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A B S T R A C T

Many dynamic languages are implemented using traditional inter-
preters because implementing just-in-time (JIT) compilers for them
is too complex. This limits their performance and restricts their ap-
plicability. This thesis describes meta-tracing, a technique that makes
it possible to apply a single tracing JIT compiler across a wide va-
riety of languages. Meta-tracing is flexible enough to incorporate
typical JIT techniques such as run-time type feedback and unboxing.
With the help of several case studies, meta-tracing is applied to vari-
ous language implementations. Performance measurements of using
meta-tracing show improvements by up to factor 50 for implemen-
tations of production languages. Meta-tracing can thus simplify the
implementation of high-performance virtual machines for dynamic
languages significantly, making these languages more practical in a
wider context.
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Z U S A M M E N FA S S U N G

Viele dynamische Programmiersprachen sind durch klassische In-
terpreter implementiert, weil das Implementieren von Just-in-
Time-Compilern für sie zu komplex ist. Dies schränkt ihre
Geschwindigkeit und ihre Anwendbarkeit ein. In dieser Arbeit
wird Meta-Tracing beschrieben, eine Methode, die es möglich macht,
einen einzigen Tracing-JIT-Compiler auf eine große Bandbreite an
Sprachen anzuwenden. Der Ansatz ist flexibel genug, typische JIT-
Techniken zu ermöglichen, z.B. Laufzeit-Typ-Feedback und Unbox-
ing. Mit Hilfe mehrerer Fallstudien wird Meta-Tracing evaluiert,
indem es auf verschiedene Sprachimplementierungen angewendet
wird. Geschwindigkeitsmessungen zeigen Verbesserungen von bis
zu einem Faktor 50 für Implementierungen von Produktionssprachen.
Meta-Tracing kann deshalb die Implementierung von schnellen
virtuellen Maschinen für dynamische Programmiersprachen sig-
nifikant erleichtern und diese Sprachen so für einen breiteren Kontext
anwendbar machen.
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Part I

I N T R O D U C T I O N A N D M O T I VAT I O N





1
I N T R O D U C T I O N

Dynamically typed languages1 have seen a steady rise in popularity
in the last decade. JavaScript is increasingly used to implement full-
scale applications, which run within a browser. Dynamic languages
are also used for the server side of many Web applications, as well
as in various other areas, such as scientific programming, finance,
desktop applications, and many more.

The performance penalties their implementations impose is com-
monly cited [Tra09] as one of the drawbacks of dynamically typed
languages. Often they are slower than implementations of statically
typed languages. Advanced techniques for improving the perfor-
mance of dynamic languages are not as widely used as one would
expect. Many dynamic language implementations use bytecode-
interpreters without advanced implementation techniques like just-
in-time (JIT) compilation (which, among other techniques, has been
investigated in the Self project [Hö94]).

There are several reasons for the limited use of JIT compilers. Most
are due to the inherent complexities of compilation. Interpreters are
simple to implement, understand, extend, and port, whereas writ-
ing a JIT compiler is an error-prone task that is made harder by the
dynamic features of a language. The features that make implement-
ing a dynamic language hard include late binding of name lookups,
run-time type dispatching, and boxing of primitive types. Popular
languages such as JavaScript, Ruby, PHP, and Python have very com-
plex core semantics with many corner cases, which makes it difficult
to implement them efficiently. A JIT compiler for such a language
needs to correctly handle the (often unexpected) interactions of all its
language features while still generating efficient code for the common
case.

The solution proposed in this thesis is meta-tracing. Meta-tracing
is a language implementation technique that makes it easier to effi-
ciently execute dynamic languages without having to write a dedi-
cated JIT compiler for each of them.

Tracing JITs are a recent approach to write JIT-compilers for dy-
namic languages with relative ease [GPF06, CBY+

07]. Contrary to
most other existing tracing JITs, a meta-tracing JIT does not trace the
execution of user programs but the execution of the interpreter itself.
This property makes meta-tracing JITs applicable to interpreters of
different languages. The process of applying a meta-tracing JIT to an

1 In the rest of the thesis the term dynamic language will be used synonymously.
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6 introduction

interpreter of a new language is not fully automatic; it needs a small
number of hints from the author of the interpreter.

After these basic hints are added, the meta-tracing JIT compiler
can map the control flow of the dynamic language to machine code.
By adding further hints to the object model supported by the par-
ticular interpreter, meta-tracing can also be made especially useful
for optimizing object model operations, such as method dispatch.
This is usually one of the hardest parts of implementing an object-
oriented dynamic language well, made more difficult by the men-
tioned complexity of the core object semantics of many dynamic lan-
guages. Since the meta-tracer traces the execution of the interpreter,
the object model implementation is transparent to the tracer and its
optimizations. Therefore the semantics of the dynamic language does
not have to be replicated or even considered in the JIT. However, bare
meta-tracing lacks detailed knowledge about how to optimize the
specifics of the object model of the language at hand.

This problem is solved by making two more annotations available
to the language implementor. Conceptually, the significant speed-ups
that can be achieved with dynamic compilation depend on feeding
into compilation values observed at run-time and exploiting them.
The annotations provided make it possible to implement such feed-
back and exploitation in a meta-tracing context. They can be used
to express many classic implementation techniques used for object
models of dynamic languages, such as run-time type feedback and
maps.

Due to the dynamic typing, variables in dynamic languages can
potentially store all sorts of objects, even integers, floats, booleans,
in addition to instances of user-defined classes. On the implemen-
tation side this makes it necessary to give all these types a uniform
representation in memory. Therefore those primitive types are usu-
ally boxed, meaning that a small heap-structure is allocated for them
that contains the actual value. Boxing primitive types can be very
costly, because a lot of common operations, particularly all arithmetic
operations, have to allocate new boxes, in addition to the actual com-
putation.

Type dispatching is the process of finding the concrete implemen-
tation that is applicable to the objects at hand when performing a
generic operation on them. An example is the addition of two ob-
jects: For addition the types of the concrete objects need to be checked
and the proper implementation chosen. Type dispatching is a very
common operation in modern2 dynamic languages because types are
unknown at compile time. Therefore all operations need it, which
makes optimizing them particularly important.

2 For languages in the Lisp family, basic arithmetic operations are not always over-
loaded; even in Smalltalk, type dispatching is much simpler than in Python or
JavaScript.
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The overhead of boxing primitive types and of type dispatching
are therefore two further performance problems that many dynamic
language implementations have. These are two problems that are
important for the efficient execution of dynamically typed languages
and that are usually not present or at least less severe in statically
typed languages. The third part of the meta-tracing approach is thus
a very powerful language-independent optimization to remove the
overhead of boxing and type dispatching. The optimization takes
traces produced by the meta-tracer and removes unneeded operations
from them.

These three elements – enabling meta-tracing, making it possible
to express language-specific object semantics and optimizing boxing
and type dispatching overhead – are fully implemented in MetaJIT.
MetaJIT is our implementation of meta-tracing in the context of the
PyPy project.

PyPy is trying to find approaches to ease the implementation of
dynamic languages. It started as an implementation of Python in
Python, but has now extended its goals to be useful for implementing
other dynamic languages as well. The general approach is to imple-
ment interpreters for the languages in RPython, a restricted subset of
Python. This subset is restricted in such a way that programs written
in it can be compiled into a C program.

How well MetaJIT and the techniques it implements work, how
hard they are to apply, and what effects they have is evaluated in this
thesis with several experiments. For these experiments, meta-tracing
is applied to three interpreters of different size and for different lan-
guages. On the one hand, meta-tracing is applied to a regular ex-
pression engine to show a full and useful interpreter in its entirety
and how meta-tracing improves it. On the other hand, interpreters
for two production languages are presented, one for Prolog and one
for full Python. These two dynamic languages are very different:
Python is object-oriented and imperative while Prolog is a logical lan-
guage with unification and backtracking. The complexity of using
meta-tracing on these interpreters is described and the effect of meta-
tracing on performance is evaluated.

1.1 contributions

The main contributions of this thesis are:

• A retargetable JIT compilation approach based on meta-tracing
of interpreters,

• user-customizable run-time-feedback within this meta-tracing
framework based on annotations that the interpreter author can
give, and
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• an efficient and effective optimization that removes allocations
that do not escape within a trace, based on partial-evaluation
techniques.

This thesis was written within the context of the PyPy project. Most
of the ideas and the technical work are the result of a group effort
by me and a number of other people. This thesis now takes this
technological base and evaluates it within a scientific context. Some
chapters of this thesis have been published in earlier venues. The
publication history of these chapters can be found in Appendix B.

1.2 structure of the thesis

Part I of the thesis introduces dynamic languages, the PyPy project,
and tracing JITs in Chapter 2.

Part II of the thesis presents meta-tracing and MetaJIT, its imple-
mentation within in the RPython framework. The explanations are
accompanied by example interpreters of increasing complexity.

• A description of how to apply a tracing JIT compiler to an inter-
preter to achieve meta-tracing is given in Chapter 4.

• Chapter 5 gives a description of two hints that can be applied
to improve the object model of a language by giving the user
control over run-time feedback, together with examples for how
classical VM techniques are expressed with these hints.

• Chapter 6 contains a description of a practical, efficient, and
effective optimization that can be applied to traces to remove
object allocations. The algorithm is characterized as partial eval-
uation.

Part III of the thesis evaluates meta-tracing in various ways:

• A simple case study to apply meta-tracing to a regular expres-
sion matcher is given in Chapter 9.

• A thorough examination of the effects of meta-tracing on PyPy’s
Python interpreter, as well as the optimizations performed on
it, is given in Chapter 10.

• A Prolog interpreter written in RPython to answer the question
whether meta-tracing is also applicable to non-imperative lan-
guages is described in Chapter 11.

• Chapter 12 contains a comparison of tracing and meta-tracing
with partial evaluation. This is done by writing executable mod-
els of both for a trivial imperative language in Prolog and com-
paring them conceptually.

Part IV presents related work and concludes the thesis.



2
B A C K G R O U N D

2.1 dynamic languages and their implementation

While not everyone agrees about what constitutes a dynamic lan-
guage [Tra09], commonly agreed on elements include dynamic (but
strong) typing, garbage collection (GC), late-binding and reflec-
tion. Notable examples of dynamic languages are Smalltalk [Gol83],
Lisp [McC60], Self [US87], Python,1 PHP,2 Ruby,3 JavaScript [ECM99],
R [IG96], and others.

Dynamic languages have recently shown a boost of popularity, due
to their widespread use in Web programming. This is true both for
the client in the form of JavaScript in the browser, as well as on the
server. Other areas where dynamic languages are used are scien-
tific programming, finance, desktop applications, scripting, and many
more.4

One dynamic language that will be particularly important in this
thesis is Python. Python was invented in the late 1980s by Guido
van Rossum at the National Research Institute for Mathematics and
Computer Science in Amsterdam.5 Python is a dynamically (but
strongly) typed object-oriented imperative language. It supports
multiple inheritance using the C3 algorithm for superclass lineariza-
tion [BCH+

96], uses a simple metaclass model very similar to that of
ObjVlisp [Coi87] and has powerful container types built directly into
the language.

Implementing dynamic languages efficiently is historically a hard
problem. Many dynamic languages such as Lisp, Smalltalk, and Self
have been designed for purity and consistency of the feature-set, not
for speed. Some of the problems for efficiency when implementing
dynamic languages are:

late binding Most dynamic languages use late binding, which
means that most name lookups can only be done at run-time.
This makes it very hard to know at compile-time what to or
where a name will be bound.

dispatching An important special case of late binding is dispatch-
ing. Dispatching is the process of finding the right implementa-
tion for a generic operation on objects. Dynamic languages have

1 http://python.org

2 http://www.php.net/

3 http://www.ruby-lang.org/en/

4 http://python.org/about/apps/

5 http://python-history.blogspot.com/2009/01/brief-timeline-of-python.html
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10 background

complex dispatching rules, often with user-changeable opera-
tion implementations which makes it hard to know in advance
which implementation to choose.

boxing Due to the dynamic typing of dynamic languages, it is very
hard to know in advance what the type of an object will be.
Therefore all objects need a compatible representation in heap
memory, even primitive data types such as integers and floating
point numbers. This means that all operations on such prim-
itives produce new objects on the heap, which increases GC
pressure significantly.6

Due to these problems it has taken a lot of research to bring dy-
namic languages to acceptable performance levels. Early results for
Smalltalk [DS84] and Lisp [SJG93] were followed by intense research
around the Self language [CUE89, HU94, Hö94], which then got ap-
plied to the Hotspot VM [PVC01]. All these results use a JIT com-
piler [Ayc03] to compile and recompile parts of the program at run-
time, adapting the generated code to the situation and use-case at
hand. This run-time adaption is necessary due to the inherent nature
of dynamic languages. Attempts to get interesting static information
for languages like Python have produced limited results [Can05] or
are quite complex and don’t scale well [Sal04].

However, implementing a JIT compiler is a really hard problem,
particularly when the language to be compiled is itself complex. In
the Python case, this can be seen very well by looking at the Psyco
project [Rig04]. Psyco is a specializing JIT compiler for Python. It was
first released when Python 2.2 was the current version and has been
adapted to Python 2.3 – 2.6. Then, development could no longer be
sustained due to the increasing speed of Python development, there-
fore Python 2.7 and the 3.x series are not supported by Psyco. Fur-
thermore, Psyco never produced consistent speedup over a variety of
Python programs.

Since the industry widely adopted either the JVM [Gos05] or the
CLR [ECM10] as virtual machines, a lot of attempts have been made
to use these VMs as an implementation substrate for dynamic lan-
guages as well. For example, both Python and Ruby have implemen-
tations on both of these VMs: Jython7 and JRuby8 are implementa-
tions on top of the JVM whereas IronPython9 and IronRuby10 are
implementations on top of the CLR.

6 A different approach for representing primitive types is using a tagged representa-
tion [Gud93]. Tagging representations have their own set of advantages and disad-
vantages. Usually only one primitive data type (for example integers or floats) can
be tagged in a VM. Tagging is ignored in this thesis and will be subject of a later
study.

7 http://www.jython.org/

8 http://jruby.org/

9 http://ironpython.net/

10 http://ironruby.net/

http://www.jython.org/
http://jruby.org/
http://ironpython.net/
http://ironruby.net/
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This work has been done mostly for interoperability reasons, but
in theory the approach should give good performance as well. The
underlying VM provides an extremely well-tuned GC and JIT. How-
ever, it has turned out that implementing a dynamic language effi-
ciently on top of these VMs is a non-trivial task. Most dynamic lan-
guages have semantics that cannot be directly mapped to that of the
underlying VM, which means that the JIT often does not improve the
performance of the language much [SS02]. The introduction of the
invokedynamic bytecode on the JVM [Ros09] might change that, but it
remains to be seen how much it helps in practice.

2.2 the pypy project and rpython

The PyPy project11 [RP06, BR07] is a framework that supports the
writing of flexible implementations of dynamic languages. The
project was started in 2003 by Holger Krekel, Christian Tismer, and
Armin Rigo, with Laura Creighton, Michael Hudson and others soon
joining (I joined the project in fall 2005). In July 2005 the Python inter-
preter was bootstrapped successfully for the first time. PyPy 1.0 was
released in March 2007, which contained the first version of the JIT
compiler (not based on tracing). In March 2010, the first release con-
taining the current meta-tracing JIT compiler MetaJIT was published,
PyPy 1.2.12 At the time of writing, PyPy 1.9 is the last released ver-
sion.

To implement a dynamic language with PyPy, an interpreter for
that language has to be written in RPython [AACM07]. RPython
(“Restricted Python”) is a subset of Python for which type inference
can be performed. The language interpreter can then be translated
with the help of the RPython translation toolchain into various target
environments, most importantly C/Posix (but also the CLI and the
JVM, experimentally).

By writing VMs in a high-level language, the implementation of the
language is kept free of low-level details, such as memory manage-
ment strategy, threading model, or object layout. These features are
orthogonal to the language semantics and are automatically woven
into the generated code during the translation process. This process
starts by performing control flow graph construction and type infer-
ence, which are followed by a series of transformational steps. Each
step lowers the abstraction level of the intermediate representation
until C code can be generated directly. The first transformation step
makes details of the RPython object model explicit in the intermedi-
ate representation, later steps introduce garbage collection and other
low-level details.

11 http://pypy.org

12 http://morepypy.blogspot.de/2010/12/we-are-not-heroes-just-very-patient.

html
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12 background

One of the low-level details that can be inserted during translation
is MetaJIT, a language-independent tracing JIT. Describing how this
works is the core contribution of this thesis.

The advantage of using a generic JIT-compiler is that writing an
interpreter is much easier and less error prone than writing a com-
piler for every language by hand. Similarly, writing in a high level
language such as RPython is easier than writing in C. Also, RPython
being a subset of Python significantly eases testing. Usually an inter-
preter is first written as a normal Python program and can be unit-
tested during development. Only when the interpreter is sufficiently
complete translation to C is attempted.

A number of languages have been implemented with RPython,
most importantly a full Python implementation (see Chapter 10), but
also a Prolog interpreter (see Chapter 11) and some experiments (see
Chapter 9 for one of them), such as a Smalltalk VM [BKL+

08], a
GameBoy emulator [BV09], a PHP implementation,13 and an R inter-
preter.14 Of these, the Python interpreter is the biggest and the most
complete. It will be used throughout the thesis to study the effective-
ness of the described techniques.

An overview of the translation process can be seen in Figure 1, us-
ing the Prolog interpreter described in Chapter 11 as an example. The
Prolog interpreter is written in RPython (1), which can then be trans-
lated into C code (2). During the translation, MetaJIT will be inserted
into the resulting VM. If a Prolog program (3) is executed by this in-
terpreter, the interpreter will run it and MetaJIT will emit machine
code (4) for parts of the program. Those machine code snippets will
be executed at run-time, and can transfer control to each other, as
well as back to the interpreter.

2.2.1 The language RPython

As mentioned before, the language that is used within PyPy to
implement the language interpreters is called RPython, Restricted
Python [AACM07]. It is a subset of the Python language, chosen
in such a way that type inference on RPython programs is possible.
As its main restriction, in RPython it is not allowed to mix types
at the same location in the program. For example, it would not
be valid RPython to have a function that accepts both integers and
strings as its first argument. In addition, RPython forbids run-time
reflection (like changing methods of classes at run-time), full multi-
ple inheritance and the use of most operator overloading. Despite the
restrictions RPython is still quite an expressive object-oriented high-
level language, supporting garbage collection, exceptions, single in-
heritance with mixins [BC90], dynamic dispatch, and good built-in

13 https://bitbucket.org/fijal/hippyvm/

14 https://bitbucket.org/cfbolz/rapydo/

https://bitbucket.org/fijal/hippyvm/
https://bitbucket.org/cfbolz/rapydo/


2.2 the pypy project and rpython

Prolog Interpreter

RPython

Prolog Interpreter
with MetaJIT

C/executable

Program P

Prolog

Loop 1 of P

machine code

VM Generation

Runtime

Loop n of P

machine code

Translation to C
MetaJIT insertion

...

control flow

Runtime Code generation

1

23

4

Figure 1: Building a VM with RPython

13



14 background

data-structures. This makes it very different from Slang, a Smalltalk
dialect used for the Squeak Smalltalk implementation [IKM+

97]) and
PreScheme, a Scheme dialect used for the Scheme48 Scheme imple-
mentation [KR94]). These languages have semantics very close to that
of C, with Smalltalk and Scheme syntax respectively.

Since type inference can be performed on RPython programs, it is
possible to translate them into an efficient C program. The C program
can then be turned into an executable and be run. Many aspects
of the final executable are not apparent in the original interpreter.
Since RPython has automatic memory management and C does not, a
garbage collector needs to be inserted during the translation process.

2.2.2 Garbage collection

The most effective garbage collector used by RPython is a genera-
tional copying collector [JHM12]. Objects are first allocated in a nurs-
ery generation. If they survive a minor collection, they are moved
to an old object generation. This old generation is collected using
mark-and-sweep, so that long-living objects do not have to be copied
at every collection. References from older to younger objects are de-
tected with the help of a write barrier.

Since the collector is using a nursery, allocation is extremely fast,
essentially just incrementing and comparing a pointer. The GC is
also very efficient at dealing with high allocation rates, as long as
most objects die very quickly.

RPython’s garbage collector is itself written in RPython [RP06].
This is similar to how MMTk [BCM04] allows to write garbage col-
lectors in Java for the Jikes RVM virtual machine [AAB+

00]. This ap-
proach is sometimes called high-level low-level programming [DSP+

09].

2.3 tracing jits

This thesis is about inserting the MetaJIT aspect into the final VM
during translation. The details of how this works will be subject of
the rest of this thesis. MetaJIT is a tracing JIT compiler. This section
will now give a general introduction into what tracing JITs are.

Tracing optimizations were initially explored by the Dynamo
project [BDB00] to dynamically optimize machine code at run-time.
Its techniques were then successfully used to implement JIT com-
pilers for Java VMs [GPF06, GF06, BCW+

10, IHWN11]. Subse-
quently these tracing JITs were discovered to be a relatively simple
way to implement JIT compilers for dynamic languages [CBY+

07].
The technique was used by both Mozilla’s TraceMonkey JavaScript
VM [GES+09] and has been tried for Adobe’s Tamarin ActionScript
VM [CSR+

09]. Probably the fastest tracing JIT for a dynamic lan-
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I. Interpretation
with Profiling

II. Interpretation
with Tracing

III. Optimize and 
emit machine 

code

IV. Execute 
machine code

new hot loop identified

loop finished

guard failure

entering loop
with existing

machine code

Figure 2: The stages of execution when using a tracing JIT compiler

guage is LuaJIT,15 an open source VM for the Lua language written
by Mike Pall.

Tracing JITs are built on the following basic assumptions:

• Programs spend most of their running time in loops.

• Several iterations of the same loop are likely to take similar code
paths.

The basic approach of a tracing JIT is to only generate machine code
for the hot code paths of commonly executed loops and to interpret
the rest of the program. The code for those common loops however
is highly optimized, including aggressive inlining and path splitting.

A VM with a tracing JIT is typically a mixed-mode execution envi-
ronment, containing both an interpreter and a JIT compiler.16 Execut-
ing code in such a VM leads to several execution stages, which are
shown in Figure 2. In the beginning (phase I), all code is executed
by the interpreter, which also performs some lightweight profiling
to identify hot loops of the program. This lightweight profiling is

15 http://luajit.org

16 VMs where the interpreter is replaced by a simple compiler have also been de-
scribed [BCW+

10, BBF+10] but the fundamental mechanisms are the same.

http://luajit.org


16 background

usually done by having a counter on each backward jump instruc-
tion that counts how often this particular backward jump is executed.
Since loops need a backward jump somewhere, this method looks for
loops in the user program.

If a hot loop is found, the interpreter enters a special tracing mode
(phase II), where all operations that the interpreter performs during
the execution of that loop are recorded. The recorded operations are
stored in a linear list called the trace. Tracing continues until the
interpreter has recorded the execution of one iteration of the hot loop.
To decide when this is the case, the trace is repeatedly checked as to
whether the interpreter is at a position in the program where it had
been earlier. This recording automatically inlines functions: when a
function call is encountered the operations of the called functions are
simply put into the trace of the caller too.

Such a trace can be used to generate efficient machine code (phase
III). This generated machine code is immediately executable, and can
be used in the next iteration of the loop (phase IV). The generated
machine code is also cached and if the interpreter later wants to exe-
cute the same loop again, it will switch to running the compiled code
instead.

Being sequential, the trace represents only one of the many possi-
ble paths through the code. To ensure correctness, the trace contains
a guard at every possible point where the control flow could have
followed another path, for example at conditions and indirect or vir-
tual calls. When generating the machine code, every guard is turned
into a quick check to guarantee that the path that is being executed
is still valid. When the generated machine code is later executed and
a guard fails, machine code execution is stopped and execution con-
tinues by falling back to interpretation. These guards are the only
mechanism to stop the execution of a trace, the loop end condition
also takes the form of a guard.

If one specific guard fails often enough, another trace is gener-
ated starting from that specific point in the program and the existing
machine code is patched to jump to that new trace [GF06]. These
and related mechanisms of selecting traces and connecting them to
each other [HHS05, WHIN11] are mostly orthogonal to the issues dis-
cussed in this thesis and won’t be discussed further.

It is important to understand how the tracer recognizes that the
trace it recorded so far corresponds to a loop. This happens when the
position key is the same as at an earlier point in the trace. The position
key describes the position of the execution of the program, i.e., usu-
ally contains things like the function currently being executed and the
program counter position of the interpreter. The tracer does not need
to check all the time whether the position key already occurred ear-
lier, but only at instructions that are able to change the position key
to an earlier value, for example a backward branch instruction. Note
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1def f(a, b):
2if b % 46 == 41:
3return a - b
4else:
5return a + b
6def strange_sum(n):
7result = 0
8while n >= 0:
9result = f(result, n)
10n -= 1
11return result

13# corresponding trace:
14[result0, n0]
15# inside result = f(result, n)
16i0 = int_mod(n0, 46)
17i1 = int_eq(i0, 41)
18guard_false(i1)
19result1 = int_add(result0, n0)
20n1 = int_sub(n0, 1)
21i2 = int_ge(n1, 0)
22guard_true(i2)
23jump(result1, n1)

Figure 3: A simple RPython function and the recorded trace

that this is already the second place where backward branches are
treated specially: during interpretation they are the place where the
profiling is performed and where tracing is started or already exist-
ing machine code executed; during tracing they are the place where
the check for a closed loop is performed.

One risk that a tracing JIT faces is that in theory an exponential
number of paths through one loop can exist (for example if the loop
contains n consecutive if statements, there are 2n paths). In practice,
this occurs rarely and is only a problem if all the paths are equally
likely to be executed, because otherwise only the common paths will
be traced.

2.3.1 A tracing example

As a small example, take the (somewhat contrived) RPython code in
Figure 3. The tracer interprets these functions in a bytecode format
that is an encoding of the intermediate representation of the RPython
translation toolchain after type inference has been performed. When
the profiler discovers that the while loop in strange_sum is executed
often the tracing JIT will start to trace the execution of that loop. The
trace would look as in the lower half of Figure 3.

The trace contains all the operations that were executed. The oper-
ations are in SSA-form [CFR+

91], meaning every variable is assigned
to only once. The variables result0 and n0 that are live when entering
the trace are given in square brackets. They are also called the argu-
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ments of the trace. The trace ends with a jump operation that gets as
arguments the new values of these arguments. The operations in the
sequence are operations of the above-mentioned intermediate repre-
sentation (for example the generic modulo and equality operations in
the function above have been recognized to always take integers as
arguments and are thus rendered as int_mod and int_eq). The trace
forms an endless loop that can only be left via a guard failure. The
call to f is inlined into the trace, the resulting operations are indented
in the figure. The trace contains only the hot else case of the if test
in f, with a guard marking the existence of the other path. After the
trace has been recorded, it can then be converted into machine code
and executed.

2.3.2 Optimization and code generation

Before sending the trace to the backend to produce actual machine
code, it is optimized. The optimizer uses a number of techniques to
remove or simplify the operations in the trace. Most of these are well
known compiler optimization techniques, with the difference that it
is easier to apply them in a tracing JIT because they only have to deal
with linear traces, not arbitrary control flow. Among the common
techniques are constant folding, common subexpression elimination,
allocation removal (see Chapter 6), store/load propagation, loop in-
variant code motion [ABF12, MM97].

The fact that traces are linear pieces of code without control flow
joins (except at the beginning of the trace) makes many optimizations
a lot more tractable, and the inlining that happens gives the optimiza-
tions automatically more context to work with.17

After optimization, machine code can be generated. This is also a
very straightforward process again due to the linearity, which greatly
simplifies register allocation and instruction selection. When gener-
ating machine code, every guard is turned into a quick check to see
whether the assumption still holds.

17 This is similar to how some classical compiler optimization techniques use extended
basic blocks as their optimization scope. “Inside an [extended basic block] the com-
piler can use facts discovered in earlier basic blocks to improve code in later blocks.
Superlocal methods can treat the individual paths through an [extended basic block]
as if they were in a single block.” [CT04, p. 405]
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A H I G H - L E V E L V I E W O F M E TA - T R A C I N G

This chapter gives a brief overview of meta-tracing. Subsequent chap-
ters provide more detailed descriptions of the techniques.

When using RPython to implement a dynamic language, there are
two interpreters involved. First, there is the interpreter for the dy-
namic language to be implemented, the language interpreter. The pro-
gram that the language interpreter executes is the user program (from
the point of view of a VM author, the “user” is a programmer using
the VM). Second, there is the interpreter used by MetaJIT to perform
tracing, the tracing interpreter. Similarly, since tracing JITs are con-
cerned with loops it is important to distinguish loops at two different
levels: interpreter loops are loops inside the language interpreter and
user loops are loops in the user program.

The techniques of normal tracing JITs described in the previous
chapter cannot be used directly in the RPython context but need to
be adapted. A normal tracing JIT is explicitly written for one specific
language. It directly traces the execution of the user program with the
help of an extra component which is part of the language interpreter.
Therefore the language’s semantics is hard-coded into such a tracing
JIT. This makes it necessary to write a tracing JIT specifically for every
language to be implemented.

A schematic diagram of a normal tracing JIT is given on the left
side of Figure 4. It shows a tracing JIT for a language L. The CPU
executes the interpreter and tracer, which in turn execute and trace
a program in L written by a programmer, the user. The tracer is a
component that was specifically written for the L language as part of
the VM. Tracing the L program yields a trace consisting of operations
on the level of the bytecode of the interpreter for L, which are specific
to that interpreter. The operations correspond to the bytecodes of the
loop in function f1 that was traced, together with bytecodes from f3

and f4 which were inlined into the trace.

RPython is intended to be a general framework for implementing
dynamic languages, therefore the approach of RPython has to be dif-
ferent. RPython contains a language-independent tracing JIT com-
piler called MetaJIT. MetaJIT is a (modified) tracer for programs in
RPython. It traces the execution of the language interpreter while the
interpreter is running the program. The traces consist of RPython-
level operations of the interpreter that were used to execute the user
program. This approach is therefore called meta-tracing, because the
tracer operates on the implementation level.

21
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Figure 4: The components involved in tracing and meta-tracing of a language L

The right side of Figure 4 shows the components involved in the
meta-tracing process. The CPU executes MetaJIT. MetaJIT contains an
interpreter that executes and traces the interpreter for the language
L, which consists of functions written in RPython. The trace consists
of the RPython operations in the interpreter for L.

If MetaJIT is used, it traces operations of the language interpreter.
Tracing continues until a full loop in the user program is traced. Trac-
ing the execution of an interpreter has many advantages. It makes
the tracer, its optimizers, and backends applicable to a variety of lan-
guages. The language semantics does not need to be hard-coded into
MetaJIT. Instead, MetaJIT produces traces that behave as the inter-
preter does. Therefore MetaJIT by construction supports the full lan-
guage that the interpreter implements. Also, MetaJIT can be used for
different languages by applying it to different language interpreters.

For tracing an interpreter it is not enough to write a normal tracing
JIT for the RPython language. The bytecode dispatch loop is usu-
ally executed significantly more often than all other interpreter loops.
One iteration of the bytecode dispatch loop corresponds to the exe-
cution of one bytecode. Tracing one single iteration of the bytecode
dispatch loop would therefore not produce useful traces, because usu-
ally the same bytecode instruction is not executed several times in a
row. A meta-tracer must instead trace many such iterations, until the
trace corresponds to one user loop. To do that, the tracer needs infor-
mation provided by the interpreter author, which is given in the form
of explicit hints in the source of the interpreter. The details of these
hints will be discussed in the next chapter .
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Meta-tracing solves many of the problems of dynamic language im-
plementation. By observing what actually happens at run-time, the
tracer automatically compiles only the few common paths through
the complex late binding and dispatching semantics of a dynamic
language. The rules for late binding and dispatching are transpar-
ent to the tracer because it only traces the actions of the interpreter.
Sometimes it is desirable to influence the tracing of late binding and
dispatching, which can be done with another set of hints. These are
discussed in Chapter 5.

A tracer splits control flow paths very aggressively. Control flow
merges can happen only at the beginning of a loop. This has two
effects. On the one hand, subsequent dispatches on the same object
are automatically optimized. On the other hand, boxing overhead
can be reduced. This optimization will be discussed in Chapter 6.
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M E TA - T R A C I N G I N T E R P R E T E R S

4.1 applying a tracing jit to an interpreter

MetaJIT, RPython’s tracing JIT is atypical in that it is not applied to
the user program, but to the interpreter running the user program. In
this section the problems this brings will be explored, and approaches
how to solve them (at least partially) will be presented.

