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Abstract

Quantum cryptography, or more precisely, quantum key distribution (QKD) allows two
parties to share a secret key which can be used for symmetric-key cryptography. The
advantage to use quantum states over classical bits is that they permit to catch a possible
eavesdropper who tries to acquire information about the secret key. Therefore, QKD has
attracted a lot of attention in recent years. After the initial developments and experi-
mental realizations there are now very complex protocols and quantum devices to realize
such protocols. However, it would be desirable to enable quantum key distribution over
large distances, i.e. continental and intercontinental distances. For this purpose quan-
tum repeaters have been proposed. These are protocols which exploit entanglement and
quantum information primitives as entanglement swapping and entanglement distillation.
The final aim is to create a long-distance entangled pair. This pair may be then used for
quantum key distribution. Although quantum repeaters have been proposed 15 years ago,
the analysis of their requirements and performance in connection to QKD is still in its
infancy.

In this dissertation we give first a short presentation of quantum key distribution
and quantum repeaters. Then we discuss our results. In order to study the efficiency of a
quantum repeater we consider the secret key rate, and for analyzing minimal requirements
we calculate the threshold quantum bit error rate, which represents the maximal noise that
is compatible with the generation of a secret key.

We start our analysis by describing the requirements and the performance of three
important quantum repeater protocols, namely the original quantum repeater, the hybrid
quantum repeater and the quantum repeater based on linear optics and atomic ensembles.
Then we optimize the quantum repeater protocols and we find the trade-off between
the amount of entanglement distillation and entanglement swapping as a function of the
quantum device parameters.

After this general investigation, we concetrate on protocols which may be realized
in the near future, i.e. protocols with only one repeater station. Such protocols, when
considered without quantum memories are called measurement-device independent QKD.
This kind of protocols have attracted considerable attention in the last two years both from
the experimental and theoretical side. In this thesis we have generalized such protocols
to the scenario where there are quantum memories. We have proven that even when
quantum memories are imperfect it is possible to improve over protocols with quantum
memories. Then we have considered scenarios where in the quantum repeater there are
many quantum memories and we have studied the performance of multiplexing. We have
introduced the concept of finite-range multiplexing and we have shown that finite-range
connections are sufficient in order to have most of the advantage of full-range multiplexing.

Finally we have considered finite-key corrections for the six-state protocol when com-
mon imperfections are considered. The result of this work can be used as a basis for future
study of finite-key corrections in protocols with quantum repeaters.

The results of this dissertation clarify the role of imperfections in quantum repeaters
when used for quantum key distribution. Our calculation of the minimal requirements
help experimental groups to concentrate their effort on proper figure of merits. On the
other side, our study on quantum repeaters with two segments are promising to beat in
the near-future long distance QKD without quantum repeaters.



Zusammenfassung

Quantenkryptographie, oder genauer gesagt, Quantenschlüsselverteilung, ermöglicht zwei
Parteien einen Geheimschlüssel zu teilen, der im Rahmen der symmetrischen Kryptogra-
phie benutzt werden kann. Im Unterschied zu klassischen Bits haben die Quantenzustände
den Vorteil, dass sie erlauben den eventuellen Eavesdropper abzufangen, der nach Infor-
mationen über Geheimschlüssel sucht. Deswegen hat Quantenschlüsselverteilung in den
letzten Jahren viel Aufmerksamkeit auf sich gezogen. Dank den ersten Entwicklungen und
experimentellen Versuchen gibt es heutzutage sehr komplexe Protokolle und Quanten-
geräte, um diese Protokolle auszuführen. Jedenfalls wäre es wünschenswert die Quanten-
schlüsselverteilung auf großen Entfernungen, kontinental und interkontinental, einsetzen zu
können. Zu diesem Zweck werden die Quantenrepeater vorgeschlagen. Darunter versteht
man Protokolle, die Verschränkungstausch und Verschränkungsdestillierung verwenden.
Das Endziel ist dabei ein verschränktes Paar für große Entfernungen zu erzeugen. Dieses
Paar könnte dann für Quantenschlüsselverteilung gebraucht werden. Obwohl die Quanten-
repeater bereits vor 15 Jahren vorgeschlagen wurde, befindet sich die Voraussetzungs-und
Leistungsanalyse in Verbindung mit Quantenverschlüsselung immer noch in der Anfangs-
phase.

In dieser Arbeit gehen wir kurz auf die Grundlagen der Quantenschlüsselverteilung und
auf die Quantenrepeater ein. Anschließend diskutieren wir unsere Ergebnisse. Um die Ef-
fizienz von Quantenrepeatern zu erforschen berücksichtigen wir die Schlüsselrate, und zur
Analyse der minimalen Voraussetzungen berechnen wir die Schwellen-Quantenfehlerrate,
die das maximal tolerierbare Rauschen darstellt, bei dem die Schlüsselerzeugung noch
möglich ist. Wir beginnen die Analyse mit der Beschreibung von Voraussetzungen und
Leistung von drei wichtigen Quantenrepeatern, und zwar sind das der originale Quan-
tenrepeater, Hybridquantenrepeater und Quantenrepeater mit linearer Optik und ato-
maren Ensembles. Danach optimieren wir die Quantenrepeaterprotokolle und finden den
Trade-Off zwischen der Anzahl der Verschränkungsdestillierungsrunden und dem Ver-
schränkungstausch als Funktion der Quantenrepeaterparameter.

Nach diesen allgemeinen Forschungen konzentrieren wir uns auf die Protokolle, die
in der nächsten Zukunft realisiert werden könnten, d.h. von Protokollen mit einer ein-
zigen Repeaterstation. Solche Protokolle, wenn ohne Quantenspeicher, werden als ”von
Messgeräten unabhängige Quantenverschlüsselung”genannt. Diese Protokollart zog auf
sich beträchtliche Aufmerksamkeit in den letzten zwei Jahren, sowohl von theoretischer
als auch von experimenteller Seite. In dieser Arbeit verallgemeinern wir solche Protokolle
zum Szenario mit den vorhandenen Quantenspeichern. Wir haben bewiesen, dass auch bei
nicht-perfekten Quantenspeichern es möglich ist die Protokolle mit den Quantenspeichern
zu verbessern. Außerdem beachten wir die Szenarien, wo ein Quantenrepeater mehrere
Quantenspeicher besitzt und studieren die Leistung von Multiplexing. Wir führen das
Konzept von ”Kurz-LängeMultiplexing ein und zeigen, dass Kurz-Länge Verbindungen
ausreichend sind um die meisten Vorteile von ”Voll-LängeMultiplexing auszunutzen.

Am Ende werden finite-key Korrekturen für Six-State-Protokoll bei gewöhnlichen Feh-
lerquellen in Betracht gezogen. Die Ergebnisse dieser Arbeit können als Grundlage für
zukünftige Forschung der finite-key Korrekturen bei Protokollen mit Quantenrepeatern
gebraucht werden.

Die Ergebnisse dieser Doktorarbeit definieren die Rolle von Fehlerquellen bei Quan-
tenrepeatern, die für Quantenverschlüsselung benutzt werden. Unsere Berechnung von mi-
nimalen Voraussetzungen hilft den experimentellen Gruppen sich auf relevante Leistungs-
zahl zu konzentrieren. Andererseits versprechen unsere Forschungen von Quantenrepeatern



mit zwei Segmenten die Möglichkeit in der nächsten Zukunft Quantenverschlüsselung auf
großer Entfernung ohne Quantenrepeatern zu übertreffen.
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1 Introduction

Quantum theory [53] has fascinated at least four generations of physicists, scientists and
even non-specialists. Common feelings and discussions are related to its oddities as for
example the superposition principle, quantum nonlocality expressed by entangled states,
the complementarity and the uncertainty principle. Most of these features have been
considered mostly philosophical aspects of quantum theory and the main focus has been
the examination of property of matter. The success of quantum theory has been enor-
mous. Examples of technological devices based on quantum theory are lasers, transistors,
superconducting materials and nanotechnology [79].

At the same time of the creation of quantum theory, a different group of scientists
created information [93] and complexity [100] theory. The purpose of the first is to find
optimal protocols for transmitting information and to characterize optimal performances
of transmission channels. The goal of the second is to quantify minimal resources needed
for a certain computation. Achievements of these two theories are visible in our life every-
day: computers, mobile communication devices, online banking based on cryptographic
algorithms, etc. One common feature of all these applications is that they are based on
classical physics and on the notion of bit which is a variable that can assume only two
values.

Quantum information theory [18] was born with the purpose to exploit quantum me-
chanics for communication and computation algorithms. This is a paradigm shift, all
features of quantum mechanics considered oddities before the creation of quantum infor-
mation were considered resources to exploit for faster computation algorithms or more
secure cryptographic protocols. Quantum mechanics has become a tool for extracting
information from matter.

Quantum key distribution (QKD) has been created by Bennett and Brassard in 1984
(BB84) [16] after the first pioneering work of S. Wiesner about quantum money [104].
BB84 is a protocol for permitting two parties, usually called Alice and Bob to share a secret
key. This is a very important task because as proven by Shannon [94] in order to transmit
a secret message it is necessary (and sufficient) to have a secret key which has the same
length of the message and that it is completely random. According to [89], initially, QKD
has not attracted much attention probably because [16] was published in the proceeding
of a conference. This field has been then rediscovered by A. Ekert [42] who created a
conceptually different protocol w.r.t. BB84 based on entanglement. This protocol was
published in a physical journal and it attracted much more attention. Very soon in [17]
Bennett, Brassard and Mermin proved that the original BB84 is equivalent to the protocol
based on entanglement created by Ekert. More or less at the same time also the first
experimental realization of QKD has been made [15]. Right now, according to academic
databases there are at least 3000 scientific papers on the field of quantum key distribution
and quantum cryptography. There are several companies selling devices for QKD as for
example: id Quantique (Geneva), MagiQ Technologies (New York), QuintessenceLabs
(Australia) and SeQureNet (Paris). Moreover, other companies including Toshiba, HP,
IBM and NEC have active research programs in QKD. Famous and popular achievements
of quantum key distribution include a bank transfer which was performed in Vienna,
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Austria in 2004. Moreover, QKD has been used for transferring ballot results in the Swiss
canton of Geneva in 2007.

Common to the achievements we have considered in the previous paragraph is that
QKD has been performed at distances not larger than a few tens of kilometers. The
reason is that the preferred means used for preparing quantum states are photons which
are sent through optical fibers. Due to photon losses the actual maximal distance where
QKD remains practical is about 150 km. Therefore, in 1998 H. Briegel and W. Dür,
J. I Cirac and P. Zoller proposed the concept of a quantum repeater [28]. A quantum
repeater protocol is based on entanglement swapping [19, 59] and entanglement distillation
[21, 37, 28]. Using these ingredients it is possible to increase the final rate and to have
entangled states and hence quantum key distribution at continental and intercontinental
distances. Since the first paper, scientist made a great effort to find new protocols which
are more experimentally suitable and also to develop quantum devices permitting to enable
the construction of a whole quantum repeater. According to [87] all ingredients and basic
building blocks for a quantum repeater have been realized. However, it is still missing a
quantum repeater which outperforms direct transmission.

The work of this dissertation has been performed within a project of the Federal
Ministry of Education and Research (BMBF) with name QuOReP - Quanten-Repeater-
Plattform mit Methoden der Quantenoptik. Our group in Düsseldorf concentrated on the
analysis of the security and efficiency of realistic quantum repeaters (Titel: Sicherheits-
und Effizienzanalyse für realistische Quantenrepeater).

The dissertation is organized as follows:

• in Chapter 2 we review fundamental notions of quantum mechanics and quantum
information,

• in Chapter 3 we describe entanglement-based QKD,

• in Chapter 4 we treat quantum repeaters and its building blocks,

• in Chapter 5 we will introduce all main results of this dissertation,

• in Chapter 6 we will give our conclusions and we will outline possible future direc-
tions.

All five publications which are discussed in Chapter 5 are included in the attachment
of this thesis.
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2 Fundamentals

This chapter is organized in two conceptual parts. The first part consists of three sections
and explains what are quantum states, how they evolve and how they can be measured.
During the explanations we will give relevant examples that will be used throughout the
thesis. In the second part, in sec. 2.4, we will give basic definitions of classical and quantum
information theory. References covering the topics of this chapter are [36, 64, 80, 30, 53,
62, 48, 35].

2.1 Quantum states

In this section we introduce the qubit, we present how to treat composite systems and
we give the definition of separable and entangled quantum states. Finally, we introduce
several useful quantum states.

2.1.1 Qubits

A quantum bit or qubit1 is a two-state quantum mechanical system. This is the direct
generalization of a classical bit which can assume values 0 and 1. In contrast to this one,
a qubit can be also in a generic superposition of the basis states |0〉 and |1〉, i.e.

|ψ〉 := α|0〉+ β|1〉. (2.1)

The complex coefficients α, β are such that |α|2 + |β|2 = 1 which corresponds physically
to the requirement that the probability to find the state |ψ〉 in one of the states |0〉 or |1〉
is 1. Mathematically, the states |0〉, |1〉 are vectors forming a basis of a two-dimensional
Hilbert space2 H. Examples of qubits are:

• Polarization states of a photon:

– Rectilinear polarization with basis |0〉 and |1〉
– Diagonal polarization with basis |±〉 := |0〉±|1〉√

2

– Circular polarization with basis |±̃〉 := |0〉±i|1〉√
2

• electron spin with basis | ↑〉 and | ↓〉.
1The term qubit has been coined by B. Schumacher in [92]. However, two-level systems in quantum

information had been used already by S. Wiesner in [104].
2In this thesis we deal only with finite-dimensional spaces and the following definition is restricted to

this case. A complex vector space is a vector space where linear combinations of vectors can be made
with arbitrary complex numbers. An inner product space is a space where for each two elements, an inner
product (·, ·) → [0,∞) is defined. A Hilbert space H is a complex vector space equipped with an inner
product. A projective Hilbert space H is a set of equivalence classes where the equivalence relation ∼ is

a ∼ b ⇐⇒ a = λb, (2.2)

where λ is a complex number. We denote with a ket |a〉 the element of the equivalence with norm 1, i.e.
〈a|a〉 = 1. In the following whenever we will use the expression Hilbert space we always mean projective

Hilbert space.
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The most general representation of a quantum state can be given in terms of a density
matrix ρ. Density matrices are hermitian (ρ = ρ†), positive semi-definite (ρ > 0) and with
trace one (tr(ρ) = 1).

The most general qubit can be written as

ρ =
1

2
(1l+ n · σ), (2.3)

where the polarization vector n is a three-dimensional vector with real coefficients such
that |n|2 ≤ 1 and σ = (σx, σy, σz) with σx, σy, σz being the Pauli matrices:

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

. (2.4)

Quantum states for which the density operator ρ is also a projector are called pure
states (tr(ρ2) = 1) otherwise they are called mixed states (tr(ρ2) < 1) .

2.1.2 Composite systems

Consider two quantum systems A and B and let us denote by HA and HB the Hilbert
spaces related to these two systems. Then the total space is the tensor product3

HAB := HA ⊗HB. (2.8)

A general pure state in HAB is

|ψ〉AB :=
∑

x,y

qx,y|x〉A ⊗ |y〉B, (2.9)

with qx,y such that |ψ〉AB is a quantum state. The state |ψ〉AB is called separable if
qx,y := cxpy and therefore |ψ〉AB = |φ〉A ⊗ |ζ〉B. If a state is not separable, then it is
entangled. Examples of maximally entangled states are the Bell states

|φ±〉AB :=
1√
2
(|00〉AB ± |11〉AB), (2.10)

|ψ±〉AB :=
1√
2
(|01〉AB ± |10〉AB). (2.11)

Regarding mixed states4, a state is separable if

ρAB :=
∑

i

piφ
(i)
A ⊗ ζ

(i)
B , (2.12)

where pi are positive numbers such that
∑

i pi = 1 and φ
(i)
A , ζ

(i)
B are density matrices. A

mixed state which is not separable is entangled. Examples are:

3For all couples of Hilbert spaces HA and HB we define the tensor product space HA⊗HB as the Hilbert
space spanned by the elements |a〉 ⊗ |b〉 with |a〉 ∈ HA and |b〉 ∈ HB such that the following relations

(|a〉+ |a′〉)⊗ |b〉 = |a〉 ⊗ |b〉+ |a′〉 ⊗ |b〉, (2.5)

|a〉 ⊗ (|b〉+ |b′〉) = |a〉 ⊗ |b〉+ |a〉 ⊗ |b′〉, (2.6)

hold for any |a〉, |a′〉 ∈ HA and |b〉, |b′〉 ∈ HB . The inner product is defined as follows:

(〈a| ⊗ 〈b|)(|a′〉 ⊗ |b′〉) = 〈a|a′〉〈b|b′〉. (2.7)

4According to [57] this definition is due to [103].
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• Depolarized Bell states. These are states of the form

ρ(p) := p|φ+〉〈φ+|+ 1− p

4
1l. (2.13)

It is possible to show that for p > 1
3 the state above is entangled, otherwise it is

separable. The state ρ(p) can also be written as

ρ(p) ≡ 1 + 3p

4
|φ+〉〈φ+|+ 1− p

4

(

|φ−〉〈φ−|+ |ψ−〉〈ψ−|+ |ψ+〉〈ψ+|
)

(2.14)

The coefficient F := 1+3p
4 is called the fidelity of ρ(p) with respect to the quantum

state |φ+〉〈φ+| and it represents the overlap between these two states, i.e. F :=
tr(ρ(p)|φ+〉〈φ+|).

• Binary states: These are states of the form

ρ(p) := p|φ+〉〈φ+|+ (1− p)|φ−〉〈φ−|. (2.15)

This state is entangled for p 6= 1
2 .

2.1.3 Fock states

For application to quantum repeaters it is necessary to introduce the Fock space [46] and
to give a notation for the quantum states in this space. For simplicity we consider bosonic
systems, as we are interested in quantum states of light and photons are bosons. The
annihilation and creation operators d and d† are such that

[d, d†] := dd† + d†d = 1l. (2.16)

We define the number operator as n := dd† and we denote its eigenstates as |n〉, i.e.,5

n|nF 〉 = n|nF 〉. (2.17)

The operator d† is called creation operator because d†|nF 〉 =
√
n+ 1|n + 1F 〉, and d is

called annihilation operator because d|nF 〉 =
√
n|n− 1F 〉. We denote the vacuum as |0F 〉.

A generic Fock state is a state of the form

|φ〉 :=
∞
∑

n=0

αn|nF 〉, (2.18)

where the complex coefficients αn are such that
∑∞

n=0 |αn|2 = 1.
We give now examples of relevant quantum states in quantum repeater setups:

1. Coherent states [51]. Proposed by R.J. Glauber, the general form is

|α〉 = e−
|α|2

2

∑

n

αn

√
n!
|nF 〉, (2.19)

with α being an arbitrary complex number. Coherent states will be considered
during the discussion of hybrid quantum repeaters.

5We use the notation |nF 〉 for not generating confusion with the states |0〉 and |1〉 defined in sec. 2.1.1.
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2. Phase randomized coherent states [72]. These states are used in quantum key
distribution. Let α = eiθ

√
µ, then they are defined by

ρµ :=

∫ 2π

0

dθ

2π
|eiθ√µ〉〈eiθ√µ| = e−µ

∞
∑

n=0

µn

n!
|nF 〉〈nF |. (2.20)

The quantity µ = |α|2 is the mean photon number. For application to QKD, it is
necessary to consider µ ≪ 1 in such a way that ρµ ∝ |0F 〉〈0F | + µ|1F 〉〈1F |. The
state above called weak phase randomized coherent pulses and can be used as an
approximation of a single photon state.

3. Spontaneous parametric down conversion (SPDC) [65, 61]. This type of state
is used for producing Bell states probabilistically,

ρpair := (1− p)
∞
∑

m=0

2mpm

(m!)2(m+ 1)
(B†)m|0F 〉〈0F |Bm, (2.21)

where B† := (gH
†inH† + gV

†inV †)/
√
2. The operator g†i (in†i ) denotes a spatial

mode with polarization given by i = H,V . The pumping parameter p is related to
the probability to have an n-photon pulse by P (n) = pn(1−p). For p≪ 1 we obtain
ρpair ∝ |0F 〉〈0F |+ p|φ+〉〈φ+|.

2.2 Quantum gates and channels

In sec. 2.2.1 we describe unitary evolutions of closed systems. We give examples of quantum
gates and describe some linear optics components. Then, in sec. 2.2.2 we treat operations
which act only on subsystems and we introduce general quantum channels and some
relevant examples for this thesis.

2.2.1 Quantum gates

One postulate of quantum mechanics says that a closed quantum system evolves under a
unitary evolution U as follows

ρ(t) = Uρ(0)U †, (2.22)

with UU † = 1l. The unitary U is related to the Hamiltonian of the system through
the Liouville-Von Neumann equation [53]. In quantum information, particular unitaries
acting on the space of qubits are called quantum gates 6. This is in relation to classical
gates, which can be composed in order to create more complicated gates. In order to give
examples, we fix a basis {|0〉, |1〉} on the space of qubits. The gates presented in the
following examples are expressed in this basis:

• Hadamard gate. This gate acts on the basis such that H|0〉 = |+〉 and H|1〉 = |−〉,
i.e.

H :=
1√
2

(

1 1
1 −1

)

(2.23)

• Controlled-Not. This is a two qubit gate, i.e. it has two input qubits called
control and target state and two output qubits called in the same way. Its effect on
the corresponding basis states can be described by

6See [8] for a comprehensive analysis of quantum gates and their properties.
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Input Output

Control Target Control Target
|0〉 |0〉 |0〉 |0〉
|0〉 |1〉 |0〉 |1〉
|1〉 |0〉 |1〉 |1〉
|1〉 |1〉 |1〉 |0〉

Other, for use important, quantum gates are based on linear optics and they are beam-
plitters and polarizing beamsplitters. The theory of lossless beamsplitters was derived in
[105, 45]. See also [62, 48] for a recent introduction.

• Beamsplitter. This gate is realized with a semi-reflective mirror. When light passes
the mirror, part of the light is reflected and part is transmitted. We denote by R
the reflectivity and by T = 1 − R the transmittivity. A beamsplitter has as input
two spatial modes and as output other two spatial modes. Their relation is

a†out =
√
Ta†in +

√
Rb†in (2.24a)

b†out = −
√
Ra†in +

√
Ta†in. (2.24b)

• Polarizing beamsplitters transmit completely light with a certain polarization
and reflect all light of the opposite polarization.

a†H → c†H , a†V → d†V ,

b†H → d†H , b†V → c†V .

2.2.2 Quantum channels

In many situations we focus on the evolutions of subsystems. In this case it is possible
to describe the evolution of the subsystem using the formalism of quantum channels [64].
Mathematically, a quantum channel E is a completely positive and trace preserving map
(CPTPM). Completely positive means that for any density operator ρ, E(ρ) and 1l⊗E(ρ)
are positive. Trace preserving means that tr(E(ρ)) = tr(ρ). The relevant quantum channels
for this thesis are:

• Depolarizing channel. For any n-qubit density operator ρ,

E(ρ) := pρ+
1− p

2n
1l, (2.25)

with 0 ≤ p ≤ 1.

• Quantum erasure channel [23, 52]. Let us consider a three-dimensional Hilbert
space, with basis {|0〉, |1〉, |2〉} and let us consider a qubit ρ embedded in the subspace
described by the vectors |0〉, |1〉. Then the quantum erasure channel is

E(ρ) := pρ+ (1− p)|2〉〈2|, (2.26)

with 0 ≤ p ≤ 1. This type of channel can be used for modeling losses in optical
fibers. The state |2〉 is in this case the vacuum |0F 〉 and the states |0〉 and |1〉 are
the states |1F 〉 of two different modes, e.g. vertical and horizontal polarization of a
photon.

• Depolarizing noise for a quantum gate [40]. Given a quantum gate U acting
on n-qubits, we model an imperfect realization of such a gate using the following
quantum channel

EU (ρ) := pUρU † +
1− p

2n
1l, (2.27)

with 0 ≤ p ≤ 1.
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2.3 Quantum measurements

A quantum measurement of a quantum state ρ is characterized by Kraus operators Am,
where the indexm refers to the measurement outcome. Kraus operators satisfy the relation

∑

m

A†
mAm = 1l. (2.28)

The probability to measure the outcome m is

pm = tr(AmρA
†
m). (2.29)

The state after the measurement becomes

ρm :=
AmρA

†
m

pm
. (2.30)

In many situations, when the measurement destroys the quantum state, the resulting
quantum state is not relevant and therefore a more compact representation is convenient.
This representation is given in terms of positive operator valued measure (POVM). A
POVM is a collection of operators Em such that

∑

mEm = 1l. The relation between a
POVM and the Kraus operator representation of a measurement is given by the relation
Em = A†

mAm. Therefore, the probability to measure the outcome m is given by pm =
tr(Emρ). If we add the additional requirement that EmEm′ = δm,m′Em then a POVM
reduces to a Von Neumann (or projective) measurement.

With the formalism described above, we formulate the POVM of photon detectors.
We consider first photon-number-resolving detectors (PNRD). Elements of a POVM of an
ideal PNRD have the form

Π(n) = |nF 〉〈nF |, (2.31)

where n = 0, 1, 2, ... is the number of incoming photons. More realistic detectors have a
finite detection efficiency ηD, which is the probability that a detector clicks if a photon is
entering in the detector. Such detectors are described by [62]

Π(n)(ηD) := ηnD

∞
∑

k=n

(

k

n

)

(1− ηD)
k−n|kF 〉〈kF |. (2.32)

Note that Π(n)(ηD = 1) = |nF 〉〈nF |.
Threshold detectors cannot distinguish the photon number but can only distinguish

between the vacuum and any non-vacuum state. The POVM in this case has only two
elements, and they are

Π(No click) = Π(0), (2.33a)

Π(click) =

∞
∑

n=1

Π(n) = 1l−Π(0). (2.33b)

Other relevant measurements are

• Single qubit measurement in the basis i with i = X,Y, Z. The POVM is given by
the eigenvectors of the Pauli matrix σi.

• Bell-state measurement. This is a projective measurement, where the four elements
are the projectors on the Bell states.
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2.4 Information theory

The purpose of this section is to give the main definitions of information theory that we
will use in the following chapter. In sec. 2.4.1 we will introduce the concept of random
variables and probability distributions. In sec. 2.4.2 we discuss the Shannon and Von
Neumann entropy.

2.4.1 Random variables and probabilities

We consider experiments where the outcome depends on chance. The outcome of the
experiment is denoted by X which is called a random variable. A random variable can
take values in the set X which we call alphabet. We denote by x ∈ X a possible value, an
event, that the random variable X can have. A probability function PX is a rule which
assigns to each event x ∈ X a non-negative real number such that

∑

x∈X PX(x) = 1 where
the sum runs over all elements of X . Note that in the following, when there is no possibility
of ambiguity we will not indicate the subscript X in PX . Moreover, in sums we will not
explicitly write the set of values, we always assume all possible x. Therefore, for example,
we will write

∑

x∈X PX(x) = 1 as
∑

x P (x) = 1. For each random variable X we define
its expectation value as < X >=

∑

x x P (x).

2.4.2 Entropies

Shannon entropy We give now the definition of the Shannon entropy H of a random
variable [93]

H(X) := −
∑

x

P (x) log2 P (x). (2.34)

The Shannon entropy is measured in bits and it represents the average unpredictability of
a random variable. Relevant properties of the Shannon entropy are

1. 0 ≤ H(X) ≤ log2 |X |, where |X | is the cardinality of the set X .

2. H(X) = 0 iff |supp(PX)| = 1, where supp is the support.

The properties above justify the meaning of Shannon entropy. In fact, if a random variable
is completely predictable, i.e. |supp PX | = 1 then the entropy is zero. On the other side
if the random variable is completely unpredictable, i.e. each event can happen with the
same probability 1

|X | then the Shannon entropy is maximized and gives the number of bits
needed to represent the alphabet.

A relevant particular case of the Shannon entropy is the binary Shannon entropy which
is the expression when the alphabet contains only two values and the first value is assumed
with probability p and the second value with probability 1− p. In this case the expression
of the Shannon entropy becomes

h(p) := −p log2 p− (1− p) log2(1− p). (2.35)

Shannon conditional entropy In relation to error correction we define the conditional
entropy. In this scenario we consider that we have two random variables X and Y and we
define the uncertainty on X given the knowledge of Y as

H(X|Y ) := −
∑

x,y

PXY (x, y) log2 PX|Y=y(x). (2.36)
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Let us consider the binary symmetric channel [35] which is defined by the following
relation

P (X = 0|Y = 0) = P (X = 1|Y = 1) = 1− e (2.37)

P (X = 0|Y = 1) = P (X = 1|Y = 0) = e (2.38)

The probability e is the bit error rate and it represents the probability that the two random
variables X and Y take different values. The conditional entropy in this case becomes
H(X|Y ) = h(e) where h(e) is the binary entropy defined above. When e = 0 then X = Y
and the conditional entropy becomes 0 as the knowledge of Y specifies completely X. On
the other side if e = 1

2 the conditional entropy reaches the maximum as the knowledge of
Y gives no information on X.

Von Neumann entropy We extend the definition of Shannon entropy to the case of
quantum states. The von Neumann entropy [102] S of a quantum state ρ is defined as

S(ρ) := −tr(ρ log2 ρ). (2.39)

If we write the spectral decomposition of ρ as ρ =
∑

k λk|k〉〈k|, then the von Neumann
entropy has the same form of the Shannon entropy, i.e. S(ρ) = −

∑

k λk log2 λk.
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3 Entanglement-based quantum key distribution

The idea of Entanglement-based (EB) QKD is due to A. Ekert [42] who rediscovered QKD
independently of Bennett and Brassard [16]. Informally speaking, the idea is that a source
in the middle between Alice and Bob produces bipartite entangled states and each part
of these states is sent to Alice and Bob respectively. In his paper Ekert suggests to relate
the security to Bell inequalities [14], which can be used to certify entanglement.

The chapter is organized in this way: in sec. 3.1 we describe how an entanglement-based
QKD protocol works and in particular we consider the BB84 and the six-state protocol.
In sec. 3.2 we describe the structure of a security proof. In particular, we describe the
assumptions, then we give the secret key fraction for an ideal implementation and we show
how this last quantity changes if imperfections are present.

3.1 The protocol

In the following we present the entanglement-based version of the famous BB84 [16, 42, 17]
and six-state protocol [29, 13]. Such protocols are divided in two parts: the quantum part
and the classical post-processing. After the quantum part we describe all classical steps
of the protocol which determine the amount of attack of the eavesdropper and to extract
a secret key if possible.

Figure 3.1: Set-up of a generic EB-QKD protocol. In the middle between Alice and Bob
there is a source (circle with S inside) sending entangled photons to them through a
quantum channel (solid line). The photons are measured in a randomly chosen basis and
the outcome 0 or 1 is produced. The choice of the basis is done by trusted random number
generators (not shown in the figure). The classical channel (zigzag line) is authenticated
but public.

3.1.1 Quantum part

The first part of a QKD protocol involves the preparation and the transmission of quantum
states.

The protocol works as follows (see fig. 3.1):
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1. A source between Alice and Bob produces bipartite entangled pairs. One part of the
pair is sent to Alice and the other one is sent to Bob. The distribution is done using
the quantum channel.

2. Alice and Bob choose randomly and independently a measurement basis and they
measure the respective part of the pair. The two protocols, BB84 and six-state differ
in the number of measurement bases. For the BB84 there are two measurement bases
MZ := {|0〉〈0|, |1〉〈1|} andMX := {|+〉〈+|, |−〉〈−|} where |±〉 := |0〉±|1〉

2 . For the six-
state protocol, in addition to MZ and MX we consider also MY := {|+̃〉〈+̃|, |−̃〉〈−̃|}
where |±̃〉 := |0〉±i|1〉

2 .

3. The outcome of each measurement is either 0 or 1, thus resulting in a binary string,
the raw key, on both sides.

3.1.2 Classical post-processing

Once Alice and Bob have classical information consisting of the results of the measurements
(the raw key) and the choice of the measurement bases, they exchange classical information
which allows to estimate the amount of information obtained by Eve and consequently,
if possible, to distill a secret key. A crucial assumption in order to make the following
procedure work is that the classical channel between Alice and Bob is authenticated [33].
The protocol is the following [89]:

1. Sifting: Alice and Bob share information about the measurement bases and they
discard all outcomes where they have used different bases.

2. Parameter estimation: Alice and Bob exchange a randomly chosen small amount
of measurement outcomes which are used for estimating the amount of correlations.
If the correlations are high enough they proceed and if the correlations are too weak
then they stop.

3. Error Correction: [58, 43, 44] At this point Alice and Bob have two lists of out-
comes each which are not exactly the same. In this step, they exchange information
in order to correct the errors. At the end of this step they have equal keys.

4. Privacy Amplification: [22, 20, 85] Alice and Bob reduce the length of their string
using classical extractors (hash functions [33]). The final result is the secret key.

3.2 Security analysis

EB-QKD has been shown to be secure by H.K. Lo and H.F. Chau in the year 1999
[68]. The authors considered that Alice and Bob share entangled pairs and that they
have at disposal quantum computers able to perform quantum error correction. One
year later, P.W. Shor and J. Preskill [95] have shown that the protocol considered in [68]
is equivalent to BB84 outlined in sec. 3.1 . Anyway, real implementations of EB-QKD
have been done with spontaneous parametric down conversion sources which produce also
pulses containing many photons. In order to account for these experimental imperfections
which could break the security of the protocol new security proofs and techniques have
been developed. The final purpose of each security proof is to give a formula for the secret
key fraction which contains all details of the imperfections of the implementation and also
the maximal amount of information which could be obtained by an eavesdropper. In the
following we will discuss the secret key fraction in the case of an ideal implementation
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without imperfections, then we will discuss how to include imperfections in the formula
of the secret key fraction.

3.2.1 Secret key fraction for a perfect implementation

In this case the only noise affecting the measurement outcomes is attributed to Eve.
The eavesdropper can perform many types of attacks [49, 89]. In this thesis we have
considered the most general attack which is called coherent attack. In general Eve can
apply any strategy allowed by the laws of quantum mechanics, in particular she can use
ancillary states and apply the most general quantum operation between these states and
the quantum states sent to Alice and Bob. Then she will keep the ancillary states and she
will use them at any time even after the protocol is finished and the secret key is used.
It is remarkably that the only quantity entering in the formula of the secret key fraction
is the quantum bit error rate (QBER) which is for each measurement basis the fraction
of discordant outcomes. We will denote the QBER as eX , eY and eZ for the QBERs in
direction X, Y and Z.

It is possible to show [86, 89] that the state between Alice and Bob can be reduced to
a Bell-diagonal state, i.e. a state of the form

ρAB = A|φ+〉AB〈φ+|+B|φ−〉AB〈φ−|+ C|ψ+〉AB〈ψ+|+D|ψ−〉AB〈ψ−|, (3.1)

with the probabilities A, B, C and D. The QBER along the directions X, Y and Z is [89]

eX := B +D, eZ := C +D, eY := B + C. (3.2)

In the case of the BB84 protocol the asymptotic secret fraction is [38, 60, 63]

rBB84
∞ = 1− h(eX)− h(eZ), (3.3)

where h(p) := −p log2 p− (1− p) log2(1− p) is the binary Shannon entropy (see sec. 2.4).
This formula has a very simple interpretation [98]. Let’s consider a protocol where all
outcomes coming from the Z basis are used for producing the secret key and all outcomes
coming from theX basis are used for measuring the amount of eavesdropping1. Then h(eZ)
represents the fraction of information leaked to the eavesdropper during error correction
(see sec. 2.4) and h(eX) is the amount of information which could be gained by Eve during
the eavesdropping.

For the case of the six-state protocol the formula of the asymptotic secret key rate is
slightly more complicated [38, 60, 63, 89]

r6S∞ := 1− eZh
(

1 + (eX − eY )/eZ
2

)

− (1− eZ)h
(

1− (eX + eY + eZ)/2

1− eZ

)

−h(eZ). (3.4)

This formula holds under the assumption that the basis Z is used for extracting a key,
which will be chosen with a probability of almost one, and both Y and X are the bases
used for parameter estimation.

3.2.2 Including imperfections

Realistic devices move away from ideal devices in many different ways. There are known
imperfections which come from design principles, for example a spontaneous paramet-
ric down conversion source creates multiphoton states by design (see sec. 2.1.3). Known

1This protocol is equivalent to the original BB84 via [69]
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imperfections can be characterized and considered in the security proofs. Unknown imper-
fections which come from errors in the implementation or tampering are not under control
and therefore they cannot be easily corrected or accounted for in a security proof2 The cal-
culation of the secret key rate throughout the whole thesis has been performed assuming
that Alice and Bob are able to characterize completely the device used for the quantum
key distribution protocol. That means that they have complete control and knowledge of
the devices in their labs. However, nothing is assumed about the set-up outside the labs
which are controlled by the eavesdropper. The assumptions we considered above are by
far the most commons and used in literature [89]. For additional details how to adapt the
formula of the secret key rate see [12, 99, 47] and in the context of quantum repeaters see
[7, 4].

