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1. Introduction

1 Introduction

1.1 The Human Immunodeficiency Virus Type 1 (HIV 1)

1.1.1 HIV 1 and AIDS – Still a Persistent Health Challenge
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1. Introduction

1.1.2 Classification, Morphology and Genomic Structure of HIV 1

in vivo

Figure 1

Figure 1: Structure and organization of the HIV 1 genome:
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1. Introduction

Figure 2

vpu/env

env

Figure 2: Schematic drawing of a mature HIV 1 virus particle: HIV 1 particles are characterized by a spherical shape with a
size of about 125 – 145 nm and are enveloped by host cell derived lipid bilayer including cellular proteins. Two copies of the
9.8 kb long ssRNA (+) genome are associated with nucleocapsid proteins (p7) embedded in a conical capsid consisting of
round about 2000 copies of the capsid protein (p24, CA), which is enclosed by matrix proteins (p17, MA) maintaining the
virion’s integrity. Reverse Transcriptase (p66/p51, RT), Integrase (p31, IN) and the Protease (p11, PR) are incorporated into
the capsid. The trimeric surface envelope protein (gp120, SU) and transmembrane envelope protein (gp41, TM) are fixed in
the viral envelope anchored by transmembrane envelope proteins. (73). This illustration was modified according to
http://www.niaid.nih.gov/topics/hivaids/understanding/biology/Pages/structure.aspx.
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Reverse Transcription

Integration

Splicing

Budding

Fusion

1.1.3 Overview of the HIV 1 Lifecycle

Figure 7

in vitro

in vivo

Figure 3: Schematic drawing of the HIV 1 replication cycle:
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Figure 1
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Figure 1

1.2 Determining Factors of an HIV 1 Infection

1.2.1 Barriers of an HIV 1 Infection

in vivo
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Figure 4

Figure 4: Schematic drawing of the mode of action of amyloid fibrils in HIV 1 infectivity in cell culture
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1.2.2 HIV 1 Host Restriction Factors
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1.2.2.1 The HIV 1 host restriction factor APOBEC3
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Figure 5

in vivo
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1.2.2.2 Vif antagonizes APOBEC3 mediated host restriction
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1.2.2.3 The role of Vpr and Vpx in HIV infection

in vivo

1.2.3 HIV 1 Host Dependency Factors
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1.3 Splicing of Eukaryotic and Viral Primary Transcripts

1.3.1 Definition of exon/intron borders and the principle of splicing reaction

Figure 6

Saccharomyces cere

visiae
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Figure 6: Schematic representation of the conserved splicing signal elements and different modes of alterna
tive splicing: (A)
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1.3.2 The dynamic spliceosomal assembly

E, early complex

Figure 7

A complex

Figure 8

S. cerevisiae

20



1. Introduction

Figure 7: Schematic illustration of the spliceosome – cycle:
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Figure 8

Figure 8: Splice site bridging exon and intron definition:

(A) Exon definition model
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B complex

B*
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C complex

Figure 7E

1.3.3 Determining factors of splice site recognition cis regulatory elements determine alterna
tive splice site usage via trans acting proteins

1.3.3.1 Intrinsic and extrinsic factors of splice site recognition

cis
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Figure 9
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Figure 9: Splicing regulatory elements influence the recognition of alternative splice sites:

1.3.3.2 SRSF proteins influence splice site usage and spliceosomal progression
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Figure 10: Splicing regulatory proteins (SRSFs and hnRNPs) and their main structural components: (A)

(B)

Figure 11A
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Figure 11B

Figure 11: Modes of splicing regulation: (A)

(B)

1.3.3.3 HnRNP proteins control alternative splicing and spliceosomal progression

Figure 10B
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Figure 12C,

Figure 12: Splicing control is mediated by hnRNP proteins in a context depended manner: (A)
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Figure 12C

Figure 12D
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1. Introduction

1.3.4 HIV 1 exploits the cellular splicing machinery

1.3.4.1 Characterization of HIV 1 splice sites

cis Figure 13

Ta

ble 1

gag pol

Table 1: Intrinsic strengths of HIV 1 splice sites: The individual intrinsic strengths of the HIV 1 5’ss were calculated using
the H Bond Score (HBS) and the 3’ss by the maximum entropy algorithm (MAXENT). See main text for further details.

5‘ss Sequence HBS: 3‘ss Sequence MAXENT:

D1 CtGGTGAGTAc 17.5 A1 aattttcgggtttattacaggga 6.41

D2 aAGGTgAaggg 10.7 A2 ctattttgattgtttttcagaat 9.43

D2b CAGGTgAtgAT 12.4 A3 ctgctgtttatccatttcagaat 9.76

D3 aAGGTAgGatc 14.0 A4c gtgttgctttcattgccaagttt 3.74

D4 gcaGTAAGTAg 15.7 A4a agtttgtttcatgacaaaagcct 1.75

A4b tttcatgacaaaagccttaggca 4.09

A5 ttaggcatctcctatggcaggaa 4.01

A7 attcaccattatcgtttcagacc 7.15
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Figure 13: Schematic representation of the HIV 1 genome: (A)
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1.3.4.2 Tat and rev mRNAs
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SHORT REPORT Open Access

The D-amino acid peptide D3 reduces amyloid
fibril boosted HIV-1 infectivity
Marek Widera1, Antonia Nicole Klein2, Yeliz Cinar2, Susanne Aileen Funke2,4*, Dieter Willbold2,3,5*

and Heiner Schaal1,5*

Abstract

Background: Amyloid fibrils such as Semen-Derived Enhancer of Viral Infection (SEVI) or amyloid-β-peptide (Aβ)
enhance HIV-1 attachment and entry. Inhibitors destroying or converting those fibrils into non-amyloidogenic
aggregates effectively reduce viral infectivity. Thus, they seem to be suitable as therapeutic drugs expanding the
current HIV-intervening repertoire of antiretroviral compounds.

Findings: In this study, we demonstrate that the small D-amino acid peptide D3, which was investigated for
therapeutic studies on Alzheimer’s disease (AD), significantly reduces both SEVI and Aβ fibril boosted infectivity
of HIV-1.

Conclusions: Since amyloids could play an important role in the progression of AIDS dementia complex (ADC), the
treatment of HIV-1 infected individuals with D3, that inhibits Aβ fibril formation and converts preformed Aβ fibrils
into non-amyloidogenic and non-fibrillar aggregates, may reduce the vulnerability of the central nervous system of
HIV patients for HIV associated neurological disorders.

Keywords: HIV-1 infection, SEVI, D3, Amyloid-beta, Alzheimer’s disease, D-enantiomeric peptide, Drugs, Monomers,
Oligomers

Findings
Amyloid fibrils exhibiting a cationic surface [1], for ex-
ample those of the Alzheimer’s disease (AD) related
amyloid-β peptide (Aβ) and the Semen derived Enhancer
of Viral Infection (SEVI), promote HIV infection by fa-
cilitating viral attachment through neutralization of the
electrostatic repulsion between the negatively charged
surface of virions and target cells [2-4]. Experimental ap-
proaches to reduce SEVI-mediated enhancement of HIV-
1 infection by amyloid binding agents have already been
described [5-9]. However, except for epigallocatechin-3-
gallate, the major active constituent of green tea, most of
these compounds were shown to bind, but not to elim-
inate amyloids. Recently, it was demonstrated that the
small D-amino acid peptide D3 converts Aβ oligomers
and fibrils into non-amyloidogenic, non-fibrillar and

non-toxic aggregates and reduces the cognitive deficits
of the central nervous system in transgenic AD model
mice [10]. Because many amyloid fibrils, despite their
composition of different peptides or proteins, show sig-
nificant structural similarities like a typical cross-beta
sheet quaternary structure, we intended to analyze the
inhibitory capacity of D3 to reduce other amyloid caused
pathologic effects.
In order to utilize amyloidogenic inhibitors to reduce

fibril boosted viral infectivity, we firstly wanted to un-
ravel whether fibrils or even monomers or oligomers of
Aβ are the causative agents for the infectivity enhancing
effect. To achieve this, synthetic human Aβ(1–42) pep-
tide (purity > 95%) was purchased from Bachem (Buben-
dorf, Switzerland). Lyophilizated Aβ(1–42) was dissolved
to 1 mM with hexafluoroisopropanol (HFIP) overnight
at room temperature (RT). Prior to use, HFIP was evap-
orated using a SpeedVac Concentrator 5301 (Eppendorf;
Hamburg, Germany) at RT. For preparation of Aβ(1–42)
fibrils, the Aβ pellet was dissolved in PBS (phosphate
buffered saline: 140 mM NaCl, 2.7 mM KCl, 10 mM
Na2HPO4, and 1.8 mM KH2PO4, pH 7.4) to 1 mM

* Correspondence: aileen.funke@hs-coburg.de; D.Willbold@fz-juelich.de;
schaal@uni-duesseldorf.de
2Forschungszentrum Jülich, ICS-6, 52425 Jülich, Germany
1Institut für Virologie, Heinrich-Heine-Universität, D-40225 Düsseldorf,
Germany
Full list of author information is available at the end of the article

© 2014 Widera et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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and incubated four days at 37°C without shaking. To
remove all soluble Aβ, the samples were washed by
centrifugation and redissolved in PBS. For preparation
of Aβ(1–42) mono- and oligomers, the Aβ pellet was

dissolved in SEC buffer (size exclusion chromatography
buffer: 50 mM NaPi pH 7.4, 150 mM NaCl) and puri-
fied using size exclusion chromatography (Figure 1D).
To test the different Aβ conformers for their infectivity
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Figure 1 Aβ(1–42) fibrils but not mono- and oligomers enhance HIV-1 infection of TZM-bl cells. (A) Equal amounts (500 TCID50 as
determined with TZM-bl cells using supernatant of transfected HEK 293T cells) of the dual-tropic HIV-1 lab strain NL4-3 PI 952 [11] were
pre-incubated for 5 min at RT with Aβ(1–42) fibrils. Subsequently, the pretreated viruses were used to infect TZM-bl reporter cells and infection-
induced luciferase activity was assayed 48 h post infection. (*** p < 0.001, * p < 0.05 referred to PBS treated and infected cells). (B) X-fold change
of luciferase enhancement was quantified relative to cells infected in the absence of Aβ(1–42) fibrils (PBS). (C) Luciferase RLUs of non-infected
cells, which were treated with the indicated concentrations of Aβ(1–42). (D) Chromatogram of a size exclusion chromatography (SEC) showing
the absorption profile of Aβ(1–42) monomers (M) and oligomers (O), which were used in the following analysis. (E and F) The same experiments
as in (A) but viruses were pre-incubated with Aβ(1–42) mono- and oligomers obtained by SEC shown in (D). milli-absorbance-units (mAu); non-
infected (n.i.); relative light units (RLU); size exclusion chromatography buffer (SB).
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enhancement potential, we used TZM-bl reporter cells
that harbor a luciferase and a β-galactosidase expression
cassette under the control of the HIV-1 LTR promoter,
which are activated in infected cells due to expression
of the HIV-1 trans-activator of transcription (Tat). These
reporter cells were infected with equal amounts of the
dual-tropic (R4 and R5) HIV-1 PI 952 [11] either in
presence or absence of Aβ(1–42) monomers, oligomers
or fibrils. For luciferase measurements, cells were rinsed
in PBS and dispensed in passive lysis buffer (PLB) and
shaken for 15 min at RT. Luciferase activity of cell
lysates was measured by adding Beetle-Juice (p.j.k;
Kleinblittersdorf, Germany) using an Infinite 200 PRO
multimode reader (Tecan; Männedorf, Switzerland). We
observed that Aβ(1–42) fibrils (Figure 1A and B) but
not mono- or oligomers (Figure 1E and F) were able to
enhance HIV-1 infection of TZM-bl cells. The enhan-
cing effect of Aβ(1–42) fibrils on HIV-1 infectivity was
observed at a concentration of 2 μg/ml and augments
with increasing Aβ(1–42) fibril concentrations, whereas
Aβ(1–42) fibrils alone had no effect on luciferase ex-
pression of TZM-bl cells (Figure 1C). In agreement with
Münch et al. [3], but in contrast to Wojtowicz et al. [2],
we did not observe any enhancing effect on HIV-1 in-
fection when using Aβ(1–40) fibrils (Innovagen; Lund,
Sweden) irrespective of whether these were incubated
for four or six days of oligomerization under the same
conditions as described above (Figure 2). The reason
for this discrepancy was already discussed by Münch
et al. arguing that amyloid fibrils composed of the
same protein can show different conformations with
distinct phenotypes [12].

To analyze whether the infectivity boosting effect of
Aβ(1–42) but not Aβ(1–40) fibrils was cell type specific,
we applied our approach also to the HIV-1 susceptible
Molt-4 T cells [13,14]. Equal amounts of an R4 tropic
HIV-1 NL4-3 derivate, which expresses a NEF-GFP fu-
sion protein, were pre-incubated for 5 min at RT with
Aβ(1–42) or Aβ(1–40) fibrils (10 μg/ml) and PBS as a
control, respectively. Subsequently, the pre-treated vi-
ruses were used to infect Molt-4 T cells and the percent-
age of infected (GFP positive) cells was assayed by FACS
analysis by using FACSCalibur (BD; Franklin Lakes,
USA) 48 h post infection. As expected, treatment with
Aβ(1–42) but not with Aβ(1–40) fibrils resulted in ~ six-
fold higher percentage of GFP positive T cells when
compared to PBS treated cells indicating that Aβ(1–42)
specifically enhances viral infectivity also in T cells
(Figure 3).
We further addressed the question of whether the

boosted viral infectivity was also dependent on the
membrane fusion activity of the gp41 N-terminus.
Therefore, we transfected HEK 293T cells with pNL4-3
or the protease cleavage site mutant pNL Prot.Xa that
prevents the Env glycoprotein mediated membrane fusion
(kindly provided by Valerie Bosch) and performed immu-
noblot analysis of cellular as well as virion associated
gp160/gp41 by using Chessie 8 antibody [15]. Virions
were pelleted by using sucrose centrifugation as described
before [16]. Next, we incubated TZM-bl cells with wild-
type and mutant virus. By adding Aβ(1–42) fibrils, the
defect in viral entry could not be restored indicating that
the fibril-mediated enhancement was also dependent on
the membrane fusion activity of gp41 (Figure 4).
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Figure 2 Aβ(1–42) but not Aβ(1–40) fibrils enhance HIV-1 infection of TZM-bl cells. Equal amounts of the dual-tropic HIV-1 lab strain NL4-3
PI 952 [11] were pre-incubated for 5 min at RT with the indicated concentrations of Aβ(1–42) or Aβ(1–40) fibrils, which were incubated for four
and six days, respectively of oligomerization. Subsequently, the pretreated viruses were used to infect TZM-bl reporter cells and infection-induced
luciferase activity was assayed 48 h post infection.
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We next examined whether the peptide boosted en-
hancement can be reduced by pre-treatment with the non-
cytotoxic Aβ fibril inhibitor D3 [17] (JPT; Berlin, Germany),
which is a D-enantiomeric peptide (RPRTRLHTHRNR).
SEVI and Aβ(1–42) fibrils (10 μg/ml) were pre-treated
with D3 and the mixture was used to boost the infection
of TZM-bl cells as described above. Following an incuba-
tion time of 48 h, the infectivity was determined by lucif-
erase measurement and X-Gal staining (Figure 5). While
SEVI and Aβ(1–42) fibrils were able to boost viral infec-
tion at similar amounts, already equimolar doses of D3
(10 μg/ml) were sufficient to significantly reduce the
enhancing effect of SEVI (Figure 5A and 5C). By adding
higher amounts of D3 (100 μg/ml), luciferase expression
was further reduced to levels comparable with PBS
treated control samples (Figure 5A, 5C and 5F). Similarly,
the Aβ(1–42) boosted infection could be reduced. By add-
ing ten-fold higher concentration of the inhibitor D3
(100 μg/ml), the infection rate of Aβ(1–42) boosted vi-
rions was significantly reduced to levels of PBS treated
viruses (Figure 5B, 5D and 5F). To further control
whether the reducing effect of D3 on fibril boosted infect-
ivity was indeed due to the fibril-D3 interaction, we also
pre-incubated virus containing supernatants with D3 in
the absence of fibrils and then infected TZM-bl cells. As
shown in Figure 5E, when infected in the absence of
fibrils the cellular luciferase activity was not affected.
HIV-1 entry in female mucosa is restricted and re-

quires overcoming at least three hurdles. These are
to breach the mucosal barrier and get through the

epithelium, infection and replication in sub-epithelial
mononuclear cells and the initiation of a systemic infec-
tion in the lymph nodes [18]. Since genital mononuclear
cells, including dendritic cells (DCs), macrophages and
lymphocytes are susceptible to HIV-1 in vivo [18], amyl-
oid fibrils might help HIV-1 to penetrate the mucosa
and to reach these cells. Thus, treatment with D3 could
inhibit the first sub-epithelial contact and prevent viral
spreading.
In addition to its activity to enhance the infectivity

of HIV-1 in semen, amyloids could play an important
role in the progression of AIDS dementia complex
(ADC) also known as HIV encephalopathy, which de-
velops in between 20% and 30% of HIV patients in
the course of infection. Interestingly, the formation of
Aβ aggregates and fibrils is thought to precede the
clinical symptoms of AD by three to four decades, and
such fibrils may therefore be present in many mid-
aged people. Since, the D-amino acid peptide D3 dras-
tically reduces plaque load [17] and cognitive deficits
even in orally D3 treated AD transgenic mice [10], it
might be suitable to additionally reduce the fibril boosted
HIV-1 infectivity in vivo.
In conclusion, the application of D3 may reduce

