Genetische und molekulare Analyse der Lumenbildung und Zell-Zelladhäsion im Darmepithel des Nematoden Caenorhabditis elegans

Inaugural-Dissertation
zur Erlangung des Doktorgrades
der Mathematischen-Naturwissenschaftlichen Fakultät
der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Daniela van Fürden
aus Düsseldorf

Oktober 2005
Inhaltsverzeichnis

1 EINLEITUNG .. 1
 1.1 DER NEMATODE CAENORHABDITIS ELEGANS ALS MODELLORGANISMUS 1
 1.2 DIE TECHNIK DER RNAI IN C. ELEGANS ... 3
 1.3 EPITHELIEN ... 5
 1.4 DIE EZRIN-RADIXIN-MOESIN(ERM)-PROTEINFAMILIE .. 9
 1.5 MECHANISMEN DER TUBULOGENESE .. 11
 1.6 AUFGABENSTELLUNG ... 14

2 MATERIAL UND METHODEN ... 15
 2.1 CHEMIKALIEN, MATERIALIEN UND GERÄTE.. 15
 2.2 MOLEKULARBIOLOGISCHE METHODEN .. 16
 2.2.1 Generelle Medien .. 16
 2.2.1.1 Medien für Bakterien .. 16
 2.2.1.2 Medien für Hefen .. 16
 2.2.2 Bakterienstämme ... 17
 2.2.3 Hefestämme .. 17
 2.2.4 Vektoren .. 17
 2.2.5 Konstrukte ... 18
 2.2.6 Oligonukleotide ... 21
 2.2.7 Konzentrationsbestimmungen von Nukleinsäuren .. 22
 2.2.7.1 Photometrische Konzentrationsbestimmung .. 22
 2.2.7.2 Konzentrationsbestimmung durch Gelelektrophorese ... 22
 2.2.8 DNA-Gelelektrophorese .. 22
 2.2.9 Polymerase-Kettenreaktion (PCR) .. 23
 2.2.10 RT(Reverse-Transkription)-PCR .. 24
 2.2.11 Manipulation von DNA ... 25
 2.2.11.1 Restriktionsverdau von DNA ... 25
 2.2.11.2 Ligation von DNA-Fragmenten ... 25
 2.2.11.3 Fällung von DNA ... 25
 2.2.12 Elution von DNA-Fragmenten aus Agarose-Gelen ... 26
 2.2.13 Herstellung transformationskompetenter Zellen .. 26
 2.2.13.1 Die CaCl₂-Methode .. 26
 2.2.13.2 Herstellung elektrokompetenter Bakterien ... 27
 2.2.14 Transformation kompetenter Zellen mit Plasmid-DNA ... 27
 2.2.14.1 Transformation nach der CaCl₂-Methode ... 27
 2.2.14.2 Elektrotransformation ... 28
2.2.15 Isolierung von Plasmid-DNA ... 28
 2.2.15.1 Schnellpräparation von Plasmid-DNA (Mini-Préparation) 28
 2.2.15.2 Gewinnung größerer Plasmidmengen ... 28
 2.2.15.3 Gewinnung großer Plasmidmengen (Maxipräparation) 29
2.2.16 in vitro Transkription .. 29
 2.2.16.1 Herstellung des Templates .. 29
 2.2.16.2 Transkriptionsreaktion ... 29
2.2.17 Isolierung von poly-A⁺-RNA ... 30
2.2.18 Isolierung von RNA über TRizol® ... 30
2.2.19 Denaturierende RNA-Gelelektrophorese ... 31
2.2.20 Herstellung digoxigenin-markierter RNA-Sonden 31
2.2.21 Northern-Blotting .. 32
 2.2.21.1 RNA-Transfer .. 32
 2.2.21.2 Vorhybridisierung, Hybridisierung und Waschungen 33
 2.2.21.3 Detektion ... 33
2.2.22 Isolierung von C.elegans-Proteinen ... 33
2.2.23 Konzentrationsbestimmung von Proteinen ... 34
 2.2.23.1 Bestimmung nach Bradford ... 34
 2.2.23.2 Bestimmung durch Gelelektrophorese .. 34
2.2.24 SDS-Polyacrylamid-Gelelektrophorese (SDS-PAGE) 34
2.2.25 Coomassie-Färbung von Proteingelen .. 36
2.2.26 Immuno-Blotting (Western-Blotting) .. 36
2.2.27 Gewinnung polyklonaler Antiseren .. 37
 2.2.27.1 Induktion in E.coli M15[pREP4] .. 38
 2.2.27.2 Bestimmung der Löslichkeit eines Proteins 38
 2.2.27.3 Isolierung von unlöschlichen His-Fusionsproteinen 38
 2.2.27.4 Immunisierung ... 39
2.2.28 Affinitätsreinigung eines Antikörpers ... 39
2.2.29 in vitro-Translation ... 40
2.2.30 Phagenaufarbeitung .. 40
 2.2.30.1 Titerbestimmung .. 40
 2.2.30.2 in vivo-Excision .. 40
 2.2.30.3 Infektion .. 41
 2.2.30.4 Vorbereitung der Bakterienzellen für die Phagenaufarbeitung 41
2.2.31 Hefe-Zwei-Hybrid .. 41
 2.2.31.1 Präparation der Zwei-Hybrid-Phagenbank 41
 2.2.31.2 Proteineextraktion aus Hefezellen für Western-Blot Analyse 42
 2.2.31.3 Priapsorption der Antikörper α-GAL4 BD und α-c-Myc 42
 2.2.31.4 Transformation von DNA in Saccharomyces cerevisiae für einen Hefe-Zwei-Hybrid-Screen .. 43
 2.2.31.5 Transformation von DNA in Saccharomyces cerevisiae für direkte Interaktionen oder Rescreens ... 43
 2.2.31.6 X-Gal-Interaktionstest .. 44
2.2.31.7 Isolation von Plasmid-DNA aus Hefe-Zellen ... 44
2.2.32 Pulldown-Assay .. 45

2.3 ZELLBIOLOGISCHE METHODEN ... 45

2.3.1 Verwendete C.elegans-Stämme und Haltung .. 45
2.3.2 Herstellung Agarose-beschichteter Objektträger und Deckgläser 46
2.3.2.1 Für in vivo-Beobachtung .. 46
2.3.2.2 Für Mikroinjektion .. 46
2.3.3 Herstellung Polylysin-beschichteter Objektträger ... 46
2.3.4 Präparation von Embryonen .. 46
2.3.5 in vivo-Beobachtung .. 47
2.3.6 Antikörperfärbung an Embryonen ... 47
2.3.7 Aktinfärbung an Embryonen ... 48
2.3.8 Doppelfärbung eines Antikörpers mit Phalloidin .. 49
2.3.9 Auswertung von Embryonen ... 50
2.3.10 Darmfunktionstest an Larven ... 50
2.3.11 Die Technik der „RNA-mediated interference“ (RNAi) ... 50
2.3.11.1 Mikroinjektion .. 50
2.3.11.2 RNAi über Feeding ... 51
2.3.11.3 Auswertung der RNAi-Tiere .. 51

3 ERGEBNISSE ... 52

3.1 DIE ROLLE VON ERM-1 WÄHREND DER DIFFERENZIERUNG DES EMBRYONALEN
DARMEPITHELS VON C. ELEGANS ... 52

3.1.1 Molekulare Charakterisierung von erm-1 .. 52
3.1.2 Das embryonale Expressionsmuster von ERM-1 ... 53
3.1.3 Unter DIK-Optik zeigen erm-1(RNAi)-Embryonen Verschlüsse und eine
progressive Weitung des Darmlumens .. 54
3.1.4 Analyse des erm-1(RNAi)-Phänotyps mittels hochauflösender konfokaler
Laser mikroskopie ... 55
3.1.4.1 Die C.elegans AJ zeigt ein variables Muster .. 56
3.1.4.2 Während der Morphogenese von erm-1(RNAi)-Embryonen ist das Remodelling der AJ im
Darmepithel gestört ... 56
3.1.4.3 Die Organisation des F-Aktinzytoskeletts im apikalen Zellkortex des Darmepithels ist
abhängig von ERM-1 .. 57
3.1.4.4 In erm-1(RNAi)-Embryonen sind die im Darmlumen auftretenden Defekte unabhängig von
der Ausbildung der apikalen Membrandomäne ... 58
3.1.5 Modellvorstellungen für das AJ-Remodelling im Darmepithel 59

3.2 ANALYSE DES AKTIN-MYOSINNETZWERK IM EMBRYONALEN DARMEPITHEL VON
C. ELEGANS ... 61
3.2.1	Der Verlust der Rho-Kinase LET-502 führt zu einem neuartigen AJ-Phänotyp im Darmepithel	61
3.2.2	Die „leichte Kette“MLC-4 und die „schwere Kette“ NMY-2 des Myosins lokalisieren auch im zellulären Kortex der Darmzellen	63
3.2.3	Darmspezifische RNAi von mlc-4 und nmy-2 führt zu larvalem Arrest und Darmdefekten	64
3.2.4	act-5(RNAi)-Embryonen zeigen Remodellingdefekte der AJ im embryonalen Darmepithel	65
3.3	ENDOZYGOTE SPIELT GENERELL KEINE ROLLE FÜR DAS AJ-REMODELLING	67
3.4	IDENTIFIKATION VON ERM-1-BINDUNGSPARTNERN ÜBER EINEN HEOE-2-HYBRID-SCREEN	69
3.5	ANALYSE GENETISCHER INTERAKTIONEN ZWISCHEN ERM-1 UND GENEN, DIE IN AJ-INTEGRITÄT INVOLVIERT SIND	74
3.5.1	dlg-1, ajm-1 und let-413 zeigen keine genetische Interaktion mit erm-1	74
3.6	DIE ZELL-ZELLADHÄSION IM EMBRYONALEN DARMEPITHEL VON C. ELEGANS	76
3.6.1	erm-1/hmp-1(RNAi)-Embryonen zeigen ein fragmentiertes Darmepithel	76
3.6.2	Die Rolle von LAD-1 während der Entwicklung des embryonalen Darmepithels	77
3.6.2.1	Die Lokalisation von phosphoryliertem LAD-1 im Embryo ist abhängig von DLG-1	78
3.6.2.2	Molekulare Analyse von lad-1(ok1244)	79
3.6.2.3	LAD-1 beeinflußt zusammen mit dem Cadherin-Catenin-Komplex die Integrität des Darmepithels	80
3.6.3	erm-1/dlg-1/hmp-1(RNAi)- und lad-1(ok1244)/dlg-1/hmp-1(RNAi)-Embryonen zeigen eine verstärkte Fragmentierung des embryonalen Darmepithels	81
4	DISKUSSION	83
4.1	LUMENBILDUNG UND AJ-REMODELLING IM EMBRYONALEN DARMEPITHEL VON C. ELEGANS	83
4.1.1	Stabilisation des apikalen F-Aktinzytokortex des Darmepithels durch ERM-1	83
4.1.2	Die Ausbildung der apikalen Membrandomäne im Darmepithel führt nicht zum Remodelling der AJ	85
4.1.3	Das Aktin-Myosinnetzwerk und die Medium-Ketten des Clathrin-Adapter-Komplex bewirken nur bedingt AJ-Remodelling	86
4.1.4	Alternative Erklärungen für das AJ-Remodelling im Darmepithel	89
4.2	DIE ZELL-ZELLADHÄSION IM EMBRYONALEN DARMEPITHEL VON C. ELEGANS WIRD DURCH REDUNDANTE MECHANISMEN VERMITTELT	91
4.2.1	ERM-1 und der Cadherin-Catenin-Komplex vermitteln Zell-Zelladhäsion im embryonalen Darmepithel	91
4.2.2 LAD-1 und der Cadherin-Catenin-Komplex vermitteln Zell-Zelladhäsion im embryonalen Darmepithel... 93
4.2.3 Die Phosphorylierung von LAD-1 ist abhängig von EGL-15 94
4.2.4 Das Zusammenspiel von ERM-1, DLG-1 und LAD-1 in Bezug auf die Zell-
Zelladhäsion im embryonalen Darmepithel von C. elegans ... 95

5 AUSBLICK ..98
6 RESÜMEE ...99
7 ZUSAMMENFASSUNG ...100
8 ABBILDUNGEN DES ERGEBNISTEILS ...102
9 LITERATURVERZEICHNIS ...134
10 ANHANG-ABKÜRZUNGEN ...145
11 ANHANG-SEQUENZEN ...146
11.1 VERIFIZIERTE erm-1-SEQUENZ ..146
11.2 SEQUENZEN DER “IN FRAME” HEFE-ZWEI-HYBRID-Screen Kandidaten........146
 11.2.1 Sequenzen der mit dem N-terminalen erm-1-Köderkonstrukt identifizierten
 Gene ..146
 11.2.2 Sequenzen der mit dem C-terminalen erm-1-Köderkonstrukt identifizierten
 Gene ..150
11.3 SEQUENZIERUNG VON LAD-1(OK1244) ...152
 11.3.1 Vorwärtssequenz ..152
1 Einleitung

1.1 Der Nematode *Caenorhabditis elegans* als Modellorganismus

Alle Gewebe und Organe gehen aus Gründerzellen hervor, die während der ersten 100 Minuten der Embryogenese, der sogenannten Proliferationsphase, aus inäqualen Zellteilungen entstehen (Labouesse und Mango, 1999; Sulston et al., 1983). Diese Zellen sind AB, MS, E, C, D und die Keimbahnvorläuferzelle P4. Während der

Probleme beobachtet werden, Abweichungen von der Wildtypentwicklung lassen sich leicht erkennen.

1.2 Die Technik der RNAi in *C. elegans*

Einleitung

Abb. 2: Hypothetischer Mechanismus der RNA-vermittelten Interferenz (RNAi) in *C. elegans* (modifiziert nach Tabara et al., 2002).
Exogene doppelsträngige RNA (dsRNA) wird durch RNA-Bindeproteine (RDE-4 [RNAi-Defective]) gebunden und durch die RNAse DCR-1 (Dicer) in kleinere Fragmente, die "small interfering" RNAs (siRNA) gespalten. Die siRNAs bilden mit RNasen und weiteren Proteinen den RISC (RNAi-induced silencing complex), der zur Erkennung und zum Abbau der endogenen "Ziel-mRNA" führt.

Die dsRNA wird zunächst in einen Komplex mit dem dsRNA-Bindeprotein RDE-4 ("RNAi-deficiency"), RDE-1, einem Mitglied der Argonaut-Familie, der RNase DCR-1 (Dicer) und der Helikase DRH-1 ("Dicer related helicase") integriert und so durch DCR-1 in viel kleinere, 21 bp große einzelsträngige siRNAs ("small interfering RNA") gespalten (Tabara et al., 1999; Tabara et al., 2002). Ein Proteinkomplex, u.a. bestehend aus RNasen, bindet die siRNAs und bildet den sogenannten RISC ("RNA induced silencing complex"). Der RISC erkennt die endogene "Ziel-mRNA" und ist schließlich an deren Abbau beteiligt (Abb. 2, Ketting et al., 2001).

Mit der Etablierung der RNAi als effiziente und schnelle Methode wurden genomweite RNAi-Analysen durchgeführt, wobei entweder dsRNA direkt in die Gonade injiziert oder die Methode der dsRNA Fütterung ("RNAi feeding") verwendet wurde, bei der spezielle Bakterien dsRNA produzieren (Fraser et al., 2000; Gönczy et al., 2000; Kamath und Ahringer, 2003; Kamath et al., 2001). In jüngster Zeit wurden auch genomweite RNAi-Screens durchgeführt, um z.B. Gene für die frühe Zellteilung oder Komponenten des RNAi-Mechanismus selbst zu finden (Kim et al., 2005; Sönnichsen et al., 2005).

Die Tatsache, daß RNAi zum Verlust der maternalen Genfunktion, durch Abbau der vom “Muttertier” bereitgestellten mRNA, und auch zum Abbau von zygotischer mRNA führt, hat zur Folge, daß bei RNAi-Analysen häufig die frühe Funktion eines Genes während der embryonalen Entwicklung die späte überdeckt. So ist dies bei den bereits erwähnten par-Genen der Fall (Kemphues, 2000; Nance, 2005). Generell sind sie in C. elegans für die Polarität im Einzell-Embryo verantwortlich. Allerdings zeigen sie neben einer Lokalisation im Kortex der Blastomeren auch eine Expression im Darmepithel. Ihre Funktion hier ist aber noch unbekannt, u.a. da über RNAi nur die frühe Funktion eliminiert werden kann (Bossinger et al., 2001; Leung et al., 1999; McMahon et al., 2001; Nance et al., 2003). Im Gegensatz dazu spielen die Homologen der par-Gene in anderen Organismen, wie z.B. Drosophila, tragende Rollen während der Epithelentwicklung (s. unten, Kemphues, 2000; Pellettieri und Seydoux, 2002).

1.3 Epithelien

Epithelien sind Abschlußgewebe und bilden selektive Barrieren zwischen zwei Kompartimenten eines Organismus, um den vektoriellen Transport von Ionen und

In Vertebraten gliedern sich die Zell-Zellverbindungen in Tight Junction (TJ), Zonula adherens (ZA) und Desmosomen, in Invertebraten wie Drosophila finden sich die ZA und die Septate Junctions (SJ) (Müller und Bossinger, 2003). Während die ZA einen durchgehenden Gürtel um den Apex der Zellen bildet und für Zell-Zelladhäsion sorgt, stellt die TJ eine dichte Permeabilitätsbarriere zwischen den Zellen dar. Auch für die SJ wird eine entsprechende Barrierefunktion postuliert (Anderson, 2001; Faivre-
Sarrailh et al., 2004; Genova und Fehon, 2003; Schneeberger und Lynch, 2004). Die TJ bildet außerdem eine Diffusionsgrenze zwischen der apikalen und basalen Membrandomäne und ist apikolateral lokalisiert. Die SJ lokalisieren dagegen an der lateralen Membran (Abb. 3).

Im *C. elegans* Embryo finden sich drei große Epithelien. Die Hypodermis, der Pharynx, und das Darmepithel (Michaux et al., 2001; Simske und Hardin, 2001). Obwohl auf ultrastruktureller Ebene nur eine einzelne elektronendichte Zell-Zellverbindung nachzuweisen ist, konnte auf Immunfluoreszenz(IF)-Ebene gezeigt werden, daß in diesen Epithelen des Nematoden zwei molekular und funktionell unterschiedliche Komplexe existieren (Abb. 3, Asano et al., 2003; Köppen et al., 2001; McMahon et al., 2001; Segbert et al., 2004). Sie werden zusammen die *C. elegans* “apical junction” (AJ) genannt und bestehen aus Multiproteinkomplexen, die ähnlich auch in Vertebraten und *Drosophila* vorkommen (Cox und Hardin, 2004; Hardin und Lockwood, 2004; Knust und Bossinger, 2002)

Die basale Einheit der AJ stellt der DLG-1/AJM-1-Komplex (DAC) dar, welcher aus den Proteinen DLG-1 (Discs Large), einem Mitglied der MAGUK (Membranassozierte-Guanylatkinase)-Proteinfamilie (Dimitratos et al., 1999) und
Einleitung

AJM-1 ("apical junction molecule"), einem “coiled-coil” Protein, besteht. AJM-1 ist ein neuartiges Protein und im Gegensatz zu DLG-1 sind keine Homologen aus Vertebraten und *Drosophila* bekannt (Bossinger et al., 2001; Firestein und Rongo, 2001; Köppen et al., 2001; McMahon et al., 2001). In *Drosophila* lokalisiert Discs Large in der SJ und reguliert die Bildung der ZA und somit die apikobasale Polarität (Woods et al., 1996). Auch in *C. elegans* hat DLG-1 eine tragende Funktion für die Etablierung der AJ. So ist DLG-1 für die Ausbildung der elektronendichten Struktur der AJ verantwortlich, außerdem sorgt es über eine direkte Interaktion für die korrekte Verteilung von AJM-1. Andersherum reguliert auch AJM-1 die Ausbildung der elektronendichten AJ-Struktur (Bossinger et al., 2001; Firestein und Rongo, 2001; Köppen et al., 2001; McMahon et al., 2001). Im Darmepithel konnte außerdem gezeigt werden, daß AJM-1 für die Lokalisation von DLG-1 verantwortlich ist (Segbert et al., 2004). Anders als in *Drosophila* spielt der DAC jedoch keine Rolle für die Lokalisation des CCC oder für die Polarität der Epithelzellen (Bossinger et al., 2001; Firestein und Rongo, 2001; Köppen et al., 2001; McMahon et al., 2001; Segbert et al., 2004; Woods et al., 1996).

Eine generelle Funktion für die apikobasale Polarität zeigt das LAP ("Leucin-rich-repeat and PDZ" [PSD-95, Discs Large, ZO-1])-Protein LET-413 ("lethal"), das *Drosophila* Scribble-Homolog in *C. elegans* (Bilder und Perrimon, 2000; Legouis et al., 2000; Legouis et al., 2003; McMahon et al., 2001). LET-413 findet sich, entsprechend Scribble, an der basolateralen Membrandomäne und ist verantwortlich für die Lokalisation des DAC. Es verhindert außerdem eine Expansion von apikalen und AJ-Komponenten nach lateral und stabilisiert somit die apikale Position der elektronendichten AJ-Struktur. Somit sorgt es für den Erhalt der apikobasalen Polarität (Bilder und Perrimon, 2000; Bossinger et al., 2004; Köppen et al., 2001; Legouis et al., 2000; McMahon et al., 2001).

In *Drosophila* spielen zwei Komplexe eine zentrale Rolle für die Etablierung der apikobasalen Polarität. Beide befinden sich in der subapikalen Region (SAR), also apikal von der ZA: der Bazooka/DmPAR-6/DaPKC-Komplex und der Crumbs/Stardust/DPatj-Komplex. Während Crumbs direkt für die Ausbildung der ZA verantwortlich ist, zeigt der Bazooka-Komplex einen indirekten Einfluß, indem er die Polarität von apikalen Komponenten, also auch Crumbs, steuert (Bachmann et al., 2001; Petronczki und Knoblich, 2001; Tepass, 1996; Tepass et al., 1990; Wodarz et
Einleitung

Der PAR-3/PAR-6/PKC-3-Komplex in *C. elegans* wurde ursprünglich als Regulator für die erste asymmetrische Zellteilung der Zygote entdeckt. Er lokalisiert im anterioren Kortex der Blastomeren und ist auch an der apikalen Membrandomäne des Darmepithel zu finden. Hier konnte ihm bisher jedoch keine Funktion zugeordnet werden (Bossinger et al., 2001; Kemphues et al., 1988b; Leung et al., 1999; McMahon et al., 2001; Nance et al., 2003).

Auch das *C. elegans* Crumbs-Homolog CRB-1 scheint keinen Einfluß auf die Epithelentwicklung zu haben, obwohl gezeigt werden konnte, daß es im Darmepithel, entsprechend wie Crumbs in den Epithelien von *Drosophila*, durch DLG-1 lokalisiert wird. So ist es auch subapikal im Darmepithel zu finden (Bilder et al., 2000; Bossinger et al., 2001; Segbert et al., 2004). In *Drosophila* bindet Crumbs an das Protein *D*Moiesin, welches zur Ezrin-Radixin-Moesin-(ERM)-Proteinfamilie gehört. Der Crumbs-*D*Moesin Komplex stabilisiert das apikale F-Aktinzytoskelett, in dem es βHeavy-Spektrin rekrutiert, so daß es schließlich zur Ausbildung der ZA kommt (Medina et al., 2002). Das *D*Moesin ist das einzige ERM-Protein in *Drosophila* und auch *C. elegans* besitzt nur ein einzelnes ERM-Protein, das ERM-1 (s. unten, Göbel et al., 2004; van Fürden et al., 2004).

1.4 *Die Ezrin-Radixin-Moesin(ERM)-Proteinfamilie*

Eine F-Aktinbindestelle, die auf die letzten 34 Aminosäuren bestimmt werden konnte (Pestonjamasp et al., 1995; Turunen et al., 1994).

Abb. 4: Schematische Darstellung der Struktur eines ERM(Ezrin-Radixin-Moesin)-Proteins (modifiziert nach Mangeat et al., 1999).
Ein typisches ERM-Protein besitzt eine N-Terminale FERM-Domäne (blau) und eine C-Terminale Aktinbindestelle (grün), die eine Bindung zwischen Zytoplasmamembran und Aktinzytoskelett bewerkstelligen. ERM-Proteine weisen eine α-helikale Sequenz im mittleren Bereich des Proteins auf, der C-terminale Bereich wird auch C-ERMAD (ERM-Assoziationsdomäne) genannt, da er mit der FERM-Domäne (auch N-ERMAD) wechselwirken kann und somit zur Inaktivierung des Proteins führt (Bretscher et al., 2002). Einige ERM-Proteine besitzen einen prolinreichen Abschnitt (PolyPro), dem bislang noch keine Funktion zugeordnet werden konnte (Matsui et al., 1999).

Einleitung

Geweben, speziell in der Flügelimaginalscheibe, für epitheliale Polarität verantwortlich ist (Speck et al., 2003).

1.5 Mechanismen der Tubulogenese

Der Darm von *C. elegans* stellt ein simples System für die Erforschung der Epithelentwicklung dar. Er geht klonal aus der sogenannten E-Zelle hervor und formt letztendlich eine einfache Röhre aus 20 Zellen, die mit ihrer apikalen Membranoberfläche das Lumen umgeben, während die basale Membrandomäne in Kontakt zur extrazellulären Matrix steht (Leung et al., 1999; Sulston et al., 1983).

![Diagram of epithelial processes](image)

Abb. 5: Morphologische Prozesse während der Ausbildung von epithelialen Röhren (modifiziert nach Lubarsky und Krasnow, 2003)

In der Literatur sind mehrere Wege beschrieben, wie epitheliale Röhren entstehen können (Abb. 5, Lubarsky und Krasnow, 2003). So bildet sich das Neuralrohr von
Einleitung

Einleitung

1.6 Aufgabenstellung

2 Material und Methoden

2.1 Chemikalien, Materialien und Geräte

Sämtliche Verbrauchschemikalien wurden, falls nicht anders erwähnt, in der Qualität pro analysis von folgenden Firmen bezogen:

Acros, Geel, Belgien; Baker, Deventer, Niederlande; Biomol, Hamburg; Bio-Rad, München; Difco, Detroit, USA; Fluka, Buks, Schweiz, Gibco/BRL Life Technologies, Karlsruhe, Grüssing, Filsum; Merck, Darmstadt; Riedel-de Haen, Seeize; Roth, Karlsruhe; Serva, Heidelberg; Sigma-Aldrich, Steinheim.

Sämtliche Lösungen wurden mit demineralisiertem Wasser (dH2O) angesetzt und gegebenenfalls autoklaviert bzw. sterilfiltriert. Bei Arbeiten mit RNA wurden Lösungen mit Diethylpyrocarbonat-Wasser (0.1% DEPC) angesetzt.

Enzyme für molekularbiologische Methoden wurden von folgenden Firmen bezogen: Boehringer/Roche Diagnostics, Mannheim; MBI Fermentas, St. Leon Rot; Promega, Madison, USA.

Allgemeine Geräte:

Elektrotransformationen: Gene Pulser II und Puls Controller Plus (BioRad, München)

UV-Spektrometer: Gene Quant II (Pharmacia Biotech, Cambridge, England) und UV-160 (Shizmadzu Deutschland GmbH, Duisburg)

UV-Quervernetzung: UV Stratalinker 2400 (Stratagene, Heidelberg)

Zentrifugen: Biofuge pico (Heraeus instruments, Düsseldorf); J21-C (Beckman instruments, Palo Alto, USA)

Mikropipettenpulser: Sutter P-97 (Science products, Hofheim)

Ultraschallgerät: Labsonic U (Braun Biotech, Melsungen)

SDS-PAGE & Western-Blotting: Mini Protean II (BioRad, München)

PCR-Gerät: PTC-200 (MJ Research, Watertown, USA)

Kitsysteme:

- μMACS mRNA Isolation Kit, Miltenyi Biotec, Bergisch-Gladbach
- MAXIscript T7, Ambion, Austin, USA
- Nucleobond AX, Machery-Nagel, Düren
- NucleoSpin Extract, Machery-Nagel, Düren
- Qiagen Plasmid Maxi Kit, Qiagen, Hilden
- OneStep RT-PCR Kit, Qiagen, Hilden

Mikroskope:

- Zeiss Axioptot 2 (Zeiss, Oberkochen), gekoppelt mit einer Sony 3 CCD Color Videokamera und einem JVC-Timelapse Videorekorder
- konfokales Lasermicroskop Leica TCS NT (Leica, Heidelberg)
- inverses Mikroskop Leica DM IRB, gekoppelt mit einem Mikromanipulator Piezo Manipulator PM10, Science products, Hofheim

Photoarbeiten:
- Röntgenfilm: Fuji SuperRX, Fuji, Tokyo, Japan
- Entwickler: Tenetal Roentgen, Tenetal, Norderstedt
- Fixierer: Tenetal Roentgen Superfix, Tenetal, Norderstedt

Bildverarbeitung:
Bilder wurden auf einem McIntosh PowerPC (Apple, Ismaning) mit den Bildverarbeitungsprogrammen Adobe Photoshop CS (Adobe Systems, San Jose; USA) und Canvas 9 (Deneba Systems, Miami, USA) bearbeitet.

Sequenzanalysen:
Sequenzanalysen wurden mit Hilfe des Programms Lasergene (DNASTAR Inc., Madison, USA) durchgeführt.