2Modern techniques such as device-independent QKD [82] are able to deal with both type of errors.
However, it is not easy to capture everything also in this general type of security proof and attacks are
know which could permit an eavesdropper to learn the secret key [10, 9].
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4 Quantum repeaters

In this chapter we will give basic information about quantum repeaters, what are the
building blocks and what are their performances. In sec. 4.1 we show that losses in optical
fibers are a major problem in quantum optical communication. In order to solve this
problem, we will in sec. 4.2 describe the simplest quantum repeater set-up. Then in
sec. 4.3 we will introduce all building blocks of a quantum repeater and in the successive
section (sec. 4.4) we will describe the original quantum repeater protocol proposed in [28].

4.1 Losses in optical fibers

Although quantum key distribution may be realizable for any physical system, in practical
cases photons are the unique reasonable choice. Photons are fairly easy to produce, to
be transmitted and to be measured. The preferred means for transmitting photons are
optical fibers and free-space [50]. In the following we will concentrate on optical fibers.

Optical fibers allow to transmit information from one place to another by transmitting
photons. Optical fibers are flexible light pipes usually made of glass or plastic. See [56]
for historical information and their todays use. See [11, 6] for an introduction to current
implementations and applications, and [49, 89] for information regarding application in
quantum key distribution and quantum communication. For the purpose of this thesis
optical fibers are within good approximation to be considered lossy but noiseless. Optical
losses are governed by the Beer-Lambert law [26, 83, 67]. Let P be the power of the light
inserted in the optical fiber, then [6]

dP

dz
= −γP, (4.1)

where z is a coordinate longitudinal to the optical fiber and γ is the attenuation coefficient.
This coefficient depends on the material used for building the fiber, on the wavelength
of the signals, on the shape of the signal, on the temperature and other atmospheric
conditions as humidity. The solution of eq. (4.1) leads to the exponential attenuation:

Pout = Pine
−γL, (4.2)

where L is the distance traveled by the light, Pin is the input power and Pout is the output
power. It is customary to define the absorption coefficient α in dB/km [6],

α := −10
L
log10

(

Pout

Pin

)

, (4.3)

which implies

Pout = Pin10
−αL

10 . (4.4)

In case of single photons, losses remain the same, but instead of speaking of power decay
we speak about transmission probability which is defined as

ηT (L) := 10−
αL
10 . (4.5)

The values of losses depend mainly on the wavelength and it is minimal in the two telecom
windows around 1330 nm for which α ≈ 0.34 dB/km and around 1550 nm for which
α ≈ 0.2 dB/km.
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L (km) photons/s

10 6.3 · 109
50 109

100 108

300 104

500 1
800 10−6 ≈ 3 photons/month
1000 10−10 ≈ 1 photon each 3800 years

Table 4.1: Rate of single photons at distance L. We use eq. (4.5) with α = 0.2 dB/km.
The source is supposed to produce photons with a rate of 1010 photons/s.

In tab. 4.1 we give the values of the rate when a source with a frequency of 1010 Hz
is used. This is a completely futuristic source as current single photon sources are in
the order of MHz [41]. As we see, after few hundreds of kilometers the rate is so low
that communication becomes impractical. As we will see in the next section, quantum
repeaters can solve the problem of photon losses.

4.2 Introduction to quantum repeaters

The purpose of this section is to give a general overview of a quantum repeater and how
it works. Later in sec. 4.3 we will discuss with more details all ingredients and why they
are really necessary. In sec. 4.4 we will present the original quantum repeater protocol.

Figure 4.1: Set-up of a two-segment quantum repeater. The filled black circles are quantum
memories. The circle with S1 and S2 inside are entanglement sources. The distance
between Alice (Bob) and the repeater station is L

2 .

In fig. 4.1 a simple quantum repeater with two segments is depicted. The source S1 (S2)
produces entangled photons which are sent to the quantum memories A and C1 (C2 and
B). Quantum memories store the information of the photons and acknowledge the arrival
with a heralding signal. If a photon has been stored in the quantum memory A, then a
heralding signal is sent to S1 and C1. If S1 receives a heralding signal also from C1 from
the same entangled pair then the distribution is stopped and an entangled pair has been
distributed between A and C1. The same procedure is used on the segment on the right
until an entangled pair has been acknowledged between C2 and B. Now, entanglement
swapping is performed on the elements C1 and C2 to connect the two entangled pairs. Then
Alice and Bob apply accordingly to the result of the measurement a quantum operation
on their quantum memories to transform the state to the desired entangled pair between
Alice and Bob.
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We now discuss the performance of this protocol. The situation depicted in fig. 4.1
should be compared to one unique entanglement based source in the middle between Alice
and Bob (see fig. 3.1). In this case the probability that Alice and Bob receive pairs from
the same entangled pair is given by P 2

0 = ηT (L) where P0 := ηT (L/2) is the probability to
distribute successfully a pair in a segment of length L0 := L/2. Therefore, the number of
pairs a source needs to produce on average is given by < N >= P−2

0 and the average total
time necessary for creating one entangled pair between Alice and Bob is given by (νP 2

0 )
−1

where ν is the repetition frequency of the source measured in pairs per seconds. In the
case of a quantum repeater depicted in fig. 4.1 the average number of pairs necessary for
creating an entangled pair between Alice and Bob is given by [34, 24]

< N >=
3− 2P0

(2− P0)P0
. (4.6)

In order to make a fair comparison with direct communication it is necessary to include
also times needed for heralding and to entanglement swapping. The communication time
necessary for distributing one entangled pair is given by T0

2 which is the time needed for
a photon to go from a source (S1 or S2) to the quantum memory. The time for receiving
the heralding is given by T0 which is the time for a light signal to go from one quantum
memory to the other one, i.e. from the repeater station to Alice or Bob or viceversa).
After entanglement swapping has been performed, the result of the measurement takes
still a time T0, therefore the average total time for producing one entangled pair is given
by

< T >:= T0

(

3

2
< N > +1

)

. (4.7)

A different aspect we need to consider is the quality of the resulting entangled pair.
For concreteness, let us suppose that the created entangled state in each segment is a
depolarized state with fidelity F0 (see sec. (2.14)). This fidelity depends on the initial
fidelity of the pair as generated by the source and on the noise introduced by the channel.
After entanglement swapping, the fidelity of the obtained pair is

F1 =
1− 2F0 + 4F 2

0

3
. (4.8)

If F0 < 0.683 then the resulting pair will become a separable state which could be prepared
with classical communication and local operations. A possible solution is to increase the
fidelity of the pairs before entanglement swapping. A possible protocol is entanglement
distillation [21, 37] . The quantum repeater protocol changes in this way. First, many
entangled pairs are created on each segment, then a specific combination of quantum gates
and measurement is applied on each side in a way to obtain a resulting pair of higher
fidelity. Then entanglement swapping between these two distilled pairs is performed.
Depending on the initial fidelity F0 it is possible to increase the number of pairs used for
distillation in such a way the final pair after entanglement swapping is entangled.

As a conclusion, we have discussed the main ingredients of a quantum repeater proto-
col. Summarizing we need

1. quantum memories and heralded creation of entanglement,

2. entanglement swapping,

3. entanglement distillation.
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In the following we will discuss these four ingredients, then we will discuss why all
of them are necessary and what happens if one of them is not included. Finally, we
will discuss several scheduling algorithms, which are methods for composing the elements
above.

4.3 Ingredients for quantum repeaters

In this section we discuss all ingredients of a quantum repeater. For each ingredient
we will give a brief description of how it is supposed to work, we will present the main
imperfections and its characterization, then we will discuss what is the actual status of
implementations.

4.3.1 Quantum memories and heralded creation of entanglement

Nowadays, the realization and the improvement of quantum memories represent a broad
research area worldwide. Quoting a recent review [31] “a quantum memory is, in broad
terms, a system that can store a quantum state to accomplish a certain task”. Recent
reviews of research in quantum memories include [73, 5, 54, 74, 96, 31].

For application to quantum repeaters many types of quantum memories could be used.
There are quantum memories that herald the absorbition of photons [97, 25, 81] and
quantum memories which are not intrinsic heralded. These are also know in literature as
optical quantum memories [31] because their state can be prepared and manipulated using
light. The most studied implementation of such quantum memories is based on atomic
ensembles [39, 88]. Optical quantum memories, in their most common implementation, do
not posses heralding and moreover, it is not straightforward to store an incoming photon.
However, there are schemes similar to entanglement swapping which permit to entangle
in an heralded way two of such quantum memories. See [39, 88] for additional details.

Relevant figure of merit relative to quantum memories are

• Heralding probability. This is the probability that heralding is acknowledged.

• Reading efficiency ηM . This is the probability that a stored photon is actually
retrieved.

• Decoherence model Γt(ρ). This is the quantum channel which describes how the
stored quantum state evolves with the time. During the work of this thesis we have
considered two types of decoherence model.

1. Step function model [34]. The quantum state remains perfect for t < τC and
then it becomes a completely mixed state for t > τC , i.e.

Γt(ρ) =

{

ρ if t ≤ τC

1l/2 if t > τC ,
(4.9)

where the time τC is called coherence time.

2. Depolarization model [84]. The quantum state degrades following an exponen-
tial law

Γt(ρ) = e
− t

τC ρ+ (1− e
− t

τC )1l, (4.10)

where τC is called coherence time.
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4.3.2 Entanglement swapping

The next ingredient for a quantum repeater protocol is entanglement swapping [19, 59]. In
the following we will describe how the protocol works, then we will discuss how it is often
implemented and finally we will describe how imperfections affects the figure of merits of
entanglement swapping. The idea of the protocol is that there are two separate entangled
pairs which are joined by applying a suitable measurement between one part of each pair.
More formally, let us consider two entangled quantum states ρAC1 and ρC2B as depicted in
fig. 4.1. The purpose of the protocol is to generate a new entangled state ρAB between Alice
and Bob. Therefore in the beginning Alice and Bob are not entangled, at the end without
actual communication between them they will be entangled. The actual communication
is only between the repeater station and Alice and Bob. If ρAC1 := |φ+〉AC1〈φ+| and
ρC2B := |φ+〉C2B〈φ+| then it is enough to do a Bell measurement between the quantum
memories C1C2, i.e. to perform the projective measurement consisting of the following
four projectors |φ±〉〈φ±| and |ψ±〉〈ψ±|. The result of the measurement is communicated
to Alice and Bob who will apply an appropriate single-qubit rotation to their quantum
systems. The final resulting state is ρAB = |φ+〉AB〈φ+| which is a maximally entangled
state.

We have seen that provided the two segments are Bell states, the final connected state is
once again a Bell state. However, if the states ρAC1 and ρC2B are not maximally entangled
states, then the resulting state will be also a not maximally Bell state (see sec. 4.2). Let us
consider a chain of n+ 1 entangled state, the purpose is to apply entanglement swapping
n times in such a way to have a long distance entangled state. If all states are depolarized
states of fidelity F0, applying eq. (4.8) many times it is easy to show that the final fidelity
is

F :=
1

4
+
3

4

(

4F − 1

3

)n

. (4.11)

Therefore, we see that the fidelity decreases exponentially in n.
A Bell-state measurement between the quantum memories C1C2 can be implemented as

follows. The quantum states C1C2 are first given as input to a CNOT gate (see sec. 2.2.1),
then the control bit is subjected to a Hadamard gate (see sec. 2.2.1) and, finally, both
quantum states are measured in the Z basis. A successful measurement needs that both
detectors produce an outcome. If only one, or none, detector clicks than the result is
inconclusive because we don’t know which was the measured Bell-state. Therefore, for
detectors with detection efficiency ηD as described in sec. 2.3 the BSM success probability
is

PBSM = η2D. (4.12)

If the measurement is not done directly on the quantum memories, but instead photons
are retrieved the success probability becomes

PBSM =
1

2
(ηMηD)

2. (4.13)

The factor 1
2 appears in the success probability because usually a BSM on photons

is done with linear optics, and as shown in [32] the maximal success probability in this
case is 1

2 . The advantage of entanglement swapping with linear optics is that even if it is
probabilistic, the introduced noise is usually negligible.

4.3.3 Entanglement distillation

Entanglement distillation for mixed states has been proposed for the first time in [21].
Based on it, [37] proposed a similar protocol which permits to achieve higher success
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probability and final fidelity. These are examples of recursive protocols. The idea is the
following. We start the protocol with 2x entangled pairs. Couples of pairs are manipulated
with a proper choice of quantum gates and measurements. Depending on the result of the
measurement, it is possible to know with certainty that the remaining pair has a higher
fidelity. In the other case, the round of distillation is considered failed and the protocol
starts from the beginning. Therefore, as a result of the first round 2x−1 pairs are remained.
The protocol is applied once again in the same way, and hence the name recursive, until
the point that one final pair remains. A different type of protocols have been proposed in
[28] and they are called pumping protocols. A complete explanation of such protocols is
included in one of the papers attached to this thesis [27].

4.4 Original quantum repeater protocol

Now that we have presented all building blocks we can compose them for having a complete
quantum repeater protocol. In this section we will first describe the original quantum
repeater protocol presented in literature [28]. This protocol is also called nested quantum
repeater protocol and it represents a prototype for most of the protocols developed till
nowadays. In the following we will give a description of the protocol and we will discuss
the scaling of the average number of pairs as a function of the parameters.

4.4.1 The protocol

Figure 4.2: Nested quantum repeater scheme [28]. The index N is the nesting level and
M is the number of quantum states used for distillation. The maximal nesting level is
NMAX = 3. Lines with the same colors are used for producing one entangled pair. The
index Ri with i = 1, ..., 2NMAX − 1 represents an index for the repeater station. The red
line on the bottom of the figure represents the final entangled pair between Alice and Bob.

In the following we will describe the steps of the protocol. In fig. 4.2 there is a
representation of the protocol. The distance between Alice and Bob is divided in 2NMAX

segments. Given that the distance between Alice and Bob is L the length of each segment
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is then L0 := L/2NMAX . The index N is called nesting level and NMAX is the maximal
nesting level. The protocol works as follows:

1. In each segment Y0 ·M0 entangled pairs are created.

2. In each segment M0 pairs are used for distillation, therefore in the end for each
segment we obtain Y0 final pairs.

3. Entanglement swapping is performed in the repeater stations R1, R3, R5, R7.

At the end of the third step we obtain quantum states which are shared at the distance
2L0. The three steps above are repeated until entangled pairs at distance L are produced.
The last step is to perform distillation between pairs at distance L in such a way to obtain
one final pair with high fidelity. The protocol is called nested because it is self-similar over
distances which are doubling at each iteration.

Before to show that this protocol can outperform direct communication we wish to
add additional details regarding the protocol.

• Distillation and eventually entanglement swapping are probabilistic. That means
that when one of these two protocols fails, in the involved branch it is necessary to
start from scratch from N = 0 before to be able to do entanglement swapping with
another branch.

• After each operation it is necessary to communicate classical information regarding
the outcome of the measurement and the fact that the measurement were successful.

• On parallel branches (column in fig. 4.2) operations can be performed in parallel,
but before to join two branches with entanglement swapping it is necessary that
the involved repeater stations got the information about successful distillation and
previous entanglement swappings.

• It is not clear, at priori, which are the optimal values of NMAX, M and Y . This
depends on the particular application [27].

4.4.2 Performance

A complete and exact formula for the average time needed for creating entangled pairs on
distance L is still not available. Instead of that, many exact formulas for special cases or
approximate formulas for the general case are known. In the following we will consider
few relevant cases for this thesis and we will give the formulas. In all formulas we will
denote by P0 the probability that a pair is created in a segment of length L0 := L/2NMAX .

The success probability of entanglement swapping is given by P
(i)
ES where i is the nesting

level. Note that these probabilities depend also on other parameters which are specific of
each protocol.

Moreover, we need to define the speed of light. Typically, signals travel through optical
fibers and the speed of light in this medium is about c = 2 · 106 km/s [55]. We define also
the fundamental time T0 := L0/c which is the time light need to travel between the two
extremes of an elementary segment.

• Quantum repeater with no distillation and deterministic entanglement
swapping This is the simplest model of quantum repeater. Entanglement swapping
never fails, and distillation is not used. Therefore, the only probabilistic process is
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entanglement creation in each elementary segment. The average time for creating
entanglement in such a scheme is given by [24] 1

< T >=
3

2
T0ZNMAX

(P0) + L/2c, (4.14)

with [24]

ZN (P0) :=

2N
∑

j=1

(

2N

j

)

(−1)j+1

1− (1− P0)j
(4.15)

is the average number of attempts to connect 2N pairs, each generated with proba-
bility P0.

• Quantum repeater with no distillation and probabilistic entanglement
swapping. For this scheme an approximate formula for the average time has been
derived in [88]. This formula is believed to be quite good for small value of P0 [88]
and it is

< T >=
3

2
T0

(

3

2

)NMAX 1

P0P
(1)
ESP

(2)
ES ...P

(NMAX)
ES

. (4.16)

One of the result of this thesis has been to generalize this formula to the following
scenarios:

• probabilistic entanglement swapping and distillation only in the 0th nest-
ing level See next chapter and [4].

• probabilistic entanglement swapping and distillation in all nesting levels
including also classical communication See next chapter and [27].

4.4.3 Final shared state

In the previous section we have described what is the time for producing one entangled
pair. However, for applications it is important to characterize also the final shared state
between Alice and Bob. The final aim of this characterization is to tune the repeater
parameters as the number of segments, the number of pairs used for distillation, the
distillation protocol, the minimal coherence time of the quantum memories, etc in order
to optimize some figure of merit. The usual figure of merit which has been optimized is
the fidelity of the final pair. In this thesis we have studied the secret key rate which will
present some peculiarity that we will explore in the next chapter.

1This formula does not match exactly the formula given in [24] for the following reason. In [24] entan-
glement is not created with a source in the middle but instead with a source on only one side. Therefore,
the time for distributing one pair is give by T0 and the time for getting the acknowledge signal is once
again T0. This explain the factor 2T0 present in [24]. Check sec. II.A.3 and fig. 2 of the paper [4] attached
to this thesis for additional details about the distribution and the acknowledgment time.
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5 Results

5.1 Introduction

The purpose of this section is to put together the elements presented in the previous
two chapters and to present the result of this dissertation which can be divided in three
categories:

• Analysis of the performance and requirements of general purpose quan-
tum repeater protocols for application to QKD. The expression general pur-
pose in this context means that the quantum repeater protocols are not specifically
designed for application to QKD. Instead, the final entangled pair may be used for
generic applications like distributed quantum computation and entanglement tele-
portation. In Ref. [4, 27] we have studied common quantum repeater protocols,
namely the original quantum repeater protocol, the hybrid quantum repeater and
quantum repeaters based on linear optics and entanglement swapping. We have cal-
culate the secret key rate and characterized the minimal requirement. Regarding [4]
we have assumed that distillation is only performed before to do any entanglement
swapping. Then in [27] we have lifted this assumption and we have characterized
different distillation protocols and general scheduling algorithms.

• Analysis of two segment quantum repeaters protocol specifically minded
for QKD. Here we have shifted our focus on protocols which are more likely to
be realized in the near future. We consider the simplest quantum repeater scenario
where there is only one repeater station. Ref. [2, 1] belong to this category.

• Finite-key analysis of the six-state protocol with realistic detectors. In
the previous two papers we have always calculated the asymptotic secret key rate.
However, in realistic cases finite-key correction are going to play a relevant role. In
Ref. [3] we consider entanglement-based QKD (without quantum repeaters) and we
calculate the secret key rate with finite-size corrections when there are imperfections
in the source and in the detectors.

5.2 Analysis of the performance and requirements of gen-

eral purpose quantum repeater protocols for application

to QKD

In order to characterize the performance of a quantum repeater protocol we have used as
figure of merit the secret key rate which represents the number of bits per second and it
is defined by

RQKD := RREPPclickRsiftr∞, (5.1)

where RREP is the repeater rate defined and discussed in sec. 4.4.2, the probability Pclick

has been defined in sec. 3.2.2 and it represents the probability that the QKD measurement
is successful when the created entangled pair is measured. The sifting rate represents the
probability that Alice and Bob choose the same measurement basis and for the whole thesis
(except sec. 5.4) it will be chosen equal to one. The reason is that as proven in Ref. [70] in
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the asymptotic case Alice and Bob can choose one basis with probability almost one and
the others with negligible probability. The secret fraction has been defined in sec. 3.2.1
for the BB84 and the six-state protocol.

In ref. [4] we studied the performance and the requirement of three quantum repeater
protocols, the original quantum repeater [28], the hybrid quantum repeater [101, 66] and
a quantum repeater based on linear optics and atomic ensembles. One challenging task of
ref. [4] has been to set a unique notation, similar parameters and similar analysis techniques
for different protocols which has been always studied individually. Section II of ref. [4] is
therefore considered a good introduction to quantum repeater and QKD. In the following
we will discuss for each type of quantum repeater the main results.

5.2.1 Original quantum repeater

The original quantum repeater has been proposed in [28]. The authors do not specify
a specific implementation but they consider a generic implementation. The distributed
entangled states are depolarized Bell states (eq. (2.14)) of initial fidelity F0 and entangle-
ment swapping is deterministic and the gates have depolarizing noise (see eq. (2.25)) with
noise parameter (gate error) pG. The probability that the entanglement swapping mea-
surement is successful is given by PES = η2D where ηD is the efficiency of photon number
resolving detectors (see eq. (2.32)). For this type of quantum repeater we have considered
protocols where distillation is done only in the beginning, i.e. before starting to perform
entanglement swapping (see fig. 5.1).

Figure 5.1: (Figure and caption from Ref. [4]) Scheme of a generic quantum repeater
protocol. We adopt the nested protocol proposed in [28]. The distance between Alice
and Bob is L, which is divided in 2N segments, each having the length L0 := L/2N .
The parameter n describes the different nesting levels, and the value N represents the
maximum nesting level. In this paper, we consider quantum repeaters where distillation
is performed exclusively before the first entanglement swapping step. The number of
distillation rounds is denoted by k.

The first quantities we have studied are the minimal initial fidelity F0 and the maximal
gate error pG such that it is possible to extract a secret key. This has been done by studying
the region where the secret fraction r∞ becomes zero.

As shown in fig. 5.2 increasing the initial fidelity it is possible to use worse gates and vice
versa. We see, moreover, that the initial distillation permits to use pairs with lower fidelity
w.r.t. the case without distillation at the expense of better gates. After characterizing the
minimal requirement, we have characterized what is the optimal number of distillation
rounds. Optimal means that the secret key rate is maximized. In fact there are two
competing effects. More rounds of distillation will decrease the QBER as the final pair
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Figure 5.2: (Figure and caption from Ref. [4]) Original quantum repeater and the BB84-
protocol: Maximal infidelity (1 − F0) as a function of gate error (1 − pG) permitting
to extract a secret key for various maximal nesting levels N and numbers of distillation
rounds k (Parameter: L = 600 km).

will have higher fidelity. The result is an increase of the secret fraction. On the other
hand, more rounds of distillation will decrease the repeater rate as we need more pairs.
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Figure 5.3: (Figure and caption from Ref. [4]) Original quantum repeater and the BB84-
protocol: Number of distillation rounds k that maximizes the secret key rate as a function
of gate quality pG and initial fidelity F0. In the white area, it is no longer possible to
extract a secret key. (Parameters: N = 2, L = 600 km)

In fig. 5.3 we have the optimal number of rounds of distillation as a function of the
gate quality and the initial fidelity. Interestingly, there is a not negligible region where no
distillation is optimal. This is the region where both gates and pairs have high quality.
Moreover, over a big range of initial fidelity we see that k ≤ 8 is optimal.

Then, we have calculated the secret key rate as a function of the distance. For the
plot in fig. 5.4 we have chosen initial fidelity F0 = 0.9 and gate quality pG = 0.995. Our
result is that for perfect photon detectors (ηd = 1) and for L < 400 km the nesting level
N = 3 (i.e. 23 = 8 segments) is optimal. Then N = 4 is optimal. Note that N = 5 will be
never optimal because for our set-up it will always lead to a zero secret key rate. In case
of more realistic detectors the situation is more complicated; for L < 350 km it is optimal
to use N = 2 then till L ≈ 700 km it is optimal to use N = 3 and for larger distances
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Figure 5.4: (Figure and caption from Ref. [4]) Original quantum repeater and the BB84-
protocol: Optimal secret key rate versus distance for different nesting levels, with and
without perfect detectors. For each maximal nesting level N , we have chosen the optimal
number of distillation rounds k. A nesting level N ≥ 5 no longer permits to obtain a
non-zero secret key rate. (Parameters: F0 = 0.9 and pg = 0.995.)

N = 4 is optimal.

5.2.2 Hybrid quantum repeaters

Hybrid quantum repeaters have been proposed in [101, 66]. They are called hybrid because
entanglement between two distant qubits is realized using a coherent state. Therefore, this
scheme uses discrete and continuous variables.

Figure 5.5: Conceptual scheme of heralded entanglement creation for an hybrid quantum
repeater. The cavities are used as quantum memories.

Heralded entanglement creation works as follows. A coherent-state pulse interact for
the first time with a cavity. The interaction can be described using a Jaynes-Cummings
Hamiltonian in the limit of large detuning, i.e. Hint = ~χZa†a, where χ is the light-atom
coupling strength, a (a†) is the annihilation (creation) operator of the electromagnetic field
mode, and Z = |0〉〈0|−|1〉〈1| is the Z operator for a two-level atom. After the interaction,
the coherent state is sent through the lossy fiber and interacts once again with the other
cavity. The resulting state is measured using an ambiguous discrimination measurement
(USD) and in the case the state can be discriminated the resulting state of the two cavities
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is [24]
ρ0 := F0|φ+〉〈φ+|+ (1− F0)|φ−〉〈φ−|. (5.2)

The success probability of creation of this state is given by [24]

P0 = 1− (2F0 − 1)
ηT (L0)

1−ηT (L0) . (5.3)

Note that as F0 → 1 then P0 → 0.
For the hybrid quantum repeater, analogously to the previous section we have studied

a protocol were distillation is performed only in the beginning. This type of set-up was
studied already in Ref. [24] but the used figure of merit was the final fidelity.
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Figure 5.6: (Figure and caption from Ref. [4]) Hybrid quantum repeater with perfect
quantum operations (pG = 1) and perfect detectors (ηd = 1) (black lines) compared to
imperfect quantum operations (pG = 0.995) and imperfect detectors (ηd = 0.9) (orange
lines): Secret key rate per second as a function of the initial fidelity for 23 segments
(N = 3) and various rounds of distillation k. The distance between Alice and Bob is 600
km.

In fig. 5.6 we see how the secret key rate changes as a function of the initial fidelity
for different numbers of rounds of distillation k, gate qualities pG and detector efficiencies
ηd. The result is that there is an optimal initial fidelity F0. If a higher initial fidelity is
used, the secret key rate will be lower. The reason is that even if the final pair will be
with higher fidelity and therefore will produce a higher secret fraction due to eq. (5.3)
the success probability will be lower and thus the repeater rate. We see, moreover, that
increasing k the optimal fidelity decreases and at the same time the optimal secret key
rate increases.

Then we have studied the secret key rate and as shown in fig. 5.7 we found that N = 3
(8 segments) and k = 3 is optimal through the whole range till L ≈ 950 km.

5.2.3 Quantum repeaters based on linear optics and atomic ensembles

Duan, Lukin, Cirac and Zoller introduced in 2001 a quantum repeater protocol based on
atomic ensembles and linear optics [39]. Since 2001 a big effort has been done in order
to improve the protocol from the theoretical side and at the same time to implement
it experimentally. Nowadays, all basic elements have been implemented, i.e. heralded
creation of entanglement and entanglement swapping. See [88] for a recent review of
experimental and theoretical results. However, according to [87] a quantum repeater that
can outperform direct communication has not been developed yet. In Ref. [4] we have
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Figure 5.7: (Figure and caption from Ref. [4]) Hybrid quantum repeater with imperfect
quantum operations (pG = 0.995) and imperfect detectors (ηd = 0.9): Optimal secret key
rate for the BB84-protocol as a function of the total distance L, for various numbers of
segments 2N and rounds of distillation k. For N = 5, it is not possible to obtain a secret
key when distillation is applied.

studied the performance in relation to QKD of the most recent proposal [76] of quantum
repeater based on atomic ensembles and linear optics. We refer to Sec.V of Ref. [4] for a
complete explanation of the protocol and the parameters. For this protocol we have not
treated distillation as this last one has not been studied in the original protocol [76] and
it is not usually considered in protocols with atomic ensembles. The result is shown in
fig. 5.8. We have compared the ideal scenario where everything is perfect and a realistic
scenario where we used typical values of the imperfections. As a result we have shown
that for L > 400 km is is optimal to have 16 segments in the case of imperfect set-up.

5.2.4 Study of more general scheduling algorithms

In the previous sections we have considered protocols where distillation may be performed
only in the beginning before to start entanglement swapping. However, more general pro-
tocols are possible where distillation is performed in all nesting levels (see fig. 4.2). In [27]
we have considered exactly this problem. First, we have considered two scheduling pro-
tocols: strategy α where distillation is performed in all nesting levels with the constraint
that the number of rounds of distillation is always the same and strategy β where distilla-
tion is done before the first entanglement swapping. In contrast to [4] in [27] we consider
the secret key rate per memory. This is necessary in order to make a fair comparison.
Our result is summarized in fig. 5.9. We see that in most of the region it is optimal to
perform distillation in all nesting levels. However, there is also a region where strategy
β is optimal. This is the region where quantum gates are very good. Then we have also
considered arbitrary complex scheduling algorithms where there are no restrictions. The
results are described in Sec.IV.C of [27]. Notably, we found out that it is never optimal
to do distillation in the beginning and in the end, i.e. at nesting levels 0 and N , where N
is the maximal nesting level.
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Figure 5.8: (Figure and caption from Ref. [4]) Quantum repeaters based on atomic en-
sembles: Optimal secret key rate per second versus the distance between Alice and Bob.
The secret key rate has been obtained by maximizing over p and R. Ideal set-up (solid
line) with parameters ηm = ηd = q = 1, γrep =∞. More realistic set-up (dashed line) with
parameters ηm = 1, ηd = 0.9, q = 0.96, γrep = 50 MHz. (See Ref. [4] for an explanation of
the various parameters).

5.3 Analysis of two segment quantum repeaters protocol

5.3.1 Measurement-device independent QKD with quantum memories

Another part of the work of this thesis has involved quantum repeaters with two segments
and one repeater station. Our results are in Refs. [2, 1]. This is the simplest set-up which
could potentially outperform direct transmission. Our study starts from a work in Ref. [71].
There the authors describe a new quantum key distribution scheme where Alice and Bob
have weak coherent pulse sources (see eq. (2.20)) which are used for approximating single
photon sources. The two parties prepare photons in suitable quantum states for QKD
and send them to a station in the middle which performs a blind Bell-state measurement.
Correlations are created by performing suitable bit flips depending on the result of the
BSM and the preparation basis. This protocol is called measurement-device independent
because Alice and Bob do not perform any measurement but instead they move this task
to the station in the middle which is controlled by the eavesdropper. We have called the
measurement blind because as described in Ref. [71] the measurement is always performed
even when the photons did not reach the measurement station. A posteriori, if both
photons were not there then the measurement is considered failed and the corresponding
bits are thrown away by Alice and Bob.

In Ref. [2] we have generalized the protocol to a set-up with quantum memories (see
fig. 5.10). This permits to exploit the heralding of quantum memories and to perform
the BSM only when both photons arrived to the measurement station that will be now
called repeater station. Note, that a priori it is not clear if a quantum repeater with
quantum memories will outperform the protocol without quantum memories. The reason
is that from one side quantum memories will increase the repeater rate (see sec. 4.2) but
from another side, due to memory decoherence, the QBER will increase giving as a result a
decrease of the secret fraction. We have considered a delta function decoherence model (see
eq. (4.9)). This model has been considered originally in [34] and it is convenient because
it permitted to obtain analytical and closed formulas for the QBER and the repeater rate.
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Figure 5.9: (Figure from Ref. [27]) Optimal scheduling algorithm for the original quantum
repeater protocol.

Figure 5.10: (Figure and caption adapted from Ref. [2]) Scheme of a measurement-device-
independent quantum repeater. The difference w.r.t. Ref. [71] is that quantum memories
are used. QM=quantum memories, BSM=Bell-state measurement. The two sources pro-
duce single-photon states or weak coherent pulses.

After we characterize the minimal coherence time permitting to have a non-zero secret
key rate we have calculated how the secret key rate scales as a function of the coherence
time. In fig. 5.11 we represent the secret key rate as a function of the ratio between τ
and τMIN , where τ is the actual used fidelity and τMIN is the one permitting to extract
a secret key. The result is that it is sufficient to have τ/τMIN ≈ 4 as then the secret key
rate reaches a flat region.

Then we have studied the secret key rate as a function of the distance for single-photon
sources and WCP. As shown in fig. 5.12 we see that the protocol with the quantum
memories and single-photon sources (denoted by MDI-QKD-REPEATER-SPS) greatly
outperform the protocol without quantum memories even for decoherence times slightly
better than the minimal ones. The analysis with weak coherent pulses is more complex
because new attack strategies, namely photon splitting attacks, become possible. The
reason is that a WCP is constituted by many, exactly equals, photons which can be spitted
and saved by the eavesdropper without introducing any noise. In order to deal with this
type of attacks, a protocol with decoy states has been created. Decoy states are WCP with
a different average photon numbers. Using the techniques developed in [72, 75, 71] it is
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Figure 5.11: (Figure and caption from Ref. [2]) Secret key rate per pulse as function of
τ/τMIN

SPS . Parameters: ηD = 0.2, ηM = 0.6, pD = 10−6, α = 0.17 dB/km, L = 400 km.
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Figure 5.13: (Figure and caption from Ref. [1]) Alice and Bob are equipped with single-
photon sources. Each source is connected through an optical fiber to a quantum memory
in the repeater station. Red spheres represent filled quantum memories whereas gray
spheres represent empty quantum memories. In this example the maximal connection
length is one, therefore the connections indicated in blue are allowed and the magenta one
is forbidden.

possible to evaluate the strength of the photon-number-splitting attack and consequently,
to account for this additional information held by the eavesdropper in the formula of
the secret key rate. In Ref. [2] we have performed all calculations evaluating the QBER
and the optimal intensity of the decoy states such that the secret key rate is maximized.
Accordingly to the result with single-photon sources we have found that imperfect quantum
memories permit to outperform a protocol without quantum memories.

5.3.2 More general protocols: finite-range multiplexing

After the calculation of optimal secret key rate for the measurement-device independent
protocol we have investigated how to increase the secret key rate by still using only one re-
peater station. We want to keep this constraint because this set-up is much less demanding
than a full quantum repeater protocol with entanglement sources.

Therefore, we have considered the set-up shown in fig. 5.13. This is a generalization
of the set-up of the previous section where in the repeater station there are two arrays of
quantum memories. The arrays on the left is connected to Alice and the arrays on the
right is connected to Bob. Let m be the number of quantum memories in one array. If the
connections between the quantum memories are performed in parallel than the total secret
key rate is m times the secret key rate calculate in the previous section. Actually, it is
now possible to do better because it is possible to perform connection in diagonal between
arbitrary quantum memories. This set-up has been introduced in Ref. [34] where the
authors have shown that multiplexing permits to have a modest increase of the repeater
rate and a significative decrease of the coherence time of the quantum memories. In
Ref. [1] we have studied multiplexing in relation to quantum key distribution. We have
generalized the original multiplexing considering finite-range connections. The reason is
that long-range connections are difficult to perform. In Ref. [1] we have derived analytical
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Figure 5.14: (Figure and caption from Ref. [1]) Repeater rate per memory as function
of the time for m = 5 and various maximal connection length w. Parameters: p =
0.001, PBSM = 1.

formulas for the repeater rate as function of the time from the beginning of the protocol.
We have introduced an additional parameter w denoting the maximal connection length.
The case w = 0 means that connection are performed only in parallel and w = m − 1
means that any connection is possible.

As shown in fig. 5.14 the repeater has a loading time till t ≈ 104. After that the
repeater rate has a practically flat behavior. Analyzing the dependence on the maximal
connection length, we observe in the figure that the gap between w = 0 and w = 1 is almost
the same than the gap between w = 0 and w = 4 which represents full-range multiplexing.
This shows that in an experimental implementation in order to profit of multiplexing it is
not necessary to have long-range connections. We have than studied the effect of imperfect
quantum memories. In order to do that we have considered different matching algorithms
depending on the arrival time of the photons in the quantum memories.

In fig. 5.15 we show three possible matching strategies. The number in a red sphere rep-
resents the arrival time and the blue edges represent the connection between the quantum
memories. Moreover, the current time is also t = 2. In strategy 1 we perform connections
such that the total time difference is minimized. In strategy 2 connections are performed
in order to maximize the time differences and in strategy 0 connections are performed at
random.