SEVI-induced enhancement of viral infectivity of HIV-
1 and the vulnerability of the central nervous system
of HIV infected individuals. Thus, D3 seems to be suit-
able as therapeutic and prophylactic drug expanding
the current HIV-intervening repertoire of antiretroviral
compounds.
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Within target T lymphocytes, human immunodeficiency virus type I (HIV-1) encounters the retroviral restriction factor
APOBEC3G (apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G; A3G), which is counteracted by the HIV-1
accessory protein Vif. Vif is encoded by intron-containing viral RNAs that are generated by splicing at 3= splice site (3=ss) A1 but
lack splicing at 5=ss D2, which results in the retention of a large downstream intron. Hence, the extents of activation of 3=ss A1
and repression of D2, respectively, determine the levels of vif mRNA and thus the ability to evade A3G-mediated antiviral effects.
The use of 3=ss A1 can be enhanced or repressed by splicing regulatory elements that control the recognition of downstream 5=ss
D2. Here we show that an intronic G run (GI2-1) represses the use of a second 5=ss, termed D2b, that is embedded within intron 2
and, as determined by RNA deep-sequencing analysis, is normally inefficiently used. Mutations of GI2-1 and activation of D2b
led to the generation of transcripts coding for Gp41 and Rev protein isoforms but primarily led to considerable upregulation of
vif mRNA expression. We further demonstrate, however, that higher levels of Vif protein are actually detrimental to viral repli-
cation in A3G-expressing T cell lines but not in A3G-deficient cells. These observations suggest that an appropriate ratio of Vif-
to-A3G protein levels is required for optimal virus replication and that part of Vif level regulation is effected by the novel G run
identified here.

Replication of human immunodeficiency virus type 1 (HIV-1)
is counteracted by four major classes of host-encoded restric-

tion factors: APOBEC3G (apolipoprotein B mRNA-editing en-
zyme, catalytic polypeptide-like 3G; A3G), TRIM5� (tripartite
motif 5�), tetherin (BST-2, CD317, or HM1.24), and SAMHD1
(1–4). A3G (5) belongs to a family of cytidine deaminases that
includes seven members (A3A to A3D and A3F to A3H) located in
a gene cluster on chromosome 22 (6–8). It is encapsidated into
newly assembled virions and introduces C-to-U substitutions
during minus-strand synthesis, resulting in G-to-A hypermuta-
tions and aberrant DNA ends in the HIV-1 genome. Furthermore,
A3G, independent of its deaminase activity, inhibits reverse tran-
scriptase-mediated minus-strand elongation by direct binding to
the viral RNA (9). This leads to massive impairment of viral rep-
lication (10). However, the HIV-1-encoded accessory protein Vif
counteracts A3G by direct interaction, by inducing proteasomal
degradation, and by repression of mRNA synthesis (10). Whereas
HIV-1 is able to replicate efficiently in A3G-expressing cells, Vif-
deficient virus strains are completely suppressed (5). Nevertheless,
a narrowly restricted level of Vif is crucial for optimal HIV-1 rep-
lication since proteolytic processing of the Gag precursor at the
p2/nucleocapsid processing site is inhibited by high levels of Vif
(11).

During the course of infection, the HIV-1 9-kb single-sense
pre-mRNA is processed into more than 40 alternatively spliced
mRNA isoforms encoding 18 HIV-1 proteins, all of which interact
with a wide variety of host cell proteins, complexes, and pathways
(12). Furthermore, negative-sense mRNAs that lead to the expres-
sion of at least one antisense protein are also found in HIV-1-
infected T cells (13).

The splicing process consists of a series of consecutive steps
that are orchestrated by interactions of individual spliceosomal
components (14). The initial binding of the U1 snRNP to the
pre-mRNA is mediated by base pairing between the 5= end of the
U1 snRNA and the 5= splice site (5=ss) initiating early E-complex
formation (15). Subsequently, the 3=ss, consisting of the AG dinu-
cleotide, the branch point sequence (BPS), and a polypyrimidine
tract, is bound by the U2 snRNP at the BPS in an ATP-dependent
manner, thus initiating A-complex formation. In a process named
exon definition, U1 and U2 snRNPs bound to the exon-intron
borders pair with each other (cross-exon interactions) and facili-
tate the removal of the flanking introns (16, 17).

Rev expression initiates the switch from the early to the late
stage of viral replication (18). On binding to the Rev-responsive
element (RRE), Rev oligomerizes cooperatively and, by interact-
ing with the cellular Crm1 export pathway, facilitates the export of
intron-containing viral mRNAs (19–21).

Since the vif AUG is localized within intron 2, this intron must
be retained within the functional vif mRNA. Thus, the 5=ss D2 has
to be rendered splicing incompetent, even though binding of U1
snRNP to this 5=ss is a prerequisite for efficient recognition of the
upstream 3=ss A1 (22, 23). In general, 5=ss splice donor repression
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may be a common requirement for the generation of all spliced
but intron-containing HIV-1 mRNAs, e.g., the env mRNAs (24).
Indeed, recent studies demonstrated that the splicing regulatory
element (SRE)-mediated binding of the U1 snRNP to a 5=ss does
not necessarily result in its processing into the spliceosomal A-
complex formation but can lead to a “dead-end” complex forma-
tion that prevents the splicing process (25–28).

Comparative analyses of the intrinsic strengths of all HIV-1
3=ss have shown that A1 is intrinsically inefficient (18) and, in the
absence of other effects, would result in vif mRNA species repre-
senting only �1% of the total 4.0-kb mRNA class (29). However,
in the presence of its downstream exonic sequence, A1 switches
from being intrinsically very weak to being the most active HIV-1
3=ss (18). Indeed, two SREs within the noncoding leader exon 2
have been reported to enhance its splice site recognition, the
SRSF1 (SF2/ASF)-dependent heptameric exonic splicing enhanc-
ers (ESEs) M1 and M2 (18) and the SRSF4 (SRp75)-dependent
ESE Vif (22). Only the GGGG silencer element, which overlaps
D2, is known to negatively act on exon 2 inclusion and vif mRNA
production (22).

G runs (DGGGD, where D is U, G, or A) belong to those se-
quence motifs known to be bound by hnRNPs F and H (30) and
often act as regulators within a variety of genes by modulating
their splice site usage (30–38). Their influence is positive when
they are localized immediately downstream of the 5=ss (39–43) or,
alternatively, when multiple copies are present even further
downstream (44–46).

It has been shown that overexpression of hnRNP F and H re-
duces the levels of HIV-1 transcripts by approximately 60%
(hnRNP F) and 30% (hnRNP H) and affects the splicing pattern
by increasing the relative amount of exon 3-containing mRNAs
that splice to 3=ss A2 (Nef4, Env8, Vpr3, and Rev7/8/9). In line
with this, knockdown of these splicing factors with small interfer-
ing RNA shows an inverse effect and results in mRNAs in which
exon 3 skips, indicating that these proteins drive splicing toward
3=ss A2 (47, 48). Similarly, the ESS2p silencer downstream of 3=ss
A3 (49) and the interaction of U1 snRNP with exon 6D 5=ss are
regulated by hnRNPs F and H (50). Furthermore, in a subgenomic
splicing reporter, the S3 G run in HIV-1 exon 1 was shown to
modulate HIV-1 splicing by hnRNP H proteins (30). However,
within a proviral context, the S3 G-run activity could not be con-
firmed (51).

Since there are many additional G runs present throughout the
HIV-1 genome that might act as binding sites for hnRNP F/H
family members, we sought to functionally analyze the impact of
all of the G runs within the vif AUG-containing intron on the
processing of the vif mRNA. We found that the G run localized
directly upstream of the vif AUG was bound by members of the
hnRNP F/H family and that binding was necessary for the main-
tenance of physiological vif mRNA levels.

MATERIALS AND METHODS
Plasmids. The HIV-1 NL4-3 (GenBank accession no. M19921)-derived
plasmid long terminal repeat (LTR) 4 exon was cloned by inserting the
NdeI/EcoRI fragment from pNL4-3 (52) into the previously described
LTR ex2 ex3 reporter (53). The minigene construct contains small non-
coding leader exons 2 and 3, the 5= part of tat exon 1, and the authentic
NL4-3 full-length sequences for introns 2 and 3 in between. The coding
regions for gag and pol within intron 1 (44 bp downstream of SD1 and 69
bp upstream of SA1) had been replaced with a short 13-bp linker frag-
ment. LTR 4 exon GI2-1 mut was generated by PCR-directed mutagenesis

with primer pair 1544/3307, subsequent digestion with BssHI/NdeI, and
ligation into the LTR 4 exon. Cloning of plasmid LTR 4 exon GI2-2,3 mut
was created by PCR-directed mutagenesis with primers 2339/3306 with
LTR 4-exon as the template and subsequent digestion with SacI/PflMI and
integration into the LTR 4 exon. LTR 4 exon GI2-4,5 was generated by
amplifying 2710/3441 on the LTR 4 exon with subsequent digestion with
NdeI/PflMI and ligation into the LTR 4 exon. LTR 4 exon GI2-1-5 mut was
cloned by using the same primers, 2710/3441; LTR 4 exon GI2-4,5 as the
PCR template; and integration into LTR 4 exon GI2-1 mut with SacI/
PflMI. To generate HIV-1 molecular clone pNL4-3 GI2-1, the intron 1
sequence was extended up to the AgeI restriction site by cloning the PCR
amplicon generated with primers 3375/3376 and digestion with EcoRI/
NdeI, resulting in LTR 4 exon int1ext and LTR 4 exon int1ext GI2-1 mut,
respectively. Cloning of pNL4-3 GI2-1 was then performed by using the
AgeI/EcoRI fragment from LTR 4 exon int1ext GI2-1 mut, which was
inserted into pNL4-3.

Rev expression plasmids SVcrev4 (4083/4084), SVcrev4b (4085/
4086), SVcrev4 eff (4121/4122), and SVcrev4b eff (4123/42124) were
cloned by replacement of the EcoRI/SacI fragment from SVcrev (54) with
each indicated complementary oligonucleotide mixed at equimolar con-
centrations. Therefore, each oligonucleotide mixture was heated at 95°C
for 5 min, cooled down to room temperature for 1 h, and subjected to
DNA ligation. pXGH5 (55) was cotransfected to monitor transfection
efficiency in quantitative and semiquantitative reverse transcription
(RT)-PCR analyses. For minigene experiments, SVctat (54) was cotrans-
fected to transactivate the HIV-1 LTR promoter. SVtat�rev�envRL was
generated to replace the gene for chloramphenicol acetyltransferase
(CAT) with a Renilla luciferase gene expression cassette by insertion of the
XmaI/BbsI fragment from SVt�r�envCAT (simian virus 40 [SV40] early
promoter, pNLA1 sequence nucleotides [nt] 5743 to 8887, tat� [AT-
G¡AGG], rev� ATG¡ACG; the sequence coding for Gp120 was re-
placed with the CAT-encoding gene sequence; SV40 polyadenylation sig-
nal) and the Esp3I/XmaI-restricted PCR amplicon (1271/1272) into
pRLSV40 (Promega). pGL3-Control (Promega) was cotransfected to
monitor transfection efficiency by firefly luciferase expression. All con-
structs were validated by DNA sequencing.

RNA and protein isolation from transiently transfected and infected
cells. HeLa-T4� and HEK 293T cell cultures were prepared with Dulbec-
co’s high-glucose modified Eagle’s medium (Invitrogen) supplemented
with 10% fetal calf serum and penicillin and streptomycin each at 50
�g/ml (Invitrogen). Jurkat, CEM-A, CEM-T4, and CEM-SS cells were
maintained in RPMI 1640 medium (Invitrogen) under the same condi-
tions. Transient-transfection experiments were performed with six-well
plates at 2.5 � 105 cells per plate by using TransIT-LT1 transfection re-
agent (Mirus Bio LLC) according to the manufacturer’s instructions. To-
tal RNA and proteins were isolated by using the AllPrep DNA/RNA/
Protein minikit (Qiagen) according to the manufacturer’s instructions.
Alternatively, total RNA was isolated by using acid guanidinium thiocya-
nate-phenol-chloroform as described previously (56).

Quantitative and semiquantitative RT-PCRs. For reverse transcrip-
tion (RT), 5 �g of RNA was digested with 10 U of DNase I (Roche). The
DNase was subsequently heat inactivated at 70°C for 5 min, and cDNA
synthesis was performed for 1 h at 50°C and 15 min at 72°C by using 200
U Superscript III RNase H reverse transcriptase (Invitrogen), 7.5 pmol
oligo(dT)12-18 (Invitrogen), 20 U of RNasin (Promega), and 10 mM each
deoxynucleoside triphosphate (Qiagen). For semiquantitative analysis of
minigene and viral mRNAs, cDNA was used as the template for a PCR
with the indicated primers. For transfection controls, PCRs were per-
formed with primers 2258 and 2263 to detect spliced GH1 mRNA and
with primers 3153 and 3154 for glyceraldehyde 3-phosphate dehydroge-
nase (GAPDH), respectively. PCR products were separated on 10% non-
denaturing polyacrylamide gels, stained with ethidium bromide, and vi-
sualized with an F1 Lumi-Imager (Roche). Quantitative RT-PCR analysis
was performed by using the LightCycler DNA Master SYBR green I kit
(Roche) and LightCycler 1.5 (Roche). For normalization, primers 3387
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and 3388 were used, detecting all HIV-1 mRNAs. Detection of vif mRNA
was performed by using primer pair 3395/3396.

Oligonucleotides. All of the DNA and RNA oligonucleotides used in
this study were obtained from Metabion (Table 1).

RNA pulldown. Three thousand picomoles of high-performance liq-
uid chromatography-purified RNA oligonucleotides 3600 (GATCATCA
GGGATTATGGA [underlining indicates the wild-type 3600 and the mu-
tant 3601 GI2-1 sequences]) and 3601 (GATCATCCGCGATTATGGA)
was adjusted to a total volume of 340 �l. Twenty microliters of a saturated
sodium metaperiodate solution and 40 �l of sodium acetate (1 M, pH 5)
were added, and after incubation for 1 h at room temperature in the dark,
the RNAs were precipitated by the addition of 80 �l of sodium acetate (1
M, pH 5) and 1 ml of ethanol (96%) and incubation at �80°C for 5 min
and subsequently pelleted at full speed for 30 min at 4°C. The RNAs were
covalently linked to adipic acid dihydrazide-agarose beads (Sigma) at 4°C
overnight and washed twice with sodium chloride (2 M) and three times
with Dignam buffer D (20 mM HEPES-KOH [pH 7.6], 6.5% [vol/vol]
glycerol, 0.1 M KCl, 0.2 mM EDTA, 0.5 mM dithiothreitol [DTT]). Two
hundred microliters of HeLa cell nuclear extract (�6 mg/ml; CilBiotech)
was added to the immobilized RNA, and the mixture was incubated for 20
min at 30°C and washed five times with Dignam buffer D plus MgCl2 (20
mM HEPES-KOH [pH 7.6], 6.5% [vol/vol] glycerol, 0.1 M KCl, 0.2 mM
EDTA, 0.5 mM DTT, 1 M MgCl2). Agarose beads were resuspended in 2�
protein sample buffer (0.75 M Tris-HCl [pH 6.8], 20% [vol/vol] glycerol,
10% [vol/vol] �-mercaptoethanol, 4% [wt/vol] SDS), and the proteins
were eluted by heating at 95°C for 10 min and subjected to SDS-PAGE and
Coomassie staining.

