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Zusammenfassung

In der vorliegenden Arbeit geht es darum eine verallgemeinerte Produktformel für die
äquivariante holomorphe Torsion von bestimmten holomorphen Linienbündeln über spe-
ziellen Faserbündeln zu bestimmen.
Desweiteren wird diese Produktformel dazu benutzt die äquivariante holomorphe Torsion
für flache Linienbündel über kompakten, gerade-dimensionalen Liegruppen zu bestimmen.
Wir verallgemeinern dabei in beiden Fällen ein bekanntes nicht-äquivariantes Resultat
von Stanton in [29].

In bestimmten Fällen zerfällt der Dolbeault-Laplace-Operator für holomorphe Linien-
bündel über komplexen Faserbündeln in zwei Teile, einen vertikalen Laplace-Operator
und einen horizontalen Laplace-Operator.
Diese Aufteilung lässt sich, wie wir in dieser Arbeit zeigen, fortsetzen auf die zugehörige
äquivariante spektrale Zeta-funktion. Um genauer zu werden, wir erhalten einen Teil, der
nur vom Kern des horizontalen Laplace-Operators abhängt und sich darstellen lässt über
die äquivarianten Indexe bestimmter holomorpher Vektorbündel über der Basis des Fa-
serbündels, und einen weiteren Teil, der nur vom Kern des vertikalen Laplace-Operators
abhängt und insbesondere weiter zerfällt in die äquivarianten Torsionen von speziellen
holomorphen Vektorbündeln über der Basis des Faserbündels.
Für zulässige Wirkungen auf die holomorphen Linienbündel, deren induzierte Wirkung
auf die Basis des holomorphen Faserbündels nur isolierte Fixpunkte hat, ergibt sich ein
noch einfacherer Ausdruck für die äquivariante holomorphe Torsion.

Im zweiten Teil dieser Arbeit wenden wir diese Zerlegung der Torsion auf ein spezielles
Beispiel an.
Wir betrachten das Faserbündel, welches man erhält, wenn man eine kompakte, gerade-
dimensionale Liegruppe durch einen maximalen Torus dividiert. Bei den zu untersuch-
endenden holomorphen Linienbündeln schränken wir uns auf die Klasse der flachen
Linienbündel ein.
Die Theorie des ersten Teils, angewendet auf dieses Beispiel, liefert uns einen übersicht-
licheren Ausdruck für die äquivariante holomorphe Torsion der Linienbündel.
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Abstract

This thesis is dedicated to develop a generalised product formula for the equivariant
holomorphic torsion of a holomorphic, Hermitian line bundle over a certain kind of fibre
bundle.
Furthermore, we study an example which is given on the one hand, by a holomorphic fibre
bundle, consisting of a compact, connected, even-dimensional Lie group modded out by a
maximal torus and on the other hand, by flat complex line bundles over this Lie group.
In both parts of this thesis, we generalise a non-equivariant result from Stanton (cf. [29]).

Take a holomorphic line bundle L over a holomorphic fibre bundle E → M . There are
certain conditions that guaranty a splitting of the Dolbeault-Laplacian on L into a
horizontal part and a vertical part.
In the first part of this thesis, we show that this splitting sometimes extends to a
splitting of the spectral equivariant zeta-function into a part that depends only on the
kernel of the horizontal Laplacian, consisting of a sum over various indexes of certain
holomorphic vector bundles over M , and a part the depends only on the kernel of the
vertical Laplacian. The latter part is given by a sum over equivariant holomorphic
torsions of holomorphic vector bundles over M .
For the special case of an admissible action that induces an action on M which has only
non-degenerated fixed points, we obtain an even simpler result. This is due to the fact
that we can apply the Atiyah-Bott fixed point formula to the sum over the indexes
occurring in the first part of the expression for the equivariant holomorphic torsion of L.

In the second part of this thesis, we study the example of the holomorphic fibre bundle,
induced by a compact, even-dimensional Lie group G and a maximal torus T therein. We
show that for certain flat line bundles over G the theory of the first part is applicable.
Let g̃0 be an element of the universal covering group G̃ that covers an element g0 in G
which generates a maximal torus. For the special case of an equivariant action that is
essentially given by left multiplication with g̃0, we obtain an expression for the
equivariant holomorphic torsion for the flat line bundle over G that depends only on the
roots of G and on the equivariant holomorphic torsions of the line bundle restricted to
the maximal torus with g̃0 induced action.
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1 Introduction

1.1 History and motivation

In the 1930s, Reidemeister [25] and Franz [12] developed an invariant to distinguish
certain manifolds that are homotopically equivalent but not homeomorphic. The
invariant is called Reidemeister torsion. In particular, they were able to classify the
homeomorphism classes of lens spaces.

Later, in the 1970s, Ray and Singer introduced an analytic analog to the Reidemeister
torsion, the analytic torsion (cf. [23]). They interpreted the Reidemeister torsion to be
the derivative of a ζ-function at 0 ∈ C. The ζ-function is given by the spectrum of a
combinatorial Laplacian acting on an elliptic chain complex.
The analytic torsion was defined analogously by taking the de-Rham Laplacian on
differential forms and its spectral ζ-function. More general, this analytic torsion can be
extended to smooth, flat vector bundles over a compact manifold.

Shortly thereafter, Ray and Singer extended this Ansatz for the analytic torsion further.
They applied the same mechanism to Hermitian, holomorphic vector bundles over a
compact, complex manifold and defined this way the holomorphic torsion (cf. [24]). The
chain complex for the holomorphic torsion consists of the antiholomorphic differential
forms with coefficients in the holomorphic, Hermitian vector bundle. The differential of
this chain complex is given by the natural ∂̄-operator.
In particular, Ray and Singer computed the holomorphic torsion of flat line bundles over
a complex torus (in [24]).

In 1978, Stanton derived in [29] that for flat line bundles over certain holomorphic fibre
bundles, the computation of the holomorphic torsion of these line bundles simplifies. This
is due to a splitting of the ζ-function into two parts. One part mainly depends on the
holomorphic torsion of the line bundle restricted to a fibre while the second part is a
series over indexes of elliptic operators on vector bundles over the base space of the
holomorphic fibre bundle.
In particular, she was able to compute the holomorphic torsion of flat line bundles over
compact, even-dimensional Lie groups.

The equivariant holomorphic torsion is a natural equivariant generalisation of the
holomorphic torsion. It is of interest for the Arakelov theory. In [22] Köhler and Roessler
show that for a fixed point formula in the context of Arakelov theory, analogously to the
Lefschetz fixed point formula (cf. [3]), the equivariant holomorphic torsion becomes a
main ingredient.

The aim of this thesis is to generalise Stantons result to an equivariant setting, i.e to give
a formula for the equivariant holomorphic torsion for fibre bundles.
On the one hand, we show that for suitably good actions the splitting of the ζ-function
survives the equivariant approach even for a slightly more general case.
On the other hand, we apply this theory, similar to Stanton, to flat line bundles over
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1 Introduction

compact, even-dimensional Lie groups. In particular, we give an explicit example for a
suitable action on these line bundles and compute its equivariant torsion.

1.2 A brief summary of this thesis

This thesis is divided into two parts.

The first part consists of the Sections 2, 3 as well as Section 4.
In Section 2, we recall common knowledge about complex manifolds, holomorphic vector
bundles and equivariant invariants.
Furthermore, we introduce the type of fibre bundle which we investigate later on, the
so-called holomorphic fibre bundle. It is a slight generalisation of the definition of a
holomorphic fibre bundle given by Stanton in [29].
In Section 3, we define the type of line bundles on which we study the equivariant
holomorphic torsion, namely the compatible line bundles. Additionally, we take a closer
look at the properties of those bundles with respect to the underlying holomorphic fibre
bundle structure and we derive verifiable conditions for the existence of compatible line
bundles.
The arguments, we use, for the compatibility are a natural generalisation of the
arguments Stanton derives in [29].
Furthermore, we use results from Atiyah and Singer to construct holomorphic vector
bundles W(λ;t) over the base space M of a holomorphic fibre bundle πE : E → M such
that the fibre over each point x ∈ M is given by the λ-Eigenspace of the Laplacian acting
on antiholomorphic forms on Ex := π−1

E (x) with coefficients in the restricted holomorphic
line bundle L |Ex , i.e.

W(λ;∗) :=
⋃
x∈M

Ker

(
�L|

π−1
E

(x)
− λ

)
.

In addition to that, we introduce the equivariant action in Section 3. It is an action which
is compatible with all those structures, we defined so far. We call it the legitimate action.
We complete this section by constructing a morphism, the ψ-morphism, that identifies
objects over the total space of the fibre bundle with objects over its base space. In
particular, we show that there is a natural action γW(λ,t) on W(λ,t) corresponding to the
legitimate action.
We finish the first part of this thesis in Section 4 by computing the equivariant
holomorphic ζ-function for legitimate actions on compatible line bundles over
holomorphic fibre bundles. The result is accumulated in Theorem 4.1:

Theorem (4.1):
Let E → M be a holomorphic fibre bundle and let L → E be a compatible, holomorphic,
Hermitian line bundle.
Let further on �γ =

(
γM , γE , γL

)
be a legitimate action on L.
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1.2 A brief summary of this thesis

Then the equivariant ζ-function can be expressed for large Re(z) as follows:

ZL
γ̌L(z) =−

∑
λ �=0

λ−z
∑
t

t(−1)tind(γW
(λ;t)

,�W(λ;t)) +
∑
t

(−1)tZW(0;t)

γ̌W(0;t) (z).

Here, ind(γW(λ;t)
,�W(λ;t)) denotes the equivariant index of the Laplacian acting on W(λ;t).

In particular, the equivariant ζ-function of L → E is represented one the one hand (in
the first term), by differential topological invariants on the base space M belonging to
vector bundles W(λ;t) and on the other hand, by the equivariant ζ-functions of the
bundles W(0;t) which are given as the kernel of a Laplacian on the fibres.

The second part of this thesis is contained in Section 5.

Motivated by Stantons non-equivariant result, we give an example in which the
equivariant holomorphic torsion can be computed using the theory of the first part. We
look at compact, even-dimensional Lie groups and flat line bundles over those.
In Section 5.1, we apply common knowledge about compact Lie groups to show that these
Lie groups form a holomorphic fibre bundle over their maximal torus in a natural way.
In Section 5.2, we recall classical topological results about the isomorphism classes of
complex line bundles over Lie groups.
In Section 5.3, we recall that a complex line bundle associated to a representation of
π1(G) obtains a natural holomorphic structure.
In Section 5.4, we investigate which holomorphic line bundles over Lie groups fulfil the
prerequisites of Theorem 4.1. Here, we use essentially differential geometric methods.
Afterwards, in Section 5.5, we apply Theorem 4.1 for a general legitimate action on those
line bundles. In particular, we recall some commonly known spectral properties of flat line
bundles over the complex torus that imply a very simple structure of the bundles W(0;t).
We obtain the following theorem:

Theorem (5.1):
Let G be a compact, even-dimensional Lie group and let T be a maximal torus in G.
Let G → G/T be the corresponding principle fibre bundle equipped with its natural
holomorphic fibre bundle structure.
Let further on π1,G̃ : G̃ → G denote the universal cover of G and let L = G̃×χ C → G be
a Hermitian line bundle associated to the principle fibre bundle G̃ → G through a
character χ of π1(G).
Equip L → G with the holomorphic structure ∂̄L = ∂̄ + ε(π∗

G(ω)) for a ∂̄-closed form ω in
A(0,1)(G/T ).
Additionally, let �γ =

(
γL, γG, γG/T

)
be a legitimate action.

Then the equivariant ζ-function is the meromorphic continuation of the following
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1 Introduction

expression. For large Re(z) the ζ-function ZL
γ̌L(z) is given by:

ZL
γ̌L(z) =

∑
λ �=0

λ−z
∑
t

t(−1)t+1ind(γW
(λ;t)

,�W(λ;t))

+ χγ(T )

{
ZW(0;0)

γ̌W(0;0) (z) if χ ≡ 1

0 if χ �≡ 1
.

Here, χγ(T ) denotes the equivariant Euler characteristic of T .

At last, in Section 5.6, we give an easy example for a legitimate action on these bundles
and apply the Theorem 5.1.
The action on L = G̃×χ C is given by a left multiplication with an element g̃0 of G̃, i.e.

γL := Lg̃0 : G×χ C −→ G×χ C

[g̃, z]χ �−→ [g̃0g̃, z]χ .

The action γL is covering an action γG = Lg0 on G and an action L
G/T
g0 given as well by

left multiplication, this time with g0 = π1,G̃(g̃0).
We obtain the following result:

Theorem (5.2):
In the setting of Theorem 5.1, let g̃0 be an element of G̃ such that the (0, 1)-form ω is left
invariant under the pullback with L

G/T
g0 for g0 = π1,G̃(g̃0) ∈ G.

Let �γ denote the induced legitimate action of Lg̃0 on L given by �γ = (L
G/T
g0 , Lg0 , Lg̃0).

Then the equivariant holomorphic ζ-function is given for large Re(z) by:

ZL
γ̌L(z) =−

∑
λ �=0

λ−z
∑
t

t(−1)tind(γW
(λ;t)

,�W(λ;t)).

In particular, for the special case where g̃0 ∈ G̃ has the property that its projection
g0 := π1,G̃(g̃0) ∈ G generates a maximal torus, we obtain a very easy expression for the
equivariant holomorphic torsion of L if we apply the Atiyah-Bott fixed point formula.

The next result is for rank of G greater than 2.

Corollary (5.49):
In the situation of Theorem 5.2. Let G be of rank greater than 2 and let g0 generate a
maximal torus.
Then the equivariant holomorphic torsion vanishes, i.e.

τL(γ̌L) = 0.

For the rank 2 case, the result is a slightly more complicated.
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1.2 A brief summary of this thesis

For any g̃0, we obtain a map:

Ω̂ : (G/T )γ −→ T̂

such that for every fixed point [x] in G/T = G̃/T̂ of LG/T
g0 = γG/T the action Lg̃0 on the

fibre π−1
1,G̃

◦ π−1
G ([x]) is given by right multiplication with Ω̂([x]), i.e. g̃0 · x̃ = x̃ · Ω̂([x]).

This map Ω̂ covers a map Ω:

Ω : (G/T )γ −→ T

such that for every fixed point [x] ∈ (G/T )γ the action Lg0 on the fibre π−1
G ([x]) is given

by right multiplication with Ω([x]).
We obtain the subsequent corollary.

Corollary (5.50):
In the situation of Theorem 5.2. Let G be of rank 2 and let g0 generate a maximal torus.
Let furthermore [x0] denote one arbitrarily chosen fixed point in G/T , i.e. [x0] ∈ (G/T )γ.
The equivariant holomorphic torsion becomes:

τL(γ̌L) =
∏

α∈R+

(
1− e−2πiα

(
Ω([x0])

))−1

·
∑

[n]∈W (T )

τ L̃(γ̌L̃[x0·n]).

Here, the product goes over all the positive roots of the Lie group G and e−2πiα denotes
the global root corresponding to −α ∈ R−:

e−2πiα : T −→ U(1)

t = exp(X) �−→ e−2πiα(X).

Furthermore, the sum in the second factor goes over the Weyl group W (T ) = N(T )/T of
T in G, and it adds up the equivariant holomorphic torsions for the holomorphic line
bundle L |T= L̃ → T (which is isomorphic to T̂ ×χ C) and the actions

γL̃[x0·n] : T̂ ×χ C −→ T̂ ×χ C[
t̂, z
]
χ

�−→
[
Ω̂([x0 · n]) · t̂

]
χ
.

This way, we obtain an expression for the equivariant torsion of a flat line bundle L over
the Lie group G that depends only on the element g̃0 ∈ G̃ and on the equivariant
holomorphic torsions of the restricted line bundle L |T with actions induced by the Weyl
group and g̃0.
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2 Preliminaries

The aim of this section is to define the objects we examine throughout this thesis.
In Subsection 2.1, we recall some facts about the moduli space of holomorphic structures
for a given complex vector bundle. In particular, we state the result for the special case
of a complex line bundle.
In Section 2.2, we recall the definition of the unique holomorphic, Hermitian connection
for a holomorphic, Hermitian vector bundle.
In Section 2.3, we define the type of fibre bundles, we want to discuss later on, namely
the holomorphic fibre bundles. Furthermore, we examine some of its properties.
Stanton defined in [29] a holomorphic fibre bundle. Our definition is a slight
generalisation of hers.
Afterwards, in Section 2.4, we state a definition of smoothness for a vector bundle over a
continuous fibre bundle. This is a property, we require later on for the compatibility of
the line bundle over a holomorphic fibre bundle. For a vector bundle to be smooth over a
fibre bundle is defined originally by Atiyah and Singer in [4]. We adapt their definition
and specialise it to our scenario.
Additionally, we introduce some notations for the maps and objects which we use
throughout this thesis.
Finally, in Section 2.5, we recall the definition of the equivariant torsion of an action on a
holomorphic, Hermitian line bundle over a complex manifold and some equivariant
invariants.

2.1 Holomorphic structures of a complex vector bundle

The equivariant holomorphic torsion is an object that belongs to an action on a
holomorphic, Hermitian vector bundle over a complex or more general an almost complex
manifold.

In this subsection, we give the definition of a holomorphic vector bundle and recall some
facts about the space of holomorphic structures of a complex vector bundle over a
complex manifold.
We start by giving a definition of a holomorphic vector bundle structure for a complex
vector bundle.

Definition 2.1:
Let M be a complex manifold and let further on Q → M be a smooth complex vector
bundle over M .

• A family {(Ui, φi)}i∈I is called a holomorphic trivialisation for Q if the
following properties hold.

– The Ui form an open cover of M , i.e. M =
⋃

Ui.

11



2 Preliminaries

– The φi are maps

φi : Q |Ui
−→ Ui × Cm

that form local trivialisations of Q which are compatible with the smooth
vector bundle structure of Q.

– The transition maps

φi ◦ φ−1
j : (Ui ∩ Uj)× Cm −→ (Ui ∩ Uj)× Cm

are biholomorphic.

• Two families of holomorphic trivialisations {(Ui, φi)}i∈I and {(Vj , ψj)}j∈J for Q
are called equivalent if their composition is biholomorphic, i.e. if the following
maps are biholomorphic

φi ◦ ψ−1
j : (Ui ∩ Vj)× Cm → (Ui ∩ Vj)× Cm

for every pair (i, j) ∈ I × J with Ui ∩ Vj �= ∅.
• We call a tuple (Q,M,

[{(Ui, φi)}i∈I

]
) holomorphic vector bundle if

Q → M is a smooth complex vector bundle and if {(Ui, φi)}i∈I represents an
equivalence class of holomorphic trivialisations of Q.
We call such an equivalence class of holomorphic trivialisations a holomorphic
structure.

Remark 2.2:

• For every point x ∈ M of a complex manifold M the tangent space TxM has a
natural almost complex vector space structure (compare Definition A.1).
Therefore, TxM ⊗R C splits (compare appendix A).

TxM ⊗R C = T (0,1)
x M ⊕ T (1,0)

x M

This splitting extends to the complexified tangent bundle (cf. [17])

TM ⊗R C = T (0,1)M ⊕ T (1,0)M

and therefore the complexified cotangent bundle splits as well

T ∗M ⊗R C = T (0,1),∗M ⊕ T (1,0),∗M.

We denote A(0,t)(M) to be the complex vector space of antiholomorphic
forms. It is given by the smooth sections from M into the complex vector bundle
ΛtT (0,1),∗M .

12



2.1 Holomorphic structures of a complex vector bundle

Let Q → M be a complex line bundle over a complex manifold. Let A(0,t)(M,Q)
denote the space of antiholomorphic forms with coefficients in Q, i.e. the
space of smooth sections from M into the complex vector bundle
Λt
(
T (0,1),∗M

)⊗Q.

• On a complex manifold, the exterior differential d on antiholomorphic forms

d : A(0,t)(M) −→ A(0,t+1)(M)⊕ A(1,t)(M)

splits d = ∂̄ ⊕ ∂ where the operators ∂̄ and ∂ are determined by their target space.

∂̄ : A(0,t)(M) −→ A(0,t+1)(M)

∂ : A(0,t)(M) −→ A(1,t)(M)

• For any holomorphic map f : M → N between complex manifolds, the ∂̄-operator
commutes with the pullback of antiholomorphic forms, i.e. for any α ∈ A(0,∗)(N),
we get:

∂̄(f∗α) = f∗(∂̄α). (1)

• Let (Q,M, {(Ui, φi)}i∈I) be a holomorphic vector bundle. The holomorphic
structure of Q (compare Definition 2.1) induces a canonical first order operator

∂̄Q : A(0,q)(M,Q) → A(0,q+1)(M,Q).

The operator ∂̄Q is locally given by:

A(0,q)(Ui,Q |Ui
)

∂̄Q ��

proj2◦φi

��

A(0,q+1)(Ui,Q |Ui
)

proj2◦φi

��
A(0,q)(Ui,C

m)
∂̄

�� A(0,q+1)(Ui,C
m).

(2)

The Diagram (2) may be used to define ∂̄Q because the resulting operator does not
depend on i ∈ I This is true because the transition maps φi ◦ φ−1

j are holomorphic
(compare Equation (1)).
For the same reason, ∂̄Q does not depend on the family of holomorphic
trivialisations that represents the holomorphic structure.

The ∂̄Q-operator has two obvious but important properties.
On the one hand its square vanishes, ∂̄2

Q = 0, and on the other hand ∂̄Q has the same
symbol as ∂̄ : A(0,∗)(M,Cm) −→ A(0,∗)(M,Cm), as a differential operator.
Actually, those two properties may be used to define the holomorphic structure on the
holomorphic vector bundle. This is shown in [2, Ch. 5, Thm. 5.1].

13



2 Preliminaries

I will specify this result to the situation at hand.

Corollary 2.3:
Let Q → M be a smooth complex vector bundle over a complex manifold M .
Let further on ∂̄Q be a first order differential operator acting on A(0,∗)(M,Q) such that

∂̄Q : A(0,t)(M,Q) −→ A(0,t+1)(M,Q).

And, assume ∂̄2
Q = 0 and suppose ∂̄Q fulfils the Leibniz Equation (3), i.e. for any smooth

form α ∈ A(0,q)(M) and every section s ∈ Γ(M,Q) we get

∂̄Q (α⊗ s) =
(
∂̄α
)⊗ s+ (−1)qα⊗ (∂̄Qs) . (3)

Then there exists a unique holomorphic structure
[{(Ui, φi)}i∈I

]
on Q → M with ∂̄Q

being its corresponding operator (compare Equation (2)).

From now on, we will use Corollary 2.3 without further mentioning it, i.e. we identify
holomorphic structures on Q → M with their corresponding ∂̄Q operators and vice verse.

In the special case of rank(Q) = 1, i.e. Q is a complex line bundle, we can actually
describe the set of holomorphic structures on Q → M . This is due to the fact that
End(C) is canonically isomorphic to C.

Lemma 2.4:
Let L → M be a complex line bundle that possesses a holomorphic structure ∂̄L.
Then the space of holomorphic structures on L → M is an affine space over the vector
space of ∂̄-closed (0, 1)-forms on M .
In other words, ∂̄′

L defines a holomorphic structure for L → M if and only if there is a
∂̄-closed differential form ω ∈ A(0,1)(M) such that

∂̄′
L = ∂̄L + ε(ω)

where ε(ω) denotes the exterior multiplication with ω from the left hand side.

Proof.
Let ω ∈ A(0,1)(M) be a ∂̄-closed antiholomorphic form.
An easy calculation shows that ∂̄′

L := ∂̄L + ε(ω) fulfils the Leibniz Equation (3) and since
has ε(ω) is a 0th order differential operator, ∂̄′

L has the same symbol as ∂̄L.
Furthermore,

(
∂̄′
L

)2
= 0 since ∂̄ω = 0 and therefore, ∂̄′

L defines a holomorphic structure
by Corollary 2.3.
Conversely, suppose ∂̄′

L defines a holomorphic structure.
The Leibniz Equation (3) now implies:

∂̄′
L − ∂̄L = ε(ω) ∈ A(0,1)(M,L∗ ⊗ L) ∼= A(0,1)(M)

14



2.1 Holomorphic structures of a complex vector bundle

since L∗ ⊗ L is isomorphic to the trivial complex line bundle.
Finally,

(
∂̄′
L

)2
= 0 implies that ∂̄ω = 0, i.e. ω has to be ∂̄-closed.

We now introduce a concept of equivalence for holomorphic vector bundles that are
isomorphic as complex vector bundles.

Definition 2.5:

1. Let L → M and L′ → M be two holomorphic vector bundles with holomorphic
structures ∂̄L and ∂̄L′ .
L and L′ are called equivalent, (L, ∂̄L) ∼= (L′, ∂̄L′), if there is an isomorphism
g : L → L′ of smooth complex vector bundles which covers the identity map on M
such that g commutes with the holomorphic structure, i.e.

∂̄L ◦ g = g ◦ ∂̄L′ .

2. Two holomorphic structures ∂̄L, ∂̄
′
L on one complex vector bundle are equivalent

if there is an element g ∈ C∞(M,C∗), such that ∂̄L = ∂̄′
L + ε(g−1∂̄g).

Note that g−1∂̄g equals ∂̄(ln(g)). Therefore, g−1∂̄g is indeed ∂̄-closed.

The next lemma shows that these definitions are strongly related.

Lemma 2.6:
Let L → M be a complex line bundle over a compact, complex manifold. Let further on
∂̄L as well as ∂̄′

L be two holomorphic structures on L. Then the following two properties
are equivalent:

1. (L, ∂̄L) ∼= (L, ∂̄L′), i.e. the holomorphic line bundle (L, ∂̄L) is equivalent to the
holomorphic line bundle (L′, ∂̄L′).

2. ∂̄L and ∂̄L′ are equivalent holomorphic structures on L.

Proof.
1. ⇒ 2. Let ∂̄′

L = ∂̄L + ε(ω) and let gL : L → L be the map defining the equivalence of
(L, ∂̄L) and (L, ∂̄L′).
The map gL : L → L is linear on fibres. Therefore, it can be represented by a function
equally named g : M → C∗.
It follows that for every section s ∈ Γ(M,L)

∂̄L (g · s) = (∂̄g)⊗ s+ g · (∂̄Ls).
On the other hand, we obtain:

∂̄′
Ls = ∂̄Ls+ ω ⊗ s.

15



2 Preliminaries

Thus, we deduce that ω = g−1∂̄g which is what we wanted to show.

1. ⇐ 2. Let now g : M → C∗ be a map such that ∂̄′
L = ∂̄L + ε(g−1 · ∂̄g).

Define the map gL : L → L to be the multiplication with π∗
Lg, i.e.

gL : L −→ L
l �−→ g(πL(l)) · l.

Obviously, this defines a smooth line bundle isomorphism covering the identity.
What remains to be shown is that gL commutes with the holomorphic structure. But this
is easily computed. For any s ∈ Γ(M,L), we obtain:

∂̄L ◦ gL(s) = ∂̄L(g · s) = (∂̄g)⊗ s+ g · (∂̄Ls) = g
(
∂̄Ls+ g−1(∂̄g)⊗ s

)
= gL(∂̄L′s)

which completes the proof.

It is well known that the set of all equivalence classes of holomorphic line bundles over a
manifold M carries a group structure (cf. [17]).

We finish this subsection by introducing a notation for this set.

Definition 2.7:
Let M be a complex manifold.

1. The Picard Group, Pic(M), of M is the group of equivalence classes of
holomorphic line bundles over M where the group multiplication is given by the
tensor product.

2. Let C denote the trivial complex line bundle over M .
The reduced Picard Group, Pic0(M), is the subgroup of Pic(M) which is
given by holomorphic line bundles L, with the property that L are isomorphic to C

as smooth complex line bundles.

2.2 Chern connection of a Hermitian, holomorphic vector bundle

In this subsection, we recall the definition of the unique holomorphic, Hermitian
connection for any holomorphic, Hermitian vector bundle.

Let Q → M be a holomorphic vector bundle with holomorphic structure ∂̄Q and let
further on hQ be a Hermitian metric on Q.

Definition 2.8:
A connection on Q is an R linear map

∇ : Γ(M,Q) → Γ(M,T ∗M ⊗Q)

that fulfils the following Leibniz Equation for every f ∈ C∞(M) and s ∈ Γ(M,Q):

∇(f · s) = df ⊗ s+ f · ∇s.
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2.3 Holomorphic fibre bundle, definition and properties

Any connection ∇ (if complexified) splits into a holomorphic part ∇(1,0) and an
antiholomorphic part ∇(0,1), i.e. ∇ = ∇(0,1) ⊕∇(1,0) where both summands are given by
their target spaces, i.e.

∇(1,0) : Γ(M,Q) −→ A(1,0)(M,Q)

∇(0,1) : Γ(M,Q) −→ A(0,1)(M,Q).

For any Hermitian, holomorphic vector bundle (Q, hQ), there is a natural connection on
(compare [17] or [19]) which we define now.

Definition 2.9:
The Chern connection on (Q, hQ) is the unique connection ∇Q on Q such that the
following properties hold.

• ∇Q is a holomorphic connection, i.e. its antiholomorphic part ∇Q,(0,1) equals the
holomorphic structure

∇Q,(0,1) = ∂̄Q.

• ∇Q is a Hermitian connection, i.e. for any two sections s, s̃ ∈ Γ(M,Q), we get:

∂̄ (hQ(s, s̃)) = hQ(∇Q,(0,1)s, s̃) + hQ(s,∇Q,(1,0)s̃).

If we extend the Leibniz Equation to differential forms, the Chern connection induces a
natural derivative on A(∗,·)(M,Q).

Definition 2.10:
There is a natural extension of ∇Q to A(∗,·)(M,Q) = A(∗,·)(M)⊗ Γ(M,Q), i.e. the
complexified differential forms with coefficients in Q.
It is given by

∇Q(α⊗ s) := (dα)⊗ s+ (−1)|α|α ∧ (∇Qs
)

(4)

for arbitrary α ∈ A(∗,·)(M) and s ∈ Γ(M,Q), C-linear extended to the whole tensor
product.

2.3 Holomorphic fibre bundle, definition and properties

This subsection is dedicated to defining and understanding the kind of fibre bundle we
want to study later on, namely the holomorphic fibre bundle.
Our definition is a slight generalisation of Stantons definition of a holomorphic fibre
bundle in [29]. Most of the properties of Stantons holomorphic fibre bundle extend to

17



2 Preliminaries

this generalisation. In particular, for a holomorphic line bundle L → E, the splitting of
the ∂̄L-operator holds with the same argument (compare Subsection 2.3.1). Furthermore,
we adapt her results about how the ∂̄L-operator commutes with the pullback of
antiholomorphic forms on M (compare Subsection 2.3.2).

A holomorphic fibre bundle carries a lot of structures, f.e. a Riemannian metric or a
complex structure.
For a holomorphic fibre bundle, these structures need to be comparable for different
fibres, therefore the transition functions have to be maps into a structure preserving
group. To clarify what we mean by such a structure preserving morphism, we now define
Aut(F ) for a complex, Riemannian manifold F .

Definition 2.11:
Let F be a compact, complex Riemannian manifold with complex structure JF and a
compatible (compare Definition A.1) Riemannian metric gF .

• The group of biholomorphic maps from (F, JF ) to (F, JF ) will be denoted by
Hol(F ).

• Similarly, we denote the group of isometries of (F, gF ) by Isom(F ).

• Now, we define the automorphism group of (F, JF , gF ) to be the group
Aut(F ) of all biholomorphic isometries from (F, JF , gF ) to (F, JF , gF ), i.e.

Aut(F ) = Hol(F ) ∩ Isom(F ).

Remark 2.12:

• A known fact is that we can endow Hol(F ) with a complex Lie group structure (cf.
[20]). Its Lie algebra consists of all vector fields having a biholomorphic flow, the
so-called holomorphic vector fields hol(F ). The left invariant almost complex
structure on Hol(F ) is given by the almost complex structure on F restricted to
the holomorphic vector fields. Similarly, the Lie bracket on hol(F ) is given by the
commutator of the holomorphic vector fields.
In particular, the integrability of the almost complex structure on F directly
implies the integrability of the almost complex structure on Hol(F ) making it a
complex structure.

• Similarly, it is known that for any compact Riemannian manifold F Isom(F ) is a
compact Lie group (in [20]). Its Lie algebra consists of the Killing vector fields on
(F, gF ).

• Unfortunately, it rarely happens for a complex, Riemannian manifold F that
Isom(F ) inherits a complex structure from F .
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2.3 Holomorphic fibre bundle, definition and properties

This can be seen as follows: Assume Isom(F ) inherits such a complex structure,
then Aut(F ) inherits a complex Lie group structure as well. On the other hand
Aut(F ) ⊂ Isom(F ) is compact.
Every connected, compact, complex Lie group is a complex torus. Consequently,
Aut(F ) has to be a finite disjoint union of complex tori.

Now, that we have established a concept of structure preserving automorphisms, it is
time to define what a holomorphic fibre bundle should be.

Recall therefore that for a smooth fibre bundle πE : E → M a connection is a horizontal
distribution, i.e. a subbundle THE which is a direct summand to T V E := Ker(dπE) such
that TE = THE ⊕ T V E.

Definition 2.13:
Let F and M be compact, complex manifolds with compatible Riemannian metrics gF
and gM . Let further on πE : E → M be a smooth fibre bundle whose fibretype is F .
We call the tuple (E, πE, (M, gM), (F, gF ), T

HE) a holomorphic fibre bundle if
on the one hand there are local trivialisation {(Uk, φk)}k∈I of E such that the maps

φi,x ◦ φ−1
k,x := φi

∣∣
Ex

◦
(
φk

∣∣
Ex

)−1
: {x} × F −̃→{x} × F

and

̂φi ◦ φ−1
j : Ui ∩ Uj −→ Aut(F ) ⊂ Hol(F ), defined by

u �−→
(
f �→ proj2 ◦

(
φi ◦ φ−1

j

)
(u, f)

)
,

are holomorphic (This induces a complex structure on E, compare Lemma 2.16.)
and if on the other hand THE is a connection on E → M with the following properties.

• The complex structure JE on E preserves the splitting THE ⊕ T V E.
Thereby, we mean that the spaces THE and T V E are JE-invariant, i.e.

JE(T
HE) = THE and JE(T

V E) = T V E.

• The connection THE is of type (1, 1) which means that for

TH,(0,1)E := T (0,1)E ∩ (THE ⊗R C
)

the space Γ(E, TH,(0,1)E) is closed under commutator brackets, i.e.

[Γ(E, TH,(0,1)E),Γ(TH,(0,1)E)] ⊂ Γ(E, TH,(0,1)E). (5)
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Remark 2.14:
Our definition of a holomorphic fibre bundle differs from that of Stanton in [29] because
she wants her fibre bundle to be associated to a principle fibre bundle whose fibre is a
compact Lie group.
For her, that is a natural assumption to make for a holomorphic fibre bundle because
she was looking at holomorphic line bundles associated to a representation of the
fundamental group of the total space E only.
For us on the other hand, this property belongs to the line bundle over the total space
not to the holomorphic fibre bundle itself.
Actually, we generalise this property. The holomorphic line bundles L → G we want to
look at are supposed to be smooth vector bundles over the fibre bundle E → M . We
define what we mean by this property in Subsection 2.4.

Definition 2.13 looks rather excessive, therefore we now analyse what these properties
imply and why we required them, to illuminate their necessity and usefulness.

First of all, as promised above, we show that the holomorphy property for the maps
φi,x ◦ φ−1

k,x and for ̂φi ◦ φ−1
j induces a complex structure on E, making E a complex

manifold.
Actually, we prove an equivalence of definitions for the complex structure on the total
space E of our holomorphic fibre bundle.

Remark 2.15:
Recall that F ↪→ E → M is a complex fibre bundle if F and M are complex manifolds
and the local trivialisations {φi, Ui}i∈I induce holomorphic transition maps, i.e.

φi ◦ φ−1
k : (Ui ∩ Uk)× F → (Ui ∩ Uk)× F

is holomorphic for every pair (i, k) ∈ I × I.
In particular, the local trivialisations induce a complex manifold structure on E.

The content of the subsequent lemma is general knowledge. Nonetheless, we state as well
as proof it here for a lack of sources to cite from.

Lemma 2.16:

1. Let (E, πE , (M, gM ), (F, gF ), T
HE) be a holomorphic fibre bundle, then E carries

the structure of a complex manifold.
In particular, F ↪→ E → M becomes a complex fibre bundle.

2. Let on the other hand F ↪→ E → M be a complex fibre bundle.
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2.3 Holomorphic fibre bundle, definition and properties

Then the maps

φi,x ◦ φ−1
k,x := φi

∣∣
Ex

◦
(
φk

∣∣
Ex

)−1
: {x} × F −̃→{x} × F

as well as

̂φi ◦ φ−1
j : Ui ∩ Uj −→ Hol(F )

are holomorphic.

Proof.

1. It suffices to show that for a holomorphic fibre bundle the transition map

φi ◦ φ−1
k : (Ui ∩ Uk)× F → (Ui ∩ Uk)× F

is holomorphic for any i, k ∈ I because if this is the case, we can define the complex
structure of E locally on Ui × F and patch it together along those biholomorphic
transition maps.
But since (E, πE , (M, gM ), (F, gF ), T

HE) is a holomorphic fibre bundle, the
following equations:

φi ◦ φ−1
k (u, f) =

(
u,

[
̂φi ◦ φ−1

k (u)

]
(f)

)
(6)

=
[
φi,u ◦ φ−1

k,u

]
(u, f) (7)

show that φi ◦ φ−1
k is holomorphic in u ∈ Ui ∩ Uk (Equation (6)) and in f ∈ F

(Equation (7)) and therefore in (u, f).
Hence, F ↪→ E → M becomes a complex fibre bundle.

2. Suppose now, that φi ◦ φ−1
k are biholomorphic for any pair (i, k) ∈ I × I.

Consequently, we get that the map

φi ◦ φ−1
k |{x}×F : {x} × F −→ {x} × F

f �−→
[
φi,x ◦ φ−1

k,x

]
(x, f)

is holomorphic by restriction for any x ∈ Ui ∩ Uk.
It remains to be shown that u �→ ̂φi ◦ φ−1

k (u) ∈ Hol(F ) is holomorphic as well.
Since Hol(F ) is a Lie group (Remark 2.12), its tangent bundle THol(F ) is trivial,
i.e. bundle isomorphic to Hol(F )× hol(F ).
If we differentiate

̂φi ◦ φ−1
k (x) : F �−→ F

f �−→ proj2 ◦
(
φi ◦ φ−1

k

)
(x, f),
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2 Preliminaries

we obtain for X ∈ Tx (Ui ∩ Uk):

Tx
̂φi ◦ φ−1

k (X) : F −→ Tφi◦φ−1
k (x)(f)F

f �−→ (
proj2 ◦ T(x,f)

(
φi ◦ φ−1

k

)
(X, 0)

)
Now, we make use of the fact that TgHol(F ) = TeLghol(F ) for any g ∈ Hol(F ) to

identify
(
Tx

̂φi ◦ φ−1
k

)
(X) ∈ T ̂φi◦φ−1

k (x)
Hol(F ) with a holomorphic vector field

Φi,k(x) ∈ hol(F ).
Φi,k(x) ∈ hol(F ) is given by

f �→
(
T ̂φi◦φ−1

k (x)(f)

(
̂φi ◦ φ−1

k (x)−1

))[ (
proj2 ◦ T(x,f)

(
φi ◦ φ−1

k

))
(X, 0)

]
.

We see that

proj2 ◦ T(x,f)

(
φi ◦ φ−1

k

)
(JMX, 0) = JF

(
proj2 ◦ T(x,f)

(
φi ◦ φ−1

k

)
(X, 0)

)
because proj2 as well as φi ◦ φ−1

k are holomorphic by assumption.
Hence,

Tx
̂φi ◦ φ−1

k (JMX) = JHol(F )Tx
̂φi ◦ φ−1

k (X)

since the complex structure on Hol(F ) is induced by the complex structure on F
applied to the holomorphic vector fields.
We deduce that Tx

̂φi ◦ φ−1
k is complex linear and therefore x �→ ̂φi ◦ φ−1

k (x) is
holomorphic.

Remark 2.17:
We can endow E not only with a complex structure, using the complex structures of F
and M but with a compatible Riemannian metric g = gE as well such that:

• the horizontal and the vertical tangent space are perpendicular with regard to g,
i.e. THE ⊥g T V E,

• the inclusion of the fibre is an isometric immersion, i.e.
(
φ−1
i,x

)∗
g = gF for all i ∈ I

and all x ∈ Ui,

• dπE : (THE, g |THE⊗THE) → (TM, gM ) is point wise a linear isometry, i.e. πE is a
Riemannian submersion.

This can be done by using the splitting TE = THE ⊕ T V E which is invariant under the
complex structure on E.
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We now summarise what we know so far.
We have three complex manifolds M,F and E with compatible Riemannian metrics
gM , gF and g. The projection πE : E → M is a holomorphic Riemannian submersion
where the horizontal tangent space of E is mapped isometrically to the tangent space of
M while the inclusions of the fibre F is a holomorphic, Riemannian immersion.

Next in line is to understand why we wanted our connection to be of type (1, 1). This is
the content of Subsection 2.3.1.
In Subsection 2.3.3, we describe how a holomorphic line bundle L over a holomorphic
fibre bundle induces holomorphic line bundles over every fibre by reduction, i.e. by
pullback under the inclusion.

