
Protein Structure Prediction using

global optimization by basin-hopping

Inaugural-Dissertation

zur Erlangung des Doktorgrades

der Mathematisch-Naturwissenschaftlichen Fakultät

der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Falk Hoffmann

aus Frankfurt(Oder), Deutschland
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Gedruckt mit der Genehmigung der

Mathematisch-Naturwissenschaftlichen Fakultät der

Heinrich-Heine-Universität Düsseldorf

Referent: Jun.-Prof. Dr. Birgit Strodel

Koreferent: Prof. Dr. Dieter Willbold

Tag der mündlichen Prüfung: 8. Juli 2014
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Zusammenfassung

Proteine sind die Hauptakteure in Zellen. Ihre Funktion hängt mit ihrer atomaren Struktur

zusammen, weshalb deren Vorhersage sehr wichtig ist. Die Strukturvorhersage von Protei-

nen wurde in den letzten Jahrzehnten untersucht, bleibt aber immer noch eine der größten

Herausforderungen in der Biochemie. Eine Hypothese der Proteinstrukturvorhersage be-

sagt, dass die natürliche Struktur eines Proteins mit dem globalen Minimum der Ener-

gie in der Energielandschaft des Proteins verknüpft ist. Wir benutzen den basin-hopping

Ansatz zur globalen Optimierung, um die Struktur von unterschiedlichen Proteinen zu

untersuchen. Wir finden heraus, dass die Benutzung von chemischen Verschiebungen des

Proteinrückgrats und der Cβ-Seitenkettenatome als strukturelle Randbedingung die Pro-

teinstrukturvorhersage signifikant verbessern kann. Weiterhin werden Untersuchungen mit

einer unvollständigen Anzahl an chemischen Verschiebungen durchgeführt, die zeigen, dass

sogar die Benutzung von nur einer Art chemischer Verschiebungen ausreichend ist, um die

richtigen Sekundärstrukturelemente eines Proteins zu finden. Zusätzlich werden verschie-

dene Monte Carlo-Schritte untersucht. Wir entwickeln einen Ansatz, der basierend auf der

Sekundärstrukturvorhersage der Aminosäuren die richtigen Tertiärstrukturkontakte fin-

det. Dazu werden unterschiedliche maximale Dehidralwinkeländerungen getestet, welche

zeigen, dass deren beste Wahl zu einer Verbesserung der Simulationszeit im Vergleich mit

früheren Änderungen führt. Wir studieren den Einfluss von Rückgrat- und Seitenketten-

dehidralwinkeländerungen und stellen fest, dass beide Änderungen wichtig für die Verbes-

serung der Struktur des Proteins sind. Wissensbasierte Monte Carlo-Schritte können die

Genauigkeit und Geschwindigkeit von Simulationen erhöhen. Wie führen Monte Carlo-

Schritte ein, welche auf der statistischen Verteilung der Dehidralwinkel von Proteinen

im Ramachandranplot ihrer Aminosäuren basieren. Die Monte Carlo-Schritte erlauben

uns, Proteine mit α Helices zu falten, während Proteine mit β Faltblättern eine Heraus-

forderung bleiben. Wir vergleichen moderne β Faltblatt-Vorhersageprogramme bezüglich

ihrer Effektivität für die Vorhersage von Restkontakten zur Erzeugung struktureller Ne-

benbedingungen, die innerhalb der basin-hopping-Simulationen zur Erzeugung von β-

Faltblättern angewandt werden. Es kann erwartet werden, dass die Kombination dieser

verschiedenen Ansätze die Proteinstrukturvorhersage mit dem basin-hopping Ansatz zur

globalen Optimierung signifikant verbessern kann.
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Abstract

Proteins are the main actors in the cell and their function is associated with their atomistic

structure. The prediction of protein structures has been investigated over the last decades,

but still remains one of the big challenges in biochemistry. One of the hypothesis in

protein structure prediction is that the native configuration of a protein is connected to

the global minimum of the energy in the energy landscape of the protein. We use the basin-

hopping approach to global optimization to investigate the structure of different proteins.

We find that the usage of backbone and Cβ chemical shifts as structural constraints

can significantly improve the prediction of protein structures. Furthermore, studies with

incomplete backbone chemical shift information are performed and show that even the

usage of one type of chemical shifts is sufficient to find the correct secondary structure

of proteins. Furthermore, several Monte Carlo moves are studied. We introduce an

approach that derives tertiary structures from the secondary structure assignments of

individual residues. Different maximum dihedral angle changes are tested and reveal

that the best choice leads to a remarkable increase in the simulation time compared with

previous moves. We study the influence of backbone and side chain dihedral angle moves

and show that both moves have an important influence on the refinement of the structure

of a protein. It has been shown that knowledge-based Monte Carlo moves can increase the

accuracy and speed of simulations. We introduce a Monte Carlo move set which is based

on the statistical distribution of the dihedral angles of proteins in the Ramachandran plot

of their amino acids. The moves allow us to fold proteins with α helices while proteins

with β sheets still remain a challenge. We compare state-of-the-art β sheet predictors

on their efficiency in terms of their prediction of residue contacts to create structural

constraints which are used in basin hopping simulations for the production of β sheets.

The combination of these different approaches can be expected to significantly improve the

prediction of protein structures with the basin-hopping approach to global optimization.
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Chapter 1

Introduction

1.1 Proteins

Cells are the basic unit of all living organisms. Proteins play a role in nearly every process

of the cell and are essential for the life of organisms. Many proteins are enzymes. Enzymes

are highly selective catalysts which accelerate metabolic reactions.

1.1.1 Structure

Amino acids

Proteins are linear polymers whose basic units are amino acids. All amino acids in living

organisms are α amino acids. The amino group in an α amino acid is connected to the

first carbon atom after the one in the carbonyl group. Figure 1.1 shows a general scheme

of an α amino acid.

Figure 1.1: Structural formula of an α amino acid. The different amino acids are characterized

by their side chains R. The structure was created with GChemPaint [1].
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The carbon atom which connects the backbone of an amino acid with its side chain R is a

chiral carbon atom, except for glycine where the side chain R contains only one hydrogen

atom. An object is chiral if there is no sequence of translations and/or rotations which

can transform the amino acid to its mirror image. There are two different chiral forms or

enantiomers in amino acids: left-handed and right-handed amino acids. The two different

forms for alanine with a CH3 group as the side chain are shown in figure 1.2.

Figure 1.2: Left-(left side) and right-handed(right side) enantiomer of alanine in balls and stick

representation. Carbon atoms are shown in grey, hydrogen atoms in white, nitrogen atoms in

blue and oxygen atoms in red. The Hα atom is behind the central Cα atom. The structure was

created with Chimera [2].

If one places the Hα atom behind the Cα atom on a line which is perpendicular to the

plane of the viewer and hits this plane in the Cα atom like it is shown in figure 1.2, a left-

and right-handed helix are defined by the CORN rule: If the carboxyl group (CO), the

side chain (R) and the nitrogen atom (N) are orientated (in this order) counterclockwise

around the central Cα atom, the amino acid is a left-handed helix. If these groups are

orientated clockwise around the central Cα atom, the amino acid is a right-handed helix.

The chirality of a protein is very important as it has a big influence on the dihedral angles

of the proteins (see below). In nature, 19 left-handed (L-AA) and one nonchiral (glycine)

amino acids are present. 19 of them are proteinogenic amino acids which have a chemical

structure like in figure 1.1 and differ in their side chain R. Proline has a different structure

with a ring involving the N-terminal amine group. Table 1.1 shows the structures for all

naturally occurring amino acids.
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amino acid 3 letter code 1 letter code structure

Alanine ALA A

Arginine ARG R

Asparagine ASN N

Aspartic acid ASP D

Cysteine CYS C

Glutamine GLN Q

Glutamic acid GLU E

Glycine GLY G

Histidine HIS H

Isoleucine ILE I

Leucine LEU L

Lysine LYS K

Methionine MET M

Phenylalanine PHE F

Proline PRO P

Serine SER S

Threonine THR T

Tryptophan TRP W

Tyrosine TYR Y

Valine VAL V

Table 1.1: Naturally occurring acids with their names (first column), three letter abbreviation

(second column), one letter abbreviation (third column) and structure (fourth column). The

structures were created with GChemPaint [1].
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Polypeptide chain

The amino acids are linked together by a peptide bond to create the structure of a

polypeptide chain. The general structure of a polypeptide chain is shown in figure 1.3.

Figure 1.3: Structural formula of three connected amino acids in a polypeptide chain. The

structure was created with GChemPaint [1].

A peptide is a short polypeptide chain with less than 100 amino acids while a protein is a

longer chain with more than 100 amino acids. However, often polypeptide chains between

50 and 100 amino acids are also called proteins.

The distribution of the π electrons in the double bound of an amino acid in a protein is

not fixed to the carbonyl group, but is partially located along the carbonyl C-O and along

the amide C-N bonds of the peptide. The peptide bond has therefor two resonance forms

which are shown in figure 1.4.

Figure 1.4: The two resonance forms of the peptide bond. The partial double bond creates a

planarity around the peptide bond. The structure was created with GChemPaint [1].
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All atoms which do not belong to the side chain R are called backbone (BB) atoms [3].

That are the carbon (C’) and oxygen of the carbonyl group, the nitrogen and hydrogen of

the amide group, and the Cα and Hα atoms. The Cα atom connects the backbone with

the side chain. The Hα atom is also bonded to the Cα atom. All atoms which belong to

R are called side chain (SC) atoms.

A dihedral angle is an angle between two planes. Two planes in the three-dimensional

(3D) space have a dihedral angle if they are nonparallel and nonidentical. In this case,

the two planes have a line of intersection. A line can be identified by two nonidentical

points while a plane is identified by three nonidentical points which are not on a line.

A dihedral angle can be therefor identified by four nonidentical atoms: two atoms at

the line of intersection (which belong to both planes) and one atom per plane outside

the line of intersection which describes the 3D orientation of the plane. Dihedral angles

play an important role in the structure of a polypeptide chain. There are three different

dihedral angles in the BB: Φ which includes the BB atoms C’-N-Cα-C’ and defines the

C’-C’ distance, Ψ which includes the BB atoms N-Cα-C’-N and defines the N-N distance

and Ω which includes the BB atoms Cα-C’-N-Cα and defines the Cα-Cα distance. Here,

the first three of the four atoms belong to the first plane while atoms 2–4 belong to the

second plane. The double bound character of the central C’-N bond, in which is the

central bond in Ω, prevents rotations around its bond. The dihedral angle Ω is mostly in

a planar conformation with values around 180◦ which is called the trans conformation of

the peptide bond. The other two dihedral angles Φ and Ψ determine the local structure

of the BB [3].

Global structure

Primary Structure The linear sequence of amino acids is the primary structure (PS)

of a protein. It has an amino terminal and a carboxyl terminal. Without loss of generality,

the PS starts at the amino terminal and finishes at the carboxyl terminal.

The primary structure determines the 3D shape of a protein. However, the prediction of

the correct 3D structure is still a big challenge in biochemistry. The first step from the

PS to the correct 3D structure is the determination of the secondary structure (SS).

Secondary Structure Neighbouring amino acids can form local structure segments

which define the secondary structure of a protein. The SS is stabilized by hydrogen bonds

between backbone atoms. Hydrogen bonds are attractive interactions between a hydrogen

atom with a positive partial charge which is bonded to a donor and an electronegative atom

with a negative partial charge which is called acceptor. The donor is an electronegative

atom. Examples for donors and acceptors are nitrogen, oxygen or fluorine. In the protein
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backbone, hydrogen bonds are formed between the hydrogen atom of the amide group

of one amino acid and the oxygen atom of the carbonyl group of another amino acid.

Hydrogen bonds stabilize the local structure. The pattern of hydrogen bonds describes

the type of SS element. The most common SS elements are α helices and β sheets.

Hydrogen bonds between the carbonyl group of amino acid i and the amide group of

amino acid i + 4 or i − 4 stabilize α helices. In an α helix, 3.6 amino acids form a turn

and 13 atoms are involved in the formation of the full turn. That is why an α helix is

also called a 3.613 helix. As the hydrogen bonds involve only local residues, α helices can

generally be detected faster than β sheets. Figure 1.5 shows the α helix of the residues

2–8 of the peptide with PDB code 1L2Y.

Figure 1.5: Backbone atoms of the residues 2–8 of peptide 1L2Y in ball and stick representation

and secondary structure in purple and NewCartoon representation showing the helical structure

of the α helix. Oxygen atoms are shown in red, nitrogen atoms in blue, carbon atoms in grey

and hydrogen atoms in white. Hydrogen bonds are shown in orange and labeled with their

length in Å. The picture was created with Chimera [2].
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Other helices are also common in proteins: 310 helix, π helix and polyproline helix. They

are not so often present in natural proteins like α helices, but have energetically favorable

hydrogen bonds. The π helix is a 4.416 helix while the polyproline helix occurs in the

presence of repeating proline residues. In general, the rotation angle ΩROT of a polypeptide

helix in trans formation can be calculated by formula 1.1 [4]:

3 cosΩROT = 1− 4 cos2
(
Φ +Ψ

2

)
. (1.1)

The rotation angle ΩROT is negative for left-handed and positive for right-handed helices.

The right-handed α helix is more common than the left-handed α helix.

The second most common SS elements are β sheets. A β sheet consists of β strands.

Every β strand is usually between 3 and 10 amino acids long. The structure of a β strand

is nearly fully extended. The orientation of β strands gives the possibility to align two or

more strands parallel or antiparallel to each other and form a β sheet. The strands are

stabilized by hydrogen bonds between neighbouring carbonyl and amide groups of amino

acids from different β strands. Figure 1.6 shows the formation of hydrogen bonds in a

parallel and antiparallel β strand pair.

Figure 1.6: Structure of a parallel (left) and antiparallel (right) β sheet. Hydrogen bonds are

shown with a dashed line. Structures were created with GChemPaint [1].

Hydrogen bonds in an antiparallel β sheet are linear. For this reason, antiparallel β sheets

are more stable than parallel β sheets. The correct determination of β sheets is in general

a more difficult task than the determination of α helices because neighbouring strands can

be separated by many residues. Thus, long-range contacts need to be established during

β sheet formation.

Other secondary structure elements like turns or ω loops connect helix and strand elements

7



with each other.

Tertiary structure A protein can have several SS elements, while the global shape

of a protein with different SS elements is called protein tertiary structure (TS). The

arrangement is influenced by the interactions of the SC atoms of the amino acids. The

TS involves interactions between distant residues with respect to the sequence and can

be characterized by their hydrophobicity: In the center of the protein is a hydrophobic

core while there are more hydrophilic amino acids at the surface of a protein which leads

to the formation of hydrogen bonds with the surrounding water molecules of the aqueous

solution.

Quarternary Structure A protein which consists of more than one domain arranges

the tertiary structure of all chains in an energetically favorable way. In this case, the

tertiary structure of a polypeptide chain is called a protein subunit. The global shape of

different protein subunits in the protein is the quarternary structure (QS) of the protein.

In this thesis, the focus lies on the determination of the correct TS from the PS as the

TS is the basis for the determination of the QS.

Ramachandran plots

The dihedral angles of the protein backbone characterize the local shape and the SS of

a polypeptide chain. As described above, the dihedral angle Ω is nearly always close

to 180◦, i.e. in the trans conformation because of the properties of the peptide bond.

The pair of the other dihedral angles Φ and Ψ (Φ, Ψ) characterizes the orientation of

neighbouring residues. A Ramachandran plot is a diagram where Ψ is plotted against Φ.

The dihedral angles can have values in the interval Φ,Ψ ∈ [−180◦, 180◦) because of their

periodicity. The rotation angle ΩROT for helices in trans conformation can be calculated

with equation 1.1. ΩROT does not change so much in the same helix which means that

the sum Φ + Ψ is more or less a constant value. For example, in case of an α helix

Φ + Ψ ≈ −105◦, for a 310 helix Φ + Ψ ≈ −75◦ and for a π-helix Φ + Ψ ≈ −130◦. All

dihedral angles of the trans polyproline II helix are around the point (Φ,Ψ) ≈ (−75◦, 150◦)

because only one type of amino acid (proline) is present. Most of the dihedral angles of

the α helix are on a diagonal between (−90◦,−15◦) and (−35◦,−70◦) with their center

at (Φ,Ψ) ≈ (−60◦,−35◦). The centers of the 310 helix at (Φ,Ψ) ≈ (−49◦,−26◦) and the

π helix at (Φ,Ψ) ≈ (−55◦,−70◦) are mostly covered by the more populated region of α

helices while the polyproline II dihedral angles are in the β sheet region (see below). The

left-handed helices are also present in the Ramachandran plot by switching the signs of Φ
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and Ψ. They do not occur so often in nature like the right-handed counterparts resulting

in a smaller region in the Ramachandran plot.

Amino acids in β sheets are part of a β strand which is an extended structure. However,

the different amino acids in a β strand have their own chirality leading to a wide range of

dihedral angles Φ and Ψ with their center at (Φ,Ψ) ≈ (−135◦, 135◦) in the Ramachandran

plot [5]. In general, one can find the β sheet regions in the quadrant with negative Φ and

positive Ψ values although parts of the region have negative Ψ values close to −180◦. α

sheets have alternating dihedral angles in the right- and left-handed helical regions. They

are only rarely observed and may play a role in amyloid diseases [6, 7].

Turns and loops have dihedral angles outside the regions of helices and sheets. A β hairpin

connects two antiparallel β sheets, but includes many elements of different turns.

In summary, the most populated regions in a Ramachandran plot of proteins are, in

decreasing order of population:

1. right-handed helical region around (Φ,Ψ) ≈ (−60◦,−35◦)

2. β sheet region around (Φ,Ψ) ≈ (−135◦, 135◦)

3. left-handed helical region around (Φ,Ψ) ≈ (60◦, 35◦)

The Ramachandran plot of the protein with PDB code 1ACJ from the RCSB Protein

data bank (PDB) is shown in figure 1.7. It shows all three described regions.
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Figure 1.7: Ramachandran plot of the protein with PDB code 1ACJ. All Φ and Ψ dihedral

angles present in this protein are plotted. The most important SS elements are highlighted by

black circles.

1.1.2 Protein Structure Prediction

Knowledge of the structure of a protein is key for understanding its function. The im-

portance of protein functions makes the prediction of the structure of a protein to one

of the main goals in biochemistry. The task is to predict the 3D structure of a protein

from its amino acid sequence. The quality of the protein structure prediction is tested

every two years in the Critical Assessment of Techniques for Protein Structure Prediction

[8]. The prediction for a single protein focuses on the prediction of its secondary and

tertiary structure while the prediction of protein complex formation is the prediction of

the quarternary structure. The prediction of protein complexes is called protein-protein

docking and is based on the interactions between two proteins which mostly already have

correct predefined secondary and/or tertiary structures. The focus of this thesis is on the

correct prediction of the secondary and tertiary structure of a protein from its primary

structure.
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Secondary Structure Determination and Prediction

Secondary Structure Determination As described in section 1.1.1, the secondary

structure elements can be defined by their hydrogen bond pattern. Methods which deter-

mine the secondary structure of a protein, calculate the hydrogen bonds from a given 3D

structure of a protein. Based on these hydrogen bonds, the methods assign a secondary

structure element to every amino acid in the polypeptide chain. Examples for secondary

structure packages are DSSP [9], STRIDE [10] and DEFINE [11].

Secondary Structure Prediction SS prediction is the assignment of a secondary

structure element to the residues of a polypeptide sequence. The first SS predictors [12–

16] could only distinguish between α helical and coiled structures as α helices are most

easily predictable and the most common SS elements (see section 1.1.1). These methods

are mainly based on models which are specific for α helices. Later, the methods used a

more general approach and were extended to the prediction of β sheets [17, 18]. However,

these previous methods did not reach a high enough accuracy to be called reliable.

With increasing protein structure data, the most successful SS predictors at the moment

are based on machine learning techniques. They use the information from protein data

banks as training sets to adjust their parameters and/or functions. Neural network tech-

niques like Psipred [19] or Porter [20] or support vector machines [21, 22] reach accuracies

of 80% or more [23, 24].

Tertiary Structure Prediction

The prediction of the tertiary structure from the protein primary structure, with or with-

out the help of secondary structure prediction tools, is more difficult than the prediction

of the secondary structure because the correct relative position of the protein atoms has

to be determined. While the accuracy of a SS predictor is measured by the comparison

of the result with the assignment from a SS determination program to a structure saved

in a data bank, the accuracy of a TS predictor is measured with some structural proper-

ties like the root mean square displacement (RMSD) between the result of the predictor

and the structure in the data bank. This has the advantage that there is, in principle,

no upper limit for the accuracy of a TS predictor as the result is not compared with

an assignment, which limits the best accuracy of SS predictors to 90%. However, there

is still an experimental limit in both cases as the experimental methods used to save

the structures in the data bank can only resolve structures up to a spacial limit under

experimental conditions, e.g. for x-ray up to 1 Å for temperatures of more than 100 K.

These limitations are described in more detail in section 1.2. Tertiary structure prediction
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methods can be divided into three groups: ab initio modelling, comparative modelling

and refinement. The aim of methods of the first two groups is to find the 3D structure of

a protein with no or just limited knowledge of the structure at the beginning. Refinement

methods, which are often also used as the last step in methods of the first two groups,

aim to optimize a structure which is largely correctly folded but needs some improve-

ment. In most of the cases, the geometry of the side chains has to be modified as they

are the most flexible groups. Comparative modelling methods like homology modelling

or protein threading use already solved protein structures from a protein data bank to

find new protein structures. In homology modelling, sequences of proteins are compared

in order to find similarities based on the assumption that proteins with high sequence

homology share a similar structure. Protein threading or fold recognition tries to find the

correct fold of a protein, which does not have a homolog in the data bank, by scanning

the unknown protein sequence and comparing with sequences of already known folds.

Ab initio or de novo protein structure prediction does not use any information from a

data bank. These methods predict the structure of a protein just from their PS. Two

classes of de novo protein structure methods are common: evolutionary covariation meth-

ods and energy- or fragment-based methods. In evolutionary covariation methods, protein

sequence alignments are used to predict correlated mutations and these coevolved residues

are used to predict the 3D structure of a protein. One example is the program EVfold

[25]. Energy- or fragment-based methods are mainly based on stochastic methods like

global optimization (see section 3.7). These methods were successfully applied to small

proteins. Folding of bigger proteins needs a lot of computational power and is applied in

distributed computing projects like Folding@home [26] or Rosetta@Home [27].

1.2 NMR

1.2.1 Experimental methods in protein structure determination

91,414 protein structures have been solved and saved in the RCSB protein data bank

[28] at March 24, 2014. Among them, 89.28% were resolved by X-ray crystallography,

9.93% by Nuclear Magnetic Resonance (NMR) spectroscopy, 0.56% by electron microscopy

and 0.23% by other experimental methods. The numbers show the importance of X-ray

crystallography and NMR spectroscopy for the determination of protein structures. In X-

ray crystallography, the sample has to be prepared as a well ordered crystal. The crystal

is probed by a X-ray beam and the electromagnetic radiation is scattered by the atoms of

the protein, creating a diffraction pattern which depends on the distribution of the atoms

and the local electron density. The diffraction pattern is used to determine the position of
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the atoms of the molecule and to construct a 3D model of the sample. The advantage of

X-ray crystallography is its high spatial resolution. However, well ordered crystals have to

be prepared which limits its applicability for dynamic processes and temperatures above

100 K.

On the other hand, NMR spectroscopy can be used to resolve the structure of proteins

in solid state [29] and in solution [30]. NMR spectroscopy uses the properties of nuclear

magnetic moments, which are induced by nuclear spins [31]. Nuclear spins in an external

magnetic field react to this field and interact with nuclear spins of their environment.

These interactions are characteristic for an atom and its environment and can be measured

by a specific resonance frequency which is described by its chemical shift. As there is

no crystal needed for the preparation of the sample, NMR measurements can be done in

solution and the dynamics of biomolecules can be investigated. In contrast to X-ray, NMR

measurements are applied to an ensemble of structures undergoing thermal fluctuations.

The measured observable is an average over all ensembles and are used to build a 3D

model. Energy minimization methods are typically used to refine the “averaged” structure

in case of the presence of an unphysical situation like high-energy structures or atom

clashes. Solid-state NMR can be used for the determination of big protein structures

while liquid-state NMR is limited to small proteins as big proteins cannot be prepared in

a sufficiently concentrated solution for liquid-state NMR measurements.

1.2.2 NMR chemical shifts

All nuclei with an odd mass number (e.g. 1H, 13C, 15N) and all nuclei with an even

mass number and an odd charge (e.g. 2H) have a spin angular momentum S. The spin

angular momentum is quantized and the different states are ordered according to the spin

quantum number I of the nuclei [31]. The total momentum of a nuclear spin with spin

quantum number I is

| S |= �

√
I (I + 1). (1.2)

Here, � = h/ (2π) with h as Planck’s constant. Without any external magnetic field, the

nuclear spins orientate randomly. After applying an external magnetic field B0 = B0ez

in one direction (without loss of generality the z-direction), the nuclear spins orientate in

the direction of the magnetic field. The projection of the direction of the spin angular

momentum on the z-axis can only have values which are separated by � and which range

from −I to I. The magnetic moment in z-direction μz of a nuclear spin is proportional

to its spin angular momentum in the same direction:

μz = γIz. (1.3)
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The gyromagnetic ratio γ is characteristic for every type of nuclei.