Immunoblot analysis. Proteins were subjected to SDS-PAGE under
denaturing conditions (57) in 12% polyacrylamide gels (Rotiphorese Gel

30; Roth) using Bio-Rad Protean II Mini electrophoresis systems (Bio-
Rad). Gels were run in Laemmli running buffer (1% SDS, 0.25 M Tris
base, 1.9 M glycine) for 45 min at 25 mA and 4°C. The proteins were
transferred to a polyvinylidene difluoride membrane (pore size, 0.45 mm;
Protran) by using the Bio-Rad Protean II Mini tank blotting system (Bio-
Rad) in transfer buffer (0.1% SDS, 192 mM glycine, 25 mM Tris [pH 8.8],
20% methanol). The membrane was washed twice in TBS-T (20 mM
Tris-HCl [pH 7.5], 150 mM NaCl, 0.1% [vol/vol] Tween 20), blocked in
TBS-T with 10% nonfat dry milk for 1 h at room temperature, and then
incubated overnight at 4°C with the primary antibody in TBS-T with 5%
dry milk. Sheep antibody against HIV-1 p24 CA was obtained from Aalto
Bioreagents Ltd. (Dublin, Ireland), and rabbit antiserum against Vif was
obtained through the NIH AIDS Research and Reference Reagent Pro-
gram from Dana Gabuzda and Jeffrey Kopp (58). Anti-A3G immunoblot
assays were performed with anti-ApoC17 antibody from Klaus Strebel
(59, 60). The membrane was washed three times with TBS-T for 10 min
each time and incubated with anti-rabbit horseradish peroxidase (HRP)-
conjugated antibody (A6154) from Sigma-Aldrich and HRP-conjugated
anti-sheep antibody from Jackson ImmunoResearch Laboratories Inc.
(West Grove, PA) for 1 h, respectively. The blot was washed four times,
rinsed with water, visualized by a ECL chemiluminescence detection sys-
tem (Amersham), and exposed to photosensitive film (GE) or Lumi-
Imager F1 (Roche). Immunoblotting employing the Gp41 monoclonal
antibody Chessie 8 (61) was performed as previously described (62). The
p24-CA protein in the cell-free supernatant was concentrated by using
sucrose centrifugation at 50,000 � g for 4 h and subsequently subjected to
immunoblot analysis as described above.

Luciferase measurement. HeLa-T4� cells (2.5 � 105) were transiently
transfected with 2 �g SVtat�rev�envRL reporter plasmid, 0.5 �g pGL3-

TABLE 1 DNA oligonucleotides used in this work

Primer Sequence

1271 5=-AGCAGTCGTCTCGTGGCCAAGAAATGGCTTCGAAAGTTTATGAT-3=
1272 5=-TAGCCCGGGCTACTATTATTGTTCATTTTTGAGA-3=
1544 5=-CTTGAAAGCGAAAGTAAAGC-3=
2258 5=-TCTTCCAGCCTCCCATCAGCGTTTGG-3=
2263 5=-CAACAGAAATCCAACCTAGAGCTGCT-3=
2339 5=-TGGGAGCTCTCTGGCTAACTAGGGAACCCACTGCTTAAGC-3=
2588 5=-CTTTACGATGCCATTGGGA-3=
2710 5=-GGGGGGATCGATAATTAAGGAGTTTATATGGAAACCCTTAAAGGTAAAGGGGCAGTAGTAATACAA-3=
3153 5=-ACCACAGTCCATGCCATCAC-3=
3154 5=-TCCACCACCCTGTTGCTGTA-3=
3306 5=-TTCCTCCATTCTATGGAGACGCCTTGACCCAAATGCCAGTCTCTTTCTCCTGTATGCAGACCCCAATATGTTGTTATTACTAATTT

AGCATCGCCTAGTGGGATGTGTACTTCTG-3=
3307 5=-TATACATATGGTGTTTTACTAATCTTTTCCATGTGTTAATCCTCATCCTGTCTACTTGCCACACAATCATCACCTGCCATCTGTTT

TCCATAATCGCGGATGATCTTTGCTTTTCTTCTTGGC-3=
3375 5=-GGCCTGAATTCAGGGAGATTCTAAAAGAACCGGTACAT-3=
3376 5=-TATACATATGGTGTTTTACTAATCTTTTCC-3=
3387 5=-TTGCTCAATGCCACAGCCAT-3=
3388 5=-TTTGACCACTTGCCACCCAT-3=
3392 5=-CGTCCCAGATAAGTGCTAAGG-3=
3395 5=-GGCGACTGGGACAGCA-3=
3396 5=-CCTGTCTACTTGCCACAC-3=
3441 5=-TTTCCTCCATTCTATGGAGACGCCTTGGCCGAGATGCCAGTCTCTTTCTCCTGTATGCAGGCCGAAGTATGTTGTTATTACTAATTT

AGCATCGCCT-3=
4083 5=-AATTCCTCCTATGGCAGGAAGAAGCGGAGACAGCGACGAAGAGCT-3=
4084 5=-CTTCGTCGCTGTCTCCGCTTCTTCCTGCCATAGGAGG-3=
4085 5=-AATTCGGATTATGGAAAACAGATGGCAGGCATCTCCTATGGCAGGAAGAAGCGGAGACAGCGACGAAGAGCT-3=
4086 5=-CTTCGTCGCTGTCTCCGCTTCTTCCTGCCATAGGAGATGCCTGCCATCTGTTTTCCATAATCCG-3=
4121 5=-AATTCCAGCCATGGCAGGAAGAAGCGGAGACAGCGACGAAGAGCT-3=
4122 5=-CTTCGTCGCTGTCTCCGCTTCTTCCTGCCATGGCTGG-3=
4123 5=-AATTCCAGCCATGGAAAACAGATGGCAGGCATCTCCTATGGCAGGAAGAAGCGGAGACAGCGACGAAGAGCT-3=
4124 5=-CTTCGTCGCTGTCTCCGCTTCTTCCTGCCATAGGAGATGCCTGCCATCTGTTTTCCATGGCTGG-3=
4355 5=-TTCATCGAATTCAGTGCCAAGAAGAAAAGCAAAGATCA-3=
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Control (Promega) for normalization and expression plasmids as indi-
cated and pcDNA3.1(�) to adjust the amount of transfected DNA to 3.5
�g per sample. For luciferase measurement, cultured cells were rinsed in
phosphate-buffered saline (PBS), dispensed into 500 �l passive lysis buf-
fer (Promega), and shaken for 15 min at ambient temperature, and the cell
lysates were cleared by centrifugation for 10 s at 20,000 � g. Firefly and
Renilla luciferase activities were measured by a dual-luciferase program by
adding 100 �l Beetle-Juice and Renilla-Juice (p · j · k) with Mithras LB 940
(Berthold), respectively.

Northern blot analysis. Total RNA (2 �g) was electrophoresed on a
denaturing 1% agarose gel and capillary blotted onto a positively
charged nylon membrane by using 20� SSC (3 M NaCl, 300 mM
sodium citrate). The RNA was UV cross-linked to the membrane, and
the large and small rRNAs were marked. Subsequently, the membrane
was prehybridized with 10 ml 1� DIG Easy Hyb hybridization solu-
tion (Roche) for 1 h at 65°C. The membrane was then hybridized with
probes for 5 h at 55°C. The probe for HIV-1 mRNAs was based on a
153-bp digoxigenin (DIG)-labeled PCR product using the primer pair
3387/3388 (HIV-1 exon 7). The PCR product was purified by using
phenol and chloroform-isoamyl alcohol (24:1 ratio), and a second
PCR was performed by using DIG-labeled dUTPs (alkali-labile DIG-
11-dUTP; Roche), the same primer pair, and the first PCR product as
the template. The probe was heated in 1� DIG Easy Hyb hybridization
solution (Roche) at 95°C for 5 min and chilled on ice. Following over-
night hybridization at 55°C, the membranes were washed twice with
wash buffer 2� SSC (300 mM NaCl, 30 mM sodium citrate) with 0.1%
SDS at room temperature, followed by two 20-min washes in 0.2� SSC
(30 mM NaCl, 3 mM sodium citrate) with 0.1% SDS at 68°C. The
membrane was then washed twice with double-distilled H2O and ma-
leic acid buffer (0.1 M maleic acid, 0.15 M NaCl) and blocked with
blocking solution (Roche) for 1 h. Alkaline phosphatase (AP)-conju-
gated anti-DIG-antibody (Fab fragments from sheep antibody; Roche)
was diluted 1:20,000 in 1� blocking solution (Roche) and incubated
for 1 h. The membrane was washed three times with maleic acid buffer,
and the RNA bands were visualized by using CDP-Star for chemilumi-
nescent reactions (1:100 in AP buffer [0.1 M Tris HCl, 0.1 M NaCl, pH
9.5]; Roche).

Measurement of HIV-1 replication kinetics. CEM-A, CEM-T4, and
CEM-SS cells (4 � 105) were infected with 1.6 ng p24 CA of wild-type and
mutant viruses in serum-free RPMI medium at 37°C for 6 h. Infected cells
were then centrifuged, washed in PBS (Invitrogen), and resuspended in
RPMI medium (Invitrogen) containing 10% fetal calf serum (FCS; Invitro-
gen). Aliquots of cell-free medium were harvested at regular intervals, and
virus production was measured by p24 enzyme-linked immunosorbent assay
(ELISA). Peripheral blood mononuclear cells (PBMCs) were isolated from
15-ml whole-blood samples from two healthy donors by Ficoll gradient cen-
trifugation. PBMCs were cultured in RPMI 1640 GlutaMax medium contain-
ing 10% FCS and 1% penicillin-streptomycin, activated with phytohemag-
glutinin (5 �g/ml), and treated with interleukin-2 (30 mg/ml; Roche) after 48
h. Cells (8 � 105) were infected with 16 ng of p24 CA of wild-type and mutant
viruses and treated as described above.

Next-generation sequencing (NGS) and read mapping. Total RNA
was extracted from 5 � 106 Jurkat cells per sample by using the AllPrep
DNA/RNA/Protein minikit (Qiagen), and the preparations were checked
for RNA integrity with an Agilent 2100 Bioanalyzer. All of the samples in
this study showed common high-quality RNA integrity numbers (9.1 to
10; mean, 9.9). RNA was quantified by photometric measurement (Nano-
Drop 1000 Spectrophotometer, ND-1000 version 3.7.0; Thermo Scien-
tific). Syntheses of cDNA libraries were performed with the TruSeq RNA
Sample Prep kit (Illumina) according to the manufacturer’s protocol. One
microgram of total RNA was used for poly(A) RNA enrichment, followed
by cDNA synthesis, adapter ligation, and PCR amplification. The result-
ing cDNA libraries were validated by Agilent DNA 1000 chip, quantified
by fluorometric measurement (Qubit dsDNA HS Assay kit; Invitrogen),
and adjusted to 10 nM.

Clonal amplification of cDNA on two Illumina flow cells (v1.5) was
done by using the appropriate cBot recipe (version 7) at a final library
concentration of 10 pM. Sequencing was carried out on a HiSeq 2000
according to the manufacturer’s protocol (HiSeq 2000 User Guide, part
15011190, revision H; Illumina, Inc.) using TruSeq SBS kits v1. The re-
sulting 101-nt sequence reads were converted to fastq by CASAVA 1.8.2.
The 101-nt reads were mapped to an exon junction database by using the
reference mapping algorithm within the CLC Genomics Workbench soft-
ware (v4.9; CLC bio). On the basis of those reads mapping to HIV-1 exon
junctions, we then estimated relative splice site usage. Read sequences that
mapped to more than one exon junction were excluded from quantifica-
tion. In order to identity unannotated splice events, Reads were mapped
with TopHat2.0.0 to HIVNL43 sequence (downloaded from http://www
.ncbi.nlm.nih.gov/nuccore/M19921).

RESULTS
A guanosine (G) run element (GI2-1) embedded within HIV-1
intron 2 controls splicing at 5=ss D2b. To analyze whether one of
the five G runs identified within HIV-1 intron 2 (GI2-1-5) is involved
in splice site regulation and processing of vif mRNA, we performed a
mutational analyses of these motifs (Fig. 1). Using an HIV-1 sub-
genomic splicing reporter (Fig. 1C), we disrupted the G runs individ-
ually or in combination (GI2-1-5 mut) and determined individual
splicing outcomes. For the analysis in the context of infectious provi-
rus, mutations were chosen that did not change the coding sequence
of the overlapping IN (integrase) and Vif open reading frames
(ORFs). Only mutation GI2-4 resulted in an amino acid substitution
(W70F) within the Vif protein (Fig. 1D).

Total RNA was isolated 24 h following the transient transfec-
tion of HeLa-T4� cells, and the splicing pattern was analyzed by
RT-PCR and quantitative RT-PCR (Fig. 2). Mutating G run GI2-1,
which is highly conserved among most HIV-1 strains and sub-
types, although not among HIV-2 nor simian immunodeficiency
virus strains (Los Alamos HIV database 2011, data not shown), led
to an increased amount of both the exon 2-containing transcript
tat2 (Fig. 2B, 1544/2588, cf. lanes 2 and 3) and the intron 2-retain-
ing vif2 mRNA (Fig. 2B, 1544/3396, cf. lanes 2 and 3). Addition-
ally, we detected an unknown RT-PCR product migrating slower
than tat3 (Fig. 2B, line 3, [1.2b.4]). Sequencing analysis showed
this to be a splicing isoform resulting from splicing at an alterna-
tive 5=ss downstream of D2 (Fig. 1D and 2A). This 5=ss, referred to
here as D2b, has been described previously as being a rarely de-
tectable cryptic 5=ss at position 5059 (29). Of note, 5=ss D2b has an
even slightly stronger intrinsic strength (CAGGTgAtgAT, HBS
12,4/MAXENT 5,99) than D2 (aAGGTgAaggg, HBS 10,7/
MAXENT 5,79) (45, 63) and, like GI2-1, is remarkably conserved
among most HIV-1 strains and subtypes (Los Alamos HIV data-
base 2011, data not shown). Therefore, the efficiency of D2b use
would have been expected to be similar to that of D2. In order to
confirm splicing at 5=ss D2b in the context of nonmutated pre-
mRNAs, HeLa-T4� or HEK 293T cells were transfected with the
splicing reporter and splicing patterns analyzed. Indeed, using a 5=
primer positioned between D2 and D2b, we could confirm detect-
able, but weak, D2b usage even in the absence of the GI2-1 muta-
tion (data not shown). Remarkably, disruption of GI2-1 also led to
the increased activation of 3=ss A1 and vif mRNA formation in
semiquantitative (Fig. 2B, 1544/3396) and quantitative RT-PCR
analyses (Fig. 2C, 3395/3396).

In support of a functionally exclusive role for GI2-1 in Vif splice
site regulation, the mutation of any of the other G runs (GI2-2, 3
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and GI2-4, 5) did not affect the splicing pattern of the splicing
reporter.

