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Chapter 1

Introduction

One of the major goals of computational complexity theory is to understand the
amount of resources (time, space) needed to solve computational problems that
we care about. In particular, we would like to be able to distinguish the problems
that are solvable efficiently from the ones that are intractable. A computational
problem is usually regarded to be efficiently solvable if it can be decided by a
deterministic Turing machine with polynomially many steps in the size of the
problem instances. The class of such problems is denoted by P.

There is another fundamental class of problems: The class NP consisting
of those problems that can be accepted by nondeterministic polynomial-time
bounded Turing machines. Equivalently, NP is the class of problems for which
all “yes”-instances can be verified in polynomial time. Consider for example the
decision problem Vertex Cover. Given a graph G, a vertex cover of G is a subset
V ′ of the set of vertices in G such that at least one vertex of each edge of G is
in V ′. Denote by τ(G) the number of vertices in a minimum vertex cover of G.
Figure 1.1 shows a graph G with a minimum vertex cover of size 3. The problem

v4

v1 v2 v3

v5v6

Figure 1.1: Graph G with minimum vertex cover {v1, v2, v5} of size 3

Vertex Cover is defined as follows: Given a graph G and an integer k (a pair
〈G, k〉), is it true that τ(G) ≤ k? This problem has the following crucial property:

1



2 Chapter 1. Introduction

If the answer is “yes” then there exists a proof1 for the correctness of the “yes”-
answer that can be verified in polynomial time. Such a proof consists of a subset
V ′ of the vertex set of G of size ≤ k forming a vertex cover of G. The correctness
of the proof can be verified easily as follows. First, check that V ′ contains no
more than k vertices. Second, check that each edge in G has at least one of its
end vertices contained in V ′. This can clearly be done efficiently (in polynomial
time). We have thus proved that Vertex Cover is in NP. All problems in NP
share this property, i.e, they have efficiently verifiable membership proofs.

It is clear that P ⊆ NP, but it is not known whether this inclusion is proper,
i.e., whether there is any NP problem that provably cannot be solved by a de-
terministic polynomial-time algorithm. This is one of the most outstanding open
questions of theoretical computer science and mathematics. The importance of

the P
?
= NP question stems largely from the fact that there are thousands of

practically and theoretically significant problems (e.g. the Traveling Salesperson
Problem, various scheduling problems, the satisfiability problem for boolean for-
mulas, graph coloring problems) that can easily be shown to be in NP, but have
resisted all attempts to devise efficient (deterministic) algorithms to solve them.
Therefore, it is widely believed that P is a proper subset of NP. However, the proof
of this conjecture seems to be out of reach by currently available mathematical
techniques.2

This motivated the search for hardest problems within NP, the now well-known
NP-complete problems. To define the notion of NP-completeness, we need the con-
cept of complexity-bounded reduction, which is an important tool in complexity
theory to compare the difficulty of problems. A reduction is a transformation of
one problem into another problem. There are different kinds of reduction. The
most important one is the polynomial-time many-one reduction.3 A problem A is
polynomial-time many-one reducible to a problem B (written A≤p

m B) if and only
if there exists a polynomial-time computable function f such that for every input
x ∈ Σ∗, x ∈ A ⇔ f(x) ∈ B. If A≤p

m B then problem A is not much harder than
problem B, because any algorithm for B can, via the reducing function f , be used
to solve problem A. In particular, if B ∈ P then also A ∈ P. Equivalently, A /∈ P
implies B /∈ P.

A problem A is NP-complete if and only if (i) every problem in NP can be
reduced to it in polynomial time (i.e., A is NP-hard ), and (ii) A is in NP. Identi-
fying a problem A as NP-complete is useful for two purposes. First, it makes A a
good candidate that can be used to prove the strict inclusion of P in NP. Second,
a proof that A is NP-complete provides strong evidence that A cannot be solved

1Here, we don’t care about the difficulty of actually finding such a proof.
2There are many other similar questions we are currently unable to solve. For example, there

is the NL
?
= L problem regarding the relative power of nondeterministic versus deterministic

log-space computations. The general belief is that NL 6= L.
3All reductions in this thesis are polynomial-time many-one reductions, unless mentioned

otherwise.
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by any deterministic polynomial-time algorithm, because a polynomial-time algo-
rithm for an NP-complete problem A would imply that every problem in A can
be solved in polynomial time, i.e., would imply P = NP.

The theory of NP-completeness was initiated by the work of Cook, Karp,
and Levin. Cook [Coo71] proved that the boolean formula satisfiability problem
SAT is NP-complete.4 SAT is the following decision problem: Given a boolean
formula, does there exist an assignment of the variables that satisfies the formula?
By a reduction from the satisfiability problem, he proved the NP-completeness of
the subgraph isomorphism problem. Building on Cook’s result, Karp [Kar72]
showed that 20 other natural problems (among them, for instance, the above-
mentioned problem Vertex Cover) are NP-complete as well, thus demonstrating
that NP-completeness is a common phenomenon. We remark that Levin [Lev73]
independently obtained similar results. Since the 1970’s, thousands of problems
have been proved NP-complete [GJ79].

Let us come back to the Vertex cover problem given above. As mentioned
there, Vertex Cover is NP-complete. We change the question slightly. Given a
graph G, we want to know if the minimum vertex cover size τ(G) is odd. Call this
problem Odd Minimum Vertex Cover. What is the complexity of Odd Minimum

Vertex Cover? It can be shown that this problem is NP-hard. However, it is not
clear whether this problem is also NP-complete, i.e., whether it is contained in
NP. We try to give an intuitive explanation of why this problem may be harder
than those contained in NP. It is certainly easy to give an efficiently verifiable
proof for the assertion that a graph G has a vertex cover of size not larger than
a given k. But this obviously gives us no information about the parity of the
minimum vertex cover size τ(G). Other attempts to place this problem into NP
failed similarly.

There is a complexity-theoretic explanation for this failure: The Odd Minimum

Vertex Cover problem has been proved by Wagner [Wag87] complete for the
complexity class PNP

‖ , a class that is strongly believed to be a strict superset of

NP. The class PNP
‖ is defined to be the set of problems that can be solved in

polynomial time with a number of parallel queries to an NP oracle (see Section 2
for formal definitions). The notion of PNP

‖ -completeness is analogous to the one

of NP-completeness. That is, a problem A is PNP
‖ -complete if and only if (i) every

problem in PNP
‖ is polynomial-time many-one reducible to A (i.e., A is PNP

‖ -hard ),

and (ii) A is contained in PNP
‖ . The significance of this definition is also analogous

to the NP case: A problem that is PNP
‖ -complete cannot be contained, for example,

4The mere existence of NP-complete sets is no surprise and can be seen much easier by the

canonical complete problem {〈N, w, 0t〉} |N is an encoding of a nondeterministic Turing machine
that accepts w within t steps}. However, the existence of this NP-complete problem alone does
not give any hint that there exists any NP-complete problem that we might be interested to
solve in the real world.
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in the smaller class NP, unless PNP
‖ = NP.5

Let us first show that Odd Minimum Vertex Cover is indeed contained in PNP
‖ .

We have to describe a polynomial-time algorithm that solves the Odd Minimum

Vertex Cover problem with the help of a number of parallel queries to an oracle in
NP. As oracle, we take the problem Vertex Cover, which we know is in NP. Let G
be any given graph with n vertices. Clearly, the minimum vertex cover size τ(G)
is less than n. Make the following list of queries: 〈G, 0〉, 〈G, 1〉, . . . , 〈G, n − 1〉.
Give this list of queries to the oracle Vertex Cover. The oracle returns the
answers to the questions, say, “no”, “no”, . . . , “no”, “yes”, . . . , “yes”.6 With
this list of answers in hand, it is trivial to determine τ(G). Accept G if and only
if τ(G) is odd. In our example graph G of Figure 1.1, we have as list of queries
〈G, 0〉, 〈G, 1〉, 〈G, 2〉, 〈G, 3〉, 〈G, 4〉, 〈G, 5〉. The Vertex Cover oracle returns as list
of answers “no”, “no”, “no”, “yes”, “yes”, “yes”. We conclude that τ(G) = 3.
Hence G ∈ Odd Minimum Vertex Cover

Before turning to the PNP
‖ -hardness of Odd Minimum Vertex Cover, let us

mention some basic facts about PNP
‖ . The class PNP

‖ has several equivalent char-

acterizations (see [Wag90]). The most central one is the characterization of PNP
‖

as PNP[log], the class of problems that can be decided by a logarithmic number of
adaptive queries7 to an NP-oracle [Hem89, KSW87, BH91].8 It follows immedi-
ately from the definition of PNP

‖ that PNP
‖ lies between the first and second levels

of the polynomial hierarchy, i.e., NP ∪ coNP ⊆ PNP
‖ ⊆ PNP.

We return to the issue of PNP
‖ -hardness. How can we prove a problem PNP

‖ -

hard? Wagner [Wag87] provided a strong tool for proving PNP
‖ -hardness (see

Lemma 3.2.16 in Section 3.2.3). This tool has been applied for a large number of
problems; see the survey [HHR97b].

In Chapter 3, we present an alternative approach for proving PNP
‖ -hardness.

Our starting point is a characterization of the class PNP by nondeterministic Tur-
ing machines with a special acceptance type, which goes back to Krentel [Kre88].
Turing machine computations can straightforwardly be encoded into boolean for-
mulas. So we get PNP

‖ -complete versions of the boolean satisfiability problem. To
make the presentation easier, we take an encoding into boolean circuits as an in-
termediate step. (Various proofs of Cook’s theorem in the literature make use of
boolean circuits. These proofs are arguably easier to comprehend than the ones
that encode NPTMs directly into boolean formulas. See, e.g., [ALR04].)

In Section 3.2, we prove that the three satisfiability problems MAX TRUE 3SAT

5And also not in coNP, since PNP
‖ is closed under complement.

6It is easy to see that in this case there cannot be a “no” after a “yes.”
7The queries may depend on the answers to previous queries. Hence they are “adaptive.”
8The above proof that Odd Minimum Vertex Cover is contained in PNP

‖ can also be carried

out using the characterization as PNP[log]. Here, a binary search along the number of vertices is
performed.
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COMPARE, MAX TRUE 3SAT EQUALITY, and ODD MAX TRUE 3SAT are PNP
‖ -complete.

These are variants of the classical NP-complete satisfiability problem 3SAT. We in-
troduce the following notation. For any 3-CNF formula F (boolean formula in con-
junctive normal form having no more than 3 literals in every clause), let max-

�
(F )

denote the maximum number of variables set to true (the number of 1’s) in satis-
fying assignments for F . The problem MAX TRUE 3SAT COMPARE is the following:
Given two 3-CNF formulas F1 and F2, is it true that max-

�
(F1) ≤ max-

�
(F2)?

The problem MAX TRUE 3SAT EQUALITY is defined analogously, but with the ques-
tion “max-

�
(F1) = max-

�
(F2)?”. For the ODD MAX TRUE 3SAT problem, we have

as input one 3-CNF formula F , and the problem is to decide if max-
�
(F ) is odd.

As in the theory of NP-completeness, these satisfiability problems are useful
for proving PNP

‖ -hardness, because they serve well as “first problems” for reduc-
tions. In Section 3.3, we give an example of such a reduction regarding a variant
of the the Vertex Cover problem. In particular, we prove that the problem
Minimum Vertex Cover Compare is PNP

‖ -complete by a reduction from MAX TRUE

3SAT COMPARE. We note that the PNP
‖ -completeness of Minimum Vertex Cover

Compare was proved earlier by Wagner [Wag87] using his sufficient condition for
PNP
‖ -hardness. The Minimum Vertex Cover Compare problem will be used as a

starting point for the reductions in Chapters 4, 5, and 6.

In Section 3.4, we apply the ideas of Section 3.2 to prove PNP-completeness of
the satisfiability problems MAX LEX 3SAT COMPARE and MAX LEX 3SAT EQUALITY.
These decision problems are similar to MAX TRUE 3SAT COMPARE and MAX TRUE

3SAT EQUALITY. Here, we compare the lexicographic maximum satisfying assign-
ments of two given formulas. By reductions from these decision problems, we also
prove that the following problem is PNP-complete: Given two instances of the
Traveling Salesperson problem, decide if the length of an optimal tour for the
first instance is less than or equal to the length of an optimal tour for the second
instance.

In Chapters 4 and 5, we are concerned with computational complexity as-
pects of voting schemes. What kind voting schemes do we consider? We consider
preferential elections, where voters rank the candidates (or more generally: “alter-
natives”9) from most preferred to least preferred. As an example, see the following
four-voter profile (i.e., a listing of all voter’s preferences), where the candidates
are a, b, c, and d.

9We always use the term “candidate.” But of course, voting schemes can be applied in all
situations where groups of people have to make a choice among a set of options or alternatives,
for example the choice of a holiday destination, of what movie to watch next, of where to dine
out, etc.
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Example 1
Voter 1 : a > b > c > d,
Voter 2 : a > b > c > d,
Voter 3 : d > a > b > c,
Voter 4 : c > d > a > b,
Voter 5 : b > c > d > a.

Voter 1 and Voter 2 rank candidate a best, candidate b second best, and candidate
d last, etc. Who is the winner of such an election? That depends on the voting
scheme that is used. A voting scheme is a rule for how to determine the winner(s)
of an election that is given by the preferences of the voters. There is no unique
best rule for determining winners. Look at the following voter profile:

Example 2
40% of the voters: a > b > c,
30% of the voters: b > c > a,
30% of the voters: c > b > a.

Should a be declared the winner? It is not clear. Candidate a is the candidate
with most first-ranked votes (40%). On the other hand, 60% view a as the least
desirable choice.

Social choice theorists have suggested quite a large number of different voting
schemes. In this thesis, we consider only three voting schemes: Young’s voting
scheme, Dodgson’s voting scheme, and Kemeny’s voting scheme. These three vot-
ing schemes are so-called Condorcet voting schemes. A Condorcet voting scheme is
a voting scheme that respects the Condorcet principle [Con85]. A Condorcet win-
ner is a candidate who beats every other candidate in pairwise contest. Candidate
a beats candidate b in pairwise contest if and only if strictly more than half of the
voters prefer a to b. A voting scheme respects the Condorcet principle if it elects
the Condorcet winner10 whenever one exists. The election given in Example 2 has
candidate b (and not a!) as Condorcet winner: (i) b beats a, because 60% of the
voters prefer b to a, and (ii) b beats c, because 70% of the voters prefer b to c.
However, a Condorcet winner does not always exist for a given voter profile. For
example, it can easily be seen that there is no Condorcet winner for the election
in Example 1.

We now give an informal description of the voting schemes treated in this
thesis. Dodgson’s voting scheme was proposed by Charles L. Dodgson (more
commonly known by his pen name, Lewis Carroll) [Dod76]. Given the preference
orders of the voters, the winners according to Dodgson’s voting scheme are deter-
mined as follows. For each candidate, determine the number of adjacent switches
in the voters’ preference orders that are necessary to make the candidate a Con-
dorcet winner. The candidates with the fewest required switches are the Dodgson
winners.