2.2 Molekularbiologische Methoden

2.2.1 Generelle Medien

2.2.1.1 Medien für Bakterien
- **SOB-Mg²⁺**: 2% Bactotrypton, 0.5% Bactoyeast, 10mM NaCl, 2.5mM KCl
- **LB**: 1% Bactotrypton, 0.5% Bactoyeast, 1% NaCl
- **LB-Agar**: 6.3g Agar/300ml LB
- **Ampicillin**: 100mg/ml Stammlösung in dH₂O
- **Kanamycin**: 50mg/ml Stammlösung in dH₂O
- **Tetracyclin**: 12.5mg/ml Stammlösung in dH₂O

2.2.1.2 Medien für Hefen
- **YPDA**: 20g/l Difco peptone, 10g/l Hefe-Extrakt, 300mg/l L-Adenine hemisulfat Salz
- **YPDA-Agar**: 15g Agar pro Liter YPDA
- **SD**: 6.7g Difco “yeast nitrogen base without amino acids” in 850ml dH₂O auflösen, autoklavieren, 100ml 10x Dropout Lösung und 50ml 40%iger Glukose hinzufügen; ggf. 10ml 100x Histidin und/oder 10ml 100x Leucin und/oder 10ml 100x Tryptophan zugeben
- **SD-Agar**: 15g Agar pro Liter SD
- **10x Dropout Lösung**: 300 mg/l L-Isoleuzin, 1500mg/l L-Valin, 300mg/l L-Adenine hemisulfat Salz, 200mg/l L-Arginin HCl, 300mg/l L-Lysin HCl, 200mg/l L-Methionin, 500mg/l L-Phenylalanin, 2000mg/l L-Threonin, 300mg/l L-Tyrosin, 200mg/l L-Urazil
- **100x Histidin**: 2000mg/l L-Histidin HCl monohydrate
- **100x Leucin**: 10g/l L-Leucin
- **100x Tryptophan**: 2000mg/l L-Tryptophan
2.2.2 Bakterienstämme
Es wurden folgende Bakterienstämme der Spezies *Escherichia coli* verwendet:

XL1blue (Stratagene, Heidelberg), Genotyp: recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F′ proAB lacI′Z M15 Tn10(Tet')]. Alle herkömmlichen Klonierungsarbeiten wurden mit diesem Stamm durchgeführt.

SolR (Stratagene, Heidelberg), Genotyp: e 14-(mcrA-) D(mcrCB-hsdSMR-mrr)171 endA1 supE44 thi-1 sbcC uvrC umuC::Tn5(Kan') recJ gyrA96 recA1 lac [F′ proAB lacI′Z DM15]. Stamm für Phagenaufarbeitung.

HT115(DE3) (CGC, Minnesota), Genotyp: F−, mcrA, mcrB, IN(rrnD-rrnE)1, lambda−, rnc14::Tn10(DE3 lysogen:lacUV5 promotor-T7 polymerase). Ein RNAseIII-defizienter Stamm mit zwei die MCS flankierenden T7-Promotoren für die Synthese von dsRNA.

2.2.3 Hefestämme
Es wurden folgende Hefestämme der Spezies *Saccharomyces cerevisiae* verwendet:

Y190 (Clontech, Palo Alto, USA), Genotyp: MATa, ural3-52, his3-200, ade2-101, lys2-801, trp1-901, leu2-3, 112, gal4Δ, gal80Δ, cyhr2, LYS2::GAL1 UAS-HIS3 TATA- HIS3, MEL1 URA3::GAL1 UAS-GAL1 TATA-lacZ. Stamm, der für den Test von direkten Interaktionen eingesetzt wurde. Reportergene: HIS3, lacZ, auxotrophe Marker: trp1, ural3, leu2

2.2.4 Vektoren

Es gibt eine „multiple cloning side“ (MCS), die singuläre Schnittstellen vieler Enzyme besitzt, hierin werden Fremdsequenzen kloniert. Ferner besitzt der Vektor ein für das α-Peptid der β-Galaktosidase codierendes Gen, welches durch Einfügen von Fremdsequenzen zerstört wird. So ist es möglich in Zusammenhang mit einem Bakterienstamm, der nur die N-terminale Sequenz der β-Galaktosidase besitzt, eine Blau-Weiß-Selektion durchzuführen.

Weiterhin wird die MCS von zwei Promotoren flankiert, die von den viralen T3- bzw. T7-RNA-Polymerasen erkannt werden. So wird nach Linearisierung des Vektors eine
strangspzifische Transkription der in den Vektor klonierten Fremdsequenzen ermöglicht.

\textit{pBluescript II SK} +/- (2.96kB, Stratagene, Heidelberg). Enspricht dem oben beschriebenen \textit{pBluescript II KS} +/-, jedoch mit invertierter MCS. In diese Vektoren sind teilweise die von Y. Kohara erhaltenen cDNAs integriert.

\subsection*{2.2.5 Konstrukte}

In Tabelle I sind alle in dieser Arbeit hergestellten Konstrukte aufgelistet, wobei die Klonierung nach den unten beschriebenen Standardmethoden erfolgte. Die Amplifizierung des “Inserts” erfolgte über PCR bzw. RT-PCR, welches, ebenso wie der Vektor mit den entsprechenden Restriktionsenzymen verdaut wurde. Es erfolgte eine Ligationsreaktion und eine Transformation in \textit{E.coli}.

Material und Methoden

<table>
<thead>
<tr>
<th>Vektor</th>
<th>Insert</th>
<th>Größe (Bp)</th>
<th>Template</th>
<th>5’RE</th>
<th>3’RE</th>
<th>Verwendung</th>
</tr>
</thead>
<tbody>
<tr>
<td>pQE30</td>
<td>ERM-1 C-Terminus</td>
<td>1068</td>
<td>257f5</td>
<td>BamH1</td>
<td>BamH1</td>
<td>Proteinsynthese</td>
</tr>
<tr>
<td>pQE32</td>
<td>LAD-1 C-Terminus</td>
<td>285</td>
<td>1335e06</td>
<td>BamH1</td>
<td>HindIII</td>
<td>Proteinsynthese</td>
</tr>
<tr>
<td>pGBKT7</td>
<td>DLG-1 PDZ 1, 2+3</td>
<td>freundlicherweise von M. Hoffmann (Düsseldorf) zur Verfügung gestellt</td>
<td>Hefeinteraktionen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DLG-1 PDZ- 1-3</td>
<td>freundlicherweise von M. Hoffmann (Düsseldorf) zur Verfügung gestellt</td>
<td>Hefeinteraktionen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ERM-1 Full length</td>
<td>1691</td>
<td>257f5</td>
<td>BamH1</td>
<td>BamH1</td>
<td>Hefeinteraktionen</td>
</tr>
<tr>
<td></td>
<td>ERM-1 FERM</td>
<td>665</td>
<td>257f5</td>
<td>BamH1</td>
<td>BamH1</td>
<td>Hefeinteraktionen, Two-Hybrid Köder</td>
</tr>
<tr>
<td></td>
<td>ERM-1 C-Terminus</td>
<td>1070</td>
<td>257f5</td>
<td>BamH1</td>
<td>BamH1</td>
<td>Hefeinteraktionen, Two-Hybrid Köder</td>
</tr>
<tr>
<td>pGBT9</td>
<td>ERM-1 Full length</td>
<td>1691</td>
<td>257f5</td>
<td>BamH1</td>
<td>BamH1</td>
<td>Hefeinteraktionen</td>
</tr>
<tr>
<td></td>
<td>ERM-1 FERM</td>
<td>665</td>
<td>257f5</td>
<td>BamH1</td>
<td>BamH1</td>
<td>Hefeinteraktionen</td>
</tr>
<tr>
<td></td>
<td>ERM-1 C-Terminus</td>
<td>1070</td>
<td>257f5</td>
<td>BamH1</td>
<td>BamH1</td>
<td>Hefeinteraktionen</td>
</tr>
<tr>
<td>pACTII</td>
<td>CRB-1 C-Terminus</td>
<td>116</td>
<td>74b1</td>
<td>BamH1</td>
<td>XhoI</td>
<td>Hefeinteraktionen</td>
</tr>
<tr>
<td></td>
<td>ERM-1 Full length</td>
<td>1691</td>
<td>257f5</td>
<td>BamH1</td>
<td>BamH1</td>
<td>Hefeinteraktionen</td>
</tr>
<tr>
<td></td>
<td>ERM-1 FERM</td>
<td>665</td>
<td>257f5</td>
<td>BamH1</td>
<td>BamH1</td>
<td>Hefeinteraktionen</td>
</tr>
<tr>
<td></td>
<td>HMP-2 N-Terminus + arm repeats</td>
<td>1344</td>
<td>473f7</td>
<td>EcoRI</td>
<td>XhoI</td>
<td>Hefeinteraktionen</td>
</tr>
<tr>
<td></td>
<td>HMR-1 C-Terminus</td>
<td>365</td>
<td>poly A+ RNA</td>
<td>BamH1</td>
<td>XhoI</td>
<td>Hefeinteraktionen</td>
</tr>
<tr>
<td></td>
<td>LAD-1 ΔESAV</td>
<td>272</td>
<td>1335e06</td>
<td>EcoRI</td>
<td>XhoI</td>
<td>Hefeinteraktionen</td>
</tr>
<tr>
<td></td>
<td>LAD-1 C-Terminus</td>
<td>285</td>
<td>1335e06</td>
<td>EcoRI</td>
<td>XhoI</td>
<td>Hefeinteraktionen</td>
</tr>
<tr>
<td></td>
<td>NHX-2 C-Terminus</td>
<td>534</td>
<td>1279f5</td>
<td>EcoRI</td>
<td>EcoRI</td>
<td>Hefeinteraktionen</td>
</tr>
<tr>
<td></td>
<td>SDN-1 C-Terminus</td>
<td>359</td>
<td>174c3</td>
<td>BamH1</td>
<td>XhoI</td>
<td>Hefeinteraktionen</td>
</tr>
<tr>
<td>Konstrukte</td>
<td>TAG-60 C-Terminus</td>
<td>pPD129.36</td>
<td>act-5</td>
<td>BamH1</td>
<td>XhoI</td>
<td>Hefeinteraktionen</td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td>-----------</td>
<td>-------</td>
<td>-------</td>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>pPD129.36</td>
<td>act-5</td>
<td>979</td>
<td>1727b06</td>
<td>BamH1</td>
<td>XhoI</td>
<td>MRC Klon</td>
</tr>
<tr>
<td></td>
<td>apm-1</td>
<td>785</td>
<td>774e02</td>
<td>NcoI</td>
<td>NcoI</td>
<td>RNAi "Feeding"</td>
</tr>
<tr>
<td></td>
<td>apm-2</td>
<td>1099</td>
<td>328e9</td>
<td>NcoI</td>
<td>BglII</td>
<td>RNAi "Feeding"</td>
</tr>
<tr>
<td></td>
<td>dlg-1</td>
<td>1340</td>
<td>128b7</td>
<td>XhoI</td>
<td>XhoI</td>
<td>RNAi "Feeding"</td>
</tr>
<tr>
<td></td>
<td>erm-1</td>
<td>1638</td>
<td>257f5</td>
<td>XhoI</td>
<td>XhoI</td>
<td>RNAi "Feeding"</td>
</tr>
<tr>
<td></td>
<td>hmp-1</td>
<td>1468</td>
<td>675e4</td>
<td>XhoI</td>
<td>SalI</td>
<td>RNAi "Feeding"</td>
</tr>
<tr>
<td></td>
<td>hmp-2</td>
<td>748</td>
<td>493f7</td>
<td>HindIII</td>
<td>HindIII</td>
<td>RNAi "Feeding"</td>
</tr>
<tr>
<td></td>
<td>hmr-1</td>
<td>1665</td>
<td>61lf6</td>
<td>XhoI</td>
<td>SalI</td>
<td>RNAi "Feeding"</td>
</tr>
<tr>
<td></td>
<td>let-413</td>
<td>2202</td>
<td>524b7</td>
<td>XbaI</td>
<td>XbaI</td>
<td>RNAi "Feeding"</td>
</tr>
<tr>
<td></td>
<td>let-502</td>
<td>2223</td>
<td>9b4</td>
<td>XhoI</td>
<td>XhoI</td>
<td>RNAi "Feeding"</td>
</tr>
<tr>
<td></td>
<td>mel-11</td>
<td>1818</td>
<td>571h10</td>
<td>SacI</td>
<td>XhoI</td>
<td>RNAi "Feeding"</td>
</tr>
<tr>
<td></td>
<td>mlc-4</td>
<td>395</td>
<td>572b4</td>
<td>HincII</td>
<td>SacI</td>
<td>RNAi "Feeding"</td>
</tr>
<tr>
<td></td>
<td>nmy-1</td>
<td>829</td>
<td>20lb7</td>
<td>SalI</td>
<td>SalI</td>
<td>RNAi "Feeding"</td>
</tr>
<tr>
<td></td>
<td>nmy-2</td>
<td>811</td>
<td>312e4</td>
<td>XhoI</td>
<td>XhoI</td>
<td>RNAi "Feeding"</td>
</tr>
<tr>
<td></td>
<td>vig-1</td>
<td>600</td>
<td>Hefeklon</td>
<td>NcoI</td>
<td>XhoI</td>
<td>RNAi "Feeding"</td>
</tr>
<tr>
<td></td>
<td>Y55F3AM.13</td>
<td>750</td>
<td>Hefeklon</td>
<td>NcoI</td>
<td>XhoI</td>
<td>RNAi "Feeding"</td>
</tr>
<tr>
<td></td>
<td>Y55F3AM.13</td>
<td>750</td>
<td>Hefeklon</td>
<td>NcoI</td>
<td>XhoI</td>
<td>RNAi "Feeding"</td>
</tr>
<tr>
<td></td>
<td>Y55F3AM.13</td>
<td>750</td>
<td>Hefeklon</td>
<td>NcoI</td>
<td>XhoI</td>
<td>RNAi "Feeding"</td>
</tr>
<tr>
<td></td>
<td>Y55F3AM.13</td>
<td>750</td>
<td>Hefeklon</td>
<td>NcoI</td>
<td>XhoI</td>
<td>RNAi "Feeding"</td>
</tr>
<tr>
<td></td>
<td>pas-4</td>
<td>1200</td>
<td>Hefeklon</td>
<td>HindIII</td>
<td>HindIII</td>
<td>RNAi "Feeding"</td>
</tr>
<tr>
<td></td>
<td>lec-1</td>
<td>1700</td>
<td>Hefeklon</td>
<td>HindIII</td>
<td>HindIII</td>
<td>RNAi "Feeding"</td>
</tr>
<tr>
<td></td>
<td>F47G4.2</td>
<td>2000</td>
<td>Hefeklon</td>
<td>HindIII</td>
<td>HindIII</td>
<td>RNAi "Feeding"</td>
</tr>
<tr>
<td></td>
<td>map-1</td>
<td>2000</td>
<td>Hefeklon</td>
<td>HindIII</td>
<td>HindIII</td>
<td>RNAi "Feeding"</td>
</tr>
<tr>
<td></td>
<td>eft-3</td>
<td>1500</td>
<td>Hefeklon</td>
<td>HindIII</td>
<td>HindIII</td>
<td>RNAi "Feeding"</td>
</tr>
<tr>
<td></td>
<td>K10C2.4</td>
<td>750</td>
<td>Hefeklon</td>
<td>HindIII</td>
<td>HindIII</td>
<td>RNAi "Feeding"</td>
</tr>
<tr>
<td></td>
<td>pgn-46</td>
<td>1500</td>
<td>Hefeklon</td>
<td>HindIII</td>
<td>HindIII</td>
<td>RNAi "Feeding"</td>
</tr>
<tr>
<td></td>
<td>hcf-1</td>
<td>750</td>
<td>Hefeklon</td>
<td>XhoI</td>
<td>XhoI</td>
<td>RNAi "Feeding"</td>
</tr>
<tr>
<td></td>
<td>ubq-1</td>
<td>500</td>
<td>Hefeklon</td>
<td>XhoI</td>
<td>XhoI</td>
<td>RNAi "Feeding"</td>
</tr>
<tr>
<td></td>
<td>clp-4</td>
<td>750</td>
<td>Hefeklon</td>
<td>NcoI</td>
<td>XhoI</td>
<td>RNAi "Feeding"</td>
</tr>
<tr>
<td></td>
<td>col-144</td>
<td>900</td>
<td>Hefeklon</td>
<td>NcoI</td>
<td>XhoI</td>
<td>RNAi "Feeding"</td>
</tr>
<tr>
<td></td>
<td>ZK1055.7</td>
<td>750</td>
<td>Hefeklon</td>
<td>NcoI</td>
<td>XhoI</td>
<td>RNAi "Feeding"</td>
</tr>
<tr>
<td></td>
<td>C13B9.3</td>
<td>900</td>
<td>Hefeklon</td>
<td>NcoI</td>
<td>XhoI</td>
<td>RNAi "Feeding"</td>
</tr>
<tr>
<td></td>
<td>ifa-4</td>
<td>1700</td>
<td>Hefeklon</td>
<td>HindIII</td>
<td>HindIII</td>
<td>RNAi "Feeding"</td>
</tr>
<tr>
<td></td>
<td>ZK1098.5</td>
<td>1200</td>
<td>Hefeklon</td>
<td>HindIII</td>
<td>HindIII</td>
<td>RNAi "Feeding"</td>
</tr>
<tr>
<td></td>
<td>ran-2</td>
<td>2000</td>
<td>Hefeklon</td>
<td>XhoI</td>
<td>XhoI</td>
<td>RNAi "Feeding"</td>
</tr>
<tr>
<td></td>
<td>unc-101</td>
<td>814e10</td>
<td>XhoI</td>
<td>XhoI</td>
<td>RNAi "Feeding"</td>
<td></td>
</tr>
</tbody>
</table>

Tab.1: Überblick über die im Rahmen dieser Doktorarbeit hergestellten Konstrukte.
Benutzte Abkürzungen: RE Restriktionsenzym.
2.2.6 Oligonukleotide

<table>
<thead>
<tr>
<th>Konstrukt / Verwendung</th>
<th>Primer</th>
<th>Oligonukleotidsequenz (5’-3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pQE30_erm-1 C-Terminus</td>
<td>vorwärts</td>
<td>ACGGATCCATCCGCAACAAAAAGGGAACT</td>
</tr>
<tr>
<td></td>
<td>rückwärts</td>
<td>CAGGATCCTTACATATTTCGATATTGATC</td>
</tr>
<tr>
<td>pQE32_lad-1 C-Terminus</td>
<td>vorwärts</td>
<td>CTGGATCCTTTGTCTCGGATCAACGTGAC</td>
</tr>
<tr>
<td></td>
<td>rückwärts</td>
<td>ATAAAGCTTCTAGACAAACGTCGAGTTCGA</td>
</tr>
<tr>
<td>pGBK7/pGBT9/pACT II, ERM-1 “full length”</td>
<td>vorwärts</td>
<td>TAGGATCCGTGCAAAAGGGATCAATG</td>
</tr>
<tr>
<td></td>
<td>rückwärts</td>
<td>CAGGATCCTTACATATTTCGATATTGATC</td>
</tr>
<tr>
<td>pGBK7/pGBT9, ERM-1 C-Terminus</td>
<td>vorwärts</td>
<td>TGGGATCCAAATCCGCAACAAAAAGGGAA</td>
</tr>
<tr>
<td></td>
<td>rückwärts</td>
<td>CAGGATCCTTACATATTTCGATATTGATC</td>
</tr>
<tr>
<td>pGBK7/pGBT9/pACT II, ERM-1 FERM</td>
<td>vorwärts</td>
<td>TGGGATCCAAATCCGCAACAAAAAGGGAA</td>
</tr>
<tr>
<td></td>
<td>rückwärts</td>
<td>CAGGATCCTTACATATTTCGATATTGATC</td>
</tr>
<tr>
<td>pGBT9, TAG-60 C-Terminus</td>
<td>vorwärts</td>
<td>TGGGATCCGACCTTCTGGAATATGGAACAAAG</td>
</tr>
<tr>
<td></td>
<td>rückwärts</td>
<td>GAAGGATCCTTACATGTTGCTGACAAATTC</td>
</tr>
<tr>
<td>pACTII, LAD-1 C-Terminus</td>
<td>vorwärts</td>
<td>CTGAAATTCTCTTGCTGACCAGCTGGAAC</td>
</tr>
<tr>
<td></td>
<td>rückwärts</td>
<td>ATCTCGAGCTAGACAAACGTCGAGTTCGA</td>
</tr>
<tr>
<td>pACTII, LAD-1 ΔESA V</td>
<td>vorwärts</td>
<td>CTGAAATTCTTCTGCTGACCAGCTGGAAC</td>
</tr>
<tr>
<td></td>
<td>rückwärts</td>
<td>ACCTCGAGCGACGTTGATCCTTTTCGAG</td>
</tr>
<tr>
<td>pACTII, TAG-60 C-Terminus</td>
<td>vorwärts</td>
<td>TGGGATCCGACCTTCTGGAATATGGAACAAAG</td>
</tr>
<tr>
<td></td>
<td>rückwärts</td>
<td>GAAGGATCCTTACATGTTGCTGACAAATTC</td>
</tr>
<tr>
<td>pACTII, HMR-1 C-Terminus</td>
<td>vorwärts</td>
<td>GAGGATCCCTGTATACGAGACGATCGCTG</td>
</tr>
<tr>
<td></td>
<td>rückwärts</td>
<td>ATCTCGAGCTAGACAAACGTCGAGTTCGA</td>
</tr>
<tr>
<td>pACTII, HMP-2 N-Terminus+ arm repeats</td>
<td>vorwärts</td>
<td>CCGAATTCCCATGCTTCTCATCCTTCAACC</td>
</tr>
<tr>
<td></td>
<td>rückwärts</td>
<td>GCTCTCGAGAAGTGCTACTATTTATTCTAAC</td>
</tr>
<tr>
<td>pACTII, NHX-2 C-Terminus</td>
<td>vorwärts</td>
<td>AGGAATTCGAAAAGATGTTCACTCAGAGA</td>
</tr>
<tr>
<td></td>
<td>rückwärts</td>
<td>TAGAATTCCTATACCTTCTTTGTAAGACT</td>
</tr>
<tr>
<td>pACTII, CRB-1 C-Terminus</td>
<td>vorwärts</td>
<td>CGGAATTCCCATGCTTCTCATCCTTCAACC</td>
</tr>
<tr>
<td></td>
<td>rückwärts</td>
<td>GCTCTCGAGAAGTGCTACTATTTATTCTAAC</td>
</tr>
<tr>
<td>pACTII, SDN-1 C-Terminus</td>
<td>vorwärts</td>
<td>TGGGATCCCAATATTTCTCATAATGGAAG</td>
</tr>
<tr>
<td></td>
<td>rückwärts</td>
<td>AGCTCGAGTTACGGCTAAATTTCTTT</td>
</tr>
<tr>
<td>pPD129.36, generelle Sequenzierung/PCR</td>
<td>vorwärts</td>
<td>GATAACCGTATTACGGCCCTT</td>
</tr>
<tr>
<td></td>
<td>rückwärts</td>
<td>CGTTAAGTGTTGGTACGGCA</td>
</tr>
<tr>
<td>lad-1(ok1244) Sequenzierung</td>
<td>vorwärts</td>
<td>GCTCTCAGGAAATCAGACAAACAA</td>
</tr>
<tr>
<td></td>
<td>rückwärts</td>
<td>GCATCCGAGAATTTTGATACCT</td>
</tr>
</tbody>
</table>

Material und Methoden
Tab. II: Die im Rahmen dieser Arbeit verwendeten Oligonukleotide, die für PCR/RT-PCR-Reaktionen eingesetzt wurden.
Die fettgedruckten Sequenzen stellen die künstlich eingeführten Erkennungssequenzen für die Restriktionsenzyme dar.

2.2.7 Konzentrationsbestimmungen von Nukleinsäuren

2.2.7.1 Photometrische Konzentrationsbestimmung

\[E_{260} = \varepsilon \cdot c \cdot d \]

wobei \(E \) die Extinktion bei der entsprechenden Wellenlänge ist, \(\varepsilon \) der Extinktionskoeffizient, \(c \) die Stoffkonzentration und \(d \) die Dicke der Kuvette.
Die Reinheit der Nukleinsäuren läßt sich weiterhin durch den Quotienten \(E_{260}/E_{280} \) bestimmen, bei fast proteinfreien Nukleinsäurelösungen liegt der Quotient bei 1.8 für DNA und 2.0 für RNA.

2.2.7.2 Konzentrationsbestimmung durch Gelelektrophorese
Bei dieser Methode wird ein Teil der zu bestimmenden Nukleinsäure auf ein Agarosegel aufgetragen und die Konzentration wird im Vergleich zu einem Längenstandard bekannter Konzentration aufgrund der Bandendicke abgeschätzt.

2.2.8 DNA-Gelelektrophorese
Die Agarose wird mit 1x TAE in der Mikrowelle aufgekocht, auf 70°C abgekühlt und mit 1\(\mu l \) einer Ethidiumbromid(EtBr)-Stammlösung auf 100ml Gel versetzt. Es wurden im Durchschnitt immer 1%, horizontale Agarosegele gegossen. Als Laufpuffer diente 1x TAE. Die Gelläufe wurden bei durchschnittlich 100 V durchgeführt.
In die DNA-Proben wird als Auftragspuffer Bromphenolblau und Xylen cyanol gegeben, welche als Lauffront sichtbar sind. Ist das Gel weit genug gelaufen, kann es unter UV-Licht (=312nm) betrachtet werden. Das Ethidiumbromid, ein DNA-Interkalator, wird durch das UV-Licht angeregt und so wird die DNA auf dem Gel sichtbar. Zur Größenbestimmung der DNA-Fragmente läßt man einen Größenstandard mit DNA-Fragmenten definierter Größe auf dem Gel mitlaufen, so kann man anschließend die Laufstrecke der DNA mit der des Standards vergleichen.
Als Größenstandard wurden der -DNA-HindIII/EcoRI Marker 3 oder der Gene-Ruler™ 1kB DNA-ladder (beide MBI Fermentas, St. Leon Rot) verwendet.

Lösungen:
Material und Methoden

50 x TAE-Puffer: 2M Tris-acetat; 0.1M EDTA; pH7.7
EtBr-Stammlösung: 10mg/ml
6 x Auftragspuffer: 0.25% Bromphenoblau; 0.25% Xylencyanol; 40% Glycerin

2.2.9 Polymerase-Kettenreaktion (PCR)

Die PCR dient zur Amplifizierung einzelner Sequenzen. Voraussetzung ist allerdings die Anwesenheit spezifischer Oligonukleotide ("Primer"), die an homologe Sequenzen der DNA binden. Um unspezifische Bindungen der Primer zu vermeiden, wird eine möglichst hohe "Annealing-Temperatur" gewählt (in Abhängigkeit vom T\textsubscript{m}-Wert der verwendeten Primer). Diese Primer dienen wiederum als Startermoleküle für das Enzym Taq-Polymerase, einer Polymerase, die aus dem hitzebeständigen Bakterium \textit{Thermus aquaticus} isoliert wurde. Taq-Polymerase ist für die PCR hervorragend geeignet, da sie bei hohen Temperaturen sehr aktiv ist bzw. nicht denaturiert wird. Allerdings besitzt die Taq-Polymerase keine 3'-5'-Exonuclease, ist also nicht zum Korrekturlesen fähig, so daß eine statistische Wahrscheinlichkeit von Fehleinbau gegeben ist. Es werden deshalb auch Polymerasen verwendet, die diese Korrekturlese-Funktion besitzen (z.B. Pfu-Polymerase aus \textit{Pyrococcus furiosus}).

Die PCR läuft generell in drei sich wiederholenden Schritten ab:
1. Denaturierung (ca. 93°C) zur Herstellung von Einzelstrang-Templates.
2. Annealing (variable Temperatur, s.o.) der "sense-" und "anti-sense-Primer" an die DNA-Einzelstränge.
3. Elongation der Primer (ca. 72°C) durch die entsprechende Polymerase.

Pro Zyklus (=Abfolge aller drei Schritte, s.o.) wird die Menge der DNA-Stränge verdoppelt.

PCR-Reaktionen wurden in einem Volumen von 50μl angesetzt.

Folgende Mengen bzw. Konzentrationen wurden dem PCR-Ansatz zugefügt:
- Template: Xμl (1-10ng; abhängig von der Konzentration des Templates)
- Primer: 0.5μl (je Primer; Konzentration: 50pmol/μl)
- dNTP’s: 1.0μl (aus einem dNTP-Mix; Konzentration: 25mmol/μl)
- 10 x Pfu/Tac-Puffer: 5.0μl
- MgCl: 5.0μl (nur für Tac-Polymerase, Konzentration 25mM)
- Pfu/Tac-Polymerase: 1.0μl (10U/μl)
- dH\textsubscript{2}O: Xμl (mit dH\textsubscript{2}O auf 50μl Gesamtvolumen auffüllen)

Auf Überschichtung des Ansatzes mit Mineralöl wurde verzichtet. Stattdessen wurde der Deckel beheizt.

PCR-Reaktionen wurden mit folgendem Programm durchgeführt:

<table>
<thead>
<tr>
<th>Schritte</th>
<th>Temperatur (°C)</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Initiale Aktivierung</td>
<td>92</td>
<td>2min</td>
</tr>
<tr>
<td>2. Denaturierung der DNA</td>
<td>94</td>
<td>15sek</td>
</tr>
<tr>
<td>3. Annealing der Primer</td>
<td>50-65</td>
<td>1min</td>
</tr>
<tr>
<td>4. DNA-Synthese</td>
<td>72</td>
<td>pro kB 1min</td>
</tr>
<tr>
<td>5. Wiederholung der Schritte 2</td>
<td>bis 4 (10 Zyklen)</td>
<td></td>
</tr>
<tr>
<td>6. Denaturierung der DNA</td>
<td>94</td>
<td>15sek</td>
</tr>
</tbody>
</table>
Material und Methoden

2.2.10 RT(Reverse-Transkription)-PCR

- 1μl Template-RNA (ca. 1μg)
- 2μl dNTP-Mix (je 10mM)
- 10μl 5x Qiagen OneStep RT-PCR Puffer
- 0.5μl spezif. vorwärts ´Primer’ (25μM)
- 0.5μl spezif. rückwärts ´Primer’ (25μM)
- 2μl Qiagen OneStep RT-PCR Enzyme Mix
- 0.5μl RNase Inhibitor
- 13μl RNase freies dH₂O (DEPC-H₂O)

<table>
<thead>
<tr>
<th>Schritte</th>
<th>Temperatur (°C)</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Reverse Transkription</td>
<td>50</td>
<td>30min</td>
</tr>
<tr>
<td>2. Initiale Aktivierung</td>
<td>95</td>
<td>15min</td>
</tr>
<tr>
<td>3. Denaturieren der DNA</td>
<td>94</td>
<td>30sec</td>
</tr>
<tr>
<td>4. Annealing der Primer</td>
<td>50-65</td>
<td>1min</td>
</tr>
<tr>
<td>5. DNA-Synthese</td>
<td>72</td>
<td>pro kB 1min</td>
</tr>
<tr>
<td>6. Wiederholung der Schritte 3 bis 5 (35 Zyklen)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Finale DNA-Synthese</td>
<td>72</td>
<td>10min</td>
</tr>
<tr>
<td>8. Reaktionsende</td>
<td>4</td>
<td>endlos</td>
</tr>
</tbody>
</table>

Tab. IV: Das im Rahmen dieser Arbeit verwendete RT-PCR-Programm.