Members of the hnRNP F/H protein family bind to the in-
tronic G run (GI2-1). Since G-run motifs have been shown to bind

members of the hnRNP F/H protein family, RNA affinity purifi-
cation assays were performed to determine if this were also the
case with the viral GI2-1 sequence. RNA oligonucleotides contain-
ing the wild-type or mutant GI2-1 sequence were immobilized on

vif 2 1.2E

Non-coding leader exons

rev4b-mRNA (D2b)

vif-mRNA

gp41 2-mRNA (D2b)

gp41 1-mRNA (D2b)

1 2 3

aAGGTgAagggGCAGTAGTAATACAAGATAATAGTGACATAAAAGTAGTGCCAAGAAGAAAAGCAAAGATCATCAGGGATTATGGAAAACAGATGGCAGGTgAtgATTGTGTG

GCAAGTAGACAGGATGAGGATTAACACATGGAAAAGATTAGTAAAACACCATATGTATATTTCAAGGAAAGCTAAGGACTGGTTTTATAGACATCACTATGAAAGTACTAATC

CAAAAATAAGTTCAGAAGTACACATCCCACTAGGGGATGCTAAATTAGTAATAACAACATATTGGGGTCTGCATACAGGAGAAAGAGACTGGCATTTGGGTCAGGGAGTCTCC

ATAGAATGGAGGAAAAAGAGATATAGCACACAAGTAGACCCTGACCTAGCAGACCAACTAATTCATCTGCACTATTTTGATTGTTTTTCAG

D2 (HBS 10.70 / MAXENT 5.73)
vif-ATG

D2b (HBS 12.4 / MAXENT 5.99)

(A)

(B)

(C)

D1 D1a D2 D3 D4 (D5)

A7(A6)A5

A4c,a,b

A3A2A1A1a

5 ´ss

3 ´ss

RRE
D2b

rev 4b 1.2b.4b.7

gp41 1 1.2b.7

gp41 2 1.2b.5.7

(D)

(E)

Asp Arg Asp
ATC|AGG|GAT

Leu Gly Asp
CTA|GGG|GAT

Gln Gly Val
CAG|GGA|GTC

GI2-1 mut (Integrase)

GI2-1 (Integrase)

GI2-2 mut (Vif)

GI2-2 (Vif)

GI2-3 mut (Vif)

GI2-3 (Vif)

GI2-4 mut (Vif)

GI2-4 (Vif)

GI2-5 mut (Vif)

GI2-5 (Vif)

GI2-1

GI2-2 GI2-4 GI2-5 GI2-3

Asp Arg Asp

Gp41a MENRWQ/-----------------------/THLPIPRGPDRPEGIEEEGGERDRDRSIRLVNGSLALIWDDLRSLCLFSYHRLRDLLLIVTRIVELLGRRGWEALKYWWNLLQYWSQELKNSAVNL
      LNATAIAVAEGTDRVIEVLQAAYRAIRHIPRRIRQGLERILL
Gp41b MENRWQ/EEAETATKSSSEQSDSSSFSIKA/THLPIPRGPDRPEGIEEEGGERDRDRSIRLVNGSLALIWDDLRSLCLFSYHRLRDLLLIVTRIVELLGRRGWEALKYWWNLLQYWSQELKNSAVNL
      LNATAIAVAEGTDRVIEVLQAAYRAIRHIPRRIRQGLERILL
Rev4b MENRWQ/ASPMAGRSGDSDEELIRTVRLIKLLYQS/NPPPNPEGTRQARRNRRRRWRERQRQIHSISERILSTYLGRSAEPVPLQLPPLERLTLDCNEDCGTSGTQGVGSPQILVESPTVLESGTKE

ATC|CGC|GAT
Leu Gly Asp
CTA|GGC|GAT

Gln Gly Val
CAA|GGC|GTC

Tyr Trp Gly
TAT|TGG|GGT

His Leu Gly
CAT|TTG|GGT

Tyr Phe Gly
TAC|TTC|GGC

His Leu Gly
CAT|CTC|GGC

SV40 pAExon 4LTR Exon1 Exon 2                Exon 2 b CATExon 3

D1 A3A1 D2 A2 D3D2b

#1544 #2710/#4355 #3632 #3392

gag
pro                            pol

vif
vpr vpu

env
3´LTR5´LTR

tat

rev

nef

FIG 1 HIV-1 intron 2 contains several G runs and an alternative 5=ss. The diagram shows the locations of splice sites, exons, introns, and SREs in the HIV-1
NL4-3 genome. (A) Schematic overview of the HIV-1 NL4-3 genome, including the locations of 5=ss and 3=ss, respectively. The RRE is indicated by an open box.
The positions of the PCR primers used in this analysis are indicated by black triangles. (B) vif mRNA is formed primarily by splicing of 5=ss D1 to 3=ss A1 where
noncoding exon 2 (50 nt) is included and vif AUG-containing intron 2 is retained. Rev4 is formed by splicing of 5=ss D1 to 3=ss A4b and spliced downstream from
5=ss D4 to 3=ss A7. In contrast, rev4b is formed by splicing from alternative 5=ss D2b to 3=ss A4b up, taking the vif AUG into the rev ORF. (C) Vif-coding intron
2 sequence (427 nt) including the locations of the vif ATG and G run GI2-1. The intrinsic strengths of 5=ss D2 and D2b are indicated (HBS, MAXENT). (D)
Representation of the mutant constructs used in this work. The mutant constructs were based on the reference sequence from infectious proviral clone NL4-3.
With the exception of GI2-4, silent mutations were introduced to maintain the coding sequence for the amino acids of integrase and Vif. GI2-4 led to a
tryptophan-to-phenylalanine amino acid substitution in the vif ORF.
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agarose beads and incubated with HeLa cell nuclear extract.
Bound proteins were eluted and separated by SDS-PAGE (Fig. 3).
Protein bands bound to the wild-type GI2-1 oligonucleotide but
exhibiting less efficient binding to the mutant GI2-1 RNA oligo-
nucleotide were analyzed by mass spectrometry. These analyses

confirmed the binding of hnRNP F/H proteins to the wild-type
sequence but not to the mutated sequence (Table 2). This, in turn,
suggests that these proteins play a role in GI2-1-mediated splicing
regulation.

GI2-1 controls the levels of vif mRNA and Vif protein expres-
sion from replication-competent virus. Next we analyzed the im-
pact of the silent but inactivating mutation of GI2-1 on gene ex-
pression from proviral plasmids. HEK 293T cells were transiently
transfected with pNL4-3 or the GI2-1 mutant proviral plasmid
pNL4-3 GI2-1 mut, and total RNA and proteins were harvested at
48 h posttransfection. The RNAs were subjected to Northern blot-
ting and probed with an exon 7 fragment detecting all viral
mRNAs. As shown in Fig. 4A, the GI2-1 mutation led to an in-
creased amount of vif mRNA (cf. lanes wt and GI2-1 mut). In order
to quantify the GI2-1 mutation-mediated change in vif mRNA
levels, a quantitative real-time PCR was performed using vif
mRNA-specific exon junction primers. As a control, we deter-
mined the amounts of all viral mRNAs by using a primer pair
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FIG 3 Proteins hnRNP F, hnRNP H, and hnRNP A2/B1 bind to the intronic
G run (GI2-1) but not to the mutated sequence. Shown is a Coomassie-stained
protein gel of a GI2-1 RNA pulldown experiment. Short (19-nt) RNA oligonu-
cleotides (wt, GATCATCAGGGATTATGGA; GI2-1 mut, GATCATCCGCGA
TTATGGA) of authentic or mutated GI2-1 sequence were linked to adipic acid
dihydrazide-agarose beads and incubated with HeLa cell nuclear protein ex-
tract. The precipitated proteins were resolved by SDS-PAGE (12%) and
stained with Coomassie brilliant blue. Bands were eluted and analyzed by mass
spectrometry. The identified proteins are indicated by arrows.

TABLE 2 Results of mass spectrometric analysis of proteins of the GI2-1
RNA pulldown experiment shown in Fig. 3

Accession
no. Protein(s)

Mascot
score

Molecular
mass
(kDa)

pI
value

Sequence
coverage
(%)

P31943 hnRNP H 68 49.2 5.9 23
P52597 hnRNP F 63 45.6 5.3 20
P22626 hnRNPs A2/B1 124 37.4 9.3 50
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amplifying exon 7 sequences that are present in all viral mRNA
species. In agreement with the result obtained from the Northern
blot analysis, vif mRNA levels were upregulated 7-fold following
the disruption of GI2-1 (Fig. 4B). Furthermore, immunoblot anal-
ysis showed an increase in the amount of Vif protein expressed
within transfected cells (Fig. 4C). Taken together, these results
demonstrate that GI2-1 is important for splicing regulation of 3=ss
A1 and the generation of functional vif mRNA and confirm pre-
vious observations that an increase in 5=ss D2 usage leads to an
increase in exon 2 inclusion and levels of vif mRNA (22). How-
ever, our results additionally show that the increase in vif mRNA
can also be mediated by activation of D2b, which is located further
downstream. These data are comparable to the concomitantly ob-
served increase in 5=ss D3 usage and vpr mRNA levels (see the
accompanying paper by Erkelenz et al. [81]).

To quantify the frequency of D2b usage and to identify its 3=ss
targets, we performed RT-PCR analysis of total RNA isolated from
HEK 293T cells transfected with pNL4-3. To also monitor the
impact of the GI2-1 inactivation on D2b usage, we included the
pNL4-3 GI2-1 mut proviral DNA and focused on transcripts that
were spliced not at D2 but at D2b. In addition to the published
transcript isoform, 1.2b.5.7 (29), we identified three novel D2b
spliced transcript isoforms (1.2b.3.5.7, 1.2b.4.7, and 1.2b.3.4.7)
covering either the Tat or the Nef ORF (Fig. 4D, 2710/3392). In
addition, we identified an alternatively spliced vif1 mRNA,
1.2E.4.7, not previously found among the Rev-independent
1.8-kb species (29). Inactivation of GI2-1 led to the increased in-
clusion of exon 2b in an mRNA, 1.2b.5.7, encoding a Vif-Tat-
Gp41 fusion protein. Concomitantly, there was then a reduction
in the amount of the exon 3-containing transcript 1.2b.3.4.7 en-
coding a putative 9 amino-acid (aa)-long Vif peptide (Fig. 4D, cf.
lanes wt and GI2-1 mut). The use of a primer pair covering the 5=
half of the HIV-1 genome allowed the detection of a significant
amount of an mRNA 1.2b.4.7 coding for a putative 12-aa-long Vif
peptide when GI2-1 was inactivated. The levels of this transcript
were below the analytical limit of detection in the wild-type con-
text (Fig. 4D, 1544/3632). Furthermore, we observed an increased
amount of tat2 mRNA 1.2.4.7, indicating more-efficient recogni-
tion of 3=ss A1. These data are in agreement with those obtained
from the subgenomic minigene constructs demonstrating that
GI2-1 acts to repress 3=ss A1 recognition. In conclusion, these data
support the hypothesis that 5=ss D2b, which is negatively regulated
by GI2-1, might safeguard D2 with respect to its exon-bridging
function, thus supporting 3=ss A1 activation and maintaining Vif
protein levels.

GI2-1 in intron 2 is necessary for efficient virus replication in
nonpermissive cells. Since the Vif protein level was considerably
increased upon the inactivation of GI2-1 (Fig. 4C), we wanted to
analyze the impact of this SRE on multiround HIV-1 replication
in the presence and absence of A3G. Therefore, we produced virus
by transient transfection of HEK 293T cells with the proviral plas-
mid pNL4-3 or its mutant derivate NL4-3 GI2-1 mut and har-
vested virus-containing supernatants at 48 h posttransfection.
pNL4-3 	vif proviral DNA (64) served as a control for a vif-defi-
cient virus. To monitor virus replication, the permissive host cell
line CEM-SS lacking A3G (5) and the nonpermissive A3G-ex-
pressing CEM-A cell line (65) were infected with equal amounts of
p24 CA (multiplicity of infection [MOI], 0.01). The heteroge-
neous A3G-expressing cell line CEM-T4 was also infected to ana-
lyze the replication ability of GI2-1 mutant virus under semiper-
missive host cell restriction pressure conditions (66). The A3G
expression levels of all three cell lines were determined by immu-
noblot analysis (Fig. 5B). Cell culture supernatants were harvested
at different time points after infection, and p24 capsid protein
(CA) was monitored by immunoblotting (Fig. 5C) and quantified
by capture ELISA (Fig. 5A) to record virus replication.

As expected, in A3G-deficient CEM-SS cells, the presence of
Vif was not required for efficient virus particle production, as
neither inactivation of the GI2-1 SRE nor vif deficiency (NL4-3
	vif) impaired viral replication (Fig. 5A and C). On the other
hand, NL4-3 	vif was not capable to replicate in A3G-positive
CEM-A cells and newly synthesized virus was not detectable, even
after 12 days postinfection (dpi) (Fig. 5A). Unexpectedly, the p24
CA production of GI2-1 mutant virus was decreased almost 5-fold
despite increased Vif protein expression and a comparable reduc-
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FIG 4 The silent mutation of GI2-1 increases both vif mRNA and protein
levels. (A) Northern blot analysis of total RNA from pNL4-3-transfected HEK
293T cells isolated at 48 h posttransfection. RNA was separated in a 1% RNA
agarose gel, capillary blotted, and cross-linked on a positively charged nylon
membrane and UV cross-linked. The membrane was treated with a DIG-
labeled DNA fragment binding to exon 7. (B) RNA from panel A was subjected
to quantitative RT-PCR analysis using an exon junction primer pair specific
for vif mRNA (3395/3396) and for exon 7 (3387/3388) for normalization of the
viral load. (C) Immunoblot analysis of proteins from transiently transfected
HEK 293T cells with proviral plasmids pNL4-3 and pNL4-3 GI2-1 mut. Pro-
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2-kb mRNA class. The primer pairs used are indicated on the left (see Fig. 1).
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tion in p24 CA levels was observed in CEM-T4 cells. According to
the semipermissiveness of the mixed cell population, 	vif mutant
virus was able to replicate, but with a delay of 2 days, presumably
due to viral replication in only a subset of the CEM-T4 cells. These
results are in agreement with previous observations demonstrat-
ing that the amount of Vif required for optimal viral replication is
in a narrow range and that higher levels of Vif decrease viral in-

fectivity, perhaps by modulating proteolytic processing of the Gag
precursor at the p2/nucleocapsid processing site (11). To further
characterize the impact of GI2-1 on viral replication, we assayed
HIV infection of human peripheral blood mononuclear cells
(PBMCs) from two healthy donors with an MOI of 0.5. In cells
from both donors inactivation of GI2-1 caused a moderate in-
crease in virus replication (Fig. 6A). As expected, HIV-1 	vif did
not replicate in the PBMC cultures (Fig. 6A and C). Interestingly,
the activated PBMCs showed higher expression of A3G than the
CEM-A and CEM-T4 cells did (Fig. 6B).

In summary, these results demonstrate the impact of GI2-1 as a
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FIG 6 Inactivation of GI2-1 enhances virus replication in PBMCs. (A) PBMCs
were infected with the NL4-3 virus or mutant derivatives (MOI, 0.5). Virus
production was determined by p24 CA capture ELISA of cell-free supernatant
collected at the indicated time points. (B) Immunoblot analysis showing A3G
expression in CEM-SS, CEM-T4, and CEM-A cells and PBMCs of two human
donors. �TUB, antitubulin antibody. (C) Immunoblot analysis of p24-CA
protein in cell-free supernatant at 12 dpi.
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critical SRE to maintain the balanced vif mRNA levels necessary
for optimal HIV-1 replication in nonpermissive cells and that an
appropriate ratio of Vif to A3G protein levels is required for opti-
mal virus replication under different physiological environments.

NGS analysis of NL4-3-infected Jurkat T cells reveals that
5=ss D2b is used, albeit with low efficiency. Since we observed
5=ss D2b usage in pNL4-3-transfected HEK 293T cells, we were
interested in the frequency of D2b-containing exon junctions dur-
ing the course of T cell infection. Therefore, we analyzed splice site
selection by RNA deep sequencing of NL4-3-infected Jurkat T
cells. Total RNAs from uninfected and HIV-1-infected Jurkat T
cells were isolated at 24 (MOI, 0.1) and 144 (MOI, 0.01) h postin-
fection (hpi), and cDNA libraries were created from poly(A)-se-
lected mRNAs and subjected to NGS analysis. Using the Illumina
sequencing protocol, we obtained �170 million 101-nt reads per
sample and mapped them to an HIV-1 exon junction database.
Whereas, D2b usage was not detectable at 24 hpi, most likely due
to a low number of overall exon junction reads, at 144 hpi, D2b
was used in 0.2% of the reads that were mapped to this genomic
region (Fig. 7 and Table 3). Since we could not map any reads to an
exon junction using D1a or D5 (both of which were not expected
to be used [67, 68]), D2b usage should be classified as an addi-
tional alternative HIV-1 5=ss. Thus, one or several of the alterna-
tive D2b spliced transcripts may encode an additional, as yet un-
identified, HIV-1 protein or protein isoform.

Newly identified D2b-derived transcripts coding for Rev and
Gp41 isoforms. Since we identified D2b-A2, D2b-A3, D2b-A4b,
and D2b-A5 exon junction reads (Table 4), we aimed at identify-
ing those transcript isoforms covering these junctions. Therefore,
total RNA of NL4-3-infected Jurkat cells (144 hpi) was isolated

and reverse transcribed and the resulting cDNAs were subse-
quently amplified with primers located immediately upstream of
the vif ATG codon (4355) and downstream of SA7 (3392). By
cloning and sequencing, we identified three cDNAs coding for
new proteins, Rev4b, Gp41a, and Gp41b, all carrying 6 aa derived
from Vif (MENRWQ) at their N termini (Fig. 1E).