10It is easy to see that a Condorcet winner is uniquely determined if one exists.
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Young [You77] suggested a voting scheme that is similar to Dodgson’s voting
scheme in the sense that it is also based on altered voter profiles. It works as
follows. For each candidate, determine the number of voter preferences that need
to be removed to make the candidate a Condorcet winner. The candidate with
the fewest required removals is the Young winner.

Kemeny [Kem59] introduced a voting scheme that is based on the notion of
consensus ranking. A consensus ranking is a preference order that is closest to the
preferences of the voters. The winners according to Kemeny’s voting scheme are
the candidates that are first-ranked in some consensus ranking. Here, distance
between two given preferences is defined by the number of unordered pairs of
candidates that are ranked differently in these preferences.

We are concerned with the computational complexity of determining the win-
ning candidates under these voting schemes. The investigation of voting schemes
with respect to their computational properties was initiated more than a decade
ago by Bartholdi, Tovey, and Trick [BTT89b, BTT89a, BTT92]. They proved
(among other related problems) that the winner problems for Dodgson’s and Ke-
meny’s voting schemes are NP-hard. They left open the problem of whether
these winner problems are also NP-complete, i.e., if they are contained in NP.
Hemaspaandra, Hemaspaandra, and Rothe [HHR97a] resolved this question for
Dodgson’s voting scheme. In particular, they improved Bartholdi, Tovey, and
Trick’s NP-hardness result to PNP

‖ -completeness.11 This implies that the winner

problem for Dodgson elections is not in NP, unless PNP
‖ coincides with NP.

We extend this line of research. In Chapter 4, we prove that the winner
problem for Young’s voting scheme is PNP

‖ -hard. To this end, we give a reduction
from the Maximum Set Packing Compare problem, which in turn is easily shown
PNP
‖ -complete by reduction from the Minimum Vertex Cover Compare problem.

Furthermore, we investigate a homogeneous variant of Dodgson’s voting scheme.
We show that this variant of Dodgson’s voting scheme can be solved efficiently by
a linear program that is based on an integer linear program given by Bartholdi et
al. [BTT89b].

Bartholdi et al. [BTT89b] proved that the winner problem for Kemeny’s vot-
ing scheme is NP-hard by a reduction from the classical NP-complete digraph
problem Feedback Arc Set. In Chapter 5, we improve this NP-hardness result
to PNP

‖ -completeness. To this end, we define the new problems Feedback Arc

Set Member and Vertex Cover Member, and prove them PNP
‖ -complete by reduc-

ing from the Minimum Vertex Cover Compare problem. We adapt the reduction
given by Bartholdi et al. so that it becomes a reduction from Feedback Arc Set

Member to the problem Kemeny Winner.

These results raise the question of what is special about PNP
‖ that all these

voting schemes are complete for this class. The above-mentioned voting schemes

11For this to make sense, it is necessary to phrase the winner problem appropriately as a
decision problem.
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have in common that they assign a hard-to-compute score to each candidate, and
the candidates with lowest (or highest in the case of Young’s voting system) score
are the winners. The value of the score is in all three cases polynomially bounded
in the size of the input. That easily yields PNP

‖ as an upper bound. We know that
“comparison versions” of NP-hard optimizations problems are often complete for
PNP
‖ (such as the Minimum Vertex Cover Compare problem). That gives us some

hint that these voting schemes might be PNP
‖ -complete. However, it is offhand not

clear whether the voting system at hand is indeed complete for this class.

In Chapter 6, we investigate heuristics for the minimum vertex cover problem.
Two of the most prominent such heuristics are the edge deletion heuristic and the
maximum-degree greedy heuristic, see, e.g., [PS82, Pap94]. For both heuristics,
we study the problem of recognizing those graphs for which that heuristic can
approximate the size of a minimum vertex cover within a constant factor of r,
where r is a fixed rational number. To this end, we introduce the decision problems
SED

r and SMDG
r . For any fixed rational r ≥ 1, SED

r (respectively, SMDG
r ) is the class

of graphs for which the edge deletion heuristic (respectively, the maximum-degree
greedy heuristic) can output a vertex cover of size at most r times the size of a
minimum vertex cover. We prove that these problems are PNP

‖ -complete if r is

from a suitable range. As in the preceding chapters, we obtain PNP
‖ -hardness by

a reduction from the Minimum Vertex Cover Compare problem. To achieve the
PNP
‖ -hardness result of SMDG

r , we modify a construction by Papadimitriou and

Steiglitz [PS82] that they use to analyze the worst-case approximation behavior
of the maximum-degree greedy heuristic.

The analogous decision problem Sr for the maximum independent set problem
has been studied earlier by Bodlaender, Thilikos, and Yamazaki [BTY97]. They
proved that Sr is coNP-hard and belongs to PNP. Closing the gap between these
lower and upper bounds, Hemaspaandra and Rothe [HR98] proved that Sr is
PNP
‖ -complete, see also the survey by E. Hemaspaandra, L. Hemaspaandra, and

Rothe [HHR97b].

In Chapter 7, we study complexity classes that are based on counting the
number of accepting and rejecting computation paths of NPTMs. Valiant [Val79]
introduced the famous class #P, which is the set of all functions that can be de-
fined by the number of accepting paths of some NPTM. He proved several natural
problems complete for #P, for example the problem of computing the permanent
of a zero-one matrix. Fenner, Fortnow, and Kurtz [FFK94] generalized #P to
GapP and developed a theory of gap-definable counting classes.12 The class GapP
is the set of functions that can be defined by the difference (the “gap”) between the
number of accepting and rejecting paths of an NPTM. Many prominent counting
classes, including PP, ⊕P, and C=P, can be conveniently characterized in terms
of GapP functions. Fenner et al. defined the new complexity classes SPP, LWPP,

12Gupta [Gup95] defined independently the same class under the name Z#P.
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and WPP.13 The class SPP is the “gap analog” of the well-known complexity
class UP: The definition of SPP is via GapP functions instead of #P functions.
Since every #P function is a GapP function, we have UP ⊆ SPP. The class
SPP is known to contain an important natural problem—the graph isomorphism
problem [AK02]. Arvind and Vinodchandran [AV97] and Vinodchandran [Vin04]
showed that many group-theoretic computational problems are in SPP or LWPP.

Fenner, Fortnow, and Kurtz [FFK94] introduced the notion of gap-definability.
A gap-definable counting class is a collection of all sets such that, for any set in
the class, the membership of a string in the set depends (in a way particular to the
class) on the difference (gap) between the number of accepting and rejecting paths
produced by some NPTM associated with the set. A formal definition of gap-
definability is given in terms of GapP functions and disjoint sets A, R ⊆ Σ∗× � (see
upcoming Definition 7.5.2). Based on the mechanism of relativizing this definition,
Fenner et al. suggested two ways of defining gap-definability for a relativizable
class: uniform and nonuniform gap-definability. A relativizable class is uniformly
gap-definable if it is gap-definable in every relativized world, where the choice of A
and R is fixed and is independent of the oracle. On the other hand, a relativizable
class is nonuniformly gap-definable if it is gap-definable in every relativized world,
where the choice of A and R may depend on the oracle. Examples of uniformly
gap-definable counting classes are PP, C=P, ⊕P, and SPP. Fenner et al. prove
that also LWPP and WPP are nonuniformly gap-definable, but leave the question
open of whether these classes are also uniformly gap-definable [FFK94]. Fenner
et al. proved that SPP is low for GapP. (A class D is low for a class C if CD ⊆ C.)
This implies that SPP is low for every uniformly gap-definable counting class.

We prove that there is a relativized world where UP∩coUP (and hence SPP) is
low neither for LWPP nor for WPP. As a consequence, we show that both LWPP
and WPP are not uniformly gap-definable. This settles the above mentioned
question by Fenner et al. To get this result, we prove a new combinatorial property
of low-degree multilinear polynomials (Section 7.3), and make use of the well-
known polynomial encoding technique.

Using a similar proof technique, we furthermore construct a relativized world
where WPP is not closed under polynomial-time Turing reductions. This gives a
relativized answer to another open question of Fenner et al. [FFK94]: Relativizable
proof techniques are not sufficient to prove that WPP is closed under polynomial-
time Turing reductions.

13SPP was independently introduced by Gupta [Gup95] under the name ZUP, and by Ogiwara
and Hemachandra [OH93] under the name XP. The first SPP machine is implicit in a paper by
Köbler, Schöning, Toda, and Torán [KSTT92].
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Chapter 2

Preliminaries

2.1 Strings and Languages

Let � , � , and � denote the set of nonnegative integers, rational numbers, and
integers, respectively.

Fix the two-letter alphabet Σ = {0, 1}. Let Σ∗ be the set of all finite length
strings over Σ. For every n ∈ � , Σn denotes the set of all strings of length n in
Σ∗. For any n ∈ � , and any x ∈ Σ∗, xΣn = {xw | w ∈ Σn}. For any x ∈ Σ∗,
|x| denotes the length of the string x, while |x|0 and |x|1 denote, respectively, the
number of 0’s and the number of 1’s in x. For any A ⊆ Σ∗ and n ∈ � , A=n is the
set of strings of length n in A and A≤n is the set of strings of length at most n
in A. The complement of a language A ⊆ Σ∗ is denoted by A and is defined by
A = Σ∗ − A.

For any x ∈ Σ∗, the integer number(x) is defined as the value of the binary
number 1x. We obtain the standard lexicographic ordering ≤ on Σ∗ by defining
for any u, v ∈ Σ∗ that u ≤ v if and only if number(u) ≤ number(v). For any
x ∈ Σ∗, let pos(x) = number(x)−2|x| represent the lexicographic rank of x among
the strings of length |x|. For example, pos(000) = 0 and pos(010) = 2.

For any set A, let ‖A‖ denote the number of elements of A, and let χA denote
the characteristic function of A, i.e., χA(x) = 1 if x ∈ A, and χA(x) = 0 if x 6∈ A.

For any n ∈ � , let [n]
df
= {1, 2, . . . , n}. For A, B ⊆ Σ∗, define the marked (or

disjoint) union of A and B by A ⊕ B = {0w | ∈ A} ∪ {1w | w ∈ B}.
Let 〈·, ·〉 : Σ∗ × Σ∗ → Σ∗ be a standard pairing function, i.e., 〈·, ·〉 is a to-

tal, one-to-one, polynomial-time computable function that has polynomial-time
computable inverses.

2.2 Machines

Our complexity considerations are based on the Turing machine model. For formal
definitions of Turing machines, see any textbook about computational complexity

11
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(e.g, [BC93, HO02, Pap94, Rot05]). A Turing machine has an input tape and
a fixed finite number of work tapes. If the Turing machine is used to compute
functions then it has additionally an output tape. Turing machines that compute
functions are often called transducers.

We distinguish deterministic and nondeterministic Turing machines.
Each configuration of a deterministic Turing machine has at most one successor

configuration, which is determined uniquely by the finite transition table of the
machine. A set A is accepted by a deterministic Turing machine M if for every x ∈
Σ∗, x ∈ A if and only if M working on input x reaches an accepting configuration
(a configuration with an accepting state).

A nondeterministic Turing machine may have more than one successor con-
figuration. The computation of a nondeterministic Turing machine on an input
string can conveniently be described by a computation tree: The root node of the
tree is the start configuration of the machine. Each node corresponds to a con-
figuration reachable from the start configuration in a finite number of steps. The
child nodes of any node represent the successor configurations of that node. The
computation tree of a nondeterministic Turing machine is determined by the in-
put and the finite transition table of the machine. We use the shorthand N(x) to
denote the computation of machine N on input string x. A computation path ρ of
a nondeterministic Turing machine with input x is any sequence of configurations,
where the configurations correspond to the nodes of a path in the computation
tree of N(x) that starts with the root node. A nondeterministic Turing machine
N accepts the string x if and only if N has a computation path that ends with
an accepting configuration. A set A is accepted by a nondeterministic Turing
machine N if for every x ∈ Σ∗, x ∈ A if and only if N accepts x.

Every deterministic Turing machine is by definition also a nondeterministic
Turing machine. The computation tree of a deterministic Turing machine is de-
generated to a single path.

As we are concerned with computational complexity investigations, we use
Turing machines with time bounds. In particular, we consider polynomial-time
bounded deterministic Turing machines (DPTMs) and polynomial-time bounded
nondeterministic Turing machines (NPTMs). A DPTM is a deterministic Turing
machine that for a fixed polynomial p makes at most p(|x|) computation steps
on any input x before reaching an (accepting or rejecting) final configuration.
An NPTM is a nondeterministic Turing machine with the property that every
computation path on input x has length at most p(|x|) for some fixed polynomial
p.

Now we describe the important concept of computation relative to an oracle.
An oracle Turing machine N is a Turing machine that can make use of external
information provided by a set of strings A ⊆ Σ∗. Such a machine can make queries
to the oracle set A in the following way: It writes down a string q on an additional
tape, called the query tape, and changes to a special query state z?. If q ∈ A, then
the state of N changes to qyes, otherwise to state qno. The contents of the query
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tape is erased. We say that N computes relative to oracle A. Both deterministic
and nondeterministic Turing machines can be defined relative to an oracle. All
definitions made so far transfer easily to oracle Turing machines. We write NA(x)
for the computation of oracle Turing machine N working on input x with oracle
A. We make the convention that the computation paths of NA(x) include the
query strings and answers from the oracle A. We write N (·) for an oracle Turing
machine with unspecified oracle.

For any (deterministic or nondeterministic) Turing machine N , let L(N) be
the language accepted by N . For any (deterministic or nondeterministic) oracle
Turing machine N with oracle A, let L(NA) be the language accepted by machine
N computing relative to oracle A.

2.3 Some Complexity Classes

We introduce some complexity classes based on the above machines. All the nota-
tions are standard. See any complexity theory textbook for further explanation.

P is the class of languages that are accepted by a deterministic polynomial-time
Turing machines. NP is the class of languages accepted by some nondeterministic
polynomial-time Turing machine. Let FP denote the class of polynomial-time
computable functions.

These classes can be relativized in a natural way. For any A ⊆ Σ∗, let PA

be the class of all languages L such that there exists an oracle DPTM M with
L = L(MA). Likewise, let NPA be the class of all languages L such that there
exists an oracle NPTM N with L = L(NA). For any A ⊆ Σ∗, let FPA be the
set of functions computable by a polynomial-time bounded oracle transducer with
the help of oracle A. We extend these definitions to the notion of computation
relative to a complexity class C: Let PC =

⋃
A∈C PA, NPC =

⋃
A∈C NPA, and

FPC =
⋃

A∈C FPA.

For any complexity class C, coC is defined by coC = {A | A ∈ C}.
The polynomial hierarchy is defined as follows:

Definition 2.3.1 (Polynomial Hierarchy [MS72, Sto76]) The polynomial
hierarchy is inductively defined as follows:

• ∆p
0 = Σp

0 = Πp
0 = P,

• For every k ≥ 0, ∆p
k+1 = PΣp

k , Σp
k+1 = NPΣp

k , and Πp
k+1 = coΣp

k+1,

• PH =
⋃

k≥0 Σp
k.

In particular, ∆p
1 = P, Σp

1 = NP, and Πp
1 = coNP
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Theorem 2.3.2 ([MS72, Sto76])

1. For each k ≥ 0, Σp
k ∪ Πp

k ⊆ ∆p
k+1 ⊆ Σp

k+1 ∩ Πp
k+1.

