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Abstract 

Protein-protein complexes play key roles in all cellular signal transduction processes. 

Computational methods to predict the three-dimensional structures of such complexes are 

valuable tools in modern structural biology and drug discovery. In this work, a new approach to 

predict the underlying protein-protein interactions is presented. First, a distance-dependent 

knowledge-based scoring function was developed and adapted against experimental alanine 

scanning results to predict changes in the binding free energy upon alanine mutations in protein-

protein interfaces. This approach was transferred to a web server to provide valuable information 

for guiding biological experiments and in the development of protein-protein interaction 

modulators. Second, the knowledge-based potentials were evaluated as a scoring and objective 

function for the structure prediction of bound and unbound protein-protein complexes. The 

results suggest that the potentials balance well several different types of interactions important 

for protein-protein recognition and are discussed regarding the influence of crystal packing and 

the type of protein-protein complex docked. Furthermore, a simple criterion is provided with 

which to estimate a priori if unbound docking will be successful. Third, several methods were 

examined with their ability to consider local and global flexibility for protein-protein docking. In 

this regard, a normal mode-based geometric simulation method was used to sample 

conformational transitions that can be used as input to the docking approach. Finally, a large-

scale validation study on docking small molecules into protein-protein interfaces was performed. 

Results obtained allow identifying those protein-protein interfaces that are amenable for 

molecular docking approaches. The research results presented in this work will support scientists 

to improve computational methods for protein complex prediction and to develop protein-

protein interaction modulators. 

 
 

 



 

 

Zusammenfassung 

Proteinkomplexe spielen eine Schlüsselrolle bei den Prozessen der zellulären Signalübertragung. 

Computergestützte Methoden, um solche Komplexe vorherzusagen, sind wertvolle Werkzeuge in 

der modernen Wirkstoffentwicklung. In dieser Arbeit wird ein neuartiger Ansatz präsentiert, um 

die den Komplexen zugrunde liegenden Protein-Protein Interaktionen vorherzusagen. Zunächst 

wurde eine abstandsabhängige und wissensbasierte Bewertungsfunktion abgeleitet und an die 

Ergebnisse experimenteller „Alanine-Scanning“ Untersuchungen adaptiert, um die Änderungen 

der freien Bindungsenergie bei Alanine-Mutationen in Proteinbinderegionen vorherzusagen. 

Dieser Ansatz wurde auf einem Webserver implementiert, um entsprechende Vorhersagen zur 

Unterstützung biologischer Experimente und für die Entwicklung von Protein-Interaktions-

Modulatoren zur Verfügung zu stellen. Anschließend wurden die wissensbasierten Potentiale 

hinsichtlich ihrer Eignung als Ziel- und Bewertungsfunktion evaluiert, um Proteinkomplexe 

basierend auf gebundenen und ungebundenen Proteinstrukturen vorherzusagen. Die Ergebnisse 

dieser Vorhersagen zeigen auf, dass die Potentiale die verschiedenen Interaktionstypen, welche 

für die molekulare Erkennung von Proteinen von Bedeutung sind, gut abbilden. Die Ergebnisse 

werden weiterführend diskutiert bezüglich des Einflusses von Kristallpackungseffekten und der 

Art des Proteinkomplexes auf die Qualität der Vorhersage. Zudem wurde ein Kriterium 

entwickelt, welches erlaubt, a priori abzuschätzen, ob eine Vorhersage erfolgreich sein kann. 

Weiterhin wurden verschiedene Verfahren hinsichtlich Ihrer Eignung untersucht, lokale und 

globale Flexibilität von Proteinen für Proteinkomplexvorhersagen zu berücksichtigen. 

Diesbezüglich wurde eine auf Normalmoden basierende, geometrische Simulationsmethode 

verwendet, um konformationelle Änderungen zu simulieren, welche für die Proteinstruktur der 

Komplexvorhersagen berücksichtigt werden können. Als letztes wurde eine groß angelegte Studie 

durchgeführt bezüglich der Vorhersage von Bindemodi kleiner Moleküle in Binderegionen auf 

der Oberfläche von Proteinen. Die dabei erzielten Ergebnisse erlauben es solche Binderegionen 

zu identifizieren, für welche die Methoden der Vorhersage von Bindemodi geeignet sind. Die in 

dieser Arbeit präsentierten Forschungsergebnisse werden Wissenschaftlern dabei unterstützen 

computergestützte Methoden zur Vorhersage von Proteinkomplexen zu verbessern und Protein-

Interaktions-Modulatoren zu entwickeln. 
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1. Introduction 

1.1 The Nature of Proteins 

Today, one of the most common research areas in many fields of natural sciences is the nature of 

proteins, most likely in the fields of biochemistry, biophysics, structural biology, and structural 

bioinformatics. Likewise, this is true for this thesis. For the understanding of subsequent 

chapters, knowledge about proteins is of fundamental importance. Thus, the following 

introduction provides a general overview about proteins, from sequence to structure to function, 

and their natural dynamic behaviour.  

1.1.1 Structure 

Proteins are biological macromolecules that are involved in nearly all cellular processes.1 Their 

importance is already expressed in the term protein, which is derived from the greek word proteios, 

meaning “primary”.2 For most of the cells the amount of proteins to the oven-dry mass accounts 

for more than 50%, clearly pointing out their importance for a cell to exist.3 The basis of all 

natural proteins is provided by 22 different L- -amino acids whereas only 20 of them, the so-

called canonical or standard amino acids, are directly encoded by the standard genetic code.4, 5 

Two non-standard amino acids, selenocysteine (Sec or U) and pyrrolysine (Pyl or O), are 

incorporated into proteins by particular biosynthetic mechanisms that extend the standard 

genetic code by substitution of the standard stop codon.6, 7 Each protein has its own unique 

amino acid sequence that is specified by the nucleotide sequence of its encoding gene.8 The 

cellular process of synthesizing proteins from a nucleotide sequence is known as translation.9, 10 

The structural composition of proteins can be characterized by four distinct aspects: (1) Primary 

structure: the amino acid sequence that provides one or more polymers of amino acids, so-called 

polypeptide chains; (2) Secondary structure: regularly repeating structural elements within a 

polypeptide chain which are mainly stabilized by backbone-induced hydrogen bonds, namely -

helices, -sheets, or turns (subdivided into tight turns, multiple turns, -loops, and hairpins); (3) 

Tertiary structure: the 3D configuration of secondary structure elements defining the shape of a 

polypeptide chain; (4) Quaternary structure: the biological assembly arranged by several 

polypeptide chains, so-called subunits, defining a protein’s overall conformation.11-13 A protein 

conformation can consist of either one, or multiple identical (homomeric), or distinct subunits 

(heteromeric).14 Protein conformations can be stabilized by disulfide bonds, which are covalent 

bonds that can be build up from two nearby cysteine residues within the same, or between two 

distinct subunits.15 The overall formation of a protein’s conformation is referred to as protein 

folding, a process that is either progressed unassisted, or supported by other proteins 
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(chaperones).16 Based on their specific conformations, proteins are able to adopt multiple specific 

functions in the cell.17 However, proteins are not entirely rigid molecules.18 Consequently, the 

basic concept of molecular recognition is based on a protein’s flexibility, i.e. the ability to change 

its conformational state.19 

1.1.2 Flexibility 

Proteins have highly diverse structures and can experience a wide range of conformational 

dynamics that range from almost stable folded to intrinsically disordered states.20 Those 

conformational dynamics are well-grounded in the overall flexible nature of protein structures.18 

The flexibility of a protein is encoded within its amino acid sequence and thus an integral part of 

a protein’s structure. Proteins may perform structural rearrangements, referred to as 

conformational changes, during binding to another macromolecule when passing into their 

bound state (referred to as induced fit).21 However, even in their unbound state proteins are able 

to undergo structural variation when shifting between several related conformations (following a 

conformational selection mechanism).22, 23 Even well folded structure elements (domains) own a 

certain inherent flexibility and, moreover, they are able to move relative to each other.24 

Conformational changes can range from relatively small movements of the backbone and/or side 

chains to large rearrangements of domains or loops, but can also involve compact folds where a 

protein undergoes a partial or complete change of its tertiary structure.25 The ability of a protein 

to undergo conformational changes, i.e. to what extend such changes could be accomplished, is 

rooted in its underlying structural composition.22 Nearly rigid, folded proteins are rather limited 

in plasticity in contrast to disordered proteins that remain unfolded and thus totally flexible in 

their free state. Accordingly, recent studies could show a significant correlation between free-state 

flexibility and conformational changes that occur upon binding.25, 26  

Two paradigms about protein flexibility have been reassessed in the past decade. First, the lock-

and-key fit according to Emil Fischer’s hypothesis is not longer generally accepted.27 Today, it is 

known that many proteins do not bind by distinct shape matching, but they are able to adapt 

themselves to the binding partner and vice versa.28, 29 Second, the protein structure-function 

paradigm seems to be obsolete. The traditional concept that a protein’s function depends on its 

underlying conformation is in contrast with the discovery of intrinsically disordered proteins, i.e. 

proteins that are fully functional but completely unfolded.30, 31 Such proteins bind to other 

macromolecules following a coupled folding and binding mechanism.28, 32 

In computational drug design, the intrinsic flexibility of proteins still makes their handling to be 

difficult.33, 34 Here, much effort has been made in the last 30 years, but implementation of protein 

dynamics into molecular docking approaches is still one of the challenges, most notably in the 
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field of protein-protein complex prediction.33, 35 Despite the difficulties, proteins are still the most 

important targets in drug discovery since they own a multitude of functions that are involved in 

almost all types of diseases. 36, 37 

1.1.3 Function 

Their high structural diversity and plasticity allow proteins to adopt a vast array of functions 

within living organisms, thus representing the major molecular tools of cells.38 Based on their 

physiological functions, proteins can be divided into several classes that will be described in brief 

in the following. 