To answer the question of whether the Gp41 isoforms could be
detected in infected cells, C8166 T cells were infected with wild-
type NL4-3 and NL4-3 Env-Tr712 with a stop codon at position
713 in Env employing vesicular stomatitis virus G-protein-pseu-
dotyped virions as previously described (62, 69). HEK 293T cells
were transfected with an expression vector coding for the larger
Gp41 isoform, i.e., Gp41b, and the protein lysates of the infected
and transfected cells were subjected to immunoblotting employ-
ing Chessie 8 antibodies directed against the C-terminal domain
of Gp41 (61, 62). As expected, Gp160 and Gp41 were detected in
the lysate of pNL-4-3-infected cells (Fig. 8B) but absent from the
lysates of cells infected with pNL-Env-Tr712 virions encoding
truncated Env lacking the Chessie 8 epitope. However, in both
cases, additional reactive protein entities, with sizes ranging from
approximately 13 to 23 kDa, were detected. These were absent
from lysates of mock-transfected cells or when unrelated antibod-
ies were used (not shown), meaning that they represent novel,
currently undefined, proteins containing the HIV Chessie 8
epitope. Expression of the larger Gp41 isoform led to the genera-
tion of a band comparable in size to one of the Env-CT variants
detectable in infected T cells (Fig. 8B). This could mean that this
comigrating protein band in the infected T cells corresponds to
the cloned Gp41 isoform but, in the absence of mass spectrometric
identification, this remains only a postulate.

Rev4b mediates Rev-dependent luciferase expression. In or-
der to compare the activities of Rev4b and Rev, we measured their
abilities to mediate luciferase expression. HeLa-T4� cells were
cotransfected with the Rev-dependent luciferase reporter
SVtat�rev�envRL and increasing amounts of the expression plas-
mids coding for Rev4b or Rev (Fig. 9). When HeLa-T4� cells were
transfected with the same amount of expression plasmid Rev or
Rev4b, the latter yielded 2-fold higher luciferase activity (Fig. 9C),
suggesting that the N-terminal amino acids of Rev4b resulted in
higher protein activity. Alternatively, the better match of the AUG
nucleotide surrounding of vif with the Kozak consensus sequence
may be more efficiently recognized than that of rev, thus leading to
a greater amount of Rev4b protein. We thus repeated the lucifer-
ase assay with Rev4b and Rev expression plasmids with identical
AUG nucleotide surroundings. As shown in Fig. 8B and C, equal-
ization of the AUG nucleotide surroundings of both the rev4b and

TABLE 3 Percentages of spliced and unspliced reads obtained from
HIV-1 infected T cells mapped to exon junction database

5=ss

24 hpia 144 hpib

Total
no. of
reads % Spliced % Unspliced

Total
no. of
reads % Spliced % Unspliced

D1 28 60.7 39.3 1,852 61.1 38.9
D1a 0 0.0 0.0 0 0.0 0.0
D2 31 12.9 87.1 3,401 5.3 94.7
D2b 38 0.0 100 3,919 0.2 99.8
D3 33 6.1 93.9 2,669 6.7 93.3
D4 78 53.8 46.2 4,501 27.2 72.8
D5 0 0.0 0.0 0 0.0 0.0
a MOI, 0.1.
b MOI, 0.01.

TABLE 4 5=ss D2b-derived exon junctions, transcripts, and ORFs identified in this work

Junction Exon No. of reads cDNA Transcript Length (bp)
Protein (molecular
mass [kDa]) Length (aa)

D2b_A2 1.2b.3.7 9 Identified 27 Short ORF 9
D2b_A3 1.2b.4.7 9 Identified 33 Short ORF 11
D2b_A4c 1.2b.4c.7 NDa ND 24 Short ORF 8
D2b_A4a 1.2b.4a.7 ND Identified 27 Short ORF 9
D2b_A4b 1.2b.4b.7 2 Identified rev4b 376 Rev4b (14.21) 125
D2b_A7 1.2b.7 ND Identified gp41 1 432 Gp41a (16.93) 144
D2b_A5 1.2b.5.7 4 Identified gp41 2 501 Gp41b (19.32) 167
a ND, none detected.
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rev ORFs resulted in equally strong luciferase expression (Fig. 9B
and C), demonstrating functional equivalence of Rev4b and Rev
protein isoforms in this assay.

DISCUSSION

In this study, we have performed a mutational analysis of the G
runs located in the HIV-1 NL4-3 intron 2 sequence and demon-
strated that vif mRNA splicing is tightly regulated by the intronic

G run GI2-1 that is localized at nt 73 to 76. So far, only the GGGG
motif overlapping 5=ss D2 from its intronic position has been
shown to have splicing regulatory activity by repressing exon 2
splicing (22). Here we have discovered that the hnRNP family
members F/H bound to GI2-1 and acted on vif mRNA expression
levels through repression of the alternative 5=ss, termed D2b.
Whereas the importance of the functional strength of 5=ss D2 for
vif expression has already been demonstrated by up and down
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mutations of its intrinsic strength (22, 70), as well as by the iden-
tification of SRE elements in exon 2 (18, 22), the inactivation of
GI2-1 now confirms that it is the functional strength of the exon 2
or/and 2b 5=ss that regulates vif mRNA expression levels.

Mutation of GI2-1 abrogated hnRNP F/H binding and relieved
silencing of the downstream alternative 5=ss D2b that led to the
emergence of several viral mRNA isoforms, including an exon
formed by 3=ss A1 and 5=ss D2b. However, mutation of GI2-1 also
increased the levels of vif mRNA, suggesting that an increase in
5=ss D2b recognition might also parallel an enhanced formation of
exon definition complexes and thus enhanced 3=ss A1 usage. In-
deed, endowing viral 5=ss D2 or D4 with a higher complementarity
to the cellular U1 snRNA facilitates activation of the upstream 3=ss
A1 and A5 (22, 24). Furthermore, coexpression of fully comple-
mentary U1 snRNAs directed against either 5=ss D2 or D3 (71)
strongly enhances the usage of the respective upstream 3=ss A1 or
A2, which is evident by high levels of vif and vpr mRNAs. There-
fore, it appears likely that inactivation of GI2-1 promotes the re-
cruitment of the U1 snRNP to 5=ss D2b and enhances the forma-
tion of exon definition complexes leading to both increased
inclusion of exon 2b in the different viral mRNA species and
higher levels of vif mRNA.

G runs mediate splicing regulation throughout evolution by
multiple mechanisms, depending on their position relative to the
splice site, distance, sequence context, and complex interactions
with other splicing factors (72, 73). Therefore, the proper position
of the G run seems to be decisive for its acting either as a silencer or
as an enhancer. Thus, the position of GI2-1, i.e., downstream of
5=ss D2 but upstream of D2b, seems to be a key factor rendering it
a negative regulator of vif mRNA by repressing 5=ss D2b.

Analyses of the hydrogen bonding patterns of U1 snRNA bind-
ing (63; http://www.uni-duesseldorf.de/rna/html/hbond_score
.php) and maximum-entropy estimation (45; http://genes.mit
.edu/burgelab/maxent/Xmaxentscan_scoreseq.html) revealed
that the alternative 5=ss D2b was, in fact, intrinsically stronger
(HBond score, 12.4; MaxEnt score, 5.99) than the upstream 5=ss
D2 (HBond score, 10.7; MaxEnt score, 5.73). Thus, according to
their intrinsic strength, the usage of D2b would be expected to be
more frequent. However, quite on the contrary, by RNA deep
sequencing of HIV-1-infected T cells, we found 26.5-fold less
D2b- than D2-containing exon junction reads (a relative D2b us-
age of 0.2% versus a relative D2 usage of 5.3%, i.e., a 26.5-fold
difference). Even though D2b usage was underrepresented in the
pool of exon junction reads (Table 4) and not found in a recent
transcriptome analysis by the Katze laboratory (74), it appears
from our results unlikely that it is the result of mere “biological
noise.” We rather favor the view that it is a bona fide NL4-3 alter-
native 5=ss. This assumption is based on the finding that, unlike
5=ss D2b-containing exon junction reads, D1a-containing exon
junction reads could not be detected in our analysis, which is
compatible with the observation that 5=ss D1a appears to be
tightly repressed and only infrequently used in vivo (68). More-
over, the usage of 5=ss D2b could be confirmed by RT-PCR, which
revealed the existence of several D2b-derived transcripts when a
forward primer positioned between D2 and D2b was used. Thus,
the repression of D2b appears to result from the silencing activity
mediated by G run GI2-1, which concomitantly has an indirect
enhancing activity in favor of the intrinsically weaker D2 5=ss.
These results also demonstrated that the functional strength of a
5=ss D2b is not only determined by its intrinsic strength, i.e., its

FIG 10 Splicing regulatory model for GI2-1. (A) Splicing at 5=ss D2 and D2b and 3=ss A1 and processing of vif mRNA are modulated by the formation of bridging
interactions across exons 2 and 2b. SRSF1-dependent heptameric ESEs M1 and M2 (ESEM1/2) and SRSF4-dependent ESE Vif (ESE-Vif) facilitate the recognition
of exon 2. The intronic G runs GGGG and GI2-1 negatively regulate exon 2 and 2b inclusion and levels of vif mRNA. (B) Inactivation of GI2-1 increased the usage
of 5=ss D2b and facilitated the recognition of 3=ss A1. The increased usage of the intrinsic weak 5=ss D2b in the absence of GI2-1 could be due to the wide-range
effect of SR proteins located upstream (X) and/or downstream (Y) of 5=ss D2b. Py tract, polypyrimidine tract.
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complementarity to the 5= end of U1 snRNA (63, 75), but also is
controlled by specific SREs.

The data demonstrated in this and previous work (18, 22) sug-
gested that splicing at 3=ss A1 and processing of vif mRNA are
modulated by the formation of bridging interactions across exons
2 and 2b, respectively (Fig. 10). On the one hand, two SREs within
the noncoding leader exon 2 enhance its splice site recognition
(the SRSF1 [SF2/ASF]-dependent heptameric ESEs M1 and M2
[18] and the SRSF4 [SRp75]-dependent ESE Vif [22]). On the
other hand, the intronic G run GGGG, which overlaps 5=ss D2
[22), and GI2-1 negatively regulate exon 2 and 2b inclusion and
levels of vif mRNA. Mechanistically, the repressing capacity of
such G runs, which overlap the 11 nt of a 5=ss, is likely based on the
restricted accessibility of the U1 snRNA due to competing binding
of hnRNP F/H (76). From its position upstream of 5=ss D2b, GI2-1
could negatively regulate the bridging interaction across exon 2b
by inhibiting the usage of 5=ss D2b. In line with this, inactivation
of GI2-1 increased the usage of 5=ss D2b and, as a result, dispro-
portionally facilitated 3=ss A1 recognition. The inhibition could be
a result of the interaction of hnRNP F/H proteins with compo-
nents of the spliceosome at various steps. The influence of G runs
on the progression on the spliceosomal cycle has been observed
for the major myelin proteolipid protein and its isoform DM20
lacking the alternatively spliced exon 3B. Here, G run G1M2 pro-
moted the ATP-independent formation of the E complex, which
initiates the spliceosomal cycle (73). In contrast, the S3 G run of
HIV-1 tat exon 1 promotes ATP-dependent spliceosomal A-complex
formation but had no effect on E-complex formation (30). Regarding
this, recent studies demonstrated that the SRE-mediated binding of
the U1 snRNP to a 5=ss does not necessarily imply processing into the
spliceosomal A-complex formation, but can lead to a “dead-end”
complex formation that prevents the splicing process (25–28). One
can imagine that such a mechanism could be responsible for the for-
mation of vif mRNA when 3=ss A1 is recognized by cross-exon inter-
actions, which seems to be facilitated by the binding of U1 snRNP to
the 5=ss without splicing at this position. For further information, see
the accompanying paper by Erkelenz et al. (81).

The importance of GI2-1 in the regulation of appropriate vif
expression levels maintaining optimal viral replication in A3G-
deficient, as well as A3G-expressing, cells was shown by multir-
ound infection experiments in cell lines, as well as PBMCs from
healthy donors. An appropriate ratio of Vif-to-A3G protein levels
was required for optimal virus replication, and this ratio was
highly dependent on the physiological environment. In accor-
dance with the observations by Strebel and coworkers (11), Vif
may function at very low levels when restriction pressure, i.e., A3G
expression, is also low, whereas higher Vif levels negatively affect
viral replication (Fig. 5). However, as seen in PBMCs, much
higher Vif levels were required for efficient viral replication, when
the host cell restriction pressure was high (Fig. 6). Thus, the higher
levels of Vif due to the inactivated GI2-1 facilitated viral replication
in the presence of large amounts of A3G. Since the expression of
splicing regulatory proteins changes during the course of the in-
fection (77), the presence of multiple SREs may be required to
optimize the amount of Vif protein in different cell types or at
various phases of the infection.
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Abstract  

Background

The HIV-1 accessory proteins, Viral Infectivity Factor (Vif) and the pleiotropic Viral 

Protein R (Vpr) are important for efficient virus replication. While in non-permissive 

cells an appropriate amount of Vif is critical to counteract APOBEC3G-mediated host 

restriction, the Vpr-induced G2 arrest sets the stage for highest transcriptional activity 

of the HIV-1 long terminal repeat. 

Both vif and vpr mRNAs harbor their translational start codons within the intron 

bordering the non-coding leader exons 2 and 3, respectively. Intron retention relies on 

functional cross-exon interactions between splice sites A1 and D2 (for vif mRNA) and 

A2 and D3 (for vpr mRNA). More precisely, prior to the catalytic step of splicing, 

which would lead to inclusion of the non-coding leader exons, binding of U1 snRNP 

to the 5’ splice site (5’ss) facilitates recognition of the 3’ss by U2 snRNP and also 

supports formation of vif and vpr mRNA. 

Results 

We identified a G run localized deep in the vpr AUG containing intron 3 (GI3-2), 

which was critical for balanced splicing of both vif and vpr non-coding leader exons. 

Inactivation of GI3-2 resulted in excessive exon 3 splicing as well as exon-definition 

mediated vpr mRNA formation. However, in an apparently mutually exclusive 

manner this was incompatible with recognition of upstream exon 2 and vif mRNA 

processing. As consequence, inactivation of GI3-2 led to accumulation of Vpr protein 

with a concomitant reduction in Vif protein. We further demonstrate that preventing 

hnRNP binding to intron 3, by GI3-2 mutation or by masking GI3-2 with locked 

nucleic acids, diminished levels of vif mRNA. In APOBEC3G-expressing but not in 
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APOBEC3G-deficient T cell lines, mutation of GI3-2 led to a considerable replication 

defect. Moreover, in HIV-1 isolates carrying an inactivating mutation in GI3-2, we 

identified an adjacent G-rich sequence (GI3-1), which was able to substitute for the 

inactivated GI3-2. 

Conclusions 

The functionally conserved intronic G run in HIV-1 intron 3 plays a major role in the 

apparently mutually exclusive exon selection of vif and vpr leader exons and hence in 

vif and vpr mRNA formation. The competition between these exons determines the 

ability to evade APOBEC3G-mediated antiviral effects due to optimal vif expression.  

Keywords 

HIV-1 infection, Host restriction, Cytidine deaminase, APOBEC3G, Viral Infectivity 

Factor (Vif), Viral Protein R (Vpr), Alternative pre-mRNA splicing, G run, hnRNP 

F/H, Locked nucleic acids (LNAs) 

Background  

The Human Immunodeficiency Virus type 1 (HIV-1) exploits cellular components of 

the host cell for efficient replication, while being counteracted by genes encoding so 

called host restriction factors, which have antiviral properties and negatively affect 

viral replication.  

Currently known host restriction factors consist of five major classes that are the 

DNA deaminase subfamily APOBEC3 (apolipoprotein B mRNA-editing enzyme, 

catalytic polypeptide-like) [1, 2], the Ubl conjugation ligase TRIM5  (Tripartite 

motif-containing protein 5 alpha) [3-5], the integral membrane protein BST-2 (bone 
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stromal tumor protein 2)/tetherin [6, 7], the dNTP hydrolase SAMHD1 (SAM domain 

and HD domain-containing protein 1) [8, 9], and the tRNA binding protein SLFN11 

(Schlafen 11) [10-12]. The APOBEC3 (A3) family includes seven members (A3A to 

A3D and A3F to A3H) that are located in a gene cluster on chromosome 22 [13-15], 

from which A3D, A3F, A3G and A3H have HIV-1 restrictive capacities [2, 16, 17]. 

