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1 Overview

1.1 Motivation

Understanding evolutionary relationships among species is one of the central objectives

in biology. According to the Charles Darwin’s theory of evolution, species have evolved

from ancestors. The evolutionary relationship can be illustrated in an evolutionary tree,

a so-called phylogeny. The leaves represent contemporary species, whereas the internal

nodes can be thought of as speciation events, and the root is considered as the common

ancestor of all species in the tree. It is commonly accepted that phylogenies are rooted

and bifurcating (Harding, 1971). The total number of possible bifurcating rooted trees

for n species is given by

Br(n) =
n∏

i=3

(2i− 3) for n ≥ 3. (1.1)

Br(n) increases exponentially with n (Felsenstein, 1978). For n = 56 species, the number

of trees exceeds the estimated number of 1081 atoms in the known universe.

Up to date, a tremendous amount of genetic data (nucleotides/amino acids) has been

collected thanks to the development of efficient sequencing technologies (Sanger et al.,

1977) and many genome projects. The content of public databases like the GenBank

database increases quickly (see Figure 1.1) (Benson et al., 2005). By April 2005, the

GenBank database has gained more than 48 billions base pairs. This gives us an un-

precedented opportunity to investigate the evolutionary relationships among a large set

of species.

The reconstruction of phylogenetic trees for large data sets is a challenging problem in

phylogenetic analysis due to the exponentially increasing number of possible trees and

available genetic data. Searching the best phylogenies based on the maximum parsimony

criterion or the minimum evolution criterion is known to be NP-complete (Graham and

1
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Figure 1.1: The public database GenBank has been growing exponentially. In April

2005, the GenBank database contains more than 48 billions base pairs.

Foulds, 1982; Day and David, 1986). Recently, Chor and Tuller (2005) proved that

finding the maximum likelihood phylogeny is NP-hard. Remarkably, NP-complete and

NP-hard problems are believed to be unsolvable in polynomial time (Cormen et al.,

2001). That is to say, there is an essential need of heuristic methods to efficiently

construct phylogenies for large datasets in terms of both accuracy and runtime.

1.2 Organization of this thesis

Chapter 2: An introduction to phylogenetic tree inference is presented. First, biological

data used to infer the evolutionary relationships among contemporary species is

introduced. Second, the evolutionary process of sequences is modeled under the

statistical framework. Then, phylogenetic trees which illustrate the historical re-

lationships among species are described thoroughly. Finally, the state-of-the-art

phylogenetic tree reconstruction methods are summarized.

Chapter 3: A novel search strategy, namely phylogenetic navigator (PhyNav), is pro-

posed to efficiently elucidate the tree space. The search gives encouraging results

compared to other methods.
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Chapter 4: The definition of so-called important quartets is presented. Important quar-

tets are used as building blocks for our important quartet puzzling algorithm (IQP)

to construct a tree for n sequences in O(n2) time. Then, the IQP is implemented

in a combined method called important quartet puzzling and nearest neighbor in-

terchange (IQPNNI) to search for maximum likelihood trees with up to a thousand

of sequences. IQPNNI shows better accuracy than other tested methods on both

simulated and real data.

Chapter 5: The Shortest triplet clustering algorithm (STC) for construction of very

large phylogenies based on distance matrices is presented. STC can build trees

with 5000 taxa within one minute. The STC as well as other distance-based

methods are examined extensively on a large range of simulated data.

Chapter 6: The content of the thesis is summarized.

Finally, the IQPNNI, PhyNav, and STC packages are described in the Appendix.
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2 Introduction to phylogenetic tree

reconstruction

This chapter gives an introduction to phylogenetic tree reconstruction. To this end, we

first present different kinds of biological data used to study evolutionary relationships

among contemporary species. Second, generalities about graphs, especially phyloge-

netic trees, are introduced. Third, the state-of-the-art phylogenetic inferring approaches

e.g. maximum parsimony methods, maximum likelihood methods and distance-based

algorithms are summarized.

2.1 Biological data

2.1.1 Phylogenetic signals

Species have evolved from a common ancestor (Darwin, 1872). More precisely, homol-

ogous characters of species have derived from the same ancestral character which can

be morphological characters, gene order data, nucleotide sequences, or amino acid se-

quences. Two homologous characters are formally defined (Fitch, 2000):

Definition 1 Two characters that have descended, usually with divergence, from a com-

mon ancestral character are called homologous.

The evolutionary relationships among species can be investigated by analyzing the dif-

ference among their homologous characters.

Morphological characters were the first class of data used in phylogenetic analysis.

They refer to characters which represent the visible features of a species. The biggest

advantage of morphological data is that they can be obtained easily and cheaply from a

large range of taxa. However, measuring the difference between morphological charac-

ters poses a difficult task. Moreover, the number of common morphological characters

5



6 2 Introduction to phylogenetic tree reconstruction

among species, specially among distantly related species, is limited. Therefore, they may

reveal not enough phylogenetic information to reconstruct the relationships (for more

discussions see Hillis and Wiens, 2000).

Besides morphological characters, gene-order data have been employed in construction

of phylogenies (Moret and Warnow, 2005, and references therein). The difference among

species is manifested by the difference among orders of genes in their genomes caused by

genome rearrangement events. The gene-order data can be applied to genomes which

are completely sequenced. Unfortunately up to now, only a small number of complete

genomes is available (typically, small genomes). This limitation prevents the application

of this approach to most of species.

Nowadays, genetic sequences (nucleotides and amino acids) are prevalent in phyloge-

netic inferences (Swofford et al., 1996; Felsenstein, 2004, and references therein). Gener-

ally speaking, nucleotides in DNA sequences exist at four different states: Adenine (A),

Cytosine (C), Guanine (G) and Thymine (T). They can be classified into either purine

(A and G) or pyrimidine (C and T) bases. When considering RNA sequences, Uracil

(U) is substituted for Thymine.

Also, amino acid sequences play an important role in phylogenetic analysis. They

are biologically produced from nucleotide sequences through the following (synthesis)

process

DNA
Transcription−−−−−−−−→ mRNA

Translation−−−−−−−→ Protein.

Each triplet of three successive nucleotides in protein-coding DNA sequences is called a

codon, which either encodes a single amino acid or signals the end of the process. In the

universal genetic code, of the 64 possible codons, 61 encode for amino acids while the

remaining three are stop-codons. Twenty different amino acids are available and listed

in Table 2.1 (Brown, 2002). The genetic code is degenerated, that is, multiple codons

encode for the same amino acid.

Huge amounts of genetic sequences (nucleotides and amino acids) have been collected

and stored in public databases like GenBank (Benson et al., 2005). These allow us to

study relationships among various species based on large numbers of characters com-

pared to morphological characters. Therefore, they tend to increase the reliability of

inferences (Hillis and Wiens, 2000). Moreover, genetic sequences give us a chance to

study relationships among distantly related species for whom common morphological

characters are unavailable (Hillis and Wiens, 2000).
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Table 2.1: Twenty different amino acids

Name Three-letter code One letter code

Alanine Ala A

Cysteine Cys C

Aspartic Acid Asp D

Glutamic Acid Glu E

Phenylalanine Phe F

Glycine Gly G

Histidine His H

Isoleucine Ile I

Lysine Lys K

Leucine Leu L

Methionine Met M

Asparagine Asn N

Proline Pro P

Glutamine Gln Q

Arginine Arg R

Serine Ser S

Threonine Thr T

Valine Val V

Tryptophan Trp W

Tyrosine Tyr Y

2.1.2 Sequence alignment

Understanding the differences among sequences is the first and fundamental task to in-

vestigate their historical relationships. The difference between homologous nucleotide

sequences from different species are caused by accumulative point mutations e.g. due to

errors during DNA replication or damaging effects of mutagens such as chemicals and ra-

diation (Brown, 2002). Point mutations can be divided into three classes: substitutions,

deletions, and insertions (Brown, 2002):

• Substitutions: Replacing one nucleotide by another in the sequence.

• Deletions: Deleting one or several nucleotides from the sequence.
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• Insertions: Inserting one or several nucleotides into the sequence.

Moreover, two different types of substitutions can be distinguished:

• Transitions: Changing a purine into the other purine (A�G) or a pyrimidine

into the other pyrimidine (C�T).

• Transversions: Changing a purine into a pyrimidine and vice versa: A�C, A�T,

G�C, G�T.

2.1.2.1 Pairwise sequence alignment

Consider two following homologous sequences from Human and Chimpanzee:

1 2 3 4 5 6 7 8 9 10 11 12

Human A A C C T T T C C C T T

Chimpanzee A C C T T T C C C T T

The lengths of these two sequences might be unequal due to insertions and deletions. In

other words, two characters in the same column might not be homologous.

The evolutionary relationship between the two is studied by examining the differences

between homologous characters. To this end, the two sequences have to be aligned into

a pairwise sequence alignment such that two characters at the same column (site) are

homologous (Waterman, 2000):

1 2 3 4 5 6 7 8 9 10 11 12

Human A A C C T T T C C C T T

Chimpanzee A C C - T T T C C C T T

The pairwise sequence alignment shows a point mutation a so-called mismatch at posi-

tion 2 at which either a nucleotide substitution ’A’ in the Human sequence or a nucleotide

substitution ’C’ in the Chimpanzee sequence was occurred. The mismatch carries the

phylogenetic information and can be used to reconstruct evolutionary events. In addi-

tion, we observe another point mutation at position 4 which is either a ’C’ was inserted

into the Human sequence or deleted from the Chimpanzee sequence. Since ancestral

character states are usually not available, one cannot distinguish between an insertion

and a deletion. Therefore, they are referred to as indels.

The pairwise sequence alignment of two sequences can be constructed in O(m2) time

using dynamic programming (Waterman, 2000) where m is the length of the pairwise

sequence alignment, i.e. the number of columns.
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2.1.2.2 Multiple sequence alignment

Generally, homologous sequences which are the subject of phylogenetic analysis are

aligned into a data matrix D, called multiple sequence alignment (MSA), such that all ho-

mologous characters are assigned into the same column (site) (Waterman, 2000; Higgins,

2003). For instance, consider the following hypothetical multiple sequence alignment D

of eight sequences:

1 2 3 4 5 6 7 8 9 10 11 12

Human A A C C T T T C C C T T

Chimpanzee G A C - T T T C C C T T

Gorilla C A C C T T T C C C T T

Rhesus T A C - T T T C C C T T

Cow T C C - T T T C C C T T

Dog T C C - T T T C C C T T

Mouse T G C - T T T C C C T T

Bird T G T - T T T C C C T T

The alignment D consists of 12 columns from D1 to D12. The columns D1, D2, D3 contain

substitutions. Indels are introduced at the column D4. The eight remaining sites are

constant, that is, all nucleotides in the respective alignment columns are identical.

The multiple sequence alignment D can be constructed in O(mn2n) runtime and

O(mn) memory space using dynamic programming (Waterman, 2000) where n is the

number of sequences and m is the length of D, i.e. the number of columns. This

computational expense limits this approach to a few sequences. For larger number of

sequences, approximate methods have been proposed such as CLUSTALW (Thompson

et al., 1994), T-COFFEE (Notredame et al., 2000), or MUSCLE (Edgar, 2004).

2.1.3 Models of sequence evolution

Once homologous sequences have been aligned, the relationships can be analyzed based

on their homologous characters. The estimate of pairwise genetic distances (evolutionary

distances) between sequences is a fundamental and essential task in sequence analysis

such as searching closely related sequences in databases and reconstructing distance-

based phylogenetic trees (Strimmer and von Haeseler, 2003).

Mathematically, we denote A = {A, C, G, T} the alphabet of 4 possible nucleotide

states. Similarly, the alphabet of twenty amino acid states is abbreviated by A =
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1 2 3 4
genetic distance

saturation

observed distance

0

1

Figure 2.1: The relationship between the observed distance and the genetic distance be-

tween two sequences. If the genetic distance is small, it is estimated properly

by the observed distance. However, as the genetic distance increases, the ob-

served distance is saturated and limited by one. Consequently, the observed

distance underestimates the genetic distance.

{A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y}. Consider two aligned se-

quences (nucleotides or amino acids) x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , ym) where

xi, yi ∈ A for i = 1 . . . m.

Definition 2 The genetic distance dg(x,y) between two homologous sequences x =

(x1, x2, . . . , xm) and y = (y1, y2, . . . , ym) with xi, yi ∈ A for i = 1 . . . m is the actual

number of substitutions which have occurred between x and y per site.

Estimating the genetic distances between sequences typically requires a statistical de-

scription of the substitution process between nucleotides/amino acids, called model of

substitution.

Before describing these models, let us make a short excursion into the observed distance

between two sequences which is the most simple and intuitive estimate of their genetic

distance (Strimmer and von Haeseler, 2003).

Definition 3 The observed distance do(x,y) between two homologous sequences x =

(x1, x2, . . . , xm) and y = (y1, y2, . . . , ym) with xi, yi ∈ A for i = 1 . . . m is the proportion

of mismatch sites in their respective pairwise sequence alignment. Mathematically,

do(x,y) =

∑m
i=1 δ(xi, yi)

m
(2.1)
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A C G A A

C C A AT A C A AC
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back substitutionsmultiple substitutions

parallel substitutions

Figure 2.2: The evolution of two sequences from the same ancestral sequence.

where

δ(xi, yi) =

0 if xi = yi

1 otherwise
(2.2)

If the genetic distance dg(x,y) is small, it is estimated properly by the observed dis-

tance do(x,y) as illustrated by Figure 2.1. However, a high substitution rate or a long

evolutionary time between sequences might cause a severe underestimate of the genetic

distance from the observed distance. More explicitly, Figure 2.2 shows three instances,

namely multiple substitutions, parallel substitutions and back substitutions, in which the

observed distance between two sequences is much smaller than the number of actual

substitutions between them:

• Multiple substitutions: Two or more substitutions have happened at the same

site. However, at most one substitution is observed at the site in the pairwise

sequence alignment (see site 1 in Figure 2.2).

• Parallel substitutions: The same substitutions have occurred at the same site in

both sequences. Consequently, we observe no substitution between two characters

at the site in the pairwise sequence alignment (see site 3 in Figure 2.2).

• Back substitutions: Two or several substitutions have occurred at the same site

in one sequence. However, the last character state is identical to the first one. As

a result, no substitution is observed at the site in the pairwise sequence alignment

(see site 5 in Figure 2.2).

To overcome these problems, let us now model the substitution process between nu-

cleotides and amino acids.
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2.1.3.1 Models of nucleotide substitution

The substitution process between nucleotides is modeled as a time-homogeneous time-

continuous stationary Markov process (Tavaré, 1986; Strimmer and von Haeseler, 2003,

and references therein). The central component of the process is the so-called instanta-

neous substitution rate matrix

Q =


−
∑

Y 6=A QAY aπC bπG cπT

a′πA −
∑

Y 6=C QCY dπG eπT

b′πA d′πC −
∑

Y 6=G QGY fπT

c′πA e′πC f ′πG −
∑

Y 6=T QTY

 (2.3)

where Qij is the number of substitutions from nucleotide i to nucleotide j per time unit.

Parameters a, a′, b, b′, c, c′, d, d′, e, e′, f, f ′ correspond to the relative substitution

rates from one nucleotide to another. Finally, parameters πA, πC , πG, πT describe the

frequencies of nucleotides A, C, G, T, respectively. Note that the diagonal elements Qii

are assigned such that the sum of each row equals zero.

The time-reversibility assumption is usually imposed to the phylogenetic inference,

that is, the relative substitution rates between nucleotide i and nucleotide j are the

same in both directions. Specifically, the relative substitution rates a′ = a, b′ = b, c′ =

c, d′ = d, e′ = e and f ′ = f . Consequently, the most general time-reversible model

(GTR) (Tavaré, 1986) is

Q =


−
∑

Y 6=A QAY aπC bπG cπT

aπA −
∑

Y 6=C QCY dπG eπT

bπA dπC −
∑

Y 6=G QGY fπT

cπA eπC fπG −
∑

Y 6=T QTY

 (2.4)

The model imposes four conditions:

• The rate of change from nucleotide i to nucleotide j is independent of the history

of nucleotide i (Markov property).

• The substitution rates are constant over time (time-homogeneous).

• The substitution between nucleotides can occur at any time in the process (time-

continuous).

• The frequencies π = (πA, πC , πG, πT ) of the nucleotides A, C, G, T are at equilib-

rium (stationarity).
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The instantaneous substitution rate matrix Q can be decomposed into relative sub-

stitution rate matrix R = {Rij} and nucleotide frequencies π as

Qij =

πjRij if i 6= j

−
∑

x 6=i Qix if i = j
(2.5)

where the relative substitution rate matrix is

A C G T

R =


− a b c

a − d e

b d − f

c e f −


A

C

G

T

(2.6)

Once the instantaneous substitution rate matrix Q is specified, the so-called transition

probability matrix P(t) = {Pij(t)} in which Pij(t) is the probability to change from

nucleotide i to nucleotide j during the evolutionary time t can be computed by

P(t) = eQt =
∞∑

ν=0

Qνtν

ν!
(2.7)

We must note, that the instantaneous substitution rate matrix Q is typically scaled such

that the expected number of substitutions per time unit, called substitution rate, is one:

−
∑
Y ∈A

πY QY Y = 1. (2.8)

Consequently, Pij(t) is the probability to change from nucleotide i to nucleotide j after

t substitutions (t can be a fractional value).

Since the general-time reversible model Q is diagonalizable (Keilson, 1979; Gu and Li,

1996), P(t) can be calculated efficiently using the decomposition of Q (e.g. von Haeseler,

1999). Specifically,

P(t) = U× eΛt ×U−1 (2.9)

or more precisely,

Pij(t) =

|A|∑
ν=1

Uνi × eλνt × U−1
jν (2.10)

where
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Figure 2.3: Different models of nucleotide substitutions and their number of free param-

eters.

• |A| = 4 is the number of possible nucleotide states.

• Λ = diag{λ1, λ2, . . . , λ|A|} is the |A| × |A| diagonal matrix corresponding to the

eigenvalues λ1, λ2, . . . , λ|A| of Q.

• U = {u1, u2, . . . , u|A|} is the matrix of corresponding eigenvectors of Q and U−1 is

its inverse.

The general time-reversible model Q has 8 free parameters. However, one can im-

pose restrictions to obtain nested models such as JC69 (Jukes and Cantor, 1969), F81

(Felsenstein, 1981b), K2P (Kimura, 1980), HKY85 (Hasegawa et al., 1985), or TN93

(Tamura and Nei, 1993).

Figure 2.3 shows different models of nucleotide substitutions as well as their number

of free parameters. The free parameters of the models are usually estimated from data

using computer programs such as PAUP* (Swofford, 2002), TREE-PUZZLE (Schmidt

et al., 2002), MRBAYES (Ronquist and Huelsenbeck, 2003), PHYML (Guindon and

Gascuel, 2003) or IQPNNI (Chapter 4).