2. For each k ≥ 1, Σp
k = Πp

k implies

Σp
k = Πp

k = ∆p
k+1 = Σp

k+1 = Πp
k+1 = · · · = PH.

3. For each k ≥ 0, Σp
k = Σp

k+1 implies

Σp
k = Πp

k = ∆p
k+1 = Σp

k+1 = Πp
k+1 = · · · = PH.

2.4 Reductions and Hardness

Reductions can be used to compare the hardness of languages. In this thesis we
need the following kinds of polynomial-time bounded reductions.

• For languages A and B, we say that A is polynomial-time many-one reducible
to B (A≤p

m B) if and only if there exists a polynomial-time computable
function f such that for all inputs x ∈ Σ∗, x ∈ A if and only if f(x) ∈ B.

• For languages A and B, we say that A is polynomial-time Turing reducible
to B (A≤p

T B) if and only if there exists an oracle DPTM M such that
A = L(MB).

• We say that A is polynomial-time truth-table reducible to B (A ≤p
tt B) if and

only if there exists a DPTM M and a polynomial-time computable function
f such that, for each x ∈ Σ∗ , there exists an integer m such that

1. f(x) = 〈q1, q2, . . . qm〉, and

2. M(〈x, χB(q1), χB(q2), . . . , χB(qm)〉) accepts if and only if x ∈ A.

For any reduction ≤a
b defined above and any complexity class C, a set A is called

≤a
b -hard for C if and only if for all B ∈ C, B ≤a

b A. A set A is called ≤a
b -complete

for C if and only if A is ≤a
b -hard for C and A ∈ C. We denote by

Ra
b(C) = {L | (∃B ∈ C)[L ≤a

b B]}

the reducibility closure of C with respect to ≤a
b . A complexity class C is closed

under ≤a
b if and only if Ra

b(C) ⊆ C.
Unless stated otherwise, the hardness and completeness results in this thesis

are with respect to the polynomial-time many-one reducibility.
We remark that all complexity classes in this thesis are closed under

polynomial-time many-one reductions.
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2.5 Graphs

All undirected graphs are simple, i.e., without multiple edges or loops. For any
graph G, let V (G) denote the set of vertices of G, and let E(G) denote the set
of edges of G. For any vertex v ∈ V (G), the neighborhood of v (denoted N(v))
is the set of vertices in G that are adjacent to v. For any vertex v ∈ V (G), the
degree of v (denoted by degG(v)) is the number of vertices adjacent to v in G; if
G is clear from the context, we omit the subscript and simply write deg(v). Let
∆(G) = maxv∈V (G) deg(v) denote the maximum degree of the vertices of graph G.

Definition 2.5.1 (Vertex Cover) • For any graph G, a subset C ⊆ V (G)
is a vertex cover of G if for all edges {v, w} ∈ E(G), {v, w} ∩ C 6= ∅.

• A vertex cover is said to be a minimum vertex cover of G if it is of minimum
size. For any graph G, let τ(G) denote the size of a minimum vertex cover
of G.

• The problem Vertex Cover is defined as follows:

Vertex Cover = {〈G, k〉 |G is a graph and k ∈ � such that τ (G) ≤ k}.

Definition 2.5.2 (Independent Set) • For any graph G, a subset I ⊆
V (G) is an independent set of G if for all u, v ∈ I, {u, v} /∈ E(G).

• An independent set is said to be a maximum independent set of G if it is
of maximum size. For any graph G, let α(G) denote the size of a maximum
independent set of G.

• The problem Independent Set is defined as follows:

Independent Set = {〈G, k〉 |G is a graph and k ∈ � such that α(G) ≥ k}.

Definition 2.5.3 (Disjoint union, join) Let G and H be two disjoint graphs.

• The disjoint union of G and H is defined to be the graph U = G ∪ H with
vertex set V (U) = V (G) ∪ V (H) and edge set E(U) = E(G) ∪ E(H).

• The join of G and H is defined to be the graph J = G ./ H with vertex set
V (J) = V (G) ∪ V (H) and edge set E(J) = E(G) ∪ E(H) ∪ {{x, y} | x ∈
V (G) ∧ y ∈ V (H)}.
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Definition 2.5.4 (Hamilton Cycle) • A Hamilton cycle in an undirected
graph is a cycle that visits every vertex of the graph exactly once. The prob-
lem Undirected Hamilton Cycle contains exactly those undirected graphs
that have a Hamilton cycle.

• A Hamilton cycle in a directed graph is a directed cycle that visits every
vertex of the graph exactly once. The problem Directed Hamilton Cycle

contains exactly those directed graphs that have a Hamilton cycle.

2.6 Boolean Functions, Circuits, and Formulas

A boolean function is a mapping φ : {0, 1}n → {0, 1}. A truth assignment for a
boolean function φ(x1, x2, . . . , xn) assigns “true” or “false” (i.e., 1 or 0) to each
variable x1, x2 . . . , xn. A truth assignment satisfies φ if it makes φ true, i.e., if
φ(x1, x2, . . . , xn) = 1 with the given assignment. A function φ is satisfiable if there
is some truth assignment that satisfies it.

Standard ways of representing boolean functions are representations as boolean
circuits and boolean formulas. A boolean circuit C(x1, x2, . . . , xn) is a directed
acyclic graph, where each vertex with nonzero indegree (the gates) is labeled with
boolean connectives ∧, ∨, ¬, 1 and each vertex with indegree 0 is labeled by a
variable in {x1, x2, . . . , xn} (the input variables of the circuit). One of the vertices
is distinguished as ouput gate. An input assignment y1, y2, . . . , yn to x1, x2, . . . , xn

maps each input vertex to 0 or 1. The value of each gate is obtained by applying
the boolean connective given by the label to the values of its immediate prede-
cessors. The value C(y1, y2, . . . , yn) that is computed by the circuit C for the
assignment y1, y2, . . . , yn is defined by the value of the output gate. Occasionally,
we write C(y) to denote C(y1, y2, . . . , yn), where y is the string y1y2 . . . yn. The
size of a circuit C is the number of vertices in C.

A boolean formula is a circuit in which every gate has outdegree at most one.
A boolean formula is in CNF (in conjunctive normal form) if it is a conjuction of
clauses. A clause is a disjunction of literals. A literal is an occurrence of a variable
or its negation. A formula is in 3-CNF if it is in CNF, and each clause contains at
most 3 literals. For example, the following formula is in 3-CNF: (¬x3∨x1∨¬x2)∧
(x3)∧(x2∨x3). Here, the clause (¬x3∨x1∨¬x2) contains the literals ¬x3, x1, and
¬x2. The size of a CNF-formula F is the number of occurrences of variables in F .
An assignment satisfies a CNF-formula F if it makes every clause in F true, i.e.,
if it makes at least one literal in every clause true. The decision problem 3SAT is
defined by 3SAT = {F | F is a 3-CNF formula that has a satisfying assignment}.

1Circuits can be defined over other boolean connectives as well. The set of connectives
chosen here is sufficient to represent all boolean functions. (That is, {∧,∨,¬} is an example for
a complete basis.)
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Parallel Access to NP

3.1 The class PNP
‖

The class PNP contains exactly those languages that can be accepted by a de-
terministic polynomial-time Turing machine with the help from an oracle in NP.
We obtain subclasses of PNP by restricting the oracle access of the DPTM. We
obtain the class PNP

‖ if we require the DPTM to make all queries to the NP oracle
in parallel. That means the following. For any input, the machine computes a
list of query strings and gives that list to the oracle. The oracle returns for each
string in the list the answer (i.e, ”yes” or ”no” depending on the containment of
the string in the oracle). Finally, the machine accepts or rejects the input string
based on the answers it got from the oracle. Hence the queries to the oracle may
not depend on the answers to previous queries. From the definitions it is immedi-
ate that PNP

‖ coincides with Rp
tt(NP), the reducibility closure of NP with respect

to polynomial-time truth-table reduction.

Papadimitriou and Zachos [PZ83] introduced the class PNP[log], the set of all
languages that can be accepted by a DPTM that makes at most O(log n) queries
to an NP oracle. Here the queries may depend on the answers to previous queries.

It turned out that the class PNP[log] coincides with PNP
‖ (independently shown

by Hemaspaandra [Hem89], Köbler, Schöning, Wagner [KSW87], Buss and
Hay [BH91]).

There are a number of other natural characterizations of PNP
‖ : PNP

‖ equals

the logarithmic space classes LNP, LNP[log], and LNP
|| [Wag90]. Wagner [Wag90]

generalized PNP
‖ = PNP[log] to the polynomial hierarchy. For every i ≥ 1, he

defined Θp
i+1 = PΣp

i [log], the class of languages that can be decided in polynomial
time with at most O(logn) queries to a Σp

i -oracle. It is easy to see that Θp
i ⊆

∆p
i ⊆ Σp

i ∪ Πp
i ⊆ Θp

i+1 ⊆ ∆p
i+1. All these inclusions are strongly conjectured

to be strict. Thus PNP
‖ = Θp

2 lies between the NP/coNP- and ∆p
2-levels of the

polynomial hierarchy.

17
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The class PNP
‖ is of importance in the investigation of the existence of sparse

Turing-complete sets for NP. Mahaney [Mah82] showed that if NP has a sparse
polynomial-time Turing-complete set, then the polynomial hierarchy is contained
in ∆p

2 . Kadin [Kad89] improved this result to a collapse to PNP
‖ : If there exists

a sparse polynomial-time Turing-complete set for NP, then PH ⊆ PNP
‖ . There is

relativized evidence that this collapse is optimal [Kad89].
The naturalness of a complexity class is often judged by the existence of impor-

tant complete problems. From the above characterizations of PNP
‖ it is not imme-

diately clear how to prove a given problem PNP
‖ -hard.1 However, Wagner [Wag87]

has provided a powerful tool for proving PNP
‖ -hardness (see Theorem 3.2.16). Us-

ing that tool, he was able to show that NP-hard optimizations problems often give
rise to a PNP

‖ -complete problem. Consider for instance the classical NP-complete

problem Vertex Cover. Wagner [Wag87] has proved that the following vertex
cover problems are PNP

‖ -complete:

• Given a graph G, determine if a minimum vertex cover of G has odd size
(Odd Minimum Vertex Cover problem).

• Given two graphs G1 and G2, determine if the minimum vertex cover sizes
of G1 and G2 equal (Minimum Vertex Cover Equality problem).

• Given two graphs G1 and G2, determine if the size of a minimum vertex
cover of G1 is smaller than or equal to the size of a minimum vertex cover
of G2 (Minimum Vertex Cover Compare problem).

There are even more natural PNP
‖ -complete problems. As an example, see the

beautiful paper by Hemaspaandra, Hemaspaandra, and Rothe [HHR97a]. In
that paper, the authors show that the winner problem for a sophisticated voting
scheme proposed by Lewis Dodgson more than 100 years ago is complete for PNP

‖ .
For more results in this line we recommend the survey paper by Hemaspaandra,
Hemaspaandra, and Rothe [HHR97b].

In the next section we take a different approach for proving PNP
‖ -hardness,

based on a characterization of PNP
‖ that can be derived from Krentel’s character-

ization of PNP-computations. Starting from this machine-based characterization,
we derive satisfiability problems that are complete for PNP

‖ . Of main interest are
the satisfiability comparison problems. They allow an easy reduction to optimum
comparison problems of several NP-complete optimization problems. In this way,
we get an alternative proof for Wagner’s result that the Minimum Vertex Cover

Compare problem is PNP
‖ -complete. We present our approach here because it is

very simple and natural. It derives PNP
‖ -complete satisfiability problems from

a machine model in the same way as the NP-complete problem SAT in Cook’s
theorem [Coo71].

1We are only concerned with hardness relative to polynomial-time many-one reduction.
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3.2 PNP
‖ -Complete Satisfiability Problems

In this section, we prove versions of the boolean satisfiability problem (see Defi-
nitions 3.2.5 and 3.2.12) complete for the complexity class PNP

‖ . We start with a
short outline for the ideas behind of these results.

The class PNP
‖ is defined by DPTMs that have oracle access to a set in NP.

It is not immediately clear how to find complete problems for this class, since
it is defined as “composition” of two complexity classes. What helps in this
situation, is a characterization of the class by single NPTMs with a certain specific
acceptance type. To that aim, we provide a characterization of PNP

‖ in terms

of NPTMs with output tape (Proposition 3.2.3). We get this characterization
by a modification of an analogous characterization of PNP (Proposition 3.2.2),
which goes back to Krentel [Kre88]. Such machine-based characterizations often
lead to complete satisfiability problems in a straightforward way, because Turing
machine computations can easily be encoded into boolean formulas. We get two
such results, which are contained in Subsections 3.2.1 and 3.2.2.

In Subsection 3.2.1, we consider the following decision problem. We are given
two 3-CNF formulas F1 and F2. Let max-

�
(F ) denote the maximum number of

variables set to true (the number of 1’s) in satisfying assignments for 3-CNF for-
mula F . We are interested in the problem of deciding if max-

�
(F1) ≤ max-

�
(F2).

2

Theorem 3.2.6 establishes the PNP
‖ -completeness of this problem. Starting from

the machine-based characterization of PNP
‖ stated in Proposition 3.2.3, via the

auxiliary result of Lemma 3.2.7, we first get a proof of Theorem 3.2.6 for circuits
instead of formulas (Lemma 3.2.8). To complete the proof of Theorem 3.2.6, we
apply the well-known technique of converting circuits into satisfiability equivalent
3-CNF formulas.

In Subsection 3.2.2, we are concerned with a related decision problem. Here,
we are given only one 3-CNF formula F , and the problem consists of deciding if
max-

�
(F ) is odd or even. The PNP

‖ -completeness proof of this problem is similar
to the proof of Theorem 3.2.6.

We make use of nondeterministic Turing machines with output tape. Each
path of these machines is either accepting or rejecting, and additionally writes a
string over Σ∗ on the output tape.

The following notation will be convenient.

Definition 3.2.1 We define the following functions:

• For every NPTM N with output tape and x ∈ Σ∗, outN(x, ρ) denotes the
string that is output by N(x) working on path ρ.

2If one of F1 or F2 is not satisfiable, then max- � (F1) or max- � (F2) is undefined, and hence
max- � (F1) ≤ max- � (F2) is not true.
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• For every NPTM N and input x ∈ Σ∗,

max-
�
(N, x) = max

{
| outN(x, ρ)|1 | ρ is a path of N(x)

}
.3

Proposition 3.2.2 goes back to Krentel [Kre88]. It gives a characterization of
the complexity class PNP by nondeterministic polynomial-time bounded Turing
machines with output tape.

Proposition 3.2.2 ([Kre88]) A language A ⊆ Σ∗ is in PNP if and only if there
is an NPTM N with output tape such that the following statements are true for
every x ∈ Σ∗:

1. For every path of N(x), the output has the same length.

2. Every two paths ρ1 and ρ2 of N(x) have the same acceptance behavior when-
ever they have the same output.

3. x ∈ A if and only if N accepts x on ρmax, where ρmax is any computation
path with lexicographically maximum output.