They are encapsidated in newly assembled virions, and following the subsequent 

infection of a host cell, introduce C-to-U substitutions during minus-strand synthesis. 

This results in G-to-A hypermutations in the HIV-1 genome, which negatively impact 

viral replication. Hereby, A3G causes GG to AG transitions, whereas A3D, A3F, and 

A3H lead to an overrepresentation of GA to AA hypermutations [2, 16, 18-21]. 

However, the HIV-1 encoded accessory protein Vif counteracts the four A3 proteins 

by binding CBF  and recruiting an E3 ubiquitin ligase complex, thus inducing their 

polyubiquitination and proteasomal degradation [2, 22]. 

Since all early HIV-1 proteins are expressed from spliced intronless viral mRNAs, 

splicing factors and splicing regulatory proteins are particularly involved in viral 

infection. Moreover, CAP-dependent translation is initiated by binding of the 40S 

ribosomal subunit at the mRNAs’ 5’end and by ribosomal scanning for an efficient 

AUG. By using at least four 5’ splice sites (5’ss) and eight 3’ splice sites (3’ss), the 

HIV-1 9 kb pre-mRNA is processed into more than 40 alternatively spliced mRNA 

isoforms [23] encoding at least 18 HIV-1 proteins, most of them interacting with a 

wide variety of host cell components [24]. Thus, HIV-1 relies on massive alternative 

splicing to bring each of its eight translational start codons (gag-pol, vif, vpr, tat, rev, 

nef, vpu, and env) into close proximity of the 5’-cap of the respective alternatively 

spliced mRNA. The only exception to this rule is the env ORF, which is translated 
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from the bicistronic vpu/env mRNA. Here, a minimal upstream ORF upstream of the 

vpu ORF allows efficient translation initiation at the downstream env AUG [25, 26]. 

Within the 4 kb class of mRNAs, downstream of 5’ss D2–D4 translational start 

codons are localized, which can only be recognized by the 40S ribosomal subunit if 

the respective introns are retained. In particular, vif mRNA is formed when the intron 

upstream of exon 2 is spliced out, while its downstream intron is retained. In a similar 

way, vpr mRNA is formed by removing upstream introns carrying translational 

inhibitory AUGs but repressing D3 and thus retaining intron 3. Both mRNAs rely on 

functional cross-exon interactions between the 5’ss and the corresponding upstream 

3’ss [27-29]. Thus, formation of unproductive spliceosomal complexes at the 5’ss is 

essential for 3’ss activation and exon definition as well as for splicing-repression at 

the 5’ss [30]. Hence, the expression levels of vif and vpr mRNAs are dependent on U1 

bound, but splicing repressed 5´ss [27, 28]. 

Notably, excessive splicing at A2 was shown to result in detrimental impairment of 

the balanced ratio of spliced to unspliced viral mRNAs and loss of the viral unspliced 

genomic 9 kb mRNA, a phenotype referred to as oversplicing [31, 32]. Since Gag and 

Pol are encoded by the unspliced 9 kb mRNA, oversplicing decreases the amounts of 

p55 Gag and p24-CA resulting in massive inhibition of viral particle production and 

replication [31-34].  

Moreover, transcripts containing either non-coding leader exon 2 or 3 as required for 

vif and vpr mRNAs, respectively, appear to be regulated in a similar way as 3’ss A1 

and A2 recognition, which appears to underlie a mutually exclusive selection [28]. 

However, the molecular mechanism is still poorly understood. 

Since 3’ss A2 was shown to be an intrinsically strong 3’ss [35], trans-acting elements 

are necessary to repress its usage. Indeed, the ESSV within the non-coding leader 
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exon 3, which consists of three UAG motifs, has been reported to inhibit splicing at 

3’ss A2 [36-38]. In addition, the Tra2-alpha and Tra2-beta-dependent splicing 

regulatory element ESEvpr positively regulates balanced amounts of exon 3 

recognition by acting positively on U1 snRNP recruitment to 5’ss D3, which in turn 

promotes recognition of the upstream 3’ss A2 via cross exon interaction [28]. Vpr 

formation was further proposed to be regulated by high-mobility group A protein 1a 

(HMGA1a), which binds immediately upstream of 5’ss D3 and acts to repress 

splicing at this position. Here, trapping of U1 snRNP might activate 3’ss A2 and 

repress splicing at 5’ss D3 [39].  

Recently, we identified a G run with high affinity for hnRNP F/H and A2/B1 proteins 

localized within intron 2 (GI2-1), but upstream of the vif AUG, which represses usage 

of the alternative 5’ss D2b [29]. Mutations of GI2-1 led to considerable upregulation 

of vif mRNA expression [29]. Here, we analyzed whether regulation of exon 3 

inclusion and processing of vpr mRNAs is regulated in an analog manner by intronic 

G runs located in HIV-1 intron 3.  

Results  

The guanosine run element (GI3-2) localized deeply within HIV-1 intron 3 is 

critical for efficient replication in PBMCs 

Previously we have shown that an intronic G run within HIV-1 intron 2 is critical for 

splicing regulation of vif mRNA [29]. To examine whether an intronic G run is 

likewise critical for regulation of vpr mRNA, whose processing similarly depends on 

intron retention, we inspected HIV-1 intron 3 for the occurrence of G runs. Since they 

are highly abundant in mammalian introns [40-42], it was not surprising that we found 
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four G runs, which we termed GI3-1 to GI3-4 according to their 5’ to 3’ localization 

(Figure 1). However, only two of these, GI3-2 and GI3-3, were found to match the 

consensus motif DGGGD (where D is G, A, or T) of the high affinity binding site for 

members of the hnRNP H family [43]. Moreover, since GI3-2 and GI3-3 were highly 

conserved in HIV-1 strains (Figure 1D), we analyzed whether one or even both had an 

impact on viral replication. To this end, we disrupted each of them in the molecular 

clone pNL4-3 by introducing single nucleotide substitutions (pNL4-3 GI3-2 mut, 

pNL4-3 GI3-3 mut). To be able to infect PMBCs with equal amounts of viral particles, 

we first transfected HEK 293T cells with the proviral plasmid pNL4-3 or its mutant 

derivates, pNL4-3 GI3-2 mut or pNL4-3 GI3-3 mut, and then harvested virus-

containing supernatants 48 h post transfection. The TCID50 were calculated by X-Gal 

staining of infected TZM-bl reporter cells. These cells carry a luciferase and -

galactosidase expression cassette under the control of the HIV-1 LTR and thus 

express both reporter genes in the presence of HIV-1 Tat [44]. With a multiplicity of 

infection (MOI) of each of 0.05 and 0.5, PBMCs from two healthy donors were then 

infected and p24-CA protein levels were determined at various time points. As shown 

in Figure 2, GI3-3, but not GI3-2 mutated virus, was able to replicate in PBMCs 

indicating that specifically GI3-2 was critical for efficient virus replication in primary 

T-cells. 

Mutating GI3-2 results in an impaired ratio of spliced to unspliced mRNAs 

In order to scrutinize whether the replication defect of GI3-2 mutant virus might have 

been caused by reduced amounts of Vif protein due to insufficient amounts of vif

mRNA, we analyzed the splicing patterns of proviral DNA from pNL4-3 and G run 

mutant. To this end, total RNA of HEK 293T cells transfected with each of the 

proviral DNAs was subjected to Northern blot analysis and probed with a DIG-
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labeled HIV-1 exon 7 amplicon detecting all viral mRNA classes. While the overall 

splicing pattern was not changed for the GI3-3 provirus (data not shown), inactivation 

of GI3-2 caused massive disturbance of the balanced ratio of the three viral mRNA 

classes with the most obvious decrease in the amount of unspliced 9 kb mRNA 

(Figure 3A-B). 

In order to quantify the amounts of the viral RNA classes, we performed quantitative 

RT-PCR analysis using primers (Additional file 1: Figure S1) binding in intron 1 

(gag-pol) to detect unspliced 9 kb mRNA, as well as primers to quantify the relative 

amount of multiply spliced mRNAs (exon junction D4/A7). As shown in figure 3C, 

the relative amount of unspliced, i.e. intron 1 containing mRNAs, was three-fold 

decreased compared to the amount from non-mutated virus. In parallel, the relative 

amount of multiply spliced mRNAs was three-fold increased. Thus, inactivation of 

GI3-2 shifted the balance towards intronless viral mRNAs.  

Since p24-CA protein is encoded by the unspliced 9 kb mRNA, the widening gap 

between unspliced and multiply spliced mRNAs that has been previously described 

and referred to as oversplicing or excessive splicing [31-34] might result in 

diminished viral p24-CA production. However, since unspliced 9 kb mRNA was still 

detectable in the Northern blot analysis of GI3-2 mutant virus, the three-fold lower 

viral particle production was probably not the only cause of the totally abolished 

replication of GI3-2 mutant virus in PBMCs. 

GI3-2 plays a major role in exon 2 vs. exon 3 selection and vif vs. vpr mRNA 

expression  

Since activated PBMCs exhibit high expression of the host restriction factor 

APOBEC3G [29, 45], we were interested in whether the replication defect of GI3-2 

mutant virus might have originated from disturbed expression of the viral antagonist 
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of APOBEC3G, which is the accessory protein Vif. For this purpose, we analyzed the 

impact of the GI3-2 inactivating mutation on vif gene expression. HEK 293T cells 

were transiently transfected with pNL4-3 or the GI3-2 mutant proviral plasmid 

pNL4-3 GI3-2 mut, and total RNA and proteins were harvested 48 h post transfection. 

As determined by semi-quantitative RT-PCR using primer pairs to specifically 

amplify intron-containing (4 kb) or intronless (2 kb) HIV-1 mRNAs (Additional file 

1: Figure S1), inactivation of GI3-2 resulted in excessive exon 3 splicing in the tat, nef, 

and env mRNAs (Tat3, Nef4, Env8), and concomitantly led to accumulation of vpr

mRNA indicating that GI3-2 represses exon 3 and 3’ss A2 recognition (Figure 4B). 

However, enhanced splicing of A2 was obviously incompatible with the recognition 

of the upstream exon 2 as observed by means of multiply spliced mRNAs (Tat2, 

Nef3) and consequently vif mRNA processing (Figure 4B). Mutating GI3-2 

considerably shifted from exon 2 to exon 3 containing transcripts indicating that GI3-2 

balances selection of exon 2 and exon 3. 

To quantify the impact of inactivated GI3-2 on misregulation of exon 2 and 3 splicing, 

we performed quantitative real time RT-PCR using primer pairs (c.f. additional file 1: 

Figure S1 for primer binding sites) detecting the relative splicing efficiencies of 

mRNAs containing either exon 2 or 3 as well as the relative splicing efficiencies of 

vpr and vif mRNAs (Figure 4C). We quantified a 44-fold increase in exon 3 and 

concomitant three-fold decrease in exon 2 containing transcripts. Furthermore, we 

quantified a 30-fold increase of vpr mRNA, when GI3-2 was mutated confirming that 

GI3-2 is also required for the activation of 3’ss A2 (Figure 4D). On the other hand, vif

mRNA was observed to decrease 2.5-fold compared to the non-mutated virus, 

verifying the aforementioned observation that 3’ss A1 and A2 are spliced in an 

apparently mutually exclusive manner (Figure 4D). This was furthermore confirmed 

72



 - 10 - 

by the quantitation of the relative splicing efficiency of tat mRNAs of GI3-2 mutant 

virus, which resulted in considerable increase in tat3 (18-fold) and concomitant 

decrease of tat2 (four-fold) mRNA splicing (Figure 4E).  

Next, we performed Western blot analyses to evaluate excessive exon 3 splicing and 

opposite effects on vpr and vif mRNA splicing also on protein levels (Figure 4F). In 

accordance with decreased amounts of unspliced mRNAs, we observed a remarkable 

decrease in Gag expression, which was mainly reflected by the reduced amounts of its 

cleavage products. Similarly, virus particles in the supernatant were decreased (Figure 

4E, p24-CA (sn)). As expected from the RT-PCR results described above, the 

expression of Vpr protein was considerably increased when GI3-2 was mutated. In 

parallel, Vif protein amounts were significantly decreased to 65% when compared to 

non-mutated virus (Figure 4E and F). In conclusion, the intronic G run GI3-2 acts to 

repress the activation of 3’ss A2 and plays a major role in the apparently mutually 

exclusive selection of exon 2 and exon 3, which in turn regulates the expression of 

Vpr and Vif protein.  

GI3-2 is critical for viral replication in APOBEC3G-expressing but not -deficient 

cells 

Since physiological levels of Vif are necessary to counteract APOBEC3G-mediated 

host restriction, we were interested in whether the diminished Vif protein levels of 

GI3-2 mutated virus were the underlying cause of the replication incompetence in 

PBMCs. In order to prove this hypothesis, we aimed to analyze the replication 

kinetics of mutant and non-mutant virus in APOBEC3G low expressing CEM-SS [1] 

and high expressing CEM-A [46] cell lines, whose expression we previously 

confirmed by APOBEC3G immunoblot analysis [29]. As a control, the vif deficient 

mutant pNL4-3 vif proviral DNA was included in this analysis [47]. CEM cells were 
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infected with an MOI of 0.01, cell free supernatants were harvested at frequent 

intervals, and p24 capsid protein production (CA) was monitored by capture ELISA 

to quantify viral replication (Figure 5). As anticipated, in APOBEC3G low expressing 

CEM-SS cells, vif deficient virus was able to produce viral particles with comparable 

efficiency as non-mutant NL4-3 virus. However, the replication curve of GI3-2 mutant 

virus flattened out at a tenfold lower p24-CA amount compared to non-mutant and vif

deficient virus, confirming that inactivating GI3-2 not exclusively alters vif mRNA 

processing but generally disturbs the balanced ratio of all classes of RNA impairing 

viral replication. On the contrary, vif deficient as well as GI3-2 inactivated viruses 

were replication incompetent in APOBEC3G high expressing CEM-A cells and thus 

ended up in an abortive infection. These results indicate that the replication 

incompetence was the net result of diminished Vif protein levels as well as reduced 

p24-CA production caused by the G run mutation. These results also demonstrate that 

GI3-2 was critical for efficient virus replication in APOBEC3G expressing cells and 

that the threshold of Vif required for optimal viral replication was in a narrow range.  

The intronic G run GI3-2 is a high affinity binding site for hnRNP H and F 

Since G runs represent high affinity binding sites for members of the hnRNP H and F 

protein families [29, 43], we performed RNA affinity purification (RNA pull-down) 

analysis to examine whether this was also the case for the intronic G run GI3-2. To 

this end, short RNA oligonucleotides containing two copies of the MS2 binding site, 

and the wildtype or mutant GI3-2 sequence, respectively, were transcribed in vitro. 

The RNAs were then covalently immobilized on agarose beads and incubated in HeLa 

cell nuclear extract supplemented with recombinant MS2 coat protein to allow 

monitoring RNA pull-down efficiency. Subsequently, the associated proteins were 

eluted and separated on SDS-PAGE and subjected to immunoblot analysis (Figure 6). 
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As expected, we detected predominantly binding for hnRNP H and strong binding for 

hnRNP F to wildtype GI3-2 but no binding to the mutant GI3-2 RNA oligonucleotide. 

Since the pull-down efficiencies were identical (Figure 6, MS2), these findings 

indicate that proteins hnRNP H and F most likely participate in the splicing regulation 

of vif and vpr mRNAs by intronic GI3-2. 

Masking GI3-2 by locked nucleic acids restricts viral particle production 

In order to specifically prohibit the binding of hnRNP H and F proteins to GI3-2, we 

designed locked nucleic acids (LNAs) against this sequence motif as well as a control 

LNA that contained three mismatches and thus should be unable to bind at this 

position (Figure 7A). Following co-transfection of HeLa cells with pNL4-3 and each 

of the LNAs, total RNA was harvested and analyzed by Northern blotting using a 

HIV-1 exon 7 specific probe. Co-transfection of the GI3-2 LNA resulted in a 

considerable reduction in viral RNAs compared to pNL4-3 alone or pNL4-3 co-

transfected with the mismatch control LNA, GI3-2 MM (Figure 7B). To further 

determine whether viral particle production and Gag protein expression were also 

affected, total proteins of the transfected cells and the virus containing supernatant 

were subjected to immunoblot analysis and detected with a p24-CA specific antibody. 