2.1.3.2 Models of amino acid substitution

Amino acid sequences were among the first kind of molecular data used to study re-

lationships among species in 1960s by Eck and Dayhoff. Similarly to nucleotides, the
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substitution process between amino acids is assumed to be a time-homogeneous time-

continuous time-reversible stationary Markov process. However, twenty possible amino

acid states require too many
(
20
2

)
substitution model parameters to be estimated. There-

fore, the parameters are typically derived from empirical studies based on a large amount

of data (Dayhoff et al., 1978; Jones et al., 1992; Adachi and Hasegawa, 1996; Müller and

Vingron, 2000; Whelan and Goldman, 2001). Hence, models of amino acid substitution

are called empirical substitution models.

Dayhoff et al. (1978) were the firsts to model the amino acid substitutions. They

employed 71 sets of closely related proteins and observed 1572 substitutions between

amino acids. They compiled these substitutions into the popular probability of accepted

mutation (PAM) matrices or Dayhoff models.

Of these, PAM-001 is the most important PAM matrix which presents the probability

of substitution from one amino acid to another if one percent of amino acids have

substituted between them. More generally, PAM-t is the probability of substitution

from one amino acid to another if the amount of substitutions between them is t percent.

PAM-t can be computed easily by raising the PAM-001 matrix to the t power (for more

discussions see Felsenstein, 2004).

Jones et al. (1992) applied the same methodology as Dayhoff et al. (1978) but to larger

available protein data sets to tabulate another probability of accepted mutation matrix,

namely the JTT matrix.

A shortcoming of PAM matrices is that they are only compiled on closely related

protein sequences. Müller and Vingron (2000) introduced an improved estimator, called

the resolvent method, to overcome this limitation. Subsequently, they computed the

so-called VT matrices based on protein sequences of varying degree of divergence from

the SYSTERS database (Krause et al., 1999).

Adachi and Hasegawa (1996) studied the amino acid substitution process in the con-

text of mtDNA-encoded proteins. They constructed a transition probability matrix,

called the mtREV matrix, using the maximum likelihood method based on 20 complete

vertebrate mtDNA-encoded protein sequences. The authors showed that mtREV out-

performed other models when analyzing the phylogenetic relationships among species

based on their mtDNA-encoded protein sequences.

More thoroughly, Whelan and Goldman (2001) used an approximate maximum like-

lihood method to estimate a new model of amino acid substitution, namely the WAG,

based on 3,905 globular protein sequences from 182 protein families. They showed that
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WAG was better than Dayhoff models with respect to maximum likelihood values for a

large number of globular protein families.

2.1.3.3 Estimating pairwise genetic distances

Having modeled the sequence substitution process Q, let us now estimate the pairwise

genetic distance dg(x,y) between two aligned sequences (nucleotides or amino acids) x =

(x1, x2, . . . , xm) and y = (y1, y2, . . . , ym) with xi, yi ∈ A for i = 1, . . . ,m. Typically, the

pairwise genetic distance dg(x,y) is estimated using the maximum likelihood principle

(Strimmer and von Haeseler, 2003, and references therein).

The prerequisite of maximum likelihood estimate is the definition of the likelihood

function L(d). Loosely speaking, the likelihood function L(d) measures the probability

to observe two sequences x and y if d substitutions have occurred between them per

site. Mathematically,

L(d) =
m∏

i=1

πxi
Pxiyi

(d). (2.11)

The distance d∗ which maximizes the likelihood function L(d) is called the maximum

likelihood estimate of the genetic distance dg(x,y) (Strimmer and von Haeseler, 2003).

Precisely,

d∗ = argmaxd≥0{L(d)}. (2.12)

The maximum likelihood estimate d∗ can be determined using numerical optimization

approaches such as the Brent’s method or Newton-Raphson’s method (e.g. Press et al.,

2002).

2.1.4 Models of rate heterogeneity

It has been shown that substitution rates can vary among sites of sequences. This

observation is called heterogeneous substitution rates (Felsenstein, 2004, and references

therein). For example, substitution rates at third positions on protein-coding nucleotide

sequences are typically much faster than at first and second positions (e.g. Nei and

Kumar, 2000).

In previous sections, the substitution process between nucleotides/amino acids was

modeled with the so-called homogeneous substitution rates assumption (substitution
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rates are the same among sites of sequences). This unrealistic assumption might cause

inaccurate sequence analyzes such as estimating incorrectly genetic distances between

sequences, or constructing wrong phylogenies. To relax this assumption, different models

of heterogeneous substitution rates have been proposed (Fitch and Margoliash, 1967b;

Uzzel and Corbin, 1971; Hasegawa et al., 1985; Churchill et al., 1992; Wakeley, 1993;

Meyer and von Haeseler, 2003).

Rate heterogeneity was first modeled by Fitch and Margoliash (1967b) who classified

sequence sites as either invariable or variable. Therefore, it is called the two-state model.

Particularly, the substitution rate scaling factor ri at site i is

ri =

0 if site s is invariable

1 otherwise
(2.13)

Variable and invariable sites are not distinguishable because of possible back substitu-

tions or by chance some variable sites are unvaried (Churchill et al., 1992). To overcome

the problem, the two-state model imposes a parameter θ which indicates the percent-

age of invariable sites on the sequence. In real applications, the parameter θ is usually

estimated from data.

Nowadays, the Γ-distribution is widely used to model rate heterogeneity (Uzzel and

Corbin, 1971; Wakeley, 1993). Thus, substitution rate scaling factors across sites are

typically drawn from a Γ-distribution with expectation 1.0 and variance 1/α, α > 0

f(r) =
ααrα−1

exp(αr)Γ(α)
(2.14)

where

Γ(α) =

∫ ∞

0

e−ttα−1dt. (2.15)

The model is called Gamma rate heterogeneity model.

The degree of rate heterogeneity across sites is adjusted by varying the shape pa-

rameter α as shown in Figure 2.4. A smaller shape parameter α describes a stronger

heterogeneity of rates across sites. For example, a strong heterogeneous rate is modeled

by setting shape parameter α = 0.5. That means substitution rates are very slow at

most of sites, but much faster at a few sites. In contrast, if α = 10, we observe a weak

heterogeneity of substitution rates. In other words, substitution rate scaling factors are

close to 1.0 over all sites.
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Figure 2.4: Different shapes of Γ-distribution with respect to shape parameter α.

Remarkably, the Γ(α) function is approximated efficiently by a discrete Γ-function

with a finite number c of equally probable substitution rate scaling factor categories

r1, r2, . . . , rc (Yang, 1994). The shape parameter α is typically estimated from data

using phylogenetic packages such as PAUP* (Swofford, 2002), TREE-PUZZLE (Schmidt

et al., 2002), MRBAYES 3 (Ronquist and Huelsenbeck, 2003), PHYML (Guindon and

Gascuel, 2003) or IQPNNI (Chapter 4).

The combination of the two-state model and Γ-distribution model is also possible

(Gu et al., 1995). The hybrid model assumes a fraction θ of sequence sites to be in-

variable, other sites are variable with substitution rate scaling factors drawn from the

Γ-distribution.

More recently, Meyer and von Haeseler (2003) have proposed a method to identify

site-specific substitution rates. The method estimates a substitution rate scaling factor

for each site based on the maximum likelihood principle. The site-specific substitution

rate model is implemented in the Parat program (Meyer and von Haeseler, 2003) as well

as the IQPNNI package.

2.2 Graphs and phylogenetic trees

Graph theory plays an important role in phylogenetic analysis. It provides a means

to present relationships among objects (typically species/sequences) concisely and pre-

cisely. This section introduces generalities about graphs. More importantly, phylogenetic

trees, a standard graphical representation of historical relationships among species, are

thoroughly described.
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2.2.1 Generalities about graphs

We start with the definition of a graph G (Gondran et al., 1984; Semple and Steel, 2003):

Definition 4 A graph G is composed of the pair (V, E) where V is the set of vertices

(nodes) and E ⊆ {(u, v) |u, v ∈ V } is the set of edges.

Explicitly, we can use V (G) and E(G) as notations of vertex set V and edge set E of

graph G, respectively.

In the phylogenetic analysis context, we consider only simple graphs G = (V, E) which

satisfy two conditions (Semple and Steel, 2003):

• Each edge e = (u, v) ∈ E connects two distinct vertices u, v ∈ V (no loops),

• each pair of vertices u, v ∈ V is connected by at most one edge e = (u, v) ∈ E (no

parallel edges).

Figure 2.5(a) illustrates a simple graph G with vertex set V = {1, 2, 3, 4, 5, 6} and edge

set E = {e1, e2, e3, e4, e5, e6}.

A graph G = (V, E) is



undirected If all edges of G are undirected. Precisely,

each edge (u, v) ∈ E is a pair of two

unordered vertices u, v ∈ V .

directed Otherwise.

Unless otherwise stated, graph G always indicates an undirected graph.

For an edge e = (u, v) ∈ E, u and v are two endpoints of e. In addition, edge e is said

to be incident with u and v. We also say that u and v are adjacent or neighbors. We

denote d(v) for each vertex v ∈ V the degree of v which is the number of edges incident

with v. For example, the degrees of vertices in Figure 2.5(a) are d(1) = d(2) = 1, d(3) =

4, d(4) = d(5) = d(6) = 2.

The concept subgraph provides a means to describe the relationship between two

graphs G and G′. A graph G′ is called a subgraph of a graph G if and only if

• V (G′) ⊆ V (G) and
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Figure 2.5: (a) Graph G with vertex set V = {1, 2, 3, 4, 5, 6} and edge set E =

{e1, e2, e3, e4, e5, e6}. (b) A subgraph G′ with vertex subset V (G′) =

{1, 2, 3, 4, 6} and edge subset E(G′) = {e1, e2, e3, e4} of graph G.

• E(G′) ⊆ E(G).

Figure 2.5(b) shows a subgraph G′ with vertex subset V (G′) = {1, 2, 3, 4, 6} and edge

subset E(G′) = {e1, e2, e3, e4} of graph G in Figure 2.5(a).

A path p(u, v) connecting two vertices u, v ∈ V in a graph G is a sequence of distinct

vertices v1, . . . , vk such that

• v1 = u and vk = v

• (vi, vi+1) ∈ E for i = 1 . . . k − 1.

In addition, if (vk, v1) ∈ E, the subgraph G′ with vertex subset V ′ = {v1, . . . , vk}
and edge subset E ′ = {(vi, vi+1)|i = 1 . . . k − 1} ∪ {(vk, v1)} is called a k-cycle. For

example, subgraph G′ in Figure 2.5(a) with vertex subset V ′ = {3, 4, 6, 5} and edge

subset E ′ = {e3, e4, e6, e5} is a 4-cycle.

A graph G = (V, E) is


connected If each pair of vertices u, v ∈ V is connected

by at least one path p(u, v).

unconnected Otherwise.

(2.16)

We define an edge length function ` : E 7→ R+ which maps each edge e ∈ E into a

real positive number l(e) ∈ R+, called the edge length. The length `(p(u, v)) of path
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p(u, v) = {v1, v2, . . . , vk} joining two vertices u and v is computed by

`(p(u, v)) =
k−1∑
i=1

`(vi, vi+1). (2.17)

2.2.2 Generalities about trees

Having described notations and concepts of the graph theory, we now focus on a special

graph structure the so-called trees. They are widely used to store and present informa-

tion, especially in phylogenetic analysis (Semple and Steel, 2003).

2.2.2.1 Tree structures

Definition 5 A tree T = (V, E) is a connected graph without cycles.

A vertex v ∈ V of degree 1 is called a leaf, all other vertices are called interior nodes.

We denote with L the set of all leaves in tree T . Edges whose endpoints are both interior

nodes are called interior edges, the others are called external edges. More precisely, an

external edge is incident with a leaf and an interior node. Note that the terms branches

and edges can be used interchangeably in trees.

Figure 2.6(a) illustrates a tree T with vertex set V = {1, 2, 3, 4, i1, i2} and edge set

E = {e1, e2, e3, e4, e5}. More precisely, L = {1, 2, 3, 4} is the leaf set; i1 and i2 are interior

nodes. Besides, e1, e3, e4 and e5 are external edges whereas e2 is an interior one.

A tree T has the following important properties:

• |V | = |E|+ 1 and

• for any two vertices u, v ∈ V , there exists a unique path p(u, v) joining u and v.

The length of the tree T , denoted `T , is simply the sum of lengths over all edges and

computed by

`T =
∑
e∈E

`(e). (2.18)

Definition 6 A tree T with a distinguished vertex r considered as the root is called a

rooted tree and denoted by Tr. Otherwise, it is called an unrooted tree.
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Figure 2.6: (a) A tree T with vertex set V = {1, 2, 3, 4, i1, i2} and edge set E =

{e1, e2, e3, e4, e5}. (b) A rooted tree Tr with a distinguished root r. (c)

A rooted subtree Ti1 of rooted tree Tr. (d) A binary unrooted tree with

vertex set V = {1, 2, 3, 4, i1, i2} and edge set E = {e1, e2, e3, e4, e5}.

We now consider a rooted tree Tr with the root r. A node u in Tr is called an ancestor

of another node v if u is on path p(r, v) from the root r to vertex v. In other words,

v is a descendant of u. Obviously, the root r is an ancestor of all other nodes. More

precisely, node v is called a child of node u if and only if

• v is a descendant of u and

• edge (u, v) ∈ E.

Figure 2.6(b) shows a rooted tree Tr in which the root r has three children 1, 2 and i1.

A tree Tr′ = (V ′, E ′) is said to be a rooted subtree of Tr = (V, E) if and only if

• V ′ = {r′} ∪ {all descendants of r′} and

• E ′ = {e′ = (u′, v′) | e′ ∈ E, and u′, v′ ∈ V ′} includes all edges of E whose both

endpoints belong to vertex subset V ′.

Figure 2.6(c) shows a rooted subtree Ti1 with vertex subset V (Ti1) = {i1, i2, 3, 4, 5} and

edge subset E(Ti1) = {e4, e5, e6, e7} of rooted tree Tr in Figure 2.6(b).

A special tree structure which is typically used to present the historical relationships

among species is binary or bifurcating trees.

Definition 7 A rooted tree Tr is bifurcating if the root r and interior nodes each has

exactly two children.
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Figure 2.6(c) illustrates a bifurcating rooted tree Ti1 with vertex set V = {3, 4, 5, i1, i2}
and edge set E = {e4, e5, e6, e7}.

Definition 8 An unrooted tree T is bifurcating if each interior node has degree of 3.

Figure 2.6(d) illustrates a binary unrooted tree with vertex set V = {1, 2, 3, 4, i1, i2} and

edge set E = {e1, e2, e3, e4, e5}.

2.2.2.2 Traversals on trees

Traversals on trees to search, collect, set, or update information at their nodes and

edges are a fundamental routine in tree-based studies, especially the phylogenetic tree

reconstruction. We detail here two widely used traversal strategies to visit all nodes of

a rooted tree Tr, namely preorder and postorder traversals (Aho et al., 1974).

Assume that the root r has k children r1, r2, . . . , rk. A preorder traversal visits nodes

of Tr recursively in the following orders:

Algorithm 2.1: Preorder traversal

begin
(i): visit the root r, then

(ii): visit rooted subtrees Tr1 , Tr2 , . . . , Trk
using the preorder traversal.

end

For example, the order of visited nodes of Tr in Figure 2.6(b) using the preorder reversal

is r, 1, 2, i1, i2, 3, 5, 4.

A postorder traversal on Tr is defined recursively as follows:

Algorithm 2.2: Postorder traversal

begin
(i): visit rooted subtrees Tr1 , Tr2 , . . . , Trk

using the postorder traversal, then

(ii): visit the root r.

end

Nodes of Tr in Figure 2.6(b) are visited in orders 1, 2, 3, 5, i2, 4, i1, r using the

postorder reversal.
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2.2.3 Phylogenetic trees

We are now ready to introduce the so-called phylogenetic trees which are used to represent

the evolutionary relationships among species. Considering a set of n species (typically

sequences) S = {s1, s2, . . . , sn}, a phylogenetic tree is formally defined (Semple and

Steel, 2003):

Definition 9 A phylogenetic tree T (S) is a pair (T, ϕ) consisting of an underlying

tree T = (V, E) and an injective map ϕ : S 7→ V . T (S) is called a phylogenetic tree on

S.

To avoid unnecessary complications, we consider only bijective maps from the species

set S on the leaf set L of T . Moreover, each species s ∈ S is considered as the label

of a leaf ϕ(s) ∈ L. This simplification results in an equivalence between the labeled

tree T with leaf set L and the phylogenetic tree T (S) on the species set S. In other

words, the species of S are related by labeled tree T . Typically, binary trees are used in

phylogenetic analysis (Harding, 1971).

2.2.3.1 The number of trees

Species of S can be related by different binary trees. The numbers of possible rooted

and unrooted binary trees can be computed easily (Felsenstein, 1978). The number of

binary unrooted trees B(n) with n leaves is

B(n) =
n∏

i=3

(2i− 5). (2.19)

The number of binary rooted trees Br(n) is

Br(n) =
n∏

i=3

(2i− 3). (2.20)

These numbers increase exponentially with n. Table 2.2 presents the number of binary

rooted and unrooted trees with n = 3 . . . 10 leaves.

2.2.3.2 Comparison of phylogenetic trees

Since different trees are possible for the same set of species/sequences, the next funda-

mental task is to measure the difference between trees. This is employed as a proper
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Table 2.2: The numbers of binary rooted and unrooted trees with n leaves.

n rooted unrooted

3 3 1

4 15 3

5 105 15

6 945 105

7 10,395 945

8 135,135 10,395

9 2,027,025 135,135

10 34,459,425 2,027,025

measure to assess the quality of different phylogenetic tree reconstruction methods. Typ-

ically, the difference between two trees is measured by the Robinson and Foulds distance

(Robinson and Foulds, 1981). The Robinson and Foulds distance between two trees is

easily formulated, but it requires a short excursion into the bipartition concept on trees.

Definition 10 Two disjoint leaf subsets LA and LB splitted by an interior edge e in a

tree T with leaf set L, that is LA ∩ LB = ∅ and LA ∪ LB = L, are called a bipartition

of the tree T and denoted by LA|LB.

If T is a bifurcating unrooted tree with n leaves, then n−3 bipartitions corresponding to

n−3 interior edges are possible. For example, edges e3 and e4 of tree T1 in Figure 2.7(a)

result in respective bipartitions {1, 2} | {3, 4, 5} and {1, 2, 3} | {4, 5}. Similarly, tree T2

in Figure 2.7(b) has two bipartitions {1, 3} | {2, 4, 5} and {1, 2, 3} | {4, 5}.

Definition 11 The Robinson and Foulds (RF) distance between two trees is the

number of bipartitions present in one of the two trees but not the other.

Unless otherwise stated, the Robinson and Foulds distance between two trees is standard-

ized by dividing by the total number of possible bipartitions. Two important properties

of RF distance are

• the RF distance between two trees ranges from 0.0 to 1.0. It is zero when two

trees are identical, or one if the trees do not share any bipartitions,

• the smaller the RF distance between two trees the closer are their topologies.
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Figure 2.7: Two trees T1 and T2 with the same leaf sets L1 = L2 = {1, 2, 3, 4, 5} but

different topologies. (a) Tree T1 has two bipartitions {1, 2} | {3, 4, 5} and

{1, 2, 3} | {4, 5}. (b) Similarly, tree T2 has two bipartitions {1, 3} | {2, 4, 5}
and {1, 2, 3} | {4, 5}. Bipartition {1, 2} | {3, 4, 5} is present only in

T1 whereas bipartition {1, 3} | {2, 4, 5} occurs only in T2. Bipartition

{1, 2, 3} | {4, 5} exists in both T1 and T2. Thus, the standardized Robin-

son and Foulds distance between T1 and T2 is 0.5 (2/4).

