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Summary

The movement of tracers in a homogeneous medium is typically associated
with diffusion on long time scales. However, if the tracers are restricted to a
fractal geometry, their movement will become anomalous, i.e. not diffusive.
This scenario is realized in the Lorentz model (LM) where non-interacting
point tracers are placed into a geometry formed by fixed hard-sphere obstacles
which are randomly overlapping. At a critical obstacle density the system
undergoes a localization transition at which transport becomes anomalous.
The dynamics in this system is well understood via a dynamic scaling theory.
The Lorentz model is an idealization of a class of heterogenous media. Far
more complex heterogeneous media show dynamics similar to the Lorentz
model, e.g. anomalous diffusion and the localization of particles. It is thus of-
ten assumed that the LM localization transition is the underlying phenomenon.
Yet, it is still entirely open how relevant the LM scenario is for the understand-
ing of realistic heterogeneous media and how strongly it becomes modified
by increasing the complexity of the systems. Especially, soft interaction po-
tentials and interactions between tracers have been suspected to modify the
localization scenario considerably, but have not yet been studied in this respect.

This work’s aims are thus two-fold. First, it tries to determine which con-
ditions are necessary for the LM scenario to be realized and whether they
are fulfilled in realistic systems. Second, it attempts to understand the rich
behavior of realistic heterogeneous media near the localization transition
by systematically increasing the complexity of the model, starting from the
Lorentz model. One of the main results of this work is that systems with soft
interactions behave fundamentally differently from their hard-sphere counter-
parts and that the localization transition in realistic systems is rounded, i.e.
that a sharp critical point where all particles become localized does not exist
anymore.

In this work, it is shown that the LM scenario can be reproduced with a
fixed matrix made of purely repulsive, soft spheres and a non-interacting gas
of tracers only if the tracers all have exactly the same energy. If the requirement
of all particles having the same energy is lifted — resulting in an ideal gas
confined in a soft matrix — the localization transition becomes rounded and
the critical scaling breaks down. A similar rounding does not occur for hard-
spheres. The rounding was quantified via a hard-sphere mapping as an average
over all tracers, with each tracer having a different critical density according
to its energy. The wide energy distribution of the tracers responsible for the
rounding is a generic feature of realistic systems, implying that the LM scenario
can apply to realistic heterogeneous media only approximately.
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Increasing the complexity of the system, the ideal gas was then replaced
with an interacting fluid. While the interacting fluid exhibited a rounded
localization transition similar to the confined ideal gas, the critical time-space
scaling of the Lorentz model was restored in certain cases — a stark contrast to
the confined ideal gas.

Increasing the fluid density was shown to enhance long-time transport in
cases. Since the energy barriers in the matrix are finite, particles are able to
push each other out of void pockets. This cannot occur in hard-sphere systems.
As a result and contradicting previous speculation, it was demonstrated that
a soft heterogeneous medium can show an effective reentrance transition —
where a localized fluid becomes delocalized simply by increasing the fluid
density — without requiring a modification of the matrix structure.

Finally, a rounded localization transition was identified in an experiment,
in which a colloidal fluid was confined in a quasi-two-dimensional random
matrix, and successfully interpreted with the help of the simulation data.



Zusammenfassung

Die Bewegung von Teilchen in einem homogenen Medium wird auf lan-
gen Zeitskalen diffusiv. Wenn allerdings der für die Teilchen zugängliche
Raum eine fraktale Struktur aufweist, wird die Bewegung anomal, d.h. nicht-
diffusiv. Diese Situation tritt im Lorentz-Modell auf, in dem ein Gas aus nicht-
wechselwirkenden, punktförmigen Teilchen in den Hohlraum einer Matrix
eingesetzt wird, die aus sich zufällig überlappenden Hartkugelhindernissen
besteht. Bei einer kritischen Dichte der Hindernisse perkoliert das Hohlraum-
volumen nichtmehr, d.h. es durchdringt nichtmehr das ganze System, sondern
zerfällt in endliche Teile. Die Dynamik der Teilchen weist bei der kritischen
Dichte einen Lokalisierungsübergang auf, der mit anomaler Diffusion auf
langen Zeitskalen verknüpft ist. Die Dynamik der Teilchen in der Nähe des
Übergangs kann mit Hilfe einer dynamischen Skalentheorie verstanden wer-
den.

Das Lorentz-Modell stellt eine starke Idealisierung einer Klasse von hetero-
genen Medien dar. Auch deutlich komplexere heterogene Medien weisen ein
Verhalten auf, das stark an das Lorentz-Modell erinnert, inklusive anomaler
Diffusion und der Lokalisierung von Teilchen. Es wird daher häufig davon
ausgegangen, dass der Lokalisierungsübergang des Lorentz-Modells auch in
diesen Systemen auftritt, obwohl es bislang ungeklärt ist, wie wichtig er für das
Verständnis dieser Systeme ist. Insbesondere wird erwartet, dass weiche Wech-
selwirkungspotentiale zwischen Teilchen und Matrix, undWechselwirkung
zwischen den beweglichen Teilchen den Lokalisierungsübergang stark beein-
flussen. Dies ist allerdings noch nicht eingehend untersucht worden.

Die Ziele dieser Arbeit sind daher wie folgt: Einerseits soll untersucht
werden, unter welchen Bedingungen der Lokalisierungsübergang des Lorentz-
Modells auftreten kann und ob diese Bedingungen in realistischen Systemen
gegeben sind. Andererseits soll versucht werden, das Verhalten von realis-
tischen heterogenen Medien in der Nähe des Lokalisierungsübergangs zu
verstehen. Dazu wird das Verhalten von einer Reihe von Systemen untersucht,
die, ausgehend vom Lorentz-Modell, schrittweise komplexer werden. Als
eines der Hauptresultate dieser Arbeit konnte gezeigt werden, dass Systeme
mit weichenWechselwirkungen sich fundamental von den entsprechenden
Hartkugelsystemen unterscheiden und dass damit in realistischen heteroge-
nen Medien der Lokalisierungsübergang abgerundet ist. Das bedeutet, dass es
keinen scharfen kritischen Punkt mehr gibt, an dem alle Teilchen lokalisiert
werden.

Zunächst wird gezeigt, dass ein nicht-wechselwirkendes Gas aus Teilchen
in einer fixierten Matrix aus abstoßenden, weichen Kugeln, nur dann einen
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Lokalisierungsübergang mit dem kritischen Verhalten der Lorentz-Modells
aufweist, wenn alle Teilchen genau die gleiche Energie besitzen. Wenn diese
Voraussetzung nicht erfüllt ist, entspricht das System stattdessen einem in der
Matrix eingeschlossenen idealen Gas und der Lokalisierungsübergang wird
abgerundet: Das Skalenverhalten, das im Lorentz-Modell in der Nähe des
kritischen Punkts auftritt, ist nicht vorhanden und es gibt keinen scharfen
Punkt mehr, an dem alle Teilchen lokalisiert werden. In Hartkugelsystemen
hingegen, zeigen diese beiden Fälle das gleiche kritische Verhalten — das des
Lorentz-Modells. Obwohl der Lokalisierungsübergang abgerundet ist, lässt
sich die Dynamik mittels einer Abbildung auf harte Kugeln als eine Mittelung
über die Dynamik des Lorentz-Modells beschreiben. Hierbei kann jedem
Teilchen ein anderer kritischer Punkt zugeordnet werden, der sich aus dessen
Energie berechnen lässt. Die breite Energieverteilung, die für die Abrundung
des Lokalisierungsübergangs verantwortlich ist, ist eine typische Eigenschaft
von realistischen Systemen. Deshalb kann der Lokalisierungsübergang in real-
istischen heterogenen Medien nur näherungsweise dem des Lorentz-Modells
entsprechen.

DurchEinführen einerWechselwirkung zwischen den beweglichenTeilchen
erhöht sich die Komplexität des Systems weiter. Während auch das wechsel-
wirkende System einen abgerundeten Übergang wie das ideale Gas aufweist,
tritt in der Nähe des Übergangs wieder das kritische Skalenverhalten des
Lorentz-Modells auf. In dieser Hinsicht unterscheidet sich das wechselwirk-
ende System stark von dem idealen Gas.

Durch Erhöhen der Dichte der beweglichen Teilchen beschleunigt sich die
Dynamik auf langen Zeitskalen. Dies wird dadurch ermöglicht, dass sich die
Teilchen gegenseitig aus den Poren der Matrix schieben. Dies ist wiederum
nur möglich, da die Energiebarrieren zwischen den Poren endlich sind. Da
in Systemen aus harten Kugeln keine endlichen Barrieren vorkommen, ist
solch ein Verhalten dort nicht möglich. Außerdem konnte hier gezeigt werden,
dass ein vormals lokalisiertes System in der Nähe des Lokalisierungsübergangs
durch Erhöhen der Dichte der beweglichen Teilchen delokalisiert werden kann.
Vormalig war spekuliert worden, dass solch ein Übergang nur in Systemen
möglich sei, in dem die beweglichen Teilchen einen Einfluss auf die Matrix
haben, was hier ausgeschlossen ist.

Zu guter Letzt wurde es durch die Simulationen ermöglicht, einen abgerun-
deten Lokalisierungsübergang in einem Experiment zu identifizieren und
diskutieren, in demeine kolloidale Flüssigkeit in einer quasi-zweidimensionalen
Matrix eingeschlossen war.
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Introduction

Heterogeneous media are ubiquitous in every-day life, be it fluids inside
sponges, or water percolating through ground coffee. Heterogeneous media
are a class of systems which consist of a mobile component confined to a
porous and network-like host geometry. How the mobile component explores
the geometry is a fundamental and unanswered question as its properties of
transport are found to be highly dependent on the structure of the host.

In one of his celebrated works of 1905, Einstein (1905) showed that the
dynamics of a tracer particle in a homogeneous medium always becomes
diffusive at long times: Uncorrelated collisions of the tracer with the medium
necessarily lead to a Gaussian probability distribution of displacements as a
result of the central limit theorem, with the width of the distribution increasing
linearly with time. Thus, the mean-squared displacement of the tracer grows
linearly in time.

In contrast, a tracer in a heterogeneous host structure exhibits much richer
behavior. For instance, in a fractal host structure its motion at long times
becomes anomalous, i.e. the mean-squared displacement grows non-linearly
in time.

Anomalous diffusion occurs in many heterogeneous media, which has
implications for their transport properties, and naturally one would like to
understand how it arises. For one of the most idealized heterogeneous media,
the Lorentz model, the origin of anomalous diffusion is fully understood, but
it is unclear whether this scenario applies to more complex systems as well.

In the Lorentz model (Lorentz, 1905; Beijeren, 1982), randomly overlapping
obstacles are fixed in space to form a matrix and a single point-like tracer
particle is inserted into its void space. The number density of obstacles is
the only control parameter of the system and the dynamics of the tracer are
entirely determined by the structure of the obstacle matrix.

At low obstacle densities the tracer is free to explore most of the network,
which leads to diffusive motion of the particle at long times. Upon increasing
the density, the matrix becomes denser until at a critical point the void space
disconnects and forms finite pockets, localizing the tracer. This critical point
has been identified with the percolation point of the void space (Stauffer and
Aharony, 2003; Ben-Avraham and Havlin, 2000). The tracer thus undergoes
a dynamic critical transition entirely determined by the static structure of
the matrix. Upon approaching the percolation point, a correlation length,
which describes the size of the largest finite clusters, is found to diverge and
the entire void space becomes fractal. This property allows the application of
renormalization group theory to determine the critical behavior of the system.
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Directly at the percolation point, the tracer exhibits anomalous diffusion,
δr2(t) ∼ t2/z , with the dimension-dependent dynamic exponent z > 2.

The transport in the Lorentz model is thus well understood, but it also
contains strong idealizations not typically found in realistic systems. Hence,
its usefulness in describing the dynamics in more complex systems might be
limited. But as the dynamics of more complex heterogeneous media have
shown similarities to the Lorentz model, there is hope that its dynamic critical
phenomenonmight be realized even if its idealizations do not apply. Thiswould
be powerful, since it would demonstrate the universality of the localization
transition and allow semi-quantitative predictions to be made.

To establish the relevance of the dynamic critical phenomenon of the
Lorentz model for the dynamics in heterogeneous media (or lack thereof), its
idealizations are systematically tested, here. The thesis focuses in particular on
two main aspects of realistic systems:

1. A soft interaction potential between tracer and obstacles which introduces
finite energy barriers into the void structure and is expected to have a strong
effect on the underlying percolation transition.

2. Introducing an interacting fluid of mobile particles, a main differentiator
between the one-particle Lorentz model and realistic systems.

Structure of the thesis Thework is organized as follows. First, an introduction
into the theory of the Lorentz model and an overview over the literature on
heterogeneous media relevant for this work is given.

Then, as a well-controlled starting point, the Lorentz model is reproduced
with weakly correlated, soft obstacles and single-energy non-interacting tracer
particles in chapter 2. In that system, the presence of a localization transition
is confirmed and a range of Lorentz model scaling predictions are successfully
tested. A mapping of the soft sphere system onto hard-spheres is discussed,
which clarifies the role of energy as an implicit control parameter.

Then, in chapter 3, the tracers are replaced by an ideal gas with a wide
energy distribution, a natural step towards an interacting fluid component.
The energy distribution leads to a rounding of the critical dynamics of the
system close to the critical point. The rounding can be understood easily as an
averaging over the single-particle dynamics: A fast tracer can overcome certain
energy barriers which a slower particle cannot. Thus each particle obtains a
different effective interaction diameter as a function of its energy. This notion
is formalized using the discussed hard-sphere mapping. Importantly, the
rounding of the transition leads to a break-down of scaling. With the help of
the presented simulation results, a rounded localization transition is identified
and interpreted in an experiment.

Introducing interactions between the fluid particles turns the system into
a quenched-annealed mixture, which is studied in chapter 4. The interactions
between the fluid particles slow down the dynamics on intermediate time
scales, as the particles become trapped in cages formed by their neighbors. On
long times, however, a speeding up of the dynamics is found, as particles push
each other over energy barriers. This even leads to a reentrance transition,
where systems with a constant fluid diameter transition from a localized to a
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delocalized state upon increasing the fluid number density. This effect occurs
without the modification of the matrix structure and is not possible in hard-
sphere qa mixtures. A comprehensive discussion of the results in comparison
to the literature is made.

A precursory study of the corrections to the fluid-particle dynamics intro-
duced by correlations in the matrix is shown in chapter 5. The more strongly
correlated the matrix structure is, the more pronounced a caging-like slowing
down of the dynamics on intermediate times is found. The long-time dynamics
are shown to be independent of matrix correlations.





1
Theory of the Lorentz model and heterogeneous media

This chapter gives an overview on the theory of the Lorentz model. On the
example of the random walk, regular diffusion will be discussed shortly and
scaling concepts will be introduced. After a short introduction on fractals,
the predictions of scaling theory for the Lorentz model will be summarized.
The predictions of mct for the Lorentz model on the percolating cluster are
then studied. In the end, the literature is discussed with a focus on works
which provide a connection between the Lorentz model and more complex
heterogeneous media.

1.1 The random walk and scaling concepts

1.1.1 Random walk

The simplest model for stochastic dynamics is the random walk. It considers
the dynamics of a walker, a point-like object that moves on a discrete lattice,
one step at a time. The dynamics of the random walk contain a time-space
scaling invariance and thus provide an opportunity to introduce the reader to
the scaling concepts necessary for the understanding of the Lorentz model.

The simplest realization of the randomwalk is that of a orthonormal lattice
of spacial dimension d and unit spacing between lattice sites, where the walker
starts at the origin and has equal probability to move to one of the neighboring
sites.

At each time step j, the walker performs a jump e⃗ j , which is a stochastic
variable. Its value is either one of the base vectors of the lattice or its negatives.
After n time steps, the walker has moved away from the origin by

r⃗(n) = n∑
j=1

e⃗ j .

Two exemplary trajectories of the random walk in two dimensions are given
in fig. 1.1.

Figure 1.1: Two random walk trajectories on a or-
thonormal lattice in two dimensions after n = 1000
steps.

Each realization of a trajectory for the walker will be different. Important
for the understanding of the walker’s behaviour are thus averages over all pos-
sible trajectories. These averages are denoted by ⟨. . .⟩. Since all directions are
equally probable, the average over all possible steps at any one point vanishes,⟨e⃗ j⟩ = 0. Therefore, the average displacement also vanishes

⟨r⃗(n)⟩ = 0.
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So, on average, the walker will explore all directions with equal probability.
But the average distance to the origin does not vanish, and can be calculated
with the mean-squared displacement (msd). Because individual steps of the
walker are independent, it follows that ⟨e⃗ j ⋅ e⃗k⟩ = δ jk (Kronecker-δ), and that
the msd grows linearly with the number of steps,

⟨r2(n)⟩ = ⟨⎛⎝ n∑
j=1

e⃗ j
⎞⎠
2⟩ = ⟨ n∑

j=1
e⃗ j ⋅ e⃗ j⟩ + ⟨ n∑

j=1

n∑
k=1,≠ j

e⃗ j ⋅ e⃗k⟩ = n.
The linear growth with time of themean-squared displacement is called regular
diffusion. The generalization to arbitrary lattice spacing a and the introduction
of a time step unit τ with the time t then being defined by t = nτ leads to
⟨r2(t)⟩ = 2dDt,

with diffusion coefficientD ∶= a2/(2dτ). The diffusion coefficient incorporates
the constants of the random walk and thus contains the full information about
the dynamics of the random walk. The equation clearly exposes both the
linear time-dependence of the msd and that the msd is invariant under the
appropriate rescaling of the time step and the length scale where D and t are
kept constant. This allows performing the continuum limit, where one gets rid
of the discrete steps in space and time,

a → 0 and τ → 0, while a2

τ
= const.

A full probabilistic description of the walker is given by its probability
distribution P(r⃗, t), which gives the probability of the walker being displaced
at time t by the distance vector Δr⃗(t) ∶= r⃗(t) − r⃗(0) from its original position
at time t = 0,

P(r⃗, t) ∶= ⟨δ(Δr⃗(t) − r⃗)⟩. (1.1)

This quantity is also called the self-part of the van-Hove autocorrelation
function, or short, the van-Hove function, (van Hove, 1954; Hansen and Mc-
Donald, 2006). The trajectory average for any statistical variable a(r, t) can
then be formally expressed as a volume integral over this probability distribu-
tion

⟨a(r, t)⟩ = ∫ a(r, t)P(r⃗, t)dd r⃗.
For instance, the mean-squared displacement can be written as

⟨r2(t)⟩ ∶= ⟨(r(t))2⟩ = ∫ r2P(r⃗, t)dd r⃗.
Since the lattice is translationally invariant, it does not matter, where the
walker started from, and the mean-squared displacement can be written more
generally δr2(t) ∶= ⟨(r(t) − r(0))2⟩ = ⟨r2(t)⟩.

The van-Hove function allows for the definition of moments. The k-th
moment is defined by

⟨rk⟩ = ∫ rkP(r⃗, t)dd r⃗.
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Thus the mean-squared displacement is the second moment of the van-Hove
function. A probability distribution can be decomposed into its moments and
the knowledge of all moments completely determines the original probability
distribution.

For the random walk, the calculation of the van-Hove function is simple.
As each step of the random walk is described by the same random variable of
finite variance, its probability distribution tends to a Gaussian distribution in
the long-time limit, as governed by the central limit theorem (Rice, 1988),

P(r⃗, t) = 1(4πDt)d/2 exp(− r2

4Dt
) .

As the system is isotropic, the probability distribution only depends on r ∶= ∣r⃗∣.
The van-Hove function can be brought into a scaling form, which reflects

that the function at two different times has the same shape and one can be
scaled on top of the other by rescaling space appropriately. This property
allowed performing the continuum limit in the first place. The scaling form is
achieved by introducing the dimensionless variable r̂ ∶= r/√2Dt, with which
one readily obtains

P(r, t) = r−dP(r̂), (1.2)

with scaling function

P(r̂) = 1(2π)d/2 r̂d exp(− r̂2
2
) . (1.3)

The prefactor r−d in the scaling form of the van-Hove function reflects
that the van-Hove function is a probability density and can be seen as a trivial
dimensional contribution which ensures that the integral of the van-Hove
function can be normalized. Apart from this prefactor, the shape of the van-
Hove function is given by the scaling function P(r̂).

This scaling form implies that the trajectory of a random walk itself is
scale-free, i.e. that it is a self-similar structure that can be characterized by a
fractal dimension.

1.1.2 Fractals

Fractals are geometric objects which look similar or in some cases exactly
the same regardless of the distance they are viewed from. This property is
called self-similarity or scale-invariance. A typical way of obtaining such
structures is by iteratively constructing them with a set of geometric rules. For
instance, the Sierpinski triangle, a fractal, is generated by taking a triangle and
iteratively removing the center triangle of the first and all resulting triangles.
The procedure is illustrated in fig. 1.2. After infinitely many iterations the
Sierpinski triangle looks the same on all length scales (provided they are far
smaller than the size of the original triangle).

A generic property of fractals is that a non-integer spatial dimension can
be assigned to them, the fractal dimension df. For instance for the Sierpinski
triangle, the more iteration steps are performed, the lower the area of the
triangle becomes and the longer the length of its boundary. In fact, after
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Figure 1.2: The original triangle and the first 4 itera-
tions of the Sierpinski triangle. (Source: Wikipedia)

infinitelymany iterations, its area vanishes, while its boundary length diverges.1 1 Area An after n iterations with area A0 of the origi-
nal triangle:

An = A0 ⋅ (3/4)n → 0.

Boundary length Ln after n iterations with the bound-
ary length L0 of the original triangle:

Ln = L0(1 + (1/3)
n
∑
i=0
(3/2)i) → ∞.

Because it has no measurable area or length, the Sierpinski triangle is neither
a two-dimensional nor a one-dimensional object.

The fractal dimension describes how fractal objects scale when the space in
which they are embedded is rescaled: If a df-dimensional object with length L
(i.e. any linear measure of its size) is rescaled by a factor b in each direction,
its mass then scales with

M(bL) = bdfM(L), (1.4)

just like a two-dimensional object quadruples its area if one doubles its lin-
ear extent or three-dimensional object increases its volume eight-fold if one
doubles its linear extent. From eq. (1.4), it immediately follows, that the (df-
dimensional) mass of a fractal is a homogeneous function with some propor-
tionality factor A,

M(L) = ALdf . (1.5)

This equation then allows the following interpretation: The mass inside a
volume parametrized with length L scales as M ∼ Ldf . This can, for instance,
be a cube with side length L. Note, that therefore the mass density of a fractal
calculated in its embedding integer-dimensional space vanishes, M(L)/Ld ∼
Ldf−d → 0, for L →∞.

1.1.3 Random walk as a stochastic fractal

It is not necessary to use a deterministic iterative rule to construct a fractal.
The rule can be probabilistic instead, leading to a stochastic fractal. In the case
of the Sierpinski triangle, the generator could be to divide the original triangle
into four identical triangles and instead of removing the middle one, remove
one of the four randomly. Even though the structure then cannot be exactly
mapped onto itself be rescaling it, it is still called self-similar. This is because
the probability distribution of its holes stays scale-invariant.

Random walks are a stochastic fractal. The trajectory of the random walk
is generated by the steps of the walker and after infinitely many steps the
trajectory becomes self-similar, as evidenced by the scaling-invariance of the
resulting gaussian probability distribution, see eq. (1.2). The self-similarity
of the random walk is apparent to the eye in the three trajectories shown in
fig. 1.3, which show very similar structures and shapes although being of vastly
different lengths.

Figure 1.3: Random walk trajectories of length n =
103, 104, and 105 (top to bottom).

In the case of the random walk, its fractal dimension is called walk di-
mension, denoted by dw. The walk dimension can be determined with the
following argument. Pick any point on the trajectory. Then all sites on the
trajectory that are less than some maximum elapsed walking time t away from
that point form a connected structure (this is the same as letting a walker start
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at that point and then using the whole trajectory after time t). The average
linear extent of that structure can then be measured with the root of the msd,
R(t) ∶= √δr2(t). The length of the trajectory then may serve as the mass
M(R) of the trajectory. Since the length is proportional to the elapsed time t,
one finds

M(R) ∼ t ∼ δr2(t) = R2.

The fractal dimension of the random walk is therefore dw = 2. Therefore, for
d ≤ 2 the random walk trajectory eventually fills space. Some definitions of
fractals require that the fractal dimension be strictly smaller than the spatial
dimension, df < d. Then, the random walk cannot be considered a fractal. Of
course the time-space scaling property of the random walk is unchanged by
this, as is its self-similarity.

A peculiarity of the random walk is that its fractal dimension is the same
regardless of the dimension of the embedding space in which the walk is
performed.

Diffusion on fractals Themean-squared displacement depends on the walk
dimension in the following way

δr2(t) ∼ t2/dw .

Instead of performing a regular random walk on a orthonormal lattice,
the walker can be constrained to a fractal. Then, the directions available to
the tracer at each step are correlated, making the dynamics non-Markovian.
Compared to the value dw = 2 for the regular randomwalk, the walk dimension
then generically increases. As a consequence, the msd does not grow linearly
with time but instead exhibits anomalous diffusion, i.e. it grows subdiffusively
with a power-law in time with an exponent 2/dw < 1.

This is the basis for the anomalous dynamics in the Lorentz model, which
essentially comprises of a walker on a fractal network.

1.2 Lorentz model

What follows is mainly a summary of the relevant results. For a complete
introduction to percolation and the Lorentz model, see (Ben-Avraham and
Havlin, 2000; Stauffer and Aharony, 2003; Höfling and Franosch, 2013).

The Lorentz model comprises a single, point-like tracer in a fixed matrix of
overlapping obstacles of diameter σ . For a schematic, see fig. 1.4. The diameter
σ sets the microscopic length scale of the system. N obstacles are randomly
placed in a volume V of dimension d. The volume and number of obstacles
must be large enough, so that the system can be considered in the limit of
infinite system size,

N →∞,V →∞ while n = const.
Figure 1.4: Schematic of the Lorentz model. Ran-
domly placed obstacles in grey, point-like tracer as
black dot.

Tracer and obstacles interact as hard-spheres. Instead of using a point-like
tracer it is also possible to assign a diameter to it. Then, the void space available
to the tracer center remains the same as long as the sum of the tracer diameter
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and obstacle diameter remains the same. Thus, σ sets the minimum distance
between tracer center and obstacle centers. Because the matrix structure is
completely random, it can be fully described via a single control parameter:
the reduced number density of obstacles,

n∗ = n(σ/2)d . (1.6)

The void space available to the tracer forms distinct clusters which are
separated from each other by obstacles. With increasing n∗, clusters become
smaller and are separated into smaller clusters. At low obstacle densities, one
cluster will be found to percolate the whole system, while at high enough
densities this is not possible. In-between there is a critical point, the percola-
tion point n∗c , where the percolating cluster ceases to exist. Apart from this
percolating cluster, the system contains finite void clusters at all densities.

At obstacle densities below the percolation point the tracer is typically free
to explore most of the network, which leads to diffusive motion of the particle
at long times. At densities above the percolation point, the tracer is trapped
in a finite pockets. Directly at the percolation point, the void space is fractal
in structure, and the tracer exhibits anomalous diffusion. Close to the critical
point, a correlation length ξ—ameasure of the linear extent of the largest finite
cluster — is found to diverge. This allows the application of renormalization
group techniques to determine the critical behavior of all static and dynamics
quantities.

The tracer undergoes a dynamic critical transition entirely determined by
the static structure of the matrix. It is thus necessary to fully characterize the
structure of the void space at and close to the percolation point, before the
dynamics of the Lorentz model can be discussed.

Because the system becomes scale-free at the transition, and the scale-
invariance is cut-off by a correlation length which diverges in the approach
to the transition, it is possible to determine the power-law behavior of all
critical quantities. One identifies three independent exponents: An exponent
describing the structure of the system at the critical point, another exponent
describing the modifications to the structure in the approach to the transition,
and lastly, an exponent for the conductivity of the void structure.

1.2.1 Percolation

Directly at the percolation transition the percolating cluster has a fractal
structure with fractal dimension df < d, e.g. its size inside a volume with linear
extent L scales as s∞(L) ∼ Ldf (the fractal scaling holds as long as the size
of individual obstacles is negligibly small, L≫ σ). In fact, at the percolation
point not only the percolating cluster but the whole system is self-similar with
the same fractal dimension. As a consequence, the probability distribution of
cluster sizes s is given by a power-law, p(s) ∝ s−1−d/df and the linear extent Rs

of the clusters scales with their weight as expected for fractals, s ∝ Rdf
s .

Away from the transition, the full self-similarity is lost. The system only
appears self-similar when it is viewed from not too far a distance. A correlation
length ξ arises, which represents the typical linear extent of the largest occur-
ring finite clusters. Essentially, the probability distribution of cluster sizes p(s)
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is cut off at ξ: it decays exponentially on the length scale ξ. For n∗ < n∗c , the in-
finite percolating cluster then only appears fractal on length scales L≪ ξ. The
whole system is self-similar on such length scales L≪ ξ, too. On length scales
larger than the correlation length the whole systems appears homogeneous
instead. The correlation length ξ thus marks the crossover between a fractal,
self-similar regime and a translationally invariant, homogeneous regime.

It is convenient to define a dimensionless separation parameter ε which
helps expressing the power-law behavior of quantities near the localization
transition,

ε ∶= n∗ − n∗c
n∗c

. (1.7)

The correlation length diverges as ξ ∼ ∣ε∣−ν , with critical and universal
exponent ν. For n∗ > n∗c , there is no percolating, infinite cluster. The same
correlation length ξ can be identified and is found to diverge in the same way
as in the percolating system. The system is again self-similar on length scales
L with σ ≪ L≪ ξ and becomes homogeneous on length scales L≫ ξ.

In approaching the percolation point, many other structural quantities obey
power-laws as well; they either vanish or diverge with critical exponents of
their own. This is what is known as the scaling hypothesis. The critical behavior
of all these quantities can be related to the fractal structure of the system at
the critical point and to the way in which ξ diverges. All critical exponents
of structural quantities may therefore be expressed as a function of only two
exponents, df and ν.

For instance, the percolation point can be expressed formally as the obstacle
density where the size of the percolating cluster s∞ in relation to the size of the
whole system V undergoes a continuous phase transition. Then, for n∗ > n∗c ,
one has strictly s∞/V = 0, while below the critical density one finds that the
infinite cluster’s size decreases with the critical exponent β in the approach to
the percolation point,

s∞/V ∝ ∣ε∣β .
From a simple scaling argument2 β can be deduced, 2 The size of the percolating cluster s∞(L) inside a

given volume V of extent L scales as s∞(L) ∼ Ldf ,
as long as L ≪ ξ. Then the probability of any given
test volume inside V belonging to the infinite cluster
in that region is s∞(L)/V ∼ Ldf−d . For the whole
infinite cluster that same probability s∞/V is given
by setting L = ξ, because that is the largest scale
on which the cluster is self-similar, while the value
of s∞(L) stays constant for L > ξ (because of the
homogeneity of the structure). Therefore

s∞/V ∼ ξdf−d .

Plugging in the critical expressions for both sides of
the equation and comparing the exponents leads to a
hyperscaling law (it obtains the name hyperscaling,
because it involves the spatial dimension d)

∣ε∣β ∼ ∣ε∣−ν(df−d),
⇒ β = ν(d − df).

β = ν(d − df). (1.8)

If one prefers, one can also see ν and β as the fundamental exponents,
and express df through them. In two dimensions, it is possible to calculate
the critical exponents analytically (Stauffer and Aharony, 2003), for three
dimensions they can only be determined numerically. The values are reported
in table 1.1.

Universality As is common for critical phenomena, the reported critical
exponents hold for a wide range of systems, which are then said to belong
to the same universality class. It does not matter, for instance, whether the
obstacles are defined as overlapping spheres, or as blocked sites on a grid. This
is an insight gained by renormalisation group theory, in which the critical
exponents are derived in a systematic coarse-graining of the system, where the
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self-similarity of the system is used to relate the systemondifferent length scales
to each other. The coarse graining is then expressed as a flow in parameter
space, in which the universal values of the exponents are determined by a
fixed-point. The microscopic differences between different systems become
irrelevant in the coarse graining.

Connection to random resistor networks In order to understand transport
in a percolating system, it has to be mapped to a random-resistor network.
The void space can be thought of as consisting of void pockets connected via
channels. The void pockets are then represented as nodes and the channels as
edges between the nodes, forming a network of randomly connected nodes.
The electric resistance of each edge is then defined as a function of the channel
width.

Closed-off clusters in the void space are then represented by parts of the
network being cut-off from the rest, or of the connecting edges having infinite
resistance. Increasing the density of obstacles decreases the width of channels
and increases their resistance. At the percolation threshold the random resistor
network is divided into separate parts with no part of the network reaching
through the whole system.

The random resistor network for a obstacle configuration can be constructed
from the Voronoi tesselation of the obstacle centers, see (Sung and Yethiraj,
2008a) and references therein. The tesselation divides the whole system into
volumes such that for each obstacle center there is exactly one volume contain-
ing all points which are closer to that center than to any other. The edges of
these volumes then present the channels of the random resistor network and
the vertices where the edges meet are its nodes. A channel is open to transport
if the two neighboring obstacles do not overlap it and closed otherwise. In this
fashion, each void cluster can be identified with a set of connected nodes.

A third independent critical exponent μ is needed to describe the dynamics
in a percolation network. It describes how the macroscopic conductivity Σ
vanishes at the percolation point,

Σ ∼ (−ε)μ .
Different from the two geometric critical exponents df and ν, μ is not generally
the same in lattice and continuum percolation. In continuum percolation it
is possible that the distribution of channel widths exhibits a divergence in
the limit of vanishing channel width. If that divergence is strong enough to
dominate the renormalization flow, then the exponent μ becomes larger than
the lattice value. This does not occur in 2d, but it does in 3d (Machta and
Moore, 1985; Höfling et al., 2008). The values of μ for the different cases are
reported in table 1.1.