2.3.1 Splitting properties

Let (E, πE , (M, gM ), (F, gF ), T
HE) be a holomorphic fibre bundle.

Let furthermore πL : (L, h) → E be a Hermitian, holomorphic line bundle, i.e. a
holomorphic line bundle L with a Hermitian metric h over E. We denote its holomorphic
structure by ∂̄L.

The splitting TE = THE ⊕⊥gE T V E leads to an orthogonal splitting of the
antiholomorphic forms with coefficients in L. In this subsection, we show that this
orthogonal splitting extends to a splitting of the operator ∂̄L into a vertical and a
horizontal part. This is due to the fact that our connection is of type (1, 1) which is why
we require this in the first place.

We prove this kind splitting property for the ∂̄L-operator in slightly more generality. In
order to do that, we extend the property to be of type (1, 1)-property from horizontal
distributions to general distributions that are invariant under the complex structure.

Definition 2.18:
Let (E, JE) be a complex manifold with compatible Riemannian metric gE .
A JE-invariant distribution D ⊂ TE is called of type (1, 1), if

[Γ(E,D(0,1)),Γ(E,D(0,1))] ⊂ Γ(E,D(0,1)).

Remark 2.19:

• Recall that for any distribution D ⊂ TE on a Riemannian manifold, we get an
orthogonal distribution D⊥. In particular, D =

(
D⊥)⊥.

• Let Q −→ E be a complex line bundle.
Every distribution D ⊂ TE defines a natural subspace A

(0,∗)
D (E,Q) of

A(0,∗)(E,Q) where α lies in A
(0,∗)
D (E,Q) if and only if ιXα = 0 for every section

X ∈ Γ(E,D⊥ ⊗R C).
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In particular, we obtain the following splitting:

A(0,q)(E,Q) =
⊕
s+t=q

A
(0,s)
D (E) ∧ A

(0,t)

D⊥ (E,Q).

If additionally, Q is a holomorphic vector bundle, then we have a well defined ∂̄Q
operator which is a first order differential operator ∂̄ : A(0,∗)(E,Q) → A(0,∗+1)(E,Q).

For D and D⊥ of type (1, 1) the ∂̄Q-operator splits into a D and a D⊥ part.

Lemma 2.20:
Let πQ : (Q, h) → E be a Hermitian, holomorphic vector bundle over a complex
Riemannian manifold E with compatible metric.
Furthermore, let D ⊂ TE be a distribution of type (1, 1) such that D⊥ is a distribution
of type (1, 1) as well.
Then there are two first order differential operators

∂̄D : A
(0,s)
D (E) ∧ A

(0,t)

D⊥ (E,Q) −→ A
(0,s+1)
D (E) ∧ A

(0,t)

D⊥ (E,Q)

∂̄D⊥ : A
(0,s)
D (E) ∧ A

(0,t)

D⊥ (E,Q) −→ A
(0,s)
D (E) ∧ A

(0,t+1)

D⊥ (E,Q)

such that

∂̄Q = ∂̄D + ∂̄D⊥ .

If we denote the orthogonal projection by

Qp,q : A
(0,∗)(E,Q) −→ A

(0,p)
D (E) ∧ A

(0,q)

D⊥ (E,Q),

then the operators ∂̄D and ∂̄D⊥ restricted to A
(0,p)
D (E) ∧ A

(0,q)

D⊥ (E,Q) are given by

∂̄D = Qp+1,q ◦ ∂̄Q and ∂̄D⊥ = Qp,q+1 ◦ ∂̄Q.

Proof.
Let α be an antiholomorphic form in A

(0,p)
D (E) ∧ A

(0,q)

D⊥ (E,Q).
We have to show that ∂̄Qα lies in

A
(0,p+1)
D (E) ∧ A

(0,q)

D⊥ (E,Q)⊕ A
(0,p)
D (E) ∧ A

(0,q+1)

D⊥ (E,Q).

The Leibniz rule (Equation (3)), i.e.

∂̄Q(α ∧ β) = (∂̄Qα) ∧ β + (−1)|α|α ∧ (∂̄Qβ),

enables us to reduce our investigations to the case α ∈ A(0,1)(E,Q).
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Since D and D⊥ are interchangeable, we can assume without loss of generality that α

lives in A
(0,1)

D⊥ (E,Q), i.e. α =
∑

i αi ⊗ si where si ∈ Γ(E,Q) and αi ∈ A
(0,1)

D⊥ (E).
Hence, for two D0,1 valued vector fields X,Y ∈ Γ(E,D0,1):(

∂̄Qα
)
(X,Y ) =

∑
i

(∂̄αi)(X,Y ) · si −
(
αi ∧ (∂̄Qsi)

)
(X,Y )

=
∑
i

(∂̄αi)(X,Y ) · si − αi(X)︸ ︷︷ ︸
=0

(∂̄Qsi)(Y ) + αi(Y )︸ ︷︷ ︸
=0

(∂̄Qsi)(X).

Computing the first term we obtain:(
∂̄αi

)
(X,Y ) = X.α(Y )︸ ︷︷ ︸

=0

−Y. α(X)︸ ︷︷ ︸
=0

−α( [X,Y ]︸ ︷︷ ︸
∈Γ(E,D0,1)

) = 0

since the distribution D is of of type (1, 1).
We deduce that ∂̄Qα(X,Y ) = 0.

Remark 2.21:
Let (E, πE , (M, gM ), (F, gF ), T

HE) be a holomorphic fibre bundle and L → E be a
holomorphic line bundle.
We have a JE invariant horizontal distribution D = THE of type (1, 1) and a
perpendicular vertical distribution D⊥ = T V E which is of type (1, 1) too since it is the
push forward of the complex tangent bundle TF via the holomorphic embedding
ix : F ↪→ E.
We deduced that the ∂̄L-operator splits into a vertical and a horizontal portion. This is
crucial for the whole setting of this work since one of the main aspects, we use later on,
is the splitting of the Dolbeault-Laplacian into a vertical and a horizontal part which
would fail to hold if the ∂̄L-operator wouldn’t split.

Definition 2.22:
From now on and throughout this thesis, we will use the following simplified notations:

A
(0,∗)
H (E) := A

(0,∗)
THE

(E) and A
(0,∗)
V (E) := A

(0,∗)
TV E

(E)

as well as ∂̄H := ∂̄THE and ∂̄V := ∂̄TV E .

Remark 2.23:
The antiholomorphic forms split orthogonally

A(0,q)(E,L) =
⊕
s+t=q

A
(0,t)
H (E) ∧ A

(0,s)
V (E,L),
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for the L2-Hermitian metric induced by the Hermitian metrics on L and on TE.
Furthermore, we saw in Lemma 2.20 and Remark 2.21 that

∂̄L : A
(0,t)
H (E)∧A

(0,s)
V (E,L) −→ A

(0,t+1)
H (E)∧A

(0,s)
V (E,L)⊕A

(0,t)
H (E)∧A

(0,s+1)
V (E,L)

splits into a vertical operator ∂̄V and a horizontal one ∂̄H .

∂̄V : A
(0,t)
H (E) ∧ A

(0,s)
V (E,L) −→ A

(0,t)
H (E) ∧ A

(0,s+1)
V (E,L)

∂̄H : A
(0,t)
H (E) ∧ A

(0,s)
V (E,L) −→ A

(0,t+1)
H (E) ∧ A

(0,s)
V (E,L)

Consequently, the adjoint ∂̄∗
L splits as well,

∂̄∗
L : A

(0,t)
H (E)∧A

(0,s)
V (E,L) −→ A

(0,t−1)
H (E)∧A

(0,s)
V (E,L)⊕A

(0,t)
H (E)∧A

(0,s−1)
V (E,L)

into ∂̄∗
V and ∂̄∗

H given by

∂̄∗
V : A

(0,t)
H (E) ∧ A

(0,s)
V (E,L) −→ A

(0,t)
H (E) ∧ A

(0,s−1)
V (E,L)

∂̄∗
H : A

(0,t)
H (E) ∧ A

(0,s)
V (E,L) −→ A

(0,t−1)
H (E) ∧ A

(0,s)
V (E,L).

2.3.2 Splitting of the holomorphic structure on pullback-forms

Let (E, πE , (M, gM ), (F, gF ), T
HE) be a holomorphic fibre bundle and furthermore let

(L, h) → E be a Hermitian, holomorphic line bundle.
In this subsection, we investigate how the pullback of an antiholomorphic form on M
interferes with the splitting of the ∂̄L-operator.

The pullback of a (0, q)-form on M is obviously a horizontal form. To be more precise the
space A

(0,∗)
H (E) of horizontal antiholomorphic forms on E is a C∞(E,C) module over the

vector space of pullback forms π∗
E(A

(0,∗)(M)).

A
(0,∗)
H (E) = C∞(E,C)⊗C π∗

E

(
A(0,∗)(M)

)
It is a finitely generated module since E is compact.

Therefore, it is self-evident to check how the operators ∂̄V and ∂̄H act on these pullbacks.

Lemma 2.24:
Let again (E, πE , (M, gM ), (F, gF ), T

HE) be a holomorphic fibre bundle and L be a
holomorphic line bundle over E.
For μ ∈ A0,q(M) and ω ∈ A

(0,p)
V (E,L), the following equations hold.

∂̄V (π∗
Eμ ∧ ω) = (−1)qπ∗

Eμ ∧ ∂̄V ω (8)
∂̄H (π∗

Eμ ∧ ω) = π∗
E(∂̄μ) ∧ ω + (−1)qπ∗

Eμ ∧ ∂̄Hω (9)
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Proof.
Since ∂̄L fulfils the Leibniz rule, so does ∂̄V :

∂̄V (π∗
Eμ ∧ ω) = (∂̄V π

∗
Eμ) ∧ ω + (−1)qπ∗

Eμ ∧ ∂̄V ω.

Hence, we have to check that ∂̄V π
∗
Eμ = 0 which can be reduced inductively to the cases

q = 0 and q = 1.
Start with q = 0 and with a vertical vector field X ∈ Γ(E, T V,(0,1)E), we obtain:

(∂̄V π
∗
Eμ)e(X) = d(μ ◦ πE)e(X) =: (X.μ ◦ πE)e = 0

since μ ◦ πE is vertically constant.
Now for the q = 1 part, take X ∈ Γ(E, T V,(0,1)E) and a horizontal lift
Ỹ ∈ Γ(E, TH,(0,1)E) of Y ∈ Γ(M,T (0,1)M):

(∂̄V π
∗
Eμ)e(X, Ỹ ) = X.π∗

Eμ(Ỹ )− Ỹ .π∗
Eμ(X)− π∗

Eμ( [X, Ỹ ]︸ ︷︷ ︸
∈Γ(E,TV E⊗RC)

)

= X. (μ(Y ) ◦ πE)− Ỹ .0− 0 = 0.

Thus, we have shown Equation (8).
Equation (9) follows instantaneously from the Leibniz rule (Equation (3)) and the fact
that πE is a holomorphic map.

We show next that an equation analogous to Equation (8) holds for the adjoint operator
∂̄∗
V of ∂̄V as well.

Lemma 2.25:
Let (E, πE , (M, gM ), (F, gF ), T

HE) be a holomorphic fibre bundle and (L, h) → E be a
holomorphic, Hermitian line bundle over E.
For μ ∈ A0,q(M) and ω ∈ A

(0,p)
V (E,L), the following equation holds.

∂̄∗
V (π∗

Eμ ∧ ω) = (−1)|μ|π∗
Eμ ∧ ∂̄∗

V ω

Proof.
Recall that the metrics gM and gE are compatible with the complex structure. Hence,
they induce Hermitian metrics on TM and TE. By extension we obtain Hermitian
metrics hM on Λ· (T (0,1)M

)∗ and hE Λ· (T (0,1)E
)∗. Denote in abuse of notation by

h = hE ⊗ h the Hermitian metric on Λ· (T (0,1)E
)∗ ⊗ L.

Let further on 〈·, ·〉L2 denote the L2 Hermitian product on differential forms, i.e. on
A(0,∗)(E,L), induced by h.
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We obtain:

〈π∗
Eα ∧ β, ∂̄∗

V (π∗
Eμ ∧ ω)〉L2 = 〈∂̄V (π∗

Eα ∧ β) , π∗
Eμ ∧ ω〉L2

(8)
= 〈(−1)|α|π∗

Eα ∧ ∂̄V β, π
∗
Eμ ∧ ω〉L2

=

∫
E
(−1)|α|π∗

E (hM (α, μ)) · h(∂̄V β, ω)

Note that the function π∗
E (hM (α, μ)) is constant along each fibre. Thus, its

multiplication commutes with the ∂̄V -operator (compare Equation (8)).
Consequently, we get:

〈π∗
Eα ∧ β, ∂̄∗

V (π∗
Eμ ∧ ω)〉L2 =

∫
E
(−1)|α|h

(
∂̄V

(
π∗
E (hM (α, μ)) · β

)
, ω

)
=

∫
E
(−1)|α|h

(
π∗
E (hM (α, μ)) · β, ∂̄∗

V ω

)
=

∫
E
(−1)|α|π∗

E (hM (α, μ)) · h(β, ∂̄∗
V ω)

= 〈π∗
Eα ∧ β, (−1)|α|π∗

Eμ ∧ ∂̄∗
V ω〉L2 .

Now, the assertion follows from the fact that π∗
E (hM (α, μ)) �= 0 directly implies that

|α| = |μ|.

The ∂̄V operator as well as its adjoint ∂̄∗
V act trivially on pullback forms. Therefore, so

does their sum.
We define LV := ∂̄V + ∂̄∗

V and derive trivially:

LV (π∗
Eμ ∧ ω) = (−1)|μ|π∗

Eμ ∧ LV ω.

Now, we formally define the vertical as well as the horizontal Laplacian for a
holomorphic, Hermitian line bundle over holomorphic fibre bundle.

Definition 2.26:
Let (E, πE , (M, gM ), (F, gF ), T

HE) be a holomorphic fibre bundle and L → E be a
holomorphic, Hermitian line bundle over E.

• The vertical Laplacian �V is a differential operator acting on A(0,∗)(E,L)
defined by the following equation.

�V := L2
V = ∂̄V ∂̄

∗
V + ∂̄∗

V ∂̄V

• The horizontal Laplacian �H is the corresponding differential operator acting
on A(0,∗)(E,L) defined analogously to �V , i.e. we define

�H := ∂̄H ∂̄∗
H + ∂̄∗

H ∂̄H .
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Remark 2.27:
Although we have a splitting ∂̄L = ∂̄V + ∂̄H and a splitting ∂̄∗

L = ∂̄∗
V + ∂̄∗

H , it is not
obvious that this splitting extends to the Laplacian, i.e. in general we have

�L �= �V +�H .

We investigate when such a splitting actually occurs in Section 3.2.

Applying the lemmas above, one property of the vertical Laplacian becomes obvious.

Corollary 2.28:
Let (E, πE , (M, gM ), (F, gF ), T

HE) be a holomorphic fibre bundle and L → E be a
holomorphic, Hermitian line bundle over E.
Then the following equation holds

�V (π
∗
Eμ ∧ ω) = (π∗

Eμ) ∧ (�V ω)

for all μ ∈ A(0,∗)(M) and ω ∈ A(0,∗)(E,L).

2.3.3 Induced holomorphic structure on fibres

Let again πL : (L, h) −→ E be a Hermitian, holomorphic line bundle over a holomorphic
fibre bundle (E, πE , (M, gM ), (F, gF ), T

HE).
Now, E has the structure of a complex manifold (compare Lemma 2.16) and in addition
to that, we have local trivialisations {(Uk, φk)}k∈I of E such that the embedding of a
fibre F , given by

φ−1
k,x : {x} × F ∼= F −→ E,

is a holomorphic map for any k ∈ I and any x ∈ Uk.
We can pull the line bundle L back under the inclusion φ−1

k,x to obtain a complex line
bundle

Lk,x :=
(
φ−1
k,x

)∗
L −→ F

Recall that the pullback bundle ψ∗L of a bundle L through a map ψ : F → E is defined
by

ψ∗L := {(f, l) | ψ(f) = πL(l)}
where the projection πψ∗L is defined by πψ∗L(f, l) := f .
This fact in mind, we get an induced map

(φ−1
k,x)

∗ : Γ(E,L) −→ Γ(F,Lk,x)

s �−→
{
f �→

(
f, s(φ−1

k,x(f))
)}

.
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The induced map
(
φ−1
k,x

)∗
on smooth sections is surjective which can be seen as follows.

The fibre Ex is closed in E.
Now, a known fact for sections into a vector bundle is that a section sV ∈ Γ(V,L) defined
on a closed subset iV : V ↪→ E, has a smooth continuation sE ∈ Γ(E,L) to the rest of E
(cf. [5]).

Consequently, we obtain i∗V sE = sV and hence,

(φ−1
k,x)

∗ : Γ(E,L) −→ Γ(F,Lk,x)

is surjective.

Of course, the same argument holds for the pullback (φ−1
k,x)

∗, i.e.

(φ−1
k,x)

∗ : A(0,∗)(E,L) −→ A(0,∗)(F,Lk,x)

α⊗ s �−→
((

φ−1
k,x

)∗
α
)
⊗
(
φ−1
k,x

)∗
s,

is onto as well.
In abuse of notation, we denote the pullback of complexified differential forms with the
same symbol

(
φ−1
k,x

)∗
as the pullback of sections in L.

It is possible to equip Lk,x with a holomorphic structure induced by the holomorphic
structure on L.
Recall therefore that a holomorphic structure can be identified with a first order
differential operator ∂̄L on the antiholomorphic differential forms with coefficients in L
having the symbol of the ∂̄ operator (compare Corollary 2.3). Hence, it suffices to define
such an operator ∂̄Lk,x

on Lk,x in order to equip Lk,x with a holomorphic structure.
A natural definition would be the following.

∂̄Lk,x
◦
(
φ−1
k,x

)∗
=
(
φ−1
k,x

)∗ ◦ ∂̄L (10)

A simple calculation shows that this operator is well defined and has the correct
behaviour as a differential operator.
Hence, it defines a holomorphic structure on L.

Actually, we can reduce Equation (10) to

∂̄Lk,x
◦
(
φ−1
k,x

)∗
=
(
φ−1
k,x

)∗ ◦ (∂̄V + ∂̄H
)
=
(
φ−1
k,x

)∗ ◦ ∂̄V . (11)

Pulling back the Hermitian metric on L, we obtain a Hermitian metric on Lk,x.
Furthermore, since F is compact and oriented, we get a L2 inner product on
A(0,∗)(F,Lk,x) and hereby an adjoint operator ∂̄∗

Lk,x
.

There is a formula for ∂̄∗
Lk,x

analogous to Equation (11) which we show next.
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Lemma 2.29:
Let πL : (L, h) → E be a Hermitian, holomorphic line bundle over a holomorphic fibre
bundle.
Furthermore, let ∂̄Lk,x

be the holomorphic structure on Lk,x induced by Equation (11).
Then its adjoint operator ∂̄∗

Lk,x
is given by:

∂̄∗
Lk,x

◦
(
φ−1
k,x

)∗
=
(
φ−1
k,x

)∗ ◦ ∂̄∗
V : A

(0,∗)
V (E,L) −→ A(0,∗)(F,Lk,x).

Proof.
The main idea of this proof is to make use of the following fact.

If Q → B is a holomorphic, Hermitian vector bundle over a complex manifold B, the
adjoint ∂̄Q-operator, i.e. ∂̄∗

Q, is closely related to ∂̄Q∗ which denotes the ∂̄-operator on the
dual bundle Q∗.
Their correlation is given by the identity:

∂̄∗
Q = −∗̄Q∗ ◦ ∂̄Q∗ ◦ ∗̄Q (12)

where ∗̄Q : A(p,q)(B,Q) → A(n−p,n−q)(B,Q∗) denotes the Hodge-Star operator (compare
Definition A.4).This fact is proven for example in [17].

Now, we return to the situation at hand.
The assertion of Lemma 2.29 can be proven locally, therefore we will omit the k ∈ I from
the notation within this proof, i.e. we denote Lx := Lk,x and ∂̄Lx := ∂̄Lk,x

.

Additionally, let ∂̄L∗
x

denote the Dolbeault-operator on L∗
x =

(
φ−1
k,x

)∗
L∗, defined

analogously to Equation (11), i.e.

∂̄L∗
x
◦
(
φ−1
k,x

)∗
=
(
φ−1
k,x

)∗ ◦ ∂̄∗
V .

Now, we make use of Lemma A.6 which enables us to exchange the
(
φ−1
k,x

)∗
morphism

with the Hodge-Star operator.
In order to do that, observe that the pullback of the volume form dvolM of the
Riemannian manifold M via πE is a horizontal form of maximal degree.

∂̄∗
Lx

◦
(
φ−1
k,x

)∗ (12)
= − ∗̄L∗

x
◦ ∂̄L∗

x
◦ ∗̄Lx ◦

(
φ−1
k,x

)∗
A.6
= − ∗̄L∗

x
◦ ∂̄L∗

x
◦
(
φ−1
k,x

)∗ ◦ ∗̄L ◦ ε (π∗
EdvolM )

Now, we apply Equation (11) to obtain the holomorphic structure ∂̄L∗
x

on L∗
x induced by

the vertical ∂̄-operator ∂̄V,L∗ defined by the holomorphic structure of L∗.
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Hence, we get:

∂̄∗
Lx

◦
(
φ−1
k,x

)∗
=− ∗̄L∗

x
◦
(
φ−1
k,x

)∗ ◦ ∂̄V,L∗ ◦ ∗̄L ◦ ε (π∗
EdvolM )

A.6
= −

(
φ−1
k,x

)∗ ◦ ∗̄L∗ ◦ ε (π∗
EdvolM ) ◦ ∂̄V,L∗ ◦ ∗̄L ◦ ε (π∗

EdvolM )

We showed in Lemma 2.24 that the exterior product of pullbacks of antiholomorphic
forms commutes with the operator ∂̄V up to the sign (−1)deg where deg denotes the
degree of the differential form.
It follows that ∂̄V,L∗ and ε(dvolM ) commute because dvolM has an even degree.
Consequently, we obtain:

∂̄∗
Lx

◦
(
φ−1
k,x

)∗
=−

(
φ−1
k,x

)∗ ◦ ∗̄L∗ ◦ ∂̄V,L∗ ◦ ε (π∗
EdvolM ) ◦ ∗̄L ◦ ε (π∗

EdvolM )

A.6
= −

(
φ−1
k,x

)∗ ◦ ∗̄L∗ ◦ ∂̄V,L∗ ◦ ∗̄L

where we applied the second assertion of Lemma A.6 in order to obtain the second
equality.
At last, we apply Equation (12) again, bearing in mind that

(
φ−1
k,x

)∗ ◦ ∗̄L∗ ◦ ∂̄H,L∗ ◦ ∗̄L
vanishes when restricted to A

(0,∗)
V (E,L), and receive

∂̄∗
Lx

◦
(
φ−1
k,x

)∗
=
(
φ−1
k,x

)∗ ◦ ∂̄∗
V

which finishes the proof.

Closing this subsection, we summarise that for any Hermitian, holomorphic line bundle L
over a holomorphic fibre bundle we obtain an induced Hermitian, holomorphic line
bundle Lk,x for every admissible identification of the fibretype F with the fibre
Ex = π−1

E (x). The holomorphic structure ∂̄Lk,x
as well as its adjoint operator are induced

via pullbacks by the vertical ∂̄-operator ∂̄V and its adjoint ∂̄∗
V .

2.4 Smooth vector bundle over a fibre bundle

For our purpose we need to look at complex line bundles L over a fibre bundle
F ↪→ E �→ M . It will be necessary to understand sections from E into L as sections from
M into an infinite dimensional vector bundle over M .
Unfortunately, our research hasn’t produced a general identification of these section
spaces. Therefore, we will have to restrict L to the case of a so-called smooth vector
bundle over the fibre bundle F ↪→ E → M which is introduced by Atiyah and Singer in
[4].
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Remark 2.30:
For Q to be a smooth vector bundle over a fibre bundle E → M is a different property
than being a smooth vector bundle over the total space E of the fibre bundle.

In order to increase the understandability of this thesis, we will state this definition here,
tailored to the case in which we need it.
First, we have to give a definition of the group Diff(F, Q̃) for a smooth vector bundle Q̃
over a compact manifold F as a topological group.

Definition 2.31:
Let πQ̃ : Q̃−→F be a smooth vector bundle over a compact, connected manifold F .
The group Diff(F, Q̃) is given by

Diff(F, Q̃) :=

{
ϕ ∈ Diff(Q̃, Q̃)

∣∣∣∣∣ ϕ covers a diffeo. Π(ϕ) : F → F

ϕ |Q̃f
: Q̃f → Q̃Π(ϕ)(f) is linear ∀f ∈ F

}

where Diff(Q̃, Q̃) denotes the group of diffeomorphisms from Q̃ into itself.

In order to define its topology, look at the map Π : Diff(F, Q̃) → Diff(F, F ). Without
restriction of generality, suppose (F, gF ) is a Riemannian manifold and Q̃ has a metric
hQ̃ as well as a metric connection ∇Q̃.
Furthermore, we need a classical result from Whitehead [31], stated by Cheeger and Ebin
in [11, Thm 5.14], which we repeat adapted to our purpose.

Theorem (Whitehead):
For a compact Riemannian manifold (F, gF ) there is a positive, continuous map

r : F −→ R+

so-called convexity radius, such that for all r < r(p) the geodesic ball Br(p) is strongly
convex.

In this context, a subset X ⊂ F is called strongly convex if for any two points x, y ∈ X̄
in the closure of X, there is a unique minimising geodesic τx,y : [0, 1] → F connecting x
and y and the interior of τx,y :]0, 1[→ X lies in X.

Corollary 2.32:
There is a positive constant r0 such that for any f ∈ F the geodesic ball Br0(f) is
strongly convex.
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Now, we apply this corollary to our situation.

Let κ ∈ Diff(F, F ) be a diffeomorphism such that the maximum geodesic distance
between f and κ(f) is smaller than r0, i.e. dgeod.(f, κ(f)) < r0. Because of Corollary
2.32, we have a unique minimising geodesic γκf from f to κ(f).
Hence, we may identify Q̃f with Q̃κ(f) by parallel transport along γκf . Let us denote this
map from Q̃ to Q̃ covering κ with C(κ), i.e. the following diagram commutes.

Q̃
πQ̃

��

C(κ) �� Q̃
πQ̃
��

F κ
�� F

Now, we can define what we mean by a small open neighbourhood of the identity in
Diff(F, Q̃) which allows us to define the topology of Diff(F, Q̃).

Definition 2.33:
Let ε > 0 be a positive constant with r0 > ε. Let further on δ > 0 be another positive
constant.
Define the set Uε,δ ⊂ Diff(F, Q̃) given by:

Uε,δ :=

{
ϕ

∣∣∣∣∣ a) max{dgeod.(Π(ϕ)(f), f) | f ∈ F} < ε

b) max{‖ϕ(l̃)− C(Π(ϕ)(l̃))‖hQ̃ | l̃ ∈ Q̃, ‖l̃‖hQ̃ = 1} < δ

}

to be open. Here hQ̃ denotes the Hermitian metric on Q̃ and ‖l̃‖hQ̃ is the norm of l̃ ∈ Q̃
induced by hQ̃.
The topology on Diff(F, Q̃) is generated (using the group action and inversion, unions
and intersections) by Uε,δ for arbitrary small ε and δ.

Remark 2.34:

• The topology from Definition 2.33 equals the restriction of the compact-open
topology on Diff(Q̃, Q̃) to the subspace Diff(F, Q̃).
This fact can be seen by taking a sequence of maps {ϕn}n ∈ Diff(F, Q̃).
Now, ϕn converges in the topology above if and only if it converges uniformly on
every compact subset K ⊂ Q̃. But since Q̃ is a metric space, compact-open
topology and topology of compact convergence are one and the same.

• This topology is independent of the choice of gF , hQ̃ and ∇Q̃ since the compact
open topology does not depend on these objects.

• Diff(F, Q̃) is Hausdorff because Q̃ is Hausdorff and the Hausdorff property
transports to compact-open-topology.
It follows that Diff(F, Q̃) becomes a topological group.
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Before we may define what a smooth vector bundle over a fibre bundle is, we have to
repeat one definition. We define what a Lie transformation group of a manifold is. (cf.
[21]).

Definition 2.35:
Let M be a manifold and K be a Lie group.
K is called Lie transformation group of M if the following two properties hold.

• K is a topological subgroup of Diff(M,M).

• The map

K ×M −→ M
(k, x) �−→ k · x

is smooth.

Finally, we define a smooth vector bundle over a fibre bundle.

Definition 2.36:
Let πE : E �−→ M be a smooth fibre bundle with compact fibre F .
Then πQ : Q −→ E is called smooth vector bundle over the fibre bundle E → M
if the following properties hold.

• There exists a smooth vector bundle Q̃ → F and a Lie group K which is a Lie
transformation group K of Q̃ and a topological subgroup of Diff(F, Q̃).

• The bundle πE ◦ πQ : Q −→ M is a smooth fibre bundle over M with fibre Q̃ and
structure group K, i.e. Q → M forms a smooth fibre bundle where the transition
functions are smooth maps into K.

Q̃
πQ̃

��

� � �� Q
πQ

��

��

F � � �� E

πE

��
M

Remark 2.37:
The definition of a smooth vector bundle over a fibre bundle given by Atiyah and Singer
in [4] is actually more general, but since we do not need it in that generality, we
restricted our definition to the situation at hand.
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For a smooth vector bundle Q → E over a fibre bundle E → M with structure group K,
we naturally inherit a K-principle fibre bundle P → M .
The bundle P is given by patching together the local transition functions of the bundle
Q → M which we formally do now.

Let {Ui}i∈I be a cover of M such that Q → M trivialises over Ui for every i ∈ I and let
further on

̂ϕi ◦ ϕ−1
j : Ui ∩ Uj −→ K

be the smooth transition functions for the bundle Q → M .
We define the manifold P to be the disjoint union of the Ui ×K modded out by an
equivalence relation

P :=

(∐
i∈I

Ui ×K

)/
∼

where the equivalence relation is defined for every x ∈ Ui ∩ Uj to be:

Ui ×K � (x, k) ∼ (x, ̂ϕi ◦ ϕ−1
j (x) · k) ∈ Uj ×K.

Baum shows in [5] that P defined this way becomes a smooth manifold as well as a
K-principle fibre bundle over M with projection:

πP : P −→ M
[(x, k)] �−→ x.

Remark 2.38:
Let ρ̃ denote the inclusion of K into Diff(F, Q̃). By construction of P , we see that Q is
associated to P as fibre bundle over M via ρ̃, i.e.

Q = P ×ρ̃,K Q̃ → M.

Furthermore, we can apply the group homomorphism Π (compare Definition 2.31)

Π : Diff(F, Q̃) → Diff(F, F )

to obtain a K-action

ρ = Π ◦ ρ̃ : K → Diff(F, F ).

In particular, the fibre bundle E is associated to P as well, i.e.

E = P ×ρ,K F.
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2.4 Smooth vector bundle over a fibre bundle

What is not obvious up to this point is that the bundle Q = P ×ρ̃ Q̃ → E is a smooth
vector bundle over the manifold E = P ×ρ F , in opposition to being a smooth vector
bundle over the fibre bundle E → M .
To show this is the content of the next lemma. Furthermore, we introduce some
notations for the local trivialisation maps that we use throughout this thesis.

Lemma 2.39:
Let πQ : Q → F be a complex vector bundle over a manifold F , let K be a Lie group and
let furthermore

ρ̃ : K → Diff(F, Q̃)

be a topological group homomorphism making K a Lie transformation group of Q̃.
Denote by ρ the map

ρ : K → Diff(F, F )

given by ρ = Π ◦ ρ̃ (compare Definition 2.31).
Then for any K-principle fibre bundle P → M over a manifold M , the bundle

πQ : Q := P ×ρ̃ Q̃ −→ E := P ×ρ F

is a smooth complex vector bundle.
Summarising, we obtain the following commuting diagram.

Q̃
πQ̃

��

� � �� Q = P ×ρ̃,K Q̃
πQ
��

��

F � � �� E = P ×ρ,K F

πE

��
M

(13)

The projection πQ : Q → E is given by πQ([p, ṽ]ρ̃) := [p, πQ̃(ṽ)]ρ.

Proof.
Choose local sections qi : Ui → P |Ui and local trivialisations (ϕi, Ui) of P such that

ϕi : P |Ui
−→ Ui ×K

(qi(x) · k) �−→ (x, k).

Denote the transition functions by

gij : Ui ∩ Uj −→ K

i.e. qi · gij = qj .
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2 Preliminaries

Additionally, choose local trivialisations (ψj , Vj) for the smooth vector bundle Q̃ → F .

ψj : Q̃ |Vj
−→ Vj × Cm

Now, we define local trivialisations (χij ,Wij) for Q → E.
The local base set Wij is given by:

Wij := {[qi(x), f ]ρ | x ∈ Ui, f ∈ Vj} ⊂ E |Ui

and take for the local trivialisation map:

χij : Q |Wij
−→ Wij × Cm

[qi(x), ṽ]ρ̃ �−→ (
[qi(x), πQ̃(ṽ)]ρ, proj2(ψj(ṽ))

)
.

It obviously fulfils πQ = proj1 ◦ χij .
Its inverse map can be easily deduced to be:

χ−1
ij : Wij × Cm −→ Q |Wij

([qi(x), f ]ρ, λ) �−→
[
qi(x), ψ

−1
j (f, λ)

]
ρ̃
.

We compute the transition map on W := Wij ∩Wab:

χij ◦ χ−1
ab : W × Cm −→ W × Cm,

and obtain the following expression

χij ◦ χ−1
ab ([qa(x), f ]ρ, λ) = χij

([
qa(x), ψ

−1
b (f, λ)

]
ρ̃

)
= χij

([
qi(x) · gia(x), ψ−1

b (f, λ)
]
ρ̃

)
= χij

([
qi(x), ρ̃(gia(x))

(
ψ−1
b (f, λ)

)]
ρ̃

)
=
(
[qi(x), ρ(gia(x))(f)]ρ , proj2 ◦ ψj ◦ ρ̃(gia(x)) ◦ ψ−1

b (f, λ)
)
.

This is linear in λ since ψi and ρ̃(g) act C-linearly on the fibres. And the transition
function is smooth in (x, f) because K is a Lie transformation group.
Hence the transition functions are smooth in e = [qa(x), f ]ρ.

2.5 Equivariant torsion and equivariant index

In this subsection, we want to recall the definitions of the equivariant index as well as our
main object of interest, namely the equivariant holomorphic torsion.
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2.5 Equivariant torsion and equivariant index

Let πQ : Q → E be a holomorphic, Hermitian vector bundle over a compact, complex,
Riemannian manifold (E, gE) and let γ = (γQ, γE) be a pair of biholomorphic isometries
γQ : Q → Q and γE : E → E such that

• the following diagram commutes

Q
πQ

��

γQ
�� Q

πQ
��

E
γE

�� E

• and the map γQ |Qx:=π−1
Q (x): Qx → QγE(x) is a complex linear isometry.

Definition 2.40:
There is a natural, γ-induced action γ̌Q on antiholomorphic forms with coefficients in Q.
It is given for α ∈ A(0,∗)(E) and s ∈ Γ(E,Q), by:

γ̌Q (α⊗ s)e :=
{((

γE
)−1
)∗

α
}
e
⊗ γQ

(
s(
(
γE
)−1

(e))
)
,

and extended linearly onto A(0,∗)(E)⊗ Γ(E,Q).

Remark 2.41:
The map γQ : Q → Q is biholomorphic. Therefore, ∂̄Q commutes with γ̌Q. On the other
hand, γ̌Q is an isometry on A(0,∗)(E,Q). Hence, it commutes with ∂̄∗

Q as well.
Consequently, we obtain that the Laplacian �Q = ∂̄Q∂̄∗

Q + ∂̄∗
Q∂̄Q commutes with the

action γ̌Q on A(0,∗)(E,Q), too.
It follows for any λ in the spectrum σ(�Q) ⊂ R+

0 of �Q that γ̌Q acts on the Eigenspace

Eigλ(�
(0,q)
Q ) :=

{
α ∈ A(0,q)(E,Q) | �Qα = λ · α

}
by restriction.

The fact that γ̌Q acts on the Eigenspace Eigλ(�
(0,q)
Q ) for any λ is now used to define two

invariants, on the one hand the equivariant index which depends on the 0-Eigenspace of
�Q and on the other hand the equivariant torsion which depends on the Eigenspaces
corresponding to the non-zero Eigenvalues.

Definition 2.42:
The equivariant index ind(γQ,�Q) of a Hermitian, holomorphic vector bundle Q
over M is given by

ind(γQ,�Q) :=
∑
q≥0

(−1)qTr

(
γ̌Q |

Ker(�(0,q)
Q )

)
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2 Preliminaries

In order to define the equivariant holomorphic torsion, we have define the equivariant
ζ-function at first.

Definition 2.43:
The equivariant ζ-function ZQ

γ̌Q is now formally defined by:

ZQ
γ̌Q(s) :=

∑
q≥0

(−1)q+1q
∑

λ∈σ(�Q)\{0}
λ−s · Tr

(
γ̌Q
∣∣
Eigλ(�

(0,q)
Q )

)

for s ∈ C with sufficiently large real part Re(s) >> 0 where this series converges
absolutely.

There is always a real constant c such that ZQ
γ̌Q(s) converges absolutely if the Re(s) > c.

Furthermore, ZQ
γ̌Q can be continued meromorphically to the complex plane and this

continuation has no pole at 0 ∈ C. (This fact is proven for the non-equivariant case, i.e.
for γQ = idQ in [28]. The equivariant case is proven analogously.)

The fact that the equivariant ζ-function is holomorphic at 0 ∈ C is now used to define
the equivariant torsion (cf. [22]).

Definition 2.44:
The equivariant holomorphic torsion τQ(γ̌Q) is defined by:

τQ(γ̌Q) := (ZQ
γ̌Q)

′(0).

Remark 2.45:
Obviously, two holomorphic, Hermitian vector bundles structures ∂̄0 and ∂̄1 on Q that
are equivalent in the sense of Definition 2.5 induce the same equivariant torsion if the
equivalence is an isometry as well, i.e. if ∂̄1 = ∂̄0 + ε(g−1∂̄g) for g : E → U(1).
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In this section, we introduce the setting which we want to work in.

In order to obtain statements about the holomorphic torsion of line bundles over a
holomorphic fibre bundle, it is necessary to restrict to so-called compatible line bundles.
In Subsection 3.1, we define what a compatible line bundle is and what this restriction
implies from arbitrary holomorphic line bundles implies. The class of compatible line
bundles is a generalisation of the line bundles Stanton looks at in [29].
Furthermore, we recall some results from Atiyah and Singer (cf. [4]) to obtain vector
bundles

W(λ;∗) =
⋃
x∈M

Ker
(
�L|Ex

− λ
)
.

A very important property that needs to hold for a holomorphic line bundle, in order to
make it compatible, is the splitting of the Laplacian into a vertical and a horizontal part.
In Subsection 3.2, we investigate when such a splitting occurs, i.e. what conditions lead
to such a splitting. The proof of these vanishing conditions is an extension of Stantons
results about flat holomorphic line bundles.
In the following two Subsections 3.3 and 3.4, we identify the λ-Eigenspace of the vertical
Laplacian �V on E with antiholomorphic forms on the base M of our holomorphic fibre
bundle with coefficients in the holomorphic, Hermitian vector bundle W(λ,∗) via a
morphism ψ. This enables us later on to translate the problem of calculating the
equivariant holomorphic torsion of L from E to computing differential-topological
invariants on M and vice verse.
Subsection 3.5 introduces the equivariant setting. Since we don’t want to loose the
orthogonal splitting of �L into vertical and horizontal parts, we need to restrict the
equivariant setting to actions �γ that are legitimate. We define what this means exactly in
Subsection 3.5.
At last, we show that we can translate the legitimate �γ action on L → E via the
morphism ψ to an action γ on the holomorphic vector bundles W(λ;t) over M . This is the
subject of Subsection 3.6.

3.1 Setting

This section is about defining what a compatible line bundle is and furthermore about
giving a short survey of some properties of a compatible line bundle.
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3 Compatible line bundles and legitimate equivariance

We start right away with the definition of a compatible line bundle over a holomorphic
fibre bundle.

Definition 3.1:
Let (E, πE , (M, gM ), (F, gF ), T

HE) be a holomorphic fibre bundle as given by Definition
2.13, and let furthermore L be a holomorphic, Hermitian line bundle over E.
L → E is called compatible line bundle for the holomorphic fibre bundle if the
following properties hold.

1. L is a smooth vector bundle over the fibre bundle E → M in the sense of
Definition 2.36.
The smooth vector bundle structure L → E is the one induced by Lemma 2.39.
Furthermore, the fibre type of the smooth fibre bundle L → M is a smooth,
holomorphic, Hermitian line bundle L̃ → F such that every element k ∈ K
becomes a morphism ρ̃(k) : L̃ → L̃ that is a fibrewise Hermitian, linear map and
that respects the holomorphic structure of L̃ → F .

2. The Laplacian �L = ∂̄L∂̄
∗
L + ∂̄∗

L∂̄L splits into a vertical

�V = ∂̄V ∂̄
∗
V + ∂̄∗

V ∂̄V

as well as a horizontal part:

�H = ∂̄H ∂̄∗
H + ∂̄∗

H ∂̄H ,

i.e.

�L = �V +�H .