A tracing JIT compiler finds the hot loops of the program it is com-
piling. In the case of MetaJIT, this program is the language interpreter.
This chapter assumes that the language interpreter is bytecode-based
(but that is not a fundamental restriction, as will be seen in Chapter
9 and Chapter 11). The most important hot loop in the interpreter is
the bytecode dispatch loop (for many simple interpreters it is also the
only hot loop). One iteration of this loop corresponds to the execu-
tion of one opcode. This means that the assumption made by tracing
JITs – that several iterations of a hot loop take the same or similar
code paths – is wrong in this case. It is very unlikely that the same
particular opcode is executed many times in a row.

An example interpreter that will be used to explain the principles
of meta-tracing is given in Figure 5. It shows the code of a very sim-
ple bytecode interpreter with 256 registers and an accumulator. The
bytecode argument is a string of bytes, all register and the accumu-
lator are integers.1 A program for this interpreter that computes the
square of the accumulator is shown in Figure 6.

If the tracing interpreter traces the execution of the DECR_A opcode
(whose integer value is 7), the trace would look as in Figure 7. Be-
cause of the guard on opcode0, the code compiled from this trace will
be useful only when executing a long series of DECR_A opcodes. For
all the other operations the guard will fail and the trace is left, which
will mean that performance is not improved at all.

To improve this situation, the tracing JIT could trace the execution
of several opcodes, thus effectively unrolling the bytecode dispatch
loop. Ideally, the bytecode dispatch loop should be unrolled exactly
so much that the unrolled version corresponds to one user loop. User
loops occur when the program counter that the language interpreter
uses has the same value several times. This program counter is typ-
ically stored in one or several variables in the language interpreter,
for example the bytecode object of the currently executed function
of the user program and the position of the current bytecode within

1 The chain of if, elif, ... instructions checking the opcodes is turned into a switch

statement by one of RPython’s optimizations. Python lacks a switch statement.

25
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1def interpret(bytecode, a):
2regs = [0] * 256
3pc = 0
4while True:
5opcode = ord(bytecode[pc])
6pc += 1
7if opcode == JUMP_IF_A:
8target = ord(bytecode[pc])
9pc += 1
10if a:
11pc = target
12elif opcode == MOV_A_R:
13n = ord(bytecode[pc])
14pc += 1
15regs[n] = a
16elif opcode == MOV_R_A:
17n = ord(bytecode[pc])
18pc += 1
19a = regs[n]
20elif opcode == ADD_R_TO_A:
21n = ord(bytecode[pc])
22pc += 1
23a += regs[n]
24elif opcode == DECR_A:
25a -= 1
26elif opcode == RETURN_A:
27return a

Figure 5: A very simple bytecode interpreter with registers and an accumu-
lator

1MOV_A_R 0 # i = a
2MOV_A_R 1 # copy of ’a’

4# 4:
5MOV_R_A 0 # i--
6DECR_A
7MOV_A_R 0

9MOV_R_A 2 # res += a
10ADD_R_TO_A 1
11MOV_A_R 2

13MOV_R_A 0 # if i!=0: goto 4
14JUMP_IF_A 4

16MOV_R_A 2 # return res
17RETURN_A

Figure 6: Example bytecode: Compute the square of the accumulator

26
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1[a0, regs0, bytecode0, pc0]
2opcode0 = strgetitem(bytecode0, pc0)
3pc1 = int_add(pc0, 1)
4guard_value(opcode0, 7)
5a1 = int_sub(a0, 1)
6jump(a1, regs0, bytecode0, pc1)

Figure 7: Trace when executing the DECR_A opcode

that. In the example above, the program counter is represented by
the bytecode and pc variables.

Since MetaJIT cannot know which variables of the language inter-
preter are the program counter, the author of the language interpreter
needs to mark the relevant variables with the help of a hint. The trac-
ing interpreter will then effectively add the values of these variables
to the position key. This means that the loop will only be considered
to be closed if these variables that are making up the program counter
at the language interpreter level are the same a second time. Loops
found in this way are, by definition, user loops.

The program counter used in the language interpreter can only be
the same a second time after an instruction in the user program sets
it to an earlier value. This happens only at backward jumps in the
language interpreter. That means that the tracing interpreter needs to
check for a closed loop only when it encounters a backward jump in
the language interpreter. Again MetaJIT cannot know which part of
the language interpreter implements backward jumps, so the author
of the language interpreter needs to indicate this with the help of
another hint.

The language interpreter uses a similar technique to detect hot user
loops: the profiling is done at the backward branches of the user pro-
gram. Every seen value of the program counter of the language inter-
preter gets a counter that is incremented when that backward branch
is executed. A loop is deemed hot when that counter grows over a
certain threshold.

The condition for reusing existing machine code also needs to be
adapted to this new situation. In a classical tracing JIT there is no or
one piece of machine code per loop of the jitted program, which in
our case is the language interpreter. When applying MetaJIT to the
language interpreter as described so far, all pieces of machine code
correspond to the bytecode dispatch loop of the language interpreter.
However, they correspond to different paths through the loop and dif-
ferent ways to unroll it. To find out which of them to use when trying
to enter machine code again, the program counter of the language in-
terpreter needs to be checked. If it corresponds to the position key of
one of the pieces of machine code, then this machine code can be exe-
cuted. This check again only needs to be performed at the backward
branches of the language interpreter.
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1tlrjitdriver = JitDriver(greens = [ ’pc ’, ’bytecode ’],
2reds = [ ’a ’, ’regs ’])

4def interpret(bytecode, a):
5regs = [0] * 256
6pc = 0
7while True:
8tlrjitdriver.jit_merge_point()
9opcode = ord(bytecode[pc])
10pc += 1
11if opcode == JUMP_IF_A:
12target = ord(bytecode[pc])
13pc += 1
14if a:
15if target < pc:
16tlrjitdriver.can_enter_jit()
17pc = target
18elif opcode == MOV_A_R:
19... # rest unmodified

Figure 8: Simple bytecode interpreter with hints applied

Let’s look at how hints would need to be applied to the example
interpreter from Figure 5. Figure 8 shows the relevant parts of the
interpreter with hints applied. One needs to instantiate JitDriver

by listing all the variables of the bytecode loop. The variables are
classified into two groups, “green” variables and “red” variables. The
green variables are those that MetaJIT should consider to be part of
the program counter of the language interpreter. In the case of the
example, the pc variable is obviously part of the program counter;
however, the bytecode variable is also counted as green, since the pc

variable is meaningless without the knowledge of which bytecode
string is currently being interpreted. All other variables are red.

In addition to the classification of the variables, there are two meth-
ods of the JitDriver instance that need to be called. The first one is
jit_merge_point which needs to be put at the beginning of the body
of the bytecode dispatch loop. The other, more interesting one, is
can_enter_jit. This method needs to be called at the end of any in-
struction that can set the program counter of the language interpreter
to an earlier value.2 For the example this is only the JUMP_IF_A instruc-
tion, and only if it is actually a backward jump. Here is where the
language interpreter performs profiling to decide when to start trac-
ing or whether to jump to an already existing piece of machine code.
It is also the place where MetaJIT checks whether a loop is closed.
This is considered to be the case when the values of the green vari-
ables are the same as at an earlier call to the can_enter_jit method.3

2 The hints need to be written a bit differently in the actual implementation for purely
technical reasons. Examples of this will be shown in the case studies, Chapters 9

and 11.
3 For convenience, the can_enter_jit hint can be left out as well, in which case the

meta-tracer considers it to be directly in front of the jit_merge_point.
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For the small example the hints look like a lot of work. However,
the number of hints that need to be put into the interpreter source
remains small, which makes the extra work negligible for larger in-
terpreters.

When executing the square function of Figure 6, the profiling will
identify the loop in the square function to be hot, and start tracing. It
traces the execution of the interpreter running the loop of the square
function for one iteration, thus unrolling the interpreter loop of the
example interpreter eight times, corresponding to the eight bytecodes
in the loop of the square function. The resulting trace can be seen in
Figure 9.

4.2 constant folding parts of the trace

The critical problem of tracing the execution of just one opcode has
now been solved, the loop corresponds exactly to the loop in the
square function. However, the resulting trace is not yet very optimal.
Most of its operations are not doing any computation that is part of
the square function. Instead, they manipulate the data structures of
the language interpreter. This effect is to be expected, given that the
tracing interpreter looks at the execution of the language interpreter.
However, to reach good performance it is necessary to remove some
of these operations.

The simple insight on how to improve the situation is that most of
the operations in the trace are concerned with manipulating the byte-
code string and the program counter. Those are stored in variables
that are green, meaning that they are part of the position key. This
means that the tracer checks that those variables have some fixed
value at the beginning of the loop (they may well change over the
course of the loop, though). In the example of Figure 9 the check
would be that at the beginning of the trace the pc variable is 4 and the
bytecode variable is the bytecode string corresponding to the square
function. Therefore it is possible to constant-fold computations on
them away, as long as the operations are pure. Since strings are im-
mutable in RPython, it is possible to constant-fold the strgetitem

operation. The int_add operations are additions of the green variable
pc and a constant number, so they can be folded away as well.

With this optimization enabled, the trace looks as in Figure 10.
Now much of the language interpreter is gone from the trace and
what is left corresponds very closely to the loop of the square func-
tion. The only vestige of the language interpreter is the fact that the
register list is still used to store the state of the computation. This
can be removed by some other optimization, which is not described
here. Once the optimizer has optimized the trace, the JIT backend
generates the corresponding machine code for it.
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1[a0, regs0, bytecode0, pc0]
2# MOV_R_A 0
3opcode0 = strgetitem(bytecode0, pc0)
4pc1 = int_add(pc0, 1)
5guard_value(opcode0, 2)
6n1 = strgetitem(bytecode0, pc1)
7pc2 = int_add(pc1, 1)
8a1 = list_getitem(regs0, n1)
9# DECR_A
10opcode1 = strgetitem(bytecode0, pc2)
11pc3 = int_add(pc2, 1)
12guard_value(opcode1, 7)
13a2 = int_sub(a1, 1)
14# MOV_A_R 0
15opcode2 = strgetitem(bytecode0, pc3)
16pc4 = int_add(pc3, 1)
17guard_value(opcode2, 1)
18n2 = strgetitem(bytecode0, pc4)
19pc5 = int_add(pc4, 1)
20list_setitem(regs0, n2, a2)
21# MOV_R_A 2
22...
23# ADD_R_TO_A 1
24opcode4 = strgetitem(bytecode0, pc7)
25pc8 = int_add(pc7, 1)
26guard_value(opcode4, 5)
27n4 = strgetitem(bytecode0, pc8)
28pc9 = int_add(pc8, 1)
29i0 = list_getitem(regs0, n4)
30a4 = int_add(a3, i0)
31# MOV_A_R 2
32...
33# MOV_R_A 0
34...
35# JUMP_IF_A 4
36opcode7 = strgetitem(bytecode0, pc13)
37pc14 = int_add(pc13, 1)
38guard_value(opcode7, 3)
39target0 = strgetitem(bytecode0, pc14)
40pc15 = int_add(pc14, 1)
41i1 = int_is_true(a5)
42guard_true(i1)
43jump(a5, regs0, bytecode0, target0)

Figure 9: Trace when executing the square function of Figure 6, with the
corresponding bytecodes as comments.

30



4.3 metajit implementation issues 31

1[a0, regs0]
2# MOV_R_A 0
3a1 = list_getitem(regs0, 0)
4# DECR_A
5a2 = int_sub(a1, 1)
6# MOV_A_R 0
7list_setitem(regs0, 0, a2)
8# MOV_R_A 2
9a3 = list_getitem(regs0, 2)
10# ADD_R_TO_A 1
11i0 = list_getitem(regs0, 1)
12a4 = int_add(a3, i0)
13# MOV_A_R 2
14list_setitem(regs0, 2, a4)
15# MOV_R_A 0
16a5 = list_getitem(regs0, 0)
17# JUMP_IF_A 4
18i1 = int_is_true(a5)
19guard_true(i1)
20jump(a5, regs0)

Figure 10: Trace when executing the square function of Figure 6, with
constant-folding of operations on green variables enabled

4.3 metajit implementation issues

This section describes some of the practical issues of implementing
MetaJIT, particularly those of integrating MetaJIT with the language
interpreter. These issues can be considered implementation details of
MetaJIT and are not inherent properties of the meta-tracing approach.

The first integration problem is how to not integrate MetaJIT at all.
It is possible to choose when the language interpreter is translated to
C whether MetaJIT should be built in or not. If the JIT is not enabled,
all the hints that have possibly been put into the interpreter source
are just ignored by the translation process.

If MetaJIT is enabled, things are more interesting.4 A classical trac-
ing JIT will interpret the program it is running until a hot loop is
identified, at which point tracing and ultimately machine code gen-
eration starts. However, MetaJIT is operating on the language inter-
preter, which is itself written in RPython. But RPython programs are
statically translatable to C anyway. It is clearly desirable to only incur
this double-interpretation overhead when that is absolutely necessary,
which is during tracing. Otherwise, the meta-tracing approach would
be less practical, because before warmup the user program would be
extremely slow.

This is achieved by running the language interpreter as a C pro-
gram, until a hot loop in the user program is found. To identify loops,
the C version of the language interpreter is generated in such a way

4 At the moment the JIT can only be enabled when translating the interpreter to C,
but Cuni [Cun10] explored techniques for lifting this restriction.



32 meta-tracing interpreters

that at the place that corresponds to the can_enter_jit hint profiling
is performed using the program counter of the language interpreter.
Apart from this bit of profiling, the language interpreter behaves in
just the same way as without a JIT.

After a hot user loop has been identified in this way, tracing is
started. The tracing interpreter is invoked to start tracing the lan-
guage interpreter of the running user program. Of course the tracing
interpreter cannot trace the execution of the C representation of the
language interpreter. Instead it takes the state of the execution of
the language interpreter and starts tracing using a bytecode represen-
tation of the RPython code of the language interpreter. That means
that the language interpreter is embedded in the final executable of
the VM in two formats: on the one hand it is there as executable
machine code, on the other hand as bytecode for the tracing inter-
preter. This also means that tracing is slow, because of the double
interpretation overhead.

From then on things proceed as described in Section 4.1. The trac-
ing interpreter traces until it has traced a full loop of the user pro-
gram. After it has done that, it will produce machine code for that
loop and this machine code will be immediately executed. The ma-
chine code is executed until a guard fails. Then the execution should
fall back to normal interpretation by the language interpreter. This
falling back is possibly a complex process, since the guard failure can
have occurred arbitrarily deep inside an inlined helper function of the
language interpreter. That would make it hard to rebuild the state of
the language interpreter and let it run from that point as it would
involve building a potentially deep C stack.

Instead the falling back is achieved by a special fallback interpreter
which runs the language interpreter and the user program from the
point of the guard failure. The fallback interpreter is essentially a
variant of the tracing interpreter that does not keep a trace. The
fallback interpreter runs until execution reaches a safe point where
it is easy to let the C version of the language interpreter resume its
operation. Such a safe point is a place between the executions of
single bytecode instructions of the language interpreter. This means
that the fallback interpreter executes up to one bytecode operation of
the language interpreter and then falls back to the C version of the
language interpreter. After this, the whole process of profiling may
start again. This complex architecture is part of the price paid for
being able to do meta-tracing.

Machine code production is done via a well-defined interface to
a machine code backend. This allows easy porting of the tracing
JIT to various architectures; at the time when the thesis was written,
MetaJIT contains backends for 32-bit and 64-bit Intel-x86 machines as
well as for ARM processors [Sch11].
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time (s) speedup over interpreter

1 Compiled to C, no JIT 2.35 ± 0.00 1.00

2 Normal Trace Compilation 2.65 ± 0.00 0.89

3 Unrolling of Interpreter Loop 0.41 ± 0.13 5.76

4 JIT, Full Optimization 0.13 ± 0.00 18.63

5 Profiling Overhead 5.63 ± 0.01 0.42

Figure 11: Benchmark results of example interpreter computing the square
of 100 000 000

4.4 evaluation

In this section we evaluate the work done so far by looking at some
benchmarks for the example interpreter. The benchmarking method,
the involved soft- and hardware, and links to all software repositories
are given in Appendix A.

The first round of benchmarks (Figure 11) are timings of the exam-
ple interpreter given in Figure 5 computing the square of 100 000 000

using the bytecode of Figure 6.5 The timing results can be seen in
Figure 11. The following five configurations were measured:

benchmark 1 : The interpreter translated to C without including
MetaJIT.

benchmark 2 : MetaJIT is enabled, but no interpreter-specific hints
are applied. This corresponds to the trace in Figure 7. The
threshold when to consider a loop to be hot is 1039 iterations.6

As expected, this is not faster than the previous number. It is
even a bit slower, probably due to the overheads, as well as
non-optimal generated machine code.

benchmark 3 : MetaJIT is enabled and hints as in Figure 8 are ap-
plied. This means that the interpreter loop is unrolled so that it
corresponds to the loop in the square function. Constant fold-
ing of operations on green variables is disabled, therefore the re-
sulting machine code corresponds to the trace in Figure 9. This
alone brings a significant improvement over the previous case
and is more than five times faster than interpretation.

benchmark 4 : Same as before, but with constant folding enabled.
This corresponds to the trace in Figure 10. This speeds up

5 The result will overflow, but for smaller numbers the running time is not long
enough to sensibly measure it.

6 This is the default threshold that was arrived at by trying various thresholds on
PyPy’s Python interpreter.
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the square function considerably, making it more than 18 times
faster than the pure interpreter.

benchmark 5 : Same as before, but with the threshold set so high
that the tracer is never invoked. In this way the overhead of the
profiling is measured. For this interpreter it seems to be rather
large, being 2.4 times slower than the interpreter without pro-
filing. This is because the interpreter is small and the opcodes
simple. For larger interpreters like PyPy’s Python interpreter
the overhead will likely be less significant.

The numbers for this tiny interpreter are not too representative.
The interpreter is small, the language it runs is simple, deals with
only one data type and is statically typed. However, the numbers
give an idea of the speedups that can be achieved. A more realistic
interpreter will be studied in Chapter 10.

4.5 conclusion

In this chapter we have seen techniques for improving the results
when applying a tracing JIT to an interpreter. This is absolutely nec-
essary for reaching meta-tracing, but on its own does not yield too
good results when implementing complex languages. However, the
first benchmarks presented in this chapter indicate that these tech-
niques work well on small interpreters.

To push the approach further more hints to guide the meta-tracing
process are needed (presented in the next chapter ), and a novel opti-
mization to deal with the heavy allocation-rate of dynamic languages
(presented in Chapter 6).



5
R U N - T I M E F E E D B A C K

The last chapter explained how to trace an interpreter with a generic
tracer running on the level below the interpreter. This chapter
presents hints that allow the interpreter author to fine-tune this pro-
cess. The big speed-ups that JIT compilation can bring come from
effectively feeding back and exploiting run-time information into the
compilation process. In particular, if there are values which change
very slowly, it is possible to compile multiple specialized versions of
the same code, one for each actual value. To make use of run-time
feedback, the implementation code and data need to be structured so
that many such slow-changing values are available.

The most important application of this run-time feedback is the
observation of the actual types used in a program. These are not
manifest in the source code of the user program due to dynamic typ-
ing. While the types could vary during the execution of a program,
in practice they rarely do [HH09, CRTR11, RLBV10]. In hand-written
JITs this process is manually encoded in the JIT compiler. In the meta-
tracing approach, the process is guided by hints that the interpreter
author can place in the source code of the interpreter. This works
by utilizing the constant folding pass of MetaJIT. The first of these
hints has the effect of increasing the amount of constants available
in the trace. The second allows the declaration of constant-foldable
functions. The combined effect is that a lot of operations in the trace
can be constant-folded.

5.1 motivating example

As the running example of this chapter a very simple and bare-bones
object model will be used that just supports classes and instances,
without any inheritance or other advanced features. The RPython
implementation can be seen in Figure 12. In the model every class
contains methods (line 4). Every instance has a class (line 18) and a
number of attributes, or fields (line 19). When looking up an attribute
of an instance (line 27), the instance’s attributes are searched (line 28).
If the attribute is not found there, the class’ methods are searched
(line 30).1

In this straightforward implementation the methods and attributes
are just stored in dictionaries (hash maps) on the classes and in-

1 In this example the “methods” are just numbers, just as the attributes. In a more
realistic language they would be actual method objects, but the cost of the lookup
would stay the same.
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1class Class(object):
2def __init__(self, name):
3self.name = name
4self.methods = {}

6def instantiate(self):
7return Instance(self)

9def find_method(self, name):
10return self.methods.get(name, None)

12def write_method(self, name, value):
13self.methods[name] = value

16class Instance(object):
17def __init__(self, cls):
18self.cls = cls
19self.attributes = {}

21def getfield(self, name):
22return self.attributes.get(name, None)

24def write_attribute(self, name, value):
25self.attributes[name] = value

27def getattr(self, name):
28result = self.getfield(name)
29if result is None:
30result = self.cls.find_method(name)
31if result is None:
32raise AttributeError
33return result

Figure 12: Original version of a simple object model
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27# inst1.getattr("a")
22attributes1 = inst1.attributes
22result1 = dict.get(attributes1, "a")
29guard(result1 is not None)

27# inst1.getattr("b")
22attributes2 = inst1.attributes
22v1 = dict.get(attributes2, "b", None)
29guard(v1 is None)
30cls1 = inst1.cls
10methods1 = cls1.methods
10result2 = dict.get(methods1, "b", None)
31guard(result2 is not None)
-1v2 = result1 + result2

27# inst1.getattr("c")
22attributes3 = inst1.attributes
22v3 = dict.get(attributes3, "c", None)
29guard(v3 is None)
30cls2 = inst1.cls
10methods2 = cls2.methods
10result3 = dict.get(methods2, "c", None)
31guard(result3 is not None)

-1v4 = v2 + result3
-1return(v4)

Figure 13: Trace through the object model

stances, respectively. While this object model is very simple, it already
contains most hard parts of Python’s object model. Both instances
and classes can have arbitrary fields, and they are changeable at any
time. Moreover, instances can change their class after they have been
created.

When using this object model in an interpreter, a large amount of
time will be spent doing lookups in these dictionaries. Assuming we
have created a class and an instance as follows:

1cls = Class("A")
2cls.write_method("b", 9)
3cls.write_method("c", 21)
4inst = cls.instantiate()
5inst.write_attribute("a", 11)

Let us look at what happens when the following code that sums
three attributes, is traced:

1inst.getattr("a") + inst.getattr("b") + inst.getattr("c")

The trace would look like in Figure 13. In this example, the at-
tribute a is found on the instance, but the attributes b and c are found
on the class. The line numbers in the trace correspond to the line
numbers in Figure 12 where the traced operations come from. The
trace is in SSA form. Note how all the guards in trace correspond to
an if condition in the original code. The trace contains five calls to
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dict.get, which is a slow operation. To make the language efficient
using a tracing JIT, these dictionary lookups need to be removed in
some way. How to achieve this will be the topic of Section 5.3. The
key observation of doing so will be that the classes’ methods as well
as the layout of the instances change rarely.

5.2 hints for controlling optimization

This section describes two hints that allow the interpreter author to in-
crease the optimization opportunities for constant folding. If applied
correctly these techniques can give big speedups by pre-computing
parts of what happens at run-time. However, if applied incorrectly
they might lead to code bloat, thus actually making the resulting pro-
gram slower. Note that these hints never have to be put into the user
program, only into the interpreter by the interpreter author.

For constant folding to work, two conditions need to be met: the
arguments of an operation actually need to all be constant, i.e. stati-
cally known by the optimizer and the operation needs to be constant-
foldable, i.e. always yield the same result given the same arguments.
There is one kind of hint for both of these conditions.

5.2.1 Where do all the constants come from?

It is worth clarifying what a “constant” is in this context. A variable
of the trace is said to be constant if its value is statically known by the
optimizer. The simplest example of constants are literal values in the
source code, such as 1. However, the optimizer can statically know
the value of a variable even if it is not a constant in the original source
code. For example, consider the following fragment of RPython code.
If the following fragment is traced with x being 4:

1if x == 4:
2y = y + x

Then this trace is produced:

1guard(x1 == 4)
2y2 = y1 + x1

A guard is a run-time check. The above trace will run to completion
only when x1 == 4. If the check fails, execution of the trace is stopped
and the interpreter continues to run. Therefore, the value of x1 is
statically known to be 4 after the guard.

In some interpreters there are places in which it would be useful
to turn an arbitrary variable into a constant value because that would
open a lot of optimization opportunities. This is the case if there is
a lot of computation depending on the value of one variable. This is
made possible by a process called promotion. Promotion is essentially
a tool for trace specialization and very similar to an old idea in partial
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evaluation (it is called “The Trick” [JGS93] there). The technique is
substantially more powerful in a JIT compiler than in the static setting
of classic partial evaluation (the connection between meta-tracing and
partial evaluation will be explored in detail in Chapter 12).

The approach of promotion is to artificially introduce an equality
guard for a variable like the one above but without having an if

statement in the code. Additionally, the run-time value of that vari-
able during tracing is chosen as the concrete value that the variable is
compared against by the guard. This makes it possible to use promo-
tion for variables where the likely run-time values are not knowable
in advance.

To make this more concrete, let’s assume that a call to the following
function (written in RPython) is traced:

1def f1(x, y):
2z = x * 2 + 1
3return z + y

Then this trace is produced:

1v1 = x1 * 2
2z1 = v1 + 1
3v2 = z1 + y1
4return(v2)

Observe how the first two operations could be constant-folded if
the value of x1 were known. Let us further assume that the value of
x in the RPython code can vary, but does so rarely, i.e. only takes a
few different values at run-time. If this is the case, a hint to promote
x can be added, like this:

1def f1(x, y):
2promote(x)
3z = x * 2 + 1
4return z + y

The hint indicates that x is likely a run-time constant and that Meta-
JIT should try to perform run-time specialization on it in the code that
follows. When just running the code, the promote function has no ef-
fect. When tracing, some extra work is done. Let us assume that this
changed function is traced with the arguments 4 and 8. The trace will
be the same, except for one operation at the beginning:

1guard(x1 == 4)
2v1 = x1 * 2
3z1 = v1 + 1
4v2 = z1 + y1
5return(v2)

The promotion is turned into a guard operation in the trace. The
guard captures the run-time value of x as it was during tracing, which
can then be exploited by the optimizer. The introduced guard special-
izes the trace, because it only works if the value of x1 is 4. For the
optimizer, this guard is not different from the one produced by the
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if statement in the first example. After the guard, it can be assumed
that x1 is equal to 4, meaning that the optimizer will turn this trace
into:

1guard(x1 == 4)
2v2 = 9 + y1
3return(v2)

Notice how the first two arithmetic operations were constant folded.
The assumption is that the guard is executed quicker than the multi-
plication and the addition that was now optimized away.

If this trace is executed with values of x1 other than 4, the guard
will fail, and execution will continue in the interpreter. If the guard
fails often enough, a new trace will be started from the guard. This
other trace will capture a different value of x1. If it is for example 2,
then the optimized trace looks like this:

1guard(x1 == 2)
2v2 = 5 + y1
3return(v2)

This new trace will be attached to the guard instruction of the first
trace. If x1 takes on even more values, a new trace will eventually
be made for all of them, linking them into a chain. This is clearly
not desirable, so only variables that do not vary very much should
be promoted. However, adding a promotion hint will never produce
wrong results. It might just lead to too much machine code being
generated.

Promoting integers, as in the examples above, is not used that of-
ten. However, the internals of dynamic language interpreters often
have values that are variable but vary little in the context of parts
of a user program. An example would be the types of variables
in a user function, which rarely change in a dynamic language in
practice (even though they could) [HH09, CRTR11, RLBV10]. In the
interpreter, these user-level types are values. Thus promoting them
will lead to type-specialization on the level of the user program. Sec-
tion 5.3 will present a complete example of how this works.

5.2.2 Declaring new foldable operations

The previous section presented a way to turn arbitrary variables into
constants. Foldable operations that operate only on constant argu-
ments will be optimized away by the constant-folding optimization.
This works well for constant folding of primitive types, e.g. inte-
gers. Unfortunately, in the context of an interpreter for a dynamic
language, most operations manipulate objects, not primitive types.
The operations on objects are often not foldable and might even have
side-effects. If one reads a field out of a constant reference to an ob-
ject this cannot necessarily be folded away because the optimizer has
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to assume that that the object could be mutated. Therefore, another
hint is needed.

This hint can be used to mark functions as trace-elidable. A function
is termed trace-elidable, if, during the execution of the program, suc-
cessive calls to the function with identical arguments always return
the same result. In addition the function needs to have no side effects
or idempotent side effects.2 From this definition follows that a call
to a trace-elidable function with constant arguments in a trace can be
replaced with the result of the call seen during tracing.

As an example, take the following class:

1class A(object):
2def __init__(self, x, y):
3self.x = x
4self.y = y

6def f(self, val):
7self.y = self.c() + val

9def c(self):
10return self.x * 2 + 1

Tracing the call a.f(10) of some instance of A yields the this trace
(note how the call to c is inlined):

1# inside A.c
2x1 = a1.x
3v1 = x1 * 2
4v2 = v1 + 1
5v3 = v2 + val1
6a1.y = v3

In this case, adding a promote of self in the f method to get rid
of the computation of the first few operations does not help. Even
if a1 is a constant reference to an object, reading the x field does not
necessarily always yield the same value. To solve this problem, there
is another annotation, which lets the interpreter author communicate
invariants to the optimizer. In this case, she could decide that the x

field of instances of A is immutable, and therefore c is a trace-elidable
function. To communicate this, there is an @elidable decorator. If the
code in c should be constant-folded away, the class would have to be
changed as follows:

1class A(object):
2...

4def f(self, val):
5promote(self)
6self.y = self.c() + val

8@elidable
9def c(self):
10return self.x * 2 + 1

2 This property is less strict than that of a pure function, because it is only about actual
calls during execution. All pure functions are trace-elidable though.
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Leading to this result:

1guard(a1 == 0xb73984a8)
2v1 = A.c(a1)
3v2 = v1 + val1
4a1.y = v2

Here, 0xb73984a8 is the address of the instance of A that was used
during tracing. When a call to a trace-elidable function is seen during
tracing, that function is not inlined, so that the optimizer sees it as a
call, not as its constituent operations. Since the A.c method is marked
as trace-elidable, and its argument is a constant reference, the call will
be removed by the optimizer. The final trace looks like this (assuming
that the value of the field x is 4):

1guard(a1 == 0xb73984a8)
2v2 = 9 + val1
3a1.y = v2

On the one hand, the @elidable annotation is very powerful. It
can be used to constant-fold arbitrary parts of the computation in the
interpreter. However, the annotation also gives the interpreter author
ample opportunity to introduce bugs. If a function is annotated to
be trace-elidable, but is not really, the optimizer can produce subtly
wrong code. Therefore, a lot of care has to be taken when using this
annotation.3 RPython contains a preliminary debugging mode which
checks whether the annotation is applied incorrectly to mitigate this
problem, which is so far extremely slow but can be used for finding
bad elidable annotations.

5.3 improving the example object model

In this section the simple object model from Section 5.1 will be made
efficient using the hints described in the previous section. The object
model of Figure 12 is typical for many dynamic languages (such as
Python, Ruby, and JavaScript) as it relies heavily on hash-maps to
implement its objects.

5.3.1 Faster instance attributes with maps

The first step in making getattr faster in the object model is to op-
timize away the dictionary lookups on the instances. The hints of
the previous section do not seem to be applicable to how the object
model is currently implemented. There is no trace-elidable function
to be seen, and the instance is not a candidate for promotion, because
there tend to be many instances.