In Ref. [1] we have calculated the minimal coherence time permitting to extract a secret
key and as shown in fig. 5.16 strategy 1 results to be optimal. We have than calculated
the minimal coherence time as function of the maximal connection length and we have
shown that w = 1 provides a great advantage on w = 0 and only a small disadvantage
against full-range multiplexing. Finally, we have considered the secret key rate.

As shown in fig. 5.17 finite-range multiplexing with w = 1 leads to a similar improve-
ment as with w = 4. The behavior of the secret key rate shows that there is still room of
improvement. In fact a basic assumption for the calculation of the QBER has been that
the maximal number of connection is performed. This maximize the repeater rate but not
the secret key rate.
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Figure 5.15: (Figure and caption from Ref. [1]) A red (gray) sphere indicates that the
quantum memory is filled (empty). The number into the sphere represents the arrival
time of the photons. On the left we have the situation at time 21 We consider w = 1. On
the right three possible matching strategies are shown. Blue lines indicate the difference
between the arrival times of the photons. It is possible to see the schemes on the right
side as weighted bipartite graphs: red spheres are vertices and blue edges have indicated
weights.
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5.4 Finite-key analysis of the six-state protocol with realis-

tic detectors

The paper in Ref. [3] can be considered a preparatory study to quantum repeaters and
quantum key distribution. As we have discussed in sec. 3.2.2 the squashing model permits
to adapt a security proof where quantum states are assumed to be qubits to a situation
where quantum states are not qubits anymore because they can be absorbed by the channel
or they can be composed of many photons. However, as proven in Ref. [12] the six-state
protocol does not admit a squashing model. Therefore, for the six-state protocol it is
not possible to use directly proofs where quantum states are assumed to be qubits. In
Ref. [77] a workaround to this no-go theorem has been presented. The authors show that
using photon number resolving detectors (see eq. (2.32)) it is possible to post-select only
the events where one photon has been measured and then to extract a secret key using only
these events. In Ref. [3] we study the performance of this technique when also finite-key
corrections are applied. In contrast to the analysis performed in the previous sections,
where the asymptotic secret key rate has been considered, we consider a well known
achievable lower-bound to the finite secret key rate [90, 91] and we use it for calculating
the optimal parameters which lead to the maximal secret key rate.

In fig. 5.18 we show the considered set-up. A SPDC source (see eq. (2.21)) is placed
between Alice and Bob. The produced quantum states are measured by photon number
resolving detectors which are represented in figure as a quantum non-demolition measure-
ment determining the photon number followed by a standard QKD measurement.

In fig. 5.19 we show the result of the paper. We have the secret key rate as a function
of the number of initial pulses produced by the source for different distances between Alice
and Bob. The result has been that finite-size corrections are not negligible even for very
large number of pulses.
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Figure 5.18: (Figure and caption from Ref. [3]) Set-up for QKD. The quantum channel
is completely controlled by the eavesdropper. The classical channel is authenticated but
otherwise tapped by the eavesdropper. The laboratories are by definition secure.
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6 Outlook

In this dissertation we have studied the performance of QKD in connection to quantum
repeaters. The final aim is to have long distance QKD at continental and intercontinental
distances. We started by characterizing the most famous quantum repeater protocols,
namely the original quantum repeater protocol, the hybrid quantum repeater and the one
based on linear optics and atomic ensembles. Each of these types of quantum repeaters
has its own experimental and theoretical community. One challenge has been to find a
common language for analysing all of them. The result of this effort has been summarized
in [4]. One of the more interesting results is that with not so demanding technology it
may be possible to have one bit/s at 600 km with all three protocols. A restriction of [4]
has been that a specific protocol has been considered, which is the one where distillation
is performed only in the beginning before starting with entanglement swapping. In [27] we
have lifted this constraint and we have found the optimal entanglement distillation protocol
and also the optimal scheduling strategy. It turns out that entanglement distillation helps
to increase the final secret key rate.

All set-ups considered in [4] and [27] represent a theoretical study of technology that
might be realized in the mid-term future. In [2] and [1] we have studied set-ups which
are likely to be realized in the near-future. In [2] we generalize the measurement-device
independent QKD by adding quantum memories. This represents a quantum repeater
set-up with two segments and one repeater station. The advantage of this set-up w.r.t. a
standard quantum repeater is that there is no need of entanglement source anymore and
that Alice and Bob can use, already available, QKD sources. The result has been that
the set-up studied by us permits to improve over a set-up without quantum memories also
when quantum memories are imperfect. In [1] we have further generalized the set-up and
we have considered the case when in the repeater station there are two arrays of quantum
memories. Quantum memories can be connected using multiplexing and in our work we
have studied the configuration where long-range connections cannot be performed because
too demanding. Our finding was that it is enough to have short-range connections.

Finally, in [3] we give the basis for future research. In particular, we study a possible
method permitting to use standard security proofs when there are imperfections in the
source and in the detectors. We do this in the particular relevant case that finite-key
corrections are considered. The result that we find is that finite-key corrections play a
very relevant role in the security analysis.

The results of this dissertation have attracted noticeable attention and have started
discussions and further analyses. For example the work published in [78] is based on [2]
and it studies the effect of additional imperfections in the detectors and in the source.

Future development of this dissertation may include the analysis of secret key rates with
finite-key corrections of the set-up considered in [4, 27, 2, 1]. This task is not completely
trivial because there are three levels of optimization:

1. optimization of the security parameters as done in [3],

2. optimization of quantum device parameters, as intensities of the sources or repetition
rates. Such analysis has been performed for example in [2, 1],
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3. optimization of the quantum repeater protocol parameters like nesting levels, round
of distillations and scheduling algorithms. Similar analyses have been performed in
[4, 27].

Moreover, the scheme considered in [1] may be improved in order to find the optimal
secret key rate. In fact, in our work we have maximized the repeater rate and then under
this constraint we have maximized the QBER. As shown in [1] this strategy leads to
suboptimal secret key rates. In order to increase it may be necessary to get rid of old
pairs which are known from the beginning to not contribute to the secret key rate.
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7 List of main results

• The optimization of the secret key rate is a completely different task with respect to
the optimization of the final fidelity. The reason is that in the scenario of quantum
key distribution there are two competing behaviors, namely, as the final fidelity
increases the secret fraction increases and the raw key rate decreases.

• The original quantum repeater protocol, the hybrid quantum repeater and quantum
repeaters based on atomic ensembles and linear optics can produce a secret key
rate of few bits per second at a distance of about 600 km with typical value of the
imperfections that may be achieved in the mid-term future. This is a positive result
because it stimulates further research.

• Distillation permits to have higher secret key rates per memory.

• Imperfect quantummemories permit to improve the secret key rate in a measurement-
device-independent quantum key distribution set-up. This is an important result
because it simplifies the creation of two-segment quantum repeaters.

• Finite-range multiplexing in a set-up with only one repeater station permits to in-
crease the secret key rate, to decrease the required decoherence time and to have
most of the advantages of full-range multiplexing.

• In presence of imperfections in the source and in the detectors, finite-size corrections
to the secret key rate become even more important w.r.t. scenarios where devices
are considered perfect.
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The six-state protocol is a discrete-variable protocol for quantum key distribution, that permits
to tolerate a noisier channel than the BB84 protocol. In this work we provide a lower bound on the
maximum achievable key rate of a practical implementation of the entanglement-based version of the
six-state protocol. Regarding the experimental set-up we consider that the source is untrusted and
the photon-number statistics is measured using photon-number-resolving detectors. We provide the
formula for the key rate for a finite initial number of resources. As an illustration of the considered
formalism, we calculate the key rate for the setting where the source produces entangled photon
pairs via parametric down-conversion and the losses in the channel depend on the distance. As a
result we find that the finite-key corrections for the considered scenario are not negligible and they
should be considered in any practical analysis.

I. INTRODUCTION

Quantum Key Distribution (QKD) was proposed for the first time in 1984 by Bennett and Brassard[4](BB84
protocol) and it is a method for permitting two parties, usually called Alice and Bob, to share a secret bit-string
that might be used as a key for cryptographic applications. The most prominent application is encryption with the
one-time pad[25], where Alice sums bitwise the message and the key for obtaining the cypher-text. The cypher-text
is then sent to Bob, who recovers the original text by using the knowledge of the key. Note that the encrypted text is
sent publicly on the channel and therefore it is readable by any eavesdropper who is tapping the channel. The security
of this scheme relies on the fact, that from the eavesdropper’s point of view the distribution of all possible cypher-texts
is uniform[24]. This last requirement implies that the key is chosen at random using a uniform distribution on the set
of all possible keys. This is the point where QKD enters the game. In fact, using the laws of quantum mechanics, it is
possible to create a bit-string with the guarantee that it is (almost) random from an eavesdropper’s point of view[21].
In this paper we consider the entanglement-based version of the six-state protocol[3, 5, 7, 10]. It has been realized that,
due to the use of a tomographic measurement, the six-state protocol is more robust against channel imperfections than
the BB84 protocol. The six-state protocol was implemented experimentally, e.g. by Kwiat’s group[13]. However, in
the meantime the security analysis of this protocol has become more and more complete. In 2001, H.K. Lo[14] proved
security of the protocol against the most general type of attacks and some years later R. Renner et al.[9, 12, 19] proved
the security of the six-state protocol using information-theoretical arguments. Finite-key effects were considered for
the first time by V. Scarani and R. Renner[22, 23] and by T. Meyer et al.[16]. It turns out that there is an initial regime
where BB84 is advantageous over the six-state protocol and then there exists a second regime where the six-state
protocol leads to higher secret key rates. The reason is the sifting procedure. More precisely, in the standard six-state
protocol all measurement bases are chosen with the same probability and as a consequence, 2

3
of the measurement

outcomes are discarded due to this sifting. In the standard BB84 protocol the fraction of discarded outcomes is 1

2
.

However, in the year 2005, it was proven by H.K. Lo and M. Ardehali[15] that it is possible to choose one basis with
high probability and the other two (one for the BB84) with a negligible probability without jeopardizing the security
of the protocol. In the asymptotic case, using this biased scheme, the sifting ratio approaches one and therefore the
six-state protocol permits to give a higher secret key rate. However, when finite-key corrections are considered, for
small block sizes it is not possible to choose with an arbitrary large bias the measurement basis and therefore the
sifting advantage of the BB84 protocol leads to higher key rates. Note that recent papers considering the finite-key
analysis studying the six-state protocol[1, 6, 22, 23] do not consider a realistic implementation with imperfections in
the source, the channel and the detectors. The security proof becomes more involved due to the fact that a realistic
source does have multi-photon pulses, which need special care. A common receipt is given by the squashing model[2],
which permits to analyze the security of multi-photon sources using single photons and a special post-processing of
the outcomes. However, it was proven that an active measurement set-up for the six-state protocol does not permit
to use the squashing model[2]. A squashing model for the passive measurement set-up exists[2], but up to now only
in the case of perfect detectors. However, another technique permitting to overcome the need of squashing model has
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been developed by T. Moroder et al.[17]. The main observation is, that if we had perfect photon-number-resolution
detectors (PNRD), then we would be able to avoid the problem of multi-photon pulses by post-selecting only single-
photon pulses. In their paper the authors developed an experimentally feasible technique permitting to acquire the
statistics of a PNRD. In this paper we want to extend their analysis considering finite-key corrections. In order
to state clearly our result, we will consider an ideal set-up, where we perform a Quantum Non-Demolition (QND)
measurement permitting to detect error-free the number of photons present in an incoming pulse. We will use a
standard measurement set-up, which has detectors with finite efficiency. Note that, although the set-up we consider
may be idealized, it permits to provide a lower bound for the performance of the six-state protocol in presence of a
realistic scenario. Finally, we will consider a specific example, i.e. we will calculate the secret key rate in the finite
case for a spontaneous parametric down-conversion of type-II (SPDC) source.
The paper is organized as follows. In section II we describe the set-up followed by a presentation of the QKD

protocol. In section III we present the security analysis and the formula for the secret key rate. In section IV we
calculate the optimal secret key rate for a SPDC source. Finally, in section V we conclude this analysis.

II. THE ENTANGLED VERSION OF THE SIX-STATE PROTOCOL

In the first part of this section we present the set-up used by Alice and Bob. The second part considers an outline
of the QKD protocol.

A. Set-up (see Fig. 1)

FIG. 1. Set-up for QKD. The quantum channel is completely controlled by the eavesdropper. The classical channel is authen-
ticated but otherwise tapped by the eavesdropper. The laboratories are by definition secure.

• Source. An arbitrary source is placed in the middle of Alice and Bob. The source sends an n-photon pulse to
Alice and an m-photon pulse to Bob.

• Quantum Channel. We consider that the channel is lossy but otherwise error-free. We suppose that the
signals are encoded in the source, such that they do not experience any decoherence in the channel.

• Classical Channel. The classical channel is authenticated.

• Alice’s (Bob’s) laboratory. We assume that the laboratories are trusted. Alice (Bob) performs a QND
measurement for measuring the number of photons contained in the incoming pulse. The POVM of the QND
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measurement is composed of two elements {|1〉 〈1| , 1l − |1〉 〈1|}, where {|n〉} is the Fock-basis. After the QND
measurement, the pulse passes a standard QKD-measurement set-up, where one measurement basis is chosen at
random out of the X-, Y - and Z-direction. Note that regarding the detectors, we assume that they have finite
efficiency ηD and negligible background noise. Moreover, we consider a misalignment[17, 21] in the detectors.
Each time that a single photon arrives at the detection device, it is measured correctly with probability 1− ηM .

B. QKD protocol

1. Entanglement generation and distribution. A source generates entangled pairs which are distributed
through the quantum channel to Alice and Bob.

2. Measurement. Alice and Bob choose at random and independently the measurement basis and to perform
the measurement on the incoming pulse. We consider a biased choice of the bases, i.e., the basis Z is chosen
with probability pZ ≥ 1

3
and the other two bases are chosen with the same probability pX = pY . The result

of the measurements is recorded in a vector of the form (tA, bA0 , b
A
1 , p

A, basisA), where bAi = 0 indicates that
the detector for the classical value i on Alice side did not experience a click, otherwise bAi = 1. The entry
pA contains the result of the QND measurement, in particular pA = 1 when a 1-photon pulse is measured
and pA = 0 otherwise. The last entry contains a label for the measurement basis. The first entry tA is a tag
permitting to distinguish the measurements, e.g., the time of occurrence of the measurement.

3. Vacuum sifting. During this sifting we remove the non-measurement results. This step is performed locally
and without communication between Alice and Bob. Let i=A,B. When pi = 1, it is still possible that bi0+bi1 = 0,
i.e., none of the detectors has clicked. This can happen due to the finite efficiency of the detectors. We can
eliminate these events safely, incorporating the efficiency of the detectors in the efficiency of the channel. During
this step Alice (Bob) calculate the value of bi0 + bi1 and set pi = 0 every time that bi0 + bi1 = 0.

4. Pulse sifting. We use the output of the QND measurement for conditioning the type of bits used for the
key. Alice and Bob communicate via the classical channel the value of pA and pB for each measurement and
discard all measurements with pA × pB 6= 1[17]. Note that this post-processing is possible only due to the fact,
that the QND measurement is perfect and that we are considering entanglement-based QKD. If one of the two
assumptions above is dropped, then security loopholes will arise[21].

5. Bases sifting. Alice and Bob exchange information regarding the measurement bases and discard the outcomes
coming from different bases.

6. Parameter estimation. Alice and Bob take a random sample from each basis and use this sample for
estimating the Quantum Bit Error Rate (QBER) for each basis. We denote with eX,mX

the fraction of erroneous
bits in the sample of length mX . We choose[6] mX = mY = mZ := Np2X , where N is the number of bits after
the pulse sifting. The QBERs along the Y and Z bases are defined analogously. Note that the worst-case QBER
can be estimated with the fluctuations due to the finiteness of the sample.

7. Error correction. During this step Alice and Bob apply a one-way error correction protocol and correct their
strings. As result they will exchange leakEC bits on the channel.

8. Error verification. In realistic implementations it is possible that at the end of the error correction protocol,
Alice and Bob do not have perfectly correlated bits. In order to acquire confidence regarding the remaining
errors, they apply a two-universal hash function on their strings and they communicate the result of the function
on the channel. This step costs log2(

2

εEC
) bits. If the resulting hash tag is the same, then the two strings are

the same with probability 1 − εEC . If the hashing produces a different outcome, Alice and Bob may perform
more error correction followed by another error verification.

9. Privacy amplification. Alice and Bob apply a two-universal hash function in order to shrink their string.
The resulting string is called the key.
In the next section we will discuss a bound on the achievable key length ℓ as a function of a security parameter
ε.
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III. FINITE SECRET KEY RATE

The secret key rate is the relevant figure of merit for describing the performance of a QKD protocol. First of all,
we are going to state the definition of security.

Definition III.1. [18, 20] Let ρKE be the classical-quantum-state describing the classical key K of length ℓ, distilled
at the end of a QKD protocol, correlated with the quantum states of the eavesdropper ρE . The state ρKE is said to
be ε-secure if

min
ρ
E′

1

2
‖ρKE − 1

2ℓ
1l⊗ ρE′‖1 ≤ ε, (1)

where ρE′ is the quantum state of an eavesdropper not correlated with the key.

The definition states that from the eavesdropper’s (Eve) point of view the classical key K is indistinguishable from a
random and uniform key with probability 1− ǫ. Note that the used definition of security is composable, i.e. if we have
two protocols characterized by two different probabilities of failure, then, after a concatenation of these protocols, the
probability of failure of the global protocol will be bounded by the sum of the single probabilities of failure.
In the following we derive a formula for the ε-secure key length ℓ. We consider that Eve has complete control over

the quantum channel and the source. Moreover, we consider the uncalibrated scenario[21], where the finite efficiency of
the detectors are also attributed to Eve. Let p11 be the probability that Alice and Bob receive a single photon. Then,
starting with Nsource initial pulses, the steps 1− 4 of the QKD protocol (see Fig. 1) decrease the number of signals to
Nsourcep11. Afterwards, the bases-sifting and the PE lead to Nsourcep11

(

p2Z − p2X
)

resulting bits. For PE 3p2X signals
are used to estimate the QBER. The fluctuations due to finite statistics have been analyzed in [6, 8, 22, 23] . Note
that differently to [6] we do not consider one symmetrized QBER. Instead we treat the QBER for each direction
separately.
Let ei,mi

be the measured QBER in direction i = X,Y, Z, then with probability 1− εPE the real QBER ei is such
that[6, 8, 22, 23]

ei ≤ ei,mi
+ 2ζ (εPE ,mi) (2)

with

ζ(εPE ,m) :=

√

√

√

√

ln
(

1

εPE

)

+ 2 ln (m+ 1)

8m
. (3)

For the error correction protocol the total number of bits exchanged during the procedure is an upper bound on
the information leaked to the eavesdropper about the final key. For the simulations, we will use [8, 23]

leakEC := fECnh(e), (4)

where fEC ≥ 1 depends on the used EC protocol, h(e) is the binary Shannon entropy, i.e., h(e) = −e log e − (1 −
e) log (1− e) and e is the QBER. This definition comes from the fact that nh(e) represents the asymptotic number of
bits used by a perfect error correction protocol. The coefficient fEC represents a deviation of the real protocol from
the asymptotic one.
Regarding privacy amplification many bounds on the achievable secret key length are placed at the disposal in the

literature[1, 6, 22, 23]. Note that the bounds given in [1, 6] are tighter than the bound given in [22, 23] . However,
they require that the channel is symmetric. Although it is possible to transform any channel in a symmetric one, we
consider the bound provided in [22, 23] to take the analysis simple and more general.
The following result summarizes the preceding considerations and provides a formula for the achievable secret key

length. It is important to emphasize, that the following theorem holds only due to our special set-up with the QND
measurement and the particular post-processing, which selects only the pulses containing one photon.

Theorem III.2 ([22, 23]). Let Nsource being the number of measurements performed by Alice and Bob. Let p11 be
the fraction of attempts resulting in a single-photon pulse entering Alice’s and Bob’s laboratories. The number of bits
allocated for extracting a key is n := Nsourcep11(p

2
Z − p2X). If Alice and Bob distill a key of length

ℓ ≤ max
ε,εPE,εPA,pX ,p11

[

n(Sζ(X |E)− fECh(eZ)) − 2 log2
1

εPA
− log2

2

εEC

]

, (5)
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then it is ε-secure, with 0 ≤ ε + εEC + εPA + εPE ≤ ε. The quantity Sζ(X |E) is given by [21–23]

Sζ(X |E) := 1− eZh

(

1 + (eX − eY )/eZ
2

)

− (1− eZ)h

(

1− (eX + eY + eZ)/2

1− eZ

)

− 5

√

log2

(

2

ε

)

1

n
. (6)

The entropy Sζ(X |E) is calculated with the QBER inferred during the parameter estimation protocol (see Eq. (2)).
We would like to point out that the theorem above is a standard theorem, the unique difference is that we are not
using all signals for extracting the key but only the signals coming as single-photon pulse.
The asymptotic formula for the secret key rate can be recovered as a special case of the theorem above for n → ∞

and ε → 0.

IV. CASE STUDY: SPDC SOURCE

In this section we will calculate the achievable secret key length for a pumped type-II down-conversion source[11].
The produced state by this source can be written as

|φ〉AB :=

∞
∑

n=0

√
pn |φn〉AB , (7)

where

pn :=
(n+ 1)λn

(1 + λ)n+2
, (8)

and

|φn〉AB :=

n
∑

m=0

(−1)m√
n+ 1

|n−m,m〉A |m,n−m〉B . (9)

The state above is written along one fixed direction, e.g. the Z-direction. The meaning of the notation |lH , lV 〉A is
that on Alice side, a pulse with lH + lV photons is coming and lH(lV ) have horizontal (vertical) polarization.
The quantity 2λ represents the mean photon pair number per pulse.
In the following we calculate the quantities that enter the formula of the secret key rate (Eq. (5)). First of all, we

express the probability that Alice and Bob receive only one photon. Then we calculate the QBER produced by the
incoming pulse and finally, we find the optimal mean photon pair number per pulse, i.e. the one which maximize the
secret key rate.

A. Calculation of p11

We denote with ηA the total transmittivity of Alice’s set-up. It is given by ηA := ηDηC(L/2), where ηD is the
efficiency of Alice’s detectors and L is the distance between Alice and Bob. We consider a lossy, but otherwise perfect
channel with attenuation coefficient α = 0.17 dB/km, such that the transmission probability of a photon is given by

ηC(L) := 10−
αL

10 .
Analogously we define the total efficiency on Bob’s set-up, denoted by ηB . When an n-photon pulse is produced,

during its travel on the channel and during the detection, some photons could be absorbed. The following formula
gives the probability that an n-photon pulse becomes a 1-photon pulse,

Wn := pnn
2(1− ηA)

n−1(1− ηB)
n−1ηAηB . (10)

The factor n2 is a combinatorial factor coming from our ignorance which photon was absorbed. The total probability
that both, Alice and Bob, receive one photon is given by

p11 :=

∞
∑

n=1

Wn. (11)
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B. Calculation of the QBER

In the six-state protocol measurements are performed along three orthogonal directions in the Bloch sphere, and, as
explained above, three QBERs are involved. The Hamiltonian of the parametric down-conversion process is invariant
under rotations from the X- to Y-, Y- to Z- and Z- to X-basis. Therefore, the state in Eq. (7) remains invariant in form
under these transformations and hence the QBER is the same in all directions, i.e., there is only one QBER to consider,
e.g., for the Z-direction. There are two contributions to the QBER. The first one comes from the misalignment and
the second one is due to the fact, that the entering state is not maximally entangled. Let en be the QBER generated
by |φn〉 when misalignment is not considered. Then the total QBER is given by

ePDC :=

∑

∞

n=1
(eM (1− en) + (1− eM )en)Wn

p11
, (12)

where eM := 2ηM (1 − ηM ) and ηM is the misalignment-error probability. The first term of ePDC accounts for the
fact, that even if the incoming state did not produce a QBER, due to the misalignment there would be an error. The
second contribution comes from the error generated by the incoming photons. Note that terms of the form eMen
are not considered, because the simultaneous appearance of these two errors will produce correlated outcomes. The
quantity en can be calculated with the help of Eq. (9). This state is the superposition of n + 1 states. The first
and the last term in the summation, with m = 0 or m = n will produce a correlated outcome. On the contrary the
remaining n− 1 elements in the summation will produce an error with probability 1

2
. Therefore we get

en =
(n+ 1)− 2

2(n+ 1)
=

1

2

(

1− 2

n+ 1

)

. (13)

From the formula above it is possible to verify that e1 = 0, which is consistent with the fact that |φ1〉 is a maximally
entangled state.

The common free parameter in the QBER ePDC and in p11 is the mean number of photons per pulse 2λ.

Therefore, in the following we will calculate the optimal λ permitting to maximize the secret key rate.

As shown in Fig. 2, in order to have a low QBER ePDC it is necessary to have λ small. For short distances, e.g.
L = 20km it is possible to choose λ < 20 and at the same time be able to extract a key. The reason is that the
multi-photon pulses arrives to Alice and Bob without an appreciable degradation and therefore, we are able to filter
those contribution to the QBER during the pulse sifting. However, the situation changes when the distance between
Alice and Bob increases. We see that the mean number of photons per pulse has to be much smaller than 1 in order
to decrease the multi-photon contribution to the QBER. From Fig. 2 we see that for L ≥ 100km we have to choose
λ < 1 in order to have a QBER smaller than the maximal QBER tolerated by the six-state protocol.

C. Asymptotic secret key rate

The secret key rate in the asymptotic case characterizes the maximal achievable secret key rate in case of perfect
error correction, no uncertainty in the estimation of the QBER and perfect security (ǫ = 0). The formula is given by

r∞ := lim
n→∞

ε→0

l

Nsource

= max
λ

[

p11

(

(1− ePDC)

(

1− h

(

1− 3ePDC/2

1− ePDC

))

− h (ePDC)

)]

. (14)

In Fig. 3 the secret key rate is shown as a function of the distance for two different experimental set-ups. A
comparison between an idealized scenario (ηD = 1, ηM = 0) and a more realistic one (ηD = 0.1, ηM = 0.03) shows
that the secret key rate decreases of at least 2 orders of magnitude. Regarding the optimal mean of photon-number
per pulse, as shown in Fig. 4, the difference is of the order of 1. The optimized function is non-linear and the used
optimization algorithm may only permit to find a local optimum.

Finally, we would like to point out, that a similar analysis of the asymptotic case was performed by Moroder et
al.[17] with a source placed in an asymmetric position, i.e., closer to Bob than to Alice.
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FIG. 2. (Color online) Value of ePDC (Eq. (12)) as a function of the probability that both, Alice and Bob, receive one photon
as a function of the mean number of photons produced by the source for various distances. The horizontal line represents the
maximal QBER tolerated by the six-state protocol. The absorption of the channel is α = 0.17 dB/km and Alice and Bob use
perfect detectors ηD = 1, ηM = 0.

D. Finite-key analysis

In a practical execution of a QKD protocol, the initial number of resources is always finite, therefore we need to
take into account corrections to the asymptotic secret key rate. The formula for the secret key rate is

r :=
ℓ

Nsource

= max
ε,εPE,εPA,pX ,λ

[

p11(p
2
Z − p2X)

(

(1− ePDC)

(

1− h

(

1− 3ePDC/2

1− ePDC

))

− fECh(eZ)

)

(15)

−2 log2
1

εPA
− log2

2

εEC

− 5

√

log2

(

2

ε

)

]

. (16)

The calculations are done in such a way, that we optimize over all free parameters: the mean number of photons
per pulse (λ), the probability to measure along the Z basis (pZ), the failure probability for the parameter estimation
(εPE), for privacy amplification (εPA) and the smoothing parameter (ε).

For extracting a key it is necessary to have a block bigger than a specific length. As shown in Fig. 5, even for short
distances the source has to emit at least 105 pulses with in mean λ ≈ 0.1 photons per pulse for extracting a key of 1
bit. However, if we consider detector inefficiencies and misalignment errors, the requirements will become much more
stringent. In particular, we need at least 109 pulses for extracting a key.

The second quantity we want to analyze is the secret key rate (Eq. (5)). As shown in Fig. 6, for a perfect set-up
(ηD = 1, ηM = 0) the finite secret key rate differs significantly from the asymptotic secret key rate. In particular, for
all distances considered in Fig. 6, the secret key rate differs of at least 10% (Nsource = 1010, L = 20 km) from the
asymptotic key rate. However, for more realistic initial number of pulses, the difference is bigger, e.g for L = 100 km
and Nsource = 108, the difference between the asymptotic secret key rate and the one with finite-key corrections is of
one order of magnitude. In case of imperfections we will have similar plots but with a worse secret key rate. However,
the qualitative behavior of the plot remains similar to Fig. 6.
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FIG. 3. (Color online) Asymptotic secret key rate (Eq. (14)). The absorption of the channel is α = 0.17 dB/km.
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V. CONCLUSION

In this paper we did a step towards the analysis of a realistic implementation of the entanglement-based version
of the six-state protocol. We considered that the standard QKD measurement is preceded by a QND measurement
permitting to know the number of photons entering in the source. This special set-up with a post-processing which
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FIG. 5. (Color online) Minimal number of initial pulses permitting to extract a key of 1 bit as a function of the length L

for a perfect set-up (ηD = 1, ηM = 0). The absorption of the channel is α = 0.17 dB/km. Security parameter ε = 10−9,
εEC = 10−10, fEC = 1.2.

considers only signals coming from a single-photon source permits to evaluate secret key rates for the six-state protocol.
We studied the case of an arbitrary large number of initial pulses as well as of a finite key. As result we found that
in realistic implementations with finite-efficiency detectors and misalignment, the minimal number of pulses for being
able to extract a key is around 109 pulses at the distance of a few kilometers. Note that this is a very stringent
requirement. In fact, considering an ordinary source, which emits pulses at the rate of 10 MHz, at the distance of 20
km between Alice and Bob, the time needed for extracting a key of 1 bit will be of the order of 100 seconds. Using
the asymptotic key formula, in the same time, it could be possible to obtain a key of length 106 bits, which would be
unfortunately completely insecure. Therefore, we emphasize once again that finite-key corrections are necessary for a
realistic and correct security analysis.

Regarding future work, we underline that more realistic experimental imperfections should be taken into account in
order to characterize the performance of the six-state protocol. In a future work, we want to consider the encoding of
the quantum bits on the quantum channel and to study the effects of decoherence. This is a problematic issue which
limits practical implementations of the six-state protocol and needs a careful analysis.
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We analyze various prominent quantum repeater protocols in the context of long-distance quantum key dis-

tribution. These protocols are the original quantum repeater proposal by Briegel et al. , the so-called hybrid

quantum repeater using optical coherent states dispersively interacting with atomic spin qubits, and the DLCZ-

type repeater using atomic ensembles together with linear optics and, in its most recent extension, heralded qubit

amplifiers. For our analysis, we investigate the most important experimental parameters of every repeater com-

ponent and find their minimally required values for obtaining a non-zero secret key. Additionally, we examine

in detail the impact of device imperfections on the final secret key rate and on the optimal number of rounds of

distillation when the entangled states are purified right after their initial distribution.

PACS numbers: 03.67.Hk, 03.67.Dd, 03.67.-a, 03.67.Bg, 42.50.Ex

I. INTRODUCTION

Quantum communication is one of the most exciting and

well developed areas of quantum information. Quantum key

distribution (QKD) is a sub-field, where two parties, usually

called Alice and Bob, want to establish a secret key. For this

purpose, typically, they perform some quantum operations on

two-level systems, the qubits, which, for instance, can be re-

alized by using polarized photons. [1–5].

Photons naturally have a long decoherence time and hence

could be transmitted over long distances. Nevertheless, re-

cent experiments show that QKD so far is limited to about

150 km [6], due to losses in the optical-fiber channel. Hence,

the concept of quantum relays and repeaters was developed

[7–11]. These aim at entangling qubits over long distances by

means of entanglement swapping and entanglement distilla-

tion. There exist various proposals for an experimental imple-

mentation, such as those based upon atomic ensembles and

single-rail entanglement [12], the hybrid quantum repeater

[13], the ion-trap quantum repeater [14], repeaters based on

deterministic Rydberg gates [15, 16], and repeaters based on

nitrogen-vacancy (NV) centers in diamond [17].

In this paper, we analyze the performance of quantum re-

peaters within a QKD set-up, for calculating secret key rates

as a function of the relevant experimental parameters. Pre-

vious investigations on long-distance QKD either consider

quantum relays [9, 11, 18], which only employ entanglement

swapping without using quantum memories or entanglement

distillation, or, like the works in [19, 20], they exclusively re-

fer to the original Duan-Lukin-Cirac-Zoller (DLCZ) quantum

repeater [12]. Finally, in [21] the authors analyze a variation

of the DLCZ protocol [22] where they consider at most one

repeater station. Here, our aim is to quantify the influence of

characteristic experimental parameters on the secret key rate

∗ abruzzo@thphy.uni-duesseldorf.de

for three different repeater schemes, namely the original quan-

tum repeater protocol [7], the hybrid quantum repeater [13],

and a recent variation of the DLCZ-repeater [23]. We investi-

gate the minimally required parameters that allow a non-zero

secret key rate. In order to reduce the complexity of the full

repeater protocol, we consider entanglement distillation only

directly after the initial entanglement distribution. Within this

scenario, we investigate also the optimal number of distilla-

tion rounds for a wide range of parameters. The influence

of distillation during later stages of the repeater, as well as

the comparison between different distillation protocols, will

be studied elsewhere [24].

This manuscript is organized as follows: In Sec. II we

present a description of the relevant parameters of a quan-

tum repeater, as well as the main tools for analyzing its per-

formance for QKD. This section should also provide a gen-

eral framework for analyzing other existing quantum repeater

protocols, and for studying the performance and the potential

of new protocols. Sections III, IV, and V investigate long-

distance QKD protocols for three different quantum repeater

schemes; these sections can be read independently. Section III

is devoted to the original proposal for a quantum repeater [7],

section IV analyzes the hybrid quantum repeater [13], and

finally, in section V, we investigate quantum repeaters with

atomic ensembles [12]. The conclusion will be given in sec-

tion VI, and more details on the calculations will be presented

in the appendix.

II. GENERAL FRAMEWORK

A. Quantum repeater

The purpose of this section is to provide a general frame-

work that describes formally the theoretical analysis of a

quantum repeater.
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1. The protocol

Let L be the distance between the two parties Alice and Bob

who wish to share an entangled state. A quantum repeater

[7] consists of a chain of 2N segments of fundamental length

L0 := L/2N and 2N − 1 repeater stations which are placed

at the intersection points between two segments (see Fig. 1).

Each repeater station is equipped with quantum memories and

local quantum processors to perform entanglement swapping

and, in general, also entanglement distillation. In consecutive

nesting levels, the distances over which the entangled states

are shared will be doubled. The parameter N is the maximal

nesting level.

FIG. 1. Scheme of a generic quantum repeater protocol. We adopt

the nested protocol proposed in [7]. The distance between Alice and

Bob is L, which is divided in 2N segments, each having the length

L0 := L/2N . The parameter n describes the different nesting levels,

and the value N represents the maximum nesting level. In this paper,

we consider quantum repeaters where distillation is performed ex-

clusively before the first entanglement swapping step. The number

of distillation rounds is denoted by k.

The protocol starts by creating entangled states in all seg-

ments, i.e., between two quantum memories over distance

L0. After that, if necessary, entanglement distillation is per-

formed. This distillation is a probabilistic process which re-

quires sufficiently many initial pairs shared over distance L0.

As a next step, entanglement swapping is performed at the

corresponding repeater stations in order to connect two ad-

jacent entangled pairs and thus gradually extend the entan-

glement. In those protocols where entanglement swapping is

a probabilistic process, the whole quantum repeater protocol

is performed in a recursive way as shown in Fig. 1. When-

ever the swapping is deterministic (i.e., it never fails), then

all swappings can be executed simultaneously, provided that

no further probabilistic entanglement distillation steps are to

be incorporated at some intermediate nesting levels for en-

hancing the fidelities. Recall that in the present work, we do

not include such intermediate distillations in order to keep the

experimental requirements as low as possible. At the same

time it allows us to find analytical rate formulas with no need

for numerically optimizing the distillation-versus-swapping

scheduling in a fully nested quantum repeater.

2. Building blocks of the quantum repeater and their imperfections

In this section we describe a model of the imperfections

for the main building blocks of a quantum repeater. In an

experimental set-up more imperfections than those considered

in this model may affect the devices. However, most of them

can be incorporated into our model. We point out that if not

all possible imperfections are included, the resulting curves

for the figure of merit (throughout this paper: the secret key

rate) can be interpreted as an upper bound for a given repeater

protocol.

a. Quantum channel Let us consider photons (in form

of single- or multi-photon pulses) traveling through optical

fibers.