Um die Ausbeute zu erhöhen wurde im Anschluss an dieses Programm häufig noch eine weitere PCR (siehe 2.2.9) angewendet.
2.2.11 Manipulation von DNA

2.2.11.1 Restriktionsverdau von DNA
Um DNA zu analysieren, kann diese mit Restriktionsendonukleasen, welche ursprünglich aus Bakterien stammen, geschnitten werden. Die Restriktionenzyme erkennen spezifische Sequenzen, sogenannte Palindrome, mit einer Länge von 4-8 Basenpaaren. Viele Enzyme schneiden versetzt und hinterlassen überhängende Enden (sticky ends), einige wenige verursachen auch glatte Enden (blunt ends).

Ein Standardreaktionsansatz sieht folgendermaßen aus:
- $x_{\mu l}$ DNA-Lösung (je nach Konzentration)
- $1_{\mu l}$ 10x Restriktionspuffer
- $1_{\mu l}$ Enzym (10U pro μg DNA)
- auf $20_{\mu l}$ mit $dH2O$ auffüllen

Der Restriktionsansatz wird bei $37^\circ C$ für 2h inkubiert.

2.2.11.2 Ligation von DNA-Fragmenten
Geschnittene DNA-Fragmente mit kompatiblen Enden können miteinander verknüpft werden. Dies geschieht mit Hilfe der ATP-abhängigen T4-DNA-Ligase. Von Bedeutung ist dabei die Wahl des korrekten molaren Verhältnisses zwischen Vektor und Insert. Das Insert sollte in etwa 3fachem molaren Überschuß eingesetzt werden. Folgende Faustformel kann zur Berechnung der Mengenverhältnisse eingesetzt werden:

$$X_{ng} \text{ (Vektor)} \times kB \text{ (Insert)} = Y_{ng} \text{ (Insert)}$$

Das Reaktionsvolumen sollte möglichst klein gehalten werden (10 - 30 μl).

Die Inkubation erfolgt grundsätzlich über Nacht bei $16 ^\circ C$ im Wasserbad. Ein Standard-Ligationsansatz sieht folgendermaßen aus:
- $X_{\mu l}$ Vektor
- $Y_{\mu l}$ Insert
- $1_{\mu l}$ 10xPuffer
- $1_{\mu l}$ T4-DNA-Ligase
- auf $10_{\mu l}$ mit $dH2O$ auffüllen

2.2.11.3 Fällung von DNA
Um DNA aufzukonzentrieren, wird diese mit Ethanol bzw. Isopropanol in Gegenwart monovalenter Salze gefällt. Ethanol bzw. Isopropanol verhindern die Ausbildung von Hydrathüllen, indem sie der DNA die Wassermoleküle entziehen und so für ihre Aggregation sorgen. Durch die in der Lösung ionisch vorliegenden Salze wird die DNA schließlich stabilisiert.

Die Fällung verläuft folgendermaßen:
- Zugabe von 2.5 Vol. 100% Ethanol (-20 °C) oder 1 Vol. Isopropanol (RT) und jeweils 1/10 Vol. 3M Natriumacetat pH5.2
- Fällung über Nacht bei –20°C oder 2h bei –70°C
- Zentrifugation für 30min bei 13000rpm
- Überstand verwerfen, Pellet in eiskaltem 70 % Ethanol waschen
- Zentrifugation für 15min bei 13000rpm
- Überstand verwerfen und Pellet lufttrocknen lassen
- Pellet in einem geeignetem Volumen dH2O bzw. DEPC-dH2O aufnehmen und resuspendieren

2.2.12 Elution von DNA-Fragmenten aus Agarose-Gelen

Für Klonierungsarbeiten werden DNA-Moleküle mit geeigneten Restriktionsenzymen geschnitten und im Agarose-Gel der Größe nach aufgetrennt, die Fragmente gewünschter Größe können mit entsprechenden Methoden aus der Agarose isoliert werden. Sämtliche Elutionen wurden mit NucleoSpin Extract (Machery-Nagel, Düren) durchgeführt.

Lösungen:

Die Durchführung folgte den Herstellerangaben. Es wurden die mitgelieferten Puffer benutzt. Zur Elution der DNA wurden 30 μl dH2O (auf 65°C vorgeheizt) verwendet.

2.2.13 Herstellung transformationskompetenter Zellen

2.2.13.1 Die CaCl₂-Methode
- 5ml LB-Medium mit 40μl Bakterien-Glycerinstock ü. N. bei 37°C inkubieren
- 1ml der Vorkultur zu 100ml LB-Medium geben und bis zu einer OD von 0.4 bis 0.55 wachsen lassen (~ 1 3/4h)
- Kolben unter Schwenken auf Eis abkühlen lassen (~10min)
- Suspension in Fraktionen von 25ml aliquotieren (sterile „blue caps“, Falcon, USA)
- 10 min bei 5000 rpm und 4°C zentrifugieren
- Überstände verwerfen
- Pellets in je 7.5ml kaltem TFBI luftblasenfrei resuspendieren
- 10min auf Eis inkubieren
- je zwei Ansätze vereinigen und erneut 10min bei 5000rpm und 4°C zentrifugieren
- Überstände verwerfen
- Pellets in je 2ml kaltem TFBII luftblasenfrei resuspendieren
- Aliquots zu 50μl Bakteriensuspension in flüssigem Stickstoff schockgefrieren
- Lagerung bei –70°C (Bakterien frühestens 1 h nach Herstellung benutzen)

Um die Kompetenzrate der so gewonnenen Bakterien zu testen (sie sollte mindestens 5x10⁸ betragen), wird folgendermaßen vorgegangen:
- Transformation mit Testvektor (pBluescript, 1ng/μl)
- 50μl ausplattieren (10%-Platte) auf LB-Agarplatten mit 50-100μg/ml Ampicillin
- Rest kurz abzentrifugieren, Überstand bis auf ca. 100μl abziehen, Pellet im Restvolumen resuspendieren und ebenfalls ausplattieren (90%-Platte)
- Kompetenz (bezogen auf 1μg Vektor) = Anzahl d. Kolonien (10%-Platte) x 10 x 1000
Lösungen:
TFBI: 30mM Kaliumacetat, 50mM Manganchlorid, 100mM Rubidium-chlorid, 10mM Calciumchlorid, 15% Glycerin; mit 0.2M Essig-säure auf pH 5.8 einstellen, sterilfiltrieren und bei 4 °C lagern.
TFBII: 10mM MOPS, 75mM Calciumchlorid, 10mM Rubidiumchlorid, 15% Glycerin; mit NaOH auf pH 7.0 einstellen, sterilfiltrieren und bei 4°C lagern.

2.2.13.2 Herstellung elektrokompetenter Bakterien
Elektrokompetente Bakterien wurden nach folgendem Protokoll hergestellt:
- 50ml SOB-Medium mit einer Einzelkolonie animpfen und über Nacht bei 37°C inkubieren.
- 7,5ml dieser Bakterien suspension zu 500ml SOB-Medium hinzufügen und bis zu einer optischen Dichte von 0,6 (bei 550nm; OD550) anwachsen lassen.
- Die Bakterienkultur wird auf zwei 250ml Zentrifugenbecher verteilt und für 15min auf Eis abgekühlt.
- Zentrifugation bei 3600rpm und 4°C für 15min; Überstand verwerfen.
- Bakterienpellets in je 200ml Glycerin (10%) vollständig resuspendieren.
- Zentrifugation bei 3800rpm und 4°C für 15min.
- Wiederholung der letzten beiden Schritte.
- Überstand verwerfen, Bakterienpellets in je 20ml Glycerin (10%) resuspendieren und Suspension in zwei JA20-Röhrchen überführen.
- Zentrifugation bei 5000rpm und 4°C für 10min; Überstand verwerfen.
- Ein Pellet in 3ml Glycerin (10%) resuspendieren, mit dem zweiten Pellet vereinigen und dieses ebenfalls resuspendieren.
- In Volumen von je 50μl aliquotieren, in flüssigem Stickstoff schokgefrieren und bei −70°C lagern.
Die Transformationsrate wurde nach dergleichen Vorgehensweise, wie in Abschnitt 2.2.13.1 getestet.

2.2.14 Transformation kompetenter Zellen mit Plasmid-DNA

2.2.14.1 Transformation nach der CaCl₂-Methode
- 50μl kompetente Bakterien auf Eis auftauen lassen.
- Zugabe von DNA (z.B. 1μl einer Midi-Präparation (siehe 2.2.15) oder 10μl einer Ligation) und leicht vermischen.
- 20-30min auf Eis inkubieren.
- Hitzeschock für 2min bei 42°C im Wasserbad.
- 5 min auf Eis inkubieren.
- mit LB-Medium auf 500μl auffüllen.
- 45mn. bei 37°C inkubieren.
- 50μl auf einer antibiotikahaltigen LB(Luria-Bertoni)-Agarplatte ausstreichen (10%-Platte).
- Bakterien suspension kurz zentrifugieren, Überstand bis auf 100μl abziehen, Pellet im Restvolumen resuspendieren und ausplattieren (90%-Platte).
Material und Methoden

2.2.14.2 Elektrotransformation

- 50 μl kompetente Bakterien auf Eis auftauen lassen
- Zugabe von 1 μl einer verdünnten DNA-Lösung (~20 ng/μl)
- Ansatz in die Elektrokuvette füllen, so daß das Volumen zwischen den Kondensatorplatten ausgefüllt ist.
- Elektroschock der Bakterien mit 1.8 kV, Zeitkonstanten von 4.8 bis 5.0 ms sind akzeptabel
- Dem Ansatz 450 μl LB-Medium hinzufügen
- 30-45 min bei 37°C inkubieren
- Ansatz auf antibiotikahaltigen Agarplatten ausplattieren und über Nacht bei 37°C inkubieren

2.2.15 Isolierung von Plasmid-DNA

2.2.15.1 Schnellpräparation von Plasmid-DNA (Mini-Präparation)

Um Bakterien schnell auf die enthaltene Plasmid-DNA zu testen, wird eine sogenannte „Minipräparation“ durchgeführt. Diese erfolgt nach einem modifizierten Rezept der Firma Machery und Nagel (Düren).
- Einzelkolonie ü. N. in ca. 3 ml LB (mit dem entsprechendem Antibiotikum) hochwachsen lassen
- ü. N.-Kultur (~ 1,5 ml) für ca. 2 min bei 13000 rpm zentrifugieren
- Bakterienpellet in 300 μl Puffer S1 resuspendieren
- 300 μl Puffer S2 hinzugeben und 5 x invertieren und 5 min bei RT inkubieren lassen
- 300 μl Puffer S3 hinzugeben und 5 x invertieren
- 15 min bei 13000 rpm zentrifugieren und Überstand in ein frisches Eppendorf-Gefäß überführen
- Fällung mit 300 μl Isopropanol
- 30 min bei 13000 rpm zentrifugieren und Überstand verwerfen
- Pellet in 100 μl kaltem 70 % Ethanol waschen und 15 min bei 13000 rpm zentrifugieren
- Überstand verwerfen, Pellet trocknen lassen und in 20 μl dH2O resuspendieren

Lösungen: (laut Herstellerangaben)

Puffer S1: 50 mM Tris/HC1 (pH 8), 10 mM EDTA, 100 μg/ml RNAse A
Puffer S2: 200 mM NaOH, 1% SDS (w/v)
Puffer S3: 2.8M KAc, pH 5.1

2.2.15.2 Gewinnung größerer Plasmidmengen

Um größere Mengen an Plasmid-DNA aus Bakterien zu isolieren, wird eine „Midipräparation“ durchgeführt. Hierbei wurde das Kitssystem der Firma Machery und Nagel (Düren) verwendet und nach dem Protokoll des Herstellers gearbeitet. Im Durchschnitt lag die DNA-Ausbeute bei 500 ng-1 μg pro μl, die DNA wurde in 100 μl dH2O aufgenommen.

Lösungen (laut Herstellerangaben):
Material und Methoden

S1, S2, S3: siehe oben
N2: 100mM Tris/H3PO4, 15% Ethanol; 900mM KCl, pH6.3
N3: 100mM Tris/H3PO4, 15% Ethanol; 1150mM KCl, pH6.3
N5: 10 mM Tris/H3PO4, 15% Ethanol; 1000mM KCl, pH8.5

2.2.15.3 Gewinnung großer Plasmidmengen (Maxipräparation)
Um bis zu 5μg Plasmid-DNA pro μl aus Bakterien zu isolieren, wird eine “Maxipräparation” durchgeführt. Hierbei wurde das Kitsystem von Quiagen (Hilden) verwendet und nach dem Protokoll des Herstellers gearbeitet. Die aufgereinigte DNA wurde schließlich in 200μl dH2O aufgenommen.

Lösungen (laut Herstellerangaben):

P1, P2, P3: entsprechen S1, S2, S3
QBT: 750mM NaCl; 50mM MOPS, pH7; 15% Isopropanol, 0.15% Triton X-100
QC: 1.0M NaCl; 50mM MOPS, pH7; 15% Isopropanol
QF: 1.25M NaCl; 50mM Tris-Cl, pH8.5, 15% Isopropanol

2.2.16 in vitro Transkription
Doppelsträngige RNA für RNAi-Experimente wird ausgehend von den „Feedingkonstrukten“ (s. 2.2.5), welche 2 T7-Promotoren besitzen in jeweils einer Reaktion durch in vitro Transkription hergestellt.

2.2.16.1 Herstellung des Templates
Das Template für die Transkriptionsreaktion wird mittels einer Standard-PCR-Reaktion (s. 2.2.9) mit für den “Feedingvektor” pPD129.36 spezifischen Primern (s. 2.2.6) hergestellt. Es werden für die Reaktion ca. 2-3μl der unaufgereinigten PCR eingesetzt.

2.2.16.2 Transkriptionsreaktion
Die eigentliche Transkriptionsreaktion erfolgt mit dem MAXIscript™ T7 Kit (Ambion), der Transkriptionsansatz sieht wie folgt aus:
- 2μl 10x Transkriptionspuffer
- je 1μl rNTP´s (also 4μl gesamt)
- 1μg (2-3μl) Template-DNA
- 0.2μl RNase Inhibitor
- 2μl T7-Polymerase
- auf 20μl mit DEPC-H2O auffüllen
Es folgt eine Inkubation für 2-4 Stunden bei 37 °C. Dann werden je Ansatz 1μl RNase freie DNase hinzugeben und 45min bei 37°C inkubiert. Es folgt eine Zugabe von 115μl DEPC-Wasser und eine Zugabe von 15μl Ammoniumacetat-Stoplösung zum Reaktionsstop und zum Fällen der RNA. Nach Zugabe von 1Vol. Ammoniumacetat fällt die RNA ü. N. bei –20°C (siehe 2.2.11.3) und wird in 15μl DEPC-Wasser resuspendiert. Die RNA wird schließlich in Aliquots von 2μl bei –70°C aufbewahrt.

Lösungen:

Ammoniumacetet-Stoplösung: 5M Ammoniumacetat, 100mM EDTA
2.2.17 Isolierung von poly-A⁺-RNA

Lösungen: (laut Herstellerangaben)
- Lysis/Binding-Puffer: Hochsalzpufler mit 1% SDS
- Waschpuffer: Niedrigsalzpufler mit NaCl, Tris/HCl und EDTA
- Elutionspuffer: 1mM EDTA

2.2.18 Isolierung von RNA über TRizol®

Das verwendete Protokoll setzt sich folgendermaßen zusammen:
- ca. 30 Würmer picken und in ein mit 100µl DEPC-dH20 gefülltes Eppendorf Gefäß überführen
- ca. 10 min bei 5000rpm zentrifugieren
- Überstand abnehmen und 1ml Trizol hinzufügen
- kurz vortexen und 10min bei RT stehen lassen
- 10min bei 13000rpm und 4°C zentrifugieren
- Überstand in ein neues Eppendorfgefäβ überführen und 200µl Chlorofom hinzufügen
- 15sek leicht schütteln und 3min bei RT stehen lassen
- 15min bei 13000rpm und 4°C zentrifugieren
- Oberphase in ein neues Eppi überführen und 500µl Isopropanol hinzufügen
- Invertieren und 10min bei RT stehen lassen
- 10min bei 13000rpm und 4°C zentrifugieren
- Überstand verwerfen
- 100µl 75% DEPC-EtOH hinzufügen
Material und Methoden

- 5min bei 8000rpm und 4°C zentrifugieren
- 10min trocknen und letztendlich in 25µl DEPC-H2O resuspendieren

2.2.19 Denaturierende RNA-Gelelektrophorese

Unter nativen Bedingungen bildet einzelsträngige RNA Sekundär- und Tertiärstrukturen aus. Um jedoch eine klare Trennung von Molekülen unterschiedlicher Größe auf einem Gel zu ermöglichen, werden Denaturierungsmittel, wie Formaldehyd und deionisierendes Formamid verwendet. Die Carbonylgruppen des Aldehyds bilden mit den freien Aminogruppen der Basen Aminale, so daß keine Sekundärstrukturen ausgebildet werden.

Zur Herstellung eines denaturierenden Gels wird zunächst 1.5% Agarose in 1x MOPS durch Aufkochen gelöst. Nach Abkühlen auf 70°C wird die Agarose mit Formaldehyd auf 1.9% eingestellt und das Gel gegossen. Als Laufpuffer dient 1x MOPS.

Die RNA-Proben werden, bevor sie aufs Gel aufgetragen werden, folgendermaßen behandelt:
- 9µl RNA (eventuell + DEPC-H2O)
- 10µl deionisiertes Formamid
- 4µl Formaldehyd (37%)
- 3µl 10x MOPS
- 1µl Ethidiumbromid (400µg/ml)
- Ansatz 5min bei 65°C inkubieren und auf Eis abkühlen
- Ansatz mit 3µl Bromphenolblau/Xylencyanol-Mix mischen und auf das Gel auftragen

Der Gellauf erfolgte für 2-3h bei 140V. Das Gel wird anschließend unter UV-Licht photographiert (siehe 2.2.8).

Lösungen:

10 x MOPS: 200mM 3-[N-Morpholino]-propan-sulfonsäure (MOPS)
 50mM Natriumacetat
 10mM EDTA
 auf pH7.0 einstellen und autoklavieren

Bromphenolblau/
Xylencyanol-Mix: 0.1% (w/v) Bromphenolblau
 0.1% (w/v) Xylencyanol
 10mM EDTA pH7.5
 70% Glycerin

2.2.20 Herstellung digoxigenin-markierter RNA-Sonden

Die Digoxigenin markierte RNA-Sonde wird über in vitro-Transkription hergestellt. Hierfür erfolgt zunächst eine Linearisierung des Vektors über Restriktionsspaltung (siehe 2.2.5) und eine Phenolchloroformextraktion (siehe 2.2.8). Für die Markierungsreaktion werden folgende Komponenten gemischt:
Material und Methoden

- 1µg DNA
- 2µl 10 x DIG-RNA-Labeling Mix
- 2µl 10 x Transkriptionspuffer
- 2µl T7-RNA-Polymerase
- mit dH₂O auf 20µl auffüllen und gut mischen
- Inkubation für 2h bei 37°C
- Verdau des Vektors durch DNase I (2U), 15min bei 37°C
- Abstoppen der Reaktion durch Zugabe von 2ml 0.2M EDTA, pH8
- Fällen der Transkripte (siehe 2.2.11.3)
- Resuspendieren in 20µl dH₂O

Lösungen (laut Herstellerangaben):

<table>
<thead>
<tr>
<th>Lösung</th>
<th>Komponenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>10x DIG-RNA-Labeling Mix</td>
<td>10mM ATP, GTP und CTP; 6.5 mM UTP; 3.5mM DIG-UTP; pH 7.5</td>
</tr>
<tr>
<td>10x Transkriptionspuffer</td>
<td>400mM Tris/Cl pH 8.0; 100mM NaCl; 1U RNAse-Inhibitor; 60mM MgCl₂; 100mM Dithiothreitol; 20mM Spermidin</td>
</tr>
<tr>
<td>T7-RNA-Polymerase</td>
<td>20U/µl</td>
</tr>
<tr>
<td>DNase I (RNAse-frei)</td>
<td>10U/µl</td>
</tr>
</tbody>
</table>

2.2.21 Northern-Blotting

2.2.21.1 RNA-Transfer

Bei diesem Verfahren wird RNA von einem denaturierenden Gel auf eine spezielle Membran (Nylon- oder PVDF-Membran) transferiert. Hierbei liegen Gel und Membran zwischen mit Salzlösung befeuchteten und trockenen Tüchern, durch die auftretenden Kapillarkräfte wird die Salzlösung in die trockenen Filter gesogen. Sie durchquert zunächst das Gel, wodurch die RNA-Fragmente gelöst und auf die Membran übertragen werden. Die Anordnung der RNA-Fragmente auf der Membran entspricht der Anordnung auf dem Gel. Schließlich erfolgt die Fixierung der RNA auf der Membran durch „crosslinking“, d. h. die Fixierung durch Bestrahlung mit UV-Licht.

Für den Northern Blot wird die Apparatur folgendermaßen aufgebaut:

Auf eine Glasplatte werden 2 Lagen Filterpapier (Schleicher und Schuell; Daßel) so aufgelegt, daß sie in ein mit 20x SSC gefülltes Flüssigkeitsreservoir hineinreichen. Hierauf wird luftblasenfrei das Gel gelegt und zusätzlich mit Parafilm umrandet, damit ein Flüssigkeitssstrom durch das Gel gewährleistet ist. Auf das Gel wird dann möglichst deckungsgleich eine Nylonmembran (Hybond N+; Amersham Life Science) aufgelegt und hierauf erneut 2 Lagen feuchtes Filterpapier und ein Stapel trockener Papiertücher. Anschließend wird die Apparatur mit einem Gewicht von ca. 500g beschwert. Der Transfer ist nach 18-20h beendet und die RNA wird durch UV-Strahlung mit einer Intensität von 120mJ auf der Membran fixiert.

Lösungen:

<table>
<thead>
<tr>
<th>Lösung</th>
<th>Komponenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>20x SSC</td>
<td>3M NaCl, 300nm Natriumcitrat, pH7.0</td>
</tr>
</tbody>
</table>
Material und Methoden

2.2.21.2 Vorhybridisierung, Hybridisierung und Waschungen
Durch die Vorhybridisierung werden eventuell noch vorhandene Bindestellen für Nukleinsäuren auf der Membran abgesättigt.
Der Blot wird hierzu mit 25 ml Hybridisierlösung in einer verschweißten Plastiktüte bei 68 °C vorbehandelt. Die entsprechende Sonde (siehe 2.2.20) wird bei 100°C denaturiert und anschließend auf Eis abgekühlt. Für die Hybridisierungsreaktion wird 1ml Hybridisierlösung pro 20cm² erwärmt und mit der denaturierten Sonde versetzt. Die Sonde soll eine Endkonzentration von 100ng/ml haben. Nach Entfernen der Vorhybridisierlösung wird die Hybridisierlösung plus Sonde zur Membran gegeben und über Nacht bei 68°C inkubiert.
Im Anschluß wird die Membran 2x5min in je 50ml 2x SSC/0.1% (w/v) bei RT und 2x15 min in je 50ml 0.1x SSC/0.1% (w/v) SDS bei 68°C gewaschen.

Lösungen:
(Vor)Hybridisierungslösung: 5x SSC; 40% deionisiertes Formamid, 0.1% (w/v) Natrium-Laurylsarcosin, 0.02% (w/v) SDS, 2% Blocking Reagenz (Boehringer Roche Diagnostics, Mannheim)

2.2.21.3 Detektion
Die Detektion der mit der RNA hybridisierten digoxigenin-markierten Sonde erfolgt bei RT nach einem abgeänderten Protokoll der Firma Boehringer Roche Diagnostics:
- Äquilibrieren der Membran in 10ml Waschpuffer
- Blocken der Membran in 50ml Blockierlösung für 60min
- Verdünnen des Anti-Digoxigenin-Antikörpers (HRP-gekoppelt) 1:10000 in 30ml Blockierlösung
- Entfernen der Blockierlösung und Hinzugabe der Antikörperlösung
- Inkubation der Antikörperlösung für 60min
- Entfernen der Antikörperlösung und 2x waschen in Waschpuffer
- Chemilumineszenz-Substrate (BM Chemilumineszenz Blotting Substrate [POD]; Boehringer Roche Diagnostics, Mannheim) mischen und auf RT erwärmen lassen
- 2x5 min in TBST waschen
- Inkubation der Membran mit dem Chemilumineszenz-Gemisch für 1min
- Verpacken der Membran in Frischhaltefolie, exponieren der Membran auf einem Röntgenfilm (von einigen Sekunden bis mehrere Minuten)

Lösungen:
Waschpuffer: 100mM Maleinsäure, 150mM NaCl; pH7.5; 0.3% (v/v) Tween 20
Blockierlösung: 100mM Maleinsäure, 150mM NaCl; pH7.5; 1% Blockingreagenz (Boehringer Roche Diagnostics)
TBST: 1x TBS plus 0.2% Tween 20
10 x TBS: 200mM Tris/Cl pH8, 1.5M NaCl

2.2.22 Isolierung von C.elegans-Proteinen
Die gewünschte Menge an Würmern (Vol.=500 µl Feuchtpellet) wird in 5ml eiskaltem 1x PBS (plus den Protease-Inhibitoren Aprotinin, Pefabloc, Pepstatin und Leupeptin; Verdünnungen der Stamm-Lösungen: 1:500) aufgenommen.
Um die Kutikula der Würmer aufzubrechen wird die Wurmsuspension auf Eis für 3x45sek mit einer Ausgangsleistung von 50Watt durch Ultraschall sonifiziert. Zwischendurch 30sek auf Eis abkühlen lassen. Das Sonifikat wird anschließend für 10min bei 100°C erhitzen und nicht gelöste Wurmreste durch Zentrifugation (13000rpm; 3min) vom proteinhaltigen Überstand getrennt. Der Überstand wird abgenommen und die Konzentration der Proteinlösung bestimmt (s. 2.2.23).

Lösungen:

- 10x PBS: 37M NaCl, 27mM KCl, 100mM Na₂HPO₄, 17mM KH₂PO₄; pH7.4
- Aprotinin-Stammlsg.: 10mg/ml
- Pefabloc-Stammlsg.: 1mg/ml
- Pepstatin-Stammlsg.: 1mg/ml
- Leupeptin-Stammlsg.: 0.5mg/ml

2.2.23 Konzentrationsbestimmung von Proteinen

2.2.23.1 Bestimmung nach Bradford

Zur Messung einer Proteinkonzentration wird 1µl der Probe in 799µl dH₂O verdünnt. Der Verdünnung werden 200µl 5x Färbelösung zugesetzt, mehrfach invertiert und die Absorption nach 5min gegen einen Nullwert (800µl dH₂O und 200µl 5x Färbelösung) gemessen. Von dem erhaltenen Wert kann anhand einer BSA-Eichgerade (2, 5, 10, 15 und 20µg BSA) die Konzentration ablesen werden.

2.2.23.2 Bestimmung durch Gelelektrophorese

Diese Methode erlaubt die Konzentrationsabschätzung einer einzelnen Proteinbande in einem Proteingel (s. 2.2.24). Zu diesem Zweck wird ebenfalls eine BSA-Reihe mit definierten Konzentrationen aufgetragen. Das Gel wird anschließend gefärbt (s. 2.2.25) und die Färbeintensität der Proteinbande mit den unterschiedlichen BSA-Konzentrationen verglichen.

2.2.24 SDS-Polyacrylamid-Gelelektrophorese (SDS-PAGE)

Die SDS-PAGE dient dazu, die Proteine aus dem Gemisch nach ihrem Molekulargewicht aufzutrennen. Die Elektrophorese beruht auf einer elektrokinetischen Erscheinung, nämlich der Wanderung gelöster und geladener Teilchen im elektrischen Feld. Aufgrund dieses Effektes wird die Elektrophorese als analytisches Trennverfahren angewendet. Es wird zwischen dem großporigen
Material und Methoden

Sammelgel (5% PAA) und dem engporigen Trenngel (8-18% PAA) unterschieden, wobei der pH-Wert im Sammelgel bei 6.8 und im Trenngel bei 8.8 liegt.

Im Rahmen dieser Arbeit wurde mit Trenn-geleen gearbeitet, die einen Anteil von 10 bzw. 12.5% Polyacrylamid/Bisacrylamid (30%; 29:1, BioRad) besaßen.