A modification gives a similar machine-based characterization of the class PNP
‖ .

Proposition 3.2.3 A language A ⊆ Σ∗ is in PNP
‖ if and only if there is an NPTM

N with output tape such that the following statements are true for every x ∈ Σ∗:

1. Every two paths ρ1 and ρ2 of N(x) have the same acceptance behavior when-
ever they have the same number of 1’s in the output.

2. x ∈ A if and only if N accepts x on ρmax, where ρmax is a computation path
with the maximum number of 1’s in the output.

Proof In the proof, we make use of the above mentioned fact that PNP
‖ = PNP[log].

“=⇒” Let A ∈ PNP[log] via oracle DPTM M with oracle C ∈ NP, where w.l.o.g.
M queries exactly z(n) = O(log n) strings to the oracle C for every input of length
n.

Since C ∈ NP, there exist D ∈ P and a polynomial r such that for every
x ∈ Σ∗,

x ∈ C ⇐⇒ (∃y : |y| ≤ r(|x|))[〈x, y〉 ∈ D].

On input x, NPTM N works as follows:

3Recall that for every w ∈ Σ∗, |w|1 denotes the number of 1’s in w.
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Step 1: Nondeterministically guess b1, b2, . . . , bz(|x|) ∈ {0, 1}.

Step 2: On each path ρ with guessed b1, b2, . . . , bz(|x|), construct the oracle queries
q1, q2, . . . , qz(|x|) ∈ Σ∗ by simulation of MC(x), where the answers to the
queries of M to C are substituted by b1, . . . , bz(|x|). (Take “yes” as answer
to the ith query if bi = 1; take “no” as answer to the ith query if bi = 0.)

Step 3: Successively, for each i with bi = 1, nondeterministically guess a string yi

with |yi| ≤ r(|qi|). Verify that each 〈qi, yi〉 is in D. Output the string “0”
and reject on the current path ρ if at least one such test fails. Otherwise
continue as follows on ρ.

Step 4: Output the string w = 11 . . . 1, where |w| = number(b1 . . . bz(|x|)) + 1.
Since z(n) = O(log n), the length of w is polynomially bounded in |x|.

Step 5: Accept on ρ if and only if the computation of MC(x) simulated in Step 2
was accepting.

It is obvious that the machine N thus described works in polynomial time.

Let ρmax be any path reaching Step 4 with lexicographically maximum
b1 . . . bz(|x|) among all paths reaching Step 4. It is easy to see that

• The bits b1 . . . bz(|x|) guessed on ρmax represent the correct oracle answers to
the queries made by MC on input x.

• The string w output on ρmax has maximum number of 1’s in the output
string among all paths of N , i.e., |outN(x, ρmax)|1 = max-

�
(N, x).

Hence MC(x) accepts if and only if N(x) accepts in Step 5 on path ρmax.

“⇐=” Let N be an NPTM with output tape as in Proposition 3.2.3. Hence
x ∈ A if and only if N accepts x on ρmax, where ρmax is a computation path with
outN (x, ρmax) = max-

�
(N, x). We have to show that A ∈ PNP[log].

Let q be a polynomial that bounds the length of the ouputs of NPTM N .
Our PNP[log]-algorithm for deciding A consists of two steps. First, we determine
max-

�
(N, x) by binary search with O(log(q(|x|))) queries to the set H1, where H1

is defined by

H1 = {〈x, k〉 |N(x) has a path ρ with | outN(x, ρ)|1 ≥ k}.

Clearly, H1 ∈ NP. Second, we check whether N(x) accepts on any (and hence on
all) paths with max-

�
(N, x) 1’s in the output. This can be done with one query

to H2 ∈ NP, where

H2 = {〈x, k〉 |N(x) has an accepting path ρ with | outN (x, ρ)|1 = k}.
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We can replace the oracles H1 and H2 by a single oracle by taking the marked
union H = H1 ⊕ H2 of H1 and H2, which is also in NP. That yields a PNP

‖ -

algorithm for A. (Proposition 3.2.3)

Definition 3.2.4 We define the following functions: 4

1. For every A ⊆ Σ∗ and x ∈ Σ∗,

max-
�
(A, x) = max

{
|w|1 | 〈x, w〉 ∈ A

}
;

max-
�
-set(A, x) =

{
w | 〈x, w〉 ∈ A and |w|1 = max-

�
(A, x)

}
.

2. For every boolean function (circuit or formula) φ,

max-
�
(φ) = max

{
|y|1 | φ(y) = 1

}
;

max-
�
-set(φ) = {y | φ(y) = 1 and |y|1 = max-

�
(φ)}.5

3.2.1 Satisfiability Comparison Problems

We define the problems that we prove PNP
‖ -complete in this section.

Definition 3.2.5 We define the following satisfiability problems for boolean for-
mulas:

1. MAX TRUE 3SAT COMPARE

Instance: Two 3-CNF formulas F1 and F2.
Question: Does it hold that max-

�
(F1) ≤ max-

�
(F2)?

2. MAX TRUE 3SAT EQUALITY

Instance: Two 3-CNF formulas F1 and F2.
Question: Does it hold that max-

�
(F1) = max-

�
(F2)?

It is easy to show that MAX TRUE 3SAT COMPARE and MAX TRUE 3SAT

EQUALITY are in PNP
‖ . We define the following auxiliary set H:

H = {〈F, k〉 | F is a 3-CNF formula, and max-
�
(F ) ≥ k}

4If the maximum is taken over the empty set, then the function is undefined.
5Recall that φ(y) stands for φ(y1, y2, . . . , yn), where y1y2 . . . yn = y.
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The set H is clearly in NP. Let F1 and F2 be two 3-CNF formulas with no more
than n variables. We know that max-

�
(F1) ≤ n and max-

�
(F2) ≤ n. We can

in polynomial time in parallel query the tuples 〈F1, 0〉, 〈F1, 1〉, . . . , 〈F1, n〉 as well
as 〈F2, 0〉, 〈F2, 1〉, . . . , 〈F2, n〉 to the NP-oracle H. With the answers to all these
queries, we know max-

�
(Fi), i ∈ {1, 2}, since max-

�
(Fi) equals the largest k such

that 〈Fi, k〉 ∈ H. It is then trivial to determine if max-
�
(F1) ≤ max-

�
(F2) or if

max-
�
(F1) = max-

�
(F2). Obviously this is a PNP

‖ -algorithm.

The next theorem establishes the PNP
‖ -hardness of MAX TRUE 3SAT COMPARE

and MAX TRUE 3SAT EQUALITY. Note that the reduction has the additional prop-
erty that it guarantees max-

�
(F1) ≥ max-

�
(F2). This will be useful in the next

section.

Theorem 3.2.6 For every set A ∈ PNP
‖ , there exists a polynomial-time com-

putable function f such that for each x ∈ Σ∗, f(x) = 〈F1, F2〉 is a pair of satisfiable
3-CNF formulas, and

x ∈ A =⇒ max-
�
-set(F1) = max-

�
-set(F2);

x /∈ A =⇒ max-
�
(F1) > max-

�
(F2).

We are going to prove this theorem first for circuits instead of formulas, which
is easier. As intermediate step, we need the following auxiliary lemma.

Lemma 3.2.7 For every set A ∈ PNP
‖ , there are sets B1, B2 ∈ P and a polynomial

p̃ such that for every x ∈ Σ∗

1. x ∈ A =⇒ max-
�
(B1, x) = max-

�
(B2, x);

x /∈ A =⇒ max-
�
(B1, x) > max-

�
(B2, x).

2. x ∈ A =⇒ max-
�
-set(B1, x) = max-

�
-set(B2, x).

3.
{
w | 〈x, w〉 ∈ Bi

}
⊆ Σ≤p̃(|x|) for every x ∈ Σ∗ (i ∈ {1, 2}).

Proof Let A be an arbitrary set in PNP
‖ . Let NPTM N be as given by Propo-

sition 3.2.3. We fix a function “code” that encodes computation paths as sets
over Σ∗. Recall that we defined computation paths to be sequences of Turing ma-
chine configurations. The function “code” has to be one-to-one, and polynomial-
time computable and invertible. Moreover, we require that for any given string
“w1 code(ρ)w2,” the start and end of “code(ρ)” can be identified in polynomial
time.

Let p be a polynomial bounding the length of code(ρ), i.e.,

p(n) ≥ max{| code(ρ)| | ρ is a computation path of N(x) for some x ∈ Σn}
for every n ∈ � . Let

B1 =df

{
〈x, w〉 | x, w ∈ Σ∗ and w = 1 outN(x, ρ)p(|x|)+1 code(ρ)

for some path ρ of N(x)} , and
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B2 =df

{
〈x, w〉 | x, w ∈ Σ∗ and w = 1 outN(x, ρ)p(|x|)+1 code(ρ)

for some accepting path ρ of N(x)} ∪ {〈x, 0〉}.6

Clearly, B1 and B2 are in P. Define p̃ to be a polynomial that is large enough
such that for every x, w ∈ Σ∗ and i ∈ {1, 2},

〈x, w〉 ∈ Bi =⇒ |w| ≤ p̃(|x|).

Let x ∈ A. Then N accepts x on every path ρ with | outN(x, ρ)|1 =
max-

�
(N, x). It is easy to see that this implies

max-
�
-set(B1, x) = max-

�
-set(B2, x).

Let x /∈ A. Then N rejects x on every path ρ with | outN(x, ρ)|1 = max-
�
(N, x).

Fix any path ρmax with | outN(x, ρmax)|1 = max-
�
(N, x). Then for every accepting

path ρacc of N(x),
| outN(x, ρmax)|1 > | outN (x, ρacc)|1.

Because p(|x|) + 1 > | code(ρ)| is true for every path ρ of N(x), it follows that for
every accepting path ρacc of N(x)

|1 outN(x, ρmax)
p(|x|)+1 code(ρmax)|1 > |1 outN(x, ρacc)

p(|x|)+1 code(ρacc)|1. (3.1)

To see that Equation 3.1 implies the desired inequality

max-
�
(B1, x) > max-

�
(B2, x),

note that
max-

�
(B1, x) ≥ |1 outN(x, ρmax)

p(|x|)+1 code(ρmax)|1,
and

max-
�
(B2, x) =

max(0, max{|1 outN (x, ρ′)p(|x|)+1 code(ρ′)|1 | ρ′ is an accepting path of N(x)}).

(Lemma 3.2.7)

Lemma 3.2.8 For every set A ∈ PNP
‖ , there exists a polynomial-time computable

function f such that for each x ∈ Σ∗, f(x) = 〈C1, C2〉 is a pair of satisfiable
boolean circuits, and

x ∈ A =⇒ max-
�
-set(C1) = max-

�
-set(C2);

x /∈ A =⇒ max-
�
(C1) > max-

�
(C2).

6We put 〈x, 0〉 in B2 in order to treat the case that N(x) has no accepting paths at all.
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Proof Let A ∈ PNP
‖ . Let B1 and B2 be sets in P, and p̃ a polynomial belonging

to A as stated in Lemma 3.2.7. The proof essentially consists of transforming the
sets B1 and B2 into boolean circuits C1 and C2. For technical reasons (because
C1 and C2 will have a fixed number of inputs), we will work with the slightly
modified sets B′

1 and B′
2 instead of B1 and B2:

B′
i =

{
〈x, w′〉 | |w′| = p̃(|x|) and (∃w)[〈x, w〉 ∈ Bi ∧ w′ = 0∗w]

}
(i ∈ {1, 2}).

Let MB′
1

and MB′
2

be DPTMs that accept B ′
1 and B′

2, respectively. It is well
known (see, e.g., [ALR04, Pap94]) that DPTMs can be simulated by circuits of
polynomial size. Let x be an arbitrary string in Σ∗. We construct circuits C1 and
C2 that simulate MB′

1
and MB′

2
on all inputs 〈x, y〉, where y ∈ Σp̃(|x|), such that

〈x, y〉 ∈ B′
i ⇐⇒ Ci(y) = 1 (i ∈ {1, 2}).

Let f(x) = 〈C1, C2〉. It is easy to see that function f has the properties stated in
the lemma. (Lemma 3.2.8)

The following lemma formalizes the folklore result that every boolean circuit
C can be transformed in polynomial time into a boolean function F in such a way
that C is satisfiable if and only F is satisfiable.

Lemma 3.2.9 (Folklore) There exists a polynomial-time computable func-
tion f such that for every circuit C(x1, x2, . . . , xn), f(C) is a 3-CNF formula
G(x1, x2, . . . , xn, h1, h2, . . . , hm) with the following properties for all x1, x2, . . . xn ∈
{0, 1},

• C(x1, x2, . . . , xn) = 0 =⇒ (∀h1 · · · ∀hm)[G(x1, x2, . . . , xn, h1, . . . , hm)] = 0;

• C(x1, x2, . . . , xn) = 1 =⇒ (∃!h1 · · · ∃!hm)[G(x1, x2, . . . , xn, h1, . . . , hm)] = 1.7

Proof As this is a standard result, we give only an outline of the idea. See, e.g.,
the textbooks [ALR04, CLRS01, Pap94] for more details. Suppose that C has
n inputs and m gates. The formula G we construct has variables x1, x2, . . . , xn

representing the inputs of C, and variables h1, h2, . . . , hm, representing the values
of gates g1, g2, . . . , gm of C. For each gate gi, we add a subformula Gi to G. For
example, if gi is an ∧-gate that has incoming arcs from gates gj and gk, then

Gi = hi ↔ (hj ∧ hk),
8 (3.2)

which can be written equivalently with 3 clauses as

(¬hi ∨ hj) ∧ (¬hi ∨ hk) ∧ (¬hj ∨ ¬hk ∨ hi).

7We use (∃!h1 . . . ∃!hm)[G(h1, . . . hm)] to indicate that there is a unique assignment
h′

1, . . . , h
′
m ∈ {0, 1} for G such that G(h′

1, . . . h
′
m) is true.

8If gi has incoming arcs from input vertices, then take accordingly a subformula of the form
Gi = hi ↔ (xj ∧ xk).
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Finally, let

G = G1 ∧ G2 ∧ . . . ∧ Gm ∧ hm,

where gm is assumed to be the output gate of the circuit. The construction ensures
that the following are true:

• If C with input x1, x2, . . . , xn evaluates to false, then there are no
h1, h2, . . . , hm making G(x1, x2, . . . , xn, h1, h2, . . . , hm) true.

• If C with input x1, x2, . . . , xn evaluates to true, then there is a unique
assignment h1, h2, . . . , hm making G(x1, x2, . . . , xn, h1, h2, . . . , hm) true.
This assignment is uniquely determined by the values that the gates of C
get with input assignment x1, x2, . . . , xn: Variable hi gets value 1 if and
only if the value of gate gi is 1. (This can be inductively proved using
subformulas (3.2)). (Lemma 3.2.9)

We need the following slightly stronger result, because we have here to deal
with a pair of circuits.

