proach to study the effects of the stable and unstable manifolds on the heat and particle
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transport and their contribution to the formation and developing of the chaotic edge
region, caused by the external DED perturbation.

We consider a cylinder with the radius rc, representing the minor radius of the coils
at the torus, and the hight 2πR0, whereas R0 represents the major radius of the torus.
We are using cylindrical coordinates (r, θ, z) and continue the cylinder periodically in
both directions of z to neglect unwanted boundary effects at the top and bottom of
the cylinder. The DED coils are attached to the wall of the cylinder in the angle area
π− θc ≤ θ ≤ π+ θc, also continued periodically in both directions of z. We introduce the
angle ϕ with z = ϕ ·R0, corresponding to the toroidal angle of the torus.

Figure 3.1: Sketch of the DED at TEXTOR Figure 3.2: Sketch of the cylin-
drical model used here

The mapping technique (see Sec. 2.2) has proven to be very useful, according to the
analysis of the tokamap. Therefore, we will construct a mapping procedure similar to
Eqs. (2.2.11)-(2.2.13) for the cylindrical DED model in order to continue the investiga-
tion of statistical properties and transport phenomena of chaotic fusion plasma systems.
Similar to the tokamap regime we only consider magnetic field lines, assuming that the
thermal plasma particles are mainly following the field lines. Note, there is no influence
of the particle charge on the external fields, so any particles are considered to be ”test-
particles” only. We also neglect all further plasma effects, except of the plasma current,
which specifies the safety factor. The cylindrical DED model provides us with a sym-
plectic symmetric map for the magnetic field lines of the main helical field, given by the
superposition of the constant field B0 in z-direction and the poloidal field of the plasma
current, perturbed by the field of the DED coils.

3.1 The current density

As a first step, we have to determine the magnetic field, created by the DED coils. This
field can be derived from the current density in the cylinder surface, which is based
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on the current distribution. We connect the coils to the following current distribution
I = 0, I0, 0,−I0, 0, . . ., which means that the j-th coil is carrying the current

Ij = I0 sin(
j − 1

2
π + ωt) , (3.1.1)

which can also rotate in time with the frequency ω, describing the DED’s dynamical
state of operation. For ω = 0 the DED operates statically. Considering the geometry
mentioned above, we can express θ as a function of ϕ along the coils. We get for the j-th
coil

θj = θ1(ϕ) +
j − 1

8
θc with θ1(ϕ) =

θc
π
ϕ+ θ1(0) . (3.1.2)

The starting point for the first coil is arbitrarily chosen to be θ1(0) = π− θc. The current
density

J =
16∑
j=1

Ij
rc
δ(θ − θj) =

I0
rc

∑
j

sin(
j − 1

2
π + ωt)δ(θ − θc

π
ϕ− θ1(0)−

j − 1

8
θc) (3.1.3)

follows as the sum over all single currents, taken at their specific angle position, which is
set by the δ-function here. We extend the summation to infinity

J =
I0
rc
g(θ)

∞∑
j=−∞

sin(
j

2
π + ωt)δ(θ − θc

π
ϕ− θ1(0)−

j

8
θc) , (3.1.4)

using the step-function

g(θ) =

{
1 , π − θc ≤ θ ≤ π + θc
0 , else

, (3.1.5)

which specifies the correct angle area of the coils. This correctly describes the necessary
periodic continuation of the cylinder. We define

n = (θ − θc
π
ϕ− θ1(0))

8

θc
(3.1.6)

and obtain for the current density

J =
8I0
θcrc

g(θ)
∞∑

j=−∞

sin(
j

2
π + ωt)δ(j − n) , (3.1.7)

using the probabilities of the δ-function: δ(ax) = 1
a
δ(x) with a > 0 and δ(−x) = δ(x).

The form (3.1.7) of the current density is not appropriate, because of the δ-functions.
To find a better representation of the current density, we expand the δ-function into its
harmonics, using the Poisson summation rule

∞∑
j=−∞

δ(j − n) = 1 + 2
∞∑
k=1

cos(2πkn) . (3.1.8)
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This is presented in Appendix B, because it is a long but straight forward conversion. We
find

J =
8I0
θcrc

g(θ)
∞∑
k=0

sin((−1)k
1

2
π(2k + 1)n+ ωt) . (3.1.9)

We introduce the toroidal and poloidal main mode numbers n0 and m0, respectively, by

θc
π

=
n0

m0

, (3.1.10)

whereas n0 = 4 and m0 = 20 are valid for the DED. We also define the shortcuts J0 :=
8I0
rcθc

= I0
2m0

πrc
, (2k + 1)m0 = mk and (2k + 1)n0 = nk. Using n from Eq. (3.1.6), we get

J = J0g(θ)
∞∑
k=0

(−1)k sin
(
mkθ − nkϕ−mkθ1(0) + (−1)kωt

)
. (3.1.11)

With θ1(0) = π − θc and mk(π − θc) = (mk − nk)π it follows from Eq. (3.1.11)

J = J0g(θ)
∞∑
k=0

(−1)k+mk−nk sin
(
mkθ − nkϕ+ (−1)kωt

)
, (3.1.12)

using the sinus addition theorem. This equation for the current density still includes the
step function g(θ), which specifies the angle area of the coils. By Fourier transforming
Eq. (3.1.12) with respect to θ, we can expand

g(θ) sin
(
mkθ − nkϕ+ (−1)kωt

)
into its harmonics, to finally find the proper description of the current density. We
introduce the shortcut χ := −nkϕ+ (−1)kωt. Then the current density (3.1.12) reads in
Fourier representation

J =
∞∑

m=−∞

∞∑
k=0

(−1)k+mk−nkJ0
1

2π

∞∫
−∞

g(θ) sin(mkθ + χ)eimθ dθ e−imθ . (3.1.13)

Now we consider the sum over m and the integral. The step function g(θ) constricts the
integration limits so that we obtain

∑
m

π+θc∫
π−θc

sin(mkθ + χ)eimθ dθ e−imθ

=
∑
m

π+θc∫
π−θc

1

2i

(
ei(mkθ+χ) − e−i(mkθ+χ)

)
eimθ dθ e−imθ

=
∑
m

1

2i
e−i(mθ−χ)

π+θc∫
π−θc

ei(m+mk)θ dθ −
∑
m

1

2i
e−i(mθ+χ)

π+θc∫
π−θc

ei(m−mk)θ dθ .
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In the first sum we change the summation index m→ −m. Because m goes from −∞ to
∞, the sum is not affected. We obtain furthermore

∑
m

1

2i
ei(mθ+χ)

π+θc∫
π−θc

e−i(m−mk)θ dθ −
∑
m

1

2i
e−i(mθ+χ)

π+θc∫
π−θc

ei(m−mk)θ dθ

=
∑
m

1

2i
ei(mθ+χ) 1

i(m−mk)

(
−e−i(m−mk)(π+θc) + e−i(m−mk)(π−θc)

)
−
∑
m

1

2i
e−i(mθ+χ) 1

i(m−mk)

(
ei(m−mk)(π+θc) − ei(m−mk)(π−θc)

)
=

∑
m

1

2i

1

i(m−mk)

[
ei(mθ+χ)e−i(m−mk)π

(
−e−i(m−mk)θc + ei(m−mk)θc

)
−e−i(mθ+χ)ei(m−mk)π

(
ei(m−mk)θc − e−i(m−mk)θc

) ]
=

∑
m

2 sin((m−mk)θc)

m−mk

1

2i

[
ei(mθ+χ)e−i(m−mk)π − e−i(mθ+χ)ei(m−mk)π

]
=

∑
m

(−1)m−mk
2 sin((m−mk)θc)

m−mk

sin(mθ + χ) .

Inserting this result into Eq. (3.1.13), we get the final formula for the current density

J =
∞∑

m=−∞

∞∑
k=0

J (k)
m sin(mθ − nkϕ+ (−1)kωt) , (3.1.14)

with J
(k)
m = (−1)k+mk−nkJ0g

(k)
m . The Fourier spectrum g

(k)
m is given by

g(k)
m = (−1)m−mk

sin((m−mk)θc)

(m−mk)π
. (3.1.15)

3.2 The magnetic field of the DED coils

From the current density (3.1.14) we can calculate the magnetic field of the DED coils.
For this we use the magnetic scalar potential φ(r, θ, z), related to the magnetic field by

~B = −∇φ . (3.2.1)

Inside the cylinder no currents are present. We can define the scalar potential there since
outside the coils, which are carrying the current, ∇× ~B = 0 is valid. Using the Maxwell
equation ∇ · ~B = 0, we can derive the Laplace equation

∆φ = 0 with ∆ =
1

r

∂

∂r
(r
∂

∂r
) +

1

r2

∂2

∂θ2
+

∂2

∂z2
(3.2.2)
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from Eq. (3.2.1). We solve the Laplace equation by factorization [34]

φ(r, θ, z) = f(r)g(θ)h(z) (3.2.3)

and get

gh
1

r

∂

∂r
(r
∂

∂r
)f + fh

1

r2

∂2

∂θ2
g + fg

∂2

∂z2
h = 0 (3.2.4)

⇔ 1

f

1

r

∂

∂r
(r
∂

∂r
)f +

1

g

1

r2

∂2

∂θ2
g = −1

h

∂2

∂z2
h . (3.2.5)

Each side of this equation depends on different variables. To fulfill the equation generally,
both sides have to be constant. Then we find for h(z)

−1

h

∂2

∂z2
h = c21 ⇔ ∂2

∂z2
h = −c21h (3.2.6)

⇒ h(z) = c sin(c1z) + d cos(c1z) . (3.2.7)

The left hand-side of Eq. (3.2.5) results in

r

f

∂

∂r
(r
∂

∂r
)f − c21r

2 = −1

g

∂2

∂θ2
g , (3.2.8)

whereas again both sides depend on different variables, so they are also constant. There-
fore, we find for g(θ)

−1

g

∂2

∂θ2
g = c22 ⇔ ∂2

∂θ2
g = −c22g (3.2.9)

⇒ g(θ) = a sin(c2θ) + b cos(c2θ) (3.2.10)

and the differential equation[
r2 ∂

2

∂r2
+ r

∂

∂r
− c21r

2 − c22

]
f(r) = 0 (3.2.11)

for f(r), which is solved by the modified Bessel functions I and K. We can construct the
solution

f(r) =

{
AIc2(c1r) , r < rc
BKc2(c1r) , r > rc

(3.2.12)

for Eq. (3.2.11). This is the form of the solution for f , because K diverges for r → 0
and therefore only I is a proper solution inside the cylinder. Outside of the cylinder the
field must decrease with increasing r, so only K can be a solution there. Both solutions
are divided by the current carrying surface of the cylinder at r = rc, where the coils are
located. We obtain the ansatz for φ

φ(r, θ, z) =

{
AIc2(c1r)(a sin(c2θ) + b cos(c2θ))(c sin(c1z) + d cos(c1z)) , r < rc
BKc2(c1r)(a sin(c2θ) + b cos(c2θ))(c sin(c1z) + d cos(c1z)) , r > rc

.

(3.2.13)
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To determine the exact solution, we have to take the boundary conditions into account.
Due to the periodicity in θ and z, we demand

θ + 2π = θ ⇒ c2 ε Z (3.2.14)

z + 2πR0 = z ⇒ c1 ·R0 ε Z (3.2.15)

to be valid for the constants. Also we demand

~er × ( ~Br=rc+0 − ~Br=rc−0) = µ0
~J (3.2.16)

at r = rc with the current density vector ~J = (0, J sinα, J cosα), whereas α is given by
the geometrical relation

tanα =
n0rc
m0R0

, (3.2.17)

and J is the current density (3.1.14). From Eq. (3.2.16) we get two equations

−Bz, r=rc+0 +Bz, r=rc−0 = µ0J sinα , (3.2.18)

Bθ, r=rc+0 −Bθ, r=rc−0 = µ0J cosα , (3.2.19)

which involve the current density. The third equation

Br, r=rc+0 = Br, r=rc−0 (3.2.20)

represents the continuity of the radial component of the magnetic field at r = rc. Using
Eq. (3.2.13) and ~B = −∇φ, it follows from Eqs. (3.2.18) and (3.2.19)

c1(a sin(c2θ) + b cos(c2θ))(c cos(c1z)− d sin(c1z))(BKc2(c1rc)− AIc2(c1rc))

= µ0 sinαJ (k)
m sin(mθ − (2k + 1)n0ϕ+ (−1)kωt) , (3.2.21)

−c2
rc

(a cos(c2θ)− b sin(c2θ))(c sin(c1z) + d cos(c1z))(BKc2(c1rc)− AIc2(c1rc))

= µ0 cosαJ (k)
m sin(mθ − (2k + 1)n0ϕ+ (−1)kωt) . (3.2.22)

for each single summand of the current density J , given by Eq. (3.1.14). We can identify
the constants

c2 = m and c1 =
(2k + 1)n0

R0

=
nk
R0

, (3.2.23)

which fulfill Eqs. (3.2.14) and (3.2.15).
Because Eqs. (3.2.21) and (3.2.22) have to be valid for all values of θ and ϕ, the

particular terms on both sides of the equations must cancel each other. Therefore, it
follows from Eq. (3.2.21)

ac sin(mθ) cos(nkϕ) + bc cos(mθ) cos(nkϕ)

−ad sin(mθ) sin(nkϕ)− bd cos(mθ) sin(nkϕ)

= sin(mθ − nkϕ+ (−1)kωt)

= cos((−1)kωt) sin(mθ) cos(nkϕ)− cos((−1)kωt) cos(mθ) sin(nkϕ)

+ sin((−1)kωt) cos(mθ) cos(nkϕ) + sin((−1)kωt) sin(mθ) sin(nkϕ)



38 Chapter 3. Cylindrical model for magnetic field lines in TEXTOR-DED

⇒ ac = bd = cos((−1)kωt) bc = −ad = sin((−1)kωt) (3.2.24)

and from Eq. (3.2.22)

−ac cos(mθ) sin(nkϕ)− bc sin(mθ) sin(nkϕ)

+ad cos(mθ) cos(nkϕ)− bd sin(mθ) cos(nkϕ)

= cos((−1)kωt) sin(mθ) cos(nkϕ)− cos((−1)kωt) cos(mθ) sin(nkϕ)

+ sin((−1)kωt) cos(mθ) cos(nkϕ) + sin((−1)kωt) sin(mθ) sin(nkϕ)

⇒ ac = bd = cos((−1)kωt) bc = −ad = sin((−1)kωt) . (3.2.25)

Using these results we get in Eq. (3.2.13)

(a sin(c2θ) + b cos(c2θ))(c sin(c1z) + d cos(c1z)) = cos(mθ − nkϕ+ (−1)kωt) (3.2.26)

and therefore for the summands φ
(k)
m of the potential

φ(k)
m (r, θ, z) =

{
AIm(c1r) cos(mθ − nkϕ+ (−1)kωt) , r < rc
BKm(c1r) cos(mθ − nkϕ+ (−1)kωt) , r > rc

, (3.2.27)

while the total potential is then given as the sum over m and k. With this result,
Eqs. (3.2.21) and (3.2.22) are simplified to

nk
R0

(BKm(c1rc)− AIm(c1rc)) = µ0 sinαJ (k)
m , (3.2.28)

m

rc
(BKm(c1rc)− AIm(c1rc)) = µ0 cosαJ (k)

m . (3.2.29)

It can be shown that Eqs. (3.2.28) and (3.2.29) are equivalent, when they are summed
over m. For this we add an additional summand δJm 6= 0 to Eq. (3.2.21) and show that

∞∑
m=−∞

δJm = 0 (3.2.30)

is valid. Equation (3.2.21) reads then

nk
R0

(BKm(c1rc)− AIm(c1rc)) = µ0 sinα(J (k)
m + δJm) . (3.2.31)

Combining this equation with Eq. (3.2.22), we obtain

nkrc
R0m

= (1 +
δJm

J
(k)
m

) tanα . (3.2.32)
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Using Eq. (3.2.17) and J
(k)
m = (−1)k+m−nkJ0

sin((m−mk)θc)
(m−mk)π

, we find

δJm = (
mk

m
− 1)J (k)

m (3.2.33)

= J0
1

π
(−1)k+m−nk+1 sin((m−mk)θc)

m
(3.2.34)

= J0
n0

m0

(−1)k+m−nk+1

[
sin(mθc)

mθc
cos(nkπ)− cos(mθc

mθc
sin(nkπ)

]
(3.2.35)

= J0
n0

m0

(−1)k+m+1 sin(mθc)

mθc
. (3.2.36)

It can easily be seen that

∞∑
m=−∞

δJm = J0
n0

m0

(−1)k+1

∞∑
m=−∞

(−1)m
sin(mθc)

mθc
= 0 , (3.2.37)

which proves that Eqs. (3.2.31) and (3.2.22) are equivalent, when summed over m.
In the following we use Eqs. (3.2.29) and (3.2.20) to determine the constants A and

B. Combining both equations, we get

I ′m(c1rc)
(
− rc
m
µ0 cosαJ (k)

m +BKm(c1rc)
)

= BIm(c1rc)K
′
m(c1rc)

⇔ B[Im(c1rc)K
′
m(c1rc)− I ′m(c1rc)Km(c1rc)] = −I ′m(c1rc)

rc
m
µ0 cosαJ (k)

m

for B, and similar for A

A[Im(c1rc)K
′
m(c1rc)− I ′m(c1rc)Km(c1rc)] = K ′

m(c1rc)
rc
m
µ0 cosαJ (k)

m .

We still have to calculate Im(x)K ′
m(x)− I ′m(x)Km(x) with x = c1rc = nkrc

R0
, but, as can be

seen in [35], this is the Wronskian determinant of modified Bessel functions, which reads

Im(x)K ′
m(x)− I ′m(x)Km(x) =

1

x
. (3.2.38)

Finally, we get for the potential inside the cylinder

φ(r, θ, ϕ) =
∞∑
k=0

∞∑
m=−∞

φm,kIm(
nkr

R0

) cos(mθ − nkϕ+ (−1)kωt) (3.2.39)

with

φm,k = A = K ′
m(
nkrc
R0

)
nkr

2
c

R0m
µ0 cosαJ (k)

m (3.2.40)

= (−1)k+m−nkJ0µ0K
′
m(
nkrc
R0

)
nkr

2
c

R0m

sin((m−mk)θc)

(m−mk)π
cosα . (3.2.41)
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In the following it is sufficient to take only the k = 0 mode into account, because all
higher modes can be neglected compared to k = 0. The m = mk mode contributes most
for a fixed k, as one can see from Eq. (3.1.15). So, the contribution of each k-mode is
mainly given by the factor K ′

mk
(nkrc
R0

)Imk
(nkr
R0

). Under the conditions x � n and n > 0,
modified Bessel functions can be approximated by

In(x) ≈
1

n!