3 The most common use case of the @elidable annotation is indeed to declare the
immutability of fields. Because it is so common, RPython has special syntactic sugar
for it.
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1class Map(object):
2def __init__(self):
3self.indexes = {}
4self.other_maps = {}

6@elidable
7def getindex(self, name):
8return self.indexes.get(name, -1)

10@elidable
11def add_attribute(self, name):
12if name not in self.other_maps:
13newmap = Map()
14newmap.indexes.update(self.indexes)
15newmap.indexes[name] = len(self.indexes)
16self.other_maps[name] = newmap
17return self.other_maps[name]

19EMPTY_MAP = Map()

21class Instance(object):
22def __init__(self, cls):
23self.cls = cls
24self.map = EMPTY_MAP
25self.storage = []

27def getfield(self, name):
28map = self.map
29promote(map)
30index = map.getindex(name)
31if index != -1:
32return self.storage[index]
33return None

35def write_attribute(self, name, value):
36map = self.map
37promote(map)
38index = map.getindex(name)
39if index != -1:
40self.storage[index] = value
41return
42self.map = map.add_attribute(name)
43self.storage.append(value)

45def getattr(self, name):
46... # as before

Figure 14: Simple object model with maps
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1# inst1.getattr("a")
2map1 = inst1.map
3guard(map1 == 0xb74af4a8)
4index1 = Map.getindex(map1, "a")
5guard(index1 != -1)
6storage1 = inst1.storage
7result1 = storage1[index1]

9# inst1.getattr("b")
10map2 = inst1.map
11guard(map2 == 0xb74af4a8)
12index2 = Map.getindex(map2, "b")
13guard(index2 == -1)
14cls1 = inst1.cls
15methods1 = cls1.methods
16result2 = dict.get(methods1, "b", None)
17guard(result2 is not None)
18v2 = result1 + result2

20# inst1.getattr("c")
21map3 = inst1.map
22guard(map3 == 0xb74af4a8)
23index3 = Map.getindex(map3, "c")
24guard(index3 == -1)
25cls2 = inst1.cls
26methods2 = cls2.methods
27result3 = dict.get(methods2, "c", None)
28guard(result3 is not None)

30v4 = v2 + result3
31return(v4)

Figure 15: Unoptimized trace after the introduction of maps

This is a common problem when trying to apply hints. Often, the
interpreter needs a small rewrite to expose the trace-elidable func-
tions and nearly-constant objects that are implicitly there. In the case
of instance fields this rewrite is not entirely obvious. The basic idea
is as follows. In theory instances can have arbitrary fields. In practice
however many instances share their layout (i.e. their set of keys) with
many other instances.

Therefore it makes sense to factor the layout information out of
the instance implementation into a shared object, called the map.
Maps are a well-known technique to efficiently implement instances.
They stem from the Self project [CUE89] and are also used by many
JavaScript implementations, such as V8, where they are called hid-
den classes. The rewritten Instance class using maps can be seen in
Figure 14.

In this implementation instances no longer use dictionaries to store
their fields. Instead, they have a reference to a map, which maps
field names to indexes into a storage list. The storage list contains
the actual field values. Maps are shared between different instances,
therefore they have to be immutable, which means that their getindex
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method is a trace-elidable function. When a new attribute is added
to an instance, a new map needs to be chosen, which is done with
the add_attribute method on the previous map. This function caches
all new instances of Map that it creates, to make sure that objects with
the same layout have the same map. This caching makes its side ef-
fects idempotent and the function trace-elidable. Now that maps have
been introduced, it is safe to promote the map everywhere, because
it is safe to assume that the number of different instance layouts is
small.

With this adapted instance implementation, the trace of Section 5.1
changes to that of Figure 15. There 0xb74af4a8 is the memory address
of the Map instance that has been promoted. Operations that can be
optimized away are grayed out, their results will be replaced with
fixed values by the constant folding.

The calls to Map.getindex can be optimized away, because they are
calls to a trace-elidable function and they have constant arguments.
That means that index1/2/3 are constant and the guards on them can
be removed. All but the first guard on the map will be optimized
away too, because the map cannot have changed in between. This
trace is already much better than the original one. Now only two out
of five dictionary lookups are left.

The technique to make instance lookups faster is applicable in more
general cases. A more abstract view of maps is that of splitting a data-
structure into an immutable part (the map) and a part that changes
(the storage list). All the computation on the immutable part is trace-
elidable so that only the manipulation of the quick-changing part
remains in the trace after optimization.

5.3.2 Versioning of classes

In the previous section it was assumed that the total number of dif-
ferent instance layouts is small compared to the number of instances.
For classes an even stronger assumption can be made. For classes it
is very rare that they change at all [CRTR11], or only after initializa-
tion [HH09]. This is not always reasonable (sometimes classes con-
tain counters or similar things) but for this simple example it is good
enough.4

It would be best if the Class.find_method method were trace-
elidable. But it cannot be, because it is always possible to change
the methods of the class. Every time the methods are changed,
find_method can potentially return a new value.

Therefore, every class gets a version object, which is changed every
time the class’s methods are changed. This means that the result of
calls to methods.get() for a given (name, version) pair will always be

4 There is a more complex variant of the presented technique that can accommodate
quick-changing class fields a lot better. It is presented in Chapter 10.
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1class VersionTag(object):
2pass

4class Class(object):
5def __init__(self, name):
6self.name = name
7self.methods = {}
8self.version = VersionTag()

10def find_method(self, name):
11promote(self)
12version = self.version
13promote(version)
14return self._find_method(name, version)

16@elidable
17def _find_method(self, name, version):
18assert version is self.version
19return self.methods.get(name, None)

21def write_method(self, name, value):
22self.methods[name] = value
23self.version = VersionTag()

Figure 16: Versioning of classes

the same, i.e. it is a trace-elidable operation. To make MetaJIT detect
this case, this is factored out into the helper method _find_method,
which is marked as @elidable. The refactored Class can be seen in
Figure 16.

The two promotions in find_method encode two different assump-
tions: The first promote encodes the assumption that in the context
of a specific piece of code the receiver’s class will likely not vary
much. The second promote encodes the assumption that a class is
not changed often.

What is interesting here is that _find_method takes the version argu-
ment but it does not use it at all. Its only purpose is to make the call
trace-elidable, because when the version object changes, the result of
the call might be different from the previous one. The function is not
pure, however.

The trace with this new class implementation can be seen in Fig-
ure 17. The calls to Class._find_method can now be optimized away,
also the promotion of the class and the version, except for the first
one. The final optimized trace can be seen in Figure 18.

The index 0 that is used to read out of the storage list is the result
of the constant-folded getindex call. The constants 41 and 17 are the
results of the folding of the _find_method calls. This final trace is now
very efficient. It no longer performs any dictionary lookups. Instead
it contains several guards. The first guard checks that the map is still
the same. This guard will fail if the same code is executed with an
instance that has another layout. The second guard checks that the



5.3 improving the example object model

1# inst1.getattr("a")
2map1 = inst1.map
3guard(map1 == 0xb74af4a8)
4index1 = Map.getindex(map1, "a")
5guard(index1 != -1)
6storage1 = inst1.storage
7result1 = storage1[index1]

9# inst1.getattr("b")
10map2 = inst1.map
11guard(map2 == 0xb74af4a8)
12index2 = Map.getindex(map2, "b")
13guard(index2 == -1)
14cls1 = inst1.cls
15guard(cls1 == 0xb7aaaaf8)
16version1 = cls1.version
17guard(version1 == 0xb7bbbb18)
18result2 = Class._find_method(cls1, "b", version1)
19guard(result2 is not None)
20v2 = result1 + result2

22# inst1.getattr("c")
23map3 = inst1.map
24guard(map3 == 0xb74af4a8)
25index3 = Map.getindex(map3, "c")
26guard(index3 == -1)
27cls2 = inst1.cls
28guard(cls2 == 0xb7aaaaf8)
29version2 = cls2.version
30guard(version2 == 0xb7bbbb18)
31result3 = Class._find_method(cls2, "c", version2)
32guard(result3 is not None)

34v4 = v2 + result3
35return(v4)

Figure 17: Unoptimized trace after introduction of versioned classes

1# inst1.getattr("a")
2map1 = inst1.map
3guard(map1 == 0xb74af4a8)
4storage1 = inst1.storage
5result1 = storage1[0]

7# inst1.getattr("b")
8cls1 = inst1.cls
9guard(cls1 == 0xb7aaaaf8)
10version1 = cls1.version
11guard(version1 == 0xb7bbbb18)
12v2 = result1 + 41

14# inst1.getattr("c")
15v4 = v2 + 17
16return(v4)

Figure 18: Optimized trace after introduction of versioned classes
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class of inst is still the same. It will fail if the trace is executed with
an instance of another class. The third guard checks that the class did
not change since the trace was produced. It will fail if somebody calls
the write_method method on the class.

The first and the second guard could be merged by storing the class
of the instance in the map as well. How this works will be discussed
in Chapter 10, which also evaluates the speed benefits of using maps
and version tags to implement classes and instances of Python.

5.4 conclusion

In this chapter two hints, promote and elidable were presented that
can be used in the source code of an interpreter written with RPython.
They give control over run-time feedback and optimization to the
language implementor. They are expressive enough for building well-
known virtual machine optimization techniques, such as maps and
inline caches. They are flexible enough to express a wide variety of
language semantics efficiently, which will be studied and explained
in more detail in the case studies in Chapter 10 and Chapter 11.

The hints described in this chapter are good for operations on user-
defined classes and objects. The next chapter will show how a generic
optimization can be used to optimize away the overhead of imple-
menting primitive objects, such as integers and floats in dynamic lan-
guages.



6
A L L O C AT I O N R E M O VA L

As seen in the previous two chapters, the use of a meta-tracing JIT
can remove the overhead of bytecode dispatch, of the interpreter
data structures and of operations in the object model. In this chap-
ter a further optimization for tracing JITs is presented that removes
some of the further overhead more closely associated with dynamic
languages, such as boxing overhead and type dispatching. As op-
posed to the previous two chapters, this optimization is completely
language-independent and does not need any hints to function. Sec-
tion 6.1 shows an example object model that showcases many of the
problems related to boxing primitive types. Section 6.2 analyzes the
problem to be solved more closely.

The core of this trace optimization technique can be viewed as par-
tial evaluation [Fut99, JGS93]. Partial evaluation (PE), also called spe-
cialization, is a program manipulation technique. PE takes an input
program and transforms it into a (hopefully) simpler and faster out-
put program. It does this by assuming that some variables in the
input program are constants. These are called static variables. All op-
erations that act only on static variables can be folded away. All other
operations need to remain in the output program (called residual pro-
gram). Thus the partial evaluator proceeds much like an interpreter,
just that it cannot actually execute all of the operations. Also, its out-
put is not just a value, but a list of remaining operations that could
not be optimized away.

The optimization described in the chapter performs a form of es-
cape analysis [Bla03] and scalar replacement [KM05] on the traces.
This technique is informally described in Section 6.3; a more formal
description is given in Section 6.4, which also shows the relationship
between the optimization and partial evaluation. The introduced tech-
niques are evaluated in Section 6.6 using PyPy’s Python interpreter.

The technique described in this chapter is the workhorse of the opti-
mizer chain of MetaJIT. It is also representative of how optimizations
that are usually too expensive to do at run-time can become tractable
by applying them to traces.

6.1 running example

In this chapter, a tiny interpreter for a dynamic language is used
with a very simple object model, that just supports an integer and
a float type. The objects support only two operations, add, which
adds two objects (promoting ints to floats in a mixed addition) and
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is_positive, which returns whether the number is greater than zero.
The implementation of add uses double-dispatching. The classes can
be seen in Figure 19 (written in RPython).

Using these classes to implement arithmetic shows the basic prob-
lem of a dynamic language implementation. The language supports
both an integer and a float type. However, RPython does not allow
the mixing of these two primitive types. Therefore the interpreter
needs to be represent the numbers as instances of either BoxedInteger
or BoxedFloat, two classes that share a common base class. Now num-
bers within the tiny dynamic languages consume space on the heap.
Every arithmetic operation needs to examine the types of the argu-
ments and also allocate a new instance of one of these classes for the
result. Performing many arithmetic operations thus produces lots
of garbage quickly, putting pressure on the garbage collector. Us-
ing double dispatching to implement the numeric tower needs two
RPython method calls per arithmetic operation, which is costly due
to the method dispatch.

Let us now consider a simple “interpreter” function f that uses the
object model (see the bottom of Figure 19). The loop in f iterates y

times, and computes something in the process. Simply running this
function is slow, because there are lots of virtual method calls inside
the loop, one for each is_positive and even two for each call to add.
These method calls need to check the type of the involved objects
repeatedly and redundantly. In addition, a lot of objects are created
when executing that loop, many of these objects are short-lived. The
actual computation that is performed by f is simply a sequence of
float or integer additions.

If the function is executed using MetaJIT, with y being a
BoxedInteger, the produced trace looks like the one of Figure 20. The
trace corresponds to one iteration of the while-loop in f.

The operations in the trace are indented corresponding to the stack
level of the function that contains the traced operation. The trace is
in single-assignment form, meaning that each variable is assigned a
value exactly once. The arguments p0 and p1 of the loop correspond
to the live variables y and res in the while-loop of the original func-
tion.

The operations in the trace correspond to the operations in the
RPython program in Figure 19:

• new creates a new object.

• get reads a field of an object.

• set writes to a field of an object.

• guard_class is a precise type check. It always precedes an (in-
lined) method call and is followed by the trace of the called
method.



6.1 running example

1class Base(object):
2pass

4class BoxedInteger(Base):
5def __init__(self, intval):
6self.intval = intval

8def add(self, other):
9return other.add__int(self.intval)

11def add__int(self, intother):
12return BoxedInteger(intother + self.intval)

14def add__float(self, floatother):
15floatvalue = floatother + float(self.intval)
16return BoxedFloat(floatvalue)

18def is_positive(self):
19return self.intval > 0

21class BoxedFloat(Base):
22def __init__(self, floatval):
23self.floatval = floatval

25def add(self, other):
26return other.add__float(self.floatval)

28def add__int(self, intother):
29floatvalue = float(intother) + self.floatval
30return BoxedFloat(floatvalue)

32def add__float(self, floatother):
33return BoxedFloat(floatother + self.floatval)

35def is_positive(self):
36return self.floatval > 0.0

39def f(y):
40res = BoxedInteger(0)
41while y.is_positive():
42res = res.add(y).add(BoxedInteger(-100))
43y = y.add(BoxedInteger(-1))
44return res

Figure 19: An “interpreter” for a tiny dynamic language written in RPython
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1[p0, p1]
2# inside f: res.add(y)
3guard_class(p1, BoxedInteger)
4# inside BoxedInteger.add
5i2 = get(p1, intval)
6guard_class(p0, BoxedInteger)
7# inside BoxedInteger.add__int
8i3 = get(p0, intval)
9i4 = int_add(i2, i3)
10p5 = new(BoxedInteger)
11# inside BoxedInteger.__init__

12set(p5, intval, i4)

14# inside f: BoxedInteger(-100)
15p6 = new(BoxedInteger)
16# inside BoxedInteger.__init__

17set(p6, intval, -100)

19# inside f: .add(BoxedInteger(-100))
20guard_class(p5, BoxedInteger)
21# inside BoxedInteger.add
22i7 = get(p5, intval)
23guard_class(p6, BoxedInteger)
24# inside BoxedInteger.add__int
25i8 = get(p6, intval)
26i9 = int_add(i7, i8)
27p10 = new(BoxedInteger)
28# inside BoxedInteger.__init__

29set(p10, intval, i9)

31# inside f: BoxedInteger(-1)
32p11 = new(BoxedInteger)
33# inside BoxedInteger.__init__

34set(p11, intval, -1)

36# inside f: y.add(BoxedInteger(-1))
37guard_class(p0, BoxedInteger)
38# inside BoxedInteger.add
39i12 = get(p0, intval)
40guard_class(p11, BoxedInteger)
41# inside BoxedInteger.add__int
42i13 = get(p11, intval)
43i14 = int_add(i12, i13)
44p15 = new(BoxedInteger)
45# inside BoxedInteger.__init__

46set(p15, intval, i14)

48# inside f: y.is_positive()
49guard_class(p15, BoxedInteger)
50# inside BoxedInteger.is_positive
51i16 = get(p15, intval)
52i17 = int_gt(i16, 0)
53# inside f
54guard_true(i17)
55jump(p15, p10)

Figure 20: An unoptimized trace of the example interpreter
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• int_add and int_gt are integer addition and comparison
(“greater than”), respectively.

• guard_true checks that a boolean is true.

Method calls in the trace are preceded by a guard_class operation,
to check that the class of the receiver is the same as the one that was
observed during tracing.1 These guards make the trace specific to
the situation where y is a BoxedInteger. When the trace is turned
into machine code and afterwards executed with BoxedFloat, the first
guard_class instruction will fail and execution will continue using
the interpreter.

The trace shows the inefficiencies of f clearly, if one looks at the
number of new, set/get and guard_class operations. The number of
guard_class operation is particularly problematic, not only because
of the time it takes to run them. All guards also have additional in-
formation attached that makes it possible to return to the interpreter,
should the guard fail. This means that too many guard operations
also consume a lot of memory [SB12].

In the rest of the chapter we will see how this trace can be opti-
mized using partial evaluation.

6.2 object lifetimes in a tracing jit

To understand the problems that this chapter is trying to solve in
more detail, we first need to understand the cases of object lifetimes
that can occur in a tracing JIT compiler.

Figure 21 shows a trace before optimization, together with the life-
time of various kinds of objects created in the trace. It is executed
from top to bottom. At the bottom, a jump is used to execute the
same loop another time (for clarity, the figure shows two iterations of
the loop). The loop is executed until one of the guards in the trace
fails, and the execution is aborted and interpretation resumes.

Some of the operations within this trace are new operations, each
of which creates a new instance of some class. These instances are
used for some time within the trace, by reading and writing their
fields as well as by calling methods on them, which are inlined into
the trace. Some of these instances escape, which means that they are
stored in some globally accessible place or are passed into a non-
inlined function via a residual call. This means that they cannot be
tracked precisely any more.

Together with the new operations, the figure shows the lifetimes of
the created objects. The objects that are created within a trace using
new fall into one of several categories:

1 guard_class performs a precise class check, not checking for subclasses.
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Figure 21: Object lifetimes in a trace
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1. Objects that live for some time, and are then just not used any
more afterwards.

2. Objects that live for some time and then escape.

3. Objects that live for some time, survive across the jump to the
beginning of the loop, and are then not used any more.

4. Objects that live for some time, survive across the jump, and
then escape. Objects that live across several jumps and then
either escape or stop being used are also in this category.

The objects that are allocated in the example trace in Figure 20 fall
into categories 1 and 3. Objects stored in p5, p6, p11 are in category 1,
objects in p10, p15 are in category 3.

The creation of objects in category 1 is removed by the optimization
described in Sections 6.3 and 6.4. Objects in the other categories are
partially optimized by this approach as well.2

6.3 allocation removal in traces

The main insight to improve the code shown in Section 6.1 is that
objects in category 1 do not survive very long – they are used only
inside the loop and there is no other outside reference to them. The
optimizer identifies objects in category 1 and removes the allocation
of these objects, and all operations manipulating them.

This is a process that is usually called escape analysis [GP90]. In this
chapter escape analysis will be done using partial evaluation. The use
of partial evaluation is a bit peculiar in that it receives no static input
arguments for the trace, but it is only used to optimize operations
within the trace. This section will give an informal account of this
process by examining the example trace in Figure 20. The final trace
after optimization can be seen in Figure 22 (the line numbers are the
lines of the unoptimized trace where the operation originates).

To optimize the trace, it is traversed from beginning to end and an
output trace is produced. Every operation in the input trace is either
removed or copied into the output trace. Sometimes new operations
need to be produced as well. The optimizer can only remove opera-
tions that manipulate objects that have been allocated within the trace,
while all other operations are copied to the output trace unchanged.

Looking at the example trace of Figure 20, the operations in lines 3–
9 are manipulating objects which existed before the trace and that are
passed in as arguments: therefore the optimizer just copies them into
the output trace.

The following operations (lines 10–17) are more interesting:

2 We also started to work on optimizing objects in category 3 [ABF12].
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10p5 = new(BoxedInteger)
12set(p5, intval, i4)
15p6 = new(BoxedInteger)
17set(p6, intval, -100)

When the optimizer encounters any new, it removes it optimistically,
and assumes that the object is in category 1.3 If later the optimizer
finds that the object escapes, it will be allocated at that point. The op-
timizer needs to keep track of the state of the object that the operation
would have created. This is done with the help of a static object.4 The
static object describes the shape of the object that would have been
allocated, meaning the type of the object and where the values that
would be stored in the fields of the allocated object come from.

In the snippet above, the two new operations are removed and two
static objects are constructed. The set operations manipulate static
objects, therefore they can be removed as well; their effect is remem-
bered in the static objects.

After the operations the static object associated with p5 would store
the knowledge that it is a BoxedInteger whose intval field contains
i4; the one associated with p6 would store that it is a BoxedInteger

whose intval field contains the constant -100.
The subsequent operations (line 20–26) in Figure 20, which use p5

and p6, can then be optimized using that knowledge:

20guard_class(p5, BoxedInteger)
22i7 = get(p5, intval)
23guard_class(p6, BoxedInteger)
25i8 = get(p6, intval)
26i9 = int_add(i7, i8)

The guard_class operations can be removed, since their arguments
are static objects with the matching type BoxedInteger. The get oper-
ations can be removed as well, because each of them reads a field out
of a static object. The results of the get operation are replaced with
what the static object stores in these fields: all the occurrences of i7
and i8 in the trace are just replaced by i4 and -100. The only operation
copied into the optimized trace is the addition:

26i9 = int_add(i4, -100)

The rest of the trace from Figure 20 is optimized in a similar vein.
The operations in lines 27–34 produce two more static objects and
are removed. Those in lines 37–39 are just copied into the output
trace because they manipulate objects that are allocated before the
trace. Lines 40–42 are removed because they operate on a static object.
Line 43 is copied into the output trace. Lines 44–46 produce a new

3 Note that this is works for arbitrary classes and not just for simple boxes like the
class used as the running example.

4 Here “static” is meant in the sense of partial evaluation, i.e., known at partial evalu-
ation time, not in the sense of “static allocation” or “static method”.
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static object and are removed, lines 49–51 manipulate that static object
and are removed as well. Lines 52–54 are copied into the output trace.

The last operation (line 55) is an interesting case. It is the jump oper-
ation that passes control back to the beginning of the trace. The two
arguments to this operation at this point are static objects. However,
because they are passed into the next iteration of the loop they live
longer than the trace and therefore cannot remain static. They need
to be turned into dynamic (run-time) objects before the actual jump

operation. This process of turning a static object into a dynamic one
is called lifting.

Lifting a static object puts new and set operations into the output
trace. Those operations produce an object at run-time that has the
shape described by the static object. This process is a bit delicate,
because the static objects could form an arbitrary graph structure. In
our example it is simple, though:

44p15 = new(BoxedInteger)
46set(p15, intval, i14)
27p10 = new(BoxedInteger)
29set(p10, intval, i9)
55jump(p15, p10)

Observe how the operations for creating these two instances have
been moved to a later point in the trace. This is worthwhile even
though the objects have to be allocated in the end because some
get operations and guard_class operations on the lifted static objects
could be removed.

More generally, lifting needs to occur if a static object is used in
any operation apart from get, set, and guard. It also needs to occur
if set is used to store a static object into a non-static one.

The final optimized trace of the example can be seen in Figure 22.
The optimized trace contains only two allocations, instead of the orig-
inal five, and only three guard_class operations, compared to the
original seven.

The BoxedInteger instances in the example are only ever written to
once, after creation. While this property is very common, it is not a
fundamental limitation to the approach. As long as an object is static
even repeated writes to it will be optimized away and the static object
updated.

6.4 formal description of the algorithm

In this section a formal description of the semantics of the traces and
of the optimizer is given. The optimization is characterized as par-
tial evaluation. The focus here is on the operations for manipulating
heap allocated objects, as those are the only ones that are actually
optimized. Only objects with two fields L and R are considered in
this section, generalizing to arbitrary many fields is straightforward.
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1[p0, p1]
3guard_class(p1, BoxedInteger)
5i2 = get(p1, intval)
6guard_class(p0, BoxedInteger)
8i3 = get(p0, intval)
9i4 = int_add(i2, i3)
26i9 = int_add(i4, -100)

37guard_class(p0, BoxedInteger)
39i12 = get(p0, intval)
43i14 = int_add(i12, -1)

52i17 = int_gt(i14, 0)
54guard_true(i17)

44p15 = new(BoxedInteger)
46set(p15, intval, i14)
27p10 = new(BoxedInteger)
29set(p10, intval, i9)

55jump(p15, p10)

Figure 22: Resulting trace after allocation removal

Traces are lists of operations. The operations considered here are new,
get, set and guard_class.

The values of all variables are locations (pointers). Locations are
mapped to objects, which are represented by triples (T, l1, l2) of a type
T, and two locations that represent the fields of the object. When a
new object is created, the fields are initialized to null, but we require
that they are initialized to a real location before being read, otherwise
the trace is malformed (this condition is guaranteed by how the traces
are generated by the RPython toolchain).

Some abbreviations are used here when dealing with object triples.
To read the type of an object, type((T, l1, l2)) = T is used. Reading a
field F from an object is written (T, l1, l2)F which either is l1 if F = L or
l2 if F = R. To set field F to a new location l, the notation (T, l1, l2)!Fl
is used, which yields a new triple (T, l, l2) if F = L or a new triple
(T, l1, l) if F = R.

Figure 23 shows the (small-step) operational semantics for traces.
The interpreter formalized there executes one operation at a time.
Its state is represented by an environment E and a heap H, which
may be changed by the execution of an operation. The environment
is a partial function from variables to locations and the heap is a
partial function from locations to objects. Note that a variable can
never be null in the environment, otherwise the trace would have
been malformed. The environment could not directly map variables
to objects, because several variables can point to the same object, due
to aliasing.
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new
l fresh

v = new(T), E, H run
=⇒ E [v →→ l] , H [l →→ (T, null, null)]

get
u = get(v, F), E, H run

=⇒ E [u →→ H (E (v))F] , H

set
set (v, F, u) , E, H run

=⇒ E, H [E (v) →→ (H (E (v))!FE(u))]

guard
type(H(E(v)) = T

guard_class(v, T), E, H run
=⇒ E, H

type(H(E(v)) ̸= T

guard_class(v, T), E, H run
=⇒ ⊥,⊥

Object Domains:

u, v ∈ V variables in trace

T ∈ T run − time types

F ∈ {L, R} fields of objects

l ∈ L locations on heap

Semantic Values:

E ∈ V ⇀ L Environment

H ∈ L ⇀ T× (L ∪ {null})× (L ∪ {null}) Heap

Figure 23: The operational semantics of simplified traces
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The following notation for updating partial functions is used:
E[v →→ l] denotes the environment which is just like E, but maps
v to l.

The new operation creates a new object (T, null, null) on the heap
under a fresh location l and adds the result variable to the environ-
ment, mapping it to the new location l.

The get operation reads a field F out of an object, and adds the
result variable to the environment, mapping it to the read location.
The heap is unchanged.

The set operation changes field F of an object stored at the location
that variable v maps to. The new value of the field is the location in
variable u. The environment is unchanged.

The guard_class operation is used to check whether the object
stored at the location that variable v maps to is of type T. If that
is the case, then execution continues without changing heap and en-
vironment. Otherwise, execution is stopped.

6.4.1 Optimizing traces

To optimize the simple traces of the last section, online partial evalua-
tion is used. The partial evaluator optimizes one operation of a trace
at a time. Every operation in the unoptimized trace is replaced by
a list of operations in the optimized trace. This list is empty if the
operation can be optimized away. The optimization rules can be seen
in Figure 24. Operation lists are written using angular brackets, ⟨ ⟩,
list concatenation is expressed using two colons, ops1 :: ops2.

The state of the optimizer is stored in an environment E and a
static heap S. Each step of the optimizer takes an operation, an envi-
ronment and a static heap and produces a list of operations, a new
environment and a new static heap.

The environment is a partial function from variables in the unop-
timized trace V to variables in the optimized trace V∗ (which are
themselves written with a ∗ for clarity). The reason for introduc-
ing new variables in the optimized trace is that several variables that
appear in the unoptimized trace can turn into the same variables in
the optimized trace. The environment of the optimizer serves a func-
tion similar to that of the environment in the semantics: to express
sharing.

The static heap is a partial function from V∗ into the set of static
objects, which are triples of a type and two elements of V∗. The object
referenced by a variable v∗ is static, if v∗ is in the domain of the static
heap S. The object S(v∗) describes what is statically known about the
object, its type and its fields. The fields of objects in the static heap
are also elements of V∗ (or null, for short periods of time).

When the optimizer sees a new operation, it optimistically removes
it and assumes that the resulting object can stay static. The optimiza-



new
v∗ fresh

v = new(T), E, S
opt
=⇒ ⟨ ⟩ , E [v →→ v∗] , S [v∗ →→ (T, null, null)]

get
E(v) ∈ dom(S)

u = get(v, F), E, S
opt
=⇒ ⟨ ⟩ , E [u →→ S(E(v))F] , S

E(v) /∈ dom(S), u∗ fresh

u = get(v, F), E, S
opt
=⇒ ⟨u∗ = get(E(v), F)⟩ , E [u →→ u∗] , S

set
E(v) ∈ dom(S)

set (v, F, u) , E, S
opt
=⇒ ⟨ ⟩ , E, S [E (v) →→ (S(E(v))!FE(u))]

E(v) /∈ dom (S) , (E(u), S) lift
=⇒ (ops, S′)

set (v, F, u) , E, S
opt
=⇒ ops :: ⟨set (E(v), F, E(u))⟩ , E, S′

guard
E(v) ∈ dom(S), type(S(E(v))) = T

guard_class(v, T), E, S
opt
=⇒ ⟨ ⟩ , E, S

E(v) /∈ dom(S) ∨ type(S(E(v))) ̸= T, (E(v), S) lift
=⇒ (ops, S′)

guard_class(v, T), E, S
opt
=⇒ ops :: ⟨guard_class(E (v) , T)⟩ , E, S′

lifting
v∗ /∈ dom(S)

v∗, S lift
=⇒ ⟨ ⟩ , S

v∗ ∈ dom(S), (v∗, S) liftfields
===⇒ (ops, S′)

v∗, S lift
=⇒ ⟨v∗ = new (type (S (v∗)))⟩ :: ops, S′

(S (v∗)L , S \ {v∗ →→ S (v∗)}) lift
=⇒ (opsL, S′) , (S (v∗)R , S′)

lift
=⇒ (opsR, S′′)

v∗, S liftfields
===⇒ opsL :: opsR :: ⟨set (v∗, L, S (v∗)L) , set (v∗, R, S (v∗)R)⟩ , S′′

Object Domains:

u, v ∈ V variables in trace

u∗, v∗ ∈ V∗ variables in opt. trace

T ∈ T run − time types

F ∈ {L, R} fields of objects

Semantic Values:

E ∈ V ⇀ V∗ Environment

S ∈ V∗ ⇀ T× (V∗ ∪ {null})× (V∗ ∪ {null}) Static Heap

Figure 24: Optimization rules
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tion for all further operations is split into two cases. One case is for
when the involved variables are in the static heap, which means that
the operation can be performed at optimization time and can be re-
moved from the trace. These rules mirror the execution semantics
closely. The other case is for when not enough is known about the
variables, and the operation has to be residualized.

If the argument v of a get operation is mapped to something in
the static heap, the get can be performed at optimization time. Oth-
erwise, the get operation needs to be residualized. Residualizing the
operation means simply to insert a copy of the operation into the
output operation list. As the first argument of the residualized op-
eration, the variable with a star corresponding to the first argument
of the original operation is chosen. The result variable of the residu-
alized operation is a new variable with star, which is identified with
the old result variable in the environment.

If the first argument v to a set operation is mapped to something
in the static heap, then the set can be performed at optimization
time which updates the static heap just as the corresponding rule of
the operational semantics. Otherwise the set operation needs to be
residualized. This needs to be done carefully, because the new value
for the field, from the variable u, could itself be static, in which case
it needs to be lifted first.

If a guard_class is performed on a variable that is in the static heap,
the type check can be performed at optimization time, which means
the operation can be removed if the types match. If the type check
fails statically or if the object is not in the static heap, the guard_class

is residualized. This also needs to lift the variable on which the
guard_class is performed.

Lifting takes a variable and turns it into a dynamic variable. If the
variable is already dynamic, nothing needs to be done. If it is in the
static heap, operations are emitted that construct an object with the
shape described there, and the variable is removed from the static
heap.

Lifting a static object needs to recursively lift its fields. Some care
needs to be taken when lifting a static object, because the structures
described by the static heap can be cyclic. To make sure that the same
static object is not lifted twice, the liftfield operation removes it
from the static heap before recursively lifting its fields.