In line with the above findings, Gag precursor (Pr55gag) as well as Gag processing 

intermediate (Pr41) and product (p24-CA) were significantly reduced in the presence 

of the GI3-2 LNA (Figure 7C). There was little effect on the Gag protein expression 

and virus production when co-transfecting the GI3-2 MM LNA emphasizing the 

specificity of the GI3-2 LNA and the impact of GI3-2 on viral particle production. 
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The GI3-2 binding site is functionally conserved in HIV-1 

To assess whether GI3-2 might be a valuable target for LNA-mediated antiviral 

therapy, we were interested in whether GI3-2 is conserved in all HIV-1 subtypes. 

Indeed, an alignment of all HIV-1 consensus sequences showed that 9 out of 12 

consensus sequences encode a conserved G run at the designated position (Figure 

8A). The remaining three subtypes lacking a G run at this particular position contain a 

G run only 6 nucleotides upstream due to a compensatory nucleotide substitution in 

position 2 of GI3-1 restoring the protein binding consensus sequence DGGGD. The 

A>G substitution in GI3-1 likely converts a low affinity (AAGGGC) into a high 

affinity binding site (AGGGGC). To demonstrate that the compensatory GI3-1 

mutation could functionally substitute for an inactivated downstream GI3-2 binding 

site we inserted the corresponding mutations into pNL4-3 and pNL4-3 GI3-2 mut 

(Figure 8C) and determined their splicing outcomes. Total RNA was isolated 24 h 

following transient transfection of HEK 293T cells, and splicing patterns were 

analyzed by qualitative (Figure 9A) and quantitative RT-PCR (Figure 9B). 

Introducing an A>G mutation in position 2 of GI3-1 while GI3-2 was inactivated by 

the G>A mutation, we could compensate the excessive exon 3 and vpr mRNA 

splicing phenotype described above and restored the amounts of exon 2 containing 

transcripts (Figure 9A, lane 3) as well as vif mRNA (Figure 9B). These results 

demonstrate that the A>G nucleotide change in position 2 of GI3-1 (cf. Figure 8C; J, 

G, AE) is a compensatory mutation. The introduction of this substitution without 

inactivating downstream GI3-2 had no effect on vif and vpr mRNA amounts (Figure 

9A-B, cf. lanes 1 and 5) suggesting that there is no evolutionary pressure on two 

functional binding sites. To determine whether the compensatory mutant was also 

capable of restoring and rescuing Vif and Vpr protein levels, we isolated total cellular 
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proteins and subjected them to immunoblot analysis. Consistent with the findings 

above, the compensatory A>G mutation reduced Vpr amounts and restored Vif 

protein levels to those levels obtained with wildtype pNL4-3 (Figure 9D, Vpr, Vif). In 

addition, the reduced amount in Gag precursor as well as viral particle production 

could be rescued (Figure 9D, p24-CA). The data obtained in these experiments 

highlights a functional conservation of the G run in all HIV-1 subtypes supporting an 

indispensable role for GI3-2 in HIV-1 replication. 

Discussion  

Within HIV-1 NL4-3 intron 3 we identified a high affinity binding site for members 

of the hnRNP H family, termed GI3-2. Binding of hnRNP H and F proteins to GI3-2 

was confirmed by RNA pull-down experiments and could be efficiently prevented 

either by point mutation or upon co-transfection with an LNA specifically targeting 

GI3-2. Inactivation of GI3-2 led to aberrant alternative splicing and to a replication 

defective phenotype in PBMCs and APOBEC3G expressing CEM-A cells.  

Since the GI3-2 inactivating mutation resulted in an amino acid (aa) substitution at 

position 185 (G185E) in the Vif protein, which is localized in the Gag, p7-NC, and 

membrane binding domain [22], we cannot rule out that, beside its deleterious 

splicing regulatory effect, the inactivating mutation might additionally lead to an 

impaired Vif activity to counteract ABOBEC3G. Residues 172 to 192 were shown to 

be involved in membrane association [48], and mutating aa positions 179 to 184 

(KTKGHR>ATAGHA) resulted in 25% loss of membrane binding and decreased 

Pr55Gag binding [49]. However, a T>A substitution at aa position 188 of Vif had no 

effect on the ability to decrease APOBEC3G levels [50]. Moreover, since the G185E 
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substitution at GI3-2 was also present in three (G, J and AE) of twelve HIV-1 

consensus sequences, it appears unlikely that this mutation results in a severe impact 

on the functionality of Vif.  

At the RNA level, in parallel to an increase in exon 3 recognition, mutating GI3-2 also 

decreased levels of exon 2 containing transcripts as well as vif mRNA, demonstrating 

that recognition of either exon strongly influences the other. Indeed, we have shown 

recently that excessive splicing of exon 3 and vpr mRNA processing concomitantly 

resulted in considerable decrease of exon 2 and vif mRNA splicing, indicating an 

apparently mutually exclusive exon selection of exon 2 and exon 3 [28]. In this work 

we demonstrated that this competition, which is regulated by GI3-2, determines the 

ability to evade APOBEC3G-mediated antiviral effects due to vif expression. Hence, 

an insufficient level of Vif is unable to maintain viral replication due to insufficient 

APOBEC3G-counteraction. 

All HIV-1 intron-containing mRNAs that harbor translational start codons in their 

introns immediately downstream of their leader exon (avoiding translational 

inhibitory AUGs) depend on the recognition of the leader exons’ 3’ss. However, their 

corresponding 5’ss must be rendered splicing incompetent in order to include the start 

codons into the nascent transcript. For instance, the intron-containing env mRNAs, 

which belong to the class of HIV-1 4 kb mRNAs, are formed by using a splice 

acceptor that is derived from either one of the 3’ss central cluster (A4c,a,b and A5), 

and splicing repression at D4. Hereby, U1 bound to D4 and U2 snRNPs bound to 3’ss 

A4cab or A5 pair with each other via cross-exon interactions [30] and facilitate exon 

definition [51, 52]. In addition, these interactions are supported by the strong 

guanosine-adenosine-rich enhancer GAR ESE, which is localized immediately 

downstream of 3’ss A5 [30, 53]. Importantly, the binding of a splicing incompetent 
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U1 snRNA was sufficient to promote exon definition and 3’ss activation indicating 

that exon definition but not splicing at D4 is crucial to activate upstream splice 

acceptor usage in order to gain env/vpu mRNAs [30]. In a similar way, vif and vpr

mRNAs seem to rely on comparable functional cross-exon interactions, in these cases 

between splice sites A1 and D2 (exon 2) as well as A2 and D3 (exon 3), respectively, 

which determined the splicing efficiency of vif and vpr mRNA. In agreement with the 

formation of env/vpu mRNAs, exon 3 inclusion and vpr mRNA expression can be 

modulated by up and down mutations of 5’ss D3 as well as by co-transfection of 

modified U1 snRNAs with perfect complementarity to the 5’ss D3 [28, 32]. Hereby, 

binding of U1 snRNP to a non-functional 5’ss was shown to be already sufficient to 

enhance splicing at the upstream 3’ss A2 indicating that vpr encoding mRNAs are 

dependent on the relative occurrence of U1-bound, but splicing-repressed 5’ss [28]. 

Correspondingly, the co-expression of a U1 snRNA that was fully complementary to 

a splicing deficient HIV-1 D2 mutant was sufficient to maintain vif mRNA formation 

[27]. Since both D3 up- [28] as well as GI3-2 mutations increased exon 3 inclusion as 

well as vpr formation, it seems plausible that GI3-2 might play a role in the inhibition 

of U1 snRNP recruitment to D3.  

So far vif mRNA formation has been known to be maintained by the two SRSF1 

dependent heptameric exonic splicing enhancers ESEM1 and ESE2 [35], the SRSF4 

dependent ESE Vif [27], as well by the intronic G rich silencer elements G4 

overlapping with the intronic nucleotides of 5’ss D2 and thus likely competing with 

U1 snRNP binding [27]. In addition, we recently identified the intronic G run GI2-1, 

which impairs usage of the HIV-1 alternative 5’ss D2b as well as exon definition of 

exon 2b, and thus inhibits splicing at 3’ss A1 [29]. Here, we show that vif mRNA is 

not only regulated by exon 2 and exon 2b associated SREs [27, 29, 35], but in 
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addition is also controlled by the balanced exon recognition and splicing of exon 2 

and exon 3. Thus, the intronic G runs, GI3-1 and GI3-2, extend the repertoire of SREs, 

acting on vif and vpr mRNA splicing regulation. 

Conserved non-coding sequences often harbor cis-regulatory elements that can vary in 

their sequence. However, since GI3-1 and GI3-2 are localized in both vif and vpr

ORFs, there is little room left to maintain proper protein affinity forming a 

compromise between splicing efficiency on the one hand and protein function on the 

other hand. Comparing HIV-1 consensus sequences (Los Alamos HIV database) it 

turned out that GI3-2 matches the consensus sequences of HIV-1 strains A2, B and D. 

In addition, the three consensus sequences of strains J, G and AE were equivalent to 

the inactivating GI3-2 mutation but contained a high affinity hnRNP H binding site in 

position of GI3-1 (comparable to GI3-1 cmp/GI3-2 mut). However, most of the 

consensus sequences contain both G runs, GI3-1 and GI3-2, as high affinity binding 

sites. Thus, removal of only a single G run preserves phenotypic functioning 

indicating that a single protein binding site irrespective of the exact nucleotide 

sequence is sufficient to maintain proper splicing. Since viral replication of GI3-2 

mutant NL4-3 virus was considerably impaired in APOBEC3G-expressing, but not in 

-deficient cells, we propose that at least one functional high affinity binding site for 

hnRNP H and F, either GI3-1 or GI3-2, is critical to maintain an optimal Vif to 

APOBEC3G ratio. In addition, the redundancy of these G runs could represent a viral 

backup mechanism to easily re-substitute defect binding sites by an exchange of a 

single nucleotide.  

Targeting Vif gene expression represents an attractive therapeutic strategy as it 

supports infected cells to defend themselves in an APOBEC3-dependent manner. 

Since viral replication of GI3-2 mutant NL4-3 virus was strongly impaired in human 

80



 - 18 - 

primary T-lymphocytes, G runs GI3-1 and GI3-2 may represent suitable therapeutic 

targets. However, since sublethal levels are proposed to contribute to viral genetic 

diversity, suboptimal Vif inactivation might give rise to the emergence of viral quasi-

species and drug resistant HIV-1 strains [54, 55]. Hence, there is a need for multiple 

therapeutic approaches to inactivate Vif in parallel. Potentially, this can be achieved 

by masking numerous SREs that facilitate vif expression. Furthermore, this strategy 

could minimize the risk of second site mutations that may potentially substitute 

therapeutically induced aberrant splicing. Moreover, it will be interesting to analyze 

the effect of GI3-2-mediated increase of Vpr protein levels, which are important for 

HIV-1 replication in macrophages.  

Conclusions  

Our data suggest that the intronic G runs GI3-1 and GI3-2, which are functionally 

conserved in most HIV-1 strains, are critical for efficient viral replication in 

APOBEC3G-expressing but not in APOBEC3G-deficient T cell lines. Hereby, 

inactivation of GI3-2 results in increased levels of both mRNA and protein levels of 

Vpr, but concomitantly in decreased amounts of Vif mRNA and protein levels. GI3-2, 

which is bound by hnRNP H and F proteins, plays a major role in the apparent 

mutually exclusive exon selection of vif and vpr leader exon selection. Furthermore, 

mutating GI3-2 decreased levels of unspliced 9 kb mRNA and p24-CA production. 

Since competition between these exons determines the ability to evade APOBEC3G-

mediated antiviral effects due to vif expression, we propose that GI3-2 is critical for 

viral replication in non-permissive cells due to an optimal Vif-to-APOBEC3G ratio as 

well as for maintenance of efficient p24-CA production.  
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Methods 

Plasmids 

Proviral DNA pNL4-3 GI3-2 mut was generated by replacing the AflII/NarI fragment 

of pNL4-3 [GenBank: M19921] [56] by the PCR-amplicon obtained by using primer 

pair #2339/#3896. Proviral plasmid pNL4-3 GI3-3 mut was generated by substitution 

of the EcoRI/NdeI fragment of pNL4-3 with a PCR product containing equal 

restriction sites by using primer pair #2330/#3897. The respective PCR products for 

pNL4-3 GI3-1 cmp (#4355/#4718) and pNL4-3 GI3-1 cmp/GI3-2 mut (#4355/#4720) 

containing PflMI and XcmI restriction sites were cloned into pNL4-3 by substitution 

of the PflMI/XcmI fragment. Due to the overlapping vif and vpr open reading frames 

(ORFs), mutations resulted in single amino acid substitutions (K181R GI3-1 cmp; 

G185E GI3-2 mut) within the Vif protein (Figure 8D). pXGH5 [57] was co-transfected 

to monitor transfection efficiency in quantitative and semi-quantitative RT-PCR 

analyses. All constructs were validated by DNA-sequencing. 

Oligonucleotides 

All DNA oligonucleotides (Table 1) were obtained from Metabion (Germany), those 

used for real time PCR analysis were HPLC purified. RNase-Free HPLC purified 

LNAs (GI3-2: TATGGCTCCCTCTGTG; GI3-2 mismatch control: 

TTTGGCTCACTCCGTG) were purchased from Exiqon (Denmark). 

Cell culture, transfection conditions and preparation of virus stocks 

HEK 293T and HeLa cells were maintained in Dulbecco’s high glucose modified 

Eagle’s medium (Invitrogen) supplemented with 10% (v/v) heat-inactivated fetal calf 

serum (FCS) and 50 g/ml of penicillin and streptomycin (P/S) each (Invitrogen). 

Transient transfection experiments were performed in six-well plates (2.5 X 105 cells 
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per well) using TransIT®-LT1 transfection reagent (Mirus Bio LLC) according to the 

manufacturer´s instructions. For LNA co-transfection experiments, 2.5x105 HeLa 

cells per well (six-well plate) were cultured in Opti-MEM reduced serum medium 

(Invitrogen) with 5% FCS. The next day, medium was replaced with Opti-MEM 

reduced serum medium without FCS. For LNA transfection 4 l of Lipofectamine 

2000 (Invitrogen) was added to 250 l Opti-MEM reduced serum medium. 

Separately, proviral plasmid pNL4-3 (0.7 g), plasmid pXGH5 (0.7 g) and the 

respective LNAs (80 nM) were added to 250 l Opti-MEM reduced serum medium. 

After 5 min the LNA/DNA mixtures were added to the Lipofectamine 2000 

containing medium, incubated for 20 min and subsequently added to the cells. After 4 

hours, medium was removed and cells were washed twice with PBS and cultured with 

Opti-MEM reduced serum medium with 5% FCS for 24 hours. 

For preparation of virus stocks 6.5 x 106 HEK 293T cells were cultured in T175 flasks 

that were previously coated with 0.1 % gelatine solution. Cells were transiently 

transfected with 9 g of pNL4-3 or mutant proviral DNA using polyethylenimine 

(Sigma-Aldrich). Following overnight incubation, cells were supplemented with fresh 

IMDM cell culture medium containing 10% FCS and 1% P/S. 48 hours post 

transfection, virus containing supernatant was purified by centrifugation, aliquoted 

and stored at -80°C. Transfection efficiency was monitored by using pNL4-3 GFP 

[58]. 

CEM-A and CEM-SS cells were maintained in RPMI 1640 medium (Invitrogen) 

supplemented with 10% FCS and P/S (50 g/ml each, Invitrogen). Peripheral blood 

mononuclear cells (PBMCs) were isolated from 15 ml whole blood from two healthy 

donors by ficoll gradient centrifugation. PBMCs were maintained in RPMI 1640 

GlutaMax medium containing 10% FCS and 1% P/S and activated with 
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phytohemagglutinin PHA (5 g/ml). 48 hours post isolation cells were treated with 

IL-2 (30 mg/ml). 

RNA-isolation, quantitative and semi-quantitative RT-PCR 

Total RNA was isolated by using acid guanidinium thiocyanate-phenol-chloroform as 

described previously [59]. RNA concentration and quality was analysed by 

photometric measurement using Nano-Drop 1000 spectrophotometer, ND-1000 

version 3.7.0 (Thermo Scientific). Reverse transcription of 5 g of total RNA was 

performed as described previously [29]. For quantitative and qualitative analysis of 

HIV-1 mRNAs the indicated primers (Table 1) were used to amplify the cDNA-

template. As a loading control, a separate PCR detecting GAPDH was performed with 

primers #3153 and #3154. PCR products were separated on non-denaturing 

polyacrylamide gels (10%), stained with ethidium bromide and visualized with the 

Intas Gel iX Darkbox II (Intas, Germany). Quantitative RT-PCR analysis was 

performed by using Precision 2x real-time PCR MasterMix with SYBR green 

(Primerdesign, UK) using LightCycler 1.5 (Roche). Primers used for qualitative and 

quantitative RT-PCR are listed in Table 1. 