(x
2

)n
Kn(x) ≈

(n− 1)!

2

(x
2

)−n
. (3.2.42)

Because here nkrc
R0

� mk is valid for all values of k, we can approximate

K ′
mk

(
nkrc
R0

)Imk
(
nkr

R0

) ≈ − R0

2rcnk

(
r

rc

)(2k+1)m0

. (3.2.43)

For k ≥ 1 this factor is very small compared to k = 0. So, only the k = 0 mode has to be
taken into account. Then the scalar potential reads

φ(r, θ, ϕ) =
∞∑

m=−∞

φmIm(
n0r

R0

) cos(mθ − n0ϕ+ ωt) , (3.2.44)

and the magnetic field is given by ~B = −∇φ.

3.3 The safety factor

The magnetic field created by the helical DED coil system deals as a perturbation for
the main magnetic field, which is given by the superposition of a constant field B0 in z
direction and the magnetic field of the plasma current Ip(r). This superposition creates
the helical main magnetic field

~Bg = B0~ez +
µ0Ip(r)

2πr
~eθ . (3.3.1)

The plasma current Ip(r) is the important parameter for the main field and is directly
related to the safety factor q(r). Ip(r) is the amount of current running through a disk
with radius r perpendicular to the current direction.

Because the mapping technique is based on a Hamiltonian description, we need to
derive the latter from the magnetic field. At first we concentrate on the Hamiltonian for
the main field only. For this we use the Clebsch form [25]

~Bg = ∇ψ ×∇θ −∇H0 ×∇ϕ =

 ∂ψ
∂r

1
r
∂ψ
∂θ
∂ψ
∂z

×
 0

1
r

0

−
 ∂H0

∂r
1
r
∂H0

∂θ
∂H0

∂z

×
 0

0
1
R0

 (3.3.2)

of the magnetic field. The toroidal flux ψ and the poloidal angle θ are used as canonical
variables. The poloidal flux H0 is used as Hamiltonian, while the toroidal angle ϕ deals as
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time-like variable. The Clebsch form was already introduced in Sec. 2.1 for the tokamap.
Knowing the magnetic field Bg, we determine the fluxes ψ and H0 so that Eq. (3.3.2) is
fulfilled. Using the equation for the radial component, we obtain

0 = − 1

R0

∂H0

∂θ
⇒ H0(r, θ, ϕ) = H0(r, ϕ) . (3.3.3)

Then we can determine the Hamiltonian from the poloidal component

µ0Ip(r)

2πr
=

1

R0

∂H0

∂r
⇒ H0 =

µ0R0

2π

∫
Ip(r)

r
dr . (3.3.4)

The z-component specifies the toroidal flux

rB0 =
∂ψ

∂r
⇒ ψ =

1

2
B0r

2 ⇔ r =

√
2ψ

B0

. (3.3.5)

Now we can derive the relation between the plasma current and the safety factor, given
by the main Hamiltonian

H0(ψ) =

∫
dψ

q(ψ)
. (3.3.6)

We obtain

q(r) =
2πB0

µ0R0

r2

Ip(r)
. (3.3.7)

The shape of the q-profile depends on the shape of the plasma current. We use

Ip(r) = Ip

[
1−

(
1− r2

a2

)ν]
(3.3.8)

for the shape of the plasma current, with the total current Ip = Ip(a) at the plasma edge
r = a. Outside of the plasma, r > a, the plasma current Ip(r) is constant and equal to Ip.
The exponent ν is given by the ratio of the q-profile at the edge q(a) = qa to the q-profile
at the center q(0) = q0

ν =
qa
q0
. (3.3.9)

With

qa =
2πB0a

2

µ0R0Ip
(3.3.10)

we obtain

q(r) = qa
r2/a2

1−
(
1− r2

a2

)ν for r ≤ a ,

q(r) = qa
r2

a2
for r > a . (3.3.11)
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Figure 3.3: q-profiles for two different sets of parameters. Solid line:
a = 0.5325 m, Ip = 390 kA⇒ qa = 4.57, ν = 4 ⇒ q0 = 1.14. Dashed
line: a = 0.46 m, Ip = 330 kA⇒ qa = 4, ν = 5.37 ⇒ q0 = 0.75. For
both is B0 = 2.2 T and R0 = 1.75 m.

Figure 3.3 shows the shape of the q-profile, which we are using for the DED model,
for two different parameter configurations. The first one, given by the solid line, is valid
for the situation, when the plasma fills the entire inside of the cylinder, meaning that the
radius of the plasma is equal to the radius of the cylinder. For this profile the resonant
surface q = 3 is located at r = 0.43 m. This profile will be used for the cylindrical model
and is called q-profile ”a” in the following. The second profile, profile ”b”, given by the
dashed line, is more typical for the real toroidal experiment, where the plasma radius a is
smaller than the minor radius of the torus. The center of the plasma can also be shifted
compared to the geometrical center. Profile ”b” will be used later. An important fact
is that the q-profile is always monotonic. In contrast to the tokamap, where we used a
non-monotonic reversed shear profile to create an open chaotic system, here we get an
open chaotic system with a monotonic q-profile, as we will see in the next sections.

The derivative of the main Hamiltonian H0 with respect to the action variable ψ is
used in Eq. (2.2.12) of the iteration procedure. According to Eq. (3.3.6), we define the
winding number

Ω(ψ) :=
∂H0

∂ψ
=

1

q(ψ)
. (3.3.12)

For the q-profile ”a”, the solid line of Fig. 3.3 with ν = 4, we obtain for Ω and its first
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derivative with respect to ψ

Ω(ψ) =
1

qa

(
4− 6

ψ

ψa
+ 4

ψ2

ψ2
a

− ψ3

ψ3
a

)
(3.3.13)

Ω′(ψ) =
1

qaψa

(
−6 + 8

ψ

ψa
− 3

ψ2

ψ2
a

)
(3.3.14)

with ψa = 1
2
B0a

2.

3.4 Hamiltonian of the DED field

For the mapping of the perturbed system, we need the Hamiltonian of the total magnetic
field, including the perturbation field of the DED coils. In the previous section we specified
the main helical field ~Bg, especially the safety factor, which describes the poloidal field of
the plasma current, and its Hamiltonian. Now we include the perturbation field, described
by the magnetic scalar potential

φ(r, θ, ϕ) =
∞∑

m=−∞

φmIm(
n0r

R0

) cos(mθ − n0ϕ+ ωt) , (3.4.1)

according to Eq. (3.2.44). The magnetic field of the DED is then given by

~Bs = −∇φ(r, θ, ϕ) (3.4.2)

with its components

Br = −∂φ
∂r

= −
∞∑

m=−∞

φm

[
n0

R0

Im−1(
n0r

R0

)− m

r
Im(

n0r

R0

)

]
cos(mθ − n0ϕ+ ωt)(3.4.3)

Bθ = −1

r

∂φ

∂θ
=

∞∑
m=−∞

φm
m

r
Im(

n0r

R0

) sin(mθ − n0ϕ+ ωt) (3.4.4)

Bϕ = − 1

R0

∂φ

∂ϕ
= −

∞∑
m=−∞

φm
n0

R0

Im(
n0r

R0

) sin(mθ − n0ϕ+ ωt) . (3.4.5)

We use again the Clebsch form with the ansatz

~B = ∇ψ×∇θ∗−∇H ×∇ϕ =

 ∂ψ
∂r

1
r
∂ψ
∂θ
∂ψ
∂z

×
 ∂θ∗

∂r
1
r
∂θ∗

∂θ
∂θ∗

∂z

−
 ∂H

∂r
1
r
∂H
∂θ
∂H
∂z

×
 0

0
1
R0

 , (3.4.6)

but now for the total magnetic field ~B = ~Bg + ~Bs

~B =


−

∞∑
m=−∞

φm
n0

R0

[
Im−1(x)− m

x
Im(x)

]
cos(mθ − n0ϕ+ ωt)

µ0Ip(r)

2πr
+

∞∑
m=−∞

φm
m
r
Im(x) sin(mθ − n0ϕ+ ωt)

B0 −
∞∑

m=−∞
φm

n0

R0
Im(x) sin(mθ − n0ϕ+ ωt)

 , (3.4.7)
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where we use the shortcut x = n0r
R0

. Because the DED field ~Bs is a small perturbation to

the main field ~Bg, we can solve Eq. (3.4.6) in each order of the perturbation separately.
Therefore, we set

H = H0 +H1 and θ∗ = θ0 + θ1 , (3.4.8)

while ψ remains unperturbed. In the zeroth order we get the already known results from
Sec. 3.3

⇒ ψ =
1

2
B0r

2, θ0 = θ and H0(r) =
µ0R0

2π

∫
Ip(r)

r
dr =

∫
dψ

q(ψ)
. (3.4.9)

Including the perturbation, we get from the radial component

∞∑
m=−∞

φmn0r
[
Im−1(x)−

m

x
Im(x)

]
cos(mθ − n0ϕ+ ωt) =

∂H

∂θ
(3.4.10)

⇒ H =
∞∑

m=−∞

φmR0

[ x
m
Im−1(x)− Im(x)

]
sin(mθ − n0ϕ+ ωt) +H0(r) . (3.4.11)

For the poloidal component we need the derivative of H with respect to r

∂H

∂r
=

∞∑
m=−∞

φmn0
∂

∂x

[ x
m
Im−1(x)− Im(x)

]
sin(mθ − n0ϕ+ ωt) +

∂H0

∂r
, (3.4.12)

while the derivative of the Bessel functions reads

∂

∂x

[ x
m
Im−1(x)− Im(x)

]
=
( x
m

+
m

x

)
Im(x) . (3.4.13)

From the poloidal component

R0µ0Ip(r)

2πr
+

∞∑
m=−∞

φmn0
m

x
Im(x) sin(mθ − n0ϕ+ ωt) = −B0r

∂θ∗

∂ϕ
+
∂H

∂r
(3.4.14)

we get, using Eq. (3.4.12) with Eq. (3.4.13),

∞∑
m=−∞

φmn0
m

x
Im(x) sin(mθ − n0ϕ+ ωt) (3.4.15)

= −B0r
∂θ∗

∂ϕ
+

∞∑
m=−∞

φmn0

( x
m

+
m

x

)
Im(x) sin(mθ − n0ϕ+ ωt) (3.4.16)

⇔ B0r
∂θ∗

∂ϕ
=

∞∑
m=−∞

φmn0
x

m
Im(x) sin(mθ − n0ϕ+ ωt) (3.4.17)

⇒ θ∗ = θ +
∞∑

m=−∞

φm
n0

mR0B0

Im(x) cos(mθ − n0ϕ+ ωt) . (3.4.18)
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Inserting the results (3.4.9) and (3.4.18) into the z-component, we find

rB0 −
∞∑

m=−∞

φmxIm(x) sin(mθ − n0ϕ+ ωt) =
∂ψ

∂r

∂θ∗

∂θ
− ∂ψ

∂θ

∂θ∗

∂r

= B0r

(
1−

∞∑
m=−∞

φm
n0

R0B0

Im(x) sin(mθ − n0ϕ+ ωt)

)
⇔ 0 = 0 ,

which means that the z-component is fulfilled. Finally, we obtain for the Hamiltonian
description H = H(ψ, θ∗, ϕ) of the cylindrical DED model

H =

∫
dψ

q(ψ)
+

∞∑
m=−∞

φmR0

[ x
m
Im−1(x)− Im(x)

]
sin(mθ − n0ϕ+ ωt) (3.4.19)

θ∗ = θ +
∞∑

m=−∞

φm
n0

mR0B0

Im(x) cos(mθ − n0ϕ+ ωt) (3.4.20)

ψ =
1

2
B0r

2 , (3.4.21)

with the q-profile (3.3.11) and x = n0r
R0

3.5 The DED map

To derive the mapping procedure for the Poincaré plot of the cylindrical DED model
from the Hamiltonian description above, we have to calculate the generating function S,
according to Sec. 2.2. We want to derive the generating function of the map up to the
first order of the perturbation. Only the perturbation part of the Hamiltonian depends
on θ∗, so that θ1 inserted in H1 would be of second order of the perturbation. For this
reason, we can neglect the perturbation part θ1 of θ∗ and use θ∗ = θ in the following.
We also approximate the Bessel functions I and K according to Eq. (3.2.42). For the
argument x = n0r

R0
< 1.22 is valid, using the parameters of our model. This means, x� m

is valid for all |m| ≥ 2. In φm only the mode numbers m around the poloidal main mode
number m0 (= 20) and its uneven multiples are the relevant modes, because of the Fourier

spectrum parameter g
(k)
m , see Eq. (3.1.15). Therefore, the errors due to the approximation

are negligibly small. Then the simplified Hamiltonian for the DED model reads

H(ψ, θ, ϕ) =

∫
dψ

q(ψ)
+

∞∑
m=−∞

Gm(ψ) sin(mθ − n0ϕ+ ωt) (3.5.1)

with

Gm(ψ) = (−1)m−n0+1 1

2
µ0J0R0rc cosα

sin((m−m0)θc)

m(m−m0)π

(
ψ

ψc

)m/2
(3.5.2)
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and ψc = 1
2
B0r

2
c . To calculate the first order generating function S, we have to integrate

the perturbation part of the Hamiltonian along the unperturbed trajectory

ψ = const , θ(ϕ) = θ0 + Ω(ψ)(ϕ− ϕ0) , (3.5.3)

which is given by the winding number Ω, defined by Eq. (3.3.12), over the ”time” ϕ. We
obtain

S = −
∑
m

Gm(ψ)

ϕ∫
ϕ0

sin(mθ(ϕ′)− n0ϕ
′ + ωt) dϕ′

= −
∑
m

Gm(ψ)

ϕ∫
ϕ0

sin(mθ +mΩ(ϕ′ − ϕ)− n0ϕ
′ + ωt) dϕ′

=
∑
m

Gm(ψ)
1

mΩ− n0

[cos(mθ − n0ϕ+ ωt)− cos(mθ −mΩ(ϕ− ϕ0)− n0ϕ0 + ωt)]

= −
∑
m

2Gm(ψ)
sin(1

2
(ϕ− ϕ0)(mΩ− n0))

mΩ− n0

× sin(mθ − 1

2
mΩ(ϕ− ϕ0)−

1

2
n0(ϕ+ ϕ0) + ωt) .

Introducing the following shortcuts

z := mΩ−n0 , y := mθ− 1

2
mΩ(ϕ−ϕ0)−

1

2
n0(ϕ+ϕ0)+ωt , k :=

1

2
(ϕ−ϕ0) (3.5.4)

and

h1(z) :=
sin(kz)

z
→ k for z → 0 , (3.5.5)

the first order generating function reads

S = −
∑
m

2Gm(ψ)h1(z) sin(y) . (3.5.6)

In Appendix C we present another form of the generating function and its derivatives,
which correspond to the general form shown in Sec. 2.2. The form shown in the appendix,
which is also used in literature [5], is totally equivalent to the one above.

We have to calculate the derivatives of S with respect to ψ and θ, respectively, to
perform the iteration procedure of the map. We further need the second, mixed derivative
for the numerics to use Newton’s method for solving the implicit equations of the map.
For the derivative of S with respect to ψ, we need

∂

∂ψ
h1(z) = mΩ′(ψ)

∂h1

∂z
, (3.5.7)
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∂h1

∂z
=: h′1(z) =

1

z2
(k cos(kz)z − sin(kz)) =

k cos(kz)− h1(z)

z
→ 0 for z → 0 (3.5.8)

and

G′
m(ψ) =

m

2

Gm(ψ)

ψ
, (3.5.9)

to obtain

∂S

∂ψ
= −2

∑
m

{[
G′
m(ψ)h1(z) +mΩ′Gm(ψ)h′1(z)

]
sin(y)−mkΩ′Gm(ψ)h1(z) cos(y)

}
=

∑
m

mGm(ψ)
{[
− sin(y)

ψ
+ 2kΩ′ cos(y)

]
h1(z)− 2Ω′h′1(z) sin(y)

}
. (3.5.10)

The derivative with respect to θ reads

∂S

∂θ
= −2

∑
m

mGm(ψ)h1(z) cos(y) , (3.5.11)

and for the second, mixed one, we get

∂2S

∂ψ∂θ
=

∂2S

∂θ∂ψ
=
∑
m

m2Gm(ψ)
{[
− cos(y)

ψ
− 2kΩ′ sin(y)

]
h1(z)− 2Ω′h′1(z) cos(y)

}
.

(3.5.12)
Now we can calculate the map by the iteration procedure

ξk = ψk −
∂Sk
∂θk

, ϑk = θk +
∂Sk
∂ξk

(3.5.13)

ϑk+1 = ϑk + Ω(ξk)(ϕk+1 − ϕk) (3.5.14)

θk+1 = ϑk+1 −
∂Sk+1

∂ξk
, ψk+1 = ξk +

∂Sk+1

∂θk+1

(3.5.15)

with Sk = S(ξk, θk, ϕk) and Sk+1 = S(ξk, θk+1, ϕk+1). This is the so called DED map
in its symmetric form. The first equations of (3.5.13) and (3.5.15), respectively, are
implicit equations, which have to be solved by Newton’s method, using the mixed deriva-
tive (3.5.12) of S. A huge problem is that the solutions of these implicit equations are
not unique. There are many different solutions, depending on the initial parameters of
the Newton method. This problem can only be solved by performing the iteration with
a small step size, like dϕ = ϕk+1 − ϕk = 2π/16, which is used for the numerical results
presented here. Compared to the tokamap, where one full toroidal turn is performed at
each step of the map, the DED map takes much more computational time. But, compared
to the direct numerical integration of the Hamiltonian equations of motion, where over a
thousand steps are needed for one toroidal turn, the mapping is much faster, even if one
would use 32 or 64 steps.