As an example for lifting, consider the static heap

{v∗ →→ (T1, w∗, v∗), w∗ →→ (T2, u∗, u∗)}

which contains two static objects. If v∗ needs to be lifted, the follow-
ing residual operations are produced:

1v∗ = new(T1)
2w∗ = new(T2)
3set(w∗, L, u∗)
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4set(w∗, R, u∗)
5set(v∗, L, w∗)
6set(v∗, R, v∗)

After the lifting the static heap is the empty set, because both static
objects were lifted. If we had lifted w∗ instead of v∗, then the follow-
ing operations would have been produced:

1w∗ = new(T2)
2set(w∗, L, u∗)
3set(w∗, R, u∗)

In this case, the static heap afterwards would be:

{v∗ →→ (T1, w∗, v∗)}

6.4.2 Analysis of the algorithm

While this thesis does not contain a formal proof of it, it can be argued
informally that the algorithm presented above is sound: it works by
delaying (and often completely removing) some operations. The al-
gorithm runs in a single pass over the list of operations. Although
recursively lifting a static object is not a constant-time operation, the
algorithm only takes a total time linear in the length of the trace.
This is due to the fact that the size of the static heap is bounded by
the length of the trace and lifting always removes elements from it.
The algorithm itself is not particularly complex. However, in the con-
text of tracing JITs it is possible to find a simple enough algorithm that
performs well.

The optimization completely removes the manipulation of objects
in category 1 (those that do not escape); moreover, objects in cate-
gory 2 (escaping) are still partially optimized: all the operations in
between the creation of the object and the point where it escapes that
involve the object are removed. Objects in category 3 and 4 are also
partially optimized, their allocation is delayed till the end of the trace.

The optimization is particularly effective for chains of operations.
For example, it is typical for an interpreter to generate sequences
of writes-followed-by-reads, where one interpreted opcode writes to
some object’s field and the next interpreted opcode reads it back, pos-
sibly dispatching on the type of the object created just before. A
typical example would be a chain of arithmetic operations.

6.5 metajit implementation

The allocation removal technique described in this chapter was imple-
mented in the optimizer of MetaJIT. The optimization is independent
of which interpreter the JIT is applied to. There are some practical
issues beyond the techniques described in this chapter. The actual
implementation needs to deal with more operations than described
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in Section 6.4, for example to also support static arrays in addition to
static objects. The implementation of this optimization is about 400

lines of RPython code. Furthermore, on a guard failure the static ob-
jects need to be reconstructed before leaving to the interpreter, which
requires some code to store a description of the static objects in a
space-efficient way for every guard [SB12].

A further complication is that most interpreters written with
RPython use reified heap-allocated frame objects to store local vari-
ables. Those severely hinder the effectiveness of allocation removal,
because every time an object is stored into a local variable in the user
program, it is stored into the frame object, which makes it escape.
We implemented a technique to treat such frames objects in a spe-
cial way to solve this problem: While machine code is executed, the
frame object is not updated all the time but its content can exist as
variables in the trace (i.e., in the CPU registers and on the CPU stack).
Only when the frame is actually accessed by code outside of the trace
is the frame object filled. This is a common approach in VM imple-
mentations [Mir99, GES+09]; the novelty of our approach is that we
generalized it enough to be usable for different interpreters.

6.6 evaluation

To evaluate the allocation removal algorithm, its effectiveness when
used in PyPy’s Python interpreter is analyzed (this interpreter will be
described in more detail in Chapter 10).

The benchmarks used are small-to-medium Python programs,
some synthetic benchmarks but most of them (parts of) real appli-
cations.5 The benchmarks are listed and described in Appendix A.

The allocation removal algorithm is evaluated along two lines: how
many allocations and other operations can it optimize away and how
much are the run times of the benchmarks improved by that. For that,
two versions of PyPy’s Python interpreter are used, one that does not
includes the allocation removal optimization (opt1), the other does
(opt2).6

As the first step, the number of the occurring operations were
counted in all generated traces before and after the optimization
phase for all benchmarks using opt2. Figure 26 shows the numbers of
new, get and set operations and how many of them are removed by
the allocation removal optimization (no optimization in opt1 removes

5 All the benchmarks and the scripts to run them can be found at: http://cfbolz.de/
phdthesis/

There is also a website that monitors PyPy’s performance nightly at: http://speed.

pypy.org/

6 Both versions disable the heap optimization pass and the loop invariant code motion
pass [ABF12]. These passes disturb the measurements of the allocation removal op-
timizations. They can remove some of the set and get operations that the allocation
removal gets rid of as well. This means that the fastest version of PyPy is faster than
the performance numbers presented here, see Chapter 10 for more details.

http://cfbolz.de/phdthesis/
http://cfbolz.de/phdthesis/
http://speed.pypy.org/
http://speed.pypy.org/
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Figure 25: Overview of how much faster than PyPy without allocation re-
moval the variants are (higher is better)

any of them). The optimization removes between 74% and 92% of al-
location operations in the traces of the benchmarks. All benchmarks
taken together, the optimization removes 86% percent of allocation
operations. The numbers look similar for the writing of fields, read-
ing of fields is affected less.

Figure 27 shows the effect on guards, numeric operations and the
remaining types of operations that the two optimization configura-
tions have. The table shows the number of operations for each cat-
egory, what percentage of these are removed when using opt1 and
what percentage are removed when using opt2. The table shows that
allocation removal removes an additional number of guards for all
benchmarks. It also shows that allocation removal can give more op-
timization opportunities to other optimizations. Even though alloca-
tion removal itself does not remove operations from the numeric and
rest categories, enabling it leads to the additional removal of these
kinds of operations.

In addition to the count of operations Figures 25 and 28 presents
some time measurements. For each implementation the table also
reports the speedup over PyPy without allocation removal. With
the optimization turned on, PyPy’s Python interpreter outperforms
CPython in all benchmarks. All benchmarks are improved by the al-
location removal optimization, by at least 32% and by as much as a
factor of 8.84.
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num loops new opt2 get opt2 set opt2

chaos 38 1966 88% 2327 22% 9213 90%

crypto_pyaes 35 1385 83% 1360 0% 9807 89%

django 36 1036 84% 2221 15% 6681 89%

go 804 47331 89% 71740 23% 306087 91%

pyflate-fast 144 5769 85% 11437 45% 35948 92%

raytrace-simple 114 6891 87% 6203 8% 43696 91%

richards 50 1808 92% 2547 20% 15338 94%

spambayes 584 14880 80% 27735 17% 103139 75%

sympy_expand 272 10838 74% 17818 18% 61604 83%

telco 95 5708 91% 7776 19% 31924 91%

twisted_names 298 16305 84% 30417 17% 103357 88%

total 2470 113917 85% 181581 21% 726794 88%

Figure 26: Number of new/get/set operations and percentage removed by optimization

guard opt1 opt2 numeric opt1 opt2 rest opt1 opt2

chaos 4780 15% 33% 1666 8% 24% 4306 43% 46%

crypto_pyaes 2977 28% 36% 1550 30% 32% 3064 25% 27%

django 4009 22% 34% 571 18% 33% 3188 46% 48%

go 103249 24% 37% 17722 23% 52% 86602 46% 48%

pyflate-fast 17519 15% 42% 3819 20% 54% 15883 39% 43%

raytrace-simple 13996 16% 28% 2385 18% 24% 15479 50% 54%

richards 5269 19% 29% 697 31% 60% 5449 52% 55%

spambayes 41504 17% 32% 13183 21% 35% 34066 36% 40%

sympy_expand 33873 20% 34% 4366 17% 32% 27280 48% 52%

telco 16084 21% 32% 2065 21% 36% 13264 57% 59%

twisted_names 52621 24% 35% 9763 24% 42% 37535 46% 48%

total 295881 21% 35% 57787 22% 42% 246116 45% 48%

Figure 27: Effect of optimization on other operations
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Python [ms] Psyco [ms] PyPy opt1 [ms] PyPy opt2 [ms]

chaos 364.68 ± 4.56 147.47 ± 1.13 122.80 ± 2.76 30.33 ± 0.64

0.34 × 0.83 × 1.00 × 4.05 ×
crypto_pyaes 2098.80 ± 3.69 67.66 ± 4.73 819.42 ± 21.17 189.36 ± 20.19

0.39 × 12.11 × 1.00 × 4.33 ×
django 753.89 ± 4.03 827.37 ± 2.32 290.40 ± 12.69 90.91 ± 9.75

0.39 × 0.35 × 1.00 × 3.19 ×
go 724.85 ± 5.80 423.63 ± 5.03 964.61 ± 246.69 349.73 ± 298.83

1.33 × 2.28 × 1.00 × 2.76 ×
pyflate-fast 2418.29 ± 20.28 1157.32 ± 9.84 1711.35 ± 60.01 992.97 ± 53.81

0.71 × 1.48 × 1.00 × 1.72 ×
raytrace-simple 1910.54 ± 9.06 981.73 ± 2.88 782.14 ± 30.64 93.41 ± 29.13

0.41 × 0.80 × 1.00 × 8.37 ×
richards 256.23 ± 2.51 63.52 ± 1.78 154.39 ± 2.27 17.46 ± 1.43

0.60 × 2.43 × 1.00 × 8.84 ×
spambayes 242.61 ± 2.08 249.32 ± 2.56 277.64 ± 182.60 223.48 ± 221.97

1.14 × 1.11 × 1.00 × 1.24 ×
sympy_expand 1133.99 ± 11.55 12691.42 ± 7934.46 1326.91 ± 84.87 1008.60 ± 122.12

1.17 × 0.10 × 1.00 × 1.32 ×
telco 957.50 ± 8.60 676.50 ± 10.46 508.23 ± 24.66 116.61 ± 22.57

0.53 × 0.75 × 1.00 × 4.36 ×
twisted_names 7.88 ± 0.03 8.00 ± 0.03 5.86 ± 0.27 3.58 ± 0.46

0.74 × 0.73 × 1.00 × 1.64 ×

geom. mean 0.63 1.04 1.00 3.07

Figure 28: Benchmark times in milliseconds, together with factor over PyPy
without allocation removal
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6.7 conclusion

In this chapter, an optimization based on online partial evaluation
is described that optimizes away allocations and type guards in the
traces of a tracing JIT. This optimization can reduce the overhead of
boxing primitive types significantly and therefore bring the perfor-
mance of dynamic languages closer to that of statically typed ones
for applications that perform many arithmetic or other allocation-
heavy operations. The approach is language-independent and needs
no changes to the language interpreter to work. However, sometimes
changes to the language interpreter make objects escape less often,
which can increase the effectiveness of the optimization.

In the meta-tracing context a simple optimization based on par-
tial evaluation gives good results. This is due to the fact that the
tracing JIT itself is responsible for all control issues, which are usu-
ally the hardest part of partial evaluation: the tracing JIT selects the
parts of the program that are worthwhile to optimize, and extracts
common linear paths through them, inlining functions as necessary.
What is left to optimize are only those linear paths. The relation of
meta-tracing and partial evaluation will be explored in more detail in
Chapter 12.

A similar approach to optimization as described in this chapter for
allocation removal can likely be taken for other optimizations. Many
optimizations have the property that they work well on linear code
paths but require a complex (often whole program) analysis phase
for making them work in larger scopes than a basic block. Tracing
gives such optimizations a lot more context to work with by select-
ing interesting linear code paths and by aggressively inlining called
functions. For example, MetaJIT also contains a store-load propaga-
tion optimization [BGS99] with a very simple type-based alias anal-
ysis [DMM98]. Of course a trace still does not give truly global in-
formation. For example it is not possible to know about anything
outside of the trace. However, for many optimization such knowl-
edge is not necessary.
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S U M M A RY

In this first half of the thesis the foundations of meta-tracing have
been described. To enable meta-tracing, two hints, jit_merge_point
and can_enter_jit are needed that control the unrolling of the in-
terpreter loop to get traces that correspond to the loops in the user
program. Two further optional hints, promote and elidable were de-
scribed in Chapter 5. These hints can be used to improve the traces
produced by the meta-tracer to get better performance. These hints
guide the feedback of run-time information into the trace, and the
exploitation of such static information. They make it possible to ex-
press object model optimizations and are the main tool for language
implementors to improve the performance of their interpreter when
using meta-tracing.

Complementing the application of these hints is a language-
independent optimization that removes operations that operate on
short-lived heap objects. Whereas the annotations of Chapter 5 are
typically used to optimize operations on complex objects, such as in-
stances and classes, the optimization of Chapter 6 is most typically
useful for removing the overhead of primitive types, such as integers
and floats.

Another view of meta-tracing is that it separates language perfor-
mance concerns into several layers:

• The language semantics are specified by the language inter-
preter.

• Language-specific optimizations are given by adding hints to
the interpreter.

• Optimizations that are independent of the language and the
target machine are part of the meta-tracing JIT.

• Target-specific code is generated by the architecture-specific
backend.

This separation can be likened to the traditional architecture of
(ahead-of-time) compilers that are split into frontend, optimizations
and backend. The difference is that in the meta-tracing model the
frontend takes the form of an interpreter, which is easier to write and
understand.

Together the meta-tracing techniques should be able to remove
most of the overheads of dynamic languages. How much they can
improve the performance is explored in the next half of this thesis,
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where they are applied to three interpreters, one for regular expres-
sions, one for Python, and one for Prolog.



Part III

E VA L U AT I O N
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I N T R O D U C T I O N

The first half of this thesis showed a number of techniques for im-
proving the performance of interpreters by tracing through their im-
plementation. This second half evaluates these techniques using three
interpreters.

The first one, presented in Chapter 9, is a small interpreter for reg-
ular expressions. It is small enough to be fully shown in the chapter
but still executes an interesting language.

The second interpreter is at the other extreme on the complexity
scale. Chapter 10 presents the Python interpreter that gives PyPy
its name in more detail. Python is an object-oriented imperative dy-
namic language with very complex object semantics. The chapter
describes the rewrites of the interpreter that are necessary to speed
this language up in interesting ways. This interpreter is also used
to do a thorough evaluation of the speed effects of the techniques
presented in Part II.

The third interpreter is a Prolog interpreter presented in Chapter 10.
Prolog is a logical declarative language featuring unification, non-
determinism and backtracking. It is neither imperative nor object-
oriented. The chapter evaluates how well the meta-tracing approach
works for such languages.

After looking at concrete implementations, Chapter 12 places meta-
tracing into a wider context. The chapter compares meta-tracing to
partial evaluation, which is the traditional approach for improving
the performance of interpreters without writing a compiler instead.
The chapter tries to illuminate the differences and commonalities of
the two approaches by presenting executable models for both, written
in Prolog.
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C A S E S T U D Y: R E G U L A R E X P R E S S I O N S

This chapter presents the first case study for MetaJIT, a simple reg-
ular expression interpreter. There are two typical approaches to im-
plement regular expression. A naive one is to use a back-tracking
implementation, which can lead to exponential matching times for
certain regular expressions.

The other, more complex one, is to transform the regular expres-
sion into a non-deterministic finite automaton (NFA) [RS59] and then
transform the NFA into a deterministic finite automaton (DFA). A
DFA can be used to efficiently match a string, the problem of this ap-
proach is that turning an NFA into a DFA can lead to exponentially
large automatons. This can be seen by looking at the regular expres-
sion (a|b)*a(a|b){n}a(a|b)* where n is a natural number. This reg-
ular expression matches strings of a or b characters that contain two
a with exactly n characters between them. The DFA for this regular
expression needs to be have at least 2n states to remember at which
of the last n positions an a was found.

Given this problem of potential size explosion, a more sophisticated
approach to matching is to not construct the full DFA, but instead
use the NFA for matching. This requires some care, because it is
necessary to keep track of which set of states the automaton is in (it
is not just one state, because the automaton is non-deterministic).

The algorithm implemented in this chapter is essentially equiva-
lent to that approach, however it does not need an intermediate NFA
and instead represents a state of the corresponding DFA as a marked
regular expression (represented as a tree of nodes). The algorithm de-
scribed here follows a paper by Fischer et al. [FHW10]. For many de-
tails about alternative approaches to implement regular expressions
efficiently, see Russ Cox’s comprehensive article collection.1

9.1 the algorithm

In the algorithm the regular expression is represented as a tree of
nodes. The leafs of the nodes can match exactly one character (apart
from the epsilon node, which matches the empty string). The inner
nodes of the tree combine other nodes in various ways, like alterna-
tive, sequence or repetition. Every node in the tree can potentially
have a mark. The meaning of the mark is that a node is marked, if
that sub-expression matches the string seen so far.

1 http://swtch.com/~rsc/regexp/
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1class Regex(object):
2def __init__(self, empty):
3# empty denotes whether the regular expression
4# can match the empty string
5self.empty = empty
6# mark that is shifted through the regex
7self.marked = False

9def reset(self):
10""" reset all marks in the regular expression """
11self.marked = False

13def shift(self, c, mark):
14""" shift the mark from left to right , matching character c . """
15marked = self._shift(c, mark)
16self.marked = marked
17return marked

19def _shift(self, c, mark):
20raise NotImplementedError("abstract base class")

22def match(self, s):
23""" check whether regular expression matches a string . """
24if not s:
25return self.empty
26# shift a mark in from the left
27result = self.shift(s[0], True)
28for c in s[1:]:
29# shift the internal marks around
30result = self.shift(c, False)
31self.reset()
32return result

Figure 29: Base class of all regular expression classes and matching function
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33class Char(Regex):
34def __init__(self, c):
35Regex.__init__(self, False)
36self.c = c

38def _shift(self, c, mark):
39return mark and c == self.c

Figure 30: Matching characters

40class Epsilon(Regex):
41def __init__(self):
42Regex.__init__(self, empty=True)

44def _shift(self, c, mark):
45return False

Figure 31: Matching empty strings

The basic approach of the algorithm is that for every character of
the input string the regular expression tree is walked and some of
the nodes in the regular expression are marked. At the end of the
string, if the top-level node is marked, the string matches. Otherwise
it does not. At the beginning of the string, one mark gets shifted into
the regular expression from the top, and then the marks that are in
the regular expression already are shifted around for every additional
character.

Let’s start looking at some code, and an example to make this
clearer.2 The base class of all regular expressions is shown in Fig-
ure 29.

The most important subclass of Regex is Char, which matches one
concrete character, see Figure 30. Shifting the mark through Char is
easy: a Char instance retains a mark that is shifted in when the current
character is the same as that in the instance.

Another easy case is that of the empty regular expression Epsilon,
see Figure 31. Epsilons never get a mark, but they can match the
empty string.

9.1.1 Alternative

Now the more interesting cases remain. First we define an abstract
base class Binary for the case of composite regular expressions with
two children, and then the first subclass Alternative which matches
if either of two regular expressions matches the string, see Figure 32.
The usual regular expressions syntax for alternatives is a|b.

2 The source code together with the benchmarks can be found here: http://cfbolz.

de/phdthesis/

http://cfbolz.de/phdthesis/
http://cfbolz.de/phdthesis/
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46class Binary(Regex):
47def __init__(self, left, right, empty):
48Regex.__init__(self, empty)
49self.left = left
50self.right = right

52def reset(self):
53self.left.reset()
54self.right.reset()
55Regex.reset(self)

57class Alternative(Binary):
58def __init__(self, left, right):
59empty = left.empty or right.empty
60Binary.__init__(self, left, right, empty)

62def _shift(self, c, mark):
63marked_left = self.left.shift(c, mark)
64marked_right = self.right.shift(c, mark)
65return marked_left or marked_right

Figure 32: Alternative

m a t c h i n g  < a >

Alternat ive

Alternat ive Char(’c’)

Char(’a’) Char(’b’)

m a t c h i n g  < b >

Alternat ive

Alternat ive Char(’c’)

Char(’a’) Char(’b’)

Figure 33: Matching a simple alternative with input-strings ’a’ and ’b’

An Alternative can match the empty string if either of its chil-
dren can. Similarly, shifting a mark into an Alternative shifts it into
both its children. If either of the children are marked afterwards, the
Alternative is marked as well.

As an example, consider the regular expression a|b|c, which would
be represented by the following objects:
Alternative(Alternative(Char(’a’), Char(’b’)), Char(’c’))

Figure 33 shows the marks that the objects would get when match-
ing the strings "a" and "b" (gray nodes are marked, white ones are
unmarked). At the start of the process, no node is marked. Then the
first char is matched, which adds a mark to the Char(’a’) node, and
the mark will propagate up the two Alternative nodes.



9.1 the algorithm 79

66class Repetition(Regex):
67def __init__(self, re):
68Regex.__init__(self, empty=True)
69self.re = re

71def _shift(self, c, mark):
72return self.re.shift(c, mark or self.marked)

74def reset(self):
75self.re.reset()
76Regex.reset(self)

Figure 34: Repetition

9.1.2 The Kleene star

The two remaining classes are slightly trickier. The Kleene star is used
to match a regular expression any number of times. The usual syntax
for is is a*. It is implemented in the class Repetition, see Figure 34.

A Repetition can always match the empty string. The mark is
shifted into the child, but if the Repetition is already marked, this
will be shifted into the child as well, because the Repetition could
match another time.

Figure 35 shows as an example the regular expression (a|b|c)*
matching the string abcbac. For every character, one of the alterna-
tives matches, thus the repetition matches as well.

9.1.3 Sequence

The only missing class is that for sequences of expressions, Sequence.
The code can be seen in Figure 36. It’s usual regular expressions
syntax is ab.

A Sequence can be empty only if both its children are empty. The
mark handling is slightly more complicated than that of the other
classes. If a mark is shifted in, it will be shifted to the left child
regular expression. The right child gets a mark shifted in either if the
left child can match the empty string, or if the left child is already
marked before the shift.

The whole sequence matches (meaning that it is marked) in two
cases. On the one hand, it matches if the right child is marked. On
the other, it also matches if the left child is marked after the shift and
the right child can match the empty string.

Consider the regular expression abc matching the string abcd,
shown in Figure 37. For the first three characters, the marks wan-
der from left to right. When the character d is reached, the matching
fails.
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before matching ’abcbac’

Repetit ion

Alternat ive

Alternat ive Char(’c’)

Char(’a’) Char(’b’)

match ing  <a>bcbac

Repetit ion

Alternat ive

Alternat ive Char(’c’)

Char(’a’) Char(’b’)

match ing  a<b>cbac
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Alternat ive Char(’c’)

Char(’a’) Char(’b’)

match ing  ab<c>bac

Repetit ion

Alternat ive

Alternat ive Char(’c’)

Char(’a’) Char(’b’)

match ing  abc<b>ac

Repetit ion

Alternat ive

Alternat ive Char(’c’)

Char(’a’) Char(’b’)

match ing  abcb<a>c

Repetit ion

Alternat ive

Alternat ive Char(’c’)

Char(’a’) Char(’b’)

match ing  abcba<c>

Repetit ion

Alternat ive

Alternat ive Char(’c’)

Char(’a’) Char(’b’)

Figure 35: Matching a repetition
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77class Sequence(Binary):
78def __init__(self, left, right):
79empty = left.empty and right.empty
80Binary.__init__(self, left, right, empty)

82def _shift(self, c, mark):
83old_marked_left = self.left.marked
84marked_left = self.left.shift(c, mark)
85marked_right = self.right.shift(
86c, old_marked_left or (mark and self.left.empty))
87return (marked_left and self.right.empty) or marked_right

Figure 36: Sequence

before matching ’abcd’

Sequence

Sequence Char(’c’)

Char(’a’) Char(’b’)

match ing  <a>bcd

Sequence

Sequence Char(’c’)

Char(’a’) Char(’b’)

match ing  a<b>cd

Sequence

Sequence Char(’c’)

Char(’a’) Char(’b’)

match ing  ab<c>d

Sequence

Sequence Char(’c’)

Char(’a’) Char(’b’)

match ing  abc<d>

Sequence

Sequence Char(’c’)

Char(’a’) Char(’b’)

Figure 37: Matching a sequence
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9.1.4 A more complex example

As a more complex example, Figure 38 shows the expression
((ab)*|(abc))(c|e) matching the string abababe. Note how the two
branches of the first alternative match the first ab in parallel, until it
becomes clear that only the left alternative (ab)* can work.

9.1.5 Conclusion

The code shown in this section is a compact implementation of regu-
lar expressions. The match function loops over the entire string with-
out going back and forth. Each iteration goes over the whole tree
every time. Thus the complexity of the algorithm is O(mn) where
m is the size of the regular expression and n is the length of the
string. Therefore, no pathological cases exist. By itself, the Python
code shown is not terribly efficient. In the next section meta-tracing
will be used to make the matcher significantly faster.

9.2 meta-tracing the regular expression matcher

This section describes how meta-tracing can be used to turn the short
but not particularly fast regular expression matcher into a rather
fast implementation. The speed will be evaluated by comparing the
matcher against other regular expression implementations.

9.2.1 Reference performance numbers

The regular expression (a|b)*a(a|b){20}a(a|b)* is used as an exam-
ple. It matches all strings consisting of a and b characters that have
two a with exactly 20 characters between them. Converting this reg-
ular expression to a DFA would be impractical, since the DFA needs
221 states. As an input string, a random string (of varying lengths)
that does not match the regular expression is used. The unit to mea-
sure the speed of a regular expression implementation is the number
of chars matched per second. While this is not a particularly typical
regular expression, it should still be possible to get some rough num-
bers for the speeds of various implementations – as we will see, the
differences between implementations are big anyway.

To get started, the CPython re module3 (which is implemented
about 4000 lines of C and quite optimized) can match 1 950 000

chars/s. On the other end of the performance scale is the pure-
Python code from the last section running on CPython. It can match
only 15 800 chars/s and is thus 123 times slower than the re module.

3 http://docs.python.org/library/re.html

http://docs.python.org/library/re.html
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before matching ’abababe’
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Figure 38: Matching a complex regular expression
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9.2.2 Translating the matcher

The code described in the last section is not only normal Python code,
but also valid RPython code. Nothing dynamic is going on in the
code, thus it can be translated with the RPython translation toolchain
to C code. The resulting binary is considerably faster and can match
1 055 000 chars/s, 66 times faster than the untranslated version.

Another approach is to write equivalent versions of the algorithms
in lower level languages. This has been done for C++ by Sebastian
Fischer and for Java by Baltasar Trancón y Widemann. The code pre-
sented in this chapter an be mapped very closely to both of these
languages. The Python code above is about 90 lines long, the C++
version 100 and the Java version about 200 lines. The C++ version is
a little bit faster than the RPython version translated to C, at 1 099 000

chars/s. This is not very surprising, given their similarity. The Java
version is almost ten times faster, with 10 080 000 chars/s. Apparently
the HotSpot Java JIT compiler is a lot better at optimizing the method
calls in the algorithm or does some other optimizations. One reason
for this could be that the Java JIT can assume that the classes it sees
are all there are (and it will invalidate the generated machine code if
more classes are loaded), whereas the C++ compiler needs to gener-
ate code that works even in the presence of more regular expression
classes.4

9.2.3 Adding JIT hints

To apply MetaJIT to the regular expression matcher the code for string
matching needs to be extended by the hints described in Chapter 4.
This works well, because the regular expression matcher can be seen
as an interpreter for regular expressions. Then the match function
corresponds to the dispatch loop of a traditional interpreter.

The regular expression matcher is a very peculiar interpreter in that
the matcher works by running exactly one loop (the one in match) as
many times as the input string is long, irrespective of the “program”,
i.e. the particular regular expressions. In addition, within the loop
there are no conditions (e.g. if statements) at all, it is just linear code.
This makes it very well-suited for a tracing JIT, as no control flow at
all needs to be taken into consideration: There is exactly one loop per
regular expression, without any guards in them, except one to end
the loop.

The hints that are needed for the match function of Figure 29 can
be seen in Figure 39. The self variable is listed as the only green
local variable, making the currently matched regular expression the
program of the interpreter (which adds it to the position key as per

4 These numbers are using Java 7. The achieved performance was still a lot worse
with Java 6, meaning that the speedup is from a recent optimization.
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1jitdriver = jit.JitDriver(reds=[" i ", "s"], greens=[" self "])

3class Regex(object):
4...

6def match(self, s):
7if not s:
8return self.empty
9# shift a mark in from the left
10result = self.shift(s[0], 1)
11i = 1
12while i < len(s):
13jitdriver.jit_merge_point(i=i, s=s, self=self)
14# shift the internal marks around
15result = self.shift(s[i], 0)
16i += 1
17self.reset()
18return result

Figure 39: Applying JIT hints to the matching function

1class Char(Regex):
2_immutable_fields_ = ["c"]
3def __init__(self, c):
4...

Figure 40: Declaring the Char class to be immutable

Chapter 4). There is no part of the regular expression matcher that
corresponds to a backward jump bytecode, so the can_enter_jit hint
is simply left out. The jit_merge_point hint is put into the loop.

In addition to these hints we also declare that all of the fields of the
subclasses of Regex except marked are immutable. For example for the
Char class this is expressed as in Figure 40. These hints allow MetaJIT
to constant-fold reads out of the immutable fields in some situations,
as described in Chapter 5.

9.2.4 Adaptations to the original code

In the introduction above it was stated that the code within the loop
in match uses no conditions. It is indeed true that none of the _shift

methods have an if statement or similar. However, there are some
hidden conditions because the and and or boolean operators are used,
which are short-circuiting. Therefore the JIT-version of the code needs
to be adapted to use the non-short-circuiting operators & and |.

9.2.5 Generated code example

As an example of how the generated machine code looks like, con-
sider the regular expression (a|b)*. As regular expression objects
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1[i0, result0, s0]
2char = s0[i0] # read the character
3# read the current mark:
4i5 = ConstPtr(ptr_repetition).marked
5i7 = char == ’a’ # is the character equal to ’a’
6i8 = i5 & i7
7i10 = char == ’b’ # is the character equal to ’b’
8i11 = i5 & i10
9# write new mark
10ConstPtr(ptr_chara).marked = i8
11i13 = i8 | i11
12# write new mark
13ConstPtr(ptr_charb).marked = i11
14# write new mark
15ConstPtr(ptr_alternative).marked = i13
16# increment the index
17i17 = i0 + 1
18i18 = len(s0)
19# write new mark
20ConstPtr(ptr_repetition).marked = i13
21# check that index is smaller than the length of the string
22guard(i17 < i18)
23jump(i17, i13, s0) # start from the top again

Figure 41: Trace for matching (a|b)*

this would be:
Repetition(Alternative(Char(’a’), Char(’b’)))

The trace that is generated looks as in Figure 41.
The various ConstPtr(ptr_*) denote constant addresses of parts of

the regular expression tree:

• ptr_repetition is the Repetition

• ptr_chara is Char(’a’)

• ptr_charb is Char(’b’)

• ptr_alternative is the Alternative

Essentially the machine code reads the next char out of the string
(line 2), the current mark out of the Repetition (line 4). The char is
compared to a and b (lines 5 and 7) and then some boolean operations
are performed on the previous mark and the result of the comparison
(lines 6, 8, 11). Then the newly computed marks are stored back into
the regular expression objects (lines 10, 13, 15, 20). Afterwards there
is a guard that the end of the string is not reached, then the trace
ends with a jump. Note how the generated machine code does not
need to do any method calls to shift and _shift and that most field
reads out of the regular expression classes have been optimized away,
because the fields are immutable. Therefore the machine code does
not need to deconstruct the tree of regular expression objects at all,
it just knows where in memory the parts of it are, and encodes that
directly into the code.
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chars per second speedup vs. Python

Pure Python code 15 830 1

Python re module 1 949 000 123

RPython implementation compiled to C 1 018 000 64

C++ implementation 1 097 000 69

Java implementation 10 370 000 655

RPython implementation with MetaJIT 7 526 000 475

Figure 42: Matching speed of various regular expression implementations

9.2.6 Performance results with MetaJIT

With the regular expression matcher translated to C and with Meta-
JIT, the regular expression performance increases significantly. Our
running example can match 7 377 000 chars/s, which is almost four
times faster than the re module. This is not an entirely fair com-
parison, because the re module can give more information than just
“matches” or “doesn’t match”, but it is still interesting to see. A more
relevant comparison is that between the program with and without
the JIT: Using MetaJIT speeds the matcher up by more than 7 times.
All the results that appeared in this chapter can be seen in Figure 42.

The matcher without MetaJIT is slower, because for every character
of the input string it needs to walk over the whole regular expression
tree, reading fields out of the inner tree nodes and calling the _shift

method of their children. Every method call is expensive, because
it needs to dispatch to the right implementation. Also, during the
matching the current character is compared many times to ’a’ and
’b’. MetaJIT gets rid of all these sources of inefficiency by inlining all
_shift methods and optimizing the trace, as seen in Figure 41.