Protein isolation and Western blotting 

For protein isolation cells were lysed using RIPA lysis buffer (25 mM Tris HCl [pH 

7.6], 150 mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% SDS, protease 

inhibitor cocktail [Roche]). Subsequently, the lysates were subjected to SDS-PAGE 

under denaturating conditions [60] in 8-12% polyacrylamide gels (Rotiphorese Gel 

30, Roth) as described before [29]. The following primary antibodies were used for 

immunoblot analysis: Sheep antibody against HIV-1 p24 CA from Aalto (Ireland); 

mouse monoclonal antibodies specific for HIV-1 Vif (ab66643) and hnRNP F+H 
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proteins (ab10689) from Abcam (United Kingdom); rabbit anti-HIV-1-Vpr (51143-1-

AP) polyclonal antibody from Proteintech Group (United Kingdom); rabbit 

polyclonal antibody against MS2 (TC-7004) from Tetracore (Rockwill, USA); mouse 

anti -actin monoclonal antibody (A5316) from Sigma-Aldrich. The following 

horseradish peroxidase (HRP) conjugated secondary antibodies were used: anti-rabbit 

HRP conjugate (A6154) from Sigma-Aldrich; anti-mouse antibody (NA931) from GE 

Healthcare (Germany), and anti-sheep HRP from Jackson Immunoresearch 

Laboratories Inc. (West Grove, PA). Blots were visualized by an ECL 

chemiluminescence detection system (Amersham) and Intas ChemoCam imager 

(Intas, Germany). 

Northern blotting 

For Northern blotting of HIV-1 mRNAs 3 g of total RNA were separated on 

denaturing 1% agarose gel and capillary blotted onto positively charged nylon 

membrane and hybridized with an digoxigenin (DIG)-labeled HIV-1 exon 7 PCR-

amplicon (#3387/#3388) as previously described [29]. 

Measurement of HIV-1 replication kinetics 

Virus containing supernatants, which were generated by transient transfection of HEK 

293T cells (see above), were assayed for p24-CA via p24-CA ELISA or alternatively 

for TCID50 as determined by calculation of X-Gal stained TZM-bl cells. 4 x 105

CEM-SS or CEM-A cells were infected with 1.6 ng of p24-CA of WT and mutant 

viruses in serum-free RPMI medium at 37°C for 6 hrs. Infected cells were washed in 

PBS (Invitrogen) and resuspended in RPMI media (Invitrogen) containing 10% FCS 

and 1% P/S (Invitrogen). Aliquots of cell-free media were harvested at intervals and 
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subjected to p24-CA ELISA (see below). 8 x 105 PBMCs were infected with the 

indicated MOI as determined by TCID50 calculation. 

p24-CA ELISA 

For HIV-1 p24-CA quantification using twin-site sandwich ELISA [61, 62] Nunc-

Immuno 96 MicroWell solid plates (Nunc) were coated with anti p24 polyclonal 

antibody (7.5 g/ml of D7320, Aalto) in bicarbonate coating buffer (100 mM 

NaHCO3 pH 8.5) and incubated overnight at room temperature. Subsequently, the 

plates were washed with TBS (144 mM NaCl, 25 mM Tris pH 7.5). HIV in the cell 

culture supernatant was inactivated by adding Empigen zwitterionic detergent (Sigma, 

45165) followed by incubation at 56°C for 30 min. After p24 capturing and 

subsequent TBS-washing, sample specific p24 was quantified by using an alkaline 

phosphatase-conjugated anti-p24 monoclonal antibody raised against conserved 

regions of p24 (BC 1071 AP, Aalto) using the AMPAK detection system, (K6200, 

Oxoid (Ely) Ltd). For a p24 calibration curve, recombinant p24 was treated as 

described above. 

HIV-sequence alignments and sequence logos 

HIV-1 sequences were downloaded from the Los Alamos HIV-1 Sequence 

Compendium 2012 (http://www.hiv.lanl.gov/). The subtype sequences were analysed 

with the RIP 3.0 software (http://www.hiv.lanl.gov/content/sequence/RIP/RIP.html). 

Sequence logos were generated by using R Statistical Computing (http://www.r-

project.org) and R package seqLogo version 1.28.0 [63]. 

RNA pull-down 

Pre-annealed DNA oligonucleotides containing GI3-2 wt and mutant sequences as 

well as two copies of the MS2 binding site and T7 sequences (Table 1) were subjected 
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to in vitro transcription using RiboMAX™ Large Scale RNA Production Systems 

(Promega) according to the manufactures instructions (T7 Primer: #4324; GI3-2 wt: 

#4614; GI3-2 mut: #4615). Following a phenol-chloroform extraction, the RNAs were 

covalently immobilized on adipic acid dihydrazide-agarose beads (Sigma) and 

incubated in 60% HeLa cell nuclear extract (Cilbiotech) in buffer D (20 mM HEPES-

KOH [pH 7.9], 5% [vol/vol] glycerol, 0.1 M KCl, 0.2 mM EDTA, 0.5 mM 

dithiothreitol). Recombinant MS2 protein (1 g) was added to compare the input of 

each sample. Unspecific bound proteins were removed by repetitive washing with 

buffer D containing 4 mM magnesium chloride. The associated proteins were eluted 

by heating at 95°C for 10 min, separated via SDS-PAGE (16%) and subjected to 

immunoblot analysis. 
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Figures 

Figure 1 - Schematic drawing of the HIV-1 NL4-3 genome 

(A) The diagram illustrates the HIV-1 provirus genome including locations of open 

reading frames (ORFs), long terminal repeats (LTRs), 5’ and 3’ splice sites (ss), 

exons, introns, and the Rev response element (RRE). Vif and vpr exons and ORFs are 

highlighted in red and blue, respectively. The RRE is indicated by an open box. (B)

Vif and vpr mRNA are formed primarily by splicing of 5’ss D1 to 3’ss A1 and A2, 

respectively. The noncoding leader exons 2 and 3 are included and AUG-containing 

introns are retained. (C) Vpr-coding DNA sequence of intron 3 in the proviral HIV-1 

genome including the locations of the vpr AUG and G runs GI3-1 to GI3-4. The 

intrinsic strength of 5’ss D3 is indicated (HBS, MAXENT). (D) Sequence logos of the 

four G runs GI3-1 to GI3-4. Sequences were obtained from the Los Alamos HIV 

Sequence Database (http://www.hiv.lanl.gov).  
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Figure 2 - G run GI3-2 is crucial for efficient virus replication in PBMCs 

Peripheral blood mononuclear cells were infected with the NL4-3 virus or mutant 

derivatives with the indicated multiplicity of infection (MOI). Virus production was 

determined by p24 CA capture ELISA of cell-free supernatant collected at the 

indicated time points. 

Figure 3 - GI3-2 causes alterations in mRNA processing 

(A) Northern blot analysis of total RNA isolated from HEK 293T cells transfected 

with wildtype or mutant pNL4-3 was isolated 48 h post transfection. RNA was 

separated on a 1% RNA agarose gel, capillary blotted, and cross-linked on a 

positively charged nylon membrane and UV cross-linked. The membrane was treated 

with a DIG-labelled DNA fragment binding to exon 7. (B) Quantitation of relative 

amounts of 9 kb mRNAs from (A). (C) RNA from panel A was subjected to 

quantitative RT-PCR analysis using a primer pair specific for intron 1 containing 

mRNAs of the 9 kb mRNA class (#3389/#3390), and intronless mRNAs of the 2 kb 

class (#3391/#3392), which were normalized to exon 7 containing mRNAs 

(#3387/#3388). 

Figure 4 - Mutation GI3-2 increases vpr, but decreases vif mRNA and Vif protein 

levels 

(A) RT-PCR analysis of RNA from HEK 293T cells transiently transfected with 

pNL4-3 or its GI3-2 mutant derivate. Compare with figure S1 for specific primer 

binding sites. RNA was isolated 48 h post transfection. Primer pairs are indicated at 

the bottom of each panel, transcript isoforms on the right. To compare total RNA 

amounts, separate RT-PCRs were performed by using primer pairs amplifying HIV-1 

exon 7 and cellular GAPDH sequence. PCR amplicons were separated on a non-
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denaturing polyacrylamide gel (10%) and stained with ethidium bromide. (C-E)

Quantitative RT-PCR of total RNA from (B) using primers indicated in (A). The 

NL4-3 splicing pattern (wt) was set to 100% and the relative splice site usage was 

normalized to exon 7 containing HIV-1 transcripts. (F) Immunoblot analysis of the 

indicated proteins employing lysates or pelleted virions from supernatant (sn) 

obtained from HEK 293T cells that were transiently transfected with wildtype or GI3-

2 mutant proviral DNA. Transfected cells were lysed in RIPA buffer and the lysates 

were collected 48 h post transfection. Cell-free supernatant was concentrated by 

sucrose centrifugation. (G) Quantification of Vif protein amounts from (F). 

Figure 5 - GI3-2 is critical for efficient virus replication in APOBEC3G 

expressing cells 

CEM-SS and CEM-A cells were infected with wildtype or GI3-2 mutant NL4-3 virus 

and virus production was determined by p24 CA capture ELISA of cell-free 

supernatant collected at the indicated time points. 

Figure 6 - GI3-2 is specifically bound by hnRNP H and F  

RNA pull-down assay using HeLa nuclear extract. Substrate RNAs containing a MS2 

sequence and the wildtype or mutant G runs sequence were covalently linked to 

adipic acid dihydrazide-agarose beads and incubated with HeLa cell nuclear protein 

extract. MS2-proteins were added to monitor the RNA input. The precipitated 

proteins were resolved by SDS-PAGE (16%) and detected by immunoblot analysis 

using anti hnRNP H and F antibodies. MS2 specific antibodies were used as a loading 

control. 
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Figure 7 - Locked nucleic acids binding to GI3-2 interferes with virus production 

(A) Schematic illustration of the binding site of locked nucleic acids directed against 

GI3-2 within HIV-1 intron 3. (B) HeLa cells were co-transfected with pNL4-3 and 

locked nucleic acids (LNAs) masking GI3-2 or the respective mismatch control. Total 

RNA was isolated 24 h post transfection and subjected to Northern blotting using a 

HIV-1 specific probe. (C) Immunoblot analysis of p24-CA using cellular lysates (cell) 

and pelleted virions from the supernatant (sn) of co-transfected cells from (B).

Figure 8 - Comparison of intron 3 G runs and their sequence surroundings in 

HIV-1 subtypes 

(A-B) Proviral DNA sequence surroundings of the HIV-1 consensus sequences A1 to 

AE of GI3-1 to GI3-4. Conserved sequences are represented by –, deviants by letters. 

Conserved G run motifs are highlighted by grey boxes. The ORF of vif and vpr

including start and stop codons are indicated as declining boxes. The subtype 

sequences were analyzed with the RIP 3.0 software 

(http://www.hiv.lanl.gov/content/sequence/RIP/RIP.html). (C) Molecular clones of 

pNL4-3 used in this study. Sequences of G runs GI3-1 and GI3-2 including 

surrounding nucleotides are depicted. Mutated sequences are represented by letters. 

Corresponding consensus sequences are indicated on the right. (D) The amino acid 

substitutions of the proviral clones used in this study. The sequence of G runs GI3-1 

and GI3-2 including surrounding nucleotides is depicted. Substituted amino acids and 

their position in Vif Protein are shown in the table. Corresponding consensus 

sequences are indicated on the right. 
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Figure 9 - A single G run is sufficient to maintain the HIV-1 splicing pattern 

(A) RT-PCR analysis of RNA isolated from HEK 293T cells transiently transfected 

with pNL4-3 or its mutant derivates 48 h post transfection. The used primer pairs are 

illustrated in figure S1. Transcript isoforms are indicated on the right. Separate RT-

PCRs were performed by using primer pairs amplifying HIV-1 exon 7 to compare 

total RNA amounts. PCR amplicons were separated on a non-denaturing 

polyacrylamide gel (10%) and stained with ethidium bromide. (B-C) Quantitative RT-

PCR of total RNA obtained from panel (A). The NL4-3 splicing pattern (wt) was set 

to 100% and the relative splice site usage was normalized to exon 7 containing HIV-1 

transcripts. Compare with figure S1 for specific primer binding sites. (D) Immunoblot 

analysis of the indicated proteins employing lysates from HEK 293T cells (cellular) 

and their supernatants (sn) transiently transfected with the indicated proviral DNAs. 

Transfected cells were lysed in RIPA buffer and lysates were collected 48 h post 

transfection. Virions were pelleted by sucrose centrifugation. 

Tables 

Table 1 - DNA oligonucleotides used in this work 

Primer Primer Sequence 
#0640 5´- CAATACTACT TCTTGTGGGT TGG 
#1544 5´- CTTGAAAGCG AAAGTAAAGC 
#2330 5´- TCTGGATCCA CCACCACCAC CGTAGAT 
#2339 5´- TGGGAGCTCT CTGGCTAACT AGGGAACCCACTGCTTAAGC 
#3153 5´- CCACTCCTCC ACCTTTGAC 
#3154 5´- ACCCTGTTGC TGTAGCCA 
#3387 5´- TTGCTCAATG CCACAGCCAT 
#3388 5´- TTTGACCACT TGCCACCCAT 
#3389 5´- TTCTTCAGAG CAGACCAGAG C 
#3390 5´- GCTGCCAAAG AGTGATCTGA 
#3391 5´- TCTATCAAAG CAACCCACCTC 
#3392 5´- CGTCCCAGAT AAGTGCTAAGG 
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#3395 5´- GGCGACTGGG ACAGCA 
#3396 5´- CCTGTCTACT TGCCACAC 
#3397 5´- CGGCGACTGA ATCTGCTAT 
# 3398 5´- CCTAACACTA GGCAAAGGTG 
# 3631 5´- CGGCGACTGA ATTGGGTGT 
# 3632 5´- TGGATGCTTC CAGGGCTC 
# 3633 5´- CGACACCCAA TTCTTGTTAT GTC 
# 3636 5´- CCGCTTCTTC CTTGTTATGT C 
# 3896 5´- TTCACTCTTA AGTTCCTCTA AAAGCTCTAG TGTCCATTCA 

TTGTATGGCT CTCTCTGTGG CCCTTGGTCT TCTG 
#3897 5´- GTTGCAGAAT TCTTATTATG GCTTCCACTC CTGCCCAAGT 

ATCGCCGTAA GTTTCATAGA TATGTTGTCC TAAGTTATG 
# 4324 5´- TAATACGACT CACTATAGG 
# 4355 5´- TTCATCGAAT TCAGTGCCAA GAAGAAAAGC AAAGATCA 
# 4614 5´- TTCATTGTAT GGCTCCCTCT GTGGCCCTTG ACATGGGTGA 

TCCTCATGTC CTATAGTGAG TCGTATTA 
# 4615 5´- TTCATTGTAT GGCTCTCTCT GTGGCCCTTG ACATGGGTGA 

TCCTCATGTC CTATAGTGAG TCGTATTA 
# 4718 5´- TAGTGTCCAT TCATTGTATG GCTCCCTCTG TGGCCCCTGG T 
# 4720 5´- TAGTGTCCAT TCATTGTATG GCTCTCTCTG TGGCCCCTGG T 
# 4843 5´- CCGCTTCTTC CTTTCCAGAG G 
# 4849 5´- ACCCAATTCT TTCCAGAGG 

Additional files 

Supplementary Figure 1 –Binding sites of RT-PCR primers used in this work 

Schematic illustration of the positions of all NL4-3 related PCR primers used in 

quantitative and qualitative RT-PCR assays. Locations of 5’ and 3’ splice sites (ss), 

exons and introns are indicated. Vif and Vpr exons and ORFs are highlighted in red 

and blue. The positions of relevant PCR forward and reverse primers are indicated by 

black triangles. Primer pairs were used as follows: unspliced 9 kb mRNAs 

(#3389/#3390), intronless 2 kb mRNAs (#3391/#3392), exon 2 containing viral 

mRNAs (#3395/#4843), exon 3 containing viral mRNAs (#3397/#3636), vif mRNA 

(#3395/#3396), vpr mRNA (#3397/#3398), tat1 mRNA (#3631/#3632), tat2 mRNA 

(#3395/#4849), tat3 mRNA (#3397/#3632), and all viral mRNAs containing exon 7 

(#3387/#3388). 
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