5,6-Dihydro-phenanthridinyl-5-oxyle als neuartige NO⁻-Sonden zur fluorimetrischen Detektion von Stickstoffmonoxid

I n a u g u r a I - D i s s e r t a t i o n zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf

> vorgelegt von Marc Heipke aus Düsseldorf

Düsseldorf 2005

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf

Prof. Dr. H. Weber Referent: Korreferent: Prof. Dr. U. Kuckländer

Tag der mündlichen Prüfung:10. November 2005

Die vorliegende Arbeit entstand auf Anregung und unter Anleitung von

Herrn Prof. Dr. Horst Weber

am Institut für Pharmazeutische Chemie der Heinrich-Heine-Universität Düsseldorf.

Für die Unterstützung und Förderung sowie die stete Diskussionsbereitschaft bei der Erstellung dieser Arbeit danke ich Herrn Prof. Dr. H. Weber sehr herzlich.

Herrn Prof. Dr. U. Kuckländer danke ich ebenfalls sehr herzlich für die freundliche Übernahme des Korreferats

Daniela

Inhaltsverzeichnis

Seite

1	Einleitung	1		
1.1	Chemie von Stickstoffmonoxid (NO [`])	2		
1.2	Physiologische Bedeutung von Stickstoffmonoxid (NO [`])	5		
1.3	Biosynthese von NO	7		
1.4	Therapeutische Bedeutung von NO	9		
1.5	Nachweismethoden von NO	11		
1.5.1	Biologische Verfahren			
1.5.2	Physikochemische Verfahren			
1.5.2.1	Elektrochemische Detektion mit der Mikroelektrode			
1.5.2.2	Chemilumineszenz	12		
1.5.2.3	UV/VIS-Spektroskopie	13		
1.5.2.4	ESR-Spektroskopie	15		
1.5.2.5	Fluoreszenz-Spektroskopie	17		
2	Ziel der Arbeit	22		
3	Chemisch-Allgemeiner Teil	28		
3.1	Darstellung geeigneter Phenanthridin-Derivate	29		
3.1.1	Synthese von 5,6-Dihydro-6,6-diphenylphenanthridinyl-5-oxyl 6	30		
3.1.2	Synthese von 2-tertButyl-5,6-dihydro-6,6-diphenyl-			
	phenanthridinyl-5-oxyl 16	36		
3.1.3	Untersuchung der Stabilität der 5,6-Dihydrophenanthridinyl-5-			
	oxyle 6 und 16	41		
3.1.4	Synthese von 2-tertButyl-6-(4-carboxyphenyl)-5,6-dihydro-6-			
	phenylphenanthridinyl-5-oxyl 23	42		
3.1.5	Versuchte Synthese mehrfach substituierter 6,6-Diphenyl-			
	phenanthridinyl-5-oxyle	45		
3.1.6	Versuchte Synthese von 2,4-Difluor-5,6-dihydro- 6,6-diphenyl-			
	phenanthridinyl-5-oxyl 39	51		
3.2	ESR-Spektren der Aminoxyle 6, 16 und 23	56		
3.3	Reaktion des Aminoxyls 6 mit NO	60		

I

3.3.1	Umsetzung von 6 mit NO ⁻ -Gas unter Argon	60
3.3.1.1	Zersetzung des instabilen N-Nitrosamins 50	61
3.3.1.2	Zersetzung des instabilen N-Nitrosamins 51	61
3.3.1.3	Charakerisierung der instabilen Reaktionsprodukte	62
3.3.2	Umsetzung von 6 mit NO ⁻ -Donoren unter Argon	67
3.3.2.1	Umsetzung von 6 mit verschiedenen NO ⁻ -Donoren	68
3.3.2.2	Wertung der Versuchsergebnisse	70
3.3.2.3	HPLC-Analyse der Produktgemische	73
3.3.3	Umsetzung der 6 mit NO ⁻ -Donoren im aeroben Milieu	75
3.3.4	Wertung der Versuchsergebnisse	78
3.4	Reaktionen des Aminoxyls 16 mit NO	81
3.4.1	Umsetzung von 16 mit NO ⁻ -Gas unter Argon	81
3.4.1.1	Zersetzung des instabilen Nitrosamins 57	82
3.4.1.2	Charakterisierung der stabilen Reaktionsprodukte	82
3.4.2	Umsetzung von 16 mit NO ⁻ -Donoren unter Argon	85
3.4.2.1	Qualitative Analyse der Reaktionsprodukte	85
3.4.2.2	Wertung der Versuchsergebnisse	86
3.4.2.3	Quantitative Analyse der Reaktionsprodukte	87
3.4.3	Beurteilung von 16 für die Detektion mit NO	91
4	Zusammenfassung	95
5	Experimenteller Teil	103
5.1	Verwendete Geräte	104
5.2	Abkürzungen	105
5.3	Chemikalien	107
5.4	Allgemeine Arbeitsvorschriften	109
5.5	Substanzdaten	112
5.6	HPLC-Untersuchungen	152
5.6.1	HPLC-Untersuchungen Substanz 6	152
5.6.2	HPLC-Untersuchungen Substanz 16	155
6	Literaturverzeichnis	159

<u>1 Einleitung</u>

1.1 Chemie von Stickstoffmonoxid (NO[•])

Stickstoffmonoxid ist ein farbloses, paramagnetisches Gas mit einem Schmelzpunkt bei -163,6°C und einem Siedepunkt -151,8°C¹. Das relative spezifische Gewicht beträgt 1,04. Die Dimerisierungstendenz ist gering. Der Geruch wird als streng und süßlich bei einer Geruchsschwelle von 0,3 bis 1ppm beschrieben². Zusammen mit Stickstoffdioxid und Distickstofftrioxid wird es als NO_x unter die Luftschadstoffe eingereiht. Es wurde 1784 erstmals von Priestley dargestellt, indem er elektrische Funken durch Luft schlagen ließ. Dabei reagiert in einer endothermen Reaktion Stickstoff mit Sauerstoff unter Bildung von Stickstoffmonoxid (Abbildung 1)³.

 $N_2 + O_2 \longrightarrow 2NO \implies N_2O_4 \qquad \Delta H = +43,2 \text{ kcal/mol}$

Abb. 1: Bildung von Stickstoffmonoxid

In der Natur entsteht Stickstoffmonoxid unter anderem bei starken elektrischen Entladungen wie z.B. dem Blitzschlag.

NO[•] kann unter der Aufnahme von einem Elektron in das Nitroxylat-anion übergehen, das die korrespondierende Base der hyposalpetrigen Säure darstellt, die ihrerseits zu Distickstoffmonoxid zerfällt. Bei der Oxidation von NO[•] entsteht ein Nitrosonium-ion, das mit Wasser zu salpetriger Säure weiter reagieren kann (Abbildung 2)⁴.

Abb. 2: Redoxreaktionen von NO

¹ N.N. Greenwood, A. Earnshaw, *Chemie der Elemente*, **1990**, 1. korr. Nachdruck der 1. Aufl., VCH, 569 - 571

H. Marquardt, S. Schäfer, Lehrbuch der Toxikologie, 2004, 2. Auflage, Wissenschaftliche Verlagsgesellschaft mbH Stuttgart

³ W. Trzebiatowski, *Lehrbuch der anorganischen Chemie*, **1968**, 4. ber. Auflage, Verlag der Wissenschaften, Berlin, S. 273 - 275

⁴ H. Weber, *Pharmazie in unserer Zeit*, **1999**, 3, S. 138 - 146

In Anwesenheit von molekularem Sauerstoff reagiert Stickstoffmonoxid in einer diffusionskontrollierten Reaktion zu Stickstoffdioxid, einem braunem Gas (Abbildung 3)⁵.

$$NO' + O_2 \longrightarrow O=N-O-O' \xrightarrow{NO'} [O=N-O-O-N=O] \longrightarrow 2NO_2'$$

Abb. 3: Oxidation von Stickstoffmonoxid

Bei mittleren bis hohen Konzentrationen von NO[°] kommt es zur spontanen Bildung von Stickstoffdioxid, was z. B. an der Bildung von braunen Dämpfen bei der Öffnung einer NO[°]-Gasflasche an Luft zu erkennen ist. Sinkt die Konzentrationen von NO[°] bis auf den physiologischen Wert von ca. 100 nmol/l ab, ist die Stabilität des NO[°]-Radikals ungleich größer. Da sich die biologische Halbwertzeit von NO[°] und das Quadrat der NO[°]-Konzentration bei einer Reaktion 2. Ordnung umgekehrt proportional erhalten, steigt die Halbwertzeit auf ca. 0,7h an⁶. Durch die zahlreichen Strukturen, mit denen NO[°] im physiologischen Milieu reagieren kann, beträgt die effektive biologische Halbwertszeit allerdings nur ca. 1-10 s⁶. Diese Zeit reicht aus, um durch Diffusion im Gewebe den jeweiligen Wirkort zu erreichen. Während in der Gasphase in Anwesenheit von Sauerstoff und Wasser äquivalente Mengen an Nitrit und Nitrat entstehen⁷, überwiegt in der wässrigen Phase das Nitrit, da es hier nicht zur Dimerisierung von Stickstoffdioxid kommt. Es bildet sich statt dessen Distickstofftrioxid, das mit Wasser hydrolisiert wird . (Abbildung 4)⁷.

$$N_{2}O_{4} + H_{2}O \longrightarrow NO_{2}^{-} + NO_{3}^{-} + 2H^{+}$$

$$2 NO' + 2 NO_{2}^{-} \longrightarrow 2 N_{2}O_{3}$$

$$2 N_{2}O_{3} + 2H_{2}O \longrightarrow 4 NO_{2}^{-} + 4H^{+}$$

Abb. 4: NO - Reaktionen (1)

⁵ A. Daiber, V. Ullrich, *Chemie in unserer Zeit*, **2002**, 6, S. 366 - 375

⁶ H.J. Duchstein, S. Riederer, C. Erbach, *Pharmazie in unserer Zeit*, **1999**, *4*, S. 197 - 207

S.Pfeiffer, B.Meyer, B.Hemmens, Angew. Chem., 1999, 111, S.1824 - 1844

Die Bildung von Distickstofftrioxid würde auch die Fähigkeit von NO⁻ zur Nitrosierung geeigneter Substanzen erklären.

In physiologischem Milieu ist zu beachten, dass NO selbst mit diamagnetischen organischen Zielmolekülen aufgrund seiner Radikalstabilisierung nicht oder nur langsam reagiert. Mit anderen Radikalen reagiert NO[·] nahezu diffusionskontrolliert, wie das Beispiel mit Superoxid zeigt, wobei Peroxynitrit entsteht (Abbildung 5). Diese Reaktion spielt in der Physiologie auch bei der Anwesenheit von Superoxiddismutase und der damit verbundenen Entstörung des Superoxidradikals eine Rolle, da die Reaktion zwischen NO⁻ und Superoxid dreimal schneller abläuft als die Dismutierung von Superoxid durch das Dismutase-Enzym⁶. Die Bildung von Peroxynitrit hat vor bei der unspezifischen Immunabwehr von Makrophagen allem und in pathophysiologischer Hinsicht bei chronischen Entzündungen und bei der Nitrierung von Proteinen eine Bedeutung. Auch die Reaktion mit Übergangsmetallen läuft unter der Bildung von stabilen NO⁻- Komplexen schnell ab⁷. Dies hat vor allem eine Bedeutung bei der Aktivierung der sGC durch Bildung eines Komplexes des NO[·] mit dem Porphyrin-Eisen der Häm-Untereinheit.

Abb. 5: NO - Reaktionen (2)

1.2 Physiologische Bedeutung von Stickstoffmonoxid (NO[⁻])

Bis zum Anfang der 80er- Jahre hatte Stickstoffmonoxid ausschließlich technische und toxikologische Bedeutung.

Schon vor 100 Jahren wurden organische Nitrate wie Glyceroltrinitrat zur Behandlung von Herz-Kreislauf-Erkrankungen eingesetzt, ohne dass man das therapeutisch wirksame Prinzip kannte⁸. Weitere Nitrate oder NO-abspaltende Verbindungen wie z.B. Molsidomin und Nitroprussid-Na, die sich untereinander erheblich in ihrer Pharmakokinetik, nicht aber in der Pharmakodynamik unterschieden, kamen im Laufe der Jahre hinzu. Erst 1980 fand die Arbeitsgruppe um Robert Furchgott, New York, dass ein aus dem Endothel gebildeter Stoff an der Dilatation der Gefäße beteiligt sein muss. Durch mechanische oder enzymatische Entfernung des Endothels kam es nicht mehr zu einer durch Acetylcholin ausgelösten Relaxation von glatter Gefäßmuskulatur. Man nannte den bis dato nicht bekannten Stoff, der aus den Endothelzellen stammen musste und der für eine Relaxation der umgebenden Gefäßmuskulatur verantwortlich war: endothelium derived relaxing factor (EDRF)⁹. 1987 wurde dann EDRF endgültig als Stickstoffmonoxid identifiziert¹⁰. Dabei ist zu vermuten, dass EDRF eher eine Reihe von Stickstoffmonoxid-Addukten oder -Komplexen und eben auch Stickstoffmonoxid ist und nicht nur Stickstoffmonoxid alleine¹¹. Der überwiegende Teil der Wirkungen von NO wird durch eine Aktivierung der zytosolischen Guanylatcyclase und den dadurch induzierten Anstieg von intrazellulärem cyclischem Guanosinmonophosphat (cGMP) vermittelt¹². Zelluläre und physiologische Effekte einer erhöhten cGMP-Konzentration werden durch cGMP abhängige Effektorproteine wie Proteinkinasen, Ionenkanäle oder Phosphodiesterasen vermittelt (Abbildung 6)¹³. Eine Möglichkeit, das über die Bildung von cGMP durch NO ausgelöste Signal zu regulieren, besteht im Abbau von cGMP durch Phosphodiesterasen (PDE). Dabei spielt die Phosphodiesterase 5 (PDE-5) für die Regulierung der cGMP/NO Signaltransduktion im Endothel die größte Rolle. Steht am Anfang der NO - induzierten Antwort noch die

⁸ W. Murrell, *Lancet.*, **1987**, *80*, S. 80

 ⁹ R.F. Furchgott, J.V. Zawadski, *Nature*, **1980**, *288*, 373 - 376

¹⁰ R.M.J. Palmer, A.G. Ferrige, S. Moncada, *Nature*, **1987**, 327, S. 524 - 526

¹¹ F. Murad, *Angew. Chem.*, **1999**, *111*, S. 1976 - 1989

¹² U. Förstermann, A. Mülsch, E. Böhme, R. Busse, *Circulation research*, **1986**, *58*, S. 531 - 538

 ¹³ F. Müllershausen, Dissertation Ruhr- Universität Bochum, 2003

Bildung von cGMP durch NO⁻-sensitive Guanylatcyclase, so überwiegt nach einiger Zeit der Abbau von cGMP, da die Aktivität der Phosphodiesterasen durch Bindung von cGMP sowie durch Phosphorylierung erheblich zunimmt. Der Effekt der Aktivitätssteigerung der Phosphodiesterasen hält auch noch dann an, wenn die die cGMP-Bildung auslösende NO⁻-Synthese schon längst abgeklungen ist¹⁴.

Abb. 6: NO/cGMP vermittelte Signaltransduktion modifiziert nach Lit.¹⁴

NO[•] spielt, wie mittlerweile bekannt ist, bei vielen physiologischen Prozessen eine wichtige Rolle. Im cardiovaskulären System¹⁵ ist es an der Vasodilation, der Vasoprotektion und der Antithrombose beteiligt. NO[•] fungiert als Neuromodulator¹⁶, da es im ZNS in den so genannten nitrinergen Neuronen neuronale Funktionen moduliert. Im Immun-System¹⁷ sind Makrophagen zur NO[•]-Produktion befähigt. Dies führt bei gleichzeitiger Freisetzung von Sauerstoffradikalen, und damit der Bildung von cytotoxischem Peroxynitrit, zur Abtötung von Bakterien sowie Tumorzellen.

Die pathophysiologische Wirkung von NO[•] ergibt sich vor allem durch die Reaktion mit Sauerstoffradikalen und der damit verbundenen Bildung von Peroxynitrit⁷. Daraus folgt die Nitrierung von Proteinen mit damit einhergehendem Funktionsverlust, Strangbrüche in DNA- Molekülen und die Oxidation von Häm-Proteinen. Bei überproportional hohen Konzentrationen von NO[•] kann es auch dazu kommen, dass

¹⁴ F. Müllershausen, D. Koesling, A. Friebe, *BIOspektrum*, **2003**, *9*, S. 687 - 690

⁵ L.J. Ignarro, G.M. Buga, K.S. Wood, R.E. Byrns, G. Chaudhuri, *Proc. Natl. Acad. Sci.*, **1987**, *84*, S. 9265 - 9269

¹⁶ J. Garthwaite, S.L. Charles, R. Chess-Williams, *Nature*, **1988**, 336, S. 385 - 388

¹⁷ J.R. Lancaster, J.B. Hibbs, *Proc. Natl. Acad. Sci.*, **1990**, 87, S. 1223 - 1328

NO[•] selbst als Zellgift fungiert (Vgl. Abb. 5 Seite 4). Dem septischen Schock mit einem massiven Abfall des Blutdrucks und neurodegenerative Erkrankungen werden solch hohen NO[•]- Konzentrationen angerechnet¹⁸. Selbst die Demenz vom Alzheimer-Typ soll auf einer erhöhten Expression von NO[•]-Synthasen mit der daraus folgenden NO[•]-Bildung im ZNS und der damit verbundenen Zytotoxizität beruhen¹⁹. Für ihre Arbeiten zur Entdeckung der Natur des EDRF wurden R.F. Furchgott²⁰, L. J. Ignarro²¹ und F. Murad¹⁰ 1998 mit der Verleihung des Nobelpreises für Medizin ausgezeichnet.

1.3 Biosynthese von NO

Stickstoffmonoxid wird in einer NADPH abhängigen enzymatischen Reaktion gebildet, bei der L-Arginin über N-Hydroxy-L-Arginin zu L-Citrullin umgesetzt wird²².

Abb. 7: Biosynthese von NO

Damit stellt die Synthese von Stickstoffmonoxid aus Arginin formal eine Abkürzung des Harnstoffcyclus dar. Als Katalysator für diese Reaktion fungiert die strukturell mit der NADPH-Cytochrom-P-450-Reduktase verwandte NO-Synthase (NOS).

Cofaktoren der von diesem Enzym katalysierten Reaktion, bei der 5 Elektronen übertragen werden, sind FMN, FAD, Tetrahydrobiopterin und Eisen(III)-Häm²³. Die NO-Synthase ist ein homodimeres Protein, das aus einer Redutase-Domäne und einer Oxygenase-Domäne besteht⁷.

¹⁸ H.H.H.W. Schmidt, *Med. Mo. Pharm.*, **1994**, *6*, S. 168 - 185

 ¹⁹ D.K. Lahiri, D.Chen, Y.-W. M. Farlow, G. Kotwal, A. Kanthasamy, D.K. Ingram, N.H. Greig, *Ann. N.Y. Acad. Sci.*, 2003, S. 639 - 642
 ²⁰ D.F. Fursharth, *Asymp. Cham.* 4000, 1414, S. 4000, 2000.

²⁰ R.F. Furchgott, *Angew. Chem.*, **1999**, *111*, S. 1990 - 2000

²¹ I.J. Ignarro, *Angew. Chem.*, **1999**, *111*, S. 2002 - 2013

²² Lehninger, *Biochemie*, **1997**, 3.Auflage, S. 917-919

 ²³ C.Nathan, Q.W. Xie, J. Biol. Chem., 1994, 269, S. 13725 - 13728

Abb. 8: Domänen und Cofaktoren der NO-Synthase

Elektronen werden von NADPH in der Reduktase-Domäne über FAD- und FMNredoxcarrier zur Oxygenase-Domäne transportiert. Dort reagieren sie mit dem Häm-Eisen, welches dafür sorgt, dass der Elektronentransfer vom Arginin über das N-Hydroxy-L-Arginin zur Bildung des NO⁻ führt, und mit Tetrahydrobiopterin, das einerseits als allosterischer Aktivator der NOS und andererseits als Schutzfaktor vor gleichzeitiger Superoxid-Bildung fungiert^{7,24}, um im aktiven Zentrum des Enzyms die Reaktion von Sauerstoff mit L-Arginin zu katalysieren. Als Produkte entstehen dabei NO⁻ und Citrullin. Der Elektronentransport durch die Reduktasedomäne hängt von der Anwesenheit von gebundenen Calcium/ Calmodulin ab²⁵. Von der NO-Synthase existieren 3 unterschiedlich exprimierte und regulierte Isoformen. Die Einteilung der NO-Synthasen erfolgte zuerst nach dem Zelltyp, aus dem sie erstmals isoliert wurden, in eNOS (*endothelial*), *i*NOS (zytokin *induzierbare* Makrophagen) und *n*NOS (*neuronal*)²⁶. Die aktuelle Einteilung der NO-Synthasen erfolgt zelltypunabhängig, da die NO-Synthasen auch in anderen Zelltypen gefunden wurden, in: NOS-1 (*n*NOS), NOS-2 (*i*NOS), NOS-3 (eNOS)(Abbildung 9)²⁷.

J. Vasquez-Vivar, B. Kalyanaraman, P. Martasek, *Free radical research*, **2003**, 37, S. 121 - 127

²⁵ W.K. Alderton, C. E. Cooper, *Biochem. J.*, **2001**, 357, S. 593-615

²⁶ N.Lauer, D. G. Harrison, G. Kojda, *Med. Mo. Pharm.*, **1999**, *12*, S. 382 - 387

²⁷ U.Förstermann, I.Gath, P.Schwarz, E.Closs, H.Kleinert, *Biochem. Pharmacol*, **1995**, *50*, S. 1321 - 1332

	NOS-1	NOS-2	NOS-3
Aktivierung	Calcium/Calmodulin	Calmodulin	Calcium/Calmodulin
Expression	konstitutiv, induzierbar	NF-ĸB-abhängig induzierbar(Zytokine, Endotoxine)	Konstitutiv, induzierbar (Scherstress)
Vorkommen	Neuronen, Endothel, Granulocyten	glatte Muskelzellen, Makrophagen, Kardiomyozyten	Endothel, Thrombozyten
V _{max} (µmol/mg Protein ⁻ min)	>0,3	< 1,6	0,015

Abb. 9: NO-Synthasen

Das von den NO-Synthasen gebildete NO⁻ gelangt durch Diffusion an den Wirkort. Hier kann es durch die Aktivierung der löslichen Guanylatcyclase die Signalkaskade auslösen und damit die jeweilige Wirkung entfalten (vgl. Abb. 6, Seite 6).

1.4 Therapeutische Bedeutung von NO

Aus der wichtigen Rolle, die NO[•] bei vielen physiologischen Prozessen spielt, ergibt sich die therapeutische Bedeutung von Pharmaka mit einem Einfluss auf die NO[•]/cGMP-Signalkaskade¹⁸. Dabei unterscheidet man Wirkstoffe mit verschiedenen Ansatzpunkten (Abb. 10).

Abb. 10: Beeinflussung der NO-Signaltransduktion

1) Beeinflussung der NO⁻-Synthase-Expression:

Die Expression der *i*NOS-Bildung im Zellkern wird durch Glucocorticoide und den transforming-growth-factor beeinflusst. Die Glucocorticoide hemmen die transkriptionsfördernde Eigenschaft des Transkriptionsfaktors NF-kB und damit die Bildung der *i*NOS. Dies spielt vor allem bei einer starken Bildung der *i*NOS im Verlauf entzündlicher Erkrankungen eine Rolle²⁸.

2) Beinflussung der NO⁻-Synthase-Aktivität:

Hemmstoffe der NO⁻-Synthase verhindern kompetetiv die Umsetzung von Arginin zu Citrullin unter Abspaltung von NO⁻. Als Hemmstoffe kommen Strukturanaloga von L-Arginin wie z.B. N-Methyl-L-Arginin in Frage. Hemmstoffe der NO⁻-Synthase sind indiziert bei pathologisch erhöhten NO⁻-Werten wie z.B. dem septischen Schock. Ein Nachteil dieser Hemmstoffe besteht in der mangelnden Selektivität im Hinblick auf die Isoformen der NO⁻-Synthase. Deshalb treten starke Nebenwirkungen auf wie z.B. eine deutliche Erhöhung des mittleren arteriellen Blutdrucks²⁹.

- 3) Beeinflussung der NO⁻-Wirkung:
 - NO⁻-Donoren, die in der glatten Gefäßmuskulatur durch enzymatische (Nitratester sowie Molsidomin) bzw. durch nicht- enzymatische (Nitroprussid-Na) Mechanismen NO⁻ freisetzen, werden vor allem bei der koronaren Herzkrankheit als Antianginosa eingesetzt³⁰. Sie sorgen dafür, dass die NO⁻-Signaltransduktion auch bei vermindertem NO⁻-Angebot durch Endothelschäden stattfinden kann. NO⁻-Donoren fungieren hierbei sowohl als Vasodilatoren als auch durch ihre antithrombotische Wirkung. Bei längerer Gabe zeigen sie auch antioxidative antiproliferative Wirkungen³⁰.
 - Hemmstoffe der Phosphodiesterase (PDE) wie z.B Sildenafil oder Vardenafil können ebenfalls die Effekte von NO⁻ verstärken, indem sie den Abbau des cGMP durch die Phosphodiesterase verhindern und damit die Konzentration von cGMP erhöhen. Die Folge ist eine verlängerte bzw. verstärkte Wirkung von NO⁻. Therapeutisch genutzt

²⁸ W. Eberhardt, T. Kilz, *Pharmazie in unserer Zeit*, **2003**, *4*, S. 288 - 294

²⁹ S. Endres, A. Eigler, *Der Internist*, **1997**, *38*, S. 466 - 469

³⁰ W.Forth, D.Henschler, W.Rummel, K.Starke, *Allgemeine und spezielle Pharmakologie und Toxikologie*, 7.Auflage, Spektrum Akademischer Verlag, **1998**, S. 413 - 419

werden PDE-5-Hemmstoffe zur Zeit jedoch nur zur Behandlung der erektilen Dysfunktion³¹.

1.5 Nachweismethoden für NO

Wegen der ständig ansteigenden Flut neuer Erkenntnisse zur Regulation der NO-Signaltransduktion ist das Interesse an empfindlichen und spezifischen Nachweismethoden für NO nach wie vor groß. Dabei wird heute mehr denn je auf eine zeit- und ortsaufgelöste Detektion Wert gelegt, so dass physiologische Prozesse, an denen NO beteiligt ist, besser erfasst und verfolgt werden können. Diesen Anforderungen genügen die bisher bekannten Nachweismethoden jedoch nicht oder nur unzureichend. Im Folgenden werden die wichtigsten Verfahren zur NO Detektion kurz vorgestellt.

1.5.1 Biologische Verfahren

Die heute gebräuchlichen Verfahren zur biologischen NO⁻-Detektion bedienen sich der Messung veschiedener physiologischer Effekte von NO⁻:

-Aktivierung der Guanylatcyclase³²

-Hemmung der Thrombozyten-Aggregation³³

-Dilatation an der isolierten Rattenaorta³⁴

Diese Methoden sind zwar sehr empfindlich, erfordern allerdings einen erheblichen experimentellen Aufwand. Ein großer Nachteil besteht darin, dass es sich meist um komplexe biologische Prozesse handelt, bei denen neben NO⁻ auch andere Botenstoffe oder Stickstoffspezies wie z.B. Nitroxylat beteiligt sein können.

³¹ D. P. Rotella, *Drugs of the future*, **2001**, *26*, S. 153 - 162

³² J.D. Arzt, B. Schmidt, *J. Biol. Chem.*, **2002**, 277, *21*, S. 18253 - 18256

³³ B. Furlong, A.M. Henderson, M.J. Lewis, J.A. Smith, *Br. J. Pharmacol.*, **1987**, *90*, S. 687 - 692

³⁴ J.V.d. Voorde, M. Claeys, I. Leusen, *J. Cardiovasc Pharmacol.*, **1989**, *14*, S. 55 - 61

1.5.2 Physikochemische Verfahren

1.5.2.1 Elektrochemische Detektion mit der Mikroelektrode

Mit Hilfe dieser Methode soll es möglich sein, am Ort der Entstehung NO⁻-Konzentrationen im Bereich von 0,1-1,0 μ M kontinuierlich zu messen³⁵. Das Prinzip besteht in der voltametrischen oder amperometrischen Messung der Oxidation von NO⁻ zu Nitrit, die in zwei Schritten abläuft (Abb. 11:).

$$NO^{-} \xrightarrow{-e^{-}} NO^{+}$$
$$NO^{+} + OH^{-} \longrightarrow HNO_{2}$$

Abb. 11: NO -Oxidation an der Mikroelektrode

Die Spezifität der Mikroelektrode wird durch eine NO⁻-durchlässige Membran gewährleistet, da andernfalls auch Nitrit oder andere redox-aktive Substanzen mit erfasst würden. Die Selektivität einer solchen Elektrode hängt danach ausschließlich von der Qualität der Membran ab.

1.5.2.2 Chemilumineszenz

Bei der Chemilumineszenzmessung von NO⁻ misst man die Lichtemission, die bei der Reaktion von Ozon mit NO⁻ auftritt (Abb. 12).

$$NO' + O_3 \longrightarrow NO_2^* + O_2$$

 $NO_2^* \longrightarrow NO_2 + hv$

Abb. 12: Chemilumineszenzreaktion mit Ozon

35

Im ersten Schritt der Reaktion entsteht Stickstoffdioxid in einem angeregten Zustand. Bei dem Übergang des angeregten Stickstoffdioxids in den Grundzustand kommt es zur Lichtemission im Wellenlängenbereich von 640-3000 nm. Die Intensität des emittierten Lichts ist proportional zur Konzentration des NO⁻. Die Messung der Lumineszenz wird in der Regel in der Gasphase durchgeführt, sie kann allerdings

Y. Kitamura, T. Uzawa, Anal. Chem., 2000, 72, S. 2957 - 2962

auch in Anwesenheit von Luminol in flüssiger Phase durchgeführt werden³⁶. Dabei tritt jedoch eine deutliche Minderung der Empfindlichkeit auf. Deshalb wird die Chemilumineszenz-Methode praktisch nur bei der Schadstoff-Analytik in der Luft oder in Abgasen verwendet.

1.5.2.3 UV/VIS-Spektroskopie

Gries-Reaktion

Die Gries-Reaktion ist eine indirekte Nachweismethode von NO['], da nicht NO['] selbst, sondern die Oxidationsprodukte Nitrit und Nitrat nachgewiesen werden. Das Nitrit wird direkt mit Hilfe der Azokupplung nachgewiesen³⁶, Nitrat wird zuvor mittels NADH-abhängiger Reduktase zu Nitrit reduziert.

Abb. 13: NO - Nachweis durch die Gries-Reaktion

Ein Nachteil der Gries-Reaktion besteht darin, dass das für die Diazotierung benutzte Nitrit auch aus anderen Quellen als aus NO⁻ stammen kann (z.B. durch Reduktion aus Nitrat).

Bildung von Methämoglobin

Diese Methode basiert auf der Reaktion von NO[·] mit Oxyhämoglobin unter der Bildung von Methämoglobin und Nitrat (Abb. 14)³⁶.

³⁶

M. Feelisch, J.S. Stamler, Methods in Nitric Oxide Research, 1996, John Wiley & Sons, S. 309 - 319

$$HbO_2 + NO' \longrightarrow MetHb + NO_3$$

Abb. 14 : Methämoglobinbildung

Die Konzentration des Methämoglobins wird schließlich aus der Differenz seines Absorptionsmaximums bei 401,0 nm und der Absorption bei 410,4 nm von Methämoglobin und Oxyhämoglobin (isosbestischer Punkt) bestimmt. Die Reaktion wird durch andere redoxaktive Substanzen gestört, die ebenfalls in das Redoxgleichgewicht zwischen Methämoglobin und Oxyhämoglobin eingreifen, können.

Nitroxid-Radikale (Aminoxyle)

Im Gegensatz zu den bisher besprochenen Nachweismethoden, bei denen NO⁻ nur indirekt bestimmt wird, ohne dass es integraler Bestandteil des ausgewerteten Messparameters ist, kommt es bei den folgenden Verfahren unter Umständen auch zu einem Einbau von NO in die als NO-Fänger eingesetzten Reagenzien. Nach systematischer Abwandlung verschiedener 1,2-Dihydrochinolinyl-1-oxyle³⁷ erwies sich die Carbonsäure NOXYL-1 als vorerst optimaler NO-Fänger. Bei stationären NO-Konzentrationen (>10⁻³ M) entsteht nur ein einziges Reaktionsprodukt, das photometrisch vermessen werden kann (Abb. 15).