9.3 conclusion

The simple and slow regular expression matching algorithm de-
scribed in the first part of the section was translated to C and was
sped up significantly. The real win however is gained by using the
MetaJIT for the matcher, which can be regarded as an interpreter.
The resulting matcher is quite fast. Adding the hints for this sim-
ple interpreter is very easy, only the hints from Chapter 4 and some
immutability information are needed. This shows that MetaJIT can
be used on small interpreters without much effort, but giving large
speed improvements.
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C A S E S T U D Y: P Y T H O N

After the small example interpreter from the last chapter, this chap-
ter will present PyPy’s Python interpreter, and how its operations
were optimize by adding hints. Particular attention will be given to
common object operations and how they can be supported well. The
chapter also contains a detailed performance evaluation of MetaJIT
and the various techniques described in Part II of this thesis as used
in the Python interpreter.

PyPy’s Python interpreter is fully written in RPython, in about
93 500 lines of code. It can be roughly split into four parts:

• the bytecode interpreter (about 8000 lines of code)

• the library of built-in objects, called object space (about 18 000

lines of code)

• the parser and bytecode compiler (about 7500 lines of code)

• the library of built-in modules (about 60 000 lines of code split
into about 70 modules)

Of these, only the bytecode interpreter and the built-in object im-
plementation interact with MetaJIT, so only they will be described.

10.1 the bytecode interpreter and meta-tracing

The bytecode interpreter supports the control flow constructs of the
Python language with a straightforward stack-based bytecode instruc-
tion set. PyPy’s Python interpreter uses the same instruction set as
CPython, with a few minor changes to support specific optimization.
The instruction set contains opcodes for:

• variable handling: LOAD_FAST, STORE_FAST, LOAD_CONST,
LOAD_GLOBAL, ...

• stack manipulation: POP_TOP, DUP_TOP, ...

• control flow: JUMP_FORWARD, POP_JUMP_IF_FALSE, FOR_ITER, ...

• unary and binary operations on objects: UNARY_NOT, BINARY_ADD,
BINARY_MUL, ...

• object manipulation: LOAD_ATTR, STORE_ATTR, BUILD_CLASS, ...
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The bytecode interpreter is implemented in a very simple, direct
way. The only interesting property of the design of PyPy’s Python
interpreter is that it tries to cleanly separate the bytecode dispatching
and the implementation of all the opcodes that are concerned with
operations on objects. To that end, the bytecode interpreter treats all
Python objects that it handles as black boxes. All operations that it
performs on them are dispatched to the object space (see next subsec-
tion).

CPython (and thus also PyPy) is according to Brunthaler’s termi-
nology [Bru09] a high abstraction level virtual machine. This means that
“operation implementation requires significantly more native machine
instructions than for low abstraction level [virtual machines]” where
“operation implementation can be directly translated to a few native
machine instructions” [Bru09] [emphasis in the original]. In other
words, many bytecodes within the Python instruction set have rich
behaviour with complex dispatching rules to find the right implemen-
tation for the types at hand. An example is BINARY_ADD corresponding
directly to the syntax a + b which can add numbers (which are them-
selves split into different types, such as integers, floats, long integers,
complex numbers, ...) but also concatenate strings and lists as well as
do user-defined operations.1

Figure 43 shows the hints from Chapter 4 in the context of the
source code of the Python interpreter.2 The JIT driver lists the local
variables of the main bytecode dispatch loop. Of these, three make up
the green variables, which signify the position in the program that is
currently being executed. These are pycode which is the bytecode ob-
ject of the current function, next_instr which is the program counter
and is_being_profiled which is a flag that specifies whether profil-
ing is turned on. Because this flag is green, the meta-tracer produces
different traces for when a function is run without profiling and for
when it is run with profiling.

The jit_merge_point is at the beginning of the while loop of the
dispatch method. This method calls handle_bytecode which executes
the next bytecode instruction, returning the new program counter
position. It can also raise an ExitFrame exception, when the function
execution is finished.

The can_enter_jit hint is placed in the implementation of the
jump_absolute bytecode, which is the only way a backward jump hap-
pens.

1 A consequence of this high abstraction level is that most classical techniques that re-
duce the bytecode dispatch overhead of interpreters, such as threaded code [Bel73]
and superinstructions [Pro95] don’t help much in the case of Python. Python’s byte-
code dispatch overhead is low compared to the complex dispatching that goes on
within the bytecode [Bru09].

2 The code is lightly edited to leave out some implementation details.
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2pypyjitdriver = JitDriver(
3reds = [ ’frame’, ’ec ’],
4greens = [ ’next_instr ’, ’ is_being_profiled ’, ’pycode’])

7class PyFrame(eval.Frame):
8...

10def dispatch(self, pycode, next_instr, ec):
11is_being_profiled = self.is_being_profiled
12try:
13while True:
14pypyjitdriver.jit_merge_point(ec=ec,
15frame=self, next_instr=next_instr, pycode=pycode,
16is_being_profiled=is_being_profiled)
17co_code = pycode.co_code
18self.valuestackdepth = promote(self.valuestackdepth)
19next_instr = self.handle_bytecode(
20co_code, next_instr, ec)
21is_being_profiled = self.is_being_profiled
22except ExitFrame:
23return self.popvalue()

25...

27def jump_absolute(self, jumpto, _, ec=None):
28pypyjitdriver.can_enter_jit(
29frame=self, ec=ec, next_instr=jumpto,
30pycode=self.getcode(),
31is_being_profiled=self.is_being_profiled)
32return jumpto

Figure 43: The main Python bytecode loop and the JUMP_ABSOLUTE Bytecode
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10.2 object implementation and optimizations

The object space contains the implementation of all the kinds of ob-
jects built into the Python language. It is a library containing only
types that are in some way directly integrated into the language (for
example by having special syntactic support).

The built-in Python types that are implemented in the object space
are:

• Numerical types: int, long, float, complex

• String types: str and unicode

• Container types: list, tuple, dict, set, and frozenset (an im-
mutable set type)

• Types relevant to the class system: object and type

All these types have rich operations on them built into the lan-
guage and implemented in the object space. Particularly the con-
tainer types each have a large number of methods for manipulat-
ing them.3 Python’s object system supports multiple inheritance and
meta-classes, following the ObjVLisp model [Coi87].

All the primitive objects such as integers, floats, complex numbers
and partially strings are already sufficiently optimized by the alloca-
tion removal techniques described in Chapter 6. Optimizations on
container types have been described by Diekmann [Die12]. What
remains are the important building blocks for larger programs, in-
stances, classes, and modules. Those are optimized using more ad-
vanced variants of the techniques described in Chapter 5. In general
the design goals of these optimizations were to make the common
cases of non-reflective access as fast as possible. All additional flexibil-
ity (reflection, using dynamic access patterns, mutating the exposed
reflective data structures) is allowed to cost additional memory and
time. Of course the semantics of the Python language always has to
be preserved. It is never allowed to have operations that give incorrect
results or raise an exception even in obscure corner-cases.

10.2.1 Optimizing instances

Instances of user-defined classes are used quite often as soon as a
Python program is larger than just a small script. At the same time,
Python’s object model is rather complex. Every instances can store
several types of information, as described below.

3 See for example the dictionary documentation: http://docs.python.org/library/

stdtypes.html#dict

http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/stdtypes.html#dict
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Every instance knows which class it belongs to. This information is
accessible via the __class__ attribute. It can also be changed to other
(compatible enough) classes by writing to that attribute.

Every instance also stores an arbitrary number of attributes (also
called instance variables). The instance variables used can vary per
instance, which is not the case in most other class-based languages:
traditionally (for example in Smalltalk [Gol83] or Java [Gos05]) the
class describes the shape of its instances, which means that the set of
admissible instance variable names is the same for all instances of a
class.

In Python on the other hand, it is possible to add arbitrary at-
tributes to an instance at any point. The instance behaves like a dic-
tionary mapping attribute names (as strings) to the attribute values.
In this way Python behaves more like a prototype-based language
such as Self [US87] or JavaScript [ECM99]. The class is only there for
sharing behaviour between instances.

In CPython instances are implemented by giving every instance a
reference to a dictionary that stores all the attributes of the instance.
This dictionary can be reached via the __dict__ attribute. For addi-
tional complexity, the dictionary can also be replaced by writing to that
attribute. This implementation decision is costly in terms of mem-
ory, as dictionaries are not small data structures, and seems to defeat
many reasonable optimisations.

The implementation of instances in PyPy is optimized in such a
way that the direct access of instance attributes is as fast as possible.
To reach this goal, the attributes of instances are represented using
maps as described in Section 5.3. All the features of Python’s object
model need to work within that conceptual framework.

A very important optimization beyond the code in Section 5.3 is
that in practice the shape of an instance is correlated with its class.
Therefore it does not makes sense to let them vary independently. In
PyPy’s Python interpreter the class of an instance is therefore stored
on its map. In that way, when promoting the map of an instance, its
class is also known directly. The approach needs one less promotion
as the code in Figure 18. Since promotions turn into guards in a trace,
this produces smaller traces. It also has the benefit of making objects
one word smaller.

Although performance is PyPy’s most obvious goal, it also at-
tempts to save memory when that is not in direct conflict with per-
formance. One example of this is PyPy’s compact representation of
instances. Observance of real systems showed that most objects have
five or fewer slots. PyPy therefore preallocates space for five slots,
freeing it from the need to allocate an arbitrarily sized list to store
slots in most cases (which, when all its parts are taken account of, is
up to 40% more memory needed to store five slots). Only when more
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instance map 1 7 4

map for class A "x": 0 "y": 1 "z": 2

instance map 4 6 -1

Figure 44: Two instances of class A sharing the same map

instance map 12 "hello" 4.3 1.2

map for class B "a": 0 "b": 1 "c": 2 "x": 3 "y": 4 "z": 5

array -2 4

Figure 45: An instance of class B with six attributes
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instance map 1 2 3

map for class A "x": 0 "y": 1 "z": 2 "__dict__": 3 fake dict object None

Figure 46: An instance implemented with a map, and its dictionary

than five slots are assigned to an instance is an arbitrarily sized list
created and referenced from the object.

Figure 44 shows PyPy’s layout scheme for two instances of class
A, each instance using the same slot names. Since the instances have
only three slots, the content of the slots can be stored in the preallo-
cated slots. Figure 45 shows an instance with six slots. Two of the
fields have to be stored in an extra array allocated for that use. Note
how the last preallocated slot of the instance is used for that indirec-
tion.

When the .__dict__ attribute of an instance is accessed a simple
solution would be to stop using a map to implement the instance stor-
age and switch over to storing everything in a dictionary again. Do-
ing so would mean that any reflective access of the dictionary would
substantially slow down subsequent use of that instance. Since the
dictionary is mostly used for reading and writing slots, this would
slow down many real programs. Therefore, in PyPy, requesting an
instance’s dictionary returns a fake dictionary. This is indistinguish-
able from a real dictionary, and transparently redirects all reads and
write to keys and values to the underlying instance.4 Using this tech-
nique, performance for normal accesses after simple reflective use of
the object remains as fast as the standard case.

Figure 46 shows an instance that has its data stored with a map,
together with the fake dictionary that redirects all accesses back to
the instance. Note that the instance needs to keep a reference to
the dictionary once it has been requested to ensure that the expected
object identity invariants are maintained.

However, when the programmer uses more of Python’s dynamic
features – in particular, writing a new dictionary to the __dict__ slot
– even this tactic is no longer viable. In such cases, PyPy stops using
maps for the instance and stores its instances in a real dictionary (as

4 A proper solution to implement this sort of reflective access would be to use mir-
rors [BU04]. This would make it necessary to change the semantics of the Python
language. Indeed, the .__dict__ attribute can already be seen as a mirror on the
attributes of an instances. However, the dictionary gives stronger guarantees than
mirrors, because it is supposed to stay the same object when repeatedly accessing it.
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instance map

degenerate map for class A "__dict__": 0

dict {"x": 1, "y": 2, "z": 3, -1: 4}

dict object

Figure 47: An instance that has its attributes stored in a dictionary

shown in Figure 47). Fortunately such uses are rare, so few programs
suffer the consequent slowdowns.

10.2.2 Optimizing classes

The goal when optimizing classes was to make a non-reflective
method lookup as fast as possible. Python’s class model supports
multiple inheritance. The C3 algorithm [BCH+

96] is used to lin-
earize the parent classes into a method-resolution order for every
class. Therefore looking up a method in a class needs to consider
all the classes in the whole method resolution order. This makes the
versioning of classes as described in Section 5.3 more complex be-
cause classes cannot be versioned in isolation. If class A is changed,
its version changes. At the same time, the version of every class that
has A in its method resolution order needs to be changed as well. To
make this possible, a class keeps a list of weak references to its sub-
classes.5 This makes class changes expensive, but they should be rare.
The advantage of this approach is that a lookup in a class hierarchy
is replaced by the checking of one class’s version. After the version
check, the correct result is already known. Thus every lookup has the
same cost, no matter how deep the class hierarchy is.6

One problem with this approach is that while most classes never
change, there are some classes that have attributes that change often.
A common example is that of storing a counter on the class to give
every instance a unique number. In that case, every time the counter
is increased, the class version (and that of all subclasses) changes,
which means a lot of guards that check for the previous version start

5 The reference needs to be weak to make it possible to garbage collect classes.
6 There is a further optimization in place in RPython to remove this check entirely.

The version field of the class object is declared to be “quasi-immutable”. This means
that it is supposed to change rarely. Reading such a field out of a class produces no
operation in the trace at all, instead a dependency of the trace on the field’s value is
recorded. When that value changes the trace is invalidated.
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class C version dict ...

version dict "f": <function f> "g": <function g> "counter":

ClassCell 134

Figure 48: Class C with two methods and a counter

failing and new traces would have to be generated. Clearly this is not
desirable.

Therefore an extension was made to address class changes. When
a class attribute is changed for the first time to another value, an ex-
tra level of indirection is introduced. That means the dictionary of
the class doesn’t store the value of the attribute directly, but stores a
reference to a small intermediate object that contains the real value.
When the value of the class attribute is changed subsequently, only
the content of that intermediate object is changed, not the class’s at-
tribute. Thus for such changes the type version of the class does not
need to be changed, making writing to it efficient. After the first
time, writing to such a field thus causes relatively little slowdown,
while reading from it needs an extra memory read (including when
accessed via subclasses). While slightly less efficient, this seems like a
reasonable balance between fast general performance and reasonable
performance in the rarer case.

Figure 48 shows a class with two methods f and g and a counter

field. The counter is stored via an indirection to a ClassCell, meaning
that changing it does not update the version of the class. On reading
the counter attribute, an extra pointer dereference is needed.

This approach is similar to Smalltalk’s mechanism for handling
global variables [Gol83, p. 599]. A global variable7 is a reference
to an association object, which corresponds to PyPy’s class cells. To
read it, the value of the association is read. To write to the global
variable, the value of the association object is set. In Smalltalk, this
indirection is always used, not just for commonly changed variables.
More generally, class versions can be related to the invalidation of
method caches when a new method is compiled in some Smalltalk
systems [DS84].

7 The same is true for class variables and pool variables.
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10.2.3 Optimizing modules

Modules are conceptually similar to classes, with both providing
namespaces for storing functions/methods and values. However,
modules are simpler in that there can be no inheritance between them.
Similar to classes, a module’s content typically stays the same after
initialization. However, there are also cases in which a module con-
tains a few fields that are changed all the time. This is the case when
code is executed on the global level or when a variable is declared
to be global within a function’s scope. Thus a similar solution as for
classes applies: Every module gets a version. When the module is
mutated, the version is changed. When the same name in the module
is mutated a second time, an indirection from the module dictionary
to a cell is introduced. The lookups for this name are slightly slower,
but changing that same name again in the future will be fast.

10.3 benchmarks

This section will evaluate the performance effect of meta-tracing and
its techniques as described in the first part of this thesis. To achieve
that, the benchmarks that were already used in Chapter 6 are used
again. They are described in Appendix A.8

To evaluate how successful the described techniques are, six ver-
sions of the PyPy Python interpreter were built and are compared
against each other. The starting point is the purely interpretative ver-
sion of the Python interpreter. Then step by step various features are
enabled. The versions are described in Figure 49. For all the versions
the full optimizations of the RPython tracing system are enabled, in-
cluding that of Chapter 6. The first four of these versions can be
used to gauge the effectiveness of basic meta-tracing, the last two of
run-time feedback and object optimizations.

As a baseline, CPython9 is used, the standard Python implemen-
tation in C. It uses a bytecode-based interpreter. Furthermore we
compared against Psyco [Rig04], a (hand-written) extension module
to CPython which is a just-in-time compiler that produces machine
code at run-time. It is not based on traces and it also does not pre-
serve the language semantics fully, for example it disables the use of
the debugger.

All the results are summarized in Figure 50. It shows the geometric
mean over all benchmarks results as a factor over CPython. Higher
results are better.

Figure 51 shows the detailed results and comparison between
CPython, PyPy-interp and PyPy-full which shows the full range of

8 All the benchmarks and the scripts to run them can be found at: http://cfbolz.de/
phdthesis/

9 http://python.org

http://cfbolz.de/phdthesis/
http://cfbolz.de/phdthesis/
http://python.org
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pypy-interp is a pure interpreter.

pypy-tracing enables classical tracing of the interpreter, not meta-
tracing. The bytecode loop is not unrolled during tracing. It
corresponds to Figure 7 in Chapter 4.

pypy-meta enables meta-tracing. Like in Figure 9, the bytecode
loop is unrolled to correspond to user loops. However, the op-
erations on the bytecode and program counter are not folded
away.

pypy-fold is the same as PyPy-meta, but also folds operations on
bytecode and program counter. It corresponds to Figure 10.
Then hints needed to achieve this are shown in Figure 43.

pypy-frame adds the frame optimization that are briefly described
in Section 6.5.

pypy-full adds promote and elidable hints of Chapter 5 as de-
scribed in Section 10.2 of this chapter. This is the “normal”
PyPy Python interpreter that is shipped in releases. It contains
all operations known to be effective.

Figure 49: The versions of PyPy used in benchmarks

CPython Psyco PyPy-interp PyPy-tracing PyPy-meta PyPy-fold PyPy-frame PyPy-full
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Figure 50: Overview of how much faster than CPython the variants are
(higher is better)
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CPython [ms] PyPy-interp [ms] PyPy-full [ms]

chaos 364.68 ± 4.56 853.35 ± 1.68 21.16 ± 1.20

2.34 × 1.00 × 40.34 ×
crypto_pyaes 2098.80 ± 3.69 4633.95 ± 20.47 119.24 ± 19.45

2.21 × 1.00 × 38.86 ×
django 753.89 ± 4.03 1595.27 ± 9.37 74.87 ± 9.56

2.12 × 1.00 × 21.31 ×
go 724.85 ± 5.80 2998.54 ± 14.23 171.58 ± 74.50

4.14 × 1.00 × 17.48 ×
pyflate-fast 2418.29 ± 20.28 5541.48 ± 24.63 904.71 ± 17.09

2.29 × 1.00 × 6.13 ×
raytrace-simple 1910.54 ± 9.06 3789.66 ± 8.27 41.35 ± 5.69

1.98 × 1.00 × 91.64 ×
richards 256.23 ± 2.51 562.26 ± 3.02 6.93 ± 1.99

2.19 × 1.00 × 81.11 ×
spambayes 242.61 ± 2.08 566.55 ± 13.00 131.06 ± 84.99

2.34 × 1.00 × 4.32 ×
sympy_expand 1133.99 ± 11.55 3281.73 ± 31.62 948.74 ± 42.38

2.89 × 1.00 × 3.46 ×
telco 957.50 ± 8.60 2821.28 ± 4.69 70.70 ± 9.62

2.95 × 1.00 × 39.90 ×
twisted_names 7.88 ± 0.03 18.46 ± 0.22 3.18 ± 0.13

2.34 × 1.00 × 5.80 ×

geom. mean 2.47 1.00 18.60

Figure 51: CPython, PyPy interpreter and full JIT

performance. PyPy-interp is about 2 to 4.4 times slower than CPython.
PyPy-full achieves speedups between 3.7 and almost 90 times faster
than the interpreted version.

Figure 52 shows the comparison of the full JIT against Psyco.
PyPy-full is quite competitive with Psyco, there is only one bench-
mark, crypto_pyaes, where Psyco is about two times faster than PyPy.
Apart from this benchmark, PyPy-full is often significantly faster than
Psyco.

In the following subsections we will see from which optimizations
these performance-improvements come from.
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Psyco [ms] PyPy-full [ms]

chaos 147.47 ± 1.13 21.16 ± 1.20

1.00 × 6.97 ×
crypto_pyaes 67.66 ± 4.73 119.24 ± 19.45

1.00 × 0.57 ×
django 827.37 ± 2.32 74.87 ± 9.56

1.00 × 11.05 ×
go 423.63 ± 5.03 171.58 ± 74.50

1.00 × 2.47 ×
pyflate-fast 1157.32 ± 9.84 904.71 ± 17.09

1.00 × 1.28 ×
raytrace-simple 981.73 ± 2.88 41.35 ± 5.69

1.00 × 23.74 ×
richards 63.52 ± 1.78 6.93 ± 1.99

1.00 × 9.16 ×
spambayes 249.32 ± 2.56 131.06 ± 84.99

1.00 × 1.90 ×
sympy_expand 12691.42 ± 7934.46 948.74 ± 42.38

1.00 × 13.38 ×
telco 676.50 ± 10.46 70.70 ± 9.62

1.00 × 9.57 ×
twisted_names 8.00 ± 0.03 3.18 ± 0.13

1.00 × 2.52 ×

geom. mean 1.00 4.58

Figure 52: Psyco and PyPy-Full
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10.3.1 The effect of (meta-)tracing

To measure the effects of the meta-tracer (Chapter 4) various versions
of the PyPy Python interpreter are compared with each other, em-
ploying different ways to do tracing. The results can be seen in Fig-
ure 53. Surprisingly, classical tracing gives performance benefits for
some of the benchmarks, between 26% and more than 3 times faster.
This is opposed to the results gotten for the small stack-based inter-
preter in Section 4.4. The reason is that Python’s bytecodes contain
a lot of dynamic dispatches so even just picking common paths in
them is sometimes useful. Two benchmarks crashed with PyPy-trace.
Because of the general limitations of PyPy-trace this was not investi-
gated further.

Further speedups can be achieved by enabling meta-tracing, un-
rolling the bytecode loop until the trace corresponds to the loops on
the Python level. Together with the folding of the operations on byte-
code on program counter the speedup over PyPy-interp is between
50% and a factor of almost 9. This corresponds to getting rid of all
the bytecode dispatch overhead and doing optimizations on primitive
data types, such as integers and floats, with the help of the allocation
removal optimization.

10.3.2 The effect of run-time feedback

To improve the performance even more, optimizations of objects are
needed. To that end, the optimizations of instances, classes, and mod-
ules as described in Section 10.2 are enabled. The results are seen in
Figure 54. The figure shows that the object optimizations give a fur-
ther speedup over PyPy-fold of 50% up to a factor of more than 50.
Some of this effect is due to optimizing reified frames, which on its
own already gives an improvement of 18% up to a factor of 3.

10.3.3 Warmup times

To better understand the warmup times that MetaJIT needs to reach
full speed, the cold run times of the benchmarks were measured.
They are taken by measuring the time of the first iteration of the
benchmark after starting the VM. The time for the first iteration typi-
cally includes the tracing and compilation time. The numbers can be
seen in Figure 55. For MetaJIT, the results are mixed. While in some
benchmarks the JIT seems to help even within the first iteration, in
others the first iteration is slower than CPython. Psyco’s compilation
overhead and warmup times are a lot lower than that of MetaJIT: for
Psyco, all benchmarks except chaos and crypto_pyaes have almost
their full speed in the first iteration. However, for MetaJIT this is only
true for twisted_names.
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PyPy-interp [ms] PyPy-trace [ms] PyPy-meta [ms] PyPy-fold [ms]

chaos 853.35 ± 1.68 448.94 ± 10.71 408.23 ± 11.29 225.91 ± 3.05

1.00 × 1.90 × 2.09 × 3.78 ×
crypto_pyaes 4633.95 ± 20.47 2528.03 ± 29.38 881.01 ± 21.44 521.93 ± 23.65

1.00 × 1.83 × 5.26 × 8.88 ×
django 1595.27 ± 9.37 1591.44 ± 21.38 488.53 ± 23.40 417.59 ± 11.90

1.00 × 1.00 × 3.27 × 3.82 ×
go 2998.54 ± 14.23 908.12 ± 19.00 713.93 ± 56.86 487.94 ± 32.47

1.00 × 3.30 × 4.20 × 6.15 ×
pyflate-fast 5541.48 ± 24.63 3985.06 ± 53.54 2500.42 ± 34.04 2198.21 ± 28.73

1.00 × 1.39 × 2.22 × 2.52 ×
raytrace-simple 3789.66 ± 8.27 2161.27 ± 232.26 1673.84 ± 15.72 1422.96 ± 14.45

1.00 × 1.75 × 2.26 × 2.66 ×
richards 562.26 ± 3.02 446.99 ± 8.45 419.28 ± 5.25 367.68 ± 3.83

1.00 × 1.26 × 1.34 × 1.53 ×
spambayes 566.55 ± 13.00 300.31 ± 32.35 243.10 ± 106.60 210.25 ± 101.02

1.00 × 1.89 × 2.33 × 2.69 ×
sympy_expand 3281.73 ± 31.62 2206.15 ± 81.45 1626.77 ± 65.49 1429.57 ± 71.01

1.00 × 1.49 × 2.02 × 2.30 ×
telco 2821.28 ± 4.69 — 1070.77 ± 10.41 696.14 ± 11.30

1.00 × 2.63 × 4.05 ×
twisted_names 18.46 ± 0.22 — 8.47 ± 0.32 7.12 ± 0.21

1.00 × 2.18 × 2.59 ×

geom. mean 1.00 1.67 2.53 3.31

Figure 53: Comparing various ways to do tracing
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PyPy-fold [ms] PyPy-frame [ms] PyPy-full [ms]

chaos 225.91 ± 3.05 92.61 ± 2.36 21.16 ± 1.20

1.00 × 2.44 × 10.68 ×
crypto_pyaes 521.93 ± 23.65 172.56 ± 20.43 119.24 ± 19.45

1.00 × 3.02 × 4.38 ×
django 417.59 ± 11.90 250.63 ± 9.79 74.87 ± 9.56

1.00 × 1.67 × 5.58 ×
go 487.94 ± 32.47 302.99 ± 50.39 171.58 ± 74.50

1.00 × 1.61 × 2.84 ×
pyflate-fast 2198.21 ± 28.73 1411.50 ± 23.37 904.71 ± 17.09

1.00 × 1.56 × 2.43 ×
raytrace-simple 1422.96 ± 14.45 523.86 ± 4.20 41.35 ± 5.69

1.00 × 2.72 × 34.41 ×
richards 367.68 ± 3.83 245.30 ± 2.25 6.93 ± 1.99

1.00 × 1.50 × 53.04 ×
spambayes 210.25 ± 101.02 177.47 ± 93.53 131.06 ± 84.99

1.00 × 1.18 × 1.60 ×
sympy_expand 1429.57 ± 71.01 1172.30 ± 71.42 948.74 ± 42.38

1.00 × 1.22 × 1.51 ×
telco 696.14 ± 11.30 339.42 ± 8.97 70.70 ± 9.62

1.00 × 2.05 × 9.85 ×
twisted_names 7.12 ± 0.21 5.30 ± 0.18 3.18 ± 0.13

1.00 × 1.34 × 2.24 ×

geom. mean 1.00 1.76 5.62

Figure 54: Enabling frame and object optimizations
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CPython [ms] Psyco [ms] Psyco [ms] PyPy-full [ms] PyPy-full [ms]

cold cold

chaos 364.68 ± 4.56 147.47 ± 1.13 149.81 21.16 ± 1.20 292.97

1.00 × 2.47 × 2.45 × 17.24 × 1.25 ×
crypto_pyaes 2098.80 ± 3.69 67.66 ± 4.73 68.49 119.24 ± 19.45 345.08

1.00 × 31.02 × 30.26 × 17.60 × 6.01 ×
django 753.89 ± 4.03 827.37 ± 2.32 826.51 74.87 ± 9.56 306.72

1.00 × 0.91 × 0.91 × 10.07 × 2.46 ×
go 724.85 ± 5.80 423.63 ± 5.03 470.57 171.58 ± 74.50 2766.88

1.00 × 1.71 × 1.54 × 4.22 × 0.26 ×
pyflate-fast 2418.29 ± 20.28 1157.32 ± 9.84 1143.60 904.71 ± 17.09 1540.96

1.00 × 2.09 × 2.11 × 2.67 × 1.57 ×
raytrace-simple 1910.54 ± 9.06 981.73 ± 2.88 991.28 41.35 ± 5.69 1285.51

1.00 × 1.95 × 1.92 × 46.20 × 1.48 ×
richards 256.23 ± 2.51 63.52 ± 1.78 67.40 6.93 ± 1.99 449.73

1.00 × 4.03 × 3.79 × 36.96 × 0.57 ×
spambayes 242.61 ± 2.08 249.32 ± 2.56 256.57 131.06 ± 84.99 563.90

1.00 × 0.97 × 0.96 × 1.85 × 0.44 ×
sympy_expand 1133.99 ± 11.55 12691.42 ± 7934.46 1435.63 948.74 ± 42.38 2598.10

1.00 × 0.09 × 0.79 × 1.20 × 0.44 ×
telco 957.50 ± 8.60 676.50 ± 10.46 680.00 70.70 ± 9.62 1232.08

1.00 × 1.42 × 1.41 × 13.54 × 0.78 ×
twisted_names 7.88 ± 0.03 8.00 ± 0.03 7.97 3.18 ± 0.13 3.18

1.00 × 0.98 × 1.00 × 2.48 × 2.50 ×

geom. mean 1.00 1.64 1.97 7.52 1.08

Figure 55: Cold run times
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Python [MiB] Psyco [MiB] PyPy-interp [MiB] PyPy-full [MiB]

chaos 7.02 12.70 37.50 38.78

crypto_pyaes 2.93 8.05 41.08 45.03

django 9.98 21.70 50.48 59.54

go 6.78 15.50 38.21 44.63

pyflate-fast 11.31 17.87 49.39 62.32

raytrace-simple 2.59 8.39 38.27 38.63

richards 2.62 8.00 23.06 33.86

spambayes 6.27 21.67 44.33 47.56

sympy_expand 14.68 385.70 50.42 52.94

telco 2.85 10.64 38.58 48.40

twisted_names 6.98 15.76 39.97 52.75

Figure 56: Memory usage

10.3.4 Memory usage

To understand the effects on memory usage that MetaJIT has on
PyPy’s Python interpreter the memory usage was tracked during a
run of every benchmark. The results can be seen in Figure 56. They
show that even PyPy without MetaJIT has a large memory overhead
over CPython, of up to more than 10 times larger for crypto_pyaes.
The JIT can add another factor of 2, for example for richards. The
memory overhead of Psyco over CPython is comparable to that of
PyPy-full over PyPy-interp, except for sympy_expand, where Psyco
seems to generate a huge amount of machine code (sympy_expand
is also the only benchmark where using Psyco makes the program
slower). The memory overhead of MetaJIT is justified by the speedup
it gives but work should be done to reduce it further. However, the
memory overhead of PyPy-interp itself compared to other languages
seems unacceptably large in some cases.

10.3.5 Comparison with other languages

To understand how the performance of the Python interpreter com-
pares with other JIT implementations this subsection presents the re-
sults of a different benchmark set, that of the Computer Language
Benchmarks Game.10 It contains implementations of a number of
benchmarks in various languages. The benchmarks mostly do string
and numeric computations and are small (about 20-300 lines of code).
The benchmarks implementations in the different languages perform

10 http://shootout.alioth.debian.org/

http://shootout.alioth.debian.org/
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the same function, but do not have to use the same implementation
approach. Some of the benchmarks were slightly modified to make
the results comparable. All the CPython-specific optimizations from
the Python versions were removed. Furthermore, all Java versions
were modified to use only one thread.

The JITs chosen to compare against are V8,11 Google’s JavaScript
VM used in the Chrome browser; LuaJIT,12 an open source Lua trac-
ing JIT by Mike Pall and Hotspot13, the Oracle Java Virtual Machine.