Once a protein is put in an external magnetic field B0, the magnetic moments μi of the

nuclei of the protein interact with the field. The corresponding Hamiltonian is given by

Ĥ = −μ̂i · B̂ (1.4)

The actual magnetic fieldB0 is normally shielded by the electron density around a nucleus,

yielding a new magnetic field B,

B = (1− σ)B0, (1.5)

which interacts with the nuclei according to equation 1.4. In equation 1.5, σ is the strength

of the shielding. The energy E of a state whose projection of the magnetic moment on

the z-axis is called μz can then be calculated by

E = −μzBz. (1.6)

With the help of equation 1.3, equation 1.6 can be transformed to

E = −γB | Iz | . (1.7)

The energy difference ΔE between two neighbouring energy states Ei and Ei+1 (whose

spin angular momentum on the z-axis have values which are separated by �) is therefor

ΔE = Ei+1 − Ei = γ�B. (1.8)

This energy difference is very low resulting in a nearly equivalent population of the lower

(ground state) and upper state (excited state). In equilibrium, the population ratio

between the excited state Pex and the ground state Pgr can be calculated by the Boltzmann

distribution:

Pex

Pgr

= e
− γ�B

kBT . (1.9)

Applying a second oscillating magnetic field B1 with Larmor frequency ωL = γB per-

pendicular to the first magnetic field will create transitions between the ground and the

excited state, whose intensities can be measured. Due to the fact, that the difference

between measured frequencies is very small in comparison with the operating frequency

of the spectrometer, the frequencies are usually represented by the frequency difference

to a reference structure which is typically tetramethylsilane (TMS) or 4,4-dimethyl-4-
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silapentane-1-sulfonic acid (DSS):

δ =
ω − ωref

ωref

(1.10)

In equation 1.10, ω is the measured frequency, ωref is the frequency of the reference struc-

ture and δ is the chemical shift. The chemical shift is measured in parts per million (ppm)

and every chemical shift gives a characteristic peak in the spectrum. Chemical shifts are

very sensitive to their local environment [32–37]. The sensitivity makes it possible to

reconstruct the local surrounding of a nucleus through their shielding effect and allows to

solve structures [38].

Quantum mechanical approaches give the highest accuracy in the prediction of chemi-

cal shifts. However, these methods are limited to very few amino acids [39, 40]. Most

state-of-the-art chemical shift predictors can be divided into two groups: sequence-based

chemical shift predictors like CS-Rosetta [38], CHESHIRE [41] or SPARTA [42] which as-

sign chemical shifts to atoms based on a homology modelling with data bank fragments,

and structure-based chemical shift predictors like ShiftX [43] and CAMSHIFT [44] which

are based on the atomic positions and calculate chemical shifts with the help of empirical

functions. Hybrid methods like TALOS+ [45], TALOS-N [46] and SHIFTX2 [47] can

significantly improve the accuracy.

Among the referenced chemical shift predictors, just CAMSHIFT [44] calculates the chem-

ical shifts with the help of differentiable functions from the atomic coordinates. This al-

lows to calculate forces and to include chemical shifts as structural restraints in molecular

dynamics (MD) [48] and basin-hopping [49] simulations.
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Chapter 2

Aims

The prediction of protein structures is one of the most fundamental challenges in bio-

chemistry. Every year several thousands of new protein structures are solved and saved

in the RCSB protein data bank [28]. However, the experimental elucidation of protein

structures is expensive and the resolution is limited. In principle, computational methods

can reach atomistic resolution. Nowadays, MD simulations are able to fold proteins on

time scales of μs and even ms using supercomputers, graphics processing units (GPU)

and distributed computing projects. However, the applicability is still limited to small

proteins and many folding processes happen on even longer time scales like seconds or

minutes. In many of these situations, it is not possible to follow the folding process during

a MD simulation in order to understand it. Instead, Monte Carlo simulations can be used.

Under the assumption, that the global energy minimum of a protein corresponds to the

native state [50], global optimization methods can be applied to determine the structure.

The basin-hopping approach to global optimization is a very effective method to explore

the energy landscape within a limited number of MC steps.

The aim of this thesis is to increase the efficiency of the basin-hopping method for protein

structure prediction. To this end, three improvements to the method have been intro-

duced: First, chemical shifts are exploited by combining the basin-hopping approach with

chemical shift restraints using a penalty function. The approach is parametrized and

applied to three peptides with complete and incomplete information of backbone and Cβ

chemical shifts. Second, secondary structure assignments of individual residues are used

to derive tertiary structures. The method is benchmarked for three peptides and success-

fully applied to proteins with more than 50 residues. Third, a new dihedral angle move

set is introduced. The moves are based on the Ramachandran plots of the different amino

acids. Moreover, state-of-the-art β sheet predictors are compared and their combination

with the basin-hopping approach is presented.

In Chapter 3 the methods used in this work are presented. The three new developments
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for the basin-hopping approach are described in Chapter 4 together with their results.

This chapter is divided into three subsections corresponding to three manuscripts, of

which one is published, another one is accepted for publication and the third one is in

preparation. Finally, the results are summarized in Chapter 5. The studies demonstrate

that the basin-hopping approach to global optimization with improved MC moves and/or

experimental restraints is on the route to become a powerful tool for ab initio protein

structure prediction.
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Chapter 3

Methods

3.1 Statistical ensembles

The probability density function (PDF) ρ in the phase space describes a statistical ensem-

ble in classical mechanics. Quantum effects where the ensemble is defined by a density

matrix ρ̂ are ignored (see below). The microscopic state X = (q1, ...,qN ,p1, ...,pN) is

defined by the generalized coordinates q = (q1, ...,qN) and the momenta p = (p1, ...,pN)

of the N particles in the ensemble. The PDF of a microstate can be fully described with

this information: ρ (t) = ρ (q1 (t) , ...,qN (t) ,p1 (t) , ...,pN (t)).

3.1.1 Microcanonical ensemble

The thermodynamic microcanonical ensemble is thermally isolated and described by a

constant number of particles N , constant volume V and constant energy E. The PDF

for a microcanonical ensemble can be calculated by

ρ =
1

hNC

1

Ω
f

(
H − E

ω

)
. (3.1)

Here, C is the Boltzmann counting factor which takes into account that particles of the

same kind are indistinguishable and exchangeable:

C = N1!N2!...Ns! (3.2)

with s as the number of particles of same kind, Ω the number of accessible microstates in

the ensemble, H the total energy of the system (as an eigenvalue of the Hamiltonian), ω
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the width of function f , and f a function which describes the range of energies in which

to include energies. The number of microstates Ω can be calculated by

Ω =

∫
X

1

hNC
f

(
H − E

ω

)
dX (3.3)

and the probability P (E) to find the system in a specific microstate with energy E is

P (E) =
1

Ω (E)
. (3.4)

3.1.2 Canonical ensemble

The thermodynamic canonical ensemble can exchange heat with a surrounding heat bath

and is described by a constant number of particles N , constant volume V and constant

temperature T . The PDF for a canonical ensemble can be calculated by

ρ =
1

hNC
exp

(
A− E

kBT

)
. (3.5)

Here, kB is Boltzmann’s constant and A a normalization factor which ensures that ρ is a

normalized function:

exp

(
− A

kBT

)
=

∫
X

1

hNC
exp

(
− E

kBT

)
dX. (3.6)

The probability P (Em) to find the system in a specific microstate m with energy Em can

be calculated by replacing the integral with a sum via

P (Em) =
e−Em/kBT∑
m e−Em/kBT

(3.7)

3.1.3 Grand canonical ensemble

The thermodynamic grand canonical ensemble can exchange heat and particles with the

environment and is described by constant chemical potential μ, constant volume V and

constant temperature T . The probability P (Em, Nm) of a microstate with energy Em

and number of particles Nm is

P (Em, Nm) = e(Ωgrand+Nmμ−Em)/kBT (3.8)
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where Ωgrand (μ, V, T ) is the grand canonical potential. It is a function of μ, V and T ,

but is constant for every microstate. It ensures the normalization and allows an easy

calculation of thermodynamic properties. Ωgrand (μ, V, T ) can be generally calculated via

Ωgrand (μ, V, T ) = −kBT ln

(∑
m

e
μNm−Em

kBT

)
(3.9)

The sum goes over all accessible microstates in the system and is different for bosons

(Bose-Einstein distribution), fermions (Fermi-Dirac distribution) and indistinguishable

classical particles. The probability P (Em, Nm) to find the system in a specific microstate

with energy Em and number of particles Nm is thus

P (Em, Nm) =
e(Nmμ−Em)/kBT∑
m e(Nmμ−Em)/kBT

(3.10)

With the help of the fugacity, which is a measure of how easy it is to add a particle to or

remove a particle from the system,

z = e
μ

kBT , (3.11)

the grand canonical partition function

Ξ =
∑
m

e(Nmμ−Em)/kBT (3.12)

can be calculated from the canonical partition function

Z =
∑
m

e−Em/kBT (3.13)

via

Ξ (T, V, μ) =
∞∑

N=0

zNZ (T, V,N) . (3.14)

3.2 Principle of stationary action

The equations of motions (EOM) for all systems in mechanics can be derived from the

principle of stationary action. The principle says that a system which develops in time

between two time steps t0 and t1 takes the path with an action S which is stationary to

first order,

δS = 0, (3.15)
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where δ is a small change in this formalism. S is a functional of the general coordinates

q = (q1, ...,qN) and can be written as an integral over the Lagrangian L between the

time steps t0 and t1:

S [q (t)] =

∫ t1

t0

L (q (t) , q̇ (t) , t) dt, (3.16)

with N being the number of particles in the system. Putting equations 3.15 and 3.16

together we get

δ

∫ t1

t0

L (q, q̇, t) dt = 0. (3.17)

If we change our coordinates q by an infinitesimal small variation εη (t) with η (t0) = 0

and η (t1) = 0 and a constant, but small factor ε we obtain

d

dε

∫ t1

t0

L (q (t) + εη (t) , q̇ (t) + εη̇ (t) , t) dt = 0. (3.18)

This leads to∫ t1

t0

(
∂L

∂q
η +

∂L

∂q̇
η̇

)
dt = 0 (3.19)

and after partial integration to∫ t1

t0

(
∂L

∂q
− d

dt

∂L

∂q̇

)
η (t) dt = 0. (3.20)

This is only valid for all possible small variations η (t) if the Euler-Lagrange-Equation is

fulfilled:

∂L

∂q
− d

dt

∂L

∂q̇
= 0 (3.21)

3.3 Conservative force field

The principle of stationary action can be applied to calculate the EOM for a particle in

a conservative force field. In such a force field, the curl of force F and the net work by

moving a particle in this force field with same start and end point vanishes:

∇× F = 0 (3.22)∮
C

F · dq = 0. (3.23)
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The independence of the path C allows us to write the force as a negative gradient of a

potential V (q):

F = −∇V (q) . (3.24)

We can use this potential to write the Lagrangian as the difference of kinetic and potential

energy:

L (q, t) = T (q̇)− V (q) (3.25)

=
m

2
q̇2 − V (q) . (3.26)

With the help of the Euler-Lagrange-Equation 3.21 we get Newton’s second law or New-

ton’s EOM:

∂L

∂q
= −∂V

∂q
= F (3.27)

∂L

∂q̇
= mq̇ = p (3.28)

∂L

∂q
=

d

dt

∂L

∂q̇
(3.29)

F =
dp

dt
=

d

dt
(mq̇) . (3.30)

Here, p is the momentum of the particle. In case of a nonrelativistic particle, where

the mass is independent of the time, the force acting on a particle is proportional to the

acceleration:

F = mq̈. (3.31)

3.4 Born-Oppenheimer approximation

Electrons are quantum particles. Equation 3.31 cannot be used to describe the movement

of electrons. Here, electronic wave functions play a fundamental role, which are described

by the Schrödinger equation

i�
∂

∂t
χ (q, t) = Ĥχ (q, t) . (3.32)

Ĥ is the Hamilton operator and χ the wave function of the quantum system. If the

Hamiltonian does not depend explicitly on time, one can write the solution of Equation
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3.32 as a product of a time-dependent part Ψt and a time-independent part Ψtind,

χ (q, t) = ΨtΨtind. (3.33)

The time-independent wave function Ψtind (which will be called the wave function Ψ from

this point) can be calculated from the time-independent Schrödinger equation

ĤΨ = EΨ. (3.34)

Here, E is the eigenvalue and Ψ the eigenstate of the Hamilton operator, i.e. E is

the energy of eigenstate Ψ. In case of a nonrelativistic particle in a potential V (q,Q),

equation 3.34 can be written as

EΨ(q,Q) =

(
− �

2m
∇2 + V (q,Q)

)
Ψ(q,Q) . (3.35)

Here, q and Q are the electronic and the nuclear coordinates, respectively. The kinetic

energy of the nuclei which contain heavy protons and neutrons is much smaller than the

kinetic energy of the electrons because the mass of the nucleus mN is much larger than

the mass of an electron me:

P2

2mN

<<
p2

2me

. (3.36)

Here, we assume that we are in the center of mass (COM) system where the momenta P of

nuclei and p of electrons are equal and opposite. In this case, we can solve the electronic

Schrödinger equation in which the kinetic energy of the nuclei is subtracted from the full

Hamiltonian,

Ĥe (q,Q)Ψe (q;Q) = Ee (Q)Ψe (q;Q) (3.37)

with

Ψ (q,Q) = Ψe (q;Q)ΨN (Q) , (3.38)

where ΨN and Ψe are the wave functions of nuclei and electrons, respectively. The elec-

tronic Hamiltonian Ĥe is the sum of the kinetic energy of the electrons T̂e, the electron-

electron interaction V̂ee and the interaction of electrons with the nuclei V̂eN :

Ĥe = T̂e + V̂ee + V̂eN . (3.39)

The electronic energies Ee (Q) can be calculated by solving equation 3.37 repeatedly for

small changes in the nuclear positions Q. Ee (Q) is also called the potential energy surface
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(PES). It is identical to the potential V (Q) from equation 3.26. In the second step, the

energy of the full system can be calculated by(
T̂N + Ee (Q)

)
ΨN (Q) = EΨN (Q) . (3.40)

E in Equation 3.40 is the total energy of the molecule and ΨN the nuclear wave function.

Equation 3.40 is a quantum mechanical EOM. However, assuming the movement of the

faster electrons as instantaneous (Born-Oppenheimer approximation) and the nuclei as

point particles allows the approximation that the nuclei follow Newton’s nonrelativistic

EOM, equation 3.31.

3.5 Potential energy functions

For molecular simulations, the exact PES from equation 3.37 is approximated by statistical

functions. Here, one empirically models the potential energy contributions in equation

3.39 without explicitly representing electrons. The potential energy is a sum of bonded

(Vbonded) and nonbonded (Vnonbonded) interactions:

Vtotal = Vbonded + Vnonbonded. (3.41)

The bonded interactions are the result of covalent bonds between the atoms. They are a

superposition of a term for bonds (Vbond), an angle term (Vangle), a dihedral angle term

(Vdihedral) and an improper dihedral angle term (Vimproper). Improper dihedral angles are

used to ensure the planarity of aromatic groups, the amide group and to enforce the

correct chirality (see section 1.1.1):

Vbonded = Vbond + Vangle + Vdihedral + Vimproper. (3.42)

The nonbonded interactions describe interactions between atoms which are separated

by at least 3 covalent bonds. Without external fields (e.g. magnetic fields) and con-

straints (e.g. chemical shift constraints, see below), nonbonded interactions are the sum

of Lennard-Jones (LJ) interactions (VLJ) and electrostatic interactions (Velec):

Vnonbonded = VLJ + Velec. (3.43)

The different terms are described in detail in the following sections.
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3.5.1 Bond potential

Vibrational motions occur between two covalently bonded atoms i and j. The potential

energy Vbond is a function of the distance d between the two atoms and has a minimum at

the equilibrium distance dequi. If the distance between d and dequi is small, the function can

be approximated as an harmonic oscillator around this minimum. The approximation is

usually used for all bonds in molecular mechanics force fields as more advanced potentials

like the Morse potential are computationally more demanding.

Vbond (d) =
∑
bonds

[Vbond (dequi) +

[
∂

∂d
Vbond (dequi)

]
(d− dequi) (3.44)

+
1

2

[
∂2

∂d2
Vbond (dequi)

]
(d− dequi)

2 (3.45)

+
1

6

[
∂3

∂d3
Vbond (dequi)

]
(d− dequi)

3 + ...] (3.46)

≈
∑
bonds

[Vbond (dequi) +

[
∂

∂d
Vbond (dequi)

]
(d− dequi) (3.47)

+
1

2

[
∂2

∂d2
Vbond (dequi)

]
(d− dequi)

2]. (3.48)

The first term is just a constant which can be set to 0: Vbond (dequi) = 0. The first

derivative of Vbond vanishes at the minimum dequi. The second derivative is the spring

constant of the harmonic oscillator:

k =
∂2

∂d2
Vbond (dequi) . (3.49)

The spring constant is specific to every atom type pair (e.g. C-C, O-O, C-H). The bond

term can thus be simplified to

Vbond (d) =
∑
bonds

1

2
kij
(
dij − d0ij

)2
. (3.50)

Here kij is the spring constant for the bond between atoms i and j, dij is the distance

between them, and d0ij their equilibrium distance. The sum goes over all covalent bonds

in the molecule.

3.5.2 Angle potential

The relative position of three atoms i, j and k is important, when atoms i and j and

atoms j and k are covalently bonded while atoms i and k are not covalently bonded. The
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vector from atom j to atom i is called vji. Similarly, the vector from atom j to atom k

is called vjk. The angle between vji and vjk is called θijk. The potential energy function

is harmonically approximated around the equilibrium angle θ0ijk like the distance around

the equilibrium distance for the bonds. The angle part of the potential energy Vangle can

then be calculated with Hookes law:

Vangle =
∑
angles

1

2
kijk

(
θijk − θ0ijk

)2
. (3.51)

The function is a superposition of all valence angles of the molecule. It is easier to distort

an angle θijk from its equilibrium θ0ijk than to distort the bond dij from its equilibrium

distance d0ij, which means that the force constants kijk for angle bending are typically

smaller than the force constants kij.

3.5.3 Torsion angle potential

Dihedral angles involve four atoms and are described in section 1.1.1. Let Φijkl be the

dihedral angle between atoms i, j, k and l and let Φ0
ijkl be its equilibrium value. The

potential energy for dihedral angle changes is a sum over cosine functions of the deviations

of the dihedral angle from its equilibrium:

Vdihedral =
∑

dihedrals

Vijkl

2

[
1 + cos

(
nΦijkl − Φ0

ijkl

)]
. (3.52)

The periodicity allows values for the dihedral angle Φijkl in the interval [−180◦, 180◦) (see

section 1.1.1) where Φijkl = 0◦ is the cis- and Φijkl = −180◦ the trans-configuration of

the dihedral angle Φijkl. Vijkl describes the energy barrier for the torsional motion and n

its periodicity, an integer which describes the number of minima/maxima in the interval

[−180◦, 180◦). The energy needed to distort a dihedral angle Φijkl from its equilibrium

angle Φ0
ijkl is typically smaller than the energy needed for the distortion of an angle θijk

from its equilibrium θ0ijk and for the distortion of a bond length dij from its equilibrium

value d0ij. While bonds and angles only change slightly, structural changes are mostly

expected from changes of dihedral angles.

3.5.4 Improper dihedral potential

Improper torsion angles are used to ensure the correct geometry and chirality of a specific

configuration. The improper torsion angle has a similar functional form than the bond
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and angle parts of the potential energy:

Vimproper =
∑

improper

1

2
kijkl

(
Ψijkl −Ψ0

ijkl

)2
. (3.53)

Here Ψijkl is the improper dihedral angle involving atoms i, j, k and l, and Ψ0
ijkl is the

equilibrium value. Assuming atoms i, k and l are covalently bonded to atom j, the

improper dihedral angle is defined as the angle between the line defined by atoms i and j

and the plane defined by atoms j, k and l. Improper dihedral angles are used to ensure a

desired planarity of the four atoms O, C’, Cα and N because it is computationally cheaper

to use equation 3.53 with a high spring constant kijkl than to use equation 3.52. Improper

dihedrals are also used for other planar structures like ester or aromatic ring structures.

3.5.5 Lennard Jones potential

The Lennard Jones potential VLJ describes the interaction between atoms, which are

not covalently bonded and which are separated by at least three covalent bonds. The

interaction has a repulsive part for small distances and a weak attractive part for longer

distances. The interactions between two particles i and j are usually described by the

12-6-Lennard Jones potential VLJ :

VLJ =
N∑
i=1

N∑
j=i+1

4εij

[(
σij

rij

)12

−
(
σij

rij

)6
]
. (3.54)

Here, σij is the distance where the attractive and repulsive part of the LJ potential

cancel out and εij is the energy at the minimum of this potential. The preferred distance

corresponds to the minimum of the LJ potential at rij,min = 2
1
6σij. The sum in equation

3.54 goes over all N(N − 1)/2 atom pairs in the system.

The attractive term r−6
ij is proportional to the dispersion interaction V disp

ij between two

atoms i and j:

V disp
ij ≈ 3

2

IiIj
Ii + Ij

αiαj

r6
. (3.55)

Here, αi and αj are the dipole polarizibilities of atoms i and j and Ii and Ij their first

ionization potentials.

The repulsive term r−12
ij has its origin in the Pauli exclusion principle and also models the

internuclear repulsion.
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3.5.6 Electrostatic potential

The electric field E for a charge density ρ in vacuum can be calculated from the (second)

Maxwell equation:

∇ · E =
ρ

ε0
. (3.56)

For a protein in solution, we can assume that the charges are point charges. In this case

we can transform equation 3.56 for a (homogeneous) material with a dielectric constant

εr to

E =
N∑
i=1

qi
4πε0εrri

er, (3.57)

where er is the normal vector in the direction of the electric field E and ε0 the electric

permittivity in vacuum. The sum goes over all N charged particles i with charges qi at

positions ri. This is the electric field a particle j with charge qj would feel, creating a

force Fel on this particle in absence of a magnetic field B according to Lorentz’s law:

Fel = qj (E+ v×B) =
N∑
i=1

qiqj
4πε0εrrij

er, (3.58)

where rij is the distance between particles i and j. Equation 3.58 is the Coulomb force

and the electrostatic interaction between point charges is called Coulomb interaction.

Integrating equation 3.58 according to equation 3.24 and summing over all N charges

gives the potential energy for the electrostatic interactions Velec:

Velec =
N∑
i=1

N∑
j=i+1

qiqj
4πε0εrrij

. (3.59)

The slow r−1
ij decay is the reason why Coulomb interactions are long-range interactions.

The calculation of the double sum in the nonbonded interactions VLJ and Velec is the time

consuming part in a simulation with many particles. Usually, smoothing functions and

cutoff distances are used to reduce this problem.

3.6 Monte Carlo simulations

Protein folding is a complex mechanism. In principle, a full description of the folding

pathway can be obtained with MD simulations. MD simulations of proteins are mainly
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performed by solving the EOM in a canonical system which is coupled to its environment

via a thermostat. However, MD simulations of complex systems are extremely slow. For

most proteins, it is not possible to simulate folding events under experimental conditions

(time scale of seconds) with currently available computers.

However, it is not needed to know the full trajectory of a folding pathway explicitly to

understand the folding mechanism. Monte Carlo (MC) simulations allow a stochastic

sampling of the relevant conformational phase space in order to get approximations for

statistical properties. In a MC step, a microstateX is globally or locally modified to a new

microstate Y. The new microstate is accepted or rejected with the transition probability

T [X → Y]. A MC move corresponds to a discrete time step Δτs in a MD simulation.

Usually, a statistical property Π is measured every a MC steps with a > 1 because of the

existence of unsuccessful moves. A sweep Δτ is called the time between two updates of

the measurement of a statistical quantity: Δτ = aΔτs. The ergodicity theorem allows

then to calculate the statistical ensemble average 〈Π〉 of Π for a high enough number of

measurements M starting with the first measurement at τ0:

Π̄ = lim
M→∞

1

M

M∑
a=1

Π(τ0 + aΔτ) ≡ 〈Π〉 =
∫

Π(X) ρ (X) dX (3.60)

with ρ (X) as the microstate probability distribution of microstate X. The probability

distribution should also be time independent, which means that the probability to move

from X to Y does not depend on the history which led the system progress to state

X. Such processes without explicit memory are called Markov processes. They can be

described by the master equation:

Δρ (X)

Δτs
=
∑
Y

[ρ (Y)T (Y → X; Δτs)− ρ (X)T (X → Y; Δτs)] . (3.61)

The ensemble is in a stationary state if Δρ (X) /Δτs = 0. If the new state Y is not allowed

to be extremely different than the previous state X, the inner brackets of the previous

equation have to vanish which is the condition for detailed balance:

T (X → Y; Δτs)

T (Y → X; Δτs)
=

ρ (Y)

ρ (X)
(3.62)

which is independent of the time step Δτs. For a canonical system, equation 3.62 results

into

T (X → Y)

T (Y → X)
= e−βΔE (3.63)
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with β = 1/ (kBT ) and ΔE = E (Y) − E (X). The transition probability T (X → Y) is

usually a product of the selection probability S (X → Y) and the acceptance probability

A (X → Y). Here, S is the probability for a specific move being chosen and A is the

probability for this move being accepted. The acceptance probability is typically written

as

A (X → Y) = min

[
1,

S (Y → X)

S (X → Y)

ρ (Y)

ρ (X)

]
(3.64)

Usually, a protein is most of the time in one of the stable states which means that the

number of relevant states is limited. The probability density ρ outside these states is

neglectable. A Markov chain Monte Carlo simulation sampling these more populated

states is called importance sampling. The most famous importance sampling method

is the Metropolis method. Here, the probability density ρ (X) is set to the canonical

microstate probability at a given temperature T . In this case, the acceptance probability

can be written as

A (X → Y) = min

[
1,

S (Y → X)

S (X → Y)
e−β[E(Y)−E(X)]

]
(3.65)

For methods, in which detailed balance is not needed, e.g. in basin-hopping (see section

3.8) the ratio of forward and backward selection probabilities can be neglected and the

Metropolis acceptance criterion simplifies to

A (X → Y) = min
[
1, e−β[E(Y)−E(X)]

]
(3.66)

Thus, a move is always accepted if the energy of the new microstate Y is smaller than

the energy of the previous microstate X. The new microstate can also be accepted if its

energy is higher than the energy of the previous microstate, but this probability decays

exponentially with the energy difference between the new and the previous microstate.