Abb. 15: Reaktion von NOXYL-1 mit NO

Bei geringeren NO⁻-Konzentrationen (<10⁻³) reagiert NOXYL-1 jedoch uneinheitlich. Es eignet sich deshalb zwar gut zum Screening potentieller NO -Donoren aber nicht zum NO -Nachweis im physiologischen Milieu³⁸.

³⁷ A. Grzesiok, Dissertation Heinrich-Heine Universität Düsseldorf, 1994 38

H. Weber, Pharmazie in unserer Zeit, 1999, 3, S. 138 - 146

1.5.2.4 ESR-Spektoskopie

Die ESR-Spektroskopie eignet sich als spezifische Messmethode zur Detektion von paramagnetischen Stoffen (Radikale und Metallionen).

NO -Chelotropic Traps (NOCT)

Ortho-Chinodimethane reagieren schnell und vollständig mit NO⁻ zu stabilen Nitroxiden, die typische ESR-Signale aufweisen. Die Reaktion mit Stickstoffdioxid führt zu alternativen Produkten, deren ESR-Signale sich allerdings deutlich voneinander unterscheiden (Abb. 16)³⁹.

Abb. 16: Reaktion von NOCT

Der Nachteil der schlechten Löslichkeit und der mangelhaften Stabilität der ersten Chinodimethane konnte inzwischen durch die gelungene Synthese unterschiedlich funktionaler Derivate behoben werden⁴⁰.

Eisen-Nitrosyl-Komplexe

Bei der Aktivierung der Guanylatcyclase durch NO[·] kommt es zur Ausbildung eines sechsfach koordinierten Häm-Eisen-Nitrosylkomplexes¹³.

Ganz allgemein zeigen Eisen-Nitrosyl-Komplexe in Abhängigkeit von ihrer Struktur ein charakteristisches ESR-Spektrum⁴¹. Deshalb lag es nahe, die physiologische Häm-Komplexbildung auch an anderen Eisen-Komplexen zu untersuchen. Dazu dienten die relativ stabilen Dithiocarbamat-Eisen(II)-Komplexen (Abb. 17)⁴².

³⁹ H-G. Korth, K.U. Ingold, R. Sustmann, H.de Groot, H. Sies, *Angew. Chem.*, **1992**, *104*, S. 915 - 917

⁴⁰ T. Paul, M. A. Hassan, H-G. Korth, R. Sustmann, *J. Org. Chem.*, **1996**, *61*, S. 6835 - 6848

 ⁴¹ S.S. Greenberg, D.E. Wilcox, G.M. Rubanyi, *Circ. Res.*, **1990**, 67, S. 1446 - 1452
 ⁴² X. Katayama, N. Sah, M. Maada, Cham. *Bhya. Cham.* **2001**, 3, S. 655, 661

⁴² Y. Katayama, N. Soh, M. Maeda, *Chem. Phys. Chem.*, **2001**, *2*, S. 655 - 661

Abb. 17: Bildung ESR-aktiver Dithiocarbamat-NO -Komplexe

Die Vorteile des Dithiocarbamat-Eisen-Komplexes sind seine schnelle Reaktion mit NO⁻ und die geringe Reaktivität mit Superoxid. Ein Nachteil der Dithiocarbamate ist ihre Reaktivität gegenüber Nitrit oder Nitroxylat. Die Empfindlichkeit der Eisen-Dithiocarbamat-NO⁻-Komplexe hinsichtlich der ESR-Signalintensität ist relativ gering, so dass die Anwendung dieser Methode auf Sonderfälle beschränkt bleibt.

Zur Verbesserung der Nachweisgrenze für NO wurden entsprechende Dithiocarbamat-Komplexe mit Tempol entwickelt, die zunächst ESR-inaktiv sind und nach dem NO Kontakt das Tempo-Radikal mit hoher ESR-Aktivität freisetzen.

Dies entspricht dem "switching"-Mechanismus bei der Aktivierung der Guanylatcyclase und hat seine Ursache in der hohen Affinität von NO[·] zum komplex gebundenen Eisen (Abb. 18)⁴².

Abb. 18: NO - Reaktion von Dithiocarbamat-Tempol

Bis-Aminoxyl-Radikale

Als weitere ESR-spektroskopische Nachweismethode können Bis-Aminoxyl-Radikale genutzt werden. Bei der Reaktion dieser Diradikale mit NO[•] entstehen Monoradikale die sich in ihrem ESR-Spektrum signifikant vom diradikalischen edukt unterscheiden (Abb. 19)⁴³.

Abb. 19: NO -Reaktion von Bis-Aminoxyl-Radikalen

Insgesamt werden nach der Reaktion 4 Substanzen isoliert, die unabhängig vom N-Substituenten ein 3-typisches Triplett im ESR-Spektrum zeigen. Ein Nachteil dieser Spintraps für die in-vivo Detektion von NO⁻ ist, dass der Nachweis in Anwesenheit von reduzierenden Substanzen wie z.B. Ascorbinsäure gestört wird⁴³.

1.5.2.5 Fluoreszenz-Spektroskopie

Der Nachweis von NO[•] mittels Fluoreszenzspektroskopie bietet vor allem den Vorteil einer hohen Empfindlichkeit, so dass die Nachweisgrenze deutlich gesenkt werden kann. Im Gegensatz zur ESR-Spektroskopie lässt sie sich mit relativ geringem apparativem Aufwand durchführen.

Diaminonaphthaline (DAN)

Aromatische vicinale Diamine reagieren unter neutralen Bedingungen mit NO⁻ in Anwesenheit von Sauerstoff zu den korrespondierenden fluoreszierenden Triazolringsystemen⁴⁴. Durch elegante Funktionalisierung wird dafür gesorgt, dass die Reagenzien in die Zellen gelangen und dort enzymatisch gespalten werden, so dass ihr Rücktransport verhindert wird (Abb. 20)⁴⁴.

⁴³ L. Marx, A. Rassat, *Angew. Chem.*, **2000**, 112, S. 4668 - 4670

H. Kojima, K. Sakurai, K. Kikuchi, Biol. Pharm. Bull., 1997, 20, S. 1229 - 1232

Abb. 20: NO - Nachweis mittels DAN

18

Nachteilig wirkt sich hier die erforderliche energiereiche Anregung im UV-Bereich aus, die zur Zellschädigung und zu einer starken Autofluoreszenz zellulärer Bestandteile führt.

Diaminofluoresceine (DAF)

Zur Überwindung dieser Probleme wurden Diaminofluoreszeine (DAF) entwickelt, die nach dem gleichen Prinzip arbeiten, jedoch im sichtbaren Wellenlängenbereich angeregt werden können und eine sehr hohe Quantenausbeute aufweisen (Abb. 21).

Abb. 21: NO -Nachweis mittels DAF

Die Nachweisgrenze liegt bei 5 nM und die Quantenausbeute des Triazols 100-fach über der Ausgangssubstanz⁴⁵. Ein Nachteil ergibt sich aus der Tatsache, das diese Art der Nachweisreaktion wie schon bei DAN-Derivaten NO⁻ nicht direkt, sondern nur

45

das Folgeprodukt Distickstofftrioxid bzw. Nitrit erfasst, das unter aeroben Bedingungen entsteht⁴⁵. Weitere Nachteile sind die pH-Abhängigkeit der Messung sowie die instabile Fluoreszenzintensität⁴⁶

Fluoreszierende Nitrosylkomplexe

Aufbauend auf den Erfahrungen mit den Tempol-Dithiocarbamat-Komplexen und zur Erhöhung der Empfindlichkeit des NO⁻-Nachweises wurden stark fuoreszierende Derivate hergestellt, bei denen das Tempol an einen Fluorophor (z.B. Acridin) gekoppelt ist. Sobald NO⁻ an den Komplex bindet, wird das Acridin-Tempo vom Komplex verdrängt, so dass die Fluoreszenz aufgrund eines intramolekularen Quenching des nun vorliegenden freien Radikals gemindert wird⁴². Die Abnahme der gemessenen Fluoreszenz ist daher direkt proportional zur freigesetzten NO⁻-Konzentration.

Abb. 22 NO -Nachweis mittels fluoreszierender DTC-Komplexe

Fluoreszierende NO[·] Chelotropic Traps (FNOCT)

FNOCT's sind eine Weiterentwicklung der NO⁻-Chelotropic-Traps (vgl. Seite 15). Durch ein molekulares Design wird dafür gesorgt, dass das Reagenz die Zellmembran passiert. Die nach enzymatischer Hydrolyse entstehenden polaren Produkte reichern sich im Zellinneren an und reagieren dort spontan mit NO⁻ zu den stabilen Nitroxid-Radikalen. Diese zeigen allerdings eine relativ geringe Fluoreszenz,

⁴⁶ H. Kojima, Y. Urano, K. Kikuchi, *Angew. Chem.*, **1999**, *111*, 3419 - 3423

die erst nach einiger Verzögerung aufgeht, wenn durch enzymatische Reduktion die entsprechenden Hydroxylamin-Derivate gebildet werden. Die Reduktion kann durch Zugabe von Ascorbinsäure beschleunigt werden (Abb. 23)⁴⁷

Abb. 23: FNOCT + NO

Fluoreszierende Nitroxid-Radikale

Diese Methode basiert auf dem im Arbeitskreis Weber³⁷ entwickelten NO⁻-Fänger NOXYL-1 (vergl. Seite 14). Dieser lässt sich über seine Säurefunktion mit unterschiedlichen Fluorophoren derivatisieren, so dass radikalische Mess-Sonden entstehen. Die Fluoreszenz derartiger Nitroxid-Radikale ist gering, da es zu einem intramolekularen Quenching kommt. Die besten Resultate wurden mit einem "Butterflyaminocumarin"(BAC) erzielt, das als schwach fluoreszierendes Reagenz ausreichende Stabilität aufweist und nach Kontakt mit NO[·] zu unterschiedlichen Produkten abreagiert, deren Art und Menge von der stationären NO-Konzentration abhängen. In dem physiologisch interessanten Bereich <10⁻⁵ mol/l entsteht fast stark fluoreszierendes Derivat, ausschließlich ein nicht nitriertes, das zur Bestimmung der NO-Konzentration und zur Visualisierung NO-produzierender Bereiche in zellen oder Geweben verwendet werden kann (Abb. 24)⁴⁸.

⁴⁷ P.Meineke, U. Rauen, H. de Groot, H-G. Korth, R. Sustmann, J.Biol. Chem., 2000, 381, S. 575 - 582 48

S. Pesch, Dissertation Heinrich-Heine-Universität Düsseldorf, 2004

Abb. 24: NO -Nachweis mittels NOXYL-BAC

2 Ziel der Arbeit

2 Ziel der Arbeit

Wie aus der Einleitung hervorgeht, kommt dem Botenstoff Stickstoffmonoxid (NO[•]) große Bedeutung für die Biochemie, Physiologie und Pathophysiologie zu. Neben den überwiegend zytoprotektiven Effekten des genuinen NO[•] zeigen dessen Folgeprodukte jedoch auch zytotoxische Effekte. Hier sind insbesondere die reaktiven Nitrogen-Spezies (RNS) zu nennen, die sich durch Reaktion von NO[•] mit Sauerstoff und reaktiven Sauerstoff-Spezies (ROS) bilden können⁶.

Deshalb besteht im Bereich der molekularen Pharmakologie und der Zellbiologie großes Interesse an einem möglichst direkten orts- und zeitaufgelösten Nachweis für NO neben RNS und ROS. Wegen der geringen biologischen Halbwertszeit von NO sollte die Detektion schnell, spezifisch und mit hoher Empfindlichkeit , jedoch mit möglichst geringem apparativem Aufwand möglich sein.

Sieht man von immunologischen oder radioaktiven Methoden ab, so genügen solchen Anforderungen nach dem Stand der Forschung nur noch fluorimetrische Verfahren. Mit leistungsfähigen Fluoreszenz-Mikroskopen und konfokalen Techniken⁴⁹ ist es heute möglich, im biologischen Gewebe, in Zellkulturen oder sogar in einzelnen Zellen eine fluorimetrische Detektion effizient durchzuführen.

In einer vorangegangenen Arbeit wurde mit begrenztem Erfolg versucht, die Reaktivität eines stabilen, radikalischen NO⁻-Fängers (NOXYL) mit den spektroskopischen Eigenschaften eines potenten Fluorophors zu vereinen. Beide Partialstrukturen wurden über eine Amidbrücke verknüpft, so dass verschiedene Mess-Sonden resultierten, die den Anforderungen grundsätzlich gerecht wurden.

⁴⁹

A. Lamprecht, U. Schäfer, C.M. Lehr, Pharm. Ztg., 2002, 4, S. 34 - 39

Abb. 25: Produktspektrum der Reaktion von A mit NO

Die besten Ergebnisse wurden mit dem BAC-Derivat **A** erzielt, das nach der Exposition mit NO⁻ in Abhängigkeit von den experimentellen Bedingungen die Produkte **B** und **C** ergab. Dabei entstanden unter anaeroben Bedingungen im mittleren Konzentrationsbereich (NO⁻> 10⁻⁴ mol/l) stets beide Produkte nebeneinander. Bei geringerem NO⁻-Angebot (NO⁻<10⁻⁶ mol/l) vermindert sich der Anteil von **B** zugunsten von **C**, das noch in einer Konzentration von 5*10⁻⁹ mol/l detektiert werden konnte (HPLC, Fluoreszenzdetektor).

Ein Nachteil dieser neuen NO⁻-Detektoren ergab sich aus der Tatsache, dass die Quantenausbeute der Fluoreszenz nach der NO⁻-Reaktion nicht optimal war. So zeigt das radikalische Edukt selbst noch eine überraschend hohe Eigenfluoreszenz. Dagegen führt der Nitrosubstituent wie erwartet zu einem starken Quenching. Das nicht nitrierte Produkt **C** weist zwar die erwünschte hohe Quantenausbeute auf, die allerdings im Vergleich zum Edukt **A** nur um den Faktor 6 erhöht ist (Abb. 25). Deshalb führt die NO⁻-Detektion mit diesem Reagenz im positiven Fall insgesamt nur zu einer relativ geringen Fluoreszenzsteigerung, die insbesondere in Anwesenheit von überschüssigem Edukt nur schlecht detektiert werden kann.

Für das Ausmaß der Quenching-Effekte wurden zwei unterschiedliche Ursachen diskutiert:

- Der Förster-Transfer wirkt als Resonanz-Energie-Transfer vom angeregten Donor auf einen Akzeptor im Grundzustand bei spektraler Überlappung auf eine Distanz <80Å^{50,51}.
- Der Dexter-Energietransfer kann als Redox-Mechanismus zwischen angeregtem Donor und Akzeptor im Grundzustand durch Annäherung zweier Chromophore und Überlappung der Orbitale auf eine Distanz <15Å zustande kommen⁵².

Es wurde gezeigt, dass beide Mechanismen zu den beobachteten Effekten bei **A** und **B** beitragen können, da sowohl die räumlichen als auch die elektronischen Voraussetzungen vorliegen.

Nach diesen Überlegungen sollte eine räumliche Annäherung des für das Quenching verantwortlichen stabilen Radikals an den Fluorophor zu einem größeren fluoreszenzmindernden Effekt führen.

Als ein Hinweis für die Gültigkeit dieser Überlegungen könnte die im Vergleich zu **A** verminderte Fluoreszenz-Quantenausbeute von **D** und **E** herangezogen werden, bei denen die jeweilige radikalische Aminoxyl-Struktur einen deutlich geringeren Abstand zum Cumarin-Fluorophor aufweist (Abb. 26).

Abb. 26: Fluoreszenz-Quantenausbeute radikalischer Cumarinamide⁴⁸

⁵⁰ J.R. Lankowicz, *Prinziples of Fluorescence Spectroskopie*, **1999**, Sec. Ed., Kluwer Academic/Plenum Publisher, New York, Kap. 9.1.A

⁵¹ R. Winter, F. Noll, *Meth. d. Biophysikal Chem.*, B. G. Teubner, Stuttgart, **1998**, Kapitel V.5, S. 296 - 344

⁵² C. A. M. Seidel, A. Schulz, M. Sauer, *J. Phys. Chem.*, **1996**, *100*, S. 5541 - 5553

Eine maximale Fluoreszenzminderung sollte dann eintreten, wenn der Quenching-Effekt des Aminoxyl-Radikals direkt im Fluorophor wirksam werden könnte, wenn also der Fluorophor selbst Radikalcharakter besitzt.

Es lag deshalb nahe, die als NO⁻-Detektor bewährte 1,2-Dihydrochinolinyl-1-oxyl-Struktur der NOXYL-Derivate durch eine geeignete Benz-Anellierung zu erweitern, so dass entsprechende Phenanthridine resultieren (Abb. 27).

Abb. 27: Erweiterung der NOXYL-Struktur zum Phenanthridinyl-5-oxyl

Phenanthridin selbst weist wie auch andere Heteroarene eine intensive blaue Fluoreszenz in protischem Medien auf⁵³. 2-Aminodiphenyl zeigt ebenfalls eine Fluoreszenz⁵⁴. Da 5,6-Dihydrophenanthridine sowohl in festem als auch in solvatisiertem Zustand eine blaue Fluoreszenz aufweisen⁵⁵, war zu erwarten, dass auch 6,6-disubstituierte 5,6-Dihydrophenanthridine eine für den angestrebten Zweck ausreichende Fluoreszenz aufweisen.

Deshalb sollte in der vorliegenden Arbeit versucht werden, geeignete Aminoxyle des 5,6-Dihydrophenanthridins herzustellen und auf ihre Fähigkeit zu untersuchen, ob sie als stabile Reagenzien zur fluorimetrischen Detektion von Stickstoffmonoxid tauglich sind.

⁵³ Houben-Weyl, *Methoden der organischen Chemie.*, 4. Aufl., Heteroarene II, Band E7b, **1992**, S. 157 - 204

²⁴ M. Jakovljevic, J. Zynger, R. H. Bishara, *Anal. Chem.*, **1975**, *12*, S. 2045 - 2046

⁵⁵ Rodd's, Chemistry of Carbon Compounds second Edition, Vol IV, Part 6, Heterocyclic Compounds, S. 57 - 59

Abb. 28: 5,6-Dihydro-phenanthridinyl-5-oxyl-Derivate G als NO -Detektoren

Dazu war im Einzelnen erforderlich:

- Darstellung und analytische Charakterisierung geeigneter Phenanthridin-Derivate (F und G)
- > Untersuchungen zur Stabilität der 5,6-Dihydrophenanthridinyl-5-oxyle G
- Durchführung der NO-Reaktion mit den Aminoxylen G unter variierten experimentellen Bedingungen
- Isolierung und Strukturaufklärung der Reaktionsprodukte aus der NO⁻-Reaktion von G
- > Qualitative und quantitative Analytik der Reaktionsprodukte
- > Beurteilung der neuen NO⁻-Detektoren

3 Chemisch-Allgemeiner Teil
3.1 Darstellung geeigneter Phenanthridin-Derivate

Aus dem Ziel der Arbeit ergab sich die Notwendigkeit, geeignete 5,6-Dihydrophenanthridinyl-5-oxyle zugänglich zu machen, die als potentielle NO⁻-Detektoren zur fluorimetrischen Analyse von Stickstoffmonoxid eingesetzt werden sollten (Abb. 29).

Abb. 29: Grundstruktur der 5,6-Dihydro-phenanthridinyl-5-oxyle

Aus den früheren Arbeiten von Grzesiok³⁷ war bekannt, dass die heterocyclischen Aminoxyl-Radikale nur dann ausreichend stabil sind, wenn die α-Position des Aminoxyls mit zwei Aryl-Substituenten besetzt ist. Daher kamen nur solche Verfahren zur Darstellung der gewünschten Verbindungen in Betracht, welche die Einführung derartiger Substituenten auf einer geeigneten Stufe der Synthesesequenz erlauben.

Eine Literaturrecherche ergab zwei verschiedene Möglichkeiten, dieses Ziel auf einfache Art zu erreichen:

Abb. 30: Aufbau des Phenanthridin-Grundgerüstes

a) Die Cyclisierung von 2-N-Benzoylaminobiphenyl-Derivaten mit Phosphoroxychlorid in einer Art Bischler-Napieralski-Reaktion⁵³. Ein Vorteil

dieses Verfahrens besteht darin, dass dabei gleich die 5-Phenylphenanthridine entstehen. Nachteilig wirkt sich jedoch aus, dass die gezielte Einführung von Substituenten R nicht einfach ist, da nur das unsubstituierte 2-Aminobiphenyl kommerziell verfügbar ist und die spätere Einführung von geeigneten Substituenten am fertigen Heterocyclus problematisch ist⁵⁶.

b) Eine Alternative zum Aufbau des Phenanthridin-Systems besteht in der intramolekularen Arylierung von Iminen des 2-Chlorbenzaldehyds mit Anilin-Derivaten über reaktive Arin-Zwischenstufen⁵³. Diese Reaktion erfordert nicht nur einen erheblichen präparativen Aufwand, da sie mit Kaliumamid in flüssigem Ammoniak durchgeführt werden muss, sondern liefert auch relativ geringe Ausbeuten. Zudem enthalten die so hergestellten Heterocyclen keinen 5-Phenyl-Substituenten, der allerdings auf einer späteren Stufe eingeführt werden kann. Der große Vorteil dieser Methode scheint jedoch darin zu bestehen, dass über die geschickte Auswahl entsprechender Anilin-Vorstufen (Abb. 31) die gewünschten, im Ring A substituierten Phenanthridine zugänglich sein sollten.

Abb. 31: Synthese von N-Phenyl-benzylimin-Derivaten

3.1.1 Synthese von 5,6-Dihydro-6,6-diphenylphenanthridinyl-5-oxyl <u>6</u>

Als erste Zielverbindung sollte das auf Seite 27 erwähnte Radikal **G** (R_1 =H) dargestellt werden, um damit die grundsätzliche Eignung der entsprechenden Aminoxyle für die NO⁻-Detektion zu überprüfen.

Zum einen wurde die Methode **a** angewendet, bei der es nach der Schotten-Baumann-Variante in einem ersten Schritt zur Bildung des Benzamids **3** kommt (Abb. 32)⁵⁷. Die Substanz **3** wurde in einer Ausbeute von ca. 60% in analysenreiner Form erhalten.

K. R. Freter, K. G. Grözinger, J. Heterocycl. Chem., 1988, 25, S. 1701
Houbon Woul, Methoden der orranischen Chemie 4, Aufl. Stickstoff V

Houben-Weyl, Methoden der organischen Chemie, 4. Aufl., Stickstoff-Verbindungen II/III, Band 11/2, 1958, S. 10 - 14

Abb. 32 Synthese des Amids 3

Charakterisierung des Benzamids 3

Das Massenspektrum wies einen signifikanten Molpeak bei m/z 273 auf, sowie intensive Fragmentbruchstücke bei m/z 167 und m/z 105 was auf eine Abspaltung eines Benzoylfragments schließen läst.

Im NMR-Spektrum von **3** sieht man wie erwartet bei 9,8 ppm das mit D₂O austauschbare NH-Signal. Das Dublett bei 7,8 ppm kann den 2 ortho-ständigen Protonen des Benzoyl-Aromaten zugeordnet werden. Alle anderen Protonen erscheinen als komplexes Multiplett bei 7,4 ppm.

Das Infrarotspektrum zeigt die breite NH-Valenzschwinung bei 3423 cm⁻¹ und die beiden Amidbanden bei 1643 und 1522 cm⁻¹.

Die Substanz **3** wurde anschließend mit Phosphoroxychlorid zum Phenanthridin **4** kondensiert⁵⁸(Abb. 33). Nach der Hydrolyse mit Eiswasser fällt **4** auf Zusatz von Ammoniak aus. Nach üblicher Aufarbeitung erhält man das 6-Phenylphenanthridin **4** als farblose Kristalle aus verdünntem Alkohol in einer Ausbeute von 35%.

Abb. 33: Kondensation des Amids 3 zum Phenanthridin 4

Charakterisierung des Phenanthridins 4

Im Massenspektrum stellt der Molpeak bei m/z 255 den Basispeak dar.

Im ¹H-NMR-Spektrum lassen sich mit Hilfe von Literaturangaben⁵⁹ und durch Vergleich mit anderen Phenanthridinen, die im Laufe der Arbeit hergestellt wurden, die H-Atome an Position 1 und 10, sowie die beiden Dubletts der Protonen H-4 und H-7 und das Triplett von H-9 zuordnen. Alle anderen Protonen-Signale erscheinen in Form zweier komplexer Multipletts (Abb. 34).

Abb. 34: 200 MHz ¹H-NMR-Spektrum von 4 in DMSO-d₆

Die Substanz **4** weist als Phenanthridin-Derivat vor allem in protischen Lösungsmitteln wie Methanol eine intensive Fluoreszenz auf (Abb. 35). Bei einer Anregungswellenlänge von 300 nm beobachtet man ein Fluoreszenzmaximum bei 375 nm.

M. Black, J.I.G. Cadogan, R. Leardini, J. Chem. Soc. Perk. Trans., 1998, 1, S. 1825 - 1832

59

Abb. 35: UV-Absorptions- und Fluoreszenzspektrum von 4 (in Methanol)

Die Substanz **4** wird mit überschüssiger 3-Chlorperbenzoesäure bei 0°C in Dichlormethan zum N-oxid **5** oxidiert (Abb. 36)⁶⁰. Nach Beendigung der Reaktion wird überschüssige Säure durch Waschen der organischen Phase mit Natronlauge entfernt und das N-Oxid nach der üblichen Aufarbeitung als kristalline Substanz in analysenreiner Form gewonnen.

Abb. 36: Synthese des Aminoxyls 6

Charakterisierung des N-Oxids 5

Das Massenspektrum dieser Substanz zeigte den Molpeak bei m/z 271. Der Basispeak bei m/z 270 resultiert aus der Abspaltung eines H-Radikals, was zur Bildung eines pentacyclischen Ions führt, und für in 6-Position phenyl-substituierte Phenanthridine charakteristisch ist⁶¹. Ein weiteres intensives Signal resultiert aus dem durch Abspaltung von Sauerstoff erhaltenen Molekülfragment bei m/z 254.

Houben-Weyl, *Methoden der organischen Chemie*, 4. Aufl., **1992**, Heteroarene II, Bd. E7A, S. 511 - 513

Houben-Weyl, Methoden der organischen Chemie., 4. Aufl., Heteroarene II, Band E7A, 1991, S. 499 - 500

Das N-Oxid **5** wird mit dem Grignard-Reagenz Phenylmagnesiumbromid (Ph-Mg-Br) in Tetrahydrofuran unter Argon-Atmosphäre umgesetzt⁶². Die Reaktion wird durch Zugabe von Ammoniumchlorid-Lösung beendet. Das Reaktionsprodukt wird mit Dichlormethan ausgeschüttelt und nach Entfernung des Lösungsmittels in Toluol aufgenommen. Anschließend erfolgt die Oxidation des intermediären Hydroxylamins **7** mit Blei(IV)-oxid zum Radikal **6**, das nach Umkristallisieren aus Petrolether als dunkelrote, nadelförmige Kristalle mit einer Ausbeute von 55% gewonnen werden kann.

Die Substanz **6** ist sowohl als Feststoff als auch in den meisten Lösungsmitteln (z.B. Acetonitril) auch an der Luft stabil. Langsame Zersetzung trat nur unter UV-Bestrahlung und protischen Lösungsmitteln wie Methanol auf. Unterhalb von pH-3 tritt eine rasche Zersetzung auf.

Nach Zugabe von Reduktionsmitteln wie Ascorbinsäure oder auch Natriumdithionit tritt eine Entfärbung der Lösung von **6** auf. Nach längerem Stehen an der Luft bildet sich das Edukt größtenteils wieder zurück. Daraus kann geschlossen werden, dass die Reduktion des Radikals zum Hydroxylamin führt, welches dann mit der Zeit durch den Luftsauerstoff wieder zum Radikal reoxidiert werden kann (Abb. 37).

Abb. 37: Umsetzung VON 6 mit Ascorbinsäure

Charakterisierung des Aminoxyls 6

Im Massenspektrum von **6** ist der Molpeak bei m/z 348 mit hoher Intensität zu erkennen. Durch Elimination von NO entsteht ein Molekülfragment, das den Basispeak mit m/z 318 darstellt. Weitere intensive Bruchstücke finden sich bei m/z 256 und bei m/z 241, welch letzteres durch Abspaltung eines Phenylfragmentes aus dem Bruchstück bei m/z 318 resultiert.

Eine kürzere Synthese von 6 ergibt sich, wenn man wie von Colonna, Greci und Poloni beschriebenen⁶², direkt vom kommerziell verfügbaren Phenanthridin 8 ausgeht. Zuerst wird das N-Oxid 9 in Analogie zur Synthese von 5 mit 3-Chlorperbenzoesäure (3-CI-PBS) hergestellt. Nach der in der Vorschrift beschriebenen Aufarbeitung wird das analysenreine Produkt mit Phenylmagnesiumbromid zum N-Oxid 5 weiter umgesetzt. Erneute Grignard-Reaktion mit anschließender Oxidation führt zum Aminoxyl 6 (Abb. 38) in einer Ausbeute von ca. 55%.

Abb. 38: Alternativsynthese des Aminoxyls 6

Vergleicht man die beiden Zugangswege für **6**, so ergeben sich klare Vorteile für die zuletzt beschriebene Methode, die 1 Stufe kürzer ist und insgesamt eine 3-fach höhere Ausbeute liefert. Allerdings wären beide Methoden nicht dazu geeignet, die später gewünschten Substituenten in den Ring A des Phenanthridins einzubauen, da eine gezielte Substitution mit den gewünschten funktionellen Gruppen, sowohl der Edukte als auch der verschiedenen Zwischenprodukte nicht möglich ist⁵³.

3.1.2 Synthese von 2-tert.-Butyl-5,6-dihydro-6,6diphenylphenanthridinyl-5-oxyl 16

Aus den Untersuchungen von Grzesiok³⁷ konnte abgeleitet werden, dass eine Blockade der 2-Position im Phenanthridin das Produktspektrum der NO-Reaktion wesentlich vereinfachen könnte. Deshalb sollte der für diesen Zweck geeignete tert.-Butyl-Rest über den eingangs erwähnten Syntheseweg b in das Phenanthridin eingebaut werden.

Ausgehend von 4-Chloranilin und 2-Chlorbenzaldehyd erhält man in Analogie einer Literatur-Vorschrift⁶³ das Anil **12**, das als kristallines Rohprodukt direkt weiter verarbeitet werden kann (Abb. 39). Alle Versuche, das Rohprodukt (geschätzte 90%) z.B. über Umkristallisation Ausbeute ca. oder präparative Säulenchromatographie weiter aufzureinigen, führten aufgrund der leichten Hydrolysierbarkeit nur zu einer immer weiteren Zersetzung des Anils.

Abb. 39: Synthese des Anils 12

Die Cyclisierung von 12 mit Kaliumamid in flüssigem Ammoniak erfordert sorgfältiges Arbeiten unter Ausschluß von Luft und Wasser, da andernfalls nur sehr bescheidene Ausbeuten resultieren (Abb. 40). Wichtig ist das schnelle Einbringen kleiner Portionen des Anils im Argon-Gegenstrom in eine relativ große Menge von flüssigem Ammoniak bei -75°C. Nach einer Reaktionszeit von 3 Stunden wird die Reaktion durch die Zugabe von Ammoniumchlorid gestoppt und der Ammoniak verdampft. Der verbleibende Rückstand wird in Wasser aufgenommen und mit Ether ausgeschüttelt. Nach dem Waschen und Trocknen und dem Entfernen der organischen Phase wird das Rohprodukt mit Hilfe der Flash-Cromatographie gereinigt⁶⁴.

⁶³ J. S. M. Samec, J.-E. Bäckvall, Chem. Eur. J., 2002, 13, S. 2955 - 2961 64

S.V. Kessar, R. Gopal, M. Singh, Tetrahedon, 1973, 29, S. 167 - 175

13

Abb. 40: Synthese von 2-tert.-Butylphenanthridin 13

Man erhält das Phenanthridin **13** als farbloses, zähes Öl in einer Ausbeute von 35%. Trotz zahlreicher Anstrengungen war es nicht möglich, die Substanz in kristalliner Form zu gewinnen.