Photon losses are the main source of imperfection. Other

imperfections like birefringence are negligible in our context

[8, 25]. Losses scale exponentially with the length ℓ, i.e., the

transmittivity is given by [8]

ηt (ℓ) := 10−
αattℓ

10 , (1)

where αatt is the attenuation coefficient given in dB/km. The

lowest attenuation is achieved in the telecom wavelength

range around 1550 nm and it corresponds to αatt = 0.17

dB/km. This attenuation will also be used throughout the pa-

per. Note that other types of quantum channels, such as free

space, can be treated in an equivalent way (see e.g. [26]). Fur-

ther note that besides losses, the effect of the quantum channel

can be incorporated into the form of the initial state shared be-

tween the connecting repeater stations.

b. Source of entanglement The purpose of a source is

to create entanglement between quantum memories over dis-

tance L0. An ideal source produces maximally entangled Bell

states (see below) on demand. In practice, however, the cre-

ated state may not be maximally entangled and may be pro-

duced in a probabilistic way. We denote by ρ0 a state shared

between two quantum memories over the elementary distance

L0 and by P0 the total probability to generate and distribute

this state. This probability would contain any finite local

state-preparation probabilities before the distribution, the ef-

fect of channel losses, and the success probabilities of other

processes, such as the conditioning on a desired initial state

ρ0 after the state distribution over L0.

For improving the scaling over the total distance L from ex-

ponential to sub-exponential, it is necessary to have a heralded

creation and storage of ρ0. How this heralding is implemented

depends on the particular protocol and it usually involves a

form of post-processing, e.g. conditioning the state on a spe-

cific pattern of detector clicks. This can also be a finite posts-

election window of quadrature values in homodyne detection.

However, in the present work, the measurements employed in

all protocols considered here are either photon-number mea-

surements or Pauli measurements on memory qubits.

c. Detectors We will consider photon-number resolv-

ing detectors (PNRD) which can be described by a positive-

operator valued measure (POVM) with elements [27]

Π(n) := ηnd

∞
∑

m=0

(

n + m

n

)

(1 − ηd)m |n + m〉 〈n + m| . (2)
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Here, Π(n) is the element of the POVM related to the detection

of n photons, ηd is the efficiency of the detector, and |n + m〉
is a state of (n + m)-photons. In the POVM above, we have

neglected dark counts; we have shown analytically for those

protocols considered in this paper that realistic dark counts

of the order of 10−5 are negligible [see Appendix B, below

Eq. (B5), for the proof]. Note that our analysis could also be

extended to threshold detectors, by replacing the correspond-

ing POVM (see e.g. [27]) in our formulas.

d. Gates Imperfections of gates also depend on the par-

ticular quantum repeater implementation. Such imperfections

are e.g. described in [28]. In our analysis, we will characterize

them using the gate quality which will be denoted by pG (see

Eq. (19) and Eq. (24)).

e. Quantum memories Quantum memories are a crucial

part of a quantum repeater. A complete characterization of

imperfections of quantum memories is beyond the purpose of

this paper (see [29] for a recent review). Here we account

for memory errors by using a fixed time-independent quantum

memory efficiency ηm when appropriate. This is the probabil-

ity that a photon is released when a reading signal is applied

to the quantum memory, or, more generally, the probability

that an initial qubit state is still intact after write-in, storage,

and read-out. We discuss the role of ηm only for the quantum

repeater with atomic ensembles (see section V).

f. Entanglement distillation As mentioned before,

throughout this work we only consider distillation at the be-

ginning of each repeater protocol. Entanglement distillation

is a probabilistic process requiring local multi-qubit gates

and classical communication. In this paper, we consider

the protocol by Deutsch et al. [30]. This protocol performs

especially well when there are different types of errors (e.g.

bit flips and phase flips). However, depending on the partic-

ular form of the initial state and on the particular quantum

repeater protocol, other distillation schemes may perform

better (see [24] for a detailed discussion). The Deutsch et

al. protocol starts with 2k pairs and after k rounds, it produces

one entangled pair with higher fidelity than at the beginning.

Every round requires two Controlled Not (CNOT), each

performed on two qubits at the same repeater station, and

projective measurements with post-selection.

Distillation has two main sources of errors: imperfect quan-

tum gates which no longer permit to achieve the ideal fidelity,

as well as imperfections of the quantum memories and the

detectors, decreasing the success probability. We denote the

success probability in the i-th distillation round by PD[i].

We study entanglement distillation for the original quantum

repeater protocol (section III) and the hybrid quantum repeater

(section IV). For the quantum repeater with atomic ensembles

(section V), we do not consider any additional distillation on

two or more initial memory pairs.

g. Entanglement swapping In order to extend the initial

distances of the shared entanglement, entanglement swapping

can be achieved through a Bell measurement performed at

the corresponding stations between two adjacent segments.

Such a Bell measurement can be, in principle, realized us-

ing a CNOT gate and suitable projection measurements on the

corresponding quantum memories [31]. An alternative im-

plementation of the Bell measurement uses photons released

from the quantum memories and linear optics [32]. The latter

technique is probabilistic, but typically much less demanding

from an experimental point of view.

We should emphasize that the single-qubit rotation depend-

ing on the result of the Bell measurement, as generally needed

to complete the entanglement swapping step, is not necessary

when the final state is used for QKD applications. In fact,

it simply corresponds to suitable bit flip operations on the

outcomes of the QKD measurements, i.e., the effect of that

single-qubit rotation can be included into the classical post-

processing.

Imperfections of entanglement swapping are characterized

by the imperfections of the gates (which introduce noise and

therefore a decrease in fidelity) and by the imperfections of

the measurement process, caused by imperfect quantum mem-

ories and imperfect detectors. We denote the probability that

entanglement swapping is successful in the n-th nesting level

by P
(n)

ES
.

h. Other imperfections Other imperfections which are

not explicitly considered in this paper but which are likely to

be present in a real experiment include imperfections of the

interconversion process, fluctuations of the quantum channel,

fiber coupling losses and passive losses of optical elements

(see [25] and reference therein for additional details). These

imperfections can be accounted for by a suitable adjustment

of the relevant parameters in our model.

3. Generation rate of long-distance entangled pairs

In order to evaluate the performance of a quantum repeater

protocol it is necessary to assess how many entangled pairs

across distance L can be generated per second.

A relevant unit of time is the fundamental time needed to

communicate the successful distribution of an elementary en-

tangled pair over distance L0, which is given by:

T0 :=
βL0

c
, (3)

where c = 2 · 105 km/s is the speed of light in the fiber chan-

nel (see e.g. [25]) and β is a factor depending on the type of

entanglement distribution. Note that here we have neglected

the additional local times needed for preparing and manipu-

lating the physical systems at each repeater station. Figure 2

shows three different possibilities how to model the initial en-

tanglement distribution. The fundamental time T0 consists of

the time to distribute the photonic signals, Tdist, and the time

of acknowledgment, Tack, which all together can be different

for the three cases shown.

Throughout the paper, we denote the average number of

final entangled pairs produced in the repeater per second by

RREP. We emphasize that regarding any figures and plots, for

each protocol, we are interested in the consumption of time

rather than spatial memories. Thus, if one wants to compare

different set-ups for the same number of spatial memories, one

has to rescale the rates such that the number of memories be-

comes equal. For example, in order to compare a protocol
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FIG. 2. The fundamental time for different models of entanglement

generation and distribution. The source (S) that produces the initial

entangled states is either placed in the middle (a), at one side (b), or

at both sides (c). In the latter case, photons are emitted from a source

and interfere in the middle (see [33, 34]).

without distillation with another one with k rounds of distilla-

tion, one has to divide the rates for the case with distillation

by 2k (as we need two initial pairs to obtain one distilled pair

in every round).

In the literature, two different upper bounds on the entan-

glement generation rate RREP are known. In the case of deter-

ministic entanglement swapping (P
(n)

ES
= 1) we have [35]

Rdet
REP =

(

T0ZN(PL0
[k])

)−1
, (4)

with PL0
[i] being a recursive probability depending on the

rounds of distillation i as follows [35]

PL0
[i = 0] = P0, (5)

PL0
[i > 0] =

PD[i]

Z1(PL0
[i − 1])

. (6)

We remind the reader that PD[i] is the success probability in

the i-th distillation round. Here,

ZN(P0) :=

2N
∑

j=1

(

2N

j

)

(−1) j+1

1 − (1 − P0) j
(7)

is the average number of attempts to connect 2N pairs, each

generated with probability P0.

In the case of probabilistic entanglement swapping, prob-

abilistic entanglement distillation, and P0 << 1, we find an

upper bound on the entanglement generation rate:

R
prob

REP
=

1

T0

(

2

3a

)N+k

P0P
(1)

ES
P

(2)

ES
...P

(N)

ES

k
∏

i=1

PD[i], (8)

with a ≤ 2
3
PL0

[k]Z1(PL0
[k]). Our derivation is given in

App. A. For the plots we bound a according to the occur-

ing parameters, typically a is close to one which corresponds

to the approximate formula given in [25] for the case when

there is no distillation.

Equations (4) and (8) should be interpreted as a limiting up-

per bound on the repeater rate, due to the minimal time needed

for communicating the quantum and classical signals. For this

minimal time , we consider explicitly only those communica-

tion times for initially generating entanglement, but not those

for entanglement swapping and entanglement distillation.

B. Quantum key distribution (QKD)

The QKD protocol

In Fig. 3 a general quantum key distribution set-up is

shown. For long-distance QKD, Alice and Bob will generate

entangled pairs using the quantum repeater protocol. For the

security analysis of the whole repeater-based QKD scheme,

we assume that a potential eavesdropper (Eve) has complete

control of the repeater stations, the quantum channels con-

necting them, and the classical channels used for communi-

cating the measurement outcomes for entanglement swapping

and distillation (see figure 3). The QKD protocol itself starts

with Alice and Bob performing measurements on their shared,

long-distance entangled pairs (see figure 3). For this purpose,

they would both independently choose a certain measurement

from a given set of measurement settings. The next step is the

classical post-processing and for this an authenticated chan-

nel is necessary. First, Alice and Bob discard those measure-

ment outcomes where their choice of the setting did not coin-

cide (sifting), thus obtaining a raw key associated with a raw

key rate. They proceed by comparing publicly a small subset

of outcomes (parameter estimation). From this subset, they

can estimate the quantum bit error rate (QBER), which cor-

responds to the fraction of uncorrelated bits. If the QBER is

below a certain threshold, they apply an error correction pro-

tocol and privacy amplification in order to shrink the eaves-

dropper’s information about the secret key (for more details,

see e.g. [36]).

Various QKD protocols exist in the literature. Besides

the original QKD protocol by Bennett and Brassard from

1984, the so-called BB84-protocol [37], the first QKD pro-

tocol based upon entanglement was the Ekert protocol [1].

Shortly thereafter the relation of the Ekert protocol to the

BB84-protocol was found [38]. Another protocol which can

also be applied in entanglement-based QKD is the six-state

protocol [39, 40].
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FIG. 3. Scheme of quantum key distribution. The state ρAB is pro-

duced using a quantum repeater. Alice and Bob locally rotate this

state in a measurement basis and then they perform the measurement.

The detectors are denoted by dA
0
, dA

1
, dB

0
, dB

1
and to each detector click

a classical outcome is assigned.

1. The quantum bit error rate (QBER)

In order to evaluate the performance of a QKD protocol, it

is necessary to determine the quantum bit error rate. This is

the fraction of discordant outcomes when Alice and Bob com-

pare a small amount of outcomes taken from a specified mea-

surement basis. This measurement can be modelled by means

of four detectors (two on Alice’s side and two on Bob’s side,

see figure 3) where to each detector click a classical binary

outcome is assigned. Particular care is necessary when multi-

photon states are measured [41, 42]. In the following, we give

the definition of the QBER for the case of photon-number-

resolving detectors and we refer to [20] for the definition in

the case of threshold detectors. The probability that a particu-

lar detection pattern occurs is given by

P
(i)

jklm
:= tr

(

Π
( j)

dA
0

Π
(k)

dA
1

Π
(l)

dB
0

Π
(m)

dB
1

ρ
(i)

AB

)

, (9)

where the POVM Π(n) has been defined in Eq. (2) with a sub-

script denoting the detectors given in Fig. 3. The superscript

i refers to the measurement basis and ρ
(i)

AB
represents the state

ρAB rotated in the basis i.

A valid QKD measurement event happens when one detec-

tor on Alice’s side and one on Bob’s side click. The probabil-

ity of this event is given by [20]

P
(i)

click
:= P

(i)

1010
+ P

(i)

0101
+ P

(i)

0110
+ P

(i)

1001
. (10)

The probability that two outcomes do not coincide is given by

[20]

P
(i)
err := P

(i)

0110
+ P

(i)

1001
. (11)

Thus, the fraction of discordant bits, i.e., the quantum bit error

rate for measurement basis i is [20]

ei :=
P

(i)
err

P
(i)

click

. (12)

For the case that ρAB is a two-qubit state, we find that the

QBER does not depend on the efficiency of the detectors, as

P
(i)

click
= η2

d
and P

(i)
err ∝ η2

d
.

If we assume a genuine two-qubit system1 like in the orig-

inal quantum repeater proposal (see section III) or the hy-

brid quantum repeater (see section IV), without loss of gen-

erality2, the entangled state ρAB can be considered diago-

nal in the Bell-basis, i.e., ρAB = A |φ+〉 〈φ+| + B |φ−〉 〈φ−| +
C |ψ+〉 〈ψ+| + D |ψ−〉 〈ψ−|, with the probabilities A, B,C,D,

A+B+C+D = 1, and with the dual-rail3 encoded Bell states4

|φ±〉 = (|1010〉± |0101〉)/
√

2 and |ψ±〉 = (|1001〉± |0110〉)/
√

2

(we shall use the notation |φ±〉 and |ψ±〉 for the Bell basis in

any type of encoding throughout the paper). Then the QBER

along the directions X, Y, and Z corresponds to [6]

eX := B + D, eZ := C + D, eY := B +C. (13)

Throughout the whole paper X, Y and Z denote the three Pauli

operators acting on the restricted Hilbert space of qubits.

2. The secret key rate

The figure of merit representing the performance of quan-

tum key distribution is the secret key rate RQKD which is the

product of the raw key rate Rraw (see above) and the secret

fraction r∞. Throughout this paper, we will use asymptotic

secret key rates. The secret fraction represents the fraction of

secure bits that may be extracted from the raw key. Formally,

we have

RQKD := Rrawr∞ = RREPPclickRsiftr∞, (14)

where the sifting rate Rsift is the fraction of measurements per-

formed in the same basis by Alice and Bob Throughout the

whole paper we will use Rsift = 1 which represents the asymp-

totic bound for Rsift when the measurement basis are chosen

with biased probability [45]. We point out that both RREP and

r∞ are functions of the explicit repeater protocol and the in-

volved experimental parameters, as we will discuss in detail

later. Our aim is to maximize the overall secret key rate RQKD.

There will be a trade-off between RREP and r∞, as the secret

key fraction r∞ is an increasing function of the final fidelity,

while the repeater rate RREP typically decreases with increas-

ing final fidelity.

Note that even though for the considered protocol we

find upper bounds on the secret key rate, an improved

1 Note that the states of the DLCZ-type quantum repeaters (see section V)

are only effectively two-qubit states, when higher-order excitations of the

atom-light entangled states [12], or those of the states created through para-

metric down conversion [23], are neglected.
2 As proven in [43, 44], it is possible to apply an appropriate local twirling

operation that transforms an arbitrary two-qubit state into a Bell diagonal

state, while the security of the protocol is not compromised.
3 In this paper, by dual-rail representation we mean that a single photon

can be in a superposition of two optical modes, thus representing a single

qubit. By single-rail representation we mean that a qubit is implemented

using only one single optical mode. See [27] for additional details.
4 The ket |abcd〉 is a vector in a Hilbert space of four modes and the values

of a, b, c and d represent the number of excitations in the Fock basis.
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model (e.g. including distillation in later nesting levels or

multiplexing[46]) could lead to improved key rates.

The secret fraction represents the fraction of secure bits

over the total number of measured bits. We adopt the compos-

able security definition discussed in [47–49]. Here, compos-

able means that the secret key can be used in successive tasks

without compromising its security. In the following we calcu-

late secret key rates using the state produced by the quantum

repeater protocol.

In the present work, we consider only two QKD proto-

cols, namely the BB84-protocol and the six-state protocol, for

which collective and coherent attacks are equivalent [43, 44]

in the limit of a large number of exchanged signals. The

unique parameter entering the formula of the secret fraction

is the quantum bit error rate (QBER).

In the BB84-protocol only two of the three Pauli matrices

are measured. We adopt the asymmetric protocol where the

measurement operators are chosen with different probabilities

[45], because this leads to higher key rates. We call X the basis

used for extracting a key, i.e., the basis that will be chosen with

a probability of almost one in the measurement process, while

Z is the basis used for the estimation of the QBER. Thus, in

the asymptotic limit, we have Rsift = 1. The formula for the

secret fraction is [6]

rBB84
∞ := 1 − h(eZ) − h(eX), (15)

with h(p) := −p log2 p − (1 − p) log2(1 − p) being the binary

entropy. This formula is an upper bound on the secret fraction,

which is only achievable for ideal implementations of the pro-

tocol; any realistic, experimental imperfection will decrease

this secret key rate.

In the six-state protocol we use all three Pauli matrices. We

call X the basis used for extracting a key, which will be chosen

with a probability of almost one, and both Y and Z are the

bases used for parameter estimation. In this case, the formula

for the secret fraction is given by [6, 36]5

r6S
∞ :=1 − eZh

(

1 + (eX − eY )/eZ

2

)

− (1 − eZ)h

(

1 − (eX + eY + eZ)/2

1 − eZ

)

− h(eZ). (16)

C. Methods

The secret key rate represents the central figure of merit for

our investigations. We study the BB84-protocol, because it is

most easily implementable and can also be used for protocols,

where ρAB is not a two-qubit state, with help of the squash-

ing model [41, 42]. Throughout the paper, we also report

5 Note that the formula for the six-state protocol is independent of the choice

of basis, when we assume the state of Alice and Bob ρAB to be Bell diago-

nal. Then the secret fraction reduces to r6S
∞ = 1 − S (ρE) with S (ρ) the von

Neumann entropy and ρE is the eavesdropper’s state.

on results of the six-state protocol if applicable. We evalu-

ate Eq. (14) exactly, except for the quantum repeater based on

atomic ensembles where we truncate the states and cut off the

higher excitations at some maximal number (see footnote 11

for the details). For the maximization of the secret key rate,

we have used the numerical functions provided by Mathemat-

ica [50].

III. THE ORIGINAL QUANTUM REPEATER

In this section, we consider a general class of quantum

repeaters in the spirit of the original proposal by Briegel et

al. [7]. We will analyze the requirements for the experimental

parameters such that the quantum repeater is useful in con-

junction with QKD. The model we consider in this section

is applicable whenever two-qubit entanglement is distributed

by using qubits encoded into single photons. This is the

case, for instance, for quantum repeaters based on ion traps

or Rydberg-blockade gates. We emphasize that we do not aim

to capture all peculiarities of a specific set-up. Instead, our

intention is to present a fairly general analysis that can give

an idea of the order of magnitude, which has to be achieved

for the relevant experimental parameters. The error-model we

consider is the one used in [7].

A. The set-up

Elementary entanglement creation

The probability that two adjacent repeater stations (sepa-

rated by distance L0) share an entangled pair is given by

P0 := ηt (L0) , (17)

where ηt (ℓ), as defined in Eq. (1), is the probability that a

photon is not absorbed during the channel transmission. In a

specific protocol, P0 may contain an additional multiplicative

factor such as the probability that entanglement is heralded or

also a source efficiency. We assume that the state created over

distance L0 is a depolarized state of fidelity F0 with respect to

|φ+〉, i.e.,

ρ0 :=F0

∣

∣

∣φ+
〉 〈

φ+
∣

∣

∣

+
1 − F0

3

(∣

∣

∣ψ+
〉 〈

ψ+
∣

∣

∣ +
∣

∣

∣ψ−
〉 〈

ψ−
∣

∣

∣ +
∣

∣

∣φ−
〉 〈

φ−
∣

∣

∣

)

. (18)

The fidelity F0 contains the noise due to an imperfect prepara-

tion and the noise in the quantum channel. We have chosen a

depolarized state, because this corresponds to a generic noise

model and, moreover, any two-qubit mixed quantum state can

be brought into this form using local twirling operations [51].

Imperfect gates

For the local qubit operations, such as the CNOT gates, we

use a generic gate model with depolarizing noise, as consid-

ered in [7]. Thus, we assume that a noisy gate OBC acting
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upon two qubits B and C can be modeled by

OBC(ρBC) = pGO
ideal
BC (ρBC) +

1 − pG

4
1lBC, (19)

where Oideal
BC

is the ideal gate operation and pG describes the

gate quality. Note that, in general, the noisy gates realized

in an experiment do not necessarily have this form, however,

such a noise model is useful for having an indication as to how

good the corresponding gates must be. Other noise models

could be analogously incorporated into our analysis. Further,

we assume that one-qubit gates are perfect.

Entanglement distillation

We consider entanglement distillation only before the first

entanglement swapping steps, right after the initial pair distri-

butions over L0. We employ the Deutsch et al. protocol [30]

which indeed has some advantages, as shown in the analysis

of [24]. In App. B 2, we review this protocol and we also

present the corresponding formulas in the presence of imper-

fections. We point out that when starting with two copies of

depolarized states, the distillation protocol will generate an

output state which is no longer a depolarized state, but instead

a generic Bell diagonal state. Distillation requires two-qubit

gates, which we describe using Eq. (19).

Entanglement swapping

The entanglement connections are performed through en-

tanglement swapping by implementing a (noisy) Bell mea-

surement on the photons stored in two local quantum mem-

ories. We consider a Bell measurement that is deterministic in

the ideal case. It is implemented using a two-qubit gate with

gate quality pG (see Eq. (19)). Analogous to the case of dis-

tillation, starting with two depolarized states, at the end of the

noisy Bell measurement, we will obtain generic Bell diagonal

states. Also in this case, it turns out that a successive depolar-

ization decreases the secret key rate and this step is therefore

not performed in our scheme.

B. Performance in the presence of imperfections

The secret key rate Eq. (14) represents our central object

of study, as it characterizes the performance of a QKD proto-

col. It can be written explicitly as a function of the relevant

parameters,

RO
QKD =RREP(L0,N, k, F0, pG, ηd)Pclick(ηd)

×Rsiftr∞(N, k, F0, pG), (20)

where RREP is given by Eq. (4) when ηd = 1 (because then

@
@@N

k
0 1 2 3

BB84 6S BB84 6S BB84 6S BB84 6S

0 0.835 0.810 0.733 0.728 0.671 0.669 0.620 0.614

1 0.912 0.898 0.821 0.818 0.742 0.740 0.669 0.664

2 0.955 0.947 0.885 0.884 0.801 0.800 0.713 0.709

3 0.977 0.973 0.929 0.928 0.849 0.848 0.752 0.749

4 0.988 0.987 0.957 0.957 0.887 0.887 0.788 0.785

5 0.994 0.993 0.975 0.975 0.917 0.917 0.819 0.818

6 0.997 0.997 0.985 0.985 0.939 0.939 0.847 0.846

7 0.999 0.998 0.992 0.992 0.956 0.956 0.872 0.870

TABLE I. Minimal initial fidelity F0 (pG is fixed to one) for extract-

ing a secret key with maximal nesting level N and number of distil-

lation rounds k for the BB84- and six-state protocols.

PES = 1) or by Eq. (8) if ηd < 16. The probability that the

QKD measurement is successful is given by Pclick = η2
d

and

the secret fraction r∞ is given by either Eq. (15) or Eq. (16),

depending on the type of QKD protocol. For the asymmetric

BB84-protocol, we have Rsift = 1 (see Sec. II B). The super-

script O refers to the original quantum repeater proposal as

considered in this section. In order to have a non-zero secret

key rate, it is then necessary that the repeater rate, the proba-

bility for a valid QKD measurement event, and the secret frac-

tion are each non-zero too. As typically RREP > 0, Rsift > 0

and Pclick > 0, for RQKD > 0, it is sufficient to have a non-zero

secret fraction, r∞ > 0. The value of the secret fraction does

not depend on the distance, and therefore some properties of

this protocol are distance-invariant.

Minimally required parameters In this paragraph, we will

discuss the minimal requirements that are necessary to be able

to extract a secret key, i.e., we will specify the parameter re-

gion where the secret fraction is non-zero. From the discus-

sion in the previous paragraph, we know that this region does

not depend on the total distance, but only on the initial fidelity

F0, the gate quality pG, the number of segments 2N , and the

maximal number of distillation rounds k. Moreover, note that

even if the secret fraction is not zero, the total secret key rate

can be very low (see below).

For calculating the minimally required parameters, we start

with the initial state in Eq. (18), we distill it k times (see the

formulas in App. B 2), and then we swap the distilled state

2N − 1 times ( see the formulas in B 1). At the end, a generic

Bell diagonal state is obtained. Using Eq. (13) one can then

6 The supposed link between the effect of imperfect detectors and the deter-

minism of the entanglement swapping here assumes the following. Any

incomplete detection patterns that occur in the Bell measurements due to

imperfect detectors are considered as inconclusive results and will be dis-

carded. Conversely, with perfect detectors, we assume that we always have

complete patterns and thus the Bell state discrimination becomes complete

too. Note that this kind of reasoning directly applies to Bell measurements

in dual-rail encoding, where the conclusive output patterns always have the

same fixed total number for every Bell state (namely two photons lead-

ing to two-fold detection events), and so any loss of photons will result in

patterns considered inconclusive. In single-rail encoding, the situation is

more complicated and patterns considered conclusive may be the result of

an imperfect detection.
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@
@@N

k
0 1 2 3

BB84 6S BB84 6S BB84 6S BB84 6S

0 - - 0.800 0.773 0.869 0.860 0.891 0.884

1 0.780 0.748 0.922 0.910 0.942 0.937 0.947 0.942

2 0.920 0.908 0.965 0.960 0.973 0.970 0.974 0.972

3 0.965 0.959 0.984 0.981 0.987 0.986 0.987 0.986

4 0.984 0.981 0.992 0.991 0.994 0.993 0.994 0.993

5 0.992 0.991 0.996 0.995 0.997 0.997 0.997 0.997

6 0.996 0.995 0.998 0.998 0.999 0.998 0.999 0.998

7 0.998 0.998 0.999 0.999 0.999 0.999 0.999 0.999

TABLE II. Minimal pG (F0 is fixed to one) for extracting a secret key

with maximal nesting level N and number of distillation rounds k for

the BB84- and six-state protocols.

calculate the QBER, which is sufficient to calculate the secret

fraction.

Table I and Tab. II show the minimally required values for

F0 and pG for different maximal nesting levels N (i.e., differ-

ent numbers of segments 2N) and different numbers of rounds

of distillation k. Throughout these tables, we can see that for

the six-state protocol, the minimal fidelity and the minimal

gate quality pG are lower than for the BB84-protocol. Our

results confirm the intuition that the larger the number of dis-

tillation rounds, the smaller the affordable initial fidelity can

be (at the cost of needing higher gate qualities).

In Fig. 4, the lines represent the values of the initial infi-

delity and the gate error for a specific N that allow for extract-

ing a secret key. As shown in Fig. 4, any lower initial fidelity

requires a correspondingly higher gate quality and vice versa.

Note that above the lines in Fig. 4 it is not possible to extract

a secret key.
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FIG. 4. (Color online) Original quantum repeater and the BB84-

protocol: Maximal infidelity (1 − F0) as a function of gate error (1 −
pG) permitting to extract a secret key for various maximal nesting

levels N and numbers of distillation rounds k (Parameter: L = 600

km).

The secret key rate In this section, we will analyze the

influence of the imperfections on the secret key rate, see

Eq. (20).
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FIG. 5. (Color online) Original quantum repeater and the BB84-

protocol: Secret key rate Eq. (20) versus gate quality pG for different

rounds of distillation k. The case k = 0 leads to a vanishing secret

key rate. (Parameters: F0 = 0.9, N = 2, L = 600 km)

In Fig. 5 we illustrate the effect of gate imperfections on the

secret key rate for different numbers of rounds of distillation

and for a fixed distance, initial fidelity, and maximal number

of nesting levels. Throughout this whole section, we use β = 2

in Eq. (3) for the fundamental time, which corresponds to the

case where a source is placed at one side of an elementary seg-

ment (see Fig. 2). The optimal number of distillation rounds

decreases as pG increases. We see from the figure that k = 2 is

optimal when pG = 1. This is due to the fact that from k = 1

to k = 2, the raw key rate decreases by 40%, but the secret

fraction increases by 850%. However, from k = 2 to k = 3,

the raw key rate decreases once again by 40%, but now the se-

cret fraction increases only by 141%. In this case, the net gain

is smaller than 1 and therefore three rounds of distillation do

not help to increase the secret key rate compared to the case

of two rounds. In other words, what is lost in terms of suc-

cess probability when having three probabilistic distillation

rounds is not added to the secret fraction. For a decreasing

pG, more rounds of distillation become optimal. The reason is

that when the gates become worse, additional rounds of distil-

lation permit to increase the secret key rate sufficiently much

to compensate the decrease of RREP.

In Fig. 6 we show the optimal number of rounds of distil-

lation k as a function of the imperfections of the gates and

the initial fidelity. It turns out that when the experimental pa-

rameters are good enough, then distillation is not necessary at

all.

Let us now investigate the secret key rate Eq. (20) as a func-

tion of the distance L between Alice and Bob. In Fig. 7 the se-

cret key rate for the optimal number of distillation rounds ver-

sus the distance for various nesting levels is shown, for a fixed

initial fidelity and gate quality. These curves should be in-

terpreted as upper bounds; when additional imperfections are

included, the secret key rate will further decrease. We see that

for a distance of more than 400 km, the value N = 4 (which

corresponds to 16 segments) is optimal. Note that with the

initial fidelity and gate quality assumed here, it is no longer

possible to extract a secret key for N = 5.
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FIG. 6. (Color online) Original quantum repeater and the BB84-

protocol: Number of distillation rounds k that maximizes the secret

key rate as a function of gate quality pG and initial fidelity F0. In the

white area, it is no longer possible to extract a secret key. (Parame-

ters: N = 2, L = 600 km)
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FIG. 7. (Color online) Original quantum repeater and the BB84-

protocol: Optimal secret key rate Eq. (20) versus distance for dif-

ferent nesting levels, with and without perfect detectors. For each

maximal nesting level N, we have chosen the optimal number of dis-

tillation rounds k. A nesting level N ≥ 5 no longer permits to obtain

a non-zero secret key rate. (Parameters: F0 = 0.9 and pg = 0.995.)

In many implementations, detectors are far from being per-

fect. The general expression of the raw key rate including

detector efficiencies ηd becomes

Rraw =
1

T0

Rsift

(

2

3

)N+k

η
2(k+N+1)

d
P0

k
∏

i=1

PD[i], (21)

using Eq. (14) with the repeater rate RREP given by Eq. (8).

The term η2k
d

arises from the two-fold detections for the distil-

lation, and similarly, η2N
d

comes from the entanglement swap-

ping and η2
d

from the QKD measurements.

In Fig. 7 we observe that even if detectors are imperfect, it is

advantageous to do the same number of rounds of distillation

as for the perfect case. This is due to the fact that the initial

fidelity is so low that even with a lower success probability,

the gain in the secret fraction produces a net gain greater than

1.

For realistic detectors, the dark count probability is much

smaller than their efficiency. We show in App. B that, pro-

vided that the dark count probability is smaller than 10−5, dark

counts can be neglected. This indeed applies to most modern

detectors [52].

IV. THE HYBRID QUANTUM REPEATER

In this section, we will investigate the so-called hybrid

quantum repeater (HQR) introduced by van Loock et al. [13]

and Ladd et al. [53]. In this scheme, the resulting entangled

pairs are discrete atomic qubits, but the probe system (also

called qubus) that mediates the two-qubit entangling interac-

tion is an optical mode in a coherent state. The scheme does

not only employ atoms and light at the same time, but it also

uses both discrete and continuous quantum variables; hence

the name hybrid. The entangled pair is conditionally prepared

by suitably measuring the probe state after it has interacted

with two atomic qubits located in the two spatially separated

cavities at two neighboring repeater stations. Below we shall

consider a HQR where the detection is based on an unambigu-

ous state discrimination (USD) scheme [54, 55]. In this case,

arbitrarily high fidelities can be achieved at the expense of low

probabilities of success.

A. The set-up

Elementary entanglement creation

Entanglement is shared between two electronic spins (such

as Λ systems effectively acting as two-level systems) in two

distant cavities (separated by L0). The entanglement distribu-

tion occurs through the interaction of the coherent-state pulse

with both atomic systems. The coherent-state pulse and the

cavity are in resonance, but they are detuned from the tran-

sition between the ground state and the excited state of the

two-level system. This interaction can then be described by

the Jaynes-Cummings interaction Hamiltonian in the limit of

large detuning, Hint = ~χZa
†a, where χ is the light-atom cou-

pling strength, a (a†) is the annihilation (creation) operator of

the electromagnetic field mode, and Z = |0〉 〈0|−|1〉 〈1| is the Z

operator for a two-level atom (throughout this section, |0〉 and

|1〉 refer to the two Z Pauli eigenstates of the effective two-

level matter system and not to the optical vacuum and one-

photon Fock states). After the interaction of the qubus in state

|α〉 with the first atomic state, which is initially prepared in

a superposition, the output state is Uint

[

|α〉 (|0〉 + |1〉)/
√

2
]

=

(
∣

∣

∣αe−iθ/2
〉

|0〉+
∣

∣

∣αeiθ/2
〉

|1〉)/
√

2, with θ = 2χt an effective light-

matter interaction time inside the cavity. The qubus probe

pulse is then sent through the lossy fiber channel and interacts

with the second atomic qubit also prepared in a superposi-

tion. Here we consider the protocol of [55], where linear opti-
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FIG. 8. (Color online) Schematic diagram for the entanglement gen-

eration by means of a USD measurement following [55]. The two

quantum memories A and B are separated by a distance L0. The

part on the left side (an intermediate Alice) prepares a pulse in a

coherent state |α〉a (the subscript refers to the corresponding spatial

mode). This pulse first interacts with her qubit A and is then sent to

the right side together with the local oscillator pulse (LO). The part

on the right side (an intermediate Bob) receives the state
∣

∣

∣

√
ηtα

〉

b1

and produces from the LO through beam splitting a second probe

pulse
∣

∣

∣

√
ηtα

〉

b2
which interacts with his qubit B. He further applies a

50:50 beam splitter to the pulses in modes b1 and b2, and a displace-

ment D(−
√

2ηtα cos θ/2) = e−
√

2ηtα cos θ/2(a†−a) to the pulse in mode

b4. The entangled state is conditionally generated depending on the

results of detectors D1 and D2. The fiber attenuation ηt (L0) has been

defined in Eq. (1).

cal elements and photon detectors are used for the unambigu-

ous discrimination of the phase-rotated coherent states. Dif-

ferent from [55], however, we use imperfect photon-number-

resolving detectors (PNRD), as described by Eq. (2), instead

of threshold detectors. By performing such a USD measure-

ment on the probe state, as illustrated in Fig. 8, the following

entangled state can be conditionally prepared,

ρ0 := F0

∣

∣

∣φ+
〉 〈

φ+
∣

∣

∣ + (1 − F0)
∣

∣

∣φ−
〉 〈

φ−
∣

∣

∣ , (22)

where we find F0 = [1 + e−2(1+ηt(1−2ηd ))α2 sin2(θ/2)]/2 for α real,

ηt(L0) is the channel transmission given in Eq. (1), and ηd is

the detection efficiency (see section II A 2). Our derivation of

the fidelity F0 can be found in App. C 1. Note that the form of

this state is different from the state considered in section III.

It is a mixture of only two Bell states, since the two other (bit

flipped) Bell states are filtered out through the USD measure-

ment. The remaining mixedness is due to a phase flip induced

by the coupling of the qubus mode with the lossy fiber envi-

ronment. We find the optimal probability of success to gener-

ate an entangled pair in state ρ0

P0 = 1 − (2F0 − 1)
ηtηd

1+ηt (1−2ηd ) , (23)

which generalizes the formula for the quantum mechanically

optimal USD with perfect detectors, as given in [54], to the

case of imperfect, photon-number-resolving detectors. We ex-

plain our derivation of Eq. (23) in App. C 17.

7 One may also measure the qubus using homodyne detection [13]. However,

for this scheme, final fidelities would be limited to F0 < 0.8 for L0 = 10

Entanglement swapping

A two-qubit gate is essential to perform entanglement

swapping and entanglement distillation. In the HQR a

controlled-Z (CZ) gate operation can be achieved by using

dispersive interactions of another coherent-state probe with

the two input qubits of the gate. This is similar to the ini-

tial entanglement distribution, but this time without any fi-

nal measurement on the qubus [56]. Controlled rotations and

uncontrolled displacements of the qubus are the essence of

this scheme. The controlled rotations are realized through the

same dispersive interaction as explained above. In an ideal

scheme, after a sequence of controlled rotations and displace-

ments on the qubus, the qubus mode will automatically disen-

tangle from the two qubits and the only effect will be a sign

flip on the |11〉 component of the input two-qubit state (up

to single-qubit rotations), corresponding to a CZ gate opera-

tion. Thus, this gate implementation can be characterized as

measurement-free and deterministic. Using this gate, one can

then perform a fully deterministic Bell measurement (i.e., one

is able to distinguish between all four Bell states), and conse-

quently, the swapping occurs deterministically (i.e., PES ≡ 1).