In contrast to the tokamap, the generating function of the DED map depends explic-
itly on the free parameter ϕ0, which specifies the reference time within the finite time
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interval of one mapping step, according to Sec. 2.2. So, we have to choose ϕ0 reasonably.
Remember, the choice of ϕ0 specifies, which type of map will be created. One could
choose ϕ0 = ϕk, setting the reference time at the beginning of the time interval dϕ. Then
Eq. (3.5.13) would vanish, because of Sk ≡ 0. Choosing the reference time at the end of
dϕ, meaning ϕ0 = ϕk+1, would lead to Sk+1 ≡ 0, causing Eq. (3.5.15) to vanish. These
two cases would produce twist maps. Due to the lack of symmetry, it is extremely difficult
to invert a twist map properly. To choose the reference time in the middle of the interval
dϕ, is the most convenient choice, which means ϕ0 = 1

2
(ϕk+1 + ϕk). This produces the

symmetric map, which has several advantages compared to the twist map. For example,
the symmetric map preserves the reverse time symmetry of the system and can therefore
be inverted easily. Its structure is totally invariant to time inversion. The symmetric map
is also more precise than the twist map, according to [9].

Figure 3.4: Symmetric DED map with I0 = 10 kA, B0 = 2.2 T, q-profile ”a” with
Ip = 390 kA in the cylindrical model.

Figure 3.4 shows the DED map for the cylindrical model, using the TEXTOR pa-
rameters, R0 = 1.75 m and rc = 0.5325 m. The perturbation of the DED is given by
the current of the DED coils of I0 = 10 kA. We are using the q-profile ”a”, specified
in Sec. 3.3, with a total plasma current of Ip = 390 kA and the main magnetic field
B0 = 2.2 T. Every point in this Poincaré plot is an intersection point of a magnetic field
line with the ϕ = 0 mod 2π plane. As one can see, the DED map is an open chaotic
system like the revtokamap, whereas the wall is located at the radial position rw = 0.5 m.
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The finger-like structures are typical for the DED map and characterizes the so called
laminar zone, where the field lines have very short connection lengthes, the length of the
field line from wall to wall inside the cylinder. The region next to the laminar zone is the
ergodic zone, which is dominated by remaining island chains surrounded by a chaotic sea.
In Fig. 3.4 we have three island chains, corresponding to the rational resonant q-surfaces
q = 11/4 at r = 0.41 m, q = 12/4 = 3 at r = 0.43 m and q = 13/4 at r = 0.45 m. Because
we have neglected all higher poloidal modes in Eq. (3.2.44), only the n = n0 = 4 poloidal
mode is resonant in the DED map. The first intact KAM surface is located below the
11/4 island chain and separates the inside of the cylinder from the wall. All interactions,
like transport of magnetic field lines, take place in the ergodic and laminar zones. In the
following, we focus on these regions only.

3.6 Characterization of the DED system by its sta-

tistical properties

To get a first insight into the structures and dynamics, like transport mechanisms, we
have to classify the chaotic system by its statistical properties. Therefore, we investigate
how the magnetic field lines of the ergodic and laminar zone are connected to the wall.
One interesting question is the diffusion mechanism of the field lines. To determine the
diffusion, we use the mean square displacement (MSD)

σψ(n) =
〈
(ψn − 〈ψn〉)2

〉
, (3.6.1)

already introduced in Sec. 2.4. The average 〈. . .〉 is taken over the initial points. Then
the diffusion coefficient is given by the derivative with respect to time

D =
1

2

dσψ(n)

dn
, (3.6.2)

whereas n is the number of iterations, dealing as time in this case.
Figures 3.5 and 3.6 show the MSD of the DED map for short and long time behavior,

respectively, for different perturbation currents I0. We have taken 20000 initial points at
various angle positions within the chaotic sea at the fixed radial position r = 0.412 m,
using the same parameter configuration as used for Fig. 3.4. The short time behavior of
the MSD, Fig. 3.5, shows an increase of the MSD with a gradient less than linear. This
indicates subdiffusive transport behavior. As one can also see from Fig. 3.5, the trans-
port increases with increasing perturbation, which is totally understandable, because the
increasing perturbation destroys more and more the remaining island chains, which con-
strict the transport enormously. If the perturbation is increased so much that all islands
and structures have vanished, the transport would be diffusive, as we have seen from the
large perturbation analysis of the tokamap in Sec. 2.4. So, the islands are playing a great
role in the transport analysis, which can also be seen in Fig. 3.6. This figure shows, that
the MSD drops after a certain time. Usually, the MSD should not decrease, but in our case
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Figure 3.5: MSD of the flux ψ for various per-
turbations

Figure 3.6: Same as Fig. 3.5 for long iteration
time

we are loosing field lines at the wall, so only the field lines, which are staying in the system
for extremely long time, remain. These are the field lines, which are sticking around the
islands, so the MSD drops to the characteristical width of the island chains. This width
decreases for smaller perturbations, because the islands are smaller and the area around
the island is more regular. There are, for example, more substructures so that the field
lines which are sticking to the islands are bound much closer to the islands than for larger
perturbations. The time, when the drop occurs, is smaller for larger perturbations. This
is also a clear result. Due to the increased transport for larger perturbations, more field
lines are reaching the wall in shorter time.

The diffusion coefficient provides us with the information, how the field lines are trans-
ported to the wall collectively. But within the chaotic layer the field lines are also moving
away from each other, because neighboring field lines are always moving in completely
different ways and directions. It is important to see, how the field lines are separating from
each other. By definition of chaotic motion, the field lines are separating exponentially,
which means for their distance sN after N iterations

sN = s0 e
χ·N (3.6.3)

with the distance s0 at the beginning. The characteristical quantity for this behavior is
the Lyapunov exponent χ [4], which is then defined by

χ = lim
N→∞

1

N
ln
sN
s0

. (3.6.4)

To calculate the Lyapunov exponent, we have to derive the distance of the field lines from
the mapping. Therefore, we assume the infinitesimal vector

d~Vk =

(
dψk
dθk

)
, (3.6.5)
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which describes the distance between two neighboring field lines at the k-th iteration of
the map. The development of this vector under the map is given by the equation

d~Vk+1 = Mkd~Vk , (3.6.6)

where Mk is the Jacobi matrix

Mk =

(
∂ψk+1

∂ψk

∂ψk+1

∂θk
∂θk+1

∂ψk

∂θk+1

∂θk

)
(3.6.7)

of the map. For the symmetric map (2.2.11)-(2.2.13) this matrix can be written as a
product of three matrices

Mk = M
(3)
k M

(2)
k M

(1)
k (3.6.8)

with

M
(3)
k =

(
∂ψk+1

∂ξk+1

∂ψk+1

∂ϑk+1
∂θk+1

∂ξk+1

∂θk+1

∂ϑk+1

)
M

(2)
k =

(
1 0

Ω′(ξk)(ϕk+1 − ϕk) 1

)
M

(1)
k =

(
∂ξk
∂ψk

∂ξk
∂θk

∂ϑk

∂ψk

∂ϑk

∂θk

)
.

(3.6.9)
The distance of the field lines after k iterations is then given by the length of the vector,
which means

s2
k = dψ2

k + dθ2
k = d~V T

k d
~Vk = d~V T

k−1M
T
k Mkd~Vk−1 = d~V T

0 M
T
1 · · ·MT

k Mk · · ·M1d~V0 .
(3.6.10)

This distance can be approximated by using the eigenvalues of the matrix Mk. As a
two dimensional matrix, Mk has two eigenvalues λk1/2

, where we can generally assume
|λk1| ≥ |λk2|. Therefore, we obtain for the square of the distance

s2
k ≤ s2

0

N∏
k=1

|λk1|2 (3.6.11)

so that we get for the maximum Lyapunov exponent

χ = lim
N→∞

1

N

N∑
k=1

ln(|λk1|) . (3.6.12)

Now we need the eigenvalues of the matrix Mk. We introduce the shortcuts

∂2Sk
∂ξ2

k

= S
(k)
ξξ

∂2Sk
∂θ2

k

= S
(k)
θθ

∂2Sk
∂ξk∂θk

= S
(k)
ξθ (3.6.13)

and similar for Sk+1. To calculate the entries of the matrix M
(1)
k , we use the iteration
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equations and obtain

∂ξk
∂ψk

= 1− S
(k)
ξθ

∂ξk
∂ψk

⇒ ∂ξk
∂ψk

=
1

1 + S
(k)
ξθ

=: fk ,

∂ξk
∂θk

= −S(k)
θθ − S

(k)
ξθ

∂ξk
∂θk

⇒ ∂ξk
∂θk

= −fkS(k)
θθ ,

∂ϑk
∂ψk

= fkS
(k)
ξξ ,

∂ϑk
∂θk

= 1 + S
(k)
ξθ + S

(k)
ξξ

∂ξk
∂θk

=
1

fk
− fkS

(k)
ξξ S

(k)
θθ ,

and similar for M
(3)
k with ξk+1 = ξk

∂θk+1

∂ϑk+1

= 1− S
(k+1)
ξθ

∂θk+1

∂ϑk+1

⇒ ∂θk+1

∂ϑk+1

=
1

1 + S
(k+1)
ξθ

=: fk+1 ,

∂θk+1

∂ξk
= −S(k+1)

ξξ − S
(k+1)
ξθ

∂θk+1

∂ξk
⇒ ∂θk+1

∂ξk
= −fk+1S

(k+1)
ξξ ,

∂ψk+1

∂ϑk+1

= fk+1S
(k+1)
θθ ,

∂ψk+1

∂ξk
= 1 + S

(k+1)
ξθ + S

(k+1)
θθ

∂θk+1

∂ξk
⇒ ∂ψk+1

∂ξk
=

1

fk+1

− fk+1S
(k+1)
ξξ S

(k+1)
θθ .

Combining all results, we obtain for Mk

Mk = fkfk+1

(
1

f2
k+1

+ gkS
(k+1)
θθ − 1

f2
k+1
S

(k)
θθ + 1

f2
k
S

(k+1)
θθ − gkS

(k)
θθ S

(k+1)
θθ

gk
1
f2

k
− gkS

(k)
θθ

)
(3.6.14)

with

gk := Ω′(ξk)(ϕk+1 − ϕk) + S
(k)
ξξ − S

(k+1)
ξξ . (3.6.15)

It can easily be seen that det(Mk) = 1 holds, because of the symplectic probabilities of
the map. Then we can obtain the eigenvalues by the zero points

λk1/2
=

Tr(Mk)

2
±
√

Tr(Mk)2

4
− det(Mk) (3.6.16)

of the characteristic equation, whereas the trace is given by

Tr(Mk) = fkfk+1

[
1

f 2
k+1

+
1

f 2
k

+ gk(S
(k+1)
θθ − S

(k)
θθ )

]
. (3.6.17)

To apply this calculation method to the DED map, it is necessary to calculate the
second derivatives of the generating function S, Eq. (3.5.6), with respect to ψ and θ,
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respectively. They read

∂2S

∂ψ2
=

∑
m

mGm(ψ)

{[(
−m− 2

2ψ2
− 2k2mΩ′2

)
sin(y) +

(
2mk

ψ
Ω′ + 2kΩ′′

)
cos(y)

]
h1(z)

+

[(
−2m

ψ
Ω′ − 2Ω′′

)
sin(y) + 4mkΩ′2 cos(y)

]
h′1(z)− 2mΩ′2 sin(y)h′′1(z)

}
(3.6.18)

∂2S

∂θ2
= 2

∑
m

m2Gm(ψ)h1(z) sin(y) , (3.6.19)

with the second derivative of h1(z) with respect to z

h′′1(z) = −k2h1(z)− 2
h′1(z)

z
→ −1

3
k3 for z → 0 . (3.6.20)

Figure 3.7 shows the dependency of the Lyapunov exponent on the poloidal angle θ at
the fixed radial position r = 0.425 m for the perturbation current I0 = 10 kA. As one can
see, the Lyapunov exponent fluctuates stochastically around a constant mean value χ̄(r)
and the structure is fractal. At other radial positions the Lyapunov exponent shows the
same behavior, so there is no particular dependency on the poloidal angle, except inside
an island, where the Lyapunov exponent is equal to zero, because the orbits inside an
island are stable and neighboring field lines there will always stay together. The mean
Lyapunov exponent depends only on the radial position.

Figure 3.7: Lyapunov exponent depending on the
poloidal angle θ at a fixed radial position of r =
0.425 m for I0 = 10 kA.

Figure 3.8: Kolmogorov length depending on the
radius for three different perturbation currents:
I0 = 10 kA solid line, I0 = 12 kA dashed line
and I0 = 15 kA dot-dashed line.

In order to obtain a quantitative measure of the exponential divergence of field lines
along the radius, we introduce the Kolmogorov length

Lk(r) =
2πR0

χ̄(r)
. (3.6.21)
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It uses the reciprocal value of the mean Lyapunov exponent. The Kolmogorov length
characterizes a correlation length of field lines along the height of the cylinder z = 2πR0.
From the definition (3.6.4) of the Lyapunov exponent we get

s(l) = s(0)el/Lk , (3.6.22)

whereas s is the distance between the field lines and l is their length. Figure 3.8 shows the
dependency of the Kolmogorov length on the radius for different perturbation currents.
The Kolmogorov length decreases with increasing perturbation, which is a clear result,
because the greater the perturbation, the faster the field lines diverge. More interesting
is that we can distinguish three different radial zones, where the curves show significant
changes. Compared to Fig. 3.4, we can identify the certain zones. The first one is up
to r = 0.425 m for I0 = 10 kA, where the Kolmogorov length drops fast. This is the
area around the 11/4 island chain, where the most remaining structures are located, due
to the proximity to the regular inside, where the Kolmogorov length is infinite. So, the
Kolmogorov length has to drop fast close to this regular inside. The next zone is up to
r = 0.455 m. This is clearly the ergodic zone. Within this zone the Kolmogorov length
decreases slowly, because the field lines in the ergodic zone are mainly chaotic, but still
bound to the islands. The third zone, beyond r = 0.46 m, is the laminar zone, where
the field lines are going to the wall very fast and therefore the Kolmogorov length drops
very fast. One can also see that with increasing perturbation all zones are growing while
shifting inwards. The Kolmogorov length clearly reflects the different zones and their
properties.

3.7 Topology of the stochastic edge region, analyzed

by the stable and unstable manifolds

For the tokamap we already discussed the importance of the stable and unstable manifolds,
their important role in the creation of chaotic layers, and their connection to chaotic
transport, see Secs. 2.7 and 2.9. These results are fundamental and also valid for the DED
map. But the DED map is an open chaotic system and as we shall see, the manifolds
have a large influence on the structures of the Poincaré section and the wall patterns.
Therefore, we calculate the unstable manifolds of hyperbolic periodic points of the DED
map, using the algorithm described in Sec. 2.5. To calculate the stable and unstable
manifolds, we have to find the hyperbolic points first. Using a two-dimensional Newton
method or the minimization method, described in Sec. 2.6, the hyperbolic points of the
12/4 island chain are calculated and shown as red crosses in Fig. 3.9.

Figure 3.9 also shows the left and right sided unstable manifold of a period 3 hyperbolic
point of the DED map with the perturbation current I0 = 10 kA. In the already known
manner, the manifold goes around the islands and starts oscillating when it closes the
next hyperbolic point. The amplitude of these oscillations increases very fast so that the
loops are also going around the islands and so on. This leads to the sticking of the field
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Figure 3.9: Symmetric DED map with I0 = 10 kA, similar to Fig. 3.4, with period 3
periodic points, red crosses, left sided, blue line, and right sided, green line, unstable
manifold of the hyperbolic point at θ ≈ 6.15.

lines around the islands, already observed in the statistical properties of the previous
section. In Fig. 3.9 the sticking can be seen very well, especially on the right sided part
of the unstable manifold, the green line. Due to the overlap of the chaotic layers of the
several island chains, caused by the intersection of their stable and unstable manifolds,
as shown in Figs. 2.8 and 2.9, the field lines are transported from one island chain to
the next one along the stable and unstable manifolds. In Fig. 3.9 the unstable manifold
of the period 3 hyperbolic point tends towards the wall and for this, it has to pass the
next, 13/4 island chain. The unstable manifold merges with the unstable manifold of the
13/4 hyperbolic points. They do not intersect with each other, but they converge against
each other and become infinitesimally close. Beyond the 13/4 island chain there are no
further islands, so the manifold hits the wall. Now we can draw the most important
conclusions, clearly seen in Fig. 3.9. The finger-like structures are formed by the unstable
manifolds. Therefore, the wall pattern, which is an imprint of the fingers at the wall,
is fundamentally dominated by the unstable manifolds. This means that the heat and
particle deposition at the wall as well as their transport within the plasma is dominated
by the unstable manifolds. The structures and the developing of the unstable manifolds
close to the wall are dominated by the last remaining island chain, because all manifolds
of island chains below have to pass the last island chain. Beyond the last island chain
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there are no more hyperbolic points to create further oscillations. So, the manifold goes
to the wall straightly. This causes the field lines to hit the wall very fast after transported
into this region, which, as already mentioned above, characterizes the laminar zone. The
last remaining resonance in front of the wall has the most influence on the wall pattern
and the heat and particle deposition, if we assume that the thermal particles follow the
field lines.

Figure 3.10: Laminar plot of the symmetric DED map with I0 = 10 kA for the
toroidal rotation number. Cutout of the area with the two main fingers around
θ = π. The white line is the blue colored left sided unstable manifold of Fig. 3.9.

To further analyze the laminar zone, laminar plots are a reasonable tool, which we
also used on the revtokamap in Sec. 2.9. Remember, a laminar plot is a colored contour
plot. Areas of field lines, whose number of toroidal rotations are the same until they
connect the wall through this area, are colored in the same way. The laminar plot then
gives information about the connection lengthes of the field lines.