In Subsection 3.2, we examine when such a splitting occurs.

3. The holomorphic structure of the line bundle L restricted to the fibres Ex is fixed
in the following way.
There is a family of local trivialisations {(φi, Ui)}i∈I of E, such that the induced

holomorphic structure (compare Section 2.3.3) on
(
φ−1
i,x

)∗
L → F , given by

∂̄(φ−1
i,x)

∗
L
:=
(
φ−1
i,x

)∗ ◦ ∂̄V
is the same holomorphic structure that L̃ naturally induces, i.e. such that for every
x ∈ Ui, we obtain(

φ−1
i,x

)∗
L ∼= L̃

as holomorphic, Hermitian line bundles (in the sense of Definition 2.5).
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Remark 3.2:
Observe that forgetting the holomorphic structure, the isomorphism class of the smooth
vector bundle

(
φ−1
i,x

)∗
L does not depend on x if we choose a path connected, i.e.

connected, local trivialisation base set Ui. (cf. [1])

In the subsequent remark, we explain why we need the first property of the definition of a
compatible line bundle.
Stanton in [29] is able to circumvent the need for the line bundle L to be smooth (in the
sense of Definition 2.36) over the holomorphic fibre bundle because she already assumed
the holomorphic fibre bundle to be associated to a compact principle fibre bundle in the
first place. For the line bundles she looks at, this is sufficient to imply their smoothness
over the fibre bundle.
In our, more general, case we use some properties for smooth vector bundles over a fibre
bundle given in [4]. We now summarise the important facts that Atiyah and Singer
showed in [4].

Remark 3.3:
Let (E, πE , (M, gM ), (F, gF ), T

HE) be a holomorphic fibre bundle and L → E be a
compatible line bundle.
We need a survey of some further properties.

• For a compatible line bundle L → E the structure group of the bundle L → M
becomes a Lie group K.
Furthermore, there is a K-principle fibre bundle P → M such that the bundles
L → M and E → M are associated (compare Remark 2.38).
Explicitly stated, we obtain L = P ×ρ̃ L̃ → M and E = P ×ρ F → M for group
homomorphisms

ρ̃ : K −→ Diff(F, L̃)
ρ : K −→ Diff(F, F ).

Additionally, ρ̃ and ρ induce a representation

ρ̌ : K −→ Aut(A(0,∗)(F, L̃))

given for any differential form α ∈ A(p,q)(F, L̃) by

ρ̌(k) (α) := ρ̃(k)
(
ρ
(
k−1
)∗

(α)
)
.

• Atiyah and Singer show in [4] that for L being a smooth vector bundle (in the
sense of Definition 2.36) there is a Fréchet bundle

V(0,∗) :=
⋃

x∈M V
(0,∗)
x −→ M
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3 Compatible line bundles and legitimate equivariance

associated to P . Its fibre V
(0,∗)
x over the point x ∈ M is the set of vertical forms

restricted to a fibre Ex of E, i.e.

V(0,∗)
x = A

(0,∗)
V (Ex,L |Ex

).

Hence, V(0,∗)
x

∼= A(0,∗)(F, L̃) as Fréchet space and consequently the fibre bundle
V(0,∗) has the fibretype A(0,∗)(F, L̃).

A(0,∗)(F, L̃) �
� �� V(0,∗)

��
M

Summarising, we obtain:

V(0,∗) = P ×ρ̌,K A(0,∗)(F, L̃).

• Because of Property 1 of Definition 3.1, the holomorphic structure ∂̄L̃ on L̃ → F is
invariant under ρ̌(k) for any k ∈ K.
Additionally, ρ(k) acts as a Hermitian isometry covering an isometry ρ(k) of F for
every k ∈ K. Therefore, ρ̌(k) commutes with the ∂̄∗

L̃
-operator as well.

It follows that ∂̄L̃ + ∂̄∗
L̃

induces an elliptic operator on A(0,∗)(F, L̃) which is
invariant under the K-action ρ̌. Thus, ∂̄L̃ + ∂̄∗

L̃
defines a "constant", in particular

continuous, section in Γ
(
M,End

(
V(0,∗))). Analogously, so does �L̃ =

(
∂̄L̃ + ∂̄∗

L̃

)2
.

Consequently, �L̃ defines a continuous family of elliptic operators. (cf. [4])

• Again, following [4], we get for each Eigenvalue λ of �L̃ a complex vector bundle
W(λ;∗) → M of finite and constant rank over M .
It is given by

πW(λ;∗) : W(λ;∗) = Ker(�L̃ − λ) −→ M.

The bundle W(λ;∗) is associated to P as well because it is a restriction of V(0,∗) to
the kernel of �L̃, i.e.

W(λ;∗) = P ×ρ̌,K Ker
(
�L̃ − λ

)
.

• Observe that Atiyah and Singer prove that W(λ;∗) is a continuous vector bundle,
and not explicitly a smooth vector bundle.
On the other hand, any continuous vector bundle over a smooth manifold has a
unique smooth vector bundle structure compatible with its continuous vector
bundle structure (cf. [16, Ch. 4, Thm 3.5.]).
It follows that W(λ;t) can be regarded as a smooth vector bundle.
Later on, in Section 3.4, we show that W(λ;t) becomes a Hermitian, holomorphic
vector bundle.
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3.2 Laplace splitting property

In Subsection 3.3, we show that for every Eigenvalue λ of �V the λ-Eigenforms of �V

can be identified with sections from M into W(λ;∗).
This is essential when we use the bundles W(λ;∗) to express the equivariant holomorphic
torsion of L → E in Section 4.

However, before we delve deeper into this problem, we try at first to understand the
second property of Definition 3.1.
Therefore, we look for verifiable conditions for the Laplace splitting property. This is the
subject of the following subsection.

3.2 Laplace splitting property

So far, we have explained what the first property of the definition of a compatible line
bundle implies.

This subsection is about the second property of Definition 3.1, the Laplace splitting
property. It generalises the analogous statements of Stanton in [29]. The proofs of those
statements are quite similar.

First, we simplify the problem of verifying this property. Afterwards in Subsection 3.2.1,
we give a specific, verifiable and sufficient condition for the occurrence of such a splitting
in the case where F is a compact Kähler manifold. This is especially interesting for the
second part of this thesis where we look at the holomorphic torsion of holomorphic line
bundles over Lie groups. There, the fibre of the considered holomorphic fibre bundle is a
complex torus with bi-invariant Kähler metric.
In Subsection 3.2.2, we state as well as prove a useful consequence of the Laplace
splitting property.

Now, let (E, πE , (M, gM ), (F, gF ), T
HE) be a holomorphic fibre bundle and let L → E be

a holomorphic line bundle over E.
Lemma 2.20 shows that the ∂̄L operator, defining the holomorphic structure of L, splits
into a vertical part ∂̄V as well as a horizontal part ∂̄H . It suggests itself to check if a
similar property holds for the Laplacian �L = ∂̄L∂̄

∗
L + ∂̄∗

L∂̄L.
We show in this section that there are certain conditions that guarantee such a splitting.

First of all, we introduce some notations for the operators needed to describe this
splitting property.

Definition 3.4:
All of those operators are differential operators on A(0,∗)(E,L):

• LV := ∂̄V + ∂̄∗
V

• LH := ∂̄H + ∂̄∗
H

• �V := (LV )
2 = ∂̄∗

V ∂̄V + ∂̄V ∂̄
∗
V

• �H := (LH)2 = ∂̄∗
H ∂̄H + ∂̄H ∂̄∗

H
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• L := �L −�H −�V = LV LH + LHLV

Observe that the splitting of the Laplacian is equivalent to the vanishing of the operator

L = �L −�H −�V

on antiholomorphic forms on E with coefficients in L.

Now, we show that it suffices to verify that L vanishes on vertical antiholomorphic forms
A
(0,∗)
V (E,L) because if it vanishes there, it vanishes everywhere.

Lemma 3.5:
L ≡ 0 on A(0,∗)(E,L) if and only if L vanishes on A

(0,q)
V (E,L) for all q.

Proof.
One direction is obvious. I follows directly from A

(0,q)
V (E,L) ⊂ A(0,∗)(E,L).

We proof the other direction in the following way.
At first, we show that L is the sum of an operator A and its adjoint. Consequently, L
vanishes if and only if A does. Afterwards, we show that A vanishes on all
antiholomorphic forms if and only if it vanishes on vertical forms only. At last, we
summarise that A vanishes on vertical forms if and only if L does.

Now, taking a closer look at L, we notice:

L =
(
∂̄HLV + LV ∂̄H

)
+
(
∂̄HLV + LV ∂̄H

)∗
= A+A∗,

where A := ∂̄HLV + LV ∂̄H .
L vanishes if and only if A vanishes on A(0,∗)(E,L) because of the following argument.

Observe that the operators A and A∗ restricted to the space A
(0,s)
H (E) ∧ A

(0,∗)
V (E,L) map

as follows.

A : A
(0,s)
H (E) ∧ A

(0,∗)
V (E,L) −→ A

(0,s+1)
H (E) ∧ A

(0,∗)
V (E,L)

A∗ : A
(0,s)
H (E) ∧ A

(0,∗)
V (E,L) −→ A

(0,s−1)
H (E) ∧ A

(0,∗)
V (E,L).

Now, the target spaces on the right hand side are linearly independent. Hence, so are the
images of A and A∗.
Thus, (A+A∗)μ vanishes for any antiholomorphic form μ ∈ A

(0,s)
H (E) ∧ A

(0,∗)
V (E,L) if

and only if Aμ as well as A∗μ vanish.
On the other hand, A = 0 leads to A∗ = 0.
Consequently, we obtain A+A∗ = 0. Therefore in order to proof the assertion, we just
have to prove it for A.

We now show that A vanishes on A(0,∗)(E,L) if and only if A = 0 on A
(0,∗)
V (E,L).
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Recall that every antiholomorphic form η ∈ A(0,∗)(E,L) is a finite sum of
antiholomorphic forms of the form (π∗

Eμ) ∧ ω with μ ∈ A(0,∗)(M) and ω ∈ A
(0,∗)
V (E,L).

Hence, we can restrict our considerations to the case where η equals (π∗
Eμ) ∧ ω.

Let μ be in A(0,∗)(M) and ω in A
(0,∗)
V (E,L). We described how ∂̄V , ∂̄H (Lemma 2.24) and

∂̄∗
V (Lemma 2.25) commute with the pullback of differential forms on M .

We apply A on π∗
Eμ ∧ ω

A((π∗
Eμ) ∧ ω) =

(
∂̄HLV + LV ∂̄H

)
((π∗

Eμ) ∧ ω).

For ∂̄H and for LV the Leibniz equation holds.
Therefore, we obtain:

A((π∗
Eμ) ∧ ω) =(−1)|μ|

(
∂̄H(π∗

Eμ)
) ∧ (LV ω) + (π∗

Eμ) ∧
(
∂̄H(LV ω)

)
+ LV

[
(∂̄H(π∗

Eμ)) ∧ ω + (−1)|μ|(π∗
Eμ) ∧ (∂̄Hω)

]
=
����������������������������
(−1)|μ|

(
∂̄H(π∗

Eμ)
) ∧ (LV ω) + (π∗

Eμ) ∧
(
∂̄H(LV ω)

)
+
(
LV ∂̄H(π∗

Eμ)
) ∧ ω +

������������������������������
(−1)|μ|+1

(
∂̄H(π∗

Eμ)
) ∧ (LV ω)

+ (π∗
Eμ) ∧ (LV (∂̄Hω))

=(π∗
Eμ) ∧

(
∂̄HLV + LV ∂̄H

)
ω +

(
LV (∂̄H(π∗

Eμ))
) ∧ ω.

Now, the assumption for A follows directly from:

LV ∂̄H(π∗
Eμ) = LV (π

∗
E ∂̄μ) = 0.

We summarise: L vanishes on A(0,∗)(E,L) if and only if A vanishes on A(0,∗)(E,L), which
happens if and only if A = 0 on A

(0,∗)
V (E,L).

On the other hand L vanishes on A
(0,∗)
V (E,L) if and only if A does, which directly implies

L = 0 on all A(0,∗)(E,L).

For a general holomorphic fibre bundle, this is as far as we get in understanding the
Laplace splitting property.
Fortunately, we can derive a much more explicit condition under which the L-operator
vanishes if the fibretype F of our holomorphic fibre bundle is a Kähler manifold.
This is the content of the subsequent subsection.

3.2.1 Holomorphic fibre bundles of Kähler fibretype

Before we can state conditions for the vanishing of L, we have to do some preparatory,
somewhat technical work.
Let (E, πE , (M, gM ), (F, gF ), T

HE) be a holomorphic fibre bundle whose fibretype F is a
Kähler manifold.
Let us denote the Kähler form on F by ωF ∈ A(1,1)(F ).
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3 Compatible line bundles and legitimate equivariance

For every x ∈ M every admissible embedding of the fibre, i.e. an embedding coming from
restrictions of the holomorphic trivialisations φ−1

k,x : F ↪→ E is holomorphic. Hence, we
can define a holomorphic structure ∂̄Lk,x

on the pullback bundle Lk,x := (φ−1
k,x)

∗L over F
as we saw in Equation (10) in Section 2.3.3.
Furthermore, the Kähler form ωF induces an endomorphism of A(·,∗)(E,Lk,x), by exterior
multiplication, i.e.:

ε(ωF ) : A(·,∗)(E,Lk,x) −→ A(·+1,∗+1)(E,Lk,x)
α �−→ ωF ∧ α.

Definition 3.6:
The Lefschetz operator ΛF

ΛF : A(·,∗)(E,Lk,x) −→ A(·−1,∗−1)(E,Lk,x),

is defined to be the adjoint operator of ε(ωF ) for the L2-inner product (·, ·) induced by
the pullback (φ−1

k,x)
∗.

Remark 3.7:

• For a holomorphic fibre bundle, the transition maps φk,x ◦ φ−1
l,x : F → F are by

definition biholomorphic isometries (compare Definition 2.13).
Hence, the Kähler form ωF is invariant under the pullback via φk,x ◦ φ−1

l,x , i.e.(
φk,x ◦ φ−1

l,x

)∗
ωF = ωF .

It follows that ωF induces a differential form ωV ∈ A
(1,1)
V (E) such that

(φ−1
k,x)

∗ωV = ωF .

• Consequently, the Lefschetz operator has an analogous operator ΛV ,

ΛV : A
(s,t)
H (E) ∧ A

(p,q)
V (E,L) −→ A

(s,t)
H (E) ∧ A

(p−1,q−1)
V (E,L),

which is the adjoint of ε(ωV ).

• Look at the following subspaces of T V E ⊗R C:

T V,(1,0)E :=
(
T V E

)(1,0) and
T V,(0,1)E :=

(
T V E

)(0,1)
.

A short computation shows that for a local orthonormal frame {El}l∈J of T V,(1,0)E

with corresponding local orthonormal frame
{
Ēl

}
l∈J of T V,(0,1)E, ΛV is given by:

ΛV = −i
∑
l∈J

ιĒl
ιEl

. (14)

Here, ιX denotes the contraction with X via the Hermitian form.
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3.2 Laplace splitting property

For F being a Kähler manifold and Lk,x being a Hermitian, holomorphic vector bundle,
there are the so-called Kähler identities (cf. [19]). They simplify the computation of the
adjoint ∂̄∗

Lk,x
to the operator ∂̄Lk,x

. Explicitly stated in Equation (15) below.

∂̄∗
Lk,x

= −i[Λ,∇Lk,x,(1,0)]. (15)

Here, ∇Lk,x = ∇Lk,x,(0,1) ⊕∇Lk,x,(1,0) denotes the unique holomorphic, Hermitian
connection on (Lk,x, (φ

−1
k,x)

∗h) (compare Definition 2.9).
Now, together with Lemma 2.29 the Kähler identities can be used to get an explicit
expression for ∂̄∗

V .

Lemma 3.8:
Let ∇L = ∇L,(1,0) ⊕∇L,(0,1) denote the unique holomorphic, Hermitian connection on the
Hermitian, holomorphic line bundle (L, h) → E.
Let furthermore ∇V,(1,0) denote the restriction of ∇L,(1,0) to the vertical part, i.e. the
following diagram commutes:

A
(p,q)
H (E) ∧ A

(s,t)
V (E,L)

∇L,(1,0)

��

∇V,(1,0)

��

A(p+s+1,q+t)(E,L)

proj��

A
(p,q)
H (E) ∧ A

(s+1,t)
V (E,L).

Then, with notations from above, the following identity holds:

∂̄∗
V = −i[ΛV ,∇V,(1,0)] : A(0,∗)(E,L) −→ A(0,∗−1)(E,L). (16)

Proof.
The proof is divided into two steps. First, we show that it suffices to show Equation (16)
for the pullback of vertical forms only and second we proof Equation (16) for pullbacks of
vertical forms.
1) Let η be a form in A

(0,q)
H (E)∧A

(0,p)
V (E,L). Since M is compact, we can identify η with

the finite sum

η =
∑
l

(π∗
Eαl) ∧ βl

where αl ∈ A(0,q)(M) and βl ∈ A
(0,p)
V (E,L).

We apply Lemma 2.25 to the right hand side of Equation (16) and obtain:

∂̄∗
V η =

∑
l

(−1)q(π∗
Eαl) ∧ ∂̄∗

V βl.
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3 Compatible line bundles and legitimate equivariance

If we look at the the left hand side of Equation (16), we observe that, for any differential
forms α ∈ A(s1,s2)(M) and β ∈ A(t1,t2)(E,L), the following two identities hold:

ΛV (π∗
Eα ∧ β)

(14)
= (ΛV π

∗
Eα)︸ ︷︷ ︸

=0

∧β + (−1)2·|α|︸ ︷︷ ︸
=1

π∗
Eα ∧ ΛV β,

∇V,(1,0) (π∗
Eα ∧ β) = ((∂V )π

∗
Eα)︸ ︷︷ ︸

=0

∧β + (−1)s1+s2π∗
Eα ∧∇V,(1,0)β

where ∂V is given analogously to ∇V,(1,0), i.e. by the following commuting diagram

A
(s1,s2)
H (E) ∧ A

(t1,t2)
V (E)

d

��
∂V

��

A(s1+t1+1,s2+t2)(E)⊕ A(s1+t1,s2+t2+1)(E)

proj		

A
(s1,s2)
H (E) ∧ A

(t1+1,t2)
V (E).

We conclude that we may restrict our considerations to vertical forms since the right
hand side of Equation (16) applied to η simplifies to:

[ΛV ,∇V,(1,0)]η =
∑
l

(−1)q(π∗
Eαl) ∧

(
[ΛV ,∇V,(1,0)]βl

)
,

hence, without restrictions to generality η is in A
(0,∗)
V (E,L).

2) Two vertical forms η, η′ ∈ A
(0,∗)
V (E,L) coincide if and only if (φ−1

k,x)
∗η = (φ−1

k,x)
∗η′ for all

x ∈ M and k ∈ I such that x ∈ Uk ⊂ M .
This implies that we now have to check

(φ−1
k,x)

∗ ◦ ∂̄∗
V = (φ−1

k,x)
∗ ◦
(
−i
[
ΛV ,∇V,(1,0)

])
.

On the one hand, Lemma 2.29 implies that (φ−1
k,x)

∗ ◦ ∂̄∗
V = ∂̄∗

Lk,x
◦ (φ−1

k,x)
∗. On the other

hand, we know that ∂̄∗
Lk,x

can be calculated via the Kähler identities as in Equation (15),
i.e. ∂̄∗

Lk,x
= −i[ΛF ,∇Lk,x,(1,0)].

To put it in a nutshell, we have to check

(φ−1
k,x)

∗ ◦
(
[ΛV ,∇V,(1,0)]

)
η =

[
ΛF ,∇Lk,x,(1,0)

]
◦ (φ−1

k,x)
∗η (17)

for any vertical form η ∈ A
(0,q)
V (E,L) and every x ∈ M .

Without loss of generality, let η be given by α⊗ s with α ∈ A
(0,q)
V (E) and s ∈ Γ(E,L).
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3.2 Laplace splitting property

The left hand side of Equation (17) now becomes:

(φ−1
k,x)

∗ ◦
([

ΛV ,∇V,(1,0)
])

η =(φ−1
k,x)

∗ ◦ ΛV ◦ ∇V,(1,0)(α⊗ s)

=(φ−1
k,x)

∗ ◦ ΛV

(
∂V α⊗ s+ (−1)qα ∧∇V,(1,0)s

)
The embedding φ−1

k,x : F → Ex is a holomorphic, isometric immersion.
Consequently, we obtain:

(φ−1
k,x)

∗ ◦
(
ΛV ◦ ∇V,(1,0)

)
η = ΛF ◦ (φ−1

k,x)
∗
(
(∂V α)⊗ s+ (−1)qα ∧∇V,(1,0)s

)
. (18)

For the first term, observe that (φ−1
k,x)

∗ commutes with the ∂-operator on A(0,∗)(E)

because of the subsequent computation and because it commutes with d and ∂̄.

(φ−1
k,x)

∗ ◦ ∂V = (φ−1
k,x)

∗ ◦ ∂ = (φ−1
k,x)

∗ ◦ (d− ∂̄) = (d− ∂̄) ◦ (φ−1
k,x)

∗ = ∂ ◦ (φ−1
k,x)

∗ (19)

For the second term, we study the pullback properties of the ∇V,(1,0)-operator on sections.
Let therefore s, t be two sections in Γ(E,L). The Hermitian and holomorphic property of
the Chern connection ∇L now directly implies the subsequent computation.

∂̄
(
(φ−1

k,x)
∗hL(s, t)

)
=(φ−1

k,x)
∗
(
∂̄
(
hL(s, t)

))
=(φ−1

k,x)
∗
(
hL
(
∇V,(1,0)s, t

)
+ hL

(
s, ∂̄V t

))
=hLk,x

(
(φ−1

k,x)
∗
(
∇V,(1,0)s

)
, (φ−1

k,x)
∗t
)

+ hLk,x

(
(φ−1

k,x)
∗s, (φ−1

k,x)
∗(∂̄V t)︸ ︷︷ ︸

=∂̄((φ−1
k,x)

∗t)

)

Conversely, the Chern connection ∇Lk,x on Lk,x implies:

∂̄
(
(φ−1

k,x)
∗hL(s, t)

)
=∂̄
(
hLk,x

(
(φ−1

k,x)
∗s, (φ−1

k,x)
∗t
))

=hLk,x

(
∇Lk,x,(1,0)(φ−1

k,x)
∗s, (φ−1

k,x)
∗t
)

+ hLk,x

(
(φ−1

k,x)
∗s, ∂̄(φ−1

k,x)
∗t
)

Thus, we obtain the following equality

hLk,x

(
(φ−1

k,x)
∗
(
∇V,(1,0)s

)
, (φ−1

k,x)
∗t
)
= hLk,x

(
∇Lk,x,(1,0)(φ−1

k,x)
∗s, (φ−1

k,x)
∗t
)

for arbitrary sections s and t into L.
Consequently, we obtain:

(φ−1
k,x)

∗ ◦ ∇V,(1,0)(s) = ∇Lk,x,(1,0) ◦ (φ−1
k,x)

∗(s) (20)
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3 Compatible line bundles and legitimate equivariance

At last, we insert Equations (19) and (20) into Equation (18) and obtain:

(φ−1
k,x)

∗ ◦
(
[ΛV ,∇V,(1,0)]

)
η =ΛF ◦

(
∂
(
◦(φ−1

k,x)
∗α
)
⊗ (φ−1

k,x)
∗s

+ (−1)q(φ−1
k,x)

∗α ∧∇Lk,x,(1,0) ◦ (φ−1
k,x)

∗s
)

=ΛF ◦ ∇Lk,x,(1,0) ◦ (φ−1
k,x)

∗ (α⊗ s)

and therefore,

(φ−1
k,x)

∗ ◦
(
[ΛV ,∇V,(1,0)]

)
η =

[
ΛF ,∇Lk,x,(1,0)

]
◦ (φ−1

k,x)
∗ (α⊗ s)

which finishes the proof.

We have to take one last step, the subsequent lemma, before we can state as well as proof
our vanishing condition for the Kähler case.
Recall therefore that we defined the ∂̄H -operator to act on A(0,∗)(E,L) in Definition 2.22.
This definition may be extended to the whole space A∗

C(E,L) via the following diagram:

A
(s1,s2)
H (E) ∧ A

(t1,t2)
V (E,L)

∂̄

��
∂̄H

��

A(s1+t1,s2+t2+1)(E,L)

proj��

A
(s1,s2+1)
H (E) ∧ A

(t1,t2)
V (E,L).

Of course, we may not assume that ∂̄ = ∂̄H + ∂̄V on the whole space A∗
C(E,L) anymore.

Lemma 3.9:
Let Y be in Γ(E, T V E ⊗R C) and let X be a vector field in Γ(E, TH,(0,1)E).
Furthermore, let ω ∈ A

(p,q)
V (E,L) be a vertical differential form.

Then the following equation holds:(
ιX ∂̄H

)
(ιY ω) = −ι[Y,X]ω + ιY

[(
ιX ∂̄H

)
ω
]
. (21)

Proof.
Let ω ∈ Γ(E,Λq

(
T V,CE

)∗ ⊗ L) = Aq
C(E,L) and Z1, . . . , Zq−1 ∈ Γ(E, T V,CE).

Since both sides of Equation (21) are C linear, we can without restrictions to generality
assume ω = α⊗ s with α ∈ Aq

C(E) and s ∈ Γ(E,L).
Within this proof, we use the following abbreviation.
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3.2 Laplace splitting property

For the index set J = {1, . . . , q − 1} and a subset I = {i1, . . . , ir | is < is+1} ⊂ J we
denote the tuple (Zi1 , . . . , Zir) by ZI .
We now compute:

B :=
(
ιY
((
ιX ∂̄H

)
ω
))

(ZJ) =(∂̄Hω)(X,Y, Z1, . . . , Zq−1)

=(∂̄H(α⊗ s))(X,Y, ZJ).

Applying the Leibniz Equation (4) we obtain

B =(∂̄Hα)(X,Y, ZJ) · s+ (−1)q(α ∧ ∂̄Hs)(X,Y, ZJ)

We denote the complexified derivative of a C∞-function f ∈ C∞(E) in the direction of a
complexified vector field V ∈ Γ(E, TCE) by X.f , i.e. df(X) = X.f .
Then using the definition of the exterior differential d, we obtain:

B =

[
X.α(Y, ZJ)− α ([X,Y ], ZJ)−

q−1∑
k=1

(−1)kα
(
[X,Zk], Y, ZJ\{k}

)] · s
+ α(Y, ZJ) · (∂̄Hs)(X)

=

[
X. {(ιY α)(ZJ)} − (ι[X,Y ]α)(ZJ) +

q−1∑
k=1

(−1)k(ιY α)([X,Zk], ZJ\{k})

]
s

+ (ιY α)(ZJ) · (∂̄Hs)(X)

=
(
∂̄H(ιY α)

)
(X,ZJ) · s+ (−1)q−1(ιY α ∧ ∂̄Hs)(X,ZJ)︸ ︷︷ ︸

=(∂̄H(ιY α⊗s))(X,ZJ )

−(ι[X,Y ]α)(ZJ)s

=ιX ∂̄H(ιY ω)(ZJ)− (ι[X,Y ]ω)(ZJ),

which completes the proof.

Now, we can finally prove a vanishing-condition for L.

Recall that L maps from the vector space of antiholomorphic, vertical (0, q)-forms, i.e.
A
(0,q)
V (E,L), to the vector space A

(0,1)
H (E) ∧ A

(0,q−1)
V (E,L).

Hence, Lω = 0 for any ω ∈ A
(0,q)
V (E,L) if and only if ιX(Lω) vanishes for every

horizontal vector field X ∈ Γ(E, THE).

For the subsequent proposition, let Q denote the orthogonal projection

Q : A(1,1)(E) −→ A
(0,1)
H (E) ∧ A

(1,0)
V (E). (22)

Proposition 3.10:
Let (E, πE , (M, gM ), (F, gF ), T

HE) be a holomorphic fibre bundle and let L → E be a
Hermitian, holomorphic line bundle over E.
Furthermore, let {El}l∈J be a local orthonormal frame in T V,(1,0)E and let

{
Ēl

}
l∈J

denote its complex conjugated orthonormal frame in T V,(0,1)E.
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3 Compatible line bundles and legitimate equivariance

For any vertical form ω ∈ A
(0,q)
V (E,L) and any vector field X ∈ Γ(M,TM) with

horizontal lift X̃ ∈ Γ(E, THE), we obtain:

ιX̃(Lω) = −i
∑
k

{
ι[X̃,Ēk]

∇L,(1,0)
Ek

+ ιĒk
∇L,(1,0)

[X̃,Ek]

}
ω − iΛV ιX̃

[
Q

((
∇L
)2) ∧ ω

]
where Q denotes the projection from Equation (22).
Note that [Ei, X̃] and [Ēi, X̃] are vertical because the commutator of a horizontal lift with
a vertical vector field is always vertical.

Remark 3.11:
Proposition 3.10 particularly implies that for a flat vector bundle L, i.e.

(∇L
)2

= 0, it
suffices to show that [Ēk, X̃] = 0 and [Ek, X̃] = 0 for L to vanish.

Proof of Proposition 3.10.
We start by applying Lemma 3.8, i.e. Equation (16), to the left hand side.
We substitute ∂̄∗

V and obtain:

(ιX̃L)ω =ιX̃(∂̄H ∂̄∗
V + ∂̄∗

V ∂̄H)ω

(16)
= − iιX̃

{
∂̄HΛV ∇V,(1,0) + ΛV ∇V,(1,0)∂̄H

}
ω. (23)

Here, we make use of the fact that ΛV ∂̄Hω = 0 (as well as ΛV ω = 0) because ∂̄Hω (or ω
respectively) is an antiholomorphic form, i.e. ∂̄Hω ∈ A(0,q+1)(E,L) (and
ω ∈ A(0,1)(E,L)).
The next step is to transform the first term of the right hand side of this equation.
Therefore, we swap the ιX̃ ∂̄H -operator with the ΛV -operator, using Lemma 3.9, i.e.
Equation (21) repeatedly.

ιX̃ ∂̄HΛV ∇V,(1,0)ω =
∑
k

ιX̃ ∂̄HιĒk
ιEk

∇V,(1,0)ω

(21)
=
∑
k

{
−ι[Ēk,X̃] + ιĒk

ιX̃ ∂̄H

}
ιEk

∇V,(1,0)ω

(21)
=
∑
k

{
−ι[Ēk,X̃]ιEk

− ιĒk
ι[Ek,X̃] + ιĒk

ιEk
ιX̃ ∂̄H

}
∇V,(1,0)ω

Now, swapping the contractions in the first two terms, we obtain:

ιX̃ ∂̄HΛV ∇V,(1,0)ω =
∑
k

{
ι[X̃,Ēk]

ιEk
+ ιĒk

ι[X̃,Ek]

}
∇V,(1,0)ω

+ ΛV ιX̃ ∂̄H∇V,(1,0)ω.
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3.2 Laplace splitting property

Inserting this into Equation (23) and using the identity ΛV ιX̃ = ιX̃ΛV , we finally get:

(ιX̃L)ω =− i
∑
k

{
ι[X̃,Ēk]

ιEk
+ ιĒk

ι[X̃,Ek]

}
∇V,(1,0)ω

− iΛV ιX̃

{
∂̄H∇V,(1,0) +∇V,(1,0)∂̄H

}
︸ ︷︷ ︸

=ε(Q(∇L)2)

ω

which completes the proof.

Summarising, Proposition 3.10 gives us an explicit formula for L, and therefore, we are
able to check if for a given holomorphic, Hermitian line bundle L over a holomorphic fibre
bundle, the Laplacian splits.

3.2.2 A consequence of the Laplace splitting property

We now derive that the splitting of the Laplacian leads to the commutation of both of its
parts, i.e. �V �H = �H�V .

Lemma 3.12:
Let L → E be a holomorphic, Hermitian line bundle over a holomorphic fibre bundle
such that the Laplacian �L on L splits, i.e. �L = �V +�H

Then the following identities hold:

∂̄V ∂̄H + ∂̄H ∂̄V = 0 =∂̄∗
V ∂̄

∗
H + ∂̄∗

H ∂̄∗
V (24)

∂̄∗
V ∂̄H + ∂̄H ∂̄∗

V = 0 =∂̄V ∂̄
∗
H + ∂̄∗

H ∂̄V . (25)

In particular, we obtain:

�H ∂̄
(∗)
V = ∂̄

(∗)
V �H as well as �V ∂̄

(∗)
H = ∂̄

(∗)
H �V

and the Laplacians commute, i.e. �V �H = �H�V .

Proof.
We already know that ∂̄L splits into a vertical and a horizontal part and so does its
adjoint ∂̄∗

L.
Note that ∂̄2

L = 0 =
(
∂̄∗
L

)2, and note furthermore that

A(0,q)(E,L) =
⊕
s+t=q

A
(0,s)
H (E) ∧ A

(0,t)
V (E,L)

is an orthogonal direct sum, especially its summands are linearly independent.

55



3 Compatible line bundles and legitimate equivariance

We deduce that

∂̄2
V = ∂̄2

H = ∂̄V ∂̄H + ∂̄H ∂̄V = 0(
∂̄∗
V

)2
=
(
∂̄∗
H

)2
= ∂̄∗

V ∂̄
∗
H + ∂̄∗

H ∂̄∗
V = 0

which directly implies Equation (24).
Now, for Equation (25), we observe that the Laplace splitting property:

�L = ∂̄L∂̄
∗
L + ∂̄∗

L∂̄L = �V +�H

is equivalent to

∂̄V ∂̄
∗
H + ∂̄∗

H ∂̄V = 0 and
∂̄∗
V ∂̄H + ∂̄H ∂̄∗

V = 0.

We conclude that Equation (25) holds which completes the proof.

Corollary 3.13:
There is an orthonormal Hilbert base of A(0,∗)(E,L) consisting of Eigenforms for both
�V and �H .

3.3 Bijection of certain section spaces

This subsection is dedicated to the proof of Proposition 3.14, below.
It is about a vector space isomorphism between the λ-Eigensections of the vertical
Laplace operator �V and the antiholomorphic forms on M with coefficients in the
associated bundle W(λ;∗).
Recall that we described the bundle W(λ;∗) in Remark 3.3.

We denote the operator �[s,t]
V to be the vertical Laplacian acting on the space

A
(0,s)
H (E) ∧ A

(0,t)
V (E,L).

Proposition 3.14:
Let (E, πE , (M, gM ), (F, gF ), T

HE) be a holomorphic fibre bundle and let L → E be a
compatible holomorphic line bundle of fibre type L̃ → F .
Furthermore, let K denote a Lie group, πP : P → M a K principle fibre bundle and

ρ : K → Aut(F ) as well as ρ̃ : K → Diff(F, L̃)

group homomorphisms such that

E = P ×ρ F and L = P ×ρ̃ L̃.

Let λ be an Eigenvalue of �V and W(λ;∗) be the vector bundle P ×ρ̌ Ker(�L̃ − λ)
described in Remark 3.3.
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3.3 Bijection of certain section spaces

Furthermore, let the space of λ-Eigenforms of �V be denoted by

Eigλ

(
�[s,t]

V

)
:= Ker(�V − λ) ∩ A

(0,s)
H (E) ∧ A

(0,t)
V (E,L).

Then there is an isomorphism

ψ : Γ(M,W(λ;∗)) −̃→ Eigλ

(
�[0,∗]

V

)
⊂ A

(0,∗)
V (E,L),

This isomorphism can be extended to an isomorphism

ψ : A(0,s)(M,W(λ;t)) −̃→ Eigλ

(
�[s,t]

V

)
⊂ A

(0,s)
H (E) ∧ A

(0,t)
V (E,L).

Definition 3.15:
We call the isomorphism ψ : A(0,s)

(
M,W(λ;t)

) −̃→Eigλ

(
�[s,t]

V

)
from the proposition

above, i.e. Proposition 3.14, ψ-morphism.

We divide the proof of Proposition 3.14 into smaller pieces.
At first as a direct consequence of Lemma 3.16 (in Corollary 3.17), we obtain an
isomorphism between the vertical antiholomorphic forms, A(0,∗)

V (E,L), and a subspace of
C∞

(
P × F,Λ∗ (T (0,1)F

)∗ ⊗ L̃
)
.

Later on in Corollary 3.20 following from Lemma 3.18, we see that the latter space can
be identified with C∞(P,A(0,∗)(F, L̃))ρ̌.
In Lemma 3.22, we check the compatibility of these identifications above with the vertical
Laplace operator.
This finally leads to an isomorphism between

Eigλ(�0,t
V ) = Ker (�V − λ) ∩

(
A
(0,t)
V (E,L)

)
and

C∞
(
P,Eigλ

(
�(0,t)

L̃

))ρ̌
.

The latter one is by standard arguments for associated bundles in one to one
correspondence to the space of sections Γ

(
M,P ×ρ̌ Eigλ

(
�(0,t)

L̃

))
.

Lemma 3.16:
Let K be a Lie group and let P → M be a K principle fibre bundle over a compact
manifold M .
Furthermore, let E be fibre bundle over M , associated to P via a group homomorphism
ρ : K → Diff(F, F ), whose fibre type F is a compact manifold, i.e.

E = P ×ρ F.
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3 Compatible line bundles and legitimate equivariance

Additionally, let Q̃ → F be a smooth vector bundle and ρ̃ : K → Diff(F, Q̃) be a
continuous group homomorphism covering ρ, making K a Lie transformation group of Q̃.
Denote the induced vector bundle over E by:

Q := P ×ρ̃ Q̃.

At last, let C∞(P × F, Q̃)i,ii denote the set of smooth maps

s̃ : P × F −→ Q̃

with the properties:

i) s̃(p, f) ∈ Q̃f and

ii) s̃

(
p · k−1, ρ (k) (f)

)
= ρ̃ (k)

(
s̃(p, f)

)
.

Then there is an isomorphism ˜ of vector spaces

˜ : Γ(E,Q) −→ C∞(P × F, Q̃)i,ii

s �−→ s̃.

Proof.
Let s ∈ Γ(E,Q) be a smooth section and let e = [p, k]ρ be in E. Then s(e) lies in Qe.
Therefore, it has the form s(e) = [p, s̃(p, f)]ρ̃.
The desired bijection is now given by:

˜ : Γ(E,Q) −→ C∞(P × F, Q̃)i,ii

s �−→ s̃

Note that for ˜ to be well defined, s̃ has to fulfil the second property ii).
Furthermore, s is a section from E to Q, in particular, πQ ◦ s = idE . This is corresponds
on the s̃ side to property i).
Conversely, any map s̃ ∈ C∞(P × F, Q̃)i,ii induces a map s : E → Q that fulfils
πQ ◦ s = idE .
Summarising, we obtain

πQ ◦ s ←→ i) πQ̃ ◦ s̃ = proj2
s([p, f ]ρ) = s(

[
p · k−1, ρ(k)(f)

]
ρ
) ←→ ii) s̃(p · k−1, ρ(k)(f)) = ρ̃(k) (s̃(p, f)) .

What remains to be shown is that the smoothness of s induces the smoothness of s̃ and
vice verse.
In order to do that, we will borrow some notations from Lemma 2.39. In particular, we
denote the local trivialisations the same way.
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3.3 Bijection of certain section spaces

We deduce:

s : E −→ Q is C∞ ⇔ χij ◦ s|Wij
: Wij −→ Wij × Cm is C∞ ∀i, j

⇔ proj2 ◦ χij ◦ s|Wij
: Wij −→ Cm is C∞ ∀i, j

On the other hand Wij is diffeomorphic to Ui × Vj through qi × idVj and

proj2 ◦ χij ◦ s|Wij
◦
[
qi × idVj

]
ρ
= proj2 ◦ ψj ◦ s̃ ◦ (qi × idVj

).

Therefore,

s is C∞ ⇔ proj2 ◦ ψj ◦ s̃ ◦
(
qi × idVj

)
: Ui × Vj → Cm is C∞ ∀i, j

⇔ s̃ ◦ (ϕ−1
i (·, e)× idF

)
: Ui × F → Q̃ is C∞ ∀i

This fact implies that if s̃ : P × F → Q̃ is smooth, then so is its corresponding map s.
For the opposite direction, suppose now that s is a smooth map. The considerations
above showed that s smooth directly implies that the map s̃ ◦ (ϕ−1

i (·, e)× idF
)

is smooth
as well.
In order to show that s̃ itself is C∞, we have to check that, locally for each Ui,

s̃ ◦ (ϕ−1
i × idF

)
: Ui ×K × F −→ Q̃,

i.e. the map (x, k, f) �−→ s̃(qi(x) · k, f), is smooth.
But this is true because of property ii) which implies

s̃(qi(x) · k, f) = ρ̃
(
k−1
) ◦ s̃ (ϕ−1

i (x, e), ρ(k−1)(f)
)

and this is smooth in (x, k, f) as composition of smooth maps.

For our compatible line bundle L = P ×ρ̃ L̃ → E over a holomorphic fibre bundle, we can
apply Lemma 3.16 not only on sections Γ(E,L) but on the vertical antiholomorphic
forms A

(0,q)
V (E,L) with coefficients in L as well since for

ρ∗ : K −→ Diff(F,ΛqT (0,1)F ),

given by ρ∗(k) := ρ(k−1)∗, we obtain:

Λq
(
T V,(0,1)E

)∗
= P ×ρ∗ Λ

q
(
T (0,1)F

)∗
.