1.2.2 Scaling theory of the dynamics

Now that the geometric scaling of the void space is described, a tracer can be
inserted into it. This situation is in the same universality class as the random
walker on the lattice percolation network, known as the “ant in the labyrinth”,
a term first coined by de Gennes (1976).
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d 2 3

geometric: df 91/48s 2.530(4)h2

ν 4/3s 0.875(1)h2

β 5/36s 0.41s

dynamic: lattice continuum
μ (all clusters) 1.31g 2.06 2.88h1

dw 2.878(1)g 3.88(3)h2 4.81(2)h2

z (all clusters) 3.036(1)h2 5.07(6)h2 6.30(3)h2

Table 1.1: Geometric and dynamic critical exponents
of percolation. The digit in parentheses gives the un-
certainty interval in the last digit. Key to the sources:
g: (Grassberger, 1999); h1: (Höfling et al., 2008);
h2: (Höfling and Franosch, 2013), p. 15; s: (Stauffer
and Aharony, 2003), p. 52. The lattice value for μ in
3D was calculated from dw using eq. (1.10)

Here, the tracer obeys Newtonian dynamics, but other dynamics, like Brow-
nian dynamics, are also possible. Its velocity v⃗ then determines a microscopic
timescale τ = σ/∣v⃗∣. Scattering of the tracer by obstacles changes the direction
of the velocity but leaves the energy of the tracer conserved. The microcanonic
average ⟨. . .⟩ is defined as the average over all possible trajectories of the tracer.

Dynamics on the percolating cluster The simplest case is when the tracer is
placed onto the percolating cluster directly at the critical point. Then the
percolating cluster is fractal on length scales L larger than the diameter of
the obstacles, L ≫ σ . The tracer will then perform anomalous diffusion for
indefinite times (as soon as individual scattering events do not play a role
anymore, t ≫ τ),

δr2(t) ∼ t2/dw .

The walk dimension dw was already introduced for the regular walk. It can be
used instead of μ as the fundamental dynamic critical exponent. A relation
connecting the two exponents will be given in a moment.

Away from the critical point, for densities below the percolation point, the
cluster is only self-similar up to the correlation length ξ, and appears homoge-
neous above that. The dynamics of the tracer thus shows two distinct regimes.
On distances shorter than the correlation length, the percolating cluster ap-
pears fully fractal, and thus the tracer will still show anomalous diffusion. But
after having exceeded the correlation length, the matrix appears homogeneous
and due to the central limit theorem the dynamics will necessarily become
diffusive, δr2(t) ∼ D∞t (the index∞ is to denote quantities defined on the
percolating cluster).

The crossover between these two regimes is given by the correlation length
ξ and a crossover time tx can be defined by

δr2(tx) ∼ t2/dw
x

!= ξ2.

Therefore, the crossover time diverges along with the correlation length as

tx ∼ ξdw .

The diffusion coefficient D∞ vanishes at the critical point with a critical
exponent μ∞, which can be related to either μ or dw,

D∞ ∼ (−ε)μ∞ .
At tx , the two asymptotes of anomalous and regular diffusion can both be

expected to approximately hold. The comparison then allows determining the
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relationship of μ∞ to the fundamental critical exponents. Thus,

t2/dw
x ∼ D∞tx ,

leads to,

μ∞ = ν(dw − 2).
All-cluster average of the dynamics The more general scenario is to allow
the tracer onto all clusters. This case will be especially important in the soft-
sphere systems considered later, where it is often not possible to identify the
percolating cluster and thus the whole network has to be sampled.

Including all finite clusters decreases the exponent of the anomalous diffu-
sion. When a tracer is trapped on a finite cluster, the tracer performs anomalous
diffusion just as on the infinite cluster if it has not yet explored the whole cluster.
If the walker had time to explore the full cluster, then its msd has converged
to a finite limit which then is a measure of the cluster size. By averaging over
the power-law distributed cluster size distribution, one obtains

δr2(t) ∼ t2/z , while τ ≪ t ≪ tx .

with the exponent z given by

z = dw

1 − (d − df)/2 . (1.9)

On the percolating side of the transition, n∗ < n∗c , the msd again becomes
diffusive once the crossover time tx is exceeded,

δr2(t) ∼ 2dDt.

Through an Einstein relation, D can be connected to the macroscopic conduc-
tivity Σ introduced above, Σ ∼ D. Thus D vanishes at the transition as

D ∼ (−ε)μ .
Finally, as D is closely related to D∞, μ can be connected to μ∞ and dw: Only
the percolating cluster contributes to the long-time diffusion but in the all-
cluster average most trajectories are not on it. Thus the diffusion coefficient is
suppressed by a factor given by the relative weight of the percolating cluster
which vanishes with exponent β = ν(d − df). Thus the exponent of the all-
cluster diffusion coefficient is given by,

μ = μ∞ + β= ν(dw − 2 + d − df). (1.10)

With this, either μ or dw are conventionally chosen as the fundamental dynam-
ical exponent. The values of the critical exponents are compiled in table 1.1.

On the localized side of the transition, n∗ > n∗c , the msd converges to the
mean-cluster size,

δr2(t) ∼ l 2,
which also diverges at the critical point3,

3 The msd is dominated by the largest clusters’ con-
tributions, which have size ξ ∼ ∣ε∣−ν . The long time
limit of the cluster-resolved msd is δr2s (t) ∼ ξ2 and
the probability of a particle being inside any of the
large clusters is ∼ ∣ε∣β . The averaging over all clus-
ter sizes therefore reduces to the contribution by the
large clusters

δr2(t →∞) ∼ ∣ε∣−2ν+β ,
and

−2ν + β = ν(−2 + d − df).
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l ∼ ∣ε∣−ν(2−d+df)/2. (1.11)

Themean-cluster size l is also called the localization length, and it diverges with
the correlation length as l ∼ ξ1−(d−df)/2 and with the crossover time l ∼ t1/zx .
The exponent of the localization length can be written more tightly as

−ν(2 − d + df)/2 = −νdw/z. (1.12)

Dynamic scaling hypothesis The only relevant length scale for the dynamics
near the percolation point is the correlation length ξ, which serves as a cutoff
to the self-similar structure of the percolation network. This was used to deter-
mine the divergences of geometric and dynamic quantities in the approach to
the critical point. The dynamic scaling hypothesis (Hohenberg and Halperin,
1977) goes further than that. It assumes that all dynamic quantities only de-
pend on time and space in relation to ξ: it states that the full time and space
dependence of dynamic quantities have a homogeneous scaling form near the
critical point. This hypothesis is an extension of the static scaling laws found
for static critical phenomena (Goldenfeld, 1992). Thus the scaling form for the
msd can be given as,

δr2(t) = t2/zδR2
±(t̂), (1.13)

with t̂ ∶= t/tx and tx ∼ ξ−dw ∼ l−z . The scaling functions R2
−(t̂) and R2

+(t̂)
then describe the behavior of the msd on the delocalized and the localized
sides of the percolation point, respectively. At short times, τ ≪ t ≪ tx ,
the scaling functions are both constant with the same value, and the scaling
reduces to anomalous diffusion. At long times, t̂ ≫ 1, long-time diffusion is
reproduced by R2

−(t̂) ∼ t1−2/z on the delocalized side, while on the localized
side R2

−(t̂) ∼ t2/z holds. This scaling form contains the information provided
by all three critical exponents: the fractal dimension of the percolating cluster,
the divergence of the correlation length setting the cross-over, and the scaling
of the conductivity.

Time-space scaling on the percolating cluster A similar scaling form can be
written down for the van-Hove function. In the Lorentz model, the tracer
moves on fractal structures, where the available paths are correlated (simply
because the allowed directions are not orthonormal and not the same at each
point), so its dynamics are not Markovian anymore. Therefore, all connected
probability functions are needed in principle to fully describe the dynamics.
Still, the van-Hove function remains a very important quantity.

In the case of regular diffusion, the van-Hove function was a Gaussian, and
a scaling function which combined the time and space dependence into a
single variable was easily found, see eq. (1.3). The typical assumption for the
scaling form of the van-Hove function in fractal systems can be applied to the
Lorentz model (Kertesz and Metzger, 1983; Ben-Avraham and Havlin, 2000),
and can be seen as a generalization of the form for regular diffusion. Directly
at the critical point, it incorporates the scaling of the dynamics with the fractal
dimensions dw and df,

P∞(r, t; n∗c ) = r−d P̃∞(rt−1/dw). (1.14)
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for large distances, σ ≪ r, and long times, τ ≪ t. The reasoning for that
form is that the van-Hove function has to satisfy both the scaling properties
of the underlying fractal structure and of the dynamics. The prefactor r−d

again reflects that the van-Hove function is a probability density and ensures
that it is normalizable. Furthermore, the van-Hove function has to follow the
time-space scaling of anomalous diffusion, t1/dw ∼ r. This is enforced in the
argument of the scaling function P̃∞, which makes sure that the shape of the
van-Hove function at a time t is always the same on the length scale rdw . This
is analogous to the time-space scaling r̂ ∼ r/√t in the case of regular diffusion.
Furthermore, the scaling function P̃∞ is expected to decay rapidly for r ≫ t1/dw .
The scaling of the underlying fractal structure of void space is contained in
the scaling function P̃∞(x) at very small arguments x ∶= rt−1/dw . This can
be motivated with the following, heuristic argument laid out by Höfling et al.
(2011). The return probability Π(w, t) is defined as the probability that the
tracer has stayed or returned to a sphere of radius w around its origin after the
time t,

Π(w, t) ∶= ∫
r≤w

rP∞(r, t)dd .
If the tracer has explored its surroundings for long enough, w ≪ t1/dw , then
it can be assumed that close to its origin the void structure has been fully
and equally explored, and the return probability becomes proportional to the
enclosed fractal volume, Π(w, t) ∼ wdf . Via eq. (1.14), this implies in turn thatP̃∞(x ≪ 1) ∼ xdf .

Away from the critical point, the correlation length enters into the scaling of
the van-Hove function in the following way (Ben-Avraham and Havlin, 2000;
Kertesz and Metzger, 1983; Kammerer et al., 2008),

P∞(r, t; n∗) = ξ−dP∞(r/ξ, tξ−dw).
provided that r, ξ ≫ σ and t ≫ τ. The new scaling function reduces to the
previous function at the critical point4, i.e. 4 The dependence of the scaling function on ξ gets

lost in the limit in a well-defined way, leaving behind
a less complicated scaling function.

The scaling function P∞ has to asymptotically
reduce to another scaling function such that the di-
verging powers of ξ cancel each other out at. This
can only be accomplished if r and t show up as a
product where the ξ terms cancel each other out.
The prefactor ξ−d must be cancelled by the scal-
ing function, as well. Thus, P∞(r/ξ, tξ−dw) →
(ξ/r)d P̃∞[(r/ξ)(tξ−dw)−1/dw ].

lim
ξ→∞

P∞(r/ξ, tξ−dw) = (ξ/r)d P̃∞ [(r/ξ)(tξ−dw)−1/dw] .
The intermediate scattering function (isf) is the Fourier transform of the

van-Hove function,

F∞(q, t) ∶= ∫ exp(iq⃗ ⋅ r⃗)P∞(r, t)dd r. (1.15)

The relevance of the isf lies partly in the fact that it can be measured in
experiments (Hansen and McDonald, 2006). The scaling form of the isf at
the critical point is then directly inherited from the van-Hove function by
performing the Fourier transform of eq. (1.14),

F∞(q, t) = F∞(qt1/dw) (1.16)

for small wavenumbers q≪ σ−1 and long times τ ≪ t. The scaling function
of the isf can be directly obtained by substituting r⃗ ↦ x⃗ t1/dw and q⃗ ↦ κ⃗t−1/dw ,

F∞(κ) = ∫ exp (iκ⃗ ⋅ x⃗) x−dP∞(x)dd x.
With the return probability argument from before one is able to obtain the
large-wavenumber behavior F∞(κ ≫ 1) ∼ κ−df . At long times and large
wavenumbers, the isf therefore fully decays to 0, with F∞(q, t) ∼ t−df/dw .



theory of the lorentz model and heterogeneous media 27

Time-space scaling in the all-cluster average In contrast to the situation on
the percolating cluster, the scaling form of the van-Hove function is less well
studied when the full void space is taken into consideration. Still, the scaling
form has been conjectured as (Höfling et al., 2006; Kertesz and Metzger, 1983)

P(r, t; n∗) = ξdf−2dP±(r/ξ, tξ−dw), (1.17)

for situations, where the correlation length is already large compared to the
obstacles, ξ ≫ σ , for large distances σ ≪ r and long times τ ≪ t. The scaling
is expected to hold on both sides of the critical point, with the two scaling
functions P± for either side of the percolation transition. The power of the
prefactor ξdf−2d was determined by integration over the pocket size distribution
in (Kammerer et al., 2008). The conjectured scaling form of the van-Hove
function reduces to the scaling form of the msd, eq. (1.13), by integration, as
the latter quantity is the second moment of the former. Although a lot about
the scaling functions P± themselves is not yet known, as for instance their
exact behavior at distances σ ≪ r ≪ ξ, the scaling properties arising from
eq. (1.17) for the msd and the non-Gaussian parameter (Höfling et al., 2008)
have been confirmed in computer simulations (Höfling et al., 2006; Bauer et al.,
2010; Pandey, 1984; Höfling et al., 2008).

Directly at the critical point, the limit ξ →∞ can be performed in the same
way as on the percolating cluster, and the scaling simplifies to

P(r, t; n∗c ) = rdf−2d P̃(rt−1/dw),
for large distances σ ≪ r, ξ and long times τ ≪ t.

Even less is known about the scaling of the intermediate scattering function
in the all-cluster average. The cluster-averaged dynamics are not ergodic:
Including all finite clusters leads to a fraction of the tracers being trapped in
finite clusters at all densities. This is captured in the long-time limit of the isf,
the non-ergodicity parameter, which becomes finite (Kertesz and Metzger,
1983; Franosch et al., 2011),

f (q; n∗) ∶= lim
t→∞

F(q, t) > 0.

The non-ergodicity parameter f (q; n∗) gives the fraction of particles trapped
on a length scale 2π/q, at obstacle density n∗. The total fraction of trapped
particles is given by the long-wavelength limit of the non-ergodicity parameter,
f (q = 0; n∗). Directly at the transition, the non-ergodicity parameter shows
a singularity (Kertesz and Metzger, 1983). For obstacle densities above the
percolation transition, it assumes the value f (q = 0; n∗ > n∗c ) = 1, and it
approaches this value from below the transition as

1 − f (q = 0; n∗) ∼ (−ε)β . (1.18)

At the transition, the wavenumber dependence is given as

1 − f (q; n∗c ) ∼ qd−df (1.19)

for q → 0. A scaling form proposed by Franosch et al. (2011) for the full
non-ergodicity parameter contains these asymptotic results,

1 − f (q; n∗) = ξdf−dF±(qξ) (1.20)
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for small wavenumbers q ≪ 2π/σ and close to the transition, σ ≪ ξ. The
asymptotic behavior of the scaling functionsF± is then given byF−(x → 0) =
const, F+(x → 0) = 0, and F±(x) ∼ xd−df for x ≫ 1.

A scaling form containing the time dependence of the isf in the all-cluster
average is not known, as the presence of a non-vanishing long-time limit seems
to destroy the scaling form.

1.2.3 The Lorentz model in mode-coupling theory
The results of this chapter have been published in
(Spanner et al., 2013). The author of this thesis per-
formed the mct numerics and calculated the asymp-
totics of the mct equation with the techniques of
(Schnyder, 2010), while the analogous calculation of
the asymptotics presented here is Franosch’s.

Although the scaling theory outlined in the previous section has been widely
successful in describing the behavior of the Lorentz model, it still is a phe-
nomenological theory. It only provides results which hold asymptotically close
to the transition, although this can be remedied somewhat by considering
corrections to scaling (Kammerer et al., 2008). In contrast, the mode-coupling
theory of the glass transition (mct) is a self-consistent theory developed from
first principles (Götze, 2009) and holds for the whole density range. It found
great success in describing the glass transition, but it has been applied to the
Lorentz model, as well (Götze et al., 1981a,b, 1982).

Even though mct can be applied to the whole density range, it is crucial that
the theory correctly describes the critical dynamics of the Lorentz model. Here,
the predictions of mct in a simplified form—which still contains the universal
aspects of the theory — will be compared to simulations on the percolating
cluster of the Lorentz model at the critical point. The comparison is performed
exemplarily for the intermediate scattering function, which provides the full
information about the dynamics, and constrains itself to d = 3. For more
details on the Lorentz model in mct, see (Schnyder, 2010), where the d = 2
case is considered as well.

The description of the Lorentz model in the framework of mct follows
from a simplification of the mct theory of a binary mixture (Franosch and
Voigtmann, 2002) and keeps the same mathematical structure. In this theory,
one component is kept strictly fixed while the other one is considered as a
single tracer (Schnyder et al., 2011). The obstacles have the radius R and a
number density n ∶= N/V and the single point-like tracer has velocity v.

The starting point of mct is an exact equation for the intermediate scatter-
ing function F(q, t) as obtained from the Mori-Zwanzig projection-operator
formalism (Götze, 2009). The formalism leverages that that there are slowly
evolving variables and fastly evolving variables, and that when describing the
dynamics of the former, the dynamics of the latter is mostly irrelevant. By
projection of the full equations of motion onto the slow variables, an exact
equation is obtained where the fast variables only occur inside an integration
kernel. For the intermediate scattering function, the resulting equation is given
by

F̈(q, t) + νs Ḟ(q, t) +Ω(q)2F(q, t) + ∫ t

0
M(q, t − t′)Ḟ(q, t′)dt′ = 0.

(1.21)

The frequency term Ω(q)2 = q2v2/3 arises through assuming ballistic dy-
namics. The equation is thus similar in form to the equation of the damped
harmonic oscillator: the integral term acts as a generalized friction term. The



theory of the lorentz model and heterogeneous media 29

interaction of the tracer with the obstacles is contained in two terms. 1) The
friction coefficient νs = nπR2v is assumed to be q-independent and encodes
a Markovian damping of the dynamics: it describes the friction induced by
uncorrelated scattering of the tracer with the obstacles. 2) The memory kernel
M contains all non-trivial correlations between tracer and obstacles. It itself
consists of a regular background term and a critical term which is the object
of the mode-coupling approximation. The regular term of the memory kernel
is typically assumed as Markovian, can be expressed as a modification of νs ,
and is ignored in the following.

Closure of the equation is finally obtained by approximating the critical part
of the memory kernel self-consistently as a linear function of the intermediate
scattering function. The coupling of the tracer dynamics to the obstacles is
expressed via coupling coefficients — called vertices — which are entirely de-
termined by the matrix structure and are calculated with the direct correlation
function cs(q) between matrix and tracer (Hansen and McDonald, 2006).

A further simplification is obtained bymaking use of a generalized hydrody-
namics approximation in which the full memory kernel is made independent
of the wavenumber q by only considering its long-wavelength limit (Götze
et al., 1981b,a),

M(q, t) ↦ M(0, t) =∶ m(t).
The memory kernel is then given by

m(t) = n
3 ∫ d3k(2π)3 Ω(k)2cs(k)2F(k, t).

Its integral can be made one-dimensional in the wavenumber k by switching
to spherical coordinates,

m(t) = n
3 ∫ ∞

0

4πk2dk(2π)3 Ω(k)2cs(k)2F(k, t). (1.22)

In the case of the Lorentz model, where the obstacles are randomly dis-
tributed and hard-spheres, the direct correlation function cs(q) is essentially
given by the spherical Bessel function j1 (Hansen and McDonald, 2006),

cs(q) = 4πR2 j1(qR)
q

.

The asymptotic solution for eqs. (1.21) and (1.22) is typically obtained by first
performing a Fourier-Laplace transform, translating the time-dependence into
a dependence on frequency z. Conventionally, the Laplace-Fourier transform
f̂ (q, z) of a function f (q, t) is defined as

f̂ (q, z) = i∫ ∞

0
f (q, t)eiztdt.

The Fourier-Laplace transform has the convenient property that the long-time
limit of the original function f (q, t) can be expressed simply by (Widder, 1972)

lim
t→∞

f (q, t) = lim
z→+0

(−z f̂ (q, z)).
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After transforming, eq. (1.21) reads,

F̂(q, z) = − 1

z − Ω(q)2
z + iνs + m̂(z)

, (1.23)

while the Fourier-Laplace transform of the memory kernel m̂(z) is obtained
directly from eq. (1.22) — because of the linearity of the equation — by replac-
ing the isf with its Fourier-Laplace transform. Now, both equations can be
combined by inserting eq. (1.23) into the Fourier-Laplace transform of eq. (1.22),
which leads to a single equation for the memory kernel

zm̂(z) = n
3 ∫ ∞

0

4πk2dk(2π)3 Ω(k)2cs(k)2 z(z + iνs + m̂(z))
Ω(k)2 − z(z + iνs + m̂(z)) .

Note that solving for m̂(z) instead of F̂(q, z) is simpler, since the latter
quantity contains a divergence at q → 0whichmakes expansion of the equation
in leading orders impossible. After solving for the memory kernel, the isf can
be determined by re-insertion of m̂(z) into eq. (1.23).

After introducing the abbreviation μ̂(z) = z + iνs + m̂(z) and rewriting of
the fraction, the equation reads

zμ̂(z) − z2 − iνsz = n
3 ∫ ∞

0

4πk2dk(2π)3 cs(k)2 (zμ̂(z) + z2 μ̂(z)2
Ω(k)2 − zμ̂(z)) .

At the critical density nMCT
c = 9/(4πR3) a bifurcation in the solution arises,

marking the localization transition. There 1 = (nMCT
c /3) ∫ 4πk2dk(2π)−3cs(k)2

holds and thus the first term of the integral can be evaluated

zμ̂(z) − z2 − iνsz = zμ̂(z) + nMCT
c
3 ∫ ∞

0

4πk2dk(2π)3 cs(k)2 z2 μ̂(z)2
Ω(k)2 − zμ̂(z) .

Thus, at the critical density, zμ(z) has to become small in the limit of small
frequencies, z → 0, in order to satisfy the equation.

Near the critical density, the equation can therefore be expanded in powers
of zμ̂(z). In the expansion, a correction term with non-integer power arises
because of the singularity of the integrand at k → 0,

−z2 − iνsz = nMCT
c
3 ∫ ∞

0

4πk2dk(2π)3 cs(k)2 z2 μ̂(z)2Ω(k)2 +O ((zμ̂(z))5/2) .
The remaining integral can be carried out, and one obtains up to leading order

−iνsz = 6R2

5v2
(−zm̂(z))2,

which, finally, can be solved for m̂(z). Thus, the critical behavior of thememory
kernel is given by

−zm̂(z) = √−iztsv2
3R2 +O (z) ,

with time scale ts = 135R/8v. This result had already been obtained by Götze
et al. (1981a,b). The critical behavior of the memory kernel can now be re-
inserted into eq. (1.23). In the limit of low but finite frequencies z this reduces
to

−zF̂(q, z) → 1
1 + q2R2(−izts)−1/2 .
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From this result, the time-and-space scaling of the dynamics can be read
off directly. The expression depends on the wavenumber q and the frequency
z only in the combination z/q4, which implies a walk dimension of dMCT

w = 4.
The scaling with the fractal dimension of the obstacle structure can be read off
at small distances (small compared to the longest excursion of the tracer, but
large against the obstacle diameter), i.e. at large wavenumbers (compare to the
the discussion of the scaling form of the van-Hove function on the percolating
cluster following eq. (1.14)). The isf decays for Rq ≫ (∣z∣ts)−1/4 as ∼ q−2,
which implies the fractal dimension dMCT

f = 2. Finally, the isf is obtained by
Laplace back-transform and satisfies the same scaling form as eq. (1.16),

F(q, t) ∼ F(qt1/dw), (1.24)

with F(κ ≫ 1) ∼ κ−df . The only difference lies in the values for df and dw.
Importantly, the critical isf decays to 0 for finite wavenumbers as F(q, t) ∼
q−df t−df/dw .

The scaling behavior of the isf as predicted for the Lorentz model in mct is
thus the same as given by dynamic scaling theory when the tracer is restricted
to the percolating cluster, with the predicted values for the fractal and walk
dimensions being close to the scaling theory results, df = 2.53 and dw = 4.81,
see table 1.1. Thus, mct in the present form does not contain the non-ergodic
contributions to the dynamics from tracers trapped in finite clusters, which
are present in the full system at all finite densities. As a consequence, the non-
ergodicity parameter is predicted by mct to vanish for finite wavenumbers at
densities below the critical density and to grow continuously from 0 at and
above the transition. This is in contrast to the actual situation in the Lorentz
model, where the non-ergodicity parameter is finite at all finite densities. The
situation becomes worse e.g. when the msd is considered. In scaling theory
the exponent of anomalous diffusion z in the full system is different from the
one on the percolating cluster dw. This aspect is not contained in mct.

Furthermore, the critical behavior found above is partly a result of the
generalized hydrodynamics approximation. By keeping the full wavenumber
dependence of the memory kernel, a short-wavelength singularity is intro-
duced into the mct equation which modifies the critical dynamics (Schnyder
et al., 2011). The critical behavior in the generalized hydrodynamics approxima-
tion is then found only in an intermediate regime. This pecularity is common
to all current mct approaches to the localization transition. It is thus still
an open question how to correctly capture the Lorentz model with its fractal
structure and divergent length scale in mct.

Regardless of these fundamental problems, in the following a comparison
of the mct predictions in the generalized hydrodynamics approximation to
simulation results on the percolating cluster will be made, showing that for
this special case there is qualitative and even semi-quantitative agreement.

In three dimensions, the percolation transition is predicted by mct in the
generalized hydrodynamics approximation to occur at the reduced obstacle
density (n∗c )MCT = 9/(4π) ≈ 0.716, which is close to the real percolation
transition at n∗c ≈ 0.838 (Elam et al., 1984; Rintoul, 2000).
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Figure 1.5: Intermediate scattering function F∞(q, t)
for tracers on the percolating cluster both in simula-
tion (solid lines) and mct (dashed lines). The unit
of time is given by to = R/v. The simulation is per-
formed directly at the critical density n∗c = 0.838 and
compared to mode coupling theory. For comparison,
a curve corresponding to exponential relaxation (dot-
ted line) and a stretched exponential exp(−(t/τq)β),
β = 0.39 (solid black line) are given. (Redrawn from
(Spanner et al., 2013))

Implementation details For comparison to mct an event-driven, molecular-
dynamics simulation of the Lorentz model on the percolating cluster was
implemented by Markus Spanner. The cubic simulation box had a length of
length L = 200R. Voronoi tesselation of the obstacleswas performed to confirm
the percolation density n∗c = 0.838 and to identify the percolating cluster. For
further details on the implementation of the simulation, see (Spanner et al.,
2013). The mct equations eqs. (1.21) and (1.22) were solved numerically, in
addition to the asymptotic solution, to allow a full quantitative comparison to
the simulation results. The unit of time for both the simulation and mct is
given by to = R/v.

The mct equations were solved on an equidistant time grid in the standard
way, documented for instance in (Bayer, 2007). The time gridwas incrementally
coarsened to be able to solve the equation over many orders of magnitude
in time. The integration contained in the memory kernel was performed
with the trapezoidal rule on a partly logarithmically-spaced wavenumber
grid to correctly capture the long-wavelength behavior. From the smallest
wavenumber qmin = 10−8/R to a wavenumber Δq = 0.4/R, 50 logarithmically
spaced wavenumbers were used. From Δq up to the maximum wavenumber
qmax = 24/R, an equidistant grid of spacing Δq was used. It was confirmed that
these numerical parameters are sufficient for correctly solving the equations:
The percolation density was found to be shifted slightly to (n∗c )MCT ≈ 0.748
and it converged to the exact value for finer discretizations. Furthermore,
the critical behavior of the memory kernel as obtained from the numerical
solution matched the asymptotic results to typically within 1% of its amplitude
at long times.

Comparison of simulation to mct and scaling theory The isf is shown in
fig. 1.5 for both the simulation (solid lines) and mct (dashed lines) over a
wide range of wavenumbers q. For all wavenumbers, the unit 1/R is always
implied from now on. For very large wavenumbers, e.g. q = 12, the isf for
both simulation and mct decays very fast and shows oscillations at t ≈ t0
when the tracers perform their first collisions with the obstacles (Hansen and
McDonald, 2006; Götze, 2009). For small wavenumbers, e.g. for q = 0.06
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Figure 1.6: Relaxation time τq of the intermediate scat-
tering function in the simulation at the critical point
as a function of the wavenumber q and of the system
size L as indicated in the legend. The power-law be-
havior with the exponent−dw = −4.81 expected from
the dynamic scaling hypothesis is marked by parallel
grey lines. Inset: Rectification plot of the same data to
expose asymptotic behavior. (Redrawn from (Spanner
et al., 2013))
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Figure 1.7: Relaxation time τq of the intermediate
scattering function in mode-coupling theory at the
critical point as a function of the wavenumber q. The
data points are connected as guide to the eye. The
power-law behavior with the exponent −dw = −4
expected from the asymptotic solution of the mct-
equations is marked by parallel black lines. Inset: Rec-
tification plot of the same data to expose asymptotic
behavior.

the form of the isf in the simulation becomes strongly stretched and can
be adequately described on short and intermediate times via a Kohlrausch-
Williams-Watts function exp(−(t/τq)β), with a stretching exponent β = 0.39
and a wavenumber dependent timescale τq (solid black line). This fit is not
able to capture the long-time tail of the isf, however. The mct results are
similar to the simulation: The shape of the isf is comparable even though the
stretching is less pronounced, especially at small q and long times. It is also
apparent that the relaxation times of simulation and mct move apart at very
small q.

A relaxation time τq can be defined by Fs(q, τq) ∶= 1/e. From the dynamic
scaling hypothesis, see section 1.2.2, it is expected that τq ∼ q−dw at the critical
point and for small q. This scaling is tested in fig. 1.6 for the simulation, where
the relaxation time is shown as a function of the wavenumber and the expected
asymptote is marked by parallel grey lines. The relaxation time approaches
the asymptotic behavior only very slowly. A stricter test for the approach is a
rectification plot which has been performed in the inset. Since for the limit
q → 0 one expects τq ∼ q−dw to hold, one should also find that qdwτq → Aτ

with a scaling constant Aτ . The inset demonstrates the slow approach to a
constant limit value, which can be read off from the plot as Aτ = 65 ± 10 (grey
region). Even though the approach to the critical asymptote is slow, the data is
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Figure 1.8: Double-logarithmic plot of the interme-
diate scattering function at the critical point as a
function of time for small wavenumbers. The ex-
pected asymptotic power-laws for the long-time de-
cay from scaling theory, t−df/dw (black solid line),
and mct, t−1/2 (black dashed line), have indistin-
guishable slopes on the scale of the plot. (Redrawn
from (Spanner et al., 2013))

compatible with the scaling hypothesis. The same plot but for the mct data is
shown in fig. 1.7. There, the expected asymptote is again τq ∼ q−dw , but with
dw = 4. In contrast to the simulation, the asymptotic regime is approached
earlier. Apart from the difference in the exponent, the simulation and the mct
solution are qualitatively very similar.

The long-time decay of the isf at the critical point follows a scaling law as
well. This is exposed in the double-logarithmic plot in fig. 1.8 of the isf of both
simulation and mct as a function of time for small wavenumbers, where both
mct and scaling theory predict power-law behavior. From both eq. (1.16) for
the scaling hypothesis and eq. (1.24) for mct, it follows that Fs(q, t) ∼ t−df/dw ,
albeit with slightly different exponents. For the scaling hypothesis one finds
df/dw = 0.527, while for mct df/dw = 0.5 holds. These exponents are so similar,
that the slopes of the corresponding power-laws in fig. 1.8 are indistinguishable.
Furthermore, both asymptotes are fully compatible with the data.

In extension of the discussed scaling of the isf with the exponents df

and dw, the scaling form for the isf implies that the full space and time
dependence at the critical point can be expressed in the limit of long times
and small wavenumbers via a single scaling function F(κ) with κ ∶= qt1/dw .
Stated differently, the critical isf will collapse onto F if rescaled properly.
This collapse is tested for the simulation data in introducing a rescaled time
t̂ ∶= κdw ∼ qdw t in fig. 1.9. By fixing the rescaled time to t̂ ∶= A−1τ (qR)dw t/to ,
one makes sure that the isf decays asymptotically on the timescale t̂ = 1. Here,
the scaling hypothesis value dw = 4.81 was used. The slow convergence of the
relaxation time discussed above appears in this plot in the failure of the curves
to collapse onto the value F(t̂1/dw) = 1/e at t̂ = 1, and for times t̂ ≥ 1. Apart
from this, the collapse onto the scaling function is convincing in the limit of
vanishing wavenumbers.

As the scaling of the dynamics is due to the divergence of the correlation
length, the dynamics is subject to finite-size scaling. This is illustrated in the
left and center insets of fig. 1.9, which show the region around the relaxation
timescale for two simulations for smaller system sizes, L = 50R and 100R,
respectively. The scaling becomes the less successful the smaller L is. In
addition, the right inset shows that away from the critical density, at density
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Figure 1.9: The intermediate scattering function of
the simulation and mode-coupling theory as a func-
tion of rescaled time t̂ = A−1τ (qR)dw t/to for small
wavenumbers q. Bottom: The simulation was per-
formed in a system of size L = 200R at the critical
point. Top: Detail view of the isf for smaller sys-
tems sizes L = 50R (left) and 100R (middle), exposing
finite-size corrections to the scaling, and away from
the critical density (right). (Redrawn from (Spanner
et al., 2013))

n∗ = 0.830, the scaling does not succeed as well. This underlines how difficult
it is to observe the critical scaling in simulations. It is important to use large
enough systems and take care in identifying the critical point.

When the same scaling is applied to the mct data the collapse is slightly
less successful but still impressive considering that the unrescaled data shows
a spread in the relaxation time of more than 6 orders of magnitude. This is a
result of the similarity in the values of the walk dimension dw.

Alternatively, the scaling collapse of the simulation data and the mct so-
lution can be tested with the value of dw = 4 predicted by mct, see fig. 1.10.
Then, the collapse of the mct data is very successful for small wavenumbers
while the scaling of the simulation data is still acceptable, especially when
considering the wide spread of relaxation times in the unrescaled data.
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Figure 1.10: The intermediate scattering function
of the simulation and mode-coupling theory as a
function of rescaled time t̂ = (qR)4 t/to for small
wavenumbers q, testing the scaling as predicted by
mct. (Redrawn from (Spanner et al., 2013))
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Summary Even though mct still has problems in the description of the
critical dynamics of the Lorentz model, the presented comparison indicates
that at least in the special case of the dynamics on the percolating cluster
qualitative agreement is found. It is reassuring that in this special case, the
exponents predicted by mct are nearly correct.