In a more realistic approach, local losses will cause errors

in these gates. Following [57], after dissipation, we may con-

sider the more general, noisy two-qubit operation OBC acting

upon qubits B and C,

OBC(ρBC) =Oideal
BC

(

p2
c(x)ρBC+ (24)

pc(x)(1 − pc(x))(ZBρBCZ
B + ZCρBCZ

C)

+(1 − pc(x))2ZBZCρBCZ
CZB

)

,

where

pc(x) :=
1 + e−x/2

2
(25)

is the probability for each qubit to not suffer a Z error, and

x := π
1−p2

G√
pG(1+pG )

; here pG is the local transmission parameter

that incorporates photon losses in the local gates.8 We derive

explicit formulas for entanglement swapping including imper-

fect two-qubit gates in App. C 2.

Entanglement distillation

For the distillation, the same two-qubit operation as de-

scribed above in Eq. (24) can be used. It is then interesting to

notice that if we start with a state given in Eq. (22), after one

round of imperfect distillation, the resulting state is a generic

km [13], whereas by using unambiguous state discrimination, we can tune

the parameters for any distance L0, such that the fidelity F0 can be chosen

freely and, in particular, made arbitrarily close to unity at the expense of

the success probability dropping close to zero [54].
8 Note that this error model is considering a CZ gate operation. For a CNOT

gate, Z errors can be transformed into X errors.



11

Bell diagonal state. The effect of gate errors in the distillation

step is derived in App. C 3.9

B. Performance in the presence of imperfections

In the following, we will only consider the BB84-protocol,

because it is experimentally less demanding and also, because

we found in our simulations that the six-state protocol pro-

duces almost the same secret key rates, due to the symmetry

of the state in Eq. (22). The secret key rate per second for the

hybrid quantum repeater can be written as a function of the

relevant parameters:

RH
QKD =R

det
REP(L0,N, k, F0, pG, ηd)

×Rsiftr
BB84
∞ (L0,N, k, F0, pG), (26)

where Rdet
REP

is the repeater pair-creation rate for determinis-

tic swapping Eq. (4) described in section II A 3 and rBB84
∞ is

the secret fraction for the BB84-protocol Eq. (15). For the

asymmetric BB84-protocol, we have Rsift = 1 (see Sec. II B).

The superscript H stands for hybrid quantum repeater. Note

that the fundamental time is T0 =
2L0

c
, as the qubus is sent

from Alice to Bob and then classical communication in the

other direction is used (see section II A 3 and Fig. 2). Fur-

ther notice that the final projective qubit measurements which

are necessary for the QKD protocol are assumed to be per-

fect. Thus, the secret key rate presented here represents an

upper bound and, depending on the particular set-up adopted

for these measurements, it should be multiplied by the square

of the detector efficiency.

9 Note that we assume perfect qubit measurements for the distillation and

the swapping, but imperfect two-qubit gates. In principle, these qubit mea-

surements can be done using a local qubus and homodyne measurement

[54]. In this case, losses in the qubit measurement can be absorbed into

losses of the gates. On the other hand, if we consider imperfect detectors

for the qubit measurement then entanglement swapping will succeed with

probability given by Eq. (B5).

@
@@N

k
0 1 2 3

1 0.898 0.836 0.765 0.705

2 0.946 0.876 0.788 0.715

3 0.972 0.907 0.812 0.726

4 0.986 0.931 0.834 0.741

TABLE III. Hybrid quantum repeater without imperfections (pG = 1

and ηd = 1): Initial fidelity F0 that maximizes the secret key rate in

Eq. (26) for a given number 2N of segments and k rounds of distilla-

tion.
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FIG. 9. (Color online) Hybrid quantum repeater with perfect quan-

tum operations (pG = 1) and perfect detectors (ηd = 1) (black lines)

compared to imperfect quantum operations (pG = 0.995) and imper-

fect detectors (ηd = 0.9) (orange lines): Secret key rate per second

Eq. (26) as a function of the initial fidelity for 23 segments (N = 3)

and various rounds of distillation k. The distance between Alice and

Bob is 600 km.

The secret key rate Figure 9 shows the secret key rate for

23 segments (N = 3) for various rounds of distillation. We see

from the figure that for the hybrid quantum repeater the se-

cret key rate is not a monotonic function of the initial fidelity.

The reason is that increasing F0 decreases P0 (see Eq. (23))

and vice versa. We find that the optimal initial fidelity, i.e.,

the fidelity where the secret key rate is maximal, increases

as the maximal number of segments increases (see Table III).

On the other hand, examining the optimal initial fidelity as a

function of the distance, it turns out that it is almost constant

for L > 100 km. Thus, for such distances, it is neither use-

ful nor necessary to produce higher fidelities, because these

would not permit to increase the secret key rate.

We also observe that the maximum of the initial fidelity is

quite broad for small N, and gets narrower as N increases. If

we now consider perfect gates and perfect detectors, we see

that by fixing a certain secret key rate, we can reach this value

with lower initial fidelities by performing distillation. Further-

more, by distilling the initial entanglement, we can even ex-

ceed the optimal secret key rate without distillation by one or-

der of magnitude. However, note that distillation for k rounds

requires 2k memories at each side. If we then assume that we

choose the protocol with no distillation and perform it in par-

allel 2k times, i.e., we use the same amount of memories as for
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FIG. 10. (Color online) Hybrid quantum repeater with perfect gates

(pG = 1): The optimal secret key rate Eq. (26) for the BB84-protocol

in terms of the detector efficiency ηd for the distance L = 600 km

with various numbers of segments 2N and rounds of distillation k.

the scheme including distillation, the secret key rate without

distillation (as shown in Fig. 9) should be multiplied by 2k. As

a result, the total secret key rate can then be even higher than

that obtained with distillation.

Let us now assess the impact of the gate and detector im-

perfections on the secret key rate (orange lines) in Fig. 9. We

notice that pG has a large impact even if it is only changed by a

small amount, like here from pG = 1 to pG = 0.995; the secret

key rates drop by one order of magnitude. Imperfect detectors

are employed in the creation of entanglement. As we see in

Fig. 10, imperfect detectors do not affect the secret key rate

significantly. As for N = 3 and k = 0, improving the detector

efficiency from 0.5 to 1 leads to a doubling of the secret key

rate. We conclude that for the hybrid quantum repeater, the

final secret key rates are much more sensitive to the presence

of gate errors than to inefficiencies of the detectors. However,

recall that in our analysis, we only take into account detector

imperfections that occur during the initial USD-based entan-

glement distribution. For simplicity, any measurements on the

memory qubits performed in the local circuits for swapping

and distillation are assumed to be perfect, whereas the cor-

responding two-qubit gates for swapping and distillation are

modeled as imperfect quantum operations (see footnote 9 for

more details).

Minimally required parameters As we have seen in the

previous section, it is also worth finding the minimal param-

eters for F0 and pG, for which we can extract a secret key.

Figure 11 shows the initial infidelity required for extracting a

secret key as a function of the local loss probability pG, which

was introduced in Sec. IV A. We obtain also the minimal val-

ues of the local transmission probability pmin
G,N without distilla-

tion (solid lines in Fig. 11). If pG < pmin
G,N , then it is no longer

possible to extract a secret key. As shown in Fig. 11, these

minimal values (for which the minimal initial fidelity becomes

F0 = 1, without distillation) are pmin
G,1
= 0.853 (not shown in

the plot), pmin
G,2
= 0.948, pmin

G,3
= 0.977, and pmin

G,4
= 0.989 (not

shown in the plot). When including distillation, we can ex-

tend the regime of non-zero secret key rate to smaller initial

fidelities at the cost of better local transmission probabilities.

So there is a trade-off: if we can produce almost perfect Bell

pairs, that is initial states with high fidelities F0, we can afford

larger gate errors. Conversely, if high-quality gates are avail-

able, we may operate the repeater with initial states having a

lower fidelity. Note that these results and Fig. 11 do not de-

pend on the length of each segment in the quantum repeater,

but only on the number of segments.
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FIG. 11. (Color online) Hybrid quantum repeater with distillation

and imperfections: Maximally allowed infidelity (1 − F0) as a func-

tion of the local loss probability (1 − pG) for various maximal num-

bers of segments 2N and rounds of distillation k (distance: L = 600

km). Above the curves it is no longer possible to extract a secret key.

The lines with k = 0 correspond to entanglement swapping without

distillation.
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FIG. 12. (Color online) Hybrid quantum repeater with imperfect

quantum operations (pG = 0.995) and imperfect detectors (ηd = 0.9):

Optimal secret key rate Eq. (26) for the BB84-protocol as a func-

tion of the total distance L, for various numbers of segments 2N and

rounds of distillation k. For N = 5, it is not possible to obtain a secret

key when distillation is applied.

In figure 12 we plotted the optimal secret key rate for a

fixed local transmission probability pG and detector efficiency



13

ηd in terms of the total distance L. We varied the number

of segments 2N and the number of distillation rounds k. We

observe that a high value of k is not always advantageous:

There exists for every N an optimal k, for which we obtain

the highest key rate. We see, for example, that for N = 1,

the optimal choice is k = 2, whereas for N = 3, the optimal

k is 3. One can also see that there are distances, where it is

advantageous to double the number of segments if one wants

to avoid distillation, as, for example, for N = 3 and N = 4 at

a distance of around 750 km.

V. QUANTUM REPEATERS BASED ON ATOMIC

ENSEMBLES

The probably most influential proposal for a practical real-

ization of quantum repeaters was made in [12] and it is known

as the Duan-Lukin-Cirac-Zoller (DLCZ)-protocol. These au-

thors suggested to use atomic ensembles as quantum memo-

ries and linear optics combined with single-photon detection

for entanglement distribution, swapping, and (built-in) distil-

lation. This proposal influenced experiments and theoretical

investigations and led to improved protocols based on atomic

ensembles and linear optics (see [25] for a recent review).

To our knowledge, the most efficient scheme based on

atomic ensembles and linear optics was proposed very re-

cently by Minář et al. [23]. These authors suggest to use

heralded qubit amplifiers [58] to produce entanglement on

demand and then to extend it using entanglement swapping

based on two-photon detections. The state produced at the

end of the protocol no longer contains vacuum components

and therefore can be used directly for QKD. This is an im-

provement over the original DLCZ protocol in which the final

long-distance pair is still contaminated by a fairly large vac-

uum term that accumulates during the imperfect storage and

swapping processes.10

In this section, we first review the protocol proposed in [23]

and then we analyze the role of the parameters and the perfor-

mance in relation to QKD.

A. The set-up

The protocol is organized in three logical steps. First, lo-

cal entanglement is created in a repeater station, then it is dis-

tributed, and finally it is extended over the entire distance [23].

As a probabilistic entangled-pair source we consider spon-

taneous parametric down-conversion (SPDC) [61] which pro-

10 Very recently it was shown that in the context of QKD over continuous

variables, an effective suppression of channel losses and imperfections can

also be achieved via a virtual, heralded amplification on the level of the

classical post-processing [59, 60]. In this case, it is not even necessary to

physically realize a heralded amplifier.
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FIG. 13. Quantum repeater based on atomic ensembles: Set-up for

creation of on-demand entanglement (see also [23]). The whole set-

up is situated at one physical location. A pair source produces the

state ρpair. One part of the pair (the mode g) is stored in an atomic

ensemble and the other part (mode in) goes into a linear-optics net-

work. A single-photon source produces the states ρH
single

and ρV
single

which go through a beam splitter of reflectivity R. The output modes

of the beam splitter are called c and out. The mode out is stored in

a quantum memory and the mode c goes into a linear-optics network

which is composed of a polarizing beam splitter in the diagonal ba-

sis ±45◦ (square with a circle inside), two polarizing beam splitters

in the rectilinear basis (square with a diagonal line inside), and four

detectors.

duces the state (see [62] and [23])11

ρpair := (1 − p)

∞
∑

m=0

2mpm

(m!)2(m + 1)
(B†)m |0〉 〈0| Bm, (27)

where B† := (g
†
H
in
†
H
+ g
†
V
in
†
V

)/
√

2. The operator g
†
i

(in
†
i
) de-

notes a spatial mode with polarization given by i = H,V . The

pump parameter p is related to the probability to have an n-

photon pulse by P(n) = pn(1 − p).

A probabilistic single-photon source with efficiency q pro-

duces states of the form

ρisingle := (1 − q) |0〉 〈0| + qa†
i
|0〉 〈0| ai, (28)

where a
†
i
(ai) is the creation (annihilation) operator of a photon

with polarization i = H,V .

We also define by γrep the smallest repetition rate among

the repetition rates of the SPDC source and the single-photon

sources.

On-demand entanglement source

The protocol that produces local entangled pairs works as

follows (see Fig. 13 and [23] for additional details):

11 In our calculation, similar to [23], we consider only those terms with m ≤ 2.

The reason is that the contribution to the total trace of the first three terms is

given by 1 − p3 and therefore for p < 0.1 the state obtained by considering

only the first three terms differs in a negligible way from the full state.
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1. The state ρpair ⊗ ρHsingle
⊗ ρV

single
is produced.

2. The single photons, which are in the same spatial mode,

are sent through a tunable beam splitter of reflectivity

R corresponding to the transformation ai →
√
R ci +√

1 − R outi.

3. The spatial modes in and c are sent through a linear-

optics network which is part of the heralded qubit am-

plifiers, and the following transformations are realized,

cH →
d3 + d4 + d2 − d1

2
,

cV →
d3 + d4 − d2 + d1

2
,

inH →
d2 + d1 + d3 − d4

2
,

inV →
d2 + d1 − d3 + d4

2
,

where d1, d2, d3, d4 are four spatial modes, corre-

sponding to the four detectors.

4. A twofold coincidence detection between d1 and d3 (or

d1 and d4 or d2 and d3 or d2 and d4) projects the modes

g and out onto an entangled state. These are the herald-

ing events that acknowledge the storage of an entangled

pair in the quantum memories out and g.The probability

of a successful measurement is given by

Ps
0(p, q,R, ηd) = 4tr

(

Π
(1)

d1
(ηd)Π

(0)

d2
(ηd)Π

(1)

d3
(ηd)Π

(0)

d4
(ηd)ρ′g,out,d1,d2,d3,d4

)

, (29)

where ρ′
g,out,d1,d2,d3,d4

is the total state obtained at the end

of step (iii) and the superscript s stands for source. The

POVM for the detectors has been defined in Eq. (2).

The factor 4 accounts for the fact that there are four

possible twofold coincidences. The resulting state is

ρs0(p, q,R, ηd) =
4

Ps
0

trd1,d2,d3,d4

(

Π
(1)

d1
(ηd)Π

(0)

d2
(ηd)Π

(1)

d3
(ηd)Π

(0)

d4
(ηd)ρ′g,out,d1,d2,d3,d4

)

. (30)

This is the locally prepared state that will be distributed

between the repeater stations. In the ideal case with

perfect detectors and perfect single-photon sources, the

resulting state (after a suitable rotation) is ρs
0
= |φ+〉 〈φ+|

which can be obtained with probability Ps
0
= pR(1−R).

In the realistic case, however, additional higher-order

excitations are present. In [23], the explicit form of ρs
0

and Ps
0

can be found for the case when 1 > R ≫ p and

1≫ 1 − q.

Therefore, we have seen that the protocol proposed in [23]

permits to turn a probabilistic entangled-pair source (SPDC

in our case) into an on-demand entangled photon source. In

this context on-demand means that when a heralding event is

obtained then it is known for sure that an entangled quantum

state is stored in the quantum memories out and g.

Entanglement distribution and swapping

Once local entangled states are created, it is necessary to

distribute the entanglement over segments of length L0 and

then to perform entanglement swapping. Both procedures are

achieved in a similar way (see Fig. 14), as we shall describe

in this section. Entanglement distribution is done as follows

(see Fig. 14 and [23] for additional details):

1. Each of the two adjacent stations create a state of the

form ρs
0
. We call g and out the modes belonging to the

first station and g′ and out′ the modes of the second

station.

2. The modes out and out′ are read out from the quantum

memories and sent through an optical fiber to a central

station where a linear-optics network is used in order to

perform entanglement swapping. The transformations
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FIG. 14. Quantum repeater based on atomic ensembles: Set-up used

for entanglement distribution (swapping) (see [23] for additional de-

tails). The modes out and out′ are released from two quantum mem-

ories separated by distance L0 (or located at the same station for the

case of swapping) and sent into a linear-optics network consisting

of one polarizing beam splitter in the rectilinear basis (square with

diagonal line inside), two polarizing beam splitters in the diagonal

basis (square with circle inside), and four detectors.

of the modes are as follows:

outH →
d3 + d4√

2
, outV →

d1 − d2√
2

,

out′H →
d1 + d2√

2
, out′V →

d3 − d4√
2

,

where d1, d2, d3, d4 are four spatial modes.

3. A twofold coincidence detection between d1 and d3 (or

d1 and d4 or d2 and d3 or d2 and d4) projects the modes

out and out′ onto an entangled state. The probability of

this event is given by

P0(p, q,R, ηd, ηmtd) = 4tr
(

Π
(1)

d1
(ηmtd)Π

(0)

d2
(ηmtd)Π

(1)

d3
(ηmtd)Π

(0)

d4
(ηmtd)ρ′g,g′,d1,d2,d3,d4

)

, (31)

where ρ′
g,g′ ,d1,d2,d3,d4

is the total state obtained at the end

of step (ii) and ηmtd := ηmηt
(

L0

2

)

ηd, with ηm being the

probability that the quantum memory releases a photon.

The factor 4 accounts for the fact that there are four

possible twofold coincidences. The resulting state is

ρ0,g,g′ =
4

P0

trd1,d2,d3,d4

(

Π
(1)

d1
(ηmtd)Π

(0)

d2
(ηmtd)Π

(1)

d3
(ηmtd)Π

(0)

d4
(ηmtd)ρ′g,g′,d1,d2,d3,d4

)

. (32)

The state ρ0,g,g′ is the entangled state shared between two ad-

jacent stations over distance L0. In order to perform entan-

glement swapping, the same steps as described above are re-

peated until those two stations separated by distance L are fi-

nally connected. Formally, the probability that entanglement

swapping is successful in the nesting level n is given by

P
(n)

ES
(p, q,R, ηd, ηmtd) = 4tr

(

Π
(1)

d1
(ηmd)Π

(0)

d2
(ηmd)Π

(1)

d3
(ηmd)Π

(0)

d4
(ηmd)ρ′n−1,g,g′,d1,d2,d3,d4

)

, (33)

where ρ′
n−1,g,g′,d1,d2,d3,d4

is the total state resulting from steps (i)

and (ii) described above in this section, and ηmd := ηmηd.

The swapped state is given by

ρk,g,g′ =
4

P
(i)

ES

trd1,d2,d3,d4

(

Π
(1)

d1
(ηmd)Π

(0)

d2
(ηmd)Π

(1)

d3
(ηmd)Π

(0)

d4
(ηmd)ρ′k−1,g,g′,d1,d2,d3,d4

)

. (34)

The state ρn,g,g′ is the state that will be used for quantum

key distribution when n = N. In a regime where higher-order

excitations can be neglected, the state ρn,g,g′ is a maximally
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entangled Bell state. In [23] it is given the expression of the

state ρn,g,g′ under the same assumptions on the reflectivity R

and the efficiency q of the single-photon sources as discussed

regarding ρs
0

in Eq. (30).

Given the final state ρAB := ρN,g,g′ it is possible to calculate

Pclick and the QBER, using the formalism of Sec. II B 2 and

inserting ηmd for the detector efficiency.

The final secret key rate then reads

RAE
QKD = RREP(L0, p,N, ηd, ηm, γrep, q)Pclick(L0, p,N, ηd, ηm, q)Rsiftr

BB84
∞ (L0, p,N, ηd, ηm, q), (35)

where RREP is given by Eq. (8) with β = 1 for the communica-

tion time (see Fig. 2c). As for the QKD protocol, we consider

the asymmetric BB84-protocol (Rsift = 1, see Sec. II B). The

superscript AE stands for atomic ensembles.

Note that even though for the explicit calculations we used

PNRD, the previous formulas hold for any type of measure-

ment.

B. Performance in the presence of imperfections

As in the previous sections, we shall focus on the secret key

rate. The free parameters are the pump parameter p and the

reflectivity of the beam splitter R. In all plots, we optimize

these parameters in such a way that the secret key rate is max-

imized. As all optimizations have been done numerically, our

results may not correspond to the global maximum, but only

to a local maximum. In general, we observed that if we treat

the secret key rate as a function of p (calculated at the opti-

mal R), the maximum of the secret key rate is rather narrow.

On the other hand, when calculated as a function of R (at the

optimal p), this maximum is quite broad.

The most favorable scenario (ideal case) is characterized by

perfect detectors (ηd = 1), perfect quantum memories (ηm =

1), and deterministic single-photon sources (q = 1) which can

emit photons at an arbitrarily high rate (γrep = ∞). In this case,

the heralded qubit amplifier is assumed to be able to create

perfect Bell states and the secret fraction therefore becomes

one. The only contribution to the secret key rate is then given

by the repeater rate. In Fig. 15 the optimal secret key rate

versus the distance, obtained by maximizing over p and R, is

shown (see solid lines).

For the calculation of Fig. 15, we have assumed that the

creation of local entanglement, i.e., of state ρs
0
, is so fast that

we can neglect the creation time. In the case of SPDC, the

repetition rate of the source is related to the pump parameter

p and, moreover, the single-photon sources also have finite

generation rates that should be taken into account. For this

purpose, we introduce the photon-pair preparation time which

is given by T s
0
= 1

γrepP
s
0

[23]. The formula for the repeater rate

in this case corresponds to Eq. (8) with T0 → T0 + T s
0
. As

shown in Fig. 16, when ηd = 1 the secret key rate is constant

for γrep > 107, however, for realistic detectors with ηd = 0.9,

much higher repetition rates are required in order to reach the

asymptotic value. Nowadays, SPDC sources reach a rate of

about 100 MHz, whereas single-photon sources have a repeti-

tion rate of a few MHz [52]. Recently, a new single-photon
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FIG. 15. (Color online) Quantum repeaters based on atomic en-

sembles: Optimal secret key rate per second versus the distance

between Alice and Bob. The secret key rate has been obtained by

maximizing over p and R. Ideal set-up (solid line) with parameters

ηm = ηd = q = 1, γrep = ∞. More realistic set-up (dashed line) with

parameters ηm = 1, ηd = 0.9, q = 0.96, γrep = 50 MHz.

source with repetition rate of 50 MHz has been realized [63].

In the following, we will employ γrep = 50 MHz.
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FIG. 16. (Color online) Quantum repeaters based on atomic ensem-

bles: Optimal secret key rate per second versus the basic repetition

rate of the source γrep. The secret key rate has been obtained by max-

imizing over p and R. (Parameters: ηd = ηm = q = 1).

A consequence of imperfect detectors is that multi-photon

pulses contribute to the final state. The protocol we are con-

sidering here is less robust against detector inefficiencies than
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the original DLCZ protocol. This is due to the fact that suc-

cessful entanglement swapping is conditioned on twofold de-

tection as compared to one-photon detection of the DLCZ pro-

tocol. However, twofold detections permit to eliminate the

vacuum in the memories [25], thus increasing the final secret

key rate. As shown in Fig. 17, the secret key rate spans four

orders of magnitude as ηd increases from 0.7 to 1. Thus, an

improvement of the detector efficiency causes a considerable

increase of the secret key rate. For example, for N = 3, an

improvement from ηd = 0.85 to ηd = 0.88 leads to a threefold

increase of the secret key rate. Notice that we have consid-

ered photon detectors which are able to resolve photon num-

bers. Photon detectors with an efficiency as high as 95% have

been realized [64]. These detectors work at the telecom band-

width of 1556 nm and they have negligible dark counts. The

drawback is that they need to operate at very low temperatures

of 100 mK. The reading efficiency of the quantum memory ηm
plays a similar role as the detector efficiency. In accordance to

[25], intrinsic quantum memory efficiencies above 80% have

been realized [65]; however, total efficiencies where coupling

losses are included are much lower.
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FIG. 17. (Color online) Quantum repeaters based on atomic ensem-

bles: Optimal secret key rate per second versus the efficiency of the

detectors ηd. The secret key rate has been obtained by maximizing

over p and R. (Parameters: ηm = q = 1, γrep = 50 MHz, L = 600

km).

A single-photon source is also characterized by its effi-

ciency, i.e., the probability q to emit a photon. As shown

in Fig. 18, we see that it is necessary to have single-photon

sources with high efficiencies, in particular, when detectors

are imperfect. The source proposed in [63] reaches q = 0.96.

In Fig. 15 we show the secret key rate as a function of the

distance between Alice and Bob for parameters (dashed lines)

which are optimistic in the sense that they could be possibly

reached in the near future. We observe that with an imperfect

set-up and for N = 4, the realistic secret key rate is by one or-

der of magnitude smaller than the ideal value. This decrease

is mainly due to finite detector efficiencies. For N = 4, the

secret key rate scales proportionally to η2
d
η2

d
η2·4

d
η2

d
(local cre-

ation, distribution, entanglement swapping, and QKD mea-

surement). For ηd = 0.9, finite detector efficiencies lead to a

decrease of the secret key rate by 78%. Regarding the opti-
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FIG. 18. (Color online) Quantum repeaters based on atomic ensem-

bles: Optimal secret key rate per second versus the probability to

emit a single photon. The secret key rate has been obtained by max-

imizing over p and R. (Parameters: ηm = 1, γrep = 50 MHz, L = 600

km).

mal pump parameter p, we observe in Fig. 19 that for large

distances (L > 600km) its value is about 0.15%. The order

of magnitude of this value is in agreement with the results

found in [20] regarding the original DLCZ protocol and the

BB84-protocol. The optimal reflectivity R is given in Fig. 20.
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FIG. 19. (Color online) Quantum repeaters based on atomic ensem-

bles: Optimal value of p versus the distance between Alice and Bob.

The corresponding secret key rate is shown in Fig. 15. (Parameters:

ηm = 1, ηD = 0.9, q = 0.96, γrep = 50 MHz, L = 600 km)

We observe that as N increases, the optimal value of R has a

modest increase.

VI. CONCLUSIONS AND OUTLOOK

Quantum repeaters represent nowadays the most promising

and advanced approach to create long-distance entanglement.

Quantum key distribution (QKD) is a developed technology

which has already reached the market. One of the main limi-

tations of current QKD is that the two parties have a maximal

separation of 150 km, due to losses in optical fibers. In this
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FIG. 20. (Color online) Quantum repeaters based on atomic ensem-

bles: Optimal value of the reflectivity R versus the distance between

Alice and Bob. The corresponding secret key rate is shown in Fig. 15.

(Parameters: ηm = 1, ηD = 0.9, q = 0.96, γrep = 50 MHz)

paper, we have studied long-distance QKD by using quantum

repeaters.

We have studied three of the main protocols for quantum

repeaters, namely, the original protocol, the hybrid quantum

repeater, and a variation of the so-called DLCZ protocol. Our

analysis differs from previous treatments, in which only fi-

nal fidelities have been investigated, because we maximize

the main figure of merit for QKD – the secret key rate. Such

an optimization is non-trivial, since there is a trade-off be-

tween the repeater pair-generation rate and the secret fraction:

the former typically decreases when the final fidelity grows,

whereas the latter increases when the final fidelity becomes

larger. Our analysis allows to calculate secret key rates under

the assumption of a single repeater chain with at most 2k quan-

tum memories per half station for respectively k distillation

rounds occurring strictly before the swappings start. The use

of additional memories when parallelizing or even multiplex-

ing several such repeater chains as well as the use of additional

quantum error detection or even correction will certainly im-

prove these rates, but also render the experimental realization

much more difficult.

The comparison of different protocols is highly subjective,

as there are different experimental requirements and difficul-

ties for each of them, therefore here we investigated the main

aspects for every protocol separately.

The general type of quantum repeater is a kind of proto-

type for a quantum repeater based on the original proposal

[7]. We have provided an estimate of the experimental pa-

rameters needed to extract a secret key and showed what the

role of each parameter is. We have found that the requirement

on the initial fidelity is not so strong if distillation is allowed.

However, quantum gates need to be very good (errors of the

order of 1%).

Further, we have studied the hybrid quantum repeater. This

protocol permits to perform both the initial entanglement dis-

tribution and the entanglement swapping with high efficien-

cies. The reason is that bright light sources are used for com-

munication and Cavity Quantum Electrodynamics (CQED)

interactions are employed for the local quantum gates, mak-

ing the swapping, in principle, deterministic. Using photon-

number resolving detectors, we have derived explicit formulas

for the initial fidelity and the probability of success for entan-

glement distribution. Furthermore, we have found the form

of the states after entanglement swapping and entanglement

distribution in the presence of gate errors. We have seen that

finite detector efficiencies do not play a major role regarding

the generation probability. This permits to have high secret

key rates in a set-up where it is possible to neglect imperfec-

tions of the detectors. By studying imperfect gates we found

that excellent gates are necessary (errors of the order of 0.1%).

Finally, we have considered repeaters with atomic ensem-

bles and linear optics. There exist many experimental pro-

posals and therefore we have studied the scheme which is be-

lieved to be the fastest [23]. This scheme uses heralded qubit

amplifiers for creating dual-rail encoded entanglement and en-

tanglement swapping based on two-fold detection events. In

contrast to the previous two schemes, the Bell measurement

used for entanglement swapping is not able to distinguish all

four Bell states. We have characterized all common imper-

fections and we have seen that using present technology, the

performance of this type of quantum repeater in terms of se-

cret key rates is only about one order of magnitude differ-

ent from the corresponding ideal set-up. Thus, this scheme

seems robust against most imperfections. These types of re-

peater schemes, as currently being restricted to linear optics,

could still be potentially improved by allowing for additional

nonlinear-optics elements. This may render the entanglement

swapping steps deterministic, similar to the hybrid quantum

repeater using CQED, and thus further enhance the secret key

rates.

For the protocols considered here, single-qubit rotations

were assumed to be perfect. Obviously, this assumption is

not correct in any realistic situation. However, most of these

single-qubit rotations can be replaced by simple bit flips of the

classical outcomes which are used when the QKD protocol

starts. Therefore, we see that in this case, specifically build-

ing a quantum repeater for QKD applications permits to relax

the requirements on certain operations that otherwise must be

satisfied for a more general quantum application, such as dis-

tributed quantum computation.

As an outlook our analysis can be extended in various di-

rections: In our work we have considered standard quantum

key distribution, in which Alice and Bob trust their measure-

ment devices. To be more realistic, it is possible to relax this

assumption and to consider device-independent quantum key

distribution (DI-QKD) [1–5]. An analysis of the performance

of long-distance DI-QKD can also be done using the methods

that we developed in this paper.

A possible continuation of our work is the analysis of multi-

plexing [25, 46]. It has been shown that this technique has sig-

nificant advantage in terms of the decoherence time required

by the quantum memories. On the other hand it produces only

a moderate increase of the repeater rate [25, 66, 67]. Possible

future analyses include the effect on the secret key rate by dis-

tilling in all nesting levels [24] or by optimizing the repeater

protocol as done in Refs. [68, 69]. Moreover, other repeater
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protocols which are based on quantum error correction codes

[70–72] may help to increase the secret key rate.
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Appendix A: Additional material for the general framework

1. Generation rate with probabilistic entanglement swapping

and distillation

In this appendix, we give the derivation of Eq. (8) in

Sec. II A 2 which describes the generation rate of entangled

pairs per time unit T0 with probabilistic entanglement swap-

ping and distillation, i.e.,

R
prob

REP
=

1

T0

(

2

3a

)N+k

P0P
(1)

ES
P

(2)

ES
...P

(N)

ES

k
∏

i=1

PD[i]. (A1)

In [25] the formula has been derived only for the case without

distillation and there it reads as follows,

R
prob

REP
=

1

T0

(

2

3

)N

P0P
(1)
ES

P
(2)
ES
...P

(N)
ES
, (A2)

where P0 is the probability to generate a pair for entanglement

swapping. This formula was derived for small P0.

In order to incorporate distillation into Eq. (A2) we use the

definition of the recursive probability PL0
[k] given in Eq. (6),

see [35]. It describes the generation probability of an entan-

gled pair after k rounds of purification. If we choose an appro-

priate a < 1 such that Z1(x) = 3−2x
x(2−x)

≥ 3
2x
a , we can rewrite

PL0
[k]:

PL0
[k] =

PD[k]

Z1(PL0
[k − 1])

≤ 2

3a
PD[k]PL0

[k − 1]

=
2

3a
PD[k]

PD[k − 1]

Z1(PL0
[k − 2])

≤ ... ≤
(

2

3a

)k

P0

k
∏

i=1

PD[i], (A3)

where in the last line PL0
[k] is a recursive formula. For deriv-

ing Eq. (A1), we replace in Eq. (A2) P0 by PL0
and we use

Eq. (A3).

For the plots we have L = 600 km and usually ηd = 0.9

which leads to PL0
[k] ≤ 0.037 and a ≤ 0.994.

Appendix B: Additional material for the original quantum

repeater

1. Entanglement swapping

In this appendix we present the formulas of the state after

entanglement swapping and the distillation protocol. More-

over, we bound also the role of dark counts in the entangle-

ment swapping probability.

The protocol

We consider the total state ρab ⊗ ρcd. The entanglement

swapping algorithm consists of the following steps:

1. A CNOT is applied on system b as source and c as tar-

get.

2. One output system is measured in the computational ba-

sis and the other one in the basis {|+〉 :=
|H〉+|V〉√

2
, |−〉 =

|H〉−|V〉√
2
}, obtained by applying a Hadamard gate.

3. In the standard entanglement swapping algorithm, a sin-

gle qubit rotation depending on the outcome of the mea-

surement is performed. However, for the purpose of

QKD it is not necessary to do this single-qubit rota-

tion12. We propose that Bob collects the results of the

Bell measurements, performs the standard QKD mea-

surement and then he can apply a classical bit flip de-

pending on the QKD measurement basis and on the Bell

measurement outcomes.

Formulas in the presence of imperfections

We consider a set-up with two detectors d1 and d2. We asso-

ciate the detection pattern of these two detectors with a two-

dimensional Hilbert space, e.g d1 = click, d2 = noclick ⇒
|H〉 =

∣

∣

∣1d1
, 0d2

〉

and d1 = noclick, d2 = click ⇒ |V〉 =
∣

∣

∣0d1
, 1d2

〉

where {|H〉 , |V〉} are a basis of a two-dimensional

Hilbert space which can be, for example, identified with hori-

zontal and vertical polarizations of a qubit. We discard those

events where there are no clicks or when both detectors click.

If the detectors are imperfect, we may have an error in the

detection of the quantum state. The POVM consists of two

elements ΠH (ΠV ) which detect mode |H〉 (|V〉):

ΠH := γ |H〉 〈H| + (1 − γ) |V〉 〈V | , (B1)

ΠV := γ |V〉 〈V | + (1 − γ) |H〉 〈H| , (B2)

with

γ :=
ηd+pdark(1−ηd)

ηd+2pdark(1−ηd)
, (B3)

12 Note that this step is different from [7], where the single-qubit rotations

were explicitly included.
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where pdark is the dark count probability of the detectors and

ηd is their efficiency13.

The POVM above has been used also in [7, 73], however,

the connection with the imperfections of the detectors was not

made.

If we start with the states ρab = ρcd = A |φ+〉 〈φ+| +
B |φ−〉 〈φ−|+C |ψ+〉 〈ψ+|+D |ψ−〉 〈ψ− |, the resulting state after

entanglement swapping between a and d is still a Bell diago-

nal state with coefficients of the form [74]:

A′ =
1 − pG

4
+ pG

[

γ2(A2 + B2 +C2 + D2) + 2(1 − γ)2(AD + BC) + 2γ(1 − γ)(A + D)(C + B)
]

,

B′ =
1 − pG

4
+ pG

[

2γ2(AB +CD) + 2(1 − γ)2(AC + BD) + γ(1 − γ)(A2 + B2 +C2 + D2 + 2AD + 2BC)
]

,

C′ =
1 − pG

4
+ pG

[

2γ2(AC + BD) + 2(1 − γ)2(AB +CD) + γ(1 − γ)(A2 + B2 +C2 + D2 + 2AD + 2BC)
]

,

D′ =
1 − pG

4
+ pG

[

2γ2(AD + BC) + (1 − γ)2(A2 + B2 + C2 + D2) + 2γ(1 − γ)(A + D)(B + C)
]

, (B4)

and the probability to obtain the state above is equal to

PES (ηd, pdark) := ((1 − pdark)(ηd + 2pdark(1 − ηd)))2 , (B5)

which can be interpreted as the probability that entanglement

swapping is successful14. Note that P(η, 0) = η2 and P(1, 0) =

1 as we expect. When we consider dark counts pdark < 10−5,

then these are negligible as (PES (0.1, 10−5)/(PES (0.1, 0)))N <

1.03N , so the impact on the secret key rate is minimal. Note

that we open the gates only for a short time window, which is

the interval of time where we expect the arrival of a photon.