Lemma 3.2.10 There exists a polynomial-time computable function f such that
for every pair of boolean circuits 〈C1, C2〉, f(C1, C2) is a pair of 3-CNF formulas
〈G1, G2〉 such that

1. G1 and G2 have the properties as in Lemma 3.2.9: For all x1, x2, . . . , xn ∈
{0, 1} and i ∈ {1, 2},

• Ci(x1, . . . , xn) = 0 =⇒ (∀h1 · · · ∀hm)[Gi(x1, . . . , xn, h1, . . . , hm)] = 0;

• Ci(x1, . . . , xn) = 1 =⇒ (∃!h1 · · · ∃!hm)[Gi(x1, . . . , xn, h1, . . . , hm)] = 1.

2. Additionally, for all x1, x2, . . . , xn ∈ {0, 1},

C1(x1, x2, . . . , xn) = 1 ∧ C2(x1, x2, . . . , xn) = 1

=⇒
(∃!h1 · · · ∃!hm)[G1(x1, . . . , xn, h1, . . . , hm) = 1∧G2(x1, . . . , xn, h1, . . . , hm) = 1].

Proof The proof uses the ideas of the previous lemma. A bit extra care is needed
to treat the case that we have an assignment x1, x2, . . . , xn that makes C1 and
C2 true simultaneously: To make sure that G1(x1, x2, . . . , xn, h1, h2, . . . , hm) and
G2(x1, x2, . . . , xn, h1, h2, . . . , hm) are satisfied with the same unique h1, h2, . . . , hm,
we modify the construction in the proof of Lemma 3.2.9 slightly. Suppose that C1

and C2 have respectively m1 and m2 gates. Let g1, g2, . . . , gm (m = m1 +m2) enu-
merate all gates occurring in C1 or C2. Let G1

1, G
2
1, . . . , G

m1

1 and G1
2, G

2
2, . . . , G

m2

2
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be the subformulas obtained analogously to Eq. (3.2). The formulas G1 and G2

are then defined by

G1 = G1
1 ∧ G2

1 ∧ . . . ∧ Gm1

1 ∧ G1
2 ∧ G2

2 ∧ . . . ∧ Gm2

2 ∧ hm1
;

G2 = G1
1 ∧ G2

1 ∧ . . . ∧ Gm1

1 ∧ G1
2 ∧ G2

2 ∧ . . . ∧ Gm2

2 ∧ hm2
,

where gm1
and gm2

are assumed to be the output gates of C1 and C2, respectively.
In summary, the simple idea is that we process the gates of both circuits in

the construction of both formulas. Only the clauses that take the value from the
output gate (clause (hm1

) for C1, clause (hm2
) for C2) are different. It is easy to

see that this ensures that the second condition of the lemma is satisfied.
(Lemma 3.2.10)

With the help of the previous lemma, we can now prove Theorem 3.2.6.

Proof of Theorem 3.2.6 Because of Lemma 3.2.8, we only have to show
that there is a polynomial-time computable function f that transforms each pair
〈C1, C2〉 of satisfiable circuits to a pair of satisfiable 3-CNF formulas 〈F1, F2〉 such
that

max-
�
-set(C1) = max-

�
-set(C2) =⇒ max-

�
-set(F1) = max-

�
-set(F2); (3.3)

max-
�
(C1) > max-

�
(C2) =⇒ max-

�
(F1) > max-

�
(F2). (3.4)

Take the formulas G1 and G2 stated in Lemma 3.2.10. We define
Fi(x

1
1, . . . , x

m+1
1 , x1

2, . . . , x
m+1
2 , . . . , x1

n, . . . , xm+1
n , h1, . . . , hm) to be equivalent to Gi

(i ∈ {1, 2}), but with each variable xk replicated m + 1 times (by adding
clauses equivalent to x1

k ↔ xj
k (i.e., clauses (¬x1

k ∨ xj
k) and (x1

k ∨ ¬xj
k)) for each

j ∈ {2, 3, . . . , m + 1}).
It is easy to see that there exist integers δ1, δ2 ∈ {0, 1, . . . , m} such that,

max-
�
(Fi) = (m + 1) max-

�
(Ci) + δi (i ∈ {0, 1}).

Thus (3.4) is proved.
Statement (3.3) is also easy to prove: Let C1 and C2 be circuits with

max-
�
-set(C1) = max-

�
-set(C2). Because of the replication of variables in F1

and F2, assignments with maximum number of 1’s within the x-variables in Fi

correspond to assignments with maximum number of 1’s in Ci. For satisfying
assignments to F1 and F2, the values of the h-variables are uniquely determined
by the values of the x-variables. But we know that the satisfying assignments
with maximum number of 1’s for C1 and C2 are the same. Hence the assignments
with maximum number of 1’s are the same for F1 and F2, and (3.3) is proved.

(Theorem 3.2.6)

Corollary 3.2.11 MAX TRUE 3SAT COMPARE and MAX TRUE 3SAT EQUALITY are
complete in PNP

‖ under polynomial-time many-one reductions.
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3.2.2 Satisfiability Parity Problem

In this subsection we prove that the below defined problem ODD MAX TRUE 3SAT

is PNP
‖ -complete. The proof is not presented in full detail, because it is similar to

the one in Subsection 3.2.1.

Definition 3.2.12 We define the following satisfiability problem for boolean for-
mulas:

ODD MAX TRUE 3SAT

Instance: A 3-CNF formula F .
Question: Does it hold that max-

�
(F ) ≡ 1 (mod 2)?

That this problem is contained in the class PNP
‖ can be shown as demonstrated

for MAX TRUE 3SAT COMPARE and MAX TRUE 3SAT EQUALITY. The next theorem
establishes the PNP

‖ -hardness of ODD MAX TRUE 3SAT.

Theorem 3.2.13 For every set A ∈ PNP
‖ , there exists a polynomial-time com-

putable function f such that for each x ∈ Σ∗, f(x) = F is a satisfiable 3-CNF
formula, and

x ∈ A ⇐⇒ max-
�
(F ) ≡ 1 (mod 2). (3.5)

We need the following auxiliary lemma.

Lemma 3.2.14 For every A ∈ PNP
‖ there are a set B ∈ P and a polynomial p̃

such that for every x ∈ Σ∗

1. x ∈ A ⇐⇒ max-
�
(B, x) ≡ 1(2), and

2.
{
w | 〈x, w〉 ∈ B

}
⊆ Σ≤p̃(|x|) for every x ∈ Σ∗.

Proof Let A be an arbitrary set in PNP
‖ . Let NPTM N be as given by Propo-

sition 3.2.3. As in the proof of Lemma 3.2.7, let p be a polynomial bounding the
length of code(ρ). In place of two sets B1 and B2, we define now a single set B:

B =df

{
〈x, w〉 | x, w ∈ Σ∗ and w = outN(x, ρ)2p(|x|)+2 code(ρ)20

for some rejecting path ρ of N(x)}
∪
{
〈x, w〉 | x, w ∈ Σ∗ and w = outN(x, ρ)2p(|x|)+2 code(ρ)21

for some accepting path ρ of N(x)} .

Clearly, B ∈ P. Define p̃ to be a polynomial that is large enough such that for
every x, w ∈ Σ∗,

〈x, w〉 ∈ B =⇒ |w| ≤ p̃(|x|).
We prove the first property stated in the lemma. Let x ∈ Σ∗.
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Case 1: x ∈ A.
Then N(x) accepts on every path with maximum number of 1’s in the
output. Hence there is a path ρmax with maximum number of 1’s in the
output9 such that

max-
�
(B, x) = max{|y|1 | 〈x, y〉 ∈ B}

=
∣∣∣outN (x, ρmax)

2p(|x|)+2 code(ρmax)
21
∣∣∣
1
.

(3.6)

Hence max-
�
(B, x) ≡ 1(2).

Case 2: x /∈ A.
Then N(x) rejects on every path with maximum number of 1’s in the output.
Hence there is a path ρmax with maximum number of 1’s in the output such
that

max-
�
(B, x) = max{|y|1 | 〈x, y〉 ∈ B}

=
∣∣∣outN (x, ρmax)

2p(|x|)+2 code(ρmax)
20
∣∣∣
1
.

(3.7)

Hence max-
�
(B, x) ≡ 0(2).

(Lemma 3.2.14)

Proof of Theorem 3.2.13 The proof is analogous to (and in fact easier than)
the proof of Theorem 3.2.6: First, construct a circuit C such that

x ∈ A ⇐⇒ max-
�
(C) ≡ 1 (mod 2). (3.8)

Second, construct a 3-CNF formula G from C as described in Lemma 3.2.9.
Finally, obtain F from G by duplicating the variables hi, so that the parity
information of the variables xi is preserved. (Theorem 3.2.13)

Corollary 3.2.15 ODD MAX TRUE 3SAT is complete in PNP
‖ under polynomial-

time many-one reduction.

9It can be seen that this path ρmax is a path with maximum number of 1’s in the output
that has additionally the property that | code(ρmax)|1 is maximum.
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3.2.3 An Alternative Proof for Wagner’s Lemma

Using Lemma 3.2.14, we can give an alternative proof of Wagner’s lemma.

Lemma 3.2.16 [Wagner 1987]10 Let D be an NP-complete set and let E be an
arbitrary set. If there exists a polynomial-time computable function g such that

∥∥{i | xi ∈ D
}∥∥ ≡ 1 (mod 2) ⇐⇒ g(x1, . . . , x2k) ∈ E (3.9)

for all k ≥ 1, x1, . . . , x2k ∈ Σ∗ with χD(x1) ≥ χD(x2) ≥ · · · ≥ χD(x2k), then E is
PNP
‖ -hard.

Proof Let E be a set satisfying the conditions of Wagner’s lemma. Let A be an
arbitrary set in PNP

‖ . We have to prove that there is a polynomial-time many-one
reduction from A to E.

Let B be a set in P and p̃ be a polynomial that belong to A according to
Lemma 3.2.14. Let

B̂ =
{
〈x, n〉 | n ∈ � and (∃y) [〈x, y〉 ∈ B and |y|1 ≥ n]

}
.

Clearly, B̂ ∈ NP. Because D is NP-complete, there exists a polynomial-time
many-one reduction f bB from B̂ to the D. Using Lemma 3.2.14, we have

x ∈ A ⇐⇒ max
{
|w|1 | |w| ≤ p̃(|x|) and 〈x, w〉 ∈ B

}
≡ 1 (mod 2)

⇐⇒ max
{
|w|1 | |w| ≤ 2p̃(|x|) and 〈x, w〉 ∈ B

}
≡ 1 (mod 2)

⇐⇒ max
{
n | n ≤ 2p̃(|x|) and 〈x, n〉 ∈ B̂

}
≡ 1 (mod 2)

⇐⇒
∣∣∣
∣∣∣
{
n | 1 ≤ n ≤ 2p̃(|x|) and 〈x, n〉 ∈ B̂

}∣∣∣
∣∣∣ ≡ 1 (mod 2)

⇐⇒
∣∣∣∣{n | 1 ≤ n ≤ 2p̃(|x|) and f bB(〈x, n〉) ∈ D

}∣∣∣∣ ≡ 1 (mod 2)

From the definition of B̂, it is clear that

χ bB(〈x, 1〉) ≥ χ bB(〈x, 2〉) ≥ . . . ≥ χ bB(〈x, 2p̃(|x|)〉),
and hence

χD(f bB(〈x, 1〉)) ≥ χD(f bB(〈x, 2〉)) ≥ · · · ≥ χD(f bB(〈x, 2p̃(|x|)〉).
By (3.9) of Wagner’s lemma follows

x ∈ A ⇐⇒ g
(
f bB(〈x, 1〉), f bB(〈x, 2〉), . . . , f bB(〈x, 2p̃(|x|)〉)

)
∈ E

for a function g ∈ FP. Therefore, the composition of function f bB with func-
tion g yields a polynomial-time reduction from A to E. Hence E is PNP

‖ -hard.

(Lemma 3.2.16)

10Wagner states hardness for PNP
bf , a class which is now known to be equal to PNP

‖ .
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3.3 PNP
‖ -Completeness of the Minimum Vertex

Cover Comparison Problem

In this section, we prove that it is PNP
‖ -complete to compare the sizes of minimum

vertex covers for two given graphs. To this end, we give a reduction from the sat-
isfiability compare problem defined in the previous section. We get this reduction
by an easy modification of the classic reduction by Garey and Johnson [GJ79].
To make the exposition simpler, we make use of a weighted version of the vertex
cover problem as an intermediate step.

A vertex weighted graph is a graph G with a weight function c : V (G) → � for
its vertices. For any V ′ ⊆ V (G), let c(V ′) =

∑
v∈V ′ c(v). We define

mwvc(G) = min{c(V ′) | V ′ is a vertex cover of G}.

Lemma 3.3.1 There is a polynomial-time computable function f such that for
every satisfiable 3-CNF formula F , f(F ) = 〈G, k〉, where G is a vertex weighted
graph and k an integer, such that

1. mwvc(G) = k − max-
�
(F ).

2. Every vertex v has weight c(v) ≤ ||V ||.

Proof We use the well-known reduction from 3SAT to Vertex Cover given by
Garey and Johnson [GJ79]. That reduction has the useful property that the
structure of each solutions for the vertex cover problem reflect closely a satisfying
assignment of the corresponding satisfiability problem.

Let F be an arbitrary satisfiable 3-CNF formula. Let F contain n variables
u1, u2, . . . , un and m clauses c1, c2, . . . , cm. We can assume that F has only clauses
with exactly 3 literals per clause. If F contains clauses with fewer than 3 literals,
then we fill them up by replicating literals.11

Let f(F ) be the graph G given by the reduction of Garey and Johnson [GJ79].
For the sake of self-containment we repeat their construction here.

The graph G consists of two components (called “truth-setting” and “satisfac-
tion testing”) and edges communicating between them.

Truth-setting components: Each variable ui (1 ≤ i ≤ n) is assigned a compo-
nent Ti = (Vi, Ei) with

Vi =df {ui,¬ui}
Ei =df {{ui,¬ui}} .

11The 3-CNF formulas in [GJ79] are assumed to have exactly three literals per clause. The
reduction works also if a literal occurs more than once in a clause.
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Satisfaction testing components: Each clause cj (1 ≤ j ≤ m) is assigned a
component Sj = (V ′

j , E
′
j) with three vertices forming a triangle:

V ′
j =df {a1[j], a2[j], a3[j]}

E ′
j =df {{a1[j], a2[j]} , {a1[j], a3[j]} , {a2[j], a3[j]}}

Edges communicating between truth-setting and satisfaction testing
components: For each clause cj let

E ′′
j =df {{a1[j], xj} , {a2[j], yj} , {a3[j], zj}}

where xj, yj, and zj denote the literals in cj.

The graph G is defined by

V =df

(
n⋃

i=1

Vi

)
∪
(

m⋃

j=1

V ′
j

)

and

E =df

(
n⋃

i=1

Ei

)
∪
(

m⋃

j=1

E ′
j

)
∪
(

m⋃

j=1

E ′′
j

)

This ends the construction of G given by [GJ79].
We define the weight function w as follows. All vertices get weight 2m+n+1,

except the vertices corresponding to variables with assignment 0, which get weight
2m + n + 2:

c(a1[j]) = c(a2[j]) = c(a3[j]) = 2m + n + 1 (0 ≤ j ≤ m)

c(ui) = 2m + n + 1

c(¬ui) = 2m + n + 2 (0 ≤ i ≤ n)

Claim 3.1 Let W be any minimum weight vertex cover of G. Then W con-
tains exactly 2m + n vertices: exactly two vertices from each satisfaction testing
component V ′

j , (j = 1, 2, . . . , m) and exactly one vertex from each truth-setting
component Vi, (i = 1, 2, . . . , n).