At this point, a modification to mct has yet to be found which would be
able to correctly express the localization transition of the full Lorentz model.
This is especially unfortunate as this would allow the study of the interplay of
the localization transition and glassy dynamics found in heterogeneous media.

1.3 Anomalous transport in heterogeneous media

In this chapter, the localization transition of the Lorentz model has been
discussed in detail. The following chapters will focus on generalizing these
results tomore complex systems. Generally, it can be expected that introducing
modifications to the Lorentz model will lead to modifications in the dynamics
near the localization transition.

As a first modification of the Lorentz model, the matrix may be made to
include structural correlations, by for instance equilibrating the obstacles
as a hard-sphere liquid with a given diameter, fixing the particles and then
varying the diameter while leaving the matrix unchanged as control parameter
(Spanner, 2010). In this way it has been shown that while structural correlations
within the matrix shift the localization point they have no effect on the critical
dynamics.

Quenched-annealed (qa) systems are the next generalization following
from that. Typically they consist of equilibrated particles which are fixed
in place to serve as the matrix and of interacting mobile particles inserted
into the resulting void space. As a result, the system then has at least two
control parameters, the packing fractions of the matrix and the fluid. Themain
differences to the Lorentz model are then the structural correlations frozen
into the matrix and the interactions between the mobile particles.

In a three-dimensional (3D), hard-sphere realization of such a system,
anomalous diffusion and the slowing down of the single-particle dynamics
have been interpreted as evidence for the presence of a localization transition
(Kurzidim et al., 2009, 2010, 2011). The system shows a wealth of localiza-
tion phenomena, with an ideal glass transition (type-B transition of MCT)
occurring at small matrix packing fractions and a localization-delocalization
transition at vanishing fluid packing fractions – similar to the Lorentz model
scenario. The Lorentz dynamics should be exactly recovered in the limit of
fluid packing fraction ΦF → 0, but the authors do not test this limit. Con-
versely, Kurzidim et al. find an anomalous diffusion exponent 0.5 at small but
finite fluid packing fraction ΦF = 0.1, different from the exponent 2/z ≈ 0.32
in the Lorentz model (3D; see section 1.2.3). Kurzidim et al. observe the same
exponent 0.5 when only the particles on the percolating cluster are considered.
This is also in conflict with the Lorentz model, where the exponent of the
anomalous diffusion on the percolating cluster is different from the one found
for the whole system. On the percolating cluster, the expected value for the
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Lorentz model is 2/dw ≈ 0.41 (3D; see section 1.2.3). Upon increasing the
number of mobile particles, the critical matrix packing fraction of the localiza-
tion transition is found to decrease. This can be understood intuitively: the
percolation point of the matrix is independent of the fluid particles but with
increasing fluid packing fraction, the particles may start to block pathways in
the matrix and can thus decrease the critical matrix packing fraction at which
the fluid particles localize.

These findings are in agreement with the predictions of a variant of themode-
coupling theory of the glass transition (vk-mct) developed by V. Krakoviack
specifically for qa systems (Krakoviack, 2005, 2007, 2009, 2011). The results
are obtained for hard-sphere systems, but the predictions of mct generalize
qualitatively to soft-spheres, as well. The only input parameters are structure
factors which are calculated in the Percus-Yevick approximation, see (Meroni
et al., 1996) and references therein.

The system shows a Lorentz-model-like (Type-A) transition at large matrix
packing fractions, where the nonergodicity parameter changes from0 to a finite
value continuously. At the transition, the msd shows anomalous diffusion,
δr2(t) ∼ t1/2. This is equivalent to the mct result for the Lorentz model
presented in section 1.2.3.

However, the prediction of the theory changes, when the procedure of
equilibrating the matrix particles is modified. If the matrix particles are equili-
brated in the presence of the fluid particles and only then fixed, an equilibrated
mixture (em) is created. This provides a mechanism by which the matrix struc-
ture changes as a function of the packing fraction of the fluid. While vk-mct
predicts roughly the same state diagram for the em system as for the qa system,
there is one crucial difference. At low fluid and high matrix packing fractions,
it predicts a shift of the critical matrix packing fraction towards higher values
when the fluid packing fraction is increased — the opposite from what was
observed in the qa system by Kurzidim et al. Thus the em system contains a
reentrance transition, where the system makes a transition from a localized
state to a delocalized state and back to a localized state upon simply increasing
the fluid packing fraction.

The theory also predicts a a reentrance transition in the case of the qa sys-
tem, but with a very small amplitude. This is slightly problematic as it conflicts
with the fact that a qa system with hard-spheres cannot show a reentrance
localization transition, since the percolation of void space is completely inde-
pendent from the fluid component. But since the predicted shift in the critical
packing fraction is so small in the qa case, it can be neglected.

In agreement with the theory, the reentrance scenario has been observed in
3D simulations of an em system of hard spheres by Kim et al. (2009, 2010, 2011).
The system is shown to transition from a localized state to a delocalized state
solely by increasing the fluid packing fraction. Away from the transition, both
a speeding up of the dynamics on the delocalized side as well as an increase
of the localization length on the localized side upon increasing the density of
the fluid component are observed. Beside the em system, a qa system was
also studied with the same control parameters, which, in agreement with the
systems of Kurzidim et al. and vk-mct, did not show the reentrance transition.
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In general, the state diagrams of both the qa and the em systems are found to
be qualitatively in agreement with vk-mct.

In both systems, subdiffusion in the msd was observed at low fluid and
high matrix packing fractions, with anomalous exponents depending on the
packing fractions but in cases compatible with the Lorentz-model anomalous
exponent 2/z ≈ 0.32.

Monodisperse hard spheres are used for bothmatrix and fluid particles. The
packing fractions of the matrix and the fluid component are used as control
parameters. The size and mass of the two components are fixed. To determine
the full state diagram, a criterion for determining whether a system is localized
or not is used: A system is considered to be delocalized if the msd exceeds
an ad hoc barrier, 102, before the simulation time 104 is elapsed. On the basis
of this criterion, it is determined that the em system shows a reentrance and
the qa system does not. The essential difference of the em system to the
qa system is that the presence of the fluid component influences the matrix
structure during equilibration. Increasing the fluid packing fraction then
increasingly makes the matrix structure more correlated, opens up pathways
in the matrix and shifts the critical matrix packing fraction towards higher
values. Such a shifting of the percolation point due to correlations in the matrix
has previously been reported (Chang et al., 2004; Mittal et al., 2006; Sung and
Yethiraj, 2008b). This picture is further corroborated by a broadening of the
pore-size distribution upon increasing the fluid packing fraction. The authors
conclude that the reentrance must therefore be the result of the modification
of the matrix structure, which is in line with the results of vk-mct, which
only accepts structural information as input.

The data is discussed along a few paths through the parameter space. Most
notable are those paths where at constant matrix packing fraction the packing
fraction of the fluid component is increased and subsequently a speeding up
of the dynamics is observed. By itself, an ad hoc criterion for determining
localization is problematic, as a speeding up of the long-time dynamics is not
necessarily an indication of a shifting of the localization transition. But Kim et
al. find a matrix density for the em system close to the effective localization
transition on the delocalized side where the diffusion first increases upon
increasing the fluid density and then decreases again (Kim et al., 2011). The
same behavior is not found in the qa system, where increasing the fluid
density is found to always decrease the diffusion coefficient (Kim et al., 2011).
Additionally, they discuss a matrix density for which the em system is localized
at very small fluid packing fractions (Kim et al., 2011). Upon slightly increasing
the fluid density the msd increases but still appears localized. Further increase
of the fluid density then makes the msd clearly diffusive at long times. Similar
behavior is not found in the qa variant of their system, where increasing the
fluid density is always found to decrease the amplitude of the msd(Kim et al.,
2011). The delocalization of the dynamics together with the speeding up of the
dynamics upon increasing the fluid density constitutes a clear signature of a
reentrance transition.

A similar reentrance is observed by Kim et al. in an em system of bi-disperse
purely repulsive soft spheres, while dynamics for a soft qa system are not
reported.
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Another increase in model complexity represent the glassy binary mixtures
studied in simulations byVoigtmann andHorbach (2009). The system serves as
an idealization of an ion-conductor. A simulation of a binarymixture ofWeeks-
Chandler-Anderson (Weeks et al., 1971) spheres with a disparate size ratio was
performed. The larger spheres exhibited glassy dynamics upon increasing the
density of the system, while the smaller spheres were still diffusive. The glassy
component then formed the equivalent of a matrix for the small particles. The
msd of the fluid component showed extensive subdiffusion on intermediate
time scales and diffusion on long-time scales. Switching off the interaction
between the fluid particles, i.e. reducing the number density of the fluid to 0,
lead to a decrease of the long-time diffusion coefficient at high densities. Stated
differently, the non-interacting, zero-density system, had slower dynamics
than the highly interacting, dense system, exactly as was the case in the em
systems of Krakoviack and Kim et al.

The speeding up of the dynamicswas found to be compatible with a standard
mct calculation. In mct, turning off the mobile particle interactions enters
the theory only via the modification of the system’s partial structure factors.
In the theory, the speeding up of the dynamics of the interacting system is the
result of a shift of the localization transition towards a higher fluid particle
density when the interaction is turned on. This again represents a reentrance
transition as a result of the modified structural correlations in the system, very
similar to the situation in the em system. However, little to no change was
observed in the matrix structure factor upon switching off the interaction. This
indicates that not the restructuring of the matrix but the modification of the
fluid structure was the reason for the shift of the localization transition in that
system.

Other simulations of heterogeneous media such as size-disparate binary
mixtures (Moreno and Colmenero, 2006) or polymer blends with a large dy-
namics asymmetry (Moreno and Colmenero, 2008) show anomalous transport
as well.

Although the above mentioned systems show some aspects of the Lorentz
model scenario, they have not established systematically how the Lorentz
model dynamics are modified by the introduction of particle interactions and
soft potentials. The following chapters aim at providing a direct link from
the original hard-sphere Lorentz model to soft-potential quenched-annealed
systems.

In particular, this work will focus on the influence of the soft interaction
potential on the localization transition. In the standard hard-sphere Lorentz
model, barriers formed by the obstacles are insurmountable. The tracer is
only able to move from one pocket to the next one if there is a connection
between the two. When soft obstacles are introduced, barriers between void
space pockets become finite, and thus surmountable. In general, this leads to a
rounding of the critical dynamics. It will also be shown, that the reentrance
transition can be a result of the soft potential and will arise even in situations
where the matrix structure is completely independent of the fluid component.





2
A Lorentz model of soft spheres

As a well-defined starting point, the Lorentz model scenario is first reproduced
in two dimensions with a soft potential in amolecular dynamics simulation of a
binarymixture of purely repulsive spheres without a hard core. The component
called M is fixed and used as matrix. The other component which is called F
(for fluid) is made non-interacting to simulate independent realizations of the
tracer particle.

2.1 Description of the system

2.1.1 Potential
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Figure 2.1: Weeks-Chandler-Andersen interaction po-
tential without (solid line) and with smoothing func-
tion Ψ(r) applied (dotted line). The latter is used in
the simulations. The inset shows the same functions
magnified around rcut.

For the interaction between obstacle matrix and tracers, the Weeks-Chandler-
Andersen (wca) potential (Weeks et al., 1971) was chosen. It is given by the
repulsive part of the Lennard-Jones Potential which is cut-off at its minimum
rcut ∶= 21/6σαβ and shifted to make it continuous,

Vαβ(r) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
(4εαβ (( σαβr )12 − ( σαβr )6) + εαβ)Ψ(r) for r < rcut,
0 for r ≥ rcut, (2.1)

with α, β ∈ (M,F). The particle diameters are given by σαβ . The diameters
are chosen to be additive so that the use of two parameters suffices, σαβ =(σα + σβ)/2. Matrix particles are sampled from a uniform distribution σM ∈[0.85, 1.15], to avoid crystallization. Instead of varying the packing fraction of
the matrix, the tracer diameter σF was used as the control parameter. For the
matrix-fluid-interaction the polydispersity of the obstacle matrix was ignored:
the simplification σMF = (1 + σF)/2 was used. The energy scales are set to
εMM = 1, εMF = 0.1, and εFF = 0, while the masses were set to mM = mF = 1.

A smoothing function Ψ(r) is used tomake the potentialC2, which ensures
the continuity of forces, the conservation of energy, and thus numerical stability
of the algorithm,

Ψ(r) ∶= (r − rcut)4
h4 + (r − rcut)4 .

The width of the smoothing function is chosen to be h = 0.005. The wca
potential is shown in fig. 2.1, both with (dotted line) and without (solid line)
the smoothing function applied. The inset magnifies the region around rcut
and shows that the change caused by the smoothing function to the potential
is small.
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2.1.2 Numerical integration of the equations of motion

The system was simulated with Newtonian dynamics. The systems consists of
N particles, with each particle i being assigned a mass mi , position r⃗ i(t), and
velocity v⃗i(t). The positions of the particles then satisfy,

mi
d2 r⃗ i
dt2

= ∂V
∂r⃗i
= f⃗ i . (2.2)

The force on each particle, f⃗ i(t), is calculated as the negative gradient of the
total potential energy V , which itself is the sum over all pair potential energies
Vαβ as given by eq. (2.1),

V = N∑
i=0

N∑
j>i

Vαβ(ri j), with r⃗ i j = r⃗ i − r⃗ j ,
with the particle types α and β being given by the types of the particles i and j.
The force on each particle i is then explicitly given by

f⃗ i = −∑
j≠i

∂Vαβ(ri j)
∂r⃗i

. (2.3)

The system is conservative and thus, its total energy Etot is a conserved
quantity,

Etot = N∑
i=0

1
2
miv⃗2i (t) + V = const.

The equations of motion, eqs. (2.2) and (2.3), are numerically integrated
with the velocity-Verlet algorithm (Verlet, 1967; Hairer et al., 2002). Provided,
all positions and velocities of the particles are known at the starting time, e.g.
t = 0, the positions and velocities after a timestep δt are then given by

r⃗ i(t + δt) = r⃗ i(t) + δtv⃗i(t) + (δt)22mi
f⃗i(t) +O (δt4) ,

v⃗i(t + δt) = v⃗i(t) + δt
2mi

( f⃗ i(t) + f⃗ i(t + δt)) +O (δt2) .
In this way, the trajectories of the particles can be obtained step-wise.

The velocity-Verlet algorithm is time-reversible and symplectic. As such
it nearly conserves phase space and the total energy in conservative systems.
More precisely, for sufficiently small timesteps δt, the total energy Etot(t) of
the numerically obtained positions and velocities is time-dependent but stays
in an interval ofO((δt)2) around the original energy E0

tot (Hairer et al., 2002,
Theorem 8.1),

Etot(t) = E0
tot +O ((δt)2) .

To ensure stable integration of the equations of motion, the time step δt =
7.2 × 10−4 t0 with t0 = [mMσ 2

M/(εMM)]1/2 = 1 was chosen (Binder et al., 2004).
From here on, units will be typically omitted. The unit for lengths is σM, for
times it is t0, for energies it is εMM.

As this system is a many-particle system, the average ⟨. . .⟩ is defined as the
microcanonical average over all particle trajectories. Since the systems are finite,
the average must additionally contain an average over matrix configurations.
The order in which the averages are performed is important, with the average
over trajectories performed first.
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2.1.3 Preparation of the matrix

NM obstacle particles were equilibrated in a two-dimensional, quadratic box of
side length L at a number density of nM = 0.278 (e.g. NM = 1000 and L = 60)
at the temperature kBT = 1. Equilibration was achieved with a simplified
version of the Andersen thermostat (Andersen, 1980) by randomly selecting
the particle velocities from a Maxwell distribution every 100 steps, for at least
105 time steps. Then, the obstacles were fixed in space and their positions
uniformly rescaled to number density nM = 0.625 (e.g. rescaling the box
length from L = 60 to L = 40). This procedure generates a dense matrix with
weak structural correlations, which can be confirmed by the partial structure
factor of the matrix particles SMM(q).
Structure factors For binary mixtures, there are three partial structure factors.
Let the set of particle indices of the component α be denoted by Iα , then the
microscopic partial densities of the components are given by

ρα(r⃗) ∶= ∑
j∈Iα

δ(r⃗ − r⃗ j).
So the Fourier-transformed partial densities are given by

ρα(q⃗) ∶= ∑
j∈Iα

exp(−iq⃗ ⋅ r⃗ j).
Then, the partial structure factor, which is typically normalized with the total
number of particles N = NM+NF, is defined as (Hansen andMcDonald, 2006)

Sαβ(q) = 1
N
⟨ρα(q⃗)ρβ(−q⃗)⟩. (2.4)

Matrix structure The matrix structure factor SMM(q) is shown in fig. 2.2.
Here, it is not normalized with the total number of particles but with the
number of obstacles NM and thus tends to a large-wavenumber limit of 1.
SMM(q) shows only weak modulations, therefore, the matrix is structurally
relatively similar to the completely uncorrelatedmatrix of the standard Lorentz
model.

5 10 15 20
Wave number qσM

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
at
rix

st
ru
ct
ur
e
fa
ct
or

S(
q)

Figure 2.2: Matrix structure factor SMM(q) in a sys-
tem of length L = 40σM, averaged over 100 inde-
pendent configurations. Centered moving average
applied.

As an example, one matrix configuration is shown in fig. 2.3 in grey. The
diameter with which the obstacles are presented in the figure is the effective
hard-sphere diameter of the obstacles assuming a point-sized tracer. This
effective diameter can be obtained as the minimum distance between two
obstacles between which the tracer can pass through with its given diameter
σF and its total energy. For a calculation see section 2.3, where the diameter is
calculated in eq. (2.11).

To control finite-size effects, final box lengths were L = 28.28, 40, 56.57,
80 and 160. The number of obstacles in these systems was 500, 1000, 2000,
4000 and 16000, respectively. Computed quantities were averaged over 100
independent matrix configurations at each system size.

2.1.4 Preparation of the tracers

Instead of varying the number density of obstacles nM to drive the system over
the localization transition, the diameter of the tracers σF was used as control
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Figure 2.3: All the positional data of a single simu-
lation run over time. A single-energy run with 500
tracers at σF = 0.45. All the tracer positions which
were collected over a whole simulation run are rep-
resented as dark grey points. The obstacles are repre-
sented as hard-spheres in light grey with the effective
hard-sphere diameter calculated from 2.11 using the
particle energy as input. This system is on the lo-
calized side of the transition, but with a correlation
length exceeding the system size, thus a percolating
path can be found starting from the x-axis at x ≈ 22
upwards.

Obstacle

Tracer

parameter. Varying the tracer diameter is more convenient as it allows the
re-use of the obstacle matrices. For an illustration of the localization transition
through which a tracer goes when its diameter is varied, see fig. 2.4. With a
small diameter (black circle), the tracer is free to leave the pocket formed by
the obstacles (light grey circles), while it would be trapped if it had a larger
diameter (dark grey circle).

Figure 2.4: Obstacles (light grey) form a matrix for
the tracers. A small tracer can escape its pore (black),
while a large one is localized (dark grey). (Schematic
representation)

To further illustrate, the void structure is shown in fig. 2.5 for three systems
— a subcritical, the critical and a localized system— which only differ in the
value of σF. Via the hard-sphere mapping discussed later on in section 2.3, the
variation of the tracer diameter σF was mapped onto the equivalent variation of
the obstacle diameter and via a Voronoi tesselation of the void space, the void
clusters were then determined. The percolating cluster, which is highlighted
in blue, vanishes as the system crosses the transition.

For each configuration of the system, between 50 and 20000 independent,
non-interacting tracers are inserted into the void space. For this, the energies
of the tracers demand special attention. In the standard hard-sphere Lorentz
model, barriers formed by the obstacles are insurmountable. The tracer is only
able to move from one pocket to the next one if there is a connection between
the two. With a soft interaction potential like the wca potential employed here,
barriers between void space pockets become finite and surmountable. Thus
the energy of the tracer influences the space that is available for exploration,
as a tracer with a high energy will be able to overcome more barriers than a
tracer with low energy. As a consequence, energy becomes another control
parameter and tracers with different energies have different critical points.

Because of this it is important to set all the tracers to the same energy when
inserting them into the system, turning the simulation into a microcanonical
one-particle system. The particle energy was chosen such that the particles
have an average kinetic energy corresponding to kBT = 1 (with the average
velocity ⟨vF⟩ = √2kBT/mF = √2). This energy was numerically obtained
from equilibration runs, where non-interacting tracers were inserted into the
matrix and then equilibrated at temperature kBT = 1 for at least 105 time steps.
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Figure 2.5: Void structure of the simulation for a de-
localized state at σF = 0.35 (left), critical state at
σF = 0.43 (middle) and localized state at σF = 0.6
(right). Matrix particles are shown as white circles
with the effective hard-sphere diameter calculated
from 2.11 using the particle energy as input. The per-
colating cluster in blue, the rest of the clusters in grey
and black with a different shade of grey for each dis-
tinct cluster. The void clusters were determined via
Voronoi tesselation of the void space.

The average energy per particle in these runs was then taken as the energy
to be used in production runs. The average energy increased with increasing
particle diameter, ranging from E = 1.08 at σF = 0.1 to E = 1.79 at σF = 0.9.

In production runs, particles were inserted at random positions into the
void space, if and only if the potential energy at that position was less than or
equal to the previously determined average energy. The particles were then
given the rest of the energy in kinetic energy, with the velocity pointing in a
random direction. This procedure fulfills the requirement to microcanonical
systems that each micro state must be equally probable. Because of this, after
insertion of the tracers, it is permissible to immediately start the production
run.

2.2 Dynamics

Themean-squared displacement δr2(t) of the tracers shown in fig. 2.6 is typical
for the Lorentz model. At small tracer diameters, e.g. σF = 0.1, the short-time
ballistic regimewith δr2(t) ∼ t2 is followed by diffusionwith δr2(t) ∼ t at long
times, as most tracers are delocalized and free to explore the infinite cluster of
the system. Upon increasing σF, the dynamics shows a slowing down and a
subdiffusive regime develops on intermediate timescales. Still, for σF < 0.43,
diffusion is always recovered at long times. At the diameter σF = 0.43, the msd
stays subdiffusive over the whole simulated time range and asymptotically
approaches the expected critical power-law dependence of the Lorentz model,
δr2(t) ∼ t2/z with z ≈ 3.036, see section 1.2.2. Thus the localization transition
in this system occurs at σ c

F ≈ 0.43. Characteristically for the localized side
of the system, for diameters σF > 0.43, the mct plateaus off at long times,
with the plateau height decreasing in height with increasing σF. The msds
presented here are free of finite-size effects as long as δr2(t) < (L/2)2. For a
more detailed discussion of the finite-size effects, see section 2.5.

Suppression of long-time diffusion Additional confirmation that the present
system exhibits the Lorentz model localization transition comes from the study



46 anomalous transport in heterogeneous media

10−1 100 101 102 103 104 105 106
Time t/t0

10−1

100

101

102

103

104

δr
2 (
t)

(L/2)2

σF = 0.1 0.2 0.3
0.4

0.43

0.45

0.5

0.6

0.7
0.9

∼ t

∼ t 2

∼ t 2/3.036

delocalized

localized

Figure 2.6: Mean-squared displacement for the single-
energy two-dimensional Lorentz model for various
tracer diameters σF as indicated in the figure. The
dashed line gives the expected critical asymptote of
the two-dimensional Lorentz model. The MSDs are
free of finite size effects.

of the long-time diffusion coefficient D. For the distance from the transition

ε = σF − σ c
F

σ c
F

, (2.5)

the D is expected to asymptotically vanish as (Ben-Avraham andHavlin, 2000),

D ∼ ∣ε∣μ .
In two dimensions, the critical exponent μ is connected to the other critical
exponents by the scaling law given in eq. (1.10), and has the value μ = 1.31,
see table 1.1. The diffusion coefficients extracted from the msd are shown
in fig. 2.7. At σF = 0.42 it becomes difficult to obtain the correct value of D
free from finite size effects. The vertical bar marks the range between upper
and lower bounds for D obtained from finite size analysis, as discussed in
section 2.5. The numerically obtained D are fully compatible with the expected
asymptotic power-law shown as dashed line. The critical point was assumed to
be at σ c

F = 0.435, which is very close to the value obtained from the msd itself.
The amplitude of the asymptote was obtained by matching to the data.
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Figure 2.7: The diffusion coefficientD as a function of
the tracer diameter. Connected points for data free of
finite size effects. The vertical bar at σF = 0.42 marks
upper and lower bounds for D obtained from finite
size analysis (see section 2.5). Critical asymptote εμ of
the 2Dmodel with ε ∶= (σF−σc
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and the expected exponent μ = 1.31 as dashed line.
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Figure 2.8: Rectification plot of the diffusion coef-
ficient D as a function of the tracer diameter. The
dashed line is the same critical asymptote as in fig. 2.7.
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Figure 2.9: The diffusion coefficient D of the 2D hard-
sphere Lorentz model with ballistic dynamics as a
function of the relative distance to the critical point
ε ∶= (n∗−n∗c )/n∗c with critical reduced obstacle den-
sity n∗c = 0.359. Critical asymptote with the diffusion
exponent μ = 1.31 of the 2D Lorentz model as solid
line. Inset: Rectification plot of the same data as a
function of reduced obstacle density. Data by Felix
Höfling. Printed with permission.

Amore sensitive approach to confirm the presence of an asymptotic regime
is to make a rectification plot. If D ∼ ∣ε∣μ , then D1/μ will become proportional
to ε close to the critical point. It will become a straight line when plotted as
a function of the control parameter σF, and deviations from this will clearly
visible. Additionally, this approach allows for extrapolation towards the critical
diameter. In fig. 2.8 such a rectification plot is performed. The same asymptotic
corrections as for the msd make it that the expected critical behavior only
applies close to the critical point, where obtaining the diffusion coefficient
becomes difficult. Nevertheless, the critical asymptote matched to the data
in fig. 2.7 provides a good description of the lowest diffusities close to the
localization transition. Thus σ c

F = 0.435 is a valid estimate of the critical
point. The behavior of the diffusion coefficient is very similar to what is
found in the two-dimensional, ballistic hard-sphere Lorentz model, which
is shown in fig. 2.9. The suppression of the long-time diffusion coefficient
in this soft-sphere system is thus fully compatible with the Lorentz model
scenario. Further confirmation that the present system displays the Lorentz
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model transition comes from a scaling analysis of the dynamics which is
described in the following.

Scaling of the mean-squared displacement From dynamic scaling theory, see
section 1.2.2, it is expected that the mct asymptotically obeys a scaling form,
given in eq. (1.13),

δr2(t) = t2/zδR2
±(t̂),

with the rescaled time t̂ ∶= t/tx ∼ tl−z , the localization length l , and two
scaling functions δR2

±(t̂), one for each side of the transition. The localization
length plays the role of a crossover length scale. On the delocalized side, the
system becomes diffusive when δr2(t) ∼ l 2 and the scaling function reduces to
δR2
−(t̂ ≫ 1) ∼ t̂1−2/z . On the localized side, the msd converges to δr2(t) ∼ l 2.

Therefore, the scaling function is required to obey δR2
+(t̂) ∼ t̂2/z . At the critical

point, l diverges along with the correlation length ξ with l z ∼ ξdw ∼ ∣ε∣−νdw .
The critical behavior of the msd is thus encoded in the limit t̂ → 0. The
scaling functions reduce there to δR2

±(t̂ → 0) → const, which corresponds to
anomalous diffusion.

There are thus two properties that can be tested for the numerical data.
Firstly, if the msd approaches exactly the ∼ t2/z asymptote at the critical point.
Secondly, if the msd obeys the asymptotic scaling with l and collapses onto
the two master curves in the approach to the critical point. Since the scaling
function on the delocalized side reduces to diffusion for t̂ ≫ 1, the full scaling
analysis can only be successful if the scaling of D with μ already is successful.

Asymptote at the critical point The approach to the critical asymptote ∼ t2/z
can be exposed sensitively by dividing the msd by t2/z . For the delocalized
system, δr2(t)/t2/z diverges at long times, while for localized systems it decays
rapidly as t−2/z → 0. The closer to the transition the longer this quantity stays
finite and at the critical point it has a constant long time limit. In fig. 2.10 this
quantity is shown for the same data as in fig. 2.6. At σF = 0.43, the quantity
slowly approaches a constant value close to 1, confirming the approach to the
critical asymptote.

That this approach is so slow seems to be a property of the two-dimensional
Lorentz model in the case of Newtonian dynamics. There, corrections to the
critical asymptote are known to be strong in comparison to the Brownian and
the lattice model cases, though a clear reason for this is unknown (F. Höfling,
private communications). Thismakes it difficult to observe the critical behavior
of the Lorentz model clearly. Demonstrating this, a comparison of δr2(t)/t2/z
for ballistic (i.e. Newtonian) and Brownian hard spheres, and for a lattice
system is shown in fig. 2.11 in which the msd for the ballistic case is shown to
converge far slower than the other two cases. This shows however, that the
approach towards the critical asymptote for the soft-sphere Lorentz model is
clearly qualitatively similar to the scenario in the ballistic hard-sphere system.
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Figure 2.10: Mean-squared displacements divided by
the critical asymptote t2/z with z = 3.036.
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dimensional Lorentz model for ballistic and Brown-
ian dynamics and the two-dimensional square lattice
Lorentz model. Brownian data extracted from (Bauer
et al., 2010), lattice data from (Kammerer et al., 2008),
ballistic data by Felix Höfling. Printed with permission.

To go one step further, the approach to the critical asymptote can also
be tested for compatibility with a scaling prediction which indicates that the
approach is eventually dominated by a geometric correction. For Brownian
hard-spheres and lattice systems, the scaling form

δr2(t) = t2/zδR2
±(t̂)(1 + t−yΔ±(t̂)). (2.6)

has been derived from a scaling ansatz (Kammerer et al., 2008) and been
confirmed in simulations (Kammerer et al., 2008; Bauer et al., 2010). The
exponent y is universal and is connected to the exponent Ω—which describes
corrections to scaling in the cluster-size distribution — via the hyperscaling
law,

y = Ω(νd − β)
z(ν − β/2) , (2.7)

The correction given in eq. (2.6) is therefore of a purely structural origin. In two
dimensions the exponent has the value y ≈ 0.49. Although y is universal, the
amplitude of the correction is not, and thus can be very different here from the
results found in Brownian and lattice systems. Moreover, strong preasymptotic
corrections may mask the correction on the timescales available to simulations.
In ballistic dynamics, the correction seems to vanish not with exponent y but
with another exponent ≈ 0.16, the origin of which has not been determined yet
(F. Höfling, private communications). In principle a non-universal correction
could become so large as to hide the universal −y-correction over long times,
making observation of the correction in a simulation unfeasible1. 1 Something similar happens for instance in binary

Lennard-Jones mixtures, where the critical diver-
gence of the Onsager coefficient is superposed with
and strongly modified by a non-critical constant con-
tribution (Das et al., 2006).

If present, the first order correction can be directly read off from the msd:
At the critical point, δR2

±(t̂) reduces to a constant A, so that from the above
scaling form in eq. (2.6) it follows that

δr2(t)
At2/z

− 1 ∼ t−y . (2.8)

To exploit this here, it is first necessary to determine A by extrapolating it
as the long-time limit of δr2(t)/t2/z at the critical point, i.e. from the msd at
σF = 0.43 from fig. 2.10. Unfortunately the simulated time is not sufficiently
long to determine A satisfactorily. Instead, the quantity ∣δr2(t)/(At2/z) − 1∣
is displayed in fig. 2.12 for a range of possible A. As guides to the eye, the
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expected asymptote t−y (dotted line) and the one determined in simulations of
the ballistic hard-sphere Lorentz model, t−0.16 are included. It is apparent from
the plot that ∣δr2(t)/(At2/z) − 1∣ does not decay monotonously at σF = 0.43
which is either an indication for the presence of finite size effects or of the
localization transition occurring at a slightly larger σF. With the present data
it is impossible to determine which scenario applies here. On the simulated
timescale, the data can be made compatible with both asymptotes, leaving
the question open of whether the universal correction is masked here by
preasymptotic corrections or not. To determine the first order correction to
scaling correctly, larger systems and longer simulation runs would be needed.
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Figure 2.12: Critical mean-squared displacement at
σF = 0.43 with the critical long-time asymptote At2/z
subtracted and normalized for a range of amplitudes
A. The dotted line is compatible with the leading crit-
ical correction with exponent y and the dashed line
is compatible with the asymptote from Felix Höfling’s
2D simulation of the ballistic hard-sphere system.

Collapse of the dynamics onto master curves near the critical point To test the
scaling predictions in the approach to the localization transition, the collapse of
the msd away from the critical point onto the scaling functions δR2

±(t̂)must
be attempted. This test is only worthwhile because the vanishing of D in the
approach to the localization transition was confirmed to be compatible with
the Lorentz model scaling already. If this had not been the case, the attempt
to collapse the msd onto the scaling functions would have been futile, since
the scaling function on the delocalized side contains the scaling of D at long
times.

In fig. 2.13, the MSD is divided by t2/z and plotted as a function of t∣ε∣νdw to
expose the two scaling functions. The critical point σ c

F = 0.43 sets ε via eq. (2.5).
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Figure 2.13: Rescaled mean-squared displacement as
a function of rescaled times t∣ε∣νdw for a range of di-
ameters as indicated in the legend. For the calculation
of ε, it was assumed that σc

F = 0.43, here.
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Only data satisfying t ≫ t0(= 1) and√δr2(t) ≫ σM(= 1) is shown. The two
scaling functions are discernible but full data collapse is not achieved. The
collapse at long times on the delocalized side reflects the power-lawdependence
of the diffusion coefficient, D ∼ (−ε)μ .

The collapse works as well as can be expected for the Lorentz model without
taking the first order correction to scaling into account, e.g. as demonstrated
by Höfling et al. (2006) in the case of the three-dimensional Lorentz model.
Using the first order correction ∼ t−y , however, would introduce at least one
more fitting parameter to estimate the amplitude of the correction term or
would require identifying the amplitude at the critical point which was not
achieved in the previous paragraph. Simulating closer to the transition would
also improve the scaling but would require considerably larger systems and
longer simulation times, which was outside the scope for this work.