The dark count probability pdark represents the probability that

in the involved time window the detector gets a dark count.

13 The coefficient γ can be calculated as follows: the POVM for having a click

under the assumption of single-photon sources and imperfect detectors is

given by

E(click) = pdark |0〉 〈0| + (1 − (1 − pdark)(1 − ηd)) |1〉 〈1|

and no click

E(noclick) = (1 − pdark) |0〉 〈0| + (1 − pdark)(1 − ηd) |1〉 〈1| .

When we say that the detector a clicked, and b did not click and we discard

the vacuum events, and those where both detectors clicked, the POVM

looks as follows:

E
(click)
a ⊗ E

(noclick)

b

= (1 − (1 − pdark)(1 − ηd)) (1 − pdark) |1a, 0b〉 〈1a, 0b |
+pdark(1 − pdark)(1 − ηd) |0a, 1b〉 〈0a , 1b | .

The trace is (1− pdark)(ηd +2pdark(1−ηd)), which is exactly the probability

that we have this measurement. If we normalize this measurement and

relate it to the POVM in Eq. (B1), we get γ.
14 This probability was derived by taking the probability of the measurement

in the preceding footnote squared, as we need two coincident clicks for the

Bell measurement.

2. Distillation

The protocol

We assume that Alice and Bob hold two Bell diagonal states

ρa1,b1
and ρa2,b2

. The algorithm is the following:

1. In the computational basis, Alice rotates her particles

by π
2

about the X-axis, whereas Bob applies the inverse

rotation (− π
2
) on his particles.

2. Then they apply on both sides a CNOT operation, where

the states a1 (b1) serve as source and a2 (b2) as target.

3. The states corresponding to the target are measured in

the computational basis. If the measurement results co-

incide, the resulting state ρa1,b1
is a purified state; oth-

erwise, the resulting state is discarded. Therefore, this

entanglement distillation scheme is probabilistic.

Formulas in the presence of imperfections

Given a Bell diagonal state with the following coefficients

ρab = A
∣

∣

∣φ+
〉 〈

φ+
∣

∣

∣ + B
∣

∣

∣φ−
〉 〈

φ−
∣

∣

∣ +C
∣

∣

∣ψ+
〉 〈

ψ+
∣

∣

∣ + D
∣

∣

∣ψ−
〉 〈

ψ−
∣

∣

∣ ,

(B6)

the coefficients transform according to the following map

[30]:

A′ =
1

PD

(

A2 + D2
)

, (B7)

B′ =
1

PD

(2AD) , (B8)

C′ =
1

PD

(

B2 + C2
)

, (B9)

D′ =
1

PD

(2BC) , (B10)
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where PD is the probability that the measurement outcomes

are both the same for Alice and Bob, and thus the probability

of successful distillation is:

PD[k] = (Ak−1 + Dk−1)2 + (Bk−1 + Ck−1)2 . (B11)

Including the gate quality pG, these formulas change to

[74]:

PD[k] =
1

2

{

1 + p2
G (−1 + 2Ak−1 + 2Dk−1)2

}

. (B12)

with

A′ =
[

1 + p2
G

(

(A − B −C + D)(3A + B + C + 3D) + 4(A − D)2
)]

/(8PD),

B′ =
[

1 − p2
G

(

A2 + 2A(B +C − 7D) + (B +C + D)2
)]

/(8PD),

C′ =
[

1 + p2
G

(

4(B −C)2 − (A − B −C + D)(A + 3(B + C) + D)
)]

/(8PD),

D′ =
[

1 − p2
G

(

A2 + 2A(B +C + D) + B2 + 2B(D − 7C) + (C + D)2
)]

/(8PD).

Appendix C: Additional material for the hybrid quantum

repeater

In this appendix we derive the formula for successful en-

tanglement generation when PNRD are used for the measure-

ments. Moreover, we present the formulas for the states after

entanglement swapping and entanglement distillation.

1. Entanglement generation

The total state before the detector measurements is de-

scribed by [55]

ρAB,b3,b5
= p

{[

|0〉b3
(|00〉AB |β〉b5

+ |11〉AB |−β〉b5
)/2 + |0〉b5

(|01〉AB |−β〉b3
+ |10〉AB |β〉b3

)/2
]

× H.c.
}

+

(1 − p)
{[

|0〉b3
(|00〉AB |β〉b5

− |11〉AB |−β〉b5
)/2 + |0〉b5

(|01〉AB |−β〉b3
− |10〉AB |β〉b3

)/2
]

× H.c.
}

, (C1)

where H.c. stays for the Hermitian conjugate of the previ-

ous term, A (B) represents the qubit at Alice’s (Bob’s) side,

b3 is the coherent-state mode arriving at the detector D1, b5

is the coherent-state mode arriving at the detector D2, and

β = i
√

2ηt sin (θ/2) (see figure Eq. (8)). The probability of

error caused by photon losses in the transmission channel is

given by (1 − p), with p = (1 + e−2(1−ηt)α2 sin2 (θ/2))/2. It is

possible to observe from Eq. (C1) that whenever Bob detects

a click in either one of the detectors D1 or D2, an entangled

state has been distributed between qubits A and B.

We discuss in the following the case that D1 and D2 are

imperfect PNRD (see Eq. (2)). When detector D1 does not

click and D2 clicks, the resulting state ρAB is then given by

ρAB =
trb3b5

(Π
(0)

b3
Π

(n)

b5
ρAB,b3,b5

)

tr(Π
(0)

b3
Π

(n)

b5
ρAB,b3,b5

)
, (C2)

with n > 0. The same result up to local operations can be

obtained in the opposite case (a click in detector D1 and no

click in detector D2).

Depending on the outcome of the detector, a local operation

maybe applied to change the resulting state into the desired

state. In this way, if the outcome is an even number, nothing

should be done, otherwise a Z operation should be applied.

Following this, the resulting state can be written as

ρ = F0

∣

∣

∣φ+
〉 〈

φ+
∣

∣

∣ + (1 − F0)
∣

∣

∣φ−
〉 〈

φ−
∣

∣

∣ ,

where

F0 =
(〈00|AB+(−1)n〈11|AB)√

2
ρA,B

(|00〉AB+(−1)n |11〉AB)√
2

= 1+e−2(1+ηt (1−2ηd ))α2 sin2(θ/2)

2
. (C3)

The probability of success is calculated by adding all success-

ful events, and is given by

P0 =

∞
∑

n=1

tr(Π
(0)

b3
Π

(n)

b5
ρAB,b3,b5

+ Π
(0)

b5
Π

(n)

b3
ρAB,b3,b5

). (C4)

Combining Eq. (C1) and Eq. (2) we obtain Eq. (23).

2. Entanglement swapping

The initial states used in the swapping operation are a full

rank mixture of the Bell states, ρ0 := A |φ+〉 〈φ+|+B |φ−〉 〈φ−|+
C |ψ+〉 〈ψ+| + D |ψ−〉 〈ψ−|. After the connection, the resulting

state will remain in the same form, A′ |φ+〉 〈φ+|+B′ |φ−〉 〈φ−|+
C′ |ψ+〉 〈ψ+ | + D′ |ψ−〉 〈ψ−|, but with new coefficients:
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A′ = 2BC + 2AD + 2[−2BC + A(B + C − 2D) + (B + C)D]pG + (A − B −C + D)2p2
G,

B′ = 2AC + 2BD + [A2 + (B +C)2 − 4BD + D2 + 2A(−2C + D)]pG − (A − B −C + D)2p2
G,

C′ = 2AB + 2CD + [A2 + (B +C)2 − 4CD + D2 + 2A(−2B + D)]pG − (A − B −C + D)2p2
G,

D′ = A2 + B2 + C2 + D2 − 2[A2 + B2 +C2 − A(B +C) − (B +C)D + D2]pG + (A − B − C + D)2p2
G. (C5)

It is possible to see that A′+B′+C′+D′ = 1, such that even

for the case of imperfect connection operations, the swapping

occurs deterministically.

3. Entanglement distillation

We calculated also the effect of the gate error in the dis-

tillation step. Starting with two copies of states in the form

of ρ0 := A |φ+〉 〈φ+| + B |φ−〉 〈φ−| + C |ψ+〉 〈ψ+| + D |ψ−〉 〈ψ− |,
the resulting state after one round of distillation is given by

A′ |φ+〉 〈φ+| + B′ |φ−〉 〈φ−| +C′ |ψ+〉 〈ψ+ | + D′ |ψ−〉 〈ψ−|, where

A′ =
1

PD

(

D2 + A2[1 + 2(−1 + pG)pG]2 − 2A(−1 + pG)pG[C + 2D + 2(B −C − 2D)pG + 2(−B +C + 2D)p2
G]

−2D(−1 + pG)pG{−2D − 2(C + D)(−1 + pG)pG + B[1 + 2(−1 + pG)pG]}) ,

B′ =
1

PD

[

−2(D(−1 + pG)pG(C + D + 2BpG − 2CpG − 2DpG − 2Bp2
G + 2Cp2

G + 2Dp2
G)A2pG(−1 + 3pG − 4p2

G + 2p3
G)

−A{D(1 − 2pG + 2p2
G)2 − (−1 + pG)pG[−2C(−1 + pG)pG + B(1 − 2pG + 2p2

G)]})
]

,

C′ =
1

PD

(

B2(1 − 2pG + 2p2
G)2 − 2B(−1 + pG)pG[−2A(−1 + pG)pG + D(1 − 2pG + 2p2

G) + C(2 − 4pG + 4p2
G)]

+C{C(1 − 2pG + 2p2
G)2 − 2(−1 + pG)pG[−2D(−1 + pG)pG + A(1 − 2pG + 2p2

G)]}
)

,

D′ =
1

PD

{

−2(C(−1 + pG)pG(C + D + 2ApG − 2CpG − 2DpG − 2Ap2
G + 2Cp2

G + 2Dp2
G) + B2pG(−1 + 3pG − 4p2

G + 2p3
G)

−B{C(1 − 2pG + 2p2
G)2 − (−1 + pG)pG[−2D(−1 + pG)pG + A(1 − 2pG + 2p2

G)]})
}

, (C6)

PD is the distillation probability of success and is given by

PD =(B +C)2 + (A + D)2 − 2(A − B −C + D)2pG

+2(A − B −C + D)2p2
G. (C7)

For the case of pG = 1, Eq. (C6) and Eq. (C7) are in accor-

dance with [30].
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We investigate quantum repeaters in the context of quantum key distribution. We optimize the secret key

rate per memory per second with respect to different distillation protocols and distillation strategies. For this

purpose, we also derive an analytical expression for the average number of entangled pairs created by the quantum

repeater, including classical communication times for entanglement swapping and entanglement distillation. We

investigate the impact of this classical communication time on the secret key rate. Finally, we study the effect of

the detector efficiency on the secret key rate.
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I. INTRODUCTION AND MOTIVATION

Losses in the optical fiber limit the distance for the

distribution of entangled photon pairs and, hence, the range

of quantum key distribution. Recent experiments cannot reach

more than a few hundred kilometers (see, e.g., Ref. [1]). To

overcome this problem, the concept of a quantum repeater

was developed [2,3], which acts like a “distance amplifier:”

It permits enhancing the probability that an entangled pair is

created at a certain distance (see, e.g., calculations in Ref. [4]).

For a recent review on quantum repeaters, see Ref. [5]. The

main ingredients of a quantum repeater are entanglement

swapping [6] and entanglement distillation [7–9]. After the

distribution of entangled photon pairs between two distant

parties, one can perform quantumkey distribution (for reviews,

see, e.g., Refs. [4,10]).

Since the original proposal of the quantum repeater, existing

protocols were analyzed or were improved, inter alia [11–25].

Moreover, new protocols, such as, e.g., the hybrid quantum

repeater [23] or quantum repeaters with atomic ensembles

[26], were introduced.

Recently, the following analyses of the secret key rate

in connection with a quantum repeater were performed: In

Ref. [27], a quantum key distribution (QKD) setup with

one repeater node and without distillation is investigated. In

this case, the parameters for the optimal secret key rate are

explored. In Ref. [28], the secret key rate for one node of the

Duan-Lukin-Cirac-Zoller (DLCZ) repeater [26] is analyzed.

Reference [29] treats a variation of theDLCZ repeater, namely,

Ref. [20]. In Ref. [30], secret key rates for the original quantum

repeater [2], for the hybrid quantum repeater [23], and for a

variation of the DLCZ repeater [18] are investigated where

distillation was considered only before the first entanglement

swapping. Here, we want to lift this restriction and allow

distillation in all nesting levels.

The main goal of the current paper is to analyze the

achievable secret key rate under different distillation protocols

and strategies. For the distillation protocols, we consider

a recurrence protocol [9] and the entanglement pumping

protocol [3]. The protocol [9] is more efficient regarding

the final fidelity for perfect gates but at the expense of an

*bratzik@thphy.uni-duesseldorf.de

exponentially growing number of memories. The protocol in

Ref. [3] reaches a higher fidelity than the protocol in Ref. [9]

in a certain regime of errors and uses less spatial resources

but at the expense of a temporal overhead. As performed in

Refs. [29,31], we will divide the secret key rate by the number

of memories needed per node. For the distillation strategies of

the quantum repeater, we consider a nested distillation scheme,

i.e., where distillation after each swapping is performed. A

special case will be distillation only before the first swapping,

which might be experimentally more feasible. We thoroughly

investigate the case where the number of distillation rounds

in each nesting level is identical. Then, we lift this restriction

and vary the number of distillation rounds individually after

each swapping. Additionally, we account for the classical

communication time needed for acknowledging the success

of entanglement swapping and entanglement distillation in the

quantum repeater nodes. For this purpose, we will derive a

formula for the generation rate of the entangled pairs (repeater

rate) including these classical communication times.

The paper is structured as follows: In Sec. II, we review

the concept of quantum repeaters, the relevant distillation

protocols, and the distillation strategies. In Sec. III, we present

analytical formulas for the secret key rates. As the secret key

rate is a product of the secret fraction and the repeater rate,

we will derive the latter for the different distillation protocols.

In Sec. IV, we analyze the quantum repeater in the context of

quantum key distribution and present the optimal secret key

rates. Here, the secret key rates are optimized with respect

to the different distillation protocols and distillation strategies,

the number of nesting levels, the number of distillation rounds,

and the number of usedmemories. Furthermore, we investigate

the impact of finite-efficiency detectors on the secret key rate.

Then, we will fix the number of required memories and will

investigate the optimal setup. In Sec. V, the influence of

the classical communication time on the secret key rate is

analyzed. We conclude in Sec. VI.

II. QUANTUM REPEATER AND

DISTILLATION STRATEGIES

In Fig. 1, we show a quantum repeater setup, whose concept

was introduced in Ref. [2]. The goal is to establish an entangled

pair between the two partiesAlice andBob over distanceL. For

062335-11050-2947/2013/87(6)/062335(11) ©2013 American Physical Society
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FIG. 1. (Color online) A generic quantum repeater protocol with

nested distillation (see text).

this reason, one divides the distance into segments of length

L0 = L
2N , whereN is the number ofmaximal nesting levels for

swapping. The segments are connected by repeater stations,

which are able to perform Bell measurements and distillation.

Due to entanglement swapping, the fidelity degrades, which

we compensate by entanglement distillation. We define the

fidelity of a state ρ as its overlap with the Bell state |φ+〉 =
1√
2
(|00〉 + |11〉), i.e.,

F (ρ) := 〈φ+|ρ|φ+〉, (1)

where |0〉 (|1〉) is, e.g., a horizontally (vertically) polarized
photon.

In the following, we will describe the distillation protocols

that we want to compare. Our figure of merit is the secret key

rate. Note that the influence of distillation on the fidelity was

studied in Ref. [3]. The analysis of distillation protocols on the

entanglement generation rate was investigated in Ref. [32]. As

the secret key rate is a nontrivial function of these and other

parameters, we will arrive at new results. In the following, we

will assume, analogous to Ref. [3], that the quantum gates are

subjected to depolarizing noise with probability (1− pG) and

with probability pG, they are perfect.
1

A. The distillation protocols

General distillation protocols consist of performing local

operations on n-qubit pairs resulting in m < n pairs with a

higher fidelity than the initial pairs. Throughout this paper, we

will consider protocols that operate on two-qubit pairs and lead

to one-qubit pair. Usually, local operations and a CNOT gate

are applied. The sequence of these operations is specific for

every protocol. Finally, both parties perform a measurement

and, depending on the outcome, the resulting pair has a higher

fidelity or is discarded. Thus, the protocols are probabilistic.

1The formulas for the fidelity and the success probability consider-

ing this error parameter can also be found in Ref. [3]. Different from

Ref. [3], we do not assume any misalignment, and the single-qubit

operation is error free.

FIG. 2. Recurrence protocol: The Deutsch et al. protocol (figure

adapted from Ref. [3]). The fidelity Fk is the fidelity in the kth

distillation round.

In the following, we briefly describe the protocols considered

in this paper.

1. Recurrence protocol: The Deutsch et al. protocol

TheDeutsch et al. protocol [9], sometimes called theOxford

protocol, works in a similar way as the distillation protocol

introduced in Refs. [7,8] but is more efficient. It can reach

a higher fidelity in fewer distillation rounds and, therefore,

results in higher secret key rates. In general, the protocol

operates on Bell-diagonal states, i.e.,

ρBell = A5|φ+〉 + B5|φ−〉 + C5|ψ+〉 + D5|ψ−〉, (2)

with A,B,C,D > 0, A + B + C + D = 1, and 5|ψ〉 =
|ψ〉〈ψ | being the projectors onto the four Bell states |φ±〉 =
1√
2
(|00〉 ± |11〉) and |ψ±〉 = 1√

2
(|01〉 ± |10〉). For each state

of the form in Eq. (2), the first qubit belongs to Alice, and

the second belongs to Bob. Both share two pairs of the state

given in Eq. (2). Alice (Bob) applies a π/2 (−π/2) rotation

about the X axis on her (his) two qubits, followed by a CNOT

operation on both sides. After that, a bilocal measurement

on one qubit in the computational basis is performed. The

values of parameters A, B, C, and D as a function of the

imperfections of the CNOT and the fidelity F can be found in

Ref. [33]. The protocol works in a recursive way, i.e., it uses

two copies of the same fidelity for the next distillation step;

therefore, it is called the recurrence protocol (see Fig. 2).

2. Entanglement pumping: The Dür et al. protocol

This protocol, introduced in Ref. [3], sometimes also called

the Innsbruck protocol, uses the Deutsch et al. protocol, but

the two input states do not need to have the same fidelity.

Here, distillation is performed with an auxiliary pair always

having the same initial fidelity F0, see Fig. 3, hence, the name

entanglement pumping.We see that, different from theDeutsch

et al. protocol, the number of required memories does not

depend on the number of rounds of distillation, but it is linear

in the number of nesting levels (see Sec. III C).

Throughout the paper, we will assume that we only start

with entanglement swapping and entanglement distillation

when both pairs are present.

FIG. 3. Entanglement pumping: Dür et al. protocol (figure

adapted from Ref. [3]).

062335-2
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FIG. 4. (Color online) Distillation strategy β: distillation only in

the beginning.

B. Distillation strategies for the quantum repeater

The protocols described in the previous section can be

inserted into the quantum repeater protocol in different

ways. In the following, we want to compare two different

specific distillation strategies. For this purpose, we define the

distillation vector,

Ek = (k0, . . . ,kN ) (3)

for the distillation rounds where each component with index

n gives the number of distillation rounds in the nth nesting

level (see Fig. 1). Throughout the paper, distillation strategy

α denotes a strategy with the same number of distillation

rounds in each nesting level, hence, the distillation vector is
Ekα = (k, . . . , k). A strategy, which might be less demanding

for experimental realizations,2 is the distillation strategy β (see

Fig. 4) where we only distill at the beginning. The distillation

vector is, thus, Ekβ = (k,0, . . . , 0). In Sec. IVC1, we will

use general distillation vectors. This strategy will be called

distillation strategy γ .

III. SECRET KEY RATES AND

THE QUANTUM REPEATER

In the previous section, we have described the generation

of entangled pairs over a distance L between the parties

Alice and Bob using the quantum repeater protocol. For

performing QKD, they measure each of their particles in some

measurement basis. In this paper, we consider the six-state

protocol [34,35]; the BB84 protocol [36] leads to similar secret

key rates. The former works as follows: For each qubit pair,

Alice and Bob each perform measurements in theX, Y , and Z

directions. After themeasurement, the used basis is announced

(sifting phase). Only those measurement results where their

measurement bases coincided will be utilized in the further

2When only swapping is performed, one can collect the outcomes

of the Bell measurements and later can apply bit flips on the classical

data resulting from the QKD measurement on the final state (see also

Ref. [30]). For the case of distillation after swapping, the single-qubit

rotations have to be applied, thus, the number of quantum operations

is increased.

analysis. Here, we adopt the asymmetric protocol [37], which

uses different probabilities for the choice of the measurement

direction. In this protocol, the sifting parameter, i.e., the

fraction of sifted bits, is the one in the asymptotic limit, which

we also assume here. The quantum bit error rate, i.e., the

fraction of discordant bits, bounds the eavesdropping attempt:

If it is above a certain threshold, the protocol is aborted. The

quantity we are interested in is the secret key rate K per

memory per second, which is the product of the repeater rate

RRep and the secret fraction r∞ (see, e.g., Ref. [4] for a review)
divided by the number of memories,

K i = Ri
Rep(

Ek,N,L)r i
∞(F0,pG,Ek,N )/M i(Ek,N ), (4)

with the superscript i being either D (the Deutsch et al.

protocol) or Dür (the Dür et al. protocol).

In the following sections, we will describe or will derive

each component of the secret key rate given in Eq. (4).

A. The secret fraction

The secret fraction is the ratio of secret bits and the

measured bits in the asymptotic limit, thus, denoted by r∞.
It is given by the so-called Devetak-Winter bound [38] and

can be expressed in terms of the error rates appearing in the

six-state protocol [4], Appendix],

r∞ = 1− eZh

(
1+ (eX − eY )/eZ

2

)

− (1− eZ)h

(
1− (eX + eY + eZ)/2

1− eZ

)

− h(eZ), (5)

with h(p) = −p log2 p − (1− p) log2(1− p) being the bi-

nary Shannon entropy and eX, eY , and eZ being the error rates

in theX, Y , andZ bases, respectively. These error rates depend

on the components of the quantum state (see, e.g., Ref. [4],

Appendix]) and, thus, are a function of the initial fidelityF0, the

gate quality pG, the maximal nesting level N , the distillation

vector Ek, and the distillation protocol. For a detailed analysis of
the topic of quantum key distribution in connection to quantum

repeaters, we refer to Ref. [30].

B. The repeater rate, including classical communication times

By the repeater rate RRep, we denote the average number

of long-distance entangled pairs generated by the quantum

repeater per second. Considering a setup, which connects

only the neighboring pairs (so-called parallelization), several

formulas for different physical realizations of a quantum

repeater were derived: Ref. [39] treats the repeater rate for

deterministic swapping and probabilistic distillation before

the first swapping, Ref. [5] deduces the rate for probabilistic

swapping without distillation, and in Ref. [30], the formula

from the latter reference was modified to allow distillation

before the first swapping. These expressions have in com-

mon that they do not consider the classical communication

times needed to acknowledge the success of entanglement

swapping and entanglement distillation. In the following,

we will derive a repeater rate for probabilistic swapping

and probabilistic distillation including these communication

times. Our derivation is inspired by the recurrence formula

developed for quantum repeaters based on nitrogen-vacancy

062335-3
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centers in diamond [40]. In Sec. V, we show how the secret

key rate changes when we omit the classical communication

times needed for entanglement swapping and entanglement

distillation. We will always assume that the entanglement

distribution requires classical communication.

1. The Deutsch et al. protocol

We define the repeater rate to be the reciprocal value of

the time τD(Ek,N ) needed to establish an entangled pair over

the distance LwithN being the maximal nesting level and the

distillation vector Ekβ = (k,0, . . . , 0), i.e.,

RDRep :=
1

T0τD(Ek,N )
. (6)

Here, the superscript D refers to the Deutsch et al. protocol.

Note that the time τD(Ek,N ) is given in units of the fundamental

time T0 := L0
c
with c = 2× 105 km/s as the speed of light

in the optical fiber and L0 := L
2N as the fundamental length,

i.e., the distance between the repeater stations. The symbol

τD(kN ,N ), with only one vector component kN as the first

argument, denotes the time needed in nesting level N for kN

distillation rounds. In the following, we present a recurrence

formula for τD(kN ,N ) given by

τD(k0 = 0,N = 0) = 2

P0
, (7a)

τD(kN = 0,N > 0) = 1

PES(N )

[
3

2
τD(kN − 1,N − 1)+ 2N − 1

]

,

(7b)

τD(kN > 0,N ) = 1

PD
D (kN ,N )

[
3

2
τD(kN − 1,N )+ 2N

]

,

(7c)

with PES(N ) being the success probability of entanglement

swapping in the N th nesting level and PD
D (i,N ) being the

probability of success for entanglement distillation using

the Deutsch et al. protocol in the ith distillation round

in theN th nesting level. Here, P0 is the probability to generate

an entangled photon pair over a distance L0 and is given by

P0 = 10−αL0/10 with α = 0.17 dB/km being the attenuation

coefficient. To explain the recurrence formula in Eq. (7), we

start from the first line [Eq. (7a)]. There, we assume that the

source is placed at one side and the photon is distributed

over the distance L0 leading to a distribution time of T0. The

acknowledgment of the arrival of the photons at least needs the

same time, so we have, in total, 2T0 (see Ref. [30] for further

details and other schemes of entanglement distribution). We

divide by the probability P0 to generate this entangled photon

pair as, on average, we have to perform this process 1
P0
times

(see, e.g., Ref. [5] for an explicit calculation of this waiting

time). The next line [Eq. (7b)] gives the time for the N th

nesting level before starting with distillation, i.e., it is the time

directly after entanglement swapping. The formula consists of

two parts: the generation time for the pairs needed to begin the

swapping [ 3
2
τD(kN−1,N − 1)T0] (see, e.g., Ref. [5], Appendix]

for an explanation of the factor 3
2
) and the time to acknowledge

the success of the swapping, i.e., 2N−1T0; both divided by the
probability of successful swapping in the N th nesting level

1
PES(N)

. Note that the factor 3
2
is an approximation for small

probabilities. The first part [ 3
2
τD(kN−1,N − 1)T0] corresponds

to the average time to generate two pairs after kN−1 rounds
of distillation in the (N − 1)th nesting level. The last line
[Eq. (7c)] concludes the recurrence formula: We need the time
3
2
τD(kN − 1,N )T0 to generate two pairs for the kN th round

of distillation. As distillation is performed over distance L
2N ,

the acknowledgment time is 2NT0. Both terms are divided

by the probability of success for entanglement distillation

[PD
D (kN ,N )].

We present the analytic solution of the recurrence formula

in Eq. (7) in Appendix Eq. (A2).

2. The Dür et al. protocol

The repeater rate for theDür et al. protocol differs from the

repeater rate for theDeutsch et al. protocol as the entanglement

distillation process works in a sequential way, i.e., the auxiliary

pair for each distillation round is always the same (see Fig. 3).

As the swapping process is the same in both distillation

protocols, Eqs. (8a) and (8b) are analogous to Eqs. (7a)

and (7b),

τDür(k0 = 0,N = 0) = 2

P0
, (8a)

τDür(kN = 0,N > 0) = 1

PES(N )

[
3

2
τDür(kN−1,N − 1)+ 2N−1

]

,

(8b)

τDür(kN > 0,N ) = 1

PDür
D (kN ,N )

[τDür(kN − 1,N )

+ τDür(0,N )+ 2N ]. (8c)

The third line [Eq. (8c)] differs from Eq. (7c). Equation (8c)

represents the time needed to distill a pair in the kN th round in

the N th nesting level. In the entanglement pumping protocol,

we start to produce the elementary pair ρ(kN = 0,N ) for

distillation when the pair to be distilled ρ(kN − 1,N ) is
present. Thus, we have to add the time for generating the

elementary pair τDür(0,N )T0 to the time for the pair to be

distilled τDür(kN − 1,N )T0. The repeater rate for theDür et al.

protocol is then given by

RDürRep :=
1

T0τDür(Ek,N )
. (9)

We give an analytic solution of the recurrence formula in

Appendix Eq. (A3).

C. Number of memories

In this section, we describe the needed number of memories

at each half of the repeater station (see the black dots in Fig. 1).

The vector Ek consists of the number kn of distillation rounds

in the nth nesting level, see Eq. (3). The number of memories

needed at half a node for the Deutsch et al. protocol is

MD = 2
∑

n kn , (10)

because, in each nesting level, the number of memories needs

to be increased by a factor of 2kn as the distillation for all
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FIG. 5. (Color online) (a) Optimal secret key rate per memory per second (bits per second) [Eq. (4)] for the distance L = 600 km. The

smallest secret key rate still depicted is chosen to be 10−10 secret bits per second per memory. In the white region, an extraction of a nonzero
secret key rate is not possible. The parameters for the optimal secret key rate per memory per second are as follows: (b) Distillation protocols:

Deutsch et al. protocol (blue, dark gray),Dür et al. protocol (green, medium gray), and no distillation (yellow, light gray). (c) Number of rounds

of distillation k (for the optimal distillation strategy). (d) Number of nesting levels N . (e) Distillation strategies: strategy α (nested distillation)

and strategy β (distillation only before the first entanglement swapping). (f) Number of used memories per repeater node.

nesting levels is performed in parallel. The superscript D

denotes the Deutsch et al. protocol.

The Dür et al. protocol works in a sequential way, so the

number of memories is

MDür = N + 2− |{ki : ki = 0}|, (11)

where the set |{ki : ki = 0}| is the number of elements in Ek that
are zero. Equation (11) for strategy α, i.e., Ek = (k, k, . . . , k),

can be explained as follows: For nesting level N = 0, at most

two memories are needed for the distillation process (see

Fig. 3). The resulting pair ρ(k0,N = 0) at distance L0 after

k0 distillation rounds is stored in one memory, and the other

one is emptied. After swapping two neighboring pairs, we

have the pair ρ(0,N = 1) at the distance 2L0. For starting the

distillation process in this nesting level (N = 1), one needs

another pair ρ(0,N = 1), which is generated by the same

procedure as above, so two additional memories are needed.

In total, one needs three memories for N = 1. For strategy β,

i.e., Ek = (k,0, . . . ,0), one just needs two memories where we

store the state during the gate operation.

IV. OPTIMAL SECRET KEY RATES:

COMPARING DIFFERENT DISTILLATION

PROTOCOLS AND STRATEGIES

A. Comparison of key rates (strategy α vs β)

We investigate how the Deutsch et al. and the Dür et al.

protocols perform under gate errors where we use the secret

key rates as a figure of merit.

In the following, we calculate the secret key rate divided

by the number of needed memories [see Eq. (4)]. The division

by the number of memories allows for a fair comparison when

considering the resources. For a fixed set of parameters F0
(initial fidelity) and pG (gate quality), we aim at finding

the optimal distillation protocol, the optimal number of

distillation rounds, the optimal number of nesting levels, the

best distillation strategy, and theminimal number ofmemories.

Note that, in the ideal case, i.e., for perfect detectors, we

assume the entanglement swapping to be deterministic, i.e.,

PES(N ) = 1.

We will consider two error models for the input states:

on one hand, depolarized states and on the other hand,

so-called binary states. The latter states are interesting as

they can be produced by the hybrid quantum repeater [23,41].

Additionally, in Ref. [3], it was mentioned that the binary state

given in Eq. (13) below has the optimal shape for theDür et al.

protocol.

1. Input states: Depolarized states

In this section, we want to investigate the optimal secret

key rates [Eq. (4)] when we start with depolarized states, i.e.,

ρDep = F5|φ+〉 + 1− F

3
(5|φ−〉 + 5|ψ+〉 + 5|ψ−〉). (12)

Optimization of the distillation protocols (Deutsch et al. or

Dür et al.), the number of nesting levels N , the number of

distillation rounds k, and the distillation strategy (α or β), lead

to the secret key rates depicted in Fig. 5(a). We point out that

we find the global maximum aswe calculateK i for all possible
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FIG. 6. (Color online) Expanded region from Fig. 5(f): Number

of memories that lead to the optimal secret key rate per second per

memory [see Eq. (4), L = 600 km].

combinations of parameters for the length L and then choose

the maximal value. The parameters leading to the optimal

secret key rates of Fig. 5(a) are shown in Figs. 5(b)–5(f). The

optimal distillation protocol is shown in Fig. 5(b). It is difficult

to find an intuitive explanation why, in certain regimes, either

theDeutsch et al. or theDür et al. protocol is optimal; there are

many different effects, such as the repeater rates [see Eqs. (7)

and (8)], the number of memories, and the resulting state.

Figure 5(c) shows the optimal number of distillation rounds

(for the optimal distillation strategy) that lead to the secret

key rate per memory per second of Fig. 5(a). We find that,

for a wide range of parameters, it is enough to have k 6 3

distillation rounds. The role of the optimal number of nesting

levels is treated in Fig. 5(d). We find that, with increasing gate

quality and initial fidelity, more nesting levels are optimal. In

Fig. 5(e), the optimal of the two distillation strategies (α) or (β)

is shown: For good gates and low fidelities, it is better to only

distill in the beginning, which would be experimentally less

demanding. We emphasize that, in this regime of parameters,

distillation in later nesting levels degrades the secret key rate.

From the previous plots, in Fig. 5(f), we calculate the minimal

number of memories needed to obtain the secret key rate in

Fig. 5(a).

Figure 6 provides a zoom of Fig. 5(f) into the region where

the secret key rate is on the order of bits per second. In the

black region, no distillation is optimal, therefore, we only need

one memory. For the number of memoriesM = 2 andM = 4,

the optimal protocol is the Deutsch et al. protocol, whereas,

for M = 6, the Dür et al. protocol becomes favorable. From

Eq. (10), we see that, in a single setup, the number ofmemories

is restricted to a power of 2 for the Deutsch et al. protocol. If

we want to use, e.g., M = 6 memories and the Deutsch et al.

protocol, we have to employ setups in parallel. We will treat

this subject in Sec. IVC2.

2. Input states: Binary states

We will now consider binary states, i.e., states of the form

ρBin = F |φ+〉〈φ+| + (1− F )|φ−〉〈φ−|. (13)

We performed a complete analysis of this case, in analogy to

Sec. IVA1. The results of our investigation can be summarized

as follows:

(1) Different from the setupwherewe startwith depolarized

states, it is possible to extract a nonzero secret key rate

per memory per second for the whole range of parameters

considered here, i.e., for 0.7 6 F0 6 1 and 0.92 6 pG 6 1.

The largest value of the secret key rate per memory per second

using binary states is on the same order of magnitude as for

depolarized states.

(2) The region where the Dür et al. protocol is optimal

extends to lower initial fidelities, compared to Fig. 5(b), and

the largest value for the optimal rounds of distillation is k = 3.

Also, the region where no distillation is optimal increases.

(3) Due to the small optimal k, the maximal number of

memories decreases.

One would recommend the use of binary states when pG 6

0.97 and F0 6 0.8 as then, the number of used memories is

smaller than for depolarized states and the secret key rate per

memory per second is nonzero.

B. The influence of the detector efficiency

In this section, we want to investigate the impact of

finite-efficiency detectors on the secret key rate. The detector

efficiency is given by the parameter ηd with 0 6 ηd 6 1 where

ηd = 1 corresponds to perfect detectors. For implementing the

detector efficiency in our formulas, we have to replace the

probability of successful distillation PD(k,n) and the proba-

bility of successful swapping in the nth nesting level PES(n)

in the equations for the repeater rate [Eqs. (6) and (9)] by

PD(k,n) → η2dPD(k,n) (14a)

PES(n) → η2dPES(n), (14b)

because the Bell measurement requires a twofold detector

click. Additionally, we have to multiply the secret key rate

[Eq. (4)] by a factor of η2d , which accounts for the final

quantum key distribution measurement.

The only contribution of the detector efficiency in the

secret key rate is in the repeater rate. For simplicity, we will

consider the repeater rate without classical communication

for entanglement swapping and entanglement distillation [see

Eqs. (17) and (18) in Sec. V]. After replacing the probabilities

in the repeater rates by Eq. (14), the repeater rate scales with

η
2(N+∑

n kn)

d .

When analyzing different detector efficiencies, we made

the following observations:

(1) With decreasing ηd , the region where no distillation is

optimal increases such that, for ηd = 0.1, it is optimal to not

perform distillation for almost all parameters,

(2) with decreasing ηd , the optimal number of nesting levels

also decreases,

(3) with decreasing ηd , the region where the distillation

strategy β (distillation only in the beginning) is optimal

increases (see Fig. 7).