And consequently we get for ρ∗ ⊗ ρ̃:

Λq
(
T V,(0,1)E

)∗ ⊗ L = P ×ρ∗⊗ρ̃ Λ
q
(
T (0,1)F

)∗ ⊗ L̃.
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3 Compatible line bundles and legitimate equivariance

Corollary 3.17:
For a holomorphic fibre bundle (E, πE , (M, gM ), (F, gF ), T

HE) and a compatible line
bundle L, i.e.

L = P ×ρ̃ L̃ −→ E = P ×ρ F,

we get an isomorphism of vector spaces

˜ : A
(0,q)
V (E,L) −→ C∞(P × F,Λq

(
T (0,1)F

)∗ ⊗ L̃)i,ii

s �−→ s̃

The next step is to find a bijection of C∞(P × F,Λq
(
T (0,1)F

)∗ ⊗ L̃)i,ii on the one hand
and a subspace of C∞(P,A(0,q)(F, L̃)) on the other hand.
Therefore, let

C∞
(
P × F,Λq

(
T (0,1)F

)∗ ⊗ L̃
)i

be the subspace of smooth maps s̃ from P × F to Λq
(
T (0,1)F

)∗ ⊗ L̃ that fulfil:

i) s̃(p, f) ∈
(
Λq
(
T (0,1)F

)∗ ⊗ L̃
)
f
.

Obviously, we have the following inclusion:

C∞
(
P × F,Λq

(
T (0,1)F

)∗ ⊗ L̃
)i,ii

⊂ C∞
(
P × F,Λq

(
T (0,1)F

)∗ ⊗ L̃
)i

.

Now, we show that C∞(P × F,Λq
(
T (0,1)F

)∗ ⊗ L̃)i and C∞(P,A(0,q)(F, L̃)) are
isomorphic.

The map describing the desired isomorphism is actually a very basic one.

If we forget any structure, let A,B,C be sets and let Map(A,B) denote the maps from A
to B.
The space Map(A×B,C) is isomorphic to the space Map(A,Map(B,C)) in a natural
way.
The identification is given by

̂ : Map(A×B,C) −→ Map(A,Map(B,C)),

where f̂(a) : b �→ f(a, b) and inversely f(a, b) :=
(
f̂(a)

)
(b).

Unfortunately, if we return to the category of smooth manifolds, the translation of
properties like continuity or smoothness via ̂ are much more intricate.
The subsequent lemma shows that in the case of C∞(P × F, Q̃)i everything behaves just
fine.
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3.3 Bijection of certain section spaces

Beforehand, we state the following theorem stated by Trèves in [30, Ch.40, Thm. 40.1].
We present it, tailored to the situation at hand.

Theorem (Trèves Thm 40.1):
Let A ⊂ Rn and B ⊂ Rm be open sets and let C = Rk. Then the map

̂ : Map(A×B,C) −→ Map(A,Map(B,C)),

introduced above, induces an isomorphism of topological vector spaces between
C∞(A×B,R) and C∞(A,C∞(B,R)) by restriction.
Here, the topology on C∞(X,R) is given by the Fréchet topology.

We give a brief summary of the Fréchet space structure on Γ(F,Q) in Appendix B.

Lemma 3.18:
Let B, F be smooth manifolds and let πQ̃ : Q̃ → F be a smooth vector bundle.
Let furthermore C∞(B × F, Q̃)i denote the following topological vector space:

C∞(B × F, Q̃)i :=
{
g : B × F → Q̃ | πQ̃ ◦ g = proj2

}
.

Then there is an isomorphism ̂ of the topological vector spaces C∞(B × F, Q̃)i and
C∞(B,Γ(F, Q̃)).

̂ : C∞(B × F, Q̃)i
1:1−→ C∞(B,Γ(F, Q̃))

Proof.
The bundle Q̃ → F is locally trivial. We denote the local trivialisation maps for Q̃ → F
by (ψj , Vj), i.e..

ψj : Q̃ |Vj
−→ Vj × Cm

Now, for g ∈ C∞(B × F, Q̃)i the map

ĝ : B −→ Γ(F, Q̃)

is smooth if and only if the maps ĝj defined by

ĝj : B −→ Γ(Vj , Q̃ |Vj
)

b �−→ ĝ(b) |Vj

are smooth for all j ∈ J where ĝj(b) denotes the restriction of g(b) to the local
trivialisation base set Vj ⊂ F of Q̃ (compare Corollary B.5).

61



3 Compatible line bundles and legitimate equivariance

In particular, ĝ is smooth if and only if the maps

ψj ◦ ĝj : B −→ C∞(Vj , Vj × Cm)
b �−→ ψj ◦ ĝj(b)

are smooth for any j ∈ J .
Now, for every b ∈ B and every j ∈ J , the map

ψj ◦ ĝj(b) : Vj −→ Vj × Cm

has got the form ψj ◦ ĝj(b) = idVj × ĥj(b) for some ĥj(b) ∈ C∞(Vj ,C
m).

Looking at the Fréchet structure, we see that ĝ : B → Γ(F, Q̃) is smooth if and only if

ĥj : B −→ C∞(Vj ,C
m)

is smooth for every j ∈ J (compare Corollary B.6).
Reading this statement through charts, we can apply Trèves Theorem 40.1, stated above.
Hence, ĝ is smooth if and only if

hj : B × Vj −→ Cm

(b, f) �−→
(
ĥj(b)

)
(f) = proj2 ◦ ψj ◦ (ĝ(b)) (f)

is smooth for any j ∈ J .
On the other hand hj is obviously smooth if and only if

proj2 × hj : B × Vj −→ Vj × Cm

(b, f) �−→
(
f, hj(b, f)

)
is smooth.
Now, by applying ψ−1

j , we see that this is equivalent to

ψ−1
j ◦ (proj2 × hj) : B × Vj −→ Q̃

being smooth for any j ∈ J , since ψ is a diffeomorphism.
But, if we make use of Property i), we obtain

ψ−1
j ◦ (proj2 × hj) (b, f) = ψ−1

j

(
f, proj2 ◦ ψj ◦ (ĝ(b)) (f)︸ ︷︷ ︸

=g(b,f)

)
i)
= g(p, f).

Consequently, we obtain:

ψ−1
j ◦ (proj2 × hj) : B × Vj −→ Q̃

(b, f) �−→ g(b, f),

and therefore ĝ is smooth if and only if g is smooth which finishes the proof.
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3.3 Bijection of certain section spaces

We obtain a direct consequence of the Lemma 3.18 by choosing B = P .

Corollary 3.19:
In the setting from Lemma 3.16, there is an isomorphism ̂ between the topological
vector spaces C∞(P × F, Q̃)i and C∞(P,Γ(F, Q̃)).

̂ : C∞(P × F, Q̃)i
1:1−→ C∞(P,Γ(F, Q̃))

This corollary on the other hand has as a direct consequence the subsequent corollary.

Corollary 3.20:
Let ρ̌ be the induced action of K on A(0,∗)(F, Q̃) which is given for any k ∈ K and every
α ∈ A(0,∗)(F, Q̃) by:

ρ̌(k) (α) := ρ̃(k)
(
ρ
(
k−1
)∗

(α)
)
.

Denote by C∞(P,Γ(F, Q̃))ρ̌ the vector space of K equivariant maps from P into the
section space Γ(F, Q̃).
Then we get an isomorphism between C∞(P × F, Q̃)i,ii and C∞(P,Γ(F, Q̃))ρ̌,

̂ : C∞(P × F, Q̃)i,ii
1:1−→ C∞(P,Γ(F, Q̃))ρ̌,

by restriction.

Proof. Let g be in C∞(P × F, Q̃)i,ii. We have to verify that ĝ is ρ̌-equivariant.
Therefore, take p ∈ P , k ∈ K and f ∈ f and compute:

ĝ(p · k)(f) !
=g(p · k, f) = g

(
p · k, ρ(k−1) ◦ ρ(k)(f))

ii)
=ρ̃(k−1)

(
g(p, ρ(k)(f))

) !
= ρ̃(k−1) (ĝ(p)(ρ(k)(f)))

=

(
ρ̃(k−1) ◦ ρ(k)∗ĝ(p)

)
(f) =

(
ρ̌(k−1) (ĝ(p))

)
(f).

Here, we marked the equalities coming from the isomorphism ̂ with an ′!′.
It follows that ĝ lies in C∞(P,Γ(F, Q̃))ρ̌.

For the other direction, let ĝ be in C∞(P,Γ(F, Q̃))ρ̌.
We now have to show that g fulfils the property ii).
We compute for p ∈ P , k ∈ K and f ∈ f :

g
(
p · k, ρ(k−1)(f)

) !
=

(
ĝ(p · k)

)
(ρ(k−1)(f)) =

(
ρ̌(k−1)(ĝ(p))

)
(ρ(k−1)(f))

=ρ̃(k−1) (ĝ(p)(f))
!
= ρ̃(k−1)(g(p, f)),

which is what we wanted to show.
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Corollary 3.21:
For a holomorphic fibre bundle (E, πE , (M, gM ), (F, gF ), T

HE) and a compatible line
bundle L → E. We have an isomorphism

̂ ◦ ˜ = ̂̃ : A
(0,∗)
V (E,L) −→ C∞(P,A(0,∗)(F, L̃))ρ̌.

One question has been unanswered so far.
What happens under the correspondence ̂̃ above with the λ-Eigenspaces of �V ?
To answer this question is the next step.

In the definition of a compatible line bundle we fixed our holomorphic structure on L in
such a way that the vertical Laplacian �V corresponds to the Laplacian �L̃ on L̃ → F .
This property has the indispensable consequence that the morphism ̂̃ from above,
identifying A

(0,∗)
V (E,L) with C∞(P,A(0,∗)(F, L̃)ρ̃) restricts to a morphism:

A
(0,∗)
V (E,L) ⊃ Eigλ(�0,∗

V ) ↔ C∞(P,Eigλ(�F ))
ρ̌ ⊂ C∞(P,A(0,∗)(F, L̃))ρ̌

This is the content of the following lemma.

Lemma 3.22:
Let α be a form in A

(0,q)
V (E,L) and let ˆ̃α ∈ C∞(P,A(0,q)(F, L̃))ρ̌ be its image under ̂̃.

Then we get for every p ∈ P :(
̂̃�V α

)
(p) = �L̃

(
ˆ̃α(p)

)
.

Proof.
For the local trivialisation maps, we stick to the notations we have evolved so far,
nonetheless we will repeat them here to make this proof easier to understand.
We have an open cover {Ui}i∈I of M and local sections qi : Ui → P which induce local
trivialisations:

• for P → M ,

ϕi : P |Ui −→ Ui ×K
(qi(x) · k) �−→ (x, k),

• for E → M ,

φi : E |Ui −→ Ui × F
[qi(x), f ]ρ �−→ (x, f),
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3.3 Bijection of certain section spaces

• and for L = P ×ρ̃ L̃ seen as an associated fibre bundle over M , we introduce local
trivialisations

φ̃i : L |π−1
E (Ui)

−→ Ui × L̃[
qi(x), l̃

]
ρ̃

�−→ (x, l̃).

They generalise to local trivialisations

φ̃i : Λ∗ (T V,(0,1)E
)∗ ⊗ L |π−1

E (Ui)
−→ Ui × Λ∗ (T (0,1)F

)∗ ⊗ L̃

ω ⊗ l̃ �−→
(
x,
(
φ−1
i,x

)∗
ω ⊗ φ̃i,x(l̃)

)
where φi,x denotes the induced map

φi,x : π−1
E (x) −→ F

and φ̃i,x likewise.

Keeping these maps in mind, we can start the actual proof.
For an α ∈ A

(0,q)
V (E,L), we obtain by construction that ˆ̃α evaluated at qi(x) is given by(

ˆ̃α(qi(x))
)
(f) = φ̃i,x ◦ α(qi(x), f) = φ̃i,x ◦ α ◦ φ−1

i,x (f).

Let Li,x denote the pullback bundle
(
φ−1
i,x

)∗
L.

A small computation shows that
(
ˆ̃α(qi(x))

)
decomposes into a pullback(

φ−1
i,x

)∗
: A

(0,∗)
V (E,L) −→ A(0,∗)

(
F,
(
φ−1
i,x

)∗
L
)

and the natural vector bundle homomorphism identifying L̃ and Li,x as an equivalence of
Hermitian, holomorphic line bundles over F

Φi,x : Li,x −→ L̃(
f,
[
qi(x), l̃

]
ρ̃

)
�−→ l̃

in the following way:(
ˆ̃α(qi(x))

)
(f) =

(
Φi,x ◦

(
φ−1
i,x

)∗
α
)
(f).

Now, since L → E is a compatible line bundle, Property 3 of Definition 3.1 implies( ̂̄̃
∂V α(qi(x))

)
(f) =

(
Φi,x ◦

(
φ−1
i,x

)∗
∂̄V α

)
(f)

=
{
∂̄L̃

(
Φi,x ◦

(
φ−1
i,x

)∗
α
)}

(f) =
(
∂̄L̃

ˆ̃α
)
(f).

An analogous result holds for ∂̄∗
V because of Lemma 2.29.

Therefore the assertion is proven.
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Finally, we are able complete the proof of Proposition 3.14.
Therefore, recall the following fact. Let πP : P −→ M be a K-principle fibre bundle and
let Q = P ×χ V be an associated vector bundle for a representation χ : K −→ Gl(V ).
Then the space of sections from M into Q is isomorphic to the K-χ-equivariant
C∞-maps from P to V (cf. [5]).
This isomorphism is explicitly given by:

C∞(P, V )χ −→ Γ(M,Q)

f �−→
{
x �→ [px, f(px)]χ

} (26)

where px lies in the fibre over x ∈ M , i.e. πP (px) = x.

Proof of Proposition 3.14.
If we assume the existence of the first isomorphism of Proposition 3.14, i.e.

ψ : Γ(M,W(λ;∗)) −̃→ Eigλ

(
�[0,∗]

V

)
⊂ A

(0,∗)
V (E,L),

it can be extended to the space A(0,s)(M,W(λ;t)) ∼= A(0,s)(M)⊗ Γ(M,W(λ;t)) as follows.

Take α ∈ A(0,s)(M) and s ∈ Γ(M,W(λ;t)) now the ψ-morphism extends via

ψ(α⊗ s) := (π∗
Eα) ∧ ψ(s). (27)

This extension respects the Eigenspace structure because for any α ∈ A(0,s)(M) and any
β ∈ A

(0,t1)
H (E) ∧ A

(0,t2)
V (E,L), we obtain:

�[s+t1,t2]
V

(
(π∗

Eα) ∧ β
)
= (π∗

Eα) ∧
(
�[t1,t2]

V β
)

which has been shown in Corollary 2.28.

Thus, we have to construct the first isomorphism only, i.e.

ψ : Γ(M,W(λ;∗)) −→ Eigλ(�
[0,∗]
V ) ⊂ A

(0,∗)
V (E,L)

Let α be in A
(0,∗)
V (E,L).

We apply the Corollaries 3.17 and 3.21 and obtain a unique map
ˆ̃α ∈ C∞

(
P,A(0,t)(F, L̃)

)ρ̌
corresponding to α.

Lemma 3.22 now implies that α is a λ-Eigenform of �V if and only if ˆ̃α(p) is a
λ-Eigenform of �L̃ for every p ∈ P .
Consequently, the map ̂̃ restricts to

̂̃ : Eigλ(�
[0,∗]
V ) −→ C∞(P,Eigλ(�L̃))

ρ̌.

However, the bundle W(λ;∗) is associated to P , i.e. W(λ;∗) = P ×ρ̌ Eigλ(�L̃) (compare
Remark 3.3).
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Now, as we mentioned above, sections into an associated vector bundle can be identified
with K-equivariant smooth maps from P to the fibretype (compare Equation (26)).
In particular,

Γ(M,W(λ;∗)) = Γ(M,P ×ρ̌ Eigλ(�L̃))
1:1←→ C∞(P,Eigλ(�L̃))

ρ̌

which completes the proof.

Now, that we have constructed the ψ-morphism, we can use it to express the equivariant
ζ-function of L in terms and objects that depend on M as well as on the bundles W(λ;∗).
In order to do that, we have to carry every information we have of L, like its Hermitian
metric or its holomorphic structure, forward along ψ−1.
This is the content of the subsequent subsection.

3.4 Induced holomorphic, Hermitian structure on the Eigenspace
vector bundles

Throughout this subsection let (E, πE , (M, gM ), (F, gF ), T
HE) be a holomorphic fibre

bundle and let L → E be a compatible line bundle over E.

The ψ-morphism, constructed in the preceding subsection, allows us to equip the
complex vector bundle W(λ;∗) with a Hermitian and a holomorphic structure for each λ.
To do this explicitly is the content of this subsection.

Lemma 3.23:
For every λ and every t the bundle W(λ;t) is a holomorphic vector bundle. Its
holomorphic structure ∂̄W(λ;t) :=

⊕
s ∂̄

s
W(λ;t) is given by the following diagram.

A(0,s)(M,W(λ;t))
ψ ��

∂̄s

W(λ;t)

��

Eigλ(�
[s,t]
V )

∂̄H
��

A(0,s+1)(M,W(λ;t)) Eigλ(�
[s+1,t]
V )

ψ−1




In the similar way, Bismut uses in [8] that the horizontal Dolbeault-operator induces a
holomorphic structure on his push forward bundles.

Proof.
By Corollary 2.3, we only have to check that ∂̄W(λ;t) fulfils ∂̄2

W(λ;t) = 0 as well as the
Leibniz equation (Equation (3)).
The first property is easy to see since ∂̄2

H = 0. Consequently, we obtain

∂̄2
W(λ;t) = ψ−1 ◦ ∂̄2

H ◦ ψ = 0.
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3 Compatible line bundles and legitimate equivariance

For the Leibniz equation, let α be in A(0,q)(M) and take s ∈ Γ(M,W(λ;t)). Using
Equation (27), i.e. the extension of ψ to antiholomorphic forms, we compute:

∂̄W(λ;t) (α⊗ s) =ψ−1 ◦ ∂̄H ◦ ψ (α⊗ s)
(27)
= ψ−1 ◦ ∂̄H (π∗

Eα⊗ ψ(s))

=ψ−1 ◦ (π∗
E(∂̄α)⊗ ψ(s) + (−1)q(π∗

Eα) ∧ ∂̄Hψ(s)
)

=
(
∂̄α
)⊗ s+ (−1)qα ∧ (∂̄W(λ;t)s

)
.

Similarly to the definition of a holomorphic structure on W(λ;t), we can equip the space
A(0,s)(M,W(λ;t)) with a Hermitian metric on W(λ;t) which makes

ψ : A(0,s)(M,W(λ;t)) −→ Eigλ(�
[s,t]
V )

a linear isometry for the induced the L2-metric on both sides.

Let hL̃ denote the Hermitian metric on L̃ as well as its extension to the complex vector
bundle Λt

(
T (0,1)F

)∗ ⊗ L̃.
We construct a Hermitian metric hW(λ;t) on W(λ;t) = P ×ρ̌ Eigλ(�

(0,t)

L̃
) as follows.

For any point x ∈ M and every p ∈ π−1
E (x) ⊂ E let [p, v]ρ̌ and [p, w]ρ̌ be elements in

W(λ;t).
In particular, v and w are antiholomorphic forms in A(0,t)(F, L̃). We define:

hW
(λ;t)

x ([p, v]ρ̌ , [p, w]ρ̌) :=

∫
F
hL̃(v, w)dvolF .

Lemma 3.24:
The ψ-morphism

ψ : A(0,s)(M,W(λ;t)) −→ Eigλ(�
[s,t]
V )

becomes a linear isometry of Hermitian vector spaces.
The Hermitian metrics on both sides are the L2 metrics induced by hL on the bundle
Λt
(
T V,(0,1)E

)∗ ⊗ L on the left hand side and by hW(λ;t) on the right hand side.

Proof.
This follows directly from the fact that L̃ is isomorphic to

(
φ−1
i,x

)∗
L as a Hermitian

complex line bundles over F and from the Fubini Theorem for fibre bundles.

Now, that we made ψ a Hermitian isometry and W(λ;t) a holomorphic vector bundle, we
will introduce some notations.

We denote the operator operator corresponding to ∂̄H + ∂̄∗
H , by

DW(λ;t) =
⊕
s
Ds

W(λ;t) : A(0,∗)(M,W(λ;t)) −→ A(0,∗)(M,W(λ;t)). (28)
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3.5 Equivariant setting

Consequently DW(λ;t) is given explicitly as the left hand side of this commuting diagram:

A(0,s)(M,W(λ;t))
ψ ��

Ds
(λ,t)

��

Eigλ(�
[s,t]
V )

∂̄H+∂̄∗
H

��

A(0,s±1)(M,W(λ;t)) Eigλ(�
[s±1,t]
V ).

ψ−1




Remark 3.25:
Observe that because ψ is an isometry and ∂̄H corresponds to ∂̄W(λ;t) (compare Lemma
3.23), it follows that

DW(λ;t) = ∂̄W(λ;t) + ∂̄∗
W(λ;t)

becomes an elliptic operator and its square

�W(λ;t) =
⊕
s

�s
W(λ;t) = D2

W(λ;t) .

is a generalised Laplace operator, i.e. a second order differential operator whose main
symbol is given by the metric (cf. [6]).

Up to this point, we have described what the compatibility of a complex line bundle over
a holomorphic fibre bundle implies.
The aim of this thesis however is to give a nice expression for the equivariant torsion of
such a line bundle. Therefore, we have to define what kind of actions on L → E we want
to admit.
We do this in the subsequent subsection.

3.5 Equivariant setting

This subsection is dedicated to introducing the setting for the equivariance, i.e.
introducing the kind of actions that we use later on, the so-called legitimate action.

We start by giving a definition of a legitimate action.

Definition 3.26:
Let (E, πE , (M, gM ), (F, gF ), T

HE) be a holomorphic fibre bundle and let L → E be a
compatible holomorphic line bundle over E.
A triple �γ = (γM , γE , γL) of diffeomorphisms is called a legitimate action if the
following four properties hold.

1. The maps γM : M → M and γE : E → E are biholomorphic isometries.
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3 Compatible line bundles and legitimate equivariance

2. the map γL : L → L is a covers γE which is itself covers the map γM , i.e. the
following diagram commutes,

L

γL

��

πL �� E

γE

��

πE �� M

γM

��
L πL

�� E πE

�� M

3. The map γL sends fibres of L → E linearly and isometrically to fibres of L → E,
i.e. for every e ∈ E and Le = π−1

L (e) ⊂ L the map

γL |Le
: Le −→ LγE(e)

is a linear isometry.

4. The induced map γ̌L : A(0,∗)(E,L) → A(0,∗)(E,L) (cf. Definition 2.40 or below in
Remark 3.27) commutes with ∂̄L.

Remark 3.27:

• Recall that the induced action γ̌L (compare Definition 2.40) on antiholomorphic
forms A(0,q)(E,L) is given, for α ∈ A(0,q)(E) and s ∈ Γ(E,L), by{

γ̌L(α⊗ s)
}
e
:=
{((

γE
)−1
)∗

α
}
e
⊗ γL

(
s(
(
γE
)−1

(e))
)

and extended linearly to A(0,q)(E,L).

• Note that γL and γE are isometries and that γ̌L commutes with ∂̄L. Therefore, γ̌L

commutes with the vertical and horizontal Dolbeault-operator individually, i.e.

[γ̌L, ∂̄V ] = 0 = [γ̌L, ∂̄H ]. (29)

• For a legitimate action �γ, the map γ̌L becomes an isometry commuting with ∂̄V
and ∂̄H . Hence, it commutes with ∂̄∗

L as well as with ∂̄∗
H and ∂̄∗

V .
It follows that it leaves Eigenspaces of �H and �V invariant.

In Lemma 3.12 we have already seen that for a compatible line bundle L the horizontal
and the vertical Laplacian commute, i.e. [�V ,�H ] = 0. This implies that both operators
have a common orthonormal Hilbert base of Eigenforms.
Now, because �L = �H +�V this orthogonal Hilbert base consists of Eigenforms for �L

as well.
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3.6 The psi-morphism and legitimate action

Let us use the following nomenclature:
• From now on, let �[s,t] denote the restriction of the Laplacian �L to the subspace
A
(0,s)
H (E) ∧ A

(0,t)
V (E,L).

Note that this notation does not conflict with our previous notations where �(0,q)
L

denotes the Laplacian �L restricted to the space A(0,q)(E,L).
In particular, we have the following identity:

�(0,q)
L =

⊕
s+t=q

�[s,t] .

• Analogously, we denote �V (or �H) restricted to A
(0,s)
H (E) ∧ A

(0,t)
V (E,L) by �[s,t]

V

(or �[s,t]
H ).

• Furthermore, let L(λ, μ, s, t) be an abbreviation for the space given by the
intersection of the λ-Eigenspace of �[s,t]

V with the μ-Eigenspace of �[s,t]
H , i.e.

L(λ, μ, s, t) := Eigλ(�
[s,t]
V ) ∩ Eigμ(�

[s,t]
H ). (30)

Obviously, L(λ, μ, s, t) is a subspace of the Eigenspace of �[s,t] with Eigenvalue
λ+ μ and the following identity holds:

Eigλ(�[s,t]) =
⊕

μ+ν=λ

L(μ, ν, s, t). (31)

We now have fully developed our setting.

In the next subsection, we describe how the the legitimate action �γ translates via the
ψ-morphism to an action γ on W(λ;t).

3.6 The psi-morphism and legitimate action

This subsection is dedicated to transferring the necessary properties of the legitimate
action �γ on on L(λ, μ, s, t) to the space A(0,s)

(
M,W(λ;t)

)
using the ψ-morphism.

The map ψ is a linear isometry.
Therefore, we can construct an equivalent of the �γ = (γM , γE , γL) induced action γ̌L on
L(λ, μ, s, t) for the space Eigμ(�

(0,s)

W(λ;t)).
We denote this action on A(0,s)(M,W(λ;t)) by γ.
Slightly more general, i.e. extended to A(0,s)(M,W(λ;t)), γ is expressed by the following
commutative diagram, i.e.:

A(0,s)(M,W(λ;t))
ψ ��

γ

��

Eigλ(�
[s,t]
V )

γ̌L

��

A(0,s)(M,W(λ;t)) Eigλ(�
[s,t]
V ).

ψ−1
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3 Compatible line bundles and legitimate equivariance

What is not obvious, right now, is that the action γ actually splits into an element
γW(λ;t) in Diff(M,W(λ;t)) and the pullback via (γM )−1, i.e. in our usual nomenclature we
write γ = γ̌W(λ;t) (compare Definition 2.40).

To show this property, which is stated explicitly in the following proposition, is the task
of this subsection.

Proposition 3.28:
Let (E, πE , (M, gM ), (F, gF ), T

HE) be a holomorphic fibre bundle, L → E be a compatible
holomorphic line bundle over E and let �γ = (γM , γE , γL) be a legitimate action.
Let further on γ denote the induced action on A(0,∗)(M,W(λ;t)) given by

γ = ψ−1 ◦ γ̌L ◦ ψ.

There is a bundle morphism

γW(λ;t)
: W(λ;t) −→ W(λ;t)

covering the action γM and acting linearly and isometrically on fibres such that γ and
γ̌W(λ;t) coincide, i.e. for any differential form α ∈ A(0,s)(M,W(λ;t)) the following identity
holds:

γ · α = γW
(λ;t) ◦

(((
γM
)−1
)∗

α
)
= γ̌W

(λ;t)
α.

Remark 3.29:
Before we proof this proposition, we would like to give an argument why this seems
plausible. This argument is summarised in the following diagram:

W(λ;t)
x

γW(λ;t)

��

ψ �� A(0,t)(Ex,L |Ex
)

cont. �� A
(0,t)
V (E,L)

γ̌L

��

W(λ;t)

γM (x)
A(0,t)

(
EγM (x),L |E

γM (x)

)
ψ−1


 A

(0,t)
V (E,L)

i∗E
γM (x)



The map we seek should be visualised in this way. First, use the morphism ψ on an
element of W(λ;t)

x . This of course may not be done directly since ψ acts on sections into
W(λ;t) and not on elements. However, suppose ψ can be restricted in this way, then we
continue the corresponding (0, t)-form on Ex to the whole space E, apply γ̌L and restrict
this (0, t)-form to the image of Ex under γE , i.e. to EγM (x). Then we use ψ−1 and get

an element of W(λ;t)

γM (x)
.

The actual proof of this identity will be motivated by this diagram, but since this
diagram has some technical difficulties, we want to circumvent, like the restriction of ψ
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3.6 The psi-morphism and legitimate action

to elements of W(λ;t), the independence of the resulting map from the continuation of
the (0, t)-form to E and the unclarity of the smoothness of the resulting map γW(λ;t) , we
approach our problem in a slightly different way.

The proof of Proposition 3.28 is split into several lemmas.
First, in Lemma 3.30, we reduce the question to sections from M into W(0;∗).
Afterwards, we make an Ansatz for the bundle morphism γW(0;∗) in Equation (36) and
show in Lemma 3.38 that this Ansatz is valid.
Directly thereafter, in Lemma 3.39, we proof that the map γW(0;∗) is smooth map.
At last, we proof that the action γ is indeed given by γ̌W(0;∗) .

Now, for the proof of Proposition 3.28, we first show that we can restrict to the case of
sections into W(λ;t).

Lemma 3.30:
Let α be in A(0,∗)(M) and s be an element of Γ(M,W(λ;t)). Let furthermore
γ = ψ−1 ◦ γ̌L ◦ ψ denote the action on A(0,∗)(M,W(λ;t)) induced by a legitimate action
�γ = (γM , γE , γL).
Then the γ-action on α⊗ s splits as follows:

γ(α⊗ s) =
([(

γM
)−1
]∗

α
)
⊗ γ(s).

Proof.
This splitting follows directly from ψ(α⊗ s) = (π∗

Eα) ∧ ψ(s) (compare Equation (27))
through the subsequent computation.

γ(α⊗ s) =ψ−1 ◦ γ̌L ◦ ψ(α⊗ s) = ψ−1 ◦ γ̌L
[
(π∗

Eα) ∧ ψ(s)
]

Recall that γ̌L acts on ordinary differential forms, i.e. forms without coefficients in L, as
a pullback via (γE)−1. Hence, we obtain:

γ(α⊗ s) =ψ−1
({[(

γE
)−1
]∗

(π∗
Eα)

}
∧ γ̌L(ψ(s))

)
.

Now, �γ is legitimate. In particular, γE covers γM . It follows that

γ(α⊗ s) =ψ−1
({

π∗
E

([(
γM
)−1
]∗

α
)}

∧ γ̌L(ψ(s))
)

=
([(

γM
)−1
]∗

α
)
⊗ ψ−1

(
γ̌L(ψ(s))

)
︸ ︷︷ ︸

=γ(s)

which proves the assertion.
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3 Compatible line bundles and legitimate equivariance

The construction of the ψ-morphism makes explicit use of the fact that we can identify
sections in Γ(M,W(λ;∗)) with maps in C∞(P,Eigλ(�L̃))

ρ̌ and that λ-Eigenforms of �[0,∗]
V ,

can be identified with the latter space as well.
Thus, it suggests itself to study the induced action of γ̌L on C∞(P,A(0,t)(F, L̃))ρ̌.

Remark 3.31:
For a legitimate action �γ = (γM , γE , γL), there is a bijective map γP : P → P , not
necessarily smooth or continuous, covering the action of γM such that

γP (p · k) = γP (p) · k. (32)

This map γP is neither unique nor naturally excelled.

Lemma 3.32:
Let �γ = (γM , γE , γL) be a legitimate action and let γP : P → P be a map covering γM

which is K-equivariant, i.e. it fulfils Equation (32).
Then there are maps γL̃ : P → Diff(F, L̃) and γF : P → Aut(F ) depending on γP such
that the following equations hold.

1) γL : P ×ρ̃ L̃ −→ P ×ρ̃ L̃[
p, l̃
]
ρ̃

�−→
[
γP (p), γL̃(p)(l̃)

]
ρ̃

2) γE : P ×ρ F −→ P ×ρ F
[p, f ]ρ �−→ [

γP (p),
(
γF (p)

)
(f)
]
ρ

They are correlated via the following equation

γF (p) ◦ πL̃ = πL̃ ◦ γL̃(p).

Remark 3.33:
Recall that E (and likewise L) are quotients of P × F (or likewise P × L̃).
Therefore, we have a natural quotient map P × F → E (or P × L̃ → L).

The following diagram commutes:

P × L̃

idP×πL̃

��

��

γP×γL̃
�� P × L̃

��

idP×πL̃

��

L
πL ��

γL
�� L

πL��
E

γE
�� E

P × F
γP×γF

��





P × F

��

where the unlabelled arrows represent the natural quotient maps.
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3.6 The psi-morphism and legitimate action

Proof of Lemma 3.32.
Let l̃ be an element in L̃, p ∈ P and let x = πP (p) be the projection of p to M .
The action �γ = (γM , γE , γL) is legitimate. In particular, γL covers a γM ,

L

��

γL
�� L

��

[
p, l̃
]
ρ̃

� γL
��

�

��

γL
([

p, l̃
]
ρ̃

)
�

��
M

γM
�� M x �

γM
�� γM (x).

Hence, for an element
[
p, l̃
]
ρ̃
∈ Lx := L |π−1

E (x), its image γL
([

p, l̃
]
ρ̃

)
under γL has to lie

in the fibre LγM (x).
On the other hand, the map

[q]ρ̃ : L̃ −→ LγM (x)

l̃ �−→
[
q, l̃
]
ρ̃

defines a smooth bijection for any q ∈ π−1
P (γM (x)).

It follows that the map γL̃ can be constructed as follows:

γL̃(p) :=
[
γP (p)

]−1

ρ̃
◦ γL ◦ [p]ρ̃ .

Now, an analogous construction gives us γF and their relation follows directly from the
covering γL over γE , i.e. we obtain

γF (p) :=
[
γP (p)

]−1

ρ
◦ γE ◦ [p]ρ .

Remark 3.34:

• The K-equivariance of γP , compare Equation (32), implies a similar equivariance
for γL̃ as well as for γF .

γL̃(p · k) =ρ̃(k−1) ◦ γρ̃(p) ◦ ρ̃(k) (33)

γF (p · k) =ρ(k−1) ◦ γF (p) ◦ ρ(k) (34)

• The inverse map of γE (or respectively of γL) can be expressed, using γP and γF

(or respectively γL̃) as well.
For any f ∈ F and p ∈ P , we obtain:(

γE
)−1

(
[p, f ]ρ

)
=
[
(γP )−1(p),

(
γF
(
(γP )−1(p)

))−1
(f)
]
ρ
. (35)

The equation for
(
γL
)−1 is given analogously.
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For the subsequent Lemma, recall that the action γ̌L is given by γL ◦
[(
γE
)−1
]∗

.

Lemma 3.35:
Let �γ = (γM , γE , γL) be a legitimate action and let further on γ be the action on
A(0,∗)(M,W(0;∗)) induced by γ̌L.
For α ∈ A

(0,t)
V (E,L) let ˆ̃α be its corresponding element in C∞(P,A(0,t)(F, L̃))ρ̌.

Then the γ-induced action on ˆ̃α is given implicitly via

γ̌L
([

p, ˆ̃α(p)
]
ρ̌

)
=
[
p, γL̃(q) ◦

{(
γF (q)

)−1
}∗ (

ˆ̃α(q)
)]

ρ̌
=:

[
p,
˜
γL̃(q)

(
ˆ̃α(q)

)]
ρ̌

where we used
(
γP
)−1

(p) = q for reasons of simplicity.

Proof.
We will proof this lemma for sections α in Γ(E,L) only. The generalisation to vertical
differential forms is more tedious but not more complicated.
Let again q = (γP )−1(p), we obtain:(

γ̌Lα
)
[p,f ]ρ

=γL
(
α
((

(γE)−1
)
([p, f ]ρ)

))
(35)
= γL

(
α

([
q,
(
γF (q)

)−1
(f)
]
ρ

))
=γL

([
q, ˆ̃α(q)

((
γF (q)

)−1
(f)
)]

ρ̃

)
Now the claim of the lemma follows directly from the definition of γL̃.

Remark 3.36:
In the previous lemma, we used the commutative diagram

L̃

πL̃

��

γL̃(p) �� L̃

πL̃

��
F

γF (p)
�� F

to obtain an action

˜
γL̃ (q) : A(0,t)(F, L̃) −→ A(0,t)(F, L̃)

for every q ∈ P corresponding to γ̌L on A
(0,∗)
V (E,L), in the sense of

γ̌L
[
p, ˆ̃α(p)

]
ρ̌
=

[
p,
˜
γL̃(q)

(
ˆ̃α(q)

)]
ρ̌

.

Here again, p equals γP (q).
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We now posses all necessary tools to make an Ansatz for γW(λ;t) .

Definition 3.37:
Let w = [p, β]ρ̌ be an element of W(λ;∗) = P ×ρ̌ Eigλ(�L̃).
We define:

γW
(λ;∗) (

[p, β]ρ̌

)
:=

[
γP (p),

˜
γL̃(p)(β)

]
ρ̌

. (36)

So far our Ansatz seems to have a strong dependency on the choice of γP which is quite
undesirable. Therefore, we need to show that it does not depend on the choice of γP at
all.
This is the purpose of the following lemma. Furthermore, we show that the Ansatz above
does not depend on the representing element of [p, β]ρ̌.

Lemma 3.38:
The Ansatz of Equation (36) is well defined and does not depend on the choice of γP .

Proof.
Recall that the maps

ρ̃ : K −→ Diff(F, L̃) and ρ : K −→ Diff(F, F )

induce the map

ρ̌ : K −→ Aut(A(0,∗)(F, L̃)),

explicitly expressed by ρ̌(k) = ρ̃(k) ◦ ρ (k−1
)∗ (compare Remark 3.3).

That Equation (36) is well defined, follows directly from the equivariance of γ̃L̃ which can
be derived by the equivariances of γL̃ and γF given in Equations (33) and (34).

Therefore, we derive the equivariance of γ̃L̃ and obtain:

˜γL(p · k) =γL̃(p · k) ◦ (γF (p · k)−1
)∗

(34),(33)
= ρ̃(k−1) ◦ γL̃(p) ◦ ρ̃(k) ◦ (ρ(k−1) ◦ γF (p)−1 ◦ ρ(k))∗

=
[
ρ̃(k−1) ◦ ρ(k)∗]︸ ︷︷ ︸

=ρ̌(k−1)

◦
[
γL̃(p) ◦ (γF (p)−1

)∗] ◦ [ρ̃(k) ◦ ρ(k−1)∗
]︸ ︷︷ ︸

=ρ̌(k)

=ρ̌(k−1) ◦˜γL̃(p) ◦ ρ̌(k).
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Consequently, for β ∈ Eigλ(�L̃) the following identity holds:

γW
(λ;∗) ([

p · k, ρ̌(k−1)(β)
]
ρ̌

)
(36)
=

[
γP (p) · k, ˜

γL̃(p · k) ◦ ρ̌(k−1)(β)

]
ρ̌

=

[
γP (p), ρ̌(k) ◦ ˜

γL̃(p · k) ◦ ρ̌(k−1)(β)

]
ρ̌

=

[
γP (p),

˜
γL̃(p)(β)

]
ρ̌

=γW
(λ;t)

(
[p, β]ρ̌

)
.

We conclude that the Ansatz for γW(λ;∗) does not depend on the choice of the
representing element for the equivalence class [p, β]ρ̌ =

[
p · k, ρ̌(k−1)(β)

]
ρ̌
.

What remains to be shown is that our Ansatz does not depend on γP .
Let therefore ηP be another bijective and K-equivariant map from P to P covering the
map γM and let furthermore ηL̃ as well as ηF be the other corresponding maps (compare
Lemma 3.32).
Now, γP covers γM , as does ηP . Therefore, we obtain for every p ∈ P :

πP (η
P (p)) = πP (γ

P (p)) = γM (πP (p)).

It follows that there exists a map gP : P → K such that:

ηP (p) = γP (p) · gP (p).

Observe that the K-equivariance of γP and ηP implies that gP is actually a pullback of a
map a map g : M → K, i.e.

ηP (p) = γP (p) · g(πP (p)). (37)

We use Equation (37) to express the relations between ηF and γF as well as between ηL̃

and γL̃.
We obtain:

ηL̃(p) =ρ̃
(
g(πP (p))

−1
) ◦ γL̃(p)

ηF (p) =ρ
(
g(πP (p))

−1
) ◦ γF (p).

This implies, for x = πP (p):

˜
ηL̃(p) = ηL̃(p) ◦

[(
(ηF )(p)

)−1
]∗

= ρ̌(g(x)−1) ◦˜γL̃(p)

Let again q be (ηP )−1(p) = (γP )−1(p) · g(πP (q)).
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3.6 The psi-morphism and legitimate action

We obtain for a β in Eigλ(�L̃):[
ηP (p),

˜
ηL̃(p)(β)

]
ρ̌

=

[
γP (p) · g(x), ρ̌(g(x)−1) ◦˜γL̃(p)(β)

]
ρ̌

=

[
γP (p),

˜
γL̃(p)(β)

]
ρ̌

.

Consequently, γW(λ;∗) does not depend on the choice of the map γP which finishes the
proof.

Up to this point we showed that the map γW(λ;t) , given by Equation (36), is a well
defined map and that it is independent of the choice of γP .
Before we can finally proof Proposition 3.28, we have to show that γW(λ;∗) is smooth.

Lemma 3.39:
The map γW(λ;t)

: W(λ;t) → W(λ;t), defined in Equation (36), is smooth.