The collapse of the msd onto the two scaling functions is not fully con-
vincing on its own, but it gives further indication that the present system is a
realization of the Lorentz model dynamics.

Van-Hove function Most of the necessary information about the localization
of the system could already be deducted from the msd, but to obtain the full
information of the tracer dynamics it is useful to study the self part of the
van-Hove function P(r, t) ∶= ⟨δ(r⃗ − Δr⃗(t))⟩, with the displacement of the
tracer Δr⃗(t) ∶= r⃗(t) − r⃗(0) at time t. This function gives the probability that
the tracer has been displaced by a distance r⃗ at a given time t, see eq. (1.1)
and discussion. The van-Hove function is shown in fig. 2.14 for a range of
tracer diameters σF, spanning the whole simulated diameter range. This allows
for extensive study of the modification of P(r, t) as the system crosses the
localization transition. The plots of the van-Hove function shows how the
tracers explore the network over time.

The upward spike at t = 1.5, which can be seen in nearly all the plots in
fig. 2.14 is a result of the requirement that all particles have the same energy.
Most of the space available to the tracers leaves the particles without potential
energy. When the particles are inserted into thematrix, most particles therefore
have no potential energy and gain the required energy as kinetic energy fully.
A majority of particles therefore has the maximum possible velocity at the
beginning of the simulation. Before the first collision with an obstacle, these
particles then all cover the same distance in any given time, leading to the
pronounced spike in the data. After the first collision, this feature vanishes
immediately. For the densest system, σF = 0.9 the spike is not present due to
the strong increase in the average potential energy.

The van-Hove function displays two bumps on the delocalized side. One at
short distances, signifying the portion of tracers which are localized in finite
pockets, and whose peak position does not move over time. The other peak
moves to large distances over time, as the tracers explore the void space. This
second bump weakens as the tracer diameter is increased and is not present
for the localized systems, σF > 0.43.

At σF = 0.5, the van-Hove function does not fully converge to its long-time
limit over the course of the simulation, but a slowing down of the dynamics is
discernible at the largest observed time. At σF = 0.6, the van-Hove function
fully converges to its long-time limit over the duration of the simulation, which
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Figure 2.14: Plot of van-Hove function P(r, t) for a
range of tracer diameters σF = 0.3, 0.4, 0.42, 0.43, 0.5,
0.6, and 0.9. P(r, t) is shown as a function of distance
r for a range of times t as indicated in the legends. The
apparent divergence of the van-Hove function at time
t = 1.51 is an artifact of the single-energy system and
is explained in the text. It has no consequences on
the long-time dynamics and vanishes once the tracers
have performed the first collision with an obstacle.
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can be seen in the complete overlap of the curves for t = 13200 and t = 131000.
For σF = 0.9 this happens even earlier, P(r, t) is nearly unmodified for t > 135.

Scaling of the van-Hove function As already discussed in the previous chapter,
the van-Hove function in the Lorentz model fulfills a scaling form of time
and space. For the all-cluster scaling, a scaling form has been conjectured but
not yet tested in detail in simulations. The conjectured form, as presented in
eq. (1.17), reads

P(r, t) = ξdf−2dP±(r/ξ, tξ−dw).
From this form the scaling of the msd presented above has been derived.
Because the scaling of the msd near the critical point was not entirely successful
there is no reason to expect that the scaling should work better for the van-
Hove function. It is however worthwhile to test the scaling of the van-Hove
function directly at the critical point. As was pointed out in section 1.2.2, the
scaling form then reduces to

P(r, t) = rdf−2d P̃(rt−1/dw),
This scaling form assumes that the van-Hove function is defined and normal-
ized according to the volume/area integral ∫Rd P(r, t)dd r != 1. Here, the van-
Hove function is defined and normalized in respect to the one-dimensional
integral ∫ ∞0 P(r, t)dr != 1 and thus incorporates an additional rd−1-factor into
P(r, t). To account for this, the scaling relation must then read

P(r, t) = rdf−d−1P̃(rt−1/dw). (2.9)

In fig. 2.15 this critical all-cluster scaling is applied to all the data. Collapse
is found for the diameter range σF ∈ [0.4, 0.43], where the critical point is
located. For these σF, data spanning 4 decades in time — during which the
peak of the distribution is shifted by 2 decades in space — nearly completely
collapse onto one master curve. One of the unsolved issues in the study of
the all-cluster scaling of the van-Hove function is the behavior of the scaling
function P̃(x) for x ≪ 1. The data at σF = 0.42 and 0.43 seem to indicate that
the master curve tends to a constant for small rt−1/dw , i.e. P̃(x → 0) → const,
but without a theoretical argument behind this the quality of the data is too
poor to make a conclusion.

Even though the intermediate scattering function encodes the same infor-
mation as the van-Hove function it is worthwhile to discuss a few aspects of it,
since it is especially sensitive to the presence of localized particles.
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Figure 2.15: Plot of the rescaled van-Hove function,
assuming the scaling of the all-cluster average at the
critical point, as outlined in the text and eq. (2.9).



54 anomalous transport in heterogeneous media

0.0

0.2

0.4

0.6

0.8

1.0

Fs
(q
,t
)

σF = 0.2

q =
0.315
0.6
0.945
1.57
3.14
4.71

0.0

0.2

0.4

0.6

0.8

1.0

Fs
(q
,t
)

σF = 0.43

q =
0.315
0.6
0.945
1.57
3.14
4.71

10−3 10−2 10−1 100 101 102 103 104 105

Time t

0.0

0.2

0.4

0.6

0.8

1.0

Fs
(q
,t
)

σF = 0.6

q =
0.315
0.6
0.945
1.57
3.14
4.71

Figure 2.16: Semilogarithmic plot of the self-part of
the intermediate scattering function as function of
time for a range of q of a delocalized state at σF = 0.2
(top), the critical state at 0.43 (middle) and a localized
state at 0.6 (bottom).
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Figure 2.17: Semilogarithmic plot of the non-
ergodicity parameter f (q) as a function of the
wavenumber q for the whole studied range of par-
ticle diameters σF.

Intermediate scattering function As the Fourier transform of the self-part of
the van-Hove function, the self-part of the intermediate scattering function
does not contain additional information. But it strongly exposes localized
particles in its long-time limit, the non-ergodicity paremater f (q), which
measures the fraction of particles trapped on the length scale 2π/q. Since the
isf is calculated in the all-cluster average, there will always be contributions
from particles trapped in small void pockets, and f (q) > 0 for all finite σF. In
fig. 2.16, the isf is presented for three exemplary systems, for a delocalized
state at σF = 0.2 (top), the critical state at 0.43 (middle) and a localized state at
0.6 (bottom). All states have — apart from an increase in the long-time limit —
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qualitatively the same isf. The shape of the curves is also very similar to data
obtained on the percolating cluster, see fig. 1.5. The general increase of f (q)
with σF can be seen in fig. 2.17.
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Figure 2.18: Double-logarithmic plot of the non-
ergodicity parameter f (q) at σF = 0.43 (at the critical
point) as a function of the wavenumber q. It is plotted
as 1 − f (q) for comparison to the critical asymptote
1 − f (q) ∼ qd−d f (black line).

The generic presence of a finite long-time limit makes it more involved to
determine the localization transition from the intermediate scattering function
alone and no predictions for the scaling of the isf in the full system exist.
However, a scaling has been suggested for f (q) in the approach to the critical
point, see eq. (1.20) and corresponding discussion, which can be tested. The
system size was not large enough to extrapolate f (q) in the limit q → 0 and
therefore the expected divergence f (q = 0) ∼ ∣ε∣β in the approach to the
transition, see eq. (1.18), could not be tested. But the behavior of f (q) at the
critical point with 1 − f (q) ∼ qd−df , as described by eq. (1.19), could be tested.
In a double-logarithmic plot in fig. 2.18, 1 − f (q) is plotted as a function of q
at the critical point, σF = 0.43. For comparison, the critical scaling prediction
is shown as a black line with the amplitude roughly matched to the data. The
prediction is expected to hold for q → 0 so it is not surprising that the data does
not match the asymptote for large q. At low q, the non-ergodicity parameter
seems to approach the asymptote, but unfortunately the data do not extend to
low enough wavenumbers to be entirely sure. Still, the data does not contradict
the prediction.

Velocity autocorrelation function Another opportunity to test scaling predic-
tions is the velocity autocorrelation function (vacf). In simulations of the
lattice Lorentz model, the velocity autocorrelation function Z(t),

Z(t) ∶= 1
d
⟨v⃗(0)v⃗(t)⟩ = 1

2d
d2δr2(t)

dt2
, (2.10)

shows a long-time tail Z(t) ∼ t−(d+2)/2 for small densities away from the
critical point (Lowe et al., 1997). This tail has also been derived for Newtonian
dynamics (Ernst and Weyland, 1971). In two dimensions this amounts to
Z(t) ∼ −t−2, which would correspond to a logarithmic contribution to the
msd. Additionally, from the critical behavior of the msd a different power-law
dependence is inherited close to the critical point, Z(t) ∼ t2/z−2.

The long-time tails of the vacf have been studied in detail also in the 2d
Lorentz model for Brownian dynamics, and a crossover from the hydrody-
namic t−2 to the critical t2/z−2-law is found as density is varied (Bauer et al.,
2010). For all close-to-critical systems, the vacf first follows the critical asymp-
tote but eventually goes to Z(t) ∼ t−2. The timescale associated with that cross
over diverges at the critical point. This confirms the universality of the t−2

power law.
In fig. 2.19 (left), the vacf calculated from the msd is displayed for tracer

diameters σF on the delocalized side of the transition. The vacf becomes
negative after time t ≈ 1 and then tends to 0. The final decay to 0 is displayed
magnified in the inset. This exposes the strong noise present in the data, which
even leads to positive values at some times t ≳ 10. Still, it might be fruitful to
check the final decay for the presence of the two described power laws. For
this, −Z(t) is plotted in double-logarithmic presentation in fig. 2.19 (right).
The noise becomes even more visible in this plot and wherever the vacf
becomes positive, it leads to an interruption of the plotted lines. Even with
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Figure 2.19: Left: Velocity autocorrelation function
for a range of tracer diameters σF as indicated in the
legend in a linear-log plot. Inset: Enlarged view of the
same data, emphasizing the final decay to 0. Right:
Double-logarithmic plot of −Z(t) as a function of
time t. Hydrodynamic asymptote ∼ t−2 (dashed line)
and critical asymptote ∼ t2/3.036−2 (dotted line) are
drawn into the figure to guide the eye.

the poor quality of the data the vacf clearly follows the critical asymptote
Z(t) ∼ −t2/z−2 for all the shown σF, again in agreement with the Lorentz
model behavior. The Z(t) ∼ −t−2 is never observed. This is due to the fact,
that none of the systems were simulated in the dilute limit, as the matrix always
has the same, relatively high density. It is interesting that systems far from the
critical point show the critical power-law in the vacf but not in the msd. The
former has simply lost the diffusive part of the latter due to the application
of the derivative and thus exposes the critical power-law at earlier times and
smaller σF. To observe the crossover to the −t−2 power law and to get rid of
the noise, longer simulations runs with better statistics would be required. Still,
the obtained results are once more in line with what to expect from the Lorentz
model.

This concludes the discussion of the dynamics in the soft-sphere Lorentz
model. A range of scaling properties of the Lorentz model were confirmed to
apply to the soft-sphere system discussed here. In the next section, a mapping
of the soft-sphere onto a hard-sphere system will be discussed. With this it is
possible to calculate the effective hard-sphere critical density and compare it
to the known value of the hard-sphere Lorentz model.

2.3 Mapping a soft-sphere onto a hard-sphere system

With a simple argument, the soft-sphere Lorentz model may be mapped onto
the hard-sphere Lorentzmodel, provided the tracer always has the same energy.
The following argument expands on a calculation by Felix Höfling (private
communications).

The localization transition of the tracers coincides with the percolation
transition of the available void space. To correctly map a soft-sphere Lorentz
model onto a hard-sphere Lorentz model it is therefore most important to
map the topology of the void space correctly: open channels in the void space
must stay open under the mapping and closed ones stay closed.

A conventional mapping from soft onto hard spheres would be the Barker-
Henderson mapping (Barker and Henderson, 1967; Hansen and McDonald,
2006), which averages over the whole potential distribution to obtain an effec-
tive diameter. In general, such a mapping doesn’t guarantee that the topology
of the void space remain unchanged under the mapping.
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Here, the conservation of the topology is accomplished with a mapping
onto hard-sphere obstacles with point-like tracers. In this mapping, the ef-
fective hard-sphere diameter of the obstacles σhs(σF, E) is calculated as the
distance between two obstacles forming a channel through which a tracer with
a diameter σF and energy E is barely able to pass.

U = E

σhs

σhs

Figure 2.20: Sketch of two obstacles at the distance
where the channel between them vanishes for a tracer
with diameter σF and energy E. The obstacle centers
are shown as points. The height of the total potential
energyU —which is a function of σF — at each point
of the sketch is given in gray scale. The equipotential
line where the potential energy U exactly matches
the particle energy E is shown in black and encloses
the area unavailable to the tracer. The effective hard-
sphere diameter then corresponds to the obstacles
marked in red.

In two dimensions, a channel which connects two pockets is almost always
defined by two obstacles, see fig. 2.20 for an illustration of the situation. A
tracer which is placed directly in the middle between two obstacles which
are placed at a distance σhs ∶= 2r has at least the total potential energy U (see
eq. (2.1))

U = 2VMF(r) = 2(4εMF ((2σMF

σhs
)12 − (2σMF

σhs
)6) + εMF)Ψ (σhs2 ) ,

with σMF = (σM + σF)/2. In the following Ψ(r) will be neglected. The tracer is
then just about unable to pass the gap if that potential energy equals its total
energy, 2

2 This result is obtained by substituting with ρ ∶=
(2σMF/σhs)6, solving the resulting quadratic equa-
tion, E = 8ε(ρ2 − ρ) + 2ε, and picking the solution
which obeys ρ ≤ 1/2 (the cutoff condition of the wca
potential), ρ = 1/2 +√E/(8ε).

E != 8εMF ((2σMF

σhs
)12 − (2σMF

σhs
)6) + 2εMF

⇒ σhs = 2
⎛⎝ 12 +

√
E

8εMF

⎞⎠
−1/6

σMF. (2.11)

This is the same situation as for a point-like tracer encountering hard-
sphere obstacles with diameters of the same size as the distance between the
obstacles. The described situations is therefore equivalent to a system of a
point-sized tracer and hard-sphere obstacles with diameter σhs. Equation (2.11)
thus provides a mapping from the soft-potential system with tracer energy
E and tracer diameter σF onto a hard-sphere matrix with diameter σhs and
point-like tracers.

In fig. 2.20, the area available to the soft-sphere tracers lies outside the black
equipotential line where the tracers energy equals its potential energy, U = E.
After the mapping, the point-like tracer is assumed to be able to access the area
outside the two red circles marking the hard-sphere obstacles. The resulting
difference in available area will be shown to be negligible for the dynamics.
The same holds for modifications to the mapping from channels formed by
three or more obstacles.

The eq. (2.11) implies the hard-sphere diameter can be used as the only
control parameter, i.e. that two systems with the same σhs would have the
same dynamics. That this is true will be confirmed in the discussion of the
confined ideal gas, in section 3.4. Even before showing that dynamics are
correctly mapped it is important to repeat that, since the mapping respects the
topology of the matrix, the percolation point σ c

F is necessarily mapped onto
the percolation point σ c

hs correctly. Therefore, a percolating system will stay
percolating under the mapping and a localized system will stay localized.

The mapping furthermore shows why it is relevant to set all tracer particles
to exactly the same energy to preserve a sharply-defined localization transition
in the system. Eq. (2.11) has been used to calculate the hard-sphere diameter
of the obstacles for displaying the matrix in figs. 2.3 and 2.5.
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With the hard-sphere mapping, the critical hard-sphere density of the
present system can be readily calculated. The reduced obstacle density in
the hard-sphere mapping, n∗hs can then be expressed in the following way

n∗hs ∶= nM
σ 2
hs
4
= nM

⎛⎝ 12 +
√

E
8εMF

⎞⎠
−1/3

σ 2
MF,

with nM ∶= NM/L2 denoting the number density of obstacles. For the soft-
sphere, single-energy Lorentz model covered here, critical behavior was ob-
served at σ c

F = 0.435, i.e. at σ c
MF = (σM + σ c

F)/2 ≈ 0.718, at obstacle density
0.625σ−2M , at energy E ≈ 1.143 and with energy scale εMF = 0.1. This then gives
the critical hard-sphere diameter σ c

hs ≈ 1.31 and the critical reduced obstacle
density (n∗hs)c ≈ 0.270. This result is confirmed by the independent calculation
of the percolation threshold for the usedmatrix configurations for hard-spheres
byMarkus Spanner via Voronoi tesselation of the void space (private communi-
cations with Spanner, 2014). He obtained the critical diameter σ c

hs = 1.31 ± 0.01
and thus a critical reduced obstacle density (n∗hs)c = 0.270±0.005, in complete
agreement with the hard-sphere mapped result.3 This is proof of the validity 3 The Voronoi tesselation of the obstacle positions al-

lows construction of the percolation network, as was
shortly outlined in section 1.2.1. For each of the 100
matrix configurations, the density upon which the
network stops percolating the systemwas determined.
Due to their finite size, each system has a different
percolation density. Here, the average of these perco-
lation densities is reported, while the error margin is
given by their standard deviation.

of the hard-sphere mapping.
The critical density found here is lower than in the two-dimensional hard-

sphere Lorentz model, which has critical density (n∗hs)c = 0.359 (Bauer et al.,
2010). This relation is expected, since in the former case the obstacles are
correlated and fill space more effectively. The same tendency is found in other
Lorentz models with correlated obstacles, e.g. for obstacles with hard-cores
which are not allowed to overlap (Spanner, 2010).

2.4 Summary

In this chapter it has been shown that the presented system—weakly correlated
obstacles, interacting with single-energy, non-interacting tracers via the wca
interaction potential — is a realization of the Lorentz model. Upon variation
of the tracer particle diameter σF the system undergoes a transition from
delocalization to localization with the expected power-law-like anomalous
diffusion occuring in the msd at a critical point in-between. The long-time
diffusion found on the delocalized side becomes suppressed in approaching the
transition, vanishing with the expected power-law. Further scaling properties
like the collapse of the msd and the van-Hove function onto master curves
close to and at the transition were found to be compatible with the data.

Amapping of the systemonto an equivalent hard-sphere systemwas achieved
which conserves the topology of the matrix structure. In this way, it was re-
vealed that the energy of the tracers is an implicit control parameter and that
the energy of the tracers must necessarily be the same for the system to be
mappable onto a single hard-sphere density. The effective hard-sphere critical
density — calculated from the tracer energy and the tracer diameter — agreed
with the percolation threshold determined from a Voronoi tesselation.

Before discussing the implications of introducing an ideal gas into thematrix,
the treatment of finite size effects will be briefly discussed.
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Figure 2.21: Mean-squared displacements for a range
of tracer diameters σF as indicated in the titles. For
each diameter, the simulation box length Lwas varied
as indicated in the legends. The barrier (L/2)2 up to
which the msd typically is without finite size effects
has been drawn in as horizontal lines for all L, colors
as indicated in the legends.

2.5 Finite-size scaling

Because the localization transition of the Lorentz model is a critical dynamical
phenomenon with a divergent correlation length ξ, the observed dynamics
will be greatly modified in cases where ξ is of the order of the box size L of the
simulation. It is therefore very important to make sure that the obtained results
are independent of the employed system size. The simplest way of making sure
of that is to calculate the same quantities for a range of increasing simulation
sizes. When the results are the same for two different box sizes, then they are
without finite size effects.

The msd is one of the quantities which are the most sensitive to finite size
effects and therefore very suitable for an analysis of finite-size scaling. Near
the localization transition, the msd will be subdiffusive as long as the tracers
have not explored distances comparable to the localization length l , i.e. as
long as δr2(t) ≪ l 2 holds. If the system size is smaller than the localization
length, the msd will become diffusive too soon, namely as soon as particles
have traversed distances comparable to the system size. As a rule of thumb, the
msd will become diffusive once it crosses the barrier δr2(t) ≈ (L/2)2. This
rule of thumb will be tested and confirmed in the following.

The msd was calculated for a wide range of diameters σF and a range of box
sizes L and is shown in fig. 2.21, grouped according to σF. The barrier (L/2)2
is drawn into the plots as horizontal lines crossing the msd. Both the msd and
the barriers are colored corresponding to L as indicated in the legends.

For low σF = 0.3— far away from the critical point— the msd very early on
exceeds (L/2)2 in the case of L = 28.28. If the correlation length exceeded the
system size, ξ ≥ L, here, then the dynamics would be drastically different when
simulating at L = 80. This is not the case, which indicates that the correlation
length must be far smaller than the linear size of the simulation box, ξ ≪ 28.28
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and that the observed dynamics at σF = 0.3 are free of finite size effects.
Closer to the critical point, ξ and with it l increases, and the msd becomes

more strongly dependent on the box size. Indeed, for σF = 0.4, the msd only
becomes independent of the box size for L > 56.57. But the msd for different
L agree always with each other, as long as none of the msd have crossed their
corresponding barrier (L/2)2. It also becomes clear here, that that the msd is
often free of finite-size effects even if it has already crossed (L/2)2.

At σF = 0.42, there is a slight modification of the dynamics even between
L = 80 and 160. But the variation is so small that the results obtained in the
L = 160 system can be assumed to be correct in these cases. Note also that(L/2)2 for L = 160 is crossed by the msd only at the very end of the simulation.

The simulation at σF = 0.43 does not show finite size effects at all because
the simulations at L = 56.57 and L = 80 were not run long enough for the
finite size effects to occur. This would be potentially problematic were it not
clear that the rule of thumb holds here and that the system at L = 160 only very
slightly exceeds (L/2)2.

At σF = 0.45, finite size effects are again very pronounced and simulation at
L = 160 is necessary.

At σF = 0.5, the system is again far from the localization transition and
smaller system sizes suffice. While at L = 40, a small upturn in the msd might
be taken as the onset of diffusion, the msd definitely converges to the size-
independent result at L = 56.57. The variation between the results at L = 56.57
and L = 80 can be attributed to poorer sampling of the void space, which
becomes considerably more difficult to do on the localized side. The msd does
not approach the barrier (L/2)2 for L ≥ 56.57.

For systems with even higher σF, the correlation length can be expected
to have even more decreased and it is therefore sufficient to simulate them at
L = 40. In conclusion, the barrier (L/2)2 below which the msd stays without
finite-size effects is found to hold generally. Therefore, if one wants to simulate
up to times t = 106 in this system, it is safe to use L = 160. Far from the critical
point, much smaller system sizes are also unproblematic.
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Figure 2.22: Schematic of the behavior of D as a func-
tion of the system size. Dots represent data points
obtained from simulations (not actually simulated
for this figure) plotted as a function of L−μ/ν . The
true scaling (red line) is some unknown function ful-
filling eq. (2.12). The ad-hoc fit from eq. (2.13) (blue
line) provides a lower bound for D at L−μ/ν = 0. The
dotted line gives the finite size scaling at L ≪ ξ.
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Figure 2.23: Top: Time-dependent diffusion coeffi-
cient D(t) for a range of simulation box sizes L as
indicated in the legend. Middle: Same data rescaled
to scaling function describing the final decay on to
the long-time limit. Bottom: Last simulated values of
D(t) and corrected values from the scaling approach
as a function of rescaled box length L .

Extrapolating diffusion coefficients close to the critical point As the above
analysis of the finite size effects in the msds shows, finite size effects lead
to an overestimation of the diffusion coefficient. But for systems close to
the localization transition, where it is difficult to simulate for long enough
times and in large enough systems to calculate the correct diffusion coefficient,
the scaling of the diffusion coefficient with the system size can be used to
extrapolate to a lower bound for D.

At the critical point, where the localization length ξ diverges, D vanishes
with D ∼ L−μ/ν with μ = 1.31 and ν = 4/3. Slightly away from the critical
point, at a distance ε, the same relationship holds for small system sizes but D
converges to its true finite value as soon as L≫ ξ (Höfling et al., 2008),

D(ε, L) ∼ ⎧⎪⎪⎨⎪⎪⎩
L−μ/ν , for L≪ ξ,(−ε)μ , for L≫ ξ and ε → 0.

(2.12)

Regardless of the exact scaling function, the following ad-hoc fit function
should approximately apply in the scaling regime but represent a true lower
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bound Dlower in the L →∞ limit,

D = aL−μ/ν + Dlower, (2.13)

with some constant a. Fitting this function to the diffusion coefficient D as a
function of L−μ/ν for a range of simulations with different L, one then obtains
Dlower as a true lower bound for D. For a schematic of this, see fig. 2.22.

The extrapolation procedure is demonstrated here at σF = 0.42. The system
was simulated at three system sizes L = 28.28, 80, and 160, for which the
time-dependent diffusion coefficient D(t) = dδr2(t)/dt is shown in fig. 2.23
(top). For L = 28.28, the long-time diffusion coefficient can be directly read off.
For the two larger system sizes, D(t) has not quite converged to its respective
long-time limit. But, the decay towards the long-time limit follows a scaling
function and so the long-time limits can be extrapolated from scaling D(t)
for the three system sizes on top of each other, see fig. 2.23 (middle). In a last
step, the D that were obtained from that extrapolation are plotted as a function
of the expected scaling L−μ/ν and fitted with eq. (2.13), see fig. 2.23 (bottom).
In this way, one obtains Dlower = 0.0024. An upper bound to the diffusion
coefficient can be obtained from the last obtained value of D(t) at the largest
simulated system size, thus D < 0.0047.

These two bounds are used to display the diffusion coefficient at σF = 0.42
in fig. 2.7 as a vertical bar. Additionally, the same procedure is used in the
following sections in figs. 3.5 and 4.16 whenever a direct measurement of a D
free of finite size effects was not possible.





3
An ideal gas in a porous medium

The simplest generalization of the Lorentz model discussed in the previous
section is achieved by assigning a Maxwell-Boltzmann distribution the the
velocities of the tracers, turning them into an ideal gas confined in a porous
medium. This is the logical next step towards a realistic heterogeneousmedium
containing a fully interacting fluid component. The introduction of an en-
ergy distribution has implications for the dynamics of the system close to the
localization transition which will be discussed in the following.

As previously described, the barriers between void pockets in the system are
finite if the interaction potential is soft. Tracer particles with different energies
then explore the matrix with the obstacles having different effective hard-
sphere diameters, as calculated in section 2.3. Particles with a high enough
energy are delocalized, while particles with low energies are localized. Thus,
the wide distribution of particle energies found in a typical system leads to
an averaging of the dynamics over a wide distribution of particle states, from
delocalized to localized. It will be demonstrated that this averaging of the
dynamics rounds the localization transition, in the sense that a sharp point
where all particles become localized does not exist. The msd will be diffusive, as
long as a few particles have a high-enough energy to be delocalized, even when
most of the particles are localized. The rounding of the transition destroys the
scaling properties of the system, for instance the critical anomalous exponent
of the msd cannot be observed anymore. Instead a wide range of effective
exponents are found which are a result of the underlying energy averaging.

The mapping of soft-sphere diameters onto hard-sphere diameters as dis-
cussed in the previous section is used to analytically express the energy averag-
ing present in the confined-ideal-gas. For instance, when the msd is calculated
as a function of tracer energy as well as the tracer diameter, then the hard-
sphere mapping leads to complete agreement with the single-energy data and
scaling predictions are again fulfilled.

In contrast to the msd —which is dominated by the mobile particles — the
behavior of the isf is dominated by the localized particles. Because of this,
the isf generically obtains a larger long-time limit compared to the single-
energy case, as the energy distribution causes more particles to be localized at
a given σF. In a way, the dynamics of the confined-ideal gas is therefore more
heterogeneous than that in the single-energy case.



64 anomalous transport in heterogeneous media

3.1 Preparation of the confined ideal gas

The confined ideal gas differs from the system discussed in chapter 2 in only
one aspect: instead of a single energy, the mobile component possesses a wide
energy distribution. Three different insertion methods were tried out and
found to lead to the same distribution of energies and the same dynamics:

1. Naïve insertion: For each particle an insertion positionwas randomly picked
and was inserted at that position if it was far enough from neighboring
particles according to an ad hoc minimum distance: It was required that the
distance to the nearest obstacle may not be smaller than 0.65σM and to the
nearest tracermay not be smaller than 0.2σM. Especially the latter condition
is unphysical, which is why this criterion was eventually discarded.

2. Boltzmann-weighted insertion: an insertion position for a tracer particle was
randomly picked. Then the potential energyU of the particle at that position
was calculated and the particle insertion was accepted with probability
min[1, exp(−βU)].

3. Grand-canonical Monte Carlo insertion: the particle configurations were
generated in a grand-canonicalMonte Carlo simulation by taking snapshots
of the system when the system had been simulated for long enough and the
number of particles was as needed. For details, see appendix A.

Detailed comparison between the insertionmethods is made in appendix A,
where the three methods are found to lead to the same dynamics. The bulk of
the discussed data was calculated for systems created with criterion 1, which
was replaced by criterion 2 and 3 for the most recent data. Typically between
100 and 1000 particles were inserted into each of 100 matrix configurations.
To allow for comparison to the single-energy case the average particle energy
in the systems was kept the same, with the same temperature kBT = 1. The
particles were equilibrated at that temperature for at least 105 steps with a
simplified version of the Andersen thermostat (Andersen, 1980) by randomly
selecting their velocities from the Maxwell distribution every 100 steps. Since
the equilibration is performed in the canonical ensemble the total energy of the
individual systems fluctuate around an average energy. For the microcanonic
production runs, the systemswere brought to the same total energy by rescaling
all tracer velocities in a given systemwith the same constant, leaving the relative
distribution of energies unchanged.

It should be noted that at very large diameters the energies of the individual
systems often deviate strongly from the average energy and bringing the sys-
tems to the same energy changes their kinetic energy strongly. This occurred
at σF = 0.9, where the temperature became shifted to kBT ≈ 1.42 as a result.
This has no qualitative effect but has to be considered quantitatively in a few
places in the analysis.

Energy distribution of the gas of tracers The energy of a single fluid particle
with position r⃗ and velocity v⃗ interacting only with the matrix particles is given
by

E1(r, v) ∶= 1
2
mv⃗2 + ∑

j∈IM
VMF(∣r⃗ − r⃗ j ∣).
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Figure 3.1: Left: Energy distribution p(E) of the con-
fined ideal gas for the particle diameters σF = 0.3, 0.6,
0.9. Average energies of these systems are shown as
vertical lines in corresponding colors. Exponential
asymptotes for large E shown as black line. Right:
The same distribution for a greater number of σF in a
linear plot with the same exponential asymptote as
black line.

The probability density of a single particle having the energy E is then defined
as the integral over phase space available to it at the given energy,

p(E) ∶= ⟨δ(E1(r, v) − E)⟩. (3.1)

To calculate the particle energy distribution p(E) numerically, the tracer ener-
gies were evaluated at the beginning of the simulation run and were grouped
into either 80 or 120 bins with a width of ΔE = 0.1 each. Each bin is denoted
by its upper bounding energy. Tracers with energies larger than the largest rep-
resented bin were ignored. This typically amounted to ignoring less than 0.1%
of the particles. The histogram was then averaged over all realizations and nor-
malized by dividing by the total number of tracer particles NF per realization
and by the bin width ΔE, resulting in p(E). The smallest representable value
of p(E) for the simulations was thus Δp = 1/(number of systems ⋅ nF ⋅ ΔE).
This typically resulted in Δp = 1/(100 ⋅ 1000 ⋅ 0.1) = 10−4.

The resulting particle energy distribution p(E) is shown in fig. 3.1 for a
range of diameters σF with the average energies of the systems marked as
vertical lines in the corresponding colors. In fig. 3.1 (left), the distribution
is shown semilogarithmically to expose its exponential behavior at large E.
The average energy of the systems, marked by the vertical lines, changes only
weakly between σF = 0.3 and 0.6 but is strongly increased at σF = 0.9, partly
because of the increase in temperature discussed previously. An exponential
function with β = 1/kBT using the temperature kBT = 1 of the system (lower
black line) matches the large-E behavior at σF = 0.3 and 0.6. The deviation
from the exponential distribution at small energies is caused by the external
potential of the obstacles which cuts off the probability distribution. The
increased temperature at σF = 0.9 becomes apparent here in the changed
slope of the exponential tail which correctly reflects the increased temperature
1/kBT ≈ 0.70. For a better view of the deviations from the exponential at small
energies, p(E) is plotted regularly in fig. 3.1 (right) for a greater number of σF.

Production runs were obtained in the microcanonical regime, so the energy
of each particle was conserved over a single run of the simulation.

Structure of the accessible volume That the confined ideal gas is different from
the single-energy case, is immediately apparent from the positional data of a
simulation run. In fig. 3.2 (right), all the recorded tracer positions of a single
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Obstacle

Tracer

Figure 3.2: Left: All the positional data of 500 trac-
ers with σF = 0.45 of a single simulation run in the
single-energy case. All the tracer positions which
were collected over a whole simulation run are rep-
resented as dark grey points. The obstacles are repre-
sented as hard-spheres in light grey with the effective
hard-sphere radius calculated from eq. (2.11) using
the average particle energy. (Replotted from fig. 2.3).
Right: A confined ideal gas in the same matrix at the
same parameters. A red circle marks a channel which
is closed in the single-energy case but open in the
confined ideal gas.

simulation run are shown as dark grey points. They are superposed over the
obstacles, shown as light grey disks with their effective hard-sphere diameter
as calculated from the average particle energy, see eq. (2.11). The position data
for the single-energy case for the same obstacle matrix was already shown in
fig. 2.3 and is replotted here in fig. 3.2 (left) for comparison. In the single-energy
case the same effective hard-sphere diameter provides a good description of
the region unavailable to the tracers. Compared to the single-energy case,
the void space in the confined-ideal gas is less clearly defined: Some particles
get closer to the obstacles than in the single-energy case and are found to be
overlaying the matrix. Compared to the single-energy case, the boundaries of
the matrix have become less clearly defined and appear rougher. Pockets of
void space that were previously separate have become connected (one example
marked by a red circle).
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Figure 3.3: Fluid particle structure factor SFF(q) as a
function of the wavenumber q for a range of fluid par-
ticle diameters σF as indicated in the legend. Dashed
lines for single-energy system, solid lines for confined
ideal gas. Centered moving average applied.