Proof Because F is satisfiable, G has a vertex cover with no more than 2m + n
vertices. It is easy to see that every set of vertices with more than 2m + n
vertices has larger weight than any set of vertices with exactly 2m + n vertices.
On the other hand, every vertex cover W of G must necessarily contain at least
two vertices from each V ′

j (j = 1, 2, . . . , m) and at least one vertex from each Vi

(i = 1, 2, . . . , n).
(Claim 3.1)
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We continue the proof of Lemma 3.3.1. It is easy to see that the following is
true for any minimum weight vertex cover W (see the explanations in [GJ79]):

||{v ∈ W | c(v) = 2m + n + 2}|| = min{|w|0 | F (w) = 1}
= n − max-

�
(F ).

Therefore

c(W ) = 2m · (2m + n + 1) + max-
�
(F ) · (2m + n + 1)

+ (n − max-
�
(F )) · (2m + n + 2)

= 2m(2m + n + 1) + n(2m + n + 1) + n − max-
�
(F )

Hence setting k = (2m + n + 1)(2m + n) + n, we get the desired identity
mwvc(G) = k − max-

�
(F ). (Lemma 3.3.1)

Now it is easy to prove Lemma 3.3.1 also for unweighted graphs. Recall that τ(G)
denotes the size of a minimum vertex cover of G.

Lemma 3.3.2 There is a polynomial-time computable function g such that for
every satisfiable 3-CNF formula F , g(F ) = 〈G, k〉, where G is a graph and k an
integer, such that τ(G) = k − max-

�
(F ).

Proof Let f(F ) = 〈G′, k〉, where f is the function stated in Lemma 3.3.1. Let c
be the weight function for G. Define g(F ) = 〈G, k〉, where G is defined as follows.

V (G) =
⋃

u∈V (G′)

{u1, . . . , uc(u)};

E(G) =
{
{(ui, vj) ∈ V (G)} | {u, v} ∈ E(G′)

}
.

It is easy to see that τ(G) = mwvc(G′). (Lemma 3.3.2)

Definition 3.3.3 We define the following decision problems:

1. Minimum Vertex Cover Compare

Instance: Two graphs G1 and G2.
Question: Does it hold that τ (G1) ≤ τ(G2)?

2. Minimum Vertex Cover Equality

Instance: Two graphs G1 and G2.
Question: Does it hold that τ (G1) = τ (G2)?
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The next theorem gives the reduction establishing the PNP
‖ -hardness of

Minimum Vertex Cover Compare and Minimum Vertex Cover Equality. The
reduction has the additional property that we have never τ(G1) < τ(G2). This
property of the reduction will be needed in Chapter 6.

Theorem 3.3.4 For any set A ∈ PNP
‖ , there exists a polynomial-time computable

function f such that for each x ∈ Σ∗, f(x) = 〈G1, G2〉 is a pair graphs and

x ∈ A =⇒ τ(G1) = τ(G2);

x /∈ A =⇒ τ(G1) > τ(G2).

Proof Let A ∈ PNP
‖ . Let F1 and F2 be the 3-CNF formulas stated in Theo-

rem 3.2.6. Let g(F1) = 〈H2, k2〉 and g(F2) = 〈H1, k1〉, where g is the reduction
stated in Lemma 3.3.2. Suppose k1 ≤ k2. Add k2 − k1 new isolated edges to H1

and obtain G1. Set G2 = H2. Then we get

τ(G1) = k2 − max-
�
(F2), and

τ(G2) = k2 − max-
�
(F1).

Hence

max-
�
(F1) = max-

�
(F2) =⇒ τ(G1) = τ(G2);

max-
�
(F1) > max-

�
(F2) =⇒ τ(G1) > τ(G2).

The case of k2 < k1 is treated analogously.
(Theorem 3.3.4)

Using binary search, it is easy to prove that Minimum Vertex Cover Compare

and Minimum Vertex Cover Equality are in PNP
‖ .12 Hence from Theorem 3.3.4

we get the following corollary.

Corollary 3.3.5 Minimum Vertex Cover Compare and Minimum Vertex Cover

Equality are complete in PNP
‖ under polynomial-time many-one reduction.

Theorem 3.3.4 and Corollary 3.3.5 can also be stated in terms of Independent
Set and Clique by the following well-known facts:

• V ′ is a vertex cover of a graph G if and only if V (G)−V ′ is an independent
set of G.

• V ′ is an independent set of a graph G if and only if V ′ is a clique of Gc,
where Gc is the complement graph of G.

12Here we use that PNP
‖ = PNP[log].
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3.4 Digression to Completeness for PNP

In this section we use the ideas of Sections 3.2 and 3.3 to prove completeness
results for the class PNP.

Definition 3.4.1 We define the following functions: 13

1. For every A ⊆ Σ∗ and x ∈ Σ∗,

max-lex(A, x) = max
{
w ∈ Σ∗ | 〈x, w〉 ∈ A

}
.

2. For every boolean function (circuit or formula) φ,

max-lex(φ) = max
{
y1y2 . . . yn ∈ Σ∗ | φ(y1, y2, . . . , yn) = 1

}
;

min-lex(φ) = min
{
y1y2 . . . yn ∈ Σ∗ | φ(y1, y2, . . . , yn) = 1

}
.

Definition 3.4.2 We define the following satisfiability problems for boolean for-
mulas:

1. MAX LEX 3SAT COMPARE

Instance: Two 3-CNF formulas F1 and F2.
Question: Is the lexicographically maximum satisfying truth assignment for
F1 less than or equal to that for F2?

2. MAX LEX 3SAT EQUALITY

Instance: Two 3-CNF formulas F1 and F2.
Question: Does the lexicographically maximum satisfying truth assignment
for F1 equal the lexicographically maximum satisfying truth assignment for
F2?

Using binary search, it is easy to prove that MAX LEX 3SAT COMPARE and MAX

LEX 3SAT EQUALITY are in PNP. The PNP-hardness of these problems is estab-
lished by the next theorem. Note that the reduction has the additional property
that it guarantees max-lex(F1) ≥ max-lex(F2).

13If the maximum is taken over the empty set, then the function is undefined.
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Theorem 3.4.3 For any set A ∈ PNP, there exists a polynomial-time computable
function f such that for each x ∈ Σ∗, f(x) = 〈F1, F2〉 is a pair of satisfiable
3-CNF formulas, and

x ∈ A =⇒ max-lex(F1) = max-lex(F2);

x /∈ A =⇒ max-lex(F1) > max-lex(F2).

For the proof of Theorem 3.4.3, we need the following lemma.

Lemma 3.4.4 For any set A ∈ PNP, there are sets B1, B2 ∈ P and a polynomial
p̃ such that

1. x ∈ A =⇒ max-lex(B1, x) = max-lex(B2, x);
x /∈ A =⇒ max-lex(B1, x) > max-lex(B2, x).

2.
{
w | 〈x, w〉 ∈ Bi

}
⊆ Σp̃(|x|) for every x ∈ Σ∗ (i ∈ {1, 2}).

Proof Let A be an arbitrary set in PNP. Let NPTM N be as given by Proposi-
tion 3.2.2.

Let

B′
1 =df

{
〈x, w〉 | x, w ∈ Σ∗ and w = 1 outN(x, ρ) code(ρ)

for some path ρ of N(x)} , and

B′
2 =df

{
〈x, w〉 | x, w ∈ Σ∗ and w = 1 outN(x, ρ) code(ρ)

for some accepting path ρ of N(x)} ∪ {〈x, 0〉}.14

Let p̃ be a polynomial that is large enough such that for every x, w ∈ Σ∗ and
i ∈ {1, 2},

〈x, w〉 ∈ B′
i =⇒ |w| ≤ p̃(|x|).

Clearly, B′
1 and B′

2 are in P. Define B1 and B2 to be the same as B′
1 and B′

2, but
with the second string of each pair 〈x, w〉 filled up with zeroes as follows:

Bi = {〈x, w′〉 | |w′| = p̃(|x|) and (∃w)[〈x, w〉 ∈ Bi and w′ = w0∗]} (i ∈ {1, 2}).

It is easy to see that B1 and B2 satisfy the properties stated in the lemma.
(Lemma 3.4.4)

Proof of Theorem 3.4.3. The proof is analogous to (and in fact easier than)
the proof of Theorem 3.2.6: First, construct two circuit C1 and C2 such that

x ∈ A =⇒ max-lex(C1) = max-lex(C2);

x /∈ A =⇒ max-lex(C1) > max-lex(C2).

14We put 〈x, 0〉 in B′
2 in order to treat the case that N(x) has no accepting paths at all.
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Second, construct 3-CNF formulas F1 and F2 from C1 and C2 as described in
Lemma 3.2.10. For the proof of this theorem, no replication of variables xi is nec-
essary, because the lexicographic ordering ensures that the values of the auxiliary
variables hi are less significant than the values of the variables xi.

(Theorem 3.4.3)

Corollary 3.4.5 MAX LEX 3SAT COMPARE and MAX LEX 3SAT EQUALITY are
complete in PNP under polynomial-time many-one reduction.

The Traveling Salesperson Problem (TSP) can be described as follows. We
are given k cities, and a k × k matrix M with nonnegative integer entries that
give the distances between the cities. We are interested in the length of a shortest
tour, min-tour(M), that visits each city exactly once and returns to the start.
More formally,

min-tour(M) = min

{
k−1∑

i=1

M [π(i), π(i + 1)] + M [π(k), π(1)]|
π is a permutation on [k]}.15

We define the classical NP-complete decision version of the Traveling

Salesperson Problem.

Definition 3.4.6 (Traveling Salesperson Problem)

Traveling Salesperson Problem

Instance: A matrix M ∈ � k×k; an integer b.
Question: Does it hold that min-tour(M) ≤ b?

We now apply Theorem 3.4.3 for proving the below defined versions of TSP to
be PNP-complete.

Definition 3.4.7 We define the following decision problems:

1. TSP Compare

Instance: Two matrices M1, M2 ∈ � k×k.
Question: Does it hold that min-tour(M1) ≤ min-tour(M2)?

15Recall that [k] stands for {1, 2, . . . , k}.
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2. TSP Equality

Instance: Two matrices M1, M2 ∈ � k×k.
Question: Does it hold that min-tour(M1) = min-tour(M2)?

An edge weighted graph is a graph G with a cost function c : E(G) → � for
its edges. Given a Hamilton cycle C in an edge weighted directed or undirected
graph, the cost of C is the sum of the costs of the edges in C.

Definition 3.4.8 We define the following functions:

1. For every directed graph G with weight function c, min-directed-circuit(G)
denotes the cost of a minimum cost Hamilton cycle in G. If G has no
Hamilton cycle then min-directed-circuit(G) is undefined.

2. For every undirected graph G with weight function c,
min-undirected-circuit(G) denotes the cost of a minimum cost Hamil-
ton cycle in G. If G has no Hamilton cycle then min-undirected-circuit(G)
is undefined.

Lemma 3.4.9 There is a polynomial-time computable function f such that for
every satisfiable 3-CNF formula F , f(F ) = G, where G is an edge weighted di-
rected graph such that min-directed-circuit(G) = pos(min-lex(F )). 16

Proof We use the reduction from 3SAT to Directed Hamilton Cycle that can
be found in the textbook by Schöning [Sch01]. This reduction has (once again) the
useful property that the structure of any solution for the Directed Hamilton Cycle
problem reflects closely a corresponding satisfying assignment of the satisfiability
problem we are reducing from.

Let F be an arbitrary 3-CNF formula with n variables u1, u2, . . . , un and
m clauses c1, c2, . . . , cm. We can assume that all clauses in F have exactly 3
literals. If F contains clauses with fewer than 3 literals, then we fill them up
by replicating literals. The reduction also works if a literal occurs more than
once in a clause. We refer to the reader to [Sch01] for the reduction from 3SAT

to Directed Hamilton Cycle. We do not repeat the reduction here. Let f(F )
be the graph G obtained by this reduction. For each variable ui, there is a
corresponding vertex i (notation of [Sch01]) in G. Each such vertex i has exactly
two outgoing arcs: one arc corresponding to occurrences of ui in F , and another
arc corresponding to occurrences of ¬ui in F . We set the weight of the arc
leaving vertex i that corresponds to occurrences of ui in F to 2n−i. All other arcs
get weight 0. (Lemma 3.4.9)

16Recall that pos(x) denotes the lexicographic rank of x among the strings of length |x|.
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The transition from undirected to directed graphs is easy.

Lemma 3.4.10 There is a polynomial-time computable function f such that for
every satisfiable 3-CNF formula F , f(F ) = G, where G is an edge weighted undi-
rected graph such that min-undirected-circuit(G) = pos(min-lex(F )).

Proof Let H be the directed graph obtained according to Lemma 3.4.9. Obtain
f(F ) from H, as in [Sch01], by expanding each vertex of H to three vertices:
one vertex for incoming edges, another vertex for outgoing edges, and a third
(middle) node to force us to go from ingoing edges to outgoing edges. The weights
of the edges are chosen as in Lemma 3.4.9. The correctness of this construc-
tion can easily be seen from the explanations given in [Sch01]. (Lemma 3.4.10)

The same lemma, but with max-lex instead of min-lex is easily obtained.

Lemma 3.4.11 There is a polynomial-time computable function g such that for
every satisfiable 3-CNF formula F with n variables, g(F ) = G, where G is an
edge weighted undirected graph such that min-undirected-circuit(G) = 2n − 1 −
pos(max-lex(F )).

Proof Define F ′ to be the same as F , but with each literal negated. It is easy
to see that pos(min-lex(F ′)) = 2n − 1 − pos(max-lex(F )).

Define g(F ) = f(F ′), where f is the reduction of the previous lemma.
Then we have min-undirected-circuit(G) = min-undirected-circuit(g(F )) =
min-undirected-circuit(f(F ′)) = pos(min-lex(F ′)) = 2n − 1 − pos(max-lex(F )).

(Lemma 3.4.11)

Lemma 3.4.12 There is a polynomial-time computable function f such that for
every satisfiable 3-CNF formula F with n variables, f(F ) = M , where M ∈ � k×k

for some integer k, such that min-tour(M) = 2n − 1 − pos(max-lex(F )).

Proof Let F be an arbitrary satisfiable 3-CNF formula. Let G = g(F ) be an
edge weighted undirected graph with cost function c, where g is the reduction of
the previous lemma. Let V (G) = {v1, v2, . . . , vk}. It is sufficient to define a matrix
M such that min-tour(M) = min-undirected-circuit(G). From the construction of
G it is clear that min-undirected-circuit(G) ≤∑n

i=1 2n−i = 2n − 1. Hence adding
arcs with weight 2n to G does not change min-undirected-circuit(G). Therefore,
we can define M by

M [i, j] =df

{
c({vi, vj}) if {vi, vj} ∈ E(G)
2n otherwise.