Figure 3.10 shows a laminar plot of the two main fingers around θ = π of the DED
map for the perturbation current I0 = 10 kA. The unstable manifold, shown as a blue
line in Fig. 3.9, is included as a white line here. We see that the laminar plot has a fractal
structure, similar to Fig. 2.14 for the revtokamap, but we can clearly identify the fingers,
which have very large connection lengthes compared to the areas in between. This does
not mean that a field line passing through a red colored area takes very long to reach
the wall, because the rotation number is the sum of the forward and backward number of
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toroidal rotations a field line needs to hit the wall with both endings. A field line on the
unstable manifold hits the wall very fast for forward iteration, but backwards the unstable
manifold becomes the stable one and so the field line converges towards the hyperbolic
point and will never hit the wall. This means that the field lines on the manifolds have
infinite connection lengthes. Although the last resonance dominates the footprints, field
lines from the finger areas are able to penetrate the plasma deeply and remain inside the
plasma for a very long time. Through the fingers the hot inside of the plasma is connected
to the wall. This shows that the heat deposition at the wall occurs at the finger positions.
This will be further investigated on the real toroidal model in the next chapter, where we
will also compare our results to measurements of the heat flux in TEXTOR.



58 Chapter 3. Cylindrical model for magnetic field lines in TEXTOR-DED



Chapter 4

Toroidal DED model with
relativistic particle drift effects

Up to now, we only considered the magnetic field lines of the DED in a cylindrical model.
The next step is to modify the model for toroidal geometry [5]. We generalize our de-
scription of the DED to include also relativistic drift effects. The charged particles of
the plasma are performing gyrations around the magnetic field lines. The gyro-radius
scales with the magnetic field. Due to the main magnetic field of about B0 = 2 T, this
radius is very small compared to the dimensions of the torus. Because of the curvature
and gradients of the magnetic field, the particles are also drifting, which is a much larger
effect than the gyration. Therefore, we can neglect the gyration in comparison to the drift
motion and consider the guiding-center only. The deviation of the drift surfaces from the
magnetic KAM surfaces increases with the particle energy. So, the kinetic energy of the
particles is, in addition to the perturbation current, one of the most important parameters
of the particle system. The typical energy scale of the plasma particles ranges from a few
keV up to 15 MeV and more. Especially the so called runaway electrons are extremely
high energetic particles, which are of great interest. They cause losses of a lot of energy
for the fusion system, due to their syncrotron radiation on the one hand and their possible
escape from the system on the other hand. For such particles the kinetic energy is much
larger than the rest energy, 0.511 MeV for electrons. So we have to describe the particle
motion relativistically. A non-relativistic case has been discussed in [19, 20].

The model derived here includes magnetic field lines as well as particle drift effects,
both in toroidal geometry. It describes particles with any charge, mass, kinetic energy
and relative direction of motion (in or counter direction of the field lines). The theory also
includes an arbitrary external electric field, but we will not evaluate electric field effects
in detail. Note that the particles are still described as ”test-particles”, meaning that the
electric and magnetic fields are not selfconsistent. Any influences of the particles on the
fields are neglected. Further the model does not include trapped particles.

Our first task is to construct a mapping procedure for the relativistic particle drift
model in toroidal geometry. We start with the relativistic Hamiltonian of a particle in an
external electromagnetic field.

59
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4.1 The Hamiltonian for charged relativistic particles

in an EM field

We assume a particle with the mass m0 and the charge q = Zqe, while Zq is the charge
number of the particle (Zq = −1 for electrons) and e is the elementary charge, inside

an electromagnetic (EM) field, described by the magnetic vector potential ~A and the
electric scalar potential φ̂. The vector potential includes the magnetic equilibrium field
as well as the perturbation field, while the electric field, given by ~E = −∇φ̂ is only an
external additional perturbation. We use cylindrical coordinates (R̂, ϕ, Ẑ) to describe the
toroidal geometry. In contrast to the cylindrical DED model the angle coordinate now
represents the toroidal angle of the torus, while the radial coordinate corresponds to the
major radius. Using these coordinates the Hamiltonian reads in relativistic form

Ĥ =

[
m2

0c
4 + c2

(
p̂R −

q

c
AR

)2

+
c2

R̂2

(
p̂ϕ −

q

c
R̂Aϕ

)2

+ c2
(
p̂z −

q

c
AZ

)2
]1/2

+qφ̂ . (4.1.1)

Due to the gauge invariance of the vector potential, we can assume its radial coordinate
AR to be zero, i.e. ~A = (0, Aϕ, Az). The toroidal field is mainly determined by the Az
component, while the Aϕ component describes the poloidal field and the perturbation
field.

To describe the interior of the torus tube properly, we normalize the coordinates as
follows

x =
R̂−R0

R0

, z =
Ẑ

R0

, t = ωcT̂ , (4.1.2)

px =
p̂R

m0ωcR0

, pϕ =
p̂ϕ

m0ωcR2
0

, pz =
p̂z

m0ωcR0

, (4.1.3)

using the major radius R0 of the torus. The coordinates x and z represent a cartesian
coordinate system perpendicular to the toroidal angle coordinate with its center at the
geometrical center of the torus tube. To normalize the time scale we used the gyro-
frequency

ωc =
eB0

m0c
(4.1.4)

with the main magnetic field B0. Normalizing the Hamiltonian and the scalar potential

H̃ =
Ĥ

m0ω2
cR

2
0

, φ =
q

m0ω2
cR

2
0

φ̂ , (4.1.5)
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we obtain

H̃ =
1

m0ω2
cR

2
0

[
m2

0c
4 + c2(m0ωcR0px)

2 +
c2

(R0x+R0)2
(m0ωcR

2
0pϕ −

q

c
(R0x+R0)Aϕ)

2

+c2(m0ωcR0pz −
q

c
Az)

2
]1/2

+ φ

=

[
c4

ω4
cR

4
0

+
c2

ω2
cR

2
0

(
p2
x +

(
pϕ

1 + x
− qAϕ
cm0ωcR0

)2

+

(
pz −

qAz
cm0ωcR0

)2
)]1/2

+ φ .

Introducing the normalized particle energy at the rest

ε0 =
c2

ω2
cR

2
0

(4.1.6)

and the normalized vector potential

fϕ =
Zq
B0R0

(1 + x)Aϕ, fz =
Zq
B0R0

Az , (4.1.7)

the Hamiltonian reads

H̃ =

[
ε2
0 + ε0

(
p2
x +

(pϕ − fϕ)
2

(1 + x)2
+ (pz − fz)

2

)]1/2

+ φ . (4.1.8)

It is much more convenient to expand the Hamiltonian to the 8-dimensional phase space
(qi, pi) = (x, ϕ, z, t, px, pϕ, pz, pt), i = 1, . . . , 4, including the time t and the energy H as
additional canonical variables, because for the mapping technique, we will have to change
the independent variable to the toroidal angle ϕ. Defining the to the time t corresponding
canonical momentum

pt = −H̃ , (4.1.9)

we can introduce

U =
1

2

(
(pϕ − fϕ)

2

(1 + x)2
+ (pz − fz)

2 − (−pt − φ)2

ε0

+ ε0

)
(4.1.10)

as an effective potential for a one dimensional particle motion, described by the Hamilto-
nian

H =
1

2

(
p2
x +

(pϕ − fϕ)
2

(1 + x)2
+ (pz − fz)

2 − (−pt − φ)2

ε0

+ ε0

)
=

1

2
p2
x + U = 0 . (4.1.11)

Such a formulation will be needed to transform to guiding center coordinates, which are
used to neglect the fast and small gyration of the particles around the field lines. This
will be done in the next section. Up to now, the dynamics of the whole Hamiltonian
system in the extended 8-dimensional phase space, including the gyration, is given by the
canonical equations of motion

dqi
dτ

=
∂H

∂pi
,

dpi
dτ

= −∂H
∂qi

(4.1.12)

with the time τ , which is the relativistic reference time within the co-moving frame of
reference.
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4.2 Guiding-center approximation

The Hamiltonian (4.1.11) describes the complete dynamics of a particle within the elec-
tromagnetic field, including the fast gyration of the particles around the field lines.
The direct numerical integration of the equations of motion would require very long
computational time, because one would have to choose step sizes small enough to re-
solve the particle gyration. To simplify the problem significantly, we transform the fast
varying variables (x, ϕ, z, t, px, pϕ, pz, pt) to the slow varying guiding center coordinates
(ϑx,Φ, Z, T, Ix, Pϕ, Pz, Pt) to eliminate the fast gyration of the particles. The transforma-
tion is generated by the function

F = ϕPϕ + zPz + tPt + εS(x, Ix, ϕ, Pϕ, z, Pz, t, Pt) , (4.2.1)

which depends on the old coordinates and the new momentums, with

εS =

∫
px(x

′, Ix, ϕ, Pϕ, z, Pz, t, Pt) dx
′ , (4.2.2)

whereas ε is a small parameter, given by the relation ρx/L of the gyro-radius ρx to the
characteristic scale L of the system. We use (4.2.2) to transform the radial coordinates
(x, px) to the action-angle variables (ϑx, Ix), given by

Ix =
1

2π

∮
C

px(x) dx , ϑx = ε
∂S

∂Ix
. (4.2.3)

The integration is taken along the contour C of one full-turn gyration of the particle in
the (x, px) plane.

The guiding-center is determined by the minimum of the effective potential U(x),
Eq. (4.1.10). The radial dependency of U is plotted for various electron energies in
Fig. 4.1. The expansion of U clearly shows the guiding center position and the width of
the gyro oscillations. This figure is similar to figure 1 of [19], where the effective potential
for the non-relativistic case is shown. Note that the potential is shifted by the total energy
E = γε0 to make it more comparable with the non-relativistic case, where H is the total
energy. Here we have H = 0, because we have subtracted the total energy.

Due to the smallness of the gyro-radius, marked by the arrows in Fig. 4.1, we can
expand the potential in a Taylor series around the guiding-center position xc and get

H =
1

2
p2
x + U(xc) +

1

2
ω2
x(x− xc)

2 +O((x− xc)
3) . (4.2.4)

The minimum is given by the zero point of the first derivative with respect to x of the
potential, while the second derivative is lager than zero. We demand

∂U

∂x

∣∣∣∣
x=xc

= 0 (4.2.5)
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Figure 4.1: Radial dependency of the effective potential U(r), Eq. (4.1.10), shifted
by the total Energy E = γε0, for various kinetic electron energies: 1. 0.1 MeV, 2.
1 MeV, 3. 5 MeV and 4. 15 MeV. The position and width of the gyro oscillation
is marked by the arrows. The tokamak field is described by the equilibrium field.
Eref is the reference energy, used for normalization, r = R0x, R0 = 1.75 m.

⇒ (pϕ − fϕ)
2

(1 + x)3
+
pϕ − fϕ
(1 + x)2

∂fϕ
∂x

+ (pz − fz)
∂fz
∂x

− −pt − φ

ε0

∂φ

∂x
= 0 (4.2.6)

⇔ u2
ϕ + uϕ

∂fϕ
∂x

+ (1 + x)uz
∂fz
∂x

− (1 + x)γ
∂φ

∂x
= 0 (4.2.7)

with

uϕ =
pϕ − fϕ
1 + x

, uz = pz − fz , γ =
−pt − φ

ε0

. (4.2.8)

The solution xc = xc(ϕ, z, t, pϕ, pz, pt) of Eq. (4.2.7) is the position of the guiding-center.
The second derivative at xc defines the frequency of the particle, which oscillates around
the guiding-center, the gyro-frequency

ωx(xc,Φ, Z, T, Ix, Pϕ, Pz, Pt) =
∂2U

∂x2

∣∣∣∣
x=xc

. (4.2.9)

After determining the guiding-center position and the gyro-frequency, we can perform
the transformation (4.2.1) with Eq. (4.2.2). Therefore, we expand the Hamiltonian into
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a power series of ε and obtain for the Hamiltonian in its transformed form

H = H0 + εH1(ϑx,Φ, Z, T, Ix, Pϕ, Pz, Pt) +O(ε2)

= ωx(xc,Φ, Z, T, Ix, Pϕ, Pz, Pt)Ix + U(xc,Φ, Z, T, Ix, Pϕ, Pz, Pt)

+εH1(ϑx,Φ, Z, T, Ix, Pϕ, Pz, Pt) +O(ε2) = 0 . (4.2.10)

The zeroth order in ε then describes the guiding-center motion, which does not depend
on the fast gyro-phase ϑx. As shown in [19], the action variable Ix is a good adiabatic
invariant of motion for typical tokamak plasmas. Also the gyro-frequency ωx is much
larger than the toroidal and poloidal transit frequencies of the drift motion. Therefore,
we can neglect the first and higher orders of ε, which are containing the gyro-phase ϑx.

To find the relations between the geometrical and guiding-center coordinates, we have
to determine the unknown part S of the generating function. For this we resolve Eq. (4.2.4)
with respect to px

px =
√

2(H − U(xc))− ω2
x(x− xc)2 , (4.2.11)

and get from Eq. (4.2.2)

εS =

∫ √
2Ixωx − ω2

x(x
′ − xc)2 dx′ =

∫ √
2Ixωx

√
1− ωx

2Ix
(x′ − xc)2 dx′ . (4.2.12)

Introducing the substitution

y =
x′ − xc√
2Ix/ωx

⇒ dx′ =

√
2Ix
ωx

dy , (4.2.13)

we find

εS = 2Ix

∫ √
1− y2 dy = Ix

[
arcsin y + y

√
1− y2

]
. (4.2.14)

The to the action-variable Ix corresponding angle variable ϑx reads

ϑx =
∂S

∂Ix
= arcsin y + y

√
1− y2 + 2Ix

√
1− y2

x− xc√
2/ωx

I−3/2
x (−1

2
) = arcsin y . (4.2.15)

The relations between the old coordinates (qi, pi) and the guiding-center coordinates
(Qi, Pi) are then given by the derivatives of the generating function (4.2.1)

Qi =
∂F

∂Pi
, pi =

∂F

∂qi
, i = 1, . . . , 4 , (4.2.16)

thus

x = xc +

√
2Ix
ωx

sinϑx , px =
√

2Ixωx cosϑx , (4.2.17)

qi = Qi +
√

2Ixωx
∂xc
∂Pi

cosϑx −
Ix
ωx

∂ωx
∂Pi

sin 2ϑx , (4.2.18)

pi = Pi −
√

2Ixωx
∂xc
∂qi

cosϑx +
Ix
ωx

∂ωx
∂qi

sin 2ϑx , (4.2.19)

whereas the action variable Ix is considered as a constant of motion.
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4.3 Simplification of the guiding-center equations

We can simplify the equations for the guiding-center (4.2.7), (4.2.9) and the relations be-
tween the real and guiding-center coordinates significantly by neglecting all perturbations
to the toroidal magnetic main field Bϕ = B0R0/R̂. This leads to the ansatz

Az(R̂) = −B0R0 ln
R̂

R0

⇒ fz = −Zq ln(1 + x) (4.3.1)

for the z component of the vector potential. This ansatz is valid, because B0 is much larger
than any perturbation of the DED coils. We also can neglect the terms in Eq. (4.2.7)
which are proportional to u2

ϕ, uϕ
∂fϕ

∂x
and ∂φ

∂x
. For relativistic electrons we have u ≈ 10−2,

while all other field components are small compared to B0, according to [19]. Then we
obtain from Eq. (4.2.7)

(1 + x)(pz − fz)
∂fz
∂x

= 0 ⇒ pz = fz ⇒ xc = e−pz/Zq − 1 . (4.3.2)

With this result, we can determine the gyro-frequency, according to Eq. (4.2.9)

ωx =
1

1 + xc
= epz/Zq . (4.3.3)

The dependencies of the real coordinates and the guiding-center coordinates simplify to

x = xc +

√
2Ix
ωx

sinϑx , px =
√

2Ixωx cosϑx , (4.3.4)

z = Z +

√
2Ix
ωx

cosϑx , pz = Pz , (4.3.5)

ϕ = Φ , pϕ = Pϕ , t = T , pt = Pt . (4.3.6)

Neglecting the fast gyro-phase, the Hamiltonian (4.2.10) reads

H = ωx(pz)Ix +
1

2

[
(pϕ − fϕ(xc, ϕ, z, t))

2

(1 + xc)2
− (−pt − φ(xc, ϕ, z, t))

2

ε0

+ ε0

]
= 0 , (4.3.7)

while the particle dynamics are given by the Hamiltonian equations of motion

ż = Ix
∂ωx
∂pz

+
∂xc
∂pz

[
−(pϕ − fϕ)

(1 + xc)2

∂fϕ
∂xc

− (pϕ − fϕ)
2

(1 + xc)3
+
−pt − φ

ε0

∂φ

∂xc

]
(4.3.8)

ṗz =
(pϕ − fϕ)

(1 + xc)2

∂fϕ
∂z

− −pt − φ

ε0

∂φ

∂z
(4.3.9)

ϕ̇ =
(pϕ − fϕ)

(1 + xc)2
ṗϕ =

(pϕ − fϕ)

(1 + xc)2

∂fϕ
∂ϕ

− −pt − φ

ε0

∂φ

∂ϕ
(4.3.10)

ṫ =
−pt − φ

ε0

= γ ṗt =
(pϕ − fϕ)

(1 + xc)2

∂fϕ
∂t

− −pt − φ

ε0

∂φ

∂t
(4.3.11)

ϑ̇x = ωx(pz) İx = 0 (4.3.12)
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with the derivative q̇ = dq
dτ

with respect to the reference time τ .