Proof.
Again, we proof this Lemma for sections α in Γ(E,L)∩Eigλ(�V ) only. The generalisation
to vertical differential forms is again more tedious but not more complicated.
That γW(λ;0) is smooth can be checked locally by taking local trivialisations of W(λ;0)

which are induced by smooth local sections qi : Ui −→ P with i ∈ I.
Let,

[qi]ρ̌ : Ui × Eigλ(�
(0,0)

L̃
) −→ W(λ;0)

x

(x, β) �−→ [qi(x), β]ρ̌

denote the induced local trivialisation maps of W(λ;t).
Now, fix an i ∈ I and assume without loss of generality that γM (Ui) = Uj .
The idea is to choose γP : P → P to be the map sending qi(x) to qj(γ

M (x)) continued
K-equivariantly to π−1

P (Ui) and arbitrarily outside of π−1
P (Ui) (within the constrictions

we demanded above, i.e. K-equivariant and covering γM ).
Therefore, let now γP be given on π−1

P (Ui) by:

γP |
π−1
P (Ui)

: P | Ui −→ P |Uj

qi(x) · k �−→ qj(γ
M (x)) · k (38)

This is valid, because γW(0;∗) does not depend on the choice of γP which we showed in
Lemma 3.38.
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3 Compatible line bundles and legitimate equivariance

We now show that the map γW(λ;0) read through those local trivialisations is smooth, i.e.
the top map of the following diagram:

Ui × Eigλ(�
(0,0)

L̃
)

δW
(λ;0)

ij ��

[qi]ρ̌
��

Uj × Eigλ(�
(0,0)

L̃
)

[qj ]ρ̌
��

W(λ;0) |Ui
γW(λ;0)

��

��

W(λ;0) |Uj

��
Ui

γM
�� Uj

is smooth.
We compute for x ∈ Ui and β ∈ Eigλ(�

(0,0)

L̃
):

δW
(λ;0)

ij (x, β) = [qj ]
−1
ρ̌ ◦ γW(λ;0) ◦ [qi]ρ̌

(
x, β

)
= [qj ]

−1
ρ̌ ◦ γW(λ;0)

(
[qi(x), β]ρ̌

)
= [qj ]

−1
ρ̌

([
γP (qi(x)),

˜
γL̃(qi(x))(β)

]
ρ̌

)
(38)
= [qj ]

−1
ρ̌

([
qj(γ

M (x)),
˜

γL̃(qi(x))(β)

]
ρ̌

)

=

(
γM (x),

˜
γL̃(qi(x))(β)

)
.

Consequently, it remains to be shown that the map

˜
γL̃(qi(·)) : Ui × Eigλ(�

(0,0)

L̃
) −→ Eigλ(�

(0,0)

L̃
)

(x, β) �−→ ˜
γL̃(qi(x))β

(39)

is smooth and since Eigλ(�
(0,0)

L̃
) is finite dimensional and Equation (39) is linear in the β,

it is smooth in β.
We now determine the smoothness properties of

x �−→ γL̃(qi(x)) as well as
x �−→ γF (qi(x)),

in order to show that x �→ ˜
γL̃(qi(x))β is smooth for any β.

80



3.6 The psi-morphism and legitimate action

By prerequisite, we know that (γE)−1 as well as γL are smooth. Thus, so are the maps
δL̃ij : Ui × L̃ → L̃ and δFij : Ui × F → F defined as follows.

Uj × F
(γM)

−1×δFij ��

��

Ui × F

��

Ui × L̃
γM×δL̃ij ��

��

Uj × L̃

��
E |Uj

(γE)
−1

�� E |Ui L |Ui
γL

�� L |Uj

We evaluate these maps explicitly, using the equations of Lemma 3.32 defining γF and γL̃:

γM × δL̃ij(x, l̃) = [qj ]
−1
ρ̃ ◦ γL ◦ [qi]ρ̃

(
x, l̃
)
= [qj ]

−1
ρ̃ ◦ γL ◦

[
qi(x), l̃

]
ρ̃

= [qj ]
−1
ρ̃

([
γP (qi(x)), γ

L̃(qi(x))
(
l̃
)]

ρ̃

)
(38)
= [qj ]

−1
ρ̃

([
qj(γ

M (x)), γL̃(qi(x))
(
l̃
)]

ρ̃

)
=
(
γM (x), γL̃(qi(x))

(
l̃
))

.

Hence, we obtain that the map

δL̃ij : Ui × L̃ −→ L̃

(x, l̃) �−→ γL̃(qi(x))(l̃)

is smooth. And analogously, the map

δFij : Ui × F −→ F

(γM (x), f) �−→ [
γF (qi(x))

]−1
(f),

is smooth, too.
We conclude that for any β ∈ Γ(F, L̃), the map δβij := δL̃ij ◦

(
idUi × (β ◦ δFij)

)
, explicitly

given by

δβij : Ui × F −→ L̃

(x, f) �−→ δL̃ij

(
x, β ◦ (δFij)

(
γM (x), f

))
︸ ︷︷ ︸[

˜
γL̃(qi(x))(β)

]
(f)

,

is a composition of smooth maps. Hence, it is smooth itself.
Additionally, we observe that(

πL̃ ◦ δβij
)
(x, f) =πL̃

([
˜

γL̃(qi(x))(β)

]
(f)

)
=πL̃

([
γL̃(qi(x)) ◦

{(
γF (qi(x))

)−1
}∗

β
]
(f)
)

=f.
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3 Compatible line bundles and legitimate equivariance

Consequently, δβij lies in

C∞(Ui × F, L̃)i := {κ ∈ C∞(Ui × F, L̃) | πL̃ ◦ κ = proj2}.

On the other hand, we saw in Lemma 3.18 that the vector spaces C∞(Ui × F, L̃)i and
C∞(Ui,Γ(F, L̃)) are canonically isomorphic.
This leads to

δ̂βij(·, β) : Ui → Γ(F, L̃)

x �→ ˜
γL̃(qi(x))(β)

being smooth for every β as well.
In particular, we obtain by restriction that for every β ∈ Eigλ(�

(0,0)

L̃
) the map

δ̂βij(·, β) : Ui → Eigλ(�
(0,0)

L̃
)

x �→ ˜
γL̃(qi(x))(β)

is smooth.
Thus, the map

δ̂ij(·) : Ui → Gl
(
Eigλ(�

(0,0)

L̃
)
)

x �→ ˜
γL̃(qi(x))

is smooth which can be seen by choosing a base for Eigλ(�
(0,0)

L̃
).

We finally obtain that the map from Equation (39),

˜
γL̃(qi(·)) : Ui × Eigλ(�

(0,0)

L̃
) −→ Eigλ(�

(0,0)

L̃
)

(x, β) �−→ ˜
γL̃(qi(x))β,

is a product of two smooth maps and therefore smooth itself which finishes the proof.

Summarising the lemmas above, we were able to construct a smooth map γW(λ;t) covering
the map γM .

W(λ;t) γW(λ;t)

��

��

W(λ;t)

��
M

γM
�� M

Now we can finally prove the Proposition 3.28.
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3.6 The psi-morphism and legitimate action

Proof of Proposition 3.28.
The map γW(λ;t) is obviously C-linear on fibres.
Therefore, what is left to check is that the γ-action on A(0,∗)(M,W(λ;t)) decomposes into
a pullback with (γM )−1 and this map γW(λ;t) constructed above.

Lemma 3.30 shows that if we proof this assertion for sections Γ(M,W(λ;t)), it holds for
antiholomorphic forms A(0,∗)(M,W(λ;t)) as well.
Furthermore, because of Lemma 3.35, we may compare the induced actions on the C∞

functions.
Let w be a section in Γ(M,W(λ;t)) and let w̆ ∈ C∞(P,Eigλ(�

(0,t)

L̃
))ρ̌ correspond to W ,

i.e. for any x ∈ M and any p ∈ π−1
P (x) we obtain:

w(x) = [p, w̆(p)]ρ̌ .

Now, Lemma 3.35 states that we get for q = (γP )−1(p):

(γ · w)x =

[
p,
˜
γL̃(q) (w̆ (q))

]
ρ̌

.

On the other hand, we get by the definition of γW(λ;t) :

γW
(λ;t)

((
(γM )−1

)∗
w
)
x
= γW

(λ;t)
(
[q, w̆ (q)]ρ̌

)
=

[
p,

˜
γL̃ (q) (w̆(q))

]
ρ̌

.

Both expressions are equal which finally proofs the assertion.

We now have evolved the theory of legitimate actions on compatible line bundles over
holomorphic fibre bundles as far as we need it.

What comes next is to apply this theory to the problem of computing the equivariant
holomorphic torsion for those compatible line bundles. This will be the content of the
next section.
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4 The equivariant torsion for fibre bundles

Up to this point, we have introduced as well as examined our setting. We have stated
specific conditions for a fibre bundle (to be holomorphic), a line bundle (to be compatible)
and an action (to be legitimate) for which we want to study the equivariant ζ-function.

Now, it is time to move on towards our goal which has been to derive a suitably nice
formula for the equivariant holomorphic torsion of a compatible holomorphic line bundle
L over a holomorphic fibre bundle E → M .

At first, in Section 4.1, we show that the equivariant ζ-function splits into two parts, each
one depending on the nonzero spectrum of one of the operators �V and �H only. This is
the equivariant generalisation of analogous results from Stanton in [29].
In Section 4.1, we present Theorem 4.1 our most general result. It generalises the
analogous non-equivariant result of Stanton in a natural way.
It gives us the equivariant holomorphic ζ-function ZL

γ of L expressed through objects
living on the base M of the holomorphic fibre bundle E → M .
In the last subsection, i.e. Section 4.3, we specialise this general result to the case of γM

having only non-degenerate fixed points in M . This is achieved by applying the
Atiyah-Bott’s fixed point formula.

Let throughout this section (E, πE , (M, gM ), (F, gF ), T
HE) be a holomorphic fibre

bundle, L → E be a compatible line bundle over E and let γ = (γM , γE , γL) be a
legitimate action. Furthermore, we keep the notations we developed so far.

4.1 Splitting of the zeta-function

This subsection is dedicated to uncover a splitting of our equivariant ζ-function into a
horizontal and a vertical part. This splitting is due to the fact that the Eigenspaces of
�L contribute to the ζ-function only if they are a 0-Eigenspace for either �H or �V .
We summarise what we educe in this subsection in Proposition 4.3.

We start at the definition of the equivariant ζ-function (compare Definition 2.43).
Let σ(�L) denote the spectrum of �L.
Now, for z ∈ C with sufficiently large Re(z), the ζ-function is given by:

ZL
γ̌L(z) =

∑
q≥0

(−1)q+1q
∑

0 �=ν∈σ(�L)

ν−z · Tr
(
(γL)∗

∣∣
Eigν(�

(0,q)
L )

)
.

For a compatible line bundle L the Eigenspace Eigν(�
(0,q)
L ) decomposes into a direct sum

of Eigenspaces L(λ, μ, s, t), given by

L(λ, μ, s, t) = Eigλ(�
[s,t]
V ) ∩ Eigμ(�

[s,t]
H ),

with λ+ μ = ν and s+ t = q (compare Equation (30) and Equation (31)).
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4 The equivariant torsion for fibre bundles

The action �γ is legitimate, therefore, following Remark 3.27, γ̌L commutes with both �V

and �H . Hence, L(λ, μ, s, t) is invariant under γ̌L.
We obtain the following equation.

ZL
γ̌L(z) =

∑
t,s

(−1)s+t+1(s+ t)
∑

λ+μ �=0

(λ+ μ)−zTr
[
γ̌L
∣∣
L(λ,μ,s,t)

]

=−
∑

λ+μ �=0

(λ+ μ)−z

(∑
t,s

t(−1)s+t +
∑
t,s

s(−1)s+t

)
Tr
[
γ̌L
∣∣
L(λ,μ,s,t)

]
Recall that �H as well as �V are given as a square of a self-adjoint operator. Therefore,
their spectrum is non-negative.
Consequently, the sum over λ+ μ �= 0 splits into a sum λ �= 0 with arbitrary μ and a sum
λ = 0 with μ �= 0.

ZL
γ̌L(z) =−

∑
λ �=0,μ

(λ+ μ)−z

(∑
t,s

t(−1)s+t +
∑
t,s

s(−1)s+t

)
Tr
[
γ̌L
∣∣
L(λ,μ,s,t)

]

−
∑
μ �=0

μ−z

(∑
t,s

t(−1)s+t +
∑
t,s

s(−1)s+t

)
Tr
[
γ̌L
∣∣
L(0,μ,s,t)

]
(40)

This might look slightly more complicated than the original expression of the equivariant
ζ-function, but the following lemma shows that some parts of this decomposed ζ-function
simply vanish.
Its effect on the sum above is depicted below in Corollary 4.2.
This lemma is the equivariant generalisation of a property Stanton showed in [29].

Lemma 4.1:
In the situation above, the following identities hold.

a) The Eigenspace for nonzero Eigenvalues of either �H or �V can be split as follows.

L(λ �= 0, μ, s, t) = ∂̄V L(λ, μ, s, t− 1)⊕ ∂̄∗
V L(λ, μ, s, t+ 1) (41)

L(λ, μ �= 0, s, t) = ∂̄HL(λ, μ, s− 1, t)⊕ ∂̄∗
HL(λ, μ, s+ 1, t) (42)

b) The trace of the (γ̌L)-action splits as well.

Tr(γ̌L
∣∣
L(λ �=0,μ,s,t)

) =Tr(γ̌L
∣∣
∂̄V L(λ,μ,s,t−1)

) + Tr(γ̌L
∣∣
∂̄∗
V L(λ,μ,s,t+1)

)

Tr(γ̌L
∣∣
L(λ,μ �=0,s,t)

) =Tr(γ̌L
∣∣
∂̄HL(λ,μ,s−1,t)

) + Tr(γ̌L
∣∣
∂̄∗
HL(λ,μ,s+1,t)

)

c) The following two traces are equal.

Tr(γ̌L
∣∣
∂̄V L(λ �=0,μ,s,t−1)

) =Tr(γ̌L
∣∣
∂̄∗
V L(λ,μ,s,t)

)

Tr(γ̌L
∣∣
∂̄HL(λ,μ �=0,s−1,t)

) =Tr(γ̌L
∣∣
∂̄∗
HL(λ,μ,s,t)

)
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Proof.

a) For the proof of Equation (41), let α ∈ L(λ, μ, s, t− 1) be an Eigenform for some
λ �= 0 and for an arbitrary μ.
Both, the horizontal Laplacian, �H , as well as the vertical Laplacian, �V , commute
with ∂̄

(∗)
V (compare Lemma 3.12).

�V ∂̄V α = ∂̄V �V α = λ∂̄V α

�H ∂̄V α = (�L −�H)∂̄V α = ∂̄V (�L −�H)α = μ∂̄V α.

Hence, ∂̄V α is an element of L(λ, μ, s, t).
The form α has been chosen arbitrary in L(λ, μ, s, t− 1). Thus, we conclude that

∂̄V L(λ, μ, s, t− 1) ⊂ L(λ, μ, s, t).

Analogously, we observe that

∂̄∗
V L(λ, μ, s, t+ 1) ⊂ L(λ, μ, s, t).

The intersection between ∂̄V L(λ, μ, s, t− 1) and ∂̄∗
V L(λ, μ, s, t+ 1) as subspaces of

L(λ, μ, s, t) is {0}. This is due to the fact that, for β = ∂̄V α = ∂̄∗
V ω in L(λ, μ, s, t),

we obtain

λβ = �V β = ∂̄V (∂̄∗
V )

2︸ ︷︷ ︸
=0

ω + ∂̄∗
V (∂̄V )

2︸ ︷︷ ︸
=0

α = 0.

On the other hand, we assumed λ �= 0, hence, β vanishes.
Now, Equation (41) holds if and only if the map

ϕ : L(λ, μ, s, t− 1)⊕ L(λ, μ, s, t+ 1) −→ L(λ, μ, s, t)
(α⊕ ω) �−→ ∂̄V α+ ∂̄∗

V ω

is surjective.
This can be shown by finding a right inverse ϕ−1 such that ϕ ◦ ϕ−1 = id

∣∣
L(λ,μ,s,t)

.
We claim that this inverse map is given by ϕ−1 := 1

λ(∂̄
∗
V + ∂̄V ).

We verify this, by evaluating it for an arbitrary β in L(λ, μ, s, t).

ϕ ◦ ϕ−1(β) = ϕ

(
1

λ

(
∂̄∗
V β ⊕ ∂̄V β

))
=

1

λ

⎛⎜⎝∂̄V ∂̄
∗
V + ∂̄∗

V ∂̄V︸ ︷︷ ︸
=�V

⎞⎟⎠β = β

This proves Equation (41).
Analogously, Equation (42) can be shown.

b) We want to show that the splitting of L(λ, μ, s, t) from Equations (41) and (42) is
compatible with the γ̌L action.
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4 The equivariant torsion for fibre bundles

We already know that γ̌L
∣∣
L(λ,μ,s,t)

∈ Aut (L(λ, μ, s, t)), i.e. it maps L(λ, μ, s, t) onto
itself.
Since [γ̌L, ∂̄

(∗)
V ] = 0, the image of γ̌L restricted to the space ∂̄

(∗)
V L(λ, μ, s, t) is

contained in ∂̄
(∗)
V L(λ, μ, s, t) which shows the first equation of b).

Analogous considerations, using [γ̌L, ∂̄
(∗)
H ] = 0, can be made for the second equation.

c) At last, the first identity of c) can be seen as follows.
For a non-vanishing λ, the vector spaces ∂̄V L(λ, μ, s, t− 1) and ∂̄∗

V L(λ, μ, s, t) are
isomorphic.
The isomorphism is explicitly given by:

ϕ̃ : ∂̄V L(λ, μ, s, t− 1) −→ ∂̄∗
V L(λ, μ, s, t)

α �−→ 1√
λ
∂̄∗
V α.

Its inverse map is:

ϕ̃−1 : ∂̄∗
V L(λ, μ, s, t) −→ ∂̄V L(λ, μ, s, t− 1)

α �−→ 1√
λ
∂̄V α.

Now, the first identity of c) holds because γ̌L commutes with ϕ̃, i.e.

[ϕ̃, γ̌L] = 0.

Again, the second equation follows analogously.

We now summarise what Lemma 4.1 implies for the sums in our expression of the
ζ-function.

Corollary 4.2:
For λ �= 0, the following equation holds for every μ:∑

t

(−1)tTr(γ̌L
∣∣
L(λ,μ,s,t)

) = 0.

Analogously, we obtain for μ �= 0 and arbitrary λ the subsequent identity:

m∑
s=0

(−1)sTr(γ̌L
∣∣
L(λ,μ,s,t)

) = 0.
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4.1 Splitting of the zeta-function

Proof.
The first equation follows directly from

Tr(γ̌L
∣∣
L(λ,μ,s,t)

)
b)
= Tr(γ̌L

∣∣
∂̄V L(λ,μ,s,t−1)

) + Tr(γ̌L
∣∣
∂̄∗
V L(λ,μ,s,t+1)

)

c)
= Tr(γ̌L

∣∣
∂̄V L(λ,μ,s,t−1)

) + Tr(γ̌L
∣∣
∂̄V L(λ,μ,s,t)

)

and the obvious fact that for any finite sequence {an}n∈{−1,...,m} with a−1 = am = 0 the
alternating series over an + an+1 vanishes, i.e.

m∑
n=0

(−1)n (an−1 + an) = 0.

Almost the same proof holds for the second equation.

We now apply Corollary 4.2 to our expression for the ζ-function (compare Equation
(40)). This simplifies the expression for the equivariant ζ-function significantly.

Proposition 4.3:
The equivariant ζ-function may be reduced to computing traces of γ̌L on the kernels of
�H and �V in the following way.

ZL
γ̌L(z) =−

∑
λ �=0

λ−z
∑
t

t(−1)t
m∑
s=0

(−1)sTr

⎡⎢⎢⎣γ̌L∣∣
Ker

⎛
⎝�H

∣∣
Eigλ

(
�[s,t]
V

)
⎞
⎠

⎤⎥⎥⎦

−
∑
μ �=0

μ−z
m∑
s=0

s(−1)s
∑
t

(−1)tTr

⎡⎢⎢⎣γ̌L∣∣
Ker

⎛
⎝�V

∣∣
Eigμ

(
�[s,t]
H

)
⎞
⎠

⎤⎥⎥⎦

Proof.
We start with the expression for the ζ-function which we developed as in Equation (40).
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4 The equivariant torsion for fibre bundles

Now, we apply Corollary 4.2 repeatedly.

ZL
γ̌L(z) =−

∑
λ �=0,μ

(λ+ μ)−z

(∑
t,s

t(−1)s+t +

��������������

∑
t,s

s(−1)s+t

)
Tr
[
γ̌L
∣∣
L(λ,μ,s,t)

]

−
∑
μ �=0

μ−z

(
��������������

∑
t,s

t(−1)s+t +
∑
t,s

s(−1)s+t

)
Tr
[
γ̌L
∣∣
L(0,μ,s,t)

]
=−

∑
λ �=0,μ

(λ+ μ)−z
∑
t

t(−1)t
m∑
s=0

(−1)sTr
[
γ̌L
∣∣
L(λ,μ,s,t)

]
−
∑
μ �=0

μ−z
m∑
s=0

s(−1)s
∑
t

(−1)tTr
[
γ̌L
∣∣
L(0,μ,s,t)

]
Again, we use the Corollary 4.2 to reduce our first summand.
This time, we can eliminate all the sums where μ �= 0.

ZL
γ̌L(z) =−

∑
λ �=0

λ−z
∑
t

t(−1)t
m∑
s=0

(−1)sTr
[
γ̌L
∣∣
L(λ,0,s,t)

]
−
∑
μ �=0

μ−z
m∑
s=0

s(−1)s
∑
t

(−1)tTr
[
γ̌L
∣∣
L(0,μ,s,t)

]
This finishes the proof.

4.2 Applying the psi-correspondence

So far, we have used that the γ̌L operator commutes with ∂̄
(∗)
V as well as ∂̄

(∗)
H to simplify

our expression of the equivariant ζ-function. Now, it depends only on the action of γ̌L on
the kernels of �H and �V .
In this subsection, we apply the ψ-morphism, described in Section 3.3 and summarised in
Proposition 3.14, to our situation.

The ψ-morphism identifies λ-Eigenforms of �V with antiholomorphic differential forms
on the base space M with coefficients in a holomorphic vector bundle W(λ;∗).
The action γ̌L on Eigλ(�V ) corresponds to an action γ on A(0,∗)(M,W(λ;∗)) under this
isomorphism.
We showed that γ is a composition of a vector bundle morphism γW(λ;∗) and a pullback
along (γM )−1 (compare Proposition 3.28).

In Section 3.4, we, furthermore, defined an operator DW(λ;t) acting on A(0,∗)(M,W(λ;t))
(Equation (28)). It is the operator corresponding to ∂̄H + ∂̄∗

H via ψ.
Its square, �W(λ;t) , is the Dolbeault-Laplacian acting on A(0,∗)(M,W(λ;t)).

It is convenient to translate our expression for ZL
γ under the ψ-correspondence since

sometimes there is better knowledge about the existence or the structures of holomorphic
vector bundles over M .
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4.2 Applying the psi-correspondence

We start at the expression for the equivariant ζ-function developed in Proposition 4.3.
Now, we apply ψ as follows:

ZL
γ̌L(z) =−

∑
λ �=0

λ−z
∑
t

t(−1)t
m∑
s=0

(−1)sTr

[
γ
∣∣
Ker

(
�(0,s)

W(λ;t)

)]
︸ ︷︷ ︸

=ind
(
γW(λ;t)

,�W(λ;t)

)

−
∑
μ �=0

μ−z
m∑
s=0

s(−1)s
∑
t

(−1)tTr

⎡⎢⎢⎢⎣γ̌L
∣∣∣∣∣
Ker

⎛
⎝�V

∣∣
Eigμ

(
�[s,t]
H

)
⎞
⎠

⎤⎥⎥⎥⎦ .

The first term becomes a sum over equivariant indexes

ZL
γ̌L(z) =−

∑
λ �=0

λ−z
∑
t

t(−1)tind(γW
(λ;t)

,�W(λ;t))

+
∑
t

(−1)t
m∑
s=0

s(−1)s+1
∑
μ �=0

μ−zTr

[
γ
∣∣
Eigμ

(
�(0,s)

W(0;t)

)]
︸ ︷︷ ︸

=ZW(0;t)

γ̌W(0;t)
(z)

(43)

while the second term can be expressed through ζ-functions of W(0;t).
Here, ind(γW(λ;t)

,�W(λ;t)) denotes the equivariant index given by Definition 2.42.

Equation (43) is our final result for the general case, therefore we summarise it in a
theorem.

Theorem 4.1:
Let (E, πE , (M, gM ), (F, gF ), T

HE) be a holomorphic fibre bundle and let L → E be a
compatible, holomorphic, Hermitian line bundle.
Let further on γ be a legitimate action on L.
Then the equivariant ζ-function can be expressed as follows:

ZL
γ̌L(z) =−

∑
λ �=0

λ−z
∑
t

t(−1)tind(γW
(λ;t)

,�W(λ;t)) +
∑
t

(−1)tZW(0;t)

γ̌W(0;t) (z).

The non-equivariant ζ-function is a special case of the equivariant ζ-function for the
trivial legitimate action γL = idL.

Corollary 4.4:
For a compatible holomorphic, Hermitian line bundle L → E over a holomorphic fibre
bundle (E, πE , (M, gM ), (F, gF ), T

HE), the ζ-function has the following form:

ZL(z) = −
∑
λ �=0

λ−z
∑
t

t(−1)tind(�W(λ;t)) +
∑
t

(−1)tZW(0;t)
(z) (44)
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4 The equivariant torsion for fibre bundles

Remark 4.5:
Originally, Stanton shows the assertion of Corollary 4.4 in [29].
In particular, she applies it on some holomorphic line bundles over a compact
even-dimensional Lie group.
She computes the non-equivariant holomorphic torsion of those line bundles over a
compact even-dimensional Lie group and shows that the holomorphic torsion of one of
these line bundles equals the holomorphic torsion of the restriction of this line bundle to
a maximal torus. Furthermore, the holomorphic torsion of these restricted line bundles
over the torus are known (cf. [24]).
The main arguments for this Lie group result are on the one hand that the second
summand in (44) vanishes and on the other hand that the Atiyah-Singer Theorem
applied to ind(�W(λ;t)) simplifies the expression for first summand significantly.
Stantons result for Lie groups is our main motivation in trying to apply Theorem 4.1 to
Lie groups.
We approach this example in Section 5.

Theorem 4.1 can be used directly to describe the equivariant torsion τL(γ̌L) (compare
Definition 2.44).

Corollary 4.6:
Let L be a compatible holomorphic, Hermitian line bundle over a holomorphic fibre
bundle (E, πE , (M, gM ), (F, gF ), T

HE) and let �γ be a legitimate action.
Denote by Θ the meromorphic continuation of the map

z �−→ −
∑
λ �=0

λ−z
∑
t

t(−1)tind(γW
(λ;t)

,�W(λ;t))

to the complex plane C.
Now, the equivariant torsion of L corresponding to the action �γ is given by:

τL(γ̌L) = Θ′(0) +
∑
t

(
τW

(0;2t)
(γ̌W

(0;2t)
)− τW

(0;2t+1)
(γ̌W

(0;2t+1)
)
)
.

4.3 Special case: isolated non-degenerated fixed points

For a special case of a legitimate action �γ, there is a further simplification of the
expression of the ζ-function given in Theorem 4.1.

In order to state it, we have to recall the definition of an isolated and non-degenerated
fixed point of an isometry.
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4.3 Special case: isolated non-degenerated fixed points

Definition 4.7:
Let M be a Riemannian manifold and let γM be an isometry of M .

• A fixed point x ∈ M of γM is called isolated if there is an ε > 0 such that there is
no other fixed point of γM in an ε-neighbourhood of x.

• A fixed point x ∈ M of γM is called non-degenerated if there is no vector X in
TxM such that

(
Txγ

M
)
(X) = X.

In particular, every non-degenerated fixed point is isolated.

Now, in the setting from Theorem 4.1, we look at the special case where the �γ-action on
the lowest level, i.e. γM : M → M , has only non-degenerated fixed points.
Here, we can use the Atiyah-Bott fixed point formula (compare [6, Ch. 6, Thm 6.6]) to
calculate the term ind(γW(λ;t)

,�W(λ;t)).

In order to make it easier for the reader follow, we will not recite the whole theorem but
a corollary (compare [6, Ch. 6, Cor 6.8]) tailored to the situation at hand.
We explain the notations used in this corollary in the subsequent remark.

Theorem (Corollary following from Atiyah-Bott):
"If M is a compact complex manifold with holomorphic vector bundle W → M , and γ is
a holomorphic transformation of W → M , then γ acts on the ∂̄-cohomology spaces
H0,i(M,W). If the action of γ on M has only isolated non-degenerate fixed points, then

∑
i

(−1)iTr(γ,H0,i(M,W)) =
∑

x0∈Mγ

Tr(γWx0
)

det
T 1,0
x0

M
(1− γ−1

x0 )
."

Remark 4.8:
We now clarify the notations above.

• The cohomology H0,i(M,W) is defined to be the kernel of �(0,i)
W and the action of

γ on H0,i(M,W) is the action γ̌L (compare Definition 2.40) on A(0,∗)(M,W)

restricted to the kernel of �(0,i)
W .

• The symbol Mγ denotes the fixed point set of γM .

• For any fixed point x0 ∈ Mγ the map γx0 denotes the restriction of Tx0γ
M to the

space TC
x0
M . Similarly, γW

x0
is the restriction of γW to the fibre Wx0 .

• In the expression above, the determinant of 1− γ−1
x0

is taken on the restriction of
1− γ−1

x0
to the invariant subspace T

(1,0)
x0 M .

These identifications in mind, we observe that the left hand side equals ind(γW ,�W)
(compare Definition 2.42).
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4 The equivariant torsion for fibre bundles

We apply the Atiyah-Bott theorem and obtain the following corollary.

Corollary 4.9:
In the setting from Theorem 4.1, suppose that γM : M → M is a biholomorphic isometry
which has only isolated, non-degenerated fixed points.
Then the formula for the equivariant holomorphic Zeta function can be simplified to:

ZL
γ̌L(z) =

∑
x0∈Mγ

[
det

T 1,0
x0

M
(1− γ−1

x0
)
]−1 · ZLx0

γ̌Lx0
(z) +

∑
t

(−1)tZW(0;t)

γ (z) (45)

where we use the notations from above.
In particular, the equivariant torsion is now given by:

τL(γ̌L) =
∑

x0∈Mγ

[
det

T 1,0
x0

M
(1− γ−1

x0
)
]−1 · τLx0 (γ̌Lx0 )

+
∑
t

(
τW

(0;2t)
(γ̌W

(0;2t)
)− τW

(0;2t+1)
(γ̌W

(0;2t+1)
)
)
.

This finishes the first part of this thesis.

The last section is dedicated to apply the theory, we evolved so far, to a specific example.
We study the equivariant holomorphic torsion of a flat line bundle over a compact Lie
group.
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5 Equivariant torsion for Lie groups

In this section, we apply Theorem 4.1 to an explicit example.
Every example has to fulfil a lot of prerequisites. There has to be a holomorphic fibre
bundle in the sense of Definition 2.13, a compatible holomorphic, Hermitian line bundle
(compare Definition 3.1) and a legitimate group action, described in Definition 3.26.
Therefore, it requires a lot of preparing to apply Theorem 4.1 to an example.

However, there is one class of examples that seems to be the most manageable for this
kind of investigation, the case where the total space of the holomorphic fibre bundle is
given by a compact, even-dimensional Lie group. We chose the holomorphic fibre bundle
to be the Lie group over the homogeneous space which is given by factorising a maximal
torus out of the Lie group.

This section is dedicated to analyse this example.

At first, in Section 5.1, we apply known results for compact Lie groups to show that
every compact, even-dimensional Lie group induces a natural holomorphic fibre bundle
structure in the sense of Definition 2.13.

In Section 5.2, we recall classical results about the set of flatable smooth complex line
bundles over an even-dimensional, compact Lie group G. In particular, we recall that
every even-dimensional, compact semi-simple Lie group admits only flatable complex line
bundles.
Afterwards, in Subsection 5.3, we recall a commonly known result about holomorphic
structures on a complex line bundle which is associated to a principle fibre bundle with
discrete fibre.

Later on, in Section 5.4, we examine which holomorphic and Hermitian structures we can
endow on our line bundles in order to make them compatible with the holomorphic fibre
bundle structure of G → G/T .
In Sub-Subsection 5.4.1, we show that G̃×χ C becomes a smooth vector bundle over the
fibre bundle G → G/T , i.e. L = G̃×ρ̃ L̃ → G/T .
Further on, in Sub-Subsections 5.4.2 as well as 5.4.3, we show that the natural
holomorphic structure and Hermitian metric on L̃ are respected by the action ρ̃.
Additionally, we derive the implications for the possible holomorphic structures on L in
Sub-Subsection 5.4.4.
At last, in Sub-Subsection 5.4.5, we generalise the result for the Laplace splitting
property, shown by Stanton, to the more general holomorphic structures on L.

In Section 5.5, we restate Theorem 4.1 tailored to the situation at hand, i.e. for the set of
holomorphic line bundles over G with flatable, smooth complex line bundle structure.
Here, we apply known facts about the kernel of the Laplacian �L̃ for flat line bundles
over the torus.

Finally, in Section 5.6, we look at an easy example for a legitimate action. We take γL to
be Lg̃0 , i.e. the left transition with an element g̃0 ∈ G̃.
Here, we apply classical facts about the left action of G on G/T to obtain a very simple
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5 Equivariant torsion for Lie groups

result for the equivariant ζ-function for this special case of the legitimate action.
Its result for general g̃0 ∈ G̃ is summarised in Theorem 5.2.
At last, for the special case where π1,G̃(g̃0) ∈ G generates a maximal torus, we deduce a
very convenient result for the equivariant holomorphic torsion.
It is stated in Corollary 5.49 as well as in Corollary 5.50.

5.1 General setting

The aim of this subsection is to specify the holomorphic fibre bundle of our example.
Therefore, we apply common knowledge about compact Lie groups in order to obtain the
necessary structures.

Let E := G be a compact, real even-dimensional Lie group with bi-invariant metric gG.
Such a metric always exists since G is compact. In particular, we still have a degree of
freedom left because we still may chose (gG)h at one point of h ∈ G.
Furthermore, let F := T ⊂ G be a maximal torus. We denote the Lie algebra of G with g
and the Lie algebra of T with t.
We obtain a smooth principle fibre bundle T ↪→ G → G/T over the homogeneous space
G/T .

At first, we have to show that this fibre bundle naturally induces a holomorphic fibre
bundle structure in the sense of Definition 2.13.

Remark 5.1:
By prerequisite, G is compact. Therefore, G/T becomes a reductive homogeneous space,
i.e. there is an Ad |T invariant complement m of t, s.t. g = t⊕m. This can be seen by
the subsequent argument.

Chose m to be the orthogonal complement of t in g for the bi-invariant metric gG.
Now, gG is bi-invariant and therefore m is Ad |T -invariant.

As a direct consequence, we obtain the following facts.

• For a reductive homogeneous space, the theory of principle fibre bundles and
associated bundles (cf. [5]) now gives us the tangent space of the base space, i.e.
T (G/T ), as an associated vector bundle to the principle fibre bundle G → G/T ,

T (G/T ) ∼= G×Ad,T m.

In particular, every Ad |T -invariant structure on m directly induces a
corresponding structure on T (G/T ).

• For example, we obtain a metric gG/T induced by the bi-invariant metric gG.

• Furthermore, we obtain a smooth horizontal distribution THG ⊂ TG by left
translation of m, as follows.
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5.1 General setting

Denote, for g ∈ G, the left transition with g with

Lg : G −→ G
h �−→ g · h.

We define the distribution TH
g G := TeLg(m) for every g in G.

Observe now that Lg : G −→ G covers a diffeomorphism L
G/T
g , i.e. the following

diagram commutes.

G

πG

��

Lg �� G

πG

��
G/T

L
G/T
g

�� G/T

Furthermore, note that TeπG : m −→ T[e]G/T is an isomorphism.
Consequently, THG becomes a horizontal distribution.

So far, we have a fibre bundle T ↪→ G → G/T , a connection THG of the fibre bundle
G → G/T and a Riemannian, bi-invariant metric gG on G. The latter one is fixed up to a
choice of a scalar product on g.
Now, we construct a complex structure for the manifold G.

A known fact for a compact Lie group G is, that its Lie algebra g is a product of an
Abelian Lie algebra h and a semi-simple Lie algebra gs (cf. [18, Ch. 4 Cor. 4.25.]).
Furthermore, the the semi-simple part gs possesses a maximal Abelian sub-Lie algebra hs
such that t = h⊕ hs.

Using representation theory (cf. [13]) we obtain the following splitting of the complexified
semi-simple Lie algebra.

gs ⊗R C = (hs ⊗R C)⊕
⊕
α∈R+

(gs,α ⊕ gs,−α) .

Here, R+ denotes an arbitrary, but fixed, set of positive roots, gα denotes the root space
for the root α and hs ⊗R C denotes the complexified Cartan algebra.

Using this decomposition, we define the almost complex structure Jg on the Lie algebra g
via:

(g)1,0 = (h⊕ hs)
1,0 ⊕ ⊕

α∈R+

gs,α

(g)0,1 = (h⊕ hs)
0,1 ⊕ ⊕

α∈R−
gs,α

(46)

where we choose an arbitrary almost complex structure on h⊕ hs = t.
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5 Equivariant torsion for Lie groups

Let JG be the left translated almost complex structure on G induced by Equation (46),
i.e. for any X̃ ∈ TgG given by X̃ = TeLg(X) we define

JG(X̃) := TeLg(Jg(X)).

Samelson shows in [27] that JG is integrable, i.e. G becomes a complex manifold.
Furthermore, he proves that JG naturally induces a complex structure JG/T on
M = G/T .
To be more explicit, Samelson showed that G, T and G/T are complex manifolds with
complex structures JG, JT := JG |t and JG/T induced by JG |m.
Note that JG/T is a well defined map due to the fact that the root spaces gs,α are
invariant under Ad |T . It follows that the projection πG is a holomorphic map.

The metric gG as well as the complex structure JG may be chosen compatible on g ⊂ TeG
(in the sense of Definition A.1, i.e. JG is an isometry of (g, gG)).
Now, because they are left invariant, they stay compatible on all of G.
This compatibility extends to (T, JT , gT ) where gT is given by gG through restriction.
Furthermore, JG/T and gG/T are compatible because gG/T as well as JG/T are given by
restriction of gG or JG to the subspace m ⊂ TeG.

We now check that (G, πG, (G/T, gG/T ), (T, gT ), T
HG) fulfils the prerequisites of a

holomorphic fibre bundle (Definition 2.13).

• The map πG : G −→ G/T defines a smooth (principle) fibre bundle whose fibretype
is the maximal torus T . �

• Furthermore, (T, gT ) and (G/T, gG/T ) are complex manifolds with compatible
Riemannian metrics. �

• The set G has a complex manifold structure and πG is a holomorphic map whose
differential has constant maximal rank.
Now, the implicit function theorem for holomorphic functions implies that there are
local holomorphic sections

qk : Uk −→ G ∩ π−1
G (Uk).

Consequently, the local trivialisations

φ−1
k : Uk × T −→ π−1

G (Uk)
(x, t) �−→ qk(x) · t

are holomorphic maps.
Therefore, so are the transition functions

φk ◦ φ−1
l : (Uk ∩ Ul)× T −→ (Uk ∩ Ul)× T.

Now, we apply Lemma 2.16 and obtain that the maps

φi,x ◦ φ−1
k,x : F −→ F
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5.1 General setting

as well as

̂φi ◦ φ−1
j : Ui ∩ Uj → Hol(F )

are holomorphic. �

• Additionally, we note that φi,x ◦ φ−1
k,x is an isometry for each i and each k.

• We have a direct sum decomposition TG = T V G⊕ THG, i.e. we have a connection
m = THG on G → G/T . �

• The connection THG is JG invariant because m is JG |TeG
invariant by construction

and because the JG is given by left transition of JG |TeG
. �

• The connection m is of type (1, 1) because

[gs,α, gs,β ] ⊂ gs,α+β (47)

and because α+ β ∈ R− if α and β are negative roots (cf. [13]).

Finally, our chosen metric gG fulfils the properties of Remark 2.17 which is shown in the
subsequent consideration.

• By construction, the horizontal space and the vertical space are orthogonal with
respect to gG. �

• Furthermore, gG is left invariant. Hence, every inclusion of the fibre t �→ g · t is an
isometric immersion. �

• The projection πG is a Riemannian submersion which follows directly from the
definition of gG/T . �

We summarise the information we collected so far in the following corollary.

Corollary 5.2:
The tuple

(
G, πG,

(
G/T, gG/T

)
, (T, gT ), T

HG
)
, with notations from above, is a

holomorphic fibre bundle in the sense of Definition 2.13.

From now on, throughout this section
(
G, πG,

(
G/T, gG/T

)
, (T, gT ), T

HG
)

denotes the
holomorphic fibre bundle defined in the preceding subsection.

We have shown that G → G/T becomes a holomorphic fibre bundle in a natural way.