3.7 Global optimization

The aim of global optimization is to find the optimum of a (or a set of) function(s) f

according to some criteria. A typical example is the task to find the global minimum of

a function f . Global optimization methods have a broad range of applications like curve

fitting, the travelling salesman problem [51], flight planning, travel circuit or protein struc-

ture prediction. In protein structure prediction, mainly stochastic optimization methods

are used which use random variables to explore the energy landscape of the protein where

the energy is typically given by equation 3.41. Examples are simulated annealing [52],
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parallel tempering [53] or stochastic tunneling [54].

3.8 Basin-Hopping

In the basin-hopping (BH) approach to global optimization [55–57] moves are proposed

by perturbing the current geometry, and are accepted or rejected based upon the energy

difference between the local minimum obtained by minimization from the instantaneous

configuration and the previous minimum in the chain. In effect the potential energy

surface is transformed into the basins of attraction [58, 59] of all the local minima, so that

the energy for configuration q is

Ṽ (q) = min{V (q)}, (3.67)

where min denotes minimization. Large steps can be taken to sample this transformed

landscape, since the objective is to step between local minima. Furthermore, there is no

need to maintain detailed balance when taking steps, because the BH approach attempts

to locate the global potential energy minimum and is not intended to sample thermo-

dynamic properties. The BH algorithm has been implemented in the GMIN program

[60] and has already been employed to find the global minimum of peptides and peptide

complexes in previous work [49, 61–69].

3.9 Limited Broyden–Fletcher–Goldfarb–Shanno al-

gorithm

In order to find the local minimum of a biological molecule, minimization methods are

used with the aim to find the shortest way from the current position qc to the next local

minimum qmin in terms of minimization steps. qmin is a local minimum if there exists an

ε > 0 for which all qenv with ||qenv − qmin|| < ε have an energy with V (qmin) < V (qenv).

Gradient descent, Newton’s method and conjugate gradient techniques are among the

most used minimization methods. Gradient descent (also known as steepest descent)

methods calculate the next minimization step proportional to the negative of the gradi-

ent of the current position at the PES. This ensures that the function decreases fastest for

small enough step sizes. Newton’s methods and conjugate gradient techniques are com-

putationally more expensive than gradient descent methods. On the other hand, they

find the minimum within fewer minimization steps [70].

In Newton’s method, the search for the optimal step Δq is based on a Taylor approxima-
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tion of the PES function V (q) around the actual position qc until second order:

VT (qc +Δq) = V (qc) +∇V (qc)Δq+
1

2
[HV (qc)] (Δq)2 . (3.68)

Here, H is the Hessian matrix. Newton’s method minimizes the function VT (qc +Δq)

with respect to the step Δq:

∇V (qc) + [HV (qc)]Δq = 0 (3.69)

yielding the step

Δq = − [HV (qc)]
−1 ∇V (qc) . (3.70)

[HV (qc)]
−1 is the inverse Hessian matrix of the PES function V at point qc. The new

position can be calculated with

qnew = qc +Δq. (3.71)

The calculation of the inverse of the Hessian matrix [HV (qc)]
−1 is computationally very

expensive, especially in a high-dimensional space like for a molecule with 3N − 6 degrees

of freedom. It is faster to calculate y = [HV (qc)]
−1 ∇V (qc) as the solution of the system

of linear equations

[HV (qc)]y = ∇V (qc) . (3.72)

However, the Hessian has still to be calculated.

In quasi-Newton methods, an approximation A for the Hessian matrix [HV (qc)] from the

gradient ∇V (qc) is calculated. The approximation should fulfill the Taylor expansion for

the gradient ∇V around qc:

∇V (qc +Δq) = ∇V (qc) +AΔq. (3.73)

The quasi-Newton methods differ in the way how the Hessian matrix approximation A

is calculated. In the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm, the new

approximation Anew is calculated from the previous one Aold by

Anew = Aold +
ggT

gTd
− Aolddd

TAold

dTAoldd
. (3.74)

Here, g is the gradient difference,

g = ∇V (qc +Δq)−∇V (qc) , (3.75)
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and d = αy the step with y being the direction of the step as the solution of

Aoldy = −∇V (qc) (3.76)

and α an acceptable step size:

qnew = qc + αy. (3.77)

The superscript T indicates the transpose of the matrix. Usually the inverse matrix is

updated

A−1
new = A−1

old +

(
dTg+ gTA−1

oldg
) (

ddT
)(

dTg
)2 − A−1

oldgd
T + dgTA−1

old

dTg
. (3.78)

The limited BFGS (L-BFGS) algorithm does not store the full approximated matrix A or

its inverse A−1, but just a few vectors which represent the approximation. It only requires

a linear memory and is used for optimization tasks with a large number of degrees of

freedom like proteins. It is implemented in GMIN and used for the minimization following

a Monte Carlo move in the basin-hopping method.

3.10 Monte Carlo moves for proteins

In GMIN [60], two kinds of MC moves (dihedral angle moves and Cartesian moves) and

three move sets (standard move set, neighbour moves and loop modelling) are imple-

mented for proteins. At every MC step, the structure of the molecule with the current

Markov energy is perturbed by changing the positions of atoms from randomly chosen

residues according to the MC move type.

In Cartesian moves, the position of an atom is changed from its previous position qold =

(qx,old, qy,old, qz,old)
T to a new position qnew = (qx,new, qy,new, qz,new)

T where all projections

qx,new, qy,new, qz,new onto the corresponding Cartesian axis are in an interval around their

projections of the previous position, e.g. qi,new ∈ [qi,old − α, qi,old + α] for i ∈ {x, y, z}. α

is the maximum allowed change per Cartesian direction which is usually increased or de-

creased by a factor 1.05 after every 50 MC step in order to adjust the number of accepted

moves in the direction of a predefined value. Cartesian moves can be used for testing some

small local perturbations. However, as changes of atomic Cartesian coordinates tend to

disrupt the bonded network of a protein (see section 1.1.1), Cartesian moves are not the

best choice to study protein structure prediction or protein folding.

Typical MC moves for proteins are dihedral angle moves as dihedral angles describe the

structure between neighbouring residues and also side chains (see section 1.1.1). Similarly
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to Cartesian moves, the backbone dihedral angles Φ and Ψ of randomly chosen residues

are changed from their previous values Φold and Ψold to new values Φnew and Ψnew in the

interval Φnew ∈ [Φold − α,Φold + α] (same for Ψ). Here, α is the maximum dihedral angle

change for the dihedral angles Φ and Ψ. The dihedral angle Ω for the peptide bond could

also be changed, but is usually not perturbed because of its little variance. Small changes

in Ω are supposed to occur from the minimization of the structure. The side chain dihe-

dral angles χi are usually also changed. One option to change side chain dihedral angles

are group rotation moves [71]. In group rotation moves, the side chain dihedral angles χ1

(around the Cα-Cβ axis), χ2 (around the Cβ-Cγ axis) and χ3 (around the Cγ-Cδ axis) are

perturbed, if possible, in three steps: First, all side chain dihedral angles are changed with

a probability which is specific for this dihedral angle. Second, a new dihedral angle χnew

is calculated from the previous value χold with a maximum dihedral angle specific change

α by choosing a random value from the interval χnew ∈ [χold − α, χold + α]. Third, the

bond vector which connects the rotated group with the rest of the molecule is calculated

and normalized. Backbone and side chain moves can be explicitly turned on and off which

is one of the approaches described and analyzed in section 4.2. Dihedral angles allow to

perform large configurational changes, especially for high values of α, as a dihedral angle

change of an amino acid in the centre of a bigger protein has an influence on the positions

of all atoms until the protein’s termini. By doing so, the energy landscape can be analyzed

rapidly over a huge conformational space which is a big advantage in comparison to MD

simulations. Dihedral angle moves were successfully applied in basin-hopping simulations

of proteins [49, 61–69].

The standard MC move set by Mortenson et al. [63] sets the probability to change the

dihedral angles of a randomly chosen residue according to the position of this residue

in the polypeptide chain. A maximum probability Pmax is set to the residues at both

termini of the chain while a minimum probability Pmin is set to the center of the chain.

The probability increases linearly from the center of the chain to the termini from Pmin

to Pmax. This move set ensures that more residues from the termini are perturbed during

the simulation while changes in the center, which have a bigger influence on the overall

structure of the protein, are less frequently changed. Most of the previous BH studies

[63–65, 67, 68] are based on this standard move set.

In neighbour moves, the dihedral angle changes of Φ and Ψ are not just performed for a

randomly chosen residue, but also for the neighbouring residues (1 or 2 residues in both

directions of the polypeptide chain). This move set is suitable for segment moves where

not just single residues shall be changed, but full segments. The method is based on the

assumption that the formation of local segments like α helices or β sheets is accomplished

fastest when more than one residue contributing to this segment are perturbed in a co-

operative process.

In loop modeling, the user can predefine regions of amino acids which should not be
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changed. In the (changeable) intermediate regions with residues (N1, ..., Nn), the proba-

bility to change a dihedral angle pair (Φ,Ψ) of an amino acid is maximal for the amino

acid in the centre of this region ((N1 +Nn) /2) and decreases linearly to its borders N1

and Nn. This loop is specifically useful if the position of SS elements like α helices or β

sheets are known before the start of the simulation. A further description and application

of this method follows in section 4.2.
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Chapter 4

Results

The aim of this thesis is to develop and test new tools for the usage of the basin-hopping

approach to global optimization in order to predict the structures of proteins. The tools

were included in the GMIN program and can be divided into three parts:

1) Protein structure prediction using global optimization by basin-hopping

with NMR shift restraints

In this study, a modified version of the chemical shift predictor CAMSHIFT [44] is included

in the GMIN program [60]. Hereby, the calculation of the total energy of the system and

the force on the atoms is the sum of the force field (equation 3.41) and CAMSHIFT

energies and forces for which the ratio can be modified by a factor α:

E = EFF + αECAM (4.1)

F = FFF + αFCAM . (4.2)

With the help of the peptides with PDB codes 1LE0 and 1L2Y, the ratio α and the tol-

erance parameter n of the CAMSHIFT penalty function are parametrized. Furthermore,

a function for n is developed which allows to effectively adjust the parameter depending

on the root mean square force (RMSF) threshold. Simulations for these peptides are

performed and it is shown that the simulations with chemical shift restraints outperforms

the simulations without restraints.

J. Chem. Phys., 138:025102, 2013 (impact factor (IF) 3.164). Complete execution of BH

simulations and GMIN programming and 90% of the manuscript.

2) Protein structure prediction: assembly of secondary structure elements by

basin-hopping
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In this study, we focus on the improvement of the MC steps. MC steps are very important

in basin-hopping simulations as they are the key factor for the effectiveness of the energy

landscape exploration. Different SS predictors are compared to their accuracy and the

best among them, Porter [20] is used to apply structural constraints on dihedral angles in

the polypeptide chain. We further improve the efficiency of basin-hopping by introducing

an approach that derives tertiary structures from the secondary structure assignments

of individual residues. We term this approach secondary-to-tertiary basin-hopping and

benchmark it for three miniproteins, trpzip, trp-cage and ER-10. Different step sizes are

tested for their effectiveness to fold these peptides. Near-native structures with a RMSD

of less than 2Å can be found for these three peptides. For the refinement of the protein

structures, different ratios between backbone and side chain dihedral angle moves are used

and compared. The structures can be improved significantly to a RMSD of lower than

1.8 Å for 1ERP and RMSDs lower than 0.5 Å for 1LE0 and 1L2Y. We also demonstrate

that with this approach we can also fold bigger proteins with up to 79 residues.

ChemPhysChem, DOI: 10.1002/cphc.201402247, 2014 (impact factor (IF) 3.349). Com-

plete analysis of all simulations, half of the BH simulations and 80% of the manuscript.

3) Protein structure prediction using basin-hopping with knowledge-based

Monte Carlo moves

New MC moves are introduced in this study. The moves are based on the Ramachandran

plots of the randomly chosen residues, which should be modified at a given MC step.

A probability selection function based on the statistics of 488 proteins is developed and

used to choose new dihedral angles during basin-hopping simulations. Sequence moves

are developed to fold local protein sequences in one MC move. State-of-the-art programs

for β predictions are compared and used for the application of β contact restraints in

basin-hopping simulations.

Manuscript under preparation. GMIN programming, complete execution of BH simula-

tions and 100% of the manuscript.

In the following the results of these three studies are presented as manuscripts, two of

them published, and one in preparation. References given in the following sections refer

to the individual manuscripts (and not to the references given at the end of this thesis).
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4.1 Protein structure prediction using global opti-

mization by basin-hopping with NMR shift re-

straints
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Computational methods that utilize chemical shifts to produce protein structures at atomic resolu-
tion have recently been introduced. In the current work, we exploit chemical shifts by combining the
basin-hopping approach to global optimization with chemical shift restraints using a penalty func-
tion. For three peptides, we demonstrate that this approach allows us to find near-native structures
from fully extended structures within 10 000 basin-hopping steps. The effect of adding chemical
shift restraints is that the α and β secondary structure elements form within 1000 basin-hopping
steps, after which the orientation of the secondary structure elements, which produces the tertiary
contacts, is driven by the underlying protein force field. We further show that our chemical shift-
restraint BH approach also works for incomplete chemical shift assignments, where the information
from only one chemical shift type is considered. For the proper implementation of chemical shift
restraints in the basin-hopping approach, we determined the optimal weight of the chemical shift
penalty energy with respect to the CHARMM force field in conjunction with the FACTS solvation
model employed in this study. In order to speed up the local energy minimization procedure, we
developed a function, which continuously decreases the width of the chemical shift penalty function
as the minimization progresses. We conclude that the basin-hopping approach with chemical shift re-
straints is a promising method for protein structure prediction.© 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4773406]

I. INTRODUCTION

The determination of protein structures is one of the most
important challenges in biochemistry. Computational tech-
niques can help find the three-dimensional arrangement of
atoms. However, the exact determination of native structures
from denatured or unfolded proteins is still a challenge. The
usage of structural restraints obtained from experiments such
as nuclear magnetic resonance (NMR) measurements shows
significant improvement in this field of research.1–11 About
12% of the structures saved in the RCSB protein data bank12

are produced from NMR data. Chemical shifts are the most
readily and accurately measurable NMR observables in so-
lution and in the solid state,5 and can be used to predict the
molecular structure,4–9,13–18 including the structure of a low-
populated, on-pathway folding intermediate.19

Many of the simulations for NMR based structure deter-
mination use sequence homology information.4,5, 8, 9, 16, 20 In
such approaches structural motifs are selected from databases
of existing protein structures based on NMR data, such
as chemical shifts, residual dipolar couplings (RDCs), J-
couplings, or nuclear Overhauser effect (NOE) data.21 How-
ever, the usage of molecular fragment replacement ap-
proaches with chemical shift information depends on the
structural model and cannot be easily used to calculate con-
formational changes or combined with RDC, J-couplings,

a)Author to whom correspondence should be addressed. Electronic mail:
b.strodel@fz-juelich.de.

or NOE data. Applying chemical shift restraints using a
penalty function avoids these problems. Here, the Hamil-
tonian is applied such that it reduces the conformational
search to structures with small shift restraints. This approach
was used successfully to perform structural refinements of
proteins.6, 7

In the works by Vendruscolo and co-workers6,7 the
CamShift method22 was used for the incorporation of chem-
ical shift restraints. CamShift is a tool recently introduced
for the rapid prediction of NMR chemical shifts from protein
structures based on an approximation of the chemical shifts as
polynomial functions of interatomic distances.22 This chem-
ical shift predictor is combined with a tunable soft-square
harmonic well as a penalty function to compute the differ-
ences between calculated and experimental chemical shifts.6, 7

Furthermore, the chemical shifts are differentiable functions
of the atomic coordinates, which enables the calculation of
forces. Vendruscolo and co-workers were able to find the
structures of a set of proteins with 56–108 residues with a
resolution of 0.8–2.2 Å using CamShift molecular dynam-
ics (MD) simulations of previously partially folded proteins.7

The determination of peptide structures from unfolded con-
formations using a Monte Carlo (MC) approach was also pos-
sible with a simulated annealing (SA) protocol.6

In this study, we combine the basin-hopping (BH)23,24

approach to global optimization with NMR chemical shift re-
straints using CamShift. The BH method, which is a gener-
alization of the Monte Carlo-minimization approach,25 has

0021-9606/2013/138(2)/025102/7/$30.00 © 2013 American Institute of Physics138, 025102-1
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been successfully used to identify the global minimum of
peptides and proteins,26–31 including structures of peptide
complexes.32–34 The availability of forces in CamShift en-
ables us to combine it with the BH method. In this work we
demonstrate that this approach allows us to find near-target
structures from fully extended peptide conformations. We
present the results from chemical shift-restrained BH simula-
tions of three peptides with the PDB12 codes 1LE0,35 1L2Y,36

and 1YRF.37 We show that we are able to find the folded
structures within 10 000 BH steps, while the unrestrained
BH simulations of same run length fail to locate near-native
structures.

II. METHODS

A. Structural models

The structures for 1LE0, 1L2Y, and 1YRF were down-
loaded from the RCSB protein data bank12 and used as tar-
get structures for the BH simulations. 1LE0 is a 12 amino
acid β-hairpin;35 1L2Y is a 20 amino acid peptide with a
short α-helix, a 310-helix, and a polyproline II helix at the C-
terminus;36 and 1YRF is a 35-residue subdomain of the villin
headpiece consisting of three α-helices.37 These minipeptides
have been used as test cases in previous folding studies.38–56

We employed CamShift22 to calculate 1Hα, amide 1H, 13Cα,
13Cβ, carbonyl 13C, and amide 15N chemical shifts from the
target structures and used them as target chemical shifts for
the definition of the restraint function. These are denoted δexp
in the following. Fully extended structures of the peptides
were generated from their structural sequence using VMD57

and employed as starting structures for the BH simulations
(Figure S1 of the supplementary material58).

We used the CHARMM22 force field parameters59,60 to
model the peptides. To model the aqueous solvent we em-
ployed the generalized Born model FACTS.61 For the calcu-
lation of the nonbonded interactions, the cutoff scheme sug-
gested in the FACTS documentation was employed, i.e., trun-
cation of both long-range electrostatics at 14 Å using a shift
function and the van der Waals energy with a polynomial
switching function applied between 10 and 12 Å.

B. Basin-hopping

The BH approach to global optimization23,24 is anal-
ogous in principle to the Monte Carlo-minimization
approach.25 Moves are proposed by perturbing the current
geometry and are accepted or rejected on the basis of the
Metropolis criterion,62 which uses the energy difference be-
tween the local minimum obtained by minimization from the
instantaneous configuration and the previous minimum in the
Markov chain. In effect, the potential energy surface is trans-
formed into the basins of attraction of all the local minima so
that the energy for configuration r is

Ẽ(r) = min{E(r)}, (1)

where “min” denotes local minimization. Large steps can be
taken to sample this transformed landscape, since the objec-
tive is to step between local minima. Furthermore, there is no

need to maintain detailed balance when taking steps because
the BH approach attempts to locate the global potential en-
ergy minimum and is not intended to sample thermodynamic
properties. The BH algorithm is implemented in the GMIN
program.63

Basin-hopping has been employed successfully to find
the global minimum of peptides and proteins,26–31,64 includ-
ing structures of peptide complexes.32–34 In our study, we per-
formed BH simulations using between 100 and 10 000 BH
steps. The moves for perturbing the current geometry of the
peptides were taken in backbone and sidechain dihedral an-
gle space.28 At each BH step, on average 30% of these di-
hedrals were randomly chosen and then twisted by an angle
of maximally 60◦. Dihedral angles which define planar struc-
tures, such as rings, were considered non-twistable to keep
their planarity.65 In all BH runs the temperature was set to
300 K. We use a limited-memory variation of the Broyden-
Fletcher-Goldfarb-Shanno update by Nocedal66 (LBFGS) for
energy minimization.

C. Chemical shift restraints

We implemented chemical shift restraints into the GMIN
program with a modified version of the program CamShift.22

CamShift calculates chemical shifts using distance dependent
functions of the atomic coordinates for the influence of back-
bone atoms, sidechain atoms, and nonbonded atoms. Further-
more, it also includes a dipole approach for the influence of
aromatic rings and a parametrized function for dihedral an-
gles. CamShift enables us to calculate chemical shifts quickly
and accurately.22 Furthermore, it allows to calculate forces
from chemical shifts.

We use a soft-square harmonic potential as introduced
by Vendruscolo and co-workers6 to define the chemical shift
penalty function ECS, which restrains the structures to con-
formations in agreement with the chemical shifts of the tar-
get structure. Figure 1 shows that ECS is split into three re-
gions: a flat-bottomed region that takes into account inaccu-
racies in the chemical shift predictions, a harmonic region that
penalizes statistically significant deviations between the com-
puted and experimental shifts, and a linear region that pre-
vents large deviations of individual chemical shifts from dom-
inating the magnitude of ECS and thus frustrating the confor-
mational search.6 The width of the potential well ECS is gov-
erned by the parameter n.

The CamShift energy ECS and force FCS are added to the
CHARMM22 energy EFF and force FFF, respectively,

E = EFF + αECS, (2)

F = FFF + αFCS. (3)

Here, the adjustable parameter α defines the contribution of
the chemical shift restraints to the total energy E. If the value
of α is too high, the forces resulting from CamShift are too
large, creating instabilities during the energy minimization
process. If the value of α is too low or the tolerance param-
eter n is too large, the influence of CamShift is too weak to
provide an improvement over unrestrained simulations. If the
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FIG. 1. Chemical shift penalty energy ECS as a function of the difference
between the chemical shifts of the simulated (δcalc) and the target structure
(δexp) for n = 1 (red) and n = 3 (green). The width of the flat-bottomed part
is 2nεj, which is adjustable by modifying n with εj being the accuracy of the
chemical shift predictions for atom type j. x0 is the cutoff of the harmonic part
of the energy function, β j is a scaling parameter determining the magnitude
of the energy penalty, and γ influences how large the energy penalty can grow
beyond x0.

value of n is too small, small deviations from the target struc-
ture will generate chemical shifts that result in large penal-
ties, thus creating a rugged energy landscape. It will therefore
be more difficult to locate the global minimum as the system
can easily become trapped in deep local minima.6 In the first
part of our study we identified the optimal values of α and n
for the combination of GMIN and CamShift as described in
Sec. III A. It should be noted that the unit of EFF is kcal/mol
in the CHARMM force field,59 while ECS is a dimensionless
quantity.6

III. RESULTS AND DISCUSSION

A. Optimization of the parameters α and n

We prepared the systems as described in Sec. II A. First,
we performed two types of short chemical shift-restrained
simulations with 100 BH steps for 1LE0 and 1L2Y, one us-
ing value pairs with α = 1 and varying n from n = 0.5 to n
= 4, and the second with constant n = 1 but varying α from
α = 0 to α = 3. For the latter we chose n = 1 because from
the runs with varying n only the one with n = 1 could find
parts of the β-hairpin for 1LE0, as the structural results in
Figure S2 of the supplementary material58 show. In the runs
with varying α, the unrestrained simulation (α = 0) was not
able to produce a structure resembling the β-hairpin, while
the other values for α were more successful. Figure S2 of
the supplementary material58 shows that the simulations with
(α, n) = (1, 1) and (α, n) = (2, 1) find structures fitting best
to the β-hairpin within the short 100 step-BH runs. To test
if this choice of values for α and n is universal or peptide
specific, we performed 100 step-BH simulations of 1L2Y us-
ing the various (α, n) pairs. Figure S3 of the supplementary
material58 shows that only the simulations with (α, n) = (1,
0.5) and (1, 1) could find parts of the α-helix. In a previous
chemical shift-restrained MC study using a SA protocol, Ro-
bustelli et al. also chose n = 1 yet in connection with higher
values for α.6 The ideal value of α depends on the absolute
value of the force field energy EFF: the larger this value, the
larger α has to be chosen.

During our systematic test of the interplay between α and
n, we further observed that n had to be optimized for the
LBFGS minimizer, while keeping α = 1 constant through-
out each BH simulation. For n we found that the local min-
imization at a given BH step is more successful in terms of
robustness and speed if n is decreased while the minimization
progresses. We use the root mean square force (RMSF) dur-
ing the minimization as progression variable to determine n:

n =

⎧⎪⎨
⎪⎩
3 RMSF > 1,

3+ 2
3 log(RMSF) 10−3 < RMSF ≤ 1,

1 RMSF ≤ 10−3,

(4)

where the unit of RMSF is computed for the change of
the total energy E. We start with the relatively large value
n = 3 to make sure that the first few minimization steps af-
ter changing the dihedral angles are mainly force-field driven.
Figure 1 shows that for large values of n, the calculated chem-
ical shifts of a wide range of conformations fall near the flat-
bottomed region of ECS and thus generate relatively small en-
ergetic penalties. Once the minimization has sufficiently pro-
gressed, the conformation is increasingly forced towards the
target structure by decreasing n, i.e., by increasing the penal-
ties for the calculated shifts of atoms j, which deviate by more
than nεj from the experimental chemical shifts. We reduce the
value of n continuously to the previously determined n = 1.