For the mapping it is much more convenient to reformulate the Hamiltonian descrip-
tion. We introduce the toroidal angle ϕ as the independent time-like variable and the
new Hamiltonian

K = −pϕ , (4.3.13)

given by the corresponding canonical momentum. From Eq. (4.3.7) we find

ωxIx +
1

2

[
ε0 −

(−pt − φ)2

ε0

]
= −1

2

(−K − fϕ)
2

(1 + xc)2
(4.3.14)

⇔ −2(1 + xc)
2ωxIx − (1 + xc)

2

[
ε0 −

(−pt − φ)2

ε0

]
= (−K − fϕ)

2 (4.3.15)

⇔ ±(1 + xc)

√
−2ωxIx − ε0 +

(−pt − φ)2

ε0

= −K − fϕ (4.3.16)

⇒ K = −fϕ − σ(1 + xc)
[
ε0(γ

2 − 1)− 2ωxIx
]1/2

. (4.3.17)

Here we introduced the new parameter σ = ±1, which determines the direction of motion
relatively to the field lines. For σ = 1 the particles are moving in the direction of the field
lines and we are talking about co-passing particles. For σ = −1 the particles are moving
in the opposite direction, the so called counter-passing particles. The dynamics are given
by the Hamiltonian equations of motion, now with respect to the new Hamiltonian K,

dz

dϕ
=

1

Zq
(1 + xc)

[∂fϕ
∂xc

+ σ

(
ε0(γ

2 − 1)− ωxIx − (1 + xc)γ
∂φ

∂xc

)
×
(
ε0(γ

2 − 1)− 2ωxIx
)−1/2

]
(4.3.18)

dpz
dϕ

=
∂fϕ
∂z

− σ(1 + xc)γ
∂φ

∂z

(
ε0(γ

2 − 1)− 2ωxIx
)−1/2

(4.3.19)

dt

dϕ
= σ(1 + xc)γ

(
ε0(γ

2 − 1)− 2ωxIx
)−1/2

(4.3.20)

dpt
dϕ

=
∂fϕ
∂t

− σ(1 + xc)γ
∂φ

∂t

(
ε0(γ

2 − 1)− 2ωxIx
)−1/2

(4.3.21)

dϑx
dϕ

= σ
(
ε0(γ

2 − 1)− 2ωxIx
)−1/2

(4.3.22)

dIx
dϕ

= 0 . (4.3.23)

4.4 The equilibrium field

The z-component of the vector potential, defining the toroidal magnetic field has already
been introduced in the previous section. Now we model the rest of the equilibrium field,
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given by the unperturbed toroidal component A
(0)
ϕ of the vector potential

A(0)
ϕ =

B0

R̂

∫
dψ

q(ρ(ψ))
⇒ f (0)

ϕ =
Zq
R2

0

∫
dψ

q(ρ(ψ))
, (4.4.1)

whereas q(ρ) is the safety factor. The safety factor is specified in Sec. 3.3 as profile ”b”,
given by Eq. (3.3.11) and the dashed line of Fig. 3.3. ψ = 1

2
ρ2 is the toroidal magnetic flux,

dealing as action variable and ρ is the minor radius of the magnetic KAM surfaces. Due to
the toroidal geometry and the plasma, the magnetic surfaces are shifted, compared to the
spheres with the geometrical radius r2 =

√
x2 + z2. This shift is the so called Shafranov

shift [33]

∆(ρ) = R(ρ)−Ra ≈ (Λ + 1)
a2 − ρ2

2Ra

, (4.4.2)

with the minor radius of the plasma a, the major radius of the plasma center Ra = R(a)
and the parameter Λ = βpol + li/2 − 1. This parameter includes βpol, the ratio of the
plasma pressure to the pressure of the poloidal magnetic field, and the internal inductance
li. R(ρ) is the major radius of the center of the surface with the minor radius ρ. With the
Shafranov shift the relation between the minor radius ρ and the geometrical coordinates
reads

ρ =

√
(R̂−Ra −∆(ρ))2 + Ẑ2 . (4.4.3)

Because the Shafranov shift itself depends on the shifted radius ρ, Eq. (4.4.3) is an implicit
equation, which can be resolved with respect to ρ, as shown in Sec. 4.5.

First, we normalize all length-like variables and parameters, using the major radius
R0 of the torus. For simplicity, we keep the existing notations and get

Ra

R0

→ Ra ,
a

R0

→ a ,
ρ

R0

→ ρ ,
ψ

R2
0

=
ρ2

2R2
0

→ ψ =
1

2
ρ2 . (4.4.4)

The normalizations of R̂ and Ẑ are already given by Eq. (4.1.2). We further obtain

∆(ρ)

R0

= (Λ + 1)
a2/R2

0 − ρ2/R2
0

2Ra/R0

→ ∆(ρ) = (Λ + 1)
a2 − ρ2

2Ra

(4.4.5)

and therefore

ρ → ρ =
√

(1 + x−Ra −∆(ρ))2 + z2 , (4.4.6)

f (0)
ϕ → f (0)

ϕ = Zq

∫
dψ

q(ρ(ψ))
. (4.4.7)

For the Hamiltonian equations of motion (4.3.18)-(4.3.23) we need the derivatives

∂f
(0)
ϕ

∂qi
= Zq

ρ

q(ρ)

∂ρ

∂qi
(4.4.8)
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with respect to the coordinates qi = (x, z, t). For this we resolve Eq. (4.4.6) with respect
to the coordinates qi

x = Ra + ∆ +
√
ρ2 − z2 − 1 ⇒ ∂x

∂ρ
=
∂∆

∂ρ
+

ρ

1 + x−Ra −∆
, (4.4.9)

z =
√
ρ2 − (1 + x−Ra −∆)2 ⇒ ∂z

∂ρ
=

1

z
(ρ+ (1 + x−Ra −∆)

∂∆

∂ρ
. (4.4.10)

Insert this result in Eq. (4.4.8), we find

∂f
(0)
ϕ

∂x
=

Zq
q(ρ)

1 + x−Ra −∆

(1 + x−Ra −∆)1
ρ
∂∆
∂ρ

+ 1
, (4.4.11)

∂f
(0)
ϕ

∂z
=

Zq
q(ρ)

z

(1 + x−Ra −∆)1
ρ
∂∆
∂ρ

+ 1
, (4.4.12)

∂f
(0)
ϕ

∂t
= 0 . (4.4.13)

4.5 Explicit solution for ρ

For the numerics it is essential to determine the shifted minor radius ρ from the geometrical
coordinates. The relation between ρ, x and z is given by Eq. (4.4.6), but this equation
is an implicit one, because the Shafranov shift ∆ also depends on ρ. Now we derive an
explicit equation for ρ. Therefore, we consider

ρ2 = (1 + x−Ra −∆)2 + z2 with ∆ =
Λ + 1

2Ra

(a2 − ρ2) . (4.5.1)

Introducing the shortcut
ρ2

0 = (1 + x−Ra)
2 + z2 , (4.5.2)

we obtain

0 =
(Λ + 1)2

4R2
a

(a4 + ρ4 − 2a2ρ2)− (1 + x−Ra)
Λ + 1

Ra

(a2 − ρ2)− ρ2 + ρ2
0

= ρ4 +
4R2

a

(Λ + 1)2

[
−(1 + x−Ra)

Λ + 1

Ra

(a2 − ρ2)− ρ2 + ρ2
0

]
− 2a2ρ2 + a4

= ρ4 +

{
4R2

a

(Λ + 1)2

[
(1 + x−Ra)

Λ + 1

Ra

− 1

]
− 2a2

}
ρ2

+a4 +
4R2

a

(Λ + 1)2

[
−(1 + x−Ra)

Λ + 1

Ra

a2 + ρ2
0

]
.

Defining

2p(x, z) =
4R2

a

(Λ + 1)2

[
(1 + x−Ra)

Λ + 1

Ra

− 1

]
− 2a2 , (4.5.3)

q(x, z) = a4 +
4R2

a

(Λ + 1)2

[
−(1 + x−Ra)

Λ + 1

Ra

a2 + ρ2
0

]
, (4.5.4)
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the explicit solutions for ρ are given by

ρ1/2 =

√
−p±

√
p2 − q ≥ 0. (4.5.5)

As one can see, there are two possible solutions. Assuming that both solutions really
exist, which would only be possible, if ρ2 ≥ 0 and real for +

√
p2 − q and −

√
p2 − q, the

solution closest to ρ0 would be the proper choice. But typically there is only one real
solution.

4.6 The perturbation field

The last component we have to include is the perturbation field of the DED. According
to Sec. 3.2 and [5] the vector potential of the DED field reads

A(1)
ϕ = (1 + x)−1/2

∞∑
m=0

Gm

(
r

rc

)m
cos(mθ − n0ϕ+ ωt) (4.6.1)

with the Fourier modes

Gm = (−1)m+1µ0I0
m0

mπ
gm with gm =

sin((m−m0)n0π/m0)

(m−m0)π
, (4.6.2)

while r =
√
x2 + z2 and θ = arctan(z/x). Note that we are using the cosine here instead

of the sine, used in Sec. 3.2, for more consistency with the work on the non-relativistic
case [19]. The physics are the same, because we only take another toroidal position for
the Poincaré section as for the DED map.

Performing the normalization (4.1.7), we get

f (1)
ϕ = Zq

1 + x

B0R0

A(1)
ϕ . (4.6.3)

By superposition with the equilibrium field, the total normalized toroidal vector potential
reads

fϕ = f (0)
ϕ + f (1)

ϕ . (4.6.4)

4.7 The mapping procedure for the relativistic drift

model

Considering the results of the previous sections, we have all necessary parts to construct
the mapping procedure for the relativistic drift model. We write the Hamiltonian (4.3.17)
in the following form

K = K0(z, t, pz, pt) +K1(z, t, pz, pt, ϕ) (4.7.1)
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with

K0(z, t, pz, pt) = −f (0)
ϕ (xc, z)− σ(1 + xc)

[
ε0(γ

2 − 1)− 2ωxIx
]1/2

, (4.7.2)

describing the unperturbed relativistic motion of the particle guiding center, and

K1(ϕ, z, t, pz, pt) = −f (1)
ϕ (xc, ϕ, z, t) , (4.7.3)

describing the DED perturbation, which is small compared to K0. In the absence of the
magnetic perturbation and an electric field, φ = 0, there are two independent constants
of motion. We introduce the action variable

Iz =
1

2π

∫
Cz

pz(z) dz , (4.7.4)

which is a constant of motion. The integration is taken along the projection of the
unperturbed drift orbit onto the (x, pz) plane. The second invariant is the particle energy
It = −H = pt. We further introduce the corresponding angle variables

ϑz =
∂F

∂Iz
and ϑt =

∂F

∂It
(4.7.5)

where F = tIt +
∫
pz(z, Iz, It) dz is the corresponding generating function for the canon-

ical transformation on these action-angle variables. In the new variables the Hamilto-
nian (4.7.1) reads

K = K0(Iz, It) +K1(Iz, ϑz, It, ϑt, ϕ) (4.7.6)

Now we expand the perturbation partK1 into a Fourier series with respect to ϑz, according
to Eq. (4.6.1),

K1 =
∑
m

Km(Iz, It) cos(mϑz − n0ϕ+ ωϑt) , (4.7.7)

with the Fourier coefficients

Km =
1

2π

2π∫
0

K1(Iz, ϑz, It, ϑt, ϕ) cos(mϑz) dϑz . (4.7.8)

Then we can derive the generating function S for the mapping, according to Sec. 2.2, by
integrating the perturbation part K1 over ϕ along the unperturbed trajectories

ϑz = ϑz0 + Ωz(Iz, It)(ϕ− ϕ0) , (4.7.9)

ϑt = ϑt0 + Ωt(Iz, It)(ϕ− ϕ0) , (4.7.10)

with the transit frequencies

Ωz(Iz, It) =
∂K0

∂Iz
and Ωt(Iz, It) =

∂K0

∂It
. (4.7.11)
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We obtain

S = −
ϕ∫

ϕ0

K1(Iz, ϑz(ϕ
′), It, ϑt(ϕ

′), ϕ′) dϕ′ (4.7.12)

= −
∑
m

Km(Iz, It) [h1(η) sinα+ h2(η) cosα] (4.7.13)

with

η = mΩz − n0 + ωΩt , α = mϑz − n0ϕ+ ωϑt , k = ϕ− ϕ0 (4.7.14)

and

h1(η) =
1− cos(kη)

η
→ 0 for η → 0 , h2(η) :=

sin(kη)

η
→ k for η → 0 . (4.7.15)

Using this generating function, we can perform a 4-dimensional mapping

Jz,k = Iz,k −
∂Sk
∂ϑz,k

, ϑ̄z,k = ϑz,k +
∂Sk
∂Jz,k

, (4.7.16)

Jt,k = It,k −
∂Sk
∂ϑt,k

, ϑ̄t,k = ϑt,k +
∂Sk
∂Jt,k

, (4.7.17)

ϑ̄z,k+1 = ϑ̄z,k + Ωz(Jz,k, Jt,k)(ϕk+1 − ϕk) (4.7.18)

ϑ̄t,k+1 = ϑ̄t,k + Ωt(Jz,k, Jt,k)(ϕk+1 − ϕk) (4.7.19)

Iz,k+1 = Jz,k +
∂Sk+1

∂ϑz,k+1

, ϑz,k+1 = ϑ̄z,k+1 −
∂Sk+1

∂Jz,k
, (4.7.20)

It,k+1 = Jt,k +
∂Sk+1

∂ϑt,k+1

, ϑt,k+1 = ϑ̄t,k+1 −
∂Sk+1

∂Jt,k
, (4.7.21)

with Sk = S(Jz,k, ϑz,k, Jt,k, ϑt,k, ϕk) and Sk+1 = S(Jz,k, ϑz,k+1, Jt,k, ϑt,k+1, ϕk+1). We are
using the symmetric mapping form with ϕ0 = 1

2
(ϕk + ϕk+1).

In contrast to the mappings we have handled before, this mapping is 4-dimensional,
because of the explicit time dependence. If we assume that the perturbation is static,
meaning ω = 0, the mapping reduces to the well known 2-dimensional one, because then
the particle energy It is a constant of motion. In the following we concentrate on the
2-dimensional case with constant particle energy. This mapping reads

ξk = ψk − ε
∂Sk
∂θk

, ϑk = θk + ε
∂Sk
∂ξk

(4.7.22)

ϑk+1 = ϑk + Ω(ξk)(ϕk+1 − ϕk) (4.7.23)

ψk+1 = ξk + ε
∂Sk+1

∂θk+1

, θk+1 = ϑk+1 − ε
∂Sk+1

∂ξk
(4.7.24)

with ψ = Iz, ξ = Jz, θ = ϑz, ϑ = ϑ̄z and Ω = Ωz. The Sk and Sk+1 are the same as above.
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The main problem is now to determine the Fourier modes Km and the transit fre-
quencies Ωz and Ωt. Due to the fact that analytical calculations are highly non-trivial,
we determine them only numerically by integrating the Hamiltonian equations of mo-
tion (4.3.18)-(4.3.23) for one full poloidal turn on the (x, z) plane. The numerics provide
us with the results for the Fourier modes, the transit frequencies and their derivatives on
a grid. Values between two grid points are interpolated, using cubic splines. The Runge-
Kutta integrator and the cubic spline routines are taken from the numerical recipes [36].
A numerical code for the 4-dimensional mapping procedure has also been developed in the
framework of this thesis, but we will not evaluate explicit time dependent perturbations
here. The static case has to be analyzed in detail first.

4.8 Unperturbed drift surfaces with varying kinetic

energy

As a first step, we concentrate on the unperturbed case to analyze, how the surfaces
of constant q for particles, the so called drift surfaces, are shifted due to drift effects,
compared to the magnetic KAM surfaces. Using the same q-profile, the shape of the drift
surfaces depends on three parameters: the type of particles, the direction of the velocities
and the kinetic energy of the particles.

Figure 4.2: Drift surfaces of co-passing electrons
for various energies: 2 MeV (green line), 8 MeV
(blue line) and 10 MeV (red line), with the mag-
netic KAM surface of the field lines (black line).
All at the irrational value q = π of the safety fac-
tor.

Figure 4.3: Same as Fig. 4.2 for counter-passing
electrons. But here the red line corresponds to
15 MeV. We used profile ”b”, given in Sec. 3.3,
with a = 0.46 m, Ra = R0 = 1.75 m, Ip = 330 kA,
B0 = 2.2 T, βpol = 0.3 and li = 1.2

Figure 4.2 shows various drift surfaces for different kinetic energies in comparison to
the magnetic KAM surface for the field lines. All of them are surfaces with the same
constant irrational value q = π. From the cylindrical model of Sec. 3 one could have
expected that for the unperturbed magnetic surfaces r would be constant, but here the
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Figure 4.4: Same as Fig. 4.2 plotted in polar co-
ordinates. The tokamak wall is shown as dashed
line.

Figure 4.5: Same as Fig. 4.3 plotted in polar co-
ordinates similar to Fig. 4.4

magnetic surface, given by the black line, is shifted outwards, compared to the geometrical
center of the torus tube. This is caused by the Shafranov shift, which takes the effects
of the toroidal geometry into account. Note that the poloidal angle θ = π marks the
inner side of the torus, where the DED coils are mounted, while θ = 0 corresponds to the
outer side. As one can see from Fig. 4.2, the drift surfaces for co-passing electrons are
also shifted outwards. The shift is larger for higher energies and always larger than the
shift of the magnetic surface, which could be interpreted as the drift surface of particles
with zero energy. This can be seen more clearly in Fig. 4.4, where the surfaces of Fig. 4.2
are shown, but now in a polar plot. The dashed line at the edge of the polar plot marks
the torus wall at r = 0.477 m. The coils are located at the left side of the polar plot,
corresponding to the poloidal angle θ = π.

Figure 4.3 shows the same as Fig. 4.2 but now for counter-passing electrons. The
counter-passing electrons are shifted inwards and again the shift is larger for higher en-
ergies. Because the counter-passing particles are drifting inwards, the Shafranov shift is
compensated at an energy of about 2 MeV. Figure 4.5 also shows the surfaces for counter
passing electrons in a polar plot. As one can see from the polar plots only, the surfaces
are not only shifted along the horizontal axis, they are also deformed along the vertical
axis. In the case of counter passing particles, see Fig. 4.5, the drift surfaces are stretched
along the horizontal axis, while shifted inwards, which causes a deformation from the top
and the bottom towards the center. For co-passing electrons it is the other way round,
they are deformed from the center towards the top and bottom of the torus, while shifted
outwards, according to Fig. 4.4.