As the fluid particles are not interacting, their structure factor SFF(q) be-
comes a pure measure of the structural correlations of the void space itself. It is
therefore a useful quantity to determine the average changes to the accessible
volume brought about by the introduction of an energy spectrum. In fig. 3.3,
SFF(q) is shown for the single-energy case (dashed lines) and the confined-
ideal gas (solid lines) for a range of σF, simulated at the same number density
nF = 0.625. In comparison, the structure factors of the confined ideal gas are
generally larger than the corresponding ones for the single-energy case.

More useful than SFF(q) would be both the distribution of pore sizes and
the connected structure factor which is like the structure factor, only that it
correlates only particles which are on the same cluster. This however would
require a way of identifying clusters. This is difficult for the single-energy
soft-potential Lorentz model, but impossible when each particle has a different
energy.



an ideal gas in a porous medium 67

10−1 100 101 102 103 104 105 106

Time t

10−1

100

101

102

103

104
M
ea
n-
sq
ua
re
d
di
sp
la
ce
m
en
tδ
r2
(t)

σF = 0.2 0.3

0.4

0.45

0.5

0.6

0.7

0.9

∼ t

∼ t 2

∼ t 2/z

Figure 3.4: Mean-squared displacements for the con-
fined ideal gas for various fluid particle diameters σF
as indicated in the figure (solid lines). For compari-
son, mean-squared displacements at the same diame-
ters in the case of a single tracer energy (dashed lines,
same colors indicate same diameters, same data as in
fig. 2.6). The critical asymptote of the Lorentz model,
∼ t2/z with exponent z = 3.036, is superposed as a
thin red line over the data.

3.2 Dynamics of the full system

The change in the dynamics introduced by the energy distribution is directly
apparent in the msd, which is shown in fig. 3.4. The msd of the confined
ideal gas is shown as solid lines for a range of diameters, superposed over the
single-energy data obtained for the same diameters as dashed lines. Generally
speaking, the confined ideal gas msd follow the single-energy msd on short
and intermediate times and then deviate. The difference between the two cases
is the least pronounced farthest from the critical point, at σF = 0.2 and 0.3
on the delocalized side, and at σF = 0.7 and 0.8 on the localized side. The
most striking difference occurs, when the single-energy system is already
localized, while the ideal gas system clearly is not, e.g. between σF = 0.45 and
0.6. The localization transition occurs between σF = 0.6 and 0.7. The msd at
σF = 0.6 on intermediate times seems to tend to a constant long-time limit
before becoming diffusive.

As a remainder of the Lorentz model transition, between σF = 0.4 and
0.45, the msd follows the expected critical anomalous diffusion for a short
time before becoming diffusive. At higher σF, effective exponents arise in an
interplay of localized and delocalized dynamics: Subdiffusion is sustained for
the longest time at σF = 0.5, where the msd is compatible with an exponent
2/z = 0.56. At σF = 0.6, the msd is compatible with an effective anomalous
exponent 2/z ≈ 0.25.

The long-time diffusion coefficientD of the confined ideal gas is also strongly
modified compared to the single-energy case. Most importantly, the behavior
of D cannot be made to match the critical behavior of the Lorentz model
anymore. In fig. 3.5 (top) the diffusion coefficient D of the confined ideal gas
is shown as a function of the tracer diameter in comparison to the already
presented data for the single-energy case. As could be already seen in the
msd, the diffusion coefficient of the confined ideal gas is similar to the one of
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the single-energy case at small tracer diameters σF, but starts to exceed it at
σF ≈ 0.35. Additionally the diffusive regime extends to far larger σF.

That the dependence of D is not compatible with the critical asymptote
D ∼ εμ is demonstrated by the rectification plot in fig. 3.5 (bottom). There, D1/μ

is plotted as a function of σF, which would turn the critical asymptote into a
straight line with the root of the line marking the localization point. Clearly,
D1/μ for the confined ideal gas is strongly curved in the approach D1/μ → 0.
This demonstrates the rounding of the transition.
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Figure 3.5: Top: Diffusion coefficient of the confined
ideal gas and the single-energy case as a function
of the tracer diameter σF. Connected dots for data
free of finite size effects; vertical bars give upper and
lower bounds obtained from finite size scaling, see
section 2.5. Bottom: Rectification plot of the same
data. Where finite-size-scaling bounds become too
close for displaying, the bounds are marked by un-
connected dots instead.

However, it is possible to identify an effective power-law for the diffusion
coefficient which is not connected to the Lorentz model. Assuming that the
effective transition occurs at σ c

F = 0.6, the diffusion coefficient of the confined
ideal gas becomes compatible with a power-law. This can be seen in fig. 3.6,
where D is shown for both the confined ideal gas and the single-energy system
as a function of the separation parameter. While the single-energy D follows
the expected power-law, D ∼ ∣ε∣μ , the confined ideal gas D follows a power-law
with a very different exponent, D ∼ ∣ε∣2.8. Clearly, the confined ideal gas does
not become fully localized at σF = 0.6, so the effective power-law will break
down necessarily at some ε ≤ 0.1. The effective scaling is not necessarily a sign
of scale invariance in the approach to a localization transition — as is the case
of the scaling in the Lorentz model — and is most likely accidental.
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Figure 3.6: Diffusion coefficient D of confined ideal
gas and the single-energy case as a function of the
separation parameter ε ∶= (σF − σc

F)/σc
F . For the

calculation of ε, the parameters σc
F = 0.435 (single

energy) and σc
F = 0.6 (confined ideal gas) was used.

Black lines mark asymptotes with the exponent of the
Lorentz model, ∼ ∣ε∣μ with μ = 1.31, and an effective
exponent, ∼ ∣ε∣2.8.

From inspection of the msd directly it is already clear that the critical
asymptote of the Lorentz model, δr2(t) ∼ t2/z is never approached. It is
therefore not fruitful to discuss the approach to the critical asymptote in a
similar manner as in section 2.2 for figs. 2.10 and 2.13. Only for completeness is
the collapse of the msd near the localization point onto two scaling functions
tested here. In the Lorentz model, one would expect, see eq. (1.13),

δr2(t) = t2/zδR2
±(t̂),

with t̂ ∶= t/tx ∼ tl−z and localization length l , with l−z ∼ ∣ε∣νdw on both sides
of the transition. This scaling is applied in fig. 3.7, where the msd is divided by
the critical asymptote and then shown as a function of time rescaled by the
localization length, in analogy to fig. 2.13. For the calculation of the separation
parameter ε, the localization transition has been assumed to take place at
σ c
F = 0.6. In contrast to fig. 2.13, the collapse onto the two scaling functions, for

the delocalized and the localized states, respectively, is not achieved, here. Most
clearly, this is apparent for the state at σF = 0.55 which presents an intermediary
case between the two scaling functions. Its rescaled msd appears to be on the
localized side but then turns strongly upwards, i.e. becomes diffusive. This
does not present a finite size effect.

In the same way with which an effective scaling was found for the diffusion
coefficient, an effective scaling can be found for the msd which improves the
collapse onto scaling functions considerably. This is achieved by treating the
localization length l , which enters the scaling function by rescaling time, as
a free parameter. The results are shown in fig. 3.8. On the left, the rescaled
msd is found to mostly collapse onto the localized and delocalized scaling
functions. Only for the msd at σF = 0.5 and 0.55 the scaling does not work
well. The localization lengths l with which the collapse was achieved are shown
on the right as a function of the separation parameter ε with open circles for
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Figure 3.7: Rescaled mean-squared displacement of
the confined ideal gas as a function of rescaled time
tενdw for a range of diameters σF as indicated in the
legend. For the calculation of the separation param-
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ment of the confined ideal gas as a function of
rescaled times tl−z for a range of diameters as in-
dicated in the legend. Right: Mean-void-cluster sizes
l used for the scaling of the msd as a function of the
separation parameter ε.

the delocalized, diffusive side and closed circles on the localized side. Since l
was treated as a fit parameter, it was possible for it to exceed the simulation
size L. For the calculation of ε, the critical point was again assumed to be at
σ c
F = 0.6. In the Lorentz model, l is expected to diverge as l ∼ ∣ε∣−νdw/z (dashed

line), see eq. (1.12). The Lorentz model scaling is not obeyed on both sides of
the transition. Instead, the localization length l is found to follow effective
power-laws on both sides of the transition, but with different exponents. The
divergence of the l with an effective exponent of −2.7 on the delocalized side
is directly inherited from the effective exponent of the diffusion.

The modification of the dynamics in the confined ideal gas in comparison
to the single energy case can be understood in terms of an energy average. In
the former, the particle energies are sampled from a broad energy distribution.
Particles with an energy higher than the energy used in the single-energy case
will tend to be more mobile. Even if most of the system’s particles are localized,
some high-energy particles will still be delocalized. Then, the msd— because
it is very sensitive to contributions from delocalized particles — will become
diffusive as long as there are some delocalized particles contained in the system.
The critical subdiffusion for the systems between σF = 0.4 and 0.45 is therefore
strongly masked by diffusive contributions from high-energy particles, and
even the msd at σF = 0.6, becomes diffusive, even thoughmost particles at that
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diameter are localized. As the fluid diameter is increased, less and less particles
are diffusive, the system’s diffusion coefficient becomes smaller, and the msd
appears localized for longer times. This rounding of the transition also makes
it impossible to associate the localization transition with a critical anomalous
exponent and only effective exponents can be inferred. In the following, the
rounding of the transition is explored quantitatively.

3.3 Effective hard-sphere distribution

The rounding of the transition reported above can be understood, if the hard-
sphere mapping of section 2.3 is used to map the energy distribution p(E)
of the tracer particles onto a distribution of effective hard-sphere diameters
p(σhs). A variable substitution of the corresponding integral leads to the
mapping,

∫ ∞

0
p(E)dE = ∫ σhs(E=∞)

σhs(E=0)
p(E(σhs)) dE

dσhs
dσhs

=∶ ∫ σhs(E=0)

σhs(E=∞)
p(σhs)dσhs

⇒ p(σhs) = −p(E(σhs)) dE
dσhs

. (3.2)

The negative sign enters through reversing the integration limits and reflects
that the effective hard-sphere diameter becomes smaller with increasing parti-
cle energy and vice-versa. The new probability distribution p(σhs) is automati-
cally normalized if p(E) is normalized. From eq. (2.11) it immediately follows
that,

E(σhs) = 8εMF ((2σMF

σhs
)12 − (2σMF

σhs
)6) + 2εMF, (3.3)

dE
dσhs

= −48εMF (2(2σMF)12(σhs)13 − (2σMF)6(σhs)7 ) . (3.4)

For each particle an effective hard-sphere diameter can be determined.
Particles with σhs = σ c

hs are at the localization transition, those with σhs < σ c
hs

effectively explore a matrix containing a percolating cluster, and those with
σhs > σ c

hs are localized. Therefore, as long as there is a part of the distribution
on the percolating side, i.e. p(σhs) > 0 for some σhs < σ c

hs, then the system will
contain delocalized particles and will exhibit diffusion at long times.

Increasing σF shifts the whole distribution. This can be easily demonstrated
with the numerically obtained energy distribution, converted into p(σhs).
To display p(σhs) it is practical to plot p(E)dE/dσhs versus σhs(E) (from
eq. (2.11)) parametrically with parameter E. The hard-sphere diameter dis-
tributions obtained that way are shown in fig. 3.9. They are plotted semi-
logarithmically to in particular expose the behavior of the distribution at small
σhs. The distributions are limited at small σhs by the largest energy for which
p(E) was calculated and at large σhs by the energy being E = 0. The distribu-
tion has similar shape for all σF and it gets shifted towards larger σhs when σF is
increased. From the plot it can be immediately read off that at least the systems
with σF ≤ 0.6 contain delocalized particles. This finding is fully compatible
with the msd of these states becoming diffusive.
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Figure 3.9: Plot of the distribution of effective hard-
sphere diameters p(σhs) for a range of σF as indicated
in the figure. The distributions were calculated as
indicated in the text with the numerically obtained
particle energies, shown in part in fig. 3.1. The critical
hard-sphere diameter σc

hs = 1.31 as determined in
section 2.3 is marked with a vertical line. The analytic
approximation given in eq. (3.5) is shown for all σF
as solid black curves.

A few properties of the distribution p(σhs) can be determined analytically
using an approximation of the energy distribution. Relevant for the transport
in the confined ideal gas are the particles with high energy. It is was observed
in fig. 3.1, that the energy distribution decays as p(E) ∼ exp(−βE) for large E.
With this, the distribution p(σhs) can be immediately estimated at small σhs.
After fitting p = Aexp(−βE) to the energy distribution, eqs. (3.2) to (3.4) then
evaluate to

p(σhs) ≈ Aexp(−β 8εMF ((2σMF

σhs
)12 − (2σMF

σhs
)6) + 2εMF)×

48εMF (2(2σMF)12(σhs)13 − (2σMF)6(σhs)7 ) . (3.5)

The approximation is superposed over the numerical data as black lines in
fig. 3.9. For σF ≤ 0.65, the amplitude A = 1.3 was used for the energy distribu-
tion fit and the temperature corresponded to β = 1. For σF = 0.9, the amplitude
was A = 0.7 and the temperature corresponded to β = 0.7 as a result of the
equilibration procedure described in section 3.1. The exponential fits with
these parameters are shown in fig. 3.1. The approximation matches the actual
hard-sphere distributions well, especially at small σhs.

The latter term of the approximation diverges in the limit σhs → 0, but the
exponential function tends to 0 more strongly, so that in total

lim
σhs→0

p(σhs) = 0.

Still, for all finite σhs, the probability distribution stays positive

p(σhs) > 0, for σhs > 0. (3.6)

The approximation of p(E) as an exponential function can be expected
to become strictly correct in the limit E →∞, which is the relevant limit for
determining the behavior of p(σhs) at small σhs. It can therefore be concluded
that the real distribution p(σhs) also stays positive for all finite σhs. Therefore,
a part of the distribution is always on the delocalized side. Strictly speaking,
this means that there is no true localization transition in the confined ideal gas,
as there is always a finite probability of some tracers being delocalized.

Specifically, the fraction of particles whose energy corresponds to a perco-
lating system pperc can be calculated approximately as a function of σF,

pperc ∶= ∫ σ c
hs

0
p(σhs)dσhs = ∫ E(σhs=0)

E(σ c
hs)

p(E)dE
= P(E(σhs = 0)) − P(E(σ c

hs)),
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Figure 3.10: Estimate of the percolating fraction pperc,
the probability that any given tracer particle has an
energy corresponding to a percolating system as a
function of σF, as given by eq. (3.7). Parameters were
A = 1.3, β = 1, εMF = 0.1, and σc

hs = 1.31. Inset: The
same function in a semilogarithmic plot.

with P(E) being the antiderivative to p(E). If p(E) ≈ Aexp(−βE) with some
constant A, then P(E) ≈ −(A/β) exp(−βE) and

pperc ≈ A
β
exp(−βE(σ c

hs)) − A
β
exp(−βE(σhs = 0)).

Since limσhs→0 E(σhs) = +∞ holds, pperc immediately simplifies to

pperc ≈ A
β
exp(−βE(σ c

hs)).
This can then be evaluated with eq. (3.3) to

pperc ≈ A
β
exp
⎛⎝−8βεMF

⎛⎝(2σMF

σ c
hs
)12 − (2σMF

σ c
hs
)6⎞⎠ − 2βεMF

⎞⎠ . (3.7)

Obviously, setting A to a constant for all σF is an approximation, but a
reasonable one for at least σF ≤ 0.65 (this can be seen in fig. 3.1). It should also
be noted, that the exponential approximation overestimates the value of pperc
for small σF, since the energy distribution at small E is overestimated. However,
both points are not particularly relevant for the discussion of the rounding of
the localization transition, which occurs mostly in the range 0.4 < σF < 0.65,
where the approximation of pperc works well.

For A = 1.3, β = 1, εMF = 0.1, and σ c = 1.31 the cumulative probability in
exponential approximation is shown in fig. 3.10. For σF < 0.5 one finds that
the percolating fraction is large, pperc > 0.1 , indicating that a large fraction of
the particles are delocalized. At σF = 0.6, pperc has fallen below 10−2, which
can be seen more clearly in the inset where pperc is plotted logarithmically
as a function of σF. At higher σF, pperc decays rapidly but stays positive. At
σF = 0.6 the msd was still found to become diffusive. This essentially presents
the limit where the number of delocalized particles is still large enough so that
diffusion can be observed easily.

While the percolating fraction pperc illustrates that all systems become
diffusive eventually, finite size effects can suppress this in simulations. At large
σF, for finite systems, pperc eventually becomes so small that all particles are
found in a localized state.

By calculating the fraction of particles experiencing a percolating system,
pperc, the rounding of the localization transition was quantified. But for the
hard-sphere mapping to be fully useful, it is necessary to demonstrate that
indeed the hard-sphere diameter σhs is the relevant control parameter and that
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the influence of the particle energy E on the dynamics can be fully understood
by its effect on σhs. For this purpose the dynamics will now be studied in more
detail.

3.4 Energy-resolved dynamics

This section will conclusively show that particles with the same σhs have equiv-
alent dynamics, except for a trivial rescaling of time and length scales. This
will then be used to show that the dynamics of the confined ideal gas presents
an average weighted with p(σhs) over the single-energy dynamics presented
previously. The analysis will focus on the msd and the diffusion coefficient,
but it can be easily generalized to arbitrary dynamical quantities.

For this analysis, it is necessary to calculate the msd as a function of the
tracer energy E. The tracers were grouped according to their energies, exactly
as for the calculation of the energy distribution p(E), and the msd was then
averaged over tracers with roughly the same energy. As an example, the energy-
resolved msd is shown for σF = 0.3 in fig. 3.11 (top) for a range of energies.
This clearly shows that in a single system the whole Lorentz model scenario
is represented: delocalized particles at large energies coexist with localized
particles at low energies. Via the hard-sphere mapping, the energy-distributed
msd, δr2(t; E) directly corresponds to the hard-sphere distributed δr2(t; σhs).

The dynamics in the hard-sphere Lorentz model can be fully described in
dimensionless quantities: For a tracer in a hard-sphere system, its velocity vF
only determines how fast it moves along its trajectory, but it does not have
an influence on the trajectory itself. Similarly, the size of the obstacles σhs
(assuming a point tracer) only sets a trivial length scale and two systems with
the same reduced obstacle density nc

hs are equivalent. Thus, the velocity vF
and the size of the obstacles σhs can be used to express trivial time and length
scales, and a dimensionless time t∗ and position r∗ can be introduced,

t∗ ∶= t vF
σhs

,

r∗(t∗) ∶= r(t) 1
σhs

.

This fixes the dimensionless velocity dr∗/dt∗ to unity and the number density
nhs of the matrix to the reduced number density n∗. Formulated in a dimen-
sionless way, the dynamics in the hard-sphere Lorentz model thus depends
only on the reduced obstacle density n∗. The dimensionless msd, for example,
then reads

(δr2(t∗))∗ = ⟨(r∗(t∗) − r∗(0))⟩ = 1
σ 2
hs
⟨(r(t) − r(0))⟩ = 1

σ 2
hs
δr2(t).

The energy-distributed msd is shown in the dimensionless rescaling for ex-
emplary σF = 0.3 in fig. 3.11 (bottom). The rescaling of the particle velocity
to unity is immediately apparent in the microscopic regime t∗ = O (1). The
dimensionless diffusion coefficient D∗ then relates to the non-rescaled D in
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Figure 3.11: Top: Plot of the energy-resolved mean-
squared displacement as a function of time t in the
confined ideal gas at σF = 0.3. The msd were av-
eraged over particle trajectories grouped according
to their energy. Width of the energy bins ΔE = 0.1.
Energies of the bins are shown as labels adjacent to
the corresponding msd in the figure. Bottom: Rescal-
ing of the same data to dimensionless variables as
described in the text.

the following way

⟨(r(t) − r(0))2⟩ → 2dDt⇒ σ 2
hs⟨(r∗(t∗) − r∗(0))2⟩ → 2dDt∗ σhs

vF⇒ ⟨(r∗(t∗) − r∗(0))2⟩ → 2dDt∗ 1
σhsvF

= 2dD∗t∗

⇒ D∗ = 1
σhsvF

D.

Thus, all systems can be rescaled with σhs and vF such that the diffusion coeffi-
cient becomes a dimensionless quantity and independent of these quantities,
D∗hs(n∗). To demonstrate the agreement between the single-energy diffusion
coefficients and the energy-distributed diffusion coefficient, both have to first
be rescaled into the dimensionless form. From the energy, σhs can be easily
calculated, while vF can be measured in the microscopic regime of the msd,
where δr2(t) = v2F t2 holds. Instead of expressing the diffusion coefficient as a
function of the reduced number density, it is presented as a function of the
control parameter σhs. Both parameters are interchangeable here, because the
number density of obstacles in the system is held constant.

In fig. 3.12 (top), the single-energy diffusion coefficient is shown in the hard-
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Figure 3.12: Top: Diffusion coefficient D as a function
of the effective hard-sphere diameter σhs(σF, E) in
the confined ideal gas for a range of diameters σF as
indicated in the legend. Hard-sphere diameters cal-
culated from the particle energy distribution p(E)
with eq. (2.11). Single energy data as superposed solid
white line. Critical asymptote of the Lorentz model
∼ ∣ε∣μ as determined for the single-energy case in
fig. 2.7 was mapped onto effective hard-sphere diame-
ters, rescaled, and plotted as red dashed line. Bottom:
Corresponding distributions of hard-sphere diame-
ters p(σhs), calculated with eq. (3.2) with the numer-
ically obtained p(E).

sphere mapping and in dimensionless representation as a solid white line. The
critical asymptote of the Lorentz model as determined for the single-energy
case is superposed as a dashed red line. The energy-distributed diffusion
coefficient of the confined ideal gas in dimensionless representation is shown
for a range of σF. The distribution of effective hard-sphere diameters for the
presented systems, which is shown in fig. 3.12 (bottom), emphasizes the wide
range of effective hard-sphere diameters present in the systems. The diffusion
coefficients are shown for all the energies where the simulation time was
sufficient for the msd to cross over into long-time diffusion. Finite-size effects
can be ruled out by the same criteria as in the single-energy case.

Although the data of the confined ideal gas contains considerable amounts
of noise, the full agreement with the single-energy case is convincing. This
gives confirmation that the hard-sphere mapping of both the tracer energy E
and the interaction diameter σF onto a single hard-sphere diameter σhs is fully
successful, in that it not only correctly maps the topology of the void space but
also the dynamics of the system.

Now it has been confirmed that for each energy E and diameter σF the
energy-resolved diffusion coefficient can be expressed by the hard-sphere
diffusion coefficient D(σF, E) = D∗(σhs(σF, E))σhs(σF, E)vF(σF, E). Then
it also becomes immediately clear that the system average of the diffusion
coefficient is an integral over the hard-sphere diffusion coefficient weighted
with the effective hard-sphere distribution of the system,

D(σF) = ∫ D(σF, E)p(σF, E)dE
= ∫ D∗(σhs)σhsvF(σF, σhs)p(σF, σhs)dσhs.

For the second equation, the notation is made to reflect that — in general —
both vF and p(σhs) will depend strongly on σF, while D∗ does not at all.

The integral expresses the rounding of the localization transition in the
confined ideal gas analytically and makes it directly clear why the scaling
properties of the Lorentz model do not hold here: Even though D∗(σhs)
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Figure 3.13: Mean-squared displacement divided by
the critical asymptote as a function of time rescaled
with the distance ε to the critical point, all in unit-less
rescaling. For the calculation of ε, the critical point
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hs = 1.31 (corresponding to
σc
F = 0.43). The system at σF = 0.3 is shown in purple,

the system at σF = 0.6 in cyan. Some exemplary msds
are annotated with their energies E.

follows a critical power-law, the lack of corresponding power-laws for vF(σhs)
and p(σhs) in general mean that D(σF) will also not follow a power-law. This
can be directly inferred from fig. 3.5.

Since both the velocity distribution and the probability distribution are
strictly positive functions, i.e. vF(σhs) > 0 and p(σhs) > 0 for σhs > 0, the
integral will always give D(σF) > 0 in the confined ideal gas: For all finite σF
the msd will eventually become diffusive. Therefore, the msd for σF > 0.6
observed in fig. 3.4 can only be effectively localized.

Scaling of themean-squared displacement Since the energy-resolved dynamics
of the confined ideal gas corresponds to the single-energy dynamics, it can be
expected that the time and space scaling of the msd is found here as well. To
demonstrate this, the msd is shown in fig. 3.13 divided by the critical asymptote
as a function of time rescaled with the expected dependence on the distance
from the critical point ε. The msd is shown for two systems: The mostly
delocalized state at σF = 0.3 is shown in purple, and the mostly localized state
at σF = 0.6 is shown in cyan.

At σF = 0.3, the system is delocalized for all but the two lowest energy bins,
E ≤ 0.1 and 0.1 < E ≤ 0.2 (not shown). The msd for the lowest two energy
bins nearly falls on the localized scaling function, while the other collapse
on the delocalized scaling function. The collapse is as successful as in the
single-energy case, which is shown in fig. 2.13.

At σF = 0.6, the simulation had to be performed for a far longer time and
thus only 500 tracers per system were simulated, giving a total of 50000 tracers
for the 100 matrix realizations. As a result, the statistics are considerably
worse. Still, for most energies, the system is clearly localized and the msd
collapses onto the localized scaling function. At high energies the noise in
the data increases considerably as the statistics become worse and it becomes
impossible to determine whether the msd correctly falls onto the delocalized
scaling function or not. However, the agreement with the localized scaling
function at lower energies is as convincing as in the single-energy case.
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Figure 3.14: Left: Velocity autocorrelation function
Z(t) of the confined ideal gas for a range of tracer
diameters σF as indicated in the legend. Inset: En-
larged view of the same data, emphasizing the final
decay to 0. Right: Double-logarithmic plot of −Z(t)
as a function of time t. The hydrodynamic asymp-
tote ∼ t−2 (dashed line) and the critical asymptote
∼ t2/z−2 with z = 3.036 (dotted line) are drawn into
the figure to guide the eye.

The collapse is equally successful for other σF as well (not shown here). The
general agreement with the scaling prediction of the Lorentz model serves as
a further illustration that the energy-resolved dynamics of the confined ideal
gas corresponds to the Lorentz model scenario.

Now that the averaging of the dynamics in the confined ideal gas is under-
stood, a few remaining results are reported to conclude the discussion of the
dynamics.

3.5 Dynamics of the full system — continued

Velocity autocorrelation function Returning back to the discussion of the
system averages, the velocity autocorrelation function Z(t) of the confined
ideal gas behaves very similarly to the single energy case. Decaying from
Z(t) = 1, it becomes negative at t ≈ 1 and then tends to 0, as is shown in
fig. 3.14 (left). Compared to the single energy case, the undershoot of the vacf
does not become as low, see fig. 3.14 (left, inset). The inset also exposes the
considerable noise found in the data. As in the single-energy case, the noise
is strong enough in the data to make it difficult to study the final decay to 0.
Nevertheless, an attempt is made in fig. 3.14 (right), where the long-time tail of
the vacf is shown in a double-logarithmic plot. The tail is compatible with
the critical asymptote ∼ t2/z−2 with z = 3.036 derived from the msd, just as in
the single-energy case. The hydrodynamic tail is again not observed.

This general agreement to the single-energy case is entirely expected. Con-
trary to the msd, the vacf of the single-energy case consistently decayed
with the t2/z−2-power law over the whole studied range of σF and thus the
averaged dynamics will inherit this. The critical scaling in the case of the msd
was destroyed by the non-critical contribution of long-time diffusion which
was always present in the average but is not contained in the vacf due to the
application of the derivative. Thus, there is no discernible qualitative difference
between the single-energy and the confined-ideal-gas cases as far as the vacf
is concerned.

Van-Hove function The self-part of the van-Hove correlation function, how-
ever, is strongly modified by the averaging and as a result does not have the
scaling properties of the Lorentz model.
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Figure 3.15: Plot of van-Hove function P(r, t) of the
confined ideal gas for a range of tracer diameters
σF = 0.3, 0.4, 0.45, 0.5, 0.6, 0.7 and 0.9. P(r, t) is
shown as a function of distance r for a range of times
t as indicated in the legends. Compare to fig. 2.14 for
the van-Hove function in the single-energy case.
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Figure 3.16: Plot of the rescaled van-Hove function
assuming the scaling of the all-cluster average at the
critical point. The scaling accounts for the different
normalization used here than in the preceeding chap-
ter.
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In fig. 3.15, the van-Hove function P(r, t) is shown as a function of distance
r for a range of times t and for the whole range of simulated systems. As σF
is increased, the system crosses the effective localization transition. At low
σF, there is a considerable broadening of the distribution over time, which
represents the exploration by the particles of their surroundings. The shape of
the distribution is changed compared to the single-energy case. In the single-
energy case there were two peaks — with one staying at a fixed, small distance
and the other moving away over time — while in the confined ideal gas there
is only one very broad distribution with one peak. This is clear indication of
the strong energy-averaging present in the system.

At the diameters σF = 0.5 and 0.6 the distribution seems to nearly converge
to a long-time limit. At ever longer times t, the distribution is only modified
on ever larger length scales r. This indicates the localization of most particles,
which make up the converged part of the van-Hove function, while only a few
particles are still delocalized. The extremely slow spatial decay is an indication
of the broad distribution of localization lengths present in the system, which in
turn is a representation of the broad energy distribution of tracers. Apart from
the weak time evolution present even at long times, the systems at σF = 0.5
and 0.6 have a van-Hove function more characteristic of a localized system.
This nicely indicates the increased heterogeneity of the confined ideal gas in
comparison to the single-energy case.

At the largest shown diameters, σF = 0.7 and 0.9, the van-Hove function
does not show any evolution at large times anymore, i.e. the system is effectively
localized. From the discussion of the energy averaging, however, one must
conclude that this is due to the limited simulation time and the finite size of
the system (which places a limit on the sampling of the energy distribution).

The energy averaging does not only destroy the scaling properties of the
msd but also those of the van-Hove function, from which the former quantity
is derived. This is illustrated in fig. 3.16, where the expected scaling for the
all-cluster average of the Lorentz model at the critical point is applied to the
data. It is enlightening to compare this to to the single-energy case in fig. 2.15
(on p. 53). The scaling might be considered the most convincing for σF = 0.3
but this is where the system is still clearly delocalized. There, at intermediate
times an effective collapse of the function occurs. But the energy averaging
leads to a broadening of the van-Hove function over time, which then destroys
the scaling. At the effective localization transition — somewhere between
σF = 0.6 and 0.7, the van-Hove function is already so strongly dominated by
the localized particles, that the critical scaling is impossible.

The relevance of localized particles is explored further with a short discus-
sion of the intermediate scattering function.

Intermediate scattering function It is relevant to discuss the isf in addition to
the van-Hove function as it exposes the localization of particles in its long-time
limit f (q). In fig. 3.17 the isf is shown as solid lines for the exemplary σF = 0.6
for a range of wavenumbers q. This data is superimposed over the isf of the
single-energy case for the same σF. Both systems have qualitatively very similar
isf. At large wavenumbers, the single-energy system’s isf shows oscillations,
which are averaged out in the confined ideal gas.
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Figure 3.17: Intermediate scattering functions as func-
tion of time t for a range of wavenumbers q at σF =
0.6 for the confined ideal gas (solid lines) and the
single-energy case (dashed lines).
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Figure 3.18: Semilogarithmic plot of the long-time
limit f (q) of the intermediate scattering function as
a function of wavenumber q for a range of diameters
σF. The data for the confined ideal gas (solid lines)
is superposed over the single-energy data (dashed
lines) for comparison, with identical colors signifying
identical diameters.

Apart from that, the two systems only differ in that the confined ideal
gas has a larger long-time limit at all q. This holds true for all σF, which
is demonstrated in fig. 3.18 where the long-time limit f (q) is given for a
range of diameters σF spanning from strongly delocalized to strongly localized
systems. The f (q) of the ideal gas (solid lines) are larger than those of the
single-energy system (dashed lines) which indicates stronger localization of
the particles in the former systems. This might be considered surprising as
the msd generally showed enhanced dynamics in the confined ideal gas at
long times. The apparent conflict can be immediately resolved: In addition to
faster than average particles, the energy distribution of the confined ideal gas
also contains many particles with lower than average energy which are in turn
on average more localized than the particles in the single-energy system. The
dynamics of the confined ideal gas is therefore more heterogeneous than that
of the single-energy system.

3.6 Rounded localization transition in experiment

It must be noted that the result of this thesis were used for the interpretation of
an experiment. The rounding of the localization transition was observed in an
experimental realization of a two-dimensional fluid in random confinement
(Skinner et al., 2013). A binarymixture of superparamagnetic colloidal particles
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of disparate size was confined between glass plates. The larger particles acted
as spacers and became fixed between the glass plates, serving as the matrix.
The smaller particles stayed mobile and served as the fluid compoment. An
externalmagnetic field allowedmodifying the interaction between the particles
and thus their effective sizes. In this way, it was possible to vary the fluid
and matrix packing fractions over a wide range without changing the matrix
structure. The msd of the fluid particles was diffusive at low matrix packing
fractions, localized at large matrix packing fractions, and showed subdiffusion
on intermediate timescales. With the help of the data of the single-energy case
and the confined ideal gas of this thesis, it was made possible to interpret the
rounding of this localization transition.

3.7 Summary

This chapter showed that an ideal gas confined in a soft porous matrix exhibits
only a rounded localization transition. The system seems to undergo a tran-
sition in the long-time dynamics from diffusive dynamics at small particle
diameters to localized dynamics at large particle diameters. But it was demon-
strated that the observed transition is only an apparent one and the system is
expected to become diffusive at all diameters. In contrast, an ideal gas confined
by hard-sphere obstacles is equivalent to the Lorentz model and would show a
sharp transition.

The destruction of the transition was shown to be a direct result of the
soft interaction potential. Particles with higher energies are able to move
closer to the soft obstacles, and the distribution of particle energies leads to a
distribution of effective matrix densities. This can be completely understood
via the hard-sphere mapping discussed in section 2.3. With the mapping,
the dynamics of the confined-ideal-gas system can be expressed as an energy
average over the Lorentz model dynamics. As a direct demonstration of this,
the self-diffusion coefficient was measured as a function of the particle energy
and was shown to match the single-energy data of chapter 2 after mapping
both onto equivalent hard-sphere diameters.