We examine two trees T1 and T2 with the same leaf sets L1 = L2 = {1, 2, 3, 4, 5} but

different topologies in Figure 2.7. Specifically, bipartition {1, 2} | {3, 4, 5} is present only

in T1 whereas bipartition {1, 3} | {2, 4, 5} occurs only in T2. Bipartition {1, 2, 3} | {4, 5}
exists in both T1 and T2. Thus, the RF distance between T1 and T2 is 0.5 (2/4).

2.2.3.3 The accuracy of phylogenetic reconstruction methods

The Robinson and Foulds distance provides a means to measure the accuracy of phy-

logenetic tree reconstruction methods based on simulated data (see later sections), i.e.

the ability to infer an underlying tree from data. In other words, the accuracy of an

algorithm A can be considered as the average Robinson and Foulds distance between the

reconstructed trees T rec and the model trees Tmod used to generate the data sets. The

smaller the average Robinson and Foulds distance is between the reconstructed trees T rec

the model trees Tmod, the higher is the topological accuracy of the tree reconstruction

method A.
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Algorithm 2.3: Measure the accuracy of phylogeny reconstruction method A
begin

Set RFΣ ← 0 ;

for s = 1 to #set (the number of simulated data sets) do

Create a random model n-leaf tree Tmod
s together with its edge lengths ;

Create a random alignment Ds with length m according to the model tree

Tmod
s and its edge lengths ;

Reconstruct a tree T rec
s using algorithm A for the alignment Ds ;

Compute the Robinson and Foulds distance RFs between the model tree

Tmod
s and the reconstructed tree T rec

s ;

Set RFΣ ← RFΣ + RFs ;

Return the average Robinson and Foulds distance RF = RFΣ

#set
;

end

In summary, the phylogenetic tree reconstruction method A1 is considered to give

higher accuracy than the phylogenetic tree reconstruction method A2 with respect to

the Robinson and Foulds distance if the average Robinson and Foulds distance RF1

of method A1 on simulated datasets (D1,D2, . . . ,D#set) is smaller than the average

Robinson and Foulds distance RF2 of method A2 on the same simulated datasets.

2.2.3.4 Quartet trees

Quartet trees are the smallest informative structures of binary unrooted trees which

present relationships among four different species. They are building blocks of quartet-

based phylogenetic tree construction methods (Strimmer and von Haeseler, 1996; Will-

son, 1999; Ranwez and Gascuel, 2001). For a quartet of four different species A, B, C and

D, three different bifurcating unrooted quartet trees are possible (see Figure 2.8). Since

only three possible bifurcating unrooted quartet trees are available, the best quartet tree

for four species can be usually determined easily. However,
(

n
4

)
quartets are possible for

n species. This number increases reasonably fast with n.

2.2.3.5 Local tree rearrangement operations

Local tree rearrangement operations play an important role in phylogenetic analysis. In

addition to the Robinson and Foulds distance, they can be used to measure the difference
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Figure 2.8: Three different bifurcating unrooted quartet trees for four different species

A, B, C and D.

between phylogenetic trees (Waterman and Smith, 1978). More importantly, local tree

rearrangement operations provide a simple and effective mean to travel through the

space of possible phylogenetic trees for searching the best ones based on optimality

criteria (Felsenstein, 2004). Furthermore, they are a crucial component of a majority

phylogenetic tree reconstruction algorithms (see later sections).

We detail here the most widely used local tree rearrangement operation the so-called

nearest neighbor interchange (NNI). Other operations such as subtree pruning and re-

grafting (SPR) and tree bisection and reconnection (TBR) can be found in Felsenstein

(2004).

Regard an interior edge e with four distinct subtrees A, B, C and D in a binary

unrooted tree T as depicted in Figure 2.9(a). An NNI operation with respect to the

interior edge e simply exchanges two neighboring subtrees crossing interior edge e to

obtain a tree in (b) or an alternative one in (c). If tree T ′ is derived from tree T by

applying an NNI operation, tree T ′ is called a neighbor of T .

For each interior edge e in tree T one can examine two alternative neighbor trees.

Since (n − 3) interior edges are possible in a binary unrooted tree T with n leaves, we

can examine 2(n− 3) neighbors of T by applying NNI operations.

2.3 Phylogenetic tree reconstructions

This section presents an overview over methods to reconstruct phylogenetic trees for a set

of n contemporary species S = {s1, s2, . . . , sn}. Recall that these species are related by a

binary rooted tree Tr = (V, E) with leaf set L. Each leaf l ∈ L represents a contemporary

species s ∈ S and interior nodes can be thought of as speciation events. The phylogenetic

tree reconstruction methods can be divided into two classes: character-based methods

and distance-based methods.
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Figure 2.9: An illustration of nearest neighbor interchange (NNI) operations on a binary

unrooted tree T . Consider an interior edge e with four distinct subtrees

A, B, C and D in (a). An NNI operation exchanges two neighboring subtrees

crossing interior edge e to obtain a tree in (b) or an alternative one in (c).

2.3.1 Character-based methods

Species S = {s1, s2, . . . , sn} are represented by a multiple sequence alignment D =

{D1, D2, . . . , Dm} of n sequences with m sites. Note that two terms species and sequence

can be used interchangeably if they are clear from the context. We denote with Ds
i the

state of sequence s ∈ S at site i. Typically, phylogenetic trees can be reconstructed

using maximum parsimony methods or maximum likelihood approaches.

2.3.1.1 Maximum parsimony methods

Maximum parsimony methods are the simplest character-based methods to infer phy-

logenetic trees directly from the alignment D. They try to find the phylogenetic tree

minimizing the total number of evolutionary events required to explain the diversity of

sequences in the alignment D (Edwards and Cavalli-Sforza, 1963; Fitch, 1971; Swofford

et al., 1996; Felsenstein, 2004). For molecular sequences, the evolutionary events are

considered as nucleotide or amino acid substitutions.
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Figure 2.10: The number of evolutionary changes in tree T1, T2 and T3 is 2, 3 and 3,

respectively. T1 is considered as the maximum parsimony tree.

We consider a given rooted Tr whose leaves are labeled by sequences. At this point, we

assume that ancestor sequences at the root r as well as interior nodes of Tr are known

(see Figure 2.10). The length `(u, v) of edge (u, v) ∈ E is defined as the number of

changes between two sequences at u and v. Thus, the length `Tr of tree Tr is the total

number of changes in tree Tr.

Figure 2.10(a) shows tree T1 for four species in which each species is represented by a

DNA sequence of length 3. The tree length `T1 is two, that is, tree T1 needs two changes

to explain the data. More costly, each tree T2 and T3 requires three changes leading to

the data (see Figures 2.10(b) and 2.10(c)). Thus, T1 is the maximum parsimony tree

and considered as the best phylogenetic tree for these four species.

The first task of maximum parsimony methods is to infer ancestor sequences at the

root r and interior nodes such that the length of tree Tr is minimized. Different methods

to assign ancestor sequences have been proposed (Kluge and Farris, 1969; Farris, 1970;

Fitch, 1971; Sankoff, 1975).

Although the minimum number of changes of a given tree Tr can be computed effi-

ciently, searching the maximum parsimony tree for n species is an NP-complete problem

(Graham and Foulds, 1982). Notoriously, there might exist many most parsimonious

phylogenies for the same set of species (Swofford et al., 1996).

Heuristic searches have been proposed to reduce computational burden including

ratchet-based methods (Nixon, 1999), hill-climbing searches based on local tree rear-

rangement operations (Maddison, 1991; Goloboff, 1999; Quicke et al., 2001), or divide

and conquer techniques (Roshan et al., 2004). Nowadays, PAUP* is the most popular
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Figure 2.11: A rooted tree Tr with root r, two interior nodes u, v and four leaves 1, 2, 3, 4.

Tree Tr is the subject of the likelihood calculation of hypothesis H given

data D.

package to reconstruct phylogenies based on maximum parsimony methods (Swofford,

2002).

2.3.1.2 Maximum likelihood methods

Once the model of sequence substitution is specified, statistical approaches can be em-

ployed to make estimates of the phylogeny (Felsenstein, 2004). To date, maximum likeli-

hood methods are widely used to infer the best phylogeny (Felsenstein, 1981a; Swofford

et al., 1996; Felsenstein, 2004, and references therein). Studies based on computer simu-

lations show that maximum likelihood methods often give better results than maximum

parsimony ones (Tateno et al., 1994; Spencer et al., 2005).

A simple application of maximum likelihood methods was described to estimate the

genetic distances between sequences (see section 2.1.3.3). We specify three questions

that naturally arise in the maximum likelihood-based phylogenetic tree inference: first,

what is the likelihood function of a phylogeny; second, how can it be computed efficiently

for a large number of sequences; and third, what is a proper general scheme to search

the maximum likelihood phylogeny for a moderately large number of sequences.

Likelihood function

Recall that S = {s1, s2, . . . , sn} is the set of n contemporary species. They are repre-

sented by a multiple sequence alignment D = {D1, D2, . . . , Dm} of n sequences with m

sites in which Ds
i denotes the state of sequence s ∈ S at site i.

We let H = (Tr, `,M, r) be a hypothesis in which these sequences have evolved from

a common ancestor at the root r of tree Tr with length function ` according to models
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of sequence substitution M = (π, R) and rate heterogeneity r (see section 2.1.3). In

addition, let H be the hypothesis space which consists of all possible combinations of

tree Tr, function length `, models of sequence evolution M and rate heterogeneity r.

The evolution process of the multiple sequence alignment D imposes three following

assumptions:

• Sites across the multiple sequence alignment D evolve independently.

• Sites across the multiple sequence alignment D evolve according to the same hy-

pothesis H.

• Lineages (edges of tree Tr) evolve independently.

The definition as well as computation of likelihood function L(H) of the hypothesis

H given the data D were specified by Felsenstein (1981a):

L(H) = Prob(D | H). (2.21)

Since sites are assumed to evolve independently, the likelihood L(H) can be computed

from the product of likelihoods at single sites:

L(H) =
m∏

i=1

Prob(Di | H). (2.22)

The computation of the likelihood of H for a site Di is illustrated by an example in

Figure 2.11. We denote by d = (d1, d2, d3, d4, du, dv, dr) a state vector in which d1 = D1
i ,

d2 = D2
i , d3 = D3

i , d4 = D4
i , and du, dv, dr are states at interior nodes u, v and the root

r, respectively. The likelihood of H given d is calculated by

Prob(d | Tr, `,M, ri) = πdr Pdrdu(`(r, u) ri) Pdrdv(`(r, v) ri)×
Pdud1(`(u, 1) ri) Pdud2(`(u, 2) ri)×
Pdvd3(`(v, 3) ri) Pdvd4(`(v, 4) ri). (2.23)

Since states du, dv, dr at the internal nodes u, v and the root r are unknown, the likelihood

of H given single Di is calculated over all |A|3 combinations of possible states at u, v

and r (|A| = 4 for nucleotide or |A| = 20 for amino acid):

Prob(Di | Tr, `,M, ri) =
∑
du∈A

∑
dv∈A

∑
dr∈A

Prob(d | Tr, `,M, ri). (2.24)
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If substitution rate scaling factors across sites r are drawn from a Γ-distribution which

is approximated by c categories r1, r2, . . . , rc with the same prior probability 1/c, then

the likelihood L(H) can be computed (Yang, 1994) by

L(H) =
m∑

i=1

(
c∑

j=1

1

c
Prob(Di | Tr, `,M, rj)

)
. (2.25)

Pruning Algorithm

The computation of Equation 2.24 is tedious because of |A|n−3 possible different state

vectors d for n species. Felsenstein (1981a) introduced the so-called pruning algorithm

to reduce the computational burden of the likelihood function using dynamic programing

techniques.

We denote Lk for each node k ∈ V the leaf set of the rooted subtree Tk of Tr. In

addition, let Di(k) = {Dj
i | j ∈ Lk} be the state vector of leaf set Lk. We compute the

probability Prob(Di(k) | k, dk) of observing the state vector Di(k) at leaves of rooted

subtree Tk upon condition that the state at root k of Tk is dk. Particularly, if k is a leaf

of Tr, then

Prob(Di(k) | k, dk) = Prob(Dk
i | k, dk) =

1 If Dk
i = dk

0 If Dk
i 6= dk

(2.26)

Otherwise, the node k has two children u and v. The Prob(Di(k) | k, dk) is computed

from probabilities at the children u and v:

Prob(Di(k) | k, dk) =

(∑
du∈A

Pdkdu(`(k, u) ri) Prob(Di(u) | u, du)

)
×(∑

dv∈A

Pdkdv(`(k, v) ri) Prob(Di(v) | v, dv)

)
(2.27)

We now derive Prob(Di(k) | k, dk) for all nodes k and possible states dk ∈ A using a

postorder traversal starting from the root r of tree Tr:
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Algorithm 2.4: Pruning algorithm

Data: The current node k.

Result: Compute probabilities at node k for all states dk ∈ A.

begin

if node k is a leaf then

foreach state dk ∈ A do
Compute Prob(Di(k) | k, dk) using Equation 2.26 ;

else
Call the Pruning algorithm at child u ;

Call the Pruning algorithm at child v ;

foreach state dk ∈ A do
Compute Prob(Di(k) | k, dk) using Equation 2.27 ;

end

Once the Pruning algorithm has been performed, the likelihood of hypothesis H given

site Di

L(Di | H) = Prob(Di | Tr, `,M, ri) =
∑
dr∈A

πdr Prob(Di(r) | r, dr) (2.28)

Since the Pruning algorithm is based on a postorder traversal and the number of char-

acter states is constant, its complexity is only O(n).

Maximum likelihood principle

The aim of maximum likelihood estimate is to find the hypothesis H∗ with the highest

likelihood, that is, H∗ makes observed data D most likely (Felsenstein, 1978). Formally,

the maximum likelihood hypothesis

H∗ = argmaxH∈H{L(H)}. (2.29)

Since models of sequence evolution M are typically assumed to be reversible, an

unrooted tree T could be rooted at any point in order to compute its likelihood using

Equation 2.28 (pulley principle, Felsenstein, 1981a). Consequently, unrooted trees T

are examined instead of rooted trees to infer the maximum likelihood hypothesis H∗.
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Algorithm 2.5: A general scheme to infer the maximum likelihood hypothesis

Data: A multiple sequence alignment D.

Result: The maximum likelihood hypothesis H∗ = (T ∗, `∗, M∗, r∗).

begin
Reconstruct an initial tree T ∗ and estimate its length function `∗ ;

Estimate parameters of models of sequence evolution M∗ and rate heterogeneity

r∗ based on data D, tree T ∗ together with length function `∗ ;

Set maxLikelihood← L(H∗) ;

foreach T ∈ T (the space of unrooted trees) do
Estimate length function ` of tree T ;

if L(T, `, M∗, r∗) > maxLikelihood then
maxLikelihood← L(T, `, M∗, r∗) ;

T ∗ ← T ;

`∗ ← ` ;

end

Since estimates of parameters of models M∗ and r∗ do not depend significantly on

the trees (Sullivan et al., 2005), these parameters are typically estimated once based

on an initial tree and fixed during the search to reduce computational expense. The

initial tree is typically constructed by a fast and reasonably accurate method such as

Neighbor-Joining (Saitou and Nei, 1987). Because parameters of models M∗ and r∗ are

fixed, searching the maximum likelihood hypothesis H∗ now becomes the task of finding

the maximum likelihood unrooted tree T ∗ as well as its edge length function `∗.

The edge lengths of an unrooted tree T are optimized using numerical analyzes such

as the Brent’s method (Brent, 1973) or Newton-Raphson’s method (e.g. Press et al.,

2002).

Finding the maximum likelihood hypothesis H∗ is an NP-hard problem (Chor and

Tuller, 2005). Many heuristic searches have been proposed to obtain a best possible

hypothesis H∗ in practical time.

Felsenstein (1981a) implemented the DNAml program which applied local tree rear-

rangement operations to search the maximum likelihood tree for nucleotide data. The

DNAml program was improved by Olsen et al. (1994), namely fastDNAml. More recently,

Stamatakis et al. (2005) further improved fastDNAml by introducing the so-called Ran-

domized Accelerated Maximum Likelihood technique. Stamatakis (2004) also applied a

simulated annealing search to infer the maximum likelihood tree.
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Besides subtree rearrangement operations-based approaches, genetic algorithms have

been proposed (Matsuda, 1996; Lemmon and Milinkovitch, 2002). For example, Lemmon

and Milinkovitch (2002) implemented MetaPIGA software based on a meta population

genetic algorithm. Another attempt to reduce computation time is the construction of

quartet trees, which are subsequently used to puzzle an overall tree such as Quartet

Puzzling (Strimmer and von Haeseler, 1996).

Moreover, attempts to parallelize tree-construction programs have been introduced to

further reduce the running time of the analysis (Olsen et al., 1994; Charleston, 2001;

Brauer et al., 2002; Schmidt et al., 2002, 2003; Stamatakis and Ludwig, 2004; Keane

et al., 2005; Minh et al., 2005).

By now, PHYML seems to be faster than other methods (Guindon and Gascuel, 2003).

The method searches the maximum likelihood tree using hill-climbing techniques based

on nearest neighbor interchange operations. It is not surprising that multiple optimal

points might exist on the likelihood surface for phylogenetic trees (Steel, 1994; Chor

et al., 2000). Consequently, the PHYML search is likely to get stuck at a local optimal

point on the likelihood surface. Approaches which are able to visit as many as possible

optimal points on the likelihood surface in practical time is our desire (see Chapters 3

and 4).

2.3.2 Distance-based methods

Computer simulation studies show that character-based approaches like maximum likeli-

hood methods tend to give high accuracy (Guindon and Gascuel, 2003, and Chapter 4).

Unfortunately, they typically require huge computation times. To date, distance-based

methods introduced by Cavalli-Sforza and Edwards (1967) and Fitch and Margoliash

(1967a) appear most appropriate to reconstruct large phylogenies for thousands of se-

quences. These methods are a compromise between computational speed and accuracy.

They run typically in O(n3) time for n sequences (Saitou and Nei, 1987; Gascuel, 1997;

Bruno et al., 2000) or in O(n2) time for recently suggested approaches (Desper and

Gascuel, 2002; Csürös, 2002).

The prerequisite of distance-based methods to construct phylogenies for the species

S is the pairwise distance matrix D = {D(u, v)} where D(u, v) is the distance between

two species u, v ∈ S (typically, genetic distances as estimated in section 2.1.3.3).