Folgende Tabelle zeigt die Komponenten von Trenn- und Sammelgel:

<table>
<thead>
<tr>
<th>Komponenten</th>
<th>Trenngele</th>
<th>Sammelgel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylamid/Bis-</td>
<td>10%</td>
<td>5%</td>
</tr>
<tr>
<td>Acrylamid/Bis-</td>
<td>2.5ml</td>
<td>310μl</td>
</tr>
<tr>
<td>1M Tris/Cl pH*</td>
<td>2.8ml</td>
<td>235μl</td>
</tr>
<tr>
<td>10% SDS</td>
<td>76μl</td>
<td>20μl</td>
</tr>
<tr>
<td>dH₂O</td>
<td>2.1ml</td>
<td>1.3ml</td>
</tr>
<tr>
<td>10% APS</td>
<td>30μl</td>
<td>10μl</td>
</tr>
<tr>
<td>TEMED</td>
<td>8μl</td>
<td>5μl</td>
</tr>
</tbody>
</table>

* Tab. V: Gezeigt ist die Zusammensetzung der Komponenten in Trenn- und Sammelgel.*

pH*: Trenngele: pH8.8; Sammelgel: pH6.8).

Die Proteinproben, falls erforderlich, auf Eis auftauen lassen, mit dem gleichen Volumen 2x SDS-Probenpuffer mischen und für 5min bei 100°C im Wasserbad erhitzen. Anschließend direkt auf Eis abkühlen lassen. Das Proteingemisch wird in die Probentaschen gefüllt (Konz.: ~ 40μg Proteingemisch/Probentasche). Ebenfalls aufgetragen wird ein Protein-Größenstandard (Benchmark Prestained, Gibco; Standard Protein ladder, BioRad). Der Gellauf erfolgt für ca. 45min bei 200V.

Lösungen:
Material und Methoden

10x SDS-Elektrophoresepuffer: 1.92M Glycin; 0.25M Tris und 1% (w/v) SDS
2x SDS-Probenpuffer: 100mM Tris/Cl pH6.8; 200mM Dithiothreitol; 4% (w/v) SDS; 0.2% Bromphenolblau und 20% Glycerin

2.2.25 Coomassie-Färbung von Proteingelen
Um Proteinbanden in einem SDS-Gel deutlich sichtbar zu machen, wird dieses mit Coomassie-Farbstoff (Roti-Blue; Carl Roth GmbH & Co; Karlsruhe) gefärbt. Zu 60ml Wasser werden 20ml Methanol und 20ml Coomassie unter Rühren hinzugegeben. Das Gel wird anschließend für ca. 1Stunde in der Färbelösung (ca. 40ml) inkubiert. Um die gefärbten Proteinbanden gegen den, ebenfalls gefärbten Hintergrund hervorzuheben, wird das Gel anschließend für ca. 2 Stunden in 20% Methanol (ca. 40ml) bei RT entfärbt. Anschließend wird das Gel in Haushaltsfolie mit etwas Wasser eingeschweißt. Die Größen der Proteinbanden lassen sich anhand des mitgelaufenen Standards abmessen.

2.2.26 Immuno-Blotting (Western-Blotting)
Der Western Blot dient zur Transferierung von Proteinen aus einem Gel auf eine Nitrocellulose-Membran. Die auf die Membran übertragenen Proteine besitzen die gleiche Anordnung wie auf dem Gel. Durch die Übertragung sind die Proteine für die anschließende Immunofärbung durch spezifische Antikörper leichter zugänglich. Die Übertragung verläuft nach elektrophoretischem Muster, d. h. es wird eine Transferierung über das Anlegen von Strom bewirkt.
Im Rahmen dieser Arbeit wurden sämtliche Western Blots mit der Mini Protean II/III-Apparatur (BioRad; München) durchgeführt. Eine Lage Nitrozellulosemembran und 4 Lagen Filterpapier werden auf die Größe des Trenngels zurechtgeschnitten. Die Nitrozellulosemembran wird erst in dH2O und anschließend in 1x Western-Transferpuffer für je 2min äquilibriert. Nach Beendigung des Gellaufs wird das Sammelgel entfernt und das Trenngel nach folgendem Schema in die Blotting-Apparatur eingelegt:

Abb 1: Schematische Darstellung des Aufbaus eines Western Blots.
Die gesamte Apparatur ist mit 1x Western-Transferpuffer überschichtet. Die Polarität der Elektroden ist seitlich mit (+) angegeben. Bei Stromfluß werden die im Gel aufgetrennten Proteine auf die Nitrocellulosemembran (NC-Membran) übertragen. Beide Blot-Halter bilden zusammen eine Klammer, in die die übrigen Komponenten eingespannt sind. Wichtig ist, daß sich keine Luftblasen zwischen Filter, Gel und Membran befinden.

Die Blotting-Apparatur wird in die Transferkammer gehängt und mit 1x Western-Transferpuffer überschichtet. Der Immunoblot wird für eine Stunde mit 100V bei 4°C durchgeführt. Nach Beendigung des Blottings wird die Apparatur abgebaut und wie folgt vorgegangen:

- NC-Membran mit Wasser waschen, um vorhandene Polyacrylamid-Partikel zu entfernen
- Blocken der Membran in 50ml Blockierlösung 1h bei RT, um unspezifische Bindestellen für den Antikörper abzusättigen
- Mischen des gewünschten Antikörpers in der entsprechenden Verdünnung mit 3ml Blockierlösung 1
- Entfernen der 50ml Blockierlösung 1 und Einschweißen von Membran und Antikörperlösung in Haushaltsfolie
- Inkubation des ersten Antikörpers für 2 bis 3h bei RT oder über Nacht bei 4°C
- 3x5min in TBST bei RT waschen
- Zweite Antikörperlösung (HRP-gekoppelt) 1:10000 in 50ml Blockierlösung 2 verdünnen
- Membran für eine Stunde bei RT mit Zweite Antikörperlösung inkubieren
- 3x5min in TBST bei RT waschen
- Während des ersten Waschgangs Chemilumineszenzsubstrate (3ml) mischen und auf RT erwärmen lassen
- Inkubation der Membran mit dem Chemilumineszenzsubstrat (BM Chemilumineszenz Blotting Substrate (POD), Boehringer Roche Diagnostics, Mannheim) für 1min.
- Membran in Frischhaltefolie verpacken und auf Röntgenfilm exponieren.

Lösungen:

10x Western-Transferpuffer: 1.92M Glycin, 1.5M NaCl; für 1x Puffer mit 20%-Methanol verdünnen

TBST: 20mM Tris/Cl pH8.0
150mM NaCl
0.2% Tween 20

Blockierlösung 1: 3% fetttfreies Milchpulver; 1% BSA; 0.02% Natriumazid; gelöst in TBST

Blockierlösung 2: siehe Blockierlösung 1; ohne Natriumazid

2.2.27 Gewinnung polyklonaler Antiseren

Um die zelluläre Lokalisation eines Proteins zu bestimmen, werden polyklonale Antiseren hergestellt, die ein bestimmtes Epitop des entsprechenden Antigens erkennen. Zur Gewinnung von Antiseren muß zunächst ein als Antigen verwendbares Fusionsprotein hergestellt werden, das einen bestimmten Abschnitt des jeweiligen Proteins beinhaltet (s. Konstrukte, 2.2.5). In dieser Arbeit wurde gegen ERM-1 ein polyklonaler Antikörper hergestellt.
2.2.27.1 Induktion in E.coli M15[pREP4]
Zur Gewinnung von His-Fusionsproteinen wird der rekombinante pQE30/32-Vektor (s. 2.2.16.1) in E.coli-Zellen des Typs M15[pREP4] (siehe 2.2.2) transformiert (s. 2.2.14.1).
- Einzelkolonien beider Ansätze werden in je 10ml LB_{amp, kan}-Medium gegeben und über Nacht bei 37°C und 150rpm inkubiert.
- Je 8ml der ÜN-Kultur werden in 400ml frisches, vorgewärmtes LB_{amp, kan}-Medium überführt und bei 37°C und 150rpm inkubiert, bis eine OD₆₀₀ von 0.6 erreicht ist (ca. 3h).
- Die Induktion erfolgt durch Zugabe von IPTG (Endkonzentration: 1mM).
- Die Bakteriensuspensionen werden für weitere 4h bei 37°C und 150rpm inkubiert.
- Anschließend werden die Bakterien für 10min bei 5000rpm und 4°C pelletiert; der Überstand wird verworfen.

Die Pellets werden bei −70°C gelagert. Um die Effizienz der Induktion zu überprüfen, werden folgende Proben (je 1ml) im Verlauf der Induktion genommen:
- Probe 0: Entnahme vor IPTG-Zugabe
- Probe 1: Entnahme 4h nach IPTG-Zugabe

Die Bakterien werden für 5min bei 5000rpm und 4°C sedimentiert und der Überstand verworfen. Die Pellets werden in 200μl 1x SDS-Probenpuffer resuspendiert, für 10min bei 100°C erhitzt und anschließend auf ein 12.5% SDS-Polyacrylamid-Gel aufgetragen (siehe 2.2.24). Nach Beendigung der Elektrophorese wird das Gel einer Coomassie-Färbung unterzogen (siehe 2.2.25).
In diesem Ansatz sollte eine induzierte Proteinbande (Proben 1) zu erkennen sein, die in der Probe 0 nicht vorhanden ist. Die Größe der induzierten Bande (His-Fusionsprotein) soll dem errechneten Wert entsprechen.

2.2.27.2 Bestimmung der Löslichkeit eines Proteins
Hierfür wird das zu testende Fusionsprotein in 50ml LBamp, kan-Medium induziert. Das gewonnene Bakterienpellet wird in 4ml eiskaltem 1x PBS (+Protease-Inhibitoren: Pepstatin, Pefabloc, Aprotinin und Leupeptin; Verdünnungen der Stamm-Lösungen: 1:500) auf Eis resuspendiert. Die Bakteriensuspension wird für 3x40sek auf Eis mit einer Ausgangsleistung von 50Watt sonifiziert. Zwischendurch jeweils 40sek auf Eis abkühlen lassen. Dann wird die Suspension einer Tritonextraktion (Triton-X-100) unterzogen (d. h. auf 10 % Triton einstellen) und 30min bei RT geschüttelt. Schließlich wird sie 15min bei 8000rpm zentrifugiert, wobei auf einem SDS-Gel (2.2.24 und 2.2.25) getestet wird, ob sich das Protein im Pellet oder im Überstand befindet. Das ERM-1-Fusionsprotein erwies sich als unlöslich, so daß es unter denaturierenden Bedingungen isoliert werden musste (s. Abschnitt 2.2.27.3).

2.2.27.3 Isolierung von unlöslchen His-Fusionsproteinen
Das in Abschnitt 2.2.27.1 gewonnene Bakterienpellet mit induziertem His-Fusionsprotein wird in 5ml Puffer A resuspendiert. Die Bakteriensuspension wird für 3x40sek auf Eis mit einer Ausgangsleistung von 50Watt sonifiziert. Zwischendurch jeweils 40sek auf Eis abkühlen lassen. Dann für 20min bei 12K zentrifugieren. Das His-Fusionsprotein sollte sich nun im Überstand befinden. Zum Überstand werden 2ml einer Ni-NTA-Matrix (Quiagen) hinzugefügt und das ganze 1-4h bei RT geschüttelt. Die Suspension wird schließlich über eine Leerläsule (vorher mit Puffer A äquilibrieren) gegeben, 2x mit je 4 ml Puffer B gewaschen und mit 4ml Puffer C eluiert. Nun kann die Konzentration via Bradford-Reaktion bestimmt werden. 2mg
Material und Methoden

des Eluats werden langsam in 20ml Refolding Puffer getropft und 1h bei 4°C auf einem Magnetrührer gemischt. Es folgt die Dialyse gegen Enhanced Coupling Buffer (ECB) und die Aufkonzentrierung über YM-100 Röhrchen (Millipore). Die erfolgreiche Aufreinigung des His-Fusionsproteins wird durch Western-Blotting mit einem Anti-Penta-His Antikörper (Qiagen) überprüft.

Lösungen:

- Resuspensionspuffer A: 100mM NaH2PO4; 10mM Tris-Cl; 6M GuHCl, pH8
- Waschpuffer B: 100mM NaH2PO4; 10mM Tris-Cl; 6M GuHCl, pH6.3
- Elutionspuffer C: 100mM NaH2PO4; 10mM Tris-Cl; 6M GuHCl, pH4.5
- Refolding Puffer: 50mM Hapes, pH7.5; 200mM NaCl, mMDTT, 1M NDSB201
- ECB: 0,01M Natriumcitrat, 0,05M Natriumcarbonat; pH10

2.2.27.4 Immunisierung

Für die Immunisierung einer Ratte und eines Kaninchens wurde die Firma EUROGENTEC Bel S.A. (Herstal, Belgien) beauftragt. Laut EUROGENTEC wurde im Falle von ERM-1 nach folgendem Zeitplan immunisiert:

<table>
<thead>
<tr>
<th>Injektion des Antigens</th>
<th>Blutentnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Immunisierung</td>
<td>05.11.01</td>
</tr>
<tr>
<td>1. Boost</td>
<td>19.11.01</td>
</tr>
<tr>
<td>2. Boost</td>
<td>03.12.01</td>
</tr>
<tr>
<td>3. Boost</td>
<td>31.12.01</td>
</tr>
</tbody>
</table>

Präimmunserum	05.11.01
1. Blutentnahme	13.12.01
2. Blutentnahme	13.12.01
Entblutung	10.01.02

Tab. VI: Zeitplan der Immunisierung einer Ratte und eines Kaninchens mit dem hergestellten His-Fusionsprotein von ERM-1 (Angaben laut EUROGENTEC).

Die erhaltenen Antiseren wurden sowohl durch Western-Blotting, als auch über Antikörperfärbungen im Vergleich mit den Präimmunseren getestet und verglichen (s. 3.1.2).

2.2.28 Affinitätsreinigung eines Antikörpers

Die Aufreinigung des ERM-1 Antikörpers erfolgte über das AminoLink® Plus Immobilization Kit (Pierce, Rockford, Illinois, USA) gemäß Protokoll. Hierbei wird das entsprechende Antigen kovalent an eine Matrix gebunden (erfolgt über eine Säule) und mit dem aufzureinigenden Antiserum inkubiert. Die spezifischen Antikörper binden an das Antigen, unspezifische werden herausgewaschen. Die Elution des Antikörpers von der Matrix erfolgt schließlich über einen Hochsalzpuffer (Puffer C) und einen Niedersalzpuffer (100mM Glycin, pH2.5). Durch Western Blot Analyse wird die Fraktion identifiziert, in der sich der Antikörper befindet. Diese wird gegen PBS dialysiert und mit Centricon-Röhrchen (YM-100, Millipore) aufkonzentriert. Im Falle von ERM-1 befand sich der Antikörper in der Hochsalzfraktion.

Lösungen (laut Herstellerangaben):
Puffer A: 50 mM Na-Hepes, pH 7.5; 150 mM NaCl; 1 mM EDTA
Puffer B: Puffer A; 1 M GuHCl
Puffer C: 50 mM Na-Hepes, pH 7.5; 4.5 M MgCl₂

2.2.29 In vitro-Translation

Die für in vitro Interaktionstests wie den Pulldown (s. 2.2.32) benötigten Peptide können über eine in vitro Transkription/Translation gebildet werden. Der Vektor mit dem zu translatierenden Fremdanteil benötigt bei diesem Ansatz einen T7-Promotor.

Ansatz:
- 25 µl Retikulozyten Lysat (= 1 Aliquot)
- 2 µl TNT-Puffer
- X µl Vektor (1 µg)
- 1 µl Aminosäuren-Mix
- 1 µl transcend tRNA (baut markiertes K ein)
- 1 µl RNase Inhibitor
- 1 µl T7-Polymerase

Den Ansatz auf 50 µl mit DEPC-H₂O auffüllen und für 2h bei 30°C inkubieren. Ein 4 µl Aliquot wird für die Reaktionskontrolle abgenommen, das restliche Volumen wird bis zur Weiterverwendung bei –70°C gehalten.

2.2.30 Phagenaufarbeitung

Einige im Rahmen dieser Arbeit bei Y. Kohara bestellten cDNA´s lagen integriert in dem Vektor pBluescript verpackt in -ZAP®II-Phagen vor. Um einen Vektor aus Phagen auszuschneiden wird wie folgt vorgegangen:

2.2.30.1 Titerbestimmung

Zunächst wird der Titer der Phagen bestimmt. Hierzu wird die Ausgangskonzentration der Phagen 1:100, 1:1000 und 1:10000 in SM-Puffer verdünnt und jeweils 10 µl in 500 µl frischen XL1-Blue-Zellen (OD₆₀₀ = 1 in 10 mM MgSO₄) pipettiert. Es folgt 20 min Inkubation bei 37°C. Die 510 µl werden anschließend zu 3 ml Topagar (45°C) gegeben und auf eine vorgewärmte NZY-Platte gegossen. Es folgt eine Inkubation bei 37°C ü. N. Aus den entstandenen Phagenplaques wird pro Platte mit einer sterilen Glaspipette ein Plaque ausgestochen und in ein Eppendorf-Gefäß gegeben. Es folgt eine Zugabe von 500 µl SM-Puffer und 25 µl Chloroform. Gut vortexen und bei 4°C lagern oder bei RT 2h taumeln lassen. Anschließend wird das Eppendorf-Gefäß bei 13000rpm 5 min zentrifugiert und der Überstand (= Phagenstock) in ein frisches Gefäß überführt.

Der Phagenüberstand wird 1:100 und 1:1000 verdünnt und wie oben aufgeführt weiterbehandelt. Die erhaltenen Plaques werden ausgezählt, so läßt sich schließlich die Anzahl der Phagen in dem Phagenstock berechnen. Der Titer lag bei durchschnittlich 500 Phagen pro µl.

2.2.30.2 in vivo-Excision

Es werden 250 µl Phagenstock mit einer Konzentration von 1x10⁵ Phagen (bei Bedarf Phagenstock mit SM-Puffer verdünnen) zu 200 µl XL1Blue-Zellen und 1 µl ExAssist™ Helferphage (Konz.>10x10⁶, Stratagene) gegeben und 15 min bei 37°C inkubiert. Es erfolgt eine Zugabe von 3 ml LB-Medium und eine Inkubation für 2,5-3h bei 37°C im Schüttler. Anschließend folgt eine Inkubation für 20 min bei 65-70 °C und eine Zentrifugation für 15 min bei 4000rpm, der Überstand (infektiöser Überstand) wird in ein sauberes Gefäß überführt. Während diesen Schritten erfolgt
Material und Methoden

2.2.30.3 Infektion
Jeweils 10μl und 100μl infektiöser Überstand werden mit 200μl SOLR-Zellen (OD_{600} =1, in 10mM MgSO_{4}) gemischt und 15min bei 37°C inkubiert, schließlich werden sie auf LB-amp Platten ausplattiert und ü. N. bei 37°C inkubiert. Mit den erhaltenen Kolonien wird eine Midi-Präparation (siehe 2.2.15) durchgeführt.

2.2.30.4 Vorbereitung der Bakterienzellen für die Phagenaufarbeitung
- Je eine Kolonie XL1Blue- oder SOLR-Zellen in LB-Medium ü. N. hochwachsen lassen
- 10min bei 4000rpm zentrifugieren
- Pellet in 10mM MgSO_{4} resuspendieren, so daß OD_{600}=1 ist

Lösungen:

NZY-Medium: 5g NaCl, 2g MgSO_{4} x 7 H2O, 5g Bacto Yeast Extract, (pro Liter) 10g NZ Amine (casein hydrolysate), 1.2% Agar
Topagar: NZY-Medium + 0.7% Agarose
SM-Puffer: 100mM NaCl, 8mM MgSO_{4}, 50mM Tris, pH7.5, 0.01% Gelatine

2.2.31 Hefe-Zwei-Hybrid
Im Rahmen dieser Arbeit wurde ein Hefe-Zwei-Hybrid-Screen mit verschiedenen Konstrukten von ERM-1 im pGBKT7 (s. Konstrukte 2.2.5) als Köder durchgeführt. Als Beute diente eine Phagenbank (Zheng Zhou, Barstead), welche in dem Phagen lambda ACT2 vorlag. Um mit der Phagenbank-DNA zu arbeiten, muß diese zunächst präpariert werden.

2.2.31.1 Präparation der Zwei-Hybrid-Phagenbank
Titerbestimmung
a) Phagen
- Einzelkolonie RB3E (kanR) in 50ml LBkan-Medium ÜN 37°C inkubieren
- Phagenbank: Verdünnungsreihe aufstellen (1:1000 – 1:10 Mio.) in SM-Puffer
- Bakterien 10min. bei 4000rpm pelletieren; Pellet in 10mM MgSO_{4} auf OD_{600}=1
- Phagenverdünnung mit 500μl RB3E mischen; 30min. bei 37°C inkubieren
- Topagar (je 3 ml/Röhrchen) auf 45 °C erwärmen, Bakterien-Phagen Gemisch hinzufügen, mischen und auf NZY-Platte ausschwenken; Inkubation ÜN 37°C Titer auszählen

b) Bakterien RB4E
- RB4E Kultur bis OD_{600}=1 wachsen lassen
- Verdünnungsreihe erstellen: Beginn 1μl bis 0.0001μl
- Einzelne Verdünnung auf LB-Platte ausplattieren
Material und Methoden

- ÜN bei 37°C inkubieren
 → Titer auszählen

Präparation der cDNA Bank
- 10^8 Phagen mit 3x10^8 RB4E (OD600 = 1; in MgSO4) mischen und für 30 min bei
 30°C inkubieren
- 5ml LB-Medium hinzufügen und bei 37°C für 1h schütteln
- Transfektionsstiter bestimmen: Verdünnungsreihe des Ansatzes aufstellen und auf
 LBamp-Platten ausplattieren (Beginn: 1:100 bis 1:100.000). ÜN bei 37°C
 inkubieren
 → Titer auszählen
- 10^8 infizierte Zellen pro großer LBamp-Platte ausplattieren; ÜN bei 37°C
 inkubieren
- (Konfluente) Platten mit je 5ml LB amp abspülen., Ansätze im Erlenmeyer-
 Kolben vereinigen und mit LB amp auf 100ml auffüllen.
- 3-4h bei 37°C inkubieren
- Maxipräparation (s. 2.2.15.3)

2.2.31.2 Proteinextraktion aus Hefezellen für Western-Blot Analyse
Die Expression der Fusionsproteine der ERM-1pGBK7-Konstrukte in der Hefe
wurde mittels eines Western Blots überprüft. Hierzu wurde zunächst eine
Proteinextraktion nach folgendem Protokoll durchgeführt.
 - Einzelkolonie des gewünschten Hefeklons in 10ml Medium (Selektivmedium) auf
 eine OD_{600} von 1 hochwachsen lassen
 - 5min bei 5000rpm zentrifugieren und Pellet in 500μl 1x PBS (+Protease-
 Inhibitoren) resuspendieren. EISKALT halten!
 - 200μl Glas Beads hinzufügen und für 10min im Wasserbad kochen. Auf Eis
 abschrecken
 - 8 x 30s vortexen (dazwischen mindestens 30s auf Eis halten)
 - Hefeextrakt (Vol. 500μl) mit einer dünnen Kanüle (Durchmesser 0.4mm) von den
 Beads entfernen und in ein neues Eppi überführen
 - Hefeextrakt für 10 min im Wasserbad kochen und auf Eis abschrecken
 - 20μl mit der gleichen Menge an 2x SDS-Loading buffer versetzen und 30μl auf
 Proteingel auftragen

2.2.31.3 Präadsorption der Antikörper α-GAL4 BD und α-c-Myc
Die pGBK7-Fusionsproteine können mit Antikörpern gegen die GAL4-
Bindedomäne und gegen den Myc-Tag auf einem Western Blot nachgewiesen
werden. Um die Spezifität zu erhöhen, werden beide Antikörper vorher präadsorbiert:
 - 100μl Hefeextrakt (nur AH109) mit 100μl Blocking-Reagenz (3% Milchpulver
 und 1%BSA gelöst in TBST) versetzen
 - Gewünschte Menge des Antikörpers (bezogen auf die Gesamtmenge des AK`s bei
dem Western Blot) zu den 200μl hinzugeben und ÜN bei 4°C inkubieren
 - 3min bei 13000rpm zentrifugieren und Überstand zur 1.AK-Lösung des Western
 Blots hinzufügen
 - Weiterbehandlung gemäß dem konventionellen Western-Blot (s. 2.2.26)
2.2.31.4 Transformation von DNA in *Saccharomyces cerevisiae* für einen Hefe-Zwei-Hybrid-Screen

- Zunächst erfolgt eine Transformation des Köderkonstrukts (ERM-1pGBKT7) in die AH109 Zellen (auf SDTRP−-Platten, s.2.2.31.6)
- Inkubation von 4 Übernachtkulturen je einer Kolonie von AH109 mit Köderkonstrukt in 25 ml SDTRP-Medium bei 30°C auf dem Schüttler (OD600=0.6-0.9).
- 5 min bei RT und 5000rpm zentrifugieren
- Überstand verwerfen und Pellet in 10 ml dH\textsubscript{2}O resuspendieren
- 5 min bei RT und 5000rpm zentrifugieren
- Überstand verwerfen und in insgesamt 10ml 1x LiAc resuspendieren
- 5 min bei RT und 5000rpm zentrifugieren
- Überstand verwerfen und Pellets in insgesamt 1.5ml 1x LiAc resuspendieren
- Zellen für 15min bei 30°C resuspendieren
- Vorbereiten von PEG/LiAc Lösung
- 10 Reaktionsgefäße mit je 3μg der cDNA-Bibliothek und 6μl denaturierter Heringssperma-DNA beladen
- je 150μl Hefezellen hinzufügen und gut mischen
- je 900μl PEG/LiAc-Lösung hinzufügen und vortexen
- für 30min bei 30°C im Schüttler inkubieren
- für 20min bei 42°C hitzeschocken
- Quickspin bis 7000rpm
- Überstand verwerfen und Pellet in 1.2ml YPDA resuspendieren
- 1h bei 30°C inkubieren
- Quickspin bis 7000rpm
- um die Transformationseffizienz festzustellen, werden auf einer SDTRP,-Leu-Platte Hefezellen 1:100 verdünnt, ausplattiert
- je 400μl werden auf einer großen Petrischale (SDTRP,- Leu,- His,- Ade,- +3AT) ausplattiert
- Inkubation der Platten bei 30°C für 5-7 Tage
- Die erhaltenen Hefekolonien werden auf kleine Petrischalen (SDTRP,- Leu-) gepickt und einem X-Gal-Test unterzogen. Von den positiven Klonen wird anschließend die DNA isoliert (s. 2.2.31.7).

2.2.31.5 Transformation von DNA in *Saccharomyces cerevisiae* für direkte Interaktionen oder Rescreens

Die aus dem Screen isolierten Klone (die Beutekonstrukte) werden in einem Test mit dem Köderkonstrukt nochmals auf ihre Fähigkeit zur Interaktion geprüft (Rescreen). Dafür werden die Beutekonstrukte zusammen mit dem Köder in die Hefe transformiert und schließlich erneut einem X-Gal-Test unterzogen. Das nachfolgende Protokoll kann aber auch dafür benutzt werden, um verschiedene Konstrukte, z. B. für einen direkten Interaktionstest, in die Hefe zu transformieren.

- ü.N.-Kultur eines beliebigen Hefestammes auf OD\textsubscript{600} 0.2 verdünnen und dann bis zur exponentiellen Phase wachsen lassen (OD\textsubscript{600} zischen 0.6-0.8)
- 50ml dieser Kultur für 5min bei 5000rpm zentrifugieren
- Pellet mit 20ml H\textsubscript{2}O waschen und erneut bei 5000rpm für 5min zentrifugieren
- Pellet mit 20ml 0.1M LiAc waschen und zentrifugieren
- Pellet in 0.1M LiAc bis zu einem Endvolumen von 300μl resuspendieren
- 15min bei 30°C inkubieren
Material und Methoden

- In der Zwischenzeit DNA vorbereiten: 2 µl Heringssperm DNA, 1 µg zu transformierende Plasmid DNA und 300 µl PEG/LiAc/TE Lösung mischen
- 50 µl der Hefelösung mit der DNA Lösung mischen und 30 min bei 30°C inkubieren
- Mischen und dann bei 42°C 20 min hiteschocken
- 30 s bei 7000 rpm zentrifugieren
- Pellet in 1 ml YPDA resuspendieren und 1 Std. bei 30°C inkubieren
- 30 sec bei 7000 rpm zentrifugieren und Pellet in 50 µl H2O resuspendieren
- Auf selektiver SD-Agarplatte ausplattieren und 2-5 Tage wachsen lassen

Lösungen:

Heringssperma-DNA-Stammlösung: 10 mg/ml in dH2O
PEG/LiAc-Lösung: 8 ml PEG 4000, 1 ml 10x LiAc, 1 ml dH2O

2.2.31.6 X-Gal-Interaktionstest

Findet in der Hefe zwischen zwei Fusionsproteinen der GAL4-AD und GAL4-BD eine Interaktion statt, so kommen die AD und BD des GAL4 Transkriptionsfaktor in räumliche Nähe und gelangen so in den Zellkern. Hier aktivieren sie die Transkription der β-Galaktosidase, wodurch das β-Galaktosedervitat X-Gal umgesetzt wird und ein blauer Niederschlag entsteht. Ein X-Gal-Test wird folgendermaßen durchgeführt:

Lösungen

X-Gal Stocklösung: 20 mg/ml X-Gal in DMF
Z-Puffer: 60 mM Na2HPO4; 40 M NaH2PO4; 10 M KCl; 1 M MgSO4; pH 7

2.2.31.7 Isolation von Plasmid-DNA aus Hefe-Zellen

Um die DNA aus die im Hefe-Zwei-Hybrid-Screen (s. 2.2.31.4) isolierten Zellklonen zu gewinnen wird folgendermaßen vorgegangen:

- Einzelkolonie über Nacht in 3 ml SDLeu-Medium (~16 h bei 30°C) wachsen lassen (Probe muß saturierend sein)
- 1,5 ml der Kultur für 5 min bei 130000 rpm zentrifugieren
- Überstand verwerfen
- Pellet in einem kleinen Volumen Restüberstand resuspendieren (vortexen)
- 200 µl Hefe-Lysis-Lösung hinzugeben
- 200 µl Phenol/Chloroform/Isoamylalkohol (Verhältnis 25:24:1) und 300 mg Glassbeads hinzufügen
- 2 min vortexen
- 5 min bei 13000 rpm zentrifugieren
- Überstand in ein neues Reaktionsgefäß überführen
Material und Methoden

- DNA fällen (s. 2.2.11.3)
- in 30 µl dH₂O resuspendieren

Die isolierte Hefe-DNA wird 1:10 in dH₂O verdünnt, in Bakterienzellen transformiert, präpariert (2.2.14.3 und 2.2.15.3) und retransformiert (2.2.31.5). Nach einem positiven Rescreen wird die DNA zum Sequenzieren (MWG-BIOTECH AG, Ebersberg) geschickt.