Because of the high-energy tail of the particles’ energy distribution, there is
thus always a finite probability of a particle having a large-enough energy to be
delocalized, i.e., to have a hard-sphere diameter corresponding to a delocalized
system. This was analytically shown in an integral over the delocalized portion
of the hard-sphere distribution. Therefore, the apparent critical diameter — at
which the system’s msd is subdiffusive over the whole simulation time — is a
function of the simulation time.

The averaging of the dynamics leads to a rounding of the apparent tran-
sition and the loss of the scaling properties of the Lorentz model. This was
observed directly in the van-Hove function and indirectly in the lack of a
critical anomalous diffusion regime in the msd, as well as in the lack of a
power-law in the vanishing of the diffusion coefficient. The rounding of the
transition is a generic result of having a mobile component with an energy
distribution in a soft matrix. It can therefore be expected that it is impossible
to observe the ideal Lorentz model localization transition in realistic systems.
In line with this, a rounded localization transition has been identified in a
experimental model system for heterogeneous media.



an ideal gas in a porous medium 83

The energy distribution not only enhances the dynamics but also generally
increases the non-ergodicity parameter of the system, as some particles become
strongly localized by their lack of energy. The dynamics is thus far more
heterogenous than in the single-energy system.

The rounding of the localization transition also presents a challenge for
mct which predicts sharp transitions. It remains open how one would would
be able to incorporate the rounding into the theory.

In the next chapter, the introduction of fluid-fluid interactions and their
influence on the effective localization transition will be discussed. Before that,
an estimate of the relevance of finite-size effects for the presented results is
given.

3.8 Finite-size scaling

Again it is important to rule out finite size effects in the discussed results. For
this purpose, the msd is studied as a function of the system size L for a range
of σF, analogously to section 2.5. When the msd is (nearly) unchanged for
two different system sizes, the msd can be considered free of finite size effects.
All other studied quantities are less sensitive to finite size effects and need
therefore not be discussed, here. In the following, it will be demonstrated that
it is typically sufficient to use system size L = 56.57, but to fully avoid finite
size effects in all systems, system sizes of L = 160 or larger are recommended.

The msd are shown in fig. 3.19 for the tracer diameters σF = 0.4, 0.45, 0.5,
0.6, and 0.7 and for system sizes up to L = 160 as given in the legends. The rule
of thumb that the msd is completely free of finite size effects as long as it does
not exceed (L/2)2 cannot be used here, because each msd presents an average
over vastly more heterogenous dynamics than in the single-energy case.

Because of the energy distribution of the tracers, nearly all systems contain
particles which are effectively at the localization point and are thus very sus-
ceptible to finite size effects. Therefore, finite size scaling comes into play in
a far wider range of diameters σF compared to the single-energy case. Still,
the modification of the dynamics due to finite size effects is in general weaker
because most systems mostly contain non-critical particles.

Finite size effects at small diameters, e.g. at σF = 0.4, are comparable to the
single-energy case (compare to fig. 2.21) and are still very weak. The msd is
nearly unmodified between the two systems, L = 40 and 80, therefore L = 80
can be considered large enough to obtain reliable results at σF < 0.4. Finite
size effects are also weak at very large diameters, e.g. at σF = 0.7. There, some
variation in the msd is found between the system sizes L = 40, 56.57, and 80,
but this is because it becomes more difficult to sample the void space correctly
in highly localized systems.

That finite size effects are not as pronounced in the confined ideal gas
compared to the single energy case is visible at σF = 0.45, where the msd has
converged already at L = 56.57 instead of still being size dependent at L = 160
like the single-energy case.

At σF = 0.5 and 0.6, the msd completely agrees for the two system sizes
L = 80 and 160 in the time span simulated for L = 80. For this time span,
the msd therefore is free of finite size effects. Even though the msd nearly
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Figure 3.19: Mean-squared displacements of the con-
fined ideal gas for a range of tracer diameters σF as
indicated in the titles. For each diameter, the sim-
ulation box length L was varied as indicated in the
legends.

becomes diffusive during that time span, it was not possible to determine the
diffusion coefficient and the same extrapolation as in the single-energy case
had to be performed. In order to precisely determine the diffusion coefficient,
larger system sizes and longer simulation runs would be needed. It must be
stressed, however, that even though the magnitude of the diffusion coefficient
of these systems could not be exactly determined, it is absolutely clear that
some particles in these systems are delocalized. This becomes evident once
the energy-resolved msd is studied for finite size effects, which is done in the
following.

For the discussion of the energy-resolved dynamics it was also very impor-
tant to exclude finite size effects. To determine the energy-resolved diffusion
coefficients shown in fig. 3.12, only energies were considered for which the
msd had already become diffusive before crossing (L/2)2, or shortly after.
In the energy-resolved dynamics, this criterion is once again applicable. A
difficult case is shown in fig. 3.20 for σF = 0.5, where the energy-resolved
mean-squared displacement is shown for the two different system sizes, L = 80
(dashed lines) and L = 160 (solid lines). Both systems are shown to illustrate
again the complete agreement between them. The lowest energy for which the
diffusion coefficient was calculated was E = 3.6, whose msd becomes diffusive
just as it crosses (L/2)2. For larger energies, the msd becomes diffusive earlier.
For these energies, the energy-resolved diffusion coefficient is therefore free of
finite-size effects.

This figure also makes it clear that only a very small fraction of the particles
can even cause finite size effects at L = 160. For all energies E > 3.6, the
msd becomes diffusive before the particles travel through the whole system
and for energies E < 2.1, the larger system indicates localization on a length
scale smaller then the simulation size. Therefore only particles with energies
2.1 < E < 3.6 can even contribute to finite size scaling here.
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Figure 3.20: Mean-squared displacement of the con-
fined ideal gas for two different system sizes, L = 80
(dashed lines) and L = 160 (solid lines), resolved for
the particle energy E, as labelled in the plot. Horizon-
tal lines mark boundaries above which finite size ef-
fects might occur, see section 2.5. A power-law ∼ t2/z
with the critical exponent z = 3.036 is shown as a
cyan line. Energy-resolved diffusion coefficients D
were determined for energies E > 3.6 and the ob-
tained range for D is marked by two broad lines.

Still, the largest system size used in this work, L = 160, is at the lowest
acceptable limit for the study of the localization transition. It is strongly rec-
ommended for future work that larger systems are studied.





4
A soft quenched-annealed mixture

It was shown in the previous chapter, that the introduction of a realistic energy
distribution to a soft-sphere Lorentz model rounds the localization transition.
Strictly speaking the transition ceases to exist: There is always a finite proba-
bility of finding a delocalized tracer particle. Therefore, the system can only
ever be localized on the timescale of the simulation. The resulting system
retained some of the characteristics of a localization transition but lost all
scaling properties of the Lorentz model. In this section it will now be discussed
how the dynamics is changed by the final step towards a quenched-annealed
system: the introduction of interactions between the mobile particles.

The interaction between the fluid particles has an immediate effect: As par-
ticles collide, they exchange energy. Thus, different from the non-interacting
case, there is no conservation of the single-particle energy anymore (while the
total energy of all fluid particles is still conserved).

As already discussed in section 1.3, a variety of heterogeneousmedia with an
interacting mobile component have shown dynamics partly compatible with
a Lorentz-model-like localization transition, including subdiffusion with the
correct exponent, slowing down of long-time diffusion and in cases localization
upon increasing the density of the matrix. But interesting modifications to the
Lorentz-model scenario such as the modification of the anomalous exponent
in the hard-sphere qa system of Kurzidim et al. (2009, 2010, 2011) or the
reentrance scenario both in the em systems of Krakoviack (2009, 2010, 2011)
and Kim et al. (2009, 2010, 2011), as well as in binary mixtures by Voigtmann
and Horbach (2009) have also been observed.

In this chapter, it will be shown that these phenomena can be observed
in a soft qa system near an effective localization transition. Increasing the
fluid number density while keeping all other parameters constant can lead to
a modification of the effective exponent, to a speeding up of the long-time
dynamics and to an increase of the localization length, all without modification
of the matrix structure. In addition, a reentrance transition is identified. It will
be shown that these effects are a superposition of the cooperative dynamics of
the particles and the softness of the matrix potential.

Additionally, the effective localization transition at a high fluid density
will be studied extensively to determine which aspects of the Lorentz-model
transition remain in interacting systems, and which are masked or modified.
For this it will be essential to perform an analysis of the scaling properties of
the system near the localization transition.
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4.1 Preparation of the fluid component

The same obstacle matrices are used as in the single energy case and the
confined ideal gas. The interaction between mobile particles is introduced by
setting the fluid-fluid energy scale of the Weeks-Chandler-Andersen potential
to unity, εFF = 1, see eq. (2.1). Because the mobile particles are now interacting,
they are referred to as fluid particles instead of as tracers from now on.

The fluid particle configurations were prepared at temperature TkB = 1
with one of two different insertion methods, the naïve insertion and the grand-
canonical particle insertion, which were already used for the confined ideal gas.
The differences in the dynamics for these two insertion methods are negligible
and do not affect the following discussion, see appendix A.2.

After inserting all particles, the system is equilibrated at TkB = 1 by ran-
domly selecting the particle velocities from the Maxwell distribution every
100 time steps for at least 106 steps and up to 2 ⋅ 108 steps. This presents a
simplified version of the Andersen thermostat (Andersen, 1980). Because of
the interactions between the fluid particles, the equilibration time becomes
considerably longer compared to the confined ideal gas and increases greatly
with the density of the fluid particles. After equilibration, production runs are
performed in the micro-canonical regime, with simulation times extending
up to but not exceeding the equilibration time. For this purpose, all individual
systems are brought to the same energy — the average energy of all systems
during the equilibration run — by rescaling all fluid velocities uniformly.
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Figure 4.1: Plot of the explored parameter range with
all simulated state points marked as points along 4
paths in the interacting fluid case. For nF = 0, the
states of the confined ideal gas are shown. The states
where the msd became diffusive during the simula-
tions, i.e. for t < 7 ⋅ 105, are marked as delocalized
(�), whereas all other states are marked as effectively
localized (×).
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Figure 4.2: Plot of the explored parameter range with
all simulated state points marked as points along 4
paths in the interacting fluid case in the space of re-
duced number density n∗F and fluid particle diameter
σF. For n∗F = 0, the states of the confined ideal gas
are shown. The states where the msd became diffu-
sive during the simulations, i.e. for t < 7 ⋅ 105, are
marked as delocalized (�), whereas all other states
are marked as effectively localized (×).

State diagram Through the interaction of the fluid particles, the system gains
an additional control parameter: the number density of fluid particles nF,

nF ∶= NF

L2 .

Variation of nF and σF both change the reduced number density n∗F ∶= σ 2
FnF/4

of fluid particles in the system but in general have a different effect on the
dynamics.

The effect of the interactions on the dynamics was studied systematically
with a range of simulations, where nF and σF were varied independently. All
simulated states are displayed in fig. 4.1. The states where the msd became
diffusive during the simulations, i.e. for t < 7 ⋅ 105, are marked as delocalized
(�), whereas all other states are marked as effectively localized (×). The points
are connected by lines to indicate paths along which the modification of the
dynamics will be discussed in the following. The confined-ideal-gas case of the
previous section represents the nF → 0-limit of the interacting case. Starting
from the confined-ideal-gas case, nF was increased for constant σF to study
the modification of the dynamics by the gradual increase of the interaction
between particles. This was performed in three cases, at σF = 0.5 to study the
delocalized side, at σF = 0.8 to study the localized side and at σF = 0.65 to
study the reentrance transition. This allows for comparison to the speeding up
of dynamics close to the transition reported in the literature. Additionally, a
path at constant nF = 0.625 but varying σF was used to cross the localization
transition and study the modification of said transition by the interaction of
the particles. This provided the opportunity of testing scaling predictions of
the Lorentz model.
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As the particles change their energy over time, particles cannot be assigned
a constant effective hard-sphere diameter. So an exact mapping of the system
onto the Lorentz model is not possible anymore. However, the effective hard-
sphere distribution of the system will still prove valuable for the analysis.

It is furthermore important to stress that the Lorentz model cannot be
exactly recovered in the quenched-annealed system. The nF → 0 limit recovers
only the confined ideal gas with its rounded transition.

Simulation snapshot The positional data obtained over a whole simulation
run with an interacting fluid look very similar to the confined ideal gas. In
fig. 4.3, all the positions recorded in a single simulation run with interacting
fluid particles at nF = 0.625 are shown as dark grey points, overlaying the
obstacles shown in light grey with an effective hard-sphere diameter calculated
from the average particle energy with eq. (2.11). For the same obstacle matrix
with a confined ideal gas with the same number of fluid particles, the positional
data is shown in fig. 3.2 on the right.

Figure 4.3: All the positional data of a single simula-
tion run of the interacting fluid system over time at
σF = 0.45 and nF = 0.625. Fluid particles as dark grey
points, obstacles as hard-spheres in light grey with
their effective diameter calculated from eq. (2.11) and
the average fluid particle energy. Compare to analo-
gous runs in the single-energy and confined-ideal-gas
cases in fig. 3.2. A red circle marks a channel which is
closed in the single-energy case but open in the con-
fined ideal gas, as well as in the quenched-annealed
case.

Obstacle

Tracer

4.2 Dynamics I: Increasing the number of fluid particles speeds
up the dynamics

To study the effect of the interaction on the dynamics systematically, it is
useful to gradually increase the number density nF of interacting particles in
the system. This scenario will be studied on the delocalized side at constant
σF = 0.5, on the localized side at σF = 0.8, and at σF = 0.65 as an edge case
showing the reentrance transition. For these paths through the state diagram,
the confined ideal gas then serves as the starting point, as it is represents the
nF → 0-limit of the interacting case. This procedure is analogous to the ones
used in Krakoviack’s, Kim’s, and Voigtmann and Horbach’s work, where the
fluid density was increased while keeping all other parameters constant, and
thus provides excellent opportunity for comparison.
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Figure 4.4: The partial structure factors SFF(q) and
SMF as a function of the wavenumber q. Left, top:
Fluid-fluid structure factor SFF(q) at σF = 0.5 for a
range of fluid number densities as indicated in the leg-
end below. The dotted line gives the partial structure
factor of the matrix SMM(q) (redrawn from fig. 2.2).
Left, bottom: Fluid-matrix structure factor SMF(q)
at σF = 0.5 for the same densities. Centered moving
average applied to all partial structural factors to re-
duce statistical noise. Right, top and bottom: Same as
on the left, but for σF = 0.8.

The introduction of interaction between fluid particles directly changes
the structure of the mobile component. As a measure of the strength of the
interactions, which will be relevant for the interpretation of the dynamics, it is
therefore relevant to study the structure.

Structure The amplitude of the structure factor grows with increasing nF.
As an example, the partial structure factors SFF and SMF as introduced in
section 2.1.3 are shown in fig. 4.4 (left, top and bottom) for a range of systems
with constant σF = 0.5 where the number density was gradually increased.
This system is on the delocalized side of the transition. For reference, the
matrix structure factor is given as a black dotted line. The normalization
is such that the partial structure factor SFF(q) tends at large wavenumbers
to the concentration of fluid particles, SFF(q → ∞) → nF/(nF + nM). The
large wavenumber limit of SMF is given by SMF(q →∞) → 0. The structure
factor in the limit nF → 0 is entirely given by the normalization, SFF(q) ∝
nF/(nF + nM) → 0 and SMF(q) = 0. It must be stressed that a confined
ideal gas with a large number of non-interacting particles has a fluid-fluid
structure factor different from that since its number density is not 0, but that
the dynamics of the nF → 0-system and the confined ideal gas are the same.

For the smallest simulated number density nF = 0.0625, the partial struc-
ture factors have nearly no structure. The fluid-fluid structure factor SFF(q)
is simply at constant nF/(nF + nM), indicating no correlations at all in the
system. Structurally, this system is still extremely close to the ideal gas. This
is relevant to note, as the dynamics at even this low density will be shown to
be different from the ideal gas scenario already. At nF = 0.375 the structure
factor’s amplitude grows. The structure factor becomes more pronounced for
nF = 0.625 and nF = 1.25, and develops a maximumwhich moves to larger q as
the density is increased. At the highest shown density, nF = 1.25, the location of
the maximum is at q ≈ 11.8, close to 2π/σF ≈ 12.6, which points towards dense
packing of fluid particles. At that density, the fluid contains more structural
correlations than the matrix itself. In accordance with the behavior of SFF(q),
the matrix-fluid partial structure factor SMF, which is shown as in fig. 4.4 (left,
bottom), also increases in amplitude as nF increases.

The structure factor behaves similarly at larger diameters where the system
is localized, e.g. for σF = 0.8, which is shown in fig. 4.4 (right). The structure
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factor for the nF → 0-limit is given as a constant SFF(q) = 0. For very small
number densities, e.g. nF = 0.0625, the structure factor does not show any
correlations and SFF(q) = nF/(nF + nM) at all finite q. Structurally, the system
is thus nearly indistinguishable from the nF → 0-limit. Only at far larger
number densities the fluid-fluid correlations start to play a role. A main
peak develops, which moves with increasing number density. At the highest
number density nF = 0.625 the peak is at q ≈ 7.9 which is nearly exactly 2π/σF
indicating that the fluid particles are densely packed. Again, SFF(q) has a
higher amplitude than SMM(q) at the highest densities, indicating that the
fluid is more correlated than the matrix. The partial matrix-fluid structure
factor SMF(q) increases in amplitude as well as nF is increased.

The structure factorswill become relevant for the discussion of the dynamics.
Another important property of the system for that discussion is the energy
distribution of particles. In chapter 3 the energy distribution of particles was
shown to be of great relevance to the dynamics as it is directly responsible for
the rounding of the localization transition. The introduction of interactions
between the fluid particles naturally modifies the energy distribution and
precisely this modification will be analyzed in the following section.

Energy distribution Because of the added interaction, the average energy per
particle generally increases. Unfortunately, the calculation of the energy distri-
bution and the estimation of its effect on the dynamics is not as straightforward
as in the ideal-gas case. Because the particles exchange energy regularly the
energy per particle is not conserved anymore. This in turn means that it is not
possible to calculate a constant effective hard-sphere diameter of the obstacles
for each fluid particle. Rather, each particle will at any given time explore the
matrix with an effective hard-sphere diameter corresponding to its present
energy, and the effective hard-sphere diameter of the surrounding obstacles
will fluctuate with the energy. Still, in equilibrium the energy distribution
itself can be expected to be time-independent. Importantly, the fraction of
particles with energies corresponding to a delocalized state will remain also
time-independent. This makes it still worthwhile to determine the energy
distribution of the fluid particles.

It is not immediately clear how to assign the potential energy of a pair of
fluid particles to the individual particles. One way of doing it is assigning each
particle half of the pair’s potential energy.1 If the set of indices of the obstacle 1 Why each particle gets half of the pair potential en-

ergy can bemotivated simply. Place a pair of identical
fluid particles into void space without any obstacles
and at a short enough distance, so that they have some
potential energy. Then, they will move apart and the
potential energy will be transformed into kinetic en-
ergy. Because the particles are identical, each will
obtain half of the energy.

particles is called IM and the set of indices of the fluid particles is called IF,
then the total energy of the system E is given by

E = ∑
j∈IF

1
2
mv⃗2j + ∑

j∈IF
∑
k∈IM

V(∣r⃗ j − r⃗k ∣) + 1
2 ∑j∈IF ∑

k∈IF ,k≠ j
V(∣r⃗ j − r⃗k ∣).

Therefore, the energy E j of an individual fluid particle with index j is then
comprised of its kinetic energy, its potential energy coming from the inter-
action with the obstacles, and half of the potential energy coming from the
interaction with the other fluid particles

E j = 1
2
mv⃗2j + ∑

k∈IM
V(∣r⃗ j − r⃗k ∣) + 1

2 ∑
k∈IF ,k≠ j

V(∣r⃗ j − r⃗k ∣).
Mainly the last sum of this equation increases with introducing more interact-
ing particles into the system but also the potential energy of the interaction
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with obstacles as fluid particles get pushed closer to the obstacles by their
neighbors.
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Figure 4.5: Energy distribution p(E) of the interact-
ing fluid system at σF = 0.5, 0.65 and 0.8 (top to bot-
tom) where the fluid number density is varied as in-
dicated in the legend.

The single-particle energy distribution p(E) is then defined as as an integral
over the phase space accessible to the particle at the given energy E,

p(E) ∶= ⟨δ(E j(r, v) − E)⟩,
equivalently to eq. (3.1) in the confined ideal gas. In practice, the distribution
is calculated in the simulation with a discrete binning of the particle energies,
as already discussed for the confined ideal gas. The largest energy for which
the distribution is calculated is typically 8, in some cases 12. With this, it is
made sure that the measured distribution reflects the energies of most if not all
particles in the system. In the discussed systems, typically far less than 0.2% of
the particles are ignored because their energy is too large for the histogram
implementation.

In the case of the delocalized system at σF = 0.5, the energy distribution
of interacting fluid particles p(E) is shown in fig. 4.5 (top) for increasing
number density nF. The confined-ideal-gas case is shown as the nF → 0
limit. For nF = 0.38, the probability of a particle having E < 1 is only very
slightly diminished in relation to the confined ideal gas. Apart from this, the
distribution is nearly unchanged. One has to go to higher number densities to
find strongmodification of the energy distribution. For nF = 1.2, the probability
of finding a particle with low energy is greatly diminished and the energy
distribution broadens noticeably. Similarly to the confined ideal gas at large σF,
the high-energy tail of the energy distribution is found to increase in amplitude
at large number densities. But in contrast to the situation there, this is not
associated with an increase in temperature, here.

The same general trend can be observed at σF = 0.65, shown in fig. 4.5 (mid-
dle). The distribution is unchanged from the confined ideal gas at nF = 0.031
and begins to broaden at nF = 0.625.

On the effectively localized side of the transition, the energy distribution
behaves similarly. Exemplarily, for σF = 0.8, the energy distribution is shown in
fig. 4.5 (bottom) for increasing number density nF. Compared to the previous
two cases, the energy distribution is more susceptible to an increase of nF and
the broadening of the distribution becomes quite pronounced.

Distribution of the effective hard-sphere diameter The hard-sphere diameter
distribution p(σhs) is a powerful tool, since it allows discussing the modifica-
tion of the effective localization transition quantitatively even though strictly
speaking there is no localization transition anymore: a shift of p(σhs) relative
to the critical hard-sphere diameter σ c

hs constitutes a shift of the localization
transition.

From p(E), the distribution of the effective hard-sphere diameter p(σhs)
was calculated with the help of eqs. (3.2-3.4) and is displayed for σF = 0.5 in
fig. 4.6 (top). Large fluid particle energies E are mapped onto small σhs. The
critical hard-sphere diameter σ c

hs ≈ 1.31 as determined in section 2.3 is marked
by a vertical black line. Diameters σhs < σ c

hs correspond to particles currently
experiencing a percolating system (but theymay still be localized in a closed-off
pocket). Increasing nF only slightly modifies the whole distribution. Generally,
at σF = 0.5 the peak of the distribution—whose position is mostly determined
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Figure 4.6: Top: Effective hard-sphere diameter dis-
tribution p(σhs) of the interacting fluid system at
σF = 0.5 and a range of fluid number densities nF.
The distribution p(σhs) was calculated with eq. (3.2)
with the numerically obtained p(E). The critical ef-
fective hard-sphere diameter σc

hs = 1.31, at which the
localization transition occurs, is marked with a black
vertical line. Middle: The same for σF = 0.65. Bottom:
The same for σF = 0.8.

by the value of σF — is on the localized side. Therefore, most particles are
localized at any given time. In the cases nF = 0, 0.062, and 0.38, the distribution
is nearly unchanged. For nF = 1.2, the maximum of the distribution shifts
slightly towards σ c

hs, indicating that more particles ought to be delocalized at
any given time. This indicates the shift of the localization transition towards
higher σF. This statement concerns itself only with the topology of the void
space, of course, and completely neglects other localization mechanisms like
the glass transition.

For the effectively localized case at σF = 0.8, p(σhs) is shown in fig. 4.6
(bottom). The whole measured distribution at all nF is to the right of σ c

hs, i.e.
all particles of the simulation are localized. This is not to say that a larger
simulation with more particles would not show p(σhs) > 0 for σhs < σ c

hs, and
would thus be delocalized. As was the case for σF = 0.5, the distribution is
nearly unchanged for the small number densities nF = 0, 0.031, and 0.25, but
becomes shifted towards smaller σhs at nF = 0.62.

This generic shift of the distribution upon increasing nF should lead from
effective localization to delocalization in a system sitting closer to the local-
ization transition. Exactly such a situation occurs at σF = 0.65, the p(σhs) of
which is shown in fig. 4.6 (middle). At small diameters nF ≤ 0.375, the whole
measured distribution p(σF) is fully on the localized side and thus the system is
effectively localized. But the shift of p(σhs) in the denser system at nF = 0.625
is large enough to allow particles to become delocalized, i.e. p(σhs < σ c

hs) > 0
for some σhs. The system thus becomes delocalized solely by increasing the
number of fluid particles. This constitutes a reentrance transition.
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Figure 4.7: Left: Mean-squared displacements of the
interacting-particle system for σF = 0.5 (top), 0.65
(middle) and 0.8 (bottom), and a range of nF as indi-
cated in the legends. Right: Effective exponent μ(t)
for the same data. The exponent of the Lorentz model
2/z = 2/3.036 is given by the dotted line.

The discussion of the hard-sphere diameter distribution is only merited if
the distribution reflects the actual dynamics. This will be confirmed in the
following.

Dynamics on the delocalized side The dynamics of the system undergoes
strong changes on both sides of the transition as the number of fluid particles is
increased. The msd at σF = 0.5 as the example for a delocalized system is shown
in fig. 4.7 (top, left) for a range of nF. The confined ideal gas (nF = 0) shows
subdiffusion on intermediate times before becoming diffusive at long times. All
studied systems at σF = 0.5 stay delocalized, which could be anticipated from
the effective hard-sphere distributions. The msd at nF = 0.062, while nearly
unchanged at small and intermediate times, shows considerably enhanced
long-time diffusion. This notably happens even though structurally the system
is very much like the confined-ideal gas system (see fig. 4.4) and the energy
distribution is nearly unchanged.
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It is thus most likely that this speeding up of the dynamics stems from the
exchange of energies between particles. Thus more particles have a high energy
at some point during the simulation and are then able to escape void pockets
and explore more of the void space. With this, a speeding up of the dynamics
is possible without modification of the energy distribution itself and does not
represent a shift of the localization transition. That the variation in the fluid
particle energy has such an effect on the dynamics is most likely only possible
in systems with soft interactions, where the barriers between void pockets are
finite and thus surmountable by particles with large energy.

The msd for the cases nF = 0.38 and 0.62 are decreased on short and
intermediate times compared to the confined ideal gas. This happens because
collisions of particles with their neighbors slow down the exploration of the
void volume. But at long times the msd catch up with the system at nF = 0.062.
Both are still weakly structurally correlated and the energy distribution is nearly
unchanged. At the highest simulated number density, nF = 1.2, the dynamics
is further slowed down on intermediate timescales, associated with the now
strong structural correlations in SFF(q). At long timescales, the diffusion has
slowed down compared to the systems at intermediate nF but is very similar
to the confined-ideal-gas case. This happens even though a larger fraction
of particles is delocalized at any given time than in the less dense systems.
This indicates increasing competition in the long-time dynamics between the
speedup via frequent energy exchange between particles and the slowing down
via the repulsion of particles by their immediate neighbors. This data shows
that a speeding up of the long-time dynamics is not necessarily caused by a
shift of the localization transition and vice versa.

Along with the slowing down on intermediate timescales, the effective
exponent of the msd changes, which is defined as

μ(t) ∶= d(log δr2(t))
d(log t) .

This quantity gives the apparent exponent of the msd at any time. In the
ballistic regime at short times it reads μ(t → 0) = 2, while at long times
in the diffusive regime it assumes the value μ(t → ∞) = 1. In the case of
critical subdiffusion, where the msd follows a power-law δr2(t) ∼ t2/z for
an extended time, the effective exponent reads μ(t) = 2/z and thus allows
identifying subdiffusive regimes where the msd follows a power-law for an
extended time. The effective exponent of the msd is plotted in fig. 4.7 (top,
right). For comparison, the critical exponent of the two-dimensional Lorentz
model is drawn in as 2/z = 2/3.036 (dotted black line). This plot exposes
that for all 5 systems a regime can be identified where the effective exponent
is constant over at least two decades in time. It can be easily read off that
increasing nF increases the subdiffusion exponent from below 2/z for the ideal
gas case to above it for the denser systems. This demonstrates that the exponent
of the subdiffusive regime can be readily tuned via the number density. In the
case of nF = 0.38, the exponent nearly matches 2/z which should be seen as
accidental as the system is still clearly diffusive at long times.

Dynamics on the localized side For effectively localized systems a similar
modification of the dynamics is found. As an example, the msd for σF = 0.8
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and a range of nF is shown in fig. 4.7 (bottom, left). Again, the ideal gas case
represents the nF → 0 limit which shows a clearly localized system.

Increasing the number density to nF = 0.031 leaves the dynamics on short
and intermediate times unchanged. More relevant is the strong increase of
the localization length, which can be observed even though the interaction
between the mobile particles slows down the approach of the msd to the
long-time limit, so much so that it does not converge over the course of the
simulation. It can be seen from fig. 4.6 (bottom) that the energy distributions of
the ideal gas case and nF = 0.031 system are practically the same as encounters
between fluid particles are still rare. Just as in the delocalized system, the
exchange of energy between particles leads to more particles having a large
energy at some point during the simulation. At some point most particles will
have a higher energy than their original energy and will thus be more likely
to escape their original pocket than a non-interacting tracer in the ideal gas.
This then leads to the observed increase in the localization length.

At nF = 0.25, the dynamics on intermediate times begins to slow down,
just as on the delocalized side. The localization length increases again. This
coincides with a change in the energy distribution and thus a slight shift of the
effective hard-sphere diameter distribution p(σhs) towards σ c

hs.
As the number density is further increased, the short and intermediate times

dynamics become slower, as particles are increasingly deflected by their mobile
neighbors. The slowing down becomes so strong at the two densest simulated
systems (nF = 0.5 and 0.62) that a plateau is starting to form in the msd, which
is associatedwith the caging localizationmechanismof the glass transition. The
onset of the plateau is more prominently visible in the effective exponent μ(t)
of the msd shown in fig. 4.7 (bottom, right) where it shows up as a strong dip
in μ(t) at t ≈ 1. The long-time dynamics is a little more complex. At nF = 0.38
the localization length seems to approach the same value as for nF = 0.25 and
then possibly decreases again for higher densities. To confirm this, it would be
necessary to far extend the simulation time, which was unfeasible. At these
high densities, the effective particle distribution is strongly shifted towards the
critical σ c

hs which would indicate that the localization length always increases
with increasing nF, but that this is masked by the general slowing down of the
dynamics due to increased caging. At all simulated finite number densities the
localization length exceeds its value in the confined ideal gas.

Effective reentrance transition The system at σF = 0.65 presents an intermedi-
ate case, the msd of which is shown in fig. 4.7 (middle, left). At nF → 0, the
system appears localized. The corresponding distribution p(σhs) gives indica-
tion that even though most if not all particles in the system are localized, a few
are very close to the localization transition. This is reflected in the msd as very
slight growth over the whole course of the simulation. Still, on the timescale
of the simulation, the system is localized. Upon increasing nF the localization
length increases while the intermediate-time dynamics slow downs. At very
high densities, is difficult to tell whether the systems are delocalized or not
from the msd alone. Still, long-time diffusion of the msd can be anticipated
from the upward bend in the effective exponent μ(t) in fig. 4.7 (middle, right)
at long times for all finite densities. This would be in agreement with the energy
distribution in fig. 4.6 (middle), which indeed indicated the delocalization of
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some particles at any given time and which would also imply that msd will
eventually become diffusive. Since, strictly speaking, all soft systems must
be considered delocalized, the transition from effectively localized to visibly
delocalized upon increasing the number density of the fluid component does
not strictly constitute a reentrance transition. But with the knowledge about
the shifting of p(σhs) as a function of the number density, a case for the shift
of the localization transition towards larger σF and thus a reentrance transition
at constant σF can be made.

Discussion In conclusion, three distinct mechanisms were identified here,
which are all a result of the introduction of interactions between fluid particles:

1. After first introducing fluid interactions at very small fluid densities, particle
energies are frequently changed in collisions, which makes the long-time
dynamics speed up and the localization length increase. For this neither
a modification of the structure of the system nor a change in the energy
distribution is needed. In effect, this means that particles help each other
over barriers in the matrix, simply be exchanging energy. This mechanism
does not shift the localization transition, i.e. it does not shift the hard-sphere
diameter distribution relative to the critical diameter.

2. Further increasing the number density starts to modify the energy distri-
bution such that the effective hard-sphere distribution is shifted relative
to the critical diameter and towards smaller values. Among other things,
this can lead to delocalization of a previously localized system, creating
a reentrance transition. The reentrance corresponds directly to a shift of
the localization transition towards larger diameters σF at constant number
density. This mechanism does not necessarily increase the long-time diffu-
sivity but definitely increases the localization length. That the long-time
diffusion would not necessarily be enhanced is due to the competition with
the following effect.

3. The increased density also leads to caging of particles by their neighbors,
which slows down the dynamics of the system in general. This is most
easily identified on intermediate timescales where the caging does not di-
rectly compete with the previously described mechanisms. This mechanism
will typically lead to a glass transition, the localization of the particles on
the length scale of neighbor-to-neighbor distance, at large fluid number
densities. This would be in line with mct predictions for such systems.