Clearly, min-tour(M) = min-undirected-circuit(G). (Lemma 3.4.12)
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Theorem 3.4.13 For any set A ∈ PNP, there exists a polynomial-time com-
putable function h such that for each x ∈ Σ∗, h(x) = 〈M1, M2〉, and

x ∈ A =⇒ min-tour(M1) = min-tour(M2);

x /∈ A =⇒ min-tour(M1) > min-tour(M2).

Proof Let A ∈ PNP and x ∈ A. Let the 3-CNF formulas F1 and F2 be de-
termined by 〈F1, F2〉 = f(x), where f is the function stated in Theorem 3.4.3.
W.l.o.g. we can assume that F1 and F2 have the same number of variables. De-
fine M1 and M2 by M1 = g(F2) and M2 = g(F1), where g is the function stated
in Lemma 3.4.12. Clearly,

max-lex(F2) = max-lex(F1) =⇒ min-tour(M1) = min-tour(M2);

max-lex(F2) > max-lex(F1) =⇒ min-tour(M1) > min-tour(M2).

Let h(x) = 〈M1, M2〉. (Theorem 3.4.13)

Using binary search, it is easy to prove that TSP Compare and TSP Equality

are in PNP. Hence from Theorem 3.4.13 we get the following corollary.

Corollary 3.4.14 TSP Compare and TSP Equality are PNP-complete.



Chapter 4

Exact Complexity of the Winner
Problem for Young Elections

4.1 Introduction

More than a decade ago, Bartholdi, Tovey, and Trick [BTT89b, BTT89a, BTT92]
initiated the study of electoral systems with respect to their computational prop-
erties. In particular, they proved NP hardness lower bounds [BTT89b] for deter-
mining the winner in the voting schemes proposed by Dodgson and by Kemeny,
and they studied complexity issues related to the problem of manipulating elec-
tions by strategic voting [BTT89a, BTT92]. Hemaspaandra, Hemaspaandra, and
Rothe [HHR97a] classified both the winner and the ranking problem for Dodgson
elections by proving them complete for PNP

‖ .

We study complexity issues related to Young and Dodgson elections. In 1977,
Young [You77] proposed a voting scheme that extends the Condorcet Principle
based on the fewest possible number of voters whose removal makes a given can-
didate c the Condorcet winner, i.e., c defeats all other candidates by a strict
majority of the votes. We prove that both the winner and the ranking problem
for Young elections is complete for PNP

‖ . To this end, we give a reduction from

the problem Maximum Set Packing Compare, which we also prove PNP
‖ -complete.

In Section 4.3, we study a homogeneous variant of Dodgson elections that
was introduced by Fishburn [Fis77]. In contrast to the above-mentioned result of
Hemaspaandra et al. [HHR97a], we show that both the winner and the ranking
problem for Fishburn’s homogeneous Dodgson elections can be solved efficiently
by a linear program that is based on an integer linear program of Bartholdi et
al. [BTT89b].

41
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4.2 Complexity of the Winner Problem for

Young Elections

4.2.1 Some Background from Social Choice Theory

We first give some background from social choice theory. Let C be the set of
all candidates (or alternatives). We assume that each voter has strict preferences
over the candidates. Formally, the preference order of each voter is antisymmetric,
transitive, and complete (i.e., all candidates are ranked by each voter). An election
is given by a preference profile, a pair 〈C, V 〉 such that C is a set of candidates and
V is the multiset of the voters’ preference orders on C. Note that distinct voters
may have the same preferences over the candidates. A voting scheme (or social
choice function, SCF for short) is a rule for how to determine the winner(s) of
an election; i.e., an SCF maps any given preference profile to society’s aggregate
choice set, the set of candidates who have won the election. For any SCF f and
any preference profile 〈C, V 〉, f(〈C, V 〉) denotes the set of winning candidates.
For example, the majority rule says that a candidate a defeats a candidate b if
and only if a is preferred to b by a strict majority of the voters. According to the
majority rule, an election is won by a candidate who defeats every other candidate.
Such a candidate is called the Condorcet winner.

In 1785, Marie-Jean-Antoine-Nicolas de Caritat, the Marquis de Condorcet,
noted in his seminal essay [Con85] that whenever there are at least three candi-
dates, say a, b, and c, the majority rule may yield cycles. His example consists of
the following three voters:

a > b > c,
b > c > a,
c > a > b.

Thus, a defeats b and b defeats c, and yet c defeats a. That is, even though each
individual voter has a rational (i.e., transitive or non-cyclic) preference order,
society may behave irrationally and Condorcet winners do not always exist. This
observation is known as the Condorcet Paradox. The Condorcet principle says
that for each preference profile, the winner of the election is to be determined
by the majority rule. An SCF is said to be a Condorcet SCF if and only if it
respects the Condorcet principle in the sense that the Condorcet winner is elected
whenever one exists. Note that Condorcet winners are uniquely determined if
they exist.

Many Condorcet SCFs have been proposed in the social choice literature; for
an overview of the most central ones, we refer to the work of Fishburn [Fis77].
They extend the Condorcet principle in a way that avoids the troubling feature
of the majority rule. In this chapter, we will focus on only two such Condorcet
SCFs, the Dodgson voting scheme [Dod76] and the Young voting scheme [You77].
In the next chapter, we will be concerned with Kemeny’s voting scheme.
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In 1876, Charles L. Dodgson proposed a voting scheme [Dod76] that suggests
that we remain most faithful to the Condorcet principle if the election is won by
any candidate who is “closest” to being a Condorcet winner. To define “close-
ness,” each candidate c in a given election 〈C, V 〉 is assigned a score, denoted
DodgsonScore(C, c, V ), which is the smallest number of sequential interchanges of
adjacent candidates in the voters’ preferences that are needed to make c a Con-
dorcet winner. Here, one interchange means that, in (any) one of the voters, two
adjacent candidates are switched. A Dodgson winner is any candidate with min-
imum Dodgson score. Using Dodgson scores, one can also tell who of two given
candidates is ranked better according to the Dodgson SCF.

Young’s approach to extending the Condorcet principle is reminiscent of Dodg-
son’s approach in that it is also based on altered profiles. Unlike Dodgson, how-
ever, Young [You77] suggests that we remain most faithful to the Condorcet prin-
ciple if the election is won by any candidate who is made a Condorcet winner by
removing the fewest possible number of voters, instead of doing the fewest possible
number of switches in the voters’ preferences. For each candidate c in a given
preference profile 〈C, V 〉, define YoungScore(C, c, V ) to be the size of a largest
submultiset of V for which c is a Condorcet winner.1 A Young winner is any
candidate with a maximum Young score.

Here is an example. We have the following voter profile 〈C, V 〉 with candidate
set C = {a, b, c, d} and the multiset of preference rankings V given by

a > b > c > d,
a > b > c > d,
d > a > b > c,
b > c > d > a.

One can verify that YoungScore(C, a, V ) = 3: Candidate a is not a Condorcet
winner in the given profile, but a is Condorcet winner for the profile that we
obtain if we delete the last preference order. Candidate b is Condorcet winner in
the profile given by the submultiset of V that contains only the preference order
b > c > d > d, and it can be verified that there is no larger submultiset of V for
which b is a Condorcet winner. Hence YoungScore(C, b, V ) = 1. Analogously, we
obtain YoungScore(C, d, V ) = 1. Finally, candidate c is not Condorcet winner for
any profile that is a submultiset of V . Hence YoungScore(C, c, V ) = 0.

We see that a is the candidate with largest Young score. Therefore a is the
winner of the election according to Young’s voting scheme.

Homogeneous variants of Dodgson’s and Young’s voting schemes will be de-
fined in Section 4.3.

1We define YoungScore(C, c, V ) to be zero in case there does not exist any submultiset of V

for which c is a Condorcet winner.
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4.2.2 Complexity Issues Related to Voting Schemes

To study computational complexity issues related to Dodgson’s voting scheme,
Bartholdi, Tovey, and Trick defined the decision problems Dodgson Winner and
Dodgson Ranking.

Definition 4.2.1 ([BTT89b]) We define the following decision problems:

1. Dodgson Winner

Instance: A preference profile 〈C, V 〉 and a designated candidate c ∈ C.
Question: Is c a Dodgson winner of the election? That is, is it true that for
all d ∈ C, DodgsonScore(C, c, V ) ≤ DodgsonScore(C, d, V )?

2. Dodgson Ranking

Instance: A preference profile 〈C, V 〉 and two designated candidates c, d ∈ C.
Question: Does c tie-or-defeat d in the election? That is, is it true that
DodgsonScore(C, c, V ) ≤ DodgsonScore(C, d, V )?

Bartholdi et al. [BTT89b] established an NP-hardness lower bound for both
these problems. Their result was optimally improved by Hemaspaandra, Hemas-
paandra, and Rothe [HHR97a] who proved that Dodgson Winner and Dodgson

Ranking are complete for PNP
‖ , the class of problems solvable in polynomial time

with parallel (i.e., truth-table) access to an NP oracle.
As above, we define the corresponding decision problems for Young elections.

Definition 4.2.2 We define the following decision problems:

1. Young Winner

Instance: A preference profile 〈C, V 〉 and a designated candidate c ∈ C.
Question: Is c a Young winner of the election? That is, is it true that for
all d ∈ C, YoungScore(C, c, V ) ≥ YoungScore(C, d, V )?

2. Young Ranking

Instance: A preference profile 〈C, V 〉 and two designated candidates c, d ∈ C.
Question: Does c tie-or-defeat d in the election? That is, is it true that
YoungScore(C, c, V ) ≥ YoungScore(C, d, V )?

4.2.3 Hardness of Determining Young Winners

The main result in this section is that the problems Young Winner and Young

Ranking are complete for PNP
‖ . In Theorem 4.2.7 below, we give a reduction from

the problem Maximum Set Packing Compare that is defined below. For a given
family S of sets, let κ(S) be the maximum number of pairwise disjoint sets in S.



Kapitel 4.2. Complexity of the Winner Problem for Young Elections 45

Definition 4.2.3 We define the following decision problem:

Maximum Set Packing Compare

Instance: Two finite sets B1 and B2, and two families S1 and S2 of
subsets of B1 and B2, respectively.
Question: Does it hold that κ(S1) ≥ κ(S2)?

To prove that Maximum Set Packing Compare is PNP
‖ -complete, we give a reduction

from the problem Independence Number Compare.

Definition 4.2.4 We define the following decision problem:

Independence Number Compare

Instance: Two graphs G1 and G2.
Question: Does it hold that α(G1) ≥ α(G2)?

As remarked in Section 3.3, Corollary 3.3.5 immediately implies the following
proposition.

Proposition 4.2.5 Independence Number Compare is PNP
‖ -complete.

Lemma 4.2.6 Maximum Set Packing Compare is PNP
‖ -complete.

Proof We give a polynomial-time many-one reduction from the problem
Independence Number Compare to the problem Maximum Set Packing Compare.
Let G1 and G2 be two given graphs. For i ∈ {1, 2}, define Bi to be the union of
the set of edges of Gi and the set of vertices of Gi, and define Si so as to contain
the following sets: For each vertex v of Gi, add to Si the set of edges incident to v
and the vertex v itself. Thus, for each i ∈ {1, 2}, we have α(Gi) = κ(Si), which
proves the lemma. (Lemma 4.2.6)

Now, we prove the main result of this section.

Theorem 4.2.7 Young Ranking is PNP
‖ -complete.

Proof It is easy to see that Young Ranking and Young Winner are in PNP
‖ .

To prove the PNP
‖ lower bound, we give a polynomial-time many-one reduction

from the problem Maximum Set Packing Compare. Let B1 = {x1, x2, . . . , xm}
and B2 = {y1, y2, . . . , yn} be two given sets, and let S1 and S2 be given families
of subsets of B1 and B2, respectively. Recall that κ(Si), for i ∈ {1, 2}, is the
maximum number of pairwise disjoint sets in Si; w.l.o.g., we may assume that
κ(Si) > 2.
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We define a preference profile 〈C, V 〉 such that c and d are designated candi-
dates in C, and it holds that:

YoungScore(C, c, V ) = 2 · κ(S1) + 1; (4.1)

YoungScore(C, d, V ) = 2 · κ(S2) + 1. (4.2)

Define the set C of candidates as follows:

• create the two designated candidates c and d;

• for each element xi of B1, create a candidate xi;

• for each element yi of B2, create a candidate yi;

• create two auxiliary candidates, a and b.

Define the set V of voters as follows:

• Voters representing S1: For each set E ∈ S1, create a single voter vE

as follows:

– Enumerate E as {e1, e2, . . . , e‖E‖} (renaming the candidates ei chosen
from {x1, x2, . . . , xm} for notational convenience), and enumerate its
complement E = B1 − E as {e1, e2, . . . , em−‖E‖}.

– To make the preference orders easier to parse, we use

“
−→
E ” to represent the text string “e1 > e2 > · · · > e‖E‖”;

“
−→
E ” to represent the text string “e1 > e2 > · · · > em−‖E‖”;

“
−→
B1” to represent the text string “x1 > x2 > · · · > xm”;

“
−→
B2” to represent the text string “y1 > y2 > · · · > yn”.

– Create one voter vE with preference order:

−→
E > a > c >

−→
E >

−→
B2 > b > d. (4.3)

• Additionally, create two voters with preference order:

c >
−→
B1 > a >

−→
B2 > b > d, (4.4)

and create ‖S1‖ − 1 voters with preference order:

−→
B1 > c > a >

−→
B2 > b > d. (4.5)
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• Voters representing S2: The case of S2 is treated analogously with the
roles of respectively S1, B1, xi, c, a, E, ej, and ek interchanged with S2, B2,
yi, d, b, F , fj, and f k. More precisely, for each set F ∈ S2, create a single
voter vF as follows:

– Enumerate F as {f1, f2, . . . , f‖F‖} (renaming the candidates fj chosen
from {y1, y2, . . . , yn} for notational convenience), and enumerate its
complement F = B1 − F as {f1, f2, . . . , fn−‖F‖}.

– To make the preference orders easier to parse, we use

“
−→
F ” to represent the text string “f1 > f2 > · · · > f‖F‖”;

“
−→
F ” to represent the text string “f 1 > f 2 > · · · > fn−‖F‖”.

– Create one voter vF with preference order:

−→
F > b > d >

−→
F >

−→
B1 > a > c. (4.6)

• Additionally, create two voters with preference order:

d >
−→
B2 > b >

−→
B1 > a > c, (4.7)

and create ‖S2‖ − 1 voters with preference order:

−→
B2 > d > b >

−→
B1 > a > c. (4.8)

We now prove Equation (4.1): YoungScore(C, c, V ) = 2 · κ(S1) + 1.
Let E1, E2, . . . , Eκ(S1) ∈ S1 be κ(S1) pairwise disjoint subsets of B1. Consider

the following submultiset V̂ of the voters V . V̂ consists of:

• every voter vEi
corresponding to the set Ei, where 1 ≤ i ≤ κ(S1);

• the two voters given in Equation (4.4);

• κ(S1) − 1 voters of the form given in Equation (4.5).

Then, ‖V̂ ‖ = 2 ·κ(S1)+1. Note that a strict majority of the voters in V̂ prefer

c over any other candidate, and thus c is a Condorcet winner in 〈C, V̂ 〉. Hence,

YoungScore(C, c, V ) ≥ 2 · κ(S1) + 1.