In the next subsection, we recall some well known facts about the set of smooth complex
line bundles over Lie groups.
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5 Equivariant torsion for Lie groups

5.2 Line bundles over even-dimensional Lie groups

Now, that we have seen that
(
G, πG,

(
G/T, gG/T

)
, (T, gT ), T

HG
)

becomes a holomorphic
fibre bundle, we study the set of holomorphic line bundles over G. This is the content of
this subsection.

The results of this subsection are commonly known. Nonetheless, we give a small survey
of the facts for the convenience of the reader.

Remark 5.3:
This subsection is not necessary for the understanding of the rest of this thesis. It
merely states what we lose when we restrict to the case where the line bundles L over G
are associated to the universal covering principle fibre bundle π1,G̃ : G̃ → G via a
representation χ : π1(G) → C∗.

A natural question about holomorphic line bundles over compact even dimensional Lie
groups is the following: How many isomorphism classes of holomorphic line bundles exist?
In order to answer this question at least partially, we describe at first the isomorphism
classes of complex line bundles, i.e. we ignore their holomorphic structures at first.
It is a known fact that the isomorphism classes of complex line bundles over G form an
Abelian group and that the first Chern class describes an isomorphism between this
group and H2(G,Z) (compare [14]). Therefore, in order to answer our question, we have
to study the group H2(G,Z).
For our example, we want to study flat line bundles over a compact Lie group. Therefore,
it suggests itself to investigate how big the restriction from arbitrary line bundles to flat
line bundles really is. This is the aim of the subsequent subsection.

5.2.1 Flat line bundles over compact Lie groups

We denote the universal covering space of the Lie group G with the symbol G̃.
The space G̃ has a natural Lie group structure such that the projection

π1,G̃ : G̃ −→ G

becomes a Lie group homomorphism.
In particular, the map π1,G̃ describes a π1(G)-principle fibre bundle over G.

π1(G) �
� �� G̃

π1,G̃

��
G

Furthermore, π1(G) = π−1
1,G̃

(e) is embedded as a subgroup in G̃.

The following facts are well known, nonetheless, we summarise them here for the
convenience of the reader. Additionally, we give a sketch of the proof.
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5.2 Line bundles over even-dimensional Lie groups

Lemma 5.4:
Let L be a complex line bundle over a connected Lie group G, then the following
properties are equivalent.

1. The line bundle L is flat, i.e. admits a flat connection.

2. The first real Chern class of L vanishes.

3. The bundle L is an associated vector bundle via a representation χ of the
fundamental group of G, i.e. L = G̃×χ C.

Remark 5.5:
The fact that every flat vector bundle is associated to G̃ via a representation of the
fundamental group is a special case of the so-called Riemann-Hilbert
correspondence.

Proof of Lemma 5.4.

• 1. and 2. are equivalent because of the following argument.
Let L be flat and let ∇L be its flat connection, i.e

(∇L
)2

= 0.
We apply Chern-Weil theory (cf. [5]) and obtain:

c1(L)⊗Z R =

[
− 1

2πi

(
∇L
)2]

= 0.

On the other hand, the same equation shows that if c1(L)⊗Z R = 0, then there
exists a connection ∇L such that

(∇L
)2

= 0.

• That 1. follows from 3. can be seen as follows.
Let L be associated to a representation of π1(G), i.e. L = G̃×χ C.
We can construct a covariant derivative ∇A on L through a connection one form A
on G̃ (cf. [5]). On the other hand, G̃ → G is a discrete covering. In particular, the
vertical space at each point is zero.
Thus, there is but one connection one form, namely A = 0.
Now, A = 0 implies (∇A)2 = 0.

• What remains to be shown is that 3. follows from L being flat.
Therefore, suppose that ∇L is a flat connection on L.
Now, although we don’t want to outline the whole theory, we apply some properties
from holonomy theory (cf. [5]).
Every vector bundle is associated to a connected K-principle fibre bundle, now
called P , i.e. L = P ×ρ C.
By prerequisite, ∇L is flat. Now, the theorem of Ambrose-Singer (cf. [5, Ch. 4.
Satz 4.5.]) states that the holonomy group Hol(∇L) of ∇L is discrete.
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5 Equivariant torsion for Lie groups

This, on the other hand, implies (cf. again [5, Ch. 4. Satz 4.4.]) that P can be
reduced to a connected principle fibre bundle Q with discrete structure group such
that L = Q×χ̂ C. Furthermore, the connection ∇L comes from a connection one
form on Q.

Hol(∇L)

iHol

��

� � �� Q

iQ

��

Q× C

��

iQ×idC �� P × C

��
K � � �� P

πP

��

Q×χ̂ C ∼= L ∼= P ×ρ C

��
G G

But, the fibre Q → G is discrete and Q is connected. Therefore, Q becomes a
connected covering of G and thus, there is a covering π : G̃ → Q.
It follows that L is associated to G̃, i.e. L = G̃×χ C where χ denotes the
representation of π1(G) induced by χ̂.

We conclude that the first integer Chern class c1(L) of a flat line L has to lie in the
torsion ideal of the cohomology ring with integer coefficients.

Corollary 5.6:
A Lie group G admits no non-flat complex line bundles if and only if the second
cohomology group with coefficients in R vanishes, i.e. H2(G,R) = 0.

Remark 5.7:
An arbitrary Lie group has, in general, a non-vanishing second cohomology group
H2(G,R).
Take, for instance, the torus T = Cn/Λ (Λ being a lattice in Cn of maximal rank).
We obtain, by [7, Ch. 1.3. Lemma 1.3.1], that

H2(T,Z) = Λ2Hom(π1(T ),Z) ∼= Z(
2n
2 ).

In particular, H2(T,Z) has no torsion at all, and consequently, H2(T,R) ∼= R(
2n
2 ) does

not vanish.
Even more, if H2(T,Z) has no torsion, every flat line bundle L → T has to be trivial as
a smooth complex line bundle.

It is a known fact that every Abelian, compact, connected Lie group is isomorphic to a
torus. Therefore, we look at maximal non-Abelian Lie groups, the semi-simple Lie groups.
This is the content of the subsequent subsection.
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5.2 Line bundles over even-dimensional Lie groups

5.2.2 The second cohomology group of compact Lie groups

The main objective of this subsection is to show that every complex line bundle over a
compact, semi-simple Lie group admits a flat connection, i.e. is flat.

First, we state some facts about compact, connected Lie groups in general. Later on, we
restrict to the semi-simple case.

The cohomology of a Lie group G with values in Z is strongly related to its homotopy
groups.
This helps us significantly because there is a general result about the second homotopy
group of a Lie group stated in [9] which states that for a connected Lie group G the
second homotopy vanishes, i.e. π2(G) = 0.

This fact has a nice well known consequence.

Corollary 5.8:
Every complex line bundle L̂ over G̃ is trivial.
In particular, we obtain that for every line bundle L → G, the bundle π̃∗L → G̃ is
isomorphic to the trivial line bundle.

Proof.
The assertion is, more or less, a direct consequence of the theorem of Hurewicz (cf. [15,
Ch. 4, Thm. 4.37]).
In our case, we have for any base point g̃ ∈ G̃ that the first two homotopy groups of G̃
vanish, i.e.

π1(G̃, g̃) ∼= π2(G̃, g̃) ∼= 0.

The theorem of Hurewicz now implies the existence of an isomorphism of groups

π1(G̃, g̃) ∼= H1(G̃,Z) ∼= 0 ∼= π2(G̃, g̃) ∼= H2(G̃,Z).

In order to make any predication on the cohomology of G̃, we now apply the universal
coefficient theorem for cohomology (cf. [15, Ch. 3, Thm. 3.2]) which states that there is
an exact sequence

0 → Ext(Hn−1(G̃,Z),Z) → Hn(G̃,Z) → Hom
(
Hn(G̃,Z),Z

)
→ 0

for any n ∈ N.
Hence, for the special case n = 2, we obtain H2(G̃,Z) ∼= 0 since H1(G̃,Z) as well as
H2(G̃,Z) vanish.
We conclude that the second cohomology of G̃ vanishes.
Furthermore, the first Chern class is a bijection between isomorphism classes of complex
line bundles and the second cohomology group. Consequently, we observe that G̃ admits
only one isomorphism-class of complex line bundles, namely the trivial one.
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5 Equivariant torsion for Lie groups

This is as far as we get, assuming G to be an arbitrary compact, connected Lie group.
We already stated that not every complex line bundle over the complex torus is flat or
trivial (compare Remark 5.7).
Thus, we have to restrict our consideration at this point to compact, semi-simple Lie
groups.

A well known fact for a compact, semi-simple Lie group G is that its second real
cohomology vanishes, i.e. H2(G,R) (cf. [26]).

Therefore, the following corollary summarises what statements we obtain for line bundles
over semi-simple, compact, connected Lie groups.

Corollary 5.9:
Let G be a compact, connected and semi-simple Lie group.
Then every line bundle L admits a flat connection. Furthermore, there is a
representation χ : π1(G) → U(1) such that L = G̃×χ C.
We can restrict to the case of unitary representations χ here, due to the fact that π1(G)
is finite, i.e. compact.

5.3 Holomorphic structures on associated line bundles

Up to now, we tried to understand the set of smooth complex line bundles over compact,
connected Lie groups. It is now time to focus on the holomorphic structure if there is one.

Let from now on G be an even-dimensional, compact Lie group. And let L be the
associated line bundle L := G̃×χ C for a representation χ : π1(G) → C∗.

First of all, we show in the following lemma that L admits a natural holomorphic
structure.

Lemma 5.10:
In the setting from above, i.e. L = G̃×χ C, there is a natural holomorphic structure on
L induced by χ.

Proof.
The theory of associated vector bundles (cf. [5]) gives us a natural isomorphism between
differential forms on the base G with coefficients in the associated vector bundle on the
one hand and on the other hand horizontal differential forms on the total space of the
principle fibre bundle with values in the fibretype of the vector bundle that are χ
equivariant.
We denote this isomorphism by κχ, i.e.

κχ : A∗(G, G̃×χ C) −→ A∗(G̃,C)χ,hor.

The morphism κχ is given as follows.
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Let α ∈ A∗(G) and let s be a section s ∈ Γ(G,L), then

κχ (α⊗ s) :=
(
π∗
1,G̃

α
)
⊗ κχ(s).

Furthermore, κχ evaluated on the section s is given implicitly for any g ∈ G and every
g̃ ∈ π−1

1,G̃
(g) by:

s(g) = [g̃, (κχ(s)) (g̃)]χ .

Fortunately, the principle fibre bundle is a discrete covering. Hence, every differential
form is horizontal.
In addition, the covering G̃ → G is holomorphic by construction, i.e. respects the
complex structure.
Thus, we obtain

κχ : A(0,∗)(G, G̃×χ C) −→ A(0,∗)(G̃)χ.

On the space on the right hand side, we have a natural ∂̄-operator,

∂̄ : A(0,∗)(G̃)χ −→ A(0,∗)(G̃)χ.

It maps χ-equivariant forms to χ-equivariant forms because, on the one hand, the deck
transformations are holomorphic while, on the other hand, χ(σ) ∈ C∗ becomes a linear
map for every σ ∈ π1(G).
Now, the natural holomorphic structure on L = G̃×χ C is defined via the following
diagram.

Γ(G, G̃×χ C)

κχ

��

∂̄L �� A(0,1)(G, G̃×χ C)

C∞(G̃)χ
∂̄

�� A(0,1)(G̃)χ

κ−1
χ

��

Obviously, ∂̄2
L = 0, and additionally, an easy computation shows that ∂̄L indeed fulfils the

Leibniz equation.
Consequently, it defines a holomorphic structure on L.

This holomorphic structure, defined in Lemma 5.10, is almost never the only one.
We have seen in Lemma 2.4 that for holomorphic line bundles L → G, the space of
holomorphic structures is an affine space over the vector space Ker

(
∂̄ |A(0,1)(G)

)
.

Now, that we have explained what line bundles we initially want to look at, namely those
that are associated to a representation of π1(G), it is time to grind this setting to get
compatible line bundles over the holomorphic fibre bundle
(G, πG, (G/T, gG/T ), (T, gT ), T

HG).
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5 Equivariant torsion for Lie groups

5.4 Compatible line bundles

This section is dedicated to understand the conditions that the line bundle L given by
G̃×χ C has to fulfil in order to be compatible in the sense of Definition 3.1.

Not every holomorphic line bundle L = G̃×χ C is compatible with our holomorphic fibre
bundle (G, πG, (G/T, gG/T ), (T, gT ), T

HG).

In order to check which constraints we have to enforce in order to achieve the
compatibility, we investigate each of the three defining properties of Definition 3.1
individually.

This subsection is split into six sub-subsections.
At first in Section 5.4.1, we investigate the smooth line bundle property.
In particular, we state a line bundle L̃ → T for a given line bundle L = G̃×χ C such that
L → G/T becomes a smooth fibre bundle whose fibre type is the line bundle L̃ → T .
Furthermore, we show that L becomes a smooth line bundle over the fibre bundle
G → G/T in the sense of Definition 2.36. Its Lie transformation group T̂ is a discrete
covering of T .
We already stated that every flat line bundle on the torus is trivial. In Section 5.4.2, we
recall how the representations χ : π1(G) → U(1) induce different holomorphic structures
on L̃ = T × C.
Additionally, we show that T̂ respects this holomorphic structure.
In Section 5.4.3, we equip L̃ as well as L with a Hermitian metric and we show that T̂
acts Hermitian.
Directly thereafter, in Section 5.4.4, we deduce which holomorphic structures on L we
may admit such that the holomorphic structure on L̃ is induced by the holomorphic
structure on L.
The last remaining property of Definition 3.1, i.e. the Laplace splitting property, is
investigated in Section 5.4.5.
Finally, in Section 5.4.6, we summarise the previous sub-subsections by giving sufficient
conditions for L = G̃×χ C to be compatible.

5.4.1 Possible line bundles over the maximal torus

This sub-subsection is dedicated to show that L = G̃×χ C is smooth in the sense of
Definition 2.36. In particular, we state a group homomorphism ρ̃ such that L is
associated to the principle fibre bundle G̃ → G/T via ρ̃.

If we want L = G̃×χ C to be a compatible line bundle, we have to ask what its fibre type
L̃ → T as a bundle over G/T should be.
The natural choice of the bundle L̃ → T would be the restriction L̃ := L |T= π−1

L (T ).
This is by construction a smooth complex line bundle over T .

Now, L = G̃×χ C is an associated vector bundle to the principle fibre bundle G̃ → G.
Therefore, it sounds plausible that L̃ is associated via a representation of π1(G) as well.
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5.4 Compatible line bundles

We show that this is indeed true.

But before we do this, we recall some facts from the theory of covering spaces of compact
Lie groups.
This is essentially a repetition of what Stanton does in [29].

• Observe that G/T is a simply connected, connected space for a connected Lie group
G with maximal torus T .

• For the fibre bundle T
i
↪→ G

πG→ G/T we get a long exact sequence of homotopy
groups (compare [15, Ch. 4, Thm. 4.41])

0 = π1(G/T ) ← π1(G)
i∗← π1(T )

δ← π2(G/T ) ← 0 = π2(G).

It follows that δ is injective, i.e. we get a subgroup

im(δ) = δ(π2(G/T )) ⊂ π1(T ).

Hence, we get a covering T̂ → T corresponding to this subgroup im(δ).

• In [29, Ch. 8], Stanton shows explicitly that there is a T̂ -principle fibre bundle
T̂ ↪→ G̃ → G/T such that we obtain the homogeneous space G/T = G̃/T̂ .
Its deck transformation group is π1(T )/im(δ) ∼= π1(G) since π1(T ) ∼= Zk is Abelian
and because the sequence above is exact.
In particular, the following diagram commutes.

T̂

π1,T̂

��

� � î �� G̃

π1,G̃

��

πG̃/T̂

��
G/T

T � �

i
�� G

πG/T





We use these facts to prove the following lemma.

Lemma 5.11:
Let χ be a character of π1(G), i.e. a representation of π1(G), such that L = G̃×χ C.
Additionally, let i denote the inclusion i : T ↪→ G.
Then the bundle i∗L → T is associated to the principle fibre bundle

π1(G) �
� �� T̂

π1,T̂

��
T

via the same representation χ, i.e.

L̃ := i∗L ∼= T̂ ×χ C.
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5 Equivariant torsion for Lie groups

Proof.
By prerequisite, the bundle L is associated to G̃ → G, i.e. L = G̃×χ C.
Hence, every element in L̃ has the form (t,

[
t̂, z
]
χ
) such that

π1,T̂ (t̂) = π1,G̃(t̂) = t.

We write down the isomorphism explicitly:

L̃ −→ T̂ ×χ C

(t,
[
t̂, z
]
χ
) �−→ [

t̂, z
]
χ
.

This map is well defined, smooth, bijective and C-linear on fibres.

Remark 5.12:
One might ask, why we made it so explicit when the following simple argument would
have sufficed.

The vector bundle L is flat and so is its restriction L̃.
This implies, by Remark 5.7, that L̃ is isomorphic to the trivial line bundle as a smooth,
complex vector bundle.

Although, this is essentially true, we don’t want to look at the complex vector bundle
structure of L̃ → T only, and there is a natural holomorphic structure on L̃ → T induced
by the representation χ. (cf. Lemma 5.10)

Now, that we have a candidate for the bundle L̃ → T , we still have to show that L → G
is a smooth fibre bundle in the sense of Definition 2.36, and that its structure group is
indeed a Lie transformation group.
This is the content of the subsequent proposition.

Proposition 5.13:
Let L = G̃×χ C be a complex line bundle over G associated to a representation χ of
π1(G).
Then L = G̃×ρ̃,T̂ L̃ becomes a smooth fibre bundle over G/T associated to the principle
fibre bundle T̂ ↪→ G̃ → G/T .
The action ρ̃ is given by

ρ̃ : T̂ −→ Diff(L̃, L̃)

ŝ �−→
{[

t̂, z
]
χ
�→ [

t̂ŝ, z
]
χ

}
.

In particular, we obtain G = G̃×ρ T → G/T for an action ρ given by:

ρ : T̂ −→ Diff(T, T )

ŝ �−→
{
t �→ π1,T̂ (ŝ) · t

}
.
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5.4 Compatible line bundles

Proof.
At first, we show that ρ̃ is a well defined group action.
Note that π1,T̂ : T̂ → T is a Lie group homomorphism, hence, π1(G) = Ker(π1,T̂ ) is a
subgroup of T̂ .
This sub-group-property is all we need to show ρ̃ is well defined.
For σ ∈ π1(G), we get:

ρ̃(ŝ)(
[
t̂ · σ, χ(σ−1)(z)

]
χ
) =

[
σ · t̂ŝ, χ(σ−1)(z)

]
χ
=
[
t̂ŝ, z

]
χ

!
= ρ̃(ŝ)(

[
t̂, z
]
χ
).

Now, that we have made sense of the bundle G̃×ρ̃,T̂ L̃, we may try to write down an
isomorphism between L → G/T and G̃×ρ̃,T̂ L̃ → G/T .
An Ansatz for this morphism is:

ν : G̃×ρ̃,T̂ L̃ → L[
g̃,
[
t̂, z
]
χ

]
ρ̃

�→ [
g̃ · t̂, z]

χ
.

(48)

This map induces the identity map on the base space G/T since

πG̃/T̂ (g̃) = πG̃/T̂ (g̃ · t̂) ∈ G/T.

Thus, the following diagram commutes:

G̃×ρ̃,T̂ L̃
ν ��

��

L

��
G/T .

Furthermore, ν is obviously surjective and smooth.
Hence, what remains to be shown is that ν is injective.
Suppose therefore that we have elements g̃k ∈ G̃, t̂k ∈ T̂ and zk ∈ C such that[

g̃0t̂0, z0
]
χ
=
[
g̃1t̂1, z1

]
χ
.

We obtain:

π1,G̃(g̃0t̂0) = πL

([
g̃0t̂0, z0

]
χ

)
!
= πL

([
g̃1t̂1, z1

]
χ

)
= π1,G̃(g̃1t̂1).

It follows that there is an element σ in π1(G) such that

g̃0t̂0 · σ = g̃1t̂1 or equivalently g̃1 = g̃0t̂0σt̂
−1
1 .

Consequently, we obtain
[
g̃1t̂1, z1

]
χ
=
[
g̃0t̂0, χ(σ)(z1)

]
χ

which directly implies that z0
equals χ(σ)(z1).
We conclude:[

g̃0,
[
t̂0, z0

]
χ

]
ρ̃
=
[
g̃0,
[
t̂0σ, z1

]
χ

]
ρ̃
=
[
g̃0t̂

−1
1 t̂0σ,

[
t̂1, z1

]
χ

]
ρ̃
=
[
g̃1,
[
t̂1, z1

]
χ

]
ρ̃

which proofs the injectivity of ν.
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5 Equivariant torsion for Lie groups

Remark 5.14:
The embedding T̂ into Diff(T, L̃) is continuous because for arbitrary t̂ and sufficiently
small ε > 0, the set Bε(t̂) :=

{
ŝ | dgeod.(ŝ, t̂) < ε

}
maps into Uε,δ (compare with

Definition 2.33) for arbitrary small δ since

a) dgeod.
(
Π(ŝt̂−1)(x), x

)
= dgeod.

(
ŝ, t̂
)
< ε ∀x ∈ T

b) ρ̃(ŝt̂−1)
(
[x̂, z]χ

)
=
[
x̂ŝt̂−1, z

]
χ
= C

(
Π(ŝt̂−1)

(
[x̂, z]χ

))
.

The notations Π and C are transferred from Definition 2.33 as well.
On the other hand, the map

T̂ × L̃χ −→ L̃χ

(ŝ,
[
t̂, z
]
χ
) �−→ [

ŝt̂, z
]
χ

is smooth which makes T̂ a Lie transformation group of L̃χ.

Corollary 5.15:
Let χ be a character of π1(G).
Then L := G̃×χ C becomes a smooth, complex line bundle over the fibre bundle
G → G/T in the sense of Definition 2.36.
Its fibre type is the smooth, complex line bundle L̃ = T̂ ×χ C → T .

The aim of this subsection, i.e. Section 5.4, is to show that L becomes compatible.
Therefore, in order to fulfil the first property of Definition 3.1, we still have to show that
ρ̃ respects the holomorphic structure and acts Hermitian.
But, so far, we did not introduce a holomorphic and Hermitian structure on L̃.
The following two sub-subsections are dedicated to describe these two structures on L̃
and to show that ρ̃ indeed acts on L̃ as wanted, i.e. Hermitian and respecting the
holomorphic structure.

5.4.2 Admissible holomorphic structures on the line bundle over the torus

This sub-subsection is dedicated to describe the set of holomorphic structures on the
complex line bundle L̃ = T̂ ×χ C and to show that ρ̃ respects these holomorphic
structures.

Recall that we saw in Section 5.3 that every the representation χ : π1(G) → C∗ induces a
holomorphic structure on L̃ = T̂ ×χ C. On the other hand, every flat complex line bundle
over the torus is trivial (compare Remark 5.7).
Thus, we study the different holomorphic structures induced by those representations χ
on the trivial line bundle.
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Although, it is not necessary, for the rest of this thesis, to understand the different
holomorphic structures on the trivial line bundle L̃1 := T × C induced by different
characters χ, we investigate this for the convenience of the reader.

The reader, who wants to skip this investigation, may resume reading at Lemma 5.21 on
page 116.

The general theory of holomorphic line bundles over complex tori is described and proven
in [7]. We are interested in the group Pic0(T ) only, i.e. the holomorphic line bundles that
are isomorphic to the trivial line bundle as smooth complex vector bundles. Therefore,
we will not review the whole theory here.

However, there is one fact stated in [7] that we need here. It is a statement included in
the Appell-Humbert Theorem.

Theorem (Appell-Humbert):
Let Λ be a lattice of maximal rank in Cn and let further on T be the quotient space Cn/Λ,
then the map

Hom(Λ, U(1)) −→ Pic0(T )

which sends every unitary character χ : Λ = π1(T ) −→ U(1) to its associated,
holomorphic vector bundle Cn ×χ C is an isomorphism of groups.

Remark 5.16:
The theorem of Appell-Humbert implies that we obtain all possible equivalence classes
of holomorphic structures on T × C that way.
In particular, it suffices to chose unitary representations χ, although π1(T ) is not finite.

Now, in order to compute the different holomorphic structures on L̃1, we write down an
explicit isomorphism of vector bundles between L̃1 and L̃χ := Cn ×χ C.

Lemma 5.17:
Let χ : Λ −→ U(1) be a character and let T be a torus given by T = Cn/Λ for a lattice
Λ ⊂ Cn of maximal rank.
Furthermore, let ωχ be in HomR(C

n,R) such that χ(λ) = eiωχ(λ) for every λ ∈ Λ.

1. We get an isomorphism of smooth vector bundles induced by ωχ:

L̃1

��

ψωχ �� L̃χ

��

via (
[
t̂
]
, z)
�

��

� ψωχ ��
[
t̂, e−iωχ(t̂) · z

]
χ�

��
T

[
t̂
]

depending on ωχ.
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2. Every other choice ω̃χ ∈ HomR(C
n,R) with χ(λ) = eiω̃χ(λ) fulfils:

(ωχ − ω̃χ) (Λ) ⊂ 2πZ. (49)

3. The isomorphism ψωχ differs from ψω̃χ by a map μ : T → U(1).

Proof.

1. At first, we check that ψωχ is well defined:

(
[
t̂
]
, z)

ψωχ ��
[
t̂, e−iωχ(t̂) · z

]
χ

(
[
t̂+ λ

]
, z)

ψωχ

��
[
t̂+ λ, e−iωχ(t̂+λ) · z

]
χ
.�

The right vertical equality holds because

[
t̂+ λ, e−iωχ(t̂+λ)z

]
χ
=

⎡⎣t̂, χ(λ)e−iωχ(t̂) e−iωχ(λ)︸ ︷︷ ︸
=χ(λ)−1

z

⎤⎦
χ

=
[
t̂, e−iωχ(t̂)z

]
χ
.

ψωχ is obviously smooth, bijective and C-linear on fibres, hence, it is an
isomorphism of smooth complex line bundles.

2. The map χ is defined on Λ.
We deduce that we obtain for every λ ∈ Λ:

χ(λ) = eiωχ(λ) = eiω̃χ(λ).

Equivalently, we observe that ei(ωχ(λ)−ω̃χ(λ)) = 1.
Now, Equation (49) follows trivially.

3. Let δω denote the difference ωχ − ω̃χ ∈ HomR(C
n,R).

It follows, by 2., that

δω(Λ) ⊂ 2πZ.

We compute for t̂ ∈ Cn and z ∈ C:

ψω̃χ(
[
t̂
]
, z) =

[
t̂, e−i(ωχ(t)−δω(t̂)) · z

]
χ
= e−iδω(t̂)︸ ︷︷ ︸

=:μ̃(t̂)

[
t̂, e−iωχ(t̂) · z

]
χ

= μ̃(t̂) · ψωχ(
[
t̂
]
, z)

and μ(
[
t̂
]
) := μ̃(t̂) is a well defined map on T because δω(Λ) ⊂ 2πZ.
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The next step is to compare the different holomorphic structures on the trivial line
bundle L̃1 = T × C induced by the characters χ.

We saw in Lemma 5.10 that the natural holomorphic structure on L̃χ = T̂ ×χ C is given
via the following diagram

Γ(T, T̂ ×χ C)

κ̂χ

��

∂̄L̃χ �� A(0,1)(T, T̂ ×χ C)

C∞(T̂ ,C)χ
∂̄

�� A(0,1)(T̂ )χ

κ̂−1
χ

��

for the isomorphism

κ̂χ : A(0,∗)(T, T̂ ×χ C) −→ A(0,∗)(T̂ )χ

where we added a hat to the symbol of the map κχ in order to discern it from the map

κχ : A(0,∗)(G, G̃×χ C) −→ A(0,∗)(G̃)χ.

We now apply the bundle isomorphism ψωχ in order describe the holomorphic structure
on T × C induced by L̃χ.
Note therefore that ωχ ∈ HomR(C

n,R) = HomR(TeT,R) can be identified canonically
with a one form in A1(T ) because the co-tangent bundle of the torus is trivial.

Lemma 5.18:
The holomorphic structure ∂̄ωχ on T × C induced by the isomorphism of complex line
bundles

ψωχ : T × C = L̃1 −→ L̃χ,

defined in Lemma 5.17, is given by

∂̄ωχ = ∂̄ − iε
(
proj(0,1)(ωχ)

)
where proj(0,1) denotes the projection onto the antiholomorphic subbundle of the
complexified cotangent bundle (T ∗T )⊗R C.
In particular, the following diagram commutes for κ̂1 = κ̂χ1≡1:

Γ(T, L̃χ)
ψ−1
ωχ ��

∂̄L̃χ
��

Γ(T, T × C)

��

κ̂1 �� C∞(Cn,C)χ1

∂̄ωχ

��
A(0,1)(T, L̃χ)

ψ−1
ωχ

�� A(0,1)(T, T × C)
κ̂1

�� A(0,1)(Cn,C)χ1

Now, since ωχ ∈ HomR(C
n,R) ⊂ A1(T ) is real valued, we obtain

∂̄ωχ = ∂̄ + 1
2ε(ωχ − iJωχ).
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5 Equivariant torsion for Lie groups

Proof.
The morphism ψωχ is covered by a morphism

ψ̃ωχ : T̃ × C −→ T̃ × C(
t̃, z
) �−→ (t̃, e−iωχ(t̃) · z),

thus, the following diagram commutes:

T̃ × C

��

ψ̃ωχ �� T̃ × C

��
L̃1 ψωχ

�� L̃χ.

In particular, ψ̃ωχ gives rise to a map

ψ̌ωχ : A(0,∗)(T̃ )χ1≡1 −→ A(0,∗)(T̃ )χ

which maps periodic antiholomorphic forms to χ-equivariant antiholomorphic forms both
living on the universal covering T̃ = Cn of T .
It is given by multiplication with the function

e−iωχ : T̃ −→ U(1)

t̃ �−→ e−iωχ(t̃).

Now, look at the following commuting diagram for T̃ = Cn and χ1 ≡ 1.

C∞(T̃ ,C)χ

∂̄

��

C∞(T̃ ,C)χ1
ψ̌ωχ



∂̄ωχ

��

Γ(T, L̃χ)

κ̂χ

��

ψ−1
ωχ ��

∂̄L̃χ
��

Γ(T, L̃1)

∂̄ωχ
��

κ̂1





A(0,1)(T, L̃χ)
κ̂χ

��

ψ−1
ωχ

�� A(0,1)(T, L̃1)

κ̂1 ��
A(0,1)(T̃ ,C)χ

ψ̌−1
ωχ

�� A(0,1)(T̃ ,C)χ1

In order to compute ∂̄ωχ , it is sufficient to walk around the outer rectangle of this
diagram.
Let f be a periodic function on T̃ , i.e. f ∈ C∞(T̃ ,C)χ1 .
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We obtain:

∂̄ωχf =ψ̌−1
ωχ

◦ ∂̄ ◦ ψ̌ωχf

=ψ̌−1
ωχ

◦ ∂̄ (e−iωχ · f)
=ψ̌−1

ωχ

(
−iproj(0,1)(ωχ) · e−iωχ · f + e−iωχ · ∂̄f

)
=∂̄f − iproj(0,1)(ωχ) · f

which completes the proof.

Although, it is already clear, by the Appell-Humbert theorem, that the equivalence class
of holomorphic structures on L̃1 induced by ψωχ does not depend on the choice of ωχ, we
show this once more in the subsequent corollary.

Corollary 5.19:
A different ω̃χ ∈ HomR(C

n,R) for the same representation χ, gives us a holomorphic
structure ∂̄ω̃χ on T × C equivalent to ∂̄ωχ .

Proof.
Lemma 5.17) states that two isomorphisms ψωχ and ψω̃χ differ by a map μ : T → U(1)

which is given for t̃ ∈ T̃ through μ(
[
t̃
]
) = eiδω(t̃) where δω denotes the difference ω̃χ − ωχ.

Consequently, we obtain:

∂̄ω̃χ − ∂̄ωχ = −iε
(
proj(0,1)(δω)

)
= ε(μ̄∂̄μ).

Thus, both holomorphic structures on L̃1 = T × C are equivalent by Definition 2.5.

Remark 5.20:
For a complex torus T , the group Pic0(T ) is very well understood. Using the
Appell-Humbert theorem, we see that it is isomorphic to Hom(Λ, U(1)).
In addition to that, we have the following exact sequence of groups.

0 → Hom(Λ,Z)
2π·−→ Hom(Λ,R)

exp(i·)−→ Hom(Λ, U(1)) → 1

We obtain Hom(Λ, U(1)) ∼= Hom(Λ,R)/Hom(Λ,Z) ∼= R2n/Λ∨ where Λ∨ denotes the
dual lattice.
Consequently, Pic0(T ) has the structure of a torus.

As a last statement concerning the holomorphic structure ∂̄L̃χ
, we show that ρ̃ is

compatible with this holomorphic structure.
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5 Equivariant torsion for Lie groups

Lemma 5.21:
Let ρ̃ : T̂ −→ Diff(T, L̃χ) be the action described in Proposition 5.13.
Let furthermore ρ̌ denote the ρ̃-induced action on A(0,∗)(T, L̃χ). (compare Remark 3.3).
Then the following identity holds for every ŝ ∈ T̂ :

ρ̌(ŝ) ◦ ∂̄L̃χ
= ∂̄L̃χ

◦ ρ̌(ŝ),

i.e. the action ρ̃ respects the holomorphic structure ∂̄L̃χ
.

Proof.
Without loss of generality, assume that T̂ = T̃ . We have to show that the following
diagram commutes.

A(0,q)(T, L̃χ)
ρ̌(ŝ) ��

∂̄L̃χ
��

A(0,q)(T, L̃χ)

∂̄ωχ
��

A(0,1+1)(T, L̃χ)
ρ̌(ŝ)

�� A(0,1+1)(T, L̃χ)

Now, let s̃ ∈ T̃ lie in π−1
1,T̃

(s) and let furthermore f be in Γ(T, L̃χ).

We obtain for t ∈ T and t̃ ∈ π−1
1,T̃

(t):(
ρ̌(s̃)

)
(f)(t) =ρ̃(s̃)

(
f(s−1 · t)) = ρ̃(s̃)

([
t̃ · s̃−1, (κχ(f)) (t̃ · s̃−1)

]
χ

)
=
[
t̃, (κχ(f)) (t̃ · s̃−1)

]
χ
=
[
t̃, ((Ls̃−1)∗κχ(f)) (t̃)

]
χ

where Ls̃ denotes the left translation on T̃ by the element s̃.
Consequently, the following identity holds:

ρ̌(s̃)(f) = κ−1
χ ◦ (Ls̃−1)∗ ◦ κχ(f). (50)

This equality extends from sections Γ(T, L̃χ) to antiholomorphic forms A(0,∗)(T, L̃χ).
Observe now that the following diagram commutes.

A(0,q)(T̃ ,C)χ

∂̄

��

(Ls̃−1 )∗ �� A(0,q)(T̃ ,C)χ

∂̄ωχ

��

A(0,q)(T, L̃χ)

κ̂χ

��

ρ̌(ŝ) ��

∂̄L̃χ
��

A(0,q)(T, L̃χ)

∂̄ωχ
��

κ̂χ

��

A(0,1+1)(T, L̃χ)

κ̂χ��

ρ̌(ŝ)
�� A(0,q+1)(T, L̃χ)

κ̂χ ��
A(0,1+1)(T̃ ,C)χ

(Ls̃−1 )∗
�� A(0,1+1)(T̃ ,C)χ

116



5.4 Compatible line bundles

The left and right trapezoid commute because of the definition of the natural holomorphic
structure ∂̄L̃χ

and the upper and lower trapezoid commute because of Equation (50).
At last, the outer rectangle commutes because Ls̃ : T̃ −→ T̃ is obviously biholomorphic.
Therefore, the inner rectangle commutes and the assertion is proven.

Summarising, we showed that L̃χ, although being isomorphic to the trivial complex line
bundle L̃1 = T × C, does have an excelled, in general non-trivial, equivalence class of
holomorphic structures. Furthermore, this class of holomorphic structures is respected by
the action ρ̃ of T̂ .

Now, in order to show the first property of Definition 3.1, we still have to equip L̃χ with
a Hermitian metric such that ρ̃ acts Hermitian on L̃χ. This is the content of the
subsequent sub-subsection.

5.4.3 Invariant Hermitian metric

In the previous subsection, we investigated the natural holomorphic structure on the line
bundle L̃χ = Cn ×χ C and showed that it is respected by the action ρ̃.

In this sub-subsection, we define a natural Hermitian metric hL̃χ on L̃χ which is ρ̃
invariant.

We already restricted our representation to be unitary, i.e. χ : π1(G) → U(1).
Thus, we inherit an induced Hermitian metric by

h
L̃χ

t (
[
t̂, z0

]
χ
,
[
t̂, z1

]
χ
) := z0 · z̄1. (51)

This metric is well defined and as the following equation shows it is ρ̃-invariant.

h
L̃χ

t

([
t̂, z0

]
χ
,
[
t̂, z1

]
χ

)
=z0 · z̄1 = h

L̃χ

t·s

([
t̂ŝ, z0

]
χ
,
[
t̂ŝ, z1

]
χ

)
=h

L̃χ

t·s

(
ρ̃(ŝ)

[
t̂, z0

]
χ
, ρ̃(ŝ)

[
t̂, z1

]
χ

)
=
(
ρ̃(ŝ)∗hL̃χ

)
t

( [
t̂, z0

]
χ
,
[
t̂, z1

]
χ

)
This ρ̃-invariance is necessary as well as sufficient to induce a Hermitian metric hLχ on
Lχ = G̃×χ C.
To show this is the content of the next lemma.

Lemma 5.22:
Let ν be the isomorphism from Equation (48), i.e.:

ν : G̃×ρ̃,T̂ L̃χ → Lχ = G̃×χ C → G[
g̃,
[
t̂, z
]
χ

]
ρ̃

�→ [
g̃ · t̂, z]

χ
.
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5 Equivariant torsion for Lie groups

We obtain an induced Hermitian metric hLχ on Lχ, given by:

hLχ

(
[g̃, z0]χ , [g̃, z1]χ

)
= z0 · z̄1,

analogously to Equation (51).

Proof.
For g = π1,G̃(g̃) the ν-induced Hermitian metric on Lχ is given by

h
Lχ
g ([g̃, z0]χ , [g̃, z1]χ) =h

Lχ
g

(
ν

([
g̃, [ê, z0]χ

]
ρ̃

)
, ν

([
g̃, [ê, z1]χ

]
ρ̃

))
:=h

L̃χ
e

(
[ê, z0]χ , [ê, z1]χ

)
= z0 · z̄1

The ρ̃-invariance of hL̃χ now implies that this expression does not depend on the
representing elements

[
g̃, [ê, zk]χ

]
ρ̃
.

Up to this point, we have shown the following facts.
The bundle L = G̃×χ C is a smooth complex line bundle over the manifold G that is a
smooth vector bundle over the fibre bundle G → G/T . In particular, its fibre type as a
bundle over G/T is L̃χ := T̂ × χC which itself is a Hermitian, holomorphic line bundle.
Furthermore, Lχ is equipped with a Hermitian metric hLχ such that the induced
Hermitian metric hL̃χ on L̃χ is ρ̃ invariant.

Even further, we know that Lχ has a naturally excelled holomorphic structure ∂̄Lχ .

What we show in the subsequent sub-subsection is, that the natural holomorphic
structure ∂̄Lχ on Lχ induces the natural holomorphic structure ∂̄L̃χ

on L̃χ. More general,
we describe a set of holomorphic structures ∂̄L on Lχ such that the induced holomorphic
structure on L̃χ is the naturally excelled holomorphic structure ∂̄L̃χ

.

5.4.4 Implications for the holomorphic structure on the line bundle over the
Lie group

In this sub-subsection, we investigate the third property of Definition 3.1, i.e. we give a
specific condition on the holomorphic structures ∂̄L on L = Lχ such that the pullback
under the inclusion φ−1

k,x : T ↪→ G of the fibre induces the naturally excelled holomorphic
structure ∂̄L̃χ

on L̃χ.

At this point, we have seen that for a unitary representation χ of π1(G) every associated
line bundle L = Lχ := G̃×χ C has a natural Hermitian metric hLχ .
Furthermore, Lχ becomes a smooth vector bundle over the fibre bundle G → G/T in the
sense of Definition 2.36. Its fibretype as a bundle L → G/T is L̃χ = Cn ×χ C which is a
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Hermitian, holomorphic line bundle over T , with Hermitian metric hL̃χ and holomorphic
structure ∂̄L̃χ

.
The structure group of the fibre bundle L → G/T is T̂ and its action is denoted by ρ̃.

The next step is to check the implications of the third defining property for compatible
holomorphic line bundles from Definition 3.1 on the holomorphic structure of L = Lχ.
The third property required us to enforce a "constant" vertical holomorphic structure on
L which is understood through local trivialisations.

We realised (compare Lemma 5.10) that Lχ = G̃×χ C as well as L̃χ have an excelled
equivalence class of holomorphic structures induced by χ. We denote them by ∂̄Lχ as well
as ∂̄L̃χ

.

Remark 5.23:
Let {Ui}i∈I be an open cover for G/T and let

qi : Ui −→ π−1
G (Ui) ⊂ G

be local holomorphic sections into the principle fibre bundle G → G/T .
Furthermore, let φi denote the local trivialisations of G → G/T induced by qi, i.e.