Lösungen:

Hefe-Lysis-Lösung: 2% Triton X-100; 1% SDS; 100mM NaCl; 10mM Tris, pH8; 1mM EDTA

2.2.32 Pulldown-Assay

Ein Pulldown-Ansatz sieht wie folgt aus:
- 5µg His-Tag Protein mit 20µl Ni-NTA Matrix, 0.25µl Proteaseinhibitoren und 80µl Puffer mischen
- 2h bei RT auf dem Schüttler inkubieren
- 4x mit je 500 µl Puffer waschen (d.h. gut schütteln und bei 1000 rpm ca. 1 min zentrifugieren)
- Zugabe von 20 µl in vitro translatiertes Protein, 0.25µl Proteaseinhibitoren und 1mg/ml BSA, auffüllen auf 100µl mit Puffer
- 4h bei 4°C inkubieren, ab und zu schnippen
- Schließlich 4x mit Puffer waschen, in SDS aufkochen und 5min auf Eis geben
- Anschließend kann der Pulldown mittels Western-Blot Analyse ausgewertet werden

Lösungen:

Pulldown-Puffer: 20mM Tris-Hcl (pH7.5), 100mM NaCl, 1mM EDTA, 0.5% Nonidet® P-40, 1mM DTT

2.3 Zellbiologische Methoden

2.3.1 Verwendete C.elegans-Stämme und Haltung

Im Rahmen dieser Arbeit wurde der Stamm N2 (Varietät Bristol) als Wildtypstamm verwendet. Er wird unter Standardbedingungen (Brenner, 1974) im Labor auf Agarplatten entweder bei 15°C, 18°C oder zur Beschleunigung des Wachstums bei RT gehalten. Als Nahrungsquelle dient der Uracil bedürftige E.coli-Stamm OP50.

kleine Agarplatten
pro Liter: 20g Agar, 3g NaCl, 2.5g Pepton 140. Nach dem Autoklavieren werden noch hinzugegeben: 1ml Lösung A, 0.5ml Lösung B, 1ml Lösung C, 25 ml Lösung D

angereicherte Agarplatten
pro Liter: wie kleine Agarplatten, jedoch zusätzlich 5g Bacto-Hefeextrait

Lösungen (per Liter):

Lösung A: 5g Cholesterin in EtOH
Lösung B: 110.8g CaCl₂
Lösung C: 246.5g MgSO₄ x 1H₂O
Lösung D: 108.3g KH₂PO₄; 36g K₂HPO₄

2.3.2 Herstellung Agarose-beschichteter Objektträger und Deckgläser

2.3.2.1 Für in vivo-Beobachtung
Um Embryonen in vivo beobachten zu können (siehe Abschnitt 2.3.5) werden sie auf Agarose-beschichtete Objektträger transferiert. Hierfür wird eine 2-3% Agaroselösung in dH₂O in der Mikrowelle aufgekocht und ein Tropfen dieser Lösung auf einen Objektträger gegeben. Durch Auflagen eines zweiten Objektträgers wird die Agarose gespreizt. Nach dem Erhärten der Agarose wird der zweite Objektträger durch vorsichtiges Hin- und Herschieben entfernt.

2.3.2.2 Für Mikroinjektion
Für die Mikroinjektion (siehe Abschnitt 2.3.11) werden Agarose-beschichtete Deckgläser benötigt. Hierfür wird ebenfalls eine 2-3% Agaroselösung in dH₂O aufgekocht. Diese wird auf einem Deckglas gespreizt und 2-3 Stunden bei 70°C bis zur Austrocknung der Agarose inkubiert.

2.3.3 Herstellung Polylisin-beschichteter Objektträger
Für Antikörperfärbungen an Embryonen (siehe Abschnitt 2.3.6) werden diese auf Polylisin-beschichtete Objektträger transferiert. Durch die positiv geladene Polylinschicht bleiben die Embryonen aufgrund der Wechselwirkung mit negativ geladenen Komponenten der Eihülle des Embryos am Objektträger kleben. Die Objektträger werden folgendermaßen angefertigt:
- 200ml dH₂O auf 60 °C erwärmen
- 400mg Gelatine darin lösen und auf 40°C abkühlen lassen
- 40mg Cr₂K(SO₄) x 12H₂O hinzufügen und gut vermischen
- Jeweils 1ml dieser Lösung mit 1mg Polylisin mischen
- Lösung für 12h bei 4°C stehen lassen

Ein Tropfen der gebrauchsfertigen Lösung wird auf einem sauberen Objektträger gleichmäßig ausgestrichen und luftgetrocknet. Gegen Staub geschützt werden die Objektträger im Kühlschrank aufbewahrt und können so mehrere Monate benutzt werden.

2.3.4 Präparation von Embryonen
Um Embryonen zu präparieren, werden adulte Hermaphroditen von einer Agarplatte in einen Tropfen dH₂O auf einen Objektträger transferiert. Mit Hilfe eines Skalpells
werden die Würmer zerschnitten, so daß durch den Innendruck im Nematoden die Embryonen freigesetzt werden. Unter Beobachtung mit dem Binokular werden die isolierten Embryonen mit einer fein ausgezogenen Pasteurpipette, an die ein Schlauch plus Mundstück gekoppelt ist, aufgesaugt und für weitergehende Untersuchungen auf einen Agarose- bzw. Polylisinbeschichteten Objektträger überführt.

2.3.5 *in vivo*-Beobachtung

2.3.6 Antikörperfärbung an Embryonen
Präparierte Embryonen werden mit einem Tropfen dH2O auf Polylysin-beschichtete Objektträger transferiert. Nach kurzer Zeit kleben die Embryonen am Polylysin fest, was durch Anstrudeln der Embryonen zu überprüfen ist. Anschließend wird ein Deckglas aufgelegt. Die Embryonen werden durch Absaugen des Wassers unter dem Deckglas mit Hilfe eines Zelltuches leicht gequetscht. Dieser Punkt ist besonders kritisch, da die Embryonen bei zu starkem Quetschen platzen und bei zu schwachem Quetschen anschließend die Eihülle nicht weggesprengt wird und so keine Fixierung des Embryos ermöglicht wird. Sofort nach dem Quetschen wird der Objektträger für einige Minuten in flüssigen Stickstoff getaucht und dann das Deckglas mit einem Skalpell wegesprengt, wobei die Eihülle und Vitellinmembran entfernt werden. Danach folgt die Fixierung:

- 10min in Methanol bei –20°C
- 20min in Aceton bei –20°C
- 5min in 90% Ethanol bei –20°C
- 5min in 60% Ethanol bei –20°C
- 5min in 30% Ethanol bei RT
- 2x 10min waschen in TBST bei RT

Lösungen:
Material und Methoden

TBST: 20mM Tris/Cl pH 8.0, 150mM NaCl, 0.2% Tween 20
Blockierlösung: 1% BSA, 1% fettfreies Milchpulver, 0.02% Natriumazid; gelöst in TBST
DNA-Färbelösung: YOYO-1 (1mM, 1: 40000; Molecular Probes, USA) und RNase H (1mg/ml, 1:10000) in TBST
Mowiol: 5g Elvanol (Höchst) in 20ml 1xPBS pH 7.4 lösen, 16h rühren, 10mg Glycerin hinzufügen, 16h rühren, 15min bei 12000rpm zentrifugieren und Überstand abnehmen. Jeweils eine Spatelspitze DABCO (1.4-Diazabicyclo[2,2,2]octan) als Ausbleichschutz unter je 1ml Mowiol mischen.

Folgende Tabelle zeigt eine Auflistung der im Rahmen dieser Arbeit verwendeten Antikörper:

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Ursprung</th>
<th>Erkannt</th>
<th>Eingesetzt</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>anti-4A1</td>
<td>Maus</td>
<td>α-Tubulin</td>
<td>1:50</td>
<td>Piperno und Fuller (1985)</td>
</tr>
<tr>
<td>anti-HMP-1</td>
<td>Maus</td>
<td>α-Catenin (HMP-1)</td>
<td>1:2</td>
<td>Costa et al., 1998</td>
</tr>
<tr>
<td>MH33 (anti-IFB-2)</td>
<td>Maus</td>
<td>Intermediärfilament (IFB-2)</td>
<td>1:100</td>
<td>Francis und Waterston (1985)</td>
</tr>
<tr>
<td>anti-DLG-1 (“unpurified”)</td>
<td>Kaninchen</td>
<td>DLG-1</td>
<td>1:400</td>
<td>Segbert et al., 04</td>
</tr>
<tr>
<td>anti-LAD-1NP</td>
<td>Kaninchen</td>
<td>LAD-1 nicht phosphoryliert</td>
<td>1:200</td>
<td>Chen et al., 2001</td>
</tr>
<tr>
<td>anti-LAD-1P</td>
<td>Kaninchen</td>
<td>LAD-1 phosphoryliert</td>
<td>1:50</td>
<td>Chen et al., 2001</td>
</tr>
<tr>
<td>anti-LAD-1</td>
<td>Kaninchen</td>
<td>LAD-1 cytosolisch</td>
<td>1:200</td>
<td>Chen et al., 2001</td>
</tr>
<tr>
<td>anti-PY</td>
<td>Kaninchen</td>
<td>Phosphotyrosin</td>
<td>1:100</td>
<td>Biotrend, Inc.</td>
</tr>
<tr>
<td>anti-NMY-2</td>
<td>Kaninchen</td>
<td>NMY-2</td>
<td>1:100</td>
<td>Guo und Kemphues, 1996</td>
</tr>
<tr>
<td>anti-MLC-4</td>
<td>Meerschwein</td>
<td>MLC-4</td>
<td>1:100</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>(Nr. 667)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>anti-ERM-1</td>
<td>Kaninchen</td>
<td>ERM-1</td>
<td>1:100</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>anti-PKC-3</td>
<td>Kaninchen</td>
<td>PKC-3</td>
<td>1:100</td>
<td>Signal Transduction Laboritories</td>
</tr>
</tbody>
</table>

Tab VII: Verwendete primäre Antikörper

2.3.7 Aktinfärbung an Embryonen

Präparierte Embryonen werden in einem Tropfen dH2O auf einen Polylysin-beschichteten Objekträger transferiert und für 2min in einer Fixierlösung mit 4% Paraformaldehyd und 0.1mg/ml Lyssolecithin (Sigma) zum Andauen der Eihülle inkubiert. Anschließend erfolgt eine 20minütige Inkubation in der Fixierlösung mit 4% Paraformaldehyd, jedoch ohne Lyssolecithin. Danach werden die Embryonen 2x10 min in PBT gewaschen und mindestens 1h in FITC-Phalloidin (Sigma, verdünnt
Material und Methoden

Lösungen:

Fixierlösung: 4% Paraformaldehyd in 60mM Pipes, 25mM Hapes, 10mM EGTA, 2mM MgCl₂, pH6.8 , zusätzlich 0.1mg/ml Lysolecithin (Sigma)
PBS (pro Liter): 8g NaCl, 0.2g KCl, 1.44g Na₂HPO₄, 0.24g KH₂PO₄, pH7.4
PBST: PBS plus 0.1% Tween 20
FITC-Phalloidin: 0.1mg/ml in PBS (Sigma Aldrich, Steinheim)
Alexa Fluor® 488 Phalloidin: 200U/ml in Methanol (Molecular Probes, Inc., Eugene, USA)

2.3.8 Doppelfärbung eines Antikörpers mit Phalloidin

- Adulte Würmer in einem Tropfen dH₂O zerschneiden, Embryonen mit einer ausgezogenen Pasteurpipette aufsaugen und auf einen mit Poly-L-Lysin beschichteten Objektträger transferieren
- Embryonen gutquetschen und in flüssigen Stickstoff tauchen
- Deckglas absprengen
- Sofort auf den noch gefrorenen Objektträger das Fixativ/Phalloidin-Gemisch (ca. 100μl) geben, mit einem Deckglas (13x13) bedecken und 30min bei –20°C inkubieren
- 2x10min mit PBST waschen
- 1h mit FITC-Phalloidin (1:100 in PBST) bzw. Alexa-Phalloidin (1:25 in PBST) bei RT nachfärbten (ca. 50μl pro Präparat)
- 2x10min mit PBST waschen
- Antikörper entsprechend in PBST verdünnen und ca. 50μl auf den Objektträger geben
- Über Nacht bei 4°C inkubieren
- 2x10min in PBT waschen
- Sekundärantikörper in BSA/Milchpulver verdünnen, ca. 50μl auf jedes Präparat geben und 2h bei RT inkubieren
- 2x10min in PBST waschen
- mit 10μl ProLong® Antifade Kit (Molecular Probes) eindeckeln

Lösungen

Fixativ: 75% Methanol p.a., 3.7% Paraformaldehyd und 1:100 FITC-Phalloidin bzw 1:25 Alexa-Phalloidin in dH₂O
FITC-Phalloidin: 1mg/ml in PBS gelöst (Sigma-Aldrich, Steinheim)
Alexa Fluor® 488 Phalloidin: 200 U/ml in Methanol (Molecular Probes, Inc., Eugene, USA)
2.3.9 Auswertung von Embryonen
Für Beobachtungen mit DIC-Mikroskopie wurde ein Zeiss Axiophot 2 (Zeiss, Oberkochen), gekoppelt mit einer Sony 3 CCD Colour Video-Kamera für Videoaufnahmen (Gerät: JVC Timelapse Videorekorder) benutzt. Falls benötigt, wurden die Bilder direkt auf Video aufgezeichnet oder einzelne Bilder direkt über einen angeschlossenen Macintosh PowerPC in das Bildverarbeitungsprogramm Photoshop importiert. Die Auswertung der Antikörperfärben erfolgte am konfokalen Lasermikroskop Leica TCS NT (Leica, Heidelberg). Von den Embryonen wurden Schnittprojektionen aufgenommen, wobei die Schnitte zwischen 0,5 und 1μm groß waren.

2.3.10 Darmfunktionstest an Larven
Larven werden auf einer E.coli-beschichteten Agarplatte mit einer 0,5%igen Lucifer Yellow-Lösung für 1-2h inkubiert. Die Larven nehmen mit den Bakterien das Lucifer Yellow auf. Anschließend werden die Larven in einem Tropfen dH2O auf einen mit Agarose beschichteten Objektträger gegeben und eingedeckt und ausgewertet (s. Abs. 2.3.9).

Lösungen:
Lucifer Yellow (MW 550): 0.5%, in dH2O gelöst (Sigma Aldrich, Steinheim)

2.3.11 Die Technik der „RNA-mediated interference“ (RNAi)
2.3.11.1 Mikroinjektion
ausgezogenen Pasteurpipette wird der Wurm aufgesaugt und auf eine frische Agarplatte überführt.

2.3.11.2 RNAi über Feeding
RNAi kann über das Füttern spezieller RNase III-defizienter Bakterien (HT115, s. 2.2.2) erfolgen. Diese Bakterien müssen die Zielsequenz der RNAi in einem bestimmten Vektor (pPD129.36, s. 2.2.4) enthalten. Zur Induktion der dsRNA werden 40µl IPTG (1mM Endkonzentration) auf einer kleinen Agarplatte (Durchmesser 5.3cm; Ampicillin- und Tetracyclin-Selektion) ausgestrichen. Anschließend werden 120µl einer ü. N. Kultur der HT115-Zellen auf diese IPTG-Agarplatten gegeben und über Nacht bei RT inkubiert. Um das Experiment zu starten werden L4-Larven auf die Platten gegeben und für mindestens 24h bei 15°C gehalten.

2.3.11.3 Auswertung der RNAi-Tiere
Die injizierten Würmer werden 18-20h nach der Injektion vereinzelt, also jeder Wurm wird auf eine eigene Agarplatte gesetzt. 24h später werden die Würmer von den Agarplatten entfernt und erneut auf frische Platten umgesetzt. “Feeding” Würmer werden nach 24h von der Platte entfernt und auf frische Platten gesetzt.
Die abgelegten Embryonen werden beobachtet. Es wird nach embryonaler Letalität geschaut, wenn Tiere schlüpfen nach larvaler Letalität und nach weiteren postembryonalen Entwicklungseffekten, wie z.B. Sterilität. Wenn die Embryonen einen Phänotyp zeigen, werden weitere Embryonen der entsprechenden Würmer mit einer fein ausgezogenen Pasteurpipette von der mit Wasser beschichteten Agarplatte gesaugt und für in vivo-Beobachtungen (s. 2.3.5) und Antikörperfärbungen (s. 2.3.6) verwendet.
3 Ergebnisse

3.1 Die Rolle von ERM-1 während der Differenzierung des embryonalen Darmepithels von C. elegans

3.1.1 Molekulare Charakterisierung von erm-1

Das Gen erm-1 kodiert für ein Ezrin-Radixin-Moesin Protein. Um die vollständige Sequenz von erm-1 zu bestimmen, wurden die Sequenzen von überlappenden cDNAs (aus einer cDNA-Bank von Dr. Y. Kohara; National Institute of Genetics, Mishima, Japan) mit der vom Computerprogramm Genefinder (Favello et al., 1995) vorhergesagten Sequenz der Transkriptionseinheit C01G8.5a abgeglichen (Abb. 7A). Die nicht durch die Sequenzen der cDNAs abgedeckten Bereiche wurden über PCR an der cDNA yk257f5 sequenziert (s. M&M und Anhang). Zusätzlich wurde ein Northern Blot mit einer digoxygenierten RNA-Sonde durchgeführt. Hierbei wurde die cDNA 257f5 als Matrise genommen. Es konnte eine einzelne Bande mit einer ungefähren Größe von 2.3 kb detektiert werden, wobei dieser Wert der vorhergesagten Größe (2.331 kb) entspricht (www.wormbase.org, WR[“wormbase release”]130, Abb. 7E). Für erm-1 wurde eine alternative Splicevariante vorhergesagt (C01G8.5b), die ebenso durch cDNAs verifiziert werden kann. Die vorhergesagte
Ergebnisse

Größe entspricht 2.296 kb, wobei sich diese Transkriptionseinheit in der Sequenz des 5’-UTR ("untranslated region", untranslatierter Bereich) von C01G8.5a unterscheidet (www.wormbase.org, WR130).

Das Gen *erm-1* kodiert für ein Protein, welches 563 (C01G8.5a) bzw. 564 As (C01G8.5b) groß ist. Am N-Terminus befindet sich eine hochkonservierte FERM("band four one", Ezrin, Radixin, Moesin)-Domäne, die wiederum in 3 Subdomänen (F1-F3) unterteilt werden kann (Gautreau et al., 2000). Der mittlere Bereich umfaßt eine weniger gut konservierte α-helikale Domäne, am C-Terminus findet sich eine hochkonservierte Aktinbindesequenz (Abb. 7B, C). Hier ebenfalls konserviert ist das Threonin 544, welches generell wichtig für die Aktivierung von ERM-Proteinen ist (Bretscher et al., 2002).

3.1.2 Das embryonale Expressionsmuster von ERM-1

Um die subzelluläre Lokalisation von ERM-1 zu analysieren, wurde im Rahmen dieser Arbeit ein polyklonaler Antikörper gegen den C-Terminus (die letzten 356 As) des Proteins in einem Kaninchen generiert und affinitätsgereinigt (s. M.&M). Auf einem Western Blot einer gemischten, wildtypischen Wurmpopulation (s. M&M) detektiert dieser Antikörper eine einzelne Bande in der erwarteten Höhe von etwa 64 kD (Abb. 8C).

In WT-Embryonen ist die erste anti-ERM-1-Färbung im Zweizellstadium sichtbar, die den Zellkortex angrenzender Plasmamembranen kennzeichnet (Abb. 8A, Ausschnitt). Diese subzelluläre Lokalisation bleibt auch für die nächsten Runden der Zellteilung bestehen, obwohl in einigen Zellen, speziell in der Keimbahnvorläuferzelle, ERM-1 ebenso im gesamten Zellkortex zu finden ist (Abb. 8A, Sternchen). Am Anfang der
Morphogenese (Bohnestadium, Abb. 8B) entwickeln viele Gewebe einen polarisierten Phänotyp, und auch ERM-1 wird am apikalen Zellkortex der Hypodermis und des Pharynx- und Darmprimordiums angereichert (Abb. 8B). Während des Kaulquappestadiums (Abb. 8D, 1.5fach elongiert) sind die Darmzellen vollständig polarisiert, wobei ERM-1 am apikalen Pol akkumuliert und mit dem Intermediärfilament IFB-2 kolokalisiert (Bosinger et al., 2004). Das Protein AJM-1 ("apical junction molecule") lokalisiert in der AJ und trennt somit die apikale von der basolateralen Membrandomäne. Zwischen AJM-1 und ERM-1 besteht zumindestens auf Immunfluoreszenz(IF)-Ebene jedoch keine oder nur eine sehr geringfügige Überlagerung (Abb. 8E). Allerdings ist eine Kolokalisation von ERM-1 mit dem ebenfalls apikal akkumulierten F-Aktin zu sehen (Abb. 8G-F). Die Expression von ERM-1 kann aber auch im exkretorischen System beobachtet werden (Abb. 8G, weißer Kreis). Um welche Zelle es sich im speziellen handelt, wurde im Detail jedoch nicht weiter untersucht.

3.1.3 Unter DIK-Optik zeigen erm-1(RNAi)-Embryonen Verschlüsse und eine progressive Weitung des Darmlumens

Um die Aufgabe von ERM-1 besser zu verstehen, ist es von Interesse, den Funktionsverlustphänotypen zu analysieren. Hierfür stellt die RNA-vermittelte Interferenz (RNAi) eine einfache und schnelle Methode dar, um Genfunktionen auszuschalten und daraus resultierende Phänotypen zu untersuchen. Im Rahmen dieser Arbeit wurde hauptsächlich die Methode des “RNAi feeding” verwendet, um schnell an eine große Menge zu analysierender Embryonen zu gelangen (s. Einleitung und M.&M). Wenn RNAi über Injektion durchgeführt wurde, ist dies angegeben. Generell sollte jedoch sowohl bei “RNAi feeding” als auch bei Injektion kein Unterschied in Bezug auf den Funktionverlustphänotypen eines Gens auftreten (Kamath et al., 2001).

Der Verlust der Genfunktion von erm-1 über RNAi "feeding" führt zu larvaler Letalität. Hierbei arretieren 85% der Tiere im 1. Larvenstadium (n>300). Defekte der "escaper" wurden im näheren nicht analysiert. Im Vergleich zu WT-Larven (Abb. 11A) zeigen erm-1(RNAi)-Larven unter DIK-Optik ein abnormes Darmlumen, das Verschlüsse und Weitungen aufzeigt und an das Muster einer Perlenkette erinnert (Abb. 10B, C). Die Embryonalentwicklung verläuft bei erm-1(RNAi)-Embryonen zunächst wildtypisch (Abb. 9A). Mit Hilfe von 4D-Mikroskopie (s. Einleitung,
Schnabel et al., 1997) läßt sich jedoch in der späten Morphogenese eine progressive Schwellung des Darmlumens beobachten (Bretzelstadium, 4fach elongiert, Abb. 9): In dem hier gezeigten Embryo tritt eine leichte Schwellung erstmalig etwa 22min vor dem Schlüpfen auf, auch Verschlüsse sind bereits zu erkennen (Abb. 9A, B, Pfeilkopf). Das Darmlumen schwillt ab diesem Zeitpunkt kontinuierlich an, wobei die Schwellung in der Larve ein Maximum erreicht (ca. 2h nach dem Schlüpfen, Abb. 10). Die Verschlüsse reißen, wahrscheinlich durch einen großen Druck im Darmlumen bedingt, teilweise ein, wobei amorphes Material im Lumen sichtbar wird (Abb. 10C, Pfeilkopf). Letztendlich kollabiert das Darmlumen (t≈3h, Abb. 10D).

Die Schwellung des Darmes, die auch hier auftritt, könnte vermutlich sekundär verursacht werden, vielleicht durch einen defekten Flüssigkeitstransport, der durch das teilweise verschlossene bzw. verengte Darmlumen verursacht wird.

3.1.4 Analyse des erm-1(RNAi)-Phänotyps mittels hochauflösender konfokaler Lasermikroskopie

Um die eigentliche Ursache für die Blockade des Flüssigkeitstransports zu verstehen und um zu testen, wie die Verschlüsse im Embryo entstehen, wurden erm-1(RNAi)-

1 Als “dye-coupling” wird die Diffusion von Farbstoffen über Gap Junctions bezeichnet.
Ergebnisse

Embryonen mit Antikörpern gegen verschiedene molekulare Marker des Darmepithels gefärbt.

3.1.4.1 Die *C. elegans* AJ zeigt ein invariables Muster

Der Darm von *C. elegans* ist ein einfach aufgebautes Epithel, bestehend aus 20 Zellen. Diese umgeben röhrenförmig das Lumen und sind in einem regelmäßigen Muster von neun Ringen, den sogenannten “ints” (“intestinal units”) angeordnet (Sulston et al., 1983). Der vorderste Ring (int 1) besteht aus 4 Zellen, die anderen (int 2-9) stellen jeweils Zellpaare dar. Alle Zellen sind gürtelförmig von der AJ umgeben.

3.1.4.2 Während der Morphogenese von *erm-1*(RNAi)-Embryonen ist das Remodelling der AJ im Darmepithel gestört

Im nachfolgenden soll die Entwicklung der AJ in *erm-1*(RNAi)-Embryonen im Vergleich zum WT beschrieben werden. Dazu wurden Embryonen mit Antikörper gegen Marker, wie dem AJM-1/DLG-1 *(Discs Large)*-Komplex (DAC), dem Cadherin-Catenin-Komplex (“cadherin-catenin-complex” [CCC], z.B. α-Catenin, HMP-1 *(humpback)*) und gegen apikale Marker, wie der PKC-3 *(Proteinkinase C)* gefärbt (s. Einleitung, Bossinger et al., 2001; Leung et al., 1999).

In der frühen Morphogenese (Bohnestadium) akkumuliert AJM-1 zusammen mit PKC-3 am apikalen Zellkortex des Darmepithels. Zu diesem Zeitpunkt haben die Darmzellen bereits ihre apikobasale Polarity ausgebildet (Leung et al., 1999). Auch in *erm-1*(RNAi)-Embryonen sind diese beiden Marker apikal zu finden (Abb. 13G, G’). Dies deutet darauf hin, daß ERM-1 weder in die Etablierung der Polarity
Ergebnisse

involviert ist noch eine konkrete Funktion für den Transport von apikalen und AJ-Proteinen zum apikalen Pol hin hat. Allerdings ist anzumerken, daß in erm-1(RNAi)-Embryonen bereits des öfteren eine etwas schwächere Immunfärbung der AJ im Vergleich zum WT beobachtet wurde. Diese ist im Detail aber nie analysiert worden.

3.1.4.3 Die Organisation des F-Aktinzytoskeletts im apikalen Zellkortex des Darmepithels ist abhängig von ERM-1

3.1.4.4 In *erm-1(RNAi)*-Embryonen sind die im Darmlumen auftretenden Defekte unabhängig von der Ausbildung der apikanen Membrandomäne

Ergebnisse

3.1.5 Modellvorstellungen für das AJ-Remodelling im Darmepithel

Der primäre Defekt in erm-1(RNAi)-Embryonen stellt den Verlust der F- Aktinakkumulation im apikanlen Zellkortex der Darmzellen dar, der auf eine veränderte Struktur oder Funktion des Aktinzytoskeletts hinweisen könnte. ERM-1 könnte benötigt werden, um die Aktinfilamente zu organisieren. Das defekte Aktinzytoskelett in erm-1(RNAi)-Embryonen wäre so vermutlich direkt für das Remodelling der AJ verantwortlich und nicht für die apikale Anlieferung von AJ-Proteinen bzw. für die Anlieferung von Material für die apikale Membrandomäne (s. Diskussion).

3.2 Analyse des Aktin-Myosinnetzwerks im embryonalen Darmepithel von C. elegans

3.2.1 Der Verlust der Rho-Kinase LET-502 führt zu einem neuartigen AJ-Phänotyp im Darmepithel

So wurde in eine vollständig RNAi-resistente Mutante, rde-1(ne219), ein Transgen eingeführt wurde, welches unter dem starken, darmspezifischen elt-2-Promotor eine Wildtypkopie von rde-1 trägt (Hawkins und McGhee, 1995; Tabara et al., 1999).
Damit sind nur die Darmzellen RNAi sensitiv und die Funktion von Genen kann ausschließlich im Darm analysiert werden. Mittels dieser Methode wurde im nachfolgenden versucht, die Funktion von MLC-4 und NMY-2 im Darmepithel zu analysieren.

3.2.2 Die „leichte Kette“ MLC-4 und die „schwere Kette“ NMY-2 des Myosins lokalisieren auch im zellulären Kortex der Darmzellen

In WT-Embryonen ist die MLC-4-Expression erstmals im Zweizellstadium sichtbar. Hier kennzeichnet sie deutlich die kortikale Zellmembran der anterioren AB-Zelle (Abb. 21A). Im 4-Zellstadium lokalisiert MLC-4 im Kortex sämtlicher Zellen, wobei eine deutliche Anreicherung in den Nachkommen der AB-Zelle (ABa und ABp, Abb. 21B) zu erkennen ist. Während der Gastrulation kann auch im Kortex der Darmvorläuferzellen, den E-Zellen, eine Färbung beobachtet werden (Abb. 21C, Sternchen). In der Morphogenese (Pflaumestadium) wird MLC-4 im apikalen Kortex der Hypodermis- und Pharynxzellen angereichert. Im apikalen Kortex der Darmzellen ist dagegen nur eine sehr geringe MLC-4 Expression zu sehen (Abb. 21D).