Charakterisierung des Phenanthridins 13

Für die Elementaranalyse wurde aus der obigen Substanz ein kristallines Perchlorat hergestellt.

Im Massenspektrum der Base zeigt sich neben dem Molpeak bei m/z 235 der durch Abspaltung einer Methyl-Gruppe aus dem tert.-Butyl-Substituenten entstehende Basispeak bei m/z 220.

Im ¹H-NMR-Spektrum von **13** erkennt man bei 9,2 ppm das Signal des mit D₂O partiell austauschbaren Protons 6 und bei 1,5 ppm das Signal der 9 Methyl-Protonen des tert.-Butyl-Restes. Deutlich zeigt sich auch hier die durch das planare Ringgerüst hervorgerufene starke paramagnetische Verschiebung von H-1 und H-10. Auch fast alle anderen Protonen des Phenanthridin-Ringgerüstes ergeben separate Signale. Nur das Triplett von H-9 wird von dem Dublett von H-3 bei 7,9 ppm überlagert.

Die Zuordnung der Signale wird durch die Auswertung des H,H-korrelierten NMR-Spektrums abgesichert (Abb. 41). Man erkennt noch die schwachen long-range-Kopplungen von H-10 mit H-7, H-1 und H-6 sowie von H-6 mit H-7 und H-1 mit H-4.

Bei genauer Analyse der Kreuzsignale für H-3 und H-9 sieht man, dass das angespaltene Dublett für H-3 auf dem rechten Teil des Doppeltripletts für H-9 liegt.

Abb. 41: Ausschnitt aus dem H,H-korrellierten NMR-Spektrum von 13 in CDCl₃

Das Fluoreszenzspektrum von **13** zeigt bei einer Anregungswellenlänge von 300 nm ein strukturiertes Fluoreszenzmaximum bei 398 nm (Abb. 42).

Abb. 42: UV-Absorptions- und Fluoreszenzspektrum von 13 (in Methanol)

Das Phenanthridin **13** wird in bewährter Weise weiter umgesetzt. Zuerst wird mit 3-Chlorperbenzoesäure das N-Oxid **14** gebildet. Mit einer Ausbeute von 52% entsteht ein analysenreines kristallines Pulver. Dieses kann dann weiter in einer Grignard-Reaktion mit Phenylmagnesiumbromid zum N-Oxid **15** (Ausbeute 60%) reagieren. Beide N-Oxide werden durch Flash-Chromatographie aufgereinigt. Eine erneute Grignard-Reaktion mit anschließender Oxidation durch Blei(IV)-oxid führt nach Umkristallisation mit Acetonitril/Wasser zum Aminoxyl **16** (Abb. 43).

Abb. 43: Synthese des Aminoxyls 16

Charakterisierung der N-Oxide 14 und 15

Im Massenspektrum des N-Oxides **14** fallen ausgehend vom Molpeak m/z 251 vor allem die signifikanten Molekülfragmente m/z 236 und m/z 220 auf, die aus einer Abspaltung von Methyl- bzw. Sauerstoff-Bruchstücken resultieren. In gleicher Weise werden im Massenspektrum von **15** ausgehend vom Molpeak m/z 327 die erwarteten Molekülfragmente m/z 311 und m/z 296 gefunden.

Im NMR-Spektrum des N-Oxids **14** (Abb. 44) sieht man wie im Phenanthridin **13** das stark entschirmte, mit D₂O austauschbare Singulett von H-6 sowie die typischen Signale für H-1 ("s") und H-10 ("d"). Im Vergleich zu **13** erfährt H-4 von **14** durch den Effekt des N-Oxid-Sauerstoffs eine nicht unerwartete Tieffeldverschiebung von über 0,5 ppm. Während auch das Doppeldublett von H-3 noch leicht paramagnetisch verschoben wird und nun mit dem von H-7 zusammenfällt, erscheinen die beiden Tripletts für H-8 und H-9 jetzt ebenfalls nicht mehr separiert. Im ¹H-NMR-Spektrum von **15** fehlt wie erwartet ein Signal für das Proton H-6, während die übrigen Signale mehr oder weniger mit dem Spektrum von **14** übereinstimmen.

Abb. 44: Ausschnitt aus dem ¹H-NMR-Spektrum des N-Oxids 14 in DMSO-d₆

Charakterisierung des Aminoxyls 16

Das Massenspektrum von **16** zeigt ausgehend vom Molpeak bei m/z 404 den aus der Abspaltung einer Methylgruppe hervorgehenden Basispeak bei m/z 389. Daraus ergibt sich durch die Abspaltung einer Phenylgruppe ein intensives Fragment bei m/z 312. Desweiteren entsprechen alle anderen Eigenschaften des Aminoxyls **16**, insbesondere die Stabilität, denen des Aminoxyls **6**.

3.1.3 Untersuchung der Stabilität der 5,6-Dihydrophenanthridinyl-5-oxyle <u>6</u> und <u>16</u>

Die Aminoxyle **6** und **16** weisen in Übereinstimmung zueinander hinsichtlich ihrer Stabilität folgende Eigenschaften auf:

Beide Aminoxyle sind in festem Aggregatzustand über mehrere Monate hinweg unzersetzt lagerfähig.

Bei längerem Stehen in Lösung (1-2 Wochen) tritt eine geringfügige Zersetzung ein, bei der mehrere Produkte entstehen, die im Rahmen dieser Arbeit nicht isoliert und charakerisiert wurden. Das Ausmaß dieser Zersetzung variiert von Lösungsmittel zu Lösungsmittel. So ist die Zersetzung in protischen Lösungsmitteln wie z.B Methanol stärker als in aprotischen Lösungsmittel wie z.B. Toluol.

Unter der Bestrahlung der Aminoxyle mit UV-Licht läst sich die Zersetzung beschleunigen.

Wie erwartet kommt es beim Ansäuern einer Lösung der Aminoxyle zu einer raschen Zersetzung der Radikale, was durch den Wechsel von Rot nach Braun zu erkennen ist.

Gegenüber Oxidationsmitteln wie Blei(IV)-oxid, Kaliumhexacyanoferrat(III) und Wasserstoffperoxid erweisen sich beide Radikale als stabil

Durch die Zugabe von Reduktionsmitteln wie Ascorbinsäure oder Natriumdithionit wird sowohl **6** als auch **16** zu dem jeweiligen Hydroxylamin reduziert. Eine Reduktion bis zu dem jeweiligen Amin ist mit den verwendeten Reduktionsmitteln nicht möglich. An der Luft kommt es langsam wieder zur Rückoxidation des Hydroxylamins.

3.1.4 Synthese von 2-tert.-Butyl-6-(4-carboxyphenyl)-5,6-dihydro-6phenylphenanthridinyl-5-oxyl <u>23</u>

Da die potentiellen NO⁻-Detektoren auch in wässriger Lösung eingesetzt werden sollten, wurde versucht, eine Carboxyl-Gruppe in die Substanz einzubauen, um damit wasserlösliche Salze herstellen zu können.

Zunächst war die Frage zu klären, welche Position im Radikal **16** für eine Substitution mit der Carboxylfunktion am besten geeignet war. Da eine gezielte nachträgliche Carboxylierung am fertigen Phenanthridin sehr aufwändig, wenn nicht sogar unmöglich schien, sollte die Carboxylgruppe direkt an einem der in Position 6 einzubauenden Phenylringe substituiert sein.

Da Grignard-Verbindungen jedoch selbst mit Carboxylgruppen reagieren, musste dieses Strukturelement vor der Grignardierung als 2-Oxazolin maskiert werden⁶⁵. Als erster Schritt der Synthese war daher die Darstellung eines geeigneten Grignard-Reagenzes mit geschützter Carboxyl-Gruppe notwendig (Abb. 45)

Abb. 45: Synthese des Grignard-Reagenzes 20

65

Das Oxazolin **19** wird durch Bildung eines Amids aus dem Benzoylchlorid **17** und dem Aminoalkohol **18** und anschließender Cyclisierung durch Thionylchlorid hergestellt. Es lässt sich nach üblicher Aufarbeitung des Ansatzes aus dem Diethylether-Extrakt als analysenreine, kristalline Substanz in guter Ausbeute gewinnen.

Das frisch hergestellte Grignard-Reagenz **20** wird mit dem N-Oxid **14** zur Reaktion gebracht und das Produkt **21** nach einer Flash-Chromatographie in Form analysenreiner, farbloser Kristalle gewonnen. Anschließend wird die Carboxyl-Gruppe durch Erhitzen mit Salzäure aus dem Oxazolin wieder regeneriert. Als letzter Schritt der Synthese von **23** erfolgt eine weitere Grignard-Reaktion mit **22** nach dem üblichen Schema. Dabei ist bedingt durch die Carboxyl-Gruppe ein doppelter Überschuss an Phenyl-Magnesiumbromid erforderlich (Abb. 46).

Abb. 46: Synthese des Aminoxyls 23

Charakterisierung der Reaktionsprodukte

Im ¹H-NMR-Spektrum von **21** erkennt man neben den typischen Signalen im Aromatenbereich (s.Abb. 47), die sich allerdings teilweise überlagern, jeweils ein Singulett für die Protonen der Methylen- (4,2 ppm) und der geminalen Methylgruppen (1,4 ppm) des Oxazolins sowie für die tert.-Butylgruppe bei 1,5 ppm.

Abb. 47: Ausschnitt aus dem ¹H-NMR-Spektrum von 21 in CDCl₃

Das Massenspektrum von **22** zeigt neben dem Molpeak bei m/z 371 noch die Fragmente m/z 355 und m/z 340 die auf Abspaltungen von Sauerstoff bzw. Methyl-Gruppen schließen lassen.

Das ¹H-NMR-Spektrum von **22** unterscheidet sich im aromatischen Bereich von dem der Vorstufe **21** praktisch nicht. Das austauschbare Signal der Carboxyl-Gruppe liegt bei 13,2 ppm.

Während das N-Oxid **22** noch in zufriedenstellender Qualität isoliert werden konnte, schlugen alle Versuche fehl, das Aminoxyl **23** analysenrein zu erhalten. Da die Flash-Chromatographie mit neutralen Elutionsmitteln keinen Reinigungseffekt hatte, mussten saure Fließmittel (Zusatz von Ameisensäure) verwendet werden, die allerdings zu einer fortschreitenden Zersetzung der Substanz führten, die deshalb nur in geringer Menge zur Verfügung stand. Durch wiederholtes Umkristallisieren des Rohproduktes konnte das Radikal schließlich mit einem Reinheitsgrad von ca. 90% gewonnen werden.

Das Massenspektetrum des Aminoxyls **23** zeigt die vom Molpeak m/z 448 ausgehende Abspaltung eines Methyl-Fragments, so dass das Fragment m/z 433 entsteht. Aus diesem Fragment kann durch Abspaltung eines Phenyl-Fragments das Bruchstück mit m/z 356 entstehen. Der Basispeak m/z 312 ergibt sich aus diesem Fragment durch die bei Carbonsäuren erwartete Abspaltung von CO₂.

3.1.5 Versuchte Synthese mehrfach substituierter 6,6-Diphenylphenanthridinyl-5-oxyle

In diesem Kapitel werden die Versuche zur Darstellung von Phenanthridin-Derivaten beschrieben, die im Ring A mehrfach substituiert sein sollten, damit das Produktspektrum nach der NO⁻-Reaktion mit den Aminoxylradikalen möglichst einfach bleibt. Insbesondere sollten die Positionen 2 und 4 blockiert oder sterisch so gehindert sein, dass nach Möglichkeit keine Nitro-substituierten Reaktionsprodukte entstehen, die erwartungsgemäß zu einer starken Fluoreszenzminderung führen würden.

Abb. 48: Sterisch gehinderte Phenanthridinyloxyle

Die gewünschten Zielstrukturen (Abb. 48) sind in der Literatur nicht beschrieben. Grundsätzlich sollte die Synthese der erforderlichen Phenanthridine auf dem bekannten Weg über die Arin-Cyclisierung aus den entsprechend substituierten Chloranilinen möglich sein. Als ein Problem stellte sich jedoch die Darstellung der dazu erforderlichen Aniline heraus. Zwar sind sowohl das 3,5- als auch das 2,4-Di-tert.-butylanilin in der Literatur bekannt, doch ist das Letztere außerordentlich schwierig herzustellen⁶⁶.

Abb. 49: Darstellungsmöglichkeiten von 2,4-Di-tert.-butylanilin

Da auch die Edukte nur in begrenzter Menge zur Verfügung standen (siehe auch Seite 48 Abb. 53) wurde ein alternativer Weg über die Friedel-Crafts-Alkylierung von Acetanilid versucht⁶⁷. Obwohl die experimentellen Bedingungen mehrfach variiert wurden (Lösungsmittel, Katalysator, Temperatur, Verhältnis der Reaktanden) konnte dabei kein definiertes Produkt isoliert werden.

In ähnlicher Weise wurde versucht, das käuflich erhältliche 2-Fluoracetanilid in einer Friedel-Crafts-Alkylierung mit tert.-Butylchlorid umzusetzten. Auch in diesem Fall blieb das Edukt weitgehend unverändert zurück. Die in geringer Menge entstandenen Produkte konnten aber nach präparativer Säulenchromatographie und fraktionierter Kristallisation abgetrennt und spektroskopisch identifiziert werden. Es handelte sich dabei um die alkylierten Fluor-Acetanilide **25** und **26** (Abb. 50).

Abb. 50: Umsetzung von 2-Fluoracetanilid nach Friedel-Crafts

Charakterisierung der Fluoracetanilide 25 und 26

Das Massenspektrum von **25** zeigt den Molpeak bei m/z 209 mit mittlerer Intensität. Der Basispeak mit m/z 152 kommt durch die Abspaltung einer tert.-Butyl-Gruppe zustande. Auch die Abspaltung einzelner Methyl-Gruppen wird beobachtet.

⁶⁶ J. Burgers, W. v. Hartingsveldt, J. v. Keulen, *Rec. trav. chim. Pays-Bas*, **1956**, 75, S. 1327 - 1342

J. Carpenter, J. Org. Chem., 1951, 16, S. 587 - 617

Das Massenspektrum von **26** ist durch den Molpeak bei m/z 265 charakterisiert, der die zweifache Alkylierung belegt. Aus der Abspaltung von tert.-Butyl-Fragmenten resultiert der Basispeak m/z 57 sowie das Molekülfragment m/z 208.

Im ¹H-NMR-Spektrum von **25** erkennt man das tieffeldverschobene "Doppeldublett" für H-6 bei 8,4 ppm, das aus einer ⁴J-Kopplung mit dem Fluor (ca. 7 Hz) und dem H-4 (ca. 2 Hz) resultiert. Neben dem austauschbaren NH-Signal bei 7,5 ppm ergibt sich ein komplexes Multiplett für 2 Protonen bei ca. 7 ppm, das bei genauer Analyse aus einem diamagnetisch abgesetzten Triplett für H-3 (${}^{3}J_{H-3,F} \approx {}^{3}J_{H-3,H-4} \approx 8$ Hz) und einem komplexen Multiplett für H-4 besteht. Letzteres kommt durch die Kopplungen mit H-3 bzw. Fluor (ca. 7-8 Hz) und die meta-Kopplung mit H-6 (ca. 2 Hz) zustande (Abb. 51).

Abb. 51: Ausschnitt aus dem ¹H-NMR-Spektrum von 25 in CDCl₃

Dieses Kopplungsmuster vereinfacht sich beim doppelt alkylierten Acetanilid **26**. H-6 kommt bei tieferem und H-4 bei höherem Feld jeweils als Doppeldublett zur

Resonanz, da jetzt nur noch die ⁴J-Kopplung mit Fluor (~ 7 Hz) sowie die gegenseitige meta-Kopplung (~2 Hz) auftritt (Abb. 52).

Abb. 52: Ausschnitt aus dem ¹H-NMR-Spektrum von 26 in CDCl₃

Die Ausbeute an **25** bzw. an **26** war jedoch so gering, dass damit ein weiterer Syntheseweg über mehrere Stufen nicht möglich war. Deshalb wurde ins Auge gefasst, die reaktiven Positionen 2 und 4 im Phenanthridin nicht direkt zu blockieren, sondern durch den Einbau sperriger Reste sterisch abzuschirmen.

Daraus ergab sich die Notwendigkeit ein 1,3-Di-tert.-butylphenanthridin herzustellen. Das für die Synthese erforderliche Anilin **28**⁶⁶ wurde auf dem in Abb. 53 gezeigten Weg durch Schmidt-Reaktion der Benzoesäure hergestellt.

Abb. 53: Synthese des 3,5-Di-tert.-butylanilins 28

Das Anilin **28** wird mit 2-Chlorbenzaldehyd zum Anil **29** umgesetzt, das direkt nach der Kristallisation als Rohprodukt mit Kaliumamid in flüssigem Ammoniak zum Phenanthridin-Derivat **30** kondensiert wird (Abb. 54).

Abb. 54: Synthese des Phenanthridins 30

Trotz vieler experimenteller Variationen konnten dabei nur sehr geringe Ausbeuten von max. 5% erzielt werden. Überdies blieb das Phenanthridin ölig und war daher nur schwer analysenrein herzustellen.

Charakterisierung des Phenanthridins 30

Das Massenspektrum zeigte den Molpeak bei m/z 291 und ein intensives Bruchstück bei m/z 276, das durch Abspaltung einer Methylgruppe entsteht. Als Basispeak erscheint bei m/z 57 ein Signal das auf die Abspaltung kompletter tert.-Butyl-Gruppen hinweist.

Im NMR-Spektrum von **30** zeigt sich bei tiefstem Feld das Singulett für H-6. Bei 8,6 ppm liegt das Dublett für H-10. H-2 und H-4 sind zufällig isochron und überdecken das Doppeldublett für H-7 bei 8,0 ppm (s. Abb. 55). Auch die beiden tert.-Butylgruppen sind magnetisch äquivalent und ergeben ein "Singulett" bei 1,5 ppm.

Abb. 55: Ausschnitt aus dem NMR-Spektrums des Phenanthridins 30 in CDCl₃

Das Fluoreszenzspektrum von **30** zeigt bei einer Anregung bei 300 nm ein Emissionsmaximum bei 404 nm (Abb. 56).

Abb. 56: Absorptions- und Fluoreszenzspektrum von 30 (in Methanol)

Trotz der geringen Ausbeute des Phenanthridins **30** wurde versucht, die Substanz so weit wie möglich auf dem Weg zu **33** weiter umzusetzen . Bei der Reaktion mit 3-Chlor-perbenzoesäure kam es überraschend nicht zur Bildung des N-Oxids, sondern zur vollständigen Zersetzung der Substanz. Es wurde vermutet, dass die Tendenz zur oxidativen Zersetzung abnimmt, wenn die Position 6 durch einen Phenylring blockiert ist. Die Herstellung des Phenylphenanthridins **31** gelang jedoch nicht mit Phenyl-Magnesium-Bromid, sondern nur mit Phenyl-Lithium⁶⁸. Die isolierten Mengen

waren allerdings so gering, dass daraus kein definiertes N-Oxid 32, geschweige

Abb. 57: Versuchte Synthese des Aminoxyls 33

3.1.6 Versuchte Synthese von 2,4-Difluor-5,6-dihydro- 6,6diphenyl-phenanthridinyl-5-oxyl <u>39</u>

Eine andere Möglichkeit zur Blockade der reaktiven Positionen 2 bzw. 4 im Phenanthridinyl-oxyl stellte das Aminoxyls **39** dar (Formel s. S. 54). Als Ausgangssubstanz für die Synthese bot sich hierbei das käufliche 2,4-Difluoranilin **34** an, das im ersten Schritt der Synthese mit dem Benzaldehyd **11** zum Anil **35** umgesetzt wurde. Sofort nach dem Erstarren erfolgte die Kondensation des rohen Anils in flüssigem Ammoniak mit Kaliumamid zum Phenanthridin-Derivat **36** (Abb. 58), das man nach der üblichen Aufarbeitung in mittlerer Ausbeute erhält.

68

Abb. 58: Synthese des 2,4-Difluorphenanthridins 36

Charakterisierung des Phenanthridins 36

Im Massenspektrum ist der Molpeak bei m/z 215 identisch mit dem Basispeak.

Das ¹H-NMR-Spektrum von **36** ist in Abb. 59 dargestellt. Durch die ¹H,¹⁹F-Kopplungen sind die Signale von H-1 und H-3 typisch aufgespalten. Auch alle anderen Signale erscheinen weitgehend separat und lassen sich durch Vergleich mit anderen Phenanthridinen aus dieser Arbeit eindeutig zuordnen.

Abb. 59: Ausschnitt aus dem ¹H-NMR-Spektrum des Difluorphenanthridins 36 in CDCl₃

Im Fluoreszenzspektrum von **36** gibt es nach einer Anregung bei 300 nm ein strukturiertes Maximum für die Emission bei 353, 375 und 398 nm (Abb. 60).

Abb. 60: Absorptions- und Fluoreszenzspekrum von 36 (in Methanol)

Die Ausbeuten des N-Oxids **37** durch die Reaktion mit 3-Chlorperbenzoesäure blieben nicht ganz unerwartet (sterische Hinderung + Elektronenzug von Fluor) sehr gering (max. 15%). Mit Wasserstoffperoxid in Eisessig tritt vollständige Zersetzung ein.

Während das Produkt **38** der ersten Grignard-Reaktion noch hinreichend charakterisiert werden konnte (s. exp. Teil), scheiterten alle Versuche, durch eine weitere Grignardierung das Aminoxyl **39** in die Hand zu bekommen (Abb. 61).

Abb. 61: Versuchte Synthese des Aminoxyls 39

Als einziges, relativ stabiles Zersetzungsprodukt konnte aus den Ansätzen eine orange-farbene Verbindung isoliert werden, der aufgrund der analytischen Daten eine der beiden Strukturen aus Abb. 62 zukommt.

Abb. 62: Struktur der "Chinon-Nitrone" 40a und 40b

Im Massenspektrum der Substanz sieht man den Molpeak m/z 439. Durch die Abspaltung von H und Sauerstoff oder Phenylgruppen entstehen die Fragmente m/z 422 und m/z 362.

Im ¹H-NMR-Spektrum von **40a/b** kann man einige typische Signale der im Phenanthridin-Protonen identifizieren (Abb. 63). Die Zuordnung wird gestützt durch

ein H,H-korrelliertes NMR-Spektrum. Gegen das ortho-Chinon-Nitron **40a** und für **40b** spricht, dass das Dublett von H-1 bei 7.15 ppm liegt. Beim ortho-Chinon-Nitron **40a** wäre anzunehmen, dass H-1 wegen der Benzanellierung im Vergleich zu den bekannten Chinolin-Derivaten ^{37,69} (Abb. 64) stärker ins tiefe Feld verschoben wird (δ > 7,6 ppm).

Abb. 63: Ausschnitt aus dem ¹H-NMR-Spektrum des "Chinon-Nitrons" 40a/b

Auch die Farbe spricht gegen ein ortho-Chinon-Nitron, das tiefrot sein sollte, während die para-Verbindungen orange gefärbt sind^{37,69}.

69

56

3.2 ESR-Spektren der Aminoxyle 6, 16 und 23

Aminoxyle sind paramagnetische Radikale und können deshalb nicht durch NMR-Spektroskopie identifiziert werden. In diesem Fall hilft die **E**lektronen-**S**pin-**R**esonanz-Spektroskopie weiter. Bei dieser Methode nutzt man die magnetischen Eigenschaften eines einsamen, nicht spinkompensierten Elektrons und dessen Wechselwirkungen mit magnetischen Kernen um Informationen über die Struktur des mesomeriestabilisierten Radikals zu erhalten⁷⁰. Diese Wechselwirkungen des Elektrons mit den Magnetfeldern mehr oder weniger weit entfernter Kerne führt vergleichbar mit der NMR-Spektroskopie - zu einer Aufspaltung des Resonanz-Signals, so dass daraus Kopplungskonstanten abgeleitet werden können. Die Werte für die Kopplungskonstanten werden nicht dem Spektrum direkt entnommen, sondern mit Hilfe eines simulierten, am Ende möglichst deckungsgleichen Spektrums ermittelt.

Im ESR-Spektrum von **6** (Abb. 65) erkennt man die typische Aufspaltung des Signals zu einem Triplett mit einer weiteren komplexen Feinstruktur. Die Kopplungskonstante $\alpha(N) = 1,102 \text{ [mT]}$ ergibt sich aus der Kopplung des Elektrons mit dem Stickstoff (¹⁴N; I=1). Die Hyperfeinstruktur, die durch die Kopplung des Elektrons mit den beteiligten Wasserstoff-Kernen zustande kommt, ist im Spektrum nicht vollständig aufgelöst. Dies ist damit zu erklären, dass das freie Elektron über den gesamten Heterocyclus delokalisiert ist und dadurch die resultierenden Kopplungskonstanten für eine vollständige Auflösung zu klein sind. Die aus dem simulierten Spektrum erhaltenen Daten bestätigen dies. Es ist nur möglich, ein weitgehend deckungsgleiches simuliertes Spektrum zu erstellen, wenn alle Wasserstoffkerne des Heterocyclus

70

berücksichtigt werden. Wie erwartet zeigen die Wasserstoffkerne H-2 und H-4 die größten Kopplungskonstanten, da hier die erwartet höchste Radikaldichte herrscht.

Abb. 65: ESR-Spektrum von 6 in CHCl₃ bei 9,8 GHz

Auch im ESR-Spektrum von **16** (Abb. 66) erkennt man die Aminoxyl-Struktur an der aus der großen Kopplung mit dem Stickstoff resultierenden Triplettstruktur des Signals. Die Kopplung mit H-2 entfällt und bestätigt den Ort der Substitution mit dem tert..-Butylrest. Typisch sind die mit zunehmender Entfernung vom Nitroxylradikal abnehmenden Kopplungskonstanten.

Abb. 66: ESR-Spektrum von 16 in CHCl₃ bei 9,8 GHz

Die Substitution der Carboxylgruppe an einem der beiden Phenylgruppen von **23** hat erwartungsgemäß praktisch keine Auswirkungen auf das registrierte ESR-Spektrum (Abb. 67) im Vergleich zu **16**.

Abb. 67: ESR-Spektrum von 23 in CHCl₃ bei 9,8 GHz

Die bei der Simulation auftretenden Probleme einer exakten Ermittlung der Kopplungskonstanten sind vermutlich auf die konformative Beweglichkeit der beiden Phenylringe in Position 6 zurückzuführen.

3.3 Reaktion des Aminoxyls <u>6 mit NO</u>

3.3.1 Umsetzung von <u>6 mit NO</u>-Gas unter Argon

Zunächst wurde das Radikal **6** auf seine Reaktivität gegenüber NO[·] mit dem Ziel untersucht, auf diese Weise die für eine spätere Analytik erforderlichen Vergleichssubstanzen herzustellen und zu charakterisieren.

Dazu wurde die dunkelrote Substanz in absolutem Ethylacetat gelöst und mit überschüssigem NO⁻ unter Argon 5 Minuten begast⁷¹. Dabei nimmt die Lösung eine dunkelgelbe Farbe an. Das entstandene Produktgemisch wird nach der Entfernung des Lösungsmittels durch Flash-Chromatographie an Kieselgel 60 aufgetrennt. Man erhält danach die analysenreinen Nitroprodukte **46**, **47** und **48** neben sehr geringen Mengen eines Dihydrophenanthridins **49**, sowie zwei instabile N-Nitroso-Verbindungen (**50** und **51**), die jedoch lediglich indirekt mit Hilfe ihrer Zersetzungsprodukte identifiziert werden konnten. Das Edukt **6** war vollständig verbraucht (Abb. 68).

Abb. 68: Reaktion von 6 mit NO -Gas unter Argon

3.3.1.1 Zersetzung des instabilen N-Nitrosamins 50

Das instabile N-Nitrosamin **50** lieferte nach dem Stehen lassen entsprechend der SC-Fraktionen in Chloroform oder nach UV-Bestrahlung der DC's die stabilen Zersetzungsprodukte **46**, **47** und **49**, die bereits aus der NO'-Reaktion von **6** bekannt waren und die nun über eine zweidimensionale Dünnschicht-Chromatographie mit authentischen Vergleichs-Substanzen identifiziert werden konnten (Abb. 69).

Abb. 69: Zersetzung des N-Nitrosamins 50

3.3.1.2 Zersetzung des instabilen N-Nitrosamins 51

Das instabile N-Nitrosamin **51** zeigte die gleiche Reaktivität wie **50**. Hier lassen sich die Zersetzungsprodukte **46** und **48** durch zweidimenensionale Dünnschichtchromatographie mit den authentischen Vergleichssubstanzen nachweisen (Abb. 70).

Abb. 70: Zersetzung des N-Nitrosamins 51

3.3.1.3 Charakterisierung der stabilen Reaktionsprodukte

Die Strukturen der stabilen Reaktionsprodukte ergeben sich aus der Summe der spektralen Eigenschaften sowie durch korrekte Elementaranalysen. Die entscheidenden Informationen liefern die ¹H-NMR- und die Massenspektren.

Charakterisierung der Nitro-Derivate 46, 47 und 48

Die Massenspektren der Mononitro-Derivate **46** und **47** sind fast identisch. Aus dem Molpeak bei m/z 378 ergibt sich der Basispeak bei m/z 301 durch Abspaltung eines Phenyl-Ringes. Daraus wird die Nitrogruppe abgespalten, woraus ein intensives Bruchstück bei m/z = 255 resultiert.

Die verschiedenen Nitroderivate unterscheiden sich charakteristisch in ihren ¹H-NMR-Spektren (Abb. 71-74).

Abb. 71: Ausschnitt aus dem ¹H-NMR-Spektrum von 46 in DMSO-d₆

Im ¹H-NMR-Spektrum von **46** erkennt man die typischen Signale für die para-Nitro-Anilin-Struktur: Während H-1 als Dublett mit kleiner Kopplungs-Konstante bei ca. 8.6 ppm und H-3 als Doppeldublett (zusammen mit H-10) bei 8 ppm erscheinen, liegt das angespaltene Dublett für H-4 erwartungsgemäß bei ca. 7 ppm.

Abb. 72: Ausschnitt aus dem ¹H-NMR-Spektrum des Nitro-Derivates 47 in DMSO-d₆

Die ortho-Nitro-Anilin-Struktur von **47** dokumentiert sich in den paramagnetisch verschobenen "Dubletts" für H-3 und H-1, während H-2 nun als Doppeldublett mit annähernd gleich großen ortho-Kopplungen (${}^{3}J$ = 7.59 und 8.49 Hz) bei ca. 6.9 ppm erscheint.

Die Zuordnung der Signale wird durch die Auswertung des H,H-korrellierten NMR-Spektrums in CDCl₃ abgesichert. Außer den sehr starken Kreuzsignalen für die vicinal koppelnden Protonen erkennt man deutlich auch die ⁴J-Kopplungen von H-1/H-3 und H-7/H-9 und sogar die long-range Kopplungen (⁵J) von H-1/H-10, H-7/H-10 und N-H/H-1.

Abb. 73: Ausschnitt aus dem H,H-korrellierten NMR-Spektrum von 47 in CDCl₃

Im ¹H-NMR-Spektrum von **48** (Abb. 73) kommt es durch den entschirmenden Effekt der beiden Nitro-Gruppen zu einer starken Tieffeldverschiebung von H-1 und H-3. Die Signale der übrigen Protonen werden dagegen kaum beeinflusst.

So liegen in allen drei Nitro-Verbindungen die Doppeldubletts für H-10 bei 8-8.2 ppm und für H-7 zwischen 6.6 und 6.8 ppm. Diese typischen Verschiebungen resultieren zum einen aus dem entschirmenden Einfluss des aromatischen Ringstroms auf H-10 (in plane) und aus der Abschirmung von H-7 durch einen der beiden "querstehenden Phenyl-Substituenten" an C-6 (out of plane).

Abb. 74: Ausschnitt aus dem ¹H-NMR-Spektrum des Dinitroderivates 48 in DMSO-d₆

Das Massenspektrum des Dinitro-Derivates **48** zeigt einen kaum sichtbaren Molpeak bei m/z 423. Der Basispeak m/z 346 ergibt sich aus der Abspaltung eines Phenylrings. Signifikant ist, dass sich ausgehend von m/z 346 durch die Abspaltung von einer bzw. zwei Nitro-Gruppen die Bruchstücke mit m/z 300 und m/z 254 ergeben.

Charakterisierung des 5,6-Dihydrophenanthridins 49

Das Massenspektrum von **49** zeigt neben dem Molpeak bei m/z 333 einen aus der Abspaltung eines Phenylrings resultierenden Basispeak m/z 256.