The rounding of the localization transition along with the superposition of
the latter two mechanisms makes detecting a shift of the transition difficult
from the msd alone. A speeding up of the long-time diffusion or the increase
of the localization length cannot necessarily be seen as a signature of such a
shift. Here, it was possible to mend this problem by determining the effective
hard-sphere distribution of the system. If the whole distribution of the system
is on the localized side of σ c

hs, the system will be localized. If not, the system
will be delocalized. A shift of the localization transition then is represented by
a shift of the hard-sphere diameter distribution. The exponential tail of the
particle energy distribution implies that all systems are in principle delocalized
but systems at large σF only on timescales inaccessible to simulation.
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The presented observations are qualitatively similar to the results in the
literature discussed earlier. The same speeding up of the long-time dynamics
in a delocalized system as well as the increase of the localization length upon
increasing the fluid density were observed in the em system of Kim et al. (2009,
2010, 2011). There, it was argued that a structural change in the matrix led
to a shift of the localization transition which in turn increased the diffusivity
of the system, which was further corroborated by Krakoviack (2009, 2010,
2011) in a mct study for a similar system. Moreover, it was argued that the
structural rearrangement was strictly necessary to allow for such a shift. But
here a different, simpler situation presents itself: In the presented system the
matrix structure is completely independent from the fluid component. Thus
the speeding up of the dynamics was achieved without the modification of the
matrix structure. The only property needed for this to happen was that the
fluid particles interact with each other and with the matrix via a soft potential
along with an increase in the fluid number density.

Strikingly, in Kim et al. (2011) a reentrance transition was observed for a
close to the localization transition, which was localized at small fluid densities
and became delocalized at high fluid densities. This was evidenced by the
transition of the msd from slowly converging towards a constant long-time
limit at low densities to being clearly diffusive at larger densities. Such a
reentrance can indeed be caused by the modification of the matrix structure by
the fluid component, as discussed by the authors. Still, very similar dynamics
was observed here at σF = 0.65, which was only different in that the simulation
time was not long enough to clearly expose the diffusive behavior at the higher
densities.

The presented observations also qualitatively match the dynamics of the
smaller component in the glassy binary mixture studied by Voigtmann and
Horbach (2009). The mobile, fluid component showed slower long-time dy-
namics when the interactions between the mobile fluid particles were switched
off compared to the case when the interaction were switched on. There, no-
tably, little to no change was observed in the matrix-matrix structure factor in
the simulation upon switching off the interaction. This indicates that not the
restructuring of the matrix was the reason for the speeding up of the dynamics.
The speeding up of the dynamics was found to be compatible with a standard
mct calculation taking the simulation’s partial structure factors as input. The
system with switched off interactions had a localization transition at a smaller
matrix density than the system with switched on interactions. This invites
the interpretation that in mct the shift of the transition is entirely due to the
modification of the fluid structure. In the terms of the present discussion,
the modification of the fluid structure might well be associated with a large
enough modification of the energy distribution to account for the observed
shift in the localization transition.

To provide a complete characterization of the system’s dynamics, the van-
Hove function and the intermediate scattering function will be discussed
briefly in the following.

Van-Hove function The self-part of the van-Hove function P(r, t) for the
delocalized path at σF = 0.5 is shown in fig. 4.8. The most striking changes
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Figure 4.8: Plot of the self-part of the van-Hove func-
tion P(r, t) of the interacting fluid component for
σF = 0.5 and a range of fluid number densities nF = 0
(ideal gas), 0.062, 0.38, 0.62, and 1.2 as indicated in
the titles. P(r, t) is shown as a function of distance r
for a range of times t as indicated in the legends.
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Figure 4.9: Plot of the self-part of the van-Hove func-
tion P(r, t) of the interacting fluid component for
σF = 0.8 and a range of fluid number densities nF = 0
(ideal gas), 0.031, 0.062, 0.25, 0.38, 0.5, and 0.62 as
indicated in the titles. P(r, t) is shown as a function
of distance r for a range of times t as indicated in the
legends.
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Figure 4.10: Intermediate scattering function of the
interacting fluid system for σF = 0.5 (top) and σF =
0.8 (bottom) at q = 0.6 for a range of total number of
fluid particles NF.

upon increasing nF occur at long times and large distances. The ideal gas
case shows a very smooth and broad distribution which slowly decays at large
distances. This indicates the localization of most fluid particles. In contrast,
the dense systems exhibit a peak which moves to larger distances over time.
Accompanied with this is the stronger decrease of the van-Hove function over
time at very small distances2. All in all, the van-Hove function at finite nF

2 This is not connected to the artifacts introduced by
the naïve particle insertion discussed in appendix A,
which can cause the van-Hove function to converge
too early at small distances. All systems shown in
fig. 4.9 except the one with nF = 0.62 were inserted
grand-canonically and are thus free of the artifact.

resembles more closely the single-energy case, see fig. 2.14 for comparison,
than the confined ideal gas.

The self-part of the van-Hove function P(r, t) for the localized path at
σF = 0.8 is shown in fig. 4.9. While the ideal gas case (nF = 0) is strongly
localized and converges to its long-time limit over the course of the simulation,
this is not true for the systems where nF is finite. In the latter case, the fluid
particles are still exploring the void space and the van-Hove function is still
undergoing changes at the end of the simulation. With increasing nF, the van-
Hove function develops a series of local maxima at distances r ≈ 0.9, 1.7, and
2.4 which are roughly integer multiples of the particle diameter and indicate
the growing structural correlation of the fluid particles induced by increasing
the number of fluid particles.

Intermediate scattering function Because the isf contains the same informa-
tion as the van-Hove function it will only shortly be discussed. The isf is very
sensitive to the presence of localized particles which strongly influence the
long-time limit. Because the relaxation time becomes very large for finite nF it
was not possible to calculate the long-time limit of the isf, here. Instead, the
full isf is shown for an exemplary, small wavenumber q = 0.6 in fig. 4.10.

On the delocalized side at σF = 0.5, the isf is drastically changed when nF

becomes finite. The ideal gas case (nF = 0) has a large finite long-time limit,
indicating the localization of a large portion on the particles (on the length
scale 2π/q). At nF = 0.0625, where structure and energy distribution are still
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nearly undistinguishable from the ideal gas, the isf decays to nearly 0 over
the course of the simulation. It is entirely possible that it would fully decay to
0 if given sufficient time. This clearly demonstrates that nearly every particle
in this system will eventually leave its original pocket when it is allowed to
frequently exchange energy with other particles. Upon further increasing nF,
the long-time limit stays at or near 0, while the relaxation time is growing due
to the enhanced interaction between fluid particles.

On the localized side, the long-time limit of the isf is also significantly
decreased upon introducing interactions between the fluid particles, as can
be seen in fig. 4.10 (bottom). Because the relaxation time far exceeds the
simulation time it is not possible to conclusively tell whether the long-time
limit decreases monotonically with nF. At nF = 0.375 the isf has the lowest
value at the end of the simulation. This is in agreement with the msd having
the largest value for that system at the end of the simulation. With increasing
nF, the relaxation time strongly grows.

Now that the gradual introduction of particles gave insight into the general
modification of the dynamics, the localization transition will be studied in a
scaling analysis in the next section. timescale

4.3 Dynamics II: Investigation of the critical asymptotics

To study the scaling near the localization transition for the interacting fluid
particles, it is necessary to cross it. For this purpose, a path with constant
number density was chosen, where the fluid particle diameter was varied. This
path is in analogy to the paths used in the single-energy and ideal-gas cases
and allows the testing of scaling properties. It is marked as the yellow path in
fig. 4.1 and fig. 4.2, redrawn here to the right.
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Figure 4.11: Plot of the explored parameter range with
all simulated state points marked as points along the
5 discussed paths in the interacting fluid case. The
same plot as fig. 4.1.
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Figure 4.12: Plot of the explored parameter range in
the space of reduced number density n∗F and fluid
particle diameter σF, with all simulated state points
marked as points along the 5 discussed paths in the
interacting fluid case. The same plot as fig. 4.2.

In the study of the confined ideal gas it was shown that the localization tran-
sition is necessarily rounded once soft interactions are present in the system.
The same is expected to hold here. For the confined-ideal-gas case, it had been
determined that scaling was violated but it will be shown in the following that
the interacting case is more compatible with the scaling predictions again. It is
the aim of this section to determine which properties of the Lorentz model
scenario hold in the interacting system and which do not.

The number density of fluid particles is held at constant nF = 0.625 while
the diameter σF is varied. This is the second largest value of nF simulated for
the system with σF = 0.5 of the previous section, and the largest value of nF

for the system with σF = 0.8. This relatively high number density was found
in the previous section to result in a strong slowing down of the dynamics
at intermediate timescales and was found to cause multiple peaks in the self-
part of the van-Hove function stemming from the strong interaction of the
fluid particles with themselves. Therefore, the modification of the dynamics is
considerable and the influence on the localization dynamics can be expected
to be strong. To quantify the correlations found at this number density, a short
discussion of the structure factor follows.

Structure The partial structure factors SFF(q) and SMF(q) are shown in
fig. 4.13 for a range of interaction diameters σF along the studied path. At
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Figure 4.13: The partial structure factors SFF(q) (top)
and SMF(q) (bottom) of the interacting system for a
range of interaction diameters σF at constant number
density nF = 0.625. The structure factor of the matrix
is given as black dotted line in the top figure.

the smallest simulated diameter, σF = 0.2, SFF(q) only weakly deviates from
the constant large wavenumber limit nF/(nF + nM), i.e. the system is struc-
turally very similar to the confined ideal gas. Upon increasing σF, SFF(q)
develops peaks which reflect the dense packing of the particles. At the same
time, the amplitude at small wavenumbers decreases, indicating that the com-
pressibility decreases with σF. Analogously, the amplitude of the matrix-fluid
structure factor SMF(q) also grows with σF and develops peaks. (note that the
structure factors for σF = 0.5 and 0.8 were already displayed in fig. 4.4).

Mean-squared displacement The dynamics is again studied with the msd,
which unsurprisingly shows an effective localization transition as the diameter
is increased. But the dynamics is qualitatively much closer to the Lorentz
model scenario than the study of the confined ideal gas would have lead one
to expect. For the whole simulated path, the msd is shown in fig. 4.14 as solid
lines. For reference, the data is superposed over the confined-ideal-gas msd at
the same diameters, shown as lighter colored, solid lines. The confined-ideal-
gas data, again, represents the nF → 0 limit and thus the dynamics without
interactions. The data is nearly free of finite size effects and where they arise
they do not change the discussion, see section 4.5.

The system with the smallest diameter, σF = 0.2 shows nearly the same msd
as the corresponding ideal-gas system. On intermediate times the dynamics
is slowed down as already discussed in section 4.2. But in contrast to the
discussion there, the msd stays below the confined-ideal-gas msd, even in the
diffusive regime at long times. As most particles are delocalized at this σF, the
interaction of fluid particles with each other cannot serve as a mechanism for
freeing particles and thus only causes the slowing-down of the dynamics on
intermediate timescales. The same occurs in (Voigtmann and Horbach, 2009)
at small σF for the system with switched on fluid interactions.

Increasing the tracer radius leads to a slowing-down of the dynamics but
not as strongly as in the confined ideal gas. At σF = 0.4 the interacting fluid
system first shows enhanced long-time diffusion in comparison to the confined
ideal gas. From there on, the msd of the interacting system always exceeds
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Figure 4.14: Mean-squared displacement for the in-
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lines. Power-law with the expected critical exponent,
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that of the ideal-gas system at long times.
For σF ≤ 0.5 the msd becomes diffusive during the simulation time, but

shows a subdiffusive regime which extends in duration as σF is increased. The
duration of the subdiffusive regime is far longer than in the confined ideal gas
and even than in the single-energy case, see fig. 2.6 for comparison.

At σF = 0.6 the msd stays subdiffusive over nearly the whole duration of the
simulation. It is compatible with a power-law with exactly the Lorentz-model
exponent, δr2(t) ∼ t2/z , over at least 4 decades in time (for 1 < t < 104). Only
at very large times the msd deviates from the power-law and becomes diffusive.
One should not overstate the importance of the extended subdiffusion found at
σF = 0.6. In section 4.2 it was demonstrated that the effective exponent of the
msd is strongly modified by the number density nF. It is thus entirely possible
that the agreement with the Lorentz-model exponent is purely accidental.
Towards this interpretation speaks the fact, that the subdiffusion begins already
at very short times when the dynamics are expected to be still stronglymodified
by the interaction of the fluid particles with each other.
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Figure 4.15: Effective hard-sphere distribution p(σhs)
of the interacting fluid system at σF = 0.6 at fluid
number density nF = 0.625. The critical hard-sphere
diameter σc

hs = 0.131 at which localization occurs is
marked by a vertical line.

Furthermore, the msd at σF = 0.6 shows clear signs of a rounded transition.
Its effective exponent begins to decrease at t ≈ 104 which would indicate
a localized system if it were not for the diffusive long-time behavior. This
behavior is in agreement with the hard-sphere diameter distribution p(σhs),
shown in fig. 4.15, which shows that while most particles are localized, a few
are not. The situation here is therefore similar to that found in the confined
ideal gas, e.g. at σF = 0.6 in fig. 3.4, although it is less pronounced, here.

For the diameters σF = 0.7, and 0.8 the msd slows down again. The slope of
the msd seems to be indicating that the msd is approaching a constant limit,
but the simulated time is not sufficient to observe this. Again, keeping the
discussion of the confined ideal gas in mind, it is still expected that all msd
will eventually become diffusive, at times unavailable to the simulation.
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The msd at constant nF but varying σF can be compared to the glassy binary
mixture in (Voigtmann and Horbach, 2009), where the number density of
fluid particles was varied. Even though the procedures of making the system
denser varies in these two approaches, qualitatively a very similar localization
scenario occurs. In (Voigtmann and Horbach, 2009), the dynamics of the fluid
particles is studied for a range of number densities with and without interac-
tions between the fluid particles. The system without the fluid interactions
represents the analogue to the confined ideal gas, here, while the system with
the fluid interactions represents the analogue to the system at nF = 0.625. At
small densities, the msd of the fluid particles in (Voigtmann and Horbach,
2009) is slowed down by switching on the interactions, just as it is the case here
at small diameters. Then, at intermediate densities, the msd of the interacting
fluid overtakes the msd of the noninteracting fluid, just as was the case at inter-
mediate σF, here. Even though the system used here is simpler — the matrix is
strictly fixed and not slowly relaxing as is the case in the binary mixture — the
dynamics qualitatively agree fully. This indicates that the remaining movement
of the glassy matrix particles in the binary mixture is largely irrelevant for the
fluid particle dynamics.

The system at nF = 0.625 exhibits an (effective) localization transition be-
tween 0.6 < σF < 0.7. The behavior of the msd at σF = 0.6 is most compatible
with the Lorentz model as it shows extended subdiffusion with the expected
exponent, but with signs of a rounding of the transition.

There is no reason to assume that the rounding is not taking place in the
interacting case, especially because its single requirement is fulfilled, namely
that the fluid particles have a wide energy distribution. But in contrast to the
confined ideal gas, the extended subdiffusion at σF = 0.6 seems to indicate
that the properties of the Lorentz model can be more easily observed in the
interacting case, after all. Thus, it is natural to check whether more scaling
properties of the Lorentz model are fulfilled by the interacting system. For
instance, whether the scaling of the dynamics in the approach to the localization
transition is compatible with the theoretical expectation can be directly studied
with the behavior of the long-time diffusion.
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Figure 4.16: Top: Diffusion coefficient D as function
of the fluid particle diameter σF for single-energy (yel-
low), confined-ideal-gas particles, i.e., nF = 0 (blue),
and interacting fluid particles with nF = 0.625 (red).
Possible critical asymptotes compatible with the two-
dimensional Lorentz model for the single-energy and
nF = 0.625 cases shown as black dashed lines. Con-
nected dots for diffusion coefficients directly obtained
from msd. Vertical bars give upper and lower bounds
of the diffusion coefficients obtained from extrapo-
lation in finite size analysis, see section 2.5. Below:
Rectification plot of the diffusion coefficients with
the expected Lorentz exponent μ = 1.31.

Suppression of long-time diffusion In the approach to the effective localization
transition, the long-time diffusion coefficient D is strongly suppressed. The
diffusion coefficients obtained from the msd are shown in fig. 4.16 (top) as a
function of the particle diameter σF in comparison to the single-energy data
and the confined ideal gas data (nF = 0). Again, connected dots mark the data
directly read off from the msd, while the vertical bars give lower and upper
bounds for D obtained from an extrapolation during the finite-size analysis
as described in section 2.5. As already discussed for the msd, diffusion in the
interacting system is slower at small σF compared to both the single-energy
and the confined-ideal-gas case. At σF ≈ 0.35 the diffusion coefficient of the
interacting system becomes larger than in the other two systems and stays
larger.

As already discussed in detail, the long-time diffusion coefficient in the
Lorentz model vanishes asymptotically with a power-law D ∼ εμ with ε =(σF − σ c

F)/σ c
F and μ = 1.31 at the localization transition. In general, it cannot be
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expected that such asymptotic critical behavior can be observed far from the
critical point. Often in critical phenomena, one has to approach the critical
point to within ε ∼ O (0.01) to observe critical behavior, e.g. see in (Das et al.,
2006). That the single-energy data agrees so well with the critical power-law
asymptote can thus not be expected to hold in general. In the case of the
interacting system at nF = 0.625, the data cannot be described by a similar
power-law with the correct exponent μ. A rectification plot is shown in fig. 4.16
(bottom), where diffusion coefficients in agreement with the critical asymptote
would show up as a straight line. In this representation, D of the interacting
system is strongly curved over the whole diameter range. The two plots show
how similar the behavior of the diffusion coefficient in the interacting system
is to the behavior in the confined ideal gas.
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Figure 4.17: Diffusion coefficient D of the interact-
ing system at nF = 0.625, of the confined ideal gas
(nF = 0) and the single-energy case as a function of
the separation parameter ε. For the calculation of ε,
the parameters σc

F = 0.435 (single energy), σc
F = 0.6

(confined ideal gas), and σc
F = 0.65 (nF = 0.625) was

used. Black lines mark asymptotes with the expo-
nent of the Lorentz model, ∼ ∣ε∣μ , and an effective
exponent, ∼ ∣ε∣2.8.

The similarity of the interacting system to the confined ideal gas is demon-
strated further in the effective scaling present in the diffusion coefficient. In
fig. 4.17, the diffusion coefficient of the interacting system at σF = 0.625 is
shown as a function of the separation parameter ε. For the calculation of
ε, the effective transition diameter was assumed at σ c

F = 0.65. The diffusion
coefficients of the single-energy and the confined-ideal-gas cases are shown
for comparison, using the transition diameters σ c

F = 0.435 and σ c
F = 0.6, respec-

tively. While the single-energy case clearly follows the asymptote ∣ε∣μ of the
Lorentz model, the interacting case and the confined ideal gas follow the same
effective power-law, ∣ε∣2.8. As in the confined ideal gas, this scaling is expected
to break down at smaller ε, simply because there is no sharp localization transi-
tion in the system. The fact that both the confined ideal gas and the interacting
system seem to follow the same effective scaling does not prove anything, but it
is an interesting coincidence. It seems to indicate that the long-time dynamics
are not too strongly changed by the interaction between fluid particles, except
from a general shifting of the effective transition with increasing fluid density
(via the shifting of the energy distribution). This is in strong contrast to the
general slowing down of the dynamics on intermediate times.

Scaling of the mean-squared displacement As the long-time diffusion coeffi-
cient is not compatible with the critical power-law of the Lorentz model, there
is no possibility that the msd near the transition will collapse onto a master
curve with the Lorentz model scaling. However, analogously to the effective
scaling found in the confined ideal gas in fig. 3.8, the localization length can
be used as a free parameter to determine the effective scaling of the msd, here.
In fig. 4.18 (left), the msd is divided by the critical asymptote t2/z and plotted
as a function of rescaled times tl−z . The msds on delocalized and localized
sides of the transition collapse onto master curves with moderate success.

The msd at σF = 0.65 is compatible with the localized scaling function, but
shows a slight upwards turn at the end, which is a signal of the presence of
delocalized particle states, as discussed in section 4.2.

Assuming an effective transition at σ c
F = 0.65, the localization length l is

shown as a function of the separation parameter ε in fig. 4.18 (right). Note,
that since the scaling is only effective, the localization length l should not be
interpreted as a localization length, necessarily. Therefore it is not an indication
of finite size effects that l exceeds the simulation box. The localization length
l follows an effective power-law l ∼ ∣ε∣2.8 with nearly the same exponent as
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cated by a black dashed line, while the actual effective
power-law is given by a solid red line.

found for the confined ideal gas over the whole range of ε on the diffusive
side (compare to fig. 3.8). On the localized side, not enough data points are
available to discuss effective scaling. Still, the effective scaling in the approach
to the effective localization transition is roughly as successful as in the confined
ideal gas.

Further information about the scaling of the system can be obtained with
the van-Hove function.

Van-Hove function The full information about the single-particle dynamics
of the system is contained in the self-part of the van-Hove correlation function
P(r, t), which is displayed in fig. 4.19 for a range of σF along the studied path.
It is shown as a function of the distance r for a series of times t to expose spatial
information not contained in the msd.

At very small diameters, σF = 0.2 or 0.3, the van-Hove function P(r, t) is
very similar to both the single-energy case, see fig. 2.14, and to the confined
ideal gas, see fig. 3.15. As time increases, the particles move farther away,
as indicated by the maximum of the distribution moving outward, and the
distribution broadens. At very large times, a local maximum at a small r
develops.

As the diameter is increased, the shape of the van-Hove function changes
slowly. The maximum at small r becomes more pronounced, while the second
maximum slowly is turned into a shoulder. The evolution of the shape is very
similar to the situation in the single-energy case. In contrast, the ideal gas does
not develop this two-peak structure at all.

At σF = 0.55 and 0.6, the van-Hove function is very similar to the critical
single-energy system at σF = 0.43, in the way that the out-moving part of
P(r, t) does not have a maximum, i.e. the van-Hove function is constant over
a wide range of r at any given, long time. The critical appearance is consistent
with the subdiffusive growth of the msd reported earlier. A similar behavior is
never observed in the confined ideal gas.

In contrast to the single-energy system, the systems with large diameters,
σF > 0.6, never fully converge to a long-time limit because of the strongly
increased relaxation time of the interacting system. In addition, the fluid
particles become densely packed and the van-Hove function develops a series
of local maxima and minima on the order of the next-neighbor distance.
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Figure 4.19: Double-logarithmic plot of the self-part
of the van-Hove function P(r, t) for a range of fluid
particle diameters σF = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and
0.8, with constant nF = 0.625. P(r, t) is shown as a
function of distance r for a range of times as indicated
in the legends.
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Figure 4.20: Rescaled van-Hove function as a func-
tion of rescaled time assuming the scaling of the all-
cluster average at the critical point.
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Figure 4.21: Superposition of the rescaled van-Hove
function of the single-energy case and the interact-
ing system for nF = 0.625 where the scaling of the
Lorentz model works best: at σF = 0.43 for the single-
energy case (black lines) and at σF = 0.55 for the in-
teracting case (red lines). The data is replotted in full
from figs. 2.15 and 4.20. The time and space argument
rt−1/dw of the interacting case has been multiplied
with a constant c = 1.7 to achieve overlap with the
single-energy system.

Qualitatively, the van-Hove function becomes very similar to the one of the
mobile component in ion-conductors (Horbach et al., 2001).

Since the van-Hove function at σF = 0.55 and 0.6 looks like its critical coun-
terpart in the single-energy case, and the msd at σF = 0.6 shows anomalous
diffusion over a large time interval, there is a strong indication that the van-
Hove function of the interacting system fulfills the critical time-space scaling
of the Lorentz model, at least on intermediate times. This will be tested now.

Scaling of the van-Hove function In fig. 4.20, the time-space scaling of the
dynamics in the all-cluster average at the critical point, see eq. (1.17), is applied
to the van-Hove function. For comparison, see the same rescaling for the
single-energy data in fig. 2.15. For the rescaling only data with r > 2 and t > 2
has been used, as this is the simplest criterion for excluding the microscopic
domain where the scaling cannot be applied. The scaling works very well for
σF = 0.55 and σF = 0.6, which showed extensive subdiffusion in the msd. Data
spanning 4 orders of magnitude in time and roughly 2 orders of magnitude
in distance have been successfully scaled on top of each other. Note that the
scaling works best at σF = 0.55, where the msd still becomes diffusive. Thus
the scaling is expected to break down for larger times than displayed here.

For comparison to the scaling in the single-energy case, the rescaled van-
Hove function at σF = 0.55 is shown superposed over the rescaled van-Hove
function of the single-energy case at the critical σF = 0.43 in fig. 4.21. In order
to achieve overlap, the time and space argument of the interacting case has
been multiplied by one constant c = 1.7 for all curves. After this simple fitting
procedure, which can be interpreted as a matching of an effective microscopic
timescale, near complete overlap of the data is found. The same works nearly
as well for σF = 0.6 (not shown). The van-Hove function of the interacting case
at nF = 0.625 thus agrees extremely well with the single-energy case, i.e. the
Lorentz model. So even if the localization transition is rounded, the van-Hove
function at 0.55 ≤ σF ≤ 0.6 scales with the critical time-space scaling of the
Lorentz model on the times and distances available to the simulation. Nothing
similar occurred in the confined ideal gas.

Intermediate scattering function Since the self-part of the intermediate scatter-
ing function Fs(q, t) contains the same information as the van-Hove function
it is not necessary to discuss it in much detail. As was already found in the
discussion of fig. 4.10, the long-time limit f (q) of the intermediate scattering
function is strongly decreased in the interacting system compared to the con-
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Figure 4.22: Self-part of the intermediate scattering
function Fs(q, t) of the interacting fluid system at
nF = 0.625 as a function of time t for a range of
wavenumbers q. Fs(q, t) is shown for a delocalized
state at σF = 0.2 (top), a near-critical state at σF = 0.6
(middle), and a localized state at σF = 0.8 (bottom).

fined ideal gas, which means the fluid particles are considerably less localized
in the interacting system. For the systems with σF ≤ 0.5, the long-time limit
could be determined for q ≥ 0.157 and was found to vanish there, i.e. f (q) = 0,
whereas the long-time limit f (q) in the confined ideal became visibly different
from 0 already for σF = 0.2, see fig. 3.18. For the larger σF, the relaxation
time was too large to determine f (q). Instead, it is necessary to plot the full
time-dependence of Fs(q, t) to argue about the long-time behavior.

Qualitatively, the isf of the interacting system has more in common with
the single-energy case than with the confined ideal gas, as was the case with
the van-Hove function. To explain this, the isf is shown in fig. 4.22 for a
delocalized state at σF = 0.2 (top), a near-critical state at σF = 0.6 (middle), and
a localized state at σF = 0.8 (bottom). The clearly delocalized systems with
σF < 0.6 all decay to a very small long-time limit. The system at σF = 0.6, which
is near the effective localization transition, decays to a small long-time limit
and is thus similar to the critical state at σF = 0.43 in the single-energy case,
shown in fig. 2.16. Finally, the (effectively) localized systems, here exemplarily
represented by the isf at σF = 0.8, probably have a large long-time limit, but
in any case decay only very slowly over the course of a simulation. Therefore,
the increase of the long-time limit with σF along with σF occurs roughly in the
same manner as in the single-energy case. In contrast, the confined ideal gas
had far more heterogeneous dynamics, where at diameters σF ≈ 0.6 the msd
was still diffusive while the f (q) was already very large.
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Discussion — Homogenization of the dynamics by fluid interactions In the
confined ideal gas it was found that systems with soft interactions cannot
exhibit a sharp Lorentz-model transition due to averaging of the dynamics as
soon as the mobile particles have an energy distribution. Even more so, the
transition is expected to be rounded so strongly that at all finite fluid particle
diameters σF the system never really becomes localized. The reason for this
is the exponential tail of the energy distribution which implies that there is
always a finite probability of finding a particle in a fixed matrix of soft particles
with a high-enough energy to be delocalized. The energy distribution of the
interacting fluid particles of the presently discussed system has that same
property, see fig. 4.5, and thus the transition can be expected to be strongly
rounded as well. Indeed, there is evidence that this is the case. For instance, the
suppression of the diffusion coefficient and the msd follow the same effective
scaling as in the confined ideal gas and cannot be made compatible with the
critical scaling of the Lorentz model. Furthermore, even though the msd at
σF = 0.6 has characteristics of a near-critical, localized system, it becomes
diffusive at long times. This is corroborated with the hard-sphere diameter
distribution, which contains both delocalized and localized states.

On the other hand, the critical time-and-space scaling of the Lorentz model
is found to hold for σF = 0.55 and 0.6 and the scaling function of the van-
Hove function was found to be nearly exactly the same as in the single-energy
case. Since these systems still have diffusive msd, one cannot expect the
scaling to hold indefinitely, but on the times and distances accessible to the
simulation it does. Conversely, a similar scaling did not succeed at all in the
confined-ideal-gas, see fig. 3.16. Therefore, either the critical scaling found
here is purely accidental and would not occur for other fluid densities, or the
interaction of the fluid particles with each other generically removes some of
the characteristics of the energy averaging identified in the confined ideal gas.

One crucial way in which the confined ideal gas is different from the in-
teracting fluid case is that in the former system the energy of each particle
is conserved individually and it is possible to distinguish particles from each
other by their energy. This has strong implications. Particles which are local-
ized in the beginning of the simulation will never become delocalized and
vice versa. This makes the dynamics quite heterogeneous as localized and
delocalized particles coexist in the same system.

The interaction between fluid particles homogenizes the dynamics. Ex-
change of energy allows formerly localized particles to become either delo-
calized or at least to escape their original void pocket. This was evidenced by
the increase of both the diffusion coefficient and the localization length upon
introducing the fluid interactions in section 4.2. More formally speaking, it
can be expected that the exchange of energy leads to practically all particles
sampling the whole energy distribution over time. Thus, the fluid particles of
the interacting fluid system are indistinguishable.

In-between contacts with other fluid particles, the energy of a fluid particle
is conserved and an effective hard-sphere diameter can be assigned to it. Each
time the particle energy is changed by a collisionwith another fluid particle, the
effective hard-sphere diameter changes with it. As each particle samples the full
energy distribution, it also samples the full hard-sphere diameter distribution.
The particle will therefore experience some areas of the matrix as very dense



a soft quenched-annealed mixture 113

— when it has a low energy — and some as sparse — whenever it has a high
energy. On average, that could either amount to a localized or a delocalized
particle, but this property should then hold for all particles. In the interacting
system, if one particle is delocalized, all are. This is decidedly not the case in
the confined ideal gas.

This homogenization of the dynamics was directly observed: While the
confined ideal gas had very large non-ergodicity parameters f (q) in states
with clearly diffusive msds — indicating very heterogeneous dynamics — the
interacting systems had a very small non-ergodicity parameter in the states
where the msd was still clearly diffusive. This held also for states with a very
small number of particles, see fig. 4.10.

It is not entirely clear how the homogenization of the dynamics would be
responsible for restoring the critical scaling found for 0.55 ≤ σF ≤ 0.6, but one
might try the following argument: From the effective hard-sphere diameter
distribution at σF = 0.6, it can be inferred that only a small portion of the
fluid particles are delocalized at any given time. Of these particles, most are
at or very near the critical point. The dynamics of that system is therefore an
average over the dynamics of particles which are localized most of the time
or — when delocalized — are at the critical point. The periods spent by the
particles in a localized state then might merely serve to rescale the microscopic
timescale. As a result one would encounter critical dynamics, but slowed down
compared to the single-energy case. This argument would also explain why the
scaling function of the van-Hove function is nearly exactly the same as in the
single-energy case, except for a trivial rescaling of the microscopic timescale.

At smaller fluid particle diameters, σF < 0.6, a greater part of the energy
distribution falls on the delocalized side and the dynamics are again more
strongly averaged. This then destroys the agreementwith the single-energy case
and brings the dynamics closer to the one of the confined ideal gas. Precisely
this then is the reason why the Lorentz model scaling is not observed in the
approach to the effective localization transition but only at the transition.

To study the homogenization of the dynamics more systematically, it might
prove fruitful to study the crossing of the localization transition in an interact-
ing fluid system at very small nF. Then, the homogenizing effect of the energy
exchanges would still take place but any other effects of the interaction of fluid
particles on the dynamics, e.g. the modification of the dynamics on short and
intermediate times via caging, would become negligible.

4.4 Summary

In this chapter, the dynamics of interacting fluid particles confined in a soft
porous matrix was studied. The focus of the analysis was on the modification
of the dynamics by the interaction between the fluid particles. For this, the
interaction was switched on in a controlled way by increasing the number
density of fluid particles from 0, thereby providing the connection between
the confined ideal gas and quenched-annealed mixtures. The confined ideal
gas is then found in the limit of vanishing fluid density.

Quenched-annealed systems with soft potentials exhibit a rounded localization
transition In the confined ideal gas, the mapping of the energy distribution of
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the fluid particles onto effective hard-sphere diameters allowed expressing the
rounding of the localization transition analytically. Since the energy distribu-
tion had an exponential high-energy tail, it could be shown that the probability
of a particle being delocalized is finite for all finite obstacle densities, i.e. there
is no true localization transition anymore.

Introducing interactions between the fluid particles, the energy of fluid
particles is not conserved anymore, but the energy distribution is only weakly
changed. Since the high-energy tail of the energy distribution is found un-
changed in the interacting systems, it can be concluded that there is no sharp
localization transition in soft quenched-annealed systems, as well. However,
in some respects the interacting fluid system was found to have dynamics far
more compatible with the Lorentz model predictions than with the confined
ideal gas.

Speeding-up of the dynamics by fluid interactions By holding the particle
diameter constant and increasing the number density it was shown that the
cooperation of particles has a complex influence on the dynamics. In com-
parison to the confined ideal gas, on the delocalized side of the localization
transition the dynamics in general slow down on intermediate timescales but
speed up in many cases on long timescales. The speed-up was observed even
and especially at very small number densities, where the structure and the
energy distribution of the particles was nearly unchanged compared to the
confined ideal gas. The speeding-up of the dynamics could therefore be traced
back solely to the fact that particles exchange energy with each other, i.e. that
particle energies change over time. The exchanging of energy also had the
effect of delocalizing particles, i.e. particles pushing each other out of finite
void pockets, which was observed in the strong decrease of the non-ergodicity
parameter, the long-time limit of the self-part of the intermediate scattering
function. In contrast to the confined ideal gas, where localized and delocalized
particles coexist, the interacting fluid system consists of particles which switch
between localized and delocalized states but are all undistinguishable. Thus,
the frequent exchange of energy led to a homogenization of the dynamics.