Figure 7 shows the optimal distillation strategies for the secret

key rate per memory per second with a detector efficiency

of ηd = 0.9. This can be compared to Fig. 5(e) where the

detectors are perfect, i.e., ηd = 1. We see that, for low initial

fidelities, the region where the distillation strategy β is optimal

increases.
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FIG. 7. (Color online) Distillation strategies with imperfect

detectors: strategy α (nested distillation strategy) and strategy β

(distillation only before the first entanglement swapping) that lead

to the optimal secret key rate per memory per second [Eq. (4),

L = 600 km and ηd = 0.9].

C. More general strategies

1. Distillation strategy γ

Asmentioned in Sec. II B, we now lift the restriction that the

number of distillation rounds in each nesting level is the same.

For this purpose, we fix the parameters for the initial fidelity

F0 and the gate quality pG and vary the number of nesting

levels and the number of distillation rounds in each nesting

level. A result for the parameters F0 = 0.9 and pG = 0.96

is shown in Table I. There, we report the optimal distillation

vector Ek, see Eq. (3), for the number of nesting levels up to
N = 4 and the corresponding secret key rate per memory per

second. We found the optimal Ek by calculating the key rate
for all possible Ek’s. For the given parameters, distillation only
in the beginning does not help. Comparing the values that

we achieved in Sec. IVA, i.e., only considering strategy α

[distillation vector Ek = (k,k, . . . , k)] or β [Ek = (k,0, . . . , 0)],

the optimal secret key rate for the given set of parameters

was 0.99× 10−4 with N = 2, Ek = (2,2,2) for the Dür et al.

protocol. Here, the best secret key rate is 3.03× 10−4 for
N = 2, Ek = (0,3,1) and the Deutsch et al. protocol. Thus, the

secret key rate is on the same of order of magnitude but can

be improved by a factor of 3.

Table II gives results for the parameters F0 = 0.97 and

pG = 0.99. The parameters that lead to the optimal secret

key rate per memory per second of K = 0.32 in Sec. IVA

are for the nesting level N = 3, distillation strategy β, and

TABLE I. Optimal secret key rate per memory per second

[Eq. (4)] and corresponding distillation vector Ek [Eq. (3)] for the
different distillation protocols F0 = 0.9 and pG = 0.96.

Dür et al. protocol Deutsch et al. protocol

N K Ek K Ek

0 3.92× 10−9 (0) 3.92× 10−9 (0)

1 2.11× 10−5 (0,2) 2.63× 10−5 (0,1)

2 1.09× 10−4 (2,3,2) 3.03× 10−4 (0,3,1)

3 2.66× 10−6 (3,4,5,5) 1.51× 10−4 (0,3,3,1)

4 0 0 1.37× 10−5 (0,3,3,3,1)

TABLE II. Optimal secret key rate per memory per second

[Eq. (4)] and corresponding distillation vector Ek [Eq. (3)] for the
different distillation protocols F0 = 0.97 and pG = 0.99.

Dür et al. protocol Deutsch et al. protocol

N K Ek K Ek

0 7.97× 10−9 (0) 7.97× 10−9 (0)

1 9.64× 10−4 (0,0) 9.64× 10−4 (0,0)

2 0.19 (0,0,0) 0.19 (0,0,0)

3 0.57 (0,0,2,0) 0.73 (0,2,0,0)

4 0.96 (0,1,1,1,0) 0.88 (0,1,1,1,0)

5 0.62 (0,1,1,2,0,0) 0.54 (0,0,2,1,0,0)

6 0.34 (0,1,1,1,1,1,0) 0.2 (0,1,1,1,1,1,0)

Ek = (2,0,0,0) using the Deutsch et al. protocol. In this ex-

ample, we see that, by allowing general distillation strategies,

the optimal secret key rate can be increased by increasing the

nesting level. In this example, different from above, the Dür

et al. protocol remains optimal.

Due to the computational complexity, we only calculated

the general distillation strategies for two specific set of

parameters (see Tables I and II). As the quantum repeater

exhibits a self-similar structure, dynamical programming was

used in Ref. [42] in order to optimize the average time to

create an entangled pair for a given final fidelity and distance.

The results and methods of Ref. [42] cannot be used for a

global optimization as we have found counterexamples where

the distillation vector consists of different numbers in each

nesting level (see, e.g., Table I for the Dür et al. protocol and

Table II).

We see that it is not trivial to make general statements

about the optimal number of rounds of distillation, regarding

the secret key rate. For implementations, one has to determine

the parameters of the experiment, i.e., F0 and pG, and then to

optimize the secret key rate for any specific set of parameters.

2. Optimal strategies for a fixed number

of memories allowing parallel setups

In Sec. III C, we have mentioned that, in the following, we

want to fix the number of memories and find which setup is

optimal. As the memories in the Deutsch et al. protocol are

restricted to a power of 2 (see Sec. III C), we also allow setups

working in parallel.

For calculating the optimal strategy for a fixed number

of memories M , we solve the following equation to get all

possible setups:

M
∑

m=1
smm = M (15)

for sm ∈ N and ⌊M
m

⌋ > sm > 0. The number sm denotes how

many setups using m memories work in parallel. For each

setup, we then proceed by calculating the optimal secret key

rate per second, i.e., mKm = r∞RRep. The index m for the

secret key rate K means that we restrict to distillation vectors

and nesting levels that solveEqs. (10) and (11) formmemories.

The optimal vector Es = (s1, . . . , sM ), a solution of Eq. (15), is

found by maximizing the value
∑

m smmKm. The secret key
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TABLE III. Secret key rate per total number of used memories

[Eq. (16)] for the different distillation protocols and for a fixed

number of memories M . The optimal configurations are given

by the distillation vectors EkM = (k0, . . . ,kN ) with EkM denoting the

distillation strategy usingM memories. The notation (Ekm, Ekm′ )means

parallel setups usingm andm′memories. Parameters:F0 = 0.97 and

pG = 0.99.

Dür et al. protocol Deutsch et al. protocol

M K Configuration K Configuration

1 0.19 Ek1 = (0,0,0) 0.19 Ek1 = (0,0,0)

2 0.58 Ek2 = (0,0,2,0) 0.58 Ek2 = (0,0,1,0)

3 0.96 Ek3 = (0,1,2,0,0) 0.45 (Ek1,Ek2)
4 0.82 Ek4 = (0,1,1,1,0) 0.87 Ek4 = (0,0,2,0,0)

5 0.81 (Ek2,Ek3) 0.73 (Ek1,Ek4)
6 0.96 (Ek3,Ek3) 0.78 (Ek2,Ek4)
7 0.89 (Ek3,Ek4) 0.69 (Ek1,Ek2,Ek4)

rate of the total setup with a fixed number of memoriesM is,

thus, given by

K =

∑

m

smmKm

M
, (16)

with
∑

m smm = M . We will also compare this result to a

configuration of one setup with distillation vector Ek [see
Eq. (3)], if possible. For the parameters F0 = 0.97 and pG =
0.99, we calculated the optimal Es to see if a parallel setup
was advantageous. In Sec. IVA, we showed that the optimal

number of memories is 4 using the Deutsch et al. protocol

for N = 3, Ek = (2,0,0,0) with a secret key rate per memory

per second of K = 0.32. In Table III, we fixed the number of

memories and calculated the optimal key rate by optimizing

the remaining parameters. We find that, except forM = 4, the

secret key rate per memory per second is higher (or equal) for

the Dür et al. protocol.

V. IMPACT OF CLASSICAL COMMUNICATION

ON THE SECRET KEY RATE

In this section, we investigate the impact of the classical

communication time required for acknowledging the success

of entanglement swapping and entanglement distillation on

the secret key rate. First, we calculate the repeater rates

RRep,NC where we only consider the classical communication

for entanglement distribution. Then, we compare the optimal

secret key rates using the repeater rate without (RRep,NC) and

with classical communication (RRep) [see Eqs. (6) and (9)] and

discuss the differences.

The repeater rate for the Deutsch et al. protocol, with-

out the classical communication time due to entanglement

swapping and entanglement distillation, is given by (see, e.g.,

Refs. [5,30])

RDRep,NC = 1

2T0

(
2

3

)N+∑

n kn

P0

N
∏

n=1
PES(n)

kn∏

i=0
PD

D (i,n), (17)
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FIG. 8. (Color online) The relative change [Eq. (20)] in the

optimal secret key rate per memory per second [Eq. (4)] without

and with the classical communication time (see text) in terms of the

initial fidelity F0 and gate quality pG (L = 600 km).

which is derived from the solution of the recurrence relation

in Eq. (7) by omitting all terms acknowledging the classical

communication time, i.e., the terms with 2N−1 and 2N [see

Appendix Eq. (A2)].

The corresponding repeater rate for the Dür et al. protocol

can be derived analogously by omitting terms in the recurrence

relation given in Eq. (8). This leads to

RDürRep,NC = P0

2T0

(
2

3

)N N
∏

i=0

PES(i)

a(i)
, (18)

where

a(i) =
ki−1∏

j=0
PDür

D (ki − j,i)−1 +
ki−1∑

m=0

m
∏

j=0
PDür

D (ki − j,i)−1,

(19)

and PES(0) = 1 (see Appendix A 2b for details).

For investigating the relevance of the classical communi-

cation time, we determine the relative change in the optimal

secret key rates with this classical communication K(RRep)

and without classical communication K(RRep,NC), i.e.,

1rel(K(RRep,NC),K(RRep)), (20)

with K being the optimal secret key rate per memory per

second [Eq. (4)]. The relative change 1rel is defined by

1rel(a,b) := (a − b)/max{a,b}. (21)

We optimize both secret key rates over the same parameter set

as in Sec. IV.

Figure 8 shows the relative change in the optimal secret key

rate per second per memory. Depending on the parameters,

the secret key rate, without the classical communication time

K(RRep,NC), can be bigger by a factor of 2. This is the yellow

region in Fig. 8. By inspecting Fig. 5(a), the secret key rate

in this region is on the order of secret bits per second. Except

for some regions, the parameters leading to the optimal secret

key rate without and with the classical communication time

are almost the same.

In a previous paper [3], it was claimed that the main

contribution of the entanglement generation time (i.e., the
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inverse of the repeater rate) is the classical communication

time needed for acknowledging the success of entanglement

swapping and entanglement distillation. Here, we have seen

that this is not the case. Comparing the results given in Ref. [3],

we have found that the relative change [Eq. (20)] is not more

than 40% and both secret key rates are on the same order of

magnitude (distance L = 1280 km). We discovered that the

influence of nonperfect success probabilities for distillation

is substantial. Here, the entanglement generation time is 1

order of magnitude larger than in Ref. [3] where the success

probability of entanglement distillation was not considered

(parameters: F0 = 0.96 and pG = 0.995).

Note that, here, we consider the memories to be perfect.

Certainly, if the storage time of the memories is limited, such

an analysis might lead to other results.

VI. CONCLUSION

For given imperfect initial fidelities and imperfect gates, we

found the quantum repeater configurations (i.e., the distillation

protocol, distillation strategy, number of distillation rounds,

number of nesting levels, and number of memories) that lead

to the optimal secret key rate per memory per second. For this

purpose,we focused on a specific recurrence protocol (Deutsch

et al.) and an entanglement pumping protocol (Dür et al.).

We found that there exists a regime (pG 6 0.99 and F0 >

0.8) of parameters where the entanglement pumping protocol

performs best. However, for lower initial fidelities, typically,

the recurrence protocol is favorable.

Regarding the distillation strategy [distilling with the same

number of rounds in each nesting level (strategy α) or distilling

only in the beginning (strategy β)], we have seen that, for some

parameters, strategy β, which is experimentally more feasible,

is optimal and that this region strongly depends on the detector

efficiency. We found that, with decreasing detector efficiency,

it is optimal to not distill. Lifting the restriction of an equal

number of distillation rounds in each nesting level for some

set of parameters (initial fidelity and gate quality), we have

found that the improvement of the secret rate is not more than

1 order of magnitude compared to distillation strategy α. We

also showed that increasing the number of repeater stations and

rounds of distillation does not necessarily lead to an increase

in the secret key rate.

We investigated the role of the formof the input stateswhere

we used either a depolarized or a binary state.We found that the

secret key rate per memory per second for both forms is in the

same order of magnitude; the binary states have the advantage

that, for lowfidelities and gate qualities, they provide a nonzero

secret key rate compared to a depolarized input state. Binary

states can be produced by the hybrid quantum repeater.

When fixing the number of memories for a specific set

of parameters, we investigated which distillation protocol is

optimal and found that setups working in parallel can be

advantageous.

Finally, we derived formulas for the generation rate of

entangled pairs per second (repeater rate) including the

classical communication times for acknowledging the success

of entanglement swapping and entanglement distillation. We

calculated the secret key rate per memory per second without

and with the classical communication time and found that the

main contribution is the time to distribute the entangled pairs,

which is contrary to the results in the literature.

Further studies could implement the formalism for the

quantum repeater in the context of finite keys (see, e.g., Ref. [4]

for a review) and for imperfect memories (see, e.g., Ref. [43]).
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APPENDIX: SOLUTIONS FOR THE

RECURRENCE FORMULAS

In this appendix, we give the solutions for the recurrence

formulas [Eqs. (7) and (8) in Sec. III B] that are needed for

calculating the repeater rate for the Deutsch et al. and the Dür

et al. protocols.

1. The Deutsch et al. protocol

We first solve the recurrence relation for Eq. (7c) and

terminate when kN = 0,

τD(kN ,N ) = τD(0,N )

(
3

2

)kN kN−1
∏

j=0

1

PD
D (kN − j,N )

︸ ︷︷ ︸

=:α(N)

+ 2N

kN−1
∑

i=0

(
3

2

)i i
∏

j=0

1

PD
D (kN − j,N )

︸ ︷︷ ︸

=:β(N)

. (A1)

Then, we replace τD(0,N ) by Eq. (7b), resulting in

τD(kN ,N ) = α(N )

PES(N )

(
3

2
τD(kN−1,N − 1)+ 2N−1

)

+ β(N ),

which is another recurrence relation depending on N . We can

now solve this relation until we reach τD(k0,0),

τD(kN ,N ) = τD(k0,0)

(
3

2

)N N−1
∏

j=0

α(N − j )

PES(N − j )

+
N

∑

i=1

(
3

2

)N−i

2i−1
N−i
∏

j=0

α(N − j )

PES(N − j )

+
N

∑

i=1

(
3

2

)N−i

β(i)

N−(i+1)
∏

j=0

α(N − j )

PES(N − j )
, (A2)

where we can replace τD(k0,0) by τD(0,0)α(0)+ β(0) using

Eq. (A1).

062335-9



BRATZIK, ABRUZZO, KAMPERMANN, AND BRUß PHYSICAL REVIEW A 87, 062335 (2013)

2. The Dür et al. protocol

a. Solution of the recurrence relation Eq. (8)

The solution of the recurrence relation in Eq. (8) is analogously given by

τDür(kN ,N ) = τDür(0,N )





kN−1
∏

j=0
PDür

D (kN − j,N )−1 +
kN−1
∑

i=0

i
∏

j=0
PDür

D (kN − j,N )−1





︸ ︷︷ ︸

=:a(N)

+ 2N





kN−1
∑

i=0

i
∏

j=0
PDür

D (kN − j,N )−1





︸ ︷︷ ︸

=:b(N)

,

(A3)

where we use the convention that
∑−1

i=0 f (i) = 0 and
∏−1

i=0 c(i) = 1. Now, inserting τDür(0,N ) = 3
2
τDür(kN−1,N −

1)+ 2N−1 into τDür(kN ,N ) = τDür(0,N )a(N )+ b(N ) leads to

the recurrence relation,

τDür(kN ,N ) = a(N )

PES(N )

(
3

2
τDür(kN−1,N − 1)+ 2N−1

)

+ b(N ). (A4)

The solution of this relation is

τDür(kN ,N ) = τ (k0,0)

(
3

2

)N N−1
∏

j=0

a(N − j )

PES(N − j )

+
N

∑

i=1

(
3

2

)N−i

2i−1
N−i
∏

j=0

a(N − j )

PES(N − j )

+
N

∑

i=1

(
3

2

)N−i

b(i)

N−(i+1)
∏

j=0

a(N − j )

PES(N − j )
.

(A5)

We get the solution for τDür(k0,0) from Eq. (A3),

τDür(k0,0) = τDür(0,0)a(0)+ b(0). (A6)

b. Derivation of the repeater rate without the classical

communication time for entanglement distillation and

entanglement swapping, Eq. (18)

For obtaining the solution for the recurrence relations with-

out classical communication time for entanglement distillation

and entanglement swapping, in Eq. (A3) we just set b(N ) = 0.

What remains from the solution is just the first termofEq. (A5),

which is exactly

τDürNC (kN ,N ) = τDürNC (k0,0)

(
3

2

)N N−1
∏

j=0

a(N − j )

PES(N − j )
. (A7)

We replace τDürNC (k0,0) by τDür(0,0)a(0) [see Eq. (A6)] and get

τDürNC (kN ,N ) = τDür(0,0)

(
3

2

)N N
∏

j=0

a(N − j )

PES(N − j )
. (A8)

The repeater rate is given by

RDürRep,NC = 1

T0τ
Dür
NC (kN ,N )

= P0

2T0

(
2

3

)N N
∏

i=0

PES(i)

a(i)
, (A9)

where we used the fact that τDür(0,0) = 2
P0
.

[1] D. Stucki, N. Walenta, F. Vannel, R. T. Thew, N. Gisin,

H. Zbinden, S. Gray, C. R. Towery, and S. Ten, New J. Phys. 11,

075003 (2009).

[2] H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, Phys. Rev. Lett.

81, 5932 (1998).

[3] W. Dür, H. J. Briegel, J. I. Cirac, and P. Zoller, Phys. Rev. A 59,

169 (1999).

[4] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek,
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Measurement-device-independent quantum key distribution with quantum memories

Silvestre Abruzzo, Hermann Kampermann, Dagmar Bruß
Institute for Theoretical Physics III, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany

We generalize measurement-device-independent quantum key distribution [ H.-K. Lo, M. Curty,
and B. Qi, Phys. Rev. Lett. 108, 130503 (2012) ] to the scenario where the Bell-state measurement
station contains also heralded quantum memories. We find analytical formulas, in terms of device
imperfections, for all quantities entering in the secret key rates, i.e., the quantum bit error rate
and the repeater rate. We assume either single-photon sources or weak coherent pulse sources plus
decoy states. We show that it is possible to significantly outperform the original proposal, even in
presence of decoherence of the quantum memory. Our protocol may represent the first natural step
for implementing a two-segment quantum repeater.

I. INTRODUCTION

Quantum communication has been developed in the
last thirty years. One prominent communication proto-
col is quantum key distribution (QKD) which aims at dis-
tributing a secret key between two distant parties. Suit-
able quantum systems for quantum communication are
photons as they have very low decoherence and they can
be easily generated, distributed and detected with stan-
dard technology. However, due to absorption in optical
fibers (or free-space), QKD with reasonable rates is only
possible up to ca. 150 km [1]. To overcome this prob-
lem quantum repeaters have been developed [2]. The
idea is to divide the distance between Alice and Bob in
segments, to create entanglement in each segment and
then to enlarge the distance using entanglement swap-
ping. Nowadays, the constituting parts of a quantum re-
peater have been realized and small networks have been
implemented in a laboratory set-up [3]. However, a com-
plete quantum repeater (even with two segments) that
will permit to outperform direct transmission has not
been realized yet [4].

Recently, measurement-device-independent QKD
(MDI-QKD-RELAY ) has been proposed [5, 6]. This
protocol is based on the principle of a quantum relay [7]
and uses weak coherent pulse (WCP) sources. Briefly
speaking, two parties, Alice and Bob, each equipped
with a WCP source, send photon pulses to a station
which performs a Bell-state measurement (BSM) and
communicates the result to Alice and Bob. Then Alice
sends Bob information regarding the used basis such that
if necessary Bob can implement a bit flip. This protocol
is measurement-device-independent because Alice and
Bob do not need to measure anything and therefore
the protocol is immune to detector attacks [8, 9]. The
MDI-QKD-RELAY has already been implemented
experimentally both in laboratory environment and
in a real-world environment [10–12]. Moreover, more
efficient protocols have already been proposed [13–15]
and finite-size corrections have been analyzed [15–17].

In this paper we extend the original MDI-QKD-
RELAY protocol [5] introducing quantum memories in
the BSM station. The first consequence is that herald-
ing, provided by quantum memories, permits to improve

the rate at a given distance where MDI-QKD can be
used. The advantage of our protocol over other quantum
repeater protocols is that it does not need entanglement
sources but only commercial off-the-shelf weak coherent
pulse sources. Quantum memories have not reached the
commercial market yet but they are under active devel-
opment. With our protocol we show that it is possible to
use quantum memories with low coherence time.
The manuscript is organized as follows. In Sec. II

we present a generalization of measurement-device-
independent QKD with single-photon sources to the sce-
nario with quantum memories. We derive the formula
for the secret key rate and we study its dependency on
the decoherence of the quantum memories. Finally, we
compare the secret key rate obtained with our protocol
with the one obtained with the quantum relay proposed
in [5]. In Sec. III we generalize the whole analysis to
WCP sources. In order to calculate the secret key rate
we consider QKD with decoy states [18, 19]. In Sec. IV
we give our conclusions.

II. SCHEME WITH SINGLE-PHOTON STATES

In this section we extend the MDI-QKD-RELAY
protocol presented in [5] introducing quantum memo-
ries (QM) and using single-photon-sources (SPS), which
would be the ideal type of source for this protocol. There-
fore, although SPSs are still not practical they will per-
mit to establish upper bounds on the achievable secret
key rate, i.e. sources with many-photon pulses or with
additional imperfections will lead to a worse secret key
rates. We denote the protocol considered in this section
as MDI-QKD-REPEATER-SPS .

A. The protocol

In the following we give the steps of the protocol which
is a generalization of the one proposed in [5] (see Fig. 1):

1. Alice and Bob prepare randomly and indepen-
dently one of the four qubit states |ψ〉 ∈
{|0〉 , |1〉 , |+〉 , |−〉} where |±〉 := (|0〉±|1〉)/

√
2. We
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FIG. 1. (Color online) Scheme of a measurement-device-
independent quantum repeater. The difference w.r.t.
MDI-QKD-RELAY is that quantum memories are used.
QM=quantum memories, BSM=Bell-state measurement.
The two sources produce single-photon states or weak coher-
ent pulses.

will refer to the set {|0〉 , |1〉} as the Z-basis (or rec-
tilinear basis) and the set {|+〉 , |−〉} as the X-basis
(or diagonal basis). The states are sent through
the quantum channel to the repeater station. The
information related to the created states is stored
by Alice and Bob locally. This process is repeated
continuously by Alice and Bob with frequency νs
which is the repetition frequency of the source.

2. When both quantum memories are filled up, the
quantum memories are read and a Bell-state mea-
surement (BSM) is performed. The result of the
BSM and the fact that the measurement was suc-
cessful are sent to both Alice and Bob.

3. If the measurement was successful Alice and Bob
will keep their stored information and if needed one
of the two parties will perform a bit flip. If the
measurement was not successful then Alice and Bob
will remove their classical information from their
stored pool of data.

4. After creating sufficiently many bits Alice and Bob
do the usual QKD post-processing which consists of
sifting, parameter estimation, error correction and
privacy amplification [1].

The second step is different from the original MDI-
QKD-RELAY protocol. Here quantum memories are
used for increasing the entanglement swapping success
probability. As a result the total secret key rate will be
higher than for the case without quantum memories.

B. The secret key rate

Concerning the security, the protocol is equivalent to
the entanglement-based repeater protocol 1 [5, 20, 21].

1 The equivalence is seen by the following arguments: consider
an entanglement-based repeater protocol where Alice and Bob

In this paper we consider the asymptotic secret key rate
which gives an upper bound on the achievable secret key
rate. Finite size corrections can be included using the
analysis done in [16, 17]. The formula for the asymptotic
secret key rate is given in [1, 5]

rREP
∞ :=

1

< T >
(1− h(eZ)− h(eX)), (1)

where h(p) := −p log2 p− (1−p) log2(1−p) is the binary
Shannon entropy, eX(eZ) is the quantum bit error rate
(QBER) in the X-basis (Z-basis) and 1

<T>
is the raw key

rate2. The QBER represents the fraction of discordant
bits in the raw key, which is the collection of bits stored
by Alice and Bob before the post-processing.

We give now an analytical expression for the raw key
rate. We denote by P0 the probability that the quan-
tum state sent by Alice (Bob) is stored in the quantum
memory3. One knows that this event has happened be-
cause the quantum memories are supposed to be her-
alded. In the following we will measure the time in units
of ∆t := ν−1

s which represents the time that the quantum
memory has to wait between two attempts. We introduce
the probability P (kA, kB) that the photons of Alice AND
Bob are stored at time-bin kA and kB and they where not
stored before, i.e.

P (kA, kB) := P 2
0 (1− P0)

kA−1(1 − P0)
kB−1. (2)

The average number of attempts by the source necessary

each produce the state
∣

∣φ+
〉

AC
=

∣

∣φ+
〉

DB
:= 1

√

2
(|00〉+ |11〉).

The subsystems C and D are sent to the channel and sub-
jected to a BSM. On the other hand, subsystems A and
B remain in Alice’s and Bob’s laboratory and are measured
in basis X or Z. For the case where both Alice and Bob
have chosen basis Z, the measurement is described by two
projectors {Π(0) := |0〉 〈0| ,Π(1) := |1〉 〈1|}. The resulting

state is given by
(

(Πi
A ⊗Πj

B
)⊗ ECD

)

(
∣

∣φ+
〉

AC
⊗
∣

∣φ+
〉

DB
) with

i, j = 0, 1. The QKD measurement and BSM act on different
Hilbert spaces and therefore they can be interchanged leading to
(

ECD ⊗ (Πi
A ⊗ Pi

j
B
)
)

(
∣

∣φ+
〉

AC
⊗
∣

∣φ+
〉

DB
) = ECD(|i〉C ⊗|j〉D)

where the state |i〉C ⊗ |j〉D represents two single photons pre-
pared in the Z basis with polarization i and j. The case of the
X basis is analogous.

2 The sifting rate does not appear because we employ an asym-
metric protocol where Alice and Bob produce with probability
almost one a state in base X and the remaining times a state in
base Z [22].

3 Here, we consider a completely symmetric set-up which implies
that the success probability is the same on Alice’s and Bob’s side.
However, in case that Alice and Bob have different probabilities,
it is easy to repeat the analysis keeping these two probabilities
different.
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d1

d2

d3

d4
 

ρA

 ρB

FIG. 2. (Color online) [adapted from [23]] Scheme for entan-
glement swapping with linear optics [3, 24]. The square with
a diagonal line is a polarizing beam splitter in the rectilin-
ear basis and the squares with a circle inside are polarizing
beam splitters in the diagonal basis. Entanglement swapping
is successful if d1 and d3 click (or d1 and d4 or d2 and d3 or
d2 and d4). The state ρA(ρB) is produced by Alice(Bob).

for generating one bit of the raw key is given by

< K > :=

∞
∑

s=0

∞
∑

k=1

k · s·

(PBSM (k|k, k)(1− PBSM (k|k, k))sP (k, k)+

+

k−1
∑

i=1

PBSM (k|k, i)(1− PBSM (k|k, i))sP (k, i)

+

k−1
∑

i=1

PBSM (k|i, k)(1− PBSM (k|i, k))sP (i, k)),

(3)

where PBSM (k|kA, kB) is the probability that the BSM
was successful at time k = max(kA, kB) when the two
involved photons where stored at times kA and kB . Note
that if we consider only the first line containing P (k, k)
then we recover the expression for the rate of the re-
lay. The second (third) line accounts for the case that a
photon sent by Bob (Alice) has been stored at a cer-
tain time i < k and the photon sent by Alice (Bob)
has been stored at time k. The average time becomes
< T >:= ∆t < K >.
In order to obtain a closed formula we consider a

specific implementation of the BSM [3, 24] where the
photons are first retrieved from the quantum memories
and then measured with linear optics (see Fig. 2). This
method is probabilistic and when implemented with per-
fect quantum memories and detectors leads to a maximal
success probability of 1

2 [25]. The BSM is successful when
a particular two-fold detection happens. We consider
practical threshold detectors with detection efficiency ηD
and dark count probability pD. We denote by ηM the re-
trieval probability of a photon from the quantum mem-
ory. The BSM success probability for the scheme given

in Fig. 2 as a function of ηMD := ηMηD is then given by
[26]:

PBSM (ηMD) :=
1

2
(1− pD)2(η2MD + 2(4− 3ηMD)ηMDpD

+ 8(1− ηMD)2p2D). (4)

For pD = 0 as we expect PBSM =
η2

MD

2 . Assuming that
ηM does not depend on the time a simple expression for
the average number of attempts in eq. (3) was derived in
[27, 28],

< K >:=
1

PBSM (ηMD)

3− 2P0

(2− P0)P0
. (5)

In the case of absence of quantum memories we get
< K >relay:= (PBSM (P0ηD))−1. For small P0 the rate

of the repeater scales as P−1
0 while the rate for the relay

scales as P−2
0 . Moreover for the repeater, dark counts do

not play a role as typically pD ≪ ηMD. The equivalent
condition for the relay would be pD ≪ ηDP0, which is
much more difficult to ensure. For the quantum repeater
ηM plays the role of P0 for the relay.
With the same formalism we calculate the QBER

which enters in the formula of the secret key rate. Let
ej(k|kA, kB) be the QBER in the basis j ∈ {X,Z} when
the BSM has been performed at time k and the two pho-
tons were stored at times kA and kB, respectively. Then
the average QBER in the basis j is given by

ej =

∞
∑

k=1

[

ej(k|k, k)P (k, k)

+

k−1
∑

i=1

ej(k|k, i)P (k, i)

+

k−1
∑

i=1

ej(k|i, k)P (i, k)
]

, (6)

where the first line gives the QBER for the case of a
quantum relay, i.e. when both photons arrive at the same
time. The second and third lines include the contribu-
tion to the QBER given by the measurements where one
photon arrived at i < k and the second arrives at time k.
Here, we consider a simple model of decoherence where

the quantum memory stores perfectly a quantum state
for a certain time τ and then it transforms the quantum
state to the identity for t > τ [27]. We call τ the co-
herence time and measure it in units of ∆t. This model
is valid in quantum memories where the fidelity remains
approximately constant for a certain time and then it
drops very fast. Formally, we have

ej(k|kA, kB) := ej(∞)Θ[τ − (k − kA)]Θ[τ − (k − kB)]

+
1

2
(1 −Θ[τ − (k − kA)]Θ[τ − (k − kB)]),

(7)

where Θ[t] is the Heaviside step function [29] such that
Θ[t] = 1 for t ≥ 0 and Θ[t] = 0 for t < 0 and ej(∞) is
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the QBER that would be obtained if the memory does
not decohere (τ → ∞) and it is given by [30]

eX(∞) = eZ(∞)

=
2pD

(

2 (ηMD − 1) 2pD − (ηMD − 2) ηMD

)

η2MD + 8 (ηMD − 1) 2p2D + 2 (4− 3ηMD) ηMDpD
.

(8)

Inserting eq. (2), eq. (7) and eq. (8) in eq. (6) we obtain
a closed formula for the average QBER:

ej = ej(∞) +
1

2

(

1
2 − ej(∞)

)

(1− P0)
1+τ

2− P0
. (9)

It is easy to verify ej(∞) ≤ ej ≤ 1
2 and moreover

limτ→∞ ej = ej(∞) and limP0→0 ej = 1
2 . Note that due

to our specific set-up eX = eZ .
If the QBER is too high it is not possible to extract

a secret key as the secret key rate in eq. (1) becomes
non-positive. When eX = eZ the maximal QBER for
a non-zero secret key rate is given by eMAX := 0.11. A
critical parameter is therefore τMIN

SPS which represents the
minimal τ permitting to extract a secret key and can be
obtained from eq. (9) by requiring that eX = eMAX. The
minimal allowed coherence time is given by

τMIN
SPS =

log

(

(P0−2)(eX (∞)−eMAX)
(P0−1)(2eX (∞)−1)

)

log (1− P0)
. (10)

In the following section we will provide numbers for
the minimal coherence time and the secret key rate in a
realistic scenario.

C. Performance

We discuss now the performance of the protocol as a
function of the imperfections of the set-up. Then we an-
alyze the relation with the original MDI-QKD-RELAY
with single-photon states. We consider an implemen-
tation where photons are transmitted through optical

fibers. Therefore P0 := ηT where ηT := 10−
αL

2·10 is the
probability that a photon has not been absorbed after
traveling for a distance L

2 and α is the absorption co-
efficient. Throughout the whole paper we will consider
α = 0.17 dB/km which is the lowest attenuation in com-
mon optical fibers. In the following analysis we will con-
sider detectors with detection efficiency ηD = 0.2 and
dark count probability pD = 10−6. Such detectors are
considered optimistic but not unrealistic [1]. Regarding
quantum memories we use ηM = 0.6 which is a value
already achieved experimentally [3].
In Fig. 3 we show τMIN

SPS versus the distance between
Alice and Bob. For L = 400 km we get τMIN ≈ 4 · 104
which can be transformed in seconds multiplying by ∆t.
For an hypothetical source at 100 MHz this would corre-
spond to a coherence time of the order of 400 microsec-
onds. Note that single-photon sources at such a speed do
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not yet exist. We will reconsider this number in the next
section when we will consider WCP sources. By increas-
ing the repetition frequency it is possible to use quantum
memories with lower coherence times. This is different
to standard quantum repeater protocols where the coher-
ence time depends also on the communication time. We
see that the curve of τMIN is tightly upper bounded by
the average maximal time that is necessary to wait before
both quantum memories are filled up. This can be under-
stood by observing that for P0 ≪ 1 and eX ≈ 0 we have

< K > PBSM ≈ 3
2P0

and τMIN ≈ log(2eMAX )
−P0

≈ 1.51
P0

.

In Fig. 4 we show the secret key rate as a function
of τ/τMIN

SPS for a fixed distance between Alice and Bob
(L = 400 km). We see that a flat region is reached for
τ ≈ 5τMIN

SPS . The same behavior is found also for other
values of the distance between Alice and Bob.

Finally, we discuss the secret key rate as a function of
the distance and compare it to a set-up without quantum
memories. As shown in Fig. 5, the set-up with quantum
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FIG. 5. (Color online) Secret key rate per pulse versus
distance between Alice and Bob. Parameters: ηD = 0.2,
ηM = 0.6, pD = 10−6, α = 0.17 dB/km.

memories permits to increase significantly the secret key
rate with respect to a set-up without quantum memories.
For ηD = 0.2, ηM = 0.6 and pD = 10−6 the cross-over
distance is around 100 km. Moreover, we see that the
difference between τ = 2τMIN and τ = ∞ is very small.
This result suggests that the protocol is not very sus-
ceptible to decoherence of quantum memories: perfect
quantum memories are not needed as coherence times
slightly bigger than τMIN permit to achieve the maximal
secret key rate obtainable with perfect quantum memo-
ries. Moreover, we have performed numerical simulations
for quantum memories where the decoherence model is
depolarization4, and we found that this result does not
change qualitatively.
Concluding this section, we have proven that using

single-photon sources and imperfect quantum memories
it is possible to essentially double the distance with
respect to MDI-QKD-RELAY when implemented with
single-photon sources.

III. SCHEME WITH WEAK COHERENT

PULSE SOURCES

A critical assumption of the previous section was that
Alice and Bob have on-demand single-photon sources
at their disposal. In this section we consider sources
of weak coherent pulses which offer a very high repe-
tition frequency - with current technology even in the
order of GHz [31]. On the other hand this type of
source requires a more complicated security analysis due
to the fact that multi-photon pulses are susceptible to
the photon-number-splitting (PNS) attacks [32]. In or-
der to detect this attack it is possible to use decoy states

4 The model we have considered is D(ρ) := e−
t

τ ρ+ 1−e
−

t

τ

2
1l

where τ is the coherence time.

[18, 19]. In the scheme with decoy states Alice and Bob
prepare phase randomized weak coherent pulses of the

form ρ =
∑∞

n=0 p(n) |n〉 〈n| with p(n) := e−µ µn

n! . The
parameter µ is the intensity (average photon number) of
the pulse.

The QKD protocol with decoy states [18, 19] which we
employ here is analogous to the one described in sec. II,
apart from the following differences:

• when Alice and Bob prepare the state they choose
at random and independently also its intensity µ
which is a continuous parameter with 0 ≤ µ < ∞.
One particular intensity µ is chosen with probabil-
ity almost one,

• the measurements for pulses with intensity µ are
used for extracting a secret key, whereas the others
are used for detecting Eve’s PNS attack.