3.2.3 Darmspezifische RNAi von *mlc-4* und *nmy-2* führt zu larvalem Arrest und Darmdefekten

Da sich die Frage stellt, ob auch im Embryo Störungen zu sehen sind, wurden *mlc-4* und *nmy-2(RNAi)*-Embryonen gegen AJM-1 gefärbt. Es erwies sich als äußerst schwierig, Embryonen zu erkennen, welche das extrachromosomale Array tragen, also RNAi sensitiv sind. Gute Hinweise für die Sensitivität gibt die fehlende Expression des entsprechenden Proteins im Darm, da aber in beiden Fällen die darmspezifische Proteinlokalisation bereits im WT sehr schwach ist, war es kaum möglich, hierüber eine Aussage zu treffen. So wurden Embryonen nur nach Defekten in der AJ bewertet. In der Tat ist bei 12.5% der Embryonen von *mlc-4(RNAi)* (n=10/80) und bei 11.7% der *nmy-2(RNAi)*-Embryonen (n=14/120) eine leichtere AJ-Disorganisation im Darm zu erkennen, die als AJ-Remodelling Defekt interpretiert werden kann (Abb.21H, H´, 22E, E´, s. Diskussion).

3.2.4 act-5(RNAi)-Embryonen zeigen Remodellingdefekte der AJ im embryonalen Darmepithel

Die Anbindung an das F-Aktinzytoskelett ist ein essentieller Kriterium für die aktomyosin-basierte Kontraktion (Adams et al., 1998; Piekny et al., 2003). Da auch für ERM-1 eine wichtige Funktion bei der Stabilisierung von F-Aktin gezeigt werden konnte (s. Abb. 14), ist es von Interesse zu analysieren, welche Auswirkungen der Verlust von Aktinproteinen für das Darmepithel hat. In *C. elegans* existieren 12 Aktin- bzw. Aktin-ähnliche Proteine, wobei ACT-5 das einzige ist, welches spezifisch im Darm exprimiert wird (MacQueen et al., 2005; Schriefer et al., 1995). Um zu verstehen, welche Rolle ACT-5 im Darmepithel spielt, soll im nachfolgenden act-5 mittels RNAi ausgeschaltet und der Funktionsverlustphänotyp mittels DIK-Optik und molekularen Markern des Darmepithels analysiert werden.

3.3 Endozytose spielt generell keine Rolle für das AJ-Remodelling

Ergebnisse

Ein weiterer Ansatz, um RME zu analysieren, ist die generelle Inhibition der Endozytose über spezifische Chemikalien. Transferrin, ein Marker für RME, wird während der Morphogenese von \textit{C. elegans} in die Darmzellen internalisiert (Bossinger et al., 1996). Es wurde berichtet, daß die kationische, amphiphile Droge Chlorpromazine die Endozytose von Transferrin blockiert, indem sie die Abschnürung von Clathrin-bedeckten Vesikeln verhindert (Wang et al., 1993). Die Inhibition der RME über Chlorpromazine beeinflußt jedoch nicht das Remodelling der AJ (H. Arts und O. Bossinger, unveröffentlichte Daten). Da jedoch \textit{apm-1/unc-101}(RNAi) zu einem \textit{erm-1}(RNAi)-ähnlichen Phänotyp führt, verbleibt zu testen, ob hier auch generell die RME blockiert ist.
3.4 Identifikation von ERM-1-Bindungspartnern über einen Hefe-2-Hybrid-Screen

Um die Funktion von ERM-1 besser zu verstehen, ist es von Bedeutung, Proteine zu identifizieren, die eine direkte Bindung zu ERM-1 zeigen. Eine etablierte Methode, um neue Interaktionspartner zu finden, ist das Hefe-Zwei-Hybrid-System (H2HS, Abb. 28).

Als Köderkonstrukte wurden jeweils die Sequenz der FERM-Domäne (die ersten 221 As) und der C-Terminus (die letzten 356 As einschließlich der konservierten Aktinbindesequenz, s. Abb. 7) von erm-1 verwendet. Die Trennung in zwei Konstrukte erwies sich als sinnvoll, da N- und C-Terminus miteinander interagieren können und so die Identifizierung anderer Interaktionspartner nicht möglich wäre (Nix et al., 2000). Als Beute diente eine embryonale cDNA-Bibliothek, die das gesamte C. elegans Genom umfaßt (Zheng Zhou, Labor Dr. Horvitz).

Insgesamt wurden pro Köderkonstrukt etwa 3×10^6 Klone der embryonalen cDNA-Bibliothek auf eine Interaktion mit ERM-1 getestet (s. M&M). Es konnten 32 verschiedene Gene als Bindungspartner von ERM-1 identifiziert werden (Tab. 1, 2). Die Durchmusterung der Bücherei mit dem N-Terminus resultierte in 19 verschiedenen Genen, hiervon waren 8 nicht im Leseraster. Mit dem C-Terminus wurden 13 verschiedene Gene gefunden, wobei 5 Gene nicht im Leseraster waren.
Es stellt sich die Frage, ob ein Zusammenhang zwischen den gefundenen Genen und \textit{erm-1} besteht. Hinweise kann der Verlustphänotyp eines Genes über dessen mögliche Funktion geben. Um die Gene daraufhin zu analysieren, wurde mittels RNAi die Genfunktion ausgeschaltet und die resultierenden Embryonen mit verschiedenen Markern des Darmepithels gefärbt. Im nachfolgenden wurden nur Gene berücksichtigt, die sich im Leseraster befinden.

<table>
<thead>
<tr>
<th>Cosmid</th>
<th>Gefunden</th>
<th>Frame</th>
<th>Gen</th>
<th>LG</th>
<th>RNAI-Phänotyp</th>
<th>Domänen (SMART)</th>
<th>Homologien/Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>F56D12.5A</td>
<td>10</td>
<td>in</td>
<td>vig-1</td>
<td>II</td>
<td>WT</td>
<td>Hyaluronan/mRNA-Bindung</td>
<td>Hyaluronan/mRNA-Bindung Familie</td>
</tr>
<tr>
<td>Y106G6H.14</td>
<td>2</td>
<td>out</td>
<td>-</td>
<td>I</td>
<td>WT</td>
<td>SH3, Ankyrin-repeat</td>
<td>-</td>
</tr>
<tr>
<td>ZC101.2b</td>
<td>2</td>
<td>out</td>
<td>unc-52</td>
<td>II</td>
<td>Pat</td>
<td>LDL-Rezeptor, LamininB, Laminin</td>
<td>Proteoglykan (Perlecan), Bestandteil der EZM</td>
</tr>
<tr>
<td>Y55F3AM.13</td>
<td>1</td>
<td>in</td>
<td>-</td>
<td>IV</td>
<td>WT</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Y111B2A.10a</td>
<td>1</td>
<td>out</td>
<td>-</td>
<td>III</td>
<td>WT</td>
<td>Zinkfinger C2H2</td>
<td>Transkriptionsfaktor</td>
</tr>
<tr>
<td>C36b1.4</td>
<td>1</td>
<td>in</td>
<td>pas-4</td>
<td>I</td>
<td>Ste, Emb, Lvl, Gro</td>
<td>Proteasom</td>
<td>Proteasome A-Typ Untereinheit</td>
</tr>
<tr>
<td>T05E11.1</td>
<td>4</td>
<td>out</td>
<td>rps-5</td>
<td>IV</td>
<td>Lva</td>
<td>Ribosomales Protein</td>
<td>-</td>
</tr>
<tr>
<td>T27A3.1a</td>
<td>1</td>
<td>out</td>
<td>-</td>
<td>I</td>
<td>WT</td>
<td>Coiled-coil, HAP-1</td>
<td>Huntingtin assoziiertes Protein</td>
</tr>
<tr>
<td>C06E7.2</td>
<td>1</td>
<td>in</td>
<td>-</td>
<td>IV</td>
<td>WT</td>
<td>-</td>
<td>Ribosomales Protein</td>
</tr>
<tr>
<td>W02A11.3</td>
<td>1</td>
<td>out</td>
<td>-</td>
<td>I</td>
<td>WT</td>
<td>Zinkfinger (RING)</td>
<td>Zinkfinger Protein, E3 Ubiquitinligase Aktivität</td>
</tr>
<tr>
<td>W09H1.6a</td>
<td>1</td>
<td>in</td>
<td>lec-1</td>
<td>II</td>
<td>WT</td>
<td>Galectin</td>
<td>Lektinähnliches Protein</td>
</tr>
<tr>
<td>Y37E11AL.7</td>
<td>1</td>
<td>in</td>
<td>map-1</td>
<td>IV</td>
<td>WT</td>
<td>Peptidase M24</td>
<td>Metallopeptidase</td>
</tr>
<tr>
<td>F47G4.2</td>
<td>1</td>
<td>in</td>
<td>-</td>
<td>I</td>
<td>WT</td>
<td>-</td>
<td>Leucinreiches Protein</td>
</tr>
<tr>
<td>F31E3.5</td>
<td>1</td>
<td>in</td>
<td>efl-3</td>
<td>III</td>
<td>Lva</td>
<td>-</td>
<td>Elongationsfaktor, exprimiert im larvalen Pharynx, Darm</td>
</tr>
<tr>
<td>K10C2.4</td>
<td>1</td>
<td>in</td>
<td>-</td>
<td>X</td>
<td>Gro, Emb</td>
<td>FAA (Fumarylacetoacetat) Hydrolase</td>
<td>FAA Familie, Tyrosinkatabolismus</td>
</tr>
<tr>
<td>F57B9.9</td>
<td>1</td>
<td>in</td>
<td>pgn-46</td>
<td>III</td>
<td>WT</td>
<td>-</td>
<td>Homeobox Protein</td>
</tr>
<tr>
<td>C46A5.9</td>
<td>1</td>
<td>in</td>
<td>hcf-1</td>
<td>IV</td>
<td>WT</td>
<td>Kelchmotiv, Fibronectin Typ 3</td>
<td>Homologen zum humanen "Host cell Faktor"</td>
</tr>
<tr>
<td>C46C2.1</td>
<td>2</td>
<td>out</td>
<td>wnk-1</td>
<td>IV</td>
<td>WT</td>
<td>STYKc (Phosphotransferase)</td>
<td>Tyrosinkinase, Expression in Exkretorischer Zelle</td>
</tr>
<tr>
<td>T09A12.4c</td>
<td>1</td>
<td>out</td>
<td>nhr-66</td>
<td>IV</td>
<td>WT</td>
<td>Zinkfinger C4, HOLL (Ligandenbindedomäne von Hormonrezeptoren)</td>
<td>Nuklear Hormonrezeptor Familie</td>
</tr>
</tbody>
</table>

Tab.1: Überblick über die in dem Hefe-Zwei-Hybrid Screen mit dem N-Terminus von ERM-1 als Köder isolierten Kandidaten.

Benutzte Abkürzungen: LG (Linakge Group, Chromosom), SMART (Simple Modular Architecture Research Tool, Domänensuchprogramm: http://smart.embl-heidelberg.de), Pat (Paralysed at twofold, Arrest im Zweifachstadium), Ste (Steril), Emb (Embryonal lethal), Lvl (Larval lethal), Gro (Growth defect, verzögertes Wachstum), Lva (Larvaler Arrest), EZM (Extrazelluläre Matrix)
Ergebnisse

<table>
<thead>
<tr>
<th>Cosmid</th>
<th>Gefunden</th>
<th>Frame</th>
<th>Gen</th>
<th>LG</th>
<th>Domänen (SMART)</th>
<th>Homologien/Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>F25B5.4a/c</td>
<td>1</td>
<td>in</td>
<td>ubq-1</td>
<td>III</td>
<td>Lva, Lvl, Emb</td>
<td>UBQ (Ubiquitin)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Proteinlyse, Ubiquitäre Expression</td>
</tr>
<tr>
<td>Y39A3CL.5</td>
<td>1</td>
<td>in</td>
<td>clp-4</td>
<td>III</td>
<td>WT</td>
<td>CysPC/Peptidase, Calpain</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Proteinlyse</td>
</tr>
<tr>
<td>T05E11.1</td>
<td>2</td>
<td>out</td>
<td>rps-5</td>
<td>IV</td>
<td>Lva</td>
<td>N-terminale Domäne des Nematoden Kollagen,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kollagen Triplehexil-Motiv</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EZM Komponente</td>
</tr>
<tr>
<td>B0222.6</td>
<td>1</td>
<td>in</td>
<td>col-144</td>
<td>V</td>
<td>WT</td>
<td>Collagen, Sarcomembran, Ets-Motiv</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EZM Komponente</td>
</tr>
<tr>
<td>F45B8.4</td>
<td>1</td>
<td>out</td>
<td>peg-3</td>
<td>X</td>
<td>WT</td>
<td>Zinkfinger</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Transkriptionsfaktor</td>
</tr>
<tr>
<td>ZK1055.7</td>
<td>1</td>
<td>in</td>
<td>-</td>
<td>V</td>
<td>WT</td>
<td>Medium Untereinheit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Clathrin-Adapter-Komplex</td>
</tr>
<tr>
<td>C13B9.3</td>
<td>1</td>
<td>in</td>
<td>-</td>
<td>III</td>
<td>Ste, Lvl, Emb</td>
<td>Adaptor Komplex, Medium Untereinheit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Medium Untereinheit</td>
</tr>
<tr>
<td>K12H4.2</td>
<td>1</td>
<td>out</td>
<td>-</td>
<td>III</td>
<td>WT</td>
<td>Uncharakterisiertes, konserviertes Protein</td>
</tr>
<tr>
<td>K05B2.3</td>
<td>1</td>
<td>in</td>
<td>tfa-4</td>
<td>X</td>
<td>WT</td>
<td>Filament, Filament tail</td>
</tr>
<tr>
<td>M142.2</td>
<td>1</td>
<td>out</td>
<td>cut-6</td>
<td>III</td>
<td>WT</td>
<td>Expression in Hypodermis und Kutikula</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mikrotubuli assoziiertes Protein, Mitglied der LC3, GABARAP and GATE-16-Genfamilie</td>
</tr>
<tr>
<td>C32D5.9</td>
<td>1</td>
<td>out</td>
<td>lgg-1</td>
<td>II</td>
<td>WT</td>
<td>MAP-1_LC3</td>
</tr>
<tr>
<td>ZK1098.5</td>
<td>1</td>
<td>in</td>
<td>-</td>
<td>III</td>
<td>WT</td>
<td>Homologien zu BET-3 (Vesikeltransport)</td>
</tr>
<tr>
<td>C29E4.3a</td>
<td>1</td>
<td>in</td>
<td>ran-2</td>
<td>III</td>
<td>Ste, Emb</td>
<td>LRR (Leuzinreicher "Repeat")</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Die GTPase RAN-1 aktivierendes Protein (GAP)</td>
</tr>
</tbody>
</table>

Tab.2: Überblick über die in dem Hefe-Zwei-Hybrid-Screen mit dem C-Terminus von ERM-1 als Köder isolierten Kandidaten.

Benutzte Abkürzungen: LG (Linakge Group, Chromosom), SMART (Simple Modular Architecture Research Tool, DomänenSuchprogramm: http://smart.embl-heidelberg.de), Pat (Paralyzed at twofold, Arrest im Zweifachstadium), Ste (Steril), Emb (Embryonal lethal), Lvl (Larval lethal), Lva (Larvaler Arrest), EZM (Extrazelluläre Matrix)
Ergebnisse 73

<table>
<thead>
<tr>
<th>Cosmid</th>
<th>Gen</th>
<th>RNAi-Experiment</th>
<th>DIK-Analyse</th>
<th>IF-Analyse</th>
<th>Antikörper</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>F56D12.5A</td>
<td>vig-1</td>
<td>WT</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Y55F3AM.13</td>
<td>-</td>
<td>WT</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C36b1.4</td>
<td>pas-4</td>
<td>Arrest im Pflaumestadium, Larvale Letalität (L1)</td>
<td>-</td>
<td>αERM-1, αAJM-1</td>
<td>-</td>
<td>Normale Erm-1 Lokalisation, normales AJ-Muster</td>
</tr>
<tr>
<td>W09H1.6a</td>
<td>lec-1</td>
<td>WT</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F47G4.2</td>
<td>-</td>
<td>WT</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Y37E11AL.7</td>
<td>map-1</td>
<td>WT</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F31E3.5</td>
<td>efl-3</td>
<td>Larval Letalität (L1), verzögertes Wachstum</td>
<td>-</td>
<td>αERM-1, αAJM-1</td>
<td>-</td>
<td>Normale Erm-1 Lokalisation, normales AJ-Muster</td>
</tr>
<tr>
<td>K10C2.4</td>
<td>-</td>
<td>Verzögertes Wachstum</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F57B9.9</td>
<td>pgn-46</td>
<td>WT</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C46A5.9</td>
<td>hef-1</td>
<td>WT</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F25B5.4a/c</td>
<td>ubq-1</td>
<td>Embryonale Letalität</td>
<td>Zytokinesedefekt e, Arrest im Pflaume- und Schlingestadium</td>
<td>αERM-1, αAJM-1</td>
<td>-</td>
<td>Normale ERM-1 Lokalisation, Disorganisation der AJ</td>
</tr>
<tr>
<td>Y39A3CL.5</td>
<td>clp-4</td>
<td>WT</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B0222.6</td>
<td>col-144</td>
<td>WT</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ZK1055.7</td>
<td>-</td>
<td>WT</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C13B9.3</td>
<td>-</td>
<td>Maternale Sterilität, embryonale Letalität</td>
<td>Arrest im Schlingestadium, "ventral closure" Defekt</td>
<td>αDLG-1, αIFB-2</td>
<td>-</td>
<td>Normale IFB-2 Lokalisation, normales AJ-Muster</td>
</tr>
<tr>
<td>K05B2.3</td>
<td>tia-4</td>
<td>WT</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ZK1098.5</td>
<td>-</td>
<td>WT</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C29E4.3a</td>
<td>ran-2</td>
<td>Embryonale Letalität</td>
<td>Zytokinesedefekte, Arrest im Schlingestadium</td>
<td>αERM-1, αAJM-1</td>
<td>-</td>
<td>Normale ERM-1 Lokalisation, normales AJ-Muster</td>
</tr>
</tbody>
</table>

Tab. 3: Übersicht über die durchgeführten Funktionsverlustanalysen der isolierten Kandidaten des Hefe-Zwei-Hybrid-Screens.

Benutzte Abkürzungen: DIK (Differential-Interferenz-Kontrast), IF (Immunfluoreszenz), AJ ("apical junction").
3.5 Analyse genetischer Interaktionen zwischen erm-1 und Genen, die in AJ-Integrität involviert sind

3.5.1 \textit{dlg-1, ajm-1 und let-413} zeigen keine genetische Interaktion mit \textit{erm-1}

LET-413 lokalisiert basolateral in Hypodermis- und Darmepithelzellen und sorgt während der Morphogenese (Pflaumestadien) für die Lokalisation von DLG-1 und AJM-1 (Köppen et al., 2001; Legouis et al., 2000; Segbert et al., 2004). Die Lokalisation von ERM-1 bleibt hiervon zunächst unberührt (Abb. 31A). In let-413(RNAi)-Embryonen ist in der späteren Morphogenese (Schlingestadium) eine basolaterale Expansion von apikalen und AJ-Komponenten im Darmepithel zu beobachten. Dies ist ein Hinweis dafür, daß LET-413 in den Epithelzellen eine Diffusionsgrenze von apikal und basal darstellt (Bossinger et al., 2004; McMahon et al., 2001). Auch das am apikalen Zytokortex der Darmzellen lokalisierte ERM-1 expandiert nach basolateral (Abb. 31C).

In erm-1/let-413(RNAi)-Embryonen kann während der frühen Morphogenese zunächst keine DLG-1-Lokalisation detektiert werden (Abb. 31D, D'). Diese verzögerte Lokalisation von DLG-1 und auch AJM-1 wurde ebenso in let-413(RNAi)-Embryonen beschrieben (Köppen et al., 2001; Segbert et al., 2004). Die Ausprägung des erm-1(RNAi)-Phänotypen wird jedoch zu diesem Zeitpunkt anhand der HMP-1-Lokalisation, auf die let-413 früh keinen Einfluß hat, sichtbar (Abb. 31G, G'). In späteren Stadien jedoch verschiebt sich die zuvor apikal akkumulierte AJ nach apikolateral (Abb. 31E, E', H, H') und ist schließlich, nicht zu unterscheiden von einem let-413(RNAi)-Einzelknockout, an der basolateralen Membrandomäne lokalisiert (Abb. 31F, F', I, I'). Somit führt auch der Doppelknockout von erm-1 und let-413 zur Ausprägung beider Phänotypen. Es sei aber darauf hingewiesen, daß die durch den Funktionsverlust von let-413 verursachte laterale Expansion der apikalen und AJ-Komponenten den erm-1(RNAi)-Phänotyp aufhebt.

3.6 Die Zell-Zelladhäsion im embryonalen Darmepithel von C. elegans

3.6.1 erm-1/hmp-1(RNAi)-Embryonen zeigen ein fragmentiertes Darmepithel

3.6.2 Die Rolle von LAD-1 während der Entwicklung des embryonalen Darmepithels

Da der DAC und der CCC offensichtlich gemeinsam für die Zell-Zelladhäsion der Darmepithelzellen verantwortlich sind (Segbert et al., 2004) und auch für ERM-1 und den CCC eine entsprechende redundante Funktion postuliert werden kann, stellt sich die Frage, ob DLG-1 bzw. ERM-1 zusätzliche Transmembranproteine stabilisieren,
die redundant zum CCC wirken und adhäsvie Funktionen übernehmen. In der Literatur finden sich L1CAMs ("cell adhesion molecule"), Transmembranmoleküle, die über Ca²⁺-unabhängige, homo- oder heterophile Interaktion Zell-Zelladhäsion vermitteln und zur Superfamilie der Immunglobulin(IG)-Proteine gehören (Hutter et al., 2000; Vogel et al., 2003). Sie können sowohl mit ERM-Proteinen als auch mit DLG-1-Homologen wechselwirken (Dickson et al., 2002; Wei et al., 2004).

3.6.2.1 **Die Lokalisation von phosphoryliertem LAD-1 im Embryo ist abhängig von DLG-1**

Ergebnisse

gezeigt). Somit bleibt zu prüfen, ob kortikales LAD-1 von DLG-1 bzw. ERM-1 abhängig ist.

LAD-1 besitzt am C-Terminus ein konserviertes PDZ(PSD-95, Discs Large, ZO-1)-Bindemotiv (-STEV), an das DLG-1 binden könnte. DLG-1 besitzt 3 PDZ-Domänen, die wichtig für Protein-Protein Interaktionen sind. Außerdem findet sich hier ein konserviertes RSLE-Motiv für die Bindung an FERM-1-Domänen, wie sie ERM-1 besitzt (Abb. 35E). Deshalb wurde im H2HS (s. 3.3) eine mögliche Interaktion von LAD-1 mit DLG-1 bzw. ERM-1 getestet.

Hierzu wurden jeweils die Sequenz des N-Terminus von erm-1 (s. 3.3) und ein Bereich von dlg-1, der die drei PDZ-Domänen umfaßt (freundlicherweise von M. Hoffmann zur Verfügung gestellt) „in frame“ in das „Köderplasmid“ und der zytosolische Bereich von lad-1 „in frame“ in das „Beuteplasmid“ kloniert (s. M&M). Es konnte eine Interaktion von DLG-1 und LAD-1 nachgewiesen werden, die mit Konstrukten der einzelnen PDZ-Domänen (freundlicherweise von M. Hoffmann zur Verfügung gestellt) auf die zweite PDZ-Domäne bestimmt wurde (Abb. 35A). Eine Interaktion mit ERM-1 bleibt, zumindestens im H2HS, aus.

3.6.2.2 Molekulare Analyse von lad-1(ok1244)

Im Rahmen dieser Arbeit wurde der Funktionsverlustphänotyp von lad-1 mittels der Mutante lad-1(ok1244) analysiert, da sich die Genfunktion von lad-1 über RNAi nicht herunterregulieren läßt (Chen et al., 2001). Diese Mutante wurde von dem OMRF (Oklahoma Medical Research Foundation) Knockout Projekt hergestellt und über das CGC (Caenorhabditis Genetic Center, Minneapolis) verteilt.

Auf genomischer Ebene fehlt in lad-1(ok1244) ein etwa 1200 Bp großes Fragment. Da allerdings nicht klar ist, welche Auswirkungen diese Deletion auf die gespleißte Sequenz und somit auf das Protein hat, wurde durch eine RT(Reverse Transkription)-PCR-Reaktion (s. M&M) die gespleißte Sequenz ermittelt und mit der durch den Genefinder (Favello et al., 1995) vorhergesagten Sequenz verglichen. Die lad-1-Sequenz besteht aus 14 Exons. In lad-1(ok1244) ist Exon 9 deletiert (Abb. 35B). Hierbei handelt es sich um eine “out of frame” Deletion, die das Leseraster verändert und zu einem vorzeitigen Stoppkodon führt (s. auch Anhang). Das korrelierende Protein ist somit wahrscheinlich nur 550 Bp anstatt 1144 Bp groß (vgl. Abb. 35E, F).

LAD-1 besitzt einen großen extrazellulären Bereich mit 4 Immunglobulin(IG)-ähnlichen Domänen (IGc2) und 5 Fibronektin(FN)-Domänen (FN3) und eine
Transmembrandomäne. In der intrazellulären Sequenz findet sich das konservierte Ankyrin-Bindemotiv (FIGQY). Das vorhergesagte Protein der lad-1(ok1244)-Mutante besitzt nur die ersten 4 IG-Domänen, der zytosolische Bereich fehlt (Abb. 35D, F).

Um zu testen, ob lediglich ein trunkiertes Protein gebildet wird, wurden lad-1(ok1244)-Embryonen gegen LAD-1 gefärbt. Hierbei wurden 2 unterschiedliche Antikörper benutzt (freundlicherweise von L. Chen zur Verfügung gestellt). Mit dem ersten Antikörper, der die nicht-phosphorylierte Form von LAD-1 erkennt (α-LAD-1 6993), fällt die Färbung von lad-1(ok244)-Embryonen negativ aus (Abb. 36B). Dagegen ist mit einem Antikörper gegen die phosphorylierte Form von LAD-1 (α-LAD-1 1163) sehr wohl noch eine Expression des Proteins in der Mutante nachzuweisen (Abb. 36C). Dieses deutet darauf hin, daß in der Mutante immer noch ein Teil des LAD-1-Proteins hergestellt wird.

3.6.2.3 LAD-1 beeinflußt zusammen mit dem Cadherin-Catenin-Komplex die Integrität des Darmepithels

Um zu testen, ob LAD-1 für die Zell-Zelladhäsion im embryonalen Darmepithel verantwortlich ist, wurden lad-1(ok1244)-Embryonen mit verschiedenen molekularen Markern des Darmepithels gefärbt und auch auf genetische Interaktion mit dlg-1, erm-1 und dem CCC analysiert.

3.6.3 erm-1/dlg-1/hmp-1(RNAi)- und lad-1(ok1244)/dlg-1/hmp-1(RNAi)-Embryonen zeigen eine verstärkte Fragmentierung des embryonalen Darmepithel

Um zu prüfen, wie DLG-1, ERM-1 und LAD-1 in Zusammenhang mit dem CCC Zell-Zelladhäsion vermitteln, ist es von Interesse, die einzelnen Genfunktionen in verschiedenen Dreifachknockouts auszuschalten und nach Verstärkungen des jeweiligen Funktionsverlustphänotypen zu suchen (s. Tab.4).

Während in einem Dreifachkockout, wie in den entsprechenden Zweifachknockouts, von erm-1, dlg-1 und hmp-1 in der frühen Morphogenese keine Defekte auftreten (Kaulquappestadium, Abb. 40A), sind jedoch im Verlauf der Elongation verstärkte Zell-Zelladhäsionsdefekte zu beobachten (s. oben). Ein gleichzeitiger Funktionsverlust von lad-1, erm-1 und hmp-1 führt ebenfalls in der frühen Morphogenese zu geringen Defekten (Kommastadium, Abb. 40C) und im Verlauf der Morphogenese entsteht nur eine Fragmentierung des Darmes, die dem Phänotyp der entsprechenden Zweifachknockouts ähnelt (Abb. 40D). Im Gegensatz dazu zeigt der gleichzeitige Verlust von lad-1, dlg-1 und hmp-1 bereits ab der frühen Morphogenese (Kommastadium, Abb.40E) eine Fragmentierung des apikalen Pols.
So kann anhand dieser Ergebnisse vermutet werden, daß mehrere parallele Wege existieren, um Zell-Zelladhäsion zu vermitteln wobei der CCC eine zentrale Funktion einnimmt. Da \textit{lad-1(ok1244)/dlg-1/hmp-1(RNAi)} einen stärkeren Phänotyp hervorruft als \textit{lad-1(ok1244)/erm-1/hmp-1(RNAi)}, könnte außerdem ein gemeinsamer “pathway” von \textit{erm-1} und \textit{lad-1} (im Zusammenhang mit \textit{hmp-1}) vermutet werden (s. Diskussion).