The results of the comparison can be seen in Figure 57. All shootout
benchmarks were run 30 times, starting a new process for every
run. Every benchmark is run with two input sizes, one that finishes
quickly and one that runs longer. This is done to estimate the effects
of the warmup times. Hotspot is the fastest VM, followed by LuaJIT,
V8, and PyPy. On average, LuaJIT is almost two times faster than
PyPy, while V8 is still 60% faster. In individual benchmarks PyPy is
even a lot slower. Hotspot is rather slow for regexdna, which exer-
cises the regular expression engines of the VMs. Both V8 and PyPy
have JITs for theirs, which explains the good results.

The results still show that a meta-tracing can achieve results in
the same ballpark as manually tuned virtual machines. A certain
slowdown compared to a hand-written VM is to be expected, due to
the generality of the meta-tracing approach.

The benchmarks don’t show a clear preference when comparing
tracing to method-based JIT compilers. LuaJIT and PyPy use tracing,
while Hotspot and V8 are method-based JITs. While Hotspot is the
fastest JIT, it is for a statically typed language. LuaJIT, a tracing JIT,
is the fastest VM for a dynamic language of the ones benchmarked.

10.4 conclusion

In this chapter PyPy’s Python interpreter and the object model opti-
mizations of it were presented. With these optimizations, instances,
classes, and modules perform well in the Python VM. Instances are
stored almost as compactly in memory as in, for example, Smalltalk,
with equally efficient attribute access times, despite keeping enough
information to implement the more dynamic behaviour that Python
supports. Classes are optimized for the common case (an inheritance
hierarchy where methods in classes are not changed). Module glob-
als have most of their lookup overhead removed. The optimizations
speed up the execution of the presented benchmark programs, some-
times significantly so, up to a factor of 80 times. More importantly,
the Python interpreter with MetaJIT also beats Psyco in many bench-
marks, showing that MetaJIT can compete with the only hand-written

11 http://code.google.com/p/v8/

12 http://luajit.org

13 http://openjdk.java.net/groups/hotspot/

http://code.google.com/p/v8/
http://luajit.org
http://openjdk.java.net/groups/hotspot/


HotSpot LuaJIT V8 PyPy

binarytrees(14) 0.27 ± 0.01 1.14 ± 0.04 0.21 ± 0.00 2.22 ± 0.03

8.29 × 1.95 × 10.58 × 1.00 ×
binarytrees(19) 5.62 ± 0.15 52.43 ± 0.37 13.23 ± 0.14 53.86 ± 0.37

9.58 × 1.03 × 4.07 × 1.00 ×
fannkuchredux(10) 0.58 ± 0.01 0.53 ± 0.00 0.47 ± 0.00 3.76 ± 0.08

6.50 × 7.09 × 8.00 × 1.00 ×
fannkuchredux(11) 6.29 ± 0.16 6.91 ± 0.01 5.98 ± 0.15 45.15 ± 1.03

7.18 × 6.53 × 7.55 × 1.00 ×
fasta(5000000) 1.15 ± 0.18 2.42 ± 0.06 5.30 ± 0.55 3.04 ± 0.19

2.64 × 1.26 × 0.57 × 1.00 ×
fasta(50000000) 10.59 ± 1.74 24.12 ± 0.15 51.49 ± 1.85 28.43 ± 2.39

2.69 × 1.18 × 0.55 × 1.00 ×
knucleotide(1000000) 2.40 ± 0.02 2.19 ± 0.02 12.86 ± 0.20 5.41 ± 0.07

2.25 × 2.47 × 0.42 × 1.00 ×
knucleotide(10000000) 21.11 ± 0.29 18.69 ± 0.21 123.80 ± 2.28 52.97 ± 0.81

2.51 × 2.83 × 0.43 × 1.00 ×
mandelbrot(500) 0.12 ± 0.00 0.04 ± 0.00 0.35 ± 0.02 0.34 ± 0.02

2.83 × 8.50 × 0.97 × 1.00 ×
mandelbrot(5000) 2.75 ± 0.01 4.33 ± 0.01 36.22 ± 1.10 27.48 ± 2.72

10.00 × 6.35 × 0.76 × 1.00 ×
nbody(2500000) 0.83 ± 0.05 1.45 ± 0.05 1.68 ± 0.14 4.97 ± 0.08

6.02 × 3.44 × 2.96 × 1.00 ×
nbody(25000000) 7.28 ± 0.01 14.41 ± 0.29 17.31 ± 0.41 49.10 ± 1.01

6.74 × 3.41 × 2.84 × 1.00 ×
regexdna(1000000) 5.94 ± 0.54 8.92 ± 0.06 0.64 ± 0.01 1.95 ± 0.02

0.33 × 0.22 × 3.06 × 1.00 ×
regexdna(10000000) 58.52 ± 1.34 104.62 ± 0.77 6.31 ± 0.11 23.50 ± 0.14

0.40 × 0.22 × 3.72 × 1.00 ×
revcomp(1000000) 0.26 ± 0.01 0.38 ± 0.01 0.53 ± 0.01 0.56 ± 0.01

2.15 × 1.50 × 1.07 × 1.00 ×
revcomp(10000000) 1.66 ± 0.04 3.74 ± 0.06 5.00 ± 0.13 5.55 ± 0.10

3.34 × 1.48 × 1.11 × 1.00 ×
spectralnorm(500) 0.20 ± 0.00 0.08 ± 0.00 0.09 ± 0.01 0.15 ± 0.00

0.75 × 1.88 × 1.65 × 1.00 ×
spectralnorm(5000) 8.52 ± 0.01 8.40 ± 0.01 8.59 ± 0.01 8.48 ± 0.01

0.99 × 1.01 × 0.99 × 1.00 ×

geom. mean 2.81 1.92 1.73 1.00

Figure 57: Comparison with other JITs
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JIT compiler for Python. The comparison with hand-written JITs for
other languages shows that MetaJIT does not consistently reach the
same performance levels yet. PyPy’s performance with MetaJIT is up
to 11 times slower than that of V8 and LuaJIT, but sometimes also
surpasses them.

The optimizations presented in this chapter give examples of how
RPython VM authors need to consider which usage patterns are the
most frequent and therefore should be made as efficient as possible.
They must then (re)arrange the interpreter and data structures so that,
in conjunction with the trace optimizer, small traces with little code
and few guards are produced. There is, of course, a tension between
making common cases fast while not making less common cases un-
usably slow. VM authors need to understand their languages and in-
tended use cases well. However, as often the case with performance
issues, it is not realistic to do so purely intellectually: real programs
must be analysed to determine which cases need to be focused on.
Different benchmarks (synthetic or not) can change the perception of
the most important areas substantially, and must be carefully chosen.

As this suggests, it is impossible to design a perfectly optimal in-
terpreter up-front. Analyzing the traces produced by real programs
often shows places where they can be improved. These places can be
surprising and are not always obvious in advance. Each pinch-point
identified in the interpreter can be addressed either by adding hints
for MetaJIT, or by rewriting the interpreter. Doing so is often not a
trivial task, particularly as the interpreter becomes larger and more
complex. It requires careful thought about the goals of the optimiza-
tion, the trade-offs involved (including to code readability), and how
to reach these goals.

Thus, while naively applying a meta-tracing JIT is easy, achieving
very good performance using it is no small task. That said, nearly all
optimizations are understandable at the level of the interpreter itself:
one need never look within the JIT compiler itself. The interpreter
thus still expresses the language semantics correctly (albeit some-
what strangely when optimizations require changing its structure),
and many optimizations improve the performance of the language
interpreter as well as helping the meta-tracing JIT. For example maps
are a memory optimization if only an interpreter is used, and class
versions can be used for a method cache within a purely interpreted
system.

While promoting and eliding are direct features of MetaJIT, class
versions are an idiom of use. This can understate their importance:
they are a powerful way to constant-fold arbitrary functions on large
data structures. The versions need to be updated carefully every time
the result of a function on a structure can change. Therefore this
technique is only applicable on data structures which change slowly
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or which (as PyPy’s approach to optimizing classes in Section 10.2.2
showed) can be made to change slowly.

I believe that the manual rewriting of parts of the interpreter is a
key part of the meta-tracing approach. Many of the optimizations rely
on in-depth knowledge of the language the interpreter implements.
The rewrites expose not only properties of the language semantics
(which are already present in the interpreter) but also expectations
about patterns of language use (which are not). While an “optimally
smart” meta-tracing compiler might be able to deduce some optimiza-
tions, most rely on the wider context which only a human can bring
to the table.
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C A S E S T U D Y: P R O L O G

The two case studies so far were for a minimal example, a regular
expression matcher, and a full-featured big language, Python. This
chapter examines how far the tracing concept can be pushed outside
of the context that it was initially invented for. The concept of trac-
ing JITs was invented for Java [GPF06], an object-oriented imperative
language. Later it was extended for a number of dynamic imperative
languages.

Prolog [ISO95, CR96] is a non-deterministic logical language with
terms and logical variables as its main data structures. It is neither
imperative nor object-oriented but relies on pattern matching and
backtracking to implement its control flow. It is also dynamically
typed and allows run-time introspection and changes to the currently
running program.

The chapter presents Pyrolog, an interpreter for Prolog written in
RPython, which can be compiled to C and which is traced at run-
time using MetaJIT. The performance results are surprisingly good.
It is faster than state-of-the-art Prolog VMs on specific benchmarks.
This shows the potential of the JIT approach for Prolog systems, and
that future Prolog implementations should consider integrating a JIT
compiler.

Section 11.1 discusses typical approaches to Prolog implementa-
tion. This is contrasted with Pyrolog, the details of which, its ob-
ject model and continuation-based execution, are described in Sec-
tion 11.2. How MetaJIT is applied to the Prolog interpreter is pre-
sented in Section 11.3, which also discusses how the allocation re-
moval optimization of Chapter 6 applies to Pyrolog. Section 11.4
presents and analyzes some benchmarks measuring performance and
memory consumption and compares it to two other Prolog implemen-
tations.

11.1 prolog implementations

Most high-performance implementations of the Prolog language in
common use today are implemented using an extension of the War-
ren Abstract Machine (WAM) [War83, AK91]. The WAM is a very
successful instruction set that made high-speed Prolog execution
possible [vR94]. However, it is also a very low-level instruction
set that is predominantly useful when implementing in a low-level
language operating close to the machine level. Apart from WAM-
based approaches, there are some Prolog implementations written
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in object-oriented high-level languages, such as Java or the .NET
VM [PBOR08, Coo04]. These often have flexible and extensible ar-
chitectures, and integrate well with their host virtual machine, but
are typically significantly slower than low-level VMs.

11.2 structure of the interpreter

The goal in implementing the Prolog interpreter in RPython was to
have a simple, high-level object oriented implementation of Prolog.
The semantics of Prolog should be mirrored closely by the structure of
the interpreter. High-level optimizations should be incorporated into
the interpreter, but the mapping to machine code and the handling
of low-level details is left to MetaJIT.

The resulting interpreter fulfills many of these goals. It uses a sim-
ple structure copying approach, has a straightforward data model
(Section 11.2.1) and uses continuation objects for the interpretation
core (Section 11.2.2). So far it does not contain many optimizations,
for example there is no indexing implemented yet. In addition to the
interpreter core, some built-ins are implemented (see Section 11.2.3).

The interpreter is about 12 500 lines of RPython code, of which
2000 lines are implementing built-ins and 6500 are tests. It can be
translated to C using RPython’s translation toolchain and MetaJIT
can be used for it (see Section 11.3). When translating to C without
MetaJIT, the translation toolchain generates about 550 000 lines of C
code, the compiled binary is 1.7 MiB large. When inserting MetaJIT,
about 1 450 000 lines of C code are generated (much of it support code
for MetaJIT) resulting in a binary of 6.4 MiB. The translation time for
producing an executable without a JIT is about six minutes. When
MetaJIT is also translated the time grows to nearly 15 minutes.

11.2.1 Data model of the interpreter

To represent Prolog terms the interpreter uses a straightforward
object-oriented design of the Prolog concepts. Prolog objects are mod-
elled by instances of subclasses of the PrologObject base class. Simple
non-variable terms are represented by their own class, such as Atom,
Number and Float (which are just boxes around a string, an integer
and a floating point number respectively). Logic variables are repre-
sented by instances of a class Var. This class has a binding attribute
which is initialized to None to signify that the variable is not bound.
If the variable gets bound, the binding attribute gets set to the bound
value. Compound terms are represented by a class Compound, which
has a string attribute specifying the functor and an array of more
PrologObjects, for the arguments.

Unification is implemented in an object-oriented style: all
PrologObjects have a unify method, which takes a second object as
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Compound arguments functor

'.'

Array length 2 #1 #2

Var binding

Atom functor

'a'

Atom functor

'[]'

Figure 58: Representation of Prolog object [X] where X was bound to a

the argument, as well as a Trail object. The unify method calls itself
recursively on the arguments of compound terms.

When a variable is bound, it needs to be trailed to be able to undo
the binding should backtracking occur. This is done with the help of
a Trail object. Trail objects are connected as a linked list, one Trail

instance per choice point, each pointing to its next-oldest predecessor.
If a variable is bound, it is stored into an array in the current, newest
trail object, which holds all variables that will need to get their bind-
ings undone when backtracking occurs.

As an optimization variable shunting [LH90] is implemented. If a
variable is created and immediately bound, without a choice point
being created in the meantime, it does not need to be trailed. On
backtracking the variable will cease to exist anyway. This is achieved
by making each Var objects point to the trail object in which it was
created. If it is bound while this trail is still being used, the variable
can be replaced by its binding value.

Most low-level Prolog engines use a tagged pointer representa-
tion [Gud93] for commonly-used compound terms, typically for cons
cells (terms with functor ./2). The RPython translation toolchain does
not provide this level of control over low-level representation of ob-
jects. However, terms with common functors are still optimized, by
representing them with their own class. This means that at least the
array and the explicit reference to the functor can be saved. For an
illustration of the concept, see Figure 58 for a representation of an
unoptimized compound term and Figure 59 for the same term using
the optimized classes.
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Cons arg 1 arg 2

Var binding

Atom functor

'a'

Atom functor

'[]'

Figure 59: Representation using a specialized class for cons cells

11.2.2 Continuation-based interpretation

Compared to the Python object model, the Prolog object model is
significantly simpler. Apart from variables, Prolog data structures
are immutable and therefore easily optimized by the JIT. No com-
plex rewriting of the interpreter was necessary. In contrast, to sup-
port the complex execution semantics of Prolog, much more work
than for Python’s execution semantics is needed. The execution of
Prolog predicates does not follow the stack discipline of imperative
languages. On the one hand, Prolog eliminates tail calls and mod-
els iteration as recursion. On the other hand, Prolog predicates can
produce more than one solution by introducing choice points and
backtracking. These properties make the state of the execution that
the interpreter needs to keep track of quite complex. This makes it
important to find a good abstraction for the interpreter state. The
hope is that MetaJIT can reduce the cost of these abstractions and
thereby yield an efficient implementation.

The abstraction chosen in Pyrolog to represent the execution state
internally is that of continuations. Several Prolog systems have been
based on continuations already [Tar92, Neu95, Lin94, Tar12]. The ba-
sic approach in the Pyrolog implementation is that all the state of
the interpreter is encapsulated in two (possibly nested) continuation
objects, a success continuation and a failure continuation. All continua-
tions are instances of one of the subclasses of a Continuation class. A
continuation thus contains state as well as behaviour.1 The success
continuation contains the still to be executed “rest of the program”,
the failure continuation contains the code that is to be executed if

1 Indeed, on systems that implement Prolog on Scheme or Lisp [KC84], a continuation
is usually just represented by a closure. This was not possible here, because RPython
supports neither closures nor does it optimize tail calls.
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1def interpret(sc, fc, trail):
2while not sc.is_done():
3try:
4sc, fc, trail = sc.activate(fc, trail)
5except UnificationFailed:
6sc, fc, trail = fc.fail(trail)

Figure 60: The main interpreter loop

backtracking needs to happen. Calling a continuation typically con-
sumes it, and potentially replaces the current continuations by new
ones. Interpretation proceeds by calling the current success continua-
tion until the computation is finished. If calling a continuation fails,
the current failure continuation is called instead.

Whenever a non-deterministic choice is reached, the interpreter cre-
ates a new trail object. It then builds a failure continuation that back-
tracks to the previous state and then continues with the other option.

The main loop of the interpreter (in slightly simplified form) can
be seen in Figure 60. The loop has three local variables: sc is the suc-
cess continuation, fc the failure continuation and trail the current
trail object. As long as there is still something to do, the activate

method of the current continuation is called, which returns a new set
of continuations. If activating the continuation fails, it will raise an
UnificationFailed exception. If that happens, the failure continua-
tion will get its fail method called.

The types of continuation used by the interpreter are (the continu-
ations are given here as Prolog terms, in the actual implementation
each sort of continuation is simply a class with the arguments of the
terms as attributes):

• call(Goal, Next) which will call the goal, when activated

• restore(Trail, Next, FailureContinuation) which will back-
track the bindings done up to the point specified by Trail

• apply(Rule, Goal, Next) which applies a specific rule of a pred-
icate to the goal

• true which signifies that the computation is finished

All continuations have a Next continuation, which will be called
after the current continuation has been executed. In addition to
the continuations listed, there are specific continuations used for
built-ins that can have more than one solution (for example arg/3).
Only restore continuations can appear as failure continuations,
the other continuations can be success continuations only. The
FailureContinuation argument of restore gives the failure continu-
ation that will be used after the restore continuation has been acti-
vated. It contains the previous choice point.



116 case study : prolog

Database: f(a). f(b).

Continuations:

1 sc call(f(X), true)

fc true

trail <trail1>

2 sc apply(<f rule 1>, f(X), true)

fc restore(<trail1>, apply(<f rule 2>, f(X), true), true)

trail <trail2>

3 sc true

fc restore(<trail1>, apply(<f rule 2>, f(X), true), true)

trail <trail2: X=a>

Figure 61: Continuations when calling a predicate f(X) with two rules

For an example see Figure 61. The figure shows the success con-
tinuations sc, failure continuations fc and trail objects that are con-
structed when calling a predicate f(X) which has two rules in the
database. When applying the first rule, a new trail is created and the
failure continuation set to a restore, which can potentially undo the
changes done by the first rule and continue with the second rule, if
backtracking occurs later.

The overhead of constantly creating these continuation objects is
kept small by the good GC support that the RPython toolchain gives
(see Section 2.2.2). Since most of the continuations are very short-
lived they are collected extremely efficiently by the generational GC.

11.2.3 Implementing built-ins

In addition to the core Prolog execution model a number of built-ins
have been implemented. Most built-ins are rather straightforward to
implement using the continuation-based model. built-ins that always
have at most one solution are trivial, built-ins that can have many
solutions need some more work, because they typically need a new
type of continuation. There are some built-ins that need some care,
because they manipulate the current continuations in more complex
ways.
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The negation built-in \+ Goal performs a call to Goal but swaps
failure and success continuation when executing the call.2 Indeed, if
Goal fails the whole construct succeeds, and vice versa.

If-then-else A -> B ; C needs to remove those failure continuations
that were introduced during the execution of A. Removing a failure
continuation also means that the trail object which corresponds to
the removed choice is merged with its predecessor. Similarly the
cut ! needs to remove all failure continuations that were introduced
during the execution of the current predicate. It is not trivial to figure
out the extent of the cut, since the continuations are not marked by
which predicate they were created for. Therefore a special marker
continuation is needed if a predicate that contains a cut is called. In
this regard, if-then-else is a much cleaner concept.

The findall built-in needs a special sort of success continuation
which, when activated, collects the found solution and then forces
backtracking.

The exception handling built-ins work as follows. A call to catch

will insert a special catching success continuation, which will not do
anything when actually activated. When throw is called, it will walk
the chain of success continuations until it finds a matching catching
continuation and continue by calling the recovery goal of the catch

call.

11.3 applying metajit to pyrolog

In this section the application of MetaJIT to the Prolog interpreter
is described. The first task in doing so is correctly placing hints of
Chapter 4 and Chapter 5 in the source code of the interpreter:

• In the Prolog interpreter the jit_merge_point hint that indicates
the interpreter’s main loop is put into the interpret loop shown
in Figure 60. The currently executed Prolog rule is marked as
green.

• The can_enter_jit hint to indicate the code of the interpreter
that is responsible for closing a loop. In an imperative language
this hint is placed in the implementation of the bytecode which
performs backward jumps. This one is the hardest in Prolog,
since there is no explicit loop construct, only tail calls. Therefore
the hint was placed in the code that is responsible for applying
one specific rule (see Section 11.2.2).

• Before a predicate rule is applied, it is promoted.

• Many classes in the interpreter are marked as immutable. Ex-
amples for such classes are all the classes implementing Prolog

2 Together with some extra code to remove the bindings done during the execution of
the goal.
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1nrev([], []).
2nrev([X|Y], Z) :- nrev(Y, Z1), append(Z1, [X], Z).

4append([], L, L).
5append([H | T1], T2, [H | T3]) :- append(T1, T2, T3).

Figure 62: Code of naive reverse and append

terms, except Var; the class that represents Prolog rules (but not
predicates, because assert and retract can change predicate
objects).

11.3.1 Loops in Prolog code

Since the inserted JIT uses tracing and focuses on producing good
code for loops, it is important to discuss when a loop occurs in Pro-
log. Despite Prolog not having an explicit loop construct, there are
still a number of cases in which MetaJIT will detect a loop. A loop
for the JIT is simply a situation where the same rule of a predicate
will be applied repeatedly (potentially with other rule applications in
between).

The most straightforward sort of loop is a loop with tail calls, like a
list-append where the first argument is instantiated, or an arithmetic
loop. However, it is not necessary for the call in the loop to be in a
tail position. If one takes the implementation of naive reverse in Fig-
ure 62, the second rule of nrev will repeatedly call itself (constructing
a continuation that calls append at every iteration). Thus the JIT will
also detect it as a loop. After the base case is reached, those continu-
ations will be activated one after another, which is yet another loop
(which is distinct from the loop of append itself). Further ways to
get loops are failure-driven loops or all-solution predicates, such as
findall.

11.3.2 Optimizations by the JIT

This section describes how the optimizations of Chapter 5 and Chap-
ter 6 help the Prolog interpreter.

A number of classes are marked as immutable. Since a Prolog
rule is immutable (even in the presence of assert and retract), all the
reads out of it are constant-folded away. This applies in particular to
reading the head and body of the rule. The head and body of the rule
are themselves immutable terms (since they are usually not variables),
thus the JIT will recursively optimize away most of those reads. This
means that for the unification of a rule head with a calling term, all
of the operations acting on the rule head are constant-folded away.
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1[scont, i1, fcont, trail]

3# Check whether the base case applies
4i2 = int_eq(i1, 0)
5guard_false(i2)

7# X > 0
8i3 = int_gt(i1, 0)
9guard_true(i3)

11# X0 is X - 1
12i4 = int_sub(i1, 1)

14# recursive call to iterate(Y)
15# Check whether assert or retract was
16# used on the loop/1 function:
17p2 = read_field(<address loop/1>, ’first_rule’)
18guard_value(p2, <address 1st rule of loop/1>)

20jump(scont, i4, fcont, trail)

Figure 63: The intermediate code for the generated machine code of the
iterate/1 function

Allocation removal can often remove all overhead of using contin-
uations in the interpreter. If a continuation object is created, it will
often just be activated quickly afterwards and then not be used any-
more. In this case the continuation object will be fully removed by
the optimizer. Only in the case when a choice point is created or
the continuation chain grows, can the allocation not be removed (for
example this is the case for naive reverse in Figure 62). The same
applies to trail objects.

In addition to the removal of continuations, allocations of Prolog
objects can be avoided by this optimization. When standardizing
apart before the application of a rule a copy of the rule body is created.
Some parts of the copied body will be immediately deconstructed
again, thus they don’t need to be allocated at all. In this way, unifica-
tion is compiled into the trace.

The guards that the tracer automatically inserts into the trace lead
to mode and type specialization [TS98]. Due to the inlining the tracer
does, called Prolog predicates as well as built-ins are inlined into the
trace.

As an example of what the optimizations can achieve in the best
case, let’s look at what happens when the Prolog interpreter executes
a simple arithmetic iteration (see the predicate iterate/1 in Figure 64

for the code). At first, the interpreter will normally run the iterate

loop, keeping count of which predicates are executed often. After a
few iterations, it will identify the iterate predicate as a likely candi-
date and start tracing it. The generated trace will then be optimized
as described above.
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Most of the operations in the trace are removed by the optimization
step. The resulting trace can be seen in Figure 63. This trace will then
be turned into machine code by the machine code backend and can
then be executed.

In this simple example the optimizer of MetaJIT was able to remove
all the allocations in the trace, since the continuations that are created
are immediately activated and do not escape anywhere. The same
is true for the copied body of the iterate predicate. In addition,
even the Number object that is used to box the integer value of the
loop variable is removed, since each of these objects survives for one
iteration of the loop only. Thus the generated machine code can keep
the loop index in a machine integer, which can be kept in a CPU
register. All the int_* operations are just simple machine instructions.

The jump instruction at the end of the trace jumps to the beginning
again. Thus the trace by itself is an infinite loop. It can only be
left via one of the guard instructions. Those guards check that the
assumptions of the trace are not violated. If the machine code is
executed and the iteration count reaches zero, the first guard will fail
and execution will fall back to using the interpreter again.

11.4 evaluation

In this section the performance and memory behaviour of the Prolog
system when translated to C and then compiled to an executable is
evaluated, with and without inserting MetaJIT.3

The performance of Pyrolog is compared against that of Sic-
stus Prolog and SWI-Prolog. Sicstus is run in both its inter-
preted mode and its compiled mode, using load_files/2 with the
compilation_mode(consult) and compilation_mode(compile) flags re-
spectively.

11.4.1 Iteration benchmarks

The first set of benchmarks uses various methods to implement it-
eration in Prolog (see Figure 64 for the code). This is completely
untypical Prolog code. They are still useful to gauge the maximum
speedup the technology can give, as they are the sort of code that a
tracing JIT is best at.

The results of running these iteration benchmarks each with 10 mil-
lion iterations can be seen in Figure 65. For two of the benchmarks,
SWI-Prolog failed to finish the run, as it was running out of mem-
ory. The interpreter without a JIT seems to be about a bit faster than
Sicstus in interpreted mode and is quite a bit slower than the other
implementations. With the JIT Pyrolog is faster than all other im-

3 All the benchmarks and the scripts to run them can be found at: http://cfbolz.de/
phdthesis/

http://cfbolz.de/phdthesis/
http://cfbolz.de/phdthesis/
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basic iteration:

1iterate(0).
2iterate(X) :- Y is X - 1, iterate(Y).

iteration with call:

3iterate_call(X) :- c(X, c).
4c(0, _).
5c(X, Pred) :-
6Y is X - 1, C =.. [Pred, Y, Pred], call(C).

iteration with a cut:

7iterate_cut(0).
8iterate_cut(X) :- Y is X - 1, !, iterate_cut(Y).
9iterate_cut(X) :- Y is X - 2, iterate_cut(Y).

iteration with exceptions:

10e(0).
11e(X) :- X > 0, X0 is X - 1, throw(continue(X0)).
12iterate_exception(X) :-
13catch(e(X), continue(X0), iterate_exception(X0)).

iteration with a failure-driven loop:

14g(X, Y, Out) :- Out is X - Y.
15g(X, Y, Out) :- Y > 0, Y0 is Y - 1, g(X, Y0, Out).

17iterate_failure(X) :- g(X, X, A), fail.
18iterate_failure(_).

iteration using findall:

19iterate_findall(X) :-
20findall(Out,
21(g(X, X, Out), 0 is Out mod 50),
22_).

iteration with if-then-else:

23equal(0, 0). equal(X, X).
24iterate_if(X) :- equal(X, 0) -> true ;
25Y is X - 1, iterate_if(Y).

Figure 64: Iteration benchmarks
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Sicstus-interp Sicstus-comp SWI-Prolog Pyrolog-interp Pyrolog-JIT

iterate 13255.00 ± 24.71 260.50 ± 38.43 558.25 ± 7.54 8331.00 ± 10.63 12.50 ± 0.99

1.00 × 50.88 × 23.74 × 1.59 × 1060.40 ×
iterate_call 21416.25 ± 22.05 2461.75 ± 39.92 — 20865.50 ± 20.38 12.65 ± 2.24

1.00 × 8.70 × 1.03 × 1692.98 ×
iterate_cut 16354.25 ± 24.26 375.75 ± 42.78 801.75 ± 10.77 15261.98 ± 60.59 2317.20 ± 366.81

1.00 × 43.52 × 20.40 × 1.07 × 7.06 ×
iterate_exception 37547.50 ± 25.01 12651.75 ± 17.69 — 31872.78 ± 301.94 6792.77 ± 144.94

1.00 × 2.97 × 1.18 × 5.53 ×
iterate_failure 28908.00 ± 22.72 813.25 ± 10.30 4676.75 ± 20.04 22231.67 ± 29.84 75.65 ± 1.69

1.00 × 35.55 × 6.18 × 1.30 × 382.13 ×
iterate_findall 36889.00 ± 109.42 8109.25 ± 9.30 8014.75 ± 67.60 23324.03 ± 45.12 296.73 ± 25.52

1.00 × 4.55 × 4.60 × 1.58 × 124.32 ×
iterate_if 19943.25 ± 16.84 705.25 ± 32.00 1580.00 ± 0.00 18273.12 ± 29.03 16.85 ± 0.84

1.00 × 28.28 × 12.62 × 1.09 × 1183.58 ×

geom. mean 1.00 11.28 7.47 1.21 89.00

Figure 65: Benchmark times for iteration benchmarks

plementations, sometimes significantly, apart from when the cut is
involved. For the cut the JIT is unable to remove the overhead of the
creation of the (immediately removed again) choice point.

In the case of iterate_call the JIT is able to show its full strength.
The JIT can optimize the call built-in by optimistically assuming that
the target predicate will stay the same. This is simply ensured with a
guard, which would fail if the assumption turns out to be false later.

The iterate_exception benchmark is not idiomatic Prolog code
(hopefully nobody writes actual code like this). However, it show-
cases that the JIT optimizes all features that the interpreter imple-
ments, without the interpreter author having to do extra work.

11.4.2 Classical Prolog benchmarks

In addition to the unrealistic micro-benchmarks from the last section
the Prolog implementations were also measured against some larger
programs, most of them well-known benchmarks. Many of these
benchmarks execute so quickly that they had to be run many times
to get sensible measurements. The following benchmarks were each
run 500 times: chat_parser, crypt, deriv, qsort sorting a list of 50

elements, reducer, zebra. The sizes of the benchmarks can be seen in
Figure 66.
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Name lines of code

arithmetic 148

boyer 390

chat_parser 1177

crypt 94

deriv 53

meta_nrev 18

nrev 15

primes 28

qsort 45

queens 22

reducer 380

tak 23

zebra 48

Figure 66: Lines of code of Prolog benchmarks

In addition the following benchmarks were used: boyer, tak, nrev
which uses naive reverse to reverse a list of 1700 elements, queens

solving the queens puzzle with 11 queens, primes searching for all
primes up to 10 000. arithmetic is a declarative arbitrary-precision
arithmetic implementation using lists of bits to represents the num-
bers. The benchmark computes 14! and is derived from code in “The
Reasoned Schemer” [FBK05].

The results of these benchmarks can be seen in Figure 67. The
Prolog interpreter without the JIT is significantly slower for these
more realistic Prolog programs. It is between 5 times slower and 50%
faster than Sicstus in interpreted mode, and significantly slower than
the other Prolog implementations.

If the JIT is also inserted, the execution times always improves over
interpretation. The JIT gives a speedup of more up to 20 times, which
makes it competitive with Sicstus in compiled mode for the bench-
marks queens and arithmetic.

I believe that the bad cut performance of Pyrolog (see Sec-
tion 11.4.1) is the biggest problem of the implementation. Indeed,
all benchmarks except arithmetic use the cut in some way.