B. Results for 1LE0, 1L2Y, and 1YRF

We performed chemical shift restrained and unrestrained
BH simulations using 1000 and 10 000 BH steps for the pep-
tides 1LE0 and 1L2Y, and 1000 and 5000 BH steps for 1YRF.
We did not continue the BH run for 1YRF up to 10 000 BH
steps because we did not observe a significant improvement
during the last 3000 BH steps, and the result after 2000 BH
steps is already very convincing. The best structures, which
we obtained for the three peptides within 1000 steps and full-
length BH simulations, are shown in Figure 2. Here, the defi-
nition of the best structures is with respect to the total energy
E = EFF + ECS, which is lowest for these structures. This al-
lows us to test, if by using the total energy as criterion, struc-
tures with low E correspond to structures with low backbone
root mean square displacement (RMSD) from the target struc-
ture. This can only be the case when the force field correctly
predicts the target structure as the global minimum. Thus, we
included a β-sheet structure and helical structures in our test
set in order to check if both structural elements are correctly
supported by the CHARMM22 potential in connection with
the FACTS solvation model.

1. 1LE0

The structures for 1LE0 in Figure 2 show that the β-
hairpin can be determined with very high accuracy. Within
1000 BH steps the β-sheet is already correctly identified,
while the turn region still needs improvement. After 10 000
steps this deficiency was resolved, so that the RMSD of the
best structure is only 0.86 Å from the target structure. The
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FIG. 2. Target structures (red), structures of unrestrained (yellow), and
chemical shift restrained (blue) simulations after 1000 (left) and 10 000
(right) BH steps for 1LE0 (top) and 1L2Y (center), and after 1000 (left) and
5000 (right) BH steps for 1YRF (bottom).

unrestrained BH run was not able to produce the β-sheet
within 10 000 steps.

2. 1L2Y

The correct structure of 1L2Y was also identified within
10 000 BH steps using chemical shift restraints, while the un-
restrained BH simulation did not even find the α-helix for
the first nine residues. Imposing chemical shift restraints, the
α-helix was found quickly (within 1000 BH steps) and ac-
curately. The biggest deviations from the target structure are
seen for the termini and for the transition between the α-helix
and the 310 helix (residues 10 and 11). The middle part of
the peptide needed longest before its correct structure was lo-
cated. The RMSD for the best structure after 10 000 BH steps
is 2.18 Å. In order to pinpoint the origin of the deviation be-
tween the predicted and the target structure, we plotted the
deviation between computed and target chemical shifts, δcalc
− δexp, for each Cα atom of 1L2Y (Figure 3). This analysis
reveals that for residues 3–9 and 12–17 the predicted shifts
are restrained to their target shifts since |δcalc − δexp|/ε < 1,
which for n = 1 corresponds to the flat-bottomed region of
the chemical shift penalty function (Figure 1) leading to ECS
= 0 for these atoms.
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FIG. 3. Deviation between the Cα chemical shifts of the predicted and the
target structures for 1L2Y. δcalc − δexp is shown for each residue apart from
residues 1 and 20, because CamShift does not provide chemical shifts for
the first and last residue. The chemical shift deviation is given in units of the
CamShift accuracy εCα for the prediction of Cα chemical shifts.

Figure 3 shows that residues 2, 18, and 19 produce the
largest deviations from the target structure. This is because
CamShift does not calculate the chemical shifts for the first
and last amino acids in the chain, because the CamShift pre-
diction for a given atom relies on the distances to atoms in
the two neighboring residues. Therefore, the structures for the
first and last residues have to be predicted without chemical
shift restraints. In general, this means that the largest struc-
tural deviations come from the terminal residues, as the pre-
dicted structure for 1L2Y in Figure 2 supports. The wrong
structures for the first and last residues give rise to wrong in-
teratomic distances, which are needed for the chemical shift
calculations for residues 2 and Nres − 1, with Nres being the
total number of residues in the chain. In turn, this leads to
inaccurate chemical shifts δcalc for residues 2 and Nres − 1,
hampering the structure prediction for these residues. This ef-
fect propagates to residues 3 and Nres − 2 before eventually
leveling off. For small peptides such as 1L2Y the deviation of
only a few residues leads to an appreciably increased RMSD
from the target structure. This effect will decrease for larger
peptides.

3. 1YRF

The 5000 step-BH run with chemical shift restraints pro-
duced a structure for 1YRF with a RMSD of 3.81 Å. The best
structure, which was found within 1000 BH steps looked al-
ready very good and could only slightly improved during the
subsequent 4000 BH steps. From the structures in Figure 2
it is visible that, as discussed above for 1L2Y, the largest de-
viations originate from the terminal residues. If we exclude
residues 1 and 36 from the RMSD calculation we obtain a
RMSD of 2.44 Å, which further decreases to 1.88 Å by ex-
cluding residues 1, 2, 35, and 36, and to 1.39 Å for the RMSD
between residues 4 and 33. Excluding more residues does not
further improve the RMSD. As for the other two peptides, the
unrestrained BH run did not produce a structure resembling
the target structure. None of the helices were found during
this run.

In order to better understand the interplay between the
force field energy and the chemical shift penalty, and their in-
fluence on folding the helical peptide 1YRF, we plotted the
total energy E = EFF + ECS, the CamShift penalty energy

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
134.94.119.88 On: Wed, 26 Mar 2014 14:15:15



025102-5 F. Hoffmann and B. Strodel J. Chem. Phys. 138, 025102 (2013)

FIG. 4. Folding of 1YRF during the first 1000 BH steps. (Top) Energy for
each state of the Markov chain. The red line represents the total energy (EFF
+ ECS) and the green line represents the CamShift energy (ECS). Structures
after 50, 100, 200, 500, and 1000 BH steps are shown in blue. (Bottom)
RMSδ is shown for Cα atoms for each state of the Markov chain (green line).
It was normalized with regard to the atom type specific CamShift accuracy
εCα . For the structures after 0, 50, 100, 200, 500, and 1000 BH steps the
RMSD is provided as well (red dots).

ECS, the structural RMSD, and the root mean square chemical
shift deviation RMSδ (for Cα atoms) from the target chemi-
cal shifts during the first 1000 BH steps (Figure 4). All four
quantities reach a plateau in less than 200 BH steps, which
are sufficient for the structure to find the secondary struc-
ture elements, i.e., the three α-helices (see blue structure af-
ter 200 steps). Identifying the α-helices is accompanied by a
marked decrease of ECS. During the following 800 BH steps
the structure improved by finding the correct arrangement of
the α-helices with respect to each other and local refinements.
These improvements are mainly force field driven as EFF de-
creases more strongly than ECS for the near-target structures.
The penalty energy plateaus at ECS ≈ 11.5, implying that
within 1000 BH steps not all predicted chemical shifts fall into
the flat-bottomed region of the chemical shift penalty function
(Figure 1). As discussed above, the largest deviations orig-
inate from the amino acids in neighborhood to the terminal
residues. The improvement of the structure is confirmed by
the RMSD. It decreases from ≈7 Å at BH step 200 to ≈4 Å
at BH step 1000, which is already close to the final RMSD of
3.81 Å for the best structure after 5000 BH steps.

4. Incomplete chemical shift assignments

It is often not possible to measure and assign all chemi-
cal shifts in a NMR experiment. To test the robustness of our
approach with respect to incomplete chemical shift assign-
ments, we performed BH simulations of 1YRF where only
one of the six chemical shift types, 1Hα, amide 1H, 13Cα,
13Cβ, carbonyl 13C, or amide 15N chemical shifts were used
in the restraining function. The number of chemical shift re-
straints applied is given by Nshift × (Nres − 2), with Nshift be-

FIG. 5. Structures for 1YRF after 1000 BH steps with reduced chemical shift
restraints. Top (from left to right): Target structure (red) and predicted struc-
tures (blue) with chemical shift assignments for (1H, 13Cα, 15N), 13C, and
15N. Bottom: Predicted structures with chemical shift assignments for 1Hα,
1H, 13Cα, and 13Cβ. The results are sorted according to decreasing prediction
quality.

ing the number of chemical shift types considered (for the
first and last residue no chemical shifts are calculated). In the
simulations above we set Nshift = 6, while in the simulations
with only one chemical shift type Nshift = 1. Additionally, we
performed one simulation with Nshift = 3, where restraints for
1H, 13Cα, and 15N chemical shifts were included. We chose
these three shift types as these are the most frequently mea-
sured chemical shifts for proteins as the statistics derived from
a total of about 5.6 × 106 chemical shifts in the Biological
Magnetic Resonance Data Bank (http://www.bmrb.wisc.edu/)
reveals (see Figure S4 of the supplementary material58).
Figure 5 shows the structures obtained after 1000 BH steps
with reduced chemical shift restraints. Apart from the simu-
lation with only 13Cβ chemical shift restraints, the other sim-
ulations with Nshift = 3 and Nshift = 1 are able to fold parts
of the peptide into α-helices. The predicted structures from
these simulations are much closer to the target structure than
the structure from the unrestrained 1000 step BH simulation
(Figure 2).

For a more detailed analysis of the performance of the
BH simulations with reduced chemical shift restraints, we
determined the secondary structure of each residue in the
structures given in Figure 5 using STRIDE67 (Figure 6). The
simulation with only carbonyl 13C chemical shift restraints
succeeded to predict all three α-helices at almost identical
positions to the target structure. This can be explained by

FIG. 6. Secondary structure per residue in the structures shown in Figure 5.
On the top line the one letter code of each residue is given, on the bottom line
the residue number. The left column designates the chemical shift restraints
applied in the simulations.
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considering that the backbone torsional angles � and � are
strong determinants of the 13C chemical shifts. Their influ-
ence on this chemical shift is about 50%, while on 13Cα

and 13Cβ chemical shifts their effect is only 25% and 10%,
respectively.1 Therefore, 13Cα and 13Cβ chemical shifts are
less effective as restraints for secondary structure prediction.
With 13Cα chemical shift restraints one of the three α-helices
can still be predicted within 1000 BH steps, while 13Cβ chem-
ical shift restraints fail to fold any of the helices. 13Cβ chemi-
cal shifts are shifted downfield by about 2.5 ppm in β-sheets,
but have nearly random coil values in helices.1 Thus, it is not
surprising that the information from merely 13Cβ chemical
shifts is not sufficient for the identification of the helices of
1YRF. Individual 15N, 1Hα, and 1H chemical shift restraints
are successful in the prediction of two of the three helices
within 1000 BH steps. While both 15N and 1H chemical shifts
are not very good predictors of dihedral angles or indica-
tors of secondary structure, they are very sensitive to hydro-
gen bonding1 and are therefore helpful as restraints in protein
folding simulations. 1Hα chemical shifts are known as a reli-
able indicator of secondary structure, and backbone dihedral
torsional effects are the most important contribution to 1Hα

chemical shift deviations. This explains the good performance
of the BH run with only 1Hα chemical shift restraints. The
combined application of 1H, 13Cα, and 15N chemical shift re-
straints leads to the prediction of all three helices in less than
1000 BH steps. Here, even the length of the coil sequences be-
tween the second and third helix (residues 21 and 22), and at
the N- and C-termini (residues 1–2 and 33–35, respectively)
are correctly predicted.

IV. CONCLUSION

Computational methods that utilize chemical shifts to
produce protein structures at atomic resolution have recently
been introduced. These methods use the information con-
tained in experimental chemical shifts together with struc-
tural homology of proteins in structural databases such as the
RCSB protein data bank to generate new structures,4, 5, 8, 9, 16, 20

or directly incorporate chemical shifts as restraints in molec-
ular simulations with an energetic penalty function analogous
to those used in standard NMR structure calculations.6, 7 In
the current work, we applied the latter idea and combined the
basin-hopping (BH) approach to global optimization23,24 with
chemical shift restraints by using the chemical shift penalty
function introduced by Vendruscolo and co-workers.6, 7 For
the calculation of NMR chemical shifts from protein struc-
tures we used the CamShift method, which approximates
chemical shifts as polynomial functions of interatomic
distances.22

For the proper implementation of chemical shift re-
straints into the BH approach we determined the optimal
weight of the chemical shift penalty energy with respect to
the CHARMM22 force field59,60 employed in conjunction
with the solvation model FACTS.61 Furthermore, we devel-
oped a function, which continuously decreases the width of
the chemical shift penalty function during each local energy
minimization procedure, which thereby becomes more robust.
We demonstrated for three peptides that the BH approach with

chemical shift restraints is able to find near-native structures
from fully extended structures within 10 000 BH steps. The
conformational searches were able to fold α and β secondary
structure elements in less than 1000 BH steps, and correctly
orient their tertiary contacts in subsequent BH steps. The un-
restrained BH runs, on the other hand, failed to fold any of the
secondary structure elements within 10 000 BH steps. Much
longer unrestrained BH runs would be needed for the confor-
mational searches to succeed without guidance from chem-
ical shift restraints. In another study we tested whether or
not the CHARMM22/FACTS potential supports the target
structures of 1LE0, 1L2Y, and 1YRF as global minima. We
found that the RMSD values of the global minima from the
respective targets are between 1.5 and 3 Å. Our conclusion
therefore is that it is rather inefficient sampling and not the
CHARMM22/FACTS potential that precluded the generation
of near-native structures in the unrestrained BH simulations
of the current study.

We tested our approach for incomplete chemical shift as-
signments, where the information from only one chemical
shift type was included in each of the chemical shift-restraint
BH simulations. Apart from the simulation with 13Cβ chemi-
cal shift restraints, these simulations succeeded to predict sec-
ondary structure elements within 1000 BH steps. For each of
the chemical shift types, the success (and failure) can be ex-
plained based on the relation between structure and chemical
shifts in proteins.1 The usage of fewer chemical shifts speeds
up the restrained BH simulations as the computational over-
head compared to unrestrained BH simulations scales linearly
with Nshift. However, in order to obtain as good prediction
results as from the runs with more chemical shift restraints,
more BH steps have to be conducted. The full-length BH sim-
ulations withNshift = 6, for which the results are shown in Fig-
ure 2, required 10 CPU days for 1LE0, 12 CPU days for 1L2Y,
and 16 CPU days for 1YRF. All BH simulations were run on
a single 2.93 GHz Intel Xeon Processor X5570. For the fold-
ing of proteins of comparable length using chemical shift re-
strained Monte Carlo simulations with a simulated annealing
protocol Robustelli et al.6 needed between 380 and 473 CPU
days. This comparison reveals that it is more effective to apply
chemical shift restraints via both energy and energy gradients,
as it is realized in BH and molecular dynamics,7 than con-
sidering only the energy as in simulated annealing based on
Monte Carlo simulations.6 Like Robustelli et al.,6 we found
that the major bottleneck of the chemical shift restrained sim-
ulations is the computation of chemical shifts with each call
to the energy function. The unrestrained BH simulations of
the same length required less than a CPU day for 1LE0 and
1L2Y, and 2.5 CPU days for 1YRF. We currently work on a
relief of this computational cost.

We conclude that the BH approach with chemical shift
restraints is a promising method for protein structure predic-
tion. The approach is an addition to existing methods based
on chemical shift restrained Monte Carlo simulations using
a simulated annealing protocol,6 molecular dynamics sim-
ulations with chemical shift restraints,7 and various molec-
ular fragment replacement approaches with chemical shift
information.4,5, 8, 9, 16, 20 The three proteins that we consid-
ered as test cases contain fewer than 50 amino acids, and
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have relatively simple topologies. It is expected that the
amount of computational time required to achieve conver-
gence will significantly increase for larger proteins with more
complex topologies, which will probably limit the applica-
tion of the current implementation of the BH approach with
chemical shift restraints to proteins not much larger than
50 to 60 residues. Therefore, we are currently implementing
knowledge-basedMonte Carlo moves into the GMIN program,
which should speed up the folding of secondary structure ele-
ments for BH runs with and without chemical shifts restraints.
Additionally, the BH approach could easily be combined with
restraints traditionally used in NMR structure calculations
such as NOEs, J-couplings, and RDCs, which, in connec-
tion with chemical shift restraints, will open the possibility
for the BH approach to become a valuable tool in structural
biology.
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1. Introduction

The prediction of protein structure from an amino acid se-
quence is one of the most important computational problems
in bioinformatics and one of the great challenges in structural
biology. Knowledge of the three-dimensional structure of pro-
teins gives invaluable insights into the molecular basis of their

function, and might therefore facilitate finding treatments and
cures for many diseases. It is generally assumed that a protein
folds into a native conformation, or ensemble of conforma-

tions, that is at or near the global free-energy minimum.[1]

Thus, protein structure prediction can be understood as the
search for an energy minimum in the conformational space of
the protein. From a computational point of view, the problem

of finding native-like conformations for a given primary struc-
ture—referred to as de novo protein structure prediction—can

be decomposed into two tasks: 1) developing an accurate
energy function for which the native protein folding and
energy minimum coincide, and 2) developing an efficient pro-

tocol for searching the energy landscape.
The focus of the current study is on the latter task. The ex-

tensive exploration of the whole conformational space of a pro-
tein is generally not possible, as it would be a time-prohibitive
endeavor. Approaches based on the Metropolis Monte Carlo

(MC) method offer the possibility to efficiently explore the con-

formational space or at least specific regions of it. Searching
for the conformational space using MC methods is usually

a two-step process—a trial conformation move followed by an
energy evaluation. In this work, we use the basin-hopping (BH)
global optimization algorithm,[2,3] which is analogous in princi-
ple to the MC-minimization approach.[4] Global optimization
can be defined as the procedure of finding the lowest value of
a given function. The BH algorithm is a stochastic global opti-
mization method, which uses MC moves on a transformed po-

tential energy surface, where a structural perturbation is fol-
lowed by energy minimization. BH has been used successfully
to find the global minimum of peptides and proteins,[5–12] in-
cluding peptide complexes.[13–15]

Several possibilities to improve the efficiency of MC sam-
pling exist, including the optimization of trial moves for pro-
teins[16] and applying experimental restraints during an MC
simulation.[17,18] The aim of this study is the improvement of
the trial moves. For proteins, a typical MC move consists of

moving often contiguous residues randomly in a single MC
step. The efficiency of the trial moves can be increased by in-
corporating residue-specific structural preferences derived

from experimental structures.[19,20] It is well known that the F

and Y angles of the protein backbone are more densely cen-
tered around particular regions, with the distribution of the
(F,Y) densities depending on the identity of the amino acid.[21]

Likewise, protein side chains tend to exist in a limited number
of low-energy conformations called rotamers.[22] Instead of con-

sidering the full geometrically possible conformational space,
only populated (F,Y) regions and a small number of rotamers
can be used for designing MC moves that describe the most

frequently occurring amino acid conformations.
Another way to incorporate database-driven information

into an MC scheme can be realized by basing the protein
structure prediction on secondary structure assignments of the

The prediction of protein tertiary structure from primary struc-
ture remains a challenging task. One possible approach to this

problem is the application of basin-hopping global optimiza-

tion combined with an all-atom force field. In this work, the ef-
ficiency of basin-hopping is improved by introducing an ap-

proach that derives tertiary structures from the secondary
structure assignments of individual residues. This approach is

termed secondary-to-tertiary basin-hopping and benchmarked

for three miniproteins : trpzip, trp-cage and ER-10. For each of
the three miniproteins, the secondary-to-tertiary basin-hopping

approach successfully and reliably predicts their three-dimen-

sional structure. When it is applied to larger proteins, correctly
folded structures are obtained. It can be concluded that the as-
sembly of secondary structure elements using basin-hopping
is a promising tool for de novo protein structure prediction.
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residues.[23,24] The secondary structure is the three-dimensional
form of local segments of proteins, which consists of local
inter-residue interactions mediated by hydrogen bonds. Amino
acids vary in their ability to form secondary structure elements.
The dominating secondary structures are a helices (henceforth
denoted H) and sheets consisting of b strands (E). These regu-
lar secondary structure elements are linked by either tight
turns or loose, flexible loops. Furthermore, other types of heli-

ces, such as the 310 helix and p helix exist. These structural ele-
ments are collectively denoted C for “coil” in the following sec-
tions. It should be noted that random coil is not a true secon-

dary structure, but is the class of conformations that indicate
an absence of regular secondary structure. Thus, the secondary
structure of a protein is characterized by a sequence of letters
over the alphabet {E,H,C}, with one letter per amino acid. Most
secondary structure prediction methods are evolution-based
methods (also known as homology-based methods), which
either exploit neural network-based approaches (e.g. Porter[25]

and Psipred[26]), hidden Markov models (e.g. SAM[27]), or the fre-
quency analysis of amino acid conformational states (e.g.
Gor IV[28]). In this work, we used Porter for the prediction of sec-
ondary structure as it was identified as the best performing
prediction method.[29] Miceli et al. compared the performance
of nine secondary structure prediction tools applied to two
protein data sets.[29] In this study, we confirmed that Porter is
superior to the other methods that are based on performance
criteria other than those used by Miceli et al.

The secondary structure assignment was followed by the
actual folding simulation using BH. Here, we applied MC

moves only to the intervening amino acids in the C conforma-

tion and connecting the H or E secondary structure elements,
allowing them to establish their tertiary contacts. We term this

approach secondary-to-tertiary BH. It is similar in idea to frag-
ment-assembly approaches, which are applied in the de novo
methods of Rosetta[30–32] and Chunk-Tasser.[33] We showed for
the three peptides trpzip (PDB[34] ID: 1LE0),[35] trp-cage
(1L2Y),[36] and ER-10 (1ERP),[37] that this secondary-to-tertiary BH
implementation allows the reliable prediction of correctly
folded structures within 2500 BH steps. Furthermore, we dem-

onstrated that, for larger proteins with up to 79 residues, our
approach can be used to predict correctly folded protein struc-

tures. These developments make the BH approach to global
optimization a promising tool for de novo protein structure
prediction, which is computationally less demanding compared
to other prediction methods, and which will be applied to
future studies.

2. Results and Discussion

2.1. Testing of Secondary Structure Predictors

We evaluated the precision of three secondary structure pre-
dictors—Porter,[25] Psipred,[26] and SAM[27]—by counting the
number of H$E, H$C and E$C mix-ups for the PDB25Select
database. Table 1 shows the results for all proteins of the data-
base, which were further split into small proteins with less
than or equal to 100 residues and large proteins of greater

than 100 residues, and into a and b proteins that contain only
a helices and b sheets, respectively.

The most striking result is that in most cases Porter per-
formed much better than Psipred and SAM. The number of

mix-ups was a factor of three to 030 larger for Psipred and
SAM in comparison to Porter in almost all cases (i.e. type of
mix-up and protein set). The only exceptions are the Psipred
predictions for b proteins. For this set, neither Porter nor
Psipred wrongly predicted H instead of E (SAM has six such
mix-ups), whereas there were only three and two H assign-
ments instead of C for Porter and Psipred, respectively. With
regard to E$C, Porter again performed significantly better
than Psipred. For all three prediction methods, the number of

H$E mix-ups was by at least one order of magnitude lower
than the number of H$C and E$C mix-ups, independent of
protein length and type of fold. This indicates that helices and
b sheets can be distinguished from one another by Porter,
Psipred and SAM; this is important, as the basis for the BH ap-

proach used here is the accurate assignment of secondary
structure for the subsequent assembly of the tertiary structure.
This assumption is especially justified for Porter, which had
only 0.1% H$E mix-ups for the total database, that only affect
a/b proteins (i.e. proteins that contain both a helices and

b sheets) as there were no H$E mix-ups for a and b proteins.
Compared to H$E, the numbers of H$C and E$C mix-ups
are somewhat higher, but generally below 3% for Porter. For
small proteins, the correct prediction of b sheets seems to be

slightly more difficult, with 3.5% E$C mix-ups demonstrated
by Porter. For both a and b proteins, E was predicted instead
of C and H was predicted instead of C for only three residues

in each case. This again showed that Porter is highly capable
of distinguishing a and b folds. These findings led us to use

Porter as the starting point for our BH simulations for the pre-
diction of secondary structures. The main task of the subse-

Table 1. Performance analysis of secondary structure prediction methods.
The numbers of secondary structure mix-ups are provided for Porter,
Psipred and SAM for all proteins of the PDB25Select database, proteins
with �100 amino acids, proteins with >100 amino acids, and a and
b proteins. For the first three protein sets, the percentage of mix-ups rela-
tive to the total number of amino acids in the set in question is given in
parentheses.

Set Predictor H$E H$C E$C

Porter 9 (0.1%) 511 (2.9%) 484 (2.7%)
all Psipred 186 (1.1%) 1565 (8.8%) 1765 (10.0%)

SAM 210 (1.2%) 1645 (9.3%) 1765 (10.0%)
Porter 2 (0.1%) 42 (2.8%) 54 (3.5%)

�100 Psipred 12 (0.8%) 126 (8.2%) 184 (12.0%)
SAM 19 (1.2%) 174 (11.4%) 178 (11.6%)
Porter 6 (0.0%) 469 (2.9%) 430 (2.7%)

>100 Psipred 174 (1.1%) 1439 (8.9%) 1581 (9.8%)
SAM 191 (1.2%) 1471 (9.1%) 1587 (9.8%)
Porter 0 44 3

a Psipred 8 160 29
SAM 12 139 14
Porter 0 3 63

b Psipred 0 2 108
SAM 6 18 117
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quent BH simulations was to identify the correct tertiary con-
tacts and to correct wrongly assigned secondary structures,
which mainly involved those in which C was wrongly assigned
instead of H or E.