Im ¹H-NMR-Spektrum (Abb. 75) rückt das NH-Signal durch den Wegfall der Nitrogruppen zu höheren Feld (7.4 ppm), so dass nur noch H-1 und H-10 paramagnetisch abgesetzt sind.

Abb. 75: ¹H-NMR-Spektrum des Dihydrophenanthridins 49 in DMSO-d₆

Das Fluoreszenzspektrum von **49** zeigt bei einer Anregungswellenlänge von 340 nm ein Emissionsmaximum bei 420 nm (Abb. 76).

Abb. 76: Absorptions- und Fluoreszenzspektrum von 49 (in Methanol)

Zu den N-Nitroso-Derivaten **50** und **51** liegen aufgrund der instabilität der Substanzen keine spektroskopischen Daten vor. Die Identifizierung erfolgte hier indirekt über die bekannten Zersetzungsprodukte durch zweidimensionale Dünnschichtchromatographie.

3.3.2 Umsetzung von <u>6</u> mit NO⁻-Donoren unter Argon

Für die Ausarbeitung einer reproduzierbaren Analytik der NO⁻-Reaktion von **6** wurden NO⁻-Donoren anstelle von NO⁻-Gas eingesetzt. Dies hat den Vorteil, dass man die stationäre NO⁻-Konzentration besser steuern und damit physiologische Bedingungen simulieren kann.

Als NO⁻-Donoren wurden im Verlaufe dieser Arbeit die NONOate NOC-15 und NOC-18 und Benzolsulfhydroxamsäure (BSH) verwendet.

NONOate

Die NONOate haben die allgemeine Struktur (Abb. 77):

Abb. 77: Darstellung und Zerfall der NONOate

Die NONOate werden unter Druck aus der Reaktion von NO[·] mit entsprechenden Diaminen gewonnen⁷². Sie zerfallen in wässriger Lösung in Umkehrung ihrer Bildungsreaktion. Der Zerfall verläuft spontan und unabhängig von zusätzlichen aktivierenden Faktoren. Die Halbwertszeit des Zerfalls ist abhängig von der Temperatur, der Art der Reste R1 und R2 sowie dem pH-Wert der Lösung.

72

J.A. Hrabie, J.R. Klose, D.A. Wink, L.K. Keefer, J. Org. Chem., 1993, 58, S. 1472 - 1476

Die beiden in dieser Arbeit verwendeten NONOate NOC-15 und NOC-18 zeigen bei dem pH-Wert von 7,4 bei 22°C eine Halbwertzeit von 76,6 Minuten bzw von 3400 Minuten⁷².

Benzolsulfhydroxamsäure (BSH)

Benzolsulfhydroxamsäure kann in wässriger Lösung in Anwesenheit von Oxidationsmitteln wie z.B. Kaliumhexacyanoferrat(III), über ein Sulfonyl-Aminoxyl-Radikal zur Benzolsulfinsäure (BSI) unter Abspaltung von NO⁻ zerfallen (Abb. 78)⁷³.

Abb. 78: Bildung von NO aus BSH unter oxidativen Bedingungen

Die oxidative NO⁻Abspaltung ist pH-abhängig. In Abwesenheit von Oxidationsmitteln ist BSH bei einem pH-Wert von 6-9 praktisch hydrolysestabil. Bei höheren pH-Werten steigt die Geschwindigkeit des Zerfalls stark an, wobei BSI und HNO entstehen.

3.3.2.1 Umsetzung von <u>6</u> mit verschiedenen NO⁻-Donoren

In getrennten Ansatzreihen wurden unterschiedlich konzentrierte Lösungen des Aminoxyls **6** in einem Gemisch aus Acetonitril/Phosphatpuffer bei pH 7/22°C mit den NO⁻-Donoren unter verschiedenen Bedingungen umgesetzt. Nach Ende der Reaktionszeit (jeweils 5 Halbwertszeiten) wurden die Ansätze mit Dichlormethan extrahiert und das jeweilige Produktspektrum mit Hilfe authentischer Vergleichssubstanzen mittels DC qualitativ analysiert (s. Tabelle 1)

R. Zamora, A. Grzesiok, H. Weber, Biochem. J. , 1995, 312, S. 333 - 339

73

			Produktspektrum			
Ansatzreihe	Ausgangs-	Edukt	2-Nitro-	4-Nitro-	2,4-	Des-Nitro-
	konzentration				Dintro-	
	6	6	46	47	48	49
1a)	10 ⁻⁴ mol/l	+++	+++	+++	-	+
1b)	10 ⁻⁵ mol/l	++++	++	++	-	+
2a)	10 ⁻⁴ mol/l	+++	+++	+++	-	+
2b)	10 ⁻⁵ mol/l	++++	+++	++	-	++
3a)	10 ⁻⁴ mol/l	++	+++	+++	-	+
3b)	10 ⁻⁵ mol/l	+++	++	++	-	++
4)	10 ⁻⁴ mol/l	+	++++	++++	+	+
5)	10 ⁻⁴ mol/l	-	++++	+++	+	++

Tabelle 1: Experimentelle Bedingungen und Produktspektren bei der anaeroben NO-Reaktion von 6

- 1) NOC-15 (äquimolar \equiv 2 mol NO[']); 7h
- 2) NOC-18 (äquimolar ≡ 2 mol NO[·]); 14d
- 3) BSH/K₃Fe(CN)₆ (je doppelt-molar \equiv 2 mol NO[']); 8h
- 4) NOC-15 (6-fach-molar ≡ 12 mol NO[·] in 6 Portionen); 24h
- 5) BSH/ K_3 Fe(CN)₆ (je 6-fach-molar \equiv 6 mol NO[·] in 3 Portionen); 24h

Vergleicht man die verschiedenen Ansatzreihen, so fällt auf, dass bei 1) bis 3) stets ein großer Teil des Edukts **6** nicht abreagiert. Erst bei größerem Überschuss der NO⁻-Donoren [Ansatzreihen 4) und 5)] verschwindet das radikalische Edukt praktisch vollständig. In jedem Fall treten als Hauptprodukte der NO⁻-Reaktion die beiden Mono-nitro-produkte **46** und **47** in etwa gleich großen Konzentrationen auf. Das nicht nitrierte und daher fluoreszierende 5,6-Dihydrophenanthridin **49** entsteht um so mehr, je geringer die Ausgangskonzentration von **6** ist. Die N-Nitrosoverbindung **50** tritt stets in geringer Menge auf, verschwindet aber um so mehr, je länger die Ansätze stehen oder bearbeitet werden. Das 2,4-Dinitro-Produkt **48** lässt sich nur bei sehr großem Überschuss an NO⁻-Donoren nachweisen.

3.3.2.2 Wertung der Versuchsergebnisse

Als primäres, aber nicht nachweisbares Reaktionsprodukt von NO[·] mit dem Aminoxyl 6 ist die Bildung eines Aminosalpetrigsäureesters anzunehmen, der spontan unter Stickstoffdioxid-Eliminierung zu einem Aminyl-Radikal zerfällt. Bei den gewählten anaeroben Bedingungen bleibt die Konzentration von Stickstoffdioxid relativ gering (Abb. 79). Dadurch kommt es kaum zur direkten Reaktion von Stickstoffdioxid mit dem Aminoxyl 6, was zur Bildung von Nitroaminoxylen, Nitro-Nitroso-Verbindungen und Dinitroverbindungen führen würde (Abb. 80). Dass das Edukt erst nach der Zugabe von 6 Äquivalenten BSH vollständig abreagiert hat, zeigt die relativ geringe gegenüber NO', was Reaktivität dieses Aminoxyls an der größeren Mesomeriestabilisierung dieses Aminyl-Radikals im Vergleich zu Chinolinyl-oxylen liegen könnte³⁷. Die Nitrierung erfolgt ausschließlich am Carbocyclus A und nicht am Carbocyclus C (s. Seite 29). Dies spricht dafür, wie auch schon die ESRspektroskopischen Daten vermuten lassen, dass die Radikaldichte im Ring C für radikalische Abfangreaktionen nicht Die unterschiedlichen ausreicht. Produktausbeuten nach der Reaktion mit NONOaten oder BSH ergeben sich wahrscheinlich aus der schnelleren Freisetzung von NO nach der Oxidation von BSH.

Abb. 79: Reaktion des Aminoxyls **6** mit NO[•] im anaeroben Milieu bei geringer stationärer NO₂[•] - Konzentration

Abb. 80: Reaktion des Aminoxyls 6 mit NO im anaeroben Milieu bei hoher NO2 -Konzentration

3.3.2.3 HPLC-Analyse der Produktgemische

Zur quantitativen Auswertung der Ansätze wurde eine HPLC-Methode entwickelt, die mit Hilfe der zur Verfügung stehenden Vergleichssubstanzen eine Analyse des Produktspektrums direkt aus dem Ansätzen, also ohne vorherige Extraktion der Produkte, ermöglicht.

Die Untersuchung wurde auf einer RP₁₈-Kieselgel-Säule mit dem Fließmittelgemisch Methanol/Wasser 71/29 durchgeführt.

Als NO -Donoren kamen hier NOC-18 und BSH zum Einsatz.

Abb. 81 und Abb. 82 zeigen exemplarisch die Retentionszeiten der typischen Produkte.

Abb. 81: Exemplarisches HPLC-Chromatogramm der Reaktion von 6 mit 2 Äquivalenten NOC-18 bei einer Konzentration von 1x10⁻³mol/l

Die UV-Detektion der einzelnen Substanzen erfolgte bei einer Wellenlänge von 264 nm, bei der sie nahezu die gleiche molare Absorption aufweisen ("isosbestischer

Punkt"), so dass die Auswertung der Chromatogramme ohne Korrekturfaktoren möglich war. Die Nachweisgrenze für diese Art der Detektion lag bei ca. 10^6 mol/l (s. Exp. Teil), weshalb die Reaktionsprodukte nur dann erfasst werden konnten, wenn die Ausgangs-Konzentration des Eduktes $6 \ge 10^{-5}$ mol/l betrug. Dagegen lässt sich 49 wegen seiner ausgeprägten Fluoreszenz (Anregung bei 340 nm, Emission bei 420 nm) auch noch in den Ansätzen mit geringerer Ausgangs-Konzentration nachweisen (s. Tab. 2 und 3)

Ausgangs-	Reaktionsprodukte (%)				
konzentration	Edukt	2-Nitro-	4-Nitro-	Des-Nitro-	
6	6	46	47	49	
10 ⁻⁴ mol/l	29,3	9,3	4,4	8,1	
10 ⁻⁵ mol/l	41,0	7,8	2,0	9,2	
10 ⁻⁶ mol/l				5,9*	
10 ⁻⁷ mol/l				10,3*	

Tabelle 2: Produktspektrum nach Umsetzung von 6 mit NOC-18 bei 22°C und Reaktionszeit von 14Tagen (UV-Detektion). **Fluoreszenz-Detektion

Ausgangs-	Reaktionsprodukte (%)				
konzentration	Edukt	2-Nitro-	4-Nitro-	Des-Nitro-	
6	6	46	47	49	
10 ⁻⁴ mol/l	47,0	5,6	2,4	4,9	
10 ⁻⁵ mol/l	39,9	2,2	1,9	6,3	
10 ⁻⁶ mol/l				6,9*	
10 ⁻⁷ mol/l				9,2*	

 Tabelle 3: Produktspektrum nach Umsetzung von 6 mit BSH bei 22°C und einer Reaktionszeit von 6

 Stunden (UV-Detektion). *

Wegen seiner Instabilität wurde das Nitrosamin **50** quantitativ nicht erfasst. Die Peakfläche von **50** ist in frischen Ansätzen groß (Abb. 81/82), verringert sich jedoch zeitabhängig zugunsten der Folgeprodukte **46**, **47** und **49**.

Die Ergebnisse zeigen auch, dass die fluoreszierende Dihydroverbindung **49** bei geringerer Ausgangskonzentration des Eduktes in leicht höheren Ausbeuten erhalten wird. Die Konzentration der Nitro-Produkte nimmt durch den Verdünnungseffekt bei geringerer Konzentration der Edukte ab, so dass ab c < 10^{-5} mol/l keine UV-Detektion

mehr möglich ist. **49** lässt sich hier durch Fluoreszenz-Detektion noch gut quantitativ erfassen. Etwa 40% des Eduktes bleiben übrig.

3.3.3 Umsetzung von <u>6 mit NO -Donoren im aeroben Milieu</u>

In einer anderen Ansatzreihe wurde das Aminoxyl **6** mit den NO⁻-Donoren NOC-15, NOC-18 und BSH in Acetonitril/Phosphatpuffer pH 7.4 im aeroben Milieu so umgesetzt, dass 2 Äquivalente NO⁻ mit einem Äquivalent des Aminoxyls (10⁻⁴mol/l) reagieren. Die Reaktion wurde nach 5 Halbwertszeiten der NO⁻-Freisetzung abgebrochen. Es zeigen sich deutliche Veränderungen im Produktspektrum gegenübger der anaeroben Reaktion.

Die Produkte wurden durch präparative Flash-Chromatographie an Kieselgel 60 isoliert und mittels DC und den bekannten Vergleichssubstanzen identifiziert.

Außer den bereits bekannten Produkten **46**, **47** und **49** und **50** entsteht unter diesen Bedingungen auch das Nitro-Aminoxyl **52**, das einerseits mit NO[•] zu **46** und **48** abreagiert, sich andererseits aber auch in Analogie zu einem entsprechenden Chinolin-Derivat³⁷ unter Abspaltung von NO[•] zum Chinon-Nitron **53** zersetzt (Abb. 83).

Abb. 83: Zersetzung des Nitro-Aminoxyls 52

Desweiteren konnte aus den Ansätzen auch das Hydoxylamin **54** identifiziert werden, das an der Luft langsam zu **52** oxidiert wird (Abb. 84). Das Auftreten von **54** lässt sich plausibel durch die unter aeroben Bedingungen höheren stationären Stickstoffdioxid-Konzentrationen erklären (s. Abb. 79, Seite 72).

Abb. 84: Oxidation des Nitro-Hydroxylamins 54

Das Auftreten des Hydroxylamins **54** konnte bei den Umsetzungen mit BSH / Kaliumhexacyanoferrat(III) nicht mehr beobachtet werden. Das erhaltene Produktspektrum ist hier, mit Ausnahme der neuen Substanzen **52** und **53**, mit dem der anaeroben Umsetzung vergleichbar.

Charakterisierung der Substanzen 52, 53 und 54

Die in geringer Menge isolierten Produkte **52**, **53** und **54** wurden über Massenspektroskopie, ¹H-NMR-Spektroskopie, IR-Spektroskopie und im Falle von **52** durch ESR-Spektroskopie identifiziert.

Im Massenspektrum von **52** liegt der Molpeak bei m/z 393. Ausgehend von diesem Molpeak findet sich ein Fragment bei m/z 347, was aus der Abspaltung von Stickstoffdioxid resultiert. Aus diesem entsteht durch Abspaltung von Stickstoffmonoxid das Fragment m/z 317. Daraus wird Sauerstoff abgespalten, was zum Basispeak bei m/z 301 führt.

Das Massenspektrum des Chinonimins **53** zeigt den Molpeak bei m/z 363. Durch Abspaltung von Sauerstoff resultiert das Fragment m/z 347. Der Basispeak m/z 319 ergibt sich aus diesem durch die für Chinone typische Abspaltung von Kohlenmonoxid.

Die Massenspektren von **52** und **54** unterscheiden sich nur geringfügig voneinander. **54** zeigt den Molpeak bei m/z 394

Das ESR-Spektrum von **52** zeigt wie die bisher besprochenen ESR-Spektren die durch die Kopplung mit dem Aminoxyl-Stickstoff hervorgerufene Triplett-Struktur. Die

Hyperfeinstruktur unterscheidet sich etwas von den anderen ESR-Spektren, da es neben den Kopplungen mit den Wasserstoff-Kernen nun auch noch eine weitere Kopplung mit einem Stickstoff-Atom der Nitro-Gruppe gibt (Abb. 85).

Abb. 85: ESR-Spektrum von 52 in CHCl₃ bei 9,8 GHz

Das ¹H-NMR-Spektrum von **53** weist, verglichen mit den bisher besprochenen ¹H-NMR-Spektren der Reaktionsprodukte, einige Besonderheiten auf. Die Signale von H-1 und H-3 erscheinen aufgrund der ortho-Position zum Carbonyl-Sauerstoff stark ins hohe Feld verschoben bei 6,9 (überlagert von H-7) bzw. bei 6,6 ppm. Das Signal von H-4 erscheint dagegen als Dublett bei ca. 8 ppm, da sowohl die β -Position zur

 α , β -ungesättigten Carbonylgruppe als auch das Nitron zur Entschirmung beitragen (Abb. 86)

Abb. 86: Ausschnitt aus dem ¹H-NMR-Spektrum des Chinonnitrons 53 in CD₂Cl₂

Die ¹H-NMR-Spektren von **54** und **46** sind sehr ähnlich und unterscheiden sich deutlich nur durch das Signal des austauschbaren Hydroxyl-Protons bei 9,8 ppm, während das NH von **46** bei 8.8 ppm erscheint.

3.3.4 Wertung der Versuchsergebnisse

Im aeroben Milieu kommt es vermehrt zur Oxidation von NO[•] zu Stickstoffdioxid. Dies hat zur Folge, dass der Reaktionsweg B (s. Abb. 79, Seite 72) an Bedeutung gewinnt, was zur Bildung weiterer Produkte der NO[•]-Reaktion von **6** führt (**52**, **53** und **54**). Aus diesem Grund wurde auf eine quantitative Analyse verzichtet.

Produkte der anaeroben Reaktion

Zusätzliche Produkte der aeroben Reaktion

Abb. 87: Identifizierte Produkte der Reaktion von 6 mit NO-Donoren

Aus der Abb. 87 geht hervor, dass das Aminoxyl **6** mit NO[·] zu komplexen Produktgemischen führt, deren Zusammensetzung stark von den Reaktionsbedingungen abhängt. Selbst bei hoher stationärer NO[·]-Konzentration und unter aeroben Bedingungen bleibt ein Teil des Eduktes erhalten und verschwindet erst nach längerer Reaktionszeit und großem Überschuss von NO[·]. Beide Effekte erschweren damit die exakte analytische Erfassung der Produkte. Zudem eignen sich die Nitroprodukte nicht für eine fluoreszenzspektroskopische Detektion, wie am Beispiel der Verbindung **46** und **47** gezeigt werden konnte. Wie zu erwarten ist, wird die Fluoreszenz durch die Nitrogruppen praktisch vollständig gequenscht, so dass nur die nicht nitrierte Verbindung **49** für eine Fluoreszenz-Detektion ausgewertet werden kann.

Dieses 5,6-Dihydrophenanthridin zeigt in Methanol bei einer Anregungswellen von 340 nm eine intensive Emmission bei 420 nm (Abb. 88), die den Nachweis bis zu einer Grenzkonzentration von 10⁻⁹mol/l erlaubt.

Substanz	Quantenausbeute [*] Φ _f
6	0,00
46	0,00
47	0,03
49	0,53
Referenz: Ch	ininsulfat in 1N H ₂ SO ₄ [0,55]

Abb. 88: Quantenausbeuten von 6, 46, 47 und 49 bei einer Anregungswellenlänge von 340 nm und einer Emissionswellenlänge von 420 nm in Methanol

Die Intensität der Fluoreszenz nimmt beim Verdünnen mit Wasser zwar kontinuierlich ab, beträgt aber in 99% Wasser immer noch etwa die Hälfte des Ausgangswertes (Abb. 89)

Abb. 89: Fluoreszenzspektren von 49 bei verschiedenen Methanol/Wasser Verhältnissen

Vorteilhaft ist demgegenüber die Tatsache, dass das Edukt **6** wegen des Radikalcharakters ebenfalls keine Fluoreszenz aufweist (Abb. 88).

Damit erweist sich **6** aber nur als bedingt geeignetes Reagenz zur NO⁻-Detektion. Die Reaktivität gegen NO⁻ ist relativ gering und die Ausbeute an fluoreszierenden Produkten lässt zu wünschen übrig.

Deswegen war es interessant zu untersuchen, wie sich die Blockade der 2-Position im Edukt durch einen tert.-Butyl-Substituenten auf das Produktspektrum der NO⁻-Reaktion auswirken würde.

3.4 Reaktionen des Aminoxyls <u>16 mit NO</u>

Wie die Ergebnisse der Umsetzung des Aminoxyls **6** mit NO⁻ unter verschiedenen Bedingungen gezeigt haben, entstehen einige der unerwünschten Nebenprodukte durch Reaktion an der freien Position 2 des Phenanthridin-Ringsystems. Deshalb wurde diese Position mit einer tert.-Butyl-Gruppe blockiert in der Hoffnung, dass sich die Anzahl der unerwünschten Nebenprodukte verringert.

3.4.1 Umsetzung von <u>16</u> mit NO⁻-Gas unter Argon

Wie auch bei der Umsetzung von **6** wurde das Aminoxyl **16** zunächst mit NO⁻ unter Argon 5 Minuten mit dem Ziel begast, die Reaktivität unter diesen extremen Bedingungen zu untersuchen. Die dabei entstehenden Reaktionsprodukte sollten isoliert und charakterisiert werden. Sowohl die Umsetzung als auch die Aufarbeitung des Ansatzes erfolgten nach derselben Methode wie bei **6**, wobei als Fließmittel jetzt Toluol/Petrolether 50:50 verwendet wurde.

Das resultierende Produktspektrum ist im Vergleich zu 6 deutlich vereinfacht. Unter diesen Bedingungen können nur noch 3 Produkte 55, 56 und 57 isoliert werden (Abb. 90). Auch die DC's sehen wesentlich einfacher aus. Die instabile N-Nitroso-Verbindung 57 ist durch zweidimensionale Dünnschicht-Chromatographie über ihre Zersetzungsprodukten 55 und 56 zu identifizieren. Bei den gegebenen Bedingungen war nach der Beendigung der Reaktion kein Edukt mehr vorhanden.

Abb. 90: Reaktion von 16 mit NO -Gas unter Argon

3.4.1.1 Zersetzung des instabilen Nitrosamins 57

Das Nitrosamin **57** ist instabil und liefert beim Stehen lassen in Chloroform oder durch Bestrahlung mit UV-Licht die stabilen Zersetzungsprodukte **55** und **56**, die durch zweidimensionale Dünnschicht-Chromatographie identifiziert werden konnten (Abb. 91)

Abb. 91: Zersetzung des Nitrosamins 57

3.4.1.2 Charakterisierung der stabilen Reaktionsprodukte

Die stabilen Reaktionsprodukte konnten an Hand der spektralen Eigenschaften eindeutig identifiziert werden. Die entscheidenden Hinweise lieferten hierbei Massenspektren und ¹H-NMR-Spektren.

Im Massenspektrum von **55** erscheint der Molpeak bei m/z 434 nur mit sehr geringer Intensität. Der Basispeak liegt bei m/z 357 und kann mit der Abspaltung eines Phenylrings erklärt werden. Bei m/z 311 ist ein deutliches Signal zu erkennen, das aus der Abspaltung einer Nitro-Gruppe aus dem Fragment m/z 357 resultiert.

Im ¹H-NMR-Spektrum von **55** fallen neben dem NH-Signal und dem Multiplett für H-8 und die 10 Phenylprotonen vier paramagnetisch abgesetzte Signale und das bei höherer Feldstärke zur Resonanz kommende H-7 auf (Abb. 92).

Abb. 92: Ausschnitt aus dem ¹H-NMR-Spektrum von 55 in CDCI₃

Das Massenspektrum von **56** zeigt bei m/z 389 den Molpeak nur in geringer Intensität. Wie bei **55** resultiert der Basispeak m/z 312 aus der Abspaltung eines Phenyl-Fragments. Durch eine weitere Abspaltung einer Methylgruppe entsteht ein intensives Fragment bei m/z 297.

Im ¹H-NMR-Spektrum von **56** werden außer H-8 alle anderen Phenanthridin-Protonen mit getrennten Signalen und typischen Kopplungsmustern registriert (Abb. 93).

Abb. 93: Ausschnitt aus dem ¹H-NMR-Spektrum von 56 in CDCI₃

Das Fluoreszenzspektrum von **56** zeigt bei einer Anregungswellenlänge von 340 nm ein Fluoreszenzmaximum bei 420 nm (Abb. 94).

Abb. 94: Absorptions- und Fluoreszenzspektrum von 56 (in Methanol)

3.4.2 Umsetzung von <u>16</u> mit NO⁻-Donoren unter Argon

Mit Hilfe der im vorigen Kapitel beschriebenen Vergleichssubstanzen der NO-Reaktion von 16 wurden verschiedene Standard-Ansätze dieses Aminoxyls mit den NO-Donoren NOC-15, NOC-18 und BSH/Kaliumhexacyanoferrat(III) zunächst qualitativ (DC) anschließend auch quantitativ analysiert. und Als Ausgangskonzentration von **16** wurden 10⁻³ bis 10⁻⁷ molare Lösungen in Acetonitril/Wasser gewählt. Die Menge der auf einmal zugesetzten Donoren variierte im Bereich von 2 bis 4 Äquivalenten berechnet auf NO. Nach dem Ende der Reaktionszeit (5 Halbwertszeiten der NO-Freisetzung) wurden die Ansätze mit Dichlormethan extrahiert und der Extrakt mittels DC untersucht oder direkt aus dem Ansatz eine guantitative Analyse mittels HPLC durchgeführt.

3.4.2.1 Qualitative Analyse der Reaktionsprodukte

Ansatzreihe	Ausgangs-	Produktspektrum			
	konzentration	Edukt	4-Nitro-	Des-Nitro-	N-Nitroso-
	16	16	55	56	57
1a)	10 ⁻⁴ mol/l	++++	++	+	+
1b)	10 ⁻⁵ mol/l	++++	+	+	+
2a)	10 ⁻⁴ mol/l	+++	++	++	-
2b)	10 ⁻⁵ mol/l	++++	++	++	-
3a)	10 ⁻⁴ mol/l	++	+++	+++	+
3b)	10 ⁻⁵ mol/l	++	++	+++	+
4)	10 ⁻⁴ mol/l	++	++	++	+
5)	10 ⁻⁴ mol/l	-	+++	++	+

Die Ergebnisse der Dünnschichtchromatographischen Analyse der Reaktionen sind in Tabelle 4 wiedergegeben.

Tabelle 4: Experimentelle Bedingungen und Produktspektren bei der anaeroben NO-Reaktion von 16

- 1) NOC-15 ($\ddot{a}quimolar \equiv 2 \mod NO'$); 7h
- 2) NOC-18 (äquimolar ≡ 2 mol NO[·]); 14d
- 3) BSH/K₃Fe(CN)₆ (je doppelt-molar \equiv 2 mol NO[']); 8h
- 4) NOC-15 (6-fach-molar ≡ 12 mol NO[·] in 4 Portionen); 24h
- 5) BSH/K₃Fe(CN)₆ (je 6-fach-molar \equiv 6 mol NO[·] in 3 Portionen); 24h

Im Gegensatz zum Aminoxyl **6** ergeben sich bei **16** keine qualitativen Unterschiede im Vergleich zur Reaktion mit überschüssigem NO⁻-Gas. In jedem Fall entstehen die drei bekannten Produkte **55**, **56** und **57**, das jedoch nicht stabil ist und bei längeren Reaktionszeiten praktisch nicht mehr nachweisbar ist. Daneben können geringe Mengen von Nebenprodukten detektiert werden, die jedoch nicht isoliert werden konnten.

Auffällig ist die relativ geringe Umsetzungsrate bei der Reaktion von **16** mit den NONOaten, so dass stets größere Mengen des Edukts wieder gefunden werden. Bei der Verwendung von BSH als NO⁻-Donor war die Umsetzungsrate deutlich höher.

Der Anteil des fluoreszierenden, nicht nitrierten Produkts **56** hängt von der Art des Donors und von der Ausgangskonzentration von **16** ab und ist in den BSH-Ansätzen höher als nach der Reaktion mit NOC-15 oder NOC-18.

3.4.2.2 Wertung der Versuchsergebnisse

Durch die Blockade der Position 2 des Phenanthridin-Ringsystems mit einem tert.-Butyl-Rest hat sich das Produkt-Spektrum deutlich vereinfacht. Es ist davon auszugehen, dass die Bildung der Produkte analog zur Umsetzung des Aminoxyls **6** verläuft (Abb. 79, Seite 71).

Auffällig ist die Tatsache, dass kein Nitrosamin **57** auftritt, wenn die Freisetzung von NO⁻ sehr langsam verläuft (NOC-18). Außerdem entsteht das nicht nitrierte und deshalb fluoreszierende Produkt **56** in größerer Menge, wenn BSH in nicht zu großem Überschuss als NO⁻-Donor verwendet wird (Ansätze 3a und 3b). Daher scheinen hier neben der Freisetzungsgeschwindigkeit von NO⁻ auch noch andere Faktoren für die Bildung von **56** verantwortlich zu sein.

Überraschenderweise zeigen die DC's der unter aeroben Bedingungen durchgeführten Ansätze praktisch keine Veränderungen gegenüber denen unter Schutzgas.

3.4.2.3 Quantitative Analyse der Reaktionsprodukte

Dazu wurde eine HPLC-Methode entwickelt, mit deren Hilfe eine quantitative Analyse der Ansätze ohne vorherige Extraktion möglich war.

Die Untersuchung wurde auf einer RP-18-Kieselgel-Säule mit dem Fließmittelgemisch Methanol/Wasser 98/2 durchgeführt.

Aufgrund der sehr unterschiedlichen UV-Absorptionsmaxima der Substanzen wurde die UV-spektroskopische Detektion der Substanzen im Konzentrationsbereich von 10^{-3} bis 10^{-5} mol/I mit einem Diodenarray-Detektor bei unterschiedlichen Wellenlängen vorgenommen (λ = 348 nm für **56**, 386 nm für **16** und 439 nm für **55**). Im Konzentrationsbereich von 10^{-6} bis 10^{-7} mol/I erfolgte dann nur noch eine fluorimetrische Detektion der Substanz **56** bei einer Anregungswellenlänge von 340 nm und einer Emissionswellenlänge von 420 nm.

Zur Kalibrierung wurden Lösungen der Vergleichssubstanzen mit definierter Konzentration hergestellt und damit die entsprechenden Eichkurven ermittelt, die sich über den gesamten Bereich linear darstellten (siehe experimenteller Teil, Seite 149 f.).

Für die quantitative Auswertung wurden 5 verschiedene Standardbedingungen gewählt, die Auskunft darüber geben sollten, welchen Einfluss eine Veränderung der Reaktionsbedingungen auf das Produktspektrum haben kann. Die Reaktionen wurden dann abgebrochen, wenn sich laut DC keine Veränderungen mehr ergaben. Die N-Nitroso-Verbindung **57** wurde dabei bewusst nicht erfasst, da sie aufgrund ihrer Instabilität nicht analysenrein zur Verfügung stand.

I. Umsetzung von **16** (10⁻⁴ bis 10⁻⁷ mol/l) mit NOC-18 und BSH (jeweils 2 Äquivalente NO⁻).

Ausgangs-	Reaktionsprodukte (%)		
konzentration	Edukt	4-Nitro-	Des-Nitro-
16	16	55	56
10 ⁻⁴ mol/l	80,30	6,91	8,45
10 ⁻⁵ mol/l	79,50	1,88	12,10
10 ⁻⁶ mol/l			14,20 [*]
10 ⁻⁷ mol/l			31,00 [*]

Tabelle 5: Produktspektrum nach Umsetzung von **16** mit NOC-18 (2 Äq. NO[•]) bei 22°C und einerReaktionszeit von 14 Tagen (UV-Detektion). *Fluoreszenz-Detektion

Ausgangs-	Reaktionsprodukte (%)		
konzentration	Edukt	4-Nitro-	Des-Nitro-
16	16	55	56
10 ⁻⁴ mol/l	51,80	7,52	33,90
10 ⁻⁵ mol/l	76,30	1,30	14,80
10 ⁻⁶ mol/l			15,60 [*]
10 ⁻⁷ mol/l			35,00*

Tabelle 6: Produktspektrum nach Umsetzung von **16** mit BSH (2 Äq. NO[•]) bei 22°C und einerReaktionszeit von 6 Stunden (UV-Detektion). *Fluoreszenz-Detektion

Die Ergebnisse zeigen, dass sowohl bei der Umsetzung mir NOC-18 als auch bei der Umsetzung mit BSH nach Beendigung der Reaktion große Mengen des Edukts **16** wiedergefunden werden (> 50 %). Bei BSH ist die Umsetzungsrate allerdings größer als bei NOC-18.