Given a tree T = (V, E) together with its edge length function `, we can derive the

pairwise distance matrix D(T,`) : S × S 7→ R+ between species according to tree T and
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length function `. More specifically,

D(T,`)(u, v) =
∑

e∈p(ϕ(u),ϕ(v))

`(e) for all u, v ∈ S. (2.30)

Definition 12 A distance matrix D is additive if and only if it satisfies the four-point

condition (Buneman, 1971): for all quartets {u, v, w, x},

D(uv) +D(wx) ≤ max{D(uw) +D(vx),D(ux) +D(vw)}. (2.31)

If D is additive, there exists a length function ` such that

D(uv) = D(T,`)(u, v) for all u, v ∈ S. (2.32)

In other words, the tree T and the length function ` for the additive distance matrix

D can be constructed easily in O(n2) time for n species (Hein, 1989, and references

therein).

Unfortunately, distance matrices D are typically not additive due to stochastic errors in

estimating genetic distances between sequences. Thus, in the following arbitrary distance

matrices are considered (van de Peer, 2003). Distance-based methods construct tree T̂

together with length function ˆ̀ such that the pairwise distance D(T̂ ,ˆ̀)(u, v) according to

tree T̂ and length function ˆ̀ is as close as possible to the pairwise distance D(u, v) for

all u, v ∈ S.

Felsenstein (2004) motivated distance-based methods as follows:

“The general idea of distance-based methods seems as if they would not

work very well: calculate a measure of the distance between each pair of

species, and then find a tree that predicts the observed set of distances

as closely as possible. This leaves out all information from higher-order

combinations of character states, reducing the data matrix to a simple table

of pairwise distances. One would think that this must leave out so many

of subtleties of the data that it could not possibly do a reasonable job of

making an estimate of the phylogeny.

Computer simulation studies show that the amount of information about

the phylogeny that is lost in doing this is remarkably small. The estimates

of the phylogeny are quite accurate. Apparently, it is not common for evo-

lutionary processes (at least not the simple models that we use for them)

to leave a trace in high-order combinations of character states without also

leaving almost the same information in the pairwise distances between the

species.”
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In principle, distance-based methods are divided into three classes: least square meth-

ods, minimum evolution approaches, and clustering algorithms.

2.3.2.1 Least square methods

Least square methods are some of the best statistically justified distance-based ap-

proaches (Felsenstein, 2004). Theoretically, they construct a tree T̂ together with

length function ˆ̀ such that the total square discrepancy between distances D(u, v) and

D(T̂ ,ˆ̀)(u, v) over all pairs of species (u, v) is minimized (e.g. Cavalli-Sforza and Edwards,

1967).

Given a tree topology T together with length function `, we denote ∆(T,`) the sum of

the square differences between D(u, v) and D(T,`)(u, v) over all pairs of species (u, v):

∆(T,`) =
n∑

u=1

n∑
v=1

w(u, v)(D(u, v)−D(T,`)(u, v))2 (2.33)

where w(u, v) is the weight of pair (u, v). This weight is assigned differently in different

methods. Particularly, Cavalli-Sforza and Edwards (1967) assumed that all species pairs

have the same weight, i.e. w(u, v) = 1 for all u, v ∈ S. In contrast, Fitch and Margoliash

(1967a) proposed that each species pair (u, v) has its own weight w(u, v) = 1
D(uv)

, which

means the deviation in the two matrices of closely related species achieve more weights

than the deviation in the two matrices of distantly related species. Similarly, a weight

w(u, v) = 1
D(uv)2

for species pair (u, v) is suggested by Beyer et al. (1974).

Mathematically, least square methods search the tree T̂ together with length function
ˆ̀ such that ∆(T,`) is minimized:

(T̂ , ˆ̀) = argmin(T,`){∆(T,`)}. (2.34)

Given a tree T , the first task of least square methods is to estimate the length function

` of tree T in oder to minimize ∆(T,`). Although the task is solved by algebraic analysis

(Rzhetsky and Nei, 1993), searching the least square tree is an NP-complete problem

(Day and David, 1986). Heuristic methods to construct least square phylogenies were

implemented in packages such as PHYLIP (Felsenstein, 1993) or PAUP* (Swofford,

2002).
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2.3.2.2 Minimum evolution methods

Nowadays, minimum evolution (ME) approaches are the most widely used distance-

based methods to infer phylogenetic trees. They are closely related to least square

methods in the sense that edge length function ` for a given tree T is typically estimated

using the least square principle (Rzhetsky and Nei, 1993; Desper and Gascuel, 2002).

However, their objective function is to construct the tree T̂ as well as its edge lengths

such that the length of the tree T̂ is the shortest (Kidd and Sgaramella-Zonta, 1971).

Precisely, minimum evolution methods search the tree T̂ together with its edge length

function ˆ̀ obeying the following condition:

ˆ̀
T̂ = min{`T | T ∈ T}. (2.35)

Note that edge lengths of trees T ∈ T cannot simply be set to zero, but must be estimated

according to the pairwise distance matrix D.

The theoretical foundation of ME methods was given by Rzhetsky and Nei (1993).

They proved that if the pairwise distance matrix D is estimated unbiasedly, then the

length of the true tree is the shortest.

Since minimum evolution methods evaluate the length function ` for a given tree T

using the least square principle, determining the minimum evolution tree T̂ together

with its length function ˆ̀ corresponding to a distance matrix D is also an NP-complete

problem (Felsenstein, 2004). Hence, heuristic searches have been proposed to reduce the

computational burden (Saitou and Nei, 1987; Rzhetsky and Nei, 1993; Kumar, 1986;

Gascuel, 1997; Bruno et al., 2000; Desper and Gascuel, 2002).

To date, Neighbor-Joining is the most popular method to approximately reconstruct

the minimum evolution phylogeny (Saitou and Nei, 1987). More recently, Desper and

Gascuel (2002) applied a hill-climbing search strategy based on nearest neighbor inter-

change operations to find the minimum evolution tree. The method seems to be better

than existing approaches in terms of both accuracy and running time.

2.3.2.3 Clustering methods

The third major class of distance-based methods is formed by the clustering algorithms

(Hartigan, 1975). In contrast to the least square methods and the minimum evolution

approaches, clustering algorithms do not impose explicitly a global objective function

that needs to be optimized. They rather group sequences (or taxa) iteratively to recon-

struct a distance-based phylogenetic tree.
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Figure 2.12: An illustration of clustering algorithms to build a tree for four species by

agglomerating sequences iteratively.

Among these, UPGMA (unweighted pair-group method with arithmetic averages) is

the most simplest method to infer phylogenies with the constraint that a molecular clock

is assumed on the evolutionary process (Sneath and Snokal, 1973). Other clustering

approaches have been proposed to relax the molecular clock assumption (Farris, 1977;

Klotz et al., 1979; Li, 1981; Saitou and Nei, 1987; Gascuel, 1997; Bruno et al., 2000).

Figure 2.12 illustrates a tree construction for four species using a general scheme of

clustering algorithms. First, four rooted subtrees T1, T2, T3 and T4 each corresponds

to a species are initialized in 2.12(a). Then, they are iteratively clustered together to

build a final 4-species tree. Specifically, rooted subtrees T2 and T3 which are determined

to be a pair of neighbors are grouped into a new rooted subtree T(2,3) in 2.12(b). The

determination of neighbor pair depends on methods (Sneath and Snokal, 1973; Farris,

1977; Li, 1981; Saitou and Nei, 1987). For example, UPGMA considers two rooted

subtrees with the smallest distance as a pair of neighbors. After that, rooted subtree

T1 and T(2,3) are agglomerated into a new 3-species rooted subtree T(1,(2,3)) in 2.12(c).

Finally, rooted tree T((1,(2,3)),4) for 4 species is created by grouping T4 together with

T(1,(2,3)) in 2.12(d).

Remarkably, the Neighbor-Joining (NJ) method which builds approximately the min-
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imum evolution phylogeny works by clustering (Saitou and Nei, 1987). Variants of NJ

algorithm e.g. BIONJ and Weighbor have been proposed to boost the accuracy of NJ

(Gascuel, 1997; Bruno et al., 2000). Since the complexity of NJ algorithm is O(n3), it

consumes a reasonable runtime to construct phylogenies for large data sets with thou-

sands of sequences.

We are interested in developing a new clustering method which not only gives a higher

accuracy compared to existing clustering algorithms but also reduces their computational

expense (see Chapter 5).

2.3.3 Finding the best tree by heuristic methods

Searching the best phylogeny exhaustively based on a given optimality criterion, e.g.

maximum parsimony, maximum likelihood, minimum evolution is computationally ex-

pensive. Mathematically, searching maximum parsimony or minimum evolution phyloge-

nies is NP-complete (Graham and Foulds, 1982; Day and David, 1986). More difficultly,

determining the maximum likelihood tree is an NP-hard problem (Chor and Tuller,

2005). To overcome this computational burden, heuristic methods have been proposed

to construct phylogenies in practical time (Felsenstein, 2004, and references therein).

We must note, that heuristic approaches cannot guarantee to find the best tree(s).

In the following, we introduce two commonly used heuristic methods to construct

phylogenies: hill-climbing search and stepwise addition tree reconstruction method.

2.3.3.1 Hill climbing search

Hill climbing is an intuitive heuristic search strategy to find the best solution with respect

to an optimality criterion by improving the current solution in a step-by-step manner.

The method is illustrated in Figure 2.13 where one attempts to climb up the highest

point from a starting point. One always moves from the current position to a higher

position until reaching a locally highest point.

Operations which allow changing from the current position to another are called traver-

sal operations. In the context of phylogenetic tree reconstruction, one could employ local

subtree rearrangement operations such as nearest neighbor interchange as proper traver-

sal operations.
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If start here

end up here

the highest point

Figure 2.13: An illustration of hill climbing algorithm. One attempts to climb up the

highest point by moving from the current position towards a higher position

until reaching a locally highest point. The strategy does not guarantee that

the highest position is reached.

Algorithm 2.6: A general scheme of hill climbing algorithms

Data: A set of traversal operations Op = {Op1, . . . , Opm}, a quality function f .

Result: The best found tree T ∗.

begin
Reconstruct an initial tree T ∗ ;

repeat
Find the best neighbor T ′ of T ∗ by applying traversal operations in Op ;

if f(T ) > f(T ∗) then
isMoveable← true ;

T ∗ ← T ′ ;

else
isMoveable← false ;

until isMoveable;

end

Obviously, the hill climbing search terminates when no better neighbor of the current

best tree T ∗ is found. Since the hill climbing search accepts only movements which

increase the quality of the current tree, it is likely to get stuck at a locally best tree. To

overcome this limitation, one could repeat the hill-climbing search several times from

different starting trees. Finally, the tree with highest score with respect to an optimality

criterion is considered as the best found tree.

Hill climbing methods to search maximum parsimony, maximum likelihood, or mini-

mum evolution phylogenies have been implemented in PAUP* package (Swofford, 2002),
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Figure 2.14: The tree construction for seven species S = {s1, s2, . . . , s7} based on step-

wise addition. Starting from a unique tree T (s1, s2, s3) for three species

s1, s2, and s3, the fourth species s4 is placed at an edge of the 3-species tree

T (s1, s2, s3) that obtains the best 4-species tree T (s1, . . . , s4) according to

an optimality criterion. Similarly, species s5, s6 and s7 are sequentially in-

serted into the current tree to reconstruct a final 7-species tree T (s1, . . . , s7).

fastDNAml (Olsen et al., 1994), PHYML (Guindon and Gascuel, 2003), or RAxML (Sta-

matakis et al., 2005).

2.3.3.2 Stepwise addition tree construction

The hill climbing search depends significantly on the initial tree in terms of both quality

and runtime. The so-called stepwise addition strategy is introduced to build a single

tree which can serve properly as a starting tree in the hill climbing search (Felsenstein,

2004, and references therein).

In general, the method starts from a unique 3-species tree and sequentially inserts

remaining species into the current tree to construct a final n-species tree for n species

S = {s1, s2, . . . , sn}.

Figure 2.14 illustrates the tree construction for seven species S = {s1, s2, . . . , s7} based

on stepwise addition strategy. First, a unique tree T (s1, s2, s3) for three species s1, s2

and s3 is initialized. Then, the fourth species s4 is placed at an edge of the 3-species tree

T (s1, s2, s3) that obtains the best 4-species tree T (s1, . . . , s4) according to an optimality
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criterion. Similarly, species s5, s6 and s7 are sequentially inserted into the current tree

to reconstruct a final 7-species tree T (s1, . . . , s7).

In principle, to insert new species s(t+1) into the current t-species tree T (s1, . . . , st),

one examines all possible (t + 1)-species trees T (s1, . . . , s(t+1)) obtained from inserting

new species s(t+1) into the current t-species tree T (s1, . . . , st). The edge corresponding

to the (t + 1)-species tree with highest score with respect to an optimality criterion is

considered as the best place to insert the new species s(t+1). Note that the best (t + 1)-

species tree T (s1, . . . , s(t+1)) in turn will serve as the current tree for the insertion of the

next species.

The optimality criterion can be maximum likelihood, maximum parsimony, or mini-

mum evolution. Other widely used criteria are based on quartet trees. The tree which is

supported by maximum number of quartet trees is considered as the best one (Strimmer

and von Haeseler, 1996; Willson, 1999; Ranwez and Gascuel, 2001).

Different insertion orders of species may result in different final n-species trees. In

other words, we might construct different trees by using the same stepwise addition

algorithm, but adding species to the tree in different orders.
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This chapter presents a novel method the so-called phylogenetic navigator (PhyNav) to

search the best phylogenies with respect to an optimality criterion. First, the definition

of the so-called minimal k-distance subsets is introduced. These subsets are a cornerstone

of the PhyNav algorithm to elucidate the space of phylogenetic trees efficiently. Then,

the efficiency of PhyNav and other methods in terms of both accuracy and runtime is

examined on simulated as well as real datasets.

3.1 Minimal k-distance subsets

Recall that S = {s1, s2, . . . , sn} is the set of n species which are related by a tree T with

leaf set L. Each leaf l ∈ L represents a species s ∈ S. The terms species and sequence

are used interchangeably if they are clear from the context.

The topological distance dp(s, s
′) in tree T is the number of branches on the path

p(s, s′) from s to s′. We now introduce the concept of k-distance representatives:

Definition 13 A sequence s is said to be a k-distance representative for a sequence

s′ in a tree T if and only if their topological distance dp(s, s
′) in T is smaller or equal to

k ≥ 0.

Intuitively, the smaller the value of k is the better a sequence s represents sequence s′,

and vice versa. The k-distance representative sequence concept is now used to introduce

minimal k-distance subsets:

Definition 14 A subset Sk of sequences is called a minimal k-distance subset of an

n-sequence set S if and only if the following two conditions hold:

1. For each sequence s ∈ S, there exists a sequence s′ ∈ Sk such that the sequence s′

is a k-distance representative for the sequence s.

45



46 3 Phylogenetic navigator

A
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D
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Figure 3.1: An unrooted bifurcating tree of 6 species {A, B, C,D, E, F}. The bold tree

is the scaffold with minimal 2-distance subset {A, C,D,E}.

2. If we remove any sequence s′ from Sk, Sk will violate the first condition. That

means, the subset cannot be reduced any further.

The idea behind minimal k-distance subsets is that the phylogenetic information in the

sequence subset Sk represents phylogenetic information from the whole set. According

to our experience k = 3 is a good choice because it prevents the deletion of too many

sequences as well as the removal of sequences that provide information to bridge long

paths between distantly related subtrees.

A sequence s̄ 6∈ Sk is then called a remaining sequence. The set Sk := S\Sk of all such

sequences, which remain to be added to Sk to obtain the full set S, is called remaining

set.

Since |Sk| ≤ |S|, the subtree T (Sk) from subset Sk can usually be constructed in less

time than the full tree. This subtree is used as a scaffold to build a full tree containing

all sequences by adding all sequences s̄ ∈ Sk. Note that there exist many minimal k-

distance subsets and each can be determined in time of O(n2). For example, sequences

A and B in the tree in Figure 3.1 are 2-distance representative of each other, as are E

and F . The sequence subsets {A, C,D, E}, {A, C,D, F}, {B, C, D,E} and {B, C, D, F}
are minimal 2-distance subsets of the full set {A, B, C,D,E, F}.

3.2 The PhyNav algorithm

The phylogenetic navigator algorithm is a five-step procedure: (1) the Initial step, (2)

the Navigator step, (3) the Disembarking step, (4) the Comparative step, and (5) the
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Stop step. We could use the algorithm with any objective function, e.g. maximum

parsimony, maximum likelihood, to create a list of possible optimal trees. According

to the objective function the best tree found is taken as the inferred phylogeny. The

PhyNav is detailed in algorithm 3.1.

Algorithm 3.1: Phylogenetic Navigator (PhyNav)

begin
Initial step: We employ some fast tree reconstruction method to create an

initial tree. To that end, PhyNav uses the BIONJ (Gascuel, 1997) an improved

Neighbor-Joining algorithm (Saitou and Nei, 1987) with the pairwise

evolutionary distances and a fast nearest neighbor interchange (NNI) operation

as described by Guindon and Gascuel (2003) to create the initial tree. This tree

is then called the currently best tree and denoted as Tbest, with log-likelihood

`log
best. The currently best tree Tbest is used to construct the k-distance subsets.

Navigator step: Find a minimal k-distance subset Sk and constructs the

corresponding subtree T (Sk). From the minimal k-distance subset Sk the

corresponding subtree T (Sk) could be created by several tree reconstruction

methods. In PhyNav, T (Sk) is created by optimizing the subtree Tsub of Tbest

induced by the leaves in Sk using NNI operations.

Disembarking step: Construct the whole tree T based on the scaffold tree

T (Sk) using the k-distance information. To this end, PhyNav inserts the

remaining sequences into the scaffold as follows: (1) assign T by T (Sk), (2)

insert each remaining sequence s̄ ∈ Sk into an external branch e of T such that

the corresponding leaf se adjacent to e is a k-distance representative for s̄. If

there are more than one external branches possible one branch is selected

randomly, (3) apply NNI operations to T to compensate for incorrect

placements. The new resulting whole tree is called intermediate tree, denoted

by Tintermediate.

Comparative step: If the log-likelihood `log
intermediate > `log

best, then set

Tbest ← Tintermediate and update the log-likelihood.

Stop criterion: If the number of optimization steps is less or equal than a

pre-defined number of total optimization steps #step, go to the Navigator step,

otherwise stop and output Tbest.

end
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It cannot be guaranteed that T (Sk) determined in the Navigator step is the optimal

tree for Sk due to the use of heuristics. Even if T (Sk) is the best tree it does not

guarantee that tree T will be the optimal full tree. Hence, the Navigator, Disembarking,

and Comparative steps are repeated several times. Then the program stops and the best

tree Tbest is considered as the final phylogenetic n-tree.

The maximum likelihood criterion is used in this description as an objective function,

however the algorithm is not restricted to maximum likelihood, any tree reconstruction

method with an objective function to minimize or maximize will work in the presented

approach.

All the intermediate trees found from PhyNav during one search run of the tree space

are eventually summarized into a majority rule consensus tree with the frequencies of

the groupings. The consensus tree reveals complementary information of most frequent

groupings found in the collection of similar high likelihood trees.