On the localized side of the effective transition, increasing the number
density lead to an increase of the localization length of the systems, and thus
also demonstrated that particles push each other out of void pockets.

At high number densities, the onset of dynamics dominated by fluid-fluid
interactions was identified. On the localized side, the msd began to display a
plateau which is typically associated with caging and the glass transition. On
both sides of the transition, the van-Hove function started to display a series
of maxima indicating the close packing of fluid particles.

Effective reentrance transition At larger number densities, the energy dis-
tribution of the particles became shifted towards larger energies. Since the
energy distribution can be mapped onto an effective hard-sphere diameter
distribution for the obstacles and the critical hard-sphere diameter is a constant
independent of energy, the shift of the energy distribution directly implies
an increase in the delocalized fraction of particles at any given time. In this
way, an effectively localized system was found to become delocalized upon
increasing the number density. This represents a reentrance transition.
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The reported dynamics is qualitatively identical to behavior reported for
equilibrated-mixture systems which differ from quenched-annealed systems in
the way the matrix component is produced. In equilibrated-mixture systems,
the fluid component is present in the simulation during the equilibration of
the matrix and leads to modifications of the matrix structure with increasing
fluid density. It was postulated previously that such a mechanism allowing for
the modification of the matrix structure by the fluid component was necessary
for a reentrance transition to occur. Here, it was shown that such a mechanism
is not necessary, since the matrix was completely independent from the fluid
particles.

Lorentz-model-like scaling at the effective localization transition The effective
exponent of the anomalous diffusion found in the msds was shown to be
highly tunable by variation of the number density. This enforces the point
that the delocalization scenario of the Lorentz model cannot be identified by
solely observing subdiffusion with the expected exponent for a few orders of
magnitude, but that a study of the scaling in the approach and at the localization
transition is necessary. Such a scaling analysis was performed in the second
part of this chapter.

The effective localization transition was crossed by varying the fluid particle
diameter while keeping the number density constant. This approach allowed
direct comparison to the single-energy case of chapter 2 and the confined
ideal gas of chapter 3. In this way, a system was identified where the msd was
found subdiffusive over nearly the whole simulation time. In contrast to the
confined ideal gas, the subdiffusive msd matched a power-law, δr2(t) ∼ t2/z
with the Lorentz model exponent z = 3.036, and for a far longer time than in
the single-energy case. The van-Hove function of that system not only obeyed
the critical time-space scaling expected for the Lorentz model, the resulting
scaling function matched the one of the single-energy case nearly exactly, save
for a trivial rescaling of the microscopic timescale. The system thus fulfilled
the Lorentz model scaling predictions at the transition, breaking only down at
the end of the simulation.

However, the dynamics showed signs of a rounded transition, since the
msd seemed to begin converging to a finite long-time limit before becoming
diffusive. Also, the scaling predictions in the approach to the transition were
not fulfilled. The suppression of the diffusion coefficient in the approach to
the transition was more compatible with the effective scaling found in the
confined ideal gas than the predictions for the Lorentz model, and likewise
the scaling of the msd.

An attempt was made at explaining why the homogenization of the dynam-
ics in the interacting fluid would lead to a better agreement of the dynamics
with the Lorentz model than was the case for the confined ideal gas.

This chapter is finished by a short study of the finite-size scaling in the
interacting fluid systems.
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Figure 4.23: Mean-squared displacements of the inter-
acting fluid case for a range of fluid particle diameters
σF as indicated in the titles. For each diameter, the
simulation box length L was varied as indicated in
the legends.

4.5 Finite-size scaling

It is as important to control finite size effects in the interacting system as in
the single-energy system and the confined ideal gas. Unfortunately, it is far
more difficult to simulate large interacting systems because the number of
interacting particles scales quadratically with the system size if one wants to
keep the number density constant. Fortunately, the finite size scaling is found
to be as weak or weaker as in the confined ideal gas.

To estimate finite size effects, the systems with constant number density
nF = 0.625—which were discussed in section 4.3—were simulated at multiple
system sizes. The msd for these systems are shown in fig. 4.23. The system
with σF = 0.3 is without finite size effects at L = 40, already. Therefore it is
sufficient to simulate the systems with σF ≤ 0.3 at L = 40. The parameter range
0.3 < σF ≤ 0.6 proved more difficult. The cases σF = 0.45, 0.5, 0.55, and 0.6 still
showed a difference in the msd between the system sizes L = 40 and 56.57.
Comparison of the msd at σF = 0.45 to the corresponding msd in the confined
ideal gas, see fig. 3.20, shows that the finite size scaling in the former system
appears comparable or weaker than in the latter. In the confined ideal gas at
σF = 0.45, the msd was free of finite size effects at L = 56.57 so it is likely that
the interacting system is free of finite size effects, as well. The presence of finite
size effects cannot be ruled out entirely for 0.45 < σF ≤ 0.6 at L = 56.57, but
they are so weak that the entire discussion of the dynamics in fig. 4.23 can be
considered correct.

σF nF L
0.5 0.0625 80
0.5 0.375 80
0.5 0.625 56.57
0.5 1.25 40
0.65 0.0312 160
0.65 0.375 56.57
0.65 0.625 40
0.8 0.0312 80
0.8 0.250 40
0.8 0.375 40
0.8 0.500 40
0.8 0.625 40

Table 4.1: The control parameters σF and nF and the
used simulation size L for the data presented in sec-
tion 4.2.

Determining the diffusion coefficient at σF = 0.5, 0.55, and 0.6 was possi-
ble by extrapolation as outlined in section 2.5. The same extrapolation was
performed at σF = 0.45 but the extrapolated diffusion coefficient was so close
to the value at L = 56.57 as to be indistinguishable in the plot. This is further
confirmation that the simulation at σF = 0.45 and L = 56.57 is free of finite size
effects.
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At the lower number densities in section 4.2, it became possible to use larger
system sizes. From the study of finite size scaling in the confined ideal gas it
was inferred that for simulation times up to t = 105, box size L = 80 should be
sufficient for the low densities. Therefore, the system size was chosen as large
as possible for low number densities and then was decreased incrementally.
The chosen system sizes are reported for reference in table 4.1. The presented
results should be free of finite size effects, but a more systematic study was not
performed.





5
Matrix correlations in quenched-annealed mixtures

In the preceding chapters the role of soft interaction potentials and interactions
between fluid particles in the dynamics of the Lorentz model was analyzed
extensively. In that way, the connection between the Lorentz model and the
more complicated quenched-annealed systemswas established. One remaining
aspect in which quenched-annealed systems differ from the Lorentz model is
in the structural correlations found in the matrix component of the former.

The universality class of the geometric properties of the percolation tran-
sition does not change upon variation of the matrix correlations (Torquato,
2002). However, the transport properties of a percolating network are not
necessarily universal: If the distribution of channel widthsw in the percolation
network has a singularity at w → 0, it can lead to a splitting of the universality
class. This happens in the case of the continuum percolation transition in three
dimensions, as was shortly discussed in section 1.2.1. It is thus possible that
correlations in the matrix modify the channel-width distributions sufficiently
to produce a modification of the universality class.

The universality of the critical dynamics has been confirmed in a variant of
the Lorentz model with correlated obstacles: the cherry-pit model (Spanner,
2010). There, obstacles are defined by two radii. One radius defines obstacle
cores, which are not allowed to overlap. The other radius defines the regular
hard-sphere which cannot be entered by the tracer. At vanishing core radius,
this system reduces to the regular Lorentz model, while at large core radii the
obstacles become tightly packed and nearly non-overlapping hard-spheres. For
this model, Spanner (2010) demonstrated that while the localization density is
strongly shifted by the introduction of matrix correlations, the channel-width
distribution is only slightly modified, and the critical dynamics are always
those of the regular Lorentz model. The single-energy system discussed in
chapter 2 is also an illustration of the universality, as it contained structural
correlations in the obstacle matrix while exhibiting the critical dynamics of
the Lorentz model.

Still, even though the localization transition is universal, one expects pre-
asymptotic corrections to the dynamics when the matrix is correlated. For
instance, the presence of cages on the lengthscale of the obstacle diameter in a
matrix with a glassy structure may introduce a modification in the microscopic
dynamics of the tracers. The following is a first exploration of the effect of
structural correlations on the dynamics of a confined ideal gas in an attempt
to identify such corrections to the universal behavior.
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5.1 Description of the system

The system was very similar to the one described in chapter 2 but the simula-
tions were performed in three dimensions. The wca interaction potential was
used for the interaction of both the matrix and fluid particles with the same
parameters as in the two-dimensional systems. The systems were prepared
in exactly the same manner with the sole exception of the preparation of the
matrix.

Preparation of the matrix A systematic way to modify the structural corre-
lations frozen in the matrix is the variation of the temperature TM at which
the matrix particles are equilibrated before fixing their positions. The smaller
TM, the more correlated their structure will be. In this formulation, the com-
pletely uncorrelated Lorentz model matrix can be produced for TM →∞. To
study the dynamics systematically, matrix configurations at the temperatures
TMkB = 2/3, 40, 320, and 105 were used. From here on, the unit kB is always
implied in the temperatures.

The matrix configurations consisted of 1000 particles in a cubic simulation
box with side length 9.55, resulting in a number density of nM = 1.15. In
order to avoid crystallization, the matrix particle diameters were sampled
from a uniform distribution σM ∈ [0.85, 1.15], just as in the 2D system. For the
tracer-matrix interaction, the obstacles were all set to diameter σM = 1.

The matrix structures at the highest temperature were produced first, and
were then successively cooled down to reach the lower matrix temperatures, as
this makes it easier to obtain properly equilibrated configurations at the lowest
temperatures. The particles were equilibrated with a simplified version of the
Andersen thermostat (Andersen, 1980) by randomly selecting the particle
velocities from a Maxwell distribution at the chosen temperature TM every
100 steps for either 106 steps (TM ≥ 3), 107 steps (1.5 ≤ TM < 3) or 108 steps
(TM < 1.5). The simulation time step for the equilibration procedure had to be
decreased for the higher temperatures, in accordance with the increase of the
typical velocities of the particles. The systems at the temperatures TM ≥ 320
were simulated with time step δt = 1.4 ⋅ 10−5 t0, while the simulations of the
colder systems used δt = 7.2 ⋅ 10−4 t0.
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Figure 5.1: Relaxation times τ of the matrix particles
inmicrocanonic runs after equilibration as a function
of the inverse of the equilibration temperature 1/TM.
Relaxation times defined as Fs(q, τ) ∶= 1/e at q = 7.
At the temperatures TM = 1 and 1.2, two data points
each are shown and found to completely overlap, with
the length of the preceding equilibration run differing
by a factor of 10.

To make sure that the equilibration times are sufficient, microcanonical
runs were performed after the equilibration, where the relaxation time of the
system could be measured. Here, the relaxation time τ was defined by the
point where the self-part of the intermediate scattering function has decayed
to Fs(q, τ) ∶= 1/e at q = 7. These relaxation times are shown in fig. 5.1 as a
function of the equilibration temperature TM. The relaxation times are as one
would expect for this system.

At each temperature, 48 independent matrix configurations were obtained
to allow for averaging over the matrix structure. The structure factor SMM(q)
of thematrix configurations is shown in fig. 5.2 for all usedmatrix temperatures.
As expected, systems become more correlated with decreasing temperature:
The system at TM = 105 shows a nearly constant structure factor and is thus
very close to the Lorentz model structure, while the system at TM = 2/3 shows
large peaks in its structure factor and thus represents a strongly correlated
system. If the matrix particles at TM = 2/3 were allowed to move, they would
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Figure 5.2: Structure factor SMM(q) of the obstacle
matrix for various equilibration temperatures TM as
indicated in the legend at number density nM = 1.15.
Moving average applied.

already exhibit glassy behavior, as can be seen in a simulation of the same
system in (Voigtmann and Horbach, 2009). The two systems at TM = 40 and
320 present intermediate steps between the two extremes.

5.2 Dynamics

In addition to a study of the effect of the matrix correlations on the tracer dy-
namics, a few of the observationsmade for the 2D systemswill be demonstrated
for the 3D system as well.

Single-energy system exhibits localization transition The msd of the single-
energy system at TM = 2/3 is shown as solid lines for a range of tracer diameters
σF in fig. 5.3 (top). The system clearly undergoes a Lorentz-model localization
transition at σ c

F ≈ 0.45, in analogy to the 2D case discussed in chapter 2. The
effective exponents of the msd are shown in fig. 5.3 (bottom). The critical
anomalous exponent of the continuous Lorentz model in three dimensions
is z ≈ 6.25, with δr2(t) ∼ t2/z (see section 1.2.2) and is marked in the plot
of the effective exponent as the horizontal black line. The msd of the single-
energy case at σF = 0.45 exhibits subdiffusive growth compatible with that
exponent at the end of the simulation run, indicating that this state is close to
the localization transition. An asymptotic scaling analysis was not performed.

Averaging of the dynamics of the confined ideal gas As was the case in 2D, the
dynamics of the confined ideal gas in 3D present an energy average over the
single-energy dynamics and the localization transition becomes rounded as a
result. This is demonstrated exemplarily at the matrix temperature TM = 2/3
with the msd in fig. 5.3 where the confined-ideal-gas data is shown as dashed
lines for the limits of the diameter range, σF = 0.4 and 0.52, superposed over
the single-energy data. While the single-energy system undergoes a Lorentz-
model localization transition at σ c

F ≈ 0.45, the msd of the confined ideal gas
becomes diffusive even at σF = 0.52, analogously to the observations discussed
in chapter 3.

A formalization of the energy averaging as it was performed in section 3.3
for the confined ideal gas in 2D was not achieved, here. The mapping onto a
hard-sphere system is more difficult to perform in three dimensions because
narrow channels in the void space are generically defined by three obstacles.
This makes it problematic to associate the potential energy needed to pass the
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Figure 5.3: Top: Mean-squared displacement for the
single-energy case at matrix temperature TM = 2/3
for a range of tracer diameters σF as indicated in
the legend. The msd of the confined ideal gas at
the diameters σF = 0.4 and 0.52 is superposed as
dashed lines. Bottom: Effective exponent of the
msd shown above. The anomalous exponent of the
Lorentz model, 2/z ≈ 2/6.25 = 0.32, is shown as a
solid black line.

channel with a single hard-sphere radius. Qualitatively, however, the energy
averaging in 3D is very much the same as in 2D.

Interacting fluid particles When an interacting fluid component is considered,
the dynamics are modified in a similar way to the 2D case, which was discussed
in section 4.3. In fig. 5.4 (top), the msd of interacting fluid particles at number
density nF = 1.15 (i.e. 1000 particles in a cubic box with side length L = 9.55) is
shown at matrix temperature TM = 2/3 compared to the confined-ideal-gas
data at the same diameters σF. At short and intermediate times, the interacting-
fluid msd is smaller than the confined-ideal-gas msd, but it overtakes it at
long times.

In contrast to the two-dimensional systems, the interacting fluid at the
investigated number density does not show dynamics compatible with the
Lorentz model, not even on intermediate times. This is especially visible in
the effective exponent shown in fig. 5.4 (bottom). The critical exponent of
the Lorentz model, 2/z ≈ 2/6.25 = 0.32 is shown as a solid black line. At no
value of σF does the effective exponent match the critical exponent more than
momentarily. This illustrates that the idealized transition of the Lorentz model
does not occur in systems with interacting mobile particles with soft potentials.

Variation of the structural correlations in the matrix and its effect on the tracer
dynamics Simulations of the confined ideal gas were performed for the four
matrix temperatures TM = 2/3, 40, 320, and 105. Simulations of the single-
energy case would have been preferable since they would expose the critical
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Figure 5.4: Mean-squared displacement (top) and
effective exponent (bottom) of interacting fluid par-
ticles at number density nF = 1.15 as solid lines for
a range of the diameters σF as indicated in the leg-
end. Superposed as dashed lines are the msd of the
confined ideal gas, i.e. the nF → 0 limit, at the same
diameters. For σF = 0.58, no confined-ideal-gas data
is available. The anomalous exponent of the Lorentz
model, 2/z ≈ 2/6.25 = 0.32, is shown in the bottom
plot as a solid black line.

behavior of the Lorentz model. The confined ideal gas was only used since
the simulations were performed at a time before the difference between the
confined-ideal-gas and the single-energy cases were clear to the author. Never-
theless, a few observations can be made for this data as well.

The msd of the simulated systems are shown in fig. 5.5 (left). For each
temperature, the fluid diameter σF was varied over a wide range to observe a
slowing down of the dynamics. From the plots it is apparent that the dynamics
is qualitatively similar for all matrix temperatures and comparable to the
dynamics of the 2D realization of the confined ideal gas discussed in chapter 3.

For a similar slowing down of the dynamics, the tracer diameter σF needs
to be larger in systems with a larger TM. This is reflection of the fact that at
larger TM, the obstacles have more overlap and thus fill space less efficiently.
This leads to a shift in the localization density, i.e. for a localization to occur
the tracers need to have a larger σF at larger TM.

To better expose any differences between the dynamics at different TM, it is
useful to compare states with similar long-time behavior. For this, the msd —
being an integral over the displacements of the particle — is not ideal, because
slight differences in the dynamics accumulate over time. A differential quantity
like the effective exponent μ(t) exposes similarities in the long-time behavior
better. For the comparison of the dynamics, μ(t) is shown in fig. 5.6 in three
plots, for a range of TM and σF. In each plot, data obtained for the different
TM is grouped such that the long-time behavior of μ(t) is the same, so as to
expose differences on short- and intermediate times. The plots are organized
such that the dynamics is the fastest in the (top) plot. The selection of the data
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Figure 5.5: Mean-squared displacement δr2(t) (left)
and corresponding effective exponent μ(t) (right)
for the matrix temperatures TM = 2/3, 40, 320, and
105 and fluid particle diameters σF as given in the
legends. The anomalous exponent of the Lorentz
model 2/z ≈ 0.32 is marked by a horizontal solid line
in the plots of μ(t).
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Figure 5.6: Effective exponent μ(t) of the mean-
squared displacement for a range of matrix temper-
atures TM and tracer diameters σF as indicated in
the legends. Data is grouped so that the long-time
behavior is matched.

was performed by hand and does not imply that the systems in each plot have
the same distance from their respective effective transitions.

In order to achieve a match of the long-time dynamics, the tracer diameter
σF has to be increased with the matrix temperature, to account for the shift in
the localization density. Apart from this, the matching works remarkably well,
as the behavior of the effective exponent is the same for the presented systems
from a time t ≈ 3 on. The long-time dynamics of the confined ideal gas might
therefore be seen as independent from matrix correlations, except for a trivial
shift in the localization density.

On short times, however, clear differences arise. The lower the matrix
temperature is, the earlier and the faster does the effective exponent decay,
indicating that the tracers come into contact with obstacles at an earlier time.
Additionally, at TM = 2/3 the effective exponent develops an undershoot at
a time t ≈ 1, reminiscent of the signature of caging in glass-forming systems
(Horbach et al., 2010). This implies that the tracers are trapped for a short time
in cages formed by the obstacles. That this trapping seems not to influence the
long-time dynamics is noteworthy.

5.3 Summary

In analogy to the two-dimensional systems in chapters 2 to 4, with which the
link between the Lorentz model and quenched-annealed systems was system-
atically studied, analogous systems were simulated here in three dimensions.
The presented results are preliminary but allow to draw a few conclusions.

The main observations of the 2D systems were found to hold for the 3D
systems, as well. For tracers at a single energy, when inserted into a matrix
of obstacles, the system undergoes a Lorentz-model localization transition
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when the tracer diameter is increased. When an ideal gas of mobile particles
is inserted into the matrix, the resulting dynamics are an energy average over
the single-energy dynamics. When the mobile particles are allowed to interact,
the system is a realization of a quenched-annealed system. Then, the single-
particle dynamics are found to be enhanced in comparison to the confined
ideal gas’. More clearly apparent than in the 2D system, the dynamics of the
quenched-annealed system in 3D is not compatible with the Lorentz model
dynamics.

In addition, the structural correlations of the matrix obstacles were sys-
tematically varied in an effort to investigate pre-asymptotic corrections to the
dynamics. The correlations were controlled with the temperature at which
the matrix was equilibrated. This allowed a continuous manipulation of the
structural correlations, ranging from the uncorrelated matrix at infinite matrix
temperature to a strongly correlated structure at low matrix temperature.

Simulations of a confined ideal gas at different matrix temperatures revealed
that while the matrix structure has an influence on the short time dynamics of
non-interacting tracers, the long time dynamics are unchanged.



6
Conclusions and outlook

The aim of this work was to systematically investigate the connection between
the Lorentz model and more complex heterogeneous media, and determine
the relevance of the Lorentz model localization scenario for more complex
heterogeneous media. In particular, the influence of a soft interaction potential
and of the interactions between mobile particles on the localization scenario
were investigated in simulations of two-dimensional systems. Thereby, it was
shown that the dynamics of soft heterogeneous media is generically different
from the dynamics of their hard-sphere counterparts.

Soft-sphere Lorentz model It was shown that the Lorentz model can be repro-
duced with a matrix of purely repulsive, soft spheres and a non-interacting gas
of tracers only if the tracers all have exactly the same energy. This requirement
is unneeded in hard-sphere systems, where the energy of the particles only
modifies the microscopic timescale. A hard-sphere mapping was developed
which revealed that both the soft-sphere interaction diameter and the particle
energy play the role of control parameters but that both can be contained in
an effective hard-sphere density. A similar mapping has not been achieved for
three dimensions, yet.

Rounding of the transition in heterogeneous media If the requirement of all
particles having the same energy is lifted — turning the system into an ideal
gas confined in a soft matrix — the localization transition in the Lorentz
model generically becomes rounded, i.e. the critical scaling of the Lorentz
model is not found and a sharp transition point where all particles become
localized cannot be identified. The wide energy distribution of the tracers
which was found to be responsible for the rounding is a generic feature of
realistic systems. This implies that the Lorentz model scenario can apply to
realistic heterogeneous media only approximately and the scaling properties
of the Lorentz model generally cannot be observed. Still, the rounding of the
transition can be understood in this case via the hard-sphere mapping as an
energy average over all tracers, with each tracer having a different critical
density according to its energy.

Enhancement of transport by increasing the fluid density Expressing the sys-
tem’s dynamics via an energy average is not possible anymore once a further
step towards realistic systems is taken: When the ideal gas is replaced with an
interacting fluid, the particles frequently collide with each other. This makes it
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impossible to map the system back onto the one-particle Lorentz model. How-
ever, the interacting fluid showed effective scaling of its long-time dynamics
comparable to the confined ideal gas which implies that there is an underlying
connection which is yet to be explored.

Increasing the fluid density was shown to enhance transport on long times.
It was shown that this was due to the frequent energy exchange of particles,
which lead to particles pushing each other out of pockets in the matrix struc-
ture. The same phenomenon cannot occur in hard-sphere systems, where
the void space is independent of the energy of the particles and there are no
energy barriers between pockets of void space. Indeed, it has been shown in
simulations of qa mixtures e.g. by (Kurzidim et al., 2010), that increasing the
fluid density in hard-sphere systems typically slows down transport.

Interacting fluid exhibits critical scaling compatible with Lorentz model Near
the effective transition of the system, where transport did not become diffusive
or localized over the course of the simulation, the interacting system showed
the critical time-space scaling of the Lorentz model. This is in stark contrast
to the confined ideal gas system. The reason behind this might be the homoge-
nizing effect of the energy exchange between fluid particles: in the interacting
fluid, if one particle is delocalized, it can pass this state to a localized particle
by exchanging energy with it. Thus, as long as a single particle is delocalized,
all are. If the system is dense enough that all delocalized particles are close to
the transition, the dynamics might follow the Lorentz model scenario, even
fulfilling the critical scaling. The occurrence of time-space scaling at one fluid
density should not be overstated, since it is very common for effective scaling
to occur and the agreement might be accidental. Therefore, additional study
of the localization transition over a wide range of fluid densities is necessary to
conclude whether the Lorentz model is still a relevant idealization for confined
interacting fluids.

Effective reentrance transition While the hard-sphere mapping cannot be
used to express the dynamics of the interacting fluid as an energy average,
it can still be used to the categorize the particles into momentarily localized
and delocalized particles as a function of their energy. This was applied to
investigate the occurrence of a reentrance transition. It had previously been
speculated that a reentrance transition in a heterogenous medium with a
fixed matrix is only possible when there is an additional mechanism allowing
for the modification of the matrix structure by the fluid component. This is
true for hard-sphere systems, but was shown here to not hold in soft systems.
Instead, an effective reentrance transition was identified in a system where the
matrix structure is completely independent from the fluid, but is entirely due
to the modification of the energy landscape by the increase of the fluid density.
Extending the simulations to higher fluid densities would be valuable. On the
one hand, the increase in the average particle energy is be expected to shift the
effective localization transition towards even larger matrix packing fractions,
making the systems evenmoremobile. On the other hand, another localization
mechanism in the form of caging is expected to become important. How the
interplay of these two mechanisms affects the dynamics is not obvious.

Since the fluid interactions clearly have a strong influence on the behavior
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of heterogenous media, further insights would also be expected from a study
of the collective dynamics.

Rounded localization transition in an experiment The results obtained in
this work have shown themselves to be valuable in the interpretation of an
experiment of a heterogeneous medium. The experiment consists of a colloidal
fluid confined in a quasi-two-dimensional random matrix, and exhibits a
rounded localization transition. Because the experiment allows the variation
of the fluid and matrix packing fractions over a wide parameter range, this
opens up exciting opportunities for the further study of heterogeneous media.
For instance, as stated above, the interplay between the localization transition
and glassy dynamics at high fluid densities would be a valuable subject, and
would allow comparison to corresponding simulations.





A
Insertion of the fluid component into the matrix

A.1 Preparation of the confined ideal gas

For the insertion of the confined ideal gas into the matrix, three different
insertion methods were tested and found to lead to the same distribution of
energies and the same dynamics:

1. Naïve insertion: For each tracer particle an insertion position was randomly
picked. It was inserted at that position if it was far enough from neighbor-
ing particles according to an ad hoc minimum distance: It was required
that the distance to the nearest obstacle may not be smaller than 0.65σM
and to the nearest tracer may not be smaller than 0.2σM. Especially the
latter requirement is unphysical, which is why this criterion was eventually
discarded.

2. Boltzmann-weighted insertion: an insertion position for a tracer particle was
randomly picked. Then the potential energyU of the particle at that position
was calculated and the particle insertion was accepted with probability
min[1, exp(−βU)].

3. Grand-canonical Monte Carlo insertion: the particle configurations were
generated in a grand-canonicalMonte Carlo simulation by taking snapshots
of the system when the system had been simulated for long enough and
the number of particles was as needed. Specifically, successive umbrella
sampling (Virnau and Müller, 2004) was used to more easily generate
configurations with the appropriate particle number. In the implemented
version of the method it is required that the average number of particles in
the system be increased in steps of 1 from 0. At each step, 500000 insertions
and deletions of particles were performed.

The bulk of the discussed data was calculated for systems created with criterion
1, which was replaced by criterion 2 and 3 for the most recent data.

The three insertionmethods and the resulting dynamics will now be studied
on the example of the self-part of the van-Hove function as this gives the full
information about the tracer dynamics. In fig. A.1, the van-Hove function
is shown for the three insertion methods for three simulation runs that are
otherwise identical. The van-Hove function is shown for three different times,
one at the beginning of the runs (t = 0.1), one at an intermediate time (t =
23.6), and one at the end of the runs (t = 6660). All three insertion methods,
the naïve (solid lines), the Boltzmann-weighted particle insertion (dotted
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lines) and the the grand-canonical particle insertion (dashed lines) give nearly
indistinguishable results. The differences between the insertion methods are
not large enough to rise above the noise present in the data.
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Figure A.1: Double-logarithmic plots of the van-
Hove function for the ideal gas with tracer diameter
σF = 0.3 as a function of distance r for a range of
times as annotated in the plot. Comparison of the
naïve insertion method (solid lines), the Boltzmann-
weighted insertion method (dotted lines), and the
grand-canonical insertion method (dashed lines) for
the ideal gas with tracer diameter σF = 0.3.
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Figure A.2: Top: Plot of the intermediate scattering
function at σF = 0.3 as a function of time t at wave
number q = 0.6 for the naïve insertion method (solid
line), Boltzmann-weighted insertion method (dotted
line), and grand-canonical insertion method (dashed
line). Bottom: The same plot at σF = 0.7 and at q =
0.6, 4.7.

To further study the localization of particles, it is useful to check the self-part
of the intermediate scattering function Fs(q, t) for differences between the
insertion methods. Even though it is the Fourier transform of the van-Hove
function and thus contains the same information, it exposes localized particles
better in the form of the non-ergodicity parameter f (q), the long-time limit of
Fs(q, t). In fig. A.2, the isf is shown for σF = 0.3 (top panel) on the delocalized
side and σF = 0.7 (bottom panel) on the localized side of the transition. For
σF = 0.3 the three insertion methods are compared at the wave number q = 0.6,
exemplarily. Apart from a slight difference in the relaxation time, all three
insertion methods result in a comparable isf. Most notably, the long-time
limit is the same for all three systems. At σF = 0.7, the three insertion methods
are compared for two wave numbers, q = 0.6 and 4.7, where the naïve insertion
method does show a slightly enlarged long-time limit compared to the other
two methods which produce nearly exactly the same results.
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Figure A.3: Semilogarithmic plot of the long-time
limit f (q) of the self-part of the intermediate scatter-
ing function f s(q, t) as a function of the wave num-
ber q at σF = 0.3 and 0.7 for the the naïve insertion
method (solid lines), Boltzmann-weighted insertion
method (dotted lines), and grand-canonical insertion
method (dashed lines).

The full q-dependence of the long-time limit f (q) for both systems is shown
in fig. A.3 for the three insertion methods. At σF = 0.3, all three insertion
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methods result in the same values over the whole q-range, while at σF = 0.7
the naïve insertion method results in slightly enlarged values at large q-values
but converges towards the other methods at small q.

In conclusion, the naïve insertion method tends to overestimate localization
on very small lengthscales slightly but results in the correct dynamics otherwise.
In light of this, the data obtained with the naïve insertion method was not
discarded in the main discussion.

A.2 Preparation of the interacting fluid in QA systems

The interacting fluid was inserted into the matrix in a similar fashion as the
confined ideal gas, but only the naïve and the grand-canonical method were
used.

Increase in the average energy in systems at large fluid particle diameters At
very large particle diameters σF, the naïve insertion mechanism can insert
particles into pockets in the void space which are too small. As a result, said
particles then have a higher than statistically expected potential energy. After
the equilibration, it was standard procedure to rescale the particle energies in
each system such that the total energy was the same in all systems. In some
cases the collective potential energy of a given system was larger than the total
average energy of all systems, making the rescaling impossible. Because of
this, at σF = 0.8, one system (of 100) had to be excluded from the simulation.
The same did not occur in the grand-canonical insertion method where the
average energy was found to be generally lower and the rescaling was always
successful. At σF = 0.8, the grand-canonically inserted system was eventually
used.

Dynamics The differences in the dynamics caused by the two insertion mech-
anisms were again tested with the van-Hove function. In fig. A.4 (top), it is
shown for two systems with one created with the naïve particle insertion (lines)
and the other created with the grand-canonical particle insertion (bullets),
which are otherwise the same. The systems contain interacting fluid particles
of diameter σF = 0.8 at the number density nF = 0.0625. The only difference
in the dynamics is found on short distances, where the naïvely created system
shows enhanced localization compared to the grand-canonically inserted sys-
tem. This shows that the former is more likely to create particles which are
trapped in small pockets of the matrix, also leading to the increase in potential
energy discussed above. The dynamics on lengthscales r > 0.2 are completely
the same, regardless of the insertion method. Also note that the enhanced
localization on very small lengthscales has no measurable influence on the av-
erage msd, for instance, where the contribution of strongly localized particles
on the system average is marginal compared to the contribution of delocalized
particles or even particles localized on large lengthscales. Qualitatively the
same situation occurs in fig. A.4 (bottom), where the number density has been
increased to nF = 0.625. But there, the effect is less pronounced. At lower σF,
the differences between the insertion methods become less apparent in the
dynamics.



134 anomalous transport in heterogeneous media

10−2 10−1 100 101

Distance r

10−3

10−2

10−1

100

101

P(
r,
t)

t = 0.1
t = 2.0
t = 32.1
t = 514.0
t = 8210.0
t = 131000.0

10−2 10−1 100 101

Distance r

10−3

10−2

10−1

100

101

P(
r,
t)

t = 0.1
t = 2.0
t = 32.1
t = 514.0
t = 8210.0
t = 131000.0

Figure A.4: Top: The self part of the van-Hove func-
tion as a function of distance r for a range of times as
indicated in the legend. Comparison of the naïve
(lines) and the grand-canonical particle insertion
methods (bullets) for a system of interacting particles
with diameter σF = 0.8 and nF = 0.0625. Bottom:
The same plot for σF = 0.8 and nF = 0.625.
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Figure A.5: Top: Plot of the intermediate scattering
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number q = 0.6 for the naive and the grand-canonical
(gcmc) insertion methods. Bottom: The same plot
at σF = 0.8.



insertion of the fluid component into the matrix 135

The intermediate scattering function is equally verymuch unchanged by the
different insertion methods. On the delocalized side, there is no change at all,
which is exemplarily shown for the particle diameter σF = 0.5, the wavenumber
q = 0.6 and nF = 0.375 in fig. A.5 (top). On the localized side, there is a slight
difference between the isf obtained from the two insertion methods. This is
shown exemplarily in fig. A.5 (bottom) for σF = 0.8, q = 0.6 and for two number
densities, nF = 0.0625 and nF = 0.625. There, the relaxation time seems to
vary between the two insertion methods: more so in the nF = 0.0625 case and
less so in the nF = 0.625 case. This difference is almost certainly due to the
increased difficulty of obtaining the ensemble average at large diameters. The
difference in the dynamics between the insertion mechanisms becomes the
greater, the larger the particle diameter is and the state at σF = 0.8 was the only
one to show significant differences in the isf (or other quantities) between the
insertion mechanisms, and there the gcmc-inserted systems were used.

For the interpretation of the data, the insertion method is thus not relevant
at all. Both the van-Hove function and the intermediate scattering function,
which both give a full description of the dynamics, are effectively unaffected
by the choice of the insertion method.
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