Die Konzentration des Nitro-Produkts **55** nimmt durch den Verdünnungseffekt bei geringerer Konzentration der Edukte für beide NO⁻-Donoren deutlich ab.

Es ist auffällig, dass im Fall von BSH die Ausbeute der nicht nitrierten Verbindung **56** bei höherer Ausgangskonzentration von **16** zunächst groß ist, dann absinkt und erst bei extrem starker Verdünnung wieder ansteigt. Dieses überraschende Ergebniss konnte experimentell mehrfach bestätigt werden.

II. Umsetzung von 16 (10⁻³ bis 10⁻⁴ mol/l) mit BSH (jeweils 2 bzw. 4 Äquivalente NO⁻)

Ausgehend von der Erkenntnis, dass die Umsetzung des Aminoxyls **16** mit BSH bei einer relativ hohen Ausgangskonzentration von **16** (10⁻⁴mol/l) eine höhere Ausbeute der für die Analytik erwünschten Dihydro-Verbindung liefert, wurden Ansätze durchgeführt, bei denen sowohl die Ausgangskonzentration des Eduktes **16**, als auch des Donors (BSH) erhöht waren (Tabelle 7).

Ausgangs-		Reaktionsprodukte (%)	
konzentration	Edukt	4-Nitro-	Des-Nitro-
16	16	55	56
10 ⁻³ mol/l (4Äq. NO [`])	9,48	14,20	30,5
10 ⁻³ mol/l (2Äq. NO [`])	12,5	10,09	25,8
10 ⁻⁴ mol/l (4Äq. NO [`])	30,10	12,70	39,1

Tabelle 7: Produktspektrum nach Umsetzung von **16** mit 2 bzw. 4 Äquivalenten NO (aus $BSH/K_3Fe(CN)_6$) bei Konzentrationen von 10^{-3} und 10^{-4} mol/l

Es zeigte sich, dass bei einer höheren Ausgangskonzentration des Eduktes **16** und bei der Verwendung von 4 Äquivalenten BSH die Umsetzungsrate zwar stark zunimmt, die Ausbeute des unerwünschten Nitro-Produktes **55** jedoch ebenfalls ansteigt. Die Ausbeute des fluoreszierenden Produktes **56** steigt bei größerer Verdünnung deutlich an.

III. Umsetzung von **16** (10⁻⁴ bis 10⁻⁵ mol/l) mit BSH (jeweils 2 Äquivalente NO⁻ sowie Ascorbinsäure)

In der Hoffnung, dass mit der Zugabe von Reduktionsäquivalenten, wie sie auch im physiologischen Milieu vorkommen, die Oxidation von NO[·] zu Stickstoffdioxid zu unterbinden oder die intermediär gebildeten Aminylradikale zu reduzieren wurde den Ansätzen mit Ausgangskonzentrationen von 10⁻⁴ und 10⁻⁵mol/l äquivalente Mengen von Ascorbinsäure zugesetzt (Tabelle 8).

Ausgangs-	Reaktionsprodukte (%)			
konzentration	Edukt	4-Nitro-	Des-Nitro-	
16	16	55	56	
10 ⁻⁴ mol/l (Asco)	23,4	0,4	7,9	
10 ⁻⁵ mol/l (Asco)	56,6		5,1	

Tabelle 8: Produktspektrum nach Umsetzung von **16** mit 2 Äquivalenten NO (aus BSH/K₃Fe(CN)₆)bei Konzentrationen von 10^{-4} und 10^{-5} mol/l und Ascorbinsäure

Es zeigte sich, dass die Umsetzungsrate des Eduktes **16** verglichen mit der Reaktion ohne Zugabe von Ascorbinsäure zunimmt. Die Konzentration des Nitro-Produktes **55** ist stark vermindert. Bei einer Ausgangskonzentration von 10⁻⁵ mol/l ist **55** mittels UV-

Detektion nicht mehr zu bestimmen. Die Ausbeute der fluoreszierenden Verbindung **56** ist jedoch nicht sonderlich erhöht. Die Menge der quantitativ nicht erfassten Nebenprodukte hat stark zugenommen. Es ist jedoch zu bedenken, dass Ascorbinsäure das Edukt **16** zum Hydroxylamin reduzieren kann. Dieses kann erst nach einer Reoxidation zum Radikal mit dem aus den NO⁻-Donoren freigesetzten NO⁻ reagieren.

IV. Umsetzung von 16 (10⁻⁴ bis 10⁻⁵ mol/l) mit BSH (jeweils 2 Äquivalente NO⁻ sowie Fe²⁺/Fe³⁺)

Die bei dieser Umsetzung zugesetzten Eisensalze können als "Redoxsystem" jeweils ein Elektron abgeben oder aufnehmen. Es sollte wie schon bei der Ansatzreihe **III** untersucht werden, ob ein solches Redoxsystem zur schnellen Reduktion des intermediären Aminyl-Radikals analog zu Abb. 78, Seite 71 beiträgt und damit zu höheren Ausbeuten des erwünschten fluoreszierenden Produkts **56** führt. Die Ergebnisse sind in Tabelle 9 zusammengefasst.

Ausgangs-	Reaktionsprodukte (%)				
konzentration	Edukt	4-Nitro-	Des-Nitro-		
16	16	55	56		
10 ⁻⁴ mol/l (Fe ^{2+/3+})	11,9	6,26	38,3		
(2Äq. NO [`])					
10 ⁻⁴ mol/l (Fe ^{2+/3+})		7,37	36.1		
(4Äq. NO [`])					

Tabelle 9: Produktspektrum nach Umsetzung von **16** mit 2 bzw. 4 Äquivalenten NO (ausBSH/K₃Fe[(CN)₆]) bei einer Konzentration von 10⁻⁴ mol/l und Zusatz von Eisen(II)/Eisen(III)

Ein Vergleich mit der Tabelle 7 zeigt, dass unter diesen Bedingungen zwar mehr Edukt verbraucht wird, die Ausbeute der Produkte **55** und **56** aber praktisch ähnlich ist wie ohne den Zusatz der Eisensalze. Dagegen ist hier die Menge der nicht identifizierten Produkte deutlich größer.

V. Umsetzung von 16 (10⁻⁴ bis 10⁻⁵ mol/l) mit BSH (jeweils 2 Äquivalente NO⁻ sowie BSI)

In früheren Experimenten (siehe Seite 88, Tabelle 6) hatte sich gezeigt, dass es bei der Umsetzung mit BSH im Vergleich zu dem NONOat NOC-18 zu einer höheren

Ausbeute des erwünschten fluoreszierenden Produktes **56** gekommen war. In der Annahme, dass die bei der Freisetzung von NO⁻ aus BSH entstehende Benzolsulfinsäure (BSI) evtl. als Reduktionsmittel die Bildung von **56** aus dem intermediär entstehenden Aminyl-Radikal unterstützt, wurden dem Ansatz zusätzlich zum BSH von vornherein äquimolare Mengen an BSI zugesetzt (Tabelle 10).

Ausgangs-	Reaktionsprodukte (%)		
konzentration	Edukt	4-Nitro-	Des-Nitro-
16	16	55	56
10 ⁻⁴ mol/l	51,80	7,52	33,90
10 ⁻⁴ mol/l + BSI	31,50	8,07	48,60
10 ⁻⁵ mol/l	76,30	1,30	14,80
10 ⁻⁵ mol/l + BSI	71,10	1,07	18,00

 Tabelle 10:
 Produktspektrum nach Umsetzung von 16 mit BSH+BSI bei 22°C und einer Reaktionszeit von 6 Stunden

Vergleicht man diese Ansätze, so zeigt sich dass durch den Zusatz von BSI die Umsetzungsrate des Eduktes **16** erhöht wird, was der Ausbeute des fluoreszierenden Produktes **56** zugute kommt, während der Anteil des Nitroproduktes **55** praktisch gleich bleibt. Das Dihydro-Produkt **56** wird durch die Zugabe von BSI in höherer Konzentration erhalten. Bei dem Nitro-Produkt **55** sind nur geringe Unterschiede zwischen den Ansätzen mit und ohne BSI zu erkennen.

3.4.3 Beurteilung von <u>16 für die Detektion mit NO</u>

Produkte der anaeroben und der aeroben Reaktion

Abb. 95: Identifizierte Produkte der Reaktion von 16 mit NO-Donoren

Betrachtet man das aus der Reaktion von **16** mit NO[·] entstehende Produktgemisch (Abb. 95), so fällt auf, dass es im Vergleich zu **6**, unabhängig von den gewählten Bedingungen, wesentlich einheitlicher ist.

Der Anteil des instabilen Nitrosamins **57** verringert sich um so mehr, je geringer die stationäre Konzentration von NO⁻ ist.

Die Tatsache, dass die Reaktivität von **16** gegenüber NO⁻ relativ geringer als bei **6** ist, muss nicht zwangsläufig ein Nachteil für den NO⁻-Nachweis in biologischem Milieu sein. Entscheidend für die Eignung des Radikals in diesem Bereich ist eine hohe Fluoreszenzquantenausbeute nach der Reaktion mit NO⁻. Diese ist gegeben, wenn möglichst viel des nicht nitrierten 5,6-Dihydrophenanthridins **56** und nur wenig des Nitro-Produkts **55** entsteht. Abb. 96 zeigt die fluorimetrischen Eigenschaften der in Frage kommenden Verbindungen. Die Grenzkonzentration für den direkten fluorimetrischen Nachweis von **56** liegt bei 10⁻⁹mol/l.

Substanz	Quantenausbeute [*] Φ _f		
16	0,00		
55	0,03		
56	0,45		
[*] Referenz: Ch	nz: Chininsulfat in 1N H ₂ SO ₄ [0,55		

Abb. 96: Quantenausbeuten von 16, 55 und 56 bei einer Anregungswellenlänge von 340 nm und einer Emissionswellenlänge von 420 nm in Methanol

Führt man die NO⁻-Reaktion von **16** bei deutlich höheren Ausgangskonzentrationen der Edukte durch (>10⁻⁴mol/l), so reagiert zwar ein größerer Anteil des Aminoxyl-

Radikals ab, doch steigt dann die Menge an solchen Produkten an, die nicht fluorimetrisch detektiert werden können.

Zusätze von redox-aktiven Reagenzien führten in der Regel nicht zu einer Verstärkung der Fluoreszenz, sondern zur Inaktivierung des Aminoxyl-Radikals oder zur Bildung nicht fassbarer Nebenprodukte. Lediglich nach Zusatz von Benzolsulfinsäure zur NO⁻-Reaktion von **16** mit BSH/Hexacyanoferrat(III) war der Anteil des fluoreszierenden Produkts **56** signifikant erhöht.

Zusammenfassend kann festgestellt werden, dass mit dem Phenanthridinyl-Oxyl-Radikal **16** ein stabiles Reagenz zum Nachweis geringer Konzentrationen von NO⁻ zur Verfügung steht. Selbst nicht fluoreszierend reagiert **16** bei einer Konzentration von <10⁻⁵mol NO⁻ nahezu einheitlich zu einem diamagnetischen Produkt **56**, das bis zu einer Konzentration von 10⁻⁹mol/l noch sicher fluorimetrisch detektiert werden kann. Aufgrund dieser Eigenschaften dürfte sich **16** auch zum fluorimetrischen NO⁻-Nachweis in biologischem Milieu eignen, da gerade hier derartig geringe NO⁻-Konzentrationen vorkommen. Dabei könnte es sich zusätzlich positiv auswirken, dass in biologischer Umgebung Redox-Systeme wirken, die eine Ausbeute von **56** weiter steigern und damit die Empfindlichkeit des NO⁻-Nachweises noch erhöhen.

Da das Fluorophor des Aminoxyls **16** identisch zu dem Fluorophor des Aminoxyls **6** ist, kann man davon ausgehen, dass beim Verdünnen mit Wasser auch hier die Intensität der Fluoreszenz maximal bis zur Hälfte des Ausgangswertes absinkt.

Höhere stationäre Konzentrationen des Eduktes und des Donors, die dazu führen sollten, dass das Edukt in stärkerem Maße abreagiert, führen nur zu mäßig höheren Konzentrationen des erwünschten fluoreszierenden Produkts **56**. Durch die größere stationäre Konzentration von NO⁻ kommt es allerdings auch zu einer stärkeren Bildung von Stickstoffdioxid und damit zu höheren Anteilen des 4-Nitro-Produkts **55**. Zusätze von Reduktionsäquivalenten zur Simulierung physiologischer Bedingungen brachten nicht die erhofften Ergebnisse. Der Zusatz von Ascorbinsäure führt zur Reduktion des Aminoxyls **16** zum entsprechenden Hydroxylamin das nicht mehr mit NO⁻ reagiert. Auch die Zugabe von Eisen(II)/Eisen(III) führt nicht zu einer Verbesserung der Ergebnisse, sondern zu einer Vielzahl nicht identifizierter unerwünscheter Nebenprodukte.

Der Zusatz von Benzolsulfinsäure (BSI) als Reduktionsmittel und die damit verbundene Erhöhung der Ausbeute des fluoreszierenden Produkts **56** bestätigt die

Vermutung, das die Entstehung des BSI während der Freisetzung von NO aus BSH für die höhere Ausbeute des fluoreszierenden Produktes verantwortlich ist. BSI scheint als Reduktionsmittel für die Reaktion geeignet zu sein, da es zwar das intermediär entstehende Aminyl-Radikal nicht aber das Edukt selbst reduzieren kann und damit die Fluoreszenzausbeute der NO Reaktion erhöht.

Insgesamt kann festgestellt werden, dass die Blockade der 2-Position im Nitroxid-Radikal **6** mit einem tert.-Butylsubstituenten (\rightarrow **16**) dazu geführt hat, dass das Produktspektrum einheitlicher wird. In einem Konzentrationsbereich, der den biologischen Verhältnissen nahe kommt (\leq 10⁻⁶ mol), entsteht nach NO⁻-Kontakt vorwiegend ein fluoreszierendes Produkt **56**, das analytisch bis zu einer Grenzkonzentration von 10⁻⁹mol/I detektiert werden kann. Negativ wirkt sich allerdings die verminderte Reaktivität von **16** gegenüber NO⁻ aus, so dass stets ein größerer Überschuss des Radikals erforderlich ist.

Leider war es nicht möglich, weitere Nitroxid-Radikale des 5,6-Dihydrophenanthridins herzustellen, die eine zusätzliche Blockade der 4-Position aufweisen. Es ist jedoch nach den in dieser Arbeit erzielten Ergebnissen fraglich, ob dadurch ein Fortschritt erzielt werden kann. Zwar wäre dann die Möglichkeit zur Bildung unerwünschter Nebenprodukte weiter eingeschränkt doch müsste sich erst erweisen, ob dadurch nicht auch die Reaktivität gegenüber NO⁻ derart gering wird, dass die Eignung des entsprechenden Nitroxids zum NO⁻-Nachweis nicht mehr gegeben wäre.

4 Zusammenfassung

Stickstoffmonoxid (NO[']), das früher nur technische und toxikologische Bedeutung hatte, wurde 1987 als identisch mit dem "endothelium derived relaxing factor" (EDRF) beschrieben. Mittlerweile ist bekannt, dass NO['] bei einer Vielzahl physiologischer und pathophysiologischer Prozesse eine bedeutende Rolle spielt. Deshalb besteht in der Biologie wie auch in der Medizin großes Interesse an Möglichkeiten zur Beeinflussung der NO[']/cGMP-Signalkaskade.

Wegen der rasant steigenden Flut neuer Erkenntnisse zur Regulation der NO-Signaltransduktion ist es erstrebenswert, eine möglichst spezifische, orts- und zeitaufgelöste NO-Detektion in biologischer Umgebung zu ermöglichen. Diese Anforderungen werden von den zur Zeit bekannten Nachweisverfahren für NO⁻ jedoch nicht oder nur unzureichend erfüllt.

Deshalb sollte in der vorliegenden Arbeit auf der Grundlage früherer Erkenntnisse versucht werden, eine neue Methode zur fluorimetrischen NO⁻-Detektion zu entwickeln, die sich nach Möglichkeit für eine Anwendung in biologischer Umgebung für ein "NO⁻-imaging" eignet.

Wegen der geringen Konzentration und der kurzen biologischen Halbwertszeit von NO⁻ kamen für diesen Zweck nur solche Mess-Sonden in Betracht, die nach dem NO⁻-Kontakt mit hoher Spezifität und großer Empfindlichkeit ein möglichst intensives Fluoreszenzsignal ergeben, das mittels konfokaler Fluoreszenzmikroskopie erfasst werden könnte.

Prinzipiell konnte auf Vorarbeiten im eigenen Arbeitskreis zurückgegriffen werden, bei denen "NO-Fänger" vom Typ des NOXYL entwickelt worden waren. Diese stabilen, freien Radikale reagieren in Abhängigkeit von der stationären NO-Konzentration zu diamagnetischen Produkten, die jedoch bisher nur durch eine UV-Detektion erfasst werden konnten, was für biologische Verhältnisse jedoch nicht ausreicht, da dort zu geringe NO-Konzentrationen vorliegen.

Durch eine Kombination der reaktiven Eigenschaften von NOXYL (R² = COOH, (Abb. 97)) mit den spektroskopischen Eigenschaften fluoreszierender Amine (Fluorophor-NH₂) wurden nach einer früheren Arbeit verschiedene Amide entwickelt, die den Anforderungen grundsätzlich gerecht werden. Ein großer Nachteil dieser NO-Detektoren resultierte jedoch aus einer zu hohen Eigenfluoreszenz der radikalischen Edukte, da Radikal und Fluorophor durch die Amidbrücke voneinander getrennt sind und es deshalb nur zu einem partiellen Quenching des Fluorophors kommt. Deshalb führte eine positive NO-Reaktion insgesamt nur zu einer relativ geringen Fluoreszenzsteigerung, die nur schlecht detektierbar ist.

96

Ziel der vorliegenden Arbeit war deshalb die Entwicklung von NO⁻-Reagenzien, bei denen der Fluorophor im Edukt selbst Radikalcharakter aufweist. So könnte der Quenching-Effekt des Radikals direkt und nicht nur über eine "elektronische Isolierung" wirksam werden, was zu einer Verbesserung der Fluoreszenz-Quantenausbeute nach der NO⁻-Reaktion führen sollte. Durch eine Benz-Anellierung von NOXYL resultiert der Grundkörper eines 5,6-Dihydrophenanthridinyl-5-oxyls, der die Eigenschaften eines Abfangreagenzes für NO⁻aufweisen sollte (Abb. 97).

Abb. 97: Erweiterung der NOXYL-Ringstruktur zum Phenanthridin-5-oxyl

In dieser Struktur ist im Gegensatz zum NOXYL ein 2-Amino-biphenyl-Fluorophor enthalten, dessen Fluoreszenz allerdings durch den immanenten Radikal-Charakter intramolekular gequencht sein dürfte. Nach NO⁻-Kontakt sollten daraus diamagnetische Produkte mit möglichst hoher Fluoreszenzausbeute entstehen.

Die Darstellung der Edukte erfolgte nach bekannten Methoden. Dabei kann der Weg über 6-Phenyl-Phenanthridine (**b**) gewählt werden, die über einen Bischler-Napieralsky-Ringschluss aus N-Benzoyl-2-aminobiphenyl-Derivaten (**a**) zugänglich sind. Alternativ wurde auch der Weg über 6-unsubstituierte Phenanthridine (**e**) gewählt, die über eine intramolekulare Arin-Cyclisierung mit Anilen des 2-Chlorbenzaldehyds (**d**) dargestellt werden können. Nachteilig ist hier der große präparative Aufwand (Kaliumamid in flüssigem Ammoniak), doch bietet sich auf diese Weise eher eine Möglichkeit zur Einführung verschiedener Substituenten R¹ im Ring A des Phenanthridins, da entsprechende Edukte kommerziell verfügbar sind.

Abb. 98: Darstellungswege von Phenanthridinyl-5-oxylen

Diese Variante erfordert allerdings einen Syntheseschritt mehr zur Herstellung der 6-Phenylphenanthridin-N-oxide (**c**), der jedoch über eine Grignard-Reaktion der N-Oxide leicht möglich ist. Der letzte Schritt zur Darstellung der Aminoxyl-Radikale besteht in jedem Fall in einer Grignard-Reaktion von **c** mit anschließender Oxidation des Hydroxylamins mittels Blei(IV)-oxid. Auf diese Weise konnten neben dem in der Literatur bekannten Grundkörper **6** auch die neuen substituierten Derivate **16** und **23** in guten Ausbeuten hergestellt werden (Abb. 99).

Abb. 99: Phenanthridinyl-5-oxyle

Weiterhin wurde versucht, auch die im Ring A mehrfach substituierten Edukte in die Hand zu bekommen. Dies gelang jedoch nur unzureichend, da die entsprechenden Zwischenprodukte entweder nicht in genügender Menge zugänglich waren (**31**), oder sich bei den erforderlichen weiteren Reaktionsschritten zersetzten (**38**).

Abb. 100: Mehrfach substituierte Phenanthridine

Die stabilen Aminoxyle **6**, **16** und **23** wurden analytisch insbesondere auch durch ESR-Spektroskopie charakterisiert und anschließend unter variierten Bedingungen mit überschüssigem NO⁻-Gas sowie mit NO⁻-Donoren umgesetzt (mit Ausnahme von **23**). Alle dabei anfallenden Produkte wurden isoliert und die Struktur mit Hilfe spektroskopischer Methoden (MS, IR, NMR, UV, Fluorimetrie) sowie die Reinheit durch Elementaranalyse bestimmt (Abb. 101 und 102).

Abb. 101: Produktspektrum der Umsetzung von 6 mit NO -Donoren

Abb. 102: Produktspektrum der Umsetzung von 16 mit NO -Donoren

Dabei zeigte sich folgendes Bild:

- > 6 ergibt im Gegensatz zu 16 ein sehr komplexes Produktgemisch.
- Die Nitrosamine 50, 51 und 57 sowie das Hyroxylamin 54 sind instabil und zersetzen sich im Ansatz mit zunehmender Zeitdauer zu den entsprechenden stabilen Folgeprodukten.
Edukte sowie die nitrierten Produkte zeigen erwartungsgemäß praktisch keine Fluoreszenz, während die Des-Nitroprodukte eine intensive blaue Fluoreszenz aufweisen (Anregung bei 340nm; Emission bei ca. 420nm (Abb. 103)).

 Substanz
 Quantenausbeute*

 Φ_f
 Φ_f

 16
 0,00

 55
 0,03

 56
 0,45

Abb. 103: Hauptprodukte 55 und 56 bei der Reaktion von 16 mit NO

Mit Hilfe der entsprechenden Vergleichs-Substanzen wurde eine HPLC-Methode zur Detektion von NO⁻ entwickelt, das aus NO⁻-Donoren (NONOate und BSH) freigesetzten wurde. Dabei wurde die Ausgangskonzentration im Fall von **16** bis auf biologisch interessante Werte abgesenkt (10⁻⁷ mol/I). Unter diesen Bedingungen lässt sich nur noch das Produkt **56** mittels Fluoreszenzdetektion analytisch erfassen.

Mit **16** steht erstmals ein stabiles Aminoxyl-Radikal zur Verfügung, das zur fluorimetrischen NO⁻-Detektion im niedrigen Konzentrationsbereich grundsätzlich geeignet ist.

Die Tatsache, dass die Reaktivität von **16** gegenüber NO⁻ relativ gering ist, muss nicht zwangsläufig ein Nachteil in biologischem Milieu sein. Entscheidend für die Eignung des Radikals in diesem Bereich ist eine hohe Fluoreszenzquantenausbeute nach der Reaktion mit NO⁻. Diese ist gegeben, wenn möglichst viel des nicht nitrierten 5,6-Dihydrophenanthridins **56** und nur wenig des Nitro-Produkts **55** entsteht. Dies dürfte wegen der vergleichsweise geringen stationären NO⁻-Konzentration im biologischem Milieu der Fall sein. Die Grenzkonzentration für den direkten fluorimetrischen Nachweis von **56** liegt bei 10⁻⁹mol/l

5 Experimenteller Teil

5.1 Verwendete Geräte

Chromatographie:	DC: DC-/	Alufolien Kieselgel	60 F ₂₅₄ (Merck 5554)	
	SC: Kies	elgel 60, Korngröß	8e 0,04 - 0,063 mm (Merck 9385)	
Elementaranalyse:	Zentrale Einrichtung der Chemie / Pharmazie "Mikroanalyse"			
	der Heinr	ich-Heine-Universi	ität Düsseldorf	
	Perkin Elr	mer PE 2400 CHN	Elemental Analyser	
	Mikrowaa	ge Perkin Elmer A	D-6 Auto-Balance	
	Angaben	in % (Molekularge	wicht in g/mol)	
IR-Spektroskopie:	Perkin Elr	mer FT-IR-Spektra	Iphotometer 1600	
	Angaben	der Wellenzahl <i>v</i> [[cm ⁻¹]	
	Festsubst	tanzen als KBr-Pre	esslinge	
	Charakter	risierung der Schw	vingungen durch Transmission [%]:	
	VW	(very weak)	90-70	
	W	(weak)	70-50	
	m	(medium)	50-30	
	S	(strong)	30-10	
	VS	(very strong)	10-0	
Massenspektrometrie:	Finnigan	MAT 4000; Ionisie	rungsenergie 70 eV	
	FAB-Massenspektren wurden mittels Finnigan MAT 8000			
	aufgenommen			
	Angaben	als m/z (relative Ir	ntensitäten in Prozent)	
NMR-Spektroskopie:	200 MHz-Spektren: Bruker AC 200			
	500 MHz-Spektren: Bruker AC 500			
	Angaben der chemischen Verschiebung δ in ppm gegen TMS			
	als interne	er Standard		
pH-Meter:	Mikroprozessor-pH-Meter Multi-Calimatic, Knick mit pH-			
	Glaselele	ktrode Typ 405-T,	F.Nr. 105962, Ingold	
Schmelzpunkte:	Apotec [®] ,	Angaben in °C ohr	ne Korrektur	

HPLC:Pumpe Dionex P580 PumpeDegaser ERC – 3215UV-Detektor Gynotek ÄUVD340SFluorimeter Hitachi F1000; Time const. 1; Sensivity 0,5 incl.Software Chromeleon Vers. 6.1RP18-Säule 20 cm Lichrosorb (5 μm) Merck Cat. 50333Vorsäule RP18-Säule 2 cm Lichrosorb (5 μm)

UV-VIS-Spektroskopie: Perkin-Elmer Lambda 16, Computerunterstützt durch Perkin-Elmer Lambda 16 UV/VIS Operating Software 4.01 Hellma Quarzglasküvetten: Typ 111-QS, Schichtdicke 10,00 mm

5.2 Abkürzungen

AAV	Allgemeine Arbeitsvorschriften
Abb.	Abbildung
abs.	absolut
ATP	Adenosintriphosphat
ber.	berechnet
BH ₄	Tetrahydrobiopterin
BSH	Benzolsulfhydroxamsäure
BSI	Benzolsulfinsäure
bzw.	beziehungsweise
ca.	circa
cAMP	cyclisches Adenosinmonophosphat
cGMP	cyclisches Guanosinmonophosphat
δ	chemische Verschiebung
d	Dublett
dd	Dublett vom Dublett
DC	Dünnschichtchromatographie
d.h.	das heißt
DMSO	Dimethylsulfoxid
dt	Dublett vom Triplett
d. Th.	der Theorie

EDRF	endothelial-derived relaxing factor
ESR	Elektronen-Spin-Resonanz-Spektroskopie
evtl.	eventuell
FAB	Fast-Atomic-Bombardement
FAD	Flavinadenindinucleotid
FMN	Flavinmononucleotid
gef.	gefunden
GI.	Gleichung
Hb.	Hämoglobin
HbO ₂	Oxyhämoglobin
HPLC	Hochleistungs-Flüssigchromatographie
IR	Infrarot; Infrarotspektroskopie
J	Betrag der Kopplungskonstante
Кар.	Kapitel
konz.	konzentriert
m	Multiplett
M ^{+.}	Molekülion
MetHb	Methämoglobin
min.	minütiger
MS	Massenspektroskopie
NADPH	Nicotinamid-adenin-dinucleotid-phosphat
NMR	Kernresonanz; Kernresonanz-Spektroskopie
NO	Stickstoffmonoxid
NOC-15	1-Hydroxy-2-oxo-3-(3-aminopropyl)-3-propyl-1-triazen
NOC-18	1-Hydroxy-2-oxo-3,3-bis(2-aminoethyl)-1-triazen
NONOate	N,N´-Nitrosamin-N´-oxide
NOS	NO ⁻ -Synthase
NOXYL	6-tertButyl-4-carboxy-2,2-diphenyl-1,2-dihydrochinolinyl-1-oxyl
PE	Petrolether 60/80
Phe	Phenyl
ppm	parts per million
proz.	prozentig
q	Quartett
R _f	relative Wanderungsstrecke

reaktive Sauerstoffspezies
reversed Phase
Raumtemperatur
Singulett
Seite
präparative Säulenchromatographie
Schmelzpunkt
Siedepunkt
Triplett
Halbwertszeit
Tetrahydrofuran
Wellenzahl
unter anderem
Ultraviolett
verdünnt
vergleiche
zum Beispiel
zentrales Nervensystem
zum Teil

5.3 Chemikalien

Alle Lösungsmittel wurden in technischer Qualität aus dem zentralen Chemikalienlager der Heinrich-Heine-Universität Düsseldorf bezogen und vor Gebrauch über eine 50 cm Vigreux-Kolonne destilliert bzw. falls erforderlich nach den üblichen Verfahren absolutiert. Die übrigen Feststoffchemikalien entsprechen einer p.A. Qualität.

Acetanilid	Merck
Aluminium(III)chlorid	Merck
Ammoniumchlorid	Merck
2-Aminobiphenyl	Aldrich
2-Amino-2-methyl-1-propanol	Lancaster
Benzoylchlorid	Merck
Benzolsulfhydroxamsäure	Fluka

Blei(IV)-oxid	Fluka
4-tert-Butylanilin	Acros
tert-Butylbenzol	Merck
2-Chlorobenzaldehyd	Lancaster
3-Chlor-peroxybenzoesäure	Aldrich
2-Chloro-2-methylpropan	Lancaster
2,4-Difluoranilin	Lancaster
Eisen(III)-chlorid	Merck
Eisen(III)-nitrat nonahydrat	Lancaster
Eisen(II)-sulfat heptahydrat	Fluka
2-Fluoroacetanilid	Lancaster
Kalium	Merck
Kaliumcarbonat	J.T.Baxter
Kaliumhexacyanoferrat(III)	Merck
Kaliumpermanganat	Acros
Kieselgel 60, 0,04-0,063 nm	Merck
Magnesium	Merck
Magnesiumsulfat, wasserfrei	Grüssing
Molekularsieb 4 A	Roth
Natriumazid	Janssen
Natriumhydrogencarbonat	J.T.Baxter
Phenanthridin	ABCR
Phenylmagnesiumbromid 1,0 M Lsg in THF	Aldrich
Thionylchlorid	Merck

0,1 M Phosphatpuffer pH 7,4 wurde folgendermaßen dargestellt:

Lösung 1:4,546 g KH2PO4 in 500 ml Aqua bidest.Lösung 2:11,876 g Na2HPO4 in 1000 ml Aqua bidest.

74 ml Lösung 1 werden mit 426 ml Lösung 2 gemischt und der pH-Wert wird mit einer Glaselektrode eingestellt.

Stammlösungen von <u>6</u> und <u>16:</u>

Stammlösung 1 wurde folgendermaßen dargestellt: 6.96 mg **6** werden in 100 ml Acetonitril gelöst (2*10⁻⁴mol/l). **Stammlösung 2** wurde folgendermaßen dargestellt: 80.8 mg **16** werden in 100 ml Acetonitril gelöst (2*10⁻³mol/l).

Stammlösung 3 wurde folgendermaßen dargestellt:

39. 4 mg NOC-15 wird in 100 ml 0.1 M Phosphatpuffer pH-7.4 gelöst (2*10⁻³mol/l).

Stammlösung 4 wurde folgendermaßen dargestellt: 35.9 mg NOC-18 wird in 100 ml 0.1 M Phosphatpuffer pH-7.4 gelöst (2*10⁻³mol/l).