φi : π−1
G (Ui) −→ Ui × T
qi(x) · t �−→ (x, t).

In particular, we obtain for every i ∈ I and any x ∈ Ui ⊂ G/T a natural embedding of
the fibre T into the total space G:

φ−1
i,x : T −→ Gx

t �−→ qi(x) · t.
Let, additionally,

q̃i : Ui −→ G̃

be a lift of qi : Ui −→ G, i.e. π1,G̃ ◦ q̃i = qi.
We obtain the following isomorphism of vector bundles:

Φi,x : L̃χ −→
(
φ−1
i,x

)∗
Lχ[

t̂, z
]
χ

�−→
(
π1,G̃(t̂),

[
q̃i(x) · t̂, z

]
χ

)
.

between L̃χ and the pullback bundle
(
φ−1
i,x

)∗
Lχ via φi,x.
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Lemma 5.24:
The map Φi,x is an equivalence between

(
L̃χ, ∂̄L̃χ

)
and

((
φ−1
i,x

)∗
Lχ,

(
φ−1
i,x

)∗
∂̄Lχ

)
as

holomorphic line bundles in the sense of Definition 2.5.

Proof.
Denote by φ̃−1

i,x the inclusion of T̂ into G̃ induced by q̃i(x):

φ̃−1
i,x : T̂ −→ G̃ ∩ π−1

1,G̃
(Gx)

t̂ �−→ q̃i(x) · t̂.
An easy computation shows that the pullback with φ̃−1

i,x sends χ-equivariant
antiholomorphic forms on G̃ to χ-equivariant antiholomorphic forms on T̂ ,(

φ̃−1
i,x

)∗
: A(0,∗)(G̃)χ �−→ A(0,∗)(T̂ )χ. (52)

Furthermore, φ̃−1
i,x is a holomorphic immersion.

Hence, the pullback commutes with the ∂̄-operator, i.e. the following diagram commutes:

A(0,∗)(G̃)
∂̄ ��

(φ̃−1
i,x)

∗

��

A(0,∗+1)(G̃)

(φ̃−1
i,x)

∗

��
A(0,∗)(T̂ )

∂̄
�� A(0,∗+1)(T̂ )

(53)

Now, in order to proof the assertion we have to check that the following diagram
commutes

Γ
(
T,
(
φ−1
i,x

)∗
Lχ

) (φ−1
i,x)

∗
∂̄Lχ ��

Φ−1
i,x

��

A(0,1)
(
G,
(
φ−1
i,x

)∗
Lχ

)
Φ−1

i,x

��
Γ(T, L̃χ)

∂̄L̃χ

��A(0,1)(G, L̃χ)

Observe, that φ−1
i,x : T −→ G is injective and furthermore that φ−1

i,x (T ) is closed in G.

Hence,
(
φ−1
i,x

)∗
is surjective.

Consequently, it suffices to show that the outer rectangle of the subsequent diagram
commutes in order to show the assertion.

Γ(G,Lχ)
∂̄Lχ ��

(φ−1
i,x)

∗

��

A(0,1)(G,Lχ)

(φ−1
i,x)

∗

��
Γ
(
T,
(
φ−1
i,x

)∗
Lχ

) (φ−1
i,x)

∗
∂̄Lχ ��

Φ−1
i,x

��

A(0,1)
(
G,
(
φ−1
i,x

)∗
Lχ

)
Φ−1

i,x

��
Γ(T, L̃χ)

∂̄L̃χ

��A(0,1)(G, L̃χ)
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We embed the diagram above into the following diagram

C∞(G̃,C)χ
∂̄ ��

κ−1
χ

��

(φ̃−1
i,x)

∗

��

A(0,1)(G̃,C)χ

(φ̃−1
i,x)

∗

��

Γ(G,Lχ)
∂̄Lχ ��

(φ−1
i,x)

∗

��

A(0,1)(G,Lχ)

(φ−1
i,x)

∗

��

κχ
��

Γ
(
T,
(
φ−1
i,x

)∗
Lχ

) (φ−1
i,x)

∗
∂̄Lχ ��

Φ−1
i,x

��

A(0,1)
(
G,
(
φ−1
i,x

)∗
Lχ

)
Φ−1

i,x

��
Γ(T, L̃χ)

∂̄L̃χ

��A(0,1)(G, L̃χ)

κ̂χ ��
C∞(T̂ ,C)χ

∂̄
��

κ̂−1
χ

��

A(0,1)(T̂ ,C)χ

Now, following the statement above (Equation (52) and Diagram (53)) the outer
rectangle commutes.
Furthermore, by the definition of the excelled holomorphic structure on Lχ as well as on
L̃χ, compare Lemma 5.10, the upper an the lower trapezoid commute as well.
Additionally, by the definition of the induced holomorphic structure on pullback bundles,
the following diagram commutes as well.

Γ(G,Lχ)
∂̄Lχ ��

(φ−1
i,x)

∗
��

A(0,1)(G,Lχ)

(φ−1
i,x)

∗
��

Γ
(
T,
(
φ−1
i,x

)∗
Lχ

)
(φ−1

i,x)
∗
∂̄Lχ

�� A(0,1)
(
G,
(
φ−1
i,x

)∗
Lχ

)
Thus, it is left to show that the following diagram commutes:

A(0,∗)(G̃)χ

κ−1
χ

��

(φ̃−1
i,x)

∗
�� A(0,∗)(T̂ )χ

A(0,∗)(G,Lχ)
(φ−1

i,x)
∗

�� A(0,∗)
(
T,
(
φ−1
i,x

)∗
Lχ

)
Φ−1

i,x

�� A(0,∗)
(
T, L̃χ

)
.

κ̂χ

��
(54)

The previous diagram obviously commutes if and only if it commutes for sections or C∞

maps respectively.
Now, take f ∈ C∞(G̃)χ and compute the resulting maps in the previous diagram.
On the upper lane, we obtain((

φ̃−1
i,x

)∗
f
)
(t̂) = f

(
q̃i(x) · t̂

)
.
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The other way round, we obtain for π1,T̂ (t̂) = t ∈ T(
κ−1
χ (f)

)
(g) = [g̃, f(g̃)]χ((

φ−1
i,x

)∗ ◦ κ−1
χ (f)

)
(t) =

(
t,
[
q̃i(x) · t̂, f(q̃i(x) · t̂)

]
χ

)
(
Φ−1
i,x ◦

(
φ−1
i,x

)∗ ◦ κ−1
χ (f)

)
(t) =

[
t̂, f(q̃i(x) · t̂)

]
χ

which finally leads to(
κ̂χ ◦ Φ−1

i,x ◦
(
φ−1
i,x

)∗ ◦ κ−1
χ (f)

)
(t̂) = f(q̃i(x) · t̂).

We conclude that Diagram (54) commutes which finishes the proof.

Corollary 5.25:
Let ∂̄Lχ denote the naturally excelled holomorphic structure on Lχ (compare Lemma
5.10).
Then any other holomorphic structure ∂̄′

Lχ
= ∂̄Lχ + ε(ω) on Lχ induces the canonical

holomorphic structure ∂̄L̃χ
on L̃χ if and only if ω is a closed horizontal (0, 1)-form.

In particular, ∂̄′
Lχ

induces ∂̄L̃χ
, then ω lies in A

(0,1)
H (G).

Summarising, we have shown that if we equip L = Lχ with the Hermitian metric
hL = hLχ and with a holomorphic structure ∂̄L = ∂̄L̃χ

+ ε(ωH) for a ∂̄-closed horizontal
(0, 1)-form ω, then L becomes a smooth vector bundle over the fibre bundle G → G/T
and L fulfils the properties 1. and 3. of the definition of a compatible line bundle
(Definition 3.1) over the holomorphic fibre bundle (G, πG, (G/T, gG/T ), (T, gT ), T

HG)
described in Subsection 5.1.

Therefore, what remains to be shown is when (L, hL, ∂̄L) fulfils the Laplace splitting
property.

5.4.5 Investigation of the Laplace splitting property

In this subsection, we discuss the last remaining, i.e. the second, property in the
definition of a compatible line bundle. In other words, we check when the Laplacian �Lχ

splits into a vertical and a horizontal part.

Let, as above, (L = Lχ = G̃×χ C, hLχ , ∂̄L) be the smooth Hermitian line bundle whose
holomorphic structure ∂̄L is given as ∂̄Lχ + ε(ωH). Again, ∂̄Lχ denotes the natural
holomorphic structure (compare Lemma 5.10) and let ωH be a ∂̄-closed horizontal
(0, 1)-form.

In this subsection, we give a specific condition for our holomorphic structure that leads to
the splitting of the Laplacian �L.

In Chapter 3.2, we have given sufficient conditions for the splitting of the Laplacian �L.
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In our example, the fibretype T of the holomorphic fibre bundle is a complex torus with a
bi-invariant metric. In particular, T is a Kähler manifold. Hence, we can apply the
results of Subsection 3.2.1 for the Kähler fibretype.

Lemma 5.26:
Let L := Lχ = G̃×χ C be a Hermitian, holomorphic line bundle.
Its holomorphic structure ∂̄L is given by ∂̄L = ∂̄Lχ + ε(ωH) for a ∂̄-closed horizontal
antiholomorphic one-form ωH on G.
Furthermore, its Hermitian metric hLχ is induced by the character χ : π1(G) −→ U(1)
(compare Section 5.4.3).
Then the Laplace operator �L splits if for every horizontal lift X̃ of an antiholomorphic
vector field X on M , i.e. X ∈ Γ(M,T (0,1)M), and every vertical vector field Y in
Γ(G, T V,(1,0)G) the following equation holds:{

∂̄(ωH)− ∂(ωH)
}
(X̃, Y ) = Y.(ωH(X̃))

In particular, �L splits if ωH = π∗
G(ω) for a ∂̄-closed (0, 1)-form ω on M .

Proof.
Let Ei ∈ t(1,0) together with Ēj ∈ t(0,1) denote an orthonormal base of t⊗R C and let X̃
denote the horizontal lift of a vector field X on M to G.
Furthermore, let ΛV = −i

∑
l∈J ιĒl

ιEl
denote the vertical Lefschetz operator and let ∇L

be the Chern connection for
(
L, ∂̄L, h

Lχ
)

(compare Definition 2.9).
By Proposition 3.10, it suffices to check that the following term vanishes for all
complexified vector fields X on G/T and all antiholomorphic forms η ∈ A

(0,∗)
V (G,L).∑

k

{
ι[X̃,Ēk]

∇L,(1,0)
Ek

+ ιĒk
∇L,(1,0)

[X̃,Ek]

}
η + ΛV ιX̃proj

A
(0,1)
H ∧A(1,0)

V (G)

(
(∇L)2

)
∧ η (55)

Note that T ↪→ G → G/T is a principle fibre bundle. Thus, the commutator of a
fundamental vector field and a horizontal lift is zero because the connection, i.e. the
horizontal tangent subspace, is right-invariant (cf. [5]).
Consequently, the first term of Equation (55) vanishes.
This reduces our workload significantly because now �L splits if the following term
vanishes.

proj
A
(0,1)
H ∧A(1,0)

V (G)

(
(∇L)2

)
.

Hence, we compute the curvature (1, 1)-form (∇L)2 induced by the holomorphic structure
∂̄L = ∂̄Lχ + ε(ωH).
Therefore, let ∇̃L,(0,1) ⊕ ∇̃L,(1,0) denote the Chern connection corresponding to the
natural flat holomorphic structure ∂̄Lχ , i.e. ∇̃L,(0,1) = ∂̄Lχ .
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We obtain the following identities:

∇L,(0,1) = ∇̃L,(0,1) + ε(ωH) and
∇L,(1,0) = ∇̃L,(1,0) − ε(ωH).

We conclude

(∇L)2 = ε
{
∂̄(ωH)− ∂(ωH)

}
Recall that ωH is a (0, 1)-forms and therefore (∇L)2 is indeed a (1, 1)-form.
Now, let X̃ be again a horizontal lift of a vector field X ∈ Γ(M,T (0,1)M) and let
furthermore Y ∈ Γ(G, T V,(1,0)G) be a vertical vector field.
We obtain:

{
∂̄(ωH)− ∂(ωH)

}
(X̃, Y ) =X̃.(ωH(Y )− ωH(Y )︸ ︷︷ ︸

=0

)− (ωH − ωH)(

vertical︷ ︸︸ ︷
[X̃, Y ] )︸ ︷︷ ︸

=0

− Y.
(
ωH(X̃)− ωH(X̃)

)
.

We used that the commutator of a horizontal lift and a vertical vector field are vertical.
Furthermore, note that ωH is a (1, 0)-form. Therefore, ωH(Y ) = 0 and we finally deduce:{

∂̄(ωH)− ∂(ωH)
}
(X̃, Y ) = Y.(ωH(X̃))

which finishes the proof.

The preceding lemma shows that for every line bundle Lχ = G̃×χ C with induced metric
hLχ there are holomorphic structures such that Lχ fulfils the Laplace splitting property.

5.4.6 Summary

Now, we have found sufficiently many conditions such that the line bundle L becomes
compatible.
We summarise them in the next proposition.

Proposition 5.27:
Let χ : π1(G) → U(1) be a unitary representation of π1(G) and let L = Lχ be the
complex line bundle over G which is associated to the universal covering space G̃ of G,
i.e. L = G̃×χ C.
On the one hand, let L be equipped with a Hermitian metric given by the unitary
representation χ (compare Section 5.4.3).
On the other hand, endow L with the holomorphic structure ∂̄L := ∂̄Lχ + ε(π∗

Gω) where
∂̄Lχ denotes the natural flat holomorphic structure on Lχ and where ω ∈ A(0,1)(G/T ) is a
∂̄-closed form on G/T .
Then the holomorphic line bundle (L, ∂̄L) becomes a compatible holomorphic line bundle
for the holomorphic fibre bundle (G, πG, (G/T, gG/T ), (T, gT ), T

HG).
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5.5 Results for a general legitimate action

Proof. By construction L becomes a smooth complex line bundle over the total space G̃.

1. We show in Corollary 5.15 that L is a smooth vector bundle over the fibre bundle
G → G/T with fibre type L̃χ → T .
It is associated to the principle fibre bundle G̃ → G/T via a group action ρ̃, i.e. the
following diagram commutes.

G̃× C

proj1

��

˜
��

G̃× L̃

˜
��

G̃

π1,G̃
��

L = G̃×χ C

πL

��



 ν �� G̃×ρ̃ L̃

��

G

πG

��
G/T

idG/T

G/T

In particular, L̃χ → T becomes a holomorphic line bundle with holomorphic
structure ∂̄L̃χ

induced by χ given in Lemma 5.10.
Additionally, following Section 5.4.3, L as well as L̃χ are equipped with a Hermitian
metric which is ρ̃-invariant.
Now, ρ̃ acts compatible with the holomorphic structure because of Lemma 5.21 and
it acts isometric as well (compare again Section 5.4.3).

2. By Lemma 5.26, the Laplacian �L splits.

3. At last, Lemma 5.24 implies that the induced holomorphic structure on L̃χ

coincides with ∂̄L̃χ
.

From now on, we will talk only about complex line bundles L over G that satisfy the
prerequisites of the proposition above.

5.5 Results for a general legitimate action

In the previous subsection, we have given a class of holomorphic line bundles over the
holomorphic fibre bundle (G, πG, (G/T, gG/T ), (T, gT ), T

HG) that are compatible.
Thus, we may apply Theorem 4.1 on those for any legitimate group action, i.e. for any
tuple �γ = (γG/T , γG, γL) satisfying the properties of Definition 3.26.

In this subsection, more precisely in Sub-Subsection 5.5.1, we recall the commonly known
fact that the cohomology group of L̃χ, i.e. H(0,q)(T, L̃χ), has a very simple structure. For
the convenience of the reader, this is proven here, too.
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5 Equivariant torsion for Lie groups

This property has nice consequences for the bundle W(0;t) which simplifies the splitting
formula of the equivariant torsion for any legitimate group action �γ.
We apply this in Subsection 5.5.2.

5.5.1 The Eigenspace vector bundle for the zero-Eigenvalue

The bundle W(0;t) = G̃×ρ̌ Ker
(
�(0,t)

L̃χ

)
has fibre type H(0,q)(T, L̃) and is therefore

strongly dependent on the exact structure of H(0,q)(T, L̃).

For L̃ = T̃ ×χ C, with induced holomorphic structure, we now show that there are two
possible cases.
On the one hand, if χ ≡ 1, then H(0,q)(T ) =̂ Λq

(
t(0,1)

)∗ and on the other hand, if χ �≡ 1,
we obtain H(0,q)(T, L̃) = 0.

Lemma 5.28:
Let T be a torus given by T = Cn/Λ for a lattice Λ of maximal rank in Cn and let
χ : Λ → U(1) be a unitary representation of Λ. Let further on L̃χ be the associated
holomorphic line bundle L̃χ = Cn ×χ C with holomorphic, Hermitian structure as above
(compare Lemma 5.10 and Subsection 5.4.3).

1. If χ ≡ 1, then the Dolbeault cohomology H(0,q)(T, L̃χ) equals Λq
(
t(0,1)

)∗.
2. If χ �≡ 1, then the Dolbeault cohomology H(0,q)(T, L̃χ) vanishes.

Remark 5.29:
The content of this lemma is commonly known. Nonetheless, we prove it here for a lack
of sources to cite from.

Proof of Lemma 5.28.
At first, recall that the tangent bundle of the torus is trivial. Hence, we obtain the
following identification:

A(0,q)(T, L̃χ) ∼= Λq
(
t(0,1)

)∗ ⊗C Γ(T, L̃χ).

This splitting is compatible with the Laplace-Eigenspace decomposition because the
Laplacian commutes with the exterior product with α ∈ Λq

(
t(0,1)

)∗.
Thus, we obtain

H(0,q)(T, L̃χ) ∼= Λt
(
t(0,1)

)∗ ⊗H(0,0)(T, L̃χ),

and therefore, we may restrict to the case where q = 0.
We stated in Lemma 5.10 that the sections Γ(T, L̃χ) can be naturally identified with
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χ-equivariant complex C∞ functions on Cn and that the holomorphic structure on L̃χ is
induced via this identification.
Furthermore, the Hermitian structure is transferred via this isomorphism

κ̂χ : Γ(T, T̃ ×χ C) −→ C∞(T̃ ,C)χ,

as well.
Thus, we obtain for a section s ∈ Γ(T, L̃χ):

κ̂χ

(
�L̃χ

s
)
=

1

2
Δ (κ̂χ(s))

where Δ denotes the Laplace-Beltrami operator on Cn.
It follows that

H(0,0)(T, L̃χ) ∼= Ker(Δ) ∩ C∞(Cn,C)χ.

Consequently, H(0,0)(T, L̃χ) can be identified with the χ-equivariant, harmonic, complex
valued functions on Cn in a natural way.
A known fact for harmonic functions is the so-called maximum principle. It states
that if f : Cn → R is harmonic and K ⊂ C is a compact set, then f |K attains its
maximum as well as its minimum at ∂K the boundary of K.
This principle together with the fact that f : Cn → C is harmonic if and only if its real
and imaginary parts are harmonic leads to Re(f) and Im(f) are monotonous along any
affine line in Cn.

1. If χ ≡ 1, then

Re(f(x)) = Re(f(x+ λ)) and likewise
Im(f(x)) = Im(f(x+ λ)).

Hence, for any x ∈ Cn and any λ ∈ Λ and any t ∈ R, we obtain:

Re(f(x+ t · λ)) = Re(f(x)) and analogously
Im(f(x+ t · λ)) = Im(f(x)),

because Re(f) as well as Im(f) are monotonous on this line.
But, Λ is of maximal rank, i.e. Cn = spanR(Λ), and therefore, f has to be constant
in order to be harmonic. Conversely, any constant function is obviously harmonic.
We conclude that H(0,0)(T, L̃χ) = C, i.e. it equals the vector space of constant
complex functions on Cn.

2. If χ �≡ 1, fix one λ ∈ Λ such that U(1) � χ(λ) �= 1.
Without restriction of generality we can assume that the homomorphism

θ : Z −→ U(1)
z �−→ χ(z · λ)

is injective because of the following consideration.
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Suppose there is a nontrivial kernel Ker(θ) = z0Z. Then χ(z0λ) = 1, and
consequently,

f(x+ λ) = f(x+ z0λ).

Now, following the argument of χ ≡ 1, we see that any harmonic function f has to
be constant along t �→ x+ t · λ for any x ∈ Cn.
It follows f ≡ 0 because

f(x) = f(x+ λ) = χ(λ)−1f(x)

for any x ∈ Cn and χ(λ) �= 1.

Therefore, let θ : Z → U(1) be injective. Equivalently, we obtain that the set θ(Z)
is dense in U(1), i.e. θ(Z) = U(1). More precisely, we get θ(N) = U(1) as well as
θ(−N) = U(1).
It follows that there is a sequence {ak | ak ∈ Z}k∈N such that

−1 = lim
k→∞

θ(ak) =

(
lim
k→∞

θ(−ak)

)−1

= −1

which implies that for any x ∈ Cn and any harmonic function f : Cn → C

lim
k→∞

f(x− akλ) = −f(x) = lim
k→∞

f(x+ akλ).

But Re(f) as well as Im(f) are monotonous.
We conclude that Re(f) as well as Im(f) have to be constant along the affine line

lx : R −→ Cn

t �−→ x+ t · λ
for every x.
Therefore, f ≡ 0 since

f(x) = χ(λ)f(x+ λ)

and χ(λ) �= 1.
As a direct consequence, we obtain H(0,0)(T, L̃χ) =̂ H(0,q)(T, L̃χ) = 0 for every
non-trivial representation χ.

The imminent implication for W(0;t) of the preceding lemma is stated in the subsequent
corollary.
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Corollary 5.30:
Let L = G̃×χ C be a holomorphic line bundle, as described above, then the cohomology
bundle W(0;q) is trivial.
Furthermore, we obtain:

W(0;q) =

{
G/T × Λq

(
t(0,1)

)∗ if χ ≡ 1
G/T × {0} if χ �≡ 1.

Proof.
Looking at the local trivialisations of T → G → G/T , we see that the transition functions
are given by left multiplication with elements in T .
But this multiplication leaves t invariant. The assertion follows.

The holomorphic structures on W(0;t) = G/T × Λt
(
t(0,1)

)∗ differ from the natural
holomorphic structure on a trivial vector bundle, i.e. induced by the complex structure
on G/T .
More precisely, they differ by the ∂̄-closed (0, 1)-form ω ∈ A(0,1)(G/T ) that defines the
difference between the natural holomorphic structure ∂̄Lχ on L = Lχ and the actual
holomorphic structure ∂̄L = ∂̄Lχ + ε(π∗

Gω). (compare Proposition 5.4.6)

We are now able to specify Theorem 4.1 to this situation.

5.5.2 Equivariant torsion formulae

Now, that we have done the preliminary work it is time for some results.

For the first result, recall that we defined the equivariant index ind(γQ,�Q) as well as for
any holomorphic, Hermitian vector bundle Q and any suitable action γ (compare
Definition 2.42).
Note further on that the equivariant index for the trivial line bundle over a compact
Kähler manifold F equals the equivariant Euler-characteristic χγ(F ).

Theorem 5.1:

• Let (G, πG, (G/T, gG/T ), (T, gT ), T
HG) be the holomorphic fibre bundle described in

Subsection 5.1.

• Let χ be a unitary character of π1(G) and let L = Lχ := G̃ ×χ C → G be the
complex line bundle associated to the π1(G)-principle fibre bundle T̂ ↪→ G̃ → G.
Choose on L the Hermitian metric inherited by the unitary representation χ, as
described in Subsection 5.4.3 and equip further on Lχ → G with the holomorphic
structure ∂̄L = ∂̄Lχ+ε(π∗

G(ω)) where ∂̄Lχ denotes the naturally excelled holomorphic
structure on Lχ (compare Lemma 5.10) and where ω ∈ A(0,1)(G/T ) is ∂̄-closed.
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5 Equivariant torsion for Lie groups

• In addition, let �γ =
(
γL, γG, γG/T

)
be a legitimate action.

Then for sufficiently large Re(z) the equivariant ζ-function equals:

ZL
γ̌L(z) =−

∑
λ �=0

λ−z
∑
t

t(−1)tind(γW
(λ;t)

,�W(λ;t))

+

{
χγ(T )Z

W(0;0)

γ (z) if χ ≡ 1

0 if χ �≡ 1
.

Remark 5.31:
In the theorem above, W(λ;t) denotes again the holomorphic, Hermitian vector bundle
on G/T , given by

W(λ;t) = G̃×ρ̌ Ker
(
�(0,t)

L̃χ
− λ
)
,

and γW(λ;t) denotes again the action on W(λ;t) covering γG/T on G/T induced by �γ.

In order to proof this theorem, we will need the following lemma first.

Lemma 5.32:
In the setting of Theorem 5.1 with χ ≡ 1, the splitting

Ker(�[s,t]
V ) = π∗

G(A
(0,s)(G/T )) ∧H(0,t)(T )

is compatible with the Eigenspace distribution of �H , i.e.

Eigμ

(
�[s,t]

H

)
∩Ker

(
�[s,t]

V

)
=
{
Eigμ

(
�[s,0]

H

)
∩Ker

(
�[s,0]

V

)}
∧Ker

(
�[0,t]

V

)
.

Remark 5.33:
Recall that

�H =
(
∇H,(0,1)

)∗ (∇H,(0,1)
)
+
(
∇H,(0,1)

)(
∇H,(0,1)

)∗
where ∂̄L = ∇H,(0,1) ⊕∇V,(0,1) and for the vertical Laplacian accordingly.
For the subsequent proof ∂̄Lχ = ∂̄H + ∂̄V in opposition to the identification

∂̄H =
(
∇H,(0,1)

)
anywhere else throughout this thesis.
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In particular, we obtain:

∇V,(0,1) = ∂̄V
∇H,(0,1) = ∂̄H + ε(π∗

Gω)
(56)

Proof of Lemma 5.32.
We already know (compare Corollary 2.28) that

Ker
(
�[s,t]

V

)
=
(
π∗
GA

(0,s)(G/T )
)
∧Ker

(
�[0,t]

V

)
.

Furthermore, it is obvious that

Ker(�[0,t]
V ) = Λt

(
t(0,1)

)∗
.

The proof is divided in two steps.
First, we show that we obtain for every η ∈ A

(0,s)
H (G) and every α ∈ Λt

(
t(0,1)

)∗:
�H (η ∧ α) = (�Hη) ∧ α. (57)

Thereafter, we show the claim of the lemma.
1) In order to show Equation (57), we show at first that the analogous equation holds for
∇H,(0,1), i.e.

∇H,(0,1)
(
η ∧ α

)
=
(
∇H,(0,1)η

)
∧ α.

In order to do that, we compute:

∇H,(0,1)︸ ︷︷ ︸
=∂̄H+ε(π∗

Gω)

(
η ∧ α

)
=
(
∇H,(0,1)η

)
∧ α+ (−1)sη ∧

(
∂̄Hα

)
.

Now, observe that ∂̄Hα vanishes because of the following argument.

Let X be in T (0,1) (G/T ) with horizontal lift X̃, let Y be a vertical vector field in t(0,1)

and let β ∈ (t(0,1))∗ be a vertical (0, 1)-form.
We obtain:

(∂̄Hβ)(X̃, Y ) = X̃.β(Y )− β([X̃, Y ]) = 0. (58)

Here, the first term vanishes, because β(Y ) is constant and the second term is zero
because the commutator of a fundamental vector field with a horizontal lift vanishes.
Hence, we get for a form α ∈ Λt

(
t(0,1)

)∗ of potentially higher degree that ∂̄Hα = 0 as a
direct consequence from the antiderivativity of ∂̄H as well as Equation (58).
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Now, in order to show Equation (57), it suffices to show that(
∇H,(0,1)

)∗ (
η ∧ α

)
=
((

∇H,(0,1)
)∗

η
)
∧ α.

The vertical distribution T V G → G is trivial

T V G = G× t

for t ⊂ g.
In particular, the antiholomorphic forms in G split as follows:

A(0,r)(G) =
⊕
s+t=r

A
(0,s)
H (G) ∧H(0,t)(T ) =

⊕
s+t=r

A
(0,s)
H (G) ∧Ker(�[0,t]

V )

=
⊕
s+t=r

A
(0,s)
H (G) ∧ Λt(t(0,1))∗.

Furthermore, note that the adjoint of the operator
(∇H,(0,1)

)
is given by(

∇H,(0,1)
)∗

= ∂̄∗
H + ιhπ∗

G(ω)

which follows directly from Equation (56).
Now, take βH ∈ A

(0,s−1)
H (G) and βV ∈ Λt

(
t(0,1)

)∗.
By the definition of the adjoint operator, the following equation holds:∫

G
h
(
βH ∧ βV , ∂̄

∗
H (η ∧ α)

)
=

∫
G
h
(
∂̄H (βH ∧ βV ) , η ∧ α

)
=

∫
G
h (βV , α) · h

(
∂̄HβH , η

)
.

But, h (βV , α) is constant and therefore,∫
G
h
(
βH ∧ βV , ∂̄

∗
H (η ∧ α)

)
=

∫
G
h
(
βH , ∂̄∗

Hη
) · h (βV , α) .

Consequently, we obtain:

∂̄∗
H

(
η ∧ α

)
=
(
∂̄∗
Hη
)
∧ α.

On the other hand, we note that

ιhπ∗
G(ω) (η ∧ α) =

(
ιhπ∗

G(ω)η
)
∧ α+ (−1)sη ∧

(
ιhπ∗

G(ω)α
)

︸ ︷︷ ︸
=0

.

We conclude(
∇H,(0,1)

)∗
(η ∧ α) =

((
∇H,(0,1)

)∗
η
)
∧ α
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which directly implies Equation (57).

2) We are ready to proof the claim of this lemma.
Let δ be in Eigμ

(
�[s,t]

H

)
∩Ker

(
�[s,t]

V

)
.

Then δ =
∑

k ηk ∧ αk with αk linearly independent in Λt
(
t(0,1)

)∗ and ηk ∈ A
(0,s)
H (G).

It follows from the first step of this proof, i.e. Equation (57), that∑
k

(μ · ηk) ∧ αk = μ · δ = �[s,t]
H δ

(57)
=
∑
k

(�[s,0]
H ηk) ∧ αk.

The linear independence of the αk now implies that �Hηk = μ · ηk, i.e.

δ ∈ Eigμ

(
�[s,0]

H

)
∧Ker

(
�[0,t]

V

)
.

Additionally, we see that

0 = �[s,t]
V δ =

∑
k

((
�[s,0]

V ηk

)
∧ αk + ηk ∧

(
�[0,t]

V αk

)
︸ ︷︷ ︸

=0

)
.

We conclude that ηk lies in Ker
(
�[s,0]

V

)
and consequently

δ ∈
{
Eigμ

(
�[s,0]

H

)
∩Ker

(
�[s,0]

V

)}
∧Ker

(
�[0,t]

V

)
.

For the other direction, let now δ be in
{
Eigμ

(
�[s,0]

H

)
∩Ker

(
�[s,0]

V

)}
∧Ker

(
�[0,t]

V

)
.

Then δ is again of the form δ =
∑

k ηk ∧ αk with αk linearly independent in Λt
(
t(0,1)

)∗
and ηk ∈ A

(0,s)
H (G).

In particular, we obtain:

�[s,t]
H δ = �[s,t]

H

(∑
k

ηk ∧ αk

)
(57)
=
∑
k

(�[s,0]
H ηk) ∧ αk =

∑
k

μ · ηk ∧ αk = μ · δ

which implies δ ∈ Eigμ

(
�[s,t]

H

)
.

Similarly, we compute

�[s,t]
V δ =

∑
k

((
�[s,0]

V ηk

)
︸ ︷︷ ︸

=0

∧αk + ηk ∧
(
�[0,t]

V αk

)
︸ ︷︷ ︸

=0

)
= 0.

and therefore δ ∈ Ker
(
�[s,t]

V

)
.
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Corollary 5.34:
For χ ≡ 0, the following equality holds:

Eigμ

(
�[s,0]

H

)
∩Ker

(
�[s,0]

V

)
= π∗

G

(
Eigμ(�

(0,s)

W(0;0))
)

Proof. Let δ be in Eigμ

(
�[s,0]

H

)
∩Ker

(
�[s,0]

V

)
.

We apply the ψ-morphism (compare Definition 3.15) and obtain

ψ−1(δ) ∈ Eigμ

(
�(0,s)

W(0;0)

)
⊂ A(0,s)(G/T,W(0;0)) ∼= A(0,s)(G/T,C) = A(0,s)(G/T ).

In particular, we obtain

δ = ψ ◦ ψ−1(δ) = π∗
G

(
ψ−1(δ)

) ∈ π∗
G

(
Eigμ

(
�(0,s)

W(0;0)

))
.

On the other hand, let δ = π∗
Gη for an η living in Eigμ(�

(0,s)

W(0;t)).
Then the ψ-morphism implies:

δ = ψ (η)
!∈ Eigμ

(
�[s,0]

H

)
∩Ker

(
�[s,0]

V

)
because of the definition of W(0;0) and because of the definition of �(0,s)

W(0;0) .

Having proven this corollary, we can go straight to the proof of Theorem 5.1.

Proof of Theorem 5.1.
We want to show the following identity:

ZL
γ̌L(z) =−

∑
λ �=0

λ−z
∑
t

t(−1)tind(γW
(λ;t)

,�W(λ;t))

+

{
χγ(T )Z

W(0;0)

γW(0;0) (z) if χ ≡ 1

0 if χ �≡ 1
.

We are in the setting of Theorem 4.1 which we showed in Proposition 5.27.
Consequently, we obtain:

ZL
γ̌L(z) = −

∑
λ �=0

λ−z
∑
t

t(−1)tind(γW
(λ;t)

,�W(λ;t)) +
∑
t

(−1)tZW(0;t)

γ̌W(0;t) (z) (59)

Now for χ �≡ 1, Corollary 5.30 states that the bundle W(0;t) is the trivial bundle
G/T × {0}.
Consequently, the second term in Equation (59) vanishes.
For χ ≡ 0, L = G̃×χ C becomes the trivial complex line bundle over G, i.e. L = G× C

(compare again Corollary 5.30).
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Look at the second term of Equation (59).
We apply the ψ-morphism backwards (compare Equation (43)) and obtain:∑

t

(−1)tZW(0;t)

γ̌W(0;t) (z) =−
∑
t

(−1)t
∑
μ �=0

μ−zTr

[
γ |

Eigμ(�
(0,s)

W(0;t)
)

]

=−
∑
μ �=0

μ−z
∑
s

s(−1)s
∑
t

(−1)tTr

[
γ̌L
∣∣
Ker

(
�[s,t]

V

)
∩Eigμ

(
�[s,t]

H

)]

Furthermore, we already saw, in Lemma 5.32 and Corollary (5.34), that

Eigμ

(
�[s,t]

H

)
∩Ker

(
�[s,t]

V

)
= π∗

G

(
Eigμ(�

(0,s)

W(0;0))
)
∧Ker

(
�[0,t]

V

)
.

In particular, γ̌L acts on both factors of the right hand side separately since it commutes
with �V as well as with �H .
Thus, we obtain,∑

t

(−1)tZW(0;t)
(z)

= −
∑
μ �=0

μ−z
∑
s

s(−1)s
∑
t

(−1)tTr

[
γ̌L
∣∣
H(0,t)(T )⊗π∗

G

(
Eigμ(�

(0,s)

W(0;0)
)
)]

= −
∑
μ �=0

μ−z
m∑
s=0

s(−1)sTr
[
Eigμ(�

(0,s)

W(0;0))
]

︸ ︷︷ ︸
=ZW(0;0)

γ (z)

·
∑
t

(−1)tTr
[
γ̌L
∣∣
H(0,t)(T )

]
︸ ︷︷ ︸

=χγ(T )

which finishes this proof.

Remark 5.35:
Recall that for χ ≡ 1 the holomorphic structure on Lχ = G̃×χ C is given by
∂̄Lχ + ε(π∗

Gω) and obviously ∂̄Lχ = ∂̄.
Now, the term ZW(0;0)

γ (z) is equal to Z
G/T×C
γ (z) if we do not forget that the holomorphic

structure on W(0;0) ∼= G/T × C has to be ∂̄ + ε(ω) instead of the trivial holomorphic
structure ∂̄.

Naturally, there is a specialised version of Theorem 5.1 for the case of non-degenerated
(in particular isolated) fixed points as well. (compare Corollary 4.9)

Corollary 5.36:
Suppose that γG/T : G/T → G/T has only isolated, non-degenerated fixed points.
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5 Equivariant torsion for Lie groups

Then the formula for the equivariant holomorphic ζ-function becomes:

ZL
γ̌L(z) =

∑
x0∈(G/T )γ

(
det

T 1,0
x0

G/T

(
1− γ−1

x0

)−1
)
· ZLx0

γ̌Lx0
(z)

+

{
χγ(T )Z

W(0;0)

γ (z) if χ ≡ 1

0 if χ �≡ 1
.

Here, analogously to Corollary 4.9,

• (G/T )γ denotes the fixed point set of γG/T ,

• Lx0 = L |π−1
G (x0)

,

• γx0 is the linear map Tx0γ
G/T for each x0 ∈ (G/T )γ

• and γ̌Lx0 is the action on A(0,∗)(π−1
G (x0),Lx0) induced by γ̌L.

Remark 5.37:
This is as far as we get using a general legitimate group action. What comes next is to
give a relatively simple example for a legitimate group action.

5.6 An example of legitimate group actions

Now, it is time to give an example for a legitimate action in order to apply the formulae
of the previous subsection.

Therefore, the task at hand is to find a triple �γ = (γG/T , γG, γL) of diffeomorphisms that
satisfy the defining properties 1., 2., 3. and 4. of Definition 3.26, i.e of a legitimate action.

The easiest approach is to look again at the definition of the bundle L = Lχ.
We already required that the line bundle L over G is associated to the universal covering
bundle G̃ → G via a unitary representation χ of π1(G).
It follows that we have a natural left action of G̃ on L = G̃×χ C. It is given for any
element g̃0 ∈ G̃ by

Lg̃0 : Lχ −→ Lχ

[g̃, z]χ �−→ [g̃0 · g̃, z]χ
For every g̃0 ∈ G̃ this map Lg̃0 is covering maps on G and on G/T , given by:

Lg0 : G −→ G
g �−→ g0 · g

and
L
G/T
g0 G/T �−→ G/T

[g] �−→ [g0 · g]
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5.6 An example of legitimate group actions

for g0 = π1,G̃(g̃0).

We show at first, in the subsequent lemma, that �γ = (γG/T , γG, γL) for γL = Lg̃0 is
legitimate for the natural holomorphic structure ∂̄Lχ on Lχ.

Lemma 5.38:
Le L = Lχ be the compatible line bundle over G equipped with the natural holomorphic
structure ∂̄Lχ given in Lemma 5.10.
Then the action �γ =

(
γL, γG, γG/T

)
given by γL = Lg̃0 is legitimate for an arbitrarily

fixed element g̃0 of G̃.

Proof.
We prove this assertion chronologically, i.e. following the ordering of Definition 3.26.

1. Note that γG/T = L
G/T
g0 as well as γG = Lg0 are holomorphic isometries since the

complex structure on G and on G/T is left invariant by construction as is the
Hermitian metric.�

2. A simple calculation shows that the following diagram indeed commutes.�

L

γL

��

πL �� G

γG

��

πG �� G/T

γG/T

��
L πL

�� G πG

�� G/T

3. Furthermore, γL sends fibres in L → G linearly and isometric on fibres because

hg0g

(
[g̃0g̃, z0]χ , [g̃0g̃, z1]χ

)
= z0 · z̄1 = hg

(
[g̃, z0]χ , [g̃, z1]χ

)
,

by construction of the Hermitian metric on L.�

4. The last property of Definition 3.26 is the only one that actually depends on the
holomorphic structure of L.
We want to show that the following diagram commutes:

A(0,∗)(G,L)
∂̄Lχ ��

γ̌L

��

A(0,∗+1)(G,L)

γ̌L

��
A(0,∗)(G,L)

∂̄Lχ

�� A(0,∗+1)(G,L).

Now, the holomorphic structure ∂̄Lχ is defined via the one to one correspondence

κχ : A(0,∗)(G, G̃×χ C) −→ A(0,∗)(G̃)χ.
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5 Equivariant torsion for Lie groups

Explicitly stated, the natural holomorphic structure on Lχ is given by the following
commuting diagram:

A(0,∗)(G,L)
∂̄Lχ ��

κχ

��

A(0,∗+1)(G,L)

κχ

��
A(0,∗)(G̃)χ

∂̄
�� A(0,∗+1)(G̃)χ.

Now, let α be in A(0,q)(G) which corresponds to α̃ in A(0,q)(G̃)χ1≡1 and let l be in
Γ(G,L) corresponding to l̃ ∈ C∞(G̃,C)χ.
We obtain:

γ̌L(α⊗ l)g =γL

([
g̃−1
0 g̃,

(
L∗
g̃−1
0

(
α̃⊗ l̃

))
g̃

]
χ

)

=

[
g̃,
(
L∗
g̃−1
0

(
α̃⊗ l̃

))
g̃

]
χ

.

Consequently, the subsequent diagram commutes.

A(0,∗)(G,L)
γ̌L

��

κχ

��

A(0,∗)(G,L)

κχ

��
A(0,∗)(G̃)χ

L∗
g̃−1
0

�� A(0,∗)(G̃)χ

Now, look at the following cube.