Structural proteins are mostly fibrous and responsible for rigidity in biological components, e.g. 

collagen and elastin are components of connective tissue and keratine can be found in hair and 

nails.39, 40 In contrast, contractile proteins allow for elasticity of cells, such as proteins like actin 

and tubulin that polymerize to build up the cytoskeleton of a cell.41 Storage proteins are used by 

cells as biological reserves, e.g. for metal ions or amino acids, and can be found in milk, egg white 

and plant seeds.42-44 Accordingly, calsequestrin is a protein that stores calcium ions in the 

sarcoplasmic reticulum, and ovalbumin is a major source of amino acids for juvenile 

mammalians.45, 46 Transporter proteins are responsible for moving substances within an 

organism.47 Hence, hemoglobin that occurs in the blood of vertebrates carries oxygen from the 

lungs to other parts of the body.48, 49 Membrane proteins are located within a cell’s membrane and 

serve the transport of ions, ligands or other proteins through this barrier.50, 51 Thus, they are 

included in all kinds of cell-signaling processes.52 Examples are aquaporins that control the water 

passage of a cell, and calcium channels that are involved in the communication between 

neurons.53-55 Hormonal proteins help to coordinate certain activities of a body, e.g. the glucose 

metabolism that is regulated by insulin.56 Enzymes are proteins with catalytic activity to speed up 

chemical reactions.57 Familiar examples are the digestive protein pepsin that breaks down 

proteins in food, and lactase that breaks down the sugar lactose found in milk.58, 59 Antibodies, 

also known as immunoglobulins, are proteins with protective function that are utilized by the 

immune system in response to the presence of a substance that is foreign to the body (an antigen) 

such as bacteria or viruses.60, 61 

So far, most research has been done on targeting the active sites of enzymes, receptors and ion 

channels with small molecule inhibitors. However, targeting protein-protein interaction sites has 

become a new focus in drug discovery during the last years since protein assemblies provide an 

important contribution to the molecular regulation of a variety of processes in the cell, 

concerning survival/apoptosis, proliferation, cell-cycle progression, cell shape, polarity, adhesion, 

migration and differentiation. Disregulation of cellular pathways is often causal of disease. For 
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instance, the MAP/ERK signaling pathway is involved in the development of many human 

diseases including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and 

various types of cancers; the JAK/STAT signaling pathway is involved in the development of 

human hematological malignancies as well as autoimmune and chronic inflammatory diseases; the 

integrin pathway is involved in the development of thrombosis, osteoporosis, tumor-induced 

angiogenesis, and cholestatic liver disease.62-64 Moreover, cell signaling plays an important role in 

bacterial infections that can be treated by targeting specific bacterial pathways. Furthermore, 

human signaling pathways are often manipulated by viruses as they rely on the functions offered 

by cells for their propagation. For instance, the Wnt signaling pathway can become dysregulated 

through the actions of several oncogenic viruses like JC polyomavirus, human papillomavirus, or 

herpesvirus 4 and 8.65 

The previous overview shows the variety of functions that proteins can adopt in cells confirmed 

by several clinically relevant examples and thus reveal why proteins are the most important 

targets in drug discovery. 

1.2 The Determination of Protein Structures 

The basis for structure-based drug design is knowledge about the 3D structures of proteins, 

ligands, or their complex structures. Structure determination is not a trivial problem, because 

molecules are too small to identify their structure just by light microscopy, even for proteins 

consisting of several thousands of atoms. Therefore, more expensive methods are needed to 

make a molecule’s structure visible. The two most commonly-used methods to determine high-

resolution structures from molecules or their complexes are X-ray crystallography and nuclear 

magnetic resonance (NMR) spectroscopy.66 X-ray crystallography is based on the diffraction of 

X-rays through a closely spaced grid of atoms in a crystal.67 In contrast, NMR spectroscopy uses 

nuclear magnetic resonance spectra and can be applied in solution and solid state.68 One has to 

note that 3D structures derived from these methods are finally models based on refined 

experimental data.69, 70 The quality of those models depends on both the experimental conditions 

and the computational methods used.71 Once a protein structure is determined, it is normally 

published in the RCSB protein data bank to make it publicly available to the research 

community.72 All of the protein structures presented in this thesis were derived from the RCSB 

protein data bank.  

Since most of the 3D structures used in this work are based on X-ray crystallography, it is 

important to gain insight into the accuracy of the atomic details of such structures. One 

important measure for the quality of an X-ray structure is the resolution reported in Ångström 

(Å).73 1 Å corresponds to 10-10 m. The resolution gives information about the uncertainty of the 
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atomic coordinates. For instance, if the resolution of an X-ray structure is 2.5 Å, the standard 

deviation (STD) in the atomic coordinates is about 0.4 Å, and it is about 0.1 Å, for a resolution of 

1.5 Å.74 In structure-based drug design, the resolution of a 3D structure is of fundamental 

importance.75 Here, specific bond lengths play an important role to correctly identify interactions 

between the molecules of interest.76 This becomes obvious considering that the average distance 

between oxygen and nitrogen atoms in hydrogen bonds across protein-protein interfaces is  

2.93 Å ± 0.24 Å.77 Consequently, if the atomic uncertainty exceeds 0.4 Å, consistent with a 

resolution lower than 2.5 Å, it will be more difficult to decide for a bond to exist. For this reason, 

only X-ray structures with a resolution higher than 2.5 Å were used in this work.  

Beside an X-ray structure’s resolution, another measure for the uncertainty of atomic coordinates 

is given by the B-factor (also called the Debye-Waller factor or temperature factor) reported in 

Å2.78, 79 While the resolution gives information about the uncertainty of atoms based on structure 

determination, the temperature factor measures static disorder caused by structural differences in 

different unit cells throughout the crystal, or dynamic disorder caused by thermal motions of 

atoms.80 For instance, for a B-factor of 15 Å2, the displacement of an atom from its equilibrium 

position is approximately 0.44 Å, and it is as much as 0.87 Å for a B-factor of 60 Å2.81, 82 Thus, B-

factors below a value of 30 Å2 correspond to well-defined parts of a structure, whereas B-factors 

higher than 60 Å2 indicate disordered parts of the structure as it is often the case for highly 

flexible loop regions in proteins.81, 83  

1.3 Molecular Interactions of Proteins 

A major task in computational chemistry is the optimization or weakening of interactions 

between a ligand and another biomolecule.84 This can be increasing the affinity of a ligand to 

improve binding to a receptor, or reducing the affinity of a ligand for an antitarget (e.g. HERG 

channel, CYP450) to prevent from undesirable side-effects.85-87 The most important types of 

molecular interactions between biomolecules, this involves both protein-ligand and protein-

protein interactions, are based on non-covalent (reversible) bonds.88, 89 Those interactions include 

van der Waals (vdW) forces (Keesom-, Debye-, and London forces), hydrogen bonds, ionic 

interactions (salt bridges), -system interactions, and metal interactions.90 In contrast, covalent 

bonds form irreversible chemical bonds in between biomolecules, e.g. disulfide bonds.90 

However, covalent bonds between ligands and receptors are less desirable in drug discovery for 

reasons of toxicity.91 Information about interactions occurring in protein-protein or protein-

ligand complexes can be found in so-called interaction databases.92-99 
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The affinity between two biomolecules, i.e. the strength of binding of one molecule to another, is 

typically expressed in the Gibbs free energy of binding reported in kcal/mol (see Equation 

1.1).100-102  

 

ST - H G ΔΔ=Δ                 (Eq. 1.1) 

 

Here, ΔG is the change in Gibbs free energy, ΔH is the change in enthalpy, ΔS is the change in 

entropy, and T is the absolute temperature reported in Kelvin. Whereas the enthalpy implies 

changes in the binding affinity due to the formation or breaking of bonds described above, the 

entropy implies changes in the degrees of freedom for both of the binding partners and the 

solvent upon complex formation.101, 103 When it comes to entropic contributions, water plays an 

important role.101, 104 Since all biochemical reactions take place in aqueous solution molecules are 

coated by hydration shells.101, 105 These hydration shells are (partially) destroyed during binding to 

another molecule thereby releasing water molecules, a process that is well-known as 

desolvation.101, 106, 107 Desolvation effects always contribute significantly to the change in entropy 

upon binding.101, 108 When it comes to enthalpic contributions, number and types of interactions 

are the crucial factors.109 Usually, bonding forces are unevenly spread over the binding interface 

of a protein such that a few residues (so-called hotspots) contribute most to the free energy of 

binding.1, 110, 111 Accordingly, much importance is attached to hotspots in lead finding and 

optimization.112 In many chemical processes, the change in enthalpy is largely compensated by a 

corresponding change in entropy, a widely documented phenomenon called entropy-enthalpy 

compensation.101, 113-115 This correlation between entropy and enthalpy often results in a small 

change of the free energy of binding, whereas changes in entropy and enthalpy can widely spread. 

Thus, when it comes to the prediction of binding affinities from the computational side, even a 

small difference in one of these terms can be crucial for the results.116, 117 

As already mentioned, protein-ligand complexes can be built up from reversible or irreversible 

interactions. Similarly, protein-protein complexes are referred to be either transient (low affinity 

complexes) or permanent (high affinity complexes).118 In contrast to a permanent interaction that 

is usually very stable, such that the protein only exists in its complexed form, proteins that form 

transient interactions associate and dissociate in vivo.118 In this regard, protein assemblies may be 

differentiated whether their subunits can be observed independently in vivo (non-obligate), or not 

(obligate). Furthermore, interaction regions of these subunits may be characterized as a 

continuous epitope, where a continuous region of the sequence forms the interface, or a 

discontinuous epitope, where different regions of the sequence contribute. Note that irreversible 

interactions in protein-ligand complexes differ from permanent interactions in protein-protein  
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Figure 1.1:  (A) Recognition and inhibition of enzymes. (B) Recognition and inhibition of protein-protein 

interactions.   

complexes: Irreversible protein-ligand complexes are based on covalent interactions, whereas 

permanent protein-protein complexes are based on a multiplicity of strong non-covalent 

interactions.118, 119 

In general, there are significant differences between interactions that occur in protein-protein and 

protein-ligand complexes.120 Whereas a ligand can cover the whole chemical space, the formation 

of (human) protein-protein complexes is restricted to interactions between the 20 standard amino 

acids. These differences have already been investigated in several studies where occurrence 

frequencies of amino acids involved in interactions in protein-protein complexes were juxtaposed 

to those derived from protein-ligand complexes.35, 121, 122 Differences in entropic and enthalpic 

contributions become clear when just considering the size of proteins and ligands: A protein 

owns a much higher solvent accessible surface area (SASA) and forms’ plenty of interactions 

more compared to a small molecule.123 Accordingly, the abundance of energetic contributions 

facilitates a wider scope of modulation possibilities during protein-protein binding. 

Actually, protein-ligand complexes can be classified by two different types of interactions based 

on a ligand’s location of binding to a receptor. One hast to distinguish between inhibitors that 

address a binding pocket of a protein, e.g. the catalytic site of an enzyme, or protein-protein 

interaction modulators (PPIMs) that bind to a particular position at the interface of a protein (see 

Figure 1.1).124 Whereas “classical” ligands inhibit a protein by replacement of the natural substrate 

(another small molecule, Figure 1.1 A), PPIMs avoid binding of one protein to another  
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(Figure 1.1 B). Each class of inhibitors own its certain chemicophysical properties that have been 

reviewed in recent publications.125-127  

Prediction of protein-protein and protein-ligand interactions just as binding affinities resulting 

from formation of such complexes are still major concerns in computational drug design.128, 129 In 

this thesis, an approach to predict protein-protein complexes is presented (see Chapter 3) as well 

as an approach to predict the hotspots of such interactions (see Chapter 4). Furthermore, 

interactions of PPIMs to protein-protein interfaces are investigated (see Chapter 6). 

1.4 Estimation of Molecular Interactions 

The measurement of receptor-ligand interactions forms an important part of modern 

pharmaceutical development. Typically, a biological test system (assay) is used to experimentally 

quantify the binding affinity between a ligand and a receptor. In addition, interactions of 

molecules can be investigated qualitatively by x-ray crystallography or NMR spectroscopy (see 

Chapter 1.2). Numerous types of ligand binding assays have been developed, both radioactive 

and non-radioactive. An extensive overview about assay technologies and their advantages or 

rather disadvantages can be reviewed elsewhere.130 The quantity to be measured by an assay is 

given in terms of a thermodynamically determined dissociation constant (Kd), or a kinetically 

determined inhibition constant (Ki) referred to enzyme-ligand complexes, reported in mol/l 

(M).101, 131 The dissociation constant Kd is directly related to the Gibbs free energy of binding (see 

Equation 1.2).13, 101 

 

dK RT  ST - H G ln=ΔΔ=Δ                           (Eq. 1.2) 

 

Here, ΔG is the change in Gibbs free energy, ΔH is the change in enthalpy, ΔS is the change in 

entropy, T is the absolute temperature reported in Kelvin, R is the gas constant, and Kd is the 

dissociation constant. Kd describes the concentration of ligand, which is required to occupy half 

of the receptors.13, 101 The lower the value of Kd, the lower the concentration of ligand needed, 

and vice versa. Thus, the lower the value of Kd, the higher is the binding affinity. Many times, 

instead of the inhibition constant Kd, an IC50 value is reported. The IC50 value describes the 

concentration of a ligand which is needed to inhibit a protein’s activity by half.132 It is commonly 

used to measure the potency of an antagonist. Respectively, the EC50 is used to measure the 

potency of agonistic effects. It refers to the concentration of ligand which induces a half maximal 

response.132 

Furthermore, the change in binding free energy (ΔΔG) is often calculated in pharmaceutical 

research (see Equation 1.2).133, 134 For instance, it can be determined to identify residues that 
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contribute most to the formation of a complex (hotspots), or to separate strong from weak 

binding leads for further optimization of the scaffold (lead optimization).135, 136 Hotspots can be 

identified by alanine scanning mutagenesis (see Chapter 3).135 Here, the role of residues at specific 

positions is inferred from the change in binding free energy caused by alanine mutations. Lead 

optimization usually affords a series of ligands synthesized by substituting the moieties of a 

molecule. Those ligands are then quantified by their change in binding free energy.  

If the 3D structure of a receptor exists, ligand binding modes and their affinities can be predicted 

by computational methods.137-141 Such methods offer an advantageous alternative when 

experimental methods reach their limits. They are also useful to estimate whether a compound 

should be synthesized or not. A general approach to predict protein-ligand geometries and their 

affinities is molecular docking and scoring.141, 142 A plenty of diverse docking tools and scoring 

functions have been developed in the last decade and will be introduced later on (see Chapter 

1.5). While docking is used to sample possible positions of a ligand within a protein’s binding site 

(see Chapter 1.5.1), scoring functions are used to guide the docking search and to predict binding 

affinities of protein-ligand complexes thereby obtained (see Chapter 1.5.3).143, 144 Scoring 

functions can also be used to determine hotspots in protein-protein interfaces (see Chapter 3). 

Here, the change in binding free energy is estimated by computational alanine scanning 

mutagenesis.135 Alanine scanning still represents a large experimental effort that cannot be applied 

easily and, consequently, there is a strong need for computational approaches to detect hot spots 

in protein-protein interfaces. Thus, a major part of this thesis was the development of a scoring 

function to predict protein-protein interactions to subsequently provide a basis for the 

implementation of a computational alanine scanning approach (see Chapter 3).  

1.5 Molecular Docking 

One of the widely used approaches in structure-based drug design to predict the binding mode of 

two biomolecules is molecular docking.145 Docking approaches always imply a distinct type of 

scoring function, respectively, that is used to rank the predicted binding mode configurations by 

a calculated score.146 Ideally, a score is in good correlation with the experimentally determined 

binding affinity.147 However, whereas sampling of a biomolecule’s conformational space is 

straightforward and just a question of computational resources available, binding affinity 

estimation based on scoring functions is still challenging.148, 149  

In the last decade, molecular docking approaches have been adapted to a variety of diverse 

biomolecules, such as proteins, nucleic acids and small molecules (referred to as ligands).150-152 In 

the next chapter, particular attention will be paid to protein-ligand and protein-protein docking 

approaches as well as their underlying scoring functions.  
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1.5.1 Protein-Ligand Docking 

This paragraph is partially adopted from paper 3 and paper 8 (see List of Papers). Protein-ligand 

docking is one of the widely used approaches for structure-based lead finding and optimization in 

computational drug design.145, 153 Predicted protein-ligand complex configurations are used for 

studying protein-ligand interactions, estimating binding affinities, and as a final filter step in 

virtual screening.154 In the majority of the cases, methods on protein-ligand docking treat either 

both proteins and ligands as rigid molecules or allow for conformational flexibility of only the 

ligand, following a “rigid receptor hypothesis”.147 Furthermore, water molecules are usually not 

considered, even if it has been suggested in a few studies that inclusion of structural water can 

improve the docking accuracy.155, 156 Docking accuracy and computational efficiency determine 

the scope and quality of a docking approach. The accuracy of docking approaches is normally 

tested by so-called redocking experiments.157 Here, binding modes are predicted for a set of 

ligands and compared to the experimentally-observed (native) poses. A docking run is evaluated 

to be successful, if the method was able to reproduce the native pose within a certain threshold. 

For protein-ligand docking, typically a threshold of 2 Å root mean square deviation (rmsd) is 

used. The rmsd is a measure for the average deviation in the coordinates of heavy atoms between 

a predicted and the native ligand pose. Preserving computational efficiency is equally important, 

given the short timeframe usually available for a docking run. In particular, evaluating the 

interaction energy between protein and ligand is expensive. A widely used approach to increase 

the calculation speed is based on potential fields that are pre-calculated just once in the binding 

pocket region of the protein, by scanning interactions between the protein and ligand atom 

probes.158-162 The potential field values are stored at the intersections of a regular 3D grid, 

providing a lookup table (see Figure 1.2). The approach is applicable to all distance-dependent 

pairwise interactions, such as electrostatic and van der Waals interactions and interactions 

described by statistical pair potentials (see Chapter 1.3).154, 158 In subsequent docking runs, 

interaction energies between protein and ligand are then determined in constant time from the 

lookup table by means of interpolation. This provides a significant rate increase relative to 

individually evaluating the pair interactions. One of the most common docking softwares 

following such a grid-based approach is the AutoDock suite. AutoDock is the most widely used 

protein-ligand docking tool and has been applied in multiple studies and drug design projects 

since its first release in the late 1990s.163, 164  Nowadays, three versions of AutoDock are available, 

version 3, 4 and AutoDock Vina, with the latter one being a new implementation where the 

docking procedure differs from the other versions.165-167 While AutoDock3 and 4 use a force 

field-based scoring approach, AutoDock Vina uses a combination of knowledge-based potentials 

and empirical scoring.165-167 The underlying sampling procedure used to explore the 
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Figure 1.2:  Regular 3D grid (blue) in the binding pocket region of 

human MDM2 (green) built from PDB code 1T4E that is used to 

store pre-calculated potential field values derived from interactions 

between aromatic carbons of a ligand and the protein. 

Benzodiazepine is shown as the ligand (orange).  

conformational space of a ligand is performed by a Lamarckian genetic algorithm, respectively.165  

In previous studies, AutoDock3 was successfully adapted for use with the knowledge-based pair-

potentials of DrugScore as an objective function.152, 154 Here, the AutoDock3 results for 

identifying good binding geometries could be improved significantly when using DrugScore as an 

objective function.154 AutoDock3 was also successfully used to predict binding modes of PPIMs 

in protein-protein interfaces (see Chapter 6).  

For several pharmacologically important proteins, such as HIV-1 protease, aldose reductase, 

FK506 binding protein, renin, and dihydrofolate reductase (DHFR), pronounced plasticity upon 

ligand binding has been observed.168-176 Protein plasticity comprises a range of possible 

movements, from single side chains to drastic structural rearrangements (see Chapter 1.1.2).177 

Not surprisingly, if docking is performed with the assumption of a rigid active site in those cases, 

a dramatic decrease in docking accuracy is observed.178, 179 The drop in docking accuracy was 

found to be mirrored by the degree to which the protein moves upon ligand binding so that 

docking to an unbound form, so-called apo docking, usually shows the largest deterioration.146, 178, 

180 This clearly highlights the 

importance of developing 

strategies for taking protein 

plasticity into account in addition 

to the conformational flexibility of 

the ligand to prevent mis-dockings 

of ligands to flexible proteins. At 

present, three major routes to 

include protein plasticity during 

docking can be identified. The 

classification correlates with 

various types of protein 

movements observed upon ligand 

binding. First, plasticity is 

considered implicitly following a 

soft-docking strategy with 

attenuated repulsive forces 

between protein and ligand.181, 182 

While this is simple to implement 

and does not compromise 

docking efficiency, the range of 
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possible movements that can be covered is rather limited. Second, only side chain conformational 

changes in the binding pocket are modeled.183-185 These approaches assume that the protein has a 

rigid backbone structure, thus neglecting critical backbone shifts responsible for mis-docking of 

ligands.179 Third, large-scale conformational changes including backbone motions are taken into 

account. There are several types of approaches in this category: perform parallel docking into 

multiple protein conformations; structurally combine multiple conformations; model protein 

motions in reduced coordinates; apply molecular dynamics (MD) or Monte Carlo based sampling 

to either generate protein-ligand configurations or to optimize pre-computed configurations; 

reproduce protein motions by elastic potential grids.141, 186-194  

During the past 30 years, a plethora of  protein-ligand docking tools have been developed, mostly 

aiming at predicting poses of  ligands binding to “classical” targets, such as enzymes or 

receptors.147 In contrast, much less effort has been devoted to predicting conformations of  

ligands that bind to protein-protein interfaces, so-called PPIMs. Protein-protein interfaces 

provide an important new class of  drug targets because protein-protein interactions are involved 

in nearly all biological processes.1 Up to date, there is still a lack of  large-scale validation studies 

on docking into protein-protein interfaces, despite the fact that protein-protein interfaces provide 

major challenges for structure-based ligand design approaches, for at least two reasons:112, 195 First, 

in contrast to “classical” targets, protein-protein interfaces are rather flat and usually lack a 

distinct binding pocket.196 Second, due to the often large size of  protein-protein interfaces 

(~1200 to ~4660 Å2), interactions that are favorable for binding can be widely distributed over 

the interface.197 Hence, it has remained elusive so far whether state-of-the-art docking tools are 

generally applicable for protein-protein interfaces. This provided the incentive for us to assess the 

predictive power of  commonly used protein-ligand docking approaches with respect to pose 

prediction in protein-protein interfaces (see Chapter 6). 

1.5.2 Protein-Protein Docking  

Knowledge about binding configurations between proteins is used for hotspot identification, 

virtual screening, and classification of protein-protein interfaces.112 Today, available 3D structures 

of protein-protein complexes just represent a small percentage of protein-protein interactions 

that are estimated to occur in living cells.125 The size of the human interactome is estimated to 

involve approximately 650000 interactions but current databases of protein-protein interactions 

only report on approximately 1200 available 3D structures of human protein complexes.198, 199 

Thus, there is a need for computational methods to predict such interactions. Similar to protein-

ligand docking, there are two main aspects in protein-protein docking: First, sampling the 

conformational space of the two binding partners, and second, assessing each predicted complex 
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with a scoring function.200 However, the underlying search algorithms completely differ. Whereas 

the conformational space of a small molecule (and a rigid receptor) can be explored easily in 

reasonable time, the problem becomes more complex for proteins that can consist of several 

thousands of atoms. Therefore, protein-protein docking starts from a more simplified approach 

treating both binding partners as rigid molecules.200 Despite this limitation, a complete sampling 

of the 6D search space (3D in translation and rotation, respectively) is computationally 

demanding. In the past decade, various protein-protein docking algorithms have been developed 

following such a rigid-body docking approach to predict the 3D structures of protein-protein 

complexes.201 Based on their search algorithms, these approaches can be classified into three 

general categories: global search, local search, and randomized search methods.202 Global search 

of all possible binding configurations can either be performed in real, or in transformed space 

using Fast Fourier Transform (FFT) algorithms.203-209 Local search algorithms, involving distance 

geometry algorithms or geometric hashing, are based on matching local shape features.210-213 

Randomized search can be applied by genetic algorithms, or Monte Carlo methods.214-219 An 

overview about currently available protein-protein docking tools and the underlying search 

algorithms can be reviewed elsewhere.220 Most popular methods are based on FFT as they have 

been proven to show the best performance.221 The FFT based approach goes back to the early 

work of Katchalski-Katzir et al. (1992).205 Here, protein and ligand (the smaller protein) are 

projected onto regular 3D grids that carry information of the shape in terms of discrete 

functions. The number of grid cells depends on both the size of the protein structure and the 

grid spacing as a measure of concinnity of the grid, or rather, the accuracy of the shape 

representation. The translational space is then efficiently sampled using FFT to calculate the 

correlation between the two pre-calculated grids.205 The sampling is completed by an implicit 

orientational search. Critical parameters for computational runtime and docking success are 

translational and orientational step size, typically 1-2 Å and around 6°.150 A direct calculation of 

the correlation would be very costly for a complete sampling of the whole 6D search space, 

scaling at O(N6), where N is the number of values of the 3D correlation function.205 However, 

due to the FFT approach, computational costs can be reduced to O(N3lnN).205 In principle, such 

a geometric shape matching follows a soft docking approach. The match between the shapes of 

the proteins, or in other words, the correlation of the discrete functions representing these 

shapes, is not perfect. Protein-protein complexes always reveal gaps in between the molecules 

that, for instance, result from hydrogen atoms or water molecules which can be present in the 

interface.205 To tolerate such imperfections, the algorithm is allowed to penetrate the surface due 

to a given threshold defining the surface thickness.205 The surface thickness is another critical 

parameter, since increasing its value facilitates the chance of producing more false positive 
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predictions, whereas decreasing its value facilitates the chance of rejecting positive predictions. In 

newer protein-protein docking approaches the initial procedure has been enhanced by an 

extension of the correlation functions using several additive terms that not only consider 

geometric shape matching, but also desolvation, van der Waals forces, electrostatics, or statistical 

pair-potentials (see Chapter 4).150 In addition to the measure of surface fit, those terms are used 

to calculate a docking score for each of the solutions and rank the predicted complexes 

accordingly (see Chapter 4). Instead of using FFT to accelerate sampling of the translational 

space, it can also be used to accelerate sampling of the rotational space. In this regard, some 

approaches make use of spherical harmonic functions to represent the surface shape and the 

interface properties of the interacting proteins.150, 201, 222 Here, FFT is applied to calculate the 

correlation between spherical harmonic functions followed by an implicit translational search.150 

Proteins are flexible biomolecules that are able to accomplish a wide range of possible 

movements (see Chapter 1.1.2). Consequently, rigid-body docking methods can only be 

successful in those cases where movements of proteins are negligibly small. Taking protein 

movements into account is still one of the major concerns in the field of protein-protein 

docking.220 So far, several approaches have been attempted to include protein flexibility in 

docking approaches. A typical way to include protein flexibility is refinement of pre-calculated 

rigid-body docking solutions (see Chapter 5). Small conformational changes can be taken into 

account by side chain rotamer sampling or energy minimization.193, 216, 218, 219 Furthermore, a few 

methods are able to treat medium/large conformational changes during docking. To account for 

global flexibility, a set of low-frequency normal modes, pre-calculated from the unbound protein, 

is used to guide a minimization procedure during docking.217 This approach can be combined 

with side chain rotamer optimization to also account for local flexibility.193 Despite much 

progress that has been made the last years, success rates for predicting protein-protein complexes 

where at least one of the binding partners shows large conformational changes are still 

disappointing.223 In cases where the induced fit involves large conformational rearrangements, 

like domain movements, loop rearrangements, compact folds, or disordered to structured 

transitions, the problem is beyond current protein-protein docking methods. Even unrestricted 

MD simulations are not of practical use to describe long-range folding and binding mechanisms 

that occur on a microsecond timescale.224, 225 Because there is still a need for such methods, we 

tried to tackle local flexibility using several distinct refinement procedures and global flexibility 

following a conformational selection approach (see Chapter 5).27, 226 

The accuracy of protein-protein docking approaches is usually tested by redocking experiments 

(see Chapter 4), where protein structures are used in their bound conformations to predict the 

native protein-protein complex (bound-bound docking).227 The same procedure is performed for 



1. Introduction  15 

 

unbound protein structures, but unbound and native receptors are superimposed and the 

corresponding coordinate transformation is applied to superimpose the predicted and the native 

complex (unbound-unbound docking) to access the accuracy later on.227 The superposition is 

required here to determine the correct position of the unbound protein structures in the native 

complex. Predicted complexes are evaluated with respect to their deviation in atomic coordinates 

from the native complex based on special assessment criteria that were defined by the authors of 

Critical Assessment of Predicted Interactions (CAPRI).227 CAPRI is a worldwide experiment to 

A        B 

      

C        D 

    
Figure 1.3: Various protein-protein docking predictions for the Uracil-DNA Glycosylase inhibitor protein (native 

position colored in wheat, predicted positions colored in green, yellow, orange and red) binding to Uracil-DNA 

Glycosylase (palecyan) created from PDB code 1UDI: (A) High quality prediction (l_rmsd = 0.8 Å, i_rmsd = 1.6 Å, 

fnat = 0.83, fnot = 0.06); (B) Medium quality prediction (l_rmsd = 4.6 Å, i_rmsd = 4.1 Å, fnat = 0.7, fnot = 0.33); (C) 

Acceptable quality prediction (l_rmsd = 7.6 Å, i_rmsd = 7.8 Å, fnat = 0.3, fnot = 0.63); (D) Incorrect prediction 

(l_rmsd = 15.5 Å, i_rmsd = 14.9 Å, fnat = 0.14, fnot = 0.79). 
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evaluate blind predictions of protein-protein docking tools.228 In this regard, l_rmsd, i_rmsd, fnat 

and fnot have been established to define the quality of protein-protein docking solutions: l_rmsd is 

the backbone rmsd of the ligand in the predicted versus the ligand in the native complex; i_rmsd 

is the rmsd of the backbone of the interface residues (defined by all residues that have at least 

one atom within 10 Å distance around the other protein) in the predicted versus the native 

complex; fnat is the fraction of  native residue-residue contacts defined by the number of  native 

residue-residue contacts in the predicted complex divided by the number of  contacts in the 

native complex; fnot is the fraction of  non-native residue-residue contacts defined by the number 

of  non-native residue-residue contacts in the predicted complex divided by the total number of  

contacts in the predicted complex.227 Following these definitions, predicted complexes are divided 

into four classes, each describing the quality of  the solution: high, medium, acceptable, and 

incorrect (see Figure 1.3).227 

1.5.3 Scoring Functions 

In molecular docking, scoring functions are used to assess the predicted docking poses by a 

calculated score such that the solution with the highest/lowest score is ideally identified as closest 

to the native one. Scoring represents the most challenging part in molecular docking.229 Whereas 

sampling of a near-native conformation is successful in most of the cases, selection of the correct 

pose and estimation of binding affinities is still not satisfying.229, 230 Consequently, there is still a 

need to develop new scoring functions to overcome these problems. This provided the incentive 

for the development of DrugScorePPI, a knowledge-based scoring function to predict protein-

protein interactions, described in this thesis (see Chapter 3). Today, a multitude of different 

scoring functions is available that account for different types of biomolecular interactions, such 

as protein-DNA, protein-RNA, protein-protein and protein-ligand interactions.135, 151, 152, 230, 231 

However, scoring functions were not only developed to predict interactions of particular types of 

biomolecules and their ligands, but also to predict target-specific interactions.232 In this regard, 

several scoring functions were tailored to predict interactions of specific proteins (e.g. thrombin, 

ADRB2, ER , FXa, kinases), or specific ligand molecules (e.g. carbohydrates, peptide ligands).232-

240 In general, all scoring functions can be roughly classified into three main categories: force-field 

based, empirical, and knowledge-based.241, 242 Scoring functions for protein-protein complexes can 

be further classified into residue-level potentials and atomic potentials.243-245 Residue-level (coarse-

grained) potentials are computationally advantageous especially when applied to predict protein-

protein complexes where the binding partners can undergo large conformational changes.246-248 In 

contrast, atomic potentials are of higher resolution and are supposed to be most accurate and 

specific.249 Atomic potentials are often knowledge-based; the reduced steepness of knowledge-



1. Introduction  17 

 

based potentials compared to force field-based or empirical scoring functions has been 

recognized as an advantage in docking.146 

Force-field based scoring functions calculate docking energies from direct non-covalent 

interactions, such as van der Waals and electrostatic energies, using molecular mechanics force 

fields.165 They are often augmented by physics-based terms derived from the molecular 

mechanics Poisson-Boltzmann or Generalized Born surface area (MM/PBSA or MM/GBSA) 

approaches, in order to also consider desolvation energies.250 For instance, the inherent scoring 

function of AutoDock (see Chapter 1.5) is based on terms that are obtained from the AMBER 

force field (see Equation 1.3).165 

 

soltorelechbondvdwbind G  G  G  G  G  G Δ+Δ+Δ+Δ+Δ=Δ             (Eq. 1.3) 

 

Here, ΔGbind is the estimated free energy of binding, ΔGvdw is a van der Waals term, ΔGhbond is a 

hydrogen bonding term, ΔGelec is a Coulomb electrostatic potential, ΔGtor is the change in torsional 

free energy, and ΔGsol accounts for the desolvation energy of the ligand.165 All terms were tailored 

to yield the best correlation to experimentally determined affinity data. 

Empirical scoring functions decompose the overall binding free energy into several individual 

energetic contributions, such as conformational entropy, hydrogen bonds, metal interactions, or 

hydrophobic and hydrophilic surface areas, whereas coefficients of all these contributions are 

fitted to experimentally determined binding affinities by multiple linear regression (MLR), thus 

following a quantitative structure-activity relationship (QSAR) model.251, 252 One of the most 

popular empirical scoring functions is ChemScore (see Equation 1.4).253 

 

0rotlipometalhbondbind G  G  G  G  G  G Δ+Δ+Δ+Δ+Δ=Δ             (Eq. 1.4) 

 

Here, ΔGbind is the estimated free energy of binding that is calculated by contributions from 

hydrogen bonds (ΔGhbond), metal interactions (ΔGmetal), hydrophobic effects (ΔGlipo), rotatable bonds 

of the ligand (ΔGrotor), and a regression constant ΔG0.253 Each of the terms consists of a particular 

physical contribution to the binding free energy and a scale factor determined by MLR analysis. 

The final score is determined by adding in several clash penalty and internal torsion terms.253 

Knowledge-based scoring functions are based on statistical occurrence frequencies of pairwise 

atomic interactions between the biomolecules of interest and are derived from known structures 

of complexes in a database.152 The overall score is calculated as the sum of distance-dependent 

statistical potentials of all atom types within a defined distance cutoff. One of the most robust 
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knowledge-based scoring functions is DrugScore, following an inverse Boltzmann and modified 

Sippl approach (see Equation 1.5).152, 254  
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Initially developed to evaluate protein-ligand complexes, it was also adapted to protein-RNA 

complexes (DrugScoreRNA) in recent work, and to protein-protein complexes (DrugScorePPI) as a 

part of this thesis (see Chapter 3 & 4).135, 151 Here,  ΔW is the docking score for a complex of a 

molecule L and a partner molecule N calculated as the sum of all occurring atom-atom 

interactions, whereas the term ΔWT(l),T(n)(dl,n) defines the score for a specific interaction between 

atom l of type (l) from molecule L and atom n of type (n) from partner molecule N separated 

by the distance dl,n.152 For both the molecules a set of 17 atom types is defined based on the Sybyl 

atom type notation.152 Crucial for the predictive power of knowledge-based scoring functions is 

choosing of a proper reference state. In the case of DrugScore, the reference state mimics a 

compact complex configuration with non-specific interactions. Thus, the reference state removes 

contacts from the distributions where interactions between the atoms are zero such that net 

potentials representing only specific interactions are obtained.152 

The predictability of scoring functions is usually evaluated based on three criteria: (1) The ability 

to identify near-native predictions by ranking those poses on the top of a hit list; (2) The ability to 

correlate docking scores, or rather the predicted binding energies, to experimentally determined 

binding affinities; (3) The ability to construct funnel-shaped landscapes for the energy surfaces of 

the predicted poses when plotting docking scores versus corresponding rmsd values.229, 230 

Accordingly, we evaluated DrugScorePPI following these steps (see Chapter 3 & 4). 
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potential grids: accurate and efficient representation of intermolecular interactions for fully flexible docking. ChemMedChem 

2009, 4, 1264-1268. DOI: 10.1002/cmdc.200900146. URL : http://onlinelibrary.wiley.com/doi/10.1002/cmdc.200900146/ 

abstract. Copyright 2009 Wiley-VCH Verlag GmbH& Co. KGaA, Weinheim. 
 

Paragraph 1.5.1 is partially reprinted (adapted) with permission from Krüger, D. M., Jessen, G., Gohlke, H., How good are stat-

of-the art docking tools in predicting ligand binding modes in protein-protein interfaces? J. Chem. Inf. Model. 2012, 52, 2807-

2811. DOI: 10.1021/ci3003599. Copyright 2012 American Chemical Society. 



   

 

2. Scope of the Thesis 

In this thesis, protein-protein interactions shall be investigated, and the knowledge derived shall 

subsequently be used to develop a new approach to predict protein-protein complexes. In a first 

step, the DrugScore formalism from Gohlke et al. shall be used to derive a knowledge-based 

scoring function from a dataset of protein-protein complexes, namely DrugScorePPI.152 In a 

second step, this scoring function shall be evaluated by rescoring two non-redundant datasets for 

which bound and unbound protein complex predictions have been generated. The predictability 

shall be evaluated based on, first, the ability to identify near-native predictions by ranking those 

poses on the top of a hit list, and second, the ability to construct funnel-shaped landscapes for 

the energy surfaces of the predicted poses when plotting docking scores versus corresponding 

rmsd values. In a third step, DrugScorePPI shall be tested in its ability to predict experimental 

alanine scanning results, i.e., changes in the binding free energy of protein-protein complexes 

upon alanine mutations in the interface, by correlating docking scores to experimentally 

determined changes in binding affinities. 

Later on, DrugScorePPI shall be applied as an objective function in combination with a protein-

protein docking tool in order to predict 3D structures of protein-protein complexes. Here, 

parameters shall be validated to allow for an optimal interplay between the docking algorithm and 

the knowledge-based potentials. Afterwards, several methods shall be examined in order to 

incorporate local and global flexibility into the docking approach to account for protein 

flexibility. In this regard, normal mode-based geometric simulation methods shall be tested 

particularly. Furthermore, it shall be tested in how far the obtained protein-protein docking 

results can be improved by distinct refinement procedures. 

Finally, it shall also be tested in how far the DrugScorePPI potentials are amenable to predict the 

binding modes of small molecules in protein-protein interfaces. 

 

 
 
 
 
 



   

 

3. In Silico Alanine Scanning for Scoring Protein-Protein 
Interactions (Paper I) 

 
 

 
 
 
 
Figure 3.1:  Tube representation of interleukin-2 (blue) complexed with its alpha receptor (cyan) created from PDB 

code 1Z92. Residues in the interface are represented by a rainbow gradient color code according to their side chain’s 

predicted contribution to the binding free energy, respectively, with reddish colors indicating hot spot residues.  
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Reprinted (adapted) with permission from Krüger, D. M., Gohlke, H., DrugScorePPI webserver: fast and accurate in silico alanine 

scanning for scoring protein-protein interactions. Nucleic Acids Res. 2010, 38, W480-W486. DOI: 10.1093/nar/gkq471. 

Copyright The Author(s) 2010. Published by Oxford University Press. URL: http://www.oxfordjournals.org/.  



   

 

4. Knowledge-based Prediction of Protein-Protein Complexes 
(Paper II) 

 
  
 
 
 

 

 
 
 
 
 
 
 
 
 
 
Figure 4.1:  Illustration of a protein-protein complex given by bovine alpha-chymotrypsin (blue) binding to eglin c 

(green) created from PDB code 1ACB. Proteins are depicted in cartoon representation at which the respective van 

der Waals surface is given in the background. 
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Reprinted (adapted) with permission from Krüger, D. M., Ignacio-Garzon, J., Chacon, P.,  Gohlke, H., DrugScorePPI knowledges-

based potentials used as scoring and objective function in protein-protein docking. PLoS ONE, 2014, 9, e89466. URL: 

http://www.plosone.org/.



   

 

5. Accounting for Local and Global Flexibility in Proteins  
(Paper III) 

 
 
 
 

 
 
 
 
 
 
Figure 5.1:  Scheme showing conformational changes of the interleukin-1 receptor (yellow/green/red) when 

binding to the interleukin-1 receptor antagonist (magenta/salmon/cyan); the conformations were obtained from a 

targeted geometric simulation using structural information from PDB code 1GOY and 1ILR (unbound structures), 

and PDB code 1IRA (complex structure). Proteins are depicted in cartoon representation. 
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Proteins are flexible biomolecules that are able to perform a wide range of possible global and 

local movements (see Chapter 1.1.2). Taking those movements into account is still one of the 

major concerns in the field of protein-protein docking.201, 223 Indeed, in chapter 4.3 we showed 

that in comparison to the results from bound docking, DrugScorePPI is not “soft” enough to 

compensate for the missing explicit treatment of protein flexibility. Thus, in this chapter, several 

approaches will be tested for their applicability to account for local or global flexibility in protein-

protein docking. To this end, first, local protein movements have been explored a posteriori by 

several refinement procedures with the aim to improve pre-calculated rigid-body docking 

solutions. Second, global protein movements have been addressed a priori following a 

conformational selection approach according to which one should be able to predict bound 

protein conformations based on unbound ones for later use in protein-protein docking. 

5.1 Refinement of Predicted Protein-Protein Complexes 

Bound and unbound protein-protein docking solutions were generated from a dataset of 97 

protein binding partners providing a hit list of 2000 protein complex predictions each (see 

Chapter 4).  For unbound docking solutions, several refinement methods were applied afterwards 

in order to optimize the quality of the docking solutions for re-ranking of the hit lists as 

described in the following (see Table 5.1). 

 
Energy minimization with 
AMBER. The Amber (version 11) 

suite of programs together with 

the ff99SB modifications of the 

Cornell et al. force field was used 

to perform minimizations of pre-

calculated protein-protein 

complexes.287 Missing side chains 

were added manually according to 

paper 2, and waters were removed. 

Hydrogen atoms were 

automatically added by the LEaP 

program of the AMBER suite. 

Accordingly, for amino acid side 

chains a standard protonation state 

is assumed, i.e., Asp and Glu are 

Table 5.1: List of methods and corresponding programs that were 

used for refinement of bound and unbound protein-protein 

complex predictions. Results achieved from these methods were

either used to modify the DrugScorePPI docking scores and/or to 

provide new hit lists thereby obtained.  

Methods and corresponding programs used for refinement 

Energy minimization with AMBER287 

Side chain rotamer sampling with SCWRL288 

Calculation of ΔSASA with Connolly’s MS program289 

Binding affinity estimation with DCOMPLEX290 

Assessing stereochemical quality with PROCHECK291 

Assessing stereochemical quality with MolProbity292 

Interface prediction with ProMate293 
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treated as deprotonated, Arg, Lys, and His as protonated. All complexes were then minimized by 

100 steps of steepest descent minimization in order to remove clashes in the binding interface. 

Here, long-range electrostatic interactions were treated by the particle mesh Ewald (PME) 

method, and bond lengths were constrained using the SHAKE algorithm.294 All minimized 

complexes were rescored with DrugScorePPI and ranked accordingly. 

 

Side chain rotamer sampling with SCWRL. The SCWRL (version 4.0) program was used to 

optimize the steric fitting of  side chains in the interfaces of pre-calculated protein-protein 

complexes by side chain rotamer sampling.288 SCWRL was initially developed to determine side 

chain conformations in protein structure prediction. In this regard, we tried to sample 

appropriate side chain conformations for the protein-protein complex predictions. All modified 

complexes were rescored with DrugScorePPI and ranked accordingly. 

 

Calculation of ΔSASA with Connolly’s MS program. The change in the solvent accessible 

surface (ΔSASA) upon protein-protein binding was calculated by Connolly’s molecular surface 

(MS) program (see Equation 5.1).289 The term ΔSASA describes the buried surface area at the 

interface of a protein-protein complex and thus serves as an indicator for the size of the interface 

and the contribution of desolvation effects to the binding free energy. In this regard, it was used 

to modify the DrugScorePPI docking scores (see Equation 5.2) to provide newly ranked hit lists. 

 

comligrec SASASASASASASASA −+=               (Eq. 5.1) 

 

Here, SASA is the solvent accessible surface of the receptor (SASArec), of the ligand (SASAlig), 

and of the receptor-ligand complex (SASAcom). 

 

SASA
WW

Δ
Δ=Δ mod                      (Eq. 5.2) 

 

Here, ΔW is the docking score for a protein-protein docking solution as the sum of all occurring 

atom-atom interactions, and ΔSASA is the buried surface area at the interface of this complex. 

 

Binding affinity estimation with DCOMPLEX. DCOMPLEX (no version number available) 

is a program that was established for the prediction of binding affinities and the energy 

evaluation of protein-protein complexes based on a statistical monomer-based potential.290 The 
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program was used to rescore all complexes and to rank them according to the scores thereby 

obtained. 

 

Assessing stereochemical quality with PROCHECK. The PROCHECK (version 3.5.4) suite 

of programs gives an assessment of the overall quality of a protein structure performing a 

detailed check on its stereochemistry.291 Here, the covalent geometry of single residues in a given 

protein structure is compared to stereochemical parameters derived from high-resolution protein 

structures by Morris et al. as well as bond lengths and bond angles derived from well-refined, 

high-resolution structures of small-molecules in the Cambridge Structural Database (CSD) 

obtained by Engh et al.291 For refinement, predicted protein-protein complexes were checked for 

their stereochemical quality and ranked accordingly. Furthermore, the top 100/500/1000 

structures showing the best quality were ranked according to their DrugScorePPI docking scores 

following the idea that a good stereochemical quality better reflects the distance-dependent 

nature of the pair potentials, as shown in chapter 4.  

 

Assessing stereochemical quality with MolProbity. MolProbity (version 3.19) is a suite of 

programs that provides a broad-spectrum based evaluation of the quality of a protein structure at 

both the global and local levels.292 It relies on optimized hydrogen placement, all-atom contact 

analysis, torsion angle analysis (including Ramachandran and rotamer analysis), and covalent-

geometry analysis. MolProbity was initially developed to check for errors in X-ray structures. The 

output provides scores for clashes between atoms, unfavourable Ramachandran backbone 

torsion angles, and bad side chain rotamers. Predicted protein-protein complexes were checked 

for their overall structural quality and ranked accordingly. Furthermore, the top 100/500/1000 

structures showing the best quality were ranked according to their DrugScorePPI docking scores 

following the idea that a good structural quality better reflects the distance-dependent nature of 

the pair potentials (vide supra).  

 

Interface prediction with ProMate. ProMate (version 2.0) is a structure-based program 

developed to predict the location of protein-protein interfaces of unbound proteins.293 The 

method was validated on transient heteromeric complexes, whereas antibody-antigen interactions 

were excluded because of their specific nature (see Chapter 4.2). Interface locations can be 

predicted based on different structural properties that have been shown to be relevant for the 

distinction between binding and non-binding interfaces, namely, distribution of atoms, chemical 

character of atoms, distribution of single amino acids, distribution of amino acid pairs, 

evolutionary conservation, sequence distances within a circle, non-regular secondary structure 
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lengths, domains, hydrophobic patches, and crystallographic data (if available) in terms of bound 

water and the distribution of B-factors. For refinement, interfaces were predicted for unbound 

binding partners and all protein-protein docking solutions that do not correspond to at least one 

of the predicted interfaces were removed from the hit list, respectively.  

5.2 Sampling the Conformational Space of Proteins in Free State 

The conformational selection model describes the intrinsic ability of proteins to switch between 

conformationally distinct states under native conditions leading to conformational transitions that 

occur on a wide range of scales, both in time and space. Such transitions are well-known in the 

case of ligand binding to several pharmacologically important proteins, where ligand binding 

occurs upon selection of the “correct” conformational state of the protein out of an 

conformational ensemble.33 A controversial debate has been conducted in the last years whether 

structural variation of a protein during ligand binding follows as selective stabilization of 

conformational states pre-existing independent of a ligand (“conformational selection model”), 

or an induced fit mechanism. At this time, both the mechanisms have been evidenced to play a 

role in protein-protein recognition. 27, 29  Based on the conformational selection model we applied 

three geometric simulation techniques, CONCOORD (version 2.1), FRODAN (version 1.0) and 

NMSim (version 1.0), for our attempts to sample bound protein conformations starting from 

unbound ones. The strategy was, first, trying to sample a near-native protein conformation that is 

very close to the native one by making use of a constrained network model (CNM), second, 

filtering this conformation out of the ensemble with respect to the C -i_rmsd, and third, using 

this conformation to perform a protein-protein docking. CONCOORD is a distance geometry-

based approach that generates protein conformations by satisfying distance constraints derived 

from a starting structure.295 FRODAN performs constrained geometric simulations by simulating 

diffusive motions of flexible regions and rigid clusters of proteins.296 NMSim is a normal mode-

based geometric simulation approach developed by Ahmed et al. for multiscale modeling of 

protein conformational changes.297 NMSim is build upon a three-step approach (see Figure 5.2): 

First, the protein is decomposed into rigid clusters and flexible regions using the graph theoretical 

approach FIRST,298 second, dynamical properties of the coarse-grained protein are revealed using 

an ENM representation by rigid cluster normal mode analysis (RCNMA),297 and third, new 

protein conformations are generated by NMSim, whereas directions of backbone motions are 

biased by low-frequency normal modes and side chain motions are biased toward experimentally 

derived rotamer information.297 Conformations generated thereby are optimized regarding steric 

clashes, constraint violations, and stereochemical accuracy. In contrast to FRODAN and 

CONCOORD, NMSim uses a directional guidance to sample biologically relevant 
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conformations. Each of the methods was applied to a data set of 15 unbound protein binding 

partners showing small-, medium-, and large-scale conformational changes upon protein-protein 

binding (see Table 5.2). In the case of NMSim, small scale, large scale, and radius of gyration 

(ROG)-guided motions were tested as provided by the NMSim web server (see Chapter 5.3).299 

All programs were applied using standard parameters as suggested by the authors. Subsequently, 

conformational ensembles were clustered by the kclust algorithm from the AMBER suite of 

programs using a threshold of 5 Å C -atom rmsd and superimposed onto the corresponding 

bound conformations. Finally, for each of the proteins the i_rmsd between a cluster 

conformation and the bound conformation was calculated (see Table 5.2).   

5.3 Web Service Implementation 
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5.4 Results 

In general, local refinement procedures (see Table 5.1) were neither able to improve the bound 

nor the unbound docking results, i.e. to increase the number of hits in the top 100/500/1000 

predictions. Refined structures obtained from minimization with Amber or side chain sampling 

with SCWRL that were rescored using DrugScorePPI and ranked according to the new score did 

not afford any improvements regarding the hit lists. The same is true when rescoring the 

structures with DCOMPLEX. ΔSASA values were used to modify the DrugScorePPI docking 

scores (see Equation 5.2), but no enrichment of hits could be observed. The already implicit 

consideration of ΔSASA in the DrugScorePPI scoring function could be an explanation for this.152 

PROCHECK was used to rank the predicted complexes by their stereochemical quality. 

Likewise, no enhancement of hits could be observed in the top 100/500/1000 predictions. 

Furthermore, Molprobity was used to calculate several scores that are related to contacts, 

overlaps, and hydrogen bonds, thus giving a hint about the overall structural quality of the 
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predicted complexes. These scores 

were both used to rank the 

complexes by their structural 

quality and to modify the 

DrugScorePPI docking scores, 

however, without any success.  

Finally, we applied ProMate to 

predict interface residues of the 

unbound binding partners. This 

interface information was used to 

filter the hit lists by removing all 

docking solutions that do not 

correspond to at least one of the 

predicted interfaces. A protein 

interface was defined as all residues 

within 5 Å (10 Å) distance of the 

partner protein, respectively. 

Results obtained from ProMate are 

depicted in Figure 5.3. When using 

a threshold of 5 Å (10 Å) to define 

the interface, ProMate was able to 

correctly predict at least one of the 

interface residues in 80% (90%) of 

the cases (see Figure 5.3 A). The 

fraction of correctly predicted 

interface residues ranges from 0.1 

to 0.3 for the threshold of 5 Å    

(10 Å) for 60% (80%) of the 

proteins (see Figure 5.3 A), with the 

average fraction of correctly 

predicted interface residues being 0.17 (0.15) with STD = 0.16 (0.12). Critical for the filtering of 

docking solutions is the amount of false positive interface residue predictions that significantly 

increases the number of false positive complex predictions in the hit lists. The fraction of false 

positive interface residue predictions is 0.66 (0.42) with STD = 0.30 (0.33) for a threshold of 5 Å 

(10 Å) to define the interface (see Figure 5.3 B). The latter results show that a threshold of 10 Å 

 
 

 
Figure 5.3: Fractions of true and false positive interface residue 

predictions obtained with ProMate were calculated for a threshold 

of 5 Å (blue, small checkered) and 10 Å (green, large checkered)

distance to define the interface. (A) The fraction of correct 

interface residue predictions is defined by the number of correctly 

predicted interface residues divided by the total number of 

interface residues. (B) The fraction of false positive interface 

residue predictions is defined by the number of falsely predicted 

interface residues divided by the total number of predicted 

interface residues.  

A 

B 
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Table 5.2:  Sampling the conformational space of proteins in free state by geometric simulation approaches. 

PDB codes[a] Motions[c] i_rmsd 

bound unbound   unbound[e] CONCOORD[d] FRODAN[d] NMSim[d] 

complex rec/lig[b]     small scale large scale ROG 

1RGH 0.48 0.93 0.51 1.32 1.02 1.321AY7 

1A19 0.43 0.78 0.57 1.02 1.07 0.66 

1DQQ 0.55 0.84 1.70 1.78 1.64 1.94 1DQJ 

3LZT 1.15 1.16 1.32 1.68 1.23 2.17 

1TRM 0.42 0.85 0.45 1.36 2.05 1.14 1EZU 

1ECZ 0.43 0.34 2.65 1.08 0.47 0.90 

2I21 1.94 1.87 2.01 2.21 2.35 2.53 2I25 

3LZT 1.00 1.32 1.06 2.39 3.05 2.71 

2BBA 2.07 2.02 2.15 2.42 1.99 2.91 2HLE 

1IKO 

small 

0.86 0.94 1.03 1.33 1.47 2.44 

1RRP 1.43 1.58 1.70 1.42 1.64 1.84 1K5D 

1YRG 0.95 1.15 1.00 1.16 1.59 2.37 

1AUQ 0.78 1.29 0.85 1.67 1.11 1.39 1M10 

1M0Z 3.53 3.30 3.88 3.77 3.49 4.30 

6Q21 1.03 1.31 1.23 1.83 1.42 2.69 1WQ1 

1WER 2.10 2.14 2.12 3.04 2.80 2.69 

1XQR 2.27 2.26 2.42 2.18 1.99 2.34 1XQS 

1S3X 0.43 0.87 0.45 0.73 0.60 0.74 

1MH1 1.47 2.00 2.14 1.61 1.35 2.52 2NZ8 

1NTY 

medium 
 

3.62 3.33 3.97 4.51 3.13 4.05 

1ERN 1.85 1.98 2.28 2.51 2.61 3.10 1EER 

1BUY 2.43 3.11 2.62 2.59 2.43 2.48 

1F59 1.78 1.97 2.15 2.37 2.98 2.31 1IBR 

1QG4 2.65 2.32 3.34 3.30 2.79 3.47 

1G0Y 8.82 8.98 8.73 7.92 8.79 8.91 1IRA 

1ILR 0.92 1.41 1.57 1.42 2.11 2.19 

1X9Y 3.88 4.84 4.56 4.82 4.70 4.36 1PXV 

1NYC 0.84 1.01 0.93 1.45 4.35 3.24 

1TXU 1.09 1.22 1.37 2.20 1.64 1.51 2OT3 

1YZU 

large 

4.71 4.45 5.46 5.25 4.44 4.87 

    STDsmall[f]   0.64 0.70 0.88 1.00 1.03 1.17 

    STDmedium[f]   1.18 1.21 1.32 1.43 1.22 1.56 

    STDlarge[f]   2.14 2.25 2.31 2.25 2.41 2.40 

 

[a]  PDB codes for bound protein structures (complex structures) and unbound protein structures. 

[b] Receptor and ligand top down in this order, respectively. The larger protein is considered to be the receptor.  

[c] Degree of structural motions (conformational changes) that occur upon complexation.   
[d] Lowest i_rmsd between a cluster conformation and the bound conformation. In Å.  
[e] i_rmsd between bound and unbound protein structures. In Å. 
[f] STDs of i_rmsd values for proteins involved in small-, medium-, and large-scale motions upon complexation.  
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is more appropriate than 5 Å because the fraction of false positive interface residue predictions is 

significantly lower in relation to the total number of interface residues (i.e., higher specificity), 

whereas the fraction of correctly predicted interface residues is almost similar (i.e., similar 

sensitivity). Nevertheless, even here the amount of false positive interface residue predictions was 

still too high to increase the number of hits in the top 100/500/1000 docking solutions. 

To account for global flexibility, we tried to sample bound protein conformations starting from 

unbound ones by three different geometric simulation approaches. Results are shown in Table 

5.2. In summary, none of the approaches was able to sample at least one protein conformation 

that is closer to the bound conformation than the unbound one. The i_rmsd values calculated for 

a sampled conformation and the corresponding unbound conformation are quite similar in each 

of the cases. STDs calculated for the i_rmsd values of motion-related subsets also show similar 

results. Note that i_rmsd values give information about the differences in the positions of atoms, 

but do not consider any type of movement that occurs upon binding. In this regard, the degree 

of structural motions describes the overall amount of structural rearrangements that occur in 

both of the proteins upon complexation. However, it can be observed that in many cases only 

one of the binding partners undergoes large conformational changes whereas the other one stays 

almost unchanged (see Figure 5.1). Therefore, structural motions classified as small upon 

complexation can be classified as medium considering only one of the binding partners, and vice 

versa (see Table 5.2). The reason why sampling of bound conformations failed is well-grounded 

in the characteristics of the underlying coarse-grained ENM representation of the proteins that 

precludes the formation or breaking of bonds between the atoms. Consequently, quite flexible 

structure elements, e.g. loops that often occur in protein-protein interfaces and undergo a 

reshaping upon binding in many cases, cannot be sampled successfully since the constraints 

between the atoms remain fixed. At least, geometric simulations can be used to reproduce such 

motions by targeted simulations (see Figure 5.1). A possibility to overcome the current limitations 

of geometric simulation methods is the use of MD simulations (see Chapter 8). 

5.5 Conclusions 

The local refinement procedures applied in this work were neither able to improve the bound nor 

the unbound docking predictions. In the case of bound docking, where convincing results were 

obtained already, additional knowledge-based pair potentials specifically for antigen-antibody 

complexes might lead to improvements of the results (see Chapter 4.2). In the case of unbound 

docking, the unbound backbone conformations of the binding partners lead to discrepancies in 

the predicted and the bound protein-protein complex configurations. Thus, local refinement 

methods might only be successful when global (backbone) flexibility has already been considered 
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successfully. In this regard, geometric simulation techniques have been shown to be a 

computationally efficient alternative to molecular dynamics simulations for conformational 

sampling of proteins.297 However, these constrained simulations reach their limits when the 

conformational pathways contain disordered-to-structured transitions. This drawback could be 

overcome by more sophisticated sampling techniques such as MD simulations when the sampling 

problem is adequately addressed there (see Chapter 8). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reprinted (adapted) with permission from Krüger, D. M., Ahmed, A. Gohlke, H., NMSIM Web Server: Normal mode-based 

geometric simulations for exploring biologically relevant conformational transitions in proteins. Nucleic Acids Res. 2012, 40, 

W310-W316. DOI: 10.1093/nar/gks478. Copyright The Author(s) 2012. Published by Oxford University Press. URL: 

http://www.oxfordjournals.org/.



   

 

6. Targeting Protein-Protein Interfaces with Small Molecules 
(Paper IV) 

 
 
 
 

 
 
 
 
 
Figure 6.1:  Phenyl pyrazole inhibitor (shown as sticks) binding to the apoptosis regulator BCL-2 (blue surface). The 

crystal structure configuration is depicted in green (PDB code 2W3L), a predicted solution from molecular docking 

is depicted in yellow.  In orange cartoon representation, the crystal structure configuration of BAD (BCL-2 

antagonist of cell death) is shown (PDB code 2BZW). 
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Reprinted (adapted) with permission from Krüger, D. M., Jessen, G., Gohlke, H., How good are stat-of-the art docking tools in 

predicting ligand binding modes in protein-protein interfaces? J. Chem. Inf. Model. 2012, 52, 2807-2811. DOI: 

10.1021/ci3003599. Copyright (2012) American Chemical Society. 



   

 

7. Summary 

The main objective of this thesis was the investigation of protein-protein interactions and making 

use of this knowledge to develop a new approach to predict protein-protein complexes. As a 

basis for this research, a knowledge-based scoring function DrugScorePPI was developed of which 

the pair-potentials were derived from a previously prepared dataset of protein-protein complexes 

(see Chapter 3 & 4). Based on these results, DrugScorePPI was used for computational alanine 

scanning to predict changes in the binding free energy of protein-protein complexes upon 

mutations in the interface (see Chapter 3). Computed and experimental values showed good 

correlations and, thus, a QSAR-model was built to improve the predictive power. Based on these 

findings, the DrugScorePPI web server was developed, which allows identifying hotspot residues 

in protein-protein interfaces and performing computational alanine scanning of a protein-protein 

interface within a few minutes (see Chapter 3). The results demonstrate that the DrugScorePPI 

web server outperforms other state-of-the-art methods not only with respect to predictive power 

but also in terms of computational speed. DrugScorePPI was successfully evaluated by rescoring 

two non-redundant datasets for which bound and unbound protein-protein complex predictions 

have been generated (see Chapter 4). Furthermore, DrugScorePPI was applied as an objective 

function in combination with a fast spherical harmonics-based protein-protein docking tool in 

order to predict 3D structures of protein-protein complexes (see Chapter 4). For this, pre-

calculated knowledge-based potential grids by DrugScorePPI were used to sample protein-protein 

configurations and to successfully identify near-native configurations. The approach showed 

good results for bound and moderate results for unbound protein-protein complex predictions. 

A few parameters were identified to have an influence on the success of the protein-protein 

docking approach, such as the range of possible conformational changes of a protein, or crystal 

packing contacts (see Chapter 4). To account for protein flexibility, several methods were 

examined in order to incorporate local and global flexibility into the docking approach (see 

Chapter 5). In this regard, a normal mode-based geometric simulation (NMSim) method was 

used to sample input conformations of proteins following the idea of a conformational selection 

mechanism (see Chapter 5). Finally, a large-scale validation study on docking small molecules into 

protein-protein interfaces was performed (see Chapter 6). Results thereby obtained allow 

identifying those protein-protein interfaces that are amenable for molecular docking approaches. 

 

 

 

 



   

 

8. Perspective 

In recent years, targeting protein-protein interactions has become a major working point in 

structure-based drug design. Abundant information about sequences and structures of proteins 

afforded from large-scale genomic approaches poses new challenges in the field of systems 

biology. Proteins in a cell may have a multitude of potential different binding partners and thus 

may undergo many transient protein-protein interactions. The detailed investigation of disease-

related cell-signaling pathways unravelled a huge quantity of associated proteins as possible drug 

targets. In this context, the prediction of protein-protein interactions by computational methods 

plays an important role because 3D structures of protein-protein complexes are often difficult or 

impossible to elucidate by experimental methods. Algorithmic strategies have been developed to 

dock proteins, to evaluate the resulting complexes by different scoring functions, and to detect 

residues in the protein-protein interface that are relevant for binding. However, good protein-

protein docking predictions are only obtained for proteins that do not undergo large 

conformational changes. Conversely, protein-protein docking and scoring is effective in 

identifying near-native complex structures in cases where docking was performed using bound 

structures or structures that only show small conformational changes. 

Consideration of protein flexibility still represents a major issue for structure-based drug design 

approaches. Despite many successful developments that have been made to consider large 

protein conformational changes, usually by reducing the problem to computationally efficient 

approaches, i.e., using normal-mode analysis, constrained networks, flexible grids, or structural 

ensembles, the problem is still unsolved. Especially when it comes to large biomolecules like 

proteins, efficient conformational sampling is considerably complex. Currently, the only 

possibility to efficiently sample protein conformational changes is to make use of unrestricted 

MD simulations. However, the problem is beyond standard methods when proteins undergo 

long-range folding mechanisms or disordered-to-structured transitions that occur on a 

microsecond timescale. Nevertheless, the computational and algorithmic development in the last 

decade gives reason to hope that computational costs to perform such simulations can be 

overcome in the near future.304-306 GPU-based computing combined with enhanced sampling like 

accelerated MD (aMD),307 or replica exchange molecular dynamics (REMD)308 for enhanced 

sampling of conformational space were successfully applied to simulate pathways of small 

peptide folding and protein-ligand binding.309-313 Furthermore, to reduce the computational 

demand of unbiased brute force MD simulations, Markov state models (MSMs) have been 

developed that make use of multiple shorter-timescale simulations to reach longer-timescale 

transitions of proteins.314-316 In this regard, MD-based sampling of protein transition pathways 
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would allow for continuation of this work. It should be tested in how far MD simulations are 

suitable to sample bound protein conformations starting from unbound ones for later use in 

protein-protein docking. Thus, it should be at least possible to sample those protein 

conformations that occur on a nanosecond timescale and do not rely on induced fit mechanisms. 
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