Stammlösung 5 wurde folgendermaßen dargestellt:

152.2 mg Benzolsulfhydroxamsäure wird in 100 ml 0.1 M Phosphatpuffer pH-7.4 gelöst (8*10⁻³mol/l).

Stammlösung 6 wurde folgendermaßen dargestellt:

289.6 mg Kaliumhexacyanoferrat(III) wird in 100 ml 0.1 M Phosphatpuffer pH-7.4 gelöst (8*10⁻³mol/l).

Stammlösung 7 wurde folgendermaßen dargestellt:

304.4 mg Benzolsulfhydroxamsäure wird in 100 ml 0.1 M Phosphatpuffer pH-7.4 gelöst (16*10⁻³mol/l)

Stammlösung 8 wurde folgendermaßen dargestellt:

579.2 mg Kaliumhexacyanoferrat(III) wird in 100 ml 0.1 M Phosphatpuffer pH-7.4 gelöst (16*10⁻³)

5.4 Allgemeine Arbeitsvorschriften

AAV 1: Darstellung der Anile durch Umsetzung verschiedener Aniline mit 2-Chlorbenzaldehyd

In Anlehnung an Lit.⁶³ wurden 0,05 mol Natriumhydrogencarbonat, 0.01 mol des entsprechenden Anilins, 0.01 mol 2-Chlorbenzaldehyd, 7g aktiviertes Molekularsieb 4A und 25 ml getrocknetes Toluol unter Argon-Atmosphäre zusammengegeben. Die Mischung wird über Nacht unter Rückfluss erhitzt. Anschließend wird die Mischung filtriert und das Lösungsmittel unter Vakuum abdestilliert. Das Rohprodukt wird nach dem Erstarren für weitere Synthese ohne Aufreinigung eingesetzt.

AAV 2: Darstellung der Phenanthridine durch Cyclisierung der Anile mit Kaliumamid

In Anlehnung an Lit.⁶⁴ wird ein mit trockenem Argon gespülter Kolben mit einer Mischung aus Trockeneis/Methanol auf -74°C abgekühlt. Anschließend wird solange getrockneter Ammoniak in diesen Kolben eingeleitet bis ca. 300 ml flüssiger Ammoniak entstanden ist. In den flüssigen Ammoniak werden 14 mmol Kalium gegeben. Nachdem sich das Kalium vollständig aufgelöst hat (ca. 45 min) wird 1 Spatelspitze Eisen(III)-nitrat hinzugegeben um die Umwandlung des in Ammoniak gelösten Kaliums zu Kaliumamid zu katalysieren. Nachdem das Metall komplett abreagiert ist, was an einer Farbänderung von blau zu dunkelgrau zu erkennen ist wird auf einmal 4.2 mmol des Anils hinzugegeben. Die Mischung wird unter Argon 3 h gerührt. Anschließend wird die Reaktion durch Zugabe von Ammoniumchlorid gestoppt. Der Ammoniak wird abgedampft und der Rückstand in Wasser aufgenommen. Die wässrige Phase wird mit Dichlormethan extrahiert. Nach dem Waschen mit Wasser und Trocknen mit Magnesiumsulfat wird die organische Phase i. Vak. zur Trockne gebracht. Zur Aufreinigung wird wie jeweils angegeben an Kieselgel 60 säulenchromatographiert.

AAV 3: Darstellung der Phenanthridin-5-oxide

In Anlehnung an Lit.⁶⁰ wird 3 mmol 3-Chlorperbenzoesäure in 40 ml Dichlormethan gelöst. Unter Eiskühlung wird langsam 1 mmol des jeweiligen Phenanthridins hinzugetropft. Der Ansatz wird über Nacht bei Raumtemperatur gerührt. Anschließend wird die organische Phase mit 10%iger Natronlauge und Wasser gewaschen, über Magnesiumsulfat getrocknet und i. Vak. zur Trockne gebracht. Zur Aufreinigung wird wie jeweils angegeben an Kieselgel 60 säulenchromatographiert.

AAV 4: Darstellung an Position 6 phenylierter Phenanthridine durch Umsetzung von Phenanthridin-5-oxiden mit Phenylmagnesiumbromid

In Anlehnung an Lit.⁶² wird unter Argon-Atmosphäre bei Raumtemperatur zu einer Lösung von 0,01 mol des N-Oxides in 40 ml trockenem Tetrahydrofuran 0,03 mol Phenylmagnesiumbromid in 30 ml trockenem Tetrahydrofuran hinzugegeben. Die Mischung wird 3h unter Argon gerührt und danach in eine 10%ige wässrige

Ammoniumchloridlösung gegeben um die Reaktion zu beenden. Die Tetrahydrofuran/Wasser-Phase wird mit Dichlormethan extrahiert und die organische Phase nach dem Waschen mit Wasser und dem Trocknen i. Vak. zur Trockne gebracht. Der Rückstand wird in etwas Toluol gelöst und mit 2 g Blei(IV)-oxid versetzt. Nach 15 min wird das Blei(IV)-oxid abgetrennt und das Toluol i. Vak. abrotiert. Zur Aufreinigung wird wie jeweils angegeben an Kieselgel 60 säulenchromatographiert.

AAV 5: Umsetzung der Aminoxyle (**6** bzw. **16**) mit NO⁻-Donoren und anschließender quantitativer Untersuchung

In einem Rundkolben wird die jeweils angegebene Menge (X ml) ml einer **Lösung 1** eines Aminoxyl mit Acetontril verdünnt. Dazu wird eine entsprechende Menge (Y ml) einer **Lösung 2** eines NO⁻-Donors gegeben die mit 0.1 M Phosphatpuffer pH 7.5 (s. Kap. 5.3) verdünnt wurde. Gegebenenfalls wird die entsprechende Menge (Z ml) einer **Lösung 3** von Kaliumhexacyanoferrat(III), die mit Z ml 0.1 M Phosphatpuffer pH 7.5 verdünnt wurde, hinzugetropft. Der Ansatz wurde unter Sauerstoffausschluß durchgeführt. Die Apparatur wurde vor der Versuchsdurchführung 10 min. und nach dem Zusammengeben aller Indrigenzien 15 min. mit Argon gespült. Der Reaktionsansatz wird bei Raumtemperatur gerührt und nach XX h/min eine Probe entnommen und direkt für die HPLC-Analytik verwendet.

AAV 6: Umsetzung der Aminoxyle (**6** bzw. **16**) mit NO⁻-Donoren und anschließender qualitativer Untersuchung

Die Durchführung erfolgt analog zu AAV 5. Der Ansatz wurde nach der angegebenen Zeit (h/min) abgebrochen und die wässrige Phase drei mal mit Dichlormethan extrahiert. Die vereinigten organischen Phasen wurden über Magnesiumsulfat getrocknet und i. Vak. zur Trockne eingeengt. Das Produktgemisch wurde dünnschicht-chromatographisch mit dem entsprechenden Fließmittel gegen Vergleichsubstanzen identifiziert.

5.5 Substanzdaten

N-Biphenyl-2-yl-benzamid 3

Darstellung: Zu einer Lösung aus 1.69 g 2-Aminobiphenyl (0,01 mol) in 25ml trockenem Toluol werden unter Kühlung langsam 0.7 g Benzoylchlorid (0,005 mol) hinzugetropft (die Temperatur sollte 50°C nicht überschreiten). Nach Beendigung der Zugabe des Benzoylchlorids wird noch 1h weiter gerührt. Nach dem Erkalten wird das Lösungmittel i. Vak. entfernt. Der erhaltene Rückstand wird durch mehrmaliges Verrühren mit heißem Wasser und anschließendem Absaugen der wässrigen Phase von vorhandenem 2-Aminobiphenylhydrochlorid gereinigt. Es entstehen weiße Plättchen aus Wasser/Ethanol

Ausbeute:	60 % d. Th.
Schmp.:	85°C (Lit.: 86°C ⁵⁷)
R _f -Wert:	0.49 (Toluol/Ethylacetat 80:20)
IR (KBr),[cm ⁻¹]:	3270 (m), 3031 (w), 1703 (m), 1650 (vs),
	1504 (s), 1302 (s)

¹ H-NMR (200 MHz, D	MSO-d ₆) [[opm]:			
7.26 – 7.57	m	12H	arom. H		
7.75 – 7.79	m	2H	arom. H orth	io -CO-	
9.85	S	1H	NH		
MS (EI, 70 eV) [m/z],	(%):	273 M ^{+*} (77)), 167 (80), 10	5 (100), 77 (9	9)
Elementaranalyse:					
$C_{19}H_{15}NO$	(273.33)	ber.:	C 83.52	H 5.49	N 5.13

gef.: C 83.54

H 5.39

N 5.07

6-Phenylphenanthridin 4

Darstellung: 2.73 g N-Biphenyl-2-yl-benzamid (0.01 mol) wird mit 4.6g Phosphoroxychlorid (0,03 mol) auf einem Ölbad auf 130-150°C erhitzt und nachdem keine Salzsäure-Dämpfe mehr aufsteigen noch ein Stunde weiter erhitzt. Nach Beendigung der Reaktion wird das Reaktionsgemisch auf Eis gegeben. Anschließend alkalisiert man mit 10 proz. wässriger Ammoniak-Lösung und extrahiert die Mischung mit Diethylether. Die organische Phase wird erst mit 5 proz. Salzsäure und danach mit Wasser gewaschen. Die organischen Phase wird nach dem Trocknen mit Magnesiumsulfat i. Vak. zur Trockne eingeengt. Nach der Reinigung durch Säulenchromatographie (FM Toluol/Ethanol 98:2) wird das Phenanthridin aus verdünnter ethanolischer Lösung auskristallisiert.

Ausbeute:	35%
Schmp.:	107°C (Lit.: 105°C ⁵⁸)
R _f -Wert:	0.42 (Toluol/Ethanol 98:2)
IR (KBr),[cm ⁻¹]:	3057.9 (s), 1609.7 (m), 1559.9 (s), 1481.9 (s),
	1359.6 (s)

¹H-NMR (200 MHz, DMSO-d₆) [ppm]:

7.59 – 7.64	m	3H	arom. H
7.69 – 7.88	m	5H	arom. H
7.92 – 8.01	t	1H	9-H
8.03 - 8.07	d	1H	7-H
8.13 – 8.18	dd	1H	4-H
8.82 - 8.87	dd	1H	1-H
8.91 – 8.96	dd	1H	10-H

MS (EI, 70 eV) [m/z], (%):

255 M^{+*} (51), 254 (95), 127 (100), 51 (21)

Elementanalyse:

C ₁₉ H ₁₃ N (255.31) ber.:	C 89.41	H 5.09	N 5.49
--	---------	--------	--------

6-Phenylphenanthridin-5-oxid 5

Darstellung:Nach AAV 3 aus 2.07g 3-Chlorperbenzoesäure (12 mmol)und 1.02 g 4 (4 mmol).Zur Aufreinigung wird an Kieselgel 60 mitDichlormethan/Ethylacetat 70:30 chromatographiert.

Ausbeute:	65%
Schmp.:	216-218°C (Zers.)
R _f -Wert:	0.24 (Dichlormethan/Etylacetat 70:30)
IR (KBr),[cm ⁻¹]:	3053.6 (w), 1609.7 (m), 1559.9 (s), 1481.9 (s),
	1359.6 (s)

^I H-NMR (200 MHz, DMSO-d ₆) [ppm]:					
7.5 - 8.0	m	9H	arom. H		
8.7 – 9.0	m	4H	arom. H		

MS (EI, 70 eV) [m/z], (%): 271 M⁺⁺ (29), 270 (70), 254 (90), 149 (100), 91 (81)

Elementaranalyse:

$C_{19}H_{13}NO$	(271.32)	ber.:	C 84.13	H 4.79	N 5.17
		gef.:	C 83.90	H 4.98	N 5.21

5,6-Dihydro-6,6-diphenyl-phenanthridinyl-5-oxyl 6

Darstellung: Nach **AAV 4** aus 5.4g Phenylmagnesiumbromid in Tetrahydofuran (0.03 mol) und 2.71 g des N-Oxides **5** (0.01 mol). Zur Aufreinigung wird an Kieselgel 60 mit Toluol/Ethylacetat 70:30 chromatographiert. rote Kristalle aus Petrolether 60/80

Ausbeute:	55%
Schmp.:	173°C
R _f -Wert:	0.33 (Toluol/Ethylacetat 70:30)
IR (KBr),[cm ⁻¹]:	3058.8 (w), 3031.7 (w), 1446.2 (m), 1380.0 (w)

ESR-Spektrum (9.8 GHz, CDCI₃, RT):

g = 2,00564	α(N) =	1,102[mT] (1N)
	$\alpha(H_4) =$	0,272[mT] (1H)
	$\alpha(H_2) =$	0,271[mT] (1H)
	$\alpha(H_3) =$	0,099[mT] (1H)
	$\alpha(H_1) =$	0,097[mT] (1H)
	α(H ₁₀)=	0,046[mT] (1H)
	$\alpha(H_8) =$	0,041[mT] (1H)
	α(H ₉) =	0,017[mT] (1H)
	$\alpha(H_7) =$	0,013[mT] (1H)

MS (EI, 70 eV) [m/z], (%): 348 M^{+·} (92), 318 (100), 256 (92), 241 (78)

Elementaranalyse:

C ₂₅ H ₁₈ NO	(348.42)	ber.:	C 86.21	H 5.17	N 4.02
		gef.:	C 85.99	H 5.14	N 4.05

Phenanthridin-5-oxid 9

Darstellung:Nach AAV 3 aus 2.07g 3-Chlorperbenzoesäure (12 mmol)und 0.72g 8 (4 mmol).Zur Aufreinigung wird an Kieselgel 60 mitDichlormethan/Ethanol 95:5 chromatographiert.

Ausbeute:	62%
Schmp.:	226-228°C
R _f -Wert:	0.27 (Dichlormethan/Ethanol 95:5)
IR (KBr),[cm ⁻¹]:	3051.1 (m), 1657.2 (w), 1574.0 (m), 1458.1 (m),
	1311.0 (s), 1195.6 (s)

¹H-NMR (200 MHz, DMSO-d₆) [ppm]:

7.73 – 7.81	m	2H	arom. H	
7.88 – 7.93	m	2H	arom. H	
7.97 – 8.02	dd	1H	H-7	³ J = 7.0; ⁴ J = 2.1
8.70 - 8.79	m	2H	H-4; H-10	
8.86 – 8.91	dd	1H	H-1	3 J = 6.4; 4 J = 3.2
9.16	S	1H	H-6	
S (EL 70 eV) [m/z	71. (%):	195 M ^{+.}	(100) 179 (46)	167 (82) 166

MS (EI, 70 eV) [m/z], (%): 195 M⁺⁺ (100), 179 (46), 167 (82), 166 (55), 139 (42)

Elementaranalyse:

C ₁₃ H ₉ NO	(195.21)	ber.:	C 80.00	H 4.61	N 7.18
		gef.:	C 80.05	H 4.89	N 6.90

2-tert.-Butylphenanthridin 13

Darstellung:Nach AAV 2 unter der Verwendung von 1.64 g Kalium (4,2mmol) und 2.04 g des Anils 12 (7 mmol). Zur Aufreinigung wird an Kieselgel 60 mitToluol chromatographiert.

Ausbeute:	35%
Schmp.:	65.6°C
R _f -Wert:	0.27 (Toluol)
IR (KBr),[cm ⁻¹]:	3019 (vs), 2965.8 (vs), 1614.6 (m),
	1494.5 (s), 1428.4 (m), 1216.0 (vs)

¹H-NMR (200 MHz, CDCl₃) [ppm]:

1.50	S	9H	tertButyl-H	
7.64 – 7.71	dt	1H	H-8	³ J = 7.8; ⁴ J = 1.1
7.80 – 7.89	m	2H	H-3; H-9	
8.00 - 8.04	dd	1H	H-7	³ J = 7.8; ⁴ J = 1.1
8.12 - 8.16	d	1H	H-4	3 J = 8.6
8.55 - 8.56	d	1H	H-1	⁴ J = 2.1
8.62 - 8.67	"dd"	1H	H-10	3 J = 8.3
9.24	S	1H	H-6	

MS (EI, 70 eV) [m/z], (%):

235 M^{+·} (41), 220 (100), 204 (17), 180 (19)

Elementarana	alyse:
--------------	--------

C ₁₇ H ₁₇ N/HClO ₄	(335.83)	ber.:	C 60.80	H 5.36	N 4.17
		gef.:	C 60.65	H 5.40	N 3.99

2-tert.-Butylphenanthridin-5-oxid 14

Darstellung:Nach AAV 3 aus 2.07 g 3-Chlorperbenzoesäure (12 mmol)und 0.94 g 13 (4 mmol).Zur Aufreinigung wird an Kieselgel 60 mitEthylacetat/Ethanol 94:6 chromatographiert.

Ausbeute:	52%
Schmp.:	174°C
R _f -Wert:	0.23 (Ethylacetat/Ethanol 94:6)
IR (KBr),[cm ⁻¹]:	3055.4 (m), 2958.9 (s), 1662.3 (s), 1592.7 (m),
	1313.5 (m), 1225.8 (m)

1.47	S	9H	tertButyl-H	4	
7.72 – 7.82	m	2H	H-8; H-9		
7.96 – 8.01	m	2H	H-3; H-7		
8.62 - 8.66	d	1H	H-4	³ J = 9.0	
8.72 – 8.73	d	1H	H-1	⁴ J = 1.9	
8.83 - 8.87	"dd"	1H	H-10	³ J = 7.5	
9.10	S	1H	H-6		
MS (EI, 70 eV) [m/z]	, (%):	251 M ^{+*} (24	4.4), 236 (92.4	l), 220 (100),	204 (29.2),
		191 (37.2),	180 (31.9)		
Elementaranalyse:					
C ₁₇ H ₁₇ NO	(251.33)	ber.	C 81.27	H 6.77	N 5.58
		gef.:	C 81.19	H 6.95	N 5.29

2-tert.-Butyl-6-phenylphenanthridin-5-oxid 15

Darstellung: Nach **AAV 4** aus 5.4 g Phenylmagnesiumbromid in Tetrahydrofuran (0.03 mol) und 2.51 g des N-Oxids **14** (0.01 mol). Zur Aufreinigung wird an Kieselgel 60 mit Ethylacetat/Ethanol 98/2 chromatographiert

Ausbeute:	60%
Schmp.:	148°C
R _f -Wert:	0.30 (Ethylacetat/Ethanol 98:2)
IR (KBr),[cm ⁻¹]:	3422.9 (w), 3047.1 (w), 2962.2 (w), 1565.0 (w),
	1488.6 (w), 1390.1 (w), 1306.1 (m)

1.53	S	9H	tertButyl-H		
7.50 – 7.63	m	7H	H-3; H-8; ar	om. H	
7.66 – 7.76	"dt"	1H	H-9		
7.89 – 7.94	"dd"	1H	H-7		
8.59 - 8.63	m	2H	H-1; H-4		
8.88 - 8.92	"dd"	1H	H-10		
MS (EI, 70 eV) [m/z],	(%):	327 M ^{+·} (9)	, 311 (69), 296	6 (67), 220 (38	3), 71
		(43), 56 (10	00)		
Elementaranalyse:					
C ₂₃ H ₂₁ NO	(327.42)	ber.	C 84.40	H 6.42	N 4.28

gef.:	C 84.24	H 6.41	N 4.17

2-tert.-Butyl-5,6-dihydro-6,6-diphenylphenanthridinyl-5-oxyl 16

Darstellung:NachAAV4aus5.4gPhenylmagnesiumbromid inTetrahydrofuran (0.03 mol) und 3.27 g desN-Oxids14 (0.01 mol). ZurAufreinigung wird an Kieselgel 60 mit Toluol/Petrolether 50/50 chromatographiert.

Ausbeute:	53%
Schmp.:	136°C
R _f -Wert:	0.15 (Toluol/Petrolether 50:50)
IR (KBr),[cm ⁻¹]:	3059.3 (w), 2960 (w), 1595.1 (vw),
	1490 (w), 1445 (w)

ESR-Spektrum (9.8 GHz, CDCI₃, RT):

 $g = 2,00567 \qquad \alpha(N) = 1,12 \ [mT] \ (1N) \\ \alpha(H_4) = 0,381[mT] \ (1H) \\ \alpha(H_3) = 0,089[mT] \ (1H) \\ \alpha(H_1) = 0,088[mT] \ (1H) \\ \alpha(H_{10}) = 0,043[mT] \ (1H) \\ \alpha(H_8) = 0,043[mT] \ (1H) \\ \alpha(H_9) = 0,029[mT] \ (1H) \\ \alpha(H_7) = 0,022[mT] \ (1H)$

MS (EI, 70 eV) [m/z], (%):	404 M ^{+*} (9), 389 (100), 312 (86), 296 (34)
Elementaranalyse:	

$C_{29}H_{26}NO$	(404.52)	ber.:	C 86.14	H 6.54	Ν	3.46
		gef.:	C 85.60	H 6.40	Ν	3.37

2-(4-Bromo-phenyl)-4,4-dimethyl-4,5-dihydro-oxazol 19

Darstellung: 4.88 g 4-Brom-benzoylchlorid (0.022 mol) werden in 10ml Dichlormethan gelöst und langsam bei 0°C zu einer gerührten Lösung von 3.92 g 2-Amino-2-methyl-1-propanol (0.044 mol) in 10 ml Dichlormethan getropft. Anschließend wird die Mischung 2h bei 25°C gerührt. Das entstehende weiße Präzipitat wird abfiltriert und mit Wasser gewaschen. Der Rückstand wird mit dem kombiniert, was man nach der Entfernung des Lösungsmittels aus dem Filtrat gewonnen hat. Das entstandene Rohprodukt (geschätzte Ausbeute 98) wird direkt für die Cyclisierung eingesetzt.

Für die Cyclisierung werden 8.28g Thionylchlorid (0.072 mol) unter ständigem Rühren langsam zu 6.2 g des Rohproduktes (0.022 mol) gegeben. Sobald die kräftige Reaktion nachgelassen hat wird die gelbe Lösung in 37 ml trockenem Diethlyether geschüttelt. Die dabei entstehenden weißen Kristalle werden abgetrennt. Das Hydrochlorid wird mit kalter 20%iger Natronlauge neutralisiert und die entstehende Base anschließend mit Diethylether extrahiert. Der Ether wird nach dem Waschen mit Wasser mit Kaliumcarbonat getrocknet und i. Vak. bis zur Trockne eingeengt. Das zurückbleibende gelbe Öl erstarrt beim Erkalten. Nach der Umkristallisation mit n-Hexan erhält man weiße Kristalle.

Ausbeute:	70%
Schmp.:	38°C
R _f -Wert:	0.58 (Ethylacetat/Toluol/Ethanol 75:20:5)
IR (KBr),[cm ⁻¹]:	3070.2 (s), 2961.6 (vs), 1647.1 (vs), 1590.7 (s),
	1485.6 (s), 1397.6 (s), 1313.2 (s)

1.38	S	6H	Methyl-H
4.11	S	2H	Methylen-H
7.67	q	4H	AA'BB'-System

MS (EI, 70 eV) [m/z], (%):	255 M ^{+·} - ⁸¹ Br (3), 253 M ^{+·} - ⁷⁹ Br (3), 240 - ⁸¹ Br
	(82), 238 - ⁷⁹ Br (83), 212 - ⁸¹ Br (18), 210 - ⁷⁹ Br
	(21), 184 - ⁸¹ Br (39), 182 - ⁷⁹ Br (42), 50 (100)

Elementaranalyse:				
C ₁₁ H ₁₂ NOBr	(254.11)	ber.: C 51.99	H 4.73	N 5.51
		gef.: C 51.98	H 4.69	N 5.41

2-tert.-Butyl-6-[4-(5,5-dimethyl-4,5-dihydro-oxazol-2-yl)-phenyl]-phenanthridin-5-oxid <u>21</u>

Darstellung: 2.0 g der Substanz **19** (0.008 mol) werden in 20 ml absolutem Tetrahydrofuran gelöst und langsam zu 244 mg Magnesium (0.01 mol) getropft. Sollte die Reaktion nicht anspringen gibt man 1Tropfen Brom hinzu. Anschließend wird 2h gerührt.

Zu dem Grignard-Reagenz wird 0.67 g des N-Oxids **9** (0.0026 mol) in 20 ml absolutem Tetrahydofuran unter hinzugetropft. Der Ansatz wird 4h unter Argon-Atmosphäre gerührt. Eventuell kann der Ansatz zum Anspringen der Reaktion, was an der Verfärbung zu erkennen ist, leicht erhitzt werden. Das weitere Vorgehen bis zur säulenchromatographischen Aufreinigung entspricht der **AAV 4**. Die Aufreinigung erfolgt säulenchromatographisch an Kieselgel 60 mit Ethylacetat/Toluol/Ethanol 75:20:5.

Ausbeute:	56%
Schmp.:	212°C
R _f -Wert:	0.32 (Ethylacetat/Toluol/Ethanol 75:20:5)
IR (KBr),[cm ⁻¹]:	3446.1 (w), 3068.8 (w), 2960.9 (m), 1646.5 (m),
	1488.4 (w), 1307.7 (m)

¹H-NMR (200 MHz, CDCl₃) [ppm]:

1.44	S	6H	Methyl-ł	4		
1.52	S	9H	tertBut	yl-H		
4.18	S	2H	Methyle	n-H		
7.41 – 7.54	m	2H	H-3; H-8	3		
7.67 – 7.75	"dt"	1H	H-9			
7.91	q	4H	AA′BB′-	System		
7.88 – 7.93	"dd"	1H	H-7			
8.58 - 8.63	m	2H	H-1; H-4	ł		
8.86 - 8.90	"dd"	1H	H-10			
MS (El, 70 eV) [m	n/z], (%):	424 M ^{+·} ((77)	13), 409 (44	I), 394 (10	00), 91 (30), 9	57
Elementaranalys	e:					
$C_{28}H_{28}N_2O_2$	(424.53)	ber.: C	79.25 H	6.61	N 6.61	
		gef.: C	79.13 H	6.85	N 6.38	

4-(2-tert-Butyl-5-hydroxy-phenanthridin-6-yl)-benzoesäure 22

1.27 g der Substanz 23 werden (0.003 mol) werden 1h in 30 ml Darstellung: 3N Salzsäure unter Rückfluß erhitzt. Nach dem Abkühlen des Ansatzes wird die Säure abfiltriert. Der Rückstand wird drei mal mit Diethylether und drei mal mit Wasser gewaschen und im Exsikkator unter Vakuum getrocknet.

Ausbeute:	56%
Schmp.:	238°C
IR (KBr),[cm ⁻¹]:	3420.2 (w), 3040.2 (w), 2964.4, (m), 1702.7 (s),
	1609.9 (w), 1568.5 (w), 1403.3 (m)

'H	-NMR (200 MH	z, DMSO-d ₆)	[ppm]:				
	1.49	S	9H		tertButyl-I	4	
	7.26 – 7.31	"dd"	1H		H-3	³ J =	8.1
	7.59	"dt"	1H		H-8	³ J =	8.3
	7.59 – 7.69	t	1H		H-9	³ J =	8.1;
	7.98 – 8.04	dd	1H		H-7	³ J =	9.0; ⁴ J = 1.5
	8.19	q	4H		AA´BB´-Sy	stem	
	8.64 - 8.68	d	1H		H-4	³ J =	9.0
	8.80 - 8.81	d	1H		H-1	⁴ J =	1.6
	8.95 - 8.99	d	1H		H-10	³ J =	8.1
	13.22	S	1H		Carboxyl-H	; austauschb	ar mit D ₂ O
MS	6 (El, 70 eV) [m	/z], (%):	371 M 55 (46	^{+•} (8),)	355 (29), 34	0 (100), 296	(18),
Ele	ementaranalys	e:					
	$C_{24}H_{21}NO_3$	(371.43)		ber.:	C 77.62	H 5.66	N 3.77

2-tert.-Butyl-6-(4-carboxyphenyl)-5,6-dihydro-6-phenylphenanthridinyl-5-oxyl 23

Darstellung: Nach **AAV 4** aus 5.4 g Phenylmagnesiumbromid in Tetrahydrofuran (0.03 mol) und 3.71 g des N-Oxids **22** (0.01 mol). Zur Aufreinigung wird mit Diethylether/Petrolether umkristallisiert.

Die Reindarstellung der Substanz gelang nicht durch Umkristallisation. Die säulenchromatographische Aufreinigung an Kieselgel gelingt auch nicht, da die für die Auftrennung von Säuren notwendigen sauren Fließmittel zur Zersetzung des Radikals beitragen.

Schmp:	188°C
R _f -Wert:	0.17 (Toluol/Aceton/Ameisensäure 95:5:1)
IR (KBr),[cm ⁻¹]:	3565.5 (m), 3052.9 (m), 2961.9 (vs), 1601.3 (m),
	1476.2 (m), 1361.7 (m), 1246.5 (m)

ESR-Spektrum (9.8 GHz, CDCI₃, RT):

g = 2,00565	α(N)	=	1,114 [mT]	(1N)
	α(H ₄)	=	0,379[mT]	(1H)
	α(H ₃)	=	0,090[mT]	(1H)
	$\alpha(H_1)$	=	0,089[mT]	(1H)
	α(H ₁₀)	=	0,043[mT]	(1H)
	α(H ₈)	=	0,042[mT]	(1H)
	α(H ₉)	=	0,025[mT]	(1H)
	$\alpha(H_7)$	=	0,023[mT]	(1H)

MS (EI, 70 eV) [m/z], (%):	448 M ^{+·} (4), 433 (2), 356 (29), 340 (67), 312
	(67), 296 (100)

Elementaranalyse:

$C_{30}H_{26}N_1O_3$	(448.53)	ber.:	C 80.36	H 5.80	N 3.13
		gef.:	C 77.29	H 5.75	N 3.27

N-(5-tert.-Butyl-2-fluor-phenyl)-acetamid 25

Darstellung: 4 g wasserfreies Aluminiumchlorid (0.029 mol) werden in 100 ml trockenem Schwefelkohlenstoff suspendiert und nachdem man auf -15°C abgekühlt mit 3.4 g 2-Fluoracetanilid (0.022 mol) versetzt. Anschließend wird unter Kühlung 2.55 g tert.-Butylchlorid (0.028 mol) zu der Suspension hinzugfügt. Nachdem man den Ansatz 24h bei Raumtemperatur gerührt hat, beendet man die Reaktion indem den Ansatz auf Eis gibt, neutral wäscht und das Lösungsmittel abdestilliert. Der Rückstand wird mit Dichlormetan extrahiert und die organische Phase mit Wasser

gewaschen. Nach dem Trocknen mit Magnesiumsulfat wird die organische Phase i. Vak. bis zur trockne eingeengt. Die Aufreinigung erfolgt Säulenchromatographisch an Kieselgel 60 mit Toluol/Petrolether/Ethylacetat 30:40:30.

Ausbeute:	20%
Schmp.:	95°C
R _f -Wert:	0.33 (Toluol/Petrolether/Ethylacetat 30/40/30)
IR (KBr),[cm ⁻¹]:	3262.4 (s), 3206.9 (m), 2959.4 (s), 1666.2 (vs),
	1617.8 (vs), 1551.8 (vs), 1491.5 (s), 1416.3 (vs)

¹ H-NMR (200 MHz	z, CDCl₃) [ppɪ	m]:		
1.30	S	9H	tertButy	/І-Н
2.21	S	3H	Methyl-H	l
6.93 – 7.01	t	1H	H-3	${}^{3}J_{H-3,F}$ = 8.6, ${}^{3}J_{H-3,H-4}$ = 8.6
7.03 – 7.16	dt	1H	H-4	3 J = 7.4, 4 J _{H-3,F} =5.6, 4 J = 2.0
7.44	S	1H	NH	
8.30 - 8.35	dd	1H	H-6	${}^{4}J_{H-6,F}$ = 5.7, ${}^{4}J_{H-6,H-4}$ = 2.0
MS (EI, 70 eV) [m	/z], (%):	209 M ^{+·} (10)	, 194 (14),	, 167 (27), 152 (73), 111

(100), 56 (49)

Elementaranalyse:

C ₁₂ H ₁₆ NOF	(209.26)	ber.:	C 68.89	H 7.65	N 6.69
	()				

N-(3,5-di-tert.-Butyl-2-fluor-phenyl)-acetamid 26

Darstellung:Durch Reaktion von 2-Fluoracetanilid mit tert.-Butylchlorid undAluminiumchlorid. Siehe Darstellung von 25.