A(0,q)(G,L)
∂̄Lχ ��

γ̌L

��

A(0,q+1)(G,L)

γ̌L

��

A(0,q)(G̃,C)χ
��

κχ





∂̄ ��

L∗
g̃−1
0

��

A(0,q+1)(G̃,C)χ
��

κχ

��

L∗
g̃−1
0

��

A(0,q)(G,L)
∂̄Lχ

�� A(0,q+1)(G,L)

A(0,q)(G̃,C)χ
�� κχ





∂̄
�� A(0,q+1)(G̃,C)χ

�� κχ

��

The surfacing rectangles on the left and on the right side as well as on the upper
and the lower side commute. Further on, the surfacing diagram in front commutes
because the left multiplication with g̃−1

0 is holomorphic.
Consequently, it follows that the whole cube commutes and in particular the
diagram in the back which we wanted to show.�
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Corollary 5.39:
For the holomorphic structure of L given by ∂̄L = ∂̄Lχ + ε(π∗

G(ω)), the action γL = Lg̃0

induces a legitimate action �γ if and only if(
L
G/T

g−1
0

)∗
ω = ω.

5.6.1 Investigations on isolated fixed points

In this subsection, we discuss when the legitimate action γL = Lg̃0 induces an
γG/T = L

G/T
g0 that has only isolated and non-degenerate fixed points.

We deduce that this is the general case.

The content of this sub-subsection is common knowledge.

We start with the following lemma. It states the existence of at least one fixed point for
the action Lg̃0 for one g̃0 ∈ G̃.

Lemma 5.40:
Let g̃0 ∈ G̃ be arbitrarily fixed, and let g0 ∈ G denote its projection under π1,G̃.
Then the map

L
G/T
g0 : G/T −→ G/T

[g] �−→ [g0 · g]
has at least one fixed point.

Proof.
Note that [x0] ∈ G/T is a fixed point of LG/T

g0 if and only if g0x0 = x0t0 for an element
t0 ∈ T . Equivalently, we obtain g0 = x0t0x

−1
0 .

For a compact connected Lie group, every element g lies in a maximal torus T ′ (cf. [10]).
In particular so does g0.
Now, every maximal torus T ′ is conjugated to T (again cf. [10]), i.e. there is an x ∈ G
such that T ′ = xTx−1 and consequently g0 = x0t0x

−1
0 for elements x0 ∈ G and t0 ∈ T .

We conclude that every action L
G/T
g0 has a fixed point.

The next lemma is dedicated to the properties of the case, where g0 ∈ G is generating a
maximal torus.
Recall therefore that g0 generates a maximal torus T ′ in G if the closure of gZ0 is a torus
of the same dimension as T .

Before we state as well as prove the lemma, we recall the definition of the Weyl group for
a torus T ′ in a compact Lie group G.
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5 Equivariant torsion for Lie groups

Definition 5.41:
Let G be a compact Lie group and T ′ ⊂ G a toric subgroup.
The Weyl group W (T ′) is given by the following quotient:

W (T ′) = N(T ′)/T ′

where N(T ′) ⊂ G denotes the normaliser of T ′ in G, i.e. the maximal subgroup of G
such that T ′ is a normal subgroup of N(T ′).
More explicitly N(T ′) is given by:

N(T ′) :=
{
g ∈ G | gT ′g−1 = T ′} .

Remark 5.42:
For a maximal torus T ′, the order of the Weyl group W (T ′) is finite. (cf. [10])

Lemma 5.43:
Let g0 be a generating element of a maximal torus T ′ ⊂ G. Then the following properties
hold.

1. The map

L
G/T
g0 : G/T −→ G/T

has finitely many fixed points and the number of fixed points #(G/T )γ equals the
order of the Weyl group W (T ) of T in G.

2. Every fixed point of G/T is non-degenerated.

Proof.

1. Let [x0] be a fixed point of LG/T
g0 which exists by Lemma 5.40.

We obtain

x0t0x
−1
0 = g0.

Now, g0 generates a maximal torus T ′ if and only if t0 generates T .
The Weyl group W (T ) acts transitively and free on the fixed points (G/T )γ in the
following way.
Let nT be an element of W (T ) = N(T )/T , then the W (T )-action is given by:

δ : W (T )× (G/T )γ −→ (G/T )γ

(nT, xT ) �−→ xnT.
(60)
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5.6 An example of legitimate group actions

This map is well defined since on the one hand a different choice of the
representative for the elements of W (T ) and G/T leads to

x(n · t) ∈ xnT and (xt)n = xn · n−1tn︸ ︷︷ ︸
∈T

∈ xnT,

while on the other hand a fixed point xT maps to a fixed point xnT because

g0 ∈ xTx−1 = xnTn−1x−1.

Note that δ obviously describes a group action of W (T ) on (G/T )γ .
Now, in order to show that the number of fixed points equals the order of the Weyl
group, we have to show that the W (T )-action δ is simply transitive.
We define for the chosen fixed point x0T above the map δ[x0] to be:

δ[x0] : W (T ) −→ (G/T )γ

nT �−→ δ(nT, x0T ) = x0nT.

The action δ is simply transitive if and only if δ[x0] defines a bijection.
Now, δ[x0](nT ) = x0T if and only if nT = T , i.e. n ∈ T , which is equivalent to nT
being the neutral element in W (T ). Hence, δ[x0] is injective.
For any other fixed point x1T , we conclude

g0 = x1t1x
−1
1

for t1 ∈ T . Thus, we obtain

t0 = x−1
0 x1t1x

−1
1 x0.

Now, because g0 is generating T ′, the tk are generating T .
Therefore, it follows that:

T = (t0)Z = (x−1
0 x1t1x

−1
1 x0)Z = x−1

0 x1(t1)Zx
−1
1 x0 = x−1

0 x1Tx
−1
1 x0.

We conclude that x−1
0 x1T lies in W (T ) or equivalently that x1T = x0nT for an

nT ∈ W (T ). This leads to x1T = δ[x0](nT ).
And consequently, δ[x0] is surjective which finishes the proof of 1..

2. To show that each fixed point is non-degenerate, we make use of the fact that G/T
is reductive as a homogeneous space, i.e. that our Lie algebra g splits (compare
Section 5.1) into the vertical space h⊕ hs and an Ad(T ) invariant complement

m = g ∩
⊕
α∈R

gs,α.

The Ad(T ) invariance of m follows from that of gs,α.
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5 Equivariant torsion for Lie groups

Using again common knowledge about principle fibre bundles and reductive
homogeneous spaces (cf. [5]), we obtain the following isomorphism of vector bundles

G×Ad m
∼= ��

��

T (G/T )

��
G/T.

It is given for m ⊂ TeG by

dπG ◦ dLg : G×Ad m −→ T (G/T )
[g,Xm]Ad �−→ (dπG)g ◦ (dLg)e (Xm).

Now, let [x] be a fixed point of γG/T , i.e. g0x = xt0 and take an element
X ∈ T[x]G/T which is represented by an element [x,Xm]Ad ∈ G×Ad m.

The subsequent computation shows how
(
dL

G/T
g0

)
[x]

acts on X.

(
dLG/T

g0

)
[x]

X =
(
dLG/T

g0

)
[x]

◦ (dπG)x ◦ (dLx)e (Xm)

=(dπG)x·t0 ◦ (dLg0)x ◦ (dLx)e︸ ︷︷ ︸
=(dLx·t0)e

(Xm)

=(dπG)x·t0 ◦ (dLx)t0 ◦ (dRt0)e ◦Ad(t0)(Xm)

=(dπG)x ◦ (dLx)e ◦Ad(t0)(Xm)

Therefore,
(
dL

G/T
g0

)
[x0]

X = X holds if and only if Ad(t0)(Xm) = Xm.

But, since g0 is generating a maximal torus, so is t0.
This implies that

Ad(t0)(Xm) = Xm

if and only if Xm is Ad(T ) invariant.
Seeing this in relation to the fact that t = h⊕ hs is a maximal Abelian subalgebra,
we conclude:

Xm ∈ m ∩ t = {0}.

Hence, we obtain Xm = 0.
We see that the only vector X ∈ T[x0]G/T left invariant by L

G/T
g0 is the 0-vector

and therefore, [x0] is a non-degenerate fixed point.
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5.6 An example of legitimate group actions

Remark 5.44:
The set of elements in a torus T that generate this torus is a dense set. Actually, the set
of elements in T that do not generate the torus are countable. In particular, they have
Lebesgue measure 0.
This fact transfers to any compact Lie group, i.e. the set of elements in G that do not
generate a maximal torus are countable and in particular, they have Lebesgue measure
0. Furthermore, the set of elements that generate a maximal torus is dense in G.

From now on for the rest of this sub-subsection, suppose that g0 is generating a maximal
torus.

The subsequent lemma shows how γG = Lg0 acts on fibres G[x0] = π−1
G ([x0]) over a fixed

point [x0] ∈ (G/T )γ .

Lemma 5.45:
There is a map Ω : (G/T )γ → T with the following properties.

1. For every [x] ∈ (G/T )γ and every g ∈ π−1
G ([x]), the map Lg0 restricted to the fibre

G[x] is given by

Lg0 |G[x]
: G[x] −→ G[x]

g �−→ g · Ω([x]).

2. The map Ω and the action δ of the Weyl group (compare Equation (60)) are
correlated.
For any nT ∈ W (T ) and any fixed point [x] ∈ (G/T )γ, we obtain:

Ω(δ(nT, [x])) = n−1Ω([x])n. (61)

Remark 5.46:
If there exists a map Ω : (G/T )γ → T fulfilling the first property of Lemma 5.45, then
this map is obviously unique.

Proof of Lemma 5.45.

1. We construct Ω explicitly.
We already know that if x ∈ (G/T )γ , we get an t0 ∈ T such that

Lg0(x) = g0 · x = x · t0.

We define Ω([x]) to be t0, i.e. implicitly

g0 · x = x · Ω(πG(x)).
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This is well defined since for another representative x · s of [x], we obtain

g0 · (x · s) = (g0 · x) · s = (x · Ω(πG(x))) · s = (x · s) · Ω(πG(x))

where the last equality holds because T is Abelian.

2. For the second assertion recall that for a fixed point [x] ∈ (G/T )γ and an element
nT of the Weyl group, we obtain

δ(nT, [x]) = [xn] ∈ (G/T )γ .

Consequently, we get:

g0 · x = x · Ω([x]) as well as
g0 · x · n = x · n · Ω([x · n]).

Separating g0, we obtain

g0 = x · Ω([x]) · x = x · n · Ω([x · n]) · n−1 · x−1

which finally leads to

Ω([x]) = n · Ω([x · n]) · n−1.

We note that the preceding expression does not depend on the representing element
n of nT ∈ W (T ).

Corollary 5.47:
There is a unique lift Ω̂ : (G/T )γ −→ T̂ of Ω such that

1. For every g̃ ∈ π−1
G̃

([x]), we get Lg̃0(g̃) = g̃ · Ω̂([x]).

2. π1,G̃ ◦ Ω̂ = Ω.

5.6.2 Equivariant holomorphic torsion

In this sub-subsection, we present our results for the equivariant holomorphic torsion for
the legitimate action described above, i.e. �γ =

(
γG/T , γG, γL

)
with γL = Lg̃0 for an

arbitrary but fixed element g̃0 ∈ G̃.

We summarise the result for an unconditioned choice of g̃0 in G̃ in the following theorem.
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Theorem 5.2:
Let G be a compact, connected, real even-dimensional Lie group and let T ⊂ G be a
maximal torus of G. And equip G with a holomorphic fibre bundle structure, as described
in Subsection 5.1.
Let furthermore χ : π1(G) → U(1) be a character of π1(G) and let L = G̃ ×χ C be the
Hermitian line bundle over G associated via this character.
Furthermore, equip L with a holomorphic structure ∂̄L, given by ∂̄L = ∂̄Lχ + ε(π∗

G(ω)),
where ∂̄Lχ denotes the natural holomorphic structure on Lχ = G̃ ×χ C, we described in
Lemma5.10 and where ω is a ∂̄-closed form in A(0,1)(G/T ).
At last, let g̃0 be an element of G̃ such that for g0 = π1,G̃(g̃0) the (0, 1)-form ω is left

invariant under the pullback with L
G/T
g0 .

Let �γ = (γG/T , γG, γL) = (L
G/T
g0 , Lg0 , Lg̃0) denote the induced legitimate action of g̃0 on

L, given by

γL := Lg̃0 : L −→ L
[g̃, z]χ �−→ [g̃0g̃, z]χ .

Then we obtain the following expression for the equivariant holomorphic ζ-function for
sufficiently large Re(z):

ZL
γ̌L(z) =−

∑
λ �=0

λ−z
∑
t

t(−1)tind(γW
(λ;t)

,�W(λ;t)).

Proof.
We start using Theorem 5.1 to get the following expression for the equivariant ζ-function.

ZL
γ̌L(z) =−

∑
λ �=0

λ−z
∑
t

t(−1)tind(γW
(λ;t)

,�W(λ;t))

+

{
χγ(T )Z

W(0;0)

γ (z) if χ ≡ 1

0 if χ �≡ 1

The second term is 0 because χγ(T ) is 0 for γL = Lg̃0 which we show now.
Recall that H0,q(T, T × C) = Λq

(
t(0,1)

)∗ and that the �γ action on the cohomology of
T × C is given by γ = L∗

g0 : Λq
(
t(0,1)

)∗ → Λq
(
t(0,1)

)∗.
But since the Lie algebra consists of left invariant vector fields the �γ action on
H0,q(T, T × C) is trivial.
We conclude:

χγ(T ) = χ(T ) =
n∑

k=0

(−1)k
(
n

k

)
= (1− 1)n = 0.

145



5 Equivariant torsion for Lie groups

Naturally, we get a corollary out of Theorem 5.2 that holds for isolated, non-degenerated
fixed points of γG/T .

Corollary 5.48:
In the setting from Theorem 5.2.
If g0 = π1,G̃(g0) generates a maximal torus in G.
Then the expression for the equivariant ζ-function simplifies to:

ZL
γ̌L(z) =

[
det

T 1,0
[x0]

G/T
(1− γ−1

[x0]
)

]−1

·
∑

[n]∈W (T )

ZL̃

γ̌
L̃χ
[x0·n]

(z).

Here, [x0] ∈ (G/T )γ denotes an arbitrary chosen fixed point of LG/T
g0 that always exists

(compare Lemma 5.40). Further on, W (T ) denotes the Weyl group of T in G.
The equivariant ζ-function on the right hand side is that of the holomorphic line bundle

πL̃χ
: L̃χ := T̂ ×χ C −→ T

with a group action

γL̃[x0·n] := LL̃
Ω̂([x0·n]) : L̃χ −→ L̃χ[

t̂, z
]
χ

�−→
[
Ω̂([x0 · n]) · t̂, z

]
χ

where Ω̂ is constructed as above (compare Corollary 5.47).

Proof.
Starting at the formula for the equivariant ζ-function of Theorem 5.2 and compare this
with the formula from Corollary 5.36, we obtain:

ZL
γ̌L(z) =

∑
[x]∈(G/T )γ

(
det

T 1,0
[x]

G/T

(
1− γ−1

[x]

)−1
)
· ZL[x]

γ̌
L[x]

(z)

Recall that every fixed point [x] differs from [x0] by an element of W (T ), i.e. there is an
[n] ∈ W (T ) such that

[x] = δ(nT, [x0]) = [x0] · [n]

(compare Equation (60)).
In the proof of Lemma 5.43 we saw, that T[x] (G/T ) is isomorphic to m as complex vector
space and furthermore, that the map γ−1

[x] corresponds to the map Ad(Ω([x])) via that
isomorphism.
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It follows, using the Ω-δ-equivariance, i.e. Equation (61), that we obtain:

det
T 1,0
[x0·n]

G/T

(
1− γ−1

[x0·n]
)
= detm(1,0)

(
1−Ad(Ω([x0 · n])−1)

)
(61)
= detm(1,0)

(
Ad
(
[n]−1

)
◦ (1−Ad(Ω([x0])

−1)) ◦Ad ([n])
)

= detm(1,0)

(
1−Ad(Ω([x0])

−1)
)

= det
T 1,0
[x0]

G/T

(
1− γ−1

[x0]

)
.

Thus, it does not depend on the choice of the fixed point [x0].

At last, we simplify the expression Z
L|

π−1
G

([x])

γ̌
L[x]

(z) by translating it for [x] = [x0 · n] to an

expression on L̃χ → T .
Therefore, choose x̃0 ∈ π−1

G̃
([x0]) and ñ ∈ π1,G̃(n).

Now, look at the map

[x̃0 · ñ]ρ̃ : L̃ −→ L |π−1
G ([x0·n])

[ŝ, z]χ �−→ [x̃0 · ñ · ŝ, z]χ .
(62)

With the notations for the local trivialisations from Remark 5.23, take an i ∈ I such that
[x0 · n] ∈ Ui.
It follows that x̃0 · ñ = q̃i([x0 · n]) · t̂ for one t̂ ∈ T̂ .
The following diagram commutes

L̃χ

ρ̃(t̂)   

[x̃0·ñ]ρ̃ �� L |π−1
G ([x0·n])

L̃χ
Φi,[x0·n]

��
(
φ−1
i,[x0·n]

)∗
Lχ

(φi,[x0·n])
∗





because for t · s = π1,T̂ (t̂ · ŝ) we obtain((
φi,[x0·n]

)∗ ◦ Φi,[x0·n] ◦ ρ̃(t̂)
)
([ŝ, z]χ) =

((
φi,[x0·n]

)∗ ◦ Φi,[x0·n]
)
(
[
t̂ŝ, z

]
χ
)

=
(
φi,[x0·n]

)∗ (
t · s, [q̃i([x0 · n]) · t̂ · ŝ, z]χ)

=

⎡⎢⎣q̃i([x0 · n]) · t̂︸ ︷︷ ︸
=x̃0·ñ

·ŝ, z

⎤⎥⎦
χ

= [x̃0 · ñ]ρ̃
(
[ŝ, z]χ

)
.

In particular, Equation (62) defines a biholomorphic isometry because ρ̃(t̂) is one and so
is (φi,x)

∗ ◦ Φi,x (compare Lemma 5.24).
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5 Equivariant torsion for Lie groups

The action γL restricted to L |
π−1
G ([x0·n]) is translated via [x̃0 · ñ]ρ̃ onto L̃ to the action

LL̃
Ω̂([x0·n]), explicitly given by

LL̃
Ω̂([x0·n])

(
[ŝ, z]χ

)
:=
[
Ω̂([x0 · n]) · ŝ, z

]
χ
.

Consequently, we obtain:

Z
L|

π−1
G

([x0·n])

γ̌
L[x0·n]

(z) = ZL̃

γ̌L̃
[x0·n]

(z)

which finishes the proof.

Corollary 5.49:
In the situation of Corollary 5.48, if G has rank (which is defined as the real dimension
of the maximal torus T ) greater than 2 than the equivariant holomorphic ζ-function
simplifies to

ZL
γ̌L(z) =

{
χγ(T )Z

W(0;0)

γ (z) if χ ≡ 1

0 if χ �≡ 1

because here the equivariant holomorphic torsion of a holomorphic line bundle vanishes.
In particular, the equivariant holomorphic torsion vanishes, i.e.

τL(γ̌L) = 0.

Proof.
Let k denote in this proof the rank of G.
We just have to show that ZL̃

γ̌
L̃χ
[x0·n]

(z) vanishes.

Starting at the definition of the equivariant ζ-function (compare Def. 2.43), we obtain for
large Re(z):

ZL̃

γ̌
L̃χ
[x0·n]

(z) =
∑

λ∈σ(�
L
χ
x0

)\{0}
λ−z ·

k/2∑
q≥0

(−1)q+1q · Tr
(
γ̌
L̃χ

[x0·n]
∣∣
Eigλ(�

(0,q)

L
χ
x0

)

)
.

Note that the Eigenspace decomposes as follows

Eigλ(�
(0,q)
Lx0

) = Λq
(
t(0,1)

)∗ ⊗ Eigλ(�
(0,0)
Lx0

)

and note furthermore that γ̌
L̃χ

[x0·n] covers a left transition on T that acts trivially on the

cohomology, i.e. on
(
t(0,1)

)∗.
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5.6 An example of legitimate group actions

Consequently, we obtain:

ZL̃

γ̌
L̃χ
[x0·n]

(z) =
∑

λ∈σ(�
L
χ
x0

)\{0}
λ−z · Tr

(
γ̌
L̃χ

[x0·n]
∣∣
Eigλ(�

(0,0)

L
χ
x0

)

)
·
k/2∑
q≥0

(−1)q+1q

(
n

q

)

=
∑

λ∈σ(�
L
χ
x0

)\{0}
λ−z · Tr

(
γ̌
L̃χ

[x0·n]
∣∣
Eigλ(�

(0,0)

L
χ
x0

)

)
·
k/2−1∑
q≥0

k · (−1)qq

(
n− 1

q

)

=
∑

λ∈σ(�
L
χ
x0

)\{0}
λ−z · Tr

(
γ̌
L̃χ

[x0·n]
∣∣
Eigλ(�

(0,0)

L
χ
x0

)

)
· k · (1− 1)k/2−1

=0.

The determinant can be expressed using weights of the adjoint representation.

Corollary 5.50:
In the situation of Corollary 5.48 where the rank of G equals 2, we compute the
equivariant torsion via:

τL(γ̌L) =
∏

α∈R+

(
1− e−2πiα

(
Ω([x0])

))−1

·
∑

[n]∈W (T )

τ L̃(γ̌L̃[x0·n])

where the product goes over all the positive roots of the Lie group G and where e−2πiα

denotes the global root corresponding to −α ∈ R−:

e−2πiα : T −→ U(1)

t = exp(X) �−→ e−2πiα(X).

Proof. Corollary 5.48 directly implies the following formula for the equivariant
holomorphic torsion of L:

τL(γ̌L) = det
T 1,0
[x0]

G/T

(
1− γ−1

[x0]

)−1 ·
∑

[n]∈W (T )

τ L̃(γ̌L̃[x0·n]).

Now, observe that γ[x0]
= T[x0]L

G/T
g0 and furthermore, that

T
(1,0)
[x0]

G/T = (Tx0πG) ◦ (TeLx0)

⎛⎝⊕
α∈R+

gα

⎞⎠ .
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5 Equivariant torsion for Lie groups

Using g0 · x0 = x0 · Ω([x0]), we now compute:

T[x0]L
G/T
g0 ◦ (Tx0πG) ◦ (TeLx0) (X) =

(
Tx0·Ω([x0])πG

)
◦ Tx0Lg0 ◦ (TeLx0) (X)

=
(
Tx0·Ω([x0])πG

)
◦ Tx0Lg0 ◦ (TeLx0) (X)

= (Tx0πG) ◦ (TeLx0) ◦Ad (Ω([x0])) (X)

Consequently, we obtain:

det
T 1,0
[x0]

G/T

(
1− γ−1

[x0]

)
= det⊕

α∈R+ gα

(
1−Ad (Ω([x0]))

−1
)

We apply the root space composition and finally obtain:

det
T 1,0
[x0]

G/T

(
1− γ−1

[x0]

)
=
∏

α∈R+

(
1− e2πiα(Ω([x0])

−1)
)

which finishes the proof.

This finally reduces the computation of the equivariant holomorphic torsion for the
holomorphic, Hermitian line bundle L = G̃×χ C → G with natural Hermitian metric and
a holomorphic structure ∂̄L = ∂̄Lχ + ε(π∗

G(ω)) for the action Lg̃0 : L → L to a
computation of the equivariant torsion of the Hermitian, holomorphic line bundle
L̃χ → T with holomorphic structure ∂̄L̃χ

: L̃ → L̃ for different actions γL̃[x] .
In particular, the result does not depend on the (0, 1)-form ω.
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A Appendix: Linear algebra

In this part of the appendix, we introduce the linear algebra setting that we need.
In particular, give a definition of an almost complex vector space and recall some useful
definitions and properties of Hermitian vector spaces and operators thereon.
Furthermore, we state two identities for the Hodge-Star-operator that we need
throughout this thesis.

This part of the appendix is more or less common knowledge. Nonetheless, some
conventions have to be made. Furthermore, in order to simplify the process of
understanding for the reader, we choose to repeat some of the necessary definitions and
results.

Throughout this thesis we will constantly use the fact, that the fibre of the (co-)tangent
space over a point in a complex manifold is a complex vector space and that some
operators like the Hodge-Star operator can be described by linear algebra purely.
Therefore, it sometimes suffices to understand these objects on such a low level.

The first object of interest will be an almost complex vector space.

Definition A.1:

• The tuple (V, JV ) where V is a real even dimensional vector space and JV is an
automorphism of V such that J2

V = −idV is called almost complex vector
space.
The map JV is called almost complex structure on V .

• The triple (V, JV , gV ) is called Hermitian, almost complex vector space if
(V, JV ) is an almost complex vector space and gV is a Euclidean metric which is
compatible with the almost complex structure JV , i.e. JV is an isometry of
(V, gV ).

Remark A.2:

• Every almost complex vector space (V, JV ) has a natural orientation given by a
base e1, JV (e1), . . . , en, JV (en).

• We may define an almost complex structure J �
V on the dual space V ∗, via(

J �
V (α)

)
(v) := α(JV (v))

for any α ∈ V ∗ and v ∈ V .

• In particular, for a Hermitian, almost complex vector space, if e1, . . . , en is
orthonormal with respect to gV and if furthermore JV (ek) does not lie in the linear
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A Appendix: Linear algebra

hull of e1, . . . , en for any k = 1 . . . n, then e1, JV (e1) . . . , en, JV (en) forms an
orthonormal base of V .
In particular, this base defines an orientation on V that does not depend on the
choice of the e1, . . . , en.
Further on, its dual base given by e1, J �

V (e
1), . . . , en, J �

V (en) is orthonormal as well.

• For a Hermitian, almost complex vector space, we obtain the canonical volume
form:

dvolV := e1 ∧ JV (e
1) ∧ . . . ∧ en ∧ JV (e

n) ∈ Λ2nV ∗.

Let from now on for the time being (V, JV , gV ) be a Hermitian, almost complex vector
space.

Remark A.3:

• The complexified vector space VC := V ⊗R C splits into its holomorphic part,

V (1,0) := Ker(JV − i),

and its antiholomorphic part,

V (0,1) := Ker(JV + i),

i.e. we obtain:

VC = V (1,0) ⊕ V (0,1).

Likewise, its dual space V ∗
C := V ∗ ⊗R C splits, too:

V ∗
C = V ∗(1,0) ⊕ V ∗(0,1).

This splitting may be extended to the entire exterior algebra of V ∗
C :

ΛqV ∗
C =

⊕
r+s=q

ΛrV ∗(1,0) ∧ ΛsV ∗(1,0) =:
⊕

r+s=q

Λ(r,s)V ∗

• On VC, we have a Hermitian product hV induced by gV given through

hV (v ⊗R z, v̂ ⊗R y) := gV (v, v̂) · zȳ.

We denote its analog on V ∗
C by h�V and in abuse of notation, h�V will also be used

for the extended Hermitian form on the exterior algebra Λ·V ∗
C .
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The operator we define right now helps us to compute the dual of a certain operator,
namely the ∂̄-operator, on complexified differential forms with coefficients in a Hermitian
vector bundle.

Definition A.4:
Let (W,hW ) be a finite dimensional Hermitian vector space.
There is a natural operator

∗̄V⊗W :
(
Λ(p,q)V ∗)⊗W −→ (

Λ(n−p,n−q)V ∗)⊗W ∗,

the Hodge-Star operator.
It is given implicitly through:(

h�V ⊗ hW

)
(α⊗ w, β ⊗ w′)dvolgVV = α ∧ (ιw∗̄V⊗W (β ⊗ w′)

)
extended linearly onto the whole tensor product.
For w ∈ W , the operator ιw denotes the mapping W ∗

C to C putting w into the first
component, i.e. (ιwκ)(w1, . . . , wq−1) := κ(w,w1, . . . , wq−1).

Remark A.5:

• Recall that(
h�V ⊗ hW

)
(α⊗ w, β ⊗ w′) = h�V (α, β) · hW (w,w′)

and therefore

∗̄V⊗W (β ⊗ w′) = (∗̄V β)⊗ hW (·, w′) (63)

for an operator

∗̄V : Λ(p,q)V ∗ → Λ(n−p,n−q)V ∗.

• ∗̄V⊗W and ∗̄V are C-antilinear maps.

Now, that we have defined, what the Hodge-Star operator is, we will proof a small
Lemma, that we use for the splitting of the ∂̄∗ operator into a horizontal and a vertical
part. Actually it will be used directly, when we introduce the induced holomorphic
structure of a line bundle, if we restrict it to a complex submanifold, in our case this
submanifold is the fibre of a holomorphic fibre bundle.
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Lemma A.6:
Let (V, JV , gV ), (U, JU , gU ) be two Hermitian, almost complex vector spaces and let
ϕ : U ↪→ V be an isometric embedding that is compatible with the almost complex
structures, i.e. ϕ(JU (u)) = JV (ϕ(u)).
Then for any Hermitian vector space (W,hW ) the following two statements hold.

∗̄U⊗W ◦ ϕ∗ = ϕ∗ ◦ ∗̄V⊗W ◦ ε(dvolϕ(U)⊥)

∗̄V⊗W |Λ·ϕ(U)∗ = ε
(
dvolϕ(U)⊥

)
◦ ∗̄V⊗W ◦ ε

(
dvolϕ(U)⊥

)
|Λ·ϕ(U)∗

Here, ε(α) denotes the wedge-product with α from the left hand side and ϕ(U)⊥ is the
orthogonal complement of ϕ(U) in V regarding gV .

Proof.
Because of Equation (63), the first statement is true if and only if it is true for ∗̄U and ∗̄V
without the W part.
Observe now that V = ϕ(U)⊕⊥ ϕ(U)⊥ which leads to a splitting

Λ·V ∗ = Λ· (ϕ(U)∗) ∧ Λ·
((

ϕ(U)⊥
)∗)

,

using the musical isomorphism v �→ gV (·, v) from V to V ∗.
In particular, we obtain dvolV = dvolϕ(U) ∧ dvolϕ(U)⊥ .

Now let ω be in Λp (ϕ(U)∗ ⊗R C) ∧ Λq
((

ϕ(U)⊥
)∗ ⊗R C

)
with non-zero q.

We observe that, on the left hand side, the pullback ϕ∗ω = 0 and, on the right hand side,
ε(dvolϕ(U)⊥)ω = 0.
Therefore, the statement holds for these forms.
So let from now on q equal zero, i.e. ω ∈ Λp (ϕ(U)∗ ⊗R C).
Now, look at the defining equation for the Hodge-Star-operator ∗̄V on V .
The expression:

h�V (β, ω ∧ dvolϕ(U)⊥)dvolV = β ∧ ∗̄V
(
ω ∧ dvolϕ(U)⊥

)
is zero if β is not of the type β = β′ ∧ dvolϕ(U)⊥ for a β′ in Λ· (ϕ(U)∗ ⊗R C).
On the other hand, we get for β = β′ ∧ dvolϕ(U)⊥ :

h�V (β, ω ∧ dvolϕ(U)⊥)dvolV = β′ ∧ ∗̄V
(
ω ∧ dvolϕ(U)⊥

)
∧ dvolϕ(U)⊥ . (64)

Further on, computing the left hand side, we obtain:

h�V (β, ω ∧ dvolϕ(U)⊥)dvolV =h�V (β
′, ω)dvolV

=h�U (ϕ
∗(β′), ϕ∗(ω))dvolϕ(U) ∧ dvolϕ(U)⊥ . (65)
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Now, we compare Equation (64) and Equation (65) and derive:

ϕ∗
(
β′ ∧ ∗̄V

(
ω ∧ dvolϕ(U)⊥

))
=h�U (ϕ

∗(β′), ϕ∗(ω))ϕ∗dvolϕ(U)

=ϕ∗(β′)) ∧ ∗̄U (ϕ∗ω)

which, holding for any β′, completes the proof of the first statement.

The second statement can be easily seen, using an orthonormal frame.
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B Fréchet space of sections in a vector bundle

The content of this section is to define and understand the Fréchet structure of the vector
space of smooth sections from a manifold into a vector bundle.

First of all, we define what a Fréchet space is (compare [30]).

Definition B.1:
A Fréchet space is a topological vector space F, with the following properties:

• F is metrizable.

• F is complete.

• F is locally convex, i.e. there is a basis {Bk}k∈K of the topology of F, such that
each base set Bk is a convex subset of F.

For maps into a Fréchet space F, there is a concept of differentiability.

Definition B.2:
Let F be a Fréchet space, Ω ⊂ Rn be an open subset and h : Ω −→ F be a map.

• h is partially differentiable in x ∈ Ω if for each l = 1, . . . , n there is an element
∂h
∂xl

(x) ∈ F such that

lim
0 �=t→0

t−1 (h(x+ t · el)− h(x)) =
∂h

∂xl
(x).

• h is differentiable in x ∈ Ω if it is partially differentiable in x and if the
following equation holds:

lim
y→x

(
h(y)− h(x)−

n∑
l=1

(yl − xl) · ∂h

∂xl
(x)

)
= 0.

• h is (partially) differentiable on Ω if it is (partially) differentiable in x for every
x in Ω.

Let M be a compact Riemannian manifold and Q −→ M be a smooth vector bundle with
Euclidean metric and a metric connection ∇.

Lemma B.3:
Let V ⊂ M be an open subset.
Then the space of smooth sections from V into Q denoted by Γ(V,Q |V ) becomes a
Fréchet space.
In particular, the space Γ(M,Q) is a Fréchet space.
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B Fréchet space of sections in a vector bundle

Proof. First, we have to define a topology on Γ(V,Q |V ).
Take therefore the following set of semi-norms on Γ(V,Q |V ). For each compact subset
K ⊂ V and each l ∈ N, define for s ∈ Γ(V,Q |V ):

‖s‖l,K := sup
t≤l

(
sup
x∈K

‖∇ts‖x
)
,

where ∇t denotes the map

∇t : Γ(V,Q |V ) −→ Γ
(
V,
(⊗t

i=1 T
∗M
)⊗Q |V

)
,

induced be the metric connection ∇ as well as by the Levi-Civita connection on TM .
The norm on Γ(V,

⊗t
i=1 T

∗M ⊗Q |V ) |x is given by the metric on M as well as the
Euclidean metric on Q.
That Γ(V,Q |V ) is a real topological vector space is obvious.
The local convexity can be seen by taking ε balls in Γ(V,Q |V ).
That Γ(V,Q |V ) is metrizable follows from the fact that every open set U ⊂ V can be
approximated by a sequence of compact sets {Ki}i∈N such that Ki ⊂ int(Ki+1) ⊂ U for
every i ∈ N and the fact that

‖s‖l,Ki
≤ ‖s‖k,Ki+1

for every i ∈ N (compare [30, Ch. 10.3] for the analogous result for C∞(V,Rm)).
The completeness follows now from the theorem of uniform convergence (compare again
[30, Ch. 10.3] for the C∞(V,Rm) case).

Now, Q → M is a vector bundle. Hence, we may chose a finite covering {Vj}j∈J of M
such that Q −→ M becomes locally trivial, i.e. such that there are smooth maps

ψj : Q |Vj
−→ Vj × Rm.

Lemma B.4:
Let now Ω ⊂ Rn be an open subset.
A map

ϕ : Ω −→ Γ(M,Q)

is differentiable if and only if the induced maps

ϕ |Vj
: Ω −→ Γ(Vj ,Q |Vj

)

are differentiable for all j ∈ J .

Proof. "⇒": Let ϕ : Ω −→ Γ(M,Q) be differentiable.
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Consequently, there are ∂ϕ
∂xk

(x) ∈ Γ(M,Q) for every x ∈ Ω such that

lim
y→x

∥∥∥∥∥ϕ(y)− ϕ(x)−
∑
k

(yk − xk)
∂ϕ

∂xk
(x)

∥∥∥∥∥
l,K

= 0

Defining
∂ϕ|Vj
∂xk

(x) to be ∂ϕ
∂xk

(x) |Vj
, we obtain for every x ∈ Ω, every compact subset

K ⊂ Vj and every l ∈ N:

lim
t→0

∥∥∥∥∥ϕ |Vj
(x+ t · ek)− ϕ |Vj

(x)−
∂ϕ |Vj

∂xk
(x)

∥∥∥∥∥
l,K

= lim
t→0

∥∥∥∥ϕ(x+ t · ek)− ϕ(x)− ∂ϕ

∂xk
(x)

∥∥∥∥
l,K

= 0.

Thus ϕ |Vj
is partially differentiable.

Almost the same observation for the continuity of
∂ϕ|Vj
∂xk

(x).

lim
y→x

∥∥∥∥∥ϕ |Vj
(y)− ϕ |Vj

(x)−
∑
k

(yk − xk)
∂ϕ |Vj

∂xk
(x)

∥∥∥∥∥
l,K

= lim
y→x

∥∥∥∥∥ϕ(y)− ϕ(x)−
∑
k

(yk − xk)
∂ϕ

∂xk
(x)

∥∥∥∥∥
l,K

= 0.

Hence, ϕ |Vj
is differentiable.

"⇐": Suppose now, that for every j ∈ J the map

ϕ |Vj
: Ω −→ Γ(Vj ,Q |Vj

)

is differentiable.
We now use the sheave property of the vector space of sections, i.e. we use that if two
sections si ∈ Γ(Vi,Q |Vi

) and sj ∈ Γ(Vi,Q |Vi
) coincide on Vi ∩ Vj , then there is a section

sij ∈ Γ(Vi ∪ Vj ,Q |Vi∪Vj
) such that si = sij |Vi

and sj = sij |Vj
.

Observe that we have not made use of the fact that M is compact in the "⇒"-direction
of this proof.
We conclude that by "⇒" the following equation holds.

∂ϕ |Vi

∂xk
(x) |Vi∩Vj=

∂ϕ |Vj

∂xk
(x) |Vi∩Vj

Consequently, we obtain a section ∂ϕ
∂xk

(x) for every x ∈ Ω and for each k = 1 . . . n such
that

∂ϕ

∂xk
(x) |Vj

=
∂ϕ |Vi

∂xk
(x).
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Now, we show the two limit formulae for the differentiability of ϕ:

lim
t→0

∥∥∥∥ϕ(x+ t · ek)− ϕ(x)− ∂ϕ

∂xk
(x)

∥∥∥∥
l,K

≤ lim
t→0

∑
j

∥∥∥∥∥ϕ |Vj
(x+ t · ek)− ϕ |Vj

(x)−
∂ϕ |Vj

∂xk
(x)

∥∥∥∥∥
l,K∩Vj

= 0

as well as

lim
y→x

∥∥∥∥∥ϕ(y)− ϕ(x)−
∑
k

(yk − xk)
∂ϕ

∂xk
(x)

∥∥∥∥∥
l,K

≤ lim
y→x

∥∥∥∥∥ϕ |Vj
(y)− ϕ |Vj

(x)−
∑
k

(yk − xk)
∂ϕ |Vj

∂xk
(x)

∥∥∥∥∥
l,K∩Vj

= 0

Consequently, ϕ is differentiable.

This property extends to higher differentiabilities by induction.

Corollary B.5:
Let Ω ⊂ Rn be an open subset.
A map

ϕ : Ω −→ Γ(M,Q)

is C∞-smooth if and only if the induced maps

ϕ |Vj
: Ω −→ Γ(Vj ,Q |Vj

)

are C∞-smooth for all j ∈ J .

The vector bundle Q → M becomes trivial over Vj ⊂ M , hence, we obtain an
isomorphism of vector spaces:

proj2 ◦ ψj : Γ(Vj ,Q |Vj
) −→ C∞(Vj ,R

m)

Without restrictions to generality Vj is a chart, i.e. there is a diffeomorphism

φj : Vj −→ Uj

with Ui ⊂ Rp open.
We identify now Vj with Uj to make it less difficult.

The space C∞(Vj ,R
m) becomes a Fréchet space if we apply the standard topology, i.e.

the Fréchet space structure, given by the following semi-norms.
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Let K ⊂ Vj be a compact subset and l ∈ N, define the semi-norm ‖ · ‖l,K for
f ∈ C∞(Vj ,R

m) to be:

‖f‖l,K := sup
|�t|≤l

(
sup
x∈K

∥∥∥∥∥∂�tf∂x (x)

∥∥∥∥∥
)
,

where for a tuple �t = (t0, . . . , tp) ⊂ Nn the degree of �t is given by |�t| := t1 + . . .+ tn and
the operator ∂
t

∂x is given by

∂�tf

∂x
:=

(
p∏

i=1

∂ti

∂xtii

)
f.

Now, take a s ∈ Γ(Vj ,Q |Vj
) and take a K ⊂ Vj , then there is are positive constants

C1, C2 such that:

C1 ‖s‖l,K ≤ ‖proj2 ◦ ψj(s)‖l,K ≤ C2 ‖s‖l,K .

This is due to the fact that the Euclidean metrics on
⊗

T ∗M ⊗ Vj differ from the
standard metric on

⊗
(Rp)∗ ⊗ Rm by smooth functions. These functions have on K a

maximum as well as a minimum.

Corollary B.6:
Let Ω ⊂ Rn be an open subset.
A map

ϕ : Ω −→ Γ(M,Q)

is C∞-smooth if and only if the induced maps

proj2 ◦ ψj ◦ ϕ |Vj
: Ω −→ C∞(Vj ,R

m)

are C∞-smooth for all j ∈ J .
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