11.4.3 Warmup time

As with Python in Section 10.3.3 the warmup times are measured by
taking the time of the first iteration of the benchmark after starting
the VM. The results can be seen in Figure 68. Only nrev is warmed
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Sicstus-interp Sicstus-comp SWI-Prolog Pyrolog-interp Pyrolog-JIT

arithmetic 3557.50 ± 10.64 464.00 ± 9.72 941.75 ± 9.81 4903.07 ± 9.26 240.38 ± 11.51

1.00 × 7.67 × 3.78 × 0.73 × 14.80 ×
boyer 423.25 ± 9.30 33.75 ± 9.61 97.50 ± 8.60 652.20 ± 14.39 82.70 ± 15.95

1.00 × 12.54 × 4.34 × 0.65 × 5.12 ×
chat_parser 21092.25 ± 11.30 4630.00 ± 10.87 9149.50 ± 9.87 47921.80 ± 112.51 7739.80 ± 105.62

1.00 × 4.56 × 2.31 × 0.44 × 2.73 ×
crypt 2117.25 ± 9.91 176.25 ± 9.61 592.50 ± 8.60 1377.65 ± 2.53 170.10 ± 2.07

1.00 × 12.01 × 3.57 × 1.54 × 12.45 ×
deriv 1065.75 ± 9.81 173.25 ± 9.30 539.75 ± 11.30 3525.25 ± 19.91 663.10 ± 15.42

1.00 × 6.15 × 1.97 × 0.30 × 1.61 ×
meta_nrev 2006.25 ± 11.48 385.50 ± 9.87 837.75 ± 15.04 2810.00 ± 16.39 434.52 ± 5.77

1.00 × 5.20 × 2.39 × 0.71 × 4.62 ×
nrev 853.00 ± 9.10 48.00 ± 7.94 274.50 ± 10.83 1115.00 ± 17.43 232.95 ± 8.79

1.00 × 17.77 × 3.11 × 0.77 × 3.66 ×
primes 1961.00 ± 5.95 64.50 ± 9.87 451.50 ± 12.20 2148.97 ± 14.76 484.55 ± 7.93

1.00 × 30.40 × 4.34 × 0.91 × 4.05 ×
qsort 1223.75 ± 9.61 143.75 ± 9.61 544.75 ± 10.86 3154.12 ± 18.49 295.05 ± 10.28

1.00 × 8.51 × 2.25 × 0.39 × 4.15 ×
queens 8334.75 ± 10.86 411.00 ± 7.43 1934.25 ± 11.65 7601.95 ± 11.42 388.85 ± 4.65

1.00 × 20.28 × 4.31 × 1.10 × 21.43 ×
reducer 5188.00 ± 10.12 730.75 ± 9.30 2774.00 ± 17.64 18423.25 ± 17.29 2850.50 ± 28.80

1.00 × 7.10 × 1.87 × 0.28 × 1.82 ×
tak 635.50 ± 9.87 18.00 ± 7.94 87.50 ± 9.67 813.88 ± 17.88 169.07 ± 18.59

1.00 × 35.31 × 7.26 × 0.78 × 3.76 ×
zebra 2453.00 ± 9.10 980.00 ± 4.44 2176.00 ± 9.72 10513.33 ± 13.26 4270.68 ± 9.94

1.00 × 2.50 × 1.13 × 0.23 × 0.57 ×

geom. mean 1.00 8.47 2.73 0.61 3.72

Figure 67: Benchmark times for classical Prolog benchmarks
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Sicstus-comp Pyrolog-interp Pyrolog-JIT Pyrolog-JIT cold

arithmetic 464.00 ± 9.72 4903.07 ± 9.26 240.38 ± 11.51 444.00

boyer 33.75 ± 9.61 652.20 ± 14.39 82.70 ± 15.95 508.00

chat_parser 4630.00 ± 10.87 47921.80 ± 112.51 7739.80 ± 105.62 28337.00

crypt 176.25 ± 9.61 1377.65 ± 2.53 170.10 ± 2.07 418.00

deriv 173.25 ± 9.30 3525.25 ± 19.91 663.10 ± 15.42 1065.00

meta_nrev 385.50 ± 9.87 2810.00 ± 16.39 434.52 ± 5.77 457.00

nrev 48.00 ± 7.94 1115.00 ± 17.43 232.95 ± 8.79 239.00

primes 64.50 ± 9.87 2148.97 ± 14.76 484.55 ± 7.93 578.00

qsort 143.75 ± 9.61 3154.12 ± 18.49 295.05 ± 10.28 399.00

queens 411.00 ± 7.43 7601.95 ± 11.42 388.85 ± 4.65 477.00

reducer 730.75 ± 9.30 18423.25 ± 17.29 2850.50 ± 28.80 8041.00

tak 18.00 ± 7.94 813.88 ± 17.88 169.07 ± 18.59 219.00

zebra 980.00 ± 4.44 10513.33 ± 13.26 4270.68 ± 9.94 4543.00

Figure 68: Warmup times

up in one iteration, for all other benchmarks the final speed is higher.
However, the JIT already helps after one iteration.

11.4.4 Memory footprint

To measure the overhead of having an object-oriented object model
and of representing the interpreter state in continuation objects, the
memory footprint of each Prolog interpreter was also measured, by
running each benchmark and continuously sampling the physical
memory the process used. The numbers are reported in Figure 69

and are the maximum amount of memory each benchmark used dur-
ing the run.

For most benchmarks the memory footprint of the interpreter is
about 4–40 times larger than that of the other interpreters. The size
difference that the nrev benchmarks exhibits shows that continuations
have a large memory overhead, because nrev builds a chain of con-
tinuations as large as the reversed list has elements. In some bench-
marks using the JIT adds memory overhead, which is to be expected
because the generated code takes memory. Interestingly the JIT can
also save memory, for example for chat_parser and reducer. The
reason is that allocation removal can remove the allocation of some
continuations and store the information more compactly on the CPU
stack.
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Sicstus-interp Sicstus-comp SWI-Prolog Pyrolog-interp Pyrolog-JIT

arithmetic 3.7 MiB 3.4 MiB 3.2 MiB 37.9 MiB 39.7 MiB

boyer 4.8 MiB 4.8 MiB 3.2 MiB 38.4 MiB 42.3 MiB

chat_parser 3.6 MiB 3.5 MiB 2.5 MiB 38.5 MiB 88.3 MiB

crypt 3.4 MiB 3.4 MiB 2.5 MiB 20.9 MiB 17.3 MiB

deriv 4.4 MiB 3.4 MiB 2.5 MiB 38.6 MiB 41.4 MiB

meta_nrev 35.6 MiB 23.3 MiB 28.2 MiB 38.4 MiB 53.4 MiB

nrev 4.8 MiB 4.8 MiB 2.9 MiB 39.3 MiB 56.7 MiB

primes 23.6 MiB 15.5 MiB 14.4 MiB 51.4 MiB 53.1 MiB

qsort 3.9 MiB 3.4 MiB 2.5 MiB 38.6 MiB 40.2 MiB

queens 3.4 MiB 3.4 MiB 2.5 MiB 38.0 MiB 26.1 MiB

reducer 4.7 MiB 3.4 MiB 2.5 MiB 38.6 MiB 52.1 MiB

tak 4.8 MiB 3.4 MiB 2.5 MiB 38.4 MiB 40.3 MiB

zebra 3.5 MiB 3.4 MiB 2.5 MiB 38.2 MiB 40.9 MiB

Figure 69: Memory footprint for classical Prolog benchmarks

11.5 conclusion

In this chapter a simple Prolog interpreter written in RPython was
presented, which can be compiled into a C-level VM with the
RPython translation toolchain, optionally also using MetaJIT in the
process. The resulting VM is reasonably efficient and can be very fast
in cases where the meta-tracing JIT works well. The experiments with
Pyrolog show that meta-tracing can also be used for languages that
are not imperative and object-oriented. Doing so requires to carefully
design the representation of the interpreter state as continuations in
the interpreter.

The experiments also show, that employing well-tuned general pur-
pose technologies can beat Prolog-specific implementations under cer-
tain circumstances. However, the MetaJIT integration needs more
care and thought, because no loops are readily available in Prolog.
Also, some features of Prolog seem hard to support efficiently in a
high-level model, such as the cut. Prolog is not really a simple lan-
guage, even though it seems to be.

At the moment there are also some disadvantages to the approach.
The memory usage of the resulting interpreter can be very bad, due to
the overhead of using many objects and the lack of low-level control.
In addition, the way MetaJIT works is not always very transparent,
sometimes making it hard to know why certain Prolog code is com-
piled efficiently to machine code and other code is not. Sometimes
the JIT compiler itself can take too much time to be profitable.
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To the best of my knowledge, Pyrolog is the first Prolog imple-
mentation that defers all compilation to run-time. Prolog can greatly
benefit from JIT compilation techniques, given its dynamic nature. To
make a really efficient JIT for Prolog it might be necessary to write
the JIT by hand to be able to carefully adapt it to the peculiarities of
Prolog.
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C O M PA R I S O N T O PA RT I A L E VA L U AT I O N

In this chapter meta-tracing will be compared to partial evaluation.
This will be done with the help of a functional model of partial eval-
uation and of tracing for a simple imperative flow-graph language.
This model takes the form of a Prolog program. Section 12.1 defines
the semantics of that flow-graph language with the help of an inter-
preter for it. Section 12.2 presents a naive polyvariant online partial
evaluator for the language and Section 12.3 presents a tracer for the
language. It also explains the semantics of traces with an interpreter
for executing them. Afterwards an extension to the language and the
tracer are considered by introducing the promote hint of Chapter 5

into the language. The hint can be used to freeze values of certain
run-time variables into the trace. This information is exploited in
Section 12.5 to optimize traces, a process which is similar to partial
evaluation – a similarity that already discussed in Chapter 6.

12.1 executable models in prolog

To capture the essential differences between partial evaluation and
meta-tracing, we will look at a minimal implementation of both in
Prolog.1 In this way, an executable model is given for both partial
evaluation and tracing. The two techniques will be applied to the
flow-graph language.

The language is conceptionally similar to RPython’s intermediate
representation flow graphs of the translation toolchain, but a bit more
restricted. It does not have function calls, only labelled basic blocks
that consist of a series of linearly executed operations, followed by a
conditional jump. To get an unconditional jump, a conditional jump
with a constant condition can be used. Every operation assigns a
value to a variable, which is computed by applying an operation to
some arguments. The flow-graph language is similar to that used in
a formalization of tracing by Guo and Palsberg [GP11] to show that
tracing and normal execution behave in the same way.

A program to raise x to the yth power in that language is shown
in Figure 70. Lines 1–13 give the program in a pseudo-syntax. In the
actual code below, the program is expressed as Prolog facts. Every
fact of block declares one basic block of the program by first giving
the label of the block followed by the code, which is a series of op

statements terminated by an if or a print_and_stop. Operations are

1 Prolog is chosen as an implementation language because of its succinctness due to
pattern matching. No non-determinism is used in the code.
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1% power:
2% res = 1
3% c = y >= 0
4% if c goto power_rec else goto power_done

6% power_rec:
7% res = res * x
8% y = y - 1
9% c = y >= 1
10% if c goto power_rec else goto power_done

12% power_done:
13% print_and_stop res

15block(power, op(res, assign, const(1), _,
16if(var(y), power_rec, power_done))).
17block(power_rec, op(res, mul, var(res), var(x),
18op(y, sub, var(y), const(1),
19if(var(y), power_rec, power_done)))).
20block(power_done, print_and_stop(var(res))).

Figure 70: Raising x to the yth in the flow graph language

performed by op statements which take two arguments2 and are of
the form:
op(result_var, operation, argument1, argument2, next_statement)

Arguments can be either variables in the form var(name) or constants
in the form const(value). Operations like assignment that only
need one argument simply ignore the second one. Conditions are
of the form if(argument, label1, label0). When the value of the
argument is 1, execution continues at label1; if it is 0, at label0. If
the value is neither, the program is not well-formed.

The code of the interpreter, partial evaluator and tracer of the lan-
guage need some helper functionality, which can be seen in Figure 71.
The first few helper functions are concerned with the handling of en-
vironments. Environments are lists of name/value pairs. They are the
data structures the interpreter uses to map variable names occurring
in the program to the variables’ current values.

The lookup function finds a key in an environment list, the
write_env function adds a new key/value pair to an environment,
remove_env removes a key. The resolve function is used to take either
a constant or a variable and return its value. If it is a constant, the
value of that constant is returned, if it is a variable, it is looked up in
the environment.

The figure also defines the plookup and presolve variants, which
are used for partial evaluation. The difference to the normal function
is that they deal with names not being found in the environment.

2 The whole language can be trivially extended to also support operations with more
arguments.
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1lookup(X, [], _) :- throw(key_not_found(X)).
2lookup(Name, [Name/Value | _], Value) :- !.
3lookup(Name, [_ | Rest], Value) :- lookup(Name, Rest, Value).

5write_env([], Name, Value, [Name/Value]).
6write_env([Name/_ | Rest], Name, Value, [Name/Value | Rest]) :- !.
7write_env([Pair | Rest], Name, Value, [Pair | NewRest]) :-
8write_env(Rest, Name, Value, NewRest).

10remove_env([], _, []).
11remove_env([Name/_ | Rest], Name, Rest) :- !.
12remove_env([Pair | Rest], Name, [Pair | NewRest]) :-
13remove_env(Rest, Name, NewRest).

15resolve(const(X), _, X).
16resolve(var(X), Env, Y) :- lookup(X, Env, Y).

18plookup(Name, [], var(Name)).
19plookup(Name, [Name/Value | _], const(Value)) :- !.
20plookup(Name, [_ | Rest], Value) :- plookup(Name, Rest, Value).

22presolve(const(Value), _, const(Value)).
23presolve(var(Name), PEnv, X) :- plookup(Name, PEnv, X).

Figure 71: Helper functions

24interp(op(ResultVar, Op, Arg1, Arg2, Rest), Env) :-
25interp_op(ResultVar, Op, Arg1, Arg2, Env, NEnv),
26interp(Rest, NEnv).

28interp(if(Arg, L1, L0), Env) :-
29resolve(Arg, Env, RArg),
30(RArg == 0 ->
31L = L0
32;
33L = L1
34),
35block(L, Code),
36interp(Code, Env).

38interp(print_and_stop(Arg), Env) :-
39resolve(Arg, Env, Val),
40print(Val), nl.

42interp_op(ResultVar, Op, Arg1, Arg2, Env, NEnv) :-
43resolve(Arg1, Env, RArg1),
44resolve(Arg2, Env, RArg2),
45do_op(Op, RArg1, RArg2, Res),
46write_env(Env, ResultVar, Res, NEnv).

48do_op(assign, L, _, L).
49do_op(mul, X, Y, Z) :- Z is X * Y.
50do_op(add, X, Y, Z) :- Z is X + Y.
51do_op(sub, X, Y, Z) :- Z is X - Y.
52do_op(eq, X, Y, Z) :- X == Y -> Z = 1; Z = 0.
53do_op(ge, X, Y, Z) :- X >= Y -> Z = 1; Z = 0.

Figure 72: Interpreter source code
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To execute a program, an interpreter in the form of an interp pred-
icate is defined. It takes as its first argument the operation to execute,
and as its second argument the current environment. The code for
the interpreter can be seen in Figure 72.

To execute an operation (line 24) a helper function interp_op is
used (line 42). It resolves the operation’s arguments into values, then
the operation is executed using the do_op predicate. Afterwards the
result is written back into the environment. Then interp is called on
the rest of the program.

To execute print_and_stop (line 38) the argument is resolved,
printed and then execution stops.

The conditional jump (line 28) is only slightly more difficult. First
the variable is resolved using the environment. If the variable is zero,
execution continues at the second block, otherwise it continues at the
first block.

Given this interpreter, we can execute the example program from
Figure 70 like this, on a Prolog console:

1?- block(power, Code), interp(Code, [x/10, y/10]).
210000000000

12.2 partial evaluation of the flowgraph language

Now that we have seen the interpreter for the flow graph language, a
polyvariant [JGS93, p. 130] online partial evaluator for it is presented.
The partial evaluator is quite straightforward, its control mechanisms
are rudimentary and it does not ensure termination.

The partial evaluator cannot use normal environments, because un-
like the interpreter not all variables’ values are known to it. It will
therefore work on partial environments, which store just the known
variables. For these partial environments, some new helper functions
are needed, which are also in Figure 71.

The function plookup (line 18) takes a variable and a partial environ-
ment and returns either const(Value) if the variable is found in the
partial environment or var(Name) if it is not. Equivalently, presolve
(line 22) is like resolve, except that it uses plookup instead of lookup.

The partial evaluator for the language can be seen in Figure 73. The
pe predicate takes a partial environment, the current operations and
potentially returns a new operation. The potentially generated resid-
ual operation is stored into the output argument Residual. The out-
put argument of the recursive call is the last argument of the newly
created residual operation, which will then be filled by the recursive
call.

To partially evaluate a simple operation (line 55), a helper predi-
cate pe_op is used (line 78). It resolves the arguments of the operation
using the partial environment. If both arguments are constants, the



55pe(op(ResultVar, Op, Arg1, Arg2, Rest), PEnv, Residual) :-
56pe_op(ResultVar, Op, Arg1, Arg2,
57PEnv, NEnv, Residual, RestResidual),
58pe(Rest, NEnv, RestResidual).

60pe(print_and_stop(Arg), Env, print_and_stop(RArg)) :-
61presolve(Arg, Env, RArg).

63pe(if(Arg, L1, L0), PEnv, Residual) :-
64presolve(Arg, PEnv, RArg),
65(RArg = const(C) ->
66(C = 0 -> L = L0 ; L = L1),
67do_pe(L, PEnv, LR),
68Residual = if(const(1), LR, LR)
69;
70RArg = var(V),
71write_env(PEnv, V, 1, NEnvTrue),
72do_pe(L1, NEnvTrue, L1R),
73write_env(PEnv, V, 0, NEnvFalse),
74do_pe(L0, NEnvFalse, L0R),
75Residual = if(RArg, L1R, L0R)
76).

78pe_op(ResultVar, Op, Arg1, Arg2, PEnv,
79NEnv, Residual, RestResidual) :-
80presolve(Arg1, PEnv, RArg1),
81presolve(Arg2, PEnv, RArg2),
82(RArg1 = const(C1), RArg2 = const(C2) ->
83do_op(Op, C1, C2, Res),
84write_env(PEnv, ResultVar, Res, NEnv),
85RestResidual = Residual
86;
87remove_env(PEnv, ResultVar, NEnv),
88Residual = op(ResultVar, Op, RArg1, RArg2, RestResidual)
89).

91do_pe(L, PEnv, LR) :-
92(code_cache(L, PEnv, LR) -> true ;
93gensym(L, LR),
94assert(code_cache(L, PEnv, LR)),
95block(L, Code),
96pe(Code, PEnv, Residual),
97assert(block(LR, Residual))
98).

Figure 73: Partial evaluation rules
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operation can be executed, and no new operation is produced. Other-
wise, a new residual operation needs to be produced, which is exactly
like the operation currently looked at. Also, in that case the result
variable needs to be removed from the partial environment, because
even though it might have been known before the operation, the op-
eration overwrites it with an unknown value. This rule is where the
main optimization in the form of constant folding happens.

Note how the first case of this helper predicate is just like interpre-
tation. The second case doesn’t really do anything, it just produces a
residual operation. This relationship between normal evaluation and
partial evaluation is very typical. In a partial evaluator every rule for
executing an operation is split into two parts. One part just residual-
izes the operation if not enough information is available. If enough
information is known, the operation is executed during partial evalu-
ation like in the interpreter.

Partially evaluating print_and_stop (line 60) is easy as well, it is
just turned into another print_and_stop statement.

Conditional jumps (line 63) are more interesting. The residual code
of a conditional jump is always a conditional jump itself. The target
label of that residual jump is computed by asking the partial evalua-
tor to produce residual code for the labels L1 and L0 with the given
partial environment. There is an optimization that checks whether
the condition variable is in the static environment, to only produce
residual code for one path in that case.

This rule is the one that causes the partial evaluator to potentially
do much more work than the interpreter, because after an if some-
times both paths need to be explored. In the worst case this process
never stops, so a real partial evaluator would need to ensure some-
how that it terminates in all cases. This problem is simply ignored in
this partial evaluator.

The whole process of partially evaluating a block with a certain
partial environment is started by the do_pe predicate (line 91). The
do_pe predicate makes sure that the same block is not partially
evaluated twice. This is achieved by memoizing code that was
already partially evaluated in the past by keeping a mapping of
Label, Partial Environment to Label of the residual code. If this
code cache indicates that label L was already partially evaluated
with partial environment PEnv, then the previous residual code la-
bel LPrevious is returned. Otherwise, a new label is generated with
gensym, the code cache is informed of that new label with assert, then
the block is partially evaluated and the residual code is added to the
database. This predicate is what makes the partial evaluator poly-
variant: For every label of the original program, many labels can be
produced in the residual program. The partial evaluator never throws
away information from the partial environment, which means it never
generalizes the residual code.
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1?- do_pe(power, [y/5], Label), block(Label, Code),
2interp(Code, [x/10]).
3100000
4Label = power1,
5Code = jump(power_rec1) .

7?- listing(code_cache).

9code_cache(power, [y/5], power1).
10code_cache(power_rec, [y/5, res/1], power_rec1).
11code_cache(power_rec, [y/4], power_rec2).
12code_cache(power_rec, [y/3], power_rec3).
13code_cache(power_rec, [y/2], power_rec4).
14code_cache(power_rec, [y/1], power_rec5).
15code_cache(power_done, [y/0], power_done1).

17?- listing(block).
18... all the user-written rules of the program
19block(power_done1, print_and_stop(var(res))).
20block(power_rec5, op(res, mul, var(res), var(x),
21if(const(1), power_done1, power_done1))).
22block(power_rec4, op(res, mul, var(res), var(x),
23if(const(1), power_rec5, power_rec5))).
24block(power_rec3, op(res, mul, var(res), var(x),
25if(const(1), power_rec4, power_rec4))).
26block(power_rec2, op(res, mul, var(res), var(x),
27if(const(1), power_rec3, power_rec3))).
28block(power_rec1, op(res, mul, const(1), var(x),
29if(const(1), power_rec2, power_rec2))).
30block(power1, if(const(1), power_rec1, power_rec1)).

Figure 74: Partially evaluating the power function

With this code we can look at the “Hello World” of partial evalua-
tion. We can ask the partial evaluator to compute a power function
where the exponent y is a fixed number, e.g. 5, and the base x is
unknown. This is done in Figure 74.

The code_cache tells which residual labels correspond to which
original label under which partial environments. For example, power1
contains the code of power under the assumption that y is 5. Looking
at the block listing, the label power1 corresponds to code that simply
multiplies res by x five times without using the variable y at all. The
loop that was present in the original program has been fully unrolled,
the loop variable y has disappeared. Hopefully this is faster than the
original program.

12.2.1 Control in realistic partial evaluators

The control algorithm of the partial evaluator in this section is very
simple. It never throws away any information and does not guaran-
tee termination. This approach has been taken by very early partial
evaluators and also more recently by hybrid partial evaluation [SC11].



136 comparison to partial evaluation

However, most partial evaluators use more sophisticated control algo-
rithms. The control of a partial evaluation system needs to ensure that
the process of partial evaluation terminates even if the input program
does not. Furthermore, commonly executed paths of the original pro-
gram should be chosen for partial evaluation.

After the goal of ensuring termination, the most important task of
a control algorithm is to try to find the right balance between over-
specialization and under-specialization [LB02]. Over-specialization
occurs when the generated residual code is specialized too much,
which leads to a lot of similar code being generated without addi-
tional performance improvements. Under-specialization occurs when
the residual code is too general, which means it does not remove
enough of the interpretative overhead to speed up the program in
significant ways. In its most extreme form, under-specialization can
lead to the program not being specialized at all.

The control algorithms used in many partial evaluators try to reach
a balance between over- and under-specialization by complex heuris-
tics that have good theoretical properties and handle the specializa-
tion of a wide variety of cases well. They need to ensure that all reach-
able paths in the specialized program are covered while still ensuring
termination. Many of these heuristics are based on well-quasi orders,
a very popular one being the homeomorphic embedding [Leu02].

12.2.2 Conclusion

In this section we saw a partial evaluator for the flow graph language.
The partial evaluator essentially duplicates every rule of the inter-
preter. If all the arguments of the current operation are known, it acts
like the interpreter, otherwise it simply copies the operation into the
residual code.

12.3 a tracer for the flow graph language

This section presents a tracer for the same language and how it relates
to both execution and to partial evaluation. The idea of a tracer is to
do completely normal interpretation but at the same time keep a log
of all the normal operations (i.e. non-control-flow operations) that
were performed. This continues until the tracer executes the code
block where it started at, in which case the trace corresponds to a
closed loop. Then tracing stops and the last operation is replaced by
a jump to the start of the trace. After tracing has ended, the trace can
be executed, optionally optimizing it before that.

The tracer presented here abstracts over a real tracing system in
several ways. The tracer does not cache its generated traces for later
reuse. The model also does not explain how tracing is started in a
real system (typically by doing profiling and starting tracing after a
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99trace(op(ResultVar, Op, Arg1, Arg2, Rest), Env,
100op(ResultVar, Op, Arg1, Arg2, T), TraceAnchor) :-
101interp_op(ResultVar, Op, Arg1, Arg2, Env, NEnv),
102trace(Rest, NEnv, T, TraceAnchor).

104trace(print_and_stop(V), Env, _, _) :-
105resolve(V, Env, Val),
106print(Val), nl.

108trace(if(Arg, L1, L0), Env,
109guard(Arg, Val, if(const(1), OL, OL), T), TraceAnchor) :-
110resolve(Arg, Env, Val),
111(Val == 0 ->
112L = L0, OL = L1
113;
114L = L1, OL = L0
115),
116trace_jump(L, Env, T, TraceAnchor).

118trace_jump(L, Env, loop, traceanchor(L, FullTrace)) :-
119do_optimize(FullTrace, OptTrace),
120runtrace(OptTrace, Env, OptTrace).

122trace_jump(L, Env, T, TraceAnchor) :-
123block(L, Code),
124trace(Code, Env, T, TraceAnchor).

126do_trace(L, Env) :-
127block(L, StartCode),
128trace(StartCode, Env, ProducedTrace,
129traceanchor(L, ProducedTrace)).

Figure 75: A tracer for the flow graph language

threshold is reached). Also, the stop condition of the tracer is simpli-
fied. However, the code still explains the actual tracing and execution
of traces.

To write a tracer, we start from the rules of the interpreter, rename
the predicate to trace and add some extra arguments. The code of
the tracer can be seen in Figure 75.

To trace an op statement (line 99), the helper predicate interp_op

of the interpreter is reused. With respect to the effect on the envi-
ronment, the tracer acts exactly like the interpreter. The meaning of
the arguments of trace is as follows: The first and second argument
are the operation currently executed and the environment, like in the
interpreter. The argument after that is an output argument that col-
lects the currently traced operation. In the first rule it is a copy of the
operation that was executed. TraceAnchor is additional information
about the trace that is being built right now, most of the time it is just
handed on to the recursive call of trace. We will see soon what it
contains.

The rule for print_and_stop (line 104) is very simple, as execution
(and therefore also tracing) simply stops there.
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Left is the rule for the control flow operation if (line 108). A trace
linearizes one execution path, it contains no jumps. Therefore an
if statement needs special treatment, because it is where the control
flow can diverge from the trace. The trace is a linear list of operations,
therefore it can only record one of the two possible paths. When
later executing the trace, it is possible for the other path to be taken.
Therefore we need to make sure that the same conditions which were
true or false during tracing are still true or false during the execution
of the trace. This is done with a guard operation, which checks for
this condition. The arguments of the guard are: The argument that
is being guarded, the value that this argument had during tracing,
compensation code that the interpreter needs to execute when the
guard fails, and the rest of the trace. The compensation code just
contains a jump to the other path that was not taken during tracing
(more operations will be added there later).

After the guard has been reached, the tracer needs to decide
whether tracing should be continued. This is done with the
trace_jump helper function. When a jump to the starting label
is reached, tracing should stop. Therefore, the implementation of
trace_jump contains two cases.

In the first rule, we see what TraceAnchor is (line 118). It is a term of
the form traceanchor(StartLabel, FullTrace). StartLabel is a label
in the program where tracing started (and where it should end as
well, when the loop is closed). The argument FullTrace contains the
full trace that is being built right now.

The first rule (line 118) matches when the target-label L is the same
as the one stored in the trace anchor. If that is the case, tracing stops.
The produced operation in the trace is loop, which jumps back to the
beginning of the trace when executed. Afterwards the trace is printed,
optimized, and then run, using the FullTrace part of the traceanchor.
If the label we jump to is not the StartLabel (line 122) we simply
continue tracing without recording any operation.

Finally, do_trace (line 126) is a small helper predicate that can be
used to conveniently start tracing. The predicate takes a label and
an environment and executes the code at the label with the given
environment by first producing a trace, then executing the trace and
eventually jumping back to interpretation, if a guard fails. It does
this by reading the code at label L with the block statement, and
then calling trace with an unbound variable ProducedTrace to hold
the trace and a trace anchor that contains the label where tracing
started and the produced trace variable.

12.3.1 Executing traces

In a real tracing system, the traces would be turned into machine code
and executed by the CPU. In our small model, we will simply write
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130runtrace(op(ResultVar, Op, Arg1, Arg2, Rest), Env, WholeTrace) :-
131interp_op(ResultVar, Op, Arg1, Arg2, Env, NEnv),
132runtrace(Rest, NEnv, WholeTrace).

134runtrace(guard(Arg, C, CompensationCode, Rest), Env, WholeTrace) :-
135resolve(Arg, Env, Val),
136(Val == C ->
137runtrace(Rest, Env, WholeTrace)
138;
139interp(CompensationCode, Env)
140).

142runtrace(loop, Env, WholeTrace) :-
143runtrace(WholeTrace, Env, WholeTrace).

Figure 76: Executing traces

another interpreter for them. This interpreter is very small because
traces can contain only op, guard, and loop statements. The code is
shown in Figure 76.

The rule for op is equivalent to the corresponding interp rule, it
reuses the same helper function. An extra argument WholeTrace is
needed, which is always just handed over to the recursive call of
runtrace. The WholeTrace argument is used in the execution of the
loop statement to simply start from the beginning (line 142).

The remaining question is what to do when encountering a guard
(line 134). In that case the guard condition needs to be checked. If
the guard succeeds, executing the trace can continue. Otherwise the
trace is aborted and the regular interpreter executes the compensation
code.

12.3.2 Control in realistic tracing systems

Compared to the often complex control algorithms in partial evalu-
ators, the control algorithms of realistic tracers is often significantly
simpler. Tracing is usually fully online, with no upfront analysis of
the interpreter. Since tracing generally focuses on loops, control de-
cisions of a tracing systems are restricted to the question of whether
the end of the currently traced loop is reached, which is simple to
decide.3

Ensuring termination in a tracing system is easier than in a partial
evaluator. A partial evaluator typically runs ahead of time and it al-
ways needs to terminate. A tracer always runs the executed program,
therefore the tracer only needs to terminate if the program terminates.
Thus the termination behaviour of a tracer that never stops tracing
because the program itself is not terminating would still be correct.

3 It is slightly harder in languages that model iteration as recursion, such as Prolog or
Scheme.
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Tracing indefinitely is of course not desirable, due to the growing
memory needed for the built trace and the fact that no machine code
is ever generated. To solve this problem, most tracing JITs impose a
limit on the length of the trace that is currently being recorded. When
that limit is hit, tracing stops, the trace is discarded and normal in-
terpretation resumes. Many tracing JITs employ no other heuristics
apart from this one.

In dealing with over- and under-specialization, tracing JITs have a
significant advantage over classical partial evaluator, the fact that they
operate at run-time. Since tracing only starts after a profiling phase
has identified a commonly executed loop, it is very unlikely that the
code generated for that loop is not actually needed, as would be the
case in over-specialization. On the other hand, under-specialization
can again be solved by making use of the run-time nature of tracing:
When the value of a variable would be needed to generate good code,
the tracer can simply observe which value the running program actu-
ally uses. How this is done is shown in the next section. This gaining
of additional information at the place where it is needed is not easily
possible for classical partial evaluation.

Another advantage of tracing JITs is the way they deal with rare
cases. An ahead-of-time classical partial evaluator needs to generate
code that deals with all possible contingencies. Of these there are
typically many in dynamic languages, most of which never occur.
This alone is a reason why under-specialization often occurs when
partially evaluating an interpreter for a dynamic language. Using
tracing, all these possible extra control flow paths are simply ignored
and expressed via guards. When a guard fails, which is hopefully a
rare occurrence, execution can always fall back to interpretation. If
a guard starts to fail often, a new trace for that path can always be
generated.

12.3.3 Conclusion

In this section we have seen a very minimalistic tracer and an in-
terpreter for the produced traces. The tracer is very much like the
original interpreter, it just additionally keeps track of which opera-
tions were executed, in addition to executing the program. Tracing
stops when a loop is closed, then the trace can be optimized and
run. Running a trace continues until a failing guard is hit. At that
point, execution goes back to the normal interpreter (and, in this very
simple implementation, stays there).