2.2. First BH Round: From Secondary to Tertiary Structure

Porter was used to determine the secondary structure of the
residues of trp-cage and ER-10, while they were manually as-
signed in the case of trpzip based on its target structure, as

this peptide is too short to be treated by Porter. In Table 2, we

present the assignments together with the secondary structure
of the targets. The Porter predictions for the helix lengths in

trp-cage and ER-10 were often one residue short, whereas all
other predictions were correct. The 310 helix in trp-cage (indi-
cated by the letter H for residues 11–13 in the target) is by de-
fault not considered by Porter as only a and b structures were
assigned. Thus, the 310 helix had to be found by the BH ap-
proach. For trpzip, we assigned residues 5 and 8 to be in the
coil state in order to evaluate if the BH methodology was able

to identify the full b sheet.
The BH runs in this round used the information given in

Table 2 in a manner described under Computational Details.
For each peptide, high-temperature molecular dynamics simu-
lations were used to generate 20 different unfolded structures,

which were taken as starting structures for the BH runs. We
considered three different maximum dihedral twisting angles

of 308, 608 and 908 per starting structure. Furthermore, 10 in-
dependent BH runs were performed for each starting structure
and twisting angle, using different seeds for the random

number generation. This amounted to 20�10�3=600 BH
runs per peptide. BH runs were conducted for 1000, 2000 and
5000 MC steps (also known as BH steps) for trpzip, trp-cage
and ER-10, respectively. As an example, the BH input file for
trpzip with step size 608 is provided in the Supporting Informa-
tion.

2.2.1. Energy versus RMSD Plots

The performance of each BH run was measured in terms of the
energy and Ca root-mean-square deviation (RMSD) from the

target structure, and the three best structures per run as deter-
mined by both energy and RMSD were considered for analysis.

In the following discussion, these sets of structures are denot-
ed as “low-energy” and “low-RMSD” structures, respectively. In
the ideal case, the energy function ranks the native structure
in first place with respect to energy (lowest energy), that is,

the sets of low-energy and low-RMSD structures are identical
or at least overlap to a large extent. Figure 1 shows the energy

versus RMSD plots for low-energy (blue) and low-RMSD struc-
tures (red) for the 600 BH runs per peptide, along with the

structures of overall lowest energy and lowest RMSD. The re-

sults for the maximum twisting angles of 308, 608 and 908 are
displayed together. Detailed re-
sults for the individual step sizes
are provided in Figures S1–S3 of

the Supporting Information.
The results for the energy-

minimized target structures (i.e.
the energy-minimized PDB struc-
tures) using the CHARMM22/

FACTS energy function are dis-
played as yellow dots in
Figure 1. The changes to the
RMSD as a result of the minimi-

zation procedure are small (<
0.5 �). In the following discus-

sion, we will use the structure of the energy-minimized target
as a reference for the RMSD calculations as within the BH pro-
cedure one cannot expect to get closer to the PDB structure

than the minimized target structure. Thus, the yellow dots in
Figure 1 occur at an RMSD of zero. The energy of the energy-

minimized target structures is higher than the energy of many

of the low-energy structures. The target structures are NMR so-
lution structures, which were determined by minimizing the
distance or dihedral angle violations resulting from experimen-
tal constraints. It is important to note that the ensemble of
structures obtained is an “experimental model”, which is not
necessarily the best solution when modeled with an empirical

force field, such as CHARMM22/FACTS. We therefore subjected
the three target structures to further optimization by perform-
ing BH runs of 1000 steps with maximum dihedral angle
changes of 208, which were applied to both backbone and
side chains of three to five randomly selected contiguous resi-

dues. This procedure generated energy-optimized structures at
the cost of the RMSD, which increases. The energy and RMSD

values of these structures, which we call “optimized target
structures”, are �307.2 kcalmol�1 and 1.33 � for trpzip,
�510.7 kcalmol�1 and 1.82 � for trp-cage, and �907.6 kcal

mol�1 and 2.58 � for ER-10, respectively. These results are
shown as orange dots in Figure 1.

Figure 1 shows the success of the secondary-to-tertiary BH
procedure, that is, the application of MC moves at residues be-

tween secondary structure elements H and E to obtain tertiary

structure from the secondary structure data. For all three pep-
tides, native-like structures were found, where a threshold for
the Ca RMSD of 2.0 � from the target for defining native-like
conformations was used. For trpzip, trp-cage and ER-10, we
identified 198, 512 and two native-like conformations, respec-
tively. The lowest-RMSD structures shown in Figure 1 have

Table 2. Secondary structure assignments along with the target secondary structure. For trp-cage and ER-10
the secondary structure assignments were obtained using Porter, whereas they were manually assigned for
trpzip. The letter H for residues 11–13 in the trp-cage target denotes a 310 helix.

Peptide Secondary structure

trpzip assignment: CEEECCCCEEEC
target: CEEEECCEEEEC

trp-cage Porter: CHHHHHHHCCCCCCCCCCCC
target: CHHHHHHHHCHHHCCCCCCC

ER-10 Porter: CHHHHHHHCCCHHHHHHCCCCCHHHHHHHHHCCCCCCC
target: CHHHHHHHHCCHHHHHHHCCCHHHHHHHHHHHCCCCCC
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RMSD values of 1.22 � (trpzip), 0.55 � (trp-cage), and 1.63 �
(ER-10), whereas the lowest-energy structures have RMSD
values of 3.15 �, 0.70 � and 8.05 �, respectively. The results for
trp-cage indicate that for this peptide the CHARMM22/FACTS

potential can distinguish the native structure from unfolded
structures. This conclusion is supported by the funnel shape of
the energy versus RMSD plot for trp-cage. Furthermore, the
secondary-to-tertiary BH approach samples native-like struc-
tures of lower RMSD and lower energy than obtained for the

optimized target structure (orange dot in Figure 1).
For trpzip the best structure obtained was the optimized

target structure. The lowest-RMSD structure has an energy
which is 35 kcalmol�1 higher than the energy of the optimized

target structure, and the RMSD of the latter structure is almost
2 � below the RMSD of the lowest-energy structure. The
lowest-RMSD structure exhibits the hairpin, yet no b sheet

formed due to the missing H-bonds between the two strands.
Figure S4 shows the various structures for trpzip obtained in

this study, with the H-bonds indicated in these structure plots,
and an analysis of the interaction energies between the resi-
dues in these structures. The higher energy of the lowest-
RMSD structure compared to that of the optimized target is

due to the missing H-bonds and the electrostatic stabilization
between Glu5 and Lys8. Moreover, the tryptophan residues
Trp2, Trp4, Trp9, and Trp11 in the lowest-RMSD structure are
not oriented as they are in the target, in which they are

stacked and T-shaped with respect to each other, which further
destabilizes the lowest-RMSD structure. On the other hand, in
the lowest-energy structure the b sheet partially formed but
the turn region deviates from the target structure. The turn

folds towards the b sheet and is stabilized by a H-bond be-

tween the side chains of Asn7 and Thr10. However, the largest
energetic stabilization of this structure compared to the target
results from electrostatic attraction between the N- and C-ter-
minal residues despite C-terminal amidation. The tryptophan

residues that are in a stacked orientation also stabilize this
structure, although the Trp2–Trp4 and Trp2–Trp11 interactions
are not as strong as in the target (Figure S4). This analysis re-
veals how subtle the interplay between atomic positions and
overall energy in all-atom energy functions is, making protein
structure prediction with all-atom models a challenge. Further-
more, it has been demonstrated that implicit solvent models
tend to over-weight nonnative states, which are stabilized by
nonnative electrostatic attractions.[38]

Figure 1. Results from the first BH round for trpzip (top), trp-cage (middle) and ER-10 (bottom). Left : Energy versus RMSD plots for the low-energy (blue) and
low-RMSD (red) structures obtained from 600 BH runs for each peptide. For the low-RMSD structures only conformations with an RMSD value <5 � are in-
cluded, explaining the sharp cut at RMSD �5 � for the red dots for ER-10. The minimized and the optimized target structures are represented by a yellow
and an orange dot, respectively. Middle and right: Lowest-RMSD structure (red) and lowest-energy structure (blue) along with the target structure (yellow).
The RMSD and energy values of these structures are shown.
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Nonetheless, for both trpzip and trp-cage we found an over-
lap between the sets of structures of low RMSD and low
energy (i.e. between the red and blue dots in Figure 1), which
indicates that the CHARMM22/FACTS energy function is able
to predict native-like structures as low-energy structures for
both peptides. Among the low-energy structures, there were
14 native-like structures of trpzip and 40 of trp-cage. However,
for ER-10 we observed a clear separation between the red and

blue dots shown in Figure 1 and found no native-like structure
among the low-energy structures. We identified two native-like
structures at energies of approximately �880 kcalmol�1, which
is approximately 30 kcalmol�1 higher than the energy of the
low-energy structures at high RMSD. The comparison between
the RMSD and energy values for the lowest-RMSD and lowest-
energy structures shown in Figure 1 highlights this observa-

tion. Nevertheless, there are some ER-10 conformations with
RMSD values below 4 � among the low-energy structures. This
result indicates that the secondary-to-tertiary BH approach is

also able to identify native-like structures for ER-10. The ques-
tion rather is whether the considered energy function can dis-
tinguish between near-native and nonnative conformations for
ER-10, which is addressed in Section 2.3.

2.2.2. The Dependence of Prediction Efficiency on Step Size

Apart from reliably identifying near-native structures as dis-
cussed above, the aim was also to find them quickly. To this

end, we determined for each step size and peptide the aver-
age RMSD and energy values of the low-RMSD and low-energy
structures, respectively. In addition, we analyzed how many BH
steps were needed to locate the lowest-RMSD and lowest-
energy structures in each BH run. These quantities allowed us

to deduce which of the maximum twisting angles of 308, 608
or 908 yields the best and fastest predictions. The results of

this analysis are presented in Figure 2.
The data in Figure 2A and B allow us to conclude that the

step size has no large influence on the identification of low-
RMSD and low-energy structures. For all three peptides, the
averaged RMSD and energy values were similar for the step

sizes considered and none of the step sizes consistently out-
performed the others. The energy versus RMSD plots for the
different step sizes (Supporting Information) demonstrate that
the identification of similar structures is independent of the

maximum twisting angle. The final RMSD and energy values
do not depend on the RMSD and energy values of the starting
structures (Supporting Information). That is, near-native struc-

tures were identified not only when the BH run was initiated
from somewhat folded conformations, but also from complete-

ly unfolded conformations.
Figure 2C shows that the use of a maximum step size of 608

or 908 enabled near-native structures to be located more

quickly than when the maximum twisting angle was only 308.
Low-RMSD conformations were generally produced faster than
low-energy structures, implying that the RMSD did not further
improve upon decreasing the energy. This is due to the above-

mentioned problem of assuming the native structure as
a global energy minimum and the fact that atom-based poten-

tials are particularly sensitive to the precise position of the in-
teracting atoms, hampering the detection of native-like geo-

metries. As already pointed out for ER-10, the CHARMM22/
FACTS potential does not identify the native structure as the

global minimum on the potential energy surface. Therefore,
for this peptide, an average of 1000 more BH steps were
needed to find the lowest-energy structure than was required

to find the location of the lowest-RMSD structure. This prob-
lem was less serious for trpzip and trp-cage, for which native-
like structures correspond to low-energy structures.

In summary, less than 1000, 2000 and 5000 BH steps were

generally sufficient to detect near-native (or low-energy) struc-
tures for trpzip, trp-cage and ER-10, respectively. The average

computational time required for each BH run was 1.7 h for
trpzip, 7.4 h for trp-cage and 54.1 h for ER-10 with a single
2.93 GHz Intel Xeon X5570 processor. Whereas a smaller twist-

ing angle did not prevent the identification of near-native
structures, a larger step size of 608 or 908 helped to find them
faster. Thus, we conclude that the secondary-to-tertiary BH ap-
proach works. The aim of the following BH round was to test

Figure 2. Results from the first BH round are shown for the maximal step
size of 308, 608 and 908. A) The mean of the RMSD values of the low-RMSD
structures and B) the mean of the energies of the low-energy structures,
averaged over the 200 BH runs per peptide, and step size, are shown. C) The
average numbers of BH steps needed to locate the structures of lowest
RMSD (red) and lowest energy (blue) in each of the BH runs are shown.
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whether the low-RMSD and low-energy conformations identi-
fied thus far could be further optimized in unconstrained BH
simulations.

2.3. Second BH Round: Refinement of Tertiary Contacts

From the structures obtained in the previous BH round, we
randomly selected 31 conformations for trpzip, 38 for trp-cage,
and 54 for ER-10 with low RMSD, and 56 conformations for

trpzip, 77 for trp-cage, and 70 for ER-10 with low energy. We
applied the following upper cutoffs for the selection of struc-
tures based on either RMSD or energy: 3.0 � and �295 kcal
mol�1 for trpzip, 2.5 � and �505 kcalmol�1 for trp-cage, and
5.0 � and �900 kcalmol�1 for ER-10. For each starting structure
we performed three independent BH runs of 5000 steps for
trpzip and trp-cage, and 7000 steps for ER-10. In this round,

we released all constraints and applied dihedral angle changes
to three, four or five randomly selected contiguous residues.
All residues were considered independent from the initial sec-
ondary structure prediction, thereby enabling wrongly predict-
ed structures to be corrected during the BH optimization pro-

cedure. We tested three different ratios of dihedral angle

changes for the backbone (BB) and side chains (SC): 1) alternat-
ing BB and SC moves; 2) an SC move every fifth BH step, oth-
erwise BB moves; 3) a BB move every fifth BH step, otherwise
SC moves. The different BB/SS frequency schemes are denoted

as 1:1, 4:1 and 1:4. Hence, the number of BH runs was (31+
56)�3�3=783 for trpzip, (38+77)�3�3=1035 for trp-cage
and (70+54)�3�3=1116 for ER-10. The performance of each
BH run was measured in terms of energy and RMSD, consider-

ing the three best structures for both values. In addition, we
monitored whether a BH run was started from a low-RMSD or
a low-energy structure from the previous BH round. The maxi-
mum dihedral angle change in each run was 308 with group
rotation moves[39] applied to the side chains. The small step
size was chosen as, in this BH round, the aim was to further
optimize near-native (or low-energy) structures, and not to

generate completely different structures. An example input file
for such a BH run for trpzip is provided in the Supporting In-
formation.

The simulations of this round were analyzed in the same
manner as the BH simulations of the first round. We produced

energy versus RMSD plots (Figure 3) together with the struc-
tures of lowest RMSD and lowest energy detected for each

Figure 3. Results from the second BH round are shown for trpzip (top), trp-cage (middle) and ER-10 (bottom). Left : Energy versus RMSD plots for the low-
energy (blue) and low-RMSD (red) structures obtained from 783 BH runs for trpzip, 1035 BH runs for trp-cage and 1116 BH runs for ER-10. The darkness of the
colors indicates whether a BH run was started with a structure of low RMSD (light red or blue) or of low energy (dark red or blue), obtained in the first BH
round. The minimized and the optimized target structures are represented by a yellow and an orange dot, respectively. Middle and right: Lowest-RMSD struc-
ture (red) and lowest-energy structure (blue) along with the target structure (yellow). The RMSD and energy values of these structures are shown.
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peptide. We calculated the average RMSD and energy of all
low-RMSD and low-energy structures, respectively, taking into
account whether a BH run was started from a low-RMSD or
a low-energy conformation from the first BH round. In order to
be able to decide which of the BB/SC perturbation ratios
worked best, we monitored the average number of BH steps
needed before the best structure with respect to RMSD or
energy was detected. Below we present the combined results

for all BB/SC move ratios, whereas results are shown separately
for the 1:1, 4:1 and 1:4 move combinations in Figures S5–S7.

2.3.1. Energy versus RMSD Plots

The first and obvious result is that unconstrained remodeling
of the structures identified in the first secondary-to-tertiary BH
round led to a considerable decrease in both energy and
RMSD. As before, the energy-minimized target structure was
used as reference for the calculation of the RMSD. The average
energy decreased by approximately 30 kcalmol�1 for trpzip,

approximately 25 kcalmol�1 for trp-cage, and by approximately
35 kcalmol�1 for ER-10. For all three peptides the optimized
target structure (orange dot in the energy vs. RMSD plots) no
longer belongs to the best structures in terms of RMSD or
energy. For trpzip and trp-cage, many near-native structures

were detected: of all the saved structures, 25.6% and 44.9%
have an RMSD �2 � for trpzip and trp-cage, respectively. Espe-
cially for trp-cage, it is almost unimportant whether the suc-
cessful runs were initiated from low-RMSD or low-energy struc-
tures from the previous BH round. Information on the starting

structure is provided in the energy versus RMSD plots in
Figure 3, in which light and dark colors correspond to low-
RMSD and low-energy starting structures, respectively. The
ratio of light- and dark-colored dots below 2 � is 5.6:1 for

trpzip and 1:1.2 for trp-cage.
For trpzip, many of the low-energy structures have an RMSD

<2 �, which means that the CHARMM22/FACTS potential can
distinguish between native-like and nonnative structures for
the b hairpin. However, it has to be noted that the structure of

lowest RMSD (RMSD=0.44 �) has an energy of 20 kcalmol�1

more than the value for the lowest-energy conformation with
an RMSD of 1.68 �. In the latter, the hairpin is properly formed,
yet it lacks the b sheet. It has fewer backbone H-bonds com-
pared to the target structure as the two strands are not per-

fectly aligned for b sheet formation. Instead, this structure is
mainly stabilized by an H-bond between the N- and C-terminal
residues, leading to an energy decrease of more than 60 kcal
mol�1 compared to the same inter-residue interaction in the

target (Figure S4). Another appreciable stabilization of approxi-
mately 30 kcalmol�1 originates from another H-bond between

the side chains of Glu5 and Asn7. The tryptophan residues are
not perfectly oriented with respect to each other, leading to
higher interaction energies compared to the target. In the

lowest-RMSD structure the b sheet is partially formed. The larg-
est deviation from the target structure occurs around Glu5 and

Lys8, which are not in the b state and have their side chains
oriented differently than in the target.

For trp-cage the findings are similar to those of trpzip:
a structure of rather low RMSD (0.30 �) was detected, which
has an energy of approximately 28 kcalmol�1 more than that
of the lowest-energy conformation. However, the latter is also

a near-native structure with an RMSD of 1.76 �, which has the
a helix and 310 helix correctly formed. Only the C-terminal resi-
dues in the coil conformation are arranged slightly differently
than in the target structure. This can be explained by the for-

mation of H-bonds involving the side chains of the last five

residues, creating a turn that is not present in the target struc-
ture (Figure S8). In conclusion, the CHARMM22/FACTS potential
leads to a funnel shape of the energy versus RMSD plots for
both trpzip and trp-cage, enabling the prediction of native-like

structures for both peptides based on energy ranking.
The situation is different for ER-10. As was seen in the first

BH round, we observed a separation between low-RMSD and
low-energy structures. There is almost no overlap between
these two sets of conformations, that is, between the red and

blue dots in the energy versus RMSD plot for ER-10 in Figure 3.
The low-RMSD set contains only six native-like structures

(RMSD �2 �), while the majority of the low-energy structures
have an RMSD value >5 �. The reason for this discrepancy is
that the three helices in ER-10 are held together by three disul-
fide bridges, which are between residues Cys3 and Cys19,
Cys10 and Cys37, and Cys15 and Cys27.[37] These disulfide
bridges are not present in the lowest-energy structure, where
the S�S distances are 16.7 � for Cys3–Cys19, 4.9 � for Cys10–
Cys39, and 7.5 � for Cys15–Cys27, while the disulfide bond
length is 2.0�0.2 �. Instead, a salt bridge between Asp23 and

Lys24 is formed in the lowest-energy structure giving rise to

an interaction energy of �84.2 kcalmol�1 between these two
residues. Thus, this salt bridge is stable and prevents the for-

mation of the correct turn between the second and third helix
of this structure. In the CHARMM force field, disulfide bonds

between cysteine residues have to be defined by the user
during the setup of the protein model, that is, in this case
there is no possibility for a disulfide bond to form during the
simulation. This shortcoming could be addressed as in the
sOPEP coarse-grained force field, which permits the formation

of S�S bonds based on the distance between the cysteine
side-chain centroids.[40,41]

2.3.2. The Dependence of Prediction Efficiency on Move Set

The statistical analysis of the simulation results in Figure 4
highlights that for trpzip and trp-cage the low-RMSD structures
have a considerably lower RMSD when the BH runs were start-

ed from low-RMSD instead of the low-energy structures ob-
tained in the first BH round (Figure 4A). For ER-10, the differen-
ces between the average RMSD values of structures obtained
when starting from low-energy or low-RMSD conformations
are rather small (<0.2 �). Interestingly, the energy of the low-

energy structures is not affected by the choice of the starting
structures for any of the peptides (Figure 4B). This allows us to
conclude that BH remodeling of structures obtained from the
initial secondary-to-tertiary approach is robust with respect to
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energy minimization, whereas the improvement of the RMSD
can depend on the starting configuration.

A marginal influence of the BB/SC move ratio is observed for
the number of BH steps needed before the lowest-RMSD and

lowest-energy structure in each BH run is detected. On aver-
age, the 1:4 move set needs fewer BH steps than the 1:1 and
4:1 move sets, although the improvement is minor. Thus, it
seems to be of some advantage to have more side-chain
moves (in contiguous residues) compared to backbone moves

for the efficient lowering of energy and RMSD. This observa-
tion underpins the importance of side-chain packing for the
native protein structure, as both side-chain–side-chain and
side-chain–backbone interactions are important for in the sta-

bilization of folded protein structures.[42] Nonetheless, we can
conclude that the BH approach is robust with respect to the

step-taking scheme and step size, when the results from the
previous BH round are also taken into account.

As in the first BH round, we observed that often fewer BH
steps are required to find low-RMSD structures compared to

low-energy conformations (i.e. compare red vs. blue bars in
Figure 4C). However, this result is not as clear as in the previ-
ous BH round and is also not universal. In case of trpzip and
ER-10, the BH steps needed to locate low-RMSD and low-

energy structures are smaller when started from low-RMSD in-

stead of the low-energy structures from the first BH round (i.e.
compare light-colored vs. dark-colored bars in Figure 4C).
However, for trp-cage the average number of BH steps needed
to encounter the structures of lowest energy and RMSD is in-

dependent of the starting structure. Furthermore, it is also in-
dependent of whether a lowest-RMSD or a lowest-energy

structure was identified. This finding for trp-cage can be ex-
plained with the overlap between the two sets of low-RMSD
and low-energy structures, in other words, low-RMSD and low-

energy structures are often identical.
In summary, this statistical analysis confirmed the above

conclusion that refinement of structures in this BH round was
most successful when started from structures that are already
close to the target structure. This finding justifies our two-step

approach with a first secondary-to-tertiary BH round, followed
by structure refinement of the best candidates in a second BH

round. The average computational time required for each BH
run in this round was 8.3 h for trpzip, 13.1 h for trp-cage and
63.6 h for ER-10, on a single 2.93 GHz Intel Xeon X5570 pro-
cessor. The longer simulation times compared to those of the

first BH round can be explained by the larger number of BH
steps applied in this round. The computational time could be
reduced by decreasing the number of BH steps, which is justi-

fied by the results presented in Figure 4C. This shows that
only 2000–3000 BH steps were necessary for trpzip and trp-

cage and <5000 steps for ER-10, that is, about 2000 more BH
steps were performed than actually needed. Another possibili-
ty to reduce the wall-clock time is to implement a parallel ver-

sion of the limited-memory Broyden–Fletcher–Goldfarb–
Shanno (LBFGS) minimization method used in this work.[43]

2.4. Protein Structure Prediction of Larger Proteins

The next step was to test whether the secondary-to-tertiary BH
approach also works for larger proteins. To this end, we consid-
ered three proteins: the 35-residue villin, protein B with
53 amino acids, and a 79-residue DnaJ-like protein known as
PyJ. The folding of two of these proteins has recently been
studied using molecular dynamics (MD)[44] and MC-simulated

annealing simulations.[45] The secondary structure predictions
produced by Porter along with the secondary structure of the
targets are shown in Table 3. It can be seen that Porter yielded
good predictions for the secondary structure. In some cases
the predicted helices were one residue too short. Only for pro-

tein B did Porter overestimate the helicity of the N-terminal
residues next to the first helix.

We selected unfolded conformations produced by high-tem-
perature MD runs of these three proteins as starting structures

Figure 4. Results from the second BH round are shown for the BB/SC move
combinations of 1:1, 4:1 and 1:4. A) The mean of the RMSD values of the
low-RMSD structures and B) the mean of the energies of the low-energy
structures, averaged over the BH runs per peptide, and move combination.
The results shown in light colors were obtained from initial structures taken
from the low-RMSD set from the first BH round, while the darker colors indi-
cate that BH runs started from low-energy structures. C) The average num-
bers of BH steps needed to locate the structures of lowest RMSD (red) and
lowest energy (blue) in each of the BH runs are shown.
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for the BH simulations. The current BH simulations were per-
formed only to demonstrate that our approach also worked
for larger proteins. Thus, we considered only two starting
structures per protein with initial RMSD values from the target

ranging from 8 � for villin to >30 � for protein B and PyJ. For
each starting structure we performed eight independent sec-
ondary-to-tertiary BH simulations using a maximum twisting

angle of 608. After 5000 BH steps for the smaller proteins and
10000 BH steps for PyJ the following structures of lowest
RMSD were obtained: 2.9 � for villin, 2.4 � for protein B, and
6.4 � for PyJ. Visual inspection of these structures revealed
that the helical structures adopted the correct tertiary topolo-

gy. In the second BH round, we aimed at refining the best
structures from the first BH round by performing 56 BH runs
for the lowest-RMSD structure for each protein. Here, we con-
sidered combinations of different maximal step sizes (308 or
408) and different BB/SC move ratios (1:1, 4:1 and 1:4) and ap-

plied 3000 BH steps in each run. We were able to further im-
prove the structure predictions and obtained the following
RMSD values: 1.9 � for villin, 2.1 � for protein B, and 4.9 � for

PyJ. The corresponding native-like structures are shown in
Figure 5. Given the larger size of PyJ, we assumed a Ca RMSD

value below 5 � to be sufficient to define native-like structures.
We also tested our secondary-to-tertiary BH approach for a 36-
residue WW domain (PDB ID: 2KCF). We obtained a reasonable

RMSD value of 4.6 � within 3000 BH steps. However, the b-
sheet structure was not fully established and further refine-

ment over another 3000 BH steps did not considerably im-
prove this structure. Longer simulations and further methodo-

logical developments are needed for improving the prediction
of long-range b-contacts with BH.