<table>
<thead>
<tr>
<th>Funktionsverlust von</th>
<th>Zelladhäsionsverlust im Böhne/Kommastadium</th>
<th>Zelladhäsionsverlust im Pflaumestadium</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERM-1 und CCC</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>DLG-1 und CCC</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>LAD-1 und HMP-1</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>LAD-1 und HMP-2</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>LAD-1 und HMR-1</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>EGL-15 und HMP-1</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>ERM-1 und DLG-1</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>LAD-1 und DLG-1</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>LAD-1 und ERM-1</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>ERM-1, DLG-1 und HMP-1</td>
<td>−</td>
<td>++</td>
</tr>
<tr>
<td>LAD-1, ERM-1 und HMP-1</td>
<td>−</td>
<td>++</td>
</tr>
<tr>
<td>LAD-1, DLG-1 und HMP-1</td>
<td>+</td>
<td>++</td>
</tr>
</tbody>
</table>

Tab. 4: Überblick über die Zell-Zelladhäsionsverlust-Phänotypen in verschiedenen genetischen Hintergründen.
4 Diskussion

4.1 Lumenbildung und AJ-Remodelling im embryonalen Darmepithel von *C. elegans*

4.1.1 Stabilisation des apikalen F-Aktinzytokortex des Darmepithels durch ERM-1

In der Morphogenese wird ERM-1 apikal in Epithelien, wie Hypodermis, Pharynx und Darm, angereichert (Abb. 8). ERM-1 kolokalisiert deutlich mit F-Aktin und dem

ACT-5 ist das einzige Aktinprotein, welches ausschließlich im Darm exprimiert wird (MacQueen et al., 2005; Schriefer et al., 1995). In act-5(RNAi)-Embryonen kann während der späten Morphogenese eine Verminderung der Aktinreicherung im apikalen Zytokortex des Darmepithels beobachtet werden (Abb. 26). Diese ist auch in erm-1(RNAi)-Embryonen zu sehen, tritt allerdings schon in der frühen Morphogenese auf (Abb. 14). Daß der Verlust von act-5 zu einer veränderten apikalen Aktinorganisation des Darmepithels führt, konnte bereits in anderen Studien gezeigt werden. So wurde in act-5(RNAi)-Embryonen eine Reduktion der Darmmikrovilli beschrieben (MacQueen et al., 2005). Auf IF-Ebene kann im Darmepithel von act-

4.1.2 Die Ausbildung der apikalen Membrandomäne im Darmepithel führt nicht zum Remodelling der AJ

Die Morphogenese eines Lumens erfordert die Ausbildung und Expansion der apikalen Membrandomäne ([Lubarsky und Krasnow, 2003; Mostov et al., 2003; Paul und Beitel, 2005](http://www.wormbase.org)). In MDCK-Zellen konnte gezeigt werden, daß zytoplasmatische Vesikel an der Region des Zellkontakts verschmelzen und so die apikale Membran und einen luminalen Raum zwischen Zellen bilden. Auch das exkretorische System von *C. elegans* und die primären Tracheen von *Drosophila* bilden sich so aus (Beitel und Krasnow, 2000; Buechner, 2002; Vega-Salas et al., 1988). Da ebenfalls eine große Anzahl an apikalen Vesikeln in elektronenmikroskopischen Schnitten des *C. elegans* Darmepithels beobachtet wurde ([Leung et al., 1999](http://www.wormbase.org)), könnte ein entsprechender Mechanismus auch bei der Ausbildung des *C. elegans* Darmlumens postuliert werden.

4.1.3 Das Aktin-Myosinnetzwerk und die Medium-Ketten des Clathrin-Adapter-Komplex bewirken nur bedingt AJ-Remodelling

Dieser Mechanismus basiert auf der Analyse der Ausbildung des Zell-Zellkontakts in MDCK-Zellen (Adams et al., 1998). *In vivo* Videoaufnahmen mit einem GFP(Grün

4.1.4 Alternative Erklärungen für das AJ-Remodelling im Darmepithel

4.2 Die Zell-Zelladhäsion im embryonalen Darmepithel von C. elegans wird durch redundante Mechanismen vermittelt

4.2.1 ERM-1 und der Cadherin-Catenin-Komplex vermitteln Zell-Zelladhäsion im embryonalen Darmepithel

Es wurde gezeigt, daß die Lokalisation von HMP-1 von dem β-Catenin HMP-2 abhängig ist, HMP-2 wird wiederum von HMR-1 lokalisiert (Costa et al., 1998; Raich

Wie könnten ERM-1 und der CCC in Bezug auf die Zell-Zelladhäsion zusammenwirken?

Für den CCC wurde bisher nur in der Hypodermis eine Funktion beschrieben. Während des ventralen Schluß der Hypodermis wandern Hypodermiszellen aufeinander zu. Hierbei bilden sie aktinreiche Filopodien aus, die schließlich in Kontakt treten. HMP-1 bündelt Aktinfilamente in den Filopodien und stabilisiert somit die über das membranständige HMR-1 vermittelte Adhäsion der Filopodien (Costa et al., 1998; Raich et al., 1999). ERM-1 könnte an ein zusätzliches Transmembranmolekül binden, welches Zell-Zelladhäsion vermittelt. So ist Ezrin in transfizierten COS-Zellen mit ICAM1 und ICAM2 (”intercellular cell adhesion molecule”) assoziiert und in entsprechenden “binding assays” konnte eine Interaktion von Ezrin mit ICAM1 und ICAM2 nachgewiesen werden (Heiska et al., 1998). Da die Zell-Zelladhäsion im Darmepithel von *C. elegans* sehr rigide ist, kommen Defekte wahrscheinlich erst zu tragen, wenn zwei Adhäsionssysteme ausgeschaltet werden. Es kann aber auch vermutet werden, daß die Destabilisierung des apikanlen Aktinzytokortex des Darmepithels in *erm-1(RNAi)*-Embryonen dazu führt, daß die “endotube” generell geschwächt ist und erst in dieser besonderen Situation die adhäsvie Funktion des CCC im Darmepithel deutlich wird.

Es wurde schon öfters über redundante Mechanismen in Bezug auf die Zell-Zelladhäsion spekuliert (Chen et al., 2001; Costa et al., 1998; McMahon et al., 2001; Segbert et al., 2004; Simske et al., 2003). So vermittelt das Claudin-Homolog VAB-9, welches in der AJ lokalisiert, zusammen mit dem DLG-1/AJM-1-Komplex Zell-

4.2.2 LAD-1 und der Cadherin-Catenin-Komplex vermitteln Zell-Zelladhäsion im embryonalen Darmepithel

Es wurde gezeigt, daß LAD-1 für die Entwicklung und speziell für die Positionierung der sensorischen Neuronen verantwortlich ist (Sasakura et al., 2005; Wang et al., 2005; Zallen et al., 1999). L1CAMs sind hauptsächlich in neuronalen Geweben lokalisiert und Mutationen im humanen L1CAM verursachen neurologische Krankheiten, die entsprechend auch in L1CAM Knockout-Mäusen zu finden sind. In Mäusen konnten für L1CAMs aber auch neuronal-unabhängige Funktionen gezeigt werden, die die Nierenentwicklung und Fertilität beeinflussen (Cohen et al., 1998; Dahme et al., 1997; Fransen et al., 1998; Weller und Gartner, 2001).

In letzter Zeit wurde noch häufiger von neuronal-unabhängigen Funktionen von L1CAMs, auch im Bereich der Epithelzelladhäsion, berichtet. In Mutanten von dem Drosophila-L1CAM Homologen Neuroglian (Nrg) sind neben neuronalen Defekten auch Defekte in den Septate Junctions (SJ) zu beobachten. Nrg lokalisiert in den SJ der Speicheldrüsen und ist hier wichtig für die Aufrechterhaltung der Barrierefunktion der SJ, so entstehen in nrg-Mutanten Lücken zwischen den einzelnen Zellen (Genova

4.2.3 Die Phosphorylierung von LAD-1 ist abhängig von EGL-15

Rezeptor-Tyrosinkinasen (RTK), wie EGL-15, haben wichtige Funktionen für die Weiterleitung von Signalen aus der extrazellulären Umgebung in die Zelle hinein.

4.2.4 Das Zusammenspiel von ERM-1, DLG-1 und LAD-1 in Bezug auf die Zell-Zelladhäsion im embryonalen Darmepithel von C. elegans

Wie könnte ein Zusammenhang von ERM-1, DLG-1 und LAD-1 in Bezug auf die mit dem CCC vermittelte Zell-Zelladhäsion bestehen? In der Hefe kommt es zu einer Interaktion von DLG-1 und LAD-1 über die 2. PDZ-Domäne und dem PDZ-Bindemotiv (Abb.35). Dies korreliert mit den IF-Daten, wo gezeigt werden konnte, daß LAD-1 in der AJ von DLG-1 stabilisiert wird (Abb. 34). In der Hefe interagiert
ERM-1 nicht mit LAD-1, obwohl gezeigt werden konnte, daß z.B. Erzin an L1CAM \textit{in vitro} und \textit{in vivo} bindet und das entsprechende Bindemotiv konserviert ist (Cheng et al., 2005; Dickson et al., 2002). ERM-1 könnte indirekt über ein Adaptermolekül an LAD-1 binden. So können ERM-Proteine über Adapter, wie z.B. dem EBP50, an Membranproteine gekoppelt werden. EBP50 besitzt eine PDZ-Domäne, die an den C-Terminus von Transmembranproteinen binden kann (Morales et al., 2004; Reczek et al., 1997). Allerdings ist nicht auszuschließen, daß ERM-1 an ein anderes Transmembranmolekül bindet.

Der gleichzeitige Verlust der Genfunktion von \textit{erm-1}, \textit{lad-1} und \textit{hmp-1} führt zu keiner Verstärkung des fragmentierten Darmepithels. Ein verstärkter Phänotyp tritt bei den Kombinationen \textit{erm-1/dlg-1/hmp-1}(RNAi) und \textit{lad-1(ok1299)/dlg-1/hmp-1}(RNAi) auf (Abb. 40, Tab. 4). Dies könnte ein Hinweis sein, daß auch ERM-1 und LAD-1 in einem gemeinsamen “pathway”, vielleicht über den o.g. Adapter, Zell-Zelladhäsion im Darmepithel vermitteln.

\textit{Abb. 43: Schematische Darstellung der Zell-Zelladhäsionssysteme im Darmepithel von \textit{C. elegans}}

Dargestellt ist die apikolaterale Region zweier Darmzellen. Im Rahmen dieser Arbeit konnte gezeigt werden, daß es redundante Systeme für die Aufrechterhaltung der Zell-Zelladhäsion im Darmepithel von \textit{C. elegans} gibt. Der Cadherin-Catenin-Komplex (CCC), bestehend aus dem E-Cadherin HMR-1, dem β-Catenin HMP-2 und dem α-Catenin HMP-1 vermittelt mit dem L1-CAM ("cell adhesion molecule") LAD-1 Zell-Zelladhäsion. LAD-1 wird über eine direkte Interaktion mit dem MAGUK(Membran-assoziierte G\textsubscript{uan}ylatkinase)-Protein DLG-1 stabilisiert. ERM-1 gehört zur ERM(Ezrin-Radixin-Moesin)-Proteinfamilie und sorgt ebenso mit dem CCC für Zell-Zelladhäsion, wobei eine indirekte Verbindung, evtl. über das Spektrin-Aktinzytoskelett, postuliert werden kann.

So kann vermutet werden, daß die phosphorylierte bzw. die nicht-phosphorylierte Form von LAD-1 jeweils unabhängige Funktionen in Bezug auf die Zell-Zelladhäsion haben. LAD-1P wird in der AJ über DLG-1 stabilisiert und sorgt dort für Adhäsion. Es ist gezeigt worden, daß das nichtphosphorylierte LAD-1 an Ankyrin bindet (Chen et al., 2001). Ankyrine sind Adapterproteine, die z.B. LICAMs an das Spektrin-Aktinzytoskelett binden (Bennett und Chen, 2001). Auch ERM-Proteine können an das Spektrinzytoskelett geknüpft sein (Medina et al., 2002). Somit könnte ERM-1 indirekt über LAD-1 Zell-Zelladhäsion vermitteln.
5 Ausblick

Die Analyse der Zell-Zelladhäsion im Darmepithel von *C. elegans* zeigt, daß hier ein sehr redundantes System am Werk ist, bei dem der Cadherin-Catenin-Komplex zusammen mit ERM-1 und LAD-1 (L1-like adhesion) eine zentrale Rolle spielt. Es bleibt zu prüfen, ob ERM-1 neben seiner Rolle als Aktinorganisator auch direkt an ein Transmembranprotein bindet, welches an der Zell-Zelladhäsion beteiligt ist.

Da auch EGL-15, eine FGF(“fibroblast growth factor”)-Rezeptor-Tyrosinkinase, an der Zell-Zelladhäsion beteiligt ist, wird die Frage aufgeworfen, ob auch die FGF-Signaltransduktion bei der Aufrechterhaltung dieses Prozesses eine Rolle spielt. So liegt es nahe, nach potentiellen Liganden für EGL-15 zu suchen, die ebenfalls in Zell-Zelladhäsion involviert sind.
6 Resümee

7 Zusammenfassung

8 Abbildungen des Ergebnisteils

Abb. 7: ERM-1 ist das einzige ERM(Ezrin-Radixin-Moesin)-Protein in *C. elegans*.

(A) Schematische Darstellung des *erm-1* Transkript (2326 bp). Das *erm-1* Gene besteht aus 11 Exons und ist zum 5'-Ende hin SL1 ("splice leader") trans-gespleißt. Das 3'-Ende kennzeichnet sich durch 2 putative Polyadenylierungssignale, die sich "upstream" des Poly-A-Schwanzes befinden. (B) *erm-1* codiert für ein 563 AS großes Protein, welches am N-Terminus eine aus den Subdomänen F1-F3 bestehende FERM("band four one", Ezrin, Radixin, Moesin)-Domäne aufweist (rot, AS 5-298), einen mittleren α-helikalen Bereich (gelb) und einen C-terminale C-ERMAD ("ERM-assoziation-domain")-Domäne mit Aktinbindesequenz (die letzten 34 AS, blau). (C) Sequenzvergleiche zu humanem Ezrin ("accession number" P15311), Radixin (P35241), Moesin (P26038) und zu *Drosophila* Moesin (P46150) zeigen hohe Identität speziell in der FERM-Domäne und in der Aktinbindesequenz. Ein prolinreicher Abschnitt (PPP, Poly-Prolin-Track) ist in ERM-1 nicht zu finden. (D) Ein Alignment der C-terminalen Bereiche von *C. elegans* ERM-1, humanen und *Drosophila* Moesin (P46150) zeigen hohe Homologien in der Aktinbindesequenz, wobei auch der für die Aktivierung der ERM-Proteine (Sternchen, Position 566, 564, 558, 559 in humanem Ezrin, Moesin, Radixin und *Drosophila* Moesin) wichtige Threoninrest konverviert ist (Position 544 in ERM-1). Charakteristische Bereiche für humanes Ezrin, Radixin, Moesin und *Drosophila* Moesin sind in rot, grün, blau und gelb dargestellt. (E) Ein Northern Blot bestätigt die vorhergesagte mRNA-Sequenz von 2.3 kb.
Abb. 8: Das embryonale Expressionsmuster von ERM-1.

(A) Zuerst im Zwei-Zell-Stadium an benachbarten Zellmembranen (Verkleinerung) zu sehen, zeigt sich die ERM-1 Expression später im Kortex nahezu aller Zellen (n>18).

(B) Mit beginnender Morphogenese (Bohnestadium, n>13) akkumuliert es am apikalen Pol von Pharynx, Darm (Pfeile) und Hypodermiszellen (Sternchen).

(C) Durch Western Blot-Analyse kann im WT eine Bande bei 65 kDa detektiert werden, wobei diese in erm-1(RNAi)-Tieren kaum noch nachweisbar ist. Als Ladekontrolle dient α-Tubulin.

(D-E) Im Verlauf der Morphogenese zeigt ERM-1 eine Kolokalisation mit dem darmspezifischen Intermediärfilament IFB-2 (D, gelber Bereich, n=28), wobei es sich jedoch apikal von dem AJ-Marker AJM-1 befindet (E, n>54).

(F) Im Vergleich hierzu zeigen erm-1(RNAi)-Embryonen nahezu keine ERM-1 Färbung (n>15).

(G) ERM-1 kolokalisiert mit dem apikalen F-Aktin sowohl im apikalen Pharynx- als auch Darmzellen (I, gelber Bereich, n>18).

(A) Das Sternchen kennzeichnet eine Zelle mit ERM-1 Färbung im gesamten Cortex.

(B, E und G-I) Pfeile zeigen auf die Pharynx-Darm Übergänge bzw. auf die Darm-Hinterdarm Übergänge.

(G) Der Kreis kennzeichnet das Primordium der exkretorischen Zelle. Anterior ist links. Eichstrich 10µm.
Abb. 9: Analyse des embryonalen *erm-1(RNAi)*-Phänotypen mittels 4D-DIK-Optik (freundlicherweise von O. Bossinger zur Verfügung gestellt).

(A) *erm-1(RNAi)*-Embryonen entwickeln sich bis t=23.5min vor dem Schlüpfen wildtypisch. (B) Erst ab t=22min vor dem Schlüpfen wird eine schwache Darmlumenweitung sichtbar, die im Verlauf der Embryogenese zunimmt (C, D), hierbei sind Darmlumenverschlüsse (Pfeilköpfe) zu beobachten. (B-D) Pfeilköpfe zeigen Darmverschlüsse. Eichstrich 10μm.
Abb. 10: Analyse des larvalen *erm-1*(RNAi)-Phänotypen mittels DIK-Optik.

(A) Kurz nach dem Schlüpfen (t=5min) zeigen *erm-1*(RNAi)-Larven ein Darmlumen, welches unmerkbar geschwollen ist. (B-D) Im Verlauf der Zeit weitet sich das Darmlumen. Verschlüsse werden deutlich sichtbar (B, t=1h, Pfeil), die nachfolgend teilweise einreißen (C, t=2h, Pfeil). Letztendlich kollabiert das gesamte Darmlumen (D, t=3h, n=10).

(B-D) Pfeilköpfe zeigen Verschlüsse. Eichstrich 10µm.
Abbildungen des Ergebnisteils

Abb. 11: Analyse des larvalen *erm-1(RNAi)*-Phänotypen durch Fütterungsexperimente.

DIK-Analyse einer WT- (A) und *erm-1(RNAi)*-Larve (C, E) und Fluoreszenzaufnahmen nach Fütterung mit Luzifer Yellow (LY) von WT (B) und *erm-1(RNAi)*-Larven (D, E).

(B, D, F) Während im WT LY innerhalb kurzer Zeit (*t*≤5 min) von anterior nach posterior durch das Darmlumen diffundiert (B, *n*=6) zeigt sich in *erm-1(RNAi)*-Tieren eine Blockade der Diffusion, die über die Zeit erhalten bleibt (D, *t*=1h). Nach dem Kollabieren des Darmes (E) gelangt ein geringer Teil LY (F, *t*=3h) in den posterioren Darmbereich (Pfeil, *n*=8).

(C-F) Pfeilköpfe zeigen auf Verschlüsse. (F) Pfeilkopf zeigt auf LY im posterioren Darmbereich. Anterior ist links. Eichstrich 10 μm.
Anterior ist links. Eichstrich 10 μm.

Färbungen mit fluoreszierendem Phalloidin an WT- (A, C, E) und erm-1(RNAi)-Embryonen (B, D, F) und mit anti-α-Tubulin (Piperno und Fuller, 1985) an WT (G) und erm-1(RNAi)-Embryonen (H).(A, B) Während in frühen Zytokinesestadien keine Unterschiede in der Aktinverteilung von WT- (A, n=7) und erm-1(RNAi)-Embryonen (B, n=14) zu erkennen sind, zeigt sich in der frühen Morphogenese (Bohnestadium) ein erster Unterschied (C, D). In WT-Embryonen kommt es im Darmepithel zur apikalen Anreicherung von F-Aktin (C, n=20), die in erm-1(RNAi)-Embryonen unterbleibt (D, n=15).

Abb. 15: Der Verlust von ERM-1 führt zu einem veränderten AJ-Muster und gestörter Tubulogenese.

Abbildungen des Ergebnsteils

Abb. 16: Übersicht über die an der Aktin-Myosinkontraktion beteiligten Komponenten (modifiziert nach Piekny et al., 2002).

Die weißen Rahmen kennzeichnen die Herausvergrößerungen in (A´, B´). Eichstrich 10µm.
Abb. 18: Analyse des embryonalen let-502(RNAi)-Phänotyps I.

Abb. 19: Analyse des embryonalen let-502(RNAi)-Phänotyps II.

Abbildung des Ergebnisteils

(E) Rahmen stellt die entsprechende Herausvergrößerung in (E´) dar. (E´) Pfeilkopf zeigt auf Defekte im AJ-Muster. Anterior ist links. Eichstrich 10µm.
Abb. 23: Darmspezifische RNAi von nmy-2 und mlc-4 führt zu larvalem Arrest.

(A´, B´) Pfeilköpfe zeigen auf Darmschäden. Die weißen Umrandungen in (A, B) zeigen die entsprechenden Herausvergrößerungen in (A´, B´). Eichstrich 10 μm.

Abb. 24: Analyse des larvalen act-5(RNAi)-Phänotypen

(A´-C) Pfeilköpfe zeigen auf “Verdickungen”. Der weiße Rahmen in (A) zeigt die Herausvergrößerung in (A´). Anterior ist links. Eichstrich 10 μm.

Die schwarzen Umrandungen in (A-F) kennzeichnen die entsprechenden Herausvergrößerungen in (A'-F'). Anterior ist links. Eichstrich 10 μm.

Anterior ist links. Eichstrich 10µm.
Abbildungen des Ergebnsteils

Abb. 27. Vergleich der AJ-Struktur von WT und in Endozytose involvierte Proteine
Anterior ist links. Eichstrich 10 μm.

Abb. 28: Prinzip des Hefe-2-Hybrid (H2H) Interaktionstests.

Abb. 30: Analyse von ERM-1 in Abhängigkeit von AJM-1

Färbungen von *ajm-1(RNAi)*- (A, B) und *erm-1/ajm-1(RNAi)*-Embryonen (C) gegen ERM-1 als apikalen (A) und DLG-1 als AJ-Marker (B, C). (A'-C') stellen die dementsprechenden Herausvergrößerungen dar. Während in *ajm-1(RNAi)*-Embryonen eine normale Verteilung von ERM-1 (A, A', n=15) zu beobachten ist, tritt hier deutlich die für den Phänotyp typische, laterale Expansion von DLG-1 hervor (B, Pfeilkopf, Segbert et al., 04). In einem Doppelknockout von *erm-1* und *ajm-1* zeigt sich die Summierung beider Einzelphänotypen, d.h. der laterale Schift der DLG-1-Expression und die "verengte" AJ (C, Pfeilkopf, Pfeil, n=11).

(B', C') Pfeilköpfe zeigen auf die laterale Expansion von DLG-1, Pfeil zeigt auf "verengte" AJ. (A-C) Die schwarzen Rahmen kennzeichnen die entsprechenden Herausvergrößerungen in (A'-C'). Anterior ist links. Dorsal ist oben. Lateralansicht. Eichstrich 10 μm.
Abb. 31: Analyse von ERM-1 in Abhängigkeit von LET-413

Färbungen von let-413(RNAi) (A-C) und erm-1/let-413(RNAi)-Embryonen (D-I) gegen ERM-1 als apikalen Marker (A, C), DLG-1 (B, D-F) und HMP-1 als AJ-Marker. (A´-I´) stellen die entsprechenden Herausvergrößerungen dar. Während in der frühen Morphogenese (Kaulquappestadium) von let-413(RNAi)-Embryonen die ERM-1-Lokalisation der WT-Situation entspricht (A, A´, n=3), zeigt sich im weiteren Verlauf eine Ausdehnung nach basolateral (C, n=6), hiervon sind sämtliche apikale und apiko-laterale Proteine betroffen (Daten nicht gezeigt). (D) In erm-1/let-413(RNAi)-Embryonen (n=13) ist in Kaulquappestadium keine DLG-1-Lokalisation sichtbar, welches dem let-413(RNAi)-Phänotyp entspricht. Später gelangt DLG-1 in die AJ (Pflaumestadium, E, n=14) und zeigt ein gespottetes Muster, allerdings nicht den erwarteten erm-1(RNAi)-Phänotypen. Schließlich fällt die AJ, wie in let-413(RNAi) auf die basolaterale Membrandomäne (F, n=8). Im Vergleich dazu verbleibt in erm-1/let-413(RNAi)-Embryonen die HMP-1-Lokalisation, entsprechend erm-1(RNAi)-Embryonen; zunächst am apikalen Kortex der Darmzellen (G, n=11), wobei sich dieses Akkumulation im Verlauf der Morphogenese auflöst (H, Pflaumestadium, n=9) und die AJ schließlich nach basolateral fällt (I, n=5).

Abb. 32: Analyse von ERM-1 in Abhängigkeit von HMP-1

Abb. 33: Analyse des Aktinzytoskeletts im Darmepithel von hmp-1(RNAi)-Embryonen
Abb. 34: Die Lokalisation von LAD-1 in WT und dlg-1- bzw. erm-1(RNAi)-Embryonen

(A, B, D, F) Färbungen gegen phosphoryliertes LAD-1 (LAD-1P, rot) in WT- (A, B), dlg-1(RNAi)- (D) und erm-1(RNAi)-Embryonen (F), unphosphoryliertes LAD-1 in WT-Embryonen (C) und AJM-1 als AJ-Marker in WT- (B, grün) und dlg-1(RNAi)-Embryonen (E). (A´-F´) stellen die entsprechenden Herausvergrößerungen dar. LAD-1P lokalisiert spezifisch in der basalen Einheit der AJ des Darmepithels (A, n=20), wo es mit AJM-1 kolokalisiert (B, gelber Bereich, n=15). Nichtphosphoryliertes LAD-1 dagegen zeigt eine basolaterale Expression (C, n=7). In dlg-1(RNAi)-Embryonen zeigt LAD-1P ein gespottetes AJ-Muster (D, n=8), das auch in ajm-1(RNAi)-Embryonen zu sehen ist (E, n=21). In erm-1(RNAi)-Embryonen ist die typische apikal akkumulierte AJ zu beobachten (F, Pfeilkopf, n=5).

Abbildungen des Ergebnisteils

Beschreibung der Abb. 35 s. S. 128
Abbildungen des Ergebnisteils 128

Abb. 35: LAD-1, ein L1-CAM ("cell adhesion molecule") Homolog in C. elegans (Abb. s. S. 131).

(A) In einem direkten Hefe-Interaktionstest kann eine Wechselwirkung des zytosolischen Bereiches von LAD-1 mit der 2 PDZ-Domäne von DLG-1 nachgewiesen werden. Eine Interaktion von LAD-1 mit ERM-1 bzw. LAD-1 ohne PDZ-Bindemotiv als Negativkontrolle (STEV) mit DLG-1 unterbleibt.

(B) Schematische Darstellung des lad-1 Transkripts. lad-1 ist 3435 bp groß und besitzt 14 Exons. In lad-1(ok1244) ist das 9.Exon deletiert, wodurch es zu einem "frameshift" kommt, der zu einem vorzeitigem Stoppkodon führt. (C) lad-1 kodiert für ein 1144 As großes Protein, dessen extrazellulärer Bereich aus 4 Imunglobulin-Domänen (IG, blau) und 5 Fibronektin-Domänen (FN, gelb) besteht. Es besitzt eine Transmembrandomäne (TM, rot) und einen 92 As großen zytosolischen Bereich. (D) Im Vergleich dazu kommt es in lad-1(ok1244) nur zur Translation eines verkürzten Proteins von 550 As, dem sowohl die FN-Domänen, die TM, als auch der komplette zytosolische Bereich fehlen. (E) Sequenz des LAD-1 Proteins mit farbig gekennzeichneten Aminosäuren der entsprechenden Domänen. Kursiv dargestellt ist die konservierte FERM-Bindesequenz (RSLT), die Phosphorylierungssequenz (EDGSFIGQY) und das PDZ-Bindemotiv (STEV). (F) Sequenz des mutanten Proteins. Ab As 539 kommt es zur fehlerhaften Translation, die ein vorzeitiges Stoppkodon bewirkt, so daß nur ein trunkiertes Protein entsteht.
Abb. 36: Analyse der LAD-1 Expression in lad-1(RB1199) und egl-15(n1456).

WT- (A, C, E), egl-15(n1456)- (B) und lad-1(ok1244)-Embryonen (D, F) gefärbt gegen phosphoryliertes LAD-1P (1163) und nichtphosphoryliertes LAD-1NP (6993). Während in egl-15(n1456) die Expression von LAD-1P drastisch reduziert ist (B, n=6), entspricht sie in lad-1(ok1244) (D, n=7) einer wildtypischen Expression (C, n>15). Dagegen ist die Lokalisation des kortikalen LAD-1 in lad-1(ok1244)-Embryonen im Vergleich zum WT (C, n=6) vermindert (E, n=8).

Abb. 37: Analyse von lad-1(ok1244) in verschiedenen genetischen Hintergründen

Abb. 38: Analyse von *lad-1(ok1244)* in einem *hmr-1(RNAi)*- bzw. *hmp-2(RNAi)*-Hintergrund

Abb. 39: Analyse von egl-15(n1456)/hmp-1(RNAi)- und dlg-1/hmp-1(RNAi)-Embryonen

Abbildung 40: Analyse von Dreifachknockouts verschiedener Kombination von *lad-1(ok1244), erm-1, dlg-1 und hmp-1(RNAi)*

Färbungen gegen IFB-2 als apikalen Marker (A-F) und DLG-1 als AJ-Marker (A-F, Verkleinerungen) von *erm-1/dlg-1/hmp-1(RNAi)* (A, B), *lad-1(ok1244)/erm-1/hmp-1(RNAi)* (C, D) und *lad-1(ok1244)/dlg-1/hmp-1(RNAi)* (E, F) in verschiedenen Morphogenesezuständen. Ein Dreifachknockout von *erm-1, dlg-1 und hmp-1* zeigt in früher Morphogenese (Kaulquappenstadium) eine normale Integrität des Darmepithels (A, n=8), erst im Verlauf der Morphogenese (Pflaumestadium) wird eine sehr starke Defragmentierung sichtbar (B, n=7). In *lad-1(ok1244)/erm-1/hmp-1(RNAi)* ist ein gradueller Verlust von AJ- und apikalen Komponenten zu beobachten, der an den “normalen” Zell-Zelladhäsionsverlust-Phänotyp der Zweifachknockouts erinnert (vgl. Abb. 23, 27, 29, C, D, s. auch DLG-Färbung in Verkleinerungen, n=8). Im Gegensatz dazu zeigt sich in *lad-1(ok1244)/dlg-1/hmp-1(RNAi)* bereits in Komnastadien eine sehr stark fragmentierte IFB-2-Lokalisation (E, n=8), die im Verlauf der Morphogenese erhalten bleibt (F, n=8).