3.3 The efficiency of PhyNav

To measure the accuracy and the time-efficiency of PhyNav we reconstructed phyloge-

netic trees from simulated as well as biological datasets. The results are compared to

the results of other programs, in particular, Weighbor version 1.2 (Bruno et al., 2000);

and PHYML version 2.1 (Guindon and Gascuel, 2003); Computing times were measured

on a Linux PC Cluster with 2.0 GHz CPU and 512 MB RAM.

3.3.1 Simulated datasets

To evaluate the accuracy we performed simulations. To simulate realistic datasets we

performed the simulations on a tree topology reconstructed from a real dataset. To

that end an elongation factor (EF-1α) dataset with 43 sequences was used. The dataset

as well as the tree was obtained from TreeBase (http://www.treebase.org, accession

number S606, matrix accession number M932). The branch lengths of the tree topology

were inferred using the TREE-PUZZLE package version 5.1 (Strimmer and von Haeseler,

1996; Schmidt et al., 2002).

Based on that tree topology datasets were simulated using Seq-Gen version 1.2.6

(Rambaut and Grassly, 1997); assuming the Kimura 2-parameter model with an transi-

tion:transversion ratio of 2.0 (Kimura, 1980). 1,000 datasets each were simulated with

sequence lengths of 700 and 1000 bp.
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Table 3.1: Results for the simulated datasets: (a) percentage of correctly reconstructed

trees, (b) average Robinson-Foulds distance between the ’true tree’ and the

reconstructed trees, and (c) average runtime of tree reconstruction (1000 sim-

ulations per parameter setting).

Weighbor PHYML PhyNav

700 bp 2.4 12.3 13.1

1000 bp 9.6 33.7 33.9

(a) Percentage of correct trees.

Weighbor PHYML PhyNav

700 bp .140 .076 .073

1000 bp .086 .039 .038

(b) Average Robinson-Foulds distance.

Weighbor PHYML PhyNav

700 bp 3s 7s 52s

1000 bp 4s 9s 66s

(c) Average runtime.

The trees for simulated datasets were reconstructed using PhyNav, Weighbor and

PHYML. All programs were run with default options. The evolutionary model and its

parameters were set to the simulation parameters. The PhyNav options were set to

#step = 5 repetitions and k = 3.

The results of the tree reconstructions were compared using two different methods.

First the percentage of correctly reconstructed tree topologies was derived for each pro-

gram and sequence length. Moreover, the average Robinson-Foulds distance (Robinson

and Foulds, 1981) was employed to measure the variability of the results for each program

(see section 2.2.3.2).

Tables 3.1(a) and 3.1(b) display the results for PhyNav, PHYML, and Weighbor.

Both tables show that Weighbor is out-performed by both PHYML and PhyNav.

PHYML and PhyNav perform similarly well, both in the percentage of correctly recon-

structed trees as well as in their average Robinson-Foulds distance to the model tree.
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However, PhyNav shows slightly better values for all analyzes. Table 3.1(c) shows that

the computing time for the construction of a phylogeny with 43 sequences is not really

an issue for the PHYML, Weighbor, and PhyNav methods.

3.3.2 Biological datasets

The PhyNav algorithm was applied to large biological datasets to test its efficiency on

real datasets. Three datasets have been obtained from the PANDIT database version

7.6 (http://www.ebi.ac.uk/goldman-srv/pandit/; Whelan et al., 2003). The first

dataset consists of 76 Glyceraldehyde 3-phosphate dehydrogenase sequences with an

alignment length of 633 bp (PF00044), the second of 105 sequences from the ATP

synthase alpha/beta family (1821 bp, PF00006), and the last of 193 sequences with

Calporin homology with an alignment of 465 bp (PF00307).

Since the true tree is usually not known for real datasets, the Robinson-Foulds distance

cannot be used to measure the efficiency of algorithms. Therefore the likelihood value

of the reconstructed trees is used to compare the methods.

Since Weighbor does not use likelihoods we only compare PHYML and PhyNav from

the methods above. Note that Weighbor already was outperformed in the simulation

study. Additionally we wanted to use MetaPIGA (Lemmon and Milinkovitch, 2002),

another method for large datasets based on a genetic algorithm. Unfortunately the

program crashed on all three datasets. Thus, only PHYML and PhyNav were used for

comparison.

As explained above we use the likelihood values of the reconstructed trees to compare

the efficiency of the two programs. According to the maximum likelihood framework

(cf. for example Felsenstein, 1981a) the tree with the higher likelihood value represents

the more likely tree.

The log-likelihood values are given in Table 3.2(a). These results show that PhyNav

always find a tree with a higher likelihood. The increase of the log likelihood ranged

from 39 up to 343 units.

However, as Table 3.2(b) shows, the price to pay for better likelihood trees is an

increase in computing time. Each single repetition in the algorithm has a time con-

sumption comparable to the one run of PHYML. Nevertheless, the substantial increase

of the likelihoods might well justify that this effort is worthwhile, since it is still far from

the time consumptions demanded by classical ML methods like DNAML (Felsenstein,

1993).



3.4 Discussions 51

Table 3.2: Results from the biological datasets of 76 Glyceraldehyde 3-phosphate de-

hydrogenase sequences, of ATP synthase alpha/beta (105 seqs.), and of 193

Calporin homologs: (a) Log-likelihood values of the best reconstructed trees

and (b) Runtimes of tree reconstruction consumed by the different methods.

The PhyNav column presents the runtime of a single repetition.

sequences length PHYML PhyNav

76 633 bp -32133 -32094

105 1821 bp -88975 -88632

193 465 bp -64919 -64794

(a) Log-likelihood values.

sequences length PHYML PhyNav

runtime repetitions (single repetition)

76 633 bp 40s 2529s 70 36s

105 1821 bp 117s 14413s 100 144s

193 465 bp 101s 22306s 200 116s

(b) Runtimes.

3.4 Discussions

We propose a new search strategy to optimize the objective function for large phylo-

genies. Starting from an initial tree the PhyNav method uses heuristics to reduce

the number of sequences, to reconstruct scaffold trees, and to add again the remain-

ing sequences. During these steps the constructed trees are optimized using fast NNI

operations.

The suggested method produced better results on all dataset compared to Weighbor

and PHYML. The trade-off for better accuracy is of course the runtime. While Weighbor

outperformed PHYML and PhyNav with respected to the runtime on the simulated

datasets, PHYML is 7.5-fold faster than PhyNav. However, spending more time might

be well acceptable, because the quality of the results increases.

On the biological datasets PhyNav showed much longer runtimes compared to PHYML.

Nevertheless, the substantial increase of the likelihoods might well justify that this effort
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is worthwhile, since it is still far from the time consumptions demanded by classical ML

methods like DNAML (Felsenstein, 1993).

The mechanism to add the remaining sequences of Sk to Tk cannot be expected to give

the most accurate results. However, our way is simple and performs efficiently, espe-

cially since the NNI operations seem to well remove unfortunate placements during the

construction of the full trees T . Additionally, it might be worth trying other algorithms

like Important Quartet Puzzling to add the remaining sequences (see Chapter 4).

PhyNav can be applied to large dataset. We analyzed an alignment of 1146 Ankyrin

amino acid sequences (PF00023) downloaded from the PANDIT database version 12.0

(Whelan et al., 2003). The PhyNav options were set to 1000 repetitions and k = 3 and

the WAG model (Whelan and Goldman, 2001) was applied. PhyNav found a best tree

with -74665 log likelihood and needed about 15 minutes per repetition. Thus, the whole

computation took about 10 days.



4 Important quartet puzzling and

nearest neighbor interchange

Quartet-based algorithms form a major class of phylogenetic tree reconstruction. The

main idea is the reconstruction of quartet trees, which are subsequently used to construct

an overall tree (Strimmer and von Haeseler, 1996; Willson, 1999; Ranwez and Gascuel,

2001). However, the complexity of O(n4) prohibits an application of quartet methods

to data with more than approximately 100 sequences because it is necessary to evaluate

all quartet trees.

The chapter introduces the so-called important quartet puzzling Method, IQP, which

uses only O(n2) quartets for construction a tree to overcome the computational draw-

back. Then, a combined search strategy called IQPNNI which moves fast through tree

space is proposed. The accuracy and computing time of IQPNNI as well as other meth-

ods are examined with both simulated and real data. Finally, we suggest a rule, which

indicates when to stop the search.

4.1 Important quartet puzzling method

4.1.1 k-representative concept

We consider a binary rooted tree Tr with root r (see Figure 4.1). For each leaf l, we

compute the topological distance to the root dp(l, r) as the number of branches on the

path from r to l in Tr (in computer science parlance the depth). Leaves l1, l2 with the

same distance dp(l1, r) = dp(l2, r) ≡ dp are said to be on level dp. For example, in Figure

4.1 leaves a, b are on level 3, leaves g and h are on level 4 and so on. The distance dp(·, r)
induces a natural ordering of the leaves.

Definition 15 A set of k-representative leaves Sk(Tr) of Tr is simply a collection of

pairs (l, dp(l, r)) that includes at most k leaves with the smallest distances from the root,

where possible ties are resolved randomly.
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Figure 4.1: A binary rooted tree Tr with root r. The horizontal lines indicate the levels

of the leaves, T1, T2, . . . denote the rooted subtrees, where the root of Ti is

indicated by the corresponding index i.

We say the tree is represented by the k-representative leaf set. For example, the k-

representative leaf set for k = 4 is S4(Tr) = {(a, 3), (b, 3), (g, 4), (h, 4)} in the current

tree (Figure 4.1). For k = 5, the set is not unique, either of the leaves (c, 5), (d, 5), (e, 5),

or (f, 5) can be added to S4(Tr) to form S5(Tr).

To motivate this abstract concept, think of Sk(Tr) as a collection of contemporary

sequences that are closest to the root (with respect to the defined distance). Thus, this

collection resembles the ancestral sequence.

The notation of a k-representative leaf set generalizes to all rooted subtrees of the

rooted tree Tr. Moreover, the computation of the corresponding sets can be done in linear

time. Figure 4.1 shows that the representative leaf set of Tr can be computed from the

representative leaf sets of the rooted subtrees T1 and T2. Similarly, the leaf sets of T1 and

T2 can be obtained from Sk(T3), Sk(T4) and Sk(T5), Sk(T6), respectively, and so on. The

4-representative leaf sets of subtrees T5 and T6 are S4(T5) = {(c, 3), (d, 3), (e, 3), (f, 3)}
and S4(T6) = {(g, 2), (h, 2)}. S4(T2) is obtained from S4(T5) ∪ S4(T6) by increasing the

corresponding distances by one, choosing the four leaves with the smallest distances and

breaking ties randomly. Thus, we obtain S4(T2) = {(g, 3), (h, 3), (c, 4), (d, 4)}.

Since the size of the k-representative leaf set of a rooted subtree Ti is O(k), the cost

of computing the next representative leaf set from its child leaf sets is O(k). Thus, for
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Figure 4.2: One internal node splits the tree into three rooted subtrees T x
1 , T x

2 and

T x
3 with S2(T

x
1 ) = {a, e}, S2(T

x
2 ) = {b, g}, S2(T

x
3 ) = {c, d}. A new y is

needed to insert into the current tree. There are eight important quar-

tets with respect to the internal node x and the new sequence y, i.e.

(y, a, b, c), (y, a, b, d), (y, a, g, c), (y, a, g, d), (y, e, b, c), (y, e, b, d), (y, e, g, c) and

(y, e, g, d). The thick lines are the paths from the root x to representative

leaves of three rooted subtrees. The gray circles indicate the representative

leaves that are needed to compute the quartet tree (y, a, b, c). Because Ta,y|b,c

is reconstructed, then all branches in the rooted subtree T x
1 receive a weight

of 1.

a rooted tree with n leaves the collection of all k-representative leaf sets is computed in

O(nk) time.

Now consider an unrooted tree T . Each internal node x splits T into three disjoint

subtrees, which we then root with the original internal node x. Let T x
1 , T x

2 , and T x
3

denote the corresponding rooted subtrees with the same root x (see Figure 4.2, left).

For these rooted subtrees we compute Sk(T
x
1 ), Sk(T

x
2 ), and Sk(T

x
3 ). As in the case of

rooted trees the computation of all representative leaf sets for all rooted subtrees is

efficiently possible.

4.1.2 Important Quartets (IQs)

We now are ready to introduce the concept of important quartets. In the original PUZ-

ZLE algorithm (Strimmer and von Haeseler, 1996) a tree with n leaves was reconstructed

sequentially by starting with a randomly chosen quartet tree into which the next sequence
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Figure 4.3: The three tree topologies of 4 sequences t1, t2, t3 and y and their abbreviations

as used in the text.

is inserted by evaluating all quartet trees that contain three sequences already present

in the reconstructed tree and a fourth sequence, which needs to be inserted in this tree.

If a tree with n leaves is reconstructed, O(n4) quartets need to be evaluated.

Definition 16 A quartet q = (t1, t2, t3, y) is called an important quartet of an

internal node x of an unrooted tree T if and only if

• the sequence y does not belong to the leaves of tree T ,

• the sequence t1, t2, and t3 are elements of Sk(T
x
1 ), Sk(T

x
2 ), and Sk(T

x
3 ), respectively.

Thus an important quartet consists of three representatives each from one of the three

k−representative leaf sets derived from the internal node x and a sequence y, which

needs to be inserted in the tree. By construction, t1, t2, t3 are close to x and close to

each other, thus the reconstruction of a quartet tree for the quartet (t1, t2, t3, y) is more

likely to be accurate, because quartets with closely related sequences are less affected

by the accumulation of evolutionary noise due to parallel and back substitutions.

More generally, a quartet q is an important quartet of an unrooted tree T if it is an

important quartet of some internal node x of T .

Each internal node splits the tree into three rooted subtrees and each of them is

presented by at most k representative leaves. For a new sequence y and an internal

node x, there are O(k3) important quartets. Because T has O(n) internal nodes, O(nk3)

important quartets are possible.
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4.1.3 Important quartet puzzling (IQP) algorithm

In order to put a new sequence y into a tree T we first determine the important quartet

set of the tree T by specifying important quartets for all internal nodes of the tree T .

Then for each important quartet q = (t1, t2, t3, y) the optimal tree topology (with

respect to some objective function) is computed among the three unrooted topologies

Tt1,t2|t3,y, Tt1,t3|t2,y and Tt1,y|t2,t3 (see Figure 4.3). In IQP, quartet trees are constructed

using Neighbor Joining, these trees are the minimum evolution trees in case of four

sequences (Saitou and Nei, 1987). The estimated quartet trees are then used to place

sequence y.

Figure 4.2 illustrates the procedure. Consider quartet q = (a, b, c, y) comprising the

new sequence y, leaves a, c, and b which are representatives of subtrees T x
1 , T x

2 , and T x
3 ,

respectively. Assume that based on the sequences a, b, c, y tree Tay|bc is reconstructed,

then each branch of T x
1 gets score 1. Then we continue with the next quartet (a, b, d, y).

Repeating the above procedure for all important quartets of T and summing the

resulting scores, assigns a total score to each branch. Sequence y is inserted on the

branch with the highest score. In case of ties, a branch with highest score is selected

at random. Scores are computed in O(nk3) time by using a simple recursive procedure

(Schmidt, 2003, chapter 4).

In the following k was set equal to four. Thus, if one wants to compute a phylogenetic

tree following the TREE-PUZZLE procedure but using only important quartets, then

one would need O(n2) computing time. However, we will not pursue this approach here,

because simulations showed that the accuracy of this approach is not satisfying (data

not shown).

4.2 Combining tree reconstruction methods

We here suggest a combination of tree reconstruction methods to compute an optimal

tree. The combination alternates between the nearest neighbor interchanges (NNIs)

method and the sequential sequence-by-sequence assembly approach based on IQP as

described follows
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Algorithm 4.1: Combined-Algorithm (IQPNNI)

begin
Initial step: An initial tree is built applying BIONJ (Gascuel, 1997). Then

NNIs are performed until no further improvement of the likelihood function is

found (Guindon and Gascuel, 2003). We call the resulting tree Tbest, with

log-likelihood `log
best.

Optimization step: Delete each leaf with probability 0 < pdel < 1 from Tbest.

Re-insert the collection of deleted leaves by applying the IQP. Optimize the

resulting tree Tintermediate using NNI.

Comparative step: If the log-likelihood `log
intermediate > `log

best, then set

Tbest ← Tintermediate and update the log-likelihood.

Stop criterion: If the number of optimization steps is less or equal than a

pre-defined number of total optimization steps #step, go to the Optimization

step, otherwise stop and output Tbest.

end

This combined strategy has two main advantages. First, deleting and re-inserting some

leaves in the optimization step helps us to escape from a local optimum when applying

NNI. Moreover, deleting and re-inserting only a proportion of all leaves conserves parts

of the optimized tree and therefore saves computing time.

The algorithm presented here used the maximum likelihood criterion as an objective

function, however the algorithm is not restricted to maximum likelihood, any tree re-

construction method with an objective function to minimize or maximize will work in

the presented approach.

4.3 Accuracy

We tested the accuracy and computing time of IQPNNI as well as other methods with

simulated data and two real data sets. Computing time was measured on a 2.0 GHz PC

with 512 MB RAM. The size of the representative leaf set was k = 4, the probability to

delete a sequence was 0.3 for simulated data and 0.1 for the biological data.

The accuracy of IQPNNI was compared to Weighbor 1.2 (Bruno et al., 2000), fastD-

NAml version 1.2 (Olsen et al., 1994), and PHYML version 2.0.1 (Guindon and Gascuel,

2003). Weighbor is a distance-based method and is combined with DNADIST version 3.5



4.3 Accuracy 59

(Felsenstein, 1993), the other programs are maximum likelihood methods (see Ranwez

and Gascuel, 2001, for a detailed reference about the performance of current quartet-

based methods compared to other approaches). MetaPIGA (Lemmon and Milinkovitch,

2002) was not included in the simulation study because it offers no version that runs in

batch mode.

All methods were run with default options. However, the parameters of models of

sequence evolution were not estimated but set identical to the simulated conditions.

Accuracy was measured as the percentage of cases where the inferred tree topology and

the model tree topology are identical. Alternatively, we computed the average Robinson

and Foulds distance (Robinson and Foulds, 1981).

4.3.1 Small simulated data

We generated randomly 3,000 trees with 30 taxa. Trees were drawn from the Yule-

Harding distribution (Harding, 1971). The branch lengths of trees were drawn from an

exponential distribution with mean values equal to 0.03, 0.06, and 0.15 to accommo-

date for slow, medium, and high rates of evolution, respectively. Seq-Gen (Rambaut

and Grassly, 1997) was used to evolve sequences along the trees using the Kimura

two-parameter model (Kimura, 1980) with a transition/transversion ratio of 2.0, and

a sequence length of 500 bp.

Tables 4.1 shows that IQPNNI outperforms all other methods analyzed. However, the

performance is on average only marginally better, i.e., .064 versus .066 for the Robinson

and Foulds distance (Table 4.1b). Weighbor, a distance based method, displays the

lowest performance in terms of accuracy.