The formula for the secret key rate is analogous to
eq. (1) with the modifications due to the fact that Eve
can perform PNS attacks. It is given by [5]:

r∞ := max
µ>0

[

1

< T >
(f11(1 − h(e11X ))− h(eZ))

]

, (11)

where f11 is the fraction of bits in the raw key which
are generated when Alice and Bob send single-photon
states and e11X is the QBER of these bits. The QBER
e11X , is accessible due to the fact that we use decoy states
[5]. The QBER eZ is determined using all data. All
quantities entering in the formula of the secret key rate in
eq. (11) depend on a generic intensity µ. This intensity is
used as free-parameter for the optimization of the secret
key rate. The optimal intensity is denoted by µ (see
above). In the following we derive analytical expressions
for these parameters as function of the imperfections of
the set-up. We will assume that detectors have no dark
counts. This will permit to have closed formulas which
will allow to understand the role of each parameter. Dark
counts do not play a crucial role as long as ηMD ≫ pD.
For realistic choice of parameters this condition is easily
satisfied.

Given a pulse of n-photons, the probability that at
least one photon is stored into the quantum memory is
given by (1− (1− ηT )

n) where ηT is the probability that
one photon has not been absorbed by the quantum chan-
nel. In general, the probability P0 that a state has been
stored into the quantum memory is given by

P0 :=
∞
∑

n=1

p(n)(1− (1− ηT )
n)

= 1− e−µηT , (12)

which for µηT ≪ 1 reduces to P0 = µηT as expected.

The BSM success probability depends on the probabil-
ity to store a state with n-photons given that the source
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has generated a state of m-photons with m ≥ n. For-
mally,

P (n) :=

∞
∑

m=n

p(m)

(

m

n

)

ηnT (1 − ηT )
m−n

=
(ηTµ)

n

n!
e−ηTµ. (13)

The quantity
(

m
n

)

ηnT (1 − ηT )
m−n is the probability that

n photons survive from a state with m-photons after the
transmission through the channel. The probability that
the BSM is successful given that one quantum memory
contains na photons and the other nb photons is given by
(see the appendix for our derivation)

PBSM (na, nb) = [(1− ηMD

2
)na − (1 − ηMD)na ]·

· [(1− ηMD

2
)nb − (1− ηMD)nb ]. (14)

For na = nb = 1 we obtain PBSM (1, 1) = 1
2η

2
MD in ac-

cordance to eq. (4). Thus, the BSM success probability
is given by

PBSM := 2

∑∞
na=1

∑∞
nb=1 P (na)P (nb)PBSM (na, nb)

∑∞
na=1

∑∞
nb=1 P (na)P (nb)

(15a)

= 2
e−2µηT (ηMD−1)

(

e
1

2
µηMDηT − 1

)

2

(eµηT − 1) 2
. (15b)

The denominator in eq. (15a) gives the probability that
two photons are stored in the quantum memories which
is equal to P 2

0 . The numerator is the total probability
of all events in which the BSM is successful when one
quantum memory contains na photons and the other one
contains nb photons. The factor 2 comes from the fact
that the BSM with linear optics can distinguish only two
Bell states. For the limiting case µηT ≪ 1 we obtain
PBSM = PBSM (1, 1).
The fraction of measurements coming from single-

photons is denoted as f11 and given by

f11 =
P (1)2PBSM (1, 1)

∑∞
na=1

∑∞
nb=1 P (na)P (nb)

(16a)

=
µ2η2MDη

2
T e

µηMDηT −2µ

4
(

e
1

2
µηMDηT − 1

)

2
, (16b)

which in the limit µηT ≪ 1 becomes f11 = 1 as in this
limit all measurements come from single-photon states.
The numerator of eq. (16a) represents the probability
that the sources of Alice and Bob produce single-photons
which are stored in the quantum memories and which
lead to successful BSM. The denominator is the total
probability to obtain a state which does not contain the
vacuum.
Regarding the QBER we observe that if there are no

dark counts then both e11X and eZ are zero. This property
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FIG. 6. (Color online) Secret key rate versus distance between
Alice and Bob. Comparison between relay [5] (blue) and re-
peater (see eq. (11) )(red). Parameters: ηD = 0.2, ηM = 0.6,
pD = 0, α = 0.17 dB/km, τ = ∞.

of the protocol has been discussed also in [5]. Therefore,
errors will arise only due to decoherence. The calculation
is analogous to the one for single-photon sources of sec. 6.
We assume the same decoherence model. The only dif-
ference comes from the fact that now P0 is different, in
particular we have

e11X = e11X (∞) +
1

2

(

1
2 − e11X (∞)

)

(1− P 11
0 )1+τ

2− P 11
0

, (17)

eZ = eZ(∞) +
1

2

(

1
2 − eZ(∞)

)

(1− P0)
1+τ

2− P0
, (18)

with P 11
0 = p(1)ηT the probability to store single-photon

states in one quantum memory.

We have thus derived all quantities present in the for-
mula of the secret key rate, and we can now evaluate and
characterize the protocol.

In Fig. 6 we show the comparison between MDI-QKD-
REPEATER-WCP and MDI-QKD-RELAY-WCP . As
we see quantum memories permit to increase significantly
the secret key rate or the distance where it is possible to
perform QKD.

As shown in Fig. 3, the minimally allowed coherence
time τMIN

WCP is larger then τMIN
SPS . The reason is that now

the produced state contains also a vacuum that reduces
the probability that a photon arrives to the quantum
memory. However, the difference is less than one order
of magnitude. Moreover, analogously to the case of SPS
the flat region(τ → ∞) of the secret key rate is reached
already with τ = 5τMIN

WCP .

In practical cases, only a finite number of different de-
coy states is used. In order to adapt our result to this
case it is enough to use the results of [13]. Moreover,
finite-size corrections are necessary for giving realistic es-
timates. This can be done by adopting the formalism
developed in [15–17]
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IV. CONCLUSIONS

In this paper we have explored the possibility to en-
able long distance QKD without entanglement sources.
We have shown that when quantum memories are used it
is possible to improve the distance where measurement-
device-independent quantum key distribution can be im-
plemented. Moreover, we have shown that the protocol
we consider in this paper is robust against common de-
vice imperfections such as detector efficiency, quantum
memory retrieval efficiency and finite decoherence time.
We believe that our result could be used as a first step in
the development of long-distance quantum key distribu-
tion. It requires weak coherent pulse sources, which are
already available commercially, and heralded quantum
memories which are under current development.
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APPENDIX

We prove eq. (14) when the Bell-state measurement
is done between two WCP states in the computational
basis. The proof for the case of the diagonal basis is
analogous.

We define

Gi1i2i3i4

(

ρ
(na)
A , ρ

(nb)
B

)

:= tr
(

Π
(1)
di1

Π
(0)
di2

Π
(1)
di3

Π
(0)
di4

E
(

ρ
(na)
A ⊗ ρ

(nb)
B

))

(19)

where E represents the action of the partial BSM and is
given by the following mapping (see Fig. 2)

bH → d3 + d4
2

, bV → d1 − d2
2

, (20)

aH → d1 + d2
2

, aV → d3 − d4
2

, (21)

where aH , aV are the modes of ρA and bH , bV are the

modes of ρB. The POVM elements of threshold detectors
are given by

Π(0) :=

∞
∑

i=0

(1− ηD)i |i〉 〈i| ,Π(1) :=

∞
∑

i=0

(1− (1− ηD)i) |i〉 〈i| .

(22)

The success probability of a BSM is given by

PBSM (na, nb) :=
1

4

∑

i1i2i3i4∈A

∑

φ∈B

Gi1i2i3i4

(

φ⊗na , φ⊗nb

)

, (23)

where A = {1234, 1243, 2134, 2143} is the set con-
taining the combinations of two-fold detection lead-
ing to a successful entanglement swapping and B =
{|HH〉 〈HH | , |V V 〉 〈V V |} is a set containing the quan-
tum states produced by the two sources of Alice and Bob

when they choose the computational basis. The set B
does not contain the cross-terms like σ := |HH〉 〈V V |
because Gi1i2i3i4 (σ

⊗na , σ⊗nb) = 0. Due to the symme-
tries of the map E we find that the function G is equal
for all combinations of indices in A and quantum states
in B, therefore

PBSM (na, nb) =
4 · 2
4
G1234

(

|HH〉 〈HH |⊗na , |HH〉 〈HH|⊗nb

)

. (24)

Using the fact that |HH〉 := a†Hb
†
H |0〉 and using the defi- nition of E it is straightforward, but lengthly, to calculate
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G and finally to find the result in eq. (14).
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Finite-range multiplexing enhances quantum key distribution via quantum repeaters
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Quantum repeaters represent one possible way to achieve long-distance quantum key distribution.
Collins et al. in [Phys. Rev. Lett. 98, 060502 (2007)] proposed multiplexing as method to increase
the repeater rate and to decrease the requirement in memory coherence time. Motivated by the
experimental fact that long-range connections are practically demanding, in this paper we extend the
original quantum repeater multiplexing protocol to the case of short-range connection. We derive
analytical formulas for the repeater rate and we show that for short connection lengths it is possible
to have most of the benefits of a full-range multiplexing protocol. Then we incorporate decoherence
of quantum memories and we study the optimal matching for the Bell-state measurement protocol
permitting to minimize memory requirements. Finally, we calculate the secret key rate and we
show that the improvement via finite-range multiplexing is of the same order of magnitude as via
full-range multiplexing.

I. INTRODUCTION

Quantum key distribution (QKD) [1–3] allows two par-
ties to share a secret key which might be used for applica-
tions in cryptography. The preferred quantum systems
used for transmitting information are photons. These
can be generated, distributed and measured fairly easily
with standard technology. However, photons are usu-
ally transmitted through optical fibers and due to ab-
sorption the maximal distance where QKD is feasible is
around 150 km [3]. In order to overcome this problem
the concept of quantum repeaters can be used [4, 5]. For
increasing the final repeater rate and the final fidelity
many variations of the original protocol have been inves-
tigated [6–8], where one of the influential generalizations
is multiplexing [9].

FIG. 1. (Color online) Alice and Bob are equipped with
single-photon sources. Each source is connected through an
optical fiber to a quantum memory in the repeater station.
Red spheres represent filled quantum memories whereas gray
spheres represent empty quantum memories. In this example
the maximal connection length is one, therefore the connec-
tions indicated in blue are allowed and the magenta one is
forbidden.

In fig. 1 we show a typical set-up of a quantum re-
peater with multiplexing. Alice and Bob have many
single-photon sources which are connected to a quantum
memory in the repeater station. Optical fibers are lossy,
therefore after one attempt some quantum memories are
filled up (red spheres in the picture) and some are empty
(gray spheres). One possibility is to perform Bell-state
measurements (BSMs) only between parallel quantum
memories; the second possibility, which is called mul-
tiplexing is to allow BSMs between two arbitrary quan-
tum memories of the two arrays. In Ref. [9] the authors
give an analytical formula for the entanglement produc-
tion rate with multiplexing when quantum repeaters with
two segments are considered. The conclusion of [9] was
that multiplexing gives only a modest improvement on
the rate w.r.t. the case of parallel connections. How-
ever, it improves significantly the requirements on mem-
ory decoherence. In Ref. [10] a new protocol based on
the Duan-Lukin-Cirac-Zoller protocol [6] has been stud-
ied and it has been found numerically that RM ≈ R1.12

P

where RM is the rate using multiplexing and RP is the
rate using parallel connections. Other works concerning
multiplexing include Ref. [11] which studied the repeater
rate and the final fidelity in the limit of large number of
quantum memories, Ref. [12] which derived an analytical
formula for the average number of attempts necessary for
performing the first connection and Ref. [13] where a new
protocol based on multiplexing has been proposed.
In this paper we assume a set-up with one repeater

station, i.e. two segments (see fig. 1). We consider mul-
tiplexing when few quantum memories are used. We in-
troduce the finite-range multiplexing protocol (FIRMP),
which is motivated by the fact that long-range connec-
tions are experimentally demanding [14–16]. We provide
analytical formulas for the repeater rate using the full-

range multiplexing protocol (FURMP) and the FIRMP.
Then we investigate quantum memory decoherence, and
we study numerically the optimal algorithm such that
the memory requirements for QKD are minimized.
The manuscript is organized as follows. In sec. II we

introduce quantum key distribution and the quantum re-
peater protocol with finite-range multiplexing. Moreover,
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FIG. 2. (Color online) Description of our notation of time.
Refer to the main text for the meaning of ti. Bold verti-
cal lines which are proportional to ν−1 represent the instant
where sources produce new photons. The quantity ν is the
frequency of the source measured in pairs per second.

we describe different Bell-state measurement strategies.
In sec. III we derive analytical formulas for the repeater
rate in the case of deterministic and probabilistic Bell-
state measurements. In sec. IV we show how to min-
imize the memory requirement such that quantum key
distribution is still possible and in sec. V we calculate
the secret key rate. Finally, in sec. VI we summarize the
results and outline possible future developments.

II. THE PROTOCOL

A. General description

Alice and Bob are two parties at a distance D who
want to create a secret key using QKD. Throughout the
present paper we consider that they use a quantum re-
peater with two segments, i.e. one repeater station. This
set-up is particularly important because Alice and Bob
do not necessarily need entanglement sources or quan-
tum memories. Instead, single-photon sources or weak
coherent pulse sources are sufficient. This set-up resem-
bles the measurement-device independent QKD protocol
proposed in [17, 18]. This protocol has been extended
to the quantum repeater scenario with quantum memo-
ries in [19]. In this paper, the sources are supposed to
be single-photon sources. However, the analysis for weak
coherent pulse sources can be done following the methods
developed in [17, 19]. We assume that the repeater sta-
tion contains two arrays of m quantum memories, where
one side receives the photons sent from Alice and the
other one receives the photons sent from Bob (see fig. 1).
In the following we give the steps of the multiplexing

protocol with finite-range connection. We define time
variables denoted by ti with integers t ∈ [1,∞) and i =
0, 1, 2, 3 interpreted as follows. The value of t denotes the
attempts of the sources to produce photons. As shown in
fig. 2 the variable ti can be always related to the elapsed
time in seconds from the beginning of the experiment
by using the repetition frequency ν of the source which
is measured in pairs per second. Therefore 10 ≡ ν−1,
20 ≡ 2ν−1, etc. We will call the interval between t0 and
(t + 1)0 a time-bin. The subindex i permits to describe

FIG. 3. (Color online) Representation of the repeater station,
performing FIRMP: Steps performed in the repeater proto-
col in one time-bin. A red (gray) sphere indicates that the
quantum memory is filled (empty). We have m = 6 quantum
memories for each array and the connection length is w = 1.
In t2 it is not possible to perform all possible connections due
to the limited connection length. In the case of FURMP
in t2 three BSMs would be possible and in t3 all quantum
memories would be empty.

instants contained in a time-bin. At time t0 = 00 all
quantum memories are empty and the protocol is just
starting. The steps are the following (see fig. 3):

at t0 : Alice and Bob prepare randomly and indepen-
dently m random states each according to a cho-
sen QKD protocol1. They store the information
regarding the preparation and they send the states
to the repeater station.

at t1 : Arriving photons are stored and heralded in the
corresponding quantum memory.

at t2 : The repeater station performs the maximal num-
ber of Bell-state measurements ℓ compatible with
the maximal connection length w. For w = 0 only
BSMs in parallel are allowed and for w = m − 1
any connection is possible.

at t3 : The measured quantum memories are again
empty. Restart from i = 0, i.e. t3 ≡ (t+ 1)0.

The repeater station communicates to Alice and Bob
which pairs of quantum memories were used for the
BSMs, as well as the measurements result. The protocol
ends after a given number of rounds. After that, Alice
and Bob will execute the standard QKD protocol which
consists of sifting, parameter estimation, error correction
and privacy amplification [3].
The advantage of a multiplexing protocol occurs at

time t2 where BSMs are performed such that the num-
ber of connections is maximized. In the case of FURMP

1 For example, in the case of BB84 they prepare one of the
four qubit states |ψ〉 ∈ {|0〉 , |1〉 , |+〉 , |−〉} where |±〉 := (|0〉 ±
|1〉)/

√
2.
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this corresponds to performing as many BSMs such that
one array of quantum memories is completely empty. In
the case of FIRMP the maximal number of connections
can be found using the maximum cardinality bipartite

matching [20, 21], i.e. the maximum number of edges in
a given bipartite graph such that each vertex has at most
one neighbor. This problem can be explicitly formulated
as follows: There is a list of filled quantum memories
on the left. Each quantum memory on the left may be
connected to several quantum memories on the right, de-
pending on the maximal connection length. This defines
a bipartite graph. By solving the maximum cardinality
bipartite matching algorithm we find the maximal num-
ber of possible connections. In the case of full-range mul-
tiplexing the optimal matching will always leave one of
the two arrays completely empty. This is not the case
with finite-range multiplexing. However, it remains true
that at least one of two involved quantum memories has
been filled in the same time-bin when the connection is
done. Obviously, there could be several possible match-
ings which maximize the number of connections. The
chosen matching can have an influence on the final state
fidelity due to memory decoherence. Possible strategies
for choosing a matching are discussed in the following.

B. Multiplexing strategies

We can view the set-up in a repeater station as a bipar-
tite weighted graph where the filled quantum memories
are the vertices and the possible connections restricted
by the maximal connection length are edges. To each
vertex is assigned an integer value given by the arrival
time of the stored photon. If the quantum memory is
empty it does not represent a vertex.
A protocol for the BSMs matching consists of the fol-

lowing steps:

1. Identify all possible connections between the ver-
tices. Assign to each edge a weight ∆ given by the
absolute value of the difference between the arrival
times. This quantity identifies the amount of de-
coherence that has been experienced by the older
quantum memory. This is a meaningful quantity
because one of the two involved quantum memo-
ries is always fresh. The resulting data structure is
a weighted bipartite graph A = {(ej,∆j)}, i.e. a
set of edges (vertex-pairs) and edge weights.

2. For each weighted bipartite graph A solve the max-

imum cardinality bipartite matching problem. We
denote by M the subset of A containing graphs
with exactly ℓ edges, where ℓ is the highest match-
ing cardinality obtained over all graphs. This sub-
set contains all graphs which maximize the number
of connections, and thus the repeater rate.

3. Select one element Ai ∈ M by the following strate-
gies:

FIG. 4. (Color online) A red (gray) sphere indicates that the
quantum memory is filled (empty). The number in the sphere
represents the arrival time of the corresponding photon. On
the left we have the situation at time 21 (see fig. 3). We con-
sider w = 1. On the right three possible matching strategies
are shown. Blue lines indicate the difference between the ar-
rival times of the photons. It is possible to see the schemes on
the right side as weighted bipartite graphs: red spheres are
vertices and blue edges have indicated weights.

Strategy 0 : choose with equal probability an arbitrary
Ai from M

Strategy 1 : minimize the sum of the weights
∑l

j=1 ∆j

Strategy 2 : maximize the sum of the weights
∑l

j=1 ∆j

The optimization involved in strategy 1 and 2 is known
in literature as maximum weighted bipartite match-

ing[20] and the optimization algorithm has complexity
O(m3 logm) [22] where m is the number of quantum
memories on one side.

Strategy 1 connects pairs which arrived with a short
time difference giving as a result the highest correlations
which are possible to produce at a certain time. The
disadvantage is that older pairs remain in the memories
and therefore are used at a later time, having experi-
enced decoherence for a long time. Strategy 2 resolves
this mentioned problem, connecting pairs with the largest
time difference. This strategy removes from the quan-
tum memories older pairs as soon as possible, leaving
only quantum memories which suffered decoherence for
a short time. The disadvantage is that poor correlations
are produced even when perfect correlations could be ob-
tained. We have seen therefore, that both strategies have
advantages and disadvantages. In sec. IV we will discuss
which strategy minimizes the memory requirements for
QKD. However, note that the repeater rate is indepen-
dent of the matching strategies.
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III. REPEATER RATE AS FUNCTION OF

CONNECTION LENGTH

In this section we derive analytical formulas for the
repeater rate for the FURMP and FIRMP. Let TC be
the current time (measured in time-bins as defined in the
previous section), then the repeater rate is the fraction
of successful BSMs per memory per time-bin calculated
over the whole running time of the quantum repeater
protocol, i.e.

R(TC) :=
1

TC

TC
∑

t=1

< ℓ > (t2)

m
, (1)

where < ℓ(t2) > is the average number of successful
BSMs at time t2. Many quantum repeater protocols are
based on a probabilistic Bell-state measurement [6, 8].
The BSM is probabilistic when implemented with linear
optics [23] or with detectors of finite efficiency [8]. When
a measurement fails, the involved quantum memories are
supposed to be emptied and this attempt is marked as
unsuccessful. Let PBSM be the success probability of the
BSM. The probability that ℓ BSMs are successful is given
by

Prob[Σ = ℓ](t2) :=
m
∑

i=ℓ

(

i

ℓ

)

Prob[Λ = i](t2)P
ℓ
BSM (1 − PBSM )i−ℓ, (2)

where Σ and Λ are random variables that can assume val-
ues 0,1, ..., m. The random variable Σ denotes the num-
ber of successful BSM and Λ the number of performed
BSMs. The factor P ℓ

BSM (1 − PBSM )i−ℓ represents the
probability that ℓ BSM are successful and i − ℓ are not
successful. This event can happen in

(

i
ℓ

)

different ways.
The average number of successful BSM at time t2 is

given by

〈ℓ〉 (t2) :=

m
∑

ℓ=0

ℓ Prob[Σ = ℓ](t2) (3)

In the following we will focus on Prob[Λ].
We denote as c = (a,b) one possible configuration of

the quantum memories in the repeater station. The vec-
tors a and b of length m represent the status of the quan-
tum memories on Alice’s and Bob’s side, respectively (see
fig. 1). Each component takes the value 0 if the corre-
sponding quantummemory is empty and 1 otherwise. We
define as Hm

w (ℓ) the set of all configurations leading to
ℓ BSMs where w is the maximal connection length. For
example, let a = (0, 1, 0, 1, 1, 0) and b = (1, 1, 0, 0, 0, 1)
be the configurations of the quantum memories as seen

in fig. 3 at t2, then (a,b) ∈ H6
1(2) and (a,b) ∈ H6

5(3) but
(a,b) 6∈ H6

1(3) because when w = 1 the maximal number
of connections is ℓ = 2. Moreover, the set of all possible
configurations is Hm

w := ∪m
ℓ=0H

m
w (ℓ) .

We model the whole process consisting of storage and
measurement with two maps. The storage map σℓ :
Hm

w (0) → Hm
w (ℓ) connects configurations at time t0, i.e.,

before photons are received, to configurations at time
t1, i.e., after photons are received and stored. Given
c ∈ Hm

w (0), the probability to have the configuration
c
′ ∈ Hm

w (ℓ) is given by

Prob[σℓ(c) = c
′] := Prob[c′|c] (4)

:=

m
∏

i=1

Prob[c′i|ci] (5)

:=

m
∏

i=1

Prob[a′i|ai]Prob[b
′
i|bi], (6)

with

Prob[a′i|ai] := (1− p)(1− a′i)(1− ai)

+ pa′i(1− ai) + a′iai, (7)

where p is the probability that a photon has not been
absorbed by the quantum channel. The probability
Prob[b′i|bi] is defined analogously. Equation (6) holds be-
cause the channels connecting each source to each quan-
tum memory are independent. Equation (7) gives the
conditional probability to have a final configuration a′i
starting from an initial configuration ai. The three ad-
dends on the right-hand side of eq. (7) are mutually ex-
clusive, i.e. given a certain configuration at most one is
not zero.
The measurement map µℓ : Hm

w (ℓ) → Hm
w (0) relates

configurations at time t1 and (t+1)0, i.e., after the quan-
tum memories have been used for the BSMs. This map is
deterministic, as the configuration c

′ ∈ Hm
w (ℓ) after the

measurement is uniquely determined by the matching al-
gorithm.
Coming back to the probability Prob[Λ = ℓ](t2) to have

ℓ BSMs we get

Prob[Λ = ℓ](t2) :=
∑

c′∈Hm
w
(ℓ)

Prob[c′](t1) (8)

=
∑

c′∈Hm
w
(ℓ)

∑

c∈Hm
w
(0)

Prob[σℓ(c) = c
′]Prob[c](t0),

(9)

which is the sum over all possible initial configurations c
and configurations c

′ at time t2 of the probability that
c leads to c

′ weighted with the probability that the con-
figuration c was realized at time t0. The probability
Prob[c](t0) is given by
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Prob[c](t0) =
∑

c′∈Hm
w
(0)

m
∑

l=0

Prob[µℓ ◦ σℓ(c
′) = c]Prob[c′]((t− 1)0), (10)

i.e., given a state c
′ ∈ Hm

w (0) at time (t − 1)0, we cal-
culate the probability that photon storage and measure-
ment will lead to c ∈ Hm

w (0) at time t0. This last proba-
bility can be rewritten as

Prob[µℓ◦σℓ(c) = c
′] =

∑

c′′∈Hm
w
(ℓ)

δµℓ(c′′),c′Prob[σℓ(c) = c
′′],

(11)
where δa,b is the Kronecker delta such that δa,b = 1 iff
a = b and δa,b = 0 otherwise. Using the previous formu-
las and the initial condition Prob[(a,b)](00) = δa,0δb,0
we have now all elements for calculating the repeater rate
in eq. (1). In order to do that one inserts eq. (11) into
eq. (10) which is then inserted in eq. (8) which is finally
used for calculating eq. (3) through eq. (2). The calcula-
tion was performed in C++. The measurement map has
been implemented using the library provided at Ref. [24].
The complexity of the calculation is proportional to the
number of time steps because for calculating < l > (t) it
is sufficient to know quantities at time t−1. However, the
set Hm

w (ℓ) grows quite fast as function ofm and therefore
reasonable time considerations restricted the calculation
to a maximal of m ≤ 7. Regarding fig. 5 the calcula-
tion ran for two days on a cluster of 10 nodes, cpu with
four-cores and eight GB of RAM.

In the following and for the rest of the paper we con-
sider p = 0.001 which represents the transmission prob-
ability of a single photon over an optical fiber of length
D = 150 km and for an absorption coefficient α = 0.2
dB/km. The relation between p and the distance be-

tween Alice and the repeater station D is p = 10−
αD

10

[25].

As seen in fig. 5 the repeater rate increases as function
of the time reaching a plateau at time t ≈ 104. We see
that this behavior persists when changing the maximal
connection length w. Analyzing the dependence on the
maximal connection length, we observe in fig. 5 that the
gap between w = 0 and w = 1 is almost the same than
the gap between w = 0 and w = 4 which represents full-
range multiplexing. This shows that in an experimental
implementation in order to profit of multiplexing it is
not necessary to have long-range connection. Moreover,
for our set-up with a source at 1 kHz, the loading time
is 10 s long. This result could give a hint that in more
complex quantum repeater protocols with many repeater
stations, using distillation and classical communication,
the loading time could play a significant role in the total
time of the execution of the quantum repeater protocol.

Finally, we give an analytical formula for the rate when
the plateau is reached. The time evolution of our system
is specified in eq. (10). For t → ∞, the rate becomes
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FIG. 5. (Color online) Repeater rate per memory as function
of the time for m = 5 and various maximal connection length
w (see eq. (1)). Parameters: p = 0.001, PBSM = 1.

time-independent:

Prob[c] =
∑

c′∈Hm
w
(0)

m
∑

l=0

Prob[µℓ ◦ σℓ(c
′) = c]Prob[c′].

(12)
Here Prob[c] is the unknown to be determined. We derive
an analytical form of Prob[c] in App. A. Here, we use
this formula (eq. (A2)) for calculating the asymptotic
repeater rate as function of the BSM success probability.
As shown in fig. 6 the largest improvement is possible to
have with full-range multiplexing, but already a similar
improvement is reached with maximal connection length
w = 1, instead of w = 4. Moreover, the linear behavior
can be justified as follows. In the case of p = 0.001 and for
w = 1 we obtain Prob[Λ = 1] = 3.9 ·10−3, Prob[Λ = 2] =
5.5 · 10−6 and Prob[Λ > 2] ≪ Prob[Λ = 2]. Therefore,
eq. (3) becomes 〈ℓ〉 ≈ PBSMProb[Λ = 1] which is linear
in PBSM . For other values of the maximal connection
length the order of magnitude of the probabilities is the
same.

IV. DECOHERENCE OF THE QUANTUM

MEMORIES

In case of multiplexing, even when the rate is maxi-
mized it is possible to connect pairs in different ways. In
this section, we study the optimal matching algorithm for
the BSM in relation to memory decoherence. For simplic-
ity we will stick to deterministic entanglement swapping,
i.e. PBSM = 1 in eq. (3).
Our figure of merit for optimizing the matching algo-
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FIG. 6. (Color online) Repeater rate per memory per time-bin
(eq. (1), eq. (3), eq. (A2)) as a function of the BSM success
probability. Parameters: p = 0.001, m = 5.

rithm will be the secret fraction, which in QKD charac-
terizes the fraction of secret bits that can be extracted
the from measured qubits [3]. In the case of the BB84
protocol the secret fraction is given by [3]

r∞ := 1− h(eX)− h(eZ), (13)

where eX , eZ are the quantum bit error rates (QBER) in
base X and Z and h(p) := −p log2 p−(1−p) log2(1−p) is
the binary Shannon entropy. For simplicity, we consider
a symmetric error model such that eX = eZ =: e. The
QBER resulting from measurements performed at time
t2 is

e(t2) :=

t2
∑

δ=0

ẽ(δ)Prob[∆ = δ](t2), (14)

where Prob[∆ = δ](t2) is the fraction of measurements
of quantum memories which have experienced decoher-
ence for a time ∆ = δ. This probability depends on the
BSM strategy (see sec. II). The QBER after these mea-
surements is given by ẽ(δ). This quantity depends on
the decoherence mechanism of the quantum memories.
In this paper we consider depolarization. Given ρ0, the
state of the quantum memory at time t0, after depolar-
ization it becomes

ρ(t− t0) := p(t− t0)ρ0 +
1− p(t− t0)

2
1l, (15)

where p(t) := e−
t

τ and τ is the decoherence time of the
quantum memory.
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FIG. 7. (Color online) Minimal necessary coherence time τ
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p = 0.001, m = 5, w = 1, 4.

For the BB84 it holds2

ẽ(δ) :=
2

3
(1− p(δ)). (16)

The total QBER is calculated between all outcomes
that Alice and Bob get from the beginning of the protocol
until time TC which is equal to

e(TC) :=

∑TC

t=0 〈ℓ〉 (t2)
∑t2

δ=0 ẽ(δ)Prob[∆ = δ](t2)
∑TC

t=0 〈ℓ〉 (t2)
. (17)

Here, the denominator is the total number of BSMs from
the beginning of the protocol until time TC. The numer-
ator is the average QBER for each time-bin weighted
with the total number of successful measurements for
each time-bin. The secret key rate is not zero whenever
e(TC) ≤ 0.11. This will be used to obtain a lower bound
on the necessary coherence time τ .
We have calculated eq. (17) using numerical simula-

tions. It is also possible to proceed analytically as ex-
plained in sec. III. However, the space of the configura-
tions is so large that the analytical computation becomes
unfeasible. We have performed numerical simulations by
repeating many times the protocol, and from the ob-
tained connections we have calculated the averages. The
number of used experiments is about 109 which permits
to have a variance of the mean smaller than 0.001. The
simulations were performed for the strategies 0, 1, and 2,
which were introduced in sec. II.

2 The reason is that entanglement swapping between two depolar-
ized states with fidelities F0 and F1, respectively, will result in
a depolarized state of fidelity F2 = 1

3
(1− F1 − F0 + 4F0F1). In-

serting F1 = 1 and F0 = p and using the fact that e = 2

3
(1−F2)

[25] the result follows.
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FIG. 8. (Color online) Minimal coherence time τ (see eq. (15))
as function of the time t for different maximal connection
length. Parameters: p = 0.001, m = 5.

As shown in fig. 7 the minimal necessary coherence
time is given by strategy 1. We see that strategy 0 is
between strategy 1 and 2 and that the ordering between
the strategy remains the same by changing the maximal
connection length.
We then studied how the minimal coherence time

scales as function of w. As seen in fig. 8 even a max-
imal connection length of w = 1 has a significant impact
on the minimal coherence time, compared to w = 0. In
particular we observe that for t = 12000 the improvement
from w = 0 to w = 1 is roughly 60%.

V. SECRET KEY RATE

In this section we will sum up the results of the pre-
vious two sections and we will calculate the secret key
rate. The secret key rate at time TC is calculated as the
product of the repeater rate and the secret fraction 3, i.e.
[3, 27]

K(TC) := R(TC) · r∞(e(TC)), (18)

where the repeater rate or raw key rate R(TC) was de-
fined in eq. (1) and the QBER was given in eq. (17). For
our calculation we have used the minimal coherence time
calculated in the previous section. In particular we have
chosen

τ = 5τmin(12800). (19)

We use t = 12800 because it is the highest achievable
with our simulation (see fig. 8). In tab. I we report the

3 The sifting rate is not explicitly written because we assume that
a biased choice of the bases is done [26]. Therefore the sifting
rate in the asymptotic case is 1.
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FIG. 9. (Color online) Secret key rate as function of the
time t. for different maximal connection length. Parameters:
p = 0.001, m = 5. The coherence time is shown in tab. I.

used coherence time for each value of w. As shown in
fig. 9 the finite-range multiplexing with w = 1 leads to a
similar improvement as with w = 4. Interestingly, we see
that the secret key rate has a maximum for t < 1000 and
then it slowly decreases. This fact can be explained by
observing that there are two competing behaviors: the
repeater rate increases with the time and the secret frac-
tion decreases with the time, as the QBER increases with
time, due to the fact that the probability that poor con-
nections happen increases. An improvement may be to
remove very old pairs which are known not to contribute
to the final secret key. This method will certainly de-
crease the QBER at the expense to decrease also the
repeater rate. We postpone to future investigations new
possible schemes which could permit to have a secret key
rate which has a monotonic behavior.

w τ (time-bin)

0 12133.02
1 8989.75
2 7997.70
3 7631.75
4 7533.51

TABLE I. Value of the coherence time τ used for calculating
the secret key rate. In order to obtain the value in seconds it
is sufficient to divide by the frequency of the source.

VI. CONCLUSIONS

Quantum repeaters offer the possibility to enlarge the
distance where quantum key distribution becomes fea-
sible. In this paper we have considered the scenario
with one repeater station in the middle, containing sev-
eral pairs of quantum memories. This is a generalization
of measurement-device independent QKD with quantum
memories and single-photon sources. We have consid-
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ered multiplexing as a scheme for performing the Bell-
state measurement. We introduced the concept of finite-
range multiplexing which originates from the experimen-
tal constraint that long range connections are demand-
ing. We have characterized analytically the repeater rate
for the case of probabilistic and deterministic Bell-state
measurement. We found that in a multiplexing proto-
col already short-range connections cover most of the
improvement over a standard protocol. Decoherence of
the quantum memories and different strategies for con-
necting the pairs were also studied. We found that it is
always optimal to connect pairs with the shortest time
difference in arrival time: this strategy minimizes the
necessary coherence time required by the quantum mem-
ories in order to extract a secret key. Moreover, we have
shown that also for the figure of merit “minimal coher-
ence time” short-range multiplexing is almost as good
as general multiplexing. Finally, we have studied the
secret key rate which characterizes the performance of
quantum key distribution, finding results analogous to
the previous sections. Future questions may include the
case of Alice and Bob using weak coherent pulses. This
can be done by following [19]. The analysis of finite-size
effects for QKD can be performed by following [28–30].
The techniques derived in our paper may also be used
for addressing more complicated multiplexing protocols
involving distillation and classical communication. Our
work suggests that in more complex protocols the load-
ing time may play a significant role, thus reducing the

repeater rate w.r.t. asymptotic formulas.
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Appendix A: Derivation of the repeater rate in the

asymptotic case

In order to determine the left-hand side of eq. (12),
we define a function γ : 0, 1, ..., N → Hm

w (0) where N =
|Hm

w (0)| is the cardinality of Hm
w (0). We rewrite eq. (12)

in the following way

f(x) =

N
∑

x′=0

q(x′, x)f(x′), (A1)

where f(x) := Prob[γ(x)] and q(x′, x) :=
∑m

l=0 Prob[µℓ ◦
σℓ(γ(x

′)) = γ(x)]. The solution is the following

f(x) =
KN(N, x)

∑N
x′=0 KN (N, x′)

, (A2)

with

KN (x′, x) :=
KN−1(N − 1, x)

1−KN−1(N − 1, N − 1)
KN−1(x

′, N − 1) +KN−1(x
′, x), (A3)

K0(x
′, x) := q(x′, x). (A4)

In order to see that observe that eq. (A1) can
be seen as a system of equations of the unknowns
{f(0), f(1), ..., f(N)}, with the additional condition
∑N

x=0 f(x) = 1 which comes from the fact that f(x) is a
probability and we sum over the whole space. Therefore
we have

f(0) = q(0, 0)f(0) +

N
∑

x′=1

q(x′, 0)f(x′) (A5)

⇒ f(x) =

N
∑

x′=1

K1(x
′, x)f(x′), (A6)

with K1(x
′, x) given in eq. (A3). Repeating the proce-

dure, the function f(x) can be expressed as

f(x) := KN (N, x)f(N). (A7)
The form in eq. (A2) is obtained by using the additional

constraint
∑N

x=0 f(x) = 1.
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