The figures of the drift surfaces are all created by the mapping code, but there is
another more analytical way to calculate the unperturbed drift surfaces. We will derive
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an ordinary differential equation for the unperturbed drift surfaces in the (θ, r)-plane from
the Hamiltonian equations of motion (4.3.18)-(4.3.23). We assume that there is no electric

field, i.e. φ = 0, and that we have no perturbation from the DED, i.e. fϕ = f
(0)
ϕ . We do

not need Eqs. (4.3.20) and (4.3.22), because there is no explicit time dependency, and we
concentrate on the guiding center. Then we get form Eqs. (4.3.21) and (4.3.23)

pt = const and Ix = const . (4.8.1)

Therefore, we only need Eqs. (4.3.18) and (4.3.19):

dz

dϕ
=

1

Zq
(1 + xc)

[∂fϕ
∂xc

+ σ
(
ε0(γ

2 − 1)− ωxIx
)

×
(
ε0(γ

2 − 1)− 2ωxIx
)−1/2

]
(4.8.2)

dpz
dϕ

=
∂fϕ
∂z

. (4.8.3)

In Eq. (4.8.3) we change the dependent variable pz to xc by using Eq. (4.4.12), and get

dxc
dϕ

=
dxc
dpz

dpz
dϕ

= − 1

Zq
(xc + 1)

∂fϕ
∂z

= − 1

q(ρ)g(ρ)
(xc + 1)z . (4.8.4)

With Eq. (4.4.11) we find from Eq. (4.8.2)

dz

dϕ
=

1

Zq
(1 + xc)

∂fϕ
∂xc

+
σ

Zq
C(xc) (4.8.5)

=
1

q(ρ)g(ρ)
(1 + xc −Ra −∆)(1 + xc) +

σ

Zq
C(xc) , (4.8.6)

using the definitions

g(ρ) = (1 + xc −Ra + ∆)
1

ρ

∂∆

∂ρ
+ 1 (4.8.7)

and

C(xc) = (xc + 1)
ε0(γ

2 − 1)− ωxIx√
ε0(γ2 − 1)− 2ωxIx

. (4.8.8)

We transform to polar coordinates (xc, z) → (r, θ) with

r =
√
x2
c + z2 and θ = arctan

z

xc
, as well as xc = r cos θ and z = r sin θ .

(4.8.9)
Using the derivatives

∂r

∂xc
=
xc
r
,

∂r

∂z
=
z

r
,

∂θ

∂xc
= − z

r2
,

∂θ

∂z
=
xc
r2
, (4.8.10)
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we obtain

dr

dϕ
=

∂r

∂xc

dxc
dϕ

+
∂r

∂z

dz

dϕ
(4.8.11)

= −xc
r

1

q(ρ)g(ρ)
(xc + 1)z +

z

r

1

q(ρ)g(ρ)
(1 + xc −Ra −∆)(1 + xc)

+
σ

Zq
C(xc)

z

r
(4.8.12)

=
1 + xc

q(ρ)g(ρ)r
z(1−Ra −∆) +

σ

Zq
C(xc)

z

r
(4.8.13)

and

dθ

dϕ
=

∂θ

∂xc

dxc
dϕ

+
∂θ

∂z

dz

dϕ
(4.8.14)

=
z

r2

1

q(ρ)g(ρ)
(xc + 1)z +

xc
r2

1

q(ρ)g(ρ)
(1 + xc −Ra −∆)(1 + xc)

+
σ

Zq
C(xc)

xc
r2

(4.8.15)

=
1 + xc

q(ρ)g(ρ)r2
(r2 + xc(1−Ra −∆)) +

σ

Zq
C(xc)

xc
r2
. (4.8.16)

These two differential equations fully describe the unperturbed guiding center motion
in the tokamak. In the next step we reduce the description to the (θ, r)-plane, loosing
one degree of freedom. The toroidal angle coordinate ϕ, which is not explicitly used in
Eqs. (4.8.13) and (4.8.16), is excluded. Due to the loss of one degree of freedom, the
system can no longer show chaotic behavior, as well as islands can no longer appear. But
the shape of stable unperturbed drift surfaces remains in the Poincaré plane (θ, r). These
drift surfaces are then given by the ordinary differential equation

dr

dθ
=

dr

dϕ

dϕ

dθ
(4.8.17)

=
z

r

1

q(ρ)g(ρ)

[
(1 + xc)(1−Ra −∆) +

σ

Zq
q(ρ)g(ρ)C(xc)

]
×
{
xc
r2

1

q(ρ)g(ρ)

[
(1 + xc)

(
r2

xc
+ 1−Ra −∆

)
+

σ

Zq
q(ρ)g(ρ)C(xc)

]}−1

(4.8.18)

=
zr

xc

D(xc, ρ)

(1 + xc)
r2

xc
+D(xc, ρ)

. (4.8.19)

Replacing x and z we finally find

dr

dθ
=

sin θD(r, θ)

1 + r cos θ + r−1 cos θD(r, θ)
(4.8.20)
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with

D(r, θ) = (1 + r cos θ)(1−Ra −∆(ρ)) +
σ

Zq
q(ρ)g(ρ)C(r cos θ) . (4.8.21)

In this equation ρ = ρ(xc, z) = ρ(r cos θ, r sin θ) is given by Eq. (4.4.6), and q(ρ) is the
safety factor.

Figure 4.6: Comparison of drift surfaces, calculated by the mapping code, red lines,
and by numerical integration of Eq. (4.8.20), black lines, for field lines and 15 MeV
counter-passing electrons. Parameters as above.

We can solve Eq. (4.8.20) with a Runge-Kutta integrator. Figure 4.6 shows the com-
parison of the results from the mapping code and the Runge-Kutta integration. As an
example, we have chosen the irrational q = π drift surface for field lines and for 15 MeV
counter-passing electrons. As one can see, the results are in excellent agreement. In con-
trast to the direct numerical integration of the Hamiltonian equations of motion (4.3.18)-
(4.3.23) or the mapping code, the Runge-Kutta integration of Eq. (4.8.20) is much faster,
because of the reduction to the (θ, r)-plane. The time consuming integration or iteration
in ϕ direction around the torus is not needed here. But note that this simplification is
only possible while chaos is excluded.

We can draw some more conclusions from Eq. (4.8.20). The drift effects are described
by the term in Eq. (4.8.21) which is proportional to σ. This term is also proportional to
1/Zq, i.e. a change of direction corresponds to a change of the sign of the particle charge.
So, co-passing electrons are showing the same drift effects than counter-passing positrons
for example. This is valid, as long as we do not include an electric field. If we neglect the
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Shafranov shift, ∆(ρ) ≡ 0 and Ra = R0, we would get results for the cylindrical model
and find dr/dθ = 0 for field lines (σ = 0).

4.9 Drift effects with the DED perturbation field

Now we include the perturbation field of the DED. Using the same parameters as for the
unperturbed case, we operate the DED with the perturbation current I0 = 10 kA. In
the following we keep this perturbation current constant and vary only the energy of the
particles. The mapping procedure (4.7.22)-(4.7.24) provides us with the Poincaré plot,
which will be called drift map in the following.

Figure 4.7: Drift map for field lines (σ = 0) with I0 = 10 kA

Figure 4.7 shows the drift map for field lines, given by σ = 0. The structures are a
combination of the Shafranov shift, known from Sec. 4.8, and the well known properties
of the DED map, see Sec. 3.5. We see four island chains in the ergodic zone, from 12/4
to 15/4, and the finger structures of the laminar zone. The interesting question is now,
how do these structures change for drifting particles with different energies. Figures 4.8-
4.19 show the drift map for co- and counter-passing electrons on the left and right side,
respectively, for energies of 500 keV to 15 MeV.
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Figure 4.8: Drift map for 500 keV co-passing elec-
trons

Figure 4.9: Drift map for 500 keV counter-
passing electrons

Figure 4.10: Drift map for 2 MeV co-passing elec-
trons

Figure 4.11: Drift map for 2 MeV counter-
passing electrons

Figure 4.12: Drift map for 5 MeV co-passing elec-
trons

Figure 4.13: Drift map for 5 MeV counter-
passing electrons
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Figure 4.14: Drift map for 8 MeV co-passing elec-
trons

Figure 4.15: Drift map for 8 MeV counter-
passing electrons

Figure 4.16: Drift map for 10 MeV co-passing
electrons

Figure 4.17: Drift map for 10 MeV counter-
passing electrons

Figure 4.18: Drift map for 15 MeV co-passing
electrons

Figure 4.19: Drift map for 15 MeV counter-
passing electrons
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The structures created by 500 keV co- and counter-passing electrons, shown in Figs. 4.8
and 4.9 respectively, are very similar to the structures of the field lines, see Fig. 4.7. This
underlines our assumption that low energy particles are mainly following the field lines.
Therefore, the analysis of the field line structures and the field line dynamics is still a
very important task. But a plasma does not only consist of low energy particles, which
makes it necessary to discuss the differences between the high energy particle dynamics
and the field line dynamics.

For co-passing electrons the drift map becomes more and more regular with increasing
particle energy. Although the structures in Fig. 4.10 are still similar to the field line
structures, the map has already become more regular. For example the 12/4 island chain
is no longer inside the ergodic zone. Also the finger structure is less pronounced as for
field lines. At a particle energy of 5 MeV the ergodic zone has nearly vanished, while
the laminar zone is still visible, as Fig. 4.12 shows. As one can see from e.g. Fig. 4.14,
the finger-structures of the laminar zone have vanished along with the ergodic zone. The
co-passing electrons with a kinetic energy of 8 MeV and more are confined inside the
plasma. The intact drift surfaces are now connected to the tokamak wall at the outside
of the torus, corresponding to the poloidal angle θ = 0. In Fig. 4.18 the electrons behave,
as if there would be no perturbation at all, except of a few very small islands. Due to the
drift effects, the structures of co-passing electrons are shifted outside, so that the particles
are shifted away from the DED coils, as already shown in Sec. 4.8. They are shifted into
areas of lower perturbation. Therefore, it is clear that the drift map becomes more and
more regular for higher energies and also the vanishing of the finger structures becomes
clear.

But there is another effect, which also contributes to the fact that the high energetic
electrons behave more regular. This can be seen from the counter-passing electrons.
The drift map for counter-passing electrons becomes also more and more regular with
increasing particle energy, but the finger-structures become more distinctive and much
more concentrated at the angle position of the DED coils, θ = π, according to e.g.
Fig. 4.13. Due to the drift effects, which cause a shift of the drift surfaces towards the
DED coils, as known from Sec. 4.8, the occurrence of the fingers around θ = π is expected.
But the counter passing electrons are shifted into areas of stronger perturbations. One
would expect similar or even stronger chaotic behavior. In the contrary, the counter
passing electrons also behave more regular for higher energies, as can be seen in Figs. 4.17
and 4.19. This can only be an effect of the high kinetic energy of the electrons. Their
motion inside the torus is so fast that they can not really feel the chaotic magnetic field.
Some effects of the perturbation are still present, according to Fig. 4.19, where we can
clearly see four fingers at the position of the coils. But also, as for co-passing electrons,
intact drift surfaces are connected to the wall, now at the inner side of the torus.

We can conclude that generally particles with high kinetic energy do not really feel
the chaotic magnetic field. The high energetic particles are confined inside the plasma,
and they are strongly shifted to the inside or the outside of the torus for counter- or
co-passing electrons, respectively. The last intact drift surface is located directly beneath
the wall either at the outside, θ = 0, or at the inside, θ = π, of the torus, depending on
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the particles and their direction of motion. Particles beyond the last intact drift surface
are connected to the wall, because they move on surfaces, which cross the wall. These
particles are lost at the wall extremely fast.

4.10 Escape rates of particles and field lines

In order to quantify the result that the behavior of particles become more regular with
increasing kinetic energy, we calculate the escape rates of, e.g., counter-passing electrons
for different energies. We choose N0 ”test particles” on the irrational q = π surface,
equally distributed along the whole poloidal angle range, and iterate them until they hit
the wall, where they are eliminated. The calculation is stopped, when 90% of the points
are lost.

Figure 4.20: Normalized escape rates of counter-
passing electrons, black lines, with exponential de-
cay fitting curves, red lines. Calculated with N0 =
5000 at a constant perturbation of I0 = 10 kA.

Figure 4.21: Logarithm of the escape rates of
Fig. 4.20, black lines, with linear fits, red lines.

Figure 4.20 shows the calculated escape rates for field lines, 1.25 MeV and 1.75 MeV
counter-passing electrons. The perturbation current is kept constant at I0 = 10 kA. As
one can see, the escape rates are in very good agreement with the exponential decay fitting
curves

N(t) = N0(N1 + e−λt) . (4.10.1)

The very good agreement is underlined by Fig. 4.21, where the logarithms

ln

(
N

N0

−N1

)
= −λt (4.10.2)

are shown. The logarithms of the escape rates are in excellent agreement with the linear
fits, given by the red lines of Fig. 4.21. From here we can precisely determine the decay



82 Chapter 4. Toroidal DED model with relativistic particle drift effects

parameter λ, given by the gradient of the linear fits. Note that there is an offset N1 of
about 5-10% for all escape rates. The reason for this offset is unknown. One can speculate
that these extremely long running particles are either following another, very long time
escape mechanism or that they are not leaving the system at all, because they are moving
on the stable manifold for example. By calculating the escape rates for various kinetic
energies, we find the dependency of the characteristical decay parameter λ on the energy
as follows

λ ∼ −(E − Ecrit) . (4.10.3)

Figure 4.22: Exponential decay parameter λ in dependency of the kinetic
energy, black line, with linear fit, red line.

This is shown in Fig. 4.22. The decay parameter decreases linearly with increasing
energy, which clearly approves the conclusions drawn from the Poincaré plots. From
Fig. 4.22 we can extrapolate the critical energy Ecrit, where a stable drift surface is
formed at the edge of the ergodic zone, which confines all particles of the ergodic zone
inside the plasma. We obtain

λ = 0 ⇔ Ecrit = 2.176 MeV . (4.10.4)

The laminar zone is still open to the wall. From the Poincaré plots one can see that the
stable drift surface is formed between the 14/4 and 15/4 island chains, while the 15/4
island chain is the last remaining resonance at the transition of the ergodic to the laminar
zone.



4.10 Escape rates of particles and field lines 83

Figure 4.23: Square root of the decay parameter λ in dependency of the
perturbation current I0 for field lines, black line, with linear fit, red line.

This stabilization effect is compatible with the stabilization due to a reduction of the
perturbation current I0. Figure 4.23 shows the dependency of the square root of λ on
I0. Here we take only field lines into account. The escape rates of the field lines for
various perturbations follow the same exponential decay law (4.10.1) as the escape rates
of particles for various energies, but

λ ∼ (I0 − Icrit)
2 (4.10.5)

with the critical perturbation current Icrit, where a stable KAM surface is formed at the
edge of the ergodic zone. By extrapolation we get

λ = 0 ⇔ Icrit = 7.75 kA . (4.10.6)

The energy of the magnetic perturbation field scales with the square of the perturbation
current

E0 =
1

2
LI2

0 , (4.10.7)

while L is the sum of the inductances of the DED coils. Therefore, the stabilization effect
of decreasing perturbation is of the same order as the effect of increasing kinetic energy
and scales linearly with the corresponding energy. On the contrary to the tokamap, where
the characteristical decay parameter (2.4.7) for the escape rate scales with the third power
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of the perturbation parameter, the decay parameter of the drift map scales only with the
square of the perturbation. Note, in both cases the perturbation part of the Hamiltonian
scales linearly with the perturbation parameter.

4.11 Non-relativistic Limit

The kinetic energies of the particles in the plasma are given by the Maxwell distribution,
which means that the probability p to find a particle with the kinetic energy E obeys

p ∼ e−E/kT , (4.11.1)

while T is the temperature of the particles. Therefore, only some particles of the plasma
have energies equal or larger than the rest energy at the typical fusion plasma temperatures
of kT = 10 − 20 keV at the plasma center. Most of the particles have energies much
less than the rest energy so that they can be described non-relativistically. Because
the relativistic description, which is derived in the first three sections here, includes the
non-relativistic one as a special case, we can go to the E � ε0 limit to obtain the non-
relativistic Hamiltonian and equations of motion.

The relativistic Hamiltonian for the particle drift, using the toroidal angle as indepen-
dent variable, is given by Eq. (4.3.17) and reads

K = −fϕ − σ(1 + xc)
[
ε0(γ

2 − 1)− 2ωxIx
]1/2

(4.11.2)

with the normalized rest energy

ε0 =
c2

ω2
cR

2
0

(4.11.3)

and

γ =
−pt − φ

ε0

. (4.11.4)

The term

ε0(γ
2 − 1) = ε0

(
−pt − φ

ε0

)2

− ε0 (4.11.5)

is the only part of the Hamiltonian K, which depends on the normalized total particle
energy

H̃ = −pt . (4.11.6)

For the non-relativistic limit, we have to separate the non-relativistic part of the energy
from the total relativistic energy by subtracting the rest energy

H̃nr = H̃ − ε0 = −pt − ε0 =: −h . (4.11.7)

Here we introduced the canonical momentum h, which is used for the non-relativistic case.
It corresponds to the negative non-relativistic total energy. Inserting h into Eq. (4.11.5),
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we obtain

ε0

(
−pt − φ

ε0

)2

− ε0 = ε0

(
−h+ ε0 − φ

ε0

)2

− ε0 = ε0

[(
1 +

−h− φ

ε0

)2

− 1

]
. (4.11.8)

Going to the non-relativistic limit now means that the kinetic energy, given by the differ-
ence of total energy h and electric potential φ, is much smaller than the rest energy ε0.
Therefore, we introduce the smallness parameter

µ :=
−h− φ

ε0

� 1 . (4.11.9)

Now we can expand the right side of Eq. (4.11.8) into a power series with respect to µ

ε0

[
(1 + µ)2 − 1

]
≈ 0 + 2ε0µ+O(µ2) = 2(−h− φ) (4.11.10)

and neglect all higher orders of µ. Inserting this result into the relativistic Hamiltonian
K, we get the non-relativistic Hamiltonian

Knr = −fϕ − σ(1 + xc)
√

2(−h− φ− ωxIx) (4.11.11)

and the non-relativistic equations of motion [20]

dz

dϕ
=

1

Zq
(1 + xc)

[∂fϕ
∂xc

+ σ

(
2(−h− φ)− ωxIx − (1 + xc)

∂φ

∂xc

)
× (2(−h− ωxIx − φ))−1/2

]
(4.11.12)

dpz
dϕ

=
∂fϕ
∂z

− σ(1 + xc)
∂φ

∂z
(2(−h− ωxIx − φ))−1/2 (4.11.13)

dt

dϕ
= σ(1 + xc) (2(−h− ωxIx − φ))−1/2 (4.11.14)

dh

dϕ
=

∂fϕ
∂t

− σ(1 + xc)
∂φ

∂t
(2(−h− ωxIx − φ))−1/2 (4.11.15)

dϑx
dϕ

= σ (2(−h− ωxIx − φ))−1/2 (4.11.16)

dIx
dϕ

= 0 . (4.11.17)

In [20] the drift effects of non-relativistic ions were discussed. For ions the drift effects
are much larger than for electrons, because of the larger mass of the ions. Also ions can
be described non-relativistically at the same energy levels, where electrons are already
relativistic, due to the much larger rest energy of ions, e.g. 938.27 MeV for protons.
Because the results for the non-relativistic ions are similar to the results shown here for
electrons, they are not outlined here. Note, the only difference is that the results on
co-passing electrons correspond to the results on counter-passing ions, because of the
different sign of charge.
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4.12 Heat flux patterns in TEXTOR

After analyzing the dynamics of the chaotic DED system theoretically, we apply our
results, especially on the stable and unstable manifolds, to measurements of the heat flux
at the divertor plates of the TEXTOR-DED experiment. We will show that these heat
flux patterns can be explained and fully understood by the stable and unstable manifolds.
Especially the manifolds of the last island chain in the ergodic zone, which is located at
the transition to the laminar zone, will be important.