For villin and protein B, our prediction results compare well
to the results obtained by Lindorff-Larsen et al.[44] and Adhikari
et al.[45] The RMSD values for the best structures for these two

proteins are lowest for the MD predictions,[44] followed by our
predictions, and then those from the MC simulated annealing
runs.[45] Though it should be noted that whereas the RMSD for
our villin structure is lower than that obtained by Adhikari
et al. ,[45] in their structure the middle helix is better predicted
than by our BH approach. For protein B, we mainly overesti-
mate the helicity of the N-terminal helix, which originates from
the Porter prediction. In the protein B structure obtained by
Adhikari et al. , the helicity is also overestimated.[45] Although
the microsecond-long MD simulations involving explicitly rep-
resented solvent molecules produce the best native-like struc-
tures,[44] they are the most computationally demanding.[45] The
calculations by Adhikari et al. took around 600 CPU hours on
an Intel 2.6 GHz Sandy Bridge Xeon E5-2670 processor for each

protein. Using the same processor running NAMD, a single
10 ms MD trajectory would take around 3000000 CPU hours
per protein.[45] The BH simulations presented here accumulated
to less than 35 h for villin, around 40 h for protein B and 50 h

for PyJ on a single 2.93 GHz Intel Xeon X5570 processor, count-
ing the first and second BH round together. Thus, given the re-
duced computational demand of our BH approach and the

good results for helical proteins, it might become a promising
alternative to existing methods for protein structure predic-

tion.

3. Conclusions

In this study, we have used the MC-based BH approach to

global optimization, as previous studies have shown that BH is
an effective tool for predicting global minima of peptides[5–12]

and peptide assemblies.[13–15] In order to further improve the
efficiency of the BH approach to protein structure prediction,
we have implemented knowledge-based MC moves by incor-
porating secondary structure information from secondary

structure prediction. We refer to this approach as secondary-

to-tertiary BH. We have evaluated the performance of the sec-
ondary-to-tertiary BH scheme for three peptides: trpzip (PBD
ID: 1LE0), trp-cage (1L2Y) and pheromone ER-10 (1ERP). To per-
turb the conformation of selected residues, we applied dihe-

dral angle moves, as simple Cartesian moves usually perform
poorly because they tend to disrupt the bonded structure of

Table 3. Secondary structure assignments along with the target secondary structure.

Peptide Secondary structure

villin Porter: CCHHHHHHHHCCCHHHHHCCCHHHHHHHHHHCCCC
target: CCHHHHHHHHCCCHHHHHHCCHHHHHHHHHHHCCC

protein B Porter: CCHHHHHHHHHHHHHHHHHHCCCCCHHHHHHHHHCCCHHHHHHHHHHHHHHCC
target: CCCCCCCCCHHHHHHHHHCCCCCCCHHHHHHHHHCCCHHHHHHHHHHHHHHCC

PyJ Porter: CCCCCCHHHHHHHHHHCCCCCCCCCCHHHHHHHHHHHHHHCCCCCCCCHHHHHHHHHHHHHHHHHHHHHCCCCCCCCCC
target: CCCCCCHHHHHHHHHHHCCCCCCCCCHHHHHHHHHHHHHHCCCCCCCCHHHHHHHHHHHHHHHHHHHHHCCCCCCCCCC

Figure 5. Native-like structures produced by BH for larger proteins. For each
protein the lowest-RMSD structure (red) and target structure (yellow) are
shown. The Ca RMSD values between the two structures are shown, along
with the PDB accession code of the target structure.
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molecules. To change the dihedral angles of the side chains,
we used group rotation moves, which were recently intro-
duced to the BH scheme and shown to be effective.[39]

Based on the primary structure, each residue of the se-
quence was assigned a local secondary structure, which was
either helix, extended or coil. We have compared the per-

formance of three secondary structure predictors: Porter,
Psipred and SAM. We found that Porter clearly provided the
best prediction, independently of protein fold and length,
which supports the findings of an earlier study.[29] Thus, we
used Porter for secondary structure assignment as a starting
point for subsequent BH simulations in which only the confor-
mation of the residues predicted to be coil are perturbed. In

doing this, we enabled the secondary structure elements to be
assembled into their tertiary structure. In the case that Porter

wrongly predicted coil instead of helix or strand, this could be
corrected by random trial moves applied to the residues as-
sumed to be coil. This secondary-to-tertiary BH approach was
successful for the three peptides under study, as native-like
structures with an RMSD of less than 2 � from the target were
found within 1000 steps for trpzip and trp-cage, and within
2500 steps for ER-10. We have benchmarked random dihedral
angle moves applied to the coil residues with a maximum
change of 308, 608 or 908 and found that larger step sizes of
608 or 908 fold the proteins more efficiently.

To refine the structures predicted by the secondary-to-terti-
ary BH approach, we performed further BH simulations of the
low-energy and RMSD structures that had been found. In order
to account for the possibility that Porter wrongly assigns helix

or strand instead of coil, trial moves were applied to all resi-

dues in the refinement BH runs. To do this, we used dihedral
angle moves for the backbone, affecting F and Y, and group
rotation moves for the side chains, perturbing the conforma-
tion of three to five randomly chosen, yet contiguous residues.

We have benchmarked alternative backbone and side-chain
moves with different relationships (1:1, 1:4 and 4:1) using
a maximal dihedral angle change of 308 for both backbone
and side chains. This rather small perturbation was chosen be-
cause the goal of these BH simulations was to refine the al-
ready folded structures. This approach is successful as both
energy and RMSD were considerably improved for all three
peptides, leading to the identification of more native-like struc-
tures than in the initial secondary-to-tertiary BH approach. We

did not observe a strong dependence on the ratio of backbone
and side-chain moves, underpinning the importance of both
backbone and side chains and their interrelation for the pro-
tein structure.

In conclusion, we have introduced secondary-to-tertiary BH
optimization and benchmarked this approach for three pep-
tides. We have demonstrated that this approach reliably and
effectively identifies native-like structures, which can be further

refined in subsequent BH runs without restraints placed on the
trial moves. Our test runs for larger proteins have produced
promising results, especially for helical proteins. In future, we
will apply the secondary-to-tertiary BH approach to more pro-
teins with more than 50 amino acid residues and aim to pro-
vide a benchmark for larger proteins as we have in this study

for three miniproteins. Prior to this, further methodological de-
velopments are necessary for improving the prediction of
long-range residue contacts in b sheets. Moreover, we will vali-
date our methodology for larger proteins of mixed secondary

structure in a blind test, such as the critical assessment of tech-
niques for protein structure (CASP) experiment. The current
study has demonstrated that the BH approach to global opti-
mization with improved MC moves is on the way to become

a promising and computationally low-demanding tool for ab i-

nitio protein structure prediction.

Computational Details

Secondary Structure Prediction

Miceli et al. compared different secondary structure predictors and
found that the neuronal-network-based predictors Porter[25] and
Psipred[26] and the hidden-Markov-chain-based predictor SAM are
the three most reliable prediction methods with Porter being by
far the best.[29] As quality parameters, they used the average per-
formance accuracy (Q3)[47] and the segment overlap (SOV),[48]

where Q3 is a measure of the percentage of correctly guessed sec-
ondary structures of single amino acids, and SOV is obtained by
computing per-segment overlaps. Neither Q3 nor SOV test which
of the secondary structures (i.e. H, E and C) are mistaken for one
another in case of misprediction. However, for this study, which
aims to predict tertiary protein structure by assembling segments
of defined secondary structure, it is significant whether H and E
are interchanged, or whether H or E is interchanged with C. While
the latter type of false prediction can be easily corrected in the as-
sembly process, the mix-up of H and E structural elements would
hamper the tertiary structure prediction. Therefore, we compared
the performance of Porter,[25] Psipred[26] and SAM[27] in terms of sec-
ondary structure mix-ups considering the cases of H$E, H$C and
E$C. We collected the mix-up statistics for the PDB25Select data-
base,[49] which was used by Miceli et al.[29]

Protein Models

The structures for trpzip, trp-cage and ER-10 were downloaded
from the RCSB Protein Data Bank[34] and used as target structures.
Trpzip (PDB ID: 1LE0) is a 12-residue b hairpin known as a trypto-
phan zipper;[35] trp-cage (1L2Y) a 20 residue peptide with a short
a helix, a 310 helix, and a polyproline II helix at the C terminus,
which is known as tryptophan–cage miniprotein;[36] and ER-10
(1ERP) a 38-residue pheromone ER-10 from the ciliated protozoan
Euplotes raikovi consisting of three a helices.[37] These miniproteins
have been used as test cases in previous folding studies.[41, 44,50–63]

We used the CHARMM22 force field[64,65] to model the peptides,
and the generalized Born model FACTS[66] to describe the aqueous
solvent. For the calculation of the nonbonded interactions, the
cutoff scheme suggested in the FACTS documentation was used,
that is, truncation of both long-range electrostatics at 12 � using
a shift function and the van der Waals energy with a polynomial
switching function applied between 10–12 �. We performed 20 ns
MD simulations at an elevated temperature of T=500 K using
a Langevin thermostat with a frictional coefficient of 5 ps�1 to pro-
duce 20 unfolded starting structures per peptide for the subse-
quent folding simulations. The RMSD values of the Ca atoms be-
tween the starting structures and the corresponding target struc-
ture were 5.6–10.9 � for trpzip, 5.7–9.7 � for trp-cage, and 8.6–
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14.1 � for ER-10. In Figure 6 the target structure and one represen-
tative starting structure are shown for each peptide.

For the testing of larger proteins, the structures of a 35-residue
subdomain of the chicken villin headpiece (villin, 2F4K), the 53-resi-

due protein-G-related albumin-binding module of an albumin-
binding domain (protein B, 1PRB), and the N-terminal, DnaJ-like
domain with 79 residues of murine polyomavirus tumor antigens
(PyJ, 1FAF) were downloaded from the RCSB Protein Data Bank.
For the BH simulations, the structures were prepared and modeled
in the same way as the miniproteins. More simulation details for
these proteins are provided in Section 2.4.

Basin-Hopping

In the BH approach to global optimization,[4, 2,3] moves are pro-
posed by perturbing the current geometry, and are accepted or re-
jected based upon the energy difference between the local mini-
mum obtained by minimization from the current configuration and
the previous minimum in the chain. In effect the potential energy
surface is transformed into the basins of attraction[67,68] of all the
local minima, so that the energy E for configuration r is [Eq. (1)]:

EðrÞ ¼ minfEðrÞg ð1Þ

where min denotes minimization. Large steps could be taken to
sample this transformed landscape, as the objective was to step
between local minima. Furthermore, there is no need to maintain
detailed balance when taking steps, as the BH approach attempts
to locate the global potential energy minimum and is not intended
to sample thermodynamic properties. The BH algorithm has been
implemented in the GMIN program[69] and has been used to find
the global minimum of peptides and peptide complexes in previ-
ous studies.[5,6,8–15,18] In GMIN, local minimization is facilitated by
using a modified version of the LBFGS procedure described by Liu
and Nocedal.[43]

To perturb the existing geometry, we have the option of taking
steps in dihedral angle space for the backbones and side chains of
the peptides,[8] in which we consider the dihedral angles defining
planar structures, such as rings, as rigid in order to maintain the
planar geometry.[70] In earlier work, we selected a certain number
of the rotatable dihedral angles for the backbone and side chains
with different twisting probabilities depending on the position of
the residue along the peptide chain[8] and twisted them up to
a maximum angle, which can be initially set by the user and is nor-
mally in the range of 208–508. In this study, we used different ap-
proaches for trial dihedral moves. First, we developed a secondary-
to-tertiary methodology, which uses the information from secon-
dary structure prediction to determine the tertiary structure of the
proteins. This approach is described in the next paragraph.
Second, we introduced the possibility of applying trial moves to
contiguous residues along the chain. Third, we applied generalized
rotation moves to sample the rotameric states of protein side
chains.[39] This scheme allows arbitrary groups of atoms to be rotat-
ed about an axis defined by a bond vector, maintaining maximum
flexibility without introducing reliance on standard topologies. For
instance, for a lysine side chain, three such rotatable groups are
defined, in which atoms are rotated about the Ca�Cb, Cb�Cg and
Cg�Cd bonds.

Combination of Basin-Hopping with Secondary Structure
Predictions

We then used the information from secondary structure prediction
for the determination of the tertiary structure of a protein using
the BH approach. Based on the initial secondary structure assign-
ments, we set the Ramachandran angles (F,Y) to (�578,�478) and
(�1358,1358) for a helices (H) and b strands (E), respectively. In the

Figure 6. Representative initial structure (green) and target structure
(yellow) for trpzip (top), trp-cage (middle) and ER-10 (bottom).
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subsequent BH run we fixed these angles by 1) not allowing back-
bone dihedral angle moves for the amino acids for which H or E is
being predicted, and 2) imposing constraints with a force constant
of 1000 kcalmol�1��2 on these dihedral angles during the energy
minimization procedure. The constraints are necessary as otherwise
the secondary structure elements would be lost during the energy
minimization before the tertiary fold has been determined. This is
especially true for amino acids in the E state, as b strands are often
only stable as part of a b sheet. In this phase of the BH simulation,
we also conserved the side-chain rotamers for the amino acids as-
signed to H and E. Instead, we concentrated on the amino acids
predicted to be in a coil, as the tertiary contacts between the H
and E segments arise from the correct structure of the protein re-
gions in the C state. Thus, dihedral angle moves are applied only
to the residues in the C state by twisting backbone and side-chain
dihedral angles. Here, the twisting probability is set to be highest
in the center of a segment of successive C assignments and de-
creases linearly until the ends of such a segment is reached, be-
coming zero for the amino acids assigned to H and E that are con-
nected to the C segment. For the N- and C-terminal residues the
coil state is likely. At the N terminus, the twisting probability is
highest for the first residue and decreases linearly to zero until the
first residue in the H or E state is reached. At the C terminus, the
twisting probability increases linearly from zero for the last resi-
dues in the H or E state to its maximum for the terminating residue
in the sequence. The approach used to include secondary structure
information in the BH methodology is depicted in Figure 7.

For the prediction of secondary structure we use Porter[25] because
we (see Section 2.1.) and Miceli et al.[29] have found that Porter pro-
vides the most reliable secondary structure prediction.

Simulation Outline

The aim of this study was to evaluate the secondary-to-tertiary
BH scheme for the prediction of the tertiary structure of pro-

teins. To this end, we limited our test set to three well-tested
miniproteins with either a- or b-only structures. We started
each folding simulation from 20 different initial structures per
peptide. The BH simulations were divided into two rounds.
First, BH runs were performed with constraints on the amino

acids in the H and E conformational state according to the sec-
ondary structure prediction. From this round, the low-energy

and low-RMSD (RMSD with respect to the target) structures
were identified. In the ideal case, in which the force field pro-

duces the lowest energy for the native structure, these two
structure sets would be identical. Unfortunately, these two sets
were often different from each other as the physical, albeit em-

pirical, force fields are not perfect. For the three peptides
under consideration the potential of the CHARMM22/FACTS to

identify the native structure as lowest energy structure is dis-
cussed in this article. A second round of BH runs was then per-
formed for the low-energy and low-RMSD structures but with-
out any constraints. Dihedral angle moves were applied to all
amino acids in the chain. For the side chains, we used group

rotation moves as described in ref. [39] . Unlike in previous
work,[8–11,13–15,18] where the dihedral angles of randomly chosen

residues along the chain were perturbed, we applied dihedral
angle changes to three to five contiguous residues. Further-
more, in the first BH round, we tested different step sizes in
the intervals (�308,+308), (�608,+608) and (�908,+908),
whereas in the second BH round we tested whether alternat-

ing BB and SC moves, SC moves only at every fifth BH step, or
BB moves only at every fifth BH step perform best. To bench-
mark each move set, we repeated each simulation ten times in
the first and three times in the second BH round, using differ-
ent seeds for random number generation.

Figure 7. Secondary structure prediction combined with BH. Based on the primary structure of the protein, the secondary structure is predicted using Porter.
The starting structure for the BH run is modified by setting the (F,Y) angles to (�578,�478) and (�1358,1358) for residues predicted to belong to an a helix
(H) and b strand (E), respectively. In the BH run, trial moves are only applied to residues that are not in the H or E state, with the twisting probability being
highest (pmax) in the center of a segment of successive amino acids in the C state and decreasing linearly to zero at the ends of such a segment. During a BH
run the tertiary contacts between secondary structure sequences become established, as illustrated at the bottom of this figure.
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CHMOVE LOOPMODEL

RMS 5.0 0.1 3 1 0 
TEMPERATURE 0.59 
SLOPPYCONV 0.01 
TIGHTCONV 0.0001 
TRACKDATA 
EDIFF 0.1 
UPDATES 500 
MAXIT 5000 5000 
STEPS 1000 1.0 
STEP 60 0.0 
SAVE 3
SECPRED secstr.dat 
CHPMAX  0.8 
CHPMIN  0.2 
CHMOVE LOOPMODEL 
CHARMMTYPE top_all22_prot.inp par_all22_prot.inp 
CHARMM 
! Everything below the CHARMM line above is part of a CHARMM input file 
set pardir "$CHARMM/toppar" 

! Read standard topology and parameter files. These paths will need setting! 
OPEN READ CARD UNIT 1 NAME @pardir/@top 
READ RTF CARD UNIT 1 
CLOSE UNIT 1 

OPEN READ CARD UNIT 2 NAME @pardir/@par 
READ PARAMETER CARD UNIT 2 
CLOSE UNIT 2 

! Generate the PSF 
READ SEQU CARD 
* 
12 
SER TRP THR TRP GLU GLY ASN LYS TRP THR TRP LYS 
GENE A FIRS NTER LAST CT2 SETUp 

OPEN UNIT 20 NAME input.crd READ CARD 
READ COOR UNIT 20 CARD FREE 
CLOSE UNIT 20 

! Build the internal coordinate tables 
IC FILL PRESERVE 
IC PARAMETERS 
IC PURGE 



! set Phi and Psi of the helical residues (as predicted by Porter)   
IC EDIT 
DIHE  1 C  2 N   2 CA  2 C  -135.0 
DIHE  2 N  2 CA  2 C   3 N   135.0 
DIHE  2 C  3 N   3 CA  3 C  -135.0 
DIHE  3 N  3 CA  3 C   4 N   135.0 
DIHE  3 C  4 N   4 CA  4 C  -135.0 
DIHE  4 N  4 CA  4 C   5 N   135.0 
DIHE  8 C  9 N   9 CA  9 C  -135.0 
DIHE  9 N  9 CA  9 C   10 N   135.0 
DIHE   9 C 10 N  10 CA 10 C  -135.0 
DIHE  10 N 10 CA 10 C  11 N   135.0 
DIHE  10 C 11 N  11 CA 11 C  -135.0 
DIHE  11 N 11 CA 11 C  12 N   135.0 
END 

! Build the Cartesian coordinates from the internal coordinates
COOR INIT 
IC SEED 1 N 1 CA 1 C 
IC BUILD 

! set the constraints for the helical residues  
CONS DIHE   A 1 C   A 2 N   A 2 CA  A 2 C  FORCE 1000.0  MIN -135.0  PERIOD 1 
CONS DIHE   A 2 N   A 2 CA  A 2 C   A 3 N  FORCE 1000.0  MIN  135.0  PERIOD 1 
CONS DIHE   A 2 C   A 3 N   A 3 CA  A 3 C  FORCE 1000.0  MIN -135.0  PERIOD 1 
CONS DIHE   A 3 N   A 3 CA  A 3 C   A 4 N  FORCE 1000.0  MIN  135.0  PERIOD 1 
CONS DIHE   A 3 C   A 4 N   A 4 CA  A 4 C  FORCE 1000.0  MIN -135.0  PERIOD 1 
CONS DIHE   A 4 N   A 4 CA  A 4 C   A 5 N  FORCE 1000.0  MIN  135.0  PERIOD 1 
CONS DIHE   A 8 C   A 9 N   A 9 CA  A 9 C  FORCE 1000.0  MIN -135.0  PERIOD 1 
CONS DIHE   A 9 N   A 9 CA  A 9 C   A 10 N  FORCE 1000.0  MIN  135.0  PERIOD 1 
CONS DIHE   A  9 C  A 10 N  A 10 CA A 10 C  FORCE 1000.0  MIN -135.0  PERIOD 1 
CONS DIHE   A 10 N  A 10 CA A 10 C  A 11 N  FORCE 1000.0  MIN  135.0  PERIOD 1 
CONS DIHE   A 10 C  A 11 N  A 11 CA A 11 C  FORCE 1000.0  MIN -135.0  PERIOD 1 
CONS DIHE   A 11 N  A 11 CA A 11 C  A 12 N  FORCE 1000.0  MIN  135.0  PERIOD 1 

! Set up the FACTS solvent model 
! epsilon=1.0 and gamma=0.015 
set diele 1.0 

nbond nbxmod 5 atom cdiel eps @diele shift vatom vdistance vswitch - 
      cutnb 14.0 ctofnb 12.0 ctonnb 10.0 e14fac 1.0 wmin 1.5 
      
scalar wmain = radius 
      
facts tcps 22 teps @diele gamm 0.015 



CHMOVE NEIGHBOURS

CHFREQ
GROUPROTATION

RMS 5.0 0.1 3 0 0 
TEMPERATURE 0.59 
SLOPPYCONV 0.01 
TIGHTCONV 0.0001 
TRACKDATA 
EDIFF 0.1 
UPDATES 500 
MAXIT 5000 5000 
STEPS 5000 1.0 
STEP 30.0 0.0 
SAVE 3
CHPMAX 1.0 
CHPMIN 0.2 
CHFREQ 1 1 5 
CHMOVE NEIGHBOURS 
GROUPROTATION 1 
CHARMMTYPE top_all22_prot.inp par_all22_prot.inp 
CHARMM 
! Everything below the CHARMM line above is part of a CHARMM input file 
set pardir "$CHARMM/toppar" 

! Read standard topology and parameter files. These paths will need setting! 
OPEN READ CARD UNIT 1 NAME @pardir/@top 
READ RTF CARD UNIT 1 
CLOSE UNIT 1 

OPEN READ CARD UNIT 2 NAME @pardir/@par 
READ PARAMETER CARD UNIT 2 
CLOSE UNIT 2 

! Generate the PSF 
READ SEQU CARD 
* 
12 
SER TRP THR TRP GLU GLY ASN LYS TRP THR TRP LYS 
GENE A FIRS NTER LAST CT2 SETUp 

OPEN UNIT 20 NAME input.crd READ CARD 
READ COOR UNIT 20 CARD FREE 
CLOSE UNIT 20 

! Build the internal coordinate tables 
IC FILL PRESERVE 
IC PARAMETERS 
IC PURGE 
IC BUILD 



! Set up the FACTS solvent model 
! epsilon=1.0 and gamma=0.015 
set diele 1.0 

nbond nbxmod 5 atom cdiel eps @diele shift vatom vdistance vswitch - 
      cutnb 14.0 ctofnb 12.0 ctonnb 10.0 e14fac 1.0 wmin 1.5 
            
scalar wmain = radius 
                  
facts tcps 22 teps @diele gamm 0.015 
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Protein structure prediction using basin-hopping
with knowledge-based Monte Carlo moves

Falk Hoffmann∗ Birgit Strodel∗†‡
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1 Abstract
In this study, we extend the basin-hopping approach to global optimization to
new Monte Carlo moves which are based on the statistical distribution of dihe-
dral angles in the Ramachandran plots of amino acids. We show that α helices
can be found faster with this new move set than with previously applied random
dihedral angle moves. We compare state-of-the-art β sheet predictors and ap-
ply their forecasts as structural constraints in the basin-hopping approach. We
conclude that the new move set with the β predictions is an aspiring method
for protein structure prediction.
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2 Introduction
The prediction of protein structures is one of the most important challenges in
biochemistry. The task of protein structure prediction is to identify the correct
three dimensional fold of the protein (tertiary structure) from the amino acid
sequence (primary structure). One very important step for finding the correct
tertiary structure is the identification of α helices and β sheets, which are the
most common secondary structures formed by hydrogen bonds between the
amino acids. The arrangement of these secondary structure elements defines
the tertiary structure.
Given a protein with N amino acids and its primary structure sequence R =
{R1, R2, . . . , RN } it is relatively easy to predict short-range contacts. According
to the definition of the Critical Assessment of Techniques for Protein Structure
Prediction (CASP) [1], there is a contact between two residues Ri and Rj ∈ R
if their Cβ distance (Cα for glycine) is smaller than 8 Å. A contact is called a
short-range contact if 6 ≤ |i−j| ≤ 11, a medium-range contact if 12 ≤ |i−j| ≤ 23
and a long-range contact if |i − j| ≥ 24. Contacts between residues which are
separated by less than 6 residues are dense and can be easily predicted from the
secondary structure. α helices are formed by such dense contacts because they
are stabilized by hydrogen bonds between residue Ri and Ri+4. β sheets are
mainly formed by medium- or long-range contacts because the strands forming
a sheet are typically separated by other secondary structure elements, such as
turns or α helices. The prediction of α helices is therefor much easier than the
prediction of β sheets and β bridges. The focus of the current study is on the
identification of β sheets within the basin-hopping approach to protein structure
prediction.
The manuscript is organized as follows: In section 2.1 we describe the protein
dataset which we use. The functionality of state-of-the-art β sheet predictors
are the topic of section 3. We then use two of these predictors for establishing β
contacts in our simulations. The way how we do this is described in section 4. In
section 5 we describe the BH simulation method and introduce Ramachandran-
based moves, together with their comparison to random dihedral Monte Carlo
moves. Finally, we summarize our results in section 6.