Ausbeute:	9%
Schmp.:	80°C
R _f -Wert:	0.41

IR (KBr),[cm⁻¹]:	3241.9 (s), 3102.7 (s), 2961.3 (s), 1663.2 (vs),
	1604.2 (s), 1547.3 (s), 1322.52 (s), 1291.2 (s)

¹H-NMR (200 MHz, CDCl₃) [ppm]:

	1.30	S	9H	tertButyl	-H
	1.36	S	9H	tertButyl	-H
	2.21	S	3H	Methyl-H	
	7.00 – 7.05	dd	1H	H-4 ⁴ J _H	$_{\text{I-4,F}}$ = 7.7, 4 J = 2.4 _{H-4,H-6}
	7.46	S	1H	NH	
	8.16 – 8.21	dd	1H	H-6 ⁴ J _H	$_{I-4,F}$ = 6.9, 4 J = 2.4 _{H-4,H-6}
MS ((EI, 70 eV) [m/	/z], (%):	265 M ^{+*} (3), 152 (100)	250 (4), 20	9 (13), 194 (16), 167 (25)

Elementaranalyse:

C ₁₆ H ₂₄ NOF	(265.36)	ber.:	C 72.45	H 9.05	N 5.28
	· · · · · ·				

3,5-Di-tert.-butyl-anilin 28

Darstellung: In einen 250 ml Dreihalskolben werden 12.0 g 3,5-Di-tert.butylbenzoesäure (0.051 mol), 36 ml konzentrierte Schwefelsäure und 105 ml Dichlormethan gegeben. Das Gemisch wird unter Rühren auf 45°C erhitzt und 3.6 g Natriumazid (0.055 mol) werden in kleinen Portionen über einen Zeitraum von 1h hinzugefügt. Anschließend rührt man noch 5h weiter. Das Dichlormethan wird i. Vak. abdestilliert und der Rückstand wird nach dem Abkühlen auf Eis gegeben. Das weiße Salz, dass sich gebildet wird abfiltriert und mehrmals mit kaltem Wasser gewaschen. Die Base wird aus dem Salz durch Waschen mit 4N wässriger Ammoniak-Lösung frei gesetzt. Das Amin wird abfiltriert und mit Wasser gewaschen und im Exsiccator getrocknet.

Ausbeute:	60%
Schmp.:	50.1°C

R _f -Wert:	0.44 (Ethylacetat)			
IR (KBr),[cm ⁻¹]:	3390.4 (s), 3313.7 (s), 3061.8 (s), 2962.6 (s),			
	1598.6 (s), 1480.7 (s), 1361.3 (s), 1247.8 (m)			

¹H-NMR (200 MHz, CDCl₃) [ppm]:

1.28	S	18H	2 x tertButyl-H
3.84	S	2H	NH ₂ , austauscbar mit D ₂ O
6.59	S	2H	H-2; H-6
6.85	S	1H	H-4

MS (EI, 70 eV) [m/z], (%): 205 M⁺⁻ (33), 190 (37), 134 (52), 57 (100)

Elementaranalyse:

$C_{14}H_{23}N$	(205.33)	ber.:	C 81.95	H 11.21	N 6.83
		gef.:	C 81.80	H 11.13	N 6.94

1,3-Di-tert.-butylphenanthridin 30

Nach AAV 2 unter der Verwendung von 1.64 g Kalium (0.042 Darstellung: mol) und 2.29 g des Anils 29 (7.0 mmol). Zur Aufreinigung wird an Kieselgel 60 mit Toluol/Ethylacetat 70:30 chromatographiert. Das Phenanthridin wird als nicht kristalline wachsartige Substanz erhalten.

Ausbeute:	~5%
R _f -Wert:	0.42 (Toluol/Ethylacetat 70:30)
IR (KBr),[cm ⁻¹]:	3073.1 (s), 2961.7 (vs), 1617.4 (s), 1563.5 (vs),
	1469.9 (s), 1363.2 (s), 1244.3 (s)

1.47	S	9H	tertButy	/I-H Position 3
1.71	S	9H	tertButy	/I-H Position 1
7.58 – 7.68	dt	1H	H-8	³ J = 7.1; ⁴ J = 1.0
7.69 – 7.77	dt	1H	H-9	³ J = 7.1; ³ J = 8.2 ⁴ J = 1.6

7.97	- 8.04	"dd"	1H	H-7	⁴ J = 1.7
8.01		S	2H	H-2; H-4	
8.72	- 8.76	"dd"	1H	H-10	3 J = 8.3
9.19		S	1H	H-6	
MS (EI, 7	′0 eV) [m/z	z], (%):	291 M ^{+·} (19),	276 (73), 220	0 (36), 204 (15),
			57 (100)		

Elementaranalyse:

$C_{21}H_{25}N$	(291.42)	ber.: C 86.59	H 8.66	N 4.81
- 21 20				

1,3-Di-tert.-butyl-6-phenylphenanthridin 31

Darstellung: Zu 0.1 g der Substanz **30** (0.34 mmol) in 30 ml absolutem Diethylether werden unter Argon-Atmosphäre 0.034 g Phenyllithium (0.4 mmol) in 30 ml absolutem Diethylether über einen Zeitraum von 1h hinzugefügt. Das Reaktionsgemisch wird nachdem es 3h bei Raumtemperatur gerührt wurde auf Eiswasser gegeben und damit die Reaktion gestoppt. Nach der Extraktion der organischen Phase mit Diethylether und dem Trocknen des Diethylethers mit Magnesiumsulfat wird die organische Phase i. Vak. entfernt. Zu dem Rückstand wird 10 ml Nitrobenzol gegeben und die Lösung wird 2h unter Rückfluß gekocht. Das Nitrobenzol wird unter vermindertem Druck durch Destillation entfernt. Zur weiteren Aufreinigung an Kieselgel 60 mit Toluol chromatographiert.

Ausbeute:	45%
Schmp.:	82°C
R _f -Wert:	0.38 (Toluol)
IR (KBr),[cm⁻¹]:	3025.3 (m), 2960.6 (vs), 1601.3 (vs), 1479.8 (s),
	1429.1 (s), 1362.1 (s), 1248.4 (s)

¹H-NMR (200 MHz, CDCl₃) [ppm]:

1.45	S	9H	tertButyl-H Position 3
1.69	S	9H	tertButyl-H Position 1
7.43 – 7.69	m	5H	Phenyl-H
7.79 – 7.84	m	2H	isochrone H-8 und H-9
7.96 – 8.01	dd	1H	H-7 3 J = 8.2
7.97	S	2H	H-2; H-4
8.60 - 8.64	dd	1H	H-10 ³ J = 8.5

MS (EI, 70 eV) [m/z], (%): 367 M⁺⁺ (17), 352 (41), 91 (15), 57 (100)

Elementaranalyse:

$C_{27}H_{29}N$	(367.53)	ber.:	C 88.28	H 7.90	Ν	3.81
		gef.:	C 88.02	H 7.95	Ν	3.83

2,4-Difluorphenanthridin 36

Darstellung: Nach AAV 2 unter der Verwendung von 1.64 g Kalium (0.042 mol) und 1.76 g des Anils 35 (7.0 mmol). Zur Aufreinigung wird an Kieselgel 60 mit Toluol/Ethylacetat 70/30 chromatographiert.

Ausbeute:	52%			
Schmp.:	179.4°C			
R _f -Wert:	0.25 (Toluol/Ethylacetat 70:30)			
IR (KBr),[cm ⁻¹]:	3091.0 (m), 1627.6 (vs), 1586.1 (s), 1497.8 (v			
	1411.9 (s), 1125.6 (vs)			

¹ H-NMR (200 MH	z, DMSC)-d₀) [ppm]:		
7.68 – 7.79	dt	1H	H-3	${}^{3}J_{H-3,F}$ = 9.1 ${}^{4}J_{H-3,H-1}$ = 2.7
7.86 – 7.94	dt	1H	H-8	³ J = 7.5, ⁴ J = 1.1
7.97 – 8.06	dt	1H	H-9	³ J = 7.3, ⁴ J = 1.6

8.28 - 8.32	dd	1H	H-7	³ J = 7.6, ⁴	J =1.2	
8.48 - 8.55	dt	1H	H-1	³ J = 9.8 _{H-1}	_{,F} , ⁴ J = 2.4	
8.82 - 8.86	dd	1H	H-10)		
9.39	S	1H	H-6			
MS (EI, 70 eV) [n	n/z], (%):	215 M ^{+*} (1	100), 214	k (17), 195 (9), 188 (11), 57	7 (24)
Elementaranalys	se:					
$C_{13}H_7F_2N$	(215.19)	ber.: C	72.56	H 3.26	N 6.51	
		gef.: C	72.44	H 3.46	N 6.47	

2,4-Difluorphenanthridin-5-oxid 37

Darstellung: Nach **AAV 3** aus 2.07 g 3-Chlorperbenzoesäure (12 mmol) und 0.86 g **36** (4 mmol). Im Gegensatz zur normalen Umsetzung mit 3-Chlorperbenzoesäure wird der Ansatz bei der Umsetzung auf 50°C erhitzt. Zur Aufreinigung wird an Kieselgel 60 mit Toluol/Ethylacetat/Ethanol 72:24:4 chromatographiert.

Ausbeute:	~15%
Schmp.:	262°C
R _f -Wert:	0.12 (Touol/Ethyacetat/Ethanol 72:24:4)
IR (KBr),[cm ⁻¹]:	3070.5 (w), 1623.7 (m), 1597.9 (m), 1452.8 (m),
	1386.2 (m), 1226.7 (m), 1138.9 (s)

7.71 – 7.83	m	3H	H-3; H-8; H-9
7.87 – 7.96	dd	1H	H-7
8.59 - 8.68	dt	1H	H-1 ${}^{3}J_{H-1,F}$ = 10.1; ${}^{4}J_{H-1,H-3}$ = 2.2
8.70 - 8.74	dd	1H	H-10 3 J = 7.3
9.01	S	1H	H-6

MS (EI, 70 eV) [m/z], (%): 231 M⁺⁺ (100), 215 (23), 203 (27), 182 (16), 54 (70) Elementaranalyse:

$C_{13}H_7F_2NO$	(231.19)	ber.:	C 67.53	H 3.03	N 6.06
		gef.:	C 66.53	H 2.65	N 5.62

2,4-Difluor-6-phenylphenanthridin-5-oxid 38

Darstellung: Nach **AAV 4** aus 1.35 g Phenylmagnesiumbromid in Tetrahydrofuran (7.5 mmol) und 0.82 g des N-Oxids **37** (2.5 mmol). Zur Aufreinigung wird an Kieselgel 60 mit Toluol/Ethylacetat/Ethanol 72/24/4 chromatographiert.

Ausbeute:	50%
Schmp.:	228°C
R _f -Wert:	0.35 (Toluol:Ethylacetat:Ethanol 72:24:4)
IR (KBr),[cm⁻¹]:	3072.2 (w), 2987.2 (w) 1640.7 (m), 1580.1 (m),
	1466.2 (m), 1370.2 (m)

¹H-NMR (200 MHz, DMSO-d₆) [ppm]:

.

7.20 – 7.25	dd	1H	H-7 ${}^{3}J = 7.9; {}^{4}J = 1.3$
7.48 – 7.85	m	8H	Phenyl-H; H-3; H-8; H-9
8.66 - 8.73	dt	1H	H-1 ${}^{3}J_{H-1,F}$ = 10.1; ${}^{4}J_{H-1,H-3}$ = 1.8
8.79 – 8.84	dd	1H	H-10 3 J = 7.7

MS (EI, 70 eV) [m/z], (%): 307 M^{+*} (64), 306 (100), 290 (86), 278 (39), 269 (24), 253 (19)

$C_{19}H_{11}F_2NO$	(307.29)	ber.:	C 74.27	H 3.58	N 4.56
		gef.:	C 74.43	H 3.56	N 4.69

4,6,6-Triphenyl-(6H)-phenanthridin-2-on-5-oxid 40b

Darstellung: 40b ist eines der Produkte, das bei der Umsetzung nach AAV 4 aus 307 mg des N-Oxids 38 (1 mmol) und 0.58 g Phenylmagnesiumbromid (3 mmol) in Tetrahydrofuran entsteht. Zur Aufreinigung wird an Kieselgel 60 mit Toluol/Ethylacetat 94:6 flash-chromatographiert.

Ausbeute:	~25%
Schmp.:	156°C
R _f -Wert:	0.55 (Toluol/Ethylacetat 94:6)
IR (KBr),[cm ⁻¹]:	3056.3 (m), 1615.2 (m), 1476.7 (m), 1450 (m), 1259 (m)

6.32 - 6.33	d	1H	H-3	⁴ J = 1.7
6.76 – 6.79	dd	1H	H-7	³ J = 7.3
7.01 – 7.48	m	17H	Phenyl-H; H	H-8
7.13 – 7.13	d	1H	H-1	⁴ J = 1.8
7.52 – 7.59	"dt"	1H	H-9	³ J = 7.5
8.27 – 8.31	"dd"	1H	H-10	

¹ H-NMR	(500	MHz,	DMSO-d ₆)	[ppm]:
		,		LI I J

6.33	"S"	1H	H-3	
6.77 – 6.79	"d"	1H	H-7	³ J = 7.8
7.03 – 7.38	m	16H	Phenyl-H	
7.14	"S"	1H	H-1	
7.47 – 7.51	"t"	1H	H-8	³ J = 7.7
7.58 – 7.61	"t"	1H	H-9	³ J = 7.7
8.29 - 8.30	"d"	1H	H-10	³ J = 7.9

MS (EI, 70 eV) [r	n/z], (%):	439 M ⁺⁻ (23), 423 (13), 394 (20), 362 (17), 346 (33),				
		77 (69), 51 (100)				
Elementaranaly	se:					
$C_{31}H_{21}NO_2$	(439.51)	ber.: C 84.74	H 4.78	N 3.19		
		gef.: C 82.10	H 4.44	N 2.79		

Umsetzung von 6 mit NO -Gas in Ethylaceatat im anaeroben Milieu

348 mg (1.0 mmol) des Aminoxyls **6** wird in 70 ml abs. Ethylacetat gelöst. Zur Entfernung des Luftsauerstoffs wird die gesamte Apparatur 30 min. mit Argon begast. Anschließend erfolgt die Einleitung des NO⁻-Gases über einen Zeitraum von 5 min. Nach Vertreiben von überschüssigem NO⁻ mit Argon wird i. Vak. zur trockne gebracht. Der Rückstand wird an Kieselgel 60 mit Toluol **6** chromatographisch aufgetrennt.

Folgende Substanzen wurden nach der Umsetzung isoliert:

5,6-Dihydro-6,6-diphenyl-2-nitrophenanthridin 46

Schmp.:	
---------	--

R_f-Wert:

IR (KBr), $[cm^{-1}]$:

197°C 0.23 (Toluol) 3334.5 (m), 3030.0 (w), 1608.5 (s), 1592.2 (m),

1490.2 (s), 1300.3 (s), 1268.2 (m)

6.61 – 6.66	dd	1H	H-7 ${}^{3}J = 7.7; {}^{4}J = 1.3$
7.03 – 7.08	d	1H	H-4 ${}^{3}J = 8.9$
7.11 – 7.39	m	11H	2xPhenyl-H; H-8
7.40 - 7.44	"dt"	1H	H-9 3 J = 8.3
7.96 – 8.05	m	2H	H-3; H-10
8.54 - 8.56	d	1H	H-1
8.78	S	1H	NH

MS (EI, 70 eV) [m/z], (%): 378 M^{+·} (3), 301 (100), 255 (49), 91 (5)

203°C

Elementaranalyse:

$C_{25}H_{18}N_2O_2$	(378.42)	ber.:	C 79.36	H 4.76	N 7.40
		gef.:	C 79.37	H 4.76	N 7.00

5,6-Dihydro-6,6-diphenyl-4-nitrophenanthridin 47

Schmp.:

R_f-Wert: IR (KBr),[cm⁻¹]: 0.55 (Toluol) 3371.1 (w), 3056.8 (w), 1610.9 (m), 1525.5 (w), 1489.6 (m), 1447.9 (m), 1311.1 (m), 1263.9 (m)

6.68 - 6.73	dd	1H	H-7	³ J = 7.6; ⁴	J = 1.4
6.87 – 6.95	dt	1H	H-2	³ J = 7.6; ³	J = 8.5
7.07 – 7.12	m	4H	Phenyl-H		
7.30 – 7.41	m	7H	Phenyl-H;	H-8	
7.45 – 7.53	dt	1H	H-9	³ J = 7.5; ⁴	J = 1.5
8.01 – 8.05	dd	1H	H-10	³ J = 7.8; ⁴	J = 1.1
8.07 – 8.12	dd	1H	H-1	³ J = 8.5; ⁴	J = 1.1
8.23 - 8.26	"dd"	1H	H-3	³ J = 8.2	
8.85	S	1H	NH		
MS (El, 70 eV) [n	n/z], (%):	378 M ^{+·}	(3), 301 (100),	255 (40), 254	(34)
Elementaranalys	se:				
$C_{25}H_{18}N_2O_2$	(378.42)	b	er.: C 79.36	H 4.76	N 7.41
		g	ef.: C 78.97	H 4.40	N 7.45

5,6-Dihydro-2,4-dinitro-6,6-diphenylphenanthridin 48

Schmp.: R_f-Wert:

IR (KBr),[cm⁻¹]:

214°C 0.46 (Toluol) 3353.8 (w), 3095.2 (w), 1610.8 (m), 1516.4 (w), 1335.8 (m),

¹H-NMR (200 MHz, DMSO-d₆) [ppm]:

6.76 – 6.81	dd	1H	H-7	³ J = 7.5; ⁴ J = 1.5
7.11 – 7.16	m	4H	Phenyl-H	
7.35 – 7.42	m	7H	Phenyl-H; F	1-8
7.50 – 7.59	"dt"	1H	H-9	³ J = 9.0; ⁴ J = 1.5
8.19 -8.24	"dd"	1H	H-10	³ J = 8.9; ⁴ J = 1.1
8.82 - 8.83	d	1H	H-1	⁴ J = 2.2
8.89 - 8.90	d	1H	H-3	$^{4}J = 2.4$
9.38	S	1H	NH	

MS (EI, 70 eV) [m/z], (%): 423 M⁺⁺ (2), 346 (100), 300 (9), 254 (51)

Elementaranalyse:

$C_{25}H_{17}N_3O_4$	(423.41)	ber.:	C 70.92	H 4.02	Ν	9.93
		gef.:	C 70.82	H 3.86	Ν	9.70

5,6-Dihydro-6,6-diphenylphenanthridin 49

Schmp.:

180°C 0.59 (Toluol)

R_f-Wert:
IR (KBr),[cm ⁻¹]:	3404.0 (m), 3056.0 (w), 1607.7 (m), 1487.8 (m),
	1459.7 (m), 1441.3 (m)

¹H-NMR (200 MHz, DMSO-d₆) [ppm]:

6.53 – 6.58	dd	1H	H-7	³ J = 7.6; ⁴ J = 1.1
6.59 - 6.67	dt	1H	H-2	³ J = 7.9; ⁴ J = 1.5
6.91 – 6.96	dd	1H	H-4	³ J = 8.0; ⁴ J = 1.4
6.99 - 7.07	dt	1H	H-3	³ J = 8.0; ⁴ J = 1.3
7.15 – 7.35	m	11H	Phenyl-H; H-	-8; H-9
7.39	S	1H	NH	
7.62 - 7.66	"dd"	1H	H-1	
7.82 – 7.86	dd	1H	H-10	³ J = 7.9; ⁴ J = 1.0
MS (EI, 70 eV) [m/:	z], (%):	333 M ^{+·} (8), 2	256 (100), 17	8 (18), 151 (12)
Elementaranalyse	:			

$C_{25}H_{19}N$ (333.42)	ber.: C 90.09	H 5.71	N 4.20
--------------------------	---------------	--------	--------

Umsetzung von <u>6</u> mit verschiedenen NO⁻-Donoren in Acetonitril/Phosphat-Puffer im anaeroben Milieu

- 1) Umsetzung von 6 mit NOC-15
 - a) Unter Argon wurde die Reaktion gemäß AAV 6 durchgeführt

Ausgangs-	Lösung	Lösung
Konzentration	1	2
6		
10 ⁻⁴ mol/l	50 ml Stammlösung 1 ohne	5ml Stammlösung 3
	Verdünnung mit Acetonitril	verdünnt mit 45 ml Puffer
10 ⁻⁵ mol/l	5 ml Stammlösung 1 verdünnt	0.5 ml Stammlösung 3
	mit 45 ml Acetonitril	verdünnt mit 49.5 ml Puffer

Nach 7 h wurde die Probe wie in der AAV 6 angegeben aufgearbeitet und dünnschichtchromatographisch mit Toluol gegen Vergleichsubstanzen untersucht.

b) Unter Argon wurde die Reaktion gemäß AAV 6 analog zu a) für die Konzentrationen 10⁻⁴ und 10⁻⁵ mol/l durchgeführt. Alle 4 Stunden wird jeweils

eine kleine Probe entnommen und dünnschichtchromatographisch untersucht und 1.97 mg NOC-15 als Feststoff hinzugegeben. Dieser Vorgang wurde solange wiederholt, bis 6 Äquivalente an NONOat (entspricht 12 Äquivalente NO[']) hinzugegeben worden sind. Anschließend erfolgt die Aufarbeitung und Untersuchung des Produktspektrums gemäß AAV 6

2) Umsetzung von 6 mit NOC-18

Unter Argon wurde die Reaktion gemäß AAV 5 und AAV 6 durchgeführt

Ausgangs-	Lösung	Lösung
Konzentration	1	2
6		
10 ⁻⁴ mol/l	50 ml Stammlösung 1 ohne	5 ml Stammlösung 4
	Verdünnung mit Acetonitril	verdünnt mit 45 ml Puffer
10 ⁻⁵ mol/l	5 ml Stammlösung 1 verdünnt	0.5 ml Stammlösung 4
	mit 45 ml Puffer	verdünnt mit 49.5 ml Puffer
10 ⁻⁶ mol/l	0.5 ml Stammlösung 1	0.05 ml Stammlösung 4
	verdünnt mit 49.5 ml Acetonitril	verdünnt mit 49.95 ml Puffer
10 ⁻⁷ mol/l	0.05 ml Stammlösung 1	0.005 ml Stammlösung 4
	verdünnt mit 49.95 ml	verdünnt mit 49.995 ml
	Acetonitril	Puffer

Nach 14 Tagen wurde eine Probe entnommen und mittels HPLC untersucht oder der Ansatz wurde wie in AAV 6 angegeben aufgearbeitet und mit Toluol als Fließmittel dünnschichtchromatographisch ausgewertet.

Ausgangs-		Reaktionsprodukte (%)		
Konzentration	Edukt	2-Nitro-	4-Nitro-	Des-Nitro-
6	6	46	47	49
10 ⁻⁴ mol/l	29,3	9,3	4,4	8,1
10 ⁻⁵ mol/l	41,0	7,8	2,0	9,2
10 ⁻⁶ mol/l				5,9*
10 ⁻⁷ mol/l				10,3 [*]

Produktspektrum nach Umsetzung von **6** mit NOC-18 bei 22°C und Reaktionszeit von 14 Tagen (UV-Detektion). ^{*}Fluoreszenz-Detektion

- 3) Umsetzung von 6 mit BSH
 - a) Unter Argon wurde die Reaktion gemäß AAV 5 und AAV 6 durchgeführt

Ausgangs-	Lösung	Lösung	Lösung
Konzentration	1	2	3
6			
10 ⁻⁴ mol/l	50 ml Stammlösung	2.5 ml Stammlösung	2.5 ml
	1 ohne Verdünnung	5 verdünnt mit 47.5	Stammlösung 6
	mit Acetonitril	ml Puffer	verdünnt mit 47.5
			ml Puffer
10 ⁻⁵ mol/l	5 ml Stammlösung 1	0.25 ml	0.25 ml
	verdünnt mit 45 ml	Stammlösung 5	Stammlösung 6
	Acetonitril	verdünnt mit 49.75	verdünnt mit 49.75
		ml Puffer	ml Puffer
10 ⁻⁶ mol/l	0.5 ml Stammlösung	0.025 ml	0.025 ml
	1 verdünnt mit 49.5	Stammlösung 5	Stammlösung 6
	ml Acetonitril	verdünnt mit 49.975	verdünnt mit 49.975
		ml Puffer	ml Puffer
10 ⁻⁷ mol/l	0.05 ml	0.0025 ml	0.0025 ml
	Stammlösung 1	Stammlösung 5	Stammlösung 6
	verdünnt mit 49.95	verdünnt mit 49.9975	verdünnt mit
	ml Acetonitril	ml Puffer	49.9975 ml Puffer

Nach 2h wurde die Probe mittels HPLC untersucht oder wie in AAV 6 angegeben aufgearbeitet und mit Toluol als Fließmittel dünnschichtchromatographisch ausgewertet.

Ausgangs-	Reaktionsprodukte (%)			
konzentration	Edukt	2-Nitro-	4-Nitro-	Des-Nitro-
6	6	46	47	49
10 ⁻⁴ mol/l	47,0	5,6	2,4	4,9
10 ⁻⁵ mol/l	39,9	2,2	1,9	6,3
10 ⁻⁶ mol/l				6,9*
10 ⁻⁷ mol/l				9,2*

Produktspektrum nach Umsetzung von **6** mit BSH bei 22°C und einer Reaktionszeit von 6 Stunden (UV-Detektion). ^{*}Fluoreszenz-Detektion

b) Unter Argon wurde die Reaktion gemäß AAV 6 analog zu a) für die Konzentrationen 10^{-4} und 10^{-5} mol/l durchgeführt. Nach 2 h wird jeweils eine

kleine Probe entnommen und dünnschichtchromatographisch untersucht und 3.81 mg BSH sowie 7.2 mg Kaliumhexacyanoferrat(III) als Feststoff hinzugegeben. Dieser Vorgang wurde solange wiederholt, bis 6 Äquivalente an BSH hinzugegeben worden sind. Anschließend erfolgt die Aufarbeitung und Untersuchung des Produktspektrums gemäß AAV 6

Umsetzung von <u>6</u> mit verschiedenen NO⁻-Donoren in Acetonitril/Phosphat-Puffer im aeroben Milieu

Die Reaktionsdurchführung erfolgt bei der Umsetzung des Aminoxyls **6** im aeroben mit den verwendeten NO⁻-Donoren nach AAV 6 analog zur Umsetzung im anaeroben Milieu.

Das entstandene Produktgemisch wurde nach der säulenchromatographischen Trennung an Kieselgel 60 mit Toluol ebenfalls mit Toluol als Fließmittel dünnschichtchromatographisch untersucht. Die Substanz **53** wurde isoliert, indem man die oberste Schicht der Kieselgelsäule abträgt und die in ihr enthaltene Substanz durch Extraktion mit Ethanol vom Kieselgel abtrennt.

Folgende Substanzen wurden nach der Umsetzung im aeroben zusätzlich zu den bei den anaeroben Umsetzungen isolierten Substanzen erhalten:

5,6-dihydro-6,6-diphenyl-2-nitrophenanthridinyl-5-oxyl 52

Schmp.: R_f-Wert: IR (KBr),[cm⁻¹]: 204°C 0.33 (Toluol) 3424.0 (w), 3077.1 (w), 1635.9 (w), 1521.0 (w), 1337.9 (w), 1169.8 (w)

ESR-Spektrum (9.8 GHz, CDCI₃, RT):

g = 2,00564	$\alpha(N) = 0,967 [mT] (1N) Aminoxyl-N$
	α(N) = 0,066 [mT] (1H) Nitro-N
	α(H ₄) = 0,267 [mT] (1H)
	α(H _{1,3})= 0,100 [mT] (2H)
	$\alpha(H_{10}) = 0,021 \text{ [mT]} (1H)$
	$\alpha(H_8) = 0.017 [mT] (1H)$
	α(H _{7,9})= 0,015 [mT] (2H)

MS (EI, 70 eV) [m/z], (%):	393 M ^{+·} (27.1), 347 (69.8), 317 (85.4), 301 (100), 91
	(57.7)

Elementaranalyse:

	$C_{25}H_{17}N_2O_3$	(393.41)	ber.: C 76.33	H 4.32	N 7.12
--	----------------------	----------	---------------	--------	--------

6,6-Diphenyl-6H-phenanthridin-2-on-5-oxid 53

 Schmp.:
 212°C

 IR (KBr),[cm⁻¹]:
 3059.6 (w), 1616.2 (m), 1455.8 (m), 1374.7 (w), 1227.8 (w)

¹H-NMR (200 MHz, CD₂Cl₂) [ppm]:

6.53 – 6.59	dd	1H	H-3	³ J = 10.2; ⁴ J = 1.9
6.87 – 6.91	dd	1H	H-7	³ J = 8.0; ⁴ J = 1.3
6.88 - 6.89	d	1H	H-1	⁴ J = 1.8
7.11 – 7.38	m	11H	H-8; F	Phenyl-H
7.48 – 7.56	dt	1H	H-9	³ J = 7.6; ⁴ J = 1.4
7.91 – 7.96	d	1H	H-4	³ J = 10.1
7.98 – 8.03	dd	1H	H-10	³ J = 7.7; ⁴ J = 1.2

MS (EI, 70 eV) [m/z], (%): 363 M^{+·} (27), 347 (60), 319 (100), 270 (20), 44 (88) **Elementaranalyse:**

 $C_{25}H_{17}N_1O_2 \qquad (363.41) \qquad \ \ \text{ber.:} \ \ C \ \ 82.64 \qquad H \ \ 4.68 \qquad N \ \ 8.82$

5,6-Dihydro-6,6-diphenyl-2-nitrophenanthridin-5-ol 54

Schmp.: R_f-Wert:

IR (KBr),[cm⁻¹]:

204°C 0.18 3058.2 (w), 1603.2 (w), 1592.1 (m), 1487.7 (m), 1333.3 (s), 1114.3 (w)

¹H-NMR (200 MHz, DMSO-d₆) [ppm]:

	6.54 - 6.58	"dd"	1H	7-H	³ J = 7.3
	7.16 – 7.31	m	11H	8-H; F	Phenyl-H
	7.35 – 7.39	d	1H	4-H	³ J = 9.1
	7.42 – 7.49	"dt"	1H	9-H	³ J = 7.5
	8.05 - 8.15	m	2H	10-H;	3-H
	8.55 - 8.56	d	1H	1-H	⁴ J = 2.3
	9.79	S	1H	OH, a	ustauschbar mit D ₂ O
MS (EI, 70 eV) [m/z], (%):		394 M	^{+•} (14),	317 (47), 301 (93), 255 (36), 254 (44),	
			91 (10	0)	

Elementaranalyse:

$C_{25}H_{18}N_2O_3$ (3)	394.41)	ber.:	C 76.14	H 4.57	N 7.11
--------------------------	---------	-------	---------	--------	--------

Umsetzung von <u>16 mit NO</u>-Gas in Ethylaceatat im anaeroben Milieu

404 mg (1.0 mmol) des Aminoxyls **16** wird in 70 ml abs. Ethylacetat gelöst. Zur Entfernung des Luftsauerstoffs wird die gesamte Apparatur 30 min. mit Argon begast. Anschließend erfolgt die Einleitung des NO⁻-Gases über einen Zeitraum von 5 min. Nach Vertreiben von überschüssigem NO⁻ mit Argon wird i. Vak. einrotiert. Der Rückstand wird an Kieselgel 60 mit Toluol/Petroether 50:50 chromatographisch aufgetrennt.