In the next section the flow graph language will be extended with
a hint that makes it possible to do run-time feedback of information
into the trace.
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144interp(promote(_, L), Env) :-
145block(L, Code),
146interp(Code, Env).

148trace(promote(Arg, L), Env,
149guard(Arg, Val, if(const(1), L, L), T), TraceAnchor) :-
150resolve(Arg, Env, Val),
151trace_jump(L, Env, T, TraceAnchor).

Figure 77: Adding promotion

12.4 introducing promotion

As it is, the tracer does not actually add much to the interpreter. It
linearizes control flow following the executed path, but it is not en-
tirely clear yet, what tracing adds over interpretation. This section
demonstrates how to add promotion (Chapter 5) to the tracer. Pro-
motion is a crucial but simple to implement extension to the control
flow language that allows the tracer to do type feedback in a way not
possible for a partial evaluator.

As described in Section 5.2.1, promotion is basically a hint that
the programmer can add to her control flow graph program. A
promotion in the control flow graph language is an operation
promote(Arg, L) at the end of a basic block that takes an argument
Arg and a label L. Figure 77 shows the needed new rules for interp

and trace. When the interpreter runs this statement, it simply jumps
to the label L and ignores the variable.

However, the tracer does something much more interesting. For the
tracer (line 148), the promote statement is a hint that it would be very
useful to know the value of Arg and that the rest of the trace should
keep that value as a constant. Therefore, when the tracer encounters
a promotion, it inserts a guard.

The inserted guard is an interesting operation, because it freezes the
current value Val of argument Arg into the trace. When the trace is
executed, the guard checks that the current value of the variable and
the frozen value are the same. If yes, execution continues, if not, the
trace is aborted. This can be compared to how a guard has been used
so far. Normally a guard marks a control flow decision by freezing
the boolean value of the variable used in the if statement.

What can this operation be used for? It’s a way to communicate to
the tracer that argument Arg is not changing very often and that it is
therefore useful to freeze the current value into the trace. This can be
done even without knowing the value of Arg in advance.

Figure 78 shows a slightly contrived example. It is a loop that
counts down in steps of x * 2 + 1, whatever x might be, until i >= 0

is no longer true. Assuming that x doesn’t change often, it is worth to
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1% l:
2% c = i >= 0
3% if c goto b else goto l_done

5% l_done:
6% print_and_stop i

8% b:
9% promote(x, b2)

11% b2:
12% x2 = x * 2
13% x3 = x2 + 1
14% i = i - x3
15% goto l

17block(l, op(c, ge, var(i), const(0),
18if(var(c), b, l_done))).
19block(l_done, print_and_stop(var(i))).

21block(b, promote(var(x), b2)).
22block(b2, op(x2, mul, var(x), const(2),
23op(x3, add, var(x2), const(1),
24op(i, sub, var(i), var(x3),
25if(const(1), l, l))))).

Figure 78: A promotion example

promote it to be able to constant-fold x * 2 + 1 to not have to redo it
every iteration. This is done with the promotion of x.4

To trace this, we can run the following query:

1?- do_trace(b, [i/100, x/3]).
2trace
3guard(var(x),3,if(const(1),b2,b2),
4op(x2,mul,var(x),const(2),
5op(x3,add,var(x2),const(1),
6op(i,sub,var(i),var(x3),
7guard(const(1),1,if(const(1),l,l),
8op(c,ge,var(i),const(0),
9guard(var(c),1,if(const(1),l_done,l_done),
10loop)))))))
11...

After the first guard, the operations performed on x could be
constant-folded away, because the guard ensures that x is 3 in the rest
of the trace. To actually do the constant-folding, we would need some
optimization component that optimizes traces. This will be done in
the next section.

Promotion is something that an ahead-of-time partial evaluator can-
not do in all situation. There are weaker versions of promotion pos-
sible in a classical partial evaluator. One of them is “the trick” of
partial evaluation [JGS93, page 93]. The trick is a way to get to know

4 Of course optimizing this loop with loop invariant code motion would work as well,
because x doesn’t actually change during the loop.
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the value of a dynamic, unknown variable that can take on n values
by splitting the control flow into n paths using if statements. Using
the trick means to turn code like this:

1% apply trick on variable x here, which can range from 0 to 255
2<code>

into this:

1if x == 0:
2<copy of code>
3if x == 1:
4<copy of code>
5...
6if x == 255:
7<copy of code>

When partially evaluating the second version, in each copy of the
code the value of x is known. This only works if n is not too large,
because the code after the trick is duplicated n times. The trick also
doesn’t work well if the variable in question holds a complex data
structure.

Tracing does not actually need to do the code transformation above.
Instead, when tracing the untransformed code, the right variant is
picked by looking at the run-time value of x. Thus tracing can be seen
as a lazy variant of the trick [BLR09]. Only when a run-time value is
seen during tracing, the corresponding version of the code is traced.
Some partial evaluators work at run-time, such as DyC [GMP+

00],
which also supports a concept similar to promotion (called dynamic-
to-static promotion).

The next section shows how to optimize traces before executing
them and how the optimizer for traces is related to partial evaluation.

12.5 optimizing traces of the flow graph language

In the last two sections we saw how to produce a linear trace with
guards by interpreting a control flow graph program in a special
mode. A trace always ends with a loop statement, which jumps to
the beginning. The tracer is just logging the operations that are done
while interpreting, so the trace can contain superfluous operations.
On the other hand, the trace also contains some of the run-time val-
ues through promotions and some decisions made on them which
can be exploited by optimization. An example for this is the trace
produced by the promotion example from Figure 78.

After the guard(var(x), 3, ...) operation, x is know to be 3: If
it isn’t 3, execution falls back to the interpreter. Therefore, opera-
tions on x after the guard can be constant-folded. To do that sort
of constant-folding, an extra optimization step is needed. That opti-
mization step walks along the trace, remembers which variables are
constants and what their values are using a partial environment. The
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153optimize(op(ResultVar, Op, Arg1, Arg2, Rest), PEnv, NewTrace) :-
154pe_op(ResultVar, Op, Arg1, Arg2, PEnv, NEnv, NewTrace, RestTrace),
155optimize(Rest, NEnv, RestTrace).

157optimize(loop, PEnv, T) :-
158generate_assignments(PEnv, loop, T).

160optimize(guard(Arg, C, CompensationCode, Rest), PEnv, NewTrace) :-
161presolve(Arg, PEnv, Val),
162(Val = const(C) ->
163NewTrace = RestTrace,
164NEnv = PEnv
165;
166Val = var(V),
167generate_assignments(
168PEnv, CompensationCode, NCompensationCode),
169NewTrace = guard(Arg, C, NCompensationCode, RestTrace),
170write_env(PEnv, V, C, NEnv)
171),
172optimize(Rest, NEnv, RestTrace).

174generate_assignments([], LastOp, LastOp).
175generate_assignments([Var/Val | Tail], LastOp,
176op(Var, assign, const(Val), const(0), T)) :-
177generate_assignments(Tail, LastOp, T).

179do_optimize(Trace, OptimizedTrace) :-
180optimize(Trace, [], OptimizedTrace).

Figure 79: Optimizing traces

optimizer removes operations that have only constant arguments and
leaves the others in the trace. This process is remarkably similar to
partial evaluation: Some variables are known to be constants, oper-
ations on only constant arguments are optimized away, the rest re-
mains.

The optimizer source code can be seen in Figure 79. It reuses the
helper functions presolve from the partial evaluator and also uses
a partial environment PEnv. The rule for optimizing op operations
look exactly like those of the partial evaluator and reuses the pe_op

helper function. When the arguments of the operation are known
constants in the partial environment, the operation can be executed
at optimization time and removed from the trace. Otherwise, the
operation has to stay in the output trace.

Now we need to deal with guards in the trace (line 160). When the
variable that is being guarded is actually known to be a constant, the
guard can be removed. Note that it is not possible that the guard of
that constant fails: The tracer recorded the operation while running
with real values, therefore the guards have to succeed for values the
optimizer discovers to be constant.
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If the guard cannot be removed the compensation code of the guard
operation needs to be changed. So far, the compensation code has al-
ways been a jump. Now it needs to be extended with a number of
assignments, one for every entry in the partial environment (line 174).
The reason is that the optimizer has removed operations with con-
stant results from the trace. Since an operation is also always an
assignment, the environment when running the trace will lack some
values. If the interpreter is to continue execution, it needs these vari-
ables to have the correct value again, which is achieved by the assign-
ments in the compensation code.

As an example of how generate_assignments assignments works,
let’s look at the following example. When the partial environment is
[x/5, y/10], the following assignments are generated:

1?- generate_assignments([x/5, y/10], if(const(1), l, l), T).
2T = op(x, assign, const(5), const(0),
3op(y, assign, const(10), const(0), if(const(1), l, l))).

Guards are the only way the optimizer gains entries into the partial
environment, which it then exploits to do constant-folding on later
operations. After the guard, the optimizer knows that if the guard
has succeeded, the value of the variable is the constant frozen in the
trace (line 170). This is a chief difference from partial evaluation:
There, the optimizer knows the value of some variables from the start.
When optimizing traces, at the beginning the value of no variable is
known. Knowledge about some variables is only later gained through
guards.

The only thing left to describe is what happens with the loop state-
ment. In principle, it is turned into a loop statement again. However,
as in the changes to the compensation code of guards, it is necessary
to introduce a number of assignments that are executed before the
next iteration of the loop can start.

With this machinery in place, we can optimize the trace from the
promotion example above, see Figure 80. As intended, the operations
on x after the guard have all been removed. However, some additional
assignments (to x, x2, x3) at the end have been generated as well.
The assignments look superfluous, but the optimizer does not have
enough information to easily recognize this. That can be fixed, but
only at the cost of additional complexity.5

12.5.1 Conclusion

In this section we have seen how to optimize traces by applying the
partial evaluation principle: Perform all the operations that have only
constant arguments, leave the others alone. However, optimizing
traces is much simpler than partially evaluating programs because

5 A real system would transform the trace into single static assignment form [CFR+
91]

to answer such questions.
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1?- do_trace(b, [i/100, x/3]).
2trace: trace
3guard(var(x),3,if(const(1),b2,b2),
4op(x2,mul,var(x),const(2),
5op(x3,add,var(x2),const(1),
6op(i,sub,var(i),var(x3),
7guard(const(1),1,if(const(1),l,l),
8op(c,ge,var(i),const(0),
9guard(var(c),1,if(const(1),l_done,l_done),
10loop)))))))

12opttrace
13guard(var(x),3,if(const(1),b2,b2),
14op(i,sub,var(i),const(7),
15op(c,ge,var(i),const(0),
16guard(var(c),1,
17op(x,assign,const(3),const(0),
18op(x2,assign,const(6),const(0),
19op(x3,assign,const(7),const(0),
20if(const(1),l_done,l_done)))),
21op(x,assign,const(3),const(0),
22op(x2,assign,const(6),const(0),
23op(x3,assign,const(7),const(0),
24op(c,assign,const(1),const(0),
25loop))))))))

27-10

Figure 80: Optimizing the promotion example

no control flow is involved in the former. The partial evaluator needs
to deal with control flow statements and with making sure that code
is reused if the same block is partially evaluated with the same con-
stant variables.

When optimizing traces, these complexities have already been
solved. The tracer has already flattened the control flow and replaced
it with guards and one loop operation at the end. Thus, the optimizer
can simply do one pass over the operations, removing some (with
some extra care around the loop statement).

These findings are in agreement with those in Chapter 6, which
showed that a powerful allocation removal optimization can be seen
as a partial evaluator on traces, also without any complex control
component.

12.6 conclusion

The observations made in this chapter give the opportunity to make
some concluding high-level thoughts about the similarities of tracing
and partial evaluation: Tracing and partial evaluation try to tackle
a similar problem, namely that of automatically reducing the inter-
preter overhead. Their approaches are slightly different though.
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Partial evaluation takes as input a program and parts of the inputs
of the program. It produces a residual, more efficient program by
evaluating those parts of the program that operate on the known
input.

Tracing is very close to normal evaluation, only keeping some extra
information in the process. But then, the optimizer that is used in a
tracer is again very similar in structure to a partial evaluator. The task
of the optimizer is much simpler though, because it does not need to
deal with control flow at all, just a linear list of operations.

So in a sense tracing is taking those parts of partial evaluation that
work (the “just evaluate those things that you can, and leave the oth-
ers”) and replacing the parts that are hard (controlling unfolding) by
a much more pragmatic mechanism. That mechanism observes ac-
tual execution runs of the program to choose control flow paths that
are typical. At the same time, the tracer’s focus is on loops, because
they are where most programs spend significant amounts of time.

Another point of view of tracing is that it is a form of partial evalu-
ation that replaces the control components of a partial evaluator with
an oracle (the actual execution runs) that provide the information
which paths to look at.
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S U M M A RY

This second half of the thesis described the application of meta-
tracing to three interpreters on different points of the complexity
scale. An interpreter for regular expressions was given as a first
example. It achieves good performance compared to other regular
expression implementations, which is not an entirely even compar-
ison, because most of them support larger classes of (non-regular)
languages.

At the other end of the scale is Python. PyPy’s Python interpreter is
an almost fully compatible implementation of a large complex imper-
ative object oriented dynamic language. The object model of Python
can be efficiently implemented using the hints that RPython’s meta-
tracer supports. Since RPython was designed for imperative object-
oriented languages, it is not surprising that performance of Python
is good. This is mirrored by other results in the PyPy project, for
example for a PHP interpreter written in RPython.1 As the perfor-
mance evaluation showed the performance of the Python interpreter
is between 60% and 4 times slower than that of manually written
just-in-time compilers.

Pyrolog is the attempt to apply the meta-tracing technique to a log-
ical language with very different execution semantics than Python.
Even there meta-tracing yields good performance improvements. Py-
rolog even beats some existing Prolog implementations for certain
tasks. One conclusion from this is that Prolog is a language that
could benefit from run-time compilation – which so far no Prolog
implementation uses.

Chapter 12 relates partial evaluation to meta-tracing. Both have
similar goals, but meta-tracing seems to work better in practice than
partial evaluation. One possible explanation is that the control prob-
lem of partial evaluation is simply too hard and cannot be robustly
solved with heuristics. Meta-tracing replaces control with a much
simpler mechanism but retains the useful parts of partial evaluation.

1 http://morepypy.blogspot.com/2012/07/hello-everyone.html
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R E L AT E D W O R K

This chapter presents additional related work that has not already
been discussed in the respective chapters.

14.1 meta-tracing

Applying a trace-based optimizer to an interpreter and adding hints
to help the tracer produce better results has been tried before in the
context of the DynamoRIO project [SBB+

03], which has been a great
inspiration. They achieve the same unrolling of the interpreter loop
so that the unrolled version corresponds to the loops in the user pro-
gram by adding hints very similar to those of Chapter 4. However
the approach is greatly hindered by the fact that they trace on the
machine code level and thus have no high-level information available
about the interpreter. This makes it necessary to add quite a large
number of hints, because at the machine code level many pieces of
information are already lost. For example, it is not really visible any-
more that a bytecode string is immutable. For that reason more ad-
vanced optimizations like allocation removal would not be possible
with that approach.

Yermolovich et al. [YWF09] describe the use of the Tamarin
JavaScript tracing JIT as a meta-tracer for a Lua interpreter. They
compile the normal Lua interpreter in C to ActionScript bytecode.
Again, the interpreter is annotated with some hints that indicate the
main interpreter loop to the tracer. No further hints are described in
the paper. There is no comparison of the performance of their system
to that of the original Lua VM in C, which makes it hard to judge the
effectiveness of the approach.

SPUR [BBF+
10] is a tracing JIT for CIL bytecode, which is then

used to trace through a JavaScript implementation written in C#. This
makes it a meta-tracing JIT. SPUR does not trace through the execu-
tion of interpreters. Instead, the JavaScript implementation compiles
JavaScript to CIL bytecode. That bytecode contains calls into an im-
plementation of the JavaScript object model. Since the JavaScript im-
plementation is not interpreter-based, it is not necessary to unroll the
main interpreter loop. Instead, loops on the JavaScript are mapped
to loops on the CIL level by the JavaScript-to-CIL compiler which the
tracer then traces.

The JavaScript object model uses maps and inline caches to speed
up operations on objects. SPUR contains two hints that can be used
to influence the tracer: one to prevent tracing of a C# function and
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one to force unrolling of a loop.1 The object model does not contain
hints that are equivalent to promotion and elidability. A similar effect
is achieved with a powerful loop-invariant code-motion optimization
and inline caches that the JavaScript compiler explicitly introduces
into the generated CIL code.

SPUR in general relies much more on code generation than MetaJIT.
For every CIL method, several machine code versions can be gener-
ated: one that does profiling to determine common loops, one that
traces the method. MetaJIT relies on interpreters to perform the same
functions.

There are quite a number of approaches that try to minimally en-
hance interpreters to generate code at run-time without actually writ-
ing a native compiler by hand. The goal of these is to get rid of
dispatch overhead of typical interpreters while retaining ease of im-
plementation. Piumarta and Riccardi [PR98] propose to copy frag-
ments of the interpreter together for commonly occurring bytecode
sequences to reduce dispatch overhead. However, dispatching is still
needed to jump between such sequences and also when non-copyable
bytecodes occur. Ertl and Gregg [EG04] go further and get rid of all
dispatch overhead by stitching together the concatenated sequences
by patching the copied machine code. Both techniques can speed up
interpreters with large dispatch overhead a lot. However they will
help less if the bytecodes themselves do a lot of work (as is the case
with Python [Bru09]) and the dispatch overhead is lower. On the
other hand, the meta-tracing approach can do a better job by tracing
inside the implementation of those bytecode and inlining common
paths.

To help the performance of interpreters that have complex byte-
codes, various techniques have been proposed. Examples are quick-
ening [Bru10a] and inline caching for interpreters [Bru10b].

An early attempt at building a general environment for easily writ-
ing efficient implementations of dynamic languages is described by
Wolczko et al. [WAD99]. They implement Java and Smalltalk on top
of the Self VM by compiling the languages to Self. The Self JIT is good
enough to optimize the compiled code very well. This approach is re-
stricted to languages that are similar enough to Self as there were no
mechanisms to control the underlying compiler.

Somewhat relatedly, the proposed “invokedynamic” byte-
code [Ros09] added to the JVM is supposed to make the imple-
mentation of dynamic languages on top of JVMs easier. The
bytecode gives the user access to generalized inline caches. It
requires of course compilation to JVM bytecode instead of writing an
interpreter.

The traditional approach for automatically producing a compiler
for a programming language given an interpreter for it is that of

1 MetaJIT has equivalent hints, but they are beyond the scope of this thesis
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partial evaluation [Fut99, JGS93]. There are conceptual similarities
to meta-tracing, many of which have been explored in Chapter 12.
In partial evaluation some arguments of the interpreter function are
known (static) while the rest are unknown (dynamic). This separa-
tion of arguments is related to MetaJIT’s separation of variables into
those that should be part of the position key and the rest.

Classical partial evaluation has failed to be useful for dynamic lan-
guages for many of the same reasons why ahead-of-time compilers
cannot compile them to efficient code. If the partial evaluator knows
only the program, it simply does not have enough information to pro-
duce good code. Therefore some work has been done to do partial
evaluation at run-time. One of the earliest works on run-time special-
ization is Tempo for C [CN96, CHN+

96]. However, it is essentially
a normal partial evaluator “packaged as a library”; decisions about
what can be specialized and how are pre-determined. Another work
in this direction is DyC [GMP+

00], another run-time specializer for C.
Both of these projects have a problem similar to that of DynamoRIO.
Targeting the C language makes higher-level specialization difficult.

There have been some attempts to do dynamic partial evaluation,
which defers partial evaluation completely to run-time to make it
more useful for dynamic languages. This concept was introduced by
Sullivan [Sul01] who implemented it for a small dynamic language
based on lambda-calculus. It is also again related to Psyco [Rig04].
I have also explored dynamic partial evaluation for Prolog [Bol08].
There also were experiments within the PyPy project to use dynamic
partial evaluation for automatically generating JIT compilers out of
interpreters [RP07, Cun10]. Those have not been as successful as was
hoped, so they were supplanted with the work on tracing JITs de-
scribed here.

Another work of run-time partial evaluation was done within the
context of the Jikes RVM by Shankar et al. [SSBS05]. Their partial
evaluator is integrated into the Jikes JIT compiler and fully transpar-
ent to the user. It uses heap analysis at run-time to identify values
on the heap that are constant and uses that information to generate
specialized code. The generated code is invalidated if the objects that
it depends on get mutated. The heap analysis makes it possible to
use their approach without any annotations from the user and still
allows them to optimize interpreters well.

14.2 run-time feedback

Promotion was also already used in other contexts, such as in earlier
versions of PyPy’s JIT as well as in a Prolog partial evaluator [BLR09].
Promotion is also heavily used by Psyco [Rig04] (promotion is called
“unlifting” in this paper). Promotion is quite similar to run-time type
feedback (and also inline caching) techniques which were first used
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in Smalltalk [DS84] and Self [HU94] implementations. Promotion is
more general because any information can be fed back into compila-
tion, not just types.

The approach of rewriting interpreters to make them behave spe-
cially after partial evaluation is quite common. It has been called
the interpretive approach [GJ94]. As an example using imperative lan-
guages, Debois [Deb08] shows how to achieve strength reduction and
loop-invariant code motion by rewriting an interpreter and then ap-
plying partial evaluation to it. As in Chapter 10, the rewrites still
express the semantics correctly, but somewhat strangely.

14.3 allocation removal

There exists a large number of works on escape analysis, which is a
program analysis that tries to find an upper bound for the lifetime
of objects allocated at specific program points [GP90, PG92, CGS+99,
Bla03]. This information can then be used to decide that certain ob-
jects can be allocated on the stack, because their lifetime does not
exceed that of the stack frame they are allocated in. The difference to
the algorithm presented in Chapter 6 is that escape analysis is split
into an analysis and an optimization phase. The analysis can be a lot
more complex than the presented one-pass optimization. Also, stack-
allocation reduces garbage-collection pressure but does not optimize
away the actual accesses to the stack-allocated object. In our case, an
object is not needed at all any more.2

Kotzmann and Mössenböck [KM05, KM07] also achieve scalar re-
placement using escape analysis in the Java HotSpot client compiler.
If an allocated object never leaves a single function at all it can be
replaced by its constituent fields. The optimization also relies on in-
lining to make it more likely that objects stay local to a single method.
This approach still has some problems when used in the context of a
dynamic language, as for most operations there exist escaping paths
that are rarely executed. This defeats the escape analysis but is han-
dled well by a tracing JIT.

Chang et al. describe a tracing JIT for JavaScript running on top of
a JVM [CBY+

07]. They mention in passing an approach to allocation
removal that moves the allocation of an object of type 1 out of the
loop to only allocate it once, instead of every iteration. No details
are given for this optimization. Also, the approach only removes the
allocations, but not the reads out of and writes into the object.

SPUR also seems to be able to remove allocations in a similar way
to the approach described here, as hinted at in their paper [BBF+

10].
However, no details for the approach and its implementation are
given.

2 If the tracer also has a good load-store forwarding optimization, the effect is almost
the same as allocation removal.
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Psyco [Rig04] also implements a more ad-hoc version of the allo-
cation removal described here. Our static objects could be related to
what are called virtual objects in Psyco. Earlier versions of RPython’s
JIT (that were not based on tracing) also used virtual objects [RP07].
Historically, MetaJIT can be seen as a successor of Psyco for a gen-
eral context (Indeed, MetaJIT’s source code uses the term “virtual” as
well).

The original Self JIT compiler [CUE89] used an algorithm for
forward-propagating the types of variables as part of its optimiza-
tions. This makes it possible to remove all but the first type checks
on a variable. The optimization does not deal with removing the full
object, if it is short-lived, but the type check removals are similar to
what our optimization achieves.

A related optimization is also that of deforestation [Wad88,
GLPJ93] which removes intermediate lists or trees in functional lan-
guages. A more general approach is boxing analysis [Jø96] which op-
timizes pairs of calls to box/unbox in a functional language. Similarly,
“dynamic typing” [Hen94] tries to remove dynamic type coercions in
a dynamically typed lambda-calculus. All these optimizations work
by analyzing the program before execution, which makes them un-
suitable for dynamic languages like Python, where almost nothing
can be inferred purely by looking at the source code.

Partially known data structures are built directly into Prolog (via
unbound logic variables) and thus the treatment of partially static
data structures was part of partial evaluation of Prolog programs
from the early stages [LS91]. One effect of unfolding in Prolog is
that terms that are constructed and immediately matched again, com-
pletely disappear in the residual program. This is similar to what
RPython’s allocation removal optimization does for an imperative
language. In functional programming this idea was introduced as
constructor specialization by Mogensen [Mog93].

An example of an optimization that – like allocation removal –
becomes much more tractable when applying it to traces is trace
scheduling [FERN84]. Trace scheduling is used in the code gener-
ation stage of a static compiler to schedule the generated machine
code to make use of the functional units of the CPU in a most effi-
cient way. This is done by reordering the machine instructions. Since
doing that on general control flow graphs is very hard, trace schedul-
ing does it on execution traces. This gives the optimization linear
code with side exits to work with, making the algorithms tractable.
This is comparable to allocation removal, which also works well be-
cause of the linear nature of traces. It also shows that traces are in
general a good approach to scale optimizations that work on basic
blocks up to larger code regions.
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14.4 regular expressions

Thompson [Tho68] describes one of the first JIT compilers ever built.
It takes a regular expression and turns it into IBM 7094 machine code
at run-time. The algorithm has some degenerate cases where the
resulting code loops endlessly, such as a** or a*a*a*a*.

Many current browsers have regular expression JITs, such as Apple
Webkit3 and Google Chrome.4 Their engines are much more complex
than the one described in Chapter 9 because they need to support
Perl-style regular expression supporting groups and back-references.
These are not really regular expressions in the computer-science sense
as they allow the matching of non-regular languages.5 This makes
their implementation much harder and backtracking necessary.

14.5 prolog

Continuations have been used in various cases as the basis for imple-
menting a Prolog system. BinProlog [Tar92, Tar12] uses a transforma-
tion to continuation-passing-style for all Prolog clauses and then uses
a simplified WAM to execute those. However, it uses only a success
continuation and thus doesn’t make the choice points explicit. Some
more work has been done to use this single success-continuation pass-
ing style for optimizations [Dem90, Neu95].

Lindgren [Lin94] proposes to use a continuation-passing style as
an intermediate language before code generation. In contrast to the
approaches mentioned so far, he uses both a success and a failure con-
tinuation, thus moving all control decisions to the source level. In
the implementation of the Prolog interpreter of Chapter 11, transfor-
mation to continuation-passing style is not used as a preprocessing
step. Instead, continuations are used at run-time to represent the
interpreter state.

There have been a number of attempts at writing high-level ob-
ject oriented Prolog interpreters. tuProlog is a Prolog implementa-
tion running on top of a Java virtual machine which was written
with good object-oriented design in mind [DOR01]. It uses a state
machine to execute Prolog programs [PBOR08], whose states can be
related to the kinds of continuations of the interpreter presented in
Section 11.2.2. Furthermore there is Prolog Café [BTI06], a Prolog to
Java bytecode translator and P#, a Prolog integrated into the .NET
environment with good integration with C# libraries.

Costa et al. [SCSL07] have modified YAP to perform demand-
driven indexing. Their technique analyses and modifies the WAM

3 http://www.webkit.org/blog/214/introducing-squirrelfish-extreme/

4 http://blog.chromium.org/2009/02/irregexp-google-chromes-new-regexp.html

5 As an example, the following Perl regular expression matches strings that have a
non-prime length greater than one using a backreference: (..+?)\1+

http://www.webkit.org/blog/214/introducing-squirrelfish-extreme/
http://blog.chromium.org/2009/02/irregexp-google-chromes-new-regexp.html
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bytecode of a predicate at run-time if it looks like the predicate could
benefit from indexing on other arguments than the first. Thus they
avoid heuristics or costly upfront analysis to find out on which argu-
ment indexing should be performed. This is a great example of how
run-time techniques can improve the performance of Prolog systems.
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S U M M A RY A N D O U T L O O K

Meta-tracing is a language implementation technique that makes it
easier to efficiently implement dynamic languages without having
to manually write a JIT compiler for them. Meta-tracing consists of
several sub-components, presented in the first part of the thesis: The
actual tracing component which traces through the execution of an
interpreter, hints for user-controlled run-time feedback, and a generic
allocation removal optimization.

The second part of the thesis applied meta-tracing to a regular
expression engine, a Python interpreter, and a Prolog interpreter.
For these languages the obtained benchmark results show that meta-
tracing is useful, is easy to apply, and performance can be very good
when using it. The fact that the implemented languages are on very
different ends of the language spectrum supports the hypothesis that
the approach works for very different language semantics.

In the future, meta-tracing should be evaluated with even more and
different languages, for example a functional one like ML. This could
establish to which kind of languages meta-tracing can be successfully
applied. Another area of future work is to improve the warmup times
of MetaJIT, which so far are rather long due to the double interpre-
tation overhead. One option to do that would be to use the cogen
approach of partial evaluation [HL91].

In conclusion, meta-tracing often makes it unnecessary to write a
language specific JIT compiler. Instead, an interpreter of the language
is enriched by applying some hints and maybe restructuring some
parts of the interpreter to get reasonably good performance with lit-
tle effort. This reduces the effort of language experimentation and
makes it possible for small teams to write high-performance imple-
mentations of dynamic languages.
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A
B E N C H M A R K I N G E N V I R O N M E N T A N D S O U R C E
C O D E R E P O S I T O R I E S

This appendix gives details of the hard- and software environment
that was used to run the benchmarks, as well as pointers to the soft-
ware repositories containing all source code.

Benchmarking was done on an otherwise idle Intel Core2 Duo
P8400 processor with 2.26 GHz and 3072 KB of cache on a machine
with 3GB RAM running in 32bit mode. Unless otherwise mentioned,
all benchmarks were run 50 times within the same process. The first
10 runs are ignored to give the JIT time to warm up. The final num-
bers are reached by computing the average of all other runs, the confi-
dence intervals were computed using a 95% confidence level [GBE07].

Installed and used software was:

• Ubuntu 12.04

• Linux 3.2.0-29-generic-pae #46-Ubuntu SMP

• GCC 4.6.3-1ubuntu5

• CPython 2.7.3

• Psyco 1.6 under CPython 2.6.7

• Java Hotspot 1.7.0_03

• LuaJIT Git revision 4c882fe7

• V8 SVN revision 12379

• SICStus Prolog 4.2.0 (x86-linux-glibc2.7)

• SWI-Prolog Version 5.10.4, Multi-threaded, 32 bits
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a.1 python benchmarks

chaos : A Chaosgame implementation creating a fractal.

crypto_pyaes : An AES implementation.

django : The templating engine of the Django Web framework.1

go : A Monte-Carlo Go AI.2

pyflate_fast : A BZ2 decoder.

raytrace_simple : A ray tracer.

richards : The Richards benchmark.

spambayes : A Bayesian spam filter.3

simpy_expand : A computer algebra system.

telco : A Python version of the Telco decimal benchmark,4 using a
pure Python decimal floating point implementation.

twisted_names : A DNS server benchmark using the Twisted net-
working framework.5

a.2 source code repositories

All the repositories of the systems described in this thesis, including
all benchmarks and the scripts to run them can be found at:
http://cfbolz.de/phdthesis/

1 http://www.djangoproject.com/

2 http://shed-skin.blogspot.com/2009/07/disco-elegant-python-go-player.html

3 http://spambayes.sourceforge.net/

4 http://speleotrove.com/decimal/telco.html

5 http://twistedmatrix.com/

http://cfbolz.de/phdthesis/
http://www.djangoproject.com/
http://shed-skin.blogspot.com/2009/07/ disco-elegant-python-go-player.html
http://spambayes.sourceforge.net/
http://speleotrove.com/decimal/telco.html
http://twistedmatrix.com/
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Earlier versions of parts of this thesis have already been published in
other venues.

• Chapter 4 has appeared at ICOOOLPS 2009 [BCFR09].

• Chapter 5 has appeared at ICOOOLPS 2011 [BCF+
11b]

• Chapter 6 has appeared at PEPM 2011 [BCF+
11a].

• Chapter 9 has appeared as two blog posts on the PyPy status
blog1 in May and June 2010.

• Parts of Chapter 10 were submitted to publication to Science of
Computer Programming [BT12].

• Chapter 11 has appeared at PPDP 2010 [BLS10].

1 http://morepypy.blogspot.com
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