2.1 Dataset
2.1.1 BetaSheet916 dataset

For the performance analysis of the β sheet predictors we use the BetaSheet916
dataset from Cheng et al. [2] The dataset consists of all structures with at
least 50 amino acids from the Protein Data Bank [3], which were resolved until
May 2004 by X-ray with a resolution smaller than 2.5 Å and which do not
contain non-standard amino acids and backbone interruptions, but do contain
10–100 β-residues where 90% of these residues have at least one β partner. The
sequence identity is less than 15–20% to the UniqueProt databank [4] as of May
2004. Additionally, all chains with non-bidirectional β contacts are removed
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Figure 1: Amino acid sequence (top), secondary structure prediction using
PsiPred [6] (center) and DSSP [7] assignments (bottom) for the protein with
PDB code 1A45. Predicted or assigned residues in β sheets or β bridges are
marked in blue. The first three lines belong to residues 1–87 and the last three
lines to residues 88–173 of the protein.

which means that if DSSP assigns that residue Rj is a β residue partner of
residue Ri then Ri has also to be assigned as a β residue partner of Rj . The
BetaSheet916 dataset contains 916 chains with 187,516 residues. Among them,
48,996 are β residues forming 31,638 interstrand residue pairs. One can find
10,745 β strands with an average length of 4.6 residues and 8,172 β strand pairs
with 4,519 antiparallel pairs, 2,214 parallel pairs and 1,439 pairs in isolated β
bridges in the dataset. The number of β sheets in the dataset is 2,533. The
average sequence separation between residue pairs and strand pairs is 43 and
40, respectively.

2.1.2 Example protein 1A45

We choose the protein with PDB code 1A45 [5] and a length of 173 resdiues
from the BetaSheet916 dataset [2] as example to explain the functionality of
the β predictors because this protein has a high β content. The amino acid
sequence of 1A45 is shown in Figure 1. According to the secondary structure
determination program DSSP [7], 69 of the 173 residues of the protein are in
the β conformation. Thus the β content is 39.9%. The structure of this protein
is shown in Figure 2.
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Figure 2: Structure of the protein with PDB code 1A45. The protein is shown
as Ribbon with yellow color for β sheets, blue color for a 3-10 helix, cyan color
for turn and white color for coil.
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3 β contact Prediction
Various steps are performed to predict the contacts between β sheets. The first
step is a secondary structure prediction (SSP). In two of the three approaches
described below, the next step is to perform a multiple sequence alignment
(MSA). The information from SSP and MSA is used in different ways to calcu-
late the contacts between β residues. In BetaPro [2] two dimensional recursive
neural networks (2D RNNs), in BCov [8] sparse inverse covariance estimation
and integer programming, and in CMM [9] maximum-based correlated mutation
measures are used to calculate these contacts.

3.1 Secondary Structure Prediction
With SSP the sequence of secondary structure elements S = {S1, S2, . . . , SN }
for a given residue sequence R = {R1, R2, . . . , RN } is being predicted. Here,
Si ∈ {H,E,C} where H stands for helix, E for extended configuration and C for
coil. Miceli et al. [10] and Hoffmann et al. [11] have shown that Porter [12] is the
most accurate method among the SSP methods available in 2009. Despite this
finding, we choose PsiPred [6] because of its availability as a standalone version
and its application in PSICOV [13], which is used in the BCov approach [8] that
we want to evaluate. As an example, we show the SSP output from PsiPred [6]
and the DSSP [7] assignment for the amino acid sequence of 1A45 in Figure
1. In the DSSP assignment, H stands for α helix, B for residues in isolated β
bridges, E for extended strand, G for 3-10 helix, I for π helix, T for hydrogen
bonded turn, S for bend and * for coil. B and E in DSSP correspond to E in
the PsiPred output. If we compare both, we see that PsiPred [6] has 55 true
positive (TP), 9 false positive (FP), 14 false negative (FN) and 95 true negative
(TN) β sheet or β bridge predictions for this protein with a very high β content.
Usually, one evaluates the performance for the full sequence, including helix and
coil residues. However, here we focus on β predictions only because we aim to
establish β contacts.
In our example the precision

P = 100
TP

TP + FP

is 85.9, the recall

R = 100
TP

TP + FN

is 79.7, the F1 score

F1 =
2 · P · R

P + R

is 82.7, and the Matthews correlation coefficient

MCC =
TP · TN − FP · FN√

(TP + FP ) · (TP + FN) · (TN + FP ) · (TN + FN)
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is 0.73. These values are typically used to evaluate the performance of such
predictors.

3.2 Multiple Sequence Alignment
A MSA is a sequence alignment of at least three biological sequences. It is used
to search for evolutionary relationships between a new or unknown sequence
and sequences in a database. The information of the MSA can be used to find
the evolutionary origin of a sequence and to search for similar mutations. In the
case of β predictions, the MSA information is used to identify similar structures.
The known information about these structures helps to specify the regions of β
contacts in an unknown protein. A MSA works as follows:

1. Remove low-complexity regions and repeats.

2. Perform a n-letter search where n is the number of letters/residues.

3. Filter matching words with high score.

4. Order the words into a search tree.

5. Repeat the previous two steps with every n-letter word.

6. Compare database with remaining words.

7. Extend exact matches to high-scoring segment pairs (HSP).

8. Eliminate HSPs with values lower than empirical cutoff C.

9. Evaluate the significance of the HSP score described by an expect score
EXP.

10. Align HSP regions to a longer sequence, if possible.

11. Show all matched database sequences.

12. Consider only sequences whose expect score EXP is lower than a threshold
E.

As result of a MSA one obtains all sequences from a database, which match to
the input sequence in the limit of the E threshold.
Here, we perform a sequence alignment between the sequences of the proteins in
the BetaSheet916 [2] dataset and all proteins in the UNIREF100 database [14].
We use 5 iterations with Jackhmmer [15], which performs an iterative MSA se-
quence search against a protein database. Hereby, we set the E-value threshold
to 0.01.
In Figure 3 one can see the MSA length distribution (top), the relative MSA
sequence length distribution normalized to the protein length (center) and the
cumulative distribution of the number of sequences per peptide (bottom). Here,
the length refers to the number of residues of the found homologous in the data-
bank. We normalized this number to the full protein length of the corresponding
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Figure 3: Normalized length distribution (top), unnormalized relative length
distribution (center) and cumulative distribution of the number of sequences
per peptide (bottom) of the MSA.
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search protein from the BetaSheet916 [2] dataset in the second plot to see the
proportion of the full alignment information we can get from the MSA. There
is a huge variety in the MSA as there are structures with just one sequence and
structures with more than 2000 homologous. The length of these sequences is
in the range from 6 to 100. This means that independent from the size of our
search proteins we cannot find homologous of these proteins in the databank
with a size of more than 100 residues. An increase of the MSA threshold would
increase this number, but also increases the part of sequences among the re-
sults which are not homologous enough to give reliable results about mutations
or β contacts. Most of the sequences have an alignment of about 20% to the
sequence of the protein target. This allows relatively accurate predictions for
parts of the proteins, but shows the necessity of the SSP information to predict
all β alignments as they are not always covered by MSA.

3.3 β contact prediction
There are many methods available for the prediction of β contacts. One of
the first methods by Hubbard [16] uses statistical potentials. This approach
predicts β strand alignments with an accuracy of 35 − 40%. Pairwise statistical
potentials of β residues are used by Asogawa [17] and by Zhu and Braun [18],
which can detect 35% of native strand alignments from other alignments. Baldi
et al. [19] predict β residue contacts with neural networks, but their method
is restricted to a contact prediction and is not extended to strand prediction.
Steward and Thornton [20] could increase the accuracy to 45 − 48% for strand
alignments by using an information theoretic approach.
Cheng and Baldi [2] use a three-stage approach to predict β residue pairings, β
strand pairings, β strand alignments and β sheet topology. Here, 2D RNNs are
used to predict interstrand β residue pairs. Dynamic programming techniques
convert the probabilities into pairing pseudoenergies and β strand alignments.
Weighted graph matching algorithms are applied to create a β sheet architecture
from the energies. More details about this prediction method BetaPro [2] are
given in subsection 3.3.1.
Markov logic networks are used by Lippi and Frasconi [21] to predict β sheet
topologies. In their method, logical formulas are applied and the weights of
the formulas are trained from examples. Rajgaria et al. [22] use integer linear
optimization to predict the three dimensional structure of a protein based on
β contact predictions. Aydin et al. [23] use the output of BetaPro [2] and a
Bayesian probabilistic model [24] to test it on a subset of the BetaSheet916 [2]
dataset.
A maximum entropy-based correlated mutation measure (CMM) has been used
by Burkoff et al. [9] They included a global probabilistic model for β contact
prediction in the CMM and reach similar performance like BetaPro [2]. Their
method is described in subsection 3.3.2.
Recently, Savojardo et al. [8] introduced BCov, an approach which predicts β
sheet topologies with the help of the sparse inverse covariance estimation to
calculate β strand partner scores and linear integer programming to convert
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Figure 4: β residue-contact probability (left) and β strand pseudoenergy matrix
(right) for 1A45 from BetaPro [2]. Only residues for which Psipred [6] predicted
a β contact are included in the β residue-contact probability plot. All strands
predicted by BetaPro [2] are included in the β strand pseudoenergy matrix.

the scores and to predict the β sheet topology. The approach is described in
subsection 3.3.3.

3.3.1 BetaPro

BetaPro [2] determines β sheet topologies in three steps:

1. Interstrand β residue pairs are calculated with a neural network.

2. Residue pairing scores are translated into pairing pseudoenergies using
dynamic programming techniques to predict β strand alignments.

3. Weighted graph algorithms are used to predict β sheets.

The three steps are explained briefly in the following.

β residue pair prediction using 2D-RNNs 2D-RNNs are used to ad-
just the parameters of the neural network. The two dimensions represent two
residues which possibly interact with each other. The matrix with the correct
values given by the PDB [3] structure is used to compare the output parameter
of the output layer and train the function parameters of the hidden layer.
The output is a residue contact map which is shown for 1A45 in Figure 4. One
can see the β contacts and even the strand alignments. In general it is more
difficult to get the β strand alignment from the β contact prediction. Cheng and
Baldi [2] used pairing constraints in their input and output matrix. By doing
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pair number strand 1 strand 2
1 3-7 1-5
2 13-18 6-11
3 34-38 12-16
4 42-46 17-21
5 54-57 22-25
6 75-81 26-32
7 88-93 33-38
8 101-105 39-43
9 121-127 44-50
10 130-133 51-54
11 139-145 55-61
12 165-168 62-65

Table 1: β strand pair prediction for 1A45 from BetaPro [2]. The first and the
last residue number of every strand is shown. Strands in the same line create a
β sheet contact.

so, the residue contact map tends to form line segments suggesting parallel or
antiparallel β strands.

β strand alignment Cheng and Baldi [2] calculated a pseudoenergy between
two strands Si and Sj

Eij = maxAE(A[Si, Sj ])

as the maximum of all pseudoenergies E(A[Si, Sj ]) of all possible strand align-
ments A[Si, Sj ] of strands Si and Sj which can be reached by sliding one strand
along the other. A single pseudoenergy is the sum of all residue pair contact
scores of all contact pairs involved in alignment A[Si, Sj ]. The maximum of these
single pseudoenergies ensures that the best alignment is calculated. The result
for the unnormalized strand pairing probabilities (pseudoenergies) for 1A45 is
shown in Figure 4. Here, one can clearly see which strands pair with each other.
However, these β strand contact map gives still no complete information about
the direction of pairing (parallel or antiparallel).

β strand pair and β sheet topology prediction Assuming β strands as
rectangles and including constraints (every β residue can have at most two
partners as one strand can only pair with either side in a parallel or antiparallel
manner, thus all strands have between 1 and 2 strand partners), Cheng and
Baldi [2] transformed the pseudoenergy matrix in a connected and weighted
strand pairing graph and searched for the subset of connections with the highest
pseudoenergy sum of all included connections which fulfills the constraints. The
result for 1A45 is presented in Table 1.

10



3.3.2 Correlated Mutation Measure

The method combines two parts:

1. maximum entropy-based correlated mutation measure,

2. β topology model.

Maximum entropy-based CMM The MSA gives the occurrence frequency
fi(Ri) to have a specific amino acid Ri at position i in the sequence. The CMM
method [9] searches among all probabilities P (Ri) which fulfill

P (Ri) = fi(Ri)

to low-order moments for the probability with the maximum entropy

P ∗ = maxP

⎛⎝−
∑

R1,R2,...,RN

P (R1, R2, . . . , RN ) log P (R1, R2, . . . , RN )

⎞⎠
∝ exp

⎛⎝−
∑

1≤i<j≤N

eij(Ri, Rj) +
∑

1≤i≤N

hi(Ri)

⎞⎠
where eij(Ri, Rj) is the pair interaction energy between residues Ri at position
i and Rj at position j, and hi(Ri) is the local field describing the preference for
amino acid Ri at position i. It then calculates the CMM via

CMM(i, j) ∝
∑

Ri,Rj

P CMM
ij (Ri, Rj) log

(
P CMM

ij (Ri, Rj)
fi(Ri)fj(Rj)

)

with

P CMM
ij (Ri, Rj) ∝ fi(Ri)fj(Rj) exp (−eij(Ri, Rj)).

β topology model Let I be the set of β contacts in the system and Nβ,con

the number of β contacts in I. If the residues at positions i and j are in β
contact then (i, j) ∈ I. According to Bayes theorem [24] one can calculate the
probability P (S, I|R) to find the secondary structure S and all β contacts I for
a given amino acid sequence R via

P (S, I|R) ∝ P (R|S, I)P (S, I).

Burkoff et al. [9] assume that the secondary structure is known because they
use DSSP [7] to calculate it. They neglect all dependencies on S. However,
for an unresolved protein structure the secondary structure is not known. We
assume that we do not know the secondary structure, but use secondary struc-
ture predictors for the assignment. We further assume that these assignments
are correct. This assumption can only be done in the limit of the accuracy of

11



secondary structure predictors. Based on these assumptions, we can neglect the
dependency on S and get

P (I|R) ∝ P (R|I)P (I).

The contact prediction is calculated via

P (I) = P (φ)
∏

P (dij)P (aij |dij)P (bij |aij , dij)

where φ is the permutation of all involved β strands, dij the direction of two
strands i and j (1, −1 or 0 for parallel, antiparallel or isolated β bridge), aij the
residue shift between strands i and j, and bij gives the bulge residue number if
there is a bulge in strand i or j. Restricting the four factors to constraints occur-
ring frequently in β regions according to the statistics in their tested datasets,
Burkoff et al. [9] were able to determine P (I). The likelihood P (R|I) was
determined by

P (R|I) ∝ Nβ,con
aNβ−1 exp (−bNβ,con)

∏
(i,j,dij)∈I

L(Ri, Rj |dij)

where the joint likelihood L(Ri, Rj |dij) is given by statistics, Nβ is the total
number of β residues occurring in all β strands, and a and b are constants to
be determined by the model.

Combination of CMM and β topology model Burkoff et al. [9] combined
the CMM and the β topology model via

Pcomb(I|R, CMM) ∝ P (I|R)P (I|CMM)

∝ P (I|R)
exp (ω(CMM, I))∑
i exp (ω(CMM, Ii))

where exp (ω(CMM, I)) is the correlation calculated as

exp (ω(CMM, I)) = log M
∑

i

Z(i, I).

Here, M is the number of sequences in the MSA and Z(i, I) the standardized
score

Z(i, I) =
ξ(i, I) − μi

σi

of ξ(i, I) with the mean μi and standard deviation σi. ξ(i, I) is the mean of the
set {CMM(i, j) : j ∈ Ii} for which j is a β contact partner of residue i and Ii

are all β contacts which involve residue i.
For our example protein 1A45 the requirement for using the MSA informa-

tion in the CMM is not fulfilled. There have to be at least two sequences in the
databank which have an alignment of at least one third of the protein length
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Figure 5: β residue contact probability (left) and β strand probability (right)
for 1A45 from CMM [9]. Only residues for which Psipred [6] predicted a β
contact are included in the β residue-contact probability plot and residues with
a β probability of 0 are shown in white. All strands predicted by CMM [9] are
included in the β strand pseudoenergy matrix.

of the target. Because this is not the case, we only show P (I|R) on the strand
level in Figure 5. It shows that not only the contact probability, but also the
direction of the β strands can be seen in the contact prediction. The β strand
probability matrix can be used to calculate the formation of β sheets. Unfortu-
nately, Burkoff et al. [9] did not deliver the calculation of the β strand formation
from the β strand probability map in their software package. Therefor we do
not use the predictions of the software package from Burkoff et al. [9] in our
simulations of section 4.

3.3.3 BCov

BCov [8] determines the β sheet topology in three steps:

1. Calculation of the residue contact propensity with PSICOV

2. Calculation of the β strand score for every possible pairing

3. Calculation of the β sheet topology with integer programming optimiza-
tion

PSICOV calculation of the residue contact propensity PSICOV [13]
uses the MSA information to create a covariance matrix M of size 21m × 21m
where m is the number of sequences in the MSA, according to their occurrence:

Mab
ij = fij(a, b) − fi(a)fj(b)
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Here, a and b are the amino acids (1-21 for the 20 naturally occurring amino
acids and 1 for a gap in the MSA alignment), i and j are residue positions in the
MSA sequence, and f is the frequency of occurrence in the MSA. By minimizing

d∑
i,j=1

Mab
ij (M∗)ab

ij − log
(

det
(

(M∗)ab
))

+ ρ
d∑

i,j=1
|(M∗)ab

ij |

for every a and b with ρ as a sparsity parameter, one obtains as a result of
the minimization a sparse inverse matrix M∗. Using M∗ one can calculate the
corrected contact score Bc

ij via

Bc
ij = Bij − Bi,−B−,j

B

Bij =
∑
a,b

|(M∗)ab
ij |.

Here, Bi,− is the mean of the contact predictions between residue position i
and all other residues, and B is the mean of the full contact score matrix. As a
result, one obtains a contact map from PSICOV [13].

As before, the MSA of our example protein 1A45 does not fulfill the condi-
tions that PSICOV [13] needs to determine a contact map. Thus, we cannot use
the MSA information to calculate the β sheet topology of 1A45 with BCov [8].

Calculation of β strand scores and β sheet topology If possible, BCov [8]
uses the contact scores from PSICOV [13] to calculate interaction scores. First
it reduces the PSICOV [13] dimension which is a general matrix for all possible
contacts to a matrix where only β contacts are involved. Then it calculates the
submatrix Sij which contains the interaction scores.

Sij(si, sj) =

⎧⎨⎩
s‖(si, sj) if i < j
0 if i = j.
s⊥(si, sj) if i > j

The scores s‖(si, sj) and s⊥(si, sj) for parallel and antiparallel β strands are
a result of the β contacts involved in the strands si and sj . Linear integer
programming is then used to maximize

n∑
i,j=1

SijXij

where the matrix X is the solution matrix. Several constraints are set to make
sure that the solution is binary, compatible with parallel or antiparallel assign-
ment and the maximum number of β strand partners for every strand is 2.

BCov [8] gives the residues which form β strands as an output in table form.
The result for 1A45 is given in Table 2.

14



residue 1 residue 2
2 16
3 15
4 14
5 13
6 12
34 167
35 166
36 165
37 164
42 56
43 55
44 54
45 53
75 92
76 91
77 90
78 89
79 88
80 87
100 124
101 123
102 122
103 121
104 120
129 141
130 140
131 139
132 138

Table 2: Two residues in contact which form β strand pairs as predicted by
BCov [8] for protein with PDB code 1A45.
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4 β constraints
In section 3 we described how to obtain a prediction of β contacts which form
β sheets. In this section we will show how we include this information as con-
straints in our force field. A very general formulation for the energy from a force
field is

E = Ebonded + Enonbonded

Ebonded = Ebond + Eangle + Edihedral + Eimproper

Enonbonded = Eelectrostatic + ELJ

We apply additional constraints between the residues predicted to form a β
contact using one of the β predictors introduced in section 3. We use the Cα

atoms of the residues as they are a good approximation for the center of the
residues. Furthermore, we apply distance constraints, as we obtain some kind of
distance constraints from the contact prediction. The combination with other
constraints, such as angle constraints, would also be possible because atoms
in β residues follow a specific conformation pattern in β sheets due to sterical
requirements.
The constraints are nonbonded constraints as there is no covalent bond between
the atoms forming a β sheet. On the other hand, they are short-range inter-
actions as their task is to help forming β sheets during simulations. For small
distances one can do a Taylor expansion around the minimum. If the gradient
of the functional term is not too big, one can stop the Taylor expansion after the
second order which gives a harmonic approach for the Cα distance constraints:

Econs =
Nβ,con∑

i=1
K (||ri,1 − ri,2|| − d)2

.

Here, Econs is the potential energy of the additional distance constraint, ||.||
the Euclidean distance, r1 and r2 the positions of the Cα atoms of the residues
predicted to be in β contact, d the typical distance between Cα atoms in β sheets,
Nβ,con the number of predicted contacts and K the force constant, for which the
optimal value has to be determined. The average distance between Cα atoms of
pairing residues in β strands is 4.7 Å. However, the exact interstrand distance
depends on the pairing residues, neighbouring residues and on the question if
the involved strands have an alignment only with one or with two stands. We
set d = 5 Å for our initial simulations. K should not be too high because the Cα

atoms of the involved pairs need some flexibility to find the perfect distance to
form a β strand. On the other hand, K should not be too low either because the
pairing partners would not find each other if the constraint is not high enough.
We tested different values for K to find the optimal value enabling for β strand
formation.
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Figure 6: Lowest energy structures of 1A45 after 300 BH steps using RM dihe-
dral angle moves. The values for the force constant from left to right are 0.01
kcal mol−1Å−2, 0.1 kcal mol−1Å−2, 1 kcal mol−1Å−2 and 10 kcal mol−1Å−2.

4.1 Determination of the force constant K and strand
distance d for β constraint

We performed basin-hopping (BH) simulations with Ramachandran (RM) di-
hedral angle moves. The methods are described in section 5. We performed
simulations with 300 BH steps from the fully extended structure of our example
protein 1A45 with four different values for the force constant K. We used the
prediction from BCov [8] as input for the constraints. We show the structures
with lowest energy obtained in each of the four BH runs in Figure 6. One can
see that β strands are only formed for K = 0.1 kcal mol−1Å−2, but not for
K = 0.01 kcal mol−1Å−2, K = 1 kcal mol−1Å−2 and K = 10 kcal mol−1Å−2.
The number of β contacts for different values of K are plotted in Figure 7. Even
though there is no specific value of K for which β strand contacts are preferably
created, it can be seen that simulations with K < 0.01 kcal mol−1Å−2 or K > 1
kcal mol−1Å−2 are not useful to enforce β strand contacts. While there are more
β residues involved for K = 1 kcal mol−1Å−2, more residues form β strands for
K = 0.1 kcal mol−1Å−2.
We do not expect to have a significant influence of the force constant K on
the optimal distance restraint d between the Cα atoms of pairing residues in β

strands. To test this, we set K = 0.1 kcal mol−1Å−2 as it seems to be a good
value for β strand formation and repeated the simulations with different values
for d in the interval d ∈ [4 Å, 6 Å]. The number of β contacts as a function of
d are shown in Figure 7. Most contacts involved in β strands were detected for
distance constraints of 4.8 Å and 5.0 Å.
We repeated the simulations, but using the constraints from the BetaPro pre-
diction. The results are shown in Figure 8. Also in case of BetaPro predictions,
K < 0.01 kcal mol−1Å−2 or K > 1 kcal mol−1Å−2 are not suitable for enforcing
β contacts. There is no evidence for the best distance d for the simulations with
BetaPro constraints with protein 1A45.
Based on these findings we decided to use K = 0.1 kcal mol−1Å−2 and d = 5.0

17



4.0 4.5 5.0 5.5 6.0

d [Å]
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Figure 7: Number of β contacts of the lowest energy structure after 300 steps
of BH simulations for different values of K and constant distance constraint
d = 5.0 Å (top) and for different values of d and constant value of K = 0.1
kcal mol−1Å−2 (bottom). Blue represents the number of residues involved in all
β contacts, green the number of residues involved in β strand contacts and red
the number of residues involved in β bridges according to DSSP [7]. BCov [8]
constraints were used.
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Figure 8: Number of β contacts of the lowest energy structure after 300 steps
of BH simulations for different values of K and constant distance constraint
d = 5.0 Å (top) and for different values of d and constant value of K = 0.1
kcal mol−1Å−2 (bottom). Blue represents the number of residues involved in all
β contacts, green the number of residues involved in β strand contacts and red
the number of residues involved in β bridges according to DSSP [7]. BetaPro [2]
constraints were used.
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Å for all subsequent simulations.