Folgende stabile Substanzen wurden nach der Umsetzung isoliert:

2-tert.-Butyl-5,6-dihydro-6,6-diphenylphenathridin 55

198°C

Schmp.:

R_f-Wert: IR (KBr),[cm⁻¹]: 0.5 (Toluol/Petrolether 50:50) 3377.9 (m), 3029.2 (w), 2958.3 (m), 1624.0 (m), 1522.3 (s), 1490.9 (s), 1444.4 (s), 1336.1 (s), 1265.1 (s)

¹H-NMR (200 MHz, CDCl₃) [ppm]:

6.75 – 6.79	dd	1H	H-7	³ J = 7.6; ⁴ J = 1.3
7.13 – 7.21	m	4H	Phenyl-H	
7.22 – 7.29	m	7H	Phenyl-H;	H-8
7.31 – 7.45	dt	1H	H-9	³ J = 7.5; ⁴ J = 1.1
7.81 – 7.85	"dd"	1H	H-10	3 J = 7.3
8.01 – 8.03	d	1H	H-1	⁴ J = 2.1
8.11 – 8.12	d	1H	H-3	⁴ J = 2.1
8.94	S	1H	NH	

MS (EI, 70 eV) [m/z], (%):

434 M^{+·} (2), 357 (100), 342 (14), 311 (50), 57 (13)

Elementaranalyse:

$C_{29}H_{26}N_2O_2$	(434.52)	ber.:	C 80.18	H 5.99	Ν	6.45
		gef.:	C 80.17	H 5.98	Ν	6.17

5,6-Dihydro-2-tert.-butyl-6,6-diphenylphenanthridin 56

Schmp.: R_f-Wert:

IR (KBr),[cm⁻¹]:

178°C 0.6 (Toluol/Petrolether 50:50) 3390.4 (m), 3030.1 (w), 2987.4 (w), 1669.4 (s),1590.6) (s)

¹H-NMR (200 MHz, CDCI₃) [ppm]:

4.84	S	1H	NH, austauschbar mit D ₂ O
6.61 – 6.65	d	1H	H-4 ${}^{3}J = 8.2$
6.70 – 6.74	dd	1H	H-7 ³ J = 7.7; ⁴ J = 1.0
7.09 – 7.14	dd	1H	H-3 ${}^{3}J = 8.3; {}^{4}J = 2.1$
7.18 – 7.25	m	11H	Phenyl-H; H-8
7.27 – 7.38	dt	1H	H-9 ${}^{3}J = 7.9; {}^{4}J = 0.9$
7.67 – 7.68	d	1H	H-1 ${}^{4}J = 2.1$
7.80 – 7.84	"dd"	1H	H-10 ³ J = 7.9

MS (EI, 70 eV) [m/z], (%): 389 M⁺⁺ (8), 312 (100), 297 (14), 296 (29), 51 (14)

Elementaranalyse

C ₂₉ H ₂₇ N	(389.53)	ber.:	C 89.46	H 6.94	N 3.58
- 20 21	()				

Umsetzung von <u>16</u> mit verschiedenen NO⁻-Donoren in Acetonitril/Phosphat-Puffer im anaeroben Milieu

- 1) Umsetzung von **16** mit NOC-15
 - a) Unter Argon wurde die Reaktion gemäß AAV 6 durchgeführt

Ausgangs-	Lösung	Lösung	
Konzentration	1	2	
16			
10 ⁻⁴ mol/l	5 ml Stammlösung 2 verdünnt	5 ml Stammlösung 3	
	mit 45 ml Acetonitril	verdünnt mit 45 ml Puffer	
10 ⁻⁵ mol/l	0.5 ml Stammlösung 2	0.5 ml Stammlösung 3	
	verdünnt mit 49.5 ml Acetonitril	verdünnt mit 49.5 ml Puffer	

Nach 7 h wurde die Probe wie in der AAV 6 angegeben aufgearbeitet unddünnschichtchromatographischmitToluol/Petrolether50:50gegenVergleichsubstanzen untersucht.

b) Unter Argon wurde die Reaktion gemäß AAV 6 analog zu a) für die Konzentrationen 10⁻⁴ und 10⁻⁵ mol/l durchgeführt. Alle 4 Stunden wird jeweils eine kleine Probe entnommen und dünnschichtchromatographisch untersucht und 1.97 mg NOC-15 als Feststoff hinzugegeben. Dieser Vorgang wurde solange wiederholt, bis 6 Äquivalente an NONOat (entspricht 12 Äquivalente NO⁻) hinzugegeben worden sind. Anschließend erfolgt die Aufarbeitung und Untersuchung des Produktspektrums gemäß AAV 6

2) Umsetzung von 16 mit NOC-18

Unter Argon wurde die Reaktion gemäß AAV 5 und AAV 6 durchgeführt

Ausgangs-	Lösung	Lösung	
Konzentration	1	2	
16			
10 ⁻⁴ mol/l	5 ml Stammlösung 2 verdünnt	5 mlStammlösung 4 verdünnt	
	mit 45 ml Acetonitril	mit 45 ml Puffer	
10 ⁻⁵ mol/l	0,5 ml Stammlösung 2	0.5 ml Stammlösung 4	
	verdünnt mit 49.5 ml Acetonitril	verdünnt mit 24.5 ml Puffer	
10 ⁻⁶ mol/l	0.05 ml Stammlösung 2	0.05 ml Stammlösung 4	
	verdünnt mit 49.95 ml	verdünnt mit 24.95 ml Puffer	
	Acetonitril		
10 ⁻⁷ mol/l	0.005 ml Stammlösung 2	0.005 ml Stammlösung 4	
	verdünnt mit 49.995 ml	verdünnt mit 24.995 ml Puffer	
	Acetonitril		

Nach 14 Tagen wurde eine Probe entnommen und mittels HPLC untersucht oder der Ansatz wurde wie in AAV 6 angegeben aufgearbeitet und mit Toluol/Petrolether 50:50 als Fließmittel dünnschichtchromatographisch ausgewertet.

Ausgangs-	Reaktionsprodukte (%)				
konzentration	Edukt	4-Nitro-	Des-Nitro-		
16	16	55	56		
10 ⁻⁴ mol/l	80,30	6,91	8,45		
10 ⁻⁵ mol/l	79,50	1,88	12,10		
10 ⁻⁶ mol/l			14,20*		
10 ⁻⁷ mol/l			31,00 [*]		

Produktspektrum nach Umsetzung von **16** mit NOC-18 bei 22°C und Reaktionszeit von 14 Tagen (UV-Detektion). ^{*}Fluoreszenz-Detektion

3) Umsetzung von 16 mit BSH

a) Unter Argon wurde die Reaktion gemäß AAV 5 und AAV 6 durchgeführt.

Ausgangs-	Lösung	Lösung	Lösung
Konzentration	1	2	3
16			
10 ⁻⁴ mol/l	5 ml Stammlösung 2	2.5 mlStammlösung	2.5 ml
	verdünnt mit 45 ml	5 verdünnt mit 47.5	Stammlösung 6
	Acetonitril	ml Puffer	verdünnt mit 47.5
			ml Puffer
10 ⁻⁵ mol/l	0.5 ml Stammlösung	0.25 ml	0.25 ml
	2 verdünnt mit 49.5	Stammlösung 5	Stammlösung 6
	ml Acetonitril	verdünnt mit 49.75	verdünnt mit 49.75
		ml Puffer	ml Puffer
10 ⁻⁶ mol/l	0.05 ml	0.025 ml	0.025 ml
	Stammlösung 2	Stammlösung 5	Stammlösung 6
	verdünnt mit 49.95	verdünnt mit 49.975	verdünnt mit 49.975
	ml Acetonitril	ml Puffer	ml Puffer
10 ⁻⁷ mol/l	0.005 ml	0.0025 ml	0.0025 ml
	Stammlösung 2	Stammlösung 5	Stammlösung 6
	verdünnt mit 49.995	verdünnt mit 49.9975	verdünnt mit
	ml Acetonitril	ml Puffer	49.9975 ml Puffer

Nach 2h wurde die Probe mittels HPLC untersucht oder wie in AAV 6 angegeben aufgearbeitet und mit Toluol als Fließmittel dünnschichtchromatographisch ausgewertet.

Ausgangs-	Reaktionsprodukte (%)			
konzentration	Edukt	4-Nitro-	Des-Nitro-	
16	16	55	56	
10 ⁻⁴ mol/l	51,80	7,52	33,90	
10 ⁻⁵ mol/l	76,30	1,30	14,80	
10 ⁻⁶ mol/l			15,60*	
10 ⁻⁷ mol/l			35,00 [*]	

Produktspektrum nach Umsetzung von 6 mit BSH bei 22°C und einer Reaktionszeit von 6 Stunden (UV-Detektion). ^{*}Fluoreszenz-Detektion

b) Unter Argon wurde die Reaktion gemäß AAV 6 analog zu a) für die Konzentrationen 10⁻⁴ und 10⁻⁵ mol/l durchgeführt. Nach 2 h wird jeweils eine kleine Probe entnommen und dünnschichtchromatographisch untersucht und 3.81 mg BSH sowie 7.2 mg Kaliumhexacyanoferrat(III) als Feststoff hinzugegeben. Dieser Vorgang wurde solange wiederholt, bis 6 Äquivalente an BSH hinzugegeben worden sind. Anschließend erfolgt die Aufarbeitung und Untersuchung des Produktspektrums gemäß AAV 6

Ausgangs-	Lösung	Lösung	Lösung
Konzentration	1	2	3
16			
10 ⁻³ mol/l	50 ml Stammlösung 2	25 ml Stammlösung	25 ml Stammlösung
(4Äq.)	ohne Verdünnung mit	7 ohne Verdünnung	8 ohne Verdünnung
	Acetonitril	mit Puffer	mit Puffer
10 ⁻³ mol/l	50 ml Stammlösung 2	12.5 ml	12.5 ml
(2Äq.)	ohne Verdünnung mit	Stammlösung 7	Stammlösung 8
	Acetonitril	verdünnt mit 12.5 ml	verdünnt mit 12.5
		Puffer	ml Puffer
10 ⁻⁴ mol/l	5 ml Stammlösung 2	2.5 ml Stammlösung	2.5 ml
(4Äq.)	verdünnt mit 45 ml	7 verdünnt mit 22.5	Stammlösung 8
	Acetonitril	ml Puffer	verdünnt mit 22.5
			ml Puffer
			1

c) Unter Argon wurde die Reaktion gemäß AAV 5 durchgeführt.

Nach 2h wurde eine Probe entnommen und mittels HPLC untersucht

d) Unter Argon wurde die Reaktion gemäß AAV 5 und dem Zusatz von Ascorbinsäure durchgeführt.

Ausgangs-	Lösung	Lösung	Lösung	
Konzentration	1	2	3	
16				
10 ⁻⁴ mol/l	5 ml Stammlösung 2	2.5 ml	2.5 ml	
	verdünnt mit 45 ml	Stammlösung 5	Stammlösung 6	
	Acetonitril	verdünnt mit 17.5	verdünnt mit 17.5	
		ml Puffer	ml Puffer	
10 ⁻⁵ mol/l	0.5 ml Stammlösung	0.25 ml	0.25 ml	
	2 verdünnt mit 49.5	Stammlösung 5	Stammlösung 6	
	ml Acetonitril	verdünnt mit 19.75	verdünnt mit 19.75	
		ml Puffer	ml Puffer	

Nachdem sowohl die Lösung 1 als auch die Lösung 2 hinzugegeben worden sind, tropft man langsam eine Lösung von 3.52 mg Ascorbinsäure in 10 ml Puffer hinzu (10⁻⁴mol/l). Bei dem 10⁻⁵mol/l Ansatz wurde diese Lösung noch mal 1/10 verdünnt. Nach 2h wurde eine Probe entnommen und mittels HPLC untersucht.

Ausgangs-	Reaktionsprodukte (%)			
Konzentration	Edukt 4-Nitro- Des-Nitro-			
16	16	55	56	
10 ⁻³ mol/l (4Äq. NO [`])	9,48	14,20	30,5	
10 ⁻³ mol/l (2Äq. NO [`])	12,5	10,09	25,8	
10 ⁻⁴ mol/l (4Äq. NO [`])	30,10	12,70	39,1	

Produktspektrum nach Umsetzung von **16** mit 2 bzw. 4 Äquivalenten NO^{\cdot} (aus BSH/K₃Fe(CN)₆) bei Konzentrationen von 10⁻³ und 10⁻⁴ mol/I (UV-Detektion)

e) Unter Argon wurde die Reaktion gemäß AAV 5 und dem Zusatz von Eisen(II)sulfat/Eisen(III)-chlorid durchgeführt.

Ausgangs-	Lösung	Lösung	Lösung
Konzentration	1	2	3
16			
10 ⁻⁴ mol/l	5 ml Stammlösung	2.5 ml Stammlösung	2.5 ml Stammlösung
(4Äq.)	2 verdünnt mit 45	7 verdünnt mit 10.0	8 verdünnt mit 10.0
	ml Acetonitril	ml Puffer	ml Puffer
10 ⁻⁴ mol/l	0.5 ml	0.25 ml	0.25 ml
(2Äq)	Stammlösung 2	Stammlösung 7	Stammlösung 6
	verdünnt mit 49.5	verdünnt mit 12.25.	verdünnt mit 12.25
	ml Acetonitril	ml Puffer	ml Puffer

Nachdem sowohl die Lösung 1 als auch die Lösung 2 hinzugegeben worden sind, tropft man langsam eine Lösung von 11.11/5.55 mg Eisen(II)-sulfat 7 H₂O und 6.49/3.25 Eisen(III)-chlorid in 25 ml Puffer (4Äq./2Äq.) der etwas EDTA beigefügt wurde hinzu. Nach 2h wurde eine Probe entnommen und mittels HPLC untersucht.

Ausgangs-	Reaktionsprodukte (%)					
Konzentration	Edukt 4-Nitro- Des-Nitro-					
16	16	55	56			
10 ⁻⁴ mol/l (Fe ^{2+/3+})		7,37	36.1			
(4Äq. NO [`])						
10 ⁻⁴ mol/l (Fe ^{2+/3+})	11,9	6,26	38,3			
(2Äq. NO [`])						

Produktspektrum nach Umsetzung von **16** mit 2 bzw. 4 Äquivalenten NO^{\cdot} (aus BSH/K₃Fe[(CN)₆]) bei einer Konzentration von 10⁻⁴ mol/l und Zusatz von Eisen(II)/Eisen(III) (UV-Detektion)

f) Unter Argon wurde die Reaktion gemäß AAV 5 unter dem Zusatz von Benzolsulfinsäure durchgeführt.

Ausgangs-	Lösung	Lösung	Lösung
Konzentration	1	2	3
16			
10 ⁻⁴ mol/l	5 ml Stammlösung	2.5 ml Stammlösung	2.5 ml Stammlösung
	2 verdünnt mit 35	5 verdünnt mit 22.5	6 verdünnt mit 22.5
	ml Acetonitril	ml Puffer	ml Puffer
10 ⁻⁵ mol/l	0.5 ml	0.25 ml	0.25 ml
	Stammlösung 2	Stammlösung 5	Stammlösung 6
	verdünnt mit 39.5	verdünnt mit 24.75	verdünnt mit 24.75
	ml Acetonitril	ml Puffer	ml Puffer

Nachdem sowohl die Lösung 1 als auch die Lösung 2 hinzugegeben worden sind, tropft man langsam eine Lösung von 2.84 mg Benzolsulfinsäure in 10 ml Acetonitril hinzu (10⁻⁴mol/l). Bei dem 10⁻⁵mol/l Ansatz wurde diese Lösung noch mal 1/10 verdünnt. Nach 2h wurde eine Probe entnommen und mittels HPLC untersucht.

Ausgangs-	Reaktionsprodukte (%)				
konzentration	Edukt 4-Nitro- Des-Nitro-				
16	16	55	56		
10 ⁻⁴ mol/l + BSI	31,50	8,07	48,60		
10 ⁻⁵ mol/l + BSI	71,10	1,07	18,00		

Produktspektrum nach Umsetzung von **16** mit BSH+BSI bei 22°C und einer Reaktionszeit von 6 Stunden (UV-Detektion)

5.6 HPLC-Untersuchungen

Für die Reaktionen von **6** und **16** mit verschiedenen NO⁻-Donoren unter unterschiedlichen Bedingungen wurden HPLC-Untersuchungen zur Identifizierung der bei den Umsetzungen entstehenden Reaktionsprodukte etabliert und kalibriert.

5.6.1 HPLC-Untersuchung Substanz 6

HPLC-System :							
Säule:	RP ₁₈ -Säule	20cm	Lichrosorb	(5µm)	Merck	Cat.	50333
Vorsäule:	RP ₁₈ -Säule 2cm Lichrosorb (5µm)						
Flow:	1.6 ml/min						
Detektion: UV/Vis 264 nm							
	Fluorimeter E	Excit. 3	40 nm und	Em. 420) nm		
Injektionsvolumen:	20 <i>µ</i> I						
Retentionszeit	6	15.1 r	nin				
	46	20.3 r	nin				
	47	38.6 r	nin				
	49	18.2 r	nin				

Kalibrierung für <u>6</u>, <u>46</u>, <u>47</u> und <u>49</u>

Für die Kalibrierung wurden Stammlösungen von 6, 46, 47 und 49 in Methanol p.a. eingesetzt und aus dieser eine Verdünnungsreihe hergestellt und der entwickelten HPLC-Methode unterworfen.

Kalibrierlösungen:

Lösungen der Referenzsubstanzen

genau 0,01 mmol von **6**, **46** und **49** wurden in einem 100 ml Messkolben eingewogen und mit Methanol p. a. aufgefüllt (entspricht ca. 1*10⁻⁴mol/l) genau 0,01 mmol von **47** wurde in einem 10 ml Messkolben eingewogen und mit Methanol p. a. aufgefüllt (entspricht ca. 1*10⁻³mol/l) Die Analyse der Verdünnungsreihen der drei Substanzen ergaben folgende Kalibriergeraden.

Für 6 resultierte bei 264 nm folgende Kalibriergerade:

Anhand der Detektion bei 264 nm kann eine Linearität für **6** im Bereich von $1*10^{-4}$ bis ca. $5*10^{-6}$ mol/l nachgewiesen werden.

Für 46 resultierte bei 264 nm folgende Kalibriergerade:

Anhand der Detektion bei 264 nm kann eine Linearität für **46** im Bereich von $1*10^{-4}$ bis ca. $5*10^{-6}$ mol/l nachgewiesen werden.

Für 47 resultierte bei 264 nm folgende Kalibriergerade:

Anhand der Detektion bei 264 nm kann eine Linearität für **47** im Bereich von $1*10^{-3}$ bis ca. $1*10^{-5}$ mol/l nachgewiesen werden.

Für 49 resultierte bei 264 nm folgende Kalibriergerade:

Anhand der Detektion bei 264 nm kann eine Linearität für **49** im Bereich von $1*10^{-4}$ bis ca. $5*10^{-6}$ mol/l nachgewiesen werden.

Bei der fluorimetrischen Detektion von **49** resultierte durch Anregung bei 340 nm und Emission bei 420 nm folgende Kalibriergerade:

Die Linearität ist im Bereich zwischen 1*10⁻⁴mol/l bis 5*10⁻⁸mol/l über die fluorimetrische Detektion gegeben.

5.6.2 HPLC-Untersuchung Substanz <u>16</u>

HPLC-System :			
Säule:	RP ₁₈ -Sä	aule 20cm Lichrosorb (5µm) Merck Cat. 50333	
Vorsäule:	RP ₁₈ -Säule 2cm Lichrosorb (5µm)		
Flow:	0.2 ml/m	nin	
Detektion:	UV/Vis 3	348 nm 56	
	UV/Vis 3	386 nm 16	
	UV/Vis 4	439 nm 55	
	Fluorime	eter Excit. 340 nm und Em. 420 nm	
Injektionsvolumen:	20 <i>µ</i> l		
Retentionszeit	16	19.5 min	
	55	23.3 min	
	56	17.7 min	

Kalibrierung für 16, 55, und 56

Für die Kalibrierung wurden Stammlösungen von **16**, **55** und **56** in Methanol p.a. eingesetzt und aus dieser eine Verdünnungsreihe hergestellt und der HPLC-Methode unterworfen.

Kalibrierlösungen:

Lösungen der Referenzsubstanzen

genau 0,01 mmol von **6**, **46** und **49** wurden in einem 100 ml Messkolben eingewogen und mit Methanol p. a. aufgefüllt (entspricht ca. 1*10⁻⁴mol/l)

Für **16** resultierte bei 386 nm folgende Kalibriergerade:

Anhand der Detektion bei 386 nm kann eine Linearität für **16** im Bereich von $0,33*10^{-4}$ bis ca. $0,25*10^{-6}$ mol/l nachgewiesen werden.

Für 55 resultierte bei 439 nm folgende Kalibriergerade:

Anhand der Detektion bei 439 nm kann eine Linearität für **55** im Bereich von $0,33*10^{-4}$ bis ca. $0,25*10^{-6}$ mol/l nachgewiesen werden.

Für 56 resultierte bei 348 nm folgende Kalibriergerade:

Anhand der Detektion bei 348 nm kann eine Linearität für **56** im Bereich von $0,33*10^{-4}$ bis ca. $0,25*10^{-6}$ mol/l nachgewiesen werden.

Bei der fluorimetrischen Detektion von **56** resultierte durch Anregung bei 340 nm und Emission bei 420 nm folgende Kalibriergerade:

Die Linearität ist im Bereich zwischen 0,33*10⁻⁴mol/l bis 5*10⁻⁸mol/l über die fluorimetrische Detektion gegeben

6 Literaturverzeichnis

Literaturverzeichnis

- 1) N.N. Greenwood, A. Earnshaw, *Chemie der Elemente*, **1990**, 1. korr. Nachdruck der 1. Aufl., VCH, 569 571
- H. Marquardt, S. Schäfer, *Lehrbuch der Toxikologie*, **2004**, 2. Auflage,
 Wissenschaftliche Verlagsgesellschaft mbH Stuttgart
- W. Trzebiatowski, *Lehrbuch der anorganischen Chemie*, **1968**, 4. ber. Auflage,
 Verlag der Wissenschaften, Berlin, S. 273 275
- 4) H. Weber, *Pharmazie in unserer Zeit*, **1999**, 3, S. 138 146
- 5) A. Daiber, V. Ullrich, *Chemie in unserer Zeit*, **2002**, 6, S. 366 375
- H.J. Duchstein, S. Riederer, C. Erbach, *Pharmazie in unserer Zeit*, **1999**, *4*, S.
 197 207
- 7) S.Pfeiffer, B.Meyer, B.Hemmens, Angew. Chem., **1999**, 111, S.1824 1844
- 8) W. Murrell, *Lancet.*, **1987**, *80*, S. 80
- 9) R.F. Furchgott, J.V. Zawadski, *Nature*, **1980**, *288*, 373 376
- 10) R.M.J. Palmer, A.G. Ferrige, S. Moncada, *Nature*, **1987**, 327, S. 524 526
- 11) F. Murad, Angew. Chem., **1999**, *111*, S. 1976 1989
- U. Förstermann, A. Mülsch, E. Böhme, R. Busse, *Circulation research*, **1986**, 58, S. 531 538
- 13) F. Müllershausen, Dissertation Ruhr- Universität Bochum, 2003
- 14) F. Müllershausen, D. Koesling, A. Friebe, *BIOspektrum*, **2003**, 9, S. 687 690
- 15) L.J. Ignarro, G.M. Buga, K.S. Wood, R.E. Byrns, G. Chaudhuri, *Proc. Natl. Acad. Sci.*, **1987**, *84*, S. 9265 9269
- 16) J. Garthwaite, S.L. Charles, R. Chess-Williams, *Nature*, **1988**, *336*, S. 385 388
- 17) J.R. Lancaster, J.B. Hibbs, Proc. Natl. Acad. Sci., 1990, 87, S. 1223 1328
- 18) H.H.H.W. Schmidt, Med. Mo. Pharm., **1994**, 6, S. 168 185
- D.K. Lahiri, D.Chen, Y.-W. M. Farlow, G. Kotwal, A. Kanthasamy, D.K. Ingram,
 N.H. Greig, *Ann. N.Y. Acad. Sci.*, **2003**, S. 639 642
- 20) R.F. Furchgott, Angew. Chem., 1999, 111, S. 1990 2000
- 21) I.J. Ignarro, Angew. Chem., **1999**, *111*, S. 2002 2013
- 22) Lehninger, Biochemie, 1997, 3.Auflage, S. 917-919
- 23) C.Nathan, Q.W. Xie, J. Biol. Chem., 1994, 269, S. 13725 13728
- J. Vasquez-Vivar, B. Kalyanaraman, P. Martasek, *Free radical research*, 2003, 37, S. 121 127

- 25) W.K. Alderton, C. E. Cooper, *Biochem. J.*, 2001, 357, S. 593-615
- 26) N.Lauer, D. G. Harrison, G. Kojda, *Med. Mo. Pharm.*, **1999**, *12*, S. 382 387
- 27) U.Förstermann, I.Gath, P.Schwarz, E.Closs, H.Kleinert, *Biochem. Pharmacol*, 1995, *50*, S. 1321 1332
- 28) W. Eberhardt, T. Kilz, *Pharmazie in unserer Zeit*, **2003**, *4*, S. 288 294
- 29) S. Endres, A. Eigler, Der Internist, 1997, 38, S. 466 469
- W.Forth, D.Henschler, W.Rummel, K.Starke, Allgemeine und spezielle Pharmakologie und Toxikologie, 7.Auflage, Spektrum Akademischer Verlag, 1998, S. 413 - 419
- 31) D. P. Rotella, *Drugs of the future*, **2001**, *26*, S. 153 162
- 32) J.D. Arzt, B. Schmidt, J. Biol. Chem., 2002, 277, 21, S. 18253 18256
- 33) B. Furlong, A.M. Henderson, M.J. Lewis, J.A. Smith, *Br. J. Pharmacol.*, **1987**, 90, S. 687 692
- 34) J.V.d. Voorde, M. Claeys, I. Leusen, J. Cardiovasc Pharmacol., 1989, 14, S.
 55 61
- 35) Y. Kitamura, T. Uzawa, Anal. Chem., 2000, 72, S. 2957 2962
- 36) M. Feelisch, J.S. Stamler, *Methods in Nitric Oxide Research*, **1996**, John Wiley
 & Sons, S. 309 319
- 37) A. Grzesiok, Dissertation Heinrich-Heine Universität Düsseldorf, **1994**
- 38) H. Weber, *Pharmazie in unserer Zeit*, **1999**, 3, S. 138 146
- 39) H-G. Korth, K.U. Ingold, R. Sustmann, H.de Groot, H. Sies, *Angew. Chem.*, **1992**, *104*, S. 915 917
- 40) T. Paul, M. A. Hassan, H-G. Korth, R. Sustmann, *J. Org. Chem.*, **1996**, *61*, S.
 6835 6848
- 41) S.S. Greenberg, D.E. Wilcox, G.M. Rubanyi, *Circ. Res.*, **1990**, 67, S. 1446 1452
- 42) Y. Katayama, N. Soh, M. Maeda, Chem. Phys. Chem., 2001, 2, S. 655 661
- 43) L. Marx, A. Rassat, Angew. Chem., 2000, 112, S. 4668 4670
- 44) H. Kojima, K. Sakurai, K. Kikuchi, *Biol. Pharm. Bull.*, **1997**, 20, S. 1229 1232
- 45) H. Kojima, N. Nakatsubo, K. Kikuchi, Anal. Chem., 1998, 70, S. 2446 2453
- 46) H. Kojima, Y. Urano, K. Kikuchi, *Angew. Chem.*, **1999**, *111*, 3419 3423
- 47) P.Meineke, U. Rauen, H. de Groot, H-G. Korth, R. Sustmann, *J.Biol. Chem.*,
 2000, 381, S. 575 582
- 48) S. Pesch, Dissertation Heinrich-Heine-Universität Düsseldorf, 2004
- 49) A. Lamprecht, U. Schäfer, C.M. Lehr, *Pharm. Ztg.*, **2002**, *4*, S. 34 39

- 50) J.R. Lankowicz, *Prinziples of Fluorescence Spectroskopie*, **1999**, Sec. Ed., Kluwer Academic/Plenum Publisher, New York, Kap. 9.1.A
- 51) R. Winter, F. Noll, *Meth. d. Biophysikal Chem.*, B. G. Teubner, Stuttgart, **1998**, Kapitel V.5, S. 296 - 344
- 52) C. A. M. Seidel, A. Schulz, M. Sauer, *J. Phys. Chem.*, **1996**, *100*, S. 5541 5553
- 53) Houben-Weyl, *Methoden der organischen Chemie.*, 4. Aufl., Heteroarene II, Band E7b, **1992**, S. 157 - 204
- 54) M. Jakovljevic, J. Zynger, R. H. Bishara, *Anal. Chem.*, **1975**, *12*, S. 2045 2046
- 55) Rodd's, *Chemistry of Carbon Compounds second Edition*, Vol IV, Part 6, Heterocyclic Compounds, S. 57 59
- 56) K. R. Freter, K. G. Grözinger, J. Heterocycl. Chem., 1988, 25, S. 1701
- 57) Houben-Weyl, *Methoden der organischen Chemie*, 4. Aufl., Stickstoff-Verbindungen II/III, Band 11/2, **1958**, S. 10 - 14
- 58) G.T. Morgan, L. P. Walls, J. Chem. Soc., 1931, S. 2447 2456
- 59) M. Black, J.I.G. Cadogan, R. Leardini, *J. Chem. Soc. Perk. Trans.*, **1998**, *1*, S.
 1825 1832
- 60) Houben-Weyl, *Methoden der organischen Chemie*, 4. Aufl., **1992**, HeteroareneII, Bd. E7A, S. 511 513
- 61) Houben-Weyl, *Methoden der organischen Chemie.*, 4. Aufl., Heteroarene II, Band E7A, **1991**, S. 499 - 500
- 62) M. Colonna, L. Greci, M. Poloni, *J. Heterocycl. Chem.*, **1980**, *17*, S. 1473 1477
- 63) J. S. M. Samec, J.-E. Bäckvall, Chem. Eur. J., 2002, 13, S. 2955 2961
- 64) S.V. Kessar, R. Gopal, M. Singh, *Tetrahedon*, **1973**, 29, S. 167 175
- 65) A.I. Meyers, D.L. Temple, D. Haidukewych, *J. Org. Chem.*, **1974**, *18*, S. 2787 2793
- 66) J. Burgers, W. v. Hartingsveldt, J. v. Keulen, *Rec. trav. chim. Pays-Bas*, **1956**, 75, S. 1327 1342
- 67) J. Carpenter, J. Org. Chem., **1951**, 16, S. 587 617
- 68) H. Gilman, R. D. Nelson, J. Am. Chem. Soc., **1948**, 70, S. 3316 3318
- 69) H. Höbler, Dissertation Heinrich-Heine-Universität Düsseldorf 1998
- 70) H. B. Stegmann, Untersuchungsmethoden in der Chemie, 1996, 3. erw. Aufl.,
 S. 189 203

- 71) T. Engels, Dissertation Heinrich-Heine-Universität Düsseldorf, **1999**
- J.A. Hrabie, J.R. Klose, D.A. Wink, L.K. Keefer, J. Org. Chem., 1993, 58, S.
 1472 1476
- 73) R. Zamora, A. Grzesiok, H. Weber, *Biochem. J.*, **1995**, *312*, S. 333 339

Danksagung

Herrn Prof. C. Seidel (Institut für physikalische Chemie, Düsseldorf) danke ich sehr herzlich für die Möglichkeit, in seinem Arbeitskreis die HPLC-Versuche durchführen zu können.

Herrn Dr. H. G. Korth (Institut für Org. Chemie, Universität GH Essen) danke ich für die Aufnahme der ESR-Spektren.

Herzlich bedanken möchte ich mich bei:

Frau K. Christoph für die Aufnahme der IR-Spektren, Herrn H. Jansen für die Anfertigung der Massenspektren, Herrn H. Mathew für die Aufnahme der NMR-Spektren und Frau G. Zerta für die Anfertigung der Elementaranalysen.

Herrn Dr. H. J. Hemmerling für die Hilfe bei Nomenklaturfragen

Frau Magdalene Matyja gilt mein besonderer Dank für ihren engagierten Einsatz während der Betreuung des Biochemie Praktikums und Ihre immerwährende Bereitschaft mir zuzuhören

Ich danke meinen Kollegen Elisa Winterer, Andre Kessler, Carsten Esser, Sylvia Pesch und Sabine Plücker für die gute Zusammenarbeit während der Betreuung des Biochemie Praktikums. Außerdem danke ich Holger Steinmass für die zusätzliche Unterstützung.

Lebenslauf

Marc Heipke	
21.11.1974	
Düsseldorf	
Hedi Heipke, geb. Lutz	
Bernd Heipke †	
ledig	
1980 – 1984 Gemeinschaftsgrundschule-	
Grafenberg, Düsseldorf	
1984 -1995 Humboldt-Gymnasium, Düsseldorf	
25.05.1995	
WS 1995/1996 - WS 1999/2000 H. Heine-	
Universität Düsseldorf	
01.05.2000 – 31.10.2000 Schering AG, Berlin	
01.11.2000 – 31.04.2001 Apotheke im Bahnhof	
Zoo, Berlin	
15.05.2001	
01.06.2001	
01.06.2001 – 31.08.2005 wissenschaftlicher	
Angestellter am Institut für Pharmazeutische	
Chemie der Heinrich-Heine-Universität Düsseldorf	

Düsseldorf, den 02.09.2005