Figure 4.24: Measurement of the heat flux pattern with changing edge
safety factor qa at a fixed toroidal position of the divertor plates. The
red color indicates hot areas on the divertor plate. This measurement has
been done by M. Jakubowski at the TEXTOR-DED experiment of the
Forschungszentrum Jülich.

Figure 4.24 shows a measurement of the heat flux pattern in dependency of the
edge safety factor. This measurement has been done by Marcin Jakubowski from the
Forschungszentrum Jülich. The pattern is taken at a fixed toroidal position over a small
poloidal angle area. The figure shows the development of the heat flux with changing
edge safety factor

qa =
2πB0R0a

2

µ0Ip
(1 +

1

2
A1a

2 +
3

8
A2a

4) . (4.12.1)

The term in the brackets is a toroidal correction to the edge safety factor (3.3.10) of
the cylindrical model. The correction parameters are A1 = 3 + 2Λ + Λ2 and A2 =
5 + 4Λ + 3Λ2 + 2Λ3 + Λ4, which depend on the Shafranov parameter Λ. Note that a is
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the minor plasma radius, normalized with the major radius R0 of the torus. The edge
safety factor depends essentially on the plasma current Ip, which is varied here to change
qa. All other parameters are kept constant as follows: perturbation current I0 = 11.4 kA,
toroidal field B0 = 1.93 T, minor radius of plasma a = 0.437 m, major radius of plasma
Ra = 1.7 m, internal inductance li = 1.2 and plasma beta βpol = 0.45. The divertor plates
are located at a minor radius of rw = 0.477 m.

The measurement shows that at certain values of qa new strike zones appear, while
the former strike zone tends outwards, compared to the center of the figure, gets smaller
and finally vanishes. Important is that the strike zones are overlapping, which means that
the next strike zone appears, while the last one has not vanished. These structures of the
heat flux pattern can be explained by the theory of the stable and unstable manifolds.

As already mention, most of the plasma particles are moving with velocities close to
the thermal velocity

vth =

(
kT

m

)1/2

, (4.12.2)

given by the plasma temperature of kT = 10−20 keV at the plasma center. According to
our analysis of the drift effects for high energetic particles in Sec. 4.9, we have seen that
low energy particles are mainly following the magnetic field lines, while the high energy
particles are mainly confined inside the plasma. Therefore, we will analyze the heat flux
pattern with the field line dynamics.

In order to create the heat flux pattern of Fig. 4.24 theoretically, we calculated 97
laminar plots for different plasma currents, from Ip = 228 kA to Ip = 420 kA in 2 kA
steps. Connecting the values at the edges of these laminar plots, we obtain Figs. 4.25
and 4.26, using the same parameters as used for the measurement.

According to the definition of a laminar plot, the red colored areas correspond to the
strike points of those field lines with the wall, which have very large connection lengthes.
Here more than 10 toroidal iterations are needed for field lines of the red areas to get from
wall to wall inside the torus. From the analysis of the revtokamap and the cylindrical DED
model, we know that field lines which are exactly on the stable and unstable manifolds
have infinite connection lengthes so that the red colored areas are directly related to
the strike points of the stable and unstable manifolds with the wall. We know further
that the field lines are following the unstable manifolds to the wall. Therefore, the red
colored areas are identical to those areas of the wall, where the plasma particles are
hitting. Because the manifolds deeply penetrate the plasma, the largest amount of heat
deposition has to be at the strike points of the manifolds. But not only the unstable
manifolds are important. Although the field lines are following the unstable manifolds to
the wall, the plasma particles are either co-passing or counter-passing, which means that
they are either moving in the direction of the field lines and therefore are following the
unstable manifold, or against so that they are following the stable manifold, which is the
unstable one for the reverse direction. Because of this, Fig. 4.25 also shows the heat flux
pattern at the wall within the total poloidal angle area π − θc ≤ θ ≤ π + θc of the coils,
while in Fig. 4.26 the stripes around θ = 3.3 of Fig. 4.25 are magnified.
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Figure 4.25: Development of the wall pattern in
the total angle area 2θc of the DED coils at a fixed
toroidal position with decreasing edge safety factor
qa.

Figure 4.26: Magnification of the stripe around
θ = 3.3 of Fig. 4.25.

Figure 4.26 is in a very good agreement with the effects, we can see in the measurement.
We can identify various different strike zones, which are overlapping in the same way, we
are observing in the experiment. One can also clearly see the divergence of the two
stripes of strike zones with decreasing qa. Also quantitatively the agreement is very good,
according to the numbers of strike zones. In the measurement, we can clearly identify 4
different strike zones in the range of qa = 16/4 = 4 to qa = 12/4 = 3. In the numerical
calculation, we also count 4 strike zones in this qa range. The only slight difference is
that the inner branches of the ”c”-shaped strike zones cannot be clearly observed in the
measurement. But, as can be seen from Fig. 4.26, they are not as distinct as the outer
branches. We will come back to this later.

Now we analyze the structures in detail. We shall see that each strike zone is directly
related to the last resonance at the edge of the ergodic zone for the respective parameter
regime, which is then also the dominant one. Due to the decrease of the edge safety factor,
the resonances are shifted towards the wall and therefore, they are destroyed. We have
picked out three different cases to prove out statement. Figure 4.27 shows the drift map
for field lines for an edge safety factor of qa = 3.13. As one can see, the last resonance is
the 10/4 island chain. A stable manifold, given by the red line, and an unstable one, given
by the blue line, which hit the wall in the considered angle area of 3.15 ≤ θ ≤ 3.4, are
shown. These manifolds are manifolds of period 5 hyperbolic points, which are located
in the 10/4 island chain. According to the corresponding laminar plot, Fig. 4.28, one can
see that, as already known, the red colored areas are given by the manifolds. Further,
the left strike zone is given by the stable manifolds, while the right one is given by the
unstable ones.

Each ”c”-shaped strike zone has two branches. Due to the overlap of the strike zones,
there are several branches the manifolds can be related to. Using the laminar plots, we
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Figure 4.27: Drift map for field lines with qa =
3.13. Stable (red line) and unstable manifold (blue
line) for the strike zones of Fig. 4.26 are shown.

Figure 4.28: Laminar plot of the relevant angle
area close to the wall, corresponding to Fig. 4.27.
The stable (white line) and unstable manifold
(black line) are shown.

Figure 4.29: Same as Fig. 4.27 but for qa = 3.03. Figure 4.30: Same as Fig. 4.28 but corresponding
to Fig. 4.29

Figure 4.31: Same as Fig. 4.27 but for qa = 2.94. Figure 4.32: Same as Fig. 4.28 but corresponding
to Fig. 4.31
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can clearly identify which branches are related to the considered manifolds. In Fig. 4.33,
which is a magnification of the last three strike zones of Fig. 4.26, the strike points
of the stable and unstable manifolds with the wall are shown as white and black points,
respectively. The points indexed with ”1” correspond to the strike points of the manifolds
of Figs. 4.27 and 4.28. Therefore, we can conclude that these strike zones are related to
the 10/4 resonance.

The dominance of the 10/4 resonance can be concluded from Fig. 4.29. Here the drift
map is shown for a smaller value of qa = 3.03. For this value of qa the 10/4 resonance has
become very small, but it is still present. The stable and unstable manifolds, which are
shown, are manifolds of period 9 hyperbolic points of the 9/4 resonance, located below
the 10/4 resonance. Their strike points at the wall are marked by the white and black
points, respectively, which are indexed by ”2” in Fig. 4.33. These strike points are located
in the branches, which belong to the 10/4 resonance strike zone. So the 10/4 resonance
is still dominant, because the manifolds of the period 9 hyperbolic points pass the 10/4
island chain on their way to the wall. As already mentioned in previous sections, the
manifolds then converge towards the manifolds of the last island chain and follow their
path towards the wall. This shows that all resonances below the last, dominant one and
their manifolds have no direct effect on the wall pattern.

To underline this conclusion, we consider a third case with qa = 2.94. For this case,
the drift map is shown in Fig. 4.31. Here we can see that the 10/4 island chain is just
destroyed and now the 9/4 island chain is the last one. The shown unstable manifold
corresponds to a period 9 hyperbolic point. The laminar plot for this case, figure 4.32,
shows that this unstable manifold, given by the black line, rules the main branch of the
right strike zone. According to Fig. 4.33, where the strike point of this manifold is given
by the black point, indexed with ”3”, this branch belongs to the next ”c”-shaped strike
zone. So we can conclude that this is the strike zone of the 9/4 resonance, which has right
now become dominant.

Figure 4.33 combines all results of the detailed structure analysis. Each strike zone
is related to one resonance of the Poincaré section. This resonance is the last remaining
island chain at the edge of the ergodic zone for the respective qa value. This resonance
dominates all other resonances below, because to their way to the wall, the field lines have
to pass this last resonance. Decreasing the edge safety factor shifts the resonances towards
the wall, whereas they are destroyed. Therefore, at a certain point, when this island chain
is destroyed, the next resonance becomes dominant, which results in a new strike zone.
Which strike zone belongs to which resonance can be determined by the analysis of the
stable and unstable manifolds and is shown in Fig. 4.33. When the next resonance becomes
dominant, most of the particles hit the wall at the corresponding strike zone. The effects of
the previously dominant resonance, although it can no longer be observed in the Poincaré
plot, have not completely vanished. Because the dominant resonance can only rule the
effects of itself and the resonances below, the effects of resonances above are not affected.
This explains the overlapping of the strike zones. Even if the main effects are given by
the dominant resonance and even if the resonances above can no longer be observed in
the Poincaré plot, there are still some small influences of them. These small influences
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Figure 4.33: Magnification of the last 3 strike zones of Fig. 4.26. The to the strike
zones corresponding resonances are marked. The strike points of several stable
(white points) and unstable manifolds (black points) are shown.

vanish not until the value of qa has reached the q-value of the respective resonance.

According to the analysis of the stable and unstable manifolds, the strike zones of one
stripe are all related to either the stable or the unstable manifolds. For Figs. 4.26 and 4.33
this means that the upper stripe is created by the unstable manifolds, while the lower one
is created by the stable manifolds. Then for the four dual stripe structures in Fig. 4.25
the same conclusion is valid. As one can easily see, Fig. 4.25 is symmetrical to θ = π,
but the dual stripe structures themselves are not symmetrical. According to Fig. 4.33 the
strike zones, related to the same resonance, appear at smaller values of qa the closer the
stripes are to the symmetry axis θ = π. This effect is caused by the Shafranov shift of
the plasma towards the coils.

As already mentioned, the inner branches of the strike zones, according to Figs. 4.26
and 4.33, cannot be clearly observed in the measurement. As it can be seen from the
measurement, the outer branches are much more distinct than the inner ones. This can
be anticipated also from the figures. For the detailed analysis of the structures, the
manifolds have been calculated. The numerical calculation of the various manifolds of
one island chain depends on certain initial conditions, e.g. for the Newton method of
the mapping procedure, and parameters like the step-size. This parameter regime is not
similar to all manifolds. Most of the manifolds can be calculated easily with a broad
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spectrum of parameters, but other manifolds can only be calculated with very specific
combinations of parameters. Due to this fact, not all manifolds of the considered island
chains have been found. The ones which habe been found and are shown here, all strike
at the outer branches, which are the dominant parts of the strike zones, according to the
measurements. This indicates that the problem of the manifold calculation is not only
numerical. Different manifolds have different basins of attraction, which means that some
manifolds are attracting a large amount of the particles, while other manifolds only attract
few. These dominant manifolds are the ones striking at the outer branches. This explains
the strong dominance of the outer branches and the numerical problems of calculating all
manifolds. The laminar plot on the other hand shows all effects of all manifolds, and it is
difficult to decide, which structures of the laminar plot are the dominant ones. Only the
combination of laminar plots with stable and unstable manifolds reveals the dominant
effects and structures. The combination of both is then in perfect agreement with the
measurements.



Chapter 5

Summary and conclusion

Using the Hamiltonian mapping technique, presented in Sec. 2.2, we analyzed the wall
patterns and transport mechanisms in open chaotic systems. For this purpose we used
the stable and unstable manifolds of hyperbolic periodic points in particular.

First we studied a basic model. For this, we derived the symmetric tokamap and
compared it with the non-symmetric one, originally proposed by Balescu, by analyzing
their statistical properties. We found that there are some important qualitative and
quantitative differences between both maps. The non-symmetric tokamap cannot be
constructed from a similar continuous Hamiltonian system under the constraints of the
Hamiltonian and generating function as discussed in Sec. 2.1.

The quasi-linear diffusion was analyzed for very large perturbation parameters. Both
maps show the same diffusive behavior and the same dependency of the diffusion coefficient
on the perturbation parameter ε. The diffusion coefficient is proportional to ε2. Compared
to the quasi-linear diffusion coefficient of the standard map, the q-profile is responsible
for a different behavior of the diffusion coefficient around its mean value (the quasi-linear
limit). The quasi-linear diffusion coefficient of the tokamap is smaller than the one of
the standard map. This can be explained by the density distribution of the intersection
points of the field lines with the (ψ, ϑ)-plane. For very large perturbations, ε � 1, the
points are equally distributed on the plane, but very close to ψ = 0 the density increases
extremely; it even tends to infinity at ψ = 0.

The critical perturbations for the break-up of the two last intact KAM surfaces of both
maps were determined. The symmetric tokamap is much more robust against perturba-
tions than the non-symmetric one. Qualitatively, this can be recognized from Figs. 2.1
and 2.2. Quantitatively, this impression was confirmed by determining the critical per-
turbations for the break-up of KAM surfaces. The critical parameters are significantly
larger for the symmetric tokamap than for the non-symmetric one. More important is
that the order for the break-up of the two surfaces is different in both maps. For the
anomalous transport behavior through the noble KAM tori [29] we derived the depen-
dency of the escape rates on the perturbation parameter for the symmetric tokamap. The
number of ”test-particles” below the broken KAM surface decays exponentially, while the
characteristic parameter scales with the third power of ε.
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Typical structures of stable and unstable manifolds were presented in Figs. 2.6 and 2.7.
The appearance of chaos around the hyperbolic points was explained by the structures
and the interactions of the stable and unstable manifolds. The hyperbolic points are the
source of chaotic motion. Due to the slightest perturbation the ideal separatrix splits
into the stable and unstable manifold, which show a strong oscillatoric behavior close to
the hyperbolic points. Due to the intersection of the loops of the stable manifold with
the loops of the unstable one, a fractal structure is formed, which causes chaotic motion
around the hyperbolic points.

Transport between different stochastic layers was explained by the overlap of the
manifolds of neighboring island chains, shown in Fig. 2.8. The transport mechanism was
described and is sketched in Fig. 2.9. The break up of intact KAM surfaces and the
anomalous transport through the just broken KAM surface are caused by intersections of
the manifolds. Therefore, the manifolds are playing a fundamental role in the formation
of stochastic layers and chaotic transport mechanisms.

The proposed [29] spontaneous inversion of the q-profile due to perturbations does
not exist. However, when already the zeroth-order q-profile shows a reverse-shear be-
havior, the so called symmetric revtokamap can be derived. The symplectic symmetric
revtokamap differs considerably from the previously proposed non-symmetric revtokamap.
The open chaotic system can be characterized by the laminar plots, which have been in-
troduced in this context. The laminar plots characterize basins of field line connection
lengthes for wall to wall connections inside the plasma. The topological structure of the
laminar plots can be understood from the geometrical behavior of the stable and unstable
manifolds of the last island chain. It is a fractal one. Dividing the structures of the
laminar plot into the structures created by forward or backward iteration only, we have
seen that the stable and unstable manifolds of the last island chain determine the border
lines between the basins. This indicates that the manifolds of the hyperbolic points of the
last island chain are responsible for the transport to the wall. Their topological structures
determine the so called footprints at, e.g., the divertor plates.

The results, discussed for the tokamap and the revtokamap, are typical for the mag-
netic field line behavior in stochastic plasmas. The methods proposed can be used to
investigate various applications, e.g. the DED at TEXTOR. Therefore, we considered the
cylindrical DED model to apply the previous results to a more realistic model. Although
the real TEXTOR-DED experiment of the Forschungszentrum Jülich has a toroidal ge-
ometry, we started with a cylindrical model to concentrate on the effects of the DED
itself. Due to the toroidal geometry several corrections would have to be applied to, e.g.,
the safety factor and the perturbation spectrum. The most important advantage of the
cylindrical model is that it can be calculated totally analytical.

We calculated the magnetic field of the DED coil system, regarding the geometry and
a considered current distribution. Then the Hamiltonian was derived, using the Clebsch
representation, and finally in Sec. 3.5 the DED map was constructed in the symmetrical
form, according to the mapping technique. The typical structure of the DED map can
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be seen in Fig. 3.4. To classify the open chaotic DED system we analyzed its statistical
properties. The DED system shows subdiffusive transport behavior, which was concluded
from the MSD. For long time iterations, the MSD decreases due to the loss of field lines.
Only the ones, sticking around the islands, remain. To characterize the stochastic motion
within the chaotic layers, the Lyapunov exponent was calculated in Sec. 3.6. It shows no
dependency on the poloidal angle, while the mean value depends on the radius. Using the
mean Lyapunov exponent the Kolmogorov length has been introduced. According to the
variation of the Kolmogorov length with the radius, the ergodic and laminar zones were
specified.

The typical structures of the stable and unstable manifolds of the DED map were
presented in Fig. 3.9. The analysis of the manifolds clearly showed that the field lines are
following the unstable manifolds to the wall. The sticking around the islands is also related
to the manifolds. The finger-like structures of the DED map are ruled by the unstable
manifolds, especially the ones of the last island chain. This underlines the conclusions,
drawn from the revtokamap, that the heat and particle transport to the wall and the wall
patterns are primarily created by the stable and unstable manifolds of the last resonance.

Also the structures within the laminar zone were analyzed, using the laminar plot.
Again we confirmed the results from the revtokamap that the structures of the laminar
zone, as seen in Fig. 3.10, are given by the stable and unstable manifolds similar to
the revtokamap. The fingers of the Poincaré plot have very large connection lengthes
compared to the areas in between, caused by the manifolds, which have infinite connection
lengthes. Due to the deep penetration of the manifolds into the ergodic zone, the hot
plasma is connected to the wall along the manifolds and therefore along the fingers.

Finally, we extended the DED model to the real toroidal geometry and included parti-
cles and their drift effects, described relativistically. Starting with the general relativistic
form of the Hamiltonian for a charged particle in an electromagnetic field, we applied a
guiding center transformation to eliminate the fast gyration of the particles around the
field lines. In Sec. 4.3 the Hamiltonian and the equations of motion, using the toroidal
angle as the independent variable, for the guiding center drift were derived. The model
for the toroidal main field in TEXTOR, including toroidal corrections like the Shafranov
shift, was introduced, according to [5, 19]. Combined with the perturbation field of the
DED, derived from the cylindrical DED model, a four dimensional mapping procedure
was constructed in Sec. 4.7 for the drift of relativistic particles in a time dependent DED
field. Assuming that the DED operates statically, the four dimensional mapping reduces
to the already well known two dimensional case. The spectrum of the perturbation and
the transit frequencies of the toroidal main field can no longer ba calculated analytically.
They have to be determined numerically.

The drift effects of high energetic relativistic electrons were studied. The shift of the
surfaces with constant safety factor, caused by the drift, were discussed on the basis of
Figs. 4.2-4.5. The surfaces of co-passing electrons are shifted outwards with increasing
kinetic energy, while the surfaces of counter-passing electrons are shifted inwards. From



96 Chapter 5. Summary and conclusion

the Hamiltonian equations of motion an ordinary differential equation was derived, which
describes the developing of surfaces of constant safety factor in the (θ, r)-plane. The
comparison with the mapping results showed excellent agreement.

Including the perturbation, the developing of the chaotic plasma edge with increas-
ing kinetic particle energy was shown for co- and counter-passing electrons. Generally,
particles with high kinetic energy do not really feel the chaotic magnetic field, while low
energetic particles are mainly following the field lines. The very high energetic electrons
with kinetic energies larger then about 10 MeV are totally confined inside the plasma.
The last intact drift surface is located directly beneath the wall. This is a high energy
effect, because the electrons are moving so fast inside the torus that they cannot react
on the chaotic magnetic field. This can be clearly seen in the Figs. 4.17 and 4.19 for the
10 MeV and 15 MeV counter-passing electrons, respectively, which are shifted towards the
coils, where the perturbation field is much larger. Nevertheless, they show a very regular
behavior. This result was quantitatively confirmed by the analysis of the dependency of
the escape rates on the kinetic energy. It was shown that the characteristic parameter λ
for the exponential decay decreases linearly with increasing kinetic energy. The critical
energy level for the confinement of the ergodic zone was extrapolated. It was also shown
that λ increases with the square of the difference between the perturbation current and
the critical perturbation, which was also extrapolated. We concluded that generally λ
scales linearly with the corresponding energy.

At the typical plasma core temperatures most of the particles have kinetic energies
much less than the rest energy, so that they can be described non-relativistically. In
Sec. 4.11 the non-relativistic limit was derived from the general relativistic equations. The
non-relativistic Hamiltonian and the equations of motion are shown, which are identical
to the results of the non-relativistic model [20].

We considered a measurement of the development of the heat flux pattern at the
divertor plates with changing edge safety factor, shown in Fig. 4.24, performed by M.
Jakubowski at the TEXTOR-DED in Jülich. In Fig. 4.26 it is shown that the structures
of the heat flux measurement can be calculated theoretically. We used the structures of
laminar plots at the wall, which were calculated for field lines, according to the result
that thermal particles are following the field lines. It was explained, that the structures
of the laminar plots, which are related to the stable and unstable manifolds, are corre-
sponding directly to the heat flux pattern. From the analysis of the Poincaré plots and
the manifolds for several cases with different edge safety factors, we concluded that each
strike zone is related to one resonance of the Poincaré section. This resonance is the
last remaining island chain at the edge of the ergodic zone for the respective qa value.
This resonance dominates all other resonances below. Decreasing the edge safety factor
shifts the resonances towards the wall, whereby they are destroyed. So, the next reso-
nance becomes dominant, which results in a new strike zone. Which strike zone belongs
to which resonance was determined by the analysis of the stable and unstable manifolds
and is shown in Fig. 4.33. The overlapping of the strike zones was explained. When the
next resonance becomes dominant, most of the particles hit the wall at the corresponding
strike zone, but the effects of the resonance above, although it can no longer be observed
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in the Poincaré plot, have not completely vanished. These small influences vanish not
until the value of qa has reached the q-value of the respective resonance. We explained
that the outer branches of the strike zones are the dominant ones. This fact is related to
the different basins of attraction of the certain manifolds, which is also reflected in the
numerical problem of finding all manifolds of one island chain. Only the combination of
laminar plots with stable and unstable manifolds can reveal the dominant structures.

All necessary numerical codes were developed and implemented in C++ within the
framework of this thesis. This includes the mapping codes for the creation of the Poincaré
plots, the codes for the laminar plots, the codes for the determination of periodic points
and their stable and unstable manifolds and the codes for the calculation of the statistical
properties for all presented models. Also a code for the explicitly time depending four
dimensional mapping was developed and implemented, although no results were shown
here. For the visualization of the colored contour plots, like laminar plots, the MATLAB
software was used.

In summary, we explained the formation of chaotic layers, the transport mechanisms
within chaotic layers and between neighboring ones, using the concept of the stable and
unstable manifolds. It was shown that the wall patterns and the heat and particle trans-
port is related to the manifolds and can be explained by them. We showed and studied
the drift effects of high energetic relativistic electrons in comparison to the field line dy-
namics. From this analysis we concluded that the low energetic particles are following
the field line dynamics. Using these results, we were able to calculate, analyze and ex-
plain the structures of measurements of heat flux patterns at the divertor plates of the
TEXTOR-DED fusion experiment.
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Appendix

A Discrete Schrödinger map

The stable and unstable manifolds can be used for various applications. In every type of
map that includes unstable objects like hyperbolic points, the dynamics are dominated by
the manifolds of these unstable objects. In this thesis we only considered maps which rep-
resent the Poincaré plot of magnetic field lines, described by a Hamiltonian system. Now
we consider a map, induced by the discrete nonlinear Schrödinger equation (DNS) [24].
Using the discrete Schrödinger map, called DNS map, we can construct stationary solitary
solutions of the DNS by analyzing the stable and unstable manifolds of the DNS map.

The discrete Schrödinger map

i∂tψj + ψj+1 − 2ψj + ψj−1 + (σ + 1)|ψj|2σψj = 0 (A.1)

is the discrete form of the well known nonlinear Schrödinger equation [37, 38, 39]

i∂tψ + ∂2
xψ + (σ + 1)|ψ|2σψ = 0 . (A.2)

We are only interested in stationary solutions of Eq. (A.1). Therefore, we use the ansatz

ψj = Gje
iλt (A.3)

on Eq. (A.1) and obtain for the stationary DNS

Gj+1 − 2Gj +Gj−1 = λGj − (σ + 1)|Gj|2σGj . (A.4)

Using the definitions
θn = Gn , Jn = θn − θn−1 , (A.5)

we can rewrite Eq. (A.4) to some sort of generalized form of standard map

Jn+1 = Jn + f(θn) (A.6)

θn+1 = θn + Jn+1 (A.7)

with
f(θn) = λθn − (σ + 1)|θn|2σθn . (A.8)
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Figure 1: DNS map for λ = 0.2 Figure 2: DNS map for λ = 1

Figure 3: DNS map for λ = 2 Figure 4: DNS map for λ = 4

Here λ is the control parameter, while σ specifies the degree of nonlinearity. In the
following, we only consider σ = 1. The existence and the shape of solitary solutions for
the stationary DNS (A.4) are shown in [24]. Here we will derive these solutions from the
DNS map (A.6)-(A.7), using the stable and unstable manifolds.

First, we analyze the DNS map, regarding its dependency on the control parameter
λ. As one can see from Fig. 1, the DNS map has two islands on the J = 0 axis for
small values of λ. The map is symmetrical with respect to the center and shows chaotic
behavior outside the islands. Between the islands directly in the center (0, 0) of the map,
there is a period 1 hyperbolic point, which will be of great interest to us in the following.
For larger values of λ, λ ≥ 1, the islands vanish, as shown in Figs. 2 and 3. At λ = 4
the islands do not exist any longer, as one can see in Fig. 4, but the hyperbolic point at
the center remains and characterizes the dynamics of the system. To be more precise, the
stable and unstable manifolds of the hyperbolic point characterize the dynamics, because
all points of the system are following the unstable manifold away from the hyperbolic
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point, while the stable one drives the points closer to the unstable one.

Figure 5: DNS map for λ = 4 with unstable (solid line) und stable (dashed line)
manifold of the hyperbolic point at the center (cross). Intersections of the manifolds
are shown by the circles.

Figure 5 shows the stable and unstable manifold of the hyperbolic point at the center
and their intersections. Here only 26 intersection points are marked additionally to the
fixed point, because the manifolds are plotted only up to a certain length. In fact the
manifolds have infinite lengthes and there is an infinite number of intersections between
the stable and unstable manifold. All iterations, backwards or forwards, of an intersec-
tion point are again intersection points, because they must be part of the stable and the
unstable manifold. These intersection points are specifying the solitary solutions of the
stationary DNS. Due to the definitions of the manifolds, all forward iterations converge
against the hyperbolic point along the stable manifold, while on the other hand all back-
ward iterations also converge against the hyperbolic point along the unstable manifold.
Thus, we can construct puls shaped solitary solutions of the stationary DNS, while all
points of the solutions are intersection points of the manifolds. There can be no further
solitary solution of the stationary DNS, because other points of the DNS map do not
converge towards the center for t→∞ and t→ −∞.

Figure 6 shows four different solitary solutions of the stationary DNS, constructed by
the iterations of intersection points, as described above. They are all symmetrical to the
y-axis at n = 0 and have even parity, but there are also more solutions with even parity,
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Figure 6: Four different solitary solutions of the
stationary DNS with even parity at λ = 4

Figure 7: Four different solitary solutions of the
stationary DNS with uneven parity at λ = 4

which are not shown here. Figure 7 shows also four different solitary solutions, but now
with uneven parity. Some of the solutions presented here are also shown in [24].

Using the method described here, one can construct solitary solutions of discrete equa-
tions, as long as this equation can be rewritten to a map, e.g. (A.6)-(A.7), and this map
has a hyperbolic point at the center. Here we have also shown the importance of the
stable and unstable manifolds for other dynamical system then stochastic magnetic fields.
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B Applying the Poisson summation rule

Here we perform the conversion of Eq. (3.1.7)

J =
8I0
θcrc

g(θ)
∞∑

j=−∞

sin(
j

2
π + ωt)δ(j − n) (B.1)

into Eq. (3.1.9)

J =
8I0
θcrc

g(θ)
∞∑
k=0

sin((−1)k
1

2
π(2k + 1)n+ ωt) , (B.2)

as mentioned in Sec. 3.1. For this we use the Poisson summation rule (3.1.8). We begin
with a straightforward manipulation of the sum over j of Eq. (B.1)

∞∑
j=−∞

sin(
jπ

2
+ ωt)δ(j − n) =

∑
j

sin(
jπ

2
) cos(ωt)δ(j − n) +

∑
j

cos(
jπ

2
) sin(ωt)δ(j − n)

=
∑

k, j=2k+1

(−1)k cos(ωt)δ(j − n) +
∑

k, j=2k

(−1)k sin(ωt)δ(j − n)

= cos(ωt)
∑
k

δ
(
(−1)k((2k + 1)− n)

)
+ sin(ωt)

∑
k

δ
(
(−1)k(2k − n)

)
= cos(ωt)

[ ∑
l, k=2l

δ(4l + 1− n)−
∑

l, k=2l+1

δ(4l + 3− n)

]

+ sin(ωt)

[ ∑
l, k=2l

δ(4l − n)−
∑

l, k=2l+1

δ(4l + 2− n)

]

=
1

4
cos(ωt)

[∑
l

δ(l − n− 1

4
)−

∑
l

δ(l − n− 3

4
)

]

+
1

4
sin(ωt)

[∑
l

δ(l − n

4
)−

∑
l

δ(l − n− 2

4
)

]
=: T .

Now we can apply the Poisson summation rule

∞∑
j=−∞

δ(j − n) = 1 + 2
∞∑
k=1

cos(2πkn) (B.3)
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to the preliminary result T and obtain

T =
1

4
cos(ωt)

[
1 + 2

∞∑
p=1

cos(2πp
n− 1

4
)− 1− 2
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p=1

cos(2πp
n− 3

4
)

]

+
1

4
sin(ωt)

[
1 + 2

∞∑
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cos(2πp
n

4
)− 1− 2
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cos(2πp
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4
)

]
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2
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(
cos(

1

2
πpn) cos(

1

2
πp) + sin(

1

2
πpn) sin(
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2
πp)

)

−
∑
p

(
cos(

1

2
πpn) cos(

1

2
πp)− sin(

1

2
πpn) sin(

1

2
πp)

)]

+
1

2
sin(ωt)

[∑
p

cos(
1

2
πpn) +

∑
p

(−1)p+1 cos(
1

2
πpn)

]
.

Here we used cos(3
2
πp) = cos(1

2
πp) and sin(3

2
πp) = − sin(1

2
πp). We obtain further

T = cos(ωt)

[
∞∑
p=1

sin(
1

2
πpn) sin(

1

2
πp)

]
+ sin(ωt)

∞∑
k=0, p=2k+1

cos(
1

2
π(2k + 1)n)

= cos(ωt)

[
∞∑

k=0, p=2k+1

(−1)k sin(
1

2
π(2k + 1)n)

]
+ sin(ωt)

∞∑
k=0, p=2k+1

cos(
1

2
π(2k + 1)n)

=
∞∑
k=0

(
cos(ωt) sin((−1)k

1

2
π(2k + 1)n) + sin(ωt) cos((−1)k

1

2
π(2k + 1)n)

)
=

∞∑
k=0

sin((−1)k
1

2
π(2k + 1)n+ ωt) .

Inserting this result into Eq. (B.1), we finally find Eq. (B.2).
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C Equivalent form of the DED map’s generating func-

tion

There is another representation of the generating function S, which is equivalent to
Eq. (3.5.6), but easier to handle with respect to derivation, and similar to the form (2.2.17),
derived commonly from the mapping technique in Sec. 2.2. It reads

S = −
∑
m

Gm(ψ) [h1(z) sin(y) + h2(z) cos(y)] (C.1)

with the shortcuts

z := mΩ− n0 , y =: mθ − n0ϕ+ ωt , k = ϕ− ϕ0 (C.2)

and

h1(z) :=
sin(kz)

z
→ k for z → 0 , h2(z) =

cos(kz)− 1

z
→ 0 for z → 0 . (C.3)

For the derivatives we get

∂S

∂θ
=

∑
m

mGm(ψ) [−h1(z) cos(y) + h2(z) sin(y)]

∂S

∂ψ
=

∑
m

mGm(ψ)

{
−
[
h1(z)

2ψ
+ Ω′h′1(z)

]
sin(y)−

[
h2(z)

2ψ
+ Ω′h′2(z)

]
cos(y)

}
∂2S

∂ψ∂θ
=

∑
m

m2Gm(ψ)

{
−
[
h1(z)

2ψ
+ Ω′h′1(z)

]
cos(y) +

[
h2(z)

2ψ
+ Ω′h′2(z)

]
sin(y)

}
with

h′1(z) =
k cos(kz)− h1(z)

z
→ 0 for z → 0 (C.4)

h′2(z) = −kh1(z)−
h2(z)

z
→ −1

2
k2 for z → 0 , (C.5)

and for the second derivatives we get

∂2S

∂ψ2
=

∑
m

mGm(ψ)

{[
−m− 2

4ψ2
h1(z) +

(
−m
ψ

Ω′ − Ω′′
)
h′1(z)−mΩ′2h′′1(z)

]
sin(y)

+

[
−m− 2

4ψ2
h2(z) +

(
−m
ψ

Ω′ − Ω′′
)
h′2(z)−mΩ′2h′′2(z)

]
cos(y)

}
(C.6)

∂2S

∂θ2
=

∑
m

m2Gm(ψ)[h1(z) sin(y) + h2(z) cos(y)] (C.7)
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with

h′′1(z) = −k2h1(z)− 2
h′1(z)

z
→ −1

3
k3 for z → 0 (C.8)

h′′2(z) = −kh′1(z) + k
h1(z)

z
+ 2

h2(z)

z2
→ 0 for z → 0 . (C.9)

Note, that y and k are defined in another way as in Sec. 3.5. This form of the generating
function is used in the literature by S. Abdullaev [4, 5], but it is totally equivalent to the
form used in this thesis.
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Dissertation. Ich danke auch besonders Herrn Dr. S. Abdullaev vom Forschungszentrum
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