4.2 Comparison of β constraints from BCov and BetaPro
In order to compare the effectiveness of the integration of β constraints in our
simulations we performed a simulation with the previously determined values
K = 0.1 kcal mol−1Å−2 and d = 5.0 Å for all β constraints predicted by Be-
taPro [2] and BCov [8] for six different proteins with the PDB [3] codes 1G43,
1IS1, 1L5B, 1NEP, 1OK0 and 1UMI taken from the BetaSheet916 dataset [2].
The structures of the proteins were downloaded from the RCSB protein data
bank [3] and used as target structures. All structures have a significant β con-
tent. We use the CHARMM22 force field [25, 26] to model the peptides, and
the generalized Born model FACTS [27] to describe the aqueous solvent. For
the calculation of the nonbonded interactions, the cutoff scheme suggested in
the FACTS documentation is employed, i.e., truncation of both long-range elec-
trostatics at 12Å using a shift function and the van der Waals energy with a
polynomial switching function applied between 10 and 12Å. We performed 6 ns
molecular dynamics (MD) simulations at an elevated temperature of T = 500 K
using a Langevin thermostat with frictional coefficient 5 ps−1 to produce 6 un-
folded starting structures per peptide for the subsequent folding simulations.
The root mean square deviations (RMSDs) of the Cα atoms between the start-
ing structures and the corresponding target structure are 44.2–88.2 Å for 1G43,
79.2–129.1 Å for 1IS1, 14.4–51.0 Å for 1L5B, 68.0–84.3 Å for 1NEP, 13.2–40.8
Å for 1OK0 and 85.9–102.1 Å for 1UMI. Most of the initial structures are in
an extended formation. In Figure 9 the target structure and one representative
starting structure are shown for each peptide. We performed three independent
simulations with different random start values for all starting structures. The
length of the simulation was 100 BH steps. The predictions from BCov and Be-
taPro were used as β constraints. In this simulations, we stopped each energy
minimization after max. 200 minimization steps as our aim is to find the con-
strained distances fast. We calculated the Cα distance dCA between all residues
pairs which are predicted to be in β contact after every BH step. We averaged
these distances over all residue pairs, all runs and all initial structures. In order
to know how fast the simulation finds a distance dCA close to the constrained
distance d = 5.0 Å between the residue pairs, we subtracted this value from
the averaged distance 〈dCA〉. A normalization to the value after the first BH
step (averaged over all runs) 〈dCA〉0 was performed due to different separations
in residue pair distances in the predictions of BetaPro [2] and BCov [8]. The
results for the six proteins are shown in Figure 10. All simulations except for
the BCov predictions of 1L5B and 1UMI find the β contacts within 100 BH
steps. The results show that it is not needed to run very long simulations and
minimize the structures to very low RMS forces to fulfill the constraints. The
comparison of the results for BCov [8] and BetaPro [2] shows that for 1IS1,
1NEP and 1OK0 the β contacts are found at a similar speed while for the other
3 proteins BetaPro outperforms BCov. This difference can be explained with
the separation between residues which are predicted to have a β contact. The
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Figure 9: Representative initial structure (blue) and target structure (yellow)
for 1G43 (top, left), 1IS1 (top, right), 1L5B (center, left), 1NEP (center, right),
1OK0 (bottom, left) and 1UMI (bottom, right).
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Figure 10: Normalized Cα distance of residue pairs predicted to have a β contact
as a function of the number of BH steps for the proteins 1G43 (top, left), 1IS1
(top, right), 1L5B (center, left), 1NEP (center, right), 1OK0 (bottom, left) and
1UMI (bottom, right). The simulations for the predictions from BetaPro [2]
and BCov [8] are shown in green and blue, respectively.
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Protein BCov BetaPro
1G43 26.1 14.2
1IS1 40.5 33.0
1L5B 23.7 8.3
1NEP 26.8 24.2
1OK0 17.3 11.2
1UMI 35.9 10.7

Table 3: Averaged residue number separation between residues in a β contact
for the predictions from BCov and BetaPro for the proteins 1G43, 1IS1, 1L5B,
1NEP, 1OK0 and 1UMI.

average separation in terms of residue numbers in the polypeptide chain for the
six proteins is shown in table 3. In all cases, BetaPro predicts residue pairs to
be in β contact whose residues are closer along the polypeptide chain compared
to the prediction by BCov. We also find that the difference in the number of BH
steps needed to find the constrained distance is largest for the proteins with the
largest difference for the average separations as predicted by BetaPro and BCov
(1UMI, 1L5B, 1G43). We conclude that it is easier to establish the β contacts
if they are separated by fewer residues. Furthermore, independent of the accu-
racy of the predictors, BetaPro predicts more short- and medium-range contacts
than BCov while BCov predicts more long-range contacts than BetaPro.
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5 Methods
5.1 Basin-hopping

In the basin-hopping (BH) approach to global optimization [28–30] moves are
proposed by perturbing the current geometry, and are accepted or rejected based
upon the energy difference between the local minimum obtained by minimization
from the instantaneous configuration and the previous minimum in the chain.
In effect the potential energy surface is transformed into the basins of attraction
[31,32] of all the local minima, so that the energy for configuration r is

Ẽ(r) = min{E(r)},

where min denotes minimization. Large steps can be taken to sample this trans-
formed landscape, since the objective is to step between local minima. Further-
more, there is no need to maintain detailed balance when taking steps, because
the BH approach attempts to locate the global potential energy minimum and is
not intended to sample thermodynamic properties. The BH algorithm has been
implemented in the GMIN program [33] and has already been employed to find
the global minimum of peptides and peptide complexes in previous work [34–44].

To perturb the current geometry we have the option of taking steps in dihe-
dral angle space for the backbones and side chains of the peptides [36], where
we consider dihedral angles defining planar structures, such as rings, as non-
twistable in order to maintain the planar geometry [45]. In earlier work, we
selected a certain number of the rotatable dihedral angles for the backbone and
side chains with different twisting probabilities depending on the position along
the peptide chain [36] and twisted them up to a maximum angle, which can be
initially set by the user and is normally in the range of 20◦ to 60◦. Recently, we
also employed dihedral trial moves to contiguous residues along the chain with
the help of secondary structure information and generalized rotation moves [46].
Here we describe a new dihedral angle move set based on Ramachandran plots
of amino acids.

5.2 Ramachandran moves

Previously, we employed random dihedral angle moves in basin-hopping sim-
ulations. Random moves for the backbone dihedral angles Φ and Ψ have the
advantage, that one samples the full range of dihedral angle pair combinations in
a relatively small number of MC moves. However, it is well known that specific
dihedral angle regions of the Ramachandran plot of proteins are more populated
than other regions. We want to use this fact for the Monte Carlo moves and
started by creating the Ramachandran plots for every amino acid. We then con-
verted these Ramachandran plots into probability functions P (Φ, Ψ) for every
amino acid, which in turn are used to create dihedral angle moves.

Determination of Ramachandran plots We created Ramachandran plots
in a similar way like Chen et al. [47]. We downloaded the structures of the 488
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PDB codes used by Chen et al. [47] from the PDB data bank [3]. We recorded
the dihedral angle values of every (Φ, Ψ) pair together with their amino acid A.
The results for all 20 amino acids are shown in figure 11.

We created 324 quadratic clusters of size 20◦ × 20◦ for every amino acid A
where the centers of these clusters are located at (−170◦ +n×20◦, −170◦ +m×
20◦) in the Ramachandran plot of the amino acid, and n and m are integers
between 0 and 17. For each amino acid, we associated every recorded (Φ, Ψ)
dihedral angle pair with its corresponding cluster Cnm. We counted the number
of associations AS(Cnm) for every cluster Cnm. The probability P (Cnm) for
every cluster AS(Cnm) was calculated via

P (Cnm) =
AS(Cnm)∑17

n=1
∑17

m=1 AS(Cnm)

to ensure normalization, ∫
R2

dΦdΨP (Φ, Ψ) = 1

The probability plots for all 20 amino acids are shown in figure 12.

Ramachandran moves In GMIN, dihedral angle moves are performed in
two steps:

1. Residue choice

2. Dihedral angle choice

In the original implementation, residues were chosen randomly from the protein
sequence [36]. Here, the minimum and maximum number of residues to be cho-
sen depends on the total number of residues in the protein chain. The dihedral
angles of a chosen residue are changed with a probability which depends on the
position of this residue in the polypetide chain: The maximum probability pmax

is set to the residues at the termini of the chain and the minimum probability
pmin for the residues in the center of the chain. A linear increase from the
center to the termini was used. Furthermore, the dihedral angles are changed
randomly with a user-defined maximum dihedral angle change from the previ-
ous value.
However, the value of the new dihedral angles determines the effectiveness of the
dihedral angle moves. In this study, we use the information of the Ramachan-
dran probability plots for changing the dihedral angles to improve the efficiency
of basin-hopping. After we have chosen randomly a residue from the polypep-
tide chain, we randomly select a (ΦR, ΨR) pair with −180◦ ≤ ΦR < 180◦ and
−180◦ ≤ ΨR < 180◦. We then multiply the probability P (ΦR, ΨR) correspond-
ing to the amino-acid specific cluster to which (ΦR, ΨR) belongs to (see above)
with a constant and amino acid-independent factor f ,

PR = f ∗ P (ΦR, ΨR)
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Figure 11: Ramachandran plots for all 20 amino acids. Every dot represents
one dihedral angle pair obtained from the analysis of 488 proteins.

and compare PR with a fixed acceptance threshold PA. PA is a randomly cho-
sen value in the interval [0, Pmax) where Pmax is a constant value specified at
the beginning of the simulation. It reflects the maximum possible probability,
which PR has to exceed in order to accept the dihedral angle move: if PR ≥ PA,
then a dihedral angle move is performed. If PR < PA, a new dihedral angle pair
(ΦR, ΨR) is chosen and its weighted probability PR is compared with another
PA ∈ [0, Pmax). The procedure is repeated until a pair (ΦR, ΨR) is found with
PR ≥ PA.
Once such a pair is found, we compare the weighted probability PR with the
sequence threshold PS . If PR ≥ PS we perform a sequence change while in
case of PR < PS a point change is performed. A point change means that only
the dihedral angles of the chosen residues are changed to their new value pair
(ΦR, ΨR). If we perform a sequence change, we randomly choose two integers
i and j between 0 and 2 and change all residues with indices in the range of
[R − i, R + j] where R is the index of the chosen residue in the primary sequence
of the protein. The lower and upper bound of this sequence is constrained by
the termini of the protein, e.g. if R < i + 1, then we change all residues with
indices [1, R + j]. Similarly, if R > N − j with N as the number of amino acids
in the sequence, then we change all residues with indices [R − i, N ]. Because
i and j are randomly chosen, there is a probability of 1/9 that i = j = 0 is
selected. In this case, the sequence change is identical to a point change. We
introduce sequence changes because our first goal is to find secondary structure
elements. In secondary structure elements such as α helices or β sheets, the
dihedral angles (Φ, Ψ) of consecutive residues adopt only values from rather
populated regions of the Ramachandran plot (see figures 11 and 12). Their
probabilities are higher than the probabilities of other regions. We use this
property by applying sequence changes to the affected dihedral angle pairs (Φ,
Ψ) for residues [R − i, R + j] if PR ≥ PS .
The three user-supplied parameters f , Pmax and PS are not independent from
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Figure 12: Ramachandran probability plots for all 20 amino acids. The plots
are created by clustering the plots of Figure 11 in grids of size 20◦ × 20◦ and
normalization. The color code represents the probability from 0 (blue) to the
maximum value of each amino acid (red).

each other. The two independent parameters are Pmax/f and PS/f . The inverse
of the first parameter is proportional to the acceptance of the move while the
inverse of the second parameter is proportional to the probability of a sequence
change. We performed a simulation with 1000 BH steps for the peptide with
PDB code 1ERP starting from the fully extended structure with Pmax = 1.0
and PS = 0.05 for different values of f . These values for Pmax and PS were cho-
sen because with them secondary structure elements for small proteins could be
found with short BH runs. Note that PA ∈ [0, Pmax) can be lower than PS . For
different values of f , we counted the number of dihedral angle pair tries (ΦR,
ΨR) needed before a dihedral angle move was accepted, i.e. PR ≥ PA. The
results are shown in figure 13. One can see that too low values of f increase
substantially the number of attempts and thus the computing time needed to
find an acceptable dihedral angle pair. We chose to use a lower limit for the
value of f which ensures that the average number of dihedral angle attempts is
lower than 20. In this case, we get the condition f ≥ 5.
The choice of the parameter f for constant values of Pmax and PS does not
only have an influence on the computing time. For f = 0 no dihedral angle pair
(ΦR, ΨR) will fulfill the condition for a dihedral angle move. As we increase f ,
different scenarios are possible. To illustrate them, we saved the dihedral angles
of the structures after every BH step of the simulation of 1ERP for different
values of f . The results are plotted in figure 14. For small values of f , most of
the dihedral angle pairs are concentrated in a very small area. The by far most
populated area corresponds to the dihedral angles of α helices. If one wants to
have MC moves which create preferably α helices, one would use values of f
lower than 1 for the given choice of Pmax and PS .
An increase in f to values higher than 1 creates more dihedral angle moves
from the β sheet region. The corresponding region around (Φ, Ψ) = (−105◦,
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Figure 13: Average number of tries per dihedral angle move which were needed
to find a dihedral angle pair whose weighted probability PR is higher than or
equal to the acceptance threshold PA. Results are shown for different values of
f .
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Figure 14: Ramachandran plots obtained from the BH simulations of 1ERP
with Pmax = 1.0, PS = 0.05 and different values of f . Every plot shows all
dihedral angle pairs of the protein of all 1000 structures, which were saved after
each of the 1000 BH steps.
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130◦) is increasingly populated and becomes wider for increasing values of f .
A value of f = 20 for the given choice of Pmax and PS would be a good choice
to have moves for both α helices and β sheets. A further increase of f leads
to a population increase of the region of left-handed helices around (Φ, Ψ) =
(50◦, 30◦). An even further increase of f causes that less likely (Φ, Ψ) pairs
get accepted for a dihedral angle move, i.e. more regions of the Ramachandran
space become populated (see f = 100 in figure 14). It should be noted, that
values in figure 14 are after minimization, i.e. these Ramachandran plot will
never be totally random because the dihedral angles of the configuration prefer
stable regions after minimization.
If the value of Pmax/f is too high, one would spend too much computing time
with unsuccessful attempts to find a dihedral angle pair (ΦR, ΨR) whose prob-
ability is high enough to perform a dihedral angle move. On the other hand, if
Pmax/f is too low, one would allow too many dihedral angles from the normally
unpopulated regions of the Ramachandran plot which is against our intention
to focus on highly populated regions for a fast detection of secondary structure
elements. We performed the same simulations like above, but now with con-
stant values f = 1 and PS = 0.05 and different values of Pmax. The results are
shown in figure 15. The acceptance values PA increase with increasing maximum
value Pmax. As the acceptance rate is proportional to f/PA, more attempts are
needed before a dihedral angle change is accepted. With our previous condition
that the average number of attempts should not be higher than 20, we get the
condition Pmax ≤ 0.1. Previously, we found f ≥ 5 which would give us the con-
dition f

Pmax
≥ 50. On the other hand, we want to fix Pmax and PS and change

the behavior of the moves only with f . Therefore, we need a little bit more
flexibility for our choice of parameters and also accept lower values of f/Pmax.
Our general condition for good acceptance is

f

Pmax
≥ 10. (1)

If this condition is fulfilled one can change the moves to more or fewer sequence
moves by changing PS with constant f and Pmax, or changing f with constant
Pmax and PS and condition 1. If PS/f is too high in comparison to PA/f (which
means PS 	 PA), we would create just very few or no sequence changes which
we need to form secondary structure elements. If PS ≈ PA, we only perform
sequence changes which ignores the fact that we also need point changes for the
amino acids which are not involved in α helices or β sheets, and are likely to
have (Φ, Ψ) values from less populated Ramachandran regions.
In summary, the chosen values for Pmax and PS for the test simulations of 1ERP
lead to all kinds of dihedral angle moves for f ∈ [0.1, 100] (figure 14). Condition
1 gives us the requirement that we should focus on the interval f ∈ [0.5, 100].
We are especially interested in dihedral angle moves leading to (Φ, Ψ) values
from the α helical or β sheet regions. The corresponding values f = 0.8 for
dihedral angles from the α helical and f = 20 for dihedral angle moves from the
β sheet region fulfill this condition. For the presented simulations in section 4,
we therefore set Pmax = 1.0 and PS = 0.05. We further chose f = 20 because
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Figure 15: Average number of tries per dihedral angle move which were needed
to find a dihedral angle pair whose weighted probability PR is higher than the
acceptance threshold PA.

39



our aim is to find the correct alignment of previously constrained β strands.

Comparison of random and Ramachandran moves In order to evaluate
our new Ramachandran moves, we performed BH simulations with our new
move set and with the previous random dihedral angle move set (see above). We
expect to find a native-like structure in both cases for long simulations. However,
our focus is on the fast detection of secondary structure elements and structures
close to the native structure. We therefore performed short BH simulations
with a small protein with PDB [3] code 1YRF. The experimental structure of
the protein contains three helices. We generated a totally extended structure of
the amino acid sequence of the protein with VMD [48] and started simulations
using the Ramachandran move set with previously determined Pmax and PS

(see above) and three values for f : f = 0.1 (less influence of the Ramachandran
move set), f = 0.8 (α moves) and f = 100 (strong preference to regions from
the left- and right-handed helical regions and the β sheet region). We executed
the same simulation for random moves. We saved the structures after every BH
step. Figure 16 shows the RMSD of the structures of the first 15 BH steps to
the target structure for all simulations. The simulations with random moves
and Ramachandran moves using f = 100 even lead to an initial increase of the
RMSD in comparison to the extended structure. After this initial BH step, the
RMSD decreases in both cases. However, the decrease for the simulation with
Ramachandran moves is much larger. For the simulations with the other two
values of f , the RMSD decreases from the beginning using the effect of a smart
MC move. In effect, the RMSD of the simulation with f = 0.8 decreases to
5 Å after 15 BH steps. Two helices are already formed after 7 BH steps for
this simulation while the helices are completely missing in the lowest RMSD
structure of the simulation with random moves after 1000 BH steps as figure
17 shows. Simulations with other proteins containing α helices show the same
advantage in terms of BH steps needed to find the correct helices. However, β
strands could not be found significantly faster than with random moves leading
to the necessity of the usage of β sheet predictors, which we will further analyze
in the future.
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Figure 16: RMSD to the target structure for the structures after every BH step
of the simulations of protein with PDB [3] code 1YRF with Ramachandran
moves with f = 0.1 (green), f = 0.8 (red) and f = 100 (turquoise) and with
random moves (blue). The structure for BH step 0 is the structure after an
initial minimization of the protein.

Figure 17: Structure after 7 BH steps for the simulation with Ramachandran
moves and f = 0.8 (left) and lowest RMSD structure for the simulation with
random moves (right) in blue together with the experimental structure in yellow.
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6 Conclusion
It is well known, than the choice of Monte Carlo moves has a significant in-
fluence on the accuracy and speed of Monte Carlo simulations. The typical
MC moves for proteins are dihedral angle moves as dihedral angles describe the
structure between neighbouring residues and the side chains. We developed a
new dihedral angle move set which is based on the Ramachandran plots of the
20 naturally occurring amino acids. To this end, we counted all dihedral angles
of 488 proteins. Based on the statistical distribution of their dihedral angles
in the Ramachandran plots of an amino acid, we created a probability function
for every amino acid. We combined these probability functions with the basin-
hopping approach to global optimization via a new move set. In this move set,
we use point and sequence changes to change the dihedral angles of individ-
ual and neighbouring residues, respectively. Sequence changes were introduced
to enable folding of secondary structure elements like α helices or β sheets in
a cooperative manner. Our simulations for the protein 1YRF show that this
approach is superior in the ability of forming α helices in few BH steps in com-
parison to previously used random dihedral angle moves. In order to improve
the formation of β sheets, we implemented β contact constraints as obtained
from a β sheet predictor. To this end, we compared three different state-of-
the-art β sheet predictors. We chose two of them and used their predictions to
include structural constraints of β contacts in the basin-hopping approach. We
performed short simulations on 6 proteins and found that contacts predicted
by BetaPro [2] can be established in fewer BH steps than contacts predicted by
BCov [8].
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Chapter 5

Conclusions

Different methods have been used to predict the structures of proteins. Experimentally,

more than 90,000 protein structures have been solved and deposited in the RCSB protein

data bank [28]. With increasing computer resources the search of protein structures

moves increasingly towards computer simulations. Molecular dynamics and Monte Carlo

simulations are the most used simulation methods for modelling biomolecules. Molecular

dynamics simulations can, in principle, find the full folding pathway of a protein. However,

molecular dynamics simulations of big systems require a lot of computing resources and

time. Monte Carlo simulations can speed up the simulations. Here, trial moves are used

and accepted or rejected based on a certain criterion. Under the assumption that the

lowest energy in the energy landscape of a protein can be associated with the native

structure of this protein, the energy of a protein can be used as the criterion. The

search for the lowest energy in a high-dimensional energy landscape can be performed by

global optimization methods. The basin-hopping approach to global optimization [55–

57] transforms the energy landscape of the protein into basins of attraction which allows

an effective search, overcoming high energy barriers. Basin-hopping methods have been

applied to find the global minimum of peptides and peptide complexes in previous work

[49, 61–69]. In this thesis, we presented three extensions to the basin-hopping approach

to global optimization, making it more efficient for its application to proteins.

In our first study, we included chemical shifts as structural restraints in the basin-hopping

method. Chemical shifts are calculated at every minimization step with the chemical shift

predictor CAMSHIFT [44]. The chemical shift difference between the calculated and the

target chemical shift is converted into an energy via a penalty function, which forces

the calculated chemical shifts in the direction of their target values. Simulations for the

peptides 1LE0, 1L2Y and 1YRF have been performed. There is a clear improvement

in terms of computational time for the prediction of all three protein structures for the

simulation with chemical shift restraints in comparison with simulations without chemical
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shift restraints. We determined the optimal values for the two adjustable parameters

combining CAMSHIFT and the CHARMM force field with the FACTS implicit solvent

model. We could detect the structures of all three proteins with an RMSD of lower

than 3 Å if we exclude the flexible termini whose chemical shifts are not calculated by

CAMSHIFT. We performed simulations with incomplete chemical shift assignments and

proved that just one type of chemical shift assignment is needed to detect the correct

secondary structure elements. We can conclude that chemical shifts help significantly

to detect the structure of a protein. In the future, the approach can be extended to

use secondary structure information with chemical shift restraints as it is known that

some types of chemical shifts show a specific upward or downward deviation from their

random coil values depending on their presence in an α helix or β sheet. The simple

approach allows an easy extension to other structural restraints and for investigations

with experimental NMR studies.

The efficiency of Monte Carlo simulations depends on the trial moves for the generation of

new structures. The standard Monte Carlo moves for proteins are dihedral angle moves.

In our second study, we tested different kinds of Monte Carlo moves. We developed

a secondary-to-tertiary basin-hopping approach which successfully and reliably predicts

the three-dimensional structure of proteins. The approach starts with the prediction

of the secondary structure of the protein. To this end, we compared three secondary

structure predictors on their accuracy to predict α helices and β sheets correctly. We have

demonstrated, that PORTER [20] outperforms the other secondary structure predictors

by far. We used the predictions of PORTER [20] to fix the dihedral angles of the amino

acids which were predicted to be involved in α helices and β sheets. Furthermore, MC

moves were only applied to the intervening residues. We performed simulations for the

proteins 1LE0, 1L2Y and 1ERP and random dihedral angle moves which were limited

to a user-defined maximum dihedral angle change. For all proteins, structures with an

RMSD of lower than 2 Å could be found. The result shows that the secondary-to-tertiary

approach works on timescales lower than comparable MD simulations and with less Monte

Carlo steps than in comparable studies. We also have shown that a maximum dihedral

angle change of 30◦ needs more time to fold a protein than simulations with a maximum

dihedral angle change of 60◦ or 90◦. We refined the tertiary contacts in a second run

by releasing the secondary structure constraints. Here, we applied different frequency

schemes of backbone to side chain dihedral angle moves. We could show that this second

Monte Carlo move set improved the structures of all tested proteins. For example, the

Cα RMSD of the lowest-energy structure of 1LE0 could be decreased by a factor 2. The

comparison of the different frequency schemes revealed that both backbone and side chain

dihedral angle moves are needed to refine the structure. We could also fold larger proteins

with α helices while further developments are needed for proteins with β sheets.

Knowledge-based moves can improve the Monte Carlo search. To this end, we developed
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new dihedral angle moves for proteins. The moves are based on the statistical distribution

of the dihedral angles in the two dimensional dihedral angle space. We analyzed all

dihedral angles of 488 proteins from the RCSB protein data bank [28] and created a

Ramachandran plot for each amino acid. We clustered these Ramachandran plots and

converted the results into an amino acid specific probability function. We created a new

move set which selects dihedral angles based on this probability functions. Furthermore,

we introduced new sequence moves which enable to establish secondary structure elements

faster than with previous methods. We demonstrated that with this move set, proteins

with α helices can be folded within less than 100 BH steps. However, for proteins with β

sheets further method improvements are necessary. Therefor, we included the information

from β sheet predictors as structural constraints. First, we compared the state-of-the-art

β sheet predictors BetaPro [72] and BCov [73] and tested how efficient β contacts get

established as a result of the constraints from these β sheet predictions. Simulations of

small peptides shew that constraints from BetaPro [72] are more efficient than constraints

from BCov [73]. Our goal is to fold larger proteins with the help of the implemented

Ramachandran dihedral angle moves and β constraints. The approach is expected to

improve all basin-hopping simulations of proteins using dihedral angle Monte Carlo moves.

In summary, in this thesis it was demonstrated that structural restraints and knowledge-

based Monte Carlo moves can remarkably improve the efficiency of the basin-hopping

approach to global optimization. We plan to combine the three methods introduced in

this work to a protein folding package which is then expected to become an important

competitor in the Critical Assessment of Techniques for Protein Structure Prediction [8],

the state-of-the-art test for protein structure prediction.
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