It may be surprising that the probability to reconstruct the true tree is so small, an

effect that is due to the short sequence length (500 bp). If we would use sufficiently

long sequences, then all methods will perform equally well with respect to accuracy. In

this sense, reconstruction of phylogenetic trees is easy for simulated data. However, for

biological data one typically has short sequences.

The computing time to estimate a phylogenetic tree with 30 sequences is not really an

issue for the four programs tested. Weighbor is the fastest program, it needs on average

0.4 seconds to output a tree, followed by PHYML (2.9 seconds), IQPNNI (16.7 seconds),

and fastDNAML (28.9 seconds). Because computing time is not an issue for small data

sets one should apply the program with highest accuracy.
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Table 4.1: The performance of IQPNNI and other tested methods. Parameter settings:
1 #step = 20, pdel = 0.3, and k = 4.

Weighbor fastDNAml PHYML IQPNNI1

slow rate 9.7 14.3 14.3 14.7

medium rate 12.5 19.9 19.9 20.4

high rate 11.2 16.3 15.9 16.5

average 11.1 16.8 16.7 17.2

(a) The percentage of cases for that the inferred tree and the model tree
are identical in small simulated data sets.

Weighbor fastDNAml PHYML IQPNNI1

slow rate .084 .069 .069 .067

medium rate .076 .062 .060 .059

high rate 084 .075 .068 .067

average .081 .069 .066 .064

(b) Average Robinson and Foulds distance of small simulated data sets.

4.3.2 Large simulated data

The accuracy of IQPNNI for large data sets was investigated on one random tree topol-

ogy that was created as described above, but with 1,000 sequences of length 500, 1,000,

and 2,000 base pairs. The mean branch length was set to 0.05. We compared Weigh-

bor, PHYML, and IQPNNI. Unfortunately, fastDNAml could not be applied to 1,000

sequence data sets, because the computing time was too long. Table 4.2 displays the

Robinson and Foulds (1981) distance for the three tree reconstruction methods designed

to deal with large numbers of taxa. The numbers in the table show the results of 10 sim-

ulation runs and the average performance for each method as a function of the alignment

length. Not surprisingly as the sequence length increases all methods get better, that is

they reconstruct trees that are closer to the model tree. However, there is a substantial

difference in the performance between Weighbor and PHYML or IQPNNI. Weighbor

shows substantially reduced accuracy. The differences in performance between PHYML

and IQPNNI are less pronounced.

IQPNNI is in 21 out of 30 simulations closer to the model tree as PHYML, we observe
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Table 4.2: Robinson and Foulds distance for 30 simulations of data sets with 1,000 se-

quences

simulation: 1 2 3 4 5 6 7 8 9 10 average

500 bp

Weighbor .129 .119 .098 .121 .130 .117 .122 .132 .101 .113 .118

PHYML .064 .061 .054 .066 .048 .049 .058 .074 .054 .047 .058

IQPNNI1 .059 .053 .051 .059 .043 .046 .055 .069 .052 .046 .053

1,000 bp

Weighbor .078 .073 .082 .076 .073 .080 .076 .079 .086 .085 .078

PHYML .043 .028 .038 .038 .038 .032 .038 .040 .035 .035 .037

IQPNNI1 .044 .028 .036 .036 .036 .031 .035 .040 .033 .033 .036

2,000 bp

Weighbor .047 .054 .060 .062 .053 .051 .056 .046 .050 .052 .053

PHYML .018 .016 .024 .019 .020 .016 .023 .021 .021 .028 .021

IQPNNI1 .014 .015 .024 .019 .019 .016 .022 .022 .021 .028 .020

1 parameter settings: #step = 100, pdel = 0.3, and k = 4.

7 ties and two cases where PHYML is closer to the model tree. Ties occur for long

sequences. Thus, IQPNNI shows a higher accuracy for short sequences. For longer

sequences the differences between both approaches disappear. We should note however,

that the log-likelihood of the IQPNNI-tree is typically higher than the corresponding

PHYML tree. This increase in likelihood is associated with an increase in computing

time. Table 4.3 displays the time necessary to evaluate one tree. Because we set the

number of intermediate trees to #step = 100 it took on average 4.5 h (500 bp), 7.2 h

(1,000 bp), or 10.5 h (2,000 bp) for IQPNNI to run a simulation. On the other hand, since

a large number of different trees were analyzed per run, we might put more confidence

on the resulting tree. Note, that #step = 100 iterations do not allow for a thorough

search in tree-space. For biological data sets the number of iterations must be larger.

4.3.3 Real data

We applied IQPNNI to two large data the ssu-rRNA alignment (218 species, 4182 bp)

the rbcl-gene alignment (500 species, 1398 bp) recently analyzed (Guindon and Gascuel,

2003) and compared our results to PHYML (Guindon and Gascuel, 2003) and MetaPIGA
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Table 4.3: Computing times (in minutes) for 1,000 sequences and different tree building

methods

Weighbor PHYML IQPNNI (for one intermediate tree)1

500 190.0 6.5 2.7

1000 190.0 13.5 4.3

2000 172.0 19.0 6.3

average 184.0 13.0 4.4

1 parameter settings: #step = 100, pdel = 0.3, and k = 4.

(Lemmon and Milinkovitch, 2002). The parameter settings for IQPNNI are given in

Table 4.4. The HKY model (Hasegawa et al., 1985) was used for the DNA data and

the transition-transversion parameter was estimated from the data. The results are

summarized in Table 4.4.

In both cases IQPNNI found quite a lot of trees with higher likelihood values than

the ones obtained with PHYML and MetaPIGA (see Figures 4.4 and 4.5). For the

ssu-rRNA data the best IQPNNI tree is 291 and 111 log-likelihood units higher than

PHYML and MetaPIGA, respectively. For the rbcl-gene the best IQPNNI tree is 180

log-likelihood units larger than the PHYML tree and 69 log-likelihood units higher than

the MetaPIGA tree. Thus, the increase in computation time (see Table 4.4) is rewarded

by a better maximum likelihood tree.

4.4 Stopping the search

Figures 4.4 and 4.5 display for the ssu and rbcl DNA data sets the increase in log-

likelihood as the number of iterations grows. Already during the first iterations we

almost instantaneously observe a drastic increase in the likelihoods. After roughly 100

iterations (220 min or 300 min computing time) we are finding better trees compared to

PHYML and MetaPIGA. The + signs above the lines labeled MetaPIGA and PHYML in

Figures 4.4 and 4.5 indicate the better trees that we discovered. As the search continues,

the rate of discovering better trees decreases. However, as we continue our “guided tour

through” tree space we keep on finding better trees.

Thus, like MetaPIGA we need a criterion to stop our quest for the best tree. Here

we suggest to apply an estimation method that is based on the time of occurrence (i.e.
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Table 4.4: Best log likelihoods and computing times for three tree reconstruction meth-

ods for real data

PHYML MetaPIGA IQPNNI1

gene number of taxa loglikelihood

ssu rRNA 218 -156,895 -156,715 -156,604

rbcl 500 -100,191 -100,080 -100,011

runtime (min)

ssu rRNA 218 5.1 74.5 379

rbcl 500 7.5 158.5 672

1parameter settings: #step = 300 pdel = 0.1, and k = 4.

Note, although we used the same data as Guindon and Gascuel (2003) our likelihood differs

slightly from the ones published, which is due to the new version 2.0.1 of PHYML (Guindon

and Gascuel, 2003), and results of MetaPIGA (Lemmon and Milinkovitch, 2002) depend on

the random process.

number of iterations) of better trees during our search. These time points are indicated

by the jumps in the graph in Figures 4.4 and 4.5.

More precisely, let Llog
1 , Llog

2 , . . . , Llog
j denote the log-likelihoods for the first j itera-

tions, then the sequence τ(k) of record times (i.e. iteration number, when a better tree

is found) is defined by

τ(1) = 1, τ(k + 1) = min{j|Llog
j > Llog

τ(k)}.

This sequence is used to estimate the point in time, τstop, at which to stop the search,

i.e., when it appears unlikely that a further search will lead to a better tree. Using the

theory detailed in Cooke (1980) and Roberts and Solow (2003), we estimate during the

run of IQPNNI an upper 95% confidence limit τ95% of τstop. More precisely, consider a

sequence of record times τ1, τ2, . . . , τk, then we compute an upper (1−α)100% stopping

time as

τ(1−α)100% = τ1 +
τ1 − τk(

− log(α)
k

)−ν̂

− 1
,

where the shape parameter of the joint Weibull distribution ν is estimated as follows

ν̂ =
1

k − 1

k−2∑
j=1

log

(
τ1 − τk

τ1 − τj+1

)
.
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Figure 4.4: Exploring the likelihood surface of the suu-rRNA alignment of 218 species.

The thick line shows the improvement in log likelihood during the IQNNI

search. The + signs represent trees generated according to the combined

algorithm. IQPNNI generated 258 different trees, 219 of them had a higher

likelihood than the best PHYML tree (horizontal line) (Guindon and Gas-

cuel, 2003), and 121 were better than MetaPIGA (horizontal dashed line)

(Lemmon and Milinkovitch, 2002).

Once τ95% iterations have been carried out and a better tree was not detected the

program will stop and output the best tree found. We can conclude that we will not

find a better tree with a probability of 95% during this search. On the other hand, if

a better tree is found before we hit τ95%, we re-compute τ95% on the basis of the new

record time added to the sequence τ(k).

This additional number of iterations to reach τ95% further increases the computation

time, i.e for the 218-ssu rRNA about 8 hours were necessary and for the rbcl data we

used a total of 15h. But now, we are in the position to know, that with 95% probability

we would not have found a better tree when extending the search even longer. If one is

willing to spend more computation time, it is of course possible to compute τ99% or even

higher upper bounds.



4.5 Discussions 65

-100400

-100350

-100300

-100250

-100200

-100150

-100100

-100050

-100000

-99950

-99900

 50  100  150  200  250  300

M
et

aP
IG

A
P

H
Y

M
L

lo
g 

lik
el

ih
oo

d 
va

lu
e

#optimum tree

log likelihood value
best log likelihood value

Figure 4.5: Exploring the likelihood surface of the rbcl alignment of 500 species. 283

different trees were generated. 192 had a higher likelihood than the best

PHYML tree (horizontal line) (Guindon and Gascuel, 2003), and 125 showed

larger log likelihoods as the best MetaPIGA tree (horizontal dashed line)

(Lemmon and Milinkovitch, 2002).

4.5 Discussions

We are presenting the IQP method to reconstruct trees from large sequence data. Our

simulations and the analysis of biological data show that a combination of nearest neigh-

bor interchange and IQP leads to trees that are either closer to the model tree, as defined

by the simulations, or to trees with higher likelihoods than found so far for biological

examples. This improved performance, however, is achieved by an increase in computing

time as compared to other fast programs. However, the times needed are not unrealistic.

The algorithm presented here turns out to efficiently search the tree space for better

trees. We have used the maximum likelihood criterion as an objective function, however

the algorithm is not restricted to maximum likelihood, any tree reconstruction method

with an objective function to minimize or maximize will work in the presented approach.

Although we have only presented results for pdel = 0.3 and k = 4 for simulated data,

further studies with pdel ranging from 0.2 to 0.4 and k from 4 to 6 showed that the

accuracy based on Robinson and Foulds distance, percentage of correctly reconstructed
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trees is not affected (data not shown). Similarly, various combinations of k (4, 5, or 6)

and pdel, ranging from 0.1 to 0.3 resulted in minor changes in the log likelihood, that

varied from -156,715 to -156,604 (k = 4, pdel = 0.1) for the ssu rRNA data set and from

-100,058 to -100,011 (k = 4, pdel = 0.1) for the rbcl-gene alignment. We note that this

observation does not allow any generalizations. In any real application one should run

IQPNNI for different choices of k and pdel.

Our simulations indicate that IQPNNI shows a better performance than other tested

methods in terms of being closer to the true tree. However, we have only considered

a very narrow range of simulations. We have not taken into account the possibility of

model violations, uncertainty of estimating the parameters of the model and various

other sources of uncertainty.

Since IQPNNI generates trees with similar high likelihoods, we have included an op-

tion in the program, that allows to output a majority rule consensus tree of all the

intermediate trees found during one search run of the tree space. We also output the

frequencies of the groupings found in that tree. If one is interested only in the most fre-

quent groupings found in the collection of trees with a high likelihood, then this option

is helpful.

Finally, we are suggesting a statistics that provides a guide to stop the search for a

better tree. This very simple and crude estimation procedure proves to be very use-

ful, yet it increases the computation time again. To get additional confidence in the

reconstructed tree and its maximum likelihood value, one needs to repeat the search

with several independent runs of our program. However, we are sure that we have only

scratched the surface of applying statistical inference based on record values to problems

of tree reconstruction. Further investigations about the performance of such methods

are certainly necessary, but beyond the scope of the thesis.
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Having introduced efficient PhyNav and IQPNNI methods to search maximum like-

lihood phylogenies with up to 1000 sequences, we now propose a new distance-based

clustering method the so-called shortest triplet clustering algorithm (STC) to build a

phylogeny in O(n2) time for n sequences. Therefore, STC can construct phylogenies for

extremely large datasets as envisaged in biodiversity studies. To this end, we first de-

scribe a simple clustering algorithm to recover a tree from a distance matrix. Second, the

natural definition of k-representative sets as well as the construction of shortest triplets

are presented. Third, the shortest triplet clustering algorithm is proposed. Finally, the

efficiency of STC algorithm in comparison with other methods is examined on a large

range of simulated datasets.

5.1 Recovering a tree from a distance matrix

Let us recall some notations. S = {s1, s2, . . . , sn} is a set of n species. D = D(uv) is an

arbitrary distance matrix where D(uv) is the distance between two species u and v.

5.1.1 Estimating edge lengths using triplets

Consider a subset X of S, then ϕ(X) : S 7→ L induces a map on a subtree of T such

that the relationships of species in X are displayed by the subtree with leaf set ϕ(X).

The complement S0(X) = S −X will be called the unclassified species set, because the

relationships of species in S0(X) to X is not known from the subtree. Note that we will

use S0 instead of S0(X) if X is clear from the context.

Let Tr = (Vr, Er) denote a rooted tree with root r and leaf set Lr, and let Sr be a

subset of S such that ϕ(Sr) = Lr. For convenience, we use Sr and Lr interchangeably.

Now, we consider the most simple edge length estimation problem. That is, we would

like to estimate the edge lengths for a triplet tree {a, b, c} with distance matrix D (see

Figure 5.1a). Edge lengths are estimated as follows

67
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Figure 5.1: On the left, estimation of edge lengths `(ar | abc), `(br | abc) and `(cr | abc) of

the triplet tree {a, b, c}. On the right, estimation of path length `(s0r | s0s1s2)

and edge lengths `(r1r | s0s1s2), `(r2r | s0s1s2) based on the triplet tree

{s0, s1, s2}.

`(ar | abc) =
1

2
(D(ab) +D(ac)−D(bc)) (5.1a)

`(br | abc) =
1

2
(D(ab) +D(bc)−D(ac)) (5.1b)

`(cr | abc) =
1

2
(D(ac) +D(bc)−D(ab)) (5.1c)

Now consider a rooted Tr with the inferred tree-like metric D(Tr,`). The rooted tree Tr

consists of two rooted subtrees Tr1 and Tr2 (see Figure 5.1b). For convenience, we will

use Ti instead of Tri
if ri is clear from the context. The leaf set Sr = {S1 ∪ S2} where

Sr ⊂ S and S0 = S − Sr is not represented in Tr . Then we can compute

`(s0r | s0s1s2) =
1

2
(D(s0s1) +D(s0s2)−D(s1s2)) (5.2a)

`(s1r | s0s1s2) =
1

2
(D(s0s1) +D(s1s2)−D(s0s2)) (5.2b)

`(s2r | s0s1s2) =
1

2
(D(s0s2) +D(s1s2)−D(s0s1)) (5.2c)

for each triplet (s0, s1, s2) ∈ (S0 × S1 × S2).
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With D(T1,`1)(s1r1) and D(T2,`2)(s2r2) we denote the known distances of s1 and s2 to

their roots r1 and r2. Thus, we can compute for each triplet {s0, s1, s2} the lengths

`(r1r) and `(r2r) as

`(r1r | s0s1s2) = `(s1r | s0s1s2)− D(T1,`1)(s1r1) (5.3a)

`(r2r | s0s1s2) = `(s2r | s0s1s2)− D(T2,`2)(s2r2). (5.3b)

Note that if D is additive and T1, T2 are isometric subtrees of T , the lengths `(r1r) and

`(r2r) do not depend on the choice of the triplet {s0, s1, s2}.

Regardless of additivity considerations, we may define the average length for a fixed

s0 ∈ S0 as

`(s0r | s0S1S2) ≡
1

|S1||S2|
∑

(s1,s2)∈S1×S2

`(s0r | s0s1s2) (5.4)

We can estimate edge lengths `(r1r) and `(r2r) by using all possible triplets as

`(r1r |S0S1S2) ≡
1

|S0||S1||S2|
∑

(s0,s1,s2)∈S0×S1×S2

`(r1r | s0s1s2) (5.5a)

`(r2r |S0S1S2) ≡
1

|S0||S1||S2|
∑

(s0,s1,s2)∈S0×S1×S2

`(r2r | s0s1s2) (5.5b)

5.1.2 The largest path length criterion

We want to reconstruct a tree T = (V, E) together with length function ` with respect

to a distance matrix D such that D(T,`) represents D. To this end, we use triplets and

the notation of a rooted tree Tr together with Equations 5.4 and 5.5.

Our algorithm starts with the observation that if we take an arbitrarily rooted tree

Ts with s ∈ S and length function `Ts , then there must be a pair of leaves (neighboring

leaves) that share an immediate most recent common ancestor mrca which is farthest

away from the root s with respect to `Ts . In Figure 5.2, the pair (3, 4) satisfies this

condition, we say this pair fulfills the largest path length criterion. The largest path

length criterion easily generalizes to arbitrarily rooted subtrees Ti and Tj of Ts, where

all descendants from the roots of Ti and Tj are in the vertex sets Vi or Vj, respectively.

Let TS be the set of rooted subtrees of Ts (each leaf l ∈ Ls is considered as a rooted

subtree Tl). Now consider two disjoint rooted subtrees Ti and Tj of Ts where i, j ∈ Vs.
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Figure 5.2: The tree is rooted at leaf 5. In the tree, leaves 3 and 4 with the largest path

length from their most recent common ancestor to the root 5 are neighbors.

Then the distance `(s, mrca | s SiSj) from the mrca of Ti and Tj to s is computed

according to Equation 5.4, where Si and Sj are the leaf sets of Ti and Tj, respectively.

Then we pick

(Ti0 , Tj0) = argmax{`(s, mrca | s SiSj) | Ti, Tj ∈ TS} (5.6)

as a pair of neighbors (if we detect more than one pair, we randomly select one). By

construction, (Ti0 , Tj0) fulfills the largest path length criterion.