9 Literaturverzeichnis

10 Anhang-Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-...</td>
<td>Alpha-...</td>
</tr>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>Abs.</td>
<td>Abschnitt</td>
</tr>
<tr>
<td>As</td>
<td>Aminosäure</td>
</tr>
<tr>
<td>Bp</td>
<td>Basenpaare</td>
</tr>
<tr>
<td>ca.</td>
<td>circa</td>
</tr>
<tr>
<td>d.h.</td>
<td>das heißt</td>
</tr>
<tr>
<td>EtBr</td>
<td>Ethidiumbromid</td>
</tr>
<tr>
<td>h</td>
<td>Stunde</td>
</tr>
<tr>
<td>J</td>
<td>Joule</td>
</tr>
<tr>
<td>M</td>
<td>Molarität</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>OD</td>
<td>optische Dichte</td>
</tr>
<tr>
<td>o.g.</td>
<td>oben genanntes/r</td>
</tr>
<tr>
<td>PCR</td>
<td>“polymerase chain reaction”, Polymerasekettenreaktion</td>
</tr>
<tr>
<td>rpm</td>
<td>Umdrehungen pro Minute</td>
</tr>
<tr>
<td>RT</td>
<td>Raumtemperatur</td>
</tr>
<tr>
<td>s.</td>
<td>siehe</td>
</tr>
<tr>
<td>s. o.</td>
<td>siehe oben</td>
</tr>
<tr>
<td>ü. N.</td>
<td>über Nacht</td>
</tr>
<tr>
<td>V</td>
<td>Volt</td>
</tr>
<tr>
<td>vgl.</td>
<td>vergleiche</td>
</tr>
<tr>
<td>WT</td>
<td>Wildtyp</td>
</tr>
<tr>
<td>(w/v)</td>
<td>Weight per volume</td>
</tr>
<tr>
<td>z.B.</td>
<td>zum Beispiel</td>
</tr>
<tr>
<td>z.T.</td>
<td>zum Teil</td>
</tr>
</tbody>
</table>
11 Anhang-Sequenzen

11.1 Verifizierte erm-1-Sequenz

Anmerkung: Anhand von cDNA’s verifizierter ORF (“open reading frame”) von *erm-1*. Start- und Stoppkodon sind jeweils kursiv dargestellt (s. dazu Abschnitt 3.1.1).

```
ATGTCGAAAAAGCGATCAATGTGCGTACCTCGATGAGCTGAGTTC
GCTATTCAGTCGACGCAAAGAAGAACTTTTGTACAGGTTGTCAAAACCATT
GTGCTCCGAATGCTGATATTGTCGACCTGCTACATGACAAACAAGGGATTC
ACAATGACTGAAATTGACAAAGAAGTCTTGTCAGGACGTTAAGAAGCCGACT
CTTTTTTCAAAATTCCGGAGAGATGATGCGGACGAGATTATATATTGTCGAGT
CAGGATGTCATATGCTGTTTGTCTTATCTCAGAGTAAAGGAATTCTGCTGAGAT
GAGATTATTGTCCACCGGAAACCTCTGTTCTTCTTTGCTCTTACCCGATGCAAGCT
AAAAATGGAAGCTATGTTCTCAGAGACATGTCGCGGATGTTCTACTGCTGATCGT
CTGTCTCCCAACCGCTTCTCGGACAATTCAAAATTGACAGTGAGAATGGACGC
CATTATGACATGGTGGCGAGATCGTCACTGCGAACAGGAGAAAGCCTGCTTT
GAATTATTGAAATTGAACATGCTCAATCTCGGAGATGATGCTAAATTGTAATATT
CGCAGAACAAAAGGAAACTGATCTCTATCTTGGATGCTGAGATTCCG
```

11.2 Sequenzen der “in frame” Hefe-Zwei-Hybrid Screen Kandidaten

Anmerkung: Ergebnisse der Sequenzierung der im Hefe-Zwei-Hybrid Screen identifizierten Interaktionspartner von *erm-1*. Die gefundenen Gene befinden sich in dem Vektor pACTII. In rot ist die EcoRI Schnittstelle dargestellt, da die Gene mit EcoRI in den Vektor kloniert wurden. Die unterstrichenen Basen kennzeichnen das Leseraster (s. dazu Abschnitt 3.4).

```
11.2.1 Sequenzen der mit dem N-terminalen erm-1-Köderkonstrukt identifizierten Gene

F56D12.5A (vig-1):
```
GATGATGAAGATACCACCAAAAAAGAGATCTCTATGGCTTACCCATACGATGTTCCAGATTACGCTAGCTTGGGTGGTCATATGGCCATGGAGGCCCCGGGGATCC
CGAATTCCGGCCAGCCAGAGCTGCTGAGGAAAATATTGAATGTACCACCTCATTGCCCTCCCTTTTCAAAACCTAATTTATTTTATTCATCCCTTTATTGACGGGAATGAAAAAGTTTTCCCTAAAAAAAAAAAAAAAAAAAAAAAACTC

Y55F3AM.13

CGATGATGAAGATATCCACCAAAAAAGAGATCTCTATGGCTTACCCATACGATGTTCCAGATTACGCTAGCTTGGGTGGTCATATGGCCATGGAGGCCCCGGGGATCC
CGAATTCCGGCCAGCCAGAGCTGCTGAGGAAAATATTGAATGTACCACCTCATTGCCCTCCCTTTTCAAAACCTAATTTATTTTATTCATCCCTTTATTGACGGGAATGAAAAAGTTTTCCCTAAAAAAAAAAAAAAAAAAAAAAAACTC

C36B1.4 (pas-4)

AAAAAGAGATCTCTATGGCTTACCCATACGATGTTCCAGATTACGCTAGCTTGGGTGGTCATATGGCCATGGAGGCCCCGGGGATCC
CGAATTCCGGCCAGCCAGAGCTGCTGAGGAAAATATTGAATGTACCACCTCATTGCCCTCCCTTTTCAAAACCTAATTTATTTTATTCATCCCTTTATTGACGGGAATGAAAAAGTTTTCCCTAAAAAAAAAAAAAAAAAAAAAAAACTC
Anhang-Sequenzen

GAGAGATCTATGAGATGATAGATCTGAAACCCCGCAGGGTTCACTTCTACTTATACATGTTTTGCCCTCTTTATG
W09H1.6 (lec-1):
AAAAAAGAGATCTCTATGGCTTACCCCTACGATGTTCCAGATTACGCTAGCTTGGGTGGTCATATGGCCATGGAGGCCCCGGGGATCC
GAATTCGGCACAGGAAAGCCAGGCTATGCT
CTCTCTCAATCCTCTACCTGAGAAGGAGCTACTGCTACTGCTGACCGTCTTGCTACAGAT
TCGGAAGAAGACCTGACCTTGGACGTTGAGAACGGCTTTGAGAGAGGAGAGCGGACTCG
GCTACACCTTCTCCGGAAGATGAGACACTCTGTTCCACTCACCAGCGTTGATGAGAAGGACACTCCGCAAGAGATGAGGAGAGCGGAC
GAGGGGAAGAACCACATTGGAGAGAAGGAGCTGGCTTCGACTTGGCATCACC
Y37E11AL.7 (map-1):
AAAAAAGAGATCTCTATGGCTTACCCCAACGATGTTCCAGATTACGCTAGCTTGGGTGGTCATATGGCCATGGAGGCCCCGGGGATCC
GAATTCGGCACAGGAAAGCCAGGCTATGCT
CTCTCTCAATCCTCTACCTGAGAAGGAGCTACTGCTACTGCTGACCGTCTTGCTACAGAT
TCGGAAGAAGACCTGACCTTGGACGTTGAGAACGGCTTTGAGAGAGGAGAGCGGACTCG
GCTACACCTTCTCCGGAAGATGAGACACTCTGTTCCACTCACCAGCGTTGATGAGAAGGACACTCCGCAAGAGATGAGGAGAGCGGAC
GAGGGGAAGAACCACATTGGAGAGAAGGAGCTGGCTTCGACTTGGCATCACC
F47G4.2
AAAAAAGAGATCTCTATGGCTTACCCCCTACGATGTTCCAGATTACGCTAGCTTGGGTGGTCATATGGCCATGGAGGCCCCGGGGATCC
GAATTCGGCACAGGAAAGCCAGGCTATGCT
CTCTCTCAATCCTCTACCTGAGAAGGAGCTACTGCTACTGCTGACCGTCTTGCTACAGAT
TCGGAAGAAGACCTGACCTTGGACGTTGAGAACGGCTTTGAGAGAGGAGAGCGGACTCG
GCTACACCTTCTCCGGAAGATGAGACACTCTGTTCCACTCACCAGCGTTGATGAGAAGGACACTCCGCAAGAGATGAGGAGAGCGGAC
GAGGGGAAGAACCACATTGGAGAGAAGGAGCTGGCTTCGACTTGGCATCACC
F31E3.5 (eft-3):
GATGATGAAGATACCCACCAAACCCAAAAAGAGATCTCTATGGCTTACCCCCTACGATGTTCCAGATTACGCTAGCTTGGGTGGTCATATGGCCATGGAGGCCCCGGGGATCC
GAATTCGGCACAGGAAAGCCAGGCTATGCT
CTCTCTCAATCCTCTACCTGAGAAGGAGCTACTGCTACTGCTGACCGTCTTGCTACAGAT
TCGGAAGAAGACCTGACCTTGGACGTTGAGAACGGCTTTGAGAGAGGAGAGCGGACTCG
GCTACACCTTCTCCGGAAGATGAGACACTCTGTTCCACTCACCAGCGTTGATGAGAAGGACACTCCGCAAGAGATGAGGAGAGCGGAC
GAGGGGAAGAACCACATTGGAGAGAAGGAGCTGGCTTCGACTTGGCATCACC
F31E3.5 (eft-3):
GATGATGAAGATACCCACCAAACCCAAAAAGAGATCTCTATGGCTTACCCCCTACGATGTTCCAGATTACGCTAGCTTGGGTGGTCATATGGCCATGGAGGCCCCGGGGATCC
GAATTCGGCACAGGAAAGCCAGGCTATGCT
CTCTCTCAATCCTCTACCTGAGAAGGAGCTACTGCTACTGCTGACCGTCTTGCTACAGAT
TCGGAAGAAGACCTGACCTTGGACGTTGAGAACGGCTTTGAGAGAGGAGAGCGGACTCG
GCTACACCTTCTCCGGAAGATGAGACACTCTGTTCCACTCACCAGCGTTGATGAGAAGGACACTCCGCAAGAGATGAGGAGAGCGGAC
GAGGGGAAGAACCACATTGGAGAGAAGGAGCTGGCTTCGACTTGGCATCACC
F31E3.5 (eft-3):
CAGATCTCCAACGGATACACTCCAGTTCTCGATTTGCCACACCGCTCACATCGCCTGC
AAGTTCAACGCTTAAGGAAAGGTTGACCGTCTCACCCCTTAAGAGTGGTACGAC
TTCCCAAAATTCCTCAAGACCTGGAATGCTGAATGCCTGACTATCCCACAACAG
CCACCTTTGTTCTGAAATCTCCACGCACTAGGCTACCACTGCACTGGCTGCTG
GACATGACACCAACCTCGTCTGCAGGATTATGATCAAGTCCGTCGAGCTCTGAG
CAGCTTCTCAACAATCTTCTTGAGATGCTGGAATCGTCGAGCTCATCCCAACCAAG
CCACTTTGTGTTGAATCCTTCACCGACTACGCTCCACTCGGACGTTTCGCCGTTCG
GACATGAGACAAACCGTCGCTGTCGGAGTTATCAAGTCCGTTGAGAAGTCTGATGG
ATCTCTGGAAAGGTCACCAAGTCCGCCCAAAAGGCTGCACCAAAGAAGAAGTAATCT
ATCATTGTGGAGTTATCTGATGGAATTTGTTCTGAGTTATCTGATGGAATTTGTT
AGATAAATAACAAC
K10C2.4

GATGATGAAGATACCCCACCAAACCCAAAAAAAGAGATCTCTATGGCTTACCCATAC
GATGTTCCAGATTACGCTAGTTGGGTGTTCATATGCGCATGACGAGAGGCCCCCGGATC
CGAATTCGGCCACAGGTTCAAACTTGCCAAATCGGACTATGGGTTTGGCTGAAACAG
GAATTCTGCCAGGCGAGAAAAACGACAGGAGAGGAGGATGAGATTCAAGGTTCTGCA
CTCAGCTGCTTCTCTGGAAAGGTCACCAAGTCCGCCCAAAAGGCTGCACCAAAGAAG
AAGAAGTAATCTATCATTGTGGAGTTATCTGATGGAATTTGTTCTGAGTTATCTGAT
GGAATTTGTTCTGAGTTATCTGATGGAATTTGTTCTGAGTTATCTGATGGAATTTGTT
AGATAAATAACAAC

F57B9.9 (pgn-46)

GATGATGAAGATACCCCACCAAACCCAAAAAAAGAGATCTCTATGGCTTACCCATAC
GATGTTCCAGATTACGCTAGTTGGGTGTTCATATGCGCATGACGAGAGGCCCCCGGATC
CGAATTCGGCCACAGGTTCAAACTTGCCAAATCGGACTATGGGTTTGGCTGAAACAG
GAATTCTGCCAGGCGAGAAAAACGACAGGAGAGGAGGATGAGATTCAAGGTTCTGCA
CTCAGCTGCTTCTCTGGAAAGGTCACCAAGTCCGCCCAAAAGGCTGCACCAAAGAAG
AAGAAGTAATCTATCATTGTGGAGTTATCTGATGGAATTTGTTCTGAGTTATCTGAT
GGAATTTGTTCTGAGTTATCTGATGGAATTTGTTCTGAGTTATCTGATGGAATTTGTT
AGATAAATAACAAC

C46A5.9 (hcf-1)

GATGATGAAGATACCCCACCAAACCCAAAAAAAGAGATCTCTATGGCTTACCCATAC
GATGTTCCAGATTACGCTAGTTGGGTGTTCATATGCGCATGACGAGAGGCCCCCGGATC
CGAATTCGGCCACAGGTTCAAACTTGCCAAATCGGACTATGGGTTTGGCTGAAACAG
GAATTCTGCCAGGCGAGAAAAACGACAGGAGAGGAGGATGAGATTCAAGGTTCTGCA
CTCAGCTGCTTCTCTGGAAAGGTCACCAAGTCCGCCCAAAAGGCTGCACCAAAGAAG
AAGAAGTAATCTATCATTGTGGAGTTATCTGATGGAATTTGTTCTGAGTTATCTGAT
GGAATTTGTTCTGAGTTATCTGATGGAATTTGTTCTGAGTTATCTGATGGAATTTGTT
AGATAAATAACAAC

C46A5.9 (hcf-1)

GATGATGAAGATACCCCACCAAACCCAAAAAAAGAGATCTCTATGGCTTACCCATAC
GATGTTCCAGATTACGCTAGTTGGGTGTTCATATGCGCATGACGAGAGGCCCCCGGATC
CGAATTCGGCCACAGGTTCAAACTTGCCAAATCGGACTATGGGTTTGGCTGAAACAG
GAATTCTGCCAGGCGAGAAAAACGACAGGAGAGGAGGATGAGATTCAAGGTTCTGCA
CTCAGCTGCTTCTCTGGAAAGGTCACCAAGTCCGCCCAAAAGGCTGCACCAAAGAAG
AAGAAGTAATCTATCATTGTGGAGTTATCTGATGGAATTTGTTCTGAGTTATCTGAT
GGAATTTGTTCTGAGTTATCTGATGGAATTTGTTCTGAGTTATCTGATGGAATTTGTT
AGATAAATAACAAC
11.2.2 Sequenzen der mit dem C-terminalen *erm-1*-Köderkonstrukt identifizierten Gene

F25B5.4a/c (*ubq-1*)

```
ATCAATGGCTTAGGAAAAGGAGCATGGAGTGAGACTGCATCGTGCAAGACATGCGTC
CCGGGATATCCAAGTGCTCCATCATCGATTCGAATTACCAAGTCACACGAAGGCGCA
CAACTCACCTGGGAGCCTCCATCAAACACGAATATTTCTGGAAAGATAATTGAGTAC
AGCGTTTACTTGGCCGTTAAGAATCAATCTGCAAATTCGGCTGATAGTCAACTCGCT
TTTATGAGAGTTTACTGTGGACCGCAGCTGACTGCCAGTTCTACATCAACCTGGAAC
GGCTTTTGTTGATCAGACCACAACC
```

B0222.6 (*col-144*)

```
ATGATGAATCCATCCACCCCAAAACCCCAAACAAAAAGAGATCTCTATGGGCTTACCAC
ATGGTCCGATATTGCCCCTTAGGCTGATAGTCAATGCGACTGCCAATTGGCGCAAGAAC
CATGACATGGACATCCAGATCACCGTTACCCCACCAACCAAGCCACGTGTCAACCCAT
CTGCGCTCATGGCTTACGATGATGCCGAGTTCTGCTCAGAGTCTATGCTAATGGAACT
TTGAAATCTAGCCTGCTGTAAATCAATAATGCCCAGTTTTGCCGCCGAATGATGAGAT
TTTGCATGAAATCGTTGCAGTTCTACAAAAGTACAGAAGAGCTCCGTTCAAAGGGCAA
AGATGTCCTGCCAATTGGTGATCGATCTACTCACTTGGCGCCGAAGGCACCGCCCGAG
CCCTCTAACCGCCCAGTTCTTCTCGCAAAACCGCCCGATGCCCGAACTACAGTATTC
GTGAATACTAGAGAGGTTACTGTAAGATTCCGTGTACACCTGGGCAATATGTCATTG
TCCATGTACCTTTGATGCTTACGATGATGCCGAGTTCTGCTCAGAGTCTATGCTAAT
GGAACTTTGAAATCTAGCCTGCTGTAAATCAATAATGCCCAGTTTTGCCGCCGAAT
```

Anhang-Sequenzen

ATCAATGGCTTAGGAAAAGGAGCATGGAGTGAGACTGCATCGTGCAAGACATGCGTC
CCGGGATATCCAAGTGCTCCATCATCGATTCGAATTACCAAGTCACACGAAGGCGCA
CAACTCACCTGGGAGCCTCCATCAAACACGAATATTTCTGGAAAGATAATTGAGTAC
AGCGTTTACTTGGCCGTTAAGAATCAATCTGCAAATTCGGCTGATAGTCAACTCGCT
TTTATGAGAGTTTACTGTGGACCGCAGCTGACTGCCAGTTCTACATCAACCTGGAAC
GGCTTTTGTTGATCAGACCACAACC

11.2.2 Sequenzen der mit dem C-terminalen *erm-1*-Köderkonstrukt identifizierten Gene

F25B5.4a/c (ubq-1)

```
AAAAAGAGATCTCTATGGCTTACCCATACGATGTTCCAGATTACGCTAGCTTGGGTG
GTCATATGGCCATGGAGGCCCCGGGGATCCGAATTCCGGCACGAGAGATATATTGCAA
ACACGAAGCAGCTCTACAACATCTCCAAGGACGTGCCCCTGGAATTTCATGCAACGC
TCATTGGAGGATTCGATCAGACGGAATTACCCACTTCTTCTTCTAAACCCGAGCGAT
GAGCTTACTACGAGTGTTTTCAACGGAACGGAGAGAGAGAGAGAGAGAGAGAGAGAG
```

B0222.6 (col-144)

```
ATGATGAATCCATCCACCCCAAAACCCCAAACAAAAAGAGATCTCTATGGGCTTACCAC
ATGGTCCGATATTGCCCCTTAGGCTGATAGTCAATGCGACTGCCAATTGGCGCAAGAAC
CATGACATGGACATCCAGATCACCGTTACCCCACCAACCAAGCCACGTGTCAACCCAT
CTGCGCTCATGGCTTACGATGATGCCGAGTTCTGCTCAGAGTCTATGCTAATGGAACT
TTGAAATCTAGCCTGCTGTAAATCAATAATGCCCAGTTTTGCCGCCGAATGATGAGAT
TTTGCATGAAATCGTTGCAGTTCTACAAAAGTACAGAAGAGCTCCGTTCAAAGGGCAA
AGATGTCCTGCCAATTGGTGATCGATCTACTCACTTGGCGCCGAAGGCACCGCCCGAG
CCCTCTAACCGCCCAGTTCTTCTCGCAAAACCGCCCGATGCCCGAACTACAGTATTC
GTGAATACTAGAGAGGTTACTGTAAGATTCCGTGTACACCTGGGCAATATGTCATTG
TCCATGTACCTTTGATGCTTACGATGATGCCGAGTTCTGCTCAGAGTCTATGCTAAT
GGAACTTTGAAATCTAGCCTGCTGTAAATCAATAATGCCCAGTTTTGCCGCCGAAT
```

Anhang-Sequenzen

ATCAATGGCTTAGGAAAAGGAGCATGGAGTGAGACTGCATCGTGCAAGACATGCGTC
CCGGGATATCCAAGTGCTCCATCATCGATTCGAATTACCAAGTCACACGAAGGCGCA
CAACTCACCTGGGAGCCTCCATCAAACACGAATATTTCTGGAAAGATAATTGAGTAC
AGCGTTTACTTGGCCGTTAAGAATCAATCTGCAAATTCGGCTGATAGTCAACTCGCT
TTTATGAGAGTTTACTGTGGACCGCAGCTGACTGCCAGTTCTACATCAACCTGGAAC
GGCTTTTGTTGATCAGACCACAACC

11.2.2 Sequenzen der mit dem C-terminalen *erm-1*-Köderkonstrukt identifizierten Gene

F25B5.4a/c (ubq-1)

```
AAAAAGAGATCTCTATGGCTTACCCATACGATGTTCCAGATTACGCTAGCTTGGGTG
GTCATATGGCCATGGAGGCCCCGGGGATCCGAATTCCGGCACGAGAGATATATTGCAA
ACACGAAGCAGCTCTACAACATCTCCAAGGACGTGCCCCTGGAATTTCATGCAACGC
TCATTGGAGGATTCGATCAGACGGAATTACCCACTTCTTCTTCTAAACCCGAGCGAT
GAGCTTACTACGAGTGTTTTCAACGGAACGGAGAGAGAGAGAGAGAGAGAGAGAGAG
```

B0222.6 (col-144)

```
ATGATGAATCCATCCACCCCAAAACCCCAAACAAAAAGAGATCTCTATGGGCTTACCAC
ATGGTCCGATATTGCCCCTTAGGCTGATAGTCAATGCGACTGCCAATTGGCGCAAGAAC
CATGACATGGACATCCAGATCACCGTTACCCCACCAACCAAGCCACGTGTCAACCCAT
CTGCGCTCATGGCTTACGATGATGCCGAGTTCTGCTCAGAGTCTATGCTAATGGAACT
TTGAAATCTAGCCTGCTGTAAATCAATAATGCCCAGTTTTGCCGCCGAATGATGAGAT
TTTGCATGAAATCGTTGCAGTTCTACAAAAGTACAGAAGAGCTCCGTTCAAAGGGCAA
AGATGTCCTGCCAATTGGTGATCGATCTACTCACTTGGCGCCGAAGGCACCGCCCGAG
CCCTCTAACCGCCCAGTTCTTCTCGCAAAACCGCCCGATGCCCGAACTACAGTATTC
GTGAATACTAGAGAGGTTACTGTAAGATTCCGTGTACACCTGGGCAATATGTCATTG
TCCATGTACCTTTGATGCTTACGATGATGCCGAGTTCTGCTCAGAGTCTATGCTAAT
GGAACTTTGAAATCTAGCCTGCTGTAAATCAATAATGCCCAGTTTTGCCGCCGAAT
```
CCAGGACACAGGGACAACGTGGATCCGGAGCCCAAGGAGCAAGACGGAGCCAGCCAGGA
AAGCCTGGACACCTGGACACCCCGGACAAGACGAGAGACGAGCAGGCCAGACTAGGACGN
CCAGGACACGGAGCAACGTGGATCCGGAGCCCAAGGAGCAAGACGGAGCCAGCCAGGA
C13B9.3
CGATGATGAAGATACCCCACCAAACCCAAAAAAAGAGATCTCTATGGCTTACCGATGC
AGATCCTCATATGGCTTACCCATACTCCAGATGTTCCAGATTACGCTAGCTTGGGTGGT
CCACCAAGCCCTCAATGTTGATGAGATCTGGCTTCTCCTCGGAGGAAATCCCTAGCTT
ATTAGTGCTTCTTGTTGATGATGCTTCCTGGTATTTTCAGTATTTTTTTTTTTTTTT
GACAGCTCGAGAGATGCTATTTGAACGACTCTCCCTGTTTTTTTTTTTTTTTTTTTT
AGACAGCTCGAGAGATGCTATTTGAACGACTCTCCCTGTTTTTTTTTTTTTTTTTTTT
C29E4.3a (ran-2)
GAATTCCAGGACAACGTGGATCCGGAGCCCAAGGAGCAAGACGGAGCCAGCCAGGA
ZK1098.5
GAATTCCAGGACAACGTGGATCCGGAGCCCAAGGAGCAAGACGGAGCCAGCCAGGA
ZK1055.7
CGATGATGAAGATACCCCACCAAACCCAAAAAAAGAGATCTCTATGGCTTACCGATG
AGATCCTCATATGGCTTACCCATACTCCAGATGTTCCAGATTACGCTAGCTTGGGTGGT
CCACCAAGCCCTCAATGTTGATGAGATCTGGCTTCTCCTCGGAGGAAATCCCTAGCTT
ATTAGTGCTTCTTGTTGATGATGCTTCCTGGTATTTTCAGTATTTTTTTTTTTTTTT
GACAGCTCGAGAGATGCTATTTGAACGACTCTCCCTGTTTTTTTTTTTTTTTTTTTT
AGACAGCTCGAGAGATGCTATTTGAACGACTCTCCCTGTTTTTTTTTTTTTTTTTTTT
C29E4.3a (ran-2)
GAATTCCAGGACAACGTGGATCCGGAGCCCAAGGAGCAAGACGGAGCCAGCCAGGA
ZK1098.5
GAATTCCAGGACAACGTGGATCCGGAGCCCAAGGAGCAAGACGGAGCCAGCCAGGA
ZK1055.7
CGATGATGAAGATACCCCACCAAACCCAAAAAAAGAGATCTCTATGGCTTACCGATG
AGATCCTCATATGGCTTACCCATACTCCAGATGTTCCAGATTACGCTAGCTTGGGTGGT
CCACCAAGCCCTCAATGTTGATGAGATCTGGCTTCTCCTCGGAGGAAATCCCTAGCTT
ATTAGTGCTTCTTGTTGATGATGCTTCCTGGTATTTTCAGTATTTTTTTTTTTTTTT
GACAGCTCGAGAGATGCTATTTGAACGACTCTCCCTGTTTTTTTTTTTTTTTTTTTT
AGACAGCTCGAGAGATGCTATTTGAACGACTCTCCCTGTTTTTTTTTTTTTTTTTTTT

11.3 Sequenzierung von lad-1(ok1244)

Anmerkung: gespleißte Sequenz von lad-1(ok1244) (s. auch Abschnitt 3.6.2.2). In rot sind die Basen gekennzeichnet, die den Beginn der Deletion markieren. Fettgedruckt sind die Basen, die die Sequenz nach der Deletion markieren. Hierdurch wird ein “frameshift” verursacht, der zu einem vorzeitigen Stoppkodon (blau kursiv) führt. Die unterstrichenen Basen kennzeichnen das Leseraster.

11.3.1 Vorwärtssequenz

GGAATCCAGCACCACACACCCGCGTCCCATCCAGACTGAGAGAAGAAGGTTGACTACACATGA
Anhang-Sequenzen 153

CGGGAAACTGTCGAAAAATCGTGTCCTCGGAAACAATCGATGGGATTCAAAGAGATT
Danksagung:

Diese Doktorarbeit ist am Institut für Genetik der Heinrich-Heine-Universität unter Anleitung von PD Dr. Olaf Bossinger angefertigt worden. Ihm möchte ich für die Überlassung des Themas, die vielfältigen Ratschläge, die immerwährende Diskussionsbereitschaft und kritischen Anmerkungen ganz besonders in Bezug auf diese Arbeit bedanken. Dank auch dafür, daß er es mir so oft ermöglicht hat, die großartigen *C. elegans* Meetings zu besuchen.

Herzlich bedanken möchte ich mich auch bei Frau Prof. Dr. E. Knust, da sie es mir ermöglicht hat, in ihrem Institut meine Arbeit anzufertigen.

Mein Dank gilt auch allen ehemaligen und derzeitigen Mitgliedern des Instituts für die angenehme Arbeitsatmosphäre, für steten Rat und Tat und vor allem die spaßigen Institutswanderungen.

Extra Dank nochmals an Ivonne und vor allem Mic für das Korrekturlesen.

Danke für Dein Verständnis, Deine Geduld und Deine Liebe.

Bedanken möchte ich mich auch bei meinem Freundeskreis, für den Spaß, den wir stets haben.

Ein besonderer Dank gilt auch meinen Eltern, die mir mein Studium ermöglicht haben.
Erklärung:

Düsseldorf, den 25. Oktober 2005

Teile dieser Arbeit wurden bereits veröffentlicht:

