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 I 

Zusammenfassung 

 
Insulinresistenz ist ein häufiges Merkmal von Adipositas und Typ 2 Diabetes. Zahlrei-

che Mechanismen, wie Inflammation, Störungen der endothelialen und mitochondrialen 

Funktionen sowie im besonderen des Fettstoffwechsels, wurden bisher zur Erklärung 

der muskulären Insulinresistenz herangezogen. Getestet wurden die Hypothesen, dass 

(i) vermehrte Fettverfügbarkeit die Insulinsensitivität geschlechtsabhängig unterschied-

lich hemmt und (ii) zur Zunahme von muskulären Lipidabbauprodukten führt, welche in 

der Folge neue PKC-Isoformen aktivieren und so Insulinresistenz verursachen.  

 

Myocelluläre Lipidintermediate [Diacylglycerole (DAG), Ceramide] und Isoformen (ß, 

δ, θ, ε) der Proteinkinase C (PKC) wurden während der parenteralen Verabreichung von 

Triacylglycerol (TAG) bzw. Glycerol bei gesunden Probanden untersucht. Der durch 

TAG–Infusionen bedingte Anstieg freier Fettsäuren (FFA) reduzierte den insulin-

stimulierten Gesamtkörper-Glukoseumsatz und die endogene (hepatische) Glukosepro-

duktion ohne Unterschiede zwischen männlichen und weiblichen Probanden. Die FFA-

induzierte Insulinresistenz war mit einer frühzeitigen Zunahme der DAG Konzentration 

und einer nachfolgenden Aktivierung von PKCθ assoziiert. Im Gegensatz dazu blieb die 

Konzentration der Ceramide unverändert.  

 

Die lipid-induzierte Insulinresistenz dürfte daher durch bestimmte DAG-Spezies ver-

mittelt werden, die neue PKC-Isoformen aktivieren. Diese könnten die Insulinsignal-

übertragung hemmen und so die Glukoseintoleranz bei Adipositas und Typ 2 Diabetes 

begünstigen. 
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Summary  
 
Insulin resistance is frequently correlated with obesity and type 2 diabetes. Up till now 

multiple mechanisms such as inflammation, endothelial and mitochondrial dysfunction 

and particularly lipid metabolism dysfunctions have been involved to elucidate muscle 

insulin resistance. Examined were the hypotheses that (i) increased lipid availability 

inhibits the insulin sensitivity gender-related and (ii) leads to an increase of muscle li-

pid-intermediates, which cause an activation of new PKC-isoforms and result in an in-

sulin resistance. 

 

Myocellular lipid-intermediates [diacylglycerol (DAG), ceramides] and protein kinase 

C (PKC) isoforms ß, δ, θ, ε were examined during a triacylglycerol (TAG) or a glycerol 

infusion in healthy humans. Elevation of free fatty acids (FFA) caused by TAG infu-

sions reduced the whole-body insulin-stimulated glucose disposal and endogenous (he-

patic) glucose production without any difference between male and female volunteers. 

The FFA-induced insulin resistance was associated with an early increase of the DAG 

concentration and subsequently to an activation of the PKCθ. On the contrary, the 

ceramide concentration remained unchanged. 

 

Lipid-induced insulin resistance may be initiated by the increase of DAG species result-

ing in the activation of new PKC-isoforms. This could inhibit the insulin signalling 

pathway and aggravate the glucose intolerance in obesity and type 2 diabetes. 
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1. Introduction 

 
The increasing prevalence of obesity has reached epidemic proportions [1] with approx-

imately 2-3 billion adults predicted to being overweight or obese in the year 2015 [2]. 

Obesity and physical inactivity, which result in a dysfunctional adipose tissue, can lead 

to lipid oversupply and increased flux of free fatty acids (FFA) into the skeletal muscle 

and an accumulation of intramyocellular triacylglycerides (TAG) [3]. Lipid oversupply 

raises concentrations of long chain acyl coenzyme A (CoA), diacylglycerol (DAG) and 

ceramides and can evolve a state of lipotoxicity causing cell dysfunction [4, 5]. Lipids 

can cause abnormal mitochondrial function consequently leading to oxidative stress [6] 

and to lower or incomplete fat oxidation [6-8] with subsequent TAG storage. Several 

studies have tried to elucidate the possible role of intramyocellular lipid accumulation in 

the development of insulin resistance. Both animal and human studies have provided 

evidence that TAG and FFA are associated with skeletal muscle insulin resistance. The 

mechanism linking obesity to the development of insulin resistance is not fully under-

stood but it is known that insulin resistance is the best predictor for the development of 

type 2 diabetes (T2DM) [9] and it has become increasingly apparent that defects in 

skeletal muscle FA metabolism are involved [10].  

 

1.1 Obesity and overweight 

1.1.1 Classification of obesity and overweight  

 
Obesity is a more extreme form of overweight and both are defined as abnormal or ex-

cessive fat accumulation that present a risk to health [11]. 

 
According to the World Health Organization (WHO) worldwide obesity has doubled 

since 1980 and 65% of the world`s population live in countries where overweight and 

obesity kill more people than underweight [11]. Obesity can affect people of all ages 

and social groups. To identify and classify overweight and obesity a body mass index 

was introduced by Adolphe Quetelet in 1832 [12] and this has been used by the WHO 

since the early 1980s. 

 
Body Mass Index (BMI) = body weight (kg)/[body height (m)] 2  

A BMI greater than 25 but less than 30 kg/m2 is overweight. 

A BMI of 30 kg/m2 or greater is obesity. 
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BMI provides the simplest measure of overweight and obesity as it is the same for both 

sexes and for adult age groups across the entire world population. The WHO allocated a 

specific weight class to the BMI. The classification adapted from the WHO [13, 14] is 

shown in the Table 1.  

 
Classification BMI 

Underweight < 18.50 kg/m2 
Normal range 18.50 - 24.99 kg/m2 
Overweight ≥ 25.00 kg/m2 
Pre-obese 25.00 - 29.99 kg/m2 
Obese ≥ 30.00 kg/m2 
Obese class I 30.00 - 34.99 kg/m2 
Obese class II 35.00 - 39.99 kg/m2 
Obese class III ≥ 40 kg/m2 
 
Table 1. Classification of overweight and obesity using BMI adapted from the WHO Left column 
range from underweight to obese class III; right column the BMI range measured by the formula: body 
weight (kg)/[body height (m)]2. 

 

1.1.2 Morbidity and mortality 

 
A fifth of all global deaths may result from overweight and obesity. This indicates that 

the mortality rate has increased 6 - 12 times in comparison to normal weight humans 

[11, 15]. But amazingly it has been proved that obesity may have some protective bene-

fits. Paradoxically obese patients with cardiovascular diseases survive longer than their 

normal weight counterparts with cardiovascular diseases. Furthermore individuals who 

have normal weight at the diagnosis of diabetes have higher mortality rates than obese 

and overweight persons [16, 17]. Additionally the risk of cardiovascular mortality may 

be lower among individuals with high BMI and good aerobic fitness than individuals 

with normal BMI and poor fitness [16]. Carnethon et al. revealed that humans of lower 

body weight with obesity-related metabolic disorders may have underlying illnesses that 

predispose to mortality [17] and weight loss may be related to higher mortality [16]. On 

the contrary the cost of the comorbidities related to obesity in the USA are estimated to 

be 147 billion USD in 2008 [18] and 190 billion USD in 2012 [19] although the preva-

lence of obesity shows little change over the past 12 years. The data are consistent with 

the possibility of slight increases in 2009-2010 when the prevalence of obesity was 

35.5% among adult men and 35.8% among adult women, with no significant change 

compared with 2003-2008; also in children and adolescents [20, 21]. In conclusion the 

risk of morbidity and mortality of diabetes is not generally dictated by lean, obese or 
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overweight conditions. It is to determine, if diabetes is a comorbidity of overweight and 

obesity and causes sequelae or is an underlying disease of lean weight conditions. 

 
Overweight and obesity are often combined with insulin resistance, T2DM, cardiovas-

cular diseases, joint diseases (osteoarthritis) and cancer (endometrial, breast and colon) 

[11]. The prevalence of diabetes in the United States and worldwide is increasing; e.g. 

26 million US-American adults have diabetes, 79 million Americans aged 20 years or 

older have pre-diabetes and it is prophesied that 2050 nearly 50 million Americans will 

have diabetes [16].  

 
The health risks associated with obesity combined with other diseases is classified de-

pendent upon its origin [22]. The WHO published 2000 a risk evaluation. The risk is 

increased more than three times by diabetes mellitus, cholecytolithiasis, dyslipidaemia, 

insulin resistance and obstructive apnoea. The risk is increased two to three times by 

coronary, hypertension, arthrosis and gout and by a risk increase of one to two times 

carcinoma, polycystic ovary syndrome, infertility, dorsalgia and prenatal disorders are 

referred. The association between obesity and diabetes is well established because 90% 

of patients with T2DM show excess body weight [23]. 

 

1.2 Diabetes mellitus 

 
The WHO defines diabetes mellitus as a chronic disease that occurs either when the 

pancreas does not produce enough insulin or when the body cannot effectively use the 

insulin it produces [15]. Insulin is a hormone of the β-cells of the Langerhans cells in 

the pancreas. Insulin is responsible for metabolic processes maintaining glucose homeo-

stasis in the fed and the fasted state. Increased plasma glucose, FFA, branched-chain 

amino acids and incretins stimulate insulin release. Insulin has an anabolic effect on 

glucose, FA and amino acid storage as glycogen, TAG and protein [24]. In skeletal 

muscle and fat tissue, insulin stimulates glucose uptake causing a rapid decrease of 

blood glucose. In the liver, insulin suppresses gluconeogenesis, which leads to reduced 

endogenous glucose production (EGP) while stimulating glycogen synthesis. In the 

fasted state, insulin secretion is suppressed, so that lipolysis and glycogenolysis increase 

in order to ensure constant blood glucose levels. Diabetes mellitus is diagnosed in pa-

tients with increased plasma blood glucose at fasting (≥ 126 mg/dl) or a random plasma 

glucose ≥ 200 mg/dl (11.1 mmol/l) or glucose 2 h after ingestion of 75 g glucose (> 200 
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mg/dl) [25]. Impaired glucose tolerance (IGT) and impaired fasting glycaemia (IFG) 

(100 mg/dl – 125 mg/dl) often occur before the onset of overt T2DM [11, 25]. Diabetes 

mellitus is also diagnosed, when the glycosylated haemoglobin (HbA1c) level is ≥ 

6.5%. HbA1c provides a reliable measure of chronic glycaemia and correlates well with 

the risk of long-term diabetes complications [26]. Diabetes is classified into the follow-

ing types:  

 

• Type 1 diabetes 

 

Type 1 diabetes mellitus (T1DM), previously known as insulin-dependent, juvenile or 

childhood-onset, is characterized by deficient insulin production and requires lifelong 

daily administration of insulin. Autoimmune processes are the cause of T1DM. Symp-

toms of the onset of T1DM include excessive excretion of urine (polyuria), thirst (poly-

dipsia), constant hunger, weight loss, deterioration of vision and fatigue. Generally 

these symptoms occur suddenly [15].  

 
• Type 2 diabetes  

 
T2DM, formerly called non-insulin-dependent or adult-onset, results from the body’s 

ineffective use of insulin and progressive β-cell failure. T2DM comprises of up to 90% 

of people with diabetes around the world, and is largely the result of excess body weight 

and physical inactivity combined with genetic predisposition. Symptoms may be similar 

to those of T1DM but are often less marked. As a result, the disease may not be diag-

nosed until several years after onset, when complications may already be present [15].  

 
People with overt T2DM or increased risks of T2DM are mostly insulin resistant in 

skeletal muscle, liver and fat tissue [3]. Increased availability of FFA from diet and in-

creased lipolysis rates of adipose tissue impair insulin signalling in skeletal muscle and 

the liver. Insulin resistance causes impaired glucose and utilization storage of glycogen 

in skeletal muscle and the liver. Additionally it increases release of glucose from the 

liver and increases lipolysis in the adipose tissue [27, 28]. Consequently, plasma glu-

cose and FFA concentrations are frequently slightly increased in insulin resistant states.  

 
• Gestational diabetes 

 
Gestational diabetes is defined as any form of hyperglycaemia with onset or first recog-

nition during pregnancy. Women have an increased risk of gestational diabetes, if they 
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are e.g. overweight, have a family predisposition for diabetes and their own birth weight 

was > 4000 g [29]. Pregnancy is a condition characterized by progressive insulin re-

sistance, starting in the second part of pregnancy and progressing through the third tri-

mester [30]. During the second part of pregnancy specific hormones are produced to 

increase the demand of energy in form of glucose. The placenta produces human chori-

onic somatomammotropin (HCS) and free cortisol, oestrogen and progesterone. HCS 

stimulates insulin secretion in the foetus and inhibits peripheral maternal glucose up-

take. In the progress of pregnancy both the size of the placenta and secretion of hor-

mones increase and leads to a higher insulin resistant state [30]. If the pancreas is unable 

to compensate the increased glucose concentration, an absolute insulin resistance devel-

ops. The majority of women are able to raise their own insulin production during latter 

part of pregnancy without being sensitive to insulin, thus a relative insulin resistance 

exists. Women with gestational diabetes have increased risk for T2DM [15]. 

 

1.3 Physiological effects of insulin 

 
During the fed and the fasted state metabolic processes maintaining glucose homeosta-

sis are determined by insulin. Under postprandial conditions, insulin acts as an anabolic 

hormone by favouring glucose lipid and protein storage. The glucose homeostasis regu-

lates these metabolic processes throughout the fed and fasted states [24].  

 
Insulin regulates glucose uptake and circulating FFA concentrations. In adipose tissue 

insulin decreases lipolysis and reduces FFA efflux from adipocytes; in liver insulin in-

hibits gluconeogenesis by reducing key enzyme activities  and in skeletal muscle induc-

es glucose uptake by stimulating the translocation of GLUT 4 glucose transporter to the 

plasma membrane [31]. 
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1.4 Cellular mechanisms of insulin resistance 

 
Insulin resistance is defined as impaired whole-body glucose disposal during insulin 

stimulation when the majority of glucose is disposed in skeletal muscle and almost ex-

clusively metabolized non-oxidatively to glycogen [33]. Alternatively it is simplified as 

an impaired sensitivity to insulin of its main target (e.g. adipose tissue, liver and skeletal 

muscle) [31]. The cellular mechanism may be a defect of the insulin receptors, rarely 

congenital syndromes (e.g. Johanson-Blizzard syndrome [34] or Alstrom syndrome 

[35]), or a defect of the metabolism of the insulin receptor. Especially mutations in the 

insulin receptor gene cause severe insulin resistant syndromes, e.g. leprechaunism, Rab-

son-Mendenhall syndrome [36] and type A insulin resistance syndrome [37]. Rabson-

Mendenhall syndrome is defined as autosomal recessive conditions in which both al-

leles for the insulin receptor are abnormal, and patients fail to respond to endogenous 

and exogenous insulin [36].  

 
Lettner and Roden revealed that the development of cellular insulin resistance may be 

associated with accelerated release of fat from adipocyte and intracellular accumulation 

of toxic lipid metabolites (e.g. lipotoxicity), secondly with an imbalanced release of 

adipocytokines from adipocytes (e.g. adiponectin/ TNF-α ratio) and thirdly chronic low-

grade inflammation and release of cytokines [38]. The cellular mechanisms of glucose-, 

inflammation- or lipid-induced insulin resistance are depicted in Figure 2. 

 
Thus, insulin resistance occurs in association with gene defects (e.g. syndromes), a vari-

ety of physiological (e.g. pregnancy) and pathophysiological states. 

 



 

 
 8 

 

 

Glucose-induced insulin resistance is known as glucose toxicity [39]. This has been 

revealed in rodents, which were infused with glucose and showed an impaired insulin 

action in skeletal muscle [39-43]. Hoy revealed that 5 h of glucose infusion induces 

skeletal muscle insulin resistance [39]. Further, this was associated with an increase in 

DAG and malonyl-CoA levels in skeletal muscle [39]. Insulin–stimulated glucose 

transport occurs via a PI3-kinase-Akt-dependant pathway; resulting in translocation of 

the GLUT4 to the plasma membrane to facilitate glucose uptake [39]. Houdali et al. 

supported the hypothesis that continuous glucose infusion induced translocation of 

GLUT4, while the early steps of the insulin signalling cascade were not increased. He 

proposed that these effects could be mediated by activation of PKC. Continuous glucose 

infusion induced GLUT4 protein release and translocation to the plasma membrane 

[41].  

 

In recent years it has become increasingly apparent that obesity and insulin resistance 

are associated with a state of chronic low-grade inflammation [31, 44-46]. Obese pa-

tients with a chronic low-grade inflammation have increased plasma levels of C-reactive 

protein, inflammatory cytokines such as TNF-α. Inflammatory-induced insulin re-

Figure 2. Cellular mechanism of lipid-induced insulin resistance FFA: free fatty acids; 
FAT/CD 36: fatty acid transport protein/CD 36 fatty acid translocase CD36; LCA-CoA: Long chain acyl- 
coenzyme A; DAG: Diacylglycerol; PKCθ: Protein kinase c θ; PPARs: peroxisome proliferator-activated 
receptors; PGCs: Peroxisome proliferator-activated receptor gamma coactivator 1-alpha; IRS: insulin 
receptor; AKT: Protein kinase B; Glut: Glucose transporter; G6P: Glucose-6-Phosphat; ROS: reactive 
oxygen species; CPT1: Carnitine palmitoyltransferase I; TCA cycle: tricarboxylic acid cycle. FFA enter 
via FAT and CD36 and increase the LCA-CoA.  
[Modified from Szendroedi, J., et al., Nat Rev Endocrinol. 2011 [3]] 
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sistance was first revealed by Hotamisligil et al. and Karasik et al [47]. It was shown 

that proinflammatory cytokine TNF-α was able to induce insulin resistance. Increased 

levels of markers and mediators of inflammation and acute-phase reactants such as fi-

brinogen, C-reactive protein (CRP), IL-6, plasminogen activator inhibitor-1 (PAI-1), 

sialic acid, and white cell count may correlate with T2DM [47]. Zeyda and Stulnig de-

scribed that neutralizing TNF-α in rats provided first compelling evidence that inflam-

matory mediators could cause insulin resistance [31, 48] and also in vitro experiments 

with cultured murine adipocytes demonstrated TNF-α was linked to insulin resistance 

[31]. Another consideration is that increased systemic levels of cytokines, e.g. IL-6 and 

TNF-α, impaired myocellular mitochondrial function and/or increased reactive oxygen 

species (ROS) production (oxidative stress), may lead to lipid accumulation and subse-

quently to insulin resistance. 

 
This resulted in incomplete β-oxidation, increase of acyl-carnitines and oxidative stress 

raising reactive oxygen species along with activation of atypical PKC isoforms and the 

pro-inflammatory NF-κB [8, 49, 50]. It has been determined that fatty acids are only 

converted to acetyl-CoA but not via the TCA cycle because of a lack of oxaloacetate 

during reduced intake of glucose and an increased lipolysis. Lipid overflow, subclinical 

inflammation (cytokines) and/or abnormal mitochondrial function may exacerbate 

insulin resistance.  

 
It has been reported that patients suffering from overweight or obesity often show ab-

normalities in their mitochondrial structure such as paracrystalline inclusions, typical of 

mitochondriopathies [51, 52]. Skeletal muscle strongly relies on mitochondrial oxida-

tive phosphorylation for ATP production. Accordingly decreased oxidative capacity and 

mitochondrial aberration may be major contributors to the development of insulin re-

sistance and T2DM and can be discerned in skeletal muscle biopsies of insulin resistant 

humans [53]. Thus, an insulin resistance may lead to impaired mitochondrial fitness 

with disorders of the availability of energy in form of ATP, to a production of toxic 

ROS and to inflammatory cell reactions [52, 54]. 

 
Plasma FFA flux is related to whole-body lipolysis [55] and is frequently increased in 

obesity and T2DM. In the last few years the evidence has been accumulated that in-

creased levels of FFA are associated with insulin resistance [56]. Further it is revealed 

that FFA may inhibit insulin signalling by increasing serine phosphorylation of insulin 
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receptor-1 (IRS-1). Elevation of plasma FFA in normal weight patients via lipid infu-

sion reduces reversibly glucose transport and/or phosphorylation [49, 57]. According to 

the scheme depicted in Figure 1 in the insulin resistant state, glucose uptake and glyco-

gen synthesis are impaired and consequently plasma glucose levels are high. Parallel 

insulin levels are extremely high and promote lipid deposits in the adipose tissue but 

also in the non-adipose tissue, which is called ectopic lipid deposition. The accumula-

tion of ectopic lipids (intramyocellular and hepatocellular lipids, IMCL, HCL) is often 

related to a lipid-induced insulin resistance [4, 9, 58, 59]. This is the result of increased 

availability of lipids, caused by less physical activity and a high caloric nutrition. 

 
Randle et al. postulated that increased FFA oxidation inactivates pyruvate dehydrogen-

ase with subsequent inhibition of phosphofructokinase [60]. This causes intracellular 

glucose-6-phosphate (G-6-P) to rise which can decrease hexokinase II activity with con-

sequent decreased glucose uptake and glycogen synthesis [27]. To examine the mecha-

nism in which lipids cause insulin resistance Roden et al. ascertained that on the contra-

ry to the original postulated mechanism, - FFA inhibit insulin stimulated glucose uptake 

in muscle through initial inhibition of pyruvate dehydrogenase -, the FFA-induced insu-

lin resistance is induced by initial inhibition of glucose transport/phosphorylation [57, 

61]. 

 
Plasma FFA are transported via fatty acid transporters (FAT)/CD36 into the cell and the 

elevated lipid metabolites are converted to acyl-CoA, TAGs, ceramides and DAG or are 

hydrolysed. DAG are by-products of lipolysis consecutive to TAG hydrolysis by 

adipose triglyceride lipase (ATGL) and are subsequently hydrolysed by hormone–

sensitive lipase (HSL) [4]. Previous studies suggested that insulin resistance is caused 

by raised intracellular lipid metabolites such as DAG and ceramides [8, 49, 50, 59]. The 

accumulated TAGs are metabolically inert but lipid metabolites such as DAG and 

ceramides inhibit insulin signalling [59, 62]. 

 
Animal studies revealed that lipid-induced insulin resistance is caused by 

intramyocellular DAG-induced stimulation of protein kinase C (PKC) which leads to 

activation of the atypical isoform PKCθ [63], resulting in a serine phosphorylation of 

IRS-1. Accumulation of DAG may be caused by an imbalance of ATGL relative to 

HSL. Consequently the imbalance of ATGL relative to HSL may increase intracellular 

DAG concentration and finally enhance insulin resistance. Other studies challenge the 
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DAG hypothesis with respect to the sequence of events promoting insulin resistance in 

suggesting that myocellular ceramides and ceramidase activity are the primary culprits 

instead of the DAG [64]. Ceramides might have a direct inhibiting influence on IRS-1 

and AKT-phosphorylation. Accordingly the role of the DAG, activating isoforms of the 

PKCs, needs to be examined. In humans the pathway and the relative roles of ceramides 

and DAGs are still unclear and have to be explored. 
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2. Hypotheses  

 
• Short-term elevation of plasma FFA increases myocellular DAG prior to activa-

tion of novel PKC isoforms and leads to an induction of insulin resistance. Insu-

lin resistance is primarily caused by DAG and not by increased myocellular 

ceramides. 

 
• DAG species, inducing an insulin resistance, are localized in the membrane and 

not in the cytosol.  

 
• M-value and EGP are not affected by gender under conditions of lipid-induced 

insulin resistance. 

 
Two cohorts were selected to confirm the hypotheses. The FFA-IR group (lipid-induced 

insulin resistance) had to reveal primarily the effect of lipids on fatty acid intermediates 

inducing an insulin resistance and secondly the sequence of events leading to a lipid-

induced insulin resistance. The insulin signalling group had to reveal a lipid impaired 

insulin signalling but is not part of the dissertation. 
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3. Methods 

3.1 Volunteers and recruitment 

 
Normal weight and healthy participants were recruited by research group of the depart-

ment for Clinical Diabetologie of the German Diabetes Centre (DDZ), Heinrich Heine 

University Düsseldorf. 

 
All participants had to give a written consent, which was registered (ClinicalTrials.gov 

Identifier number: NCT01229059 approved by the local institutional ethics board) and 

performed according to the Declaration of Helsinki. 23 normal weight glucose tolerant 

and insulin sensitive volunteers without family history of diabetes were included. The 

data of the subjects are summarized in Table 2 and Table 3.  

 

3.2 Study protocols  

 
The participants underwent two experimental conditions in random order to examine 

lipid-induced insulin resistance. We divided the volunteers in two study groups, (i) 

FFA-IR group and (ii) the insulin signalling group. The 16 volunteers took part in the 

FFA-IR group and 7 in insulin signalling group. The participants were given in a ran-

dom order lipid or glycerol infusion over 6 h and a hyperinsulinemic-euglycemic clamp 

was taken (Figure 3 & Figure 4). Muscle biopsies were taken before (FFA-IR group) 

and before and during (insulin signalling group) the hyperinsulinemic-euglycemic 

clamp to reveal the lipid-induced insulin resistance and insulin signalling pathway. The 

FFA-IR group was selected to determine the sequence of events leading to a lipid-

induced insulin resistance and to examine the relevance of fatty acids intermediates to 

insulin resistance. The aim of the insulin signalling group was to reveal a lipid impaired 

insulin signalling, but is not part of this dissertation. 

 

3.2.1 FFA-IR group  

 

The participants were instructed to fast overnight for about 10 h. In the morning (7:00 

a.m.) deuterated glucose was infused to determine basal EGP [65, 66]. In order to in-

duce insulin resistance, a lipid-rich infusion (Intralipid®; Fresenius Kabi GmbH, Bad 

Homburg, Germany) was applied (-240 until -230 min: 10 ml/h; -229 until +150 min: 

90 ml/h). On another occasion 2.5% glycerol dissolved in 0.9% saline (Fresenius Kabi 
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n total (male/female) 16 (11/5) 

Age (years) 28.88 ± 5.33 

Body mass index (kg/m2) 23.60 ± 2.03 

Fasting glucose (mg/dl) 81.74 ± 24.25 

Fasting FFA (mmol/l) 0.43 ± 0.19 

Fasting triglycerides (mg/dl) 83.69 ± 30.70 

HbA1c (%) 5.33 ± 0.28 

Baecke Index 2.78 ± 0.47 

 

 

Additionally to the plasma values, the Baecke Index is listed in Table 3. Baecke et al. 

developed 1982 a questionnaire for evaluating a person's physical activity and separat-

ing it into three distinct dimensions. The three dimensions were physical activity at 

work, sport during leisure time and other physical activity during leisure time [67]. The 

volunteers had to rate themselves and gave points to different questions based upon 

their activities. The sum of these points was mean valued.  

 

3.2.2 Insulin signalling group 

 

The participants were instructed to fast overnight for about 10 h. In the morning (7:00 

a.m.) deuterated glucose was infused to determine basal endogenous glucose production 

[65, 66]. In order to induce insulin resistance a lipid rich infusion (Intralipid®; Fresenius 

Kabi GmbH, Bad Homburg, Germany) was applied (-240 until -230 min: 10ml/h; -229 

until +150 min: 90 ml/h). On another occasion, as a control experiment 2.5% glycerol 

dissolved in 0.9% saline (Fresenius Kabi GmbH) was infused (-240 min until -230 min: 

10ml/h; -229 until +150 min: 90 ml/h). To standardize fasting conditions a pancreatic 

clamp was performed, and after 6 h insulin sensitivity of skeletal muscle and liver were 

measured using the hyperinsulinemic-euglycemic clamp test (0 until +150 min) com-

bined with the infusion of [2H2]glucose (-360 until +150 min). To examine the insulin 

signalling, a muscle biopsy was taken from the lateral thigh (m. vastus lateralis) at base-

line after 1.5 h lipid or glycerol infusion and 30 min after starting the hyperinsulinemic 

clamp. The substrate oxidation was assessed from indirect calorimetry at baseline and 

during the hyperinsulinemic clamp (Figure 4).  

Table 2. Volunteers’ data of FFA-IR group  11 male and 5 female volunteers  
participated in this study group. Means were given ± SD. 
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before the clamp a continuous infusion of Somatostatin (0.1 µg.kg-1min-1, UCB Pharma) 

was given in order to inhibit the endogen insulin and glucagon secretion. 

 
In a two-step continuous insulin infusion (Actrapid, Novo Nordisc, Bagsvaerd, Den-

mark) insulin resistance was determined. The prime stage was at a low level (-240 until 

0 min) 6 mU/m2 body surface min-1 and the second at a high level (0 until +150 min): 

40 mU/m2 body surface min-1.  

 
The glucose infusion was adjusted at 5 min intervals based on the actual plasma glucose 

concentration. To maintain stable enrichments of [6.6-2H2]glucose during the clamp 

tests, the variable glucose infusion was enriched to 2% with [6.6-2H2]glucose. In regular 

intervals during the clamp test blood withdrawals were taken to determine the amount 

of hormone, adipokines, cytokines and lipids. These techniques determine the quantity 

of glucose disposal and EGP. 

 

3.4 Oral glucose tolerance test 

 
Each fasted proband drank within 5 min 300 ml glucose solution. Then still in fasting 

conditions the insulin plasma concentration, C-peptide, inflammation markers and adi-

pokines were tested after 10, 20 and 30 min and then for the next 180 min in a half 

hourly rhythm to evaluate the blood sugar rates [70]. Parallel blood tests were taken to 

characterize the gene expressions in whole blood (non-gene analysis and non DNA con-

servation).  

 

3.5 Measurement of the EGP 

 
To assess endogenous glucose production each fasted participant was given per i.v. 

[2H2]glucose. The infusion began with a 99.9% enriched deuterated glucose. After 3 h 

an additional dose (1.19 mg/kg bodyweight) was given for 5 min with a further infu-

sion. A gas chromatography and mass spectrometry were carried out to determine the 

quantity of [2H2]glucose in plasma and the elimination of proteins. 
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3.6 Indirect calorimetry 

 
The amount of sugar and fat burned was calculated of the whole-body energy and were 

checked by each participant before the test began and ended. A transparent cover was 

placed over the participant’s head and the exhaled breath was analysed by adding fresh 

air. Indirect calorimetry was performed in the canopy mode using Vmax Encore 29 n 

[equipment for pulmonary function measuring spirometry (CareFusion, Höchberg, 

Germany)] at baseline, at the end of intervention and during steady-state clamp condi-

tions over a period of 20 min after 10 min of adaptation to the setting. Rates of oxygen 

uptake (VO2) and carbon dioxide disposal (VCO2) were measured and respiratory quo-

tient (RQ) [71] and REE were calculated using abbreviated Weir equation. Substrate 

oxidation was calculated according to Frayn [71] with fixed estimated protein oxidation 

rate (Pox) of 15% of REE: Carbohydrate oxidation rate (mg/kg.min) = [(4.55*VCO2) – 

(3.21*VO2) – 0.459*Pox]*1000/kg body weight; where VCO2 is carbon dioxide pro-

duction and VO2 is oxygen consumption; and lipid oxidation rate (mg/kg min) = 

[(1.67*VO2) – (1.67*VCO2) – 0.307*Pox]*1000/kg body weight. Non-oxidative glu-

cose disposal was calculated from the difference between Rd and carbohydrate oxida-

tion. 

 

3.7 Skeletal muscle biopsy 

 
When the patient lay in a supine and resting position, the selected muscle (m. vastus 

lateralis) region was subcutaneously anaesthetised with a local anaesthetic (Xylocain® 

2%). After testing the anaesthetised region with a needle, a cut of about 5 mm was made 

with a scalpel. The subcutaneous fat tissue and muscle fibres were obtained using a 

modified Bergström biopsy needle with suction. The excision region for the subcutane-

ous fat tissue was the abdomen and the lateral thigh (m. vastus lateralis) for the muscle 

fibre. The cut was connected with steri-strips and bandaged. The patient had to check 

the wound for approximately two weeks. All samples were kept in liquid nitrogen until 

analysis had occurred. Biopsies were homogenized in six volumes of lysis buffer con-

taining 50 mmol/l HEPES, pH 7.5, 137 mmol/l NaCl, 1 mmol/l CaCl2, 1
 mmol/l MgCl2, 

10% glycerol, 2 mmol/l EDTA, 10 mmol/l NaF, 2 mmol/l Na3VO4, and protease inhibi-

tor cocktail. Muscle homogenates were solubilized in 1% NP-40 for 1 h at 4 °C and cen-

trifuged at 14.000 g for 10 min.   
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3.8 Metabolites  

 
190 ml blood was taken to determine parameter of glucose, lipid metabolism, hem 

gram, (blood glucose, insulin, C-peptide, triglyceride, FFA, glycerol, glucagon) and 

serological immune mediators. Blood samples were immediately chilled, centrifuged 

and supernatants stored at -20 °C until analysis. Venous blood glucose concentration 

was measured immediately using the glucose oxidase method (EKF Biosen C-Line glu-

cose analyzer, EKF diagnostic GmbH, Barleben, Germany) [72]. FFA were assayed 

with the microfluorimetric method (intraassay CV < 1%, interassay CV 2.4%; Wako, 

Neuss, Germany) after prevention of in vitro lipolysis by collecting blood into vials 

containing orlistat [53]. Serum TAG, cholesterol and liver transaminases were analyzed 

by enzymatic assays (Hitachi analyzer, Roche Diagnostics, Mannheim, Germany). 

 

3.9 High resolution respirometry  

 
Ex vivo mitochondrial function was assessed with high resolution respirometry (HRR) 

as described [73]. Fresh muscle samples were rapidly put in ice-cold BIOPS buffer 

(2.77 mmol/l CaKEGTA, 7.23 mmol/l KEGTA, 5.77 mmol/l NaATP, 6.56 mmol/l 

MgCl2-6H2O, 20 mmol/l taurine, 15 mmol/l Na-phosphocreatine, 20 mmol/l Imidazole, 

0.5 mmol/l DTT, 50 mmol/l MES, pH 7.1). Muscle fibres (1-2 mg) were trimmed off 

connective tissue muscle and permeabilized with saponin (50 µg/ml) in ice-cold BIOPS 

buffer at 4 °C for 25 min. Then, the samples were washed twice in ice-cold MiR05 

buffer [0.5 mmol/l EGTA, 3 mmol/l MgCl2-6 H2O, 60 mmol/l K-lactobionate, 20 

mmol/l taurine, 10 mmol/l KH2PO4, 20 mmol/l HEPES, 110 mmol/l sucrose, 1 g/l fat-

free BSA (body surface area), pH 7.1] for 10 min. HRR of permeabilized fibres was 

performed in MiR05 buffer at 37 °C and 200-400 µM oxygen to avoid limitation of 

oxygen supply (Oxygraph-2k, Oroboros Instruments, Innsbruck, Austria). Defined res-

piratory states were obtained by the following multiple substrate-inhibitor titration pro-

tocol: 2 mmol/l malate, 10 mmol/l pyruvate, 10 mmol/l glutamate and 2.5 mmol/l ADP 

for state 3 respiration of complex I, 10 mmol/l succinate for combined state 3 respira-

tion of complex I and II, 10 µmol/l cytochrome c for mitochondrial membrane integrity 

check, carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) (stepwise incre-

ments of 0.25 µmol/l up to the final concentration of max. 1.25 µmol/l) for maximal 

respiratory capacity, namely state u, and 2.5 µmol/l antimycin A. Addition of cyto-
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chrome c did not increase oxygen consumption indicating integrity of the outer mito-

chondrial membrane after saponin permeabilization. 

 

3.10 Myocellular lipid metabolites 

 
For DAG extraction, muscle tissue was homogenized in a buffer solution (20 mmol/l 

Tris-HCl, 1 mmol/l EDTA, 0.25 mmol/l EGTA, 250 mmol/l sucrose, 2 mmol/l PMSF) 

containing a protease inhibitor mixture (Roche), and samples were centrifuged at 

100.000 g for 1 h. The supernatants containing the cytosolic fraction were collected. 

DAG levels were then measured as previously described [74]. Total cytosolic DAG 

content is expressed as the sum of individual species. Ceramides were measured as pre-

viously described [75]. 

 

3.11 Muscle protein kinase C activation 

 
PKC is a family of structurally and functionally related proteins derived from multiple 

genes after alternative splicing [56]. In response to the increasing DAG or tumor pro-

moting agents, PKC is activated. There are 12 isozymes of PKC characterized. These 

are classified into three groups: classical (cPKCα, βI, βII, γ), novel (nPKCδ, ε, θ, η) and 

atypical isoforms (aPKCζ, ι/λ) [56]. PKC isoforms regulate diverse cellular signalling 

pathways by phosphorylating their downstream kinases and substrate proteins. The PKC 

can translocate during activation from the cytosol to the cell membrane. The amount of 

which isoform of PKC is found in the membrane is a measure of its activation.  

 
Membrane translocation for the different PKC isoforms (PKCβ, ε, δ, θ) was assessed as 

described previously [74]. Both membrane and cytosol proteins were detected on the 

same film with enhanced chemiluminescense in the same exposure time. PKC translo-

cation was expressed as the ratio of arbitrary units of membrane bands over cytosol 

bands. Membrane band density was corrected by Na+/K+-ATPase band density and cy-

tosolic band density was corrected by glyceraldehyde 3-phosphate dehydrogenase band 

density [74]. The advantage of band density is that it permits the location and identifica-

tion of proteins in gels. 
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3.12 Calculations and statistics 

 
Basal rates of glucose appearance (Ra) were calculated by dividing the tracer [6,6-
2H2]glucose infusion rate times tracer enrichment by the per cent of tracer enrichment in 

plasma and subtracting the tracer infusion rate [76]. Ra was calculated using Steele's 

non-steady state equations [77]. EGP was calculated from the difference between Ra and 

mean glucose infusion rates. All statistical analyses were performed using SPSS 6.0 

software (SPSS Inc., Chicago, IL, USA). Data are presented as means ± SD or SEM 

throughout the text and in the figures. The SEM value was calculated for figures 5-26; 

the SD was taken for table II and III. Statistical comparisons between study groups were 

performed using ANOVA and repeated measurements ANOVA with Tukey post hoc 

testing when appropriate. Within-group differences were determined using two-tailed 

Student’s t tests. Non-parametric correlations are Spearman correlations (p). Differences 

were considered significant at the 5% level. 
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5. Discussion 

 
The results briefly summarised: the present study revealed short term elevation of plas-

ma FFA, caused by intralipids, resulting in an increase of myocellular contents of DAG. 

The DAG concentrations in the membrane and cytosol fractions did not change during 

glycerol infusion but increased after 2.5 h (p < 0.05). The increase of myocellular DAG 

was followed by PKC activation at 4 h. The ceramides concentration did not change 

significantly during the glycerol or triglyceride rich infusion. Thus, the DAG stimulated 

the activity of PKCθ and induced the muscular insulin resistance. Especially DAG 

isoforms e.g. palmitate and linoleate are of interest in the pathway of the lipid induced 

insulin resistance. In the membrane and cytosol fraction the DAG species palmitate and 

linoleate were apparent (p < 0.05). Further the whole-body glucose disposal was meas-

ured during lipid infusion. It was reduced by 64% during lipid infusion (*p < 10-5). The 

volunteers were divided into male and female cohorts to examine if the whole-body 

glucose-disposal had a gender relation. No significant gender-related difference was 

revealed. 

 

5.1 Effect of gender on whole-body glucose disposal and EGP 

 
The EGP is regulated by plasma glucose and insulin concentration. Previous studies 

examined that in the presence of basal insulin concentration, an increase in plasma glu-

cose concentration is based on a decreased EGP [78]. It is to be discussed if a gender 

determines or partly influences the cause of the whole-body glucose disposal and EGP.  

Several human and animal studies revealed controversial results. In obese the whole-

body insulin sensitivity was as well as non-oxidative glucose disposal higher in females 

compared to males during both lipid and saline infusion (p < 0.001 and p = 0.01) [79]. 

Homko et al. 2003 related of a female lipid induced reduction in insulin-mediated glu-

cose uptake [80]. Further, Frias et al. 2001 revealed a gender dependant difference that 

lean females have no inhibited insulin-stimulated glucose disposal in contrast to males 

[81]. The non-oxidative glucose Rd was decreased by 15% in men and was not signifi-

cantly affected in women and the basal EGP was unaffected by elevation of plasma non-

esterified fatty acids [81]. Vistisen et al. asserted that the results were caused by the de-

ficiency in the examination of non-oxidative glucose disposal in 11 men [79]. An animal 

study examined a sex dependant difference in rat hepatic lipid accumulation and insulin 

sensitivity in response to diet-induced obesity [82]. Females had a better insulin sensi-
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tivity [79, 82-84], and in response to dietary exhibited an increased body mass and adi-

posity and liver fat accumulation than males by a maintained better glucose tolerance 

[82]. A further animal study revealed that hyperinsulinemia and insulin resistance might 

be associated with hypertension in male rats [84]. A gender relation is still of interest for 

further research. 

The whole-body glucose disposal of lean healthy young humans in our study revealed 

no significant gender dependant difference during lipid infusion. It seems that an in-

crease of plasma FFA leading to insulin resistance is not affected by gender. Even if the 

body weight increases, the whole-body glucose disposal seems to be still not related to 

gender [79]. Thus, lipid-induced inhibition of glucose disposal of obese [79] and lean 

females and males might be comparable. But these results are in contrast to Hoeg et al., 

who determined that after lipid rich infusion the whole-body glucose disposal was re-

duced by about 26% in women and about 38% in men (p < 0.05) [85]. Further, that after 

lipid infusion the insulin stimulated leg glucose uptake was reduced by about 45% in 

women and 60% in men [85]. According to Hoeg et al. an intralipid infusion may cause 

less insulin resistance of muscle glucose uptake in women than in men. On the other 

hand gender may not affect the relationship between liver fat and serum triglycerides 

[86]. Women and men have similar amounts of intra-abdominal fat but women have 

twice as much subcutaneous fat as men [86]. This suggests that liver fat is more proxi-

mal correlated to insulin resistance than intra-abdominal fat [86]. Although we did not 

examine a gender related research of muscle ceramides, TAG and DAG content, it is of 

interest that Vistisen et al. measured no significant gender-related difference between 

these. Even during the clamp it remained unchanged [79]. Therefore no gender-related 

preference to insulin resistance seems to exist but further examinations are necessary to 

confirm our results.  

 

5.2 Effect of FFA on intracellular lipid intermediates 

 
The present study revealed short term elevation of plasma FFA, caused by intralipids, 

resulting in an increase of myocellular contents of DAG. The ceramides concentration 

did not change significantly during the glycerol or triglyceride rich infusion. Randle et 

al. [60, 87] were the first to suggest in 1963 that an elevated availability of FFA had a 

primary role in the development of muscle insulin resistance. The thesis was based upon 



 

 
 40 

observation of increasing plasma concentration of FFA in combination with diabetes 

and other disorders of carbohydrate metabolism [88]. The elevation of plasma FFA con-

centration is known to induce skeletal muscle insulin resistance by reducing glucose 

transport/ -phosphorylation, glycogen synthesis and glucose oxidation [53]. The accu-

mulation of ectopic lipids (intramyocellular and hepatocellular lipids, IMCL, HCL) [4, 

9, 58, 59] DAG and ceramides [53] is often a grade of the insulin resistance. This as-

sumption is supported in human and animal studies [89]. The hypothesis is to be estab-

lished if the triglycerides are inert [59, 62]. Additionally if the lipid metabolites DAG 

and ceramides inhibit the signalling and whether the myocellular ceramides and cerami-

dase activity are the primary culprits [90]. The DAG was significantly increased after 

2.5 h, whereas the ceramides did not differ. In contrast to Summers et al., who proposed 

ceramides as the “primary culprits” [64, 90] and Adams et al. [91], whose study report-

ed of an increase of ceramides similarly to the obese subjects; the muscle ceramides 

content was significantly correlated with the plasma free fatty acid concentration or re-

spectively particularly contributed to subsequent metabolic complications [50, 92]. Ad-

ams et al. [91] suggested that obesity is associated with increased intramyocellular 

ceramides content [91]. Consitt et al. referred in his review of controversial studies [93], 

reporting both of an elevated amount of ceramides in the skeletal muscle of insulin re-

sistant animals [93], lipid infused humans [94], obese, insulin–resistant humans [91], 

lean offspring of T2DM and of no examined differences in ceramides levels between 

lean and obese individuals with similar insulin sensitivity [93, 95]. According to our 

results, in comparison to the controversial study reports [96], Summers [90] considered 

that ceramides participate but have not a primary role in impairing the insulin signalling 

[97]. The DAGs seem to determine the primary role [98]. Kumashiro et al. described 

DAG as the best predictor of insulin resistance [74] and DAGs could be more related to 

skeletal muscle insulin resistance in humans as previously thought. The impairment in 

the post receptor insulin signalling pathway seems to be central in the development of 

the fatty acid insulin resistance [99] and it has to be evaluated if the localisation of DAG 

and which kind of molecular species of DAG are preferentially related to insulin re-

sistance in human skeletal muscle.  

 
It is to be considered, which DAG species and where localized (membrane or cytosol) 

have a predominant role in the insulin signalling cascade. Bergman et al. examined in a 

current study if all DAG molecular species were equally deleterious to insulin sensitivi-
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ty. He determined that the majority (76 - 86%) DAG species were localised in the 

membrane fraction and there were no significant differences in cytoplasmic DAG spe-

cies (p > 0.12) [100]. Of the sixteen measurable membrane DAG species especially, di-

C18:0 (stearate) was significantly related to insulin sensitivity [100]. In contrast to the 

present study we examined a preferential role of the DAG species linoleate, oleate and 

palmitate in the membrane and cytosolic fraction by neglecting its position. For exam-

ple palmitate was significantly found in the membrane fraction on both the first (PA p < 

0.005; PL p > 10-4) and second position (SP p < 0.05). All three species seemed to be 

comparably participated in the lipid-induced insulin resistance; but our results are only 

partly attested. Controversial studies indicated that fatty acids other than palmitate par-

ticularly linoleate could induce muscle insulin resistance [101, 102] and on the other 

hand linoleate, oleate and palmitate had similar inhibitory effects on glycogen synthesis 

[101, 103]. Alkhateeb et al. revealed that especially palmitate provoked insulin re-

sistance in skeletal muscle by impairing insulin induced activation of Akt and PKCθ 

[99].  

 

Further Bergman et al. suggested that only saturated DAG in skeletal muscle mem-

branes were related to insulin resistance in humans [100]. On the contrary, Amati et al. 

[58] revealed DAG species containing one unsaturated and one saturated fatty acids 

were lower in obese muscle, but DAG species containing unsaturated fatty acids at both 

positions were higher in obese muscle. It has to be determined whether specific fatty 

acids, e.g. palmitate, oleate, linoleate, stearate or arachidonate stimulate DAG synthesis 

and if this is linked to insulin resistance [58]. It is to suggest that DAG have a relation to 

insulin resistance [58] and specific DAG species, especially palmitate and linoleate, 

might be important in lipid signalling pathway [104]. It seems that further examinations 

are necessary to determine and to specify the predominant role of which DAG species in 

the insulin signalling pathway.  

 
In contrast to the ceramides, which have a direct inhibiting influence on IRS-1 and 

AKT-phosphorylation, DAG induce an insulin resistance by stimulating PKC, leading 

to activation of the atypical isoform PKCθ [63, 98]. We examined an increased activa-

tion of PKCθ (p = 0.04) compared to the isoform PKCβ (p = 0.17) and δ (p = 0.21) un-

der unpaired conditions. Whereas in the paired comparison the activation tended to in-
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crease in PKCθ after 4 h lipid infusion (p = 0.07 vs. basal) and significantly increased in 

the isoform PKCβ.  

 
Several studies imply a PKC activation causes skeletal muscle insulin resistance and 

demonstrates an association between DAG and PKC activation (e.g. [98, 105, 106]). For 

example Itani et al. established that humans, after 6 h of having received a lipid heparin 

infusion, had a reduction of insulin stimulated glucose disposal by 43% and both skele-

tal muscle DAG mass and PKC activity were increased fourfold. These results are re-

flected in our study. PKC activation was increased after 4 h lipid infusion, whereas its 

activation during glycerol infusion was nearly constant. It is believed that PKCθ activa-

tion results in the serine phosphorylation of upstream molecules in the insulin signalling 

cascade, which subsequently inhibit this pathway [93]. Though of note is not the partic-

ipation of the PKCs, but rather the time interval until activation and which kind of PKC 

isoform is primarily included.  

 
Several studies were published concerning participation of PKC isoforms impairing the 

insulin signalling (e.g. [63, 74, 105-110]). For example Itani et al. reported in a study 

that when plasma FFA concentration was elevated during euglycemic clamp, the DAG 

mass was increased and associated with PKC isoforms especially ß II and δ. There was 

no significant alteration in PKCθ activation [105]. Whereas in an earlier study of 2000 

he reported that the membrane associated PKCβ protein was elevated under basal condi-

tions and membrane associated total PKC activity was increased under stimulated con-

ditions in muscle of obese insulin resistant patients [107]. Especially in the liver novel 

isoforms as δ, ε, θ were examined without detecting activation of PKCθ [74]. An in-

creased activation of PKCθ was reported in animal and human studies [62, 106, 109], 

whereas a present study of Erion and Shulman have found out that especially PKC iso-

form β II and δ are the relevant isoforms [63, 105]. The present results support the con-

cept that DAG-induced activation of PKCθ plays a key role in causing lipid-induced 

insulin resistance in human skeletal muscle. Of interest is if the increased activation of 

PKCθ during the triglyceride rich infusion after 4 h is still higher in comparison to the 

isoforms β and δ by increasing the number of participants. Further examinations are 

needed to confirm the predominant role of the PKC isoform θ in the lipid induced insu-

lin resistance in the skeletal muscle. 
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6. Conclusion 

 
An elevation of FFA reduced whole-body insulin-stimulated glucose disposal, which 

was associated with an early increase of myocellular DAG at 2.5 h followed by PKC 

activation at 4 h, whereas the ceramides were mostly unchanged. Further no gender ef-

fect could be measured on FFA-induced insulin resistance; M-value and EGP did not 

differ gender-related. Subsequently the DAG stimulates the activity of PKCθ and induc-

es the muscular insulin resistance. Especially the DAG isoforms e.g. palmitate and lino-

leate are of interest in the pathway of the lipid-induced insulin resistance. Skeletal mus-

cle lipases might be of potential therapeutic interest for improving insulin resistance in 

obesity and T2DM.  
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