If D is additive, `(s, mrca | s SiSj) is exactly the path length from the mrca of (Ti, Tj)

to s. In other words, the path length from the mrca of (Ti0 , Tj0) to s is largest and

(Ti0 , Tj0) is a true neighboring pair. However, in real applications D is rarely additive,

therefore the root s is selected so as to avoid noise from stochastic errors involved with

large distance estimates (Fitch and Margoliash, 1967a). To this end, s is selected such

that the distance from the farthest species to root s is minimal,

med = argmins′∈S{max{D(s′x) |x = 1, . . . , n}} (5.7)

med is called a median species.

Moreover, to reduce the computational complexity of finding a pair of neighbors

(Ti0 , Tj0) using Equation 5.6, we store for each Ti ∈ TS its potential neighbor Ti′ ∈ TS
such that

Ti′ = argmax{`(med, mrca |med, Si, Sj) |Tj ∈ TS}. (5.8)
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Now the neighboring pair (Ti0 , Tj0) fulfilling the largest path length criterion is deter-

mined as follows

(Ti0 , Tj0) = argmax{`(med, mrca |med, Si, Si′) | Ti ∈ TS}. (5.9)

5.1.3 Clustering algorithm

An intuitive clustering method to reconstruct trees based on distance matrices and the

largest path length criterion is described in Algorithm 5.1. This algorithm is similar to

approaches described elsewhere (Farris, 1977; Klotz et al., 1979; Li, 1981), however, an

essential difference is that we estimate path lengths and edge lengths by using triplets.

Algorithm 5.1: A simple clustering algorithm based on the largest path length

criterion.
Data: A pairwise distance matrix D
Result: A tree T together with its edge lengths

begin
Initial step: Find the median species med using Equation 5.7. Set

TS = {T1, . . . , Tn} − {Tmed}. Find for each Ti ∈ TS its potential neighbor

Ti′ ∈ TS using Equation 5.8.

Selection step (largest path length criterion): Find the neighboring pair

(Ti0 , Tj0) using Equation 5.9.

Agglomeration step: Combine Ti0 and Tj0 into a new rooted tree T{i0j0} with

root i0j0, and estimate new edge lengths of T{i0j0} using Equation 5.5. Delete

Ti0 and Tj0 and add T{i0j0} to TS . Find the potential neighbor for the new

rooted tree T{i0j0} using Equation 5.8, and replace Ti′ for each Ti ∈ TS by T{i0j0}

if T{i0j0} is its potential neighbor.

Stopping step: If |TS | > 1 goto the Selection step, otherwise output the tree.

end

5.1.4 Local rearrangement

The heart of the clustering algorithm is the largest path length criterion, at which the

path length from the mrca of (Ti, Tj) to med is estimated by `(med, mrca |med, Si, Sj)

using Equation 5.4. Thus, as path length we take the average of the lengths obtained
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Figure 5.3: Reconstruction of new rooted tree T{ij} using the preorder traversal proce-

dure based on the largest average path length criterion. If (Tx, Ty) is the

neighboring pair, we stick to the suggested grouping of Ti and Tj (see Figure

5.3a). Otherwise, if (Tx, Tj) or (Ty, Tj) is the neighboring pair, we switch to

the trees displayed in Figure 5.3b or 5.3c, respectively.

from at most O(n2) triplets {med, si, sj} ∈ med×Si×Sj. This average may not be the

representative estimate of the true path length. Moreover the root med may be too far

way from the mrca and this leads to an inaccurate estimate of the path length.

To take these problems into account, we extend the clustering algorithm. To this

end, imagine the algorithm has clustered Ti and Tj with corresponding disjoint leaf

sets Si, Sj ⊂ S (we have finished the agglomeration step). Thus, we have created

the newly rooted tree T{ij} with leaf set Sij = {Si ∪ Sj} and the set of unclassified

species S0(Sij) = S−Sij. In the following, we describe the nearest neighbor interchange

operation around the root of Ti upon condition that Ti consists of two rooted subtrees

Tx, Ty (Figure 5.3a). First, we estimate average path lengths from the unclassified species

set S0(Sij) to the mrca of (Tx, Ty), (Tx, Tj) and (Ty, Tj) as

`(S0(Sij)SxSy|SxSy) ≡
1

|S0(Sij)||Sx||Sy|
∑

(s0,sx,sy)∈S0(Sij)×Sx×Sy

`(s0r|s0sxsy) (5.10a)

`(S0(Sij)SxSj|SxSj) ≡
1

|S0(Sij)||Sx||Sj|
∑

(s0,sx,sj)∈S0(Sij)×Sx×Sj

`(s0r|s0sxsj) (5.10b)

`(S0(Sij)SySj|SySj) ≡
1

|S0(Sij)||Sy||Sj|
∑

(s0,sy ,sj)∈S0(Sij)×Sy×Sj

`(s0r|s0sysj). (5.10c)

For convenience, we will use `(S0(Sij) |SxSy) instead of `(S0(Sij)SxSy |SxSy). We now

use the average path lengths from Equation 5.10 to decide which pair of subtrees among

(Tx, Ty), (Tx, Tj) and (Ty, Tj) is preferred. More specifically, if

`(S0(Sij) |SxSy) ≥ max{`(S0(Sij) |SxSj), `(S0(Sij) |SySj)}
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we stick to the suggested grouping of Tx and Ty (see Figure 5.3a). Otherwise, if

`(S0(Sij) |SxSj) or `(S0(Sij) |SySj) is larger than the remaining average path lengths,

we swap Ty and Tj or Tx and Tj as displayed in Figure 5.3b or 5.3c, respectively. Note

that this decision can be considered as a correction of the largest path length criterion

by taking all possible triplets into account. We call the correction the largest average

path length criterion.

We now explain the preorder traversal procedure (Aho et al., 1974) to reconstruct

the rooted tree Ti using the nearest neighbor interchange operation based on the largest

average path length criterion (Ti is a subtree of T{ij} = (Ti, Tj)):

Algorithm 5.2: Preorder traversal procedure (Ti)

Step 1: If Ti is a single leaf, return.

Step 2: Otherwise, Ti consists of two subtrees Tx and Ty. Do the nearest neighbor

interchange operation around the root of Ti based on the largest average path

length criterion (Equation 5.10). If Tx and Tj (or Ty and Tj) were exchanged,

estimate new edge lengths using Equation 5.5.

Step 3: Apply the preorder traversal procedure to two rooted subtrees of Ti.

5.2 Representative sets and shortest triplets

For a set S of sequences (or taxa), the (genetic) distance matrix D is typically not additive

due to stochastic errors (Fitch and Margoliash, 1967a). Larger distances between two

sequences are less accurately estimated. This leads to a low performance of both the

clustering algorithm and the preorder traversal procedure for divergent data sets.

In previous chapters, we have presented simple representative concepts to reduce

stochastic error involved in large distances. Here, we extend our work by introduc-

ing the so-called k-representative set concept. We use now genetic distances instead of

topological distances (all edges have length 1). Our motivation is to reduce the compu-

tational complexity and to exclude species far away from the root under consideration.

In the clustering algorithm, the path length from the mrca of (Ti, Tj) to med (see

Figure 5.4) can be estimated by two approaches. The first method picks randomly one

pair (si, sj) ∈ Si × Sj then computes

`(med, mrca |med, si, sj) =
1

2
(D(med, si) +D(med, sj)−D(sisj)). (5.11)
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Figure 5.4: We select only min(k, |Si|) and min(k, |Sj|) closest leaves to the root of Ti

and Tj with respect to the path length, respectively, i.e. for k = 3 we pick

{1, 2} from Tri
and {4, 5, 6} from Trj

. The leaf set {1, 2} (or {4, 5, 6}) is the

3-representative leaf set of the rooted subtree Tri
(or Trj

).

The second approach takes the average distance

`(med, mrca |med, Si, Sj) ≡
1

|Si||Sj|
∑

(si,sj)∈Si×Sj

`(med, mrca |med, si, sj). (5.12)

Both approaches suffer from noise. Estimating the path length using Equation 5.11

may be inaccurate because it randomly picks a pair (si, sj) which may not be really rep-

resentative. Equation 5.12 may be problematic, especially since it might be susceptible

to noise, due to the possibility of including long distances with large stochastic errors.

To overcome these problems, we select only min(k, |Si|) and min(k, |Sj|) closest leaves

to the root of Ti and Tj with respect to the path length, respectively. To illustrate, for

k = 3 we pick {1, 2} from Ti and {4, 5, 6} from Tj in Figure 5.4.

Definition 17 The set of min(k, |Si|) closest leaves to the root of Ti is called the k-

representative leaf set.

Hereafter, we estimate similar to Equation 5.4 the path length from the mrca of

(Ti, Tj) to med as

`(med, mrca |med, Sk
i , Sk

j ) =
1

|Sk
i ||Sk

j |
∑

(sk
i ,sk

j )∈Sk
i ×Sk

j

`(med, mrca |med, sk
i , s

k
j ) (5.13)



5.3 Shortest triplet clustering algorithm (STC) 75

which is only based on the k-representative leaf sets. Now we can perform the clustering

algorithm with reduced complexity. However, we also want to improve the preorder

traversal procedure. The average path length from the unclassified species set S0(Sij)

to the mrca of (Ti, Tj) is estimated by Equation 5.10 which also suffers from noise. To

overcome this problem, we select only min(k, |S0(Sij)|) unclassified species closest to the

root of tree T{ij} with respect to distances `(s0r | s0S
k
i Sk

j ) where s0 ∈ S0(Sij). We call

the subset, denoted Sk
0 (Sij), k-representative unclassified species set.

Definition 18 A triplet {sk
0, s

k
i , s

k
j} ∈ Sk

0 (Sij)× Sk
i × Sk

j which contains three represen-

tatives of the three k−representative sets is called a shortest triplet.

By construction, sk
0, s

k
i , s

k
j are close to the root of T{ij} and close to each other. Therefore,

the edge length estimates based on shortest triplet {sk
0, s

k
i , s

k
j} are less susceptible to

estimation errors.

We now rewrite Equation 5.10 to estimate the average path length from the represen-

tative unclassified species set Sk
0 (Sij) to the mrca of (Ti, Tj) using only shortest triplets

as

`(Sk
0 (Sij) |Sk

xSk
y ) ≡ 1

|Sk
0 (Sij)||Sk

x ||Sk
y |

∑
(sk

0 ,sk
x,sk

y)∈Sk
0 (Sij)×Sk

x×Sk
y

`(sk
0r | sk

0s
k
xs

k
y) (5.14a)

`(Sk
0 (Sij) |Sk

xSk
j ) ≡ 1

|Sk
0 (Sij)||Sk

x ||Sk
j |

∑
(sk

0 ,sk
x,sk

j )∈Sk
0 (Sij)×Sk

x×Sk
j

`(sk
0r | sk

0s
k
xs

k
j ) (5.14b)

`(Sk
0 (Sij) |Sk

ySk
j ) ≡ 1

|Sk
0 (Sij)||Sk

y ||Sk
j |

∑
(sk

0 ,sk
y ,sk

j )∈Sk
0 (Sij)×Sk

y×Sk
j

`(sk
0r | sk

0s
k
ys

k
j ) (5.14c)

In short, the preorder traversal procedure uses only shortest triplets to estimate path

lengths as well as edge lengths.

5.3 Shortest triplet clustering algorithm (STC)

We introduce now the shortest triplet clustering algorithm by combining the clustering

algorithm, the local rearrangement, the k-representative sets, and the shortest triplets

approach.
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Algorithm 5.3: Shortest triplet clustering algorithm (STC)

Data: A pairwise distance matrix D.

Result: A tree T together with its edge lengths.

begin
Initial step:

(i): Find the median species med using Equation 5.7.

(ii): Set TS = {T1, . . . , Tn} − {Tmed} and for each Ti ∈ TS its representative

leaf set Sk
i = {i}.

(iii): Find for each Ti ∈ TS its potential neighbor Ti′ ∈ TS using Equation 5.8.

Selection step (largest path length criterion): Find the neighboring pair

(Ti0 , Tj0) using Equation 5.9.

Agglomeration step:

(i): Combine Ti0 and Tj0 into a new rooted tree T{i0j0} with root i0j0, and

estimate new edge lengths of T{i0j0} using Equation 5.5 based on shortest

triplets.

(ii): Compute the k−representative leaf set Sk
i0j0

of T{i0j0} based on

k-representative leaf sets Sk
i0

and Sk
j0

of Ti0 and Tj0 , respectively.

(iii): Compute the k-representative unclassified species set Sk
0 (Si0j0) of

T{i0j0}.

(iv): Delete Ti0 and Tj0 and add T{i0j0} to TS .

(v): Find the potential neighbor for the new rooted tree T{i0j0} using

Equation 5.8 based on representative sets, and replace Ti′ for each Ti ∈ TS by

T{i0j0} if T{i0j0} is its potential neighbor.

Local rearrangement step: Apply the preorder traversal procedure to the

rooted subtrees Ti0 and Tj0 of the new rooted tree T{i0j0} based on only shortest

triplets.

Stopping step: If |TS | > 1, goto Selection step, otherwise output the tree.

end

Now we briefly describe the complexity of the STC. At the initial step, (i), (ii), and

(iii) are done in O(n2), O(n) and O(n2) time, respectively. Thus, the complexity of the

initial step is O(n2). The selection step is done in O(n). At the agglomeration step,

(i), (ii), (iii), (iv), and (v) are done in O(k3), O(k), O(nk2), O(1), and O(nk2) time,

respectively. Thus, the complexity of the agglomeration step is O(nk2 + k3).
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Finally, we are estimating the complexity of the preorder traversal procedure based

on only shortest triplets. Step 1 is done in constant time. Step 2, the nearest neighbor

interchange operation around the root of Ti costs O(k3). Estimating new edge lengths

is done in O(k3) time. Re-computing the k-representative leaf set Sk
i of Ti based on

k-representative leaf sets of its rooted subtrees Tx and Ty costs O(k) time. Finally,

re-computing the k-representative unclassified species set Sk
0 (Si) of Ti based on the k-

representative leaf set Sk
j of Tj and the k-representative unclassified species set Sk

0 (Sij)

of T{ij} is done in O(k) time. Thus, the complexity of step 2 is O(k3). Step 3 is done in

constant time. Step 1, step 2, and step 3 are repeated O(n) times so the complexity of

the preorder traversal procedure is O(nk3).

In the STC algorithm, the selection step, the agglomeration step and the local rear-

rangement step are repeated (n−2) times so the overall complexity of the STC algorithm

is O(n2k3). Practically, we chose k = 5 as a good compromise between the accuracy

and computational complexity for all data sets. That is, the practical complexity of the

STC algorithm is only O(n2).

5.4 Results

Simulations were run on a PC cluster with 16 nodes. Each node has two 1.8 GHz

processors and 2GB RAM. Seq-Gen (Rambaut and Grassly, 1997) was used to evolve

sequences along trees using the Kimura two-parameter model (Kimura, 1980) with a

transition/transversion ratio of 2.0. We generated 100 simulated data sets of 500 se-

quences each with sequence lengths 500, 1000 and 2000 nucleotides (nt), respectively.

As one model tree, we used the rbcl gene tree with diameter 0.36 substitutions per

site as inferred from an alignment of 500 rbcl-genes in Chapter 4. We call this the

rbcl-simulation.

In a second experiment, the so-called large simulation, tree topologies were drawn

from the Yule-Harding distribution (Harding, 1971), and edge lengths were drawn from

an exponential distribution and subsequently rescaled such that the mean diameter of

the tree was either 0.1, 0.5, 1.0, or 1.5. For each value of the diameter we generated 100

trees with 1000 sequences and 100 trees with 5000 sequences. Thus, a total of 800 trees

were used.

Finally, we tested the accuracy and runtime of the STC and compared it with six

other commonly used distance-based methods. More specifically, we investigate the per-

formance of the Neighbor-Joining method (NJ) (Saitou and Nei, 1987) implemented in
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Table 5.1: The average Robinson and Foulds distance of 100 simulated data sets of 500

sequences each with sequence lengths 500, 1000 and 2000 nt (rbcl simulation).

sequence length NJ BIONJ Weighbor HGT/FP GME BME STCk=5

500 .190 .188 .194 .512 .240 .184 .177

1000 .100 .098 .099 .409 .144 .096 .088

2000 .049 .048 .050 .313 .082 .046 .040

(a) Methods are used without BNNI

sequence length NJ BIONJ Weighbor HGT/FP GME BME STCk=5

500 .162 .162 .162 .166 .163 .163 .162

1000 .079 .079 .079 .079 .080 .079 .079

2000 .035 .035 .035 .036 .036 .035 .035

(b) Methods are used with BNNI

PAUP* 4.0 (Swofford, 2002), BIONJ (Gascuel, 1997), Weighbor 1.2 (Bruno et al., 2000),

Harmony Greedy Triplet and Four Point Condition (HGT/FP) (Csürös, 2002) as well

as Greedy Minimum Evolution (GME) and Balanced Minimum Evolution (BME) (Des-

per and Gascuel, 2002). Unfortunately, no distance-based program is available for the

disk-covering method (Huson et al., 1999). All methods were combined with DNADIST

version 3.5 (Felsenstein, 1993) and pairwise distances were corrected for multiple hits

according to the model used in the simulation. Moreover, we examined the performance

of all methods when the balanced nearest neighbor interchange (BNNI) (Desper and

Gascuel, 2002) is used as a post-processing step.

Further, to illustrate the performance of STC we re-analyzed the 96-taxon alignments

of sequence length 500 nt, that were analyzed in (Desper and Gascuel, 2002) and available

at (http://www.lirmm.fr/~guindon/simul/). The 6000 trees were split into three

groups called “slow” (0.2 substitutions per site), “moderate” (0.4 substitutions per site)

and “fast” (1.0 substitutions per site). We call this the re-analyzed simulation.

The accuracy of a tree reconstruction method for a simulated data set is measured

by the average Robinson and Foulds distance (Robinson and Foulds, 1981) between the

inferred tree and the model tree used to generate the data set. Recall that the smaller the

RF distance is between the inferred tree and the model tree the higher is the topological

http://www.lirmm.fr/~guindon/simul/
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Table 5.2: The average Robinson and Foulds distance of 100 simulated data sets of 1000

taxa for each tree diameter 0.1, 0.5, 1.0 and 1.5 and with sequence length

1000 nt (large simulation).

number sequences NJ BIONJ HGT/FP GME BME STCk=5

1000 (0.1) .146 .146 .378 .168 .143 .139

1000 (0.5) .093 .089 .193 .126 .075 .066

1000 (1.0) .094 .090 .188 .132 .074 .062

1000 (1.5) .097 .091 .182 .138 .073 .061

(a) Methods are used without BNNI

number sequences NJ BIONJ HGT/FP GME BME STCk=5

1000 (0.1) .137 .137 .137 .137 .137 .138

1000 (0.5) .061 .061 .061 .061 .061 .061

1000 (1.0) .057 .057 .057 .057 .057 .056

1000 (1.5) .055 .055 .055 .055 .055 .055

(b) Methods are used with BNNI

accuracy of the tree reconstruction method.

In the following we discuss the results of the rbcl-simulation, and the large simulation

and the re-analyzed simulation.

5.4.1 rbcl-simulation

Table 5.1(a) shows that the STC outperforms all other methods analyzed in terms of

topological accuracy. For instance, the RF distance between the STC-tree and the

model tree is on average 0.177 (with respect to the sequence length of 500 nt) and better

than NJ (0.190), slightly better than the second best method BME (0.184) and much

better than HGT/FP (0.512). Table 5.1a also demonstrates that all tested methods

including STC give higher topological accuracy when the sequence length is increased.

However, Table 5.1b shows that other methods in combination with BNNI outperform

STC without BNNI. The combination of STC and BNNI shows similar performance as

the combinations of NJ (BIONJ, Weighbor) and BNNI and, slightly better results than
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Table 5.3: The average Robinson and Foulds distance of 100 simulated data sets of 5000

taxa for each tree diameter 0.1, 0.5, 1.0 and 1.5 and with sequence length

1000 nt (large simulation)

number sequences NJ BIONJ HGT/FP GME BME STCk=5

5000 (0.1) .178 .179 .442 .207 .173 .170

5000 (0.5) .109 .105 .210 .156 .084 .072

5000 (1.0) .107 .102 .192 .155 .073 .064

5000 (1.5) .112 .106 .188 .164 .072 .063

(a) Methods are used without BNNI

number sequences NJ BIONJ HGT/FP GME BME STCk=5

5000 (0.1) .168 .168 .168 .168 .168 .168

5000 (0.5) .066 .066 .066 .066 .066 .066

5000 (1.0) .057 .057 .057 .057 .057 .057

5000 (1.5) .055 .055 .055 .055 .055 .055

(b) Methods are used with BNNI

the combination of GME (HGT/FP) and BNNI.

5.4.2 Large simulation

Due to the increase in runtime, Weighbor could not be tested. Table 5.2a and 5.3a show

that STC gives better results than the other methods independent of the diameter. All

methods display a decrease in accuracy when the number of sequences changes from 1000

to 5000. As shown in Table 5.2b and 5.3b, BNNI boosts the accuracy of all methods

including STC. All methods give similar results when being used together with BNNI.

5.4.3 Re-analyzed simulation

Except for STC, the accuracies for the other methods displayed in Table 5.4a and 5.4b

were taken from Desper and Gascuel (2002). Table 5.4a shows that STC outperforms

the other methods in terms of topological accuracy with the exception that Weighbor is
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Table 5.4: The average RF distance of the 96-taxon alignments of sequence length 500

nt, that were analyzed in (Desper and Gascuel, 2002). The 6000 trees were

split into three groups called “slow” (0.2 substitutions per site), “moderate”

(0.4 substitutions per site) and “fast” (1.0 substitutions per site). Except

for STC, the accuracies for the other methods were taken from (Desper and

Gascuel, 2002)

number sequences NJ BIONJ Weighbor HGT/FP GME BME STCk=5

96 (slow) .183 .180 .178 .512 .199 .186 .179

96 (moderate) .136 .134 .129 .480 .158 .137 .125

96 (fast) .115 .112 .103 .465 .144 .117 .102

(a) Methods are used without BNNI

number sequences NJ BIONJ Weighbor HGT/FP GME BME STCk=5

96 (slow) .173 .173 .173 .175 .173 .173 .173

96 (moderate) .119 .118 .118 .123 .118 .118 .116

96 (fast) .090 .090 .091 .098 .091 .090 .090

(b) Methods are used wit BNNI

slightly better than STC with respect to the slow simulation group. If BNNI is applied,

all methods exhibit an almost identical performance (see Table 5.4b).

5.4.4 Another look at the performance

Instead of looking at the average RF distance, we suggest to take a closer look at the

simulated data. For each simulated data set, that is subjected to the STC and six other

tree reconstruction methods mentioned above, we compute the RF distance between the

reconstructed tree and the model tree for all methods. Figure 5.5 illustrates the results

for the large simulation when comparing STC with NJ (left column) and STC with the

second best method BME (right column). In each diagram specified by the number

of taxa and reconstruction methods, 400 points are displayed, that resulted from 100

simulations for each of the tree-diameters (0.1, 0.5, 1.0 and 1.5). Although four tree-

diameters were studied only two clouds of points are discernible, where the cloud in
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Figure 5.5: The comparisons of topological accuracy between STC, NJ and BME for

the large simulation. Each point in the graph presents the Robinson and

Foulds (RF) distance for a simulated data set. Points above the dotted

line are examples where the RF distance of the STC-tree is less than the RF

distance of the NJ-tree or BME-tree. Thus, the STC gives higher topological

accuracy than NJ or BME with respect to the simulated data set.
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the north-east corner of each diagram represents the simulations with the tree-diameter

0.1. The remaining 300 points gather in the south-west cloud because the RF-distances

from trees with diameter 0.5, 1.0, 1.5 are not substantially different from each other (see

Table 5.2a and 5.3a). More precisely, the horizontal and vertical axes indicate the RF

distances of STC and NJ (or BME), respectively. Each point in the graph presents the

RF distance for a simulated data set. Points above the dotted line are examples where

the RF distance of the STC-tree is less than the RF distance of the NJ-tree or BME-

tree. Thus, the STC gives higher topological accuracy than NJ or BME with respect

to the simulated data set. For example, Figure 5.5a illustrates the comparison between

STC and NJ with respect to 1000 taxa data sets. 379 out of 400 points are above



5.4 Results 83

Figure 5.6: The comparisons of topological accuracy between STC, NJ and BME for

the rbcl simulation. Each point in the graph presents the Robinson and

Foulds (RF) distance for a simulated data set. Points above the dotted

line are examples where the RF distance of the STC-tree is less than the RF

distance of the NJ-tree or BME-tree. Thus, the STC gives higher topological

accuracy than NJ or BME with respect to the simulated data set.
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the diagonal, thus, STC gives better results than NJ in about 95% of the simulations.

For the remaining 21 alignments (points), two methods showed the same RF distance.

Finally, we found 19 points below the diagonal in which case NJ outperforms STC. For

the large simulation (5000 taxa), NJ is worse than STC in all cases. However, the second

best method BME is better than STC in 11% and 5% of the cases with respect to 1000

and 5000 sequence data sets.

Figure 5.6 shows the same analysis for the rbcl simulation. It shows that with increas-

ing sequence length the cloud of points moves towards zero. From Figure 5.6 we learn

that in some instances NJ (or BME) performs better (with regard to the RF distance)

than STC, i.e. 20%, 12%, 8% (or 34%, 17%, 14%) of the simulations for sequence lengths

500, 1000 and 2000 nt, respectively.

Similar results hold for the other methods. These results are summarized in Table

5.5a where we show the percentage of simulations in which STC is at least as good as

the other methods.

Again, if BNNI is applied we observe that no substantial difference among the various

approaches. The accuracy of the methods is mostly determined by BNNI (see Table

5.5b).
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Figure 5.7: The impact of the number of representatives k. The RF distance of STC

decreases when k grows from 1 to 5. When k ranges from 5 to 10, the RF

distance remains more or less unchanged. For k ≥ 10, the RF distance

increases steadily indicating a loss of accuracy.
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5.5 Discussions

We are presenting k-representative sets which allow us to design a fast and accurate

method to reconstruct phylogenies from large data sets with 1000 or more taxa. Simu-

lations show that STC gives better results than other tested methods in terms of topo-

logical accuracy. However, if BNNI is introduced as a subsequent optimization step,

the differences in the performance disappear. All methods show more or less the same

accuracy. Thus, one should apply BNNI to improve the topological accuracy.

The time to reconstruct a tree of up to 1000 sequences is not really an issue for all

tested distance-based methods, with the exception of Weighbor. Weighbor needed about

19 minutes to reconstruct a tree with 500 sequences, thus it is only applicable to data

sets with up to some hundred sequences. For data sets with up to 1000 sequences, the
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Table 5.5: The performance of STC compared to other methods

number sequences NJ BIONJ Weighbor HGT/FP GME BME

96 (500 nt) 68 (16) 65 (15) 57 (16) 100 (0) 73 (10) 70 (14)

500 (500 nt) 80 (4) 76 (4) 88 (3) 100 (0) 100 (0) 66 (1)

500 (1000 nt) 88 (3) 79 (4) 84 (4) 100 (0) 100 (0) 83 (6)

500 (2000 nt) 92 (6) 90 (4) 92 (3) 100 (0) 100 (0) 86 (9)

1000 (1000 nt) 95 (2) 95 (1) n.d. 100 (0) 100 (0) 89 (15)

5000 (1000 nt) 100 (0) 99 (0) n.d. 100 (0) 100 (0) 95 (1)

(a) The percentage of cases where STC is at least as good as other tested methods in terms
of RF distance. The number in parentheses is the percentage of cases where STC is equally
good as other tested methods. Methods are used without BNNI.

number sequences NJ BIONJ Weighbor HGT/FP GME BME

96 (500 nt) 9 (8) 8 (8) 10 (10) 12 (10) 10 (8) 10 (9)

500 (500 nt) 34 (37) 35 (39) 35 (36) 59 (29) 46 (33) 41 (39)

500 (1000 nt) 22 (19) 17 (23) 18 (22) 23 (28) 30 (20) 24 (20)

500 (2000 nt) 10 (13) 8 (7) 10 (8) 9 (8) 12 (10) 7 (10)

1000 (1000 nt) 30 (28) 27 (29) n.d. 28 (22) 30 (24) 28 (27)

5000 (1000 nt) 48 (40) 42 (44) n.d. 45 (45) 52 (37) 43 (43)

(b) The percentage of cases where STC is better than other tested methods in terms of RF
distance. The number in parentheses is the percentage of cases where STC is worse than
other tested methods. Methods are used with BNNI.

remaining methods needed less than one minute to output a tree, thus the difference be-

tween methods in terms of runtime is not significant. For data sets with 5000 sequences,

STC (GME, HGT/FP or BME) with BNNI took about 2.0 (2.5, 3.0 or 3.5) minutes to

reconstruct a tree. NJ (BIONJ) with BNNI were slower and consumed approximately

six minutes to output a tree. In short, the combination of STC and BNNI efficiently

reconstruct trees for large data sets in both terms of topological accuracy and runtime.

Finally, we did not systematically evaluate the impact of the number of representatives

k. We present some preliminary results for k = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40,

50, 60, 70, 80, 90 and 100. Figure 5.7 shows that the RF distance of STC decreases

when k grows from 1 to 5. This proves our intuition that a too small number of triplets
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leads to an inaccurate estimate of path lengths and edge lengths. When k ranges from

5 to 10, the RF distance remains more or less unchanged. For k ≥ 10, the RF distance

increases steadily indicating a loss of accuracy. The decrease in accuracy is explained

by the inclusion of triplets with large distances which include noise and disturb the

reconstruction. Thus, we chose k = 5 as a good compromise between the accuracy and

computational complexity for all data sets. That is, the practical complexity of the STC

algorithm is only O(n2).
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The reconstruction of evolutionary relationships among contemporary species is a corner-

stone of phylogenetic analysis. Nowadays, phylogenetic trees are typically constructed

based on nucleotide and amino acid sequences. Since huge amounts of nucleotide and

amino acid sequences can be obtained easily from public databases like GenBank, they

allow us to study the evolutionary relationships among a large range of species. However,

they cause an urgent need of approaches for construction large phylogenetic trees.

This thesis provides four contributions to the phylogenetic tree reconstruction. First,

essential concepts and notations to model and present the evolution of species were in-

troduced concisely but thoroughly for both molecular biologists and computer scientists.

Also, commonly used phylogenetic tree construction methods such as maximum parsi-

mony, maximum likelihood or minimum evolution approaches were fully presented in

the algorithmic style. Second, we proposed a novel search strategy, called phylogenetic

navigator (PhyNav), in evolutionary tree construction. The search gives encouraging

results compared to other methods. Third, a new quartet-based maximum likelihood ap-

proach, namely important quartet puzzling and nearest neighbor interchange (IQPNNI),

was described to construct large phylogenies with up to 1000 sequences in practical

time. Fourth, a new distance-based clustering algorithm, called shortest triplet clus-

tering (STC), which is able to build extremely large phylogenies was presented. For

example, the clustering algorithm constructs a phylogeny tree for 5000 species within

a minute. Remarkably, all proposed methods were implemented in computer softwares

and examined extensively on both real and simulated datasets.

Introduction to phylogenetic tree reconstruction (Chapter 2): This chapter in-

troduced different kinds of biological data e.g. morphological characters, nucleotide

sequences, amino acid sequences and gene-orders which carry phylogenetic signals to

investigate the evolutionary relationships of contemporary species. In addition, the evo-

lutionary process of nucleotides and amino acids which are prevalent in phylogenetic

analysis was modeled using Markov chain techniques. The statistical description of

87
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sequence evolution allows us to study the historical relationships of species under the

statistical framework. Moreover, graph theory and phylogenetic trees were described

comprehensively to present compactly the evolution of species.

Furthermore, perhaps more importantly, we thoroughly summarized widely used phy-

logenetic tree construction methods e.g. maximum parsimony methods, maximum like-

lihood methods, and distance-based algorithms. Both advantages and disadvantages of

methods were discussed in terms of accuracy and runtime. Since reconstructing phy-

logenies with respect to an optimality criterion is computational expensive, efficient

heuristic strategies e.g. hill climbing and stepwise addition were introduced to construct

phylogenies in practical time.

Phylogenetic navigator (Chapter 3): We proposed a novel strategy for constructing

large phylogenetic trees. The key idea is the definition of the so-called minimal k-

distance subsets. Each minimal k-distance subset consists of at most k sequences but

retains most of the relevant phylogenetic information from the whole sequence set. For

each subset the subtree is created faster and serves as a scaffold to construct the full

tree for the whole sequence set. Because many minimal subsets exist the procedure is

repeated several times and the best tree with respect to some optimality criterion is

considered as the inferred phylogenetic tree.

The search strategy was implemented in PhyNav package using the maximum likeli-

hood principle. PhyNav gave encouraging results compared to other programs on both

simulated and real datasets.

Important quartet puzzling and nearest neighbor interchange (Chapter 4): Al-

though quartet-based methods are widely used in phylogenetic analysis, the complexity

of O(n4) prevents these approaches from applying to large datasets with more than

approximately 100 sequences.

To overcome the computational burden, we proposed the important quartet puzzling

method (IQP) which uses only O(n2) important quartets to construct a tree. The IQP

approach was implemented as a part of a combined algorithm IQPNNI, which efficiently

elucidates the landscape of possible optimal trees. Finally, we applied an estimator that

is based on the time series of sights of better trees during the tree search to estimate

when it becomes unlikely that a further search for a better tree will be successful.

Experiments with both biological and simulated datasets showed that IQPNNI gave

better accuracy than other tested methods e.g. fastDNAml (Olsen et al., 1994), Weigh-
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bor (Bruno et al., 2000), MetaPIGA (Lemmon and Milinkovitch, 2002), and PHYML

(Guindon and Gascuel, 2003). However, the computational cost of IQPNNI was more

expensive than other methods except fastDNAml. Nevertheless, the times needed are

not unrealistic. For example, the computation of the maximum likelihood tree of 500

rbcl sequences took less than 10 hours. This is only a small amount of time compared

to the time it took to obtain the data.

Shortest triplet clustering algorithm (Chapter 5): Maximum likelihood methods

PhyNav and IQPNNI are quite efficient to construct phylogenies up to with 1000 se-

quences. However, they are unlikely proper to build phylogenies for larger datasets of say

thousands of sequences due to the computational expense. To overcome the problem, we

proposed a new distance-based clustering algorithm, namely shortest triplet clustering,

to construct a phylogeny for n sequences in O(n2) time. Therefore, the STC algorithm

can build large phylogenies with up to five thousands of sequences within a minute.

The efficiency of STC and various distance-based methods were examined with a

large range of simulated datasets. STC showed better performance than widely used

distance-based methods e.g. Neighbor Joining algorithm (Saitou and Nei, 1987), BIONJ

(Gascuel, 1997) and Weighbor (Bruno et al., 2000) in terms of both accuracy and run-

time. However, the balanced nearest neighbor interchange (Desper and Gascuel, 2002) is

recommended as a post-processing step for further topological accuracy improvements.
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Appendix

IQPNNI package

IQPNNI is a computer program to reconstruct the evolutionary relationships among

contemporary species based on nucleotide sequences, amino acid sequences or protein-

coding nucleotide sequences. It is able to construct maximum likelihood phylogenies

with up to a thousand of sequences. IQPNNI is menu-driven program which allows

users to specify the parameter values or let the program estimate them from input data.

IQPNNI is able to work with different models of sequence evolution described as

follows

• Nucleotide sequences: JC69 (Jukes and Cantor, 1969), K2P (Kimura, 1980),

HKY (Hasegawa et al., 1985), TN93 (Tamura and Nei, 1993), and general time

reversible model (GTR) (Tavaré, 1986).

• Protein sequences: Dayhoff (Dayhoff et al., 1978), BLOSUM62 (Henikoff and

Henikoff, 1992), JTT (Jones et al., 1992), mtREV24 (Adachi and Hasegawa, 1996),

WAG (Whelan and Goldman, 2001), VT (Müller and Vingron, 2000).

• Protein-coding nucleotide sequences: GY94 (Goldman and Yang, 1994),

NY98, YN98 (Nielsen and Yang, 1998) and CpG Depression (Pedersen et al.,

1998). The models of protein-coding nucleotide sequences were implemented by

Bui Quang Minh and available in IQPNNI package version 3.0.

Moreover, different models of rate heterogeneity e.g. two-state model, Γ-distribution

model, or site-specific substitution rate model were implemented in IQPNNI package.

The parallel version of IQPNNI called pIQPNNI was implemented by Minh et al.

(2005) using message passing interface (MPI). Both sequential and parallel versions
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were written in the object-oriented language C++. They are available on all popu-

lar platforms e.g. MacOX, Linux, Windows at http://www.bi.uni-duesseldorf.de/

software/iqpnni.

PhyNav package

Like the IQPNNI package, PhyNav constructs phylogenies based on the maximum

likelihood principle for both nucleotide sequences or amino acid sequences. It is able to

work with all models of sequence evolution and rate heterogeneity as described in the

IQPNNI package.

Sequential version of PhyNav on Linux is available at http://www.bi.uni-duesseldorf.

de/software/phynav. We are planning to thoroughly investigate both advantages and

disadvantages of the search strategy.

STC package

STC is a distance-based phylogenetic tree construction program. The main advantage

of STC is the ability of building very large phylogenies. For example, STC constructs

a phylogeny with 5000 sequences in a minute. However, the balanced nearest neighbor

interchange is recommended as a post-processing step for further topological accuracy

improvements (Desper and Gascuel, 2002).

STC takes distance matrices in PHYLIP format and constructs for each distance

matrix a phylogenetic tree. The program was written in object-oriented language C++.

Therefore, it can run on all popular platforms e.g. MacOX, Linux, Windows. STC is

freely downloaded at http://www.bi.uni-duesseldorf.de/software/stc.

http://www.bi.uni-duesseldorf.de/software/iqpnni
http://www.bi.uni-duesseldorf.de/software/iqpnni
http://www.bi.uni-duesseldorf.de/software/phynav
http://www.bi.uni-duesseldorf.de/software/phynav
http://www.bi.uni-duesseldorf.de/software/stc
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