Conversely, to prove that YoungScore(C, c, V ) ≤ 2 · κ(S1) + 1, we need the
following lemma.



48 Chapter 4. Exact Complexity of the Winner Problem for Young Elections

Lemma 4.2.8 For any λ with 3 < λ ≤ ‖S1‖ + 1, let Vλ be any submultiset
of V such that Vλ contains exactly λ voters of the form (4.4) or (4.5) and c is
a Condorcet winner in 〈C, Vλ〉. Then, Vλ contains exactly λ − 1 voters of the
form (4.3) and no voters of the form (4.6), (4.7), or (4.8). Moreover, the λ − 1
voters of the form (4.3) in Vλ represent pairwise disjoint sets from S1.

Proof of Lemma 4.2.8 Let Vλ for fixed λ be given as above. Consider the
submultiset of Vλ that consists of the λ voters of the form (4.4) or (4.5). Every
candidate xi, 1 ≤ i ≤ m, is preferred to c by the at least λ − 2 voters of the
form (4.5). Since c is a Condorcet winner in 〈C, Vλ〉, there exist, for every xi, at
least λ−1 > 2 voters in Vλ who prefer c to xi. By construction, these voters must
be of the form (4.3) or (4.4). Since there are at most two voters of the form (4.4),
there exists at least one voter of the form (4.3), say ṽ. Since the voters of the
form (4.3) represent S1, which contains only nonempty sets, there exists some
candidate xj who is preferred to c by ṽ. In particular, c must outpoll xj in 〈C, Vλ〉
and thus needs more than (λ − 2) + 1 votes of the form (4.3) or (4.4). There are
at most two voters of the form (4.4); hence, c must be preferred by at least λ− 2
voters of the form (4.3) that are distinct from ṽ. Summing up, Vλ contains at
least λ − 1 voters of the form (4.3).

On the other hand, since c is a Condorcet winner in 〈C, Vλ〉, c must in particular
outpoll a, who is not preferred to c by the λ voters of the form (4.4) or (4.5) and
who is preferred to c by all other voters. Hence, Vλ may contain at most λ − 1
voters of the form (4.3), (4.6), (4.7), or (4.8). It follows that Vλ contains exactly
λ − 1 voters of the form (4.3) and no voters of the form (4.6), (4.7), or (4.8).

For a contradiction, suppose that there is a candidate xj who is preferred to c
by more than one voter of the form (4.3) in Vλ. Then,

• c is preferred to xj by at most two voters of the form (4.4) and by at most
(λ − 1) − 2 = λ − 3 voters of the form (4.3);

• xj is preferred to c by at least λ− 2 voters of the form (4.5) and by at least
two voters of the form (4.3).

Since c thus has at most λ − 1 votes and xj has at least λ votes in Vλ, c is
not a Condorcet winner in 〈C, Vλ〉, a contradiction. Thus, every candidate xi,
1 ≤ i ≤ m, is preferred to c by at most one voter of the form (4.3) in Vλ, which
means that the λ−1 voters of the form (4.3) in Vλ represent pairwise disjoint sets
from S1. (Lemma 4.2.8)

To continue the proof of Theorem 4.2.7, let k = YoungScore(C, c, V ). Let

V̂ ⊆ V be a submultiset of size k such that c is a Condorcet winner in 〈C, V̂ 〉.
Suppose that there are exactly λ ≤ ‖S1‖+1 voters of the form (4.4) or (4.5) in V̂ .

Since c, the Condorcet winner of 〈C, V̂ 〉, must in particular outpoll a, we have
λ ≥

⌈
k+1
2

⌉
. By our assumption that κ(S1) > 2, it follows from k ≥ 2 · κ(S1) + 1

that λ > 3. Lemma 4.2.8 then implies that there are exactly λ − 1 voters of the
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form (4.3) in V̂ , which represent pairwise disjoint sets from S1, and V̂ contains
no voters of the form (4.6), (4.7), or (4.8). Hence, k = 2 · λ − 1 is odd, and
k−1
2

= λ − 1 ≤ κ(S1), which proves Equation (4.1).
Equation (4.2) can be proved analogously. Thus, we have

κ(S1) ≥ κ(S2) if and only if YoungScore(C, c, V ) ≥ YoungScore(C, d, V ).

This completes the proof of Theorem 4.2.7. (Theorem 4.2.7)

Theorem 4.2.9 Young Winner is PNP
‖ -complete.

Proof To prove the theorem, we modify the reduction from Theorem 4.2.7 to a
reduction from the problem Maximum Set Packing Compare to the problem Young

Winner as follows. Let 〈C, V 〉 be the preference profile constructed in the proof of
Theorem 4.2.7 with the designated candidates c and d. We alter this profile such
that all other candidates do worse than c and d.

From 〈C, V 〉, we construct a new preference profile 〈D, W 〉. To define the
new set D of candidates, replace every candidate g ∈ C except c and d by ‖V ‖
candidates g1, g2, . . . , g‖V ‖.

To define the new voter set W , replace each occurrence of candidate g in the
ith voter of V by the text string:

gi mod ‖V ‖ > gi+1 mod ‖V ‖ > gi+2 mod ‖V ‖ > · · · > gi+‖V ‖−1 mod ‖V ‖.

Let V ′ be any submultiset of V , and let W ′ be the submultiset of W corre-
sponding to V ′. It is easy to see that c is a Condorcet winner in V ′ if and
only if c is a Condorcet winner in W ′. Thus, the change from 〈C, V 〉 to 〈D, W 〉
does not alter the Young score of c and d. On the other hand, the Young
score of any other candidate now is at most 1. Thus, there is no candidate
h with YoungScore(D, h, W ) > YoungScore(D, c, W ) or YoungScore(D, h, W ) >
YoungScore(D, d, W ). Hence, κ(S1) ≥ κ(S2) if and only if c is a winner of the
election 〈D, W 〉. (Theorem 4.2.9)

4.3 Homogeneous Young and Dodgson Voting

Schemes

Social choice theorists have studied many “reasonable” properties that any “fair”
election procedure arguably should satisfy, including very natural properties such
as nondictatorship, monotonicity, the Pareto Principle, and independence of ir-
relevant alternatives. One of the most notable results in this regard is Arrow’s
famous Impossibility Theorem [Arr63] stating that the just-mentioned four prop-
erties are logically inconsistent, and thus no “fair” voting scheme can exist.

In this section, we are concerned with another quite natural property, the
homogeneity of voting schemes (see [Fis77, You77]).
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Definition 4.3.1 A voting scheme f is said to be homogeneous if and only if for
each preference profile 〈C, V 〉 and for all positive integers q, it holds that

f(〈C, V 〉) = f(〈C, qV 〉),

where qV denotes V replicated q times.

Homogeneity means that splitting each voter v ∈ V into q voters, each of
whom has the same preference order as v, yields exactly the same choice set of
winning candidates.

Fishburn [Fis77] showed that neither the Dodgson nor the Young voting
schemes are homogeneous. For the Dodgson SCF, he presented a counterexam-
ple with seven voters and eight candidates; for the Young SCF, he modified a
preference profile constructed by Young with 37 voters and five candidates. Fish-
burn [Fis77] provided the following limit device in order to define homogeneous
variants of the Dodgson and Young SCFs. For example, the Dodgson scheme
can be made homogeneous by defining from the function DodgsonScore for each
preference profile 〈C, V 〉 and designated candidate c ∈ C the function

DodgsonScore∗(C, c, V ) = lim
q→∞

DodgsonScore(C, c, qV )

q
.

The resulting SCF is denoted by Dodgson∗ SCF, and the corresponding winner
and ranking problems are denoted by Dodgson∗ Winner and Dodgson∗ Ranking.

Example 4.3.2 (Fishburn [Fis77]) We provide here Fishburn’s exam-
ple [Fis77] showing that the original Dodgson voting scheme is not homogeneous.
Consider the preference profile 〈C, V 〉, where C consists of the eight candidates
a1, a2, . . ., a7, and c, and V consists of the following preference orders:

a1 > a2 > a3 > a4 > c > a5 > a6 > a7,

a7 > a1 > a2 > a3 > c > a4 > a5 > a6,

a6 > a7 > a1 > a2 > c > a3 > a4 > a5,

a5 > a6 > a7 > a1 > c > a2 > a3 > a4,

a4 > a5 > a6 > a7 > c > a1 > a2 > a3,

a3 > a4 > a5 > a6 > c > a7 > a1 > a2,

a2 > a3 > a4 > a5 > c > a6 > a7 > a1.

One can verify that DodgsonScore(C, c, V ) = 7 and DodgsonScore(C, ai, V ) = 6,
for each i. Thus, according to the original Dodgson scheme, the choice set of win-
ning candidates in 〈C, V 〉 is {ai | 1 ≤ i ≤ 7}. However, DodgsonScore∗(C, c, V ) =
3.5 and DodgsonScore∗(C, ai, V ) = 4.5, for each i, which implies that, according
to the original Dodgson scheme and for a large enough q, the choice set of winning
candidates in 〈C, qV 〉 is {c}. Hence, the original Dodgson voting scheme is not
homogeneous.
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Analogously, the Young voting scheme defined in Section 4.2.2 can be made
homogeneous by defining YoungScore∗. Young [You77] showed that the corre-
sponding problem Young∗ Winner can be solved by a linear program of polyno-
mial size. Hence, the problem Young∗ Winner is efficiently solvable, since linear
programs can be solved in polynomial time [Kha79], see also [Kar84]. Inspired
by Young’s work, we establish an analogous result for the problems Dodgson∗

Winner and Dodgson∗ Ranking below. Theorem 4.3.3 should be contrasted with
the known result [HHR97a] that Dodgson Winner and Dodgson Ranking are com-
plete for PNP

‖ .

Theorem 4.3.3 Dodgson∗ Winner and Dodgson∗ Ranking can be solved in poly-
nomial time.

Proof Bartholdi, Tovey, and Trick [BTT89b] provided an integer linear program
for determining the Dodgson score of a given candidate c. They noted that if the
number of candidates is fixed, then the winner problem for Dodgson elections (in
the inhomogeneous case defined in Section 4.2.2) can be solved in polynomial time
using the algorithm of Lenstra [Len83].

Based on their integer linear program, we provide a linear program for com-
puting DodgsonScore∗(C, c, V ) for a given preference profile 〈C, V 〉 and a given
candidate c. Since linear programms are polynomial-time solvable [Kha79], it fol-
lows that the problems Dodgson∗ Winner and Dodgson∗ Ranking can be solved in
polynomial time, even if the number of candidates is not prespecified.

Let a profile 〈C, V 〉 and a candidate c ∈ C be given, and let V =
{v1, v2, . . . , vn}. Our linear program has the variables xi,j, and constants ei,j,k,
and wk, where 1 ≤ i ≤ n, 1 ≤ j ≤ ‖C‖ − 1, and k ∈ C − {c}. The constants are
obtained from the profile 〈C, V 〉 as follows:

• For given i, j, and k, set ei,j,k = 1 if the result of moving c upwards by j
positions in the preference order of voter vi is that c gains one additional
vote against candidate k, and set ei,j,k = 0 otherwise.

• For any candidate k other than c, the constant wk gives the number of voters
who prefer c over k.

DodgsonScore∗(C, c, V ) is the value of the linear program

min
∑

i,j

j · xi,j (4.9)

subject to the constraints:

(1)
∑

j xi,j = 1 for each voter vi;

(2)
∑

i,j ei,j,k · xi,j + wk > n
2

for each candidate k ∈ C − {c};
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(3) 0 ≤ xi,j ≤ 1 for each i and j.

The variables and constraints can be interpreted as follows:

1. For given i and j, the variable xi,j is a rational number in the interval [0, 1]

(by the set of constraints (3)) that gives the percentage
vq

i,j

q
, where q is the

least common multiple of the denominators in all xi,j, and vq
i,j is the number

of voters among the q replicants of voter vi in which c is moved upwards by
j positions.

2. The set of constraints (2) ensures that c becomes a Condorcet winner.

3. The set of constraints (1) ensures that vq
i,j, summed over all possible posi-

tions j, equals the number q of all replicants of voter vi.

The objective is to minimize the number of switches needed to make c a Con-
dorcet winner. For the homogeneous case of Dodgson elections, the linear pro-
gram (4.9) tells us how many times we have to replicate each voter vi (namely, q
times) and in how many of the replicants of each voter vi the given candidate c has
to be moved upwards by how many positions in order to achieve this objective.

(Theorem 4.3.3)



Chapter 5

The Complexity of Kemeny
Elections

5.1 Introduction

In this chapter, we investigate the complexity of determining the winner of Ke-
meny’s voting scheme. Kemeny’s voting scheme, which will be described in Sec-
tion 5.2, was introduced by Kemeny [Kem59] and specified by Levenglick [Lev75].
Young and Levenglick [YL78] showed that Kemeny’s voting scheme is the unique
Condorcet voting scheme that is neutral (symmetric in its treatment of candi-
dates) and consistent. A voting scheme is called consistent if it is consistent over
disjoint voter set union: Whenever two subsets V1 and V2 of the voter set V with
V1 ∪ V2 = V and V1 ∩ V2 = ∅, voting separately, elect the same set of winners
according to the voting scheme, then the set of winners obtained by applying the
voting scheme to the whole set of voters yields this same set of winners. Bartholdi
et al. [BTT89b] proved that determining the winner in Kemeny’s voting scheme
is NP-hard. The exact complexity of Kemeny’s voting scheme however remained
an open problem. We show that the winner problem for Kemeny’s voting scheme
is PNP

‖ -complete.

5.2 Kemeny’s Voting Scheme

Like Dodgson’s and Young’s voting schemes, Kemeny’s voting scheme is a
preferential voting system . Each voter casts his or her vote by ranking all the
candidates in order of preference. We allow the voters to be indifferent between
candidates (ties).1 For example, a voter may rank candidates a, b, c, d, and e by

1This follows Kemeny’s original definition [Kem59]. It should be noted that there is no
consensus about this in the literature. To avoid confusion, we will use the term preference
ranking here, rather than preference order. It follows immediately from our proofs that our
complexity results go through if we do not allow ties in preference rankings.

53
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the preference ranking a > b = c > d > e. Candidate a is the favorite, and e is
the least favorite candidate in this ranking. Candidates b and c are considered
to be of equal desirability, i.e., they are tied. A preference ranking without ties
is called a strict preference ranking. We identify each voter with its preference
ranking, and we will view the set of voters as a multiset of preference rankings.

Kemeny defined the outcome of an election as the collection of preference rank-
ings that are “closest” to the preference rankings of the voters. Such a preference
ranking is called a Kemeny consensus. A candidate is a winner of the election if
it is a preferred candidate in a Kemeny consensus.

There are different ways to define closeness. For Kemeny elections, the goal is
to minimize the Kemeny score: the sum of the distances to the preference rankings
of the voters.

For each pair P , Q of preference rankings, we define the distance

dist(P, Q) =
∑

{c,d}
dP,Q(c, d),

where the sum is taken over all unordered pairs {c, d} of candidates, and

dP,Q(c, d) =





0 if P and Q agree on c and d
1 if one of P or Q has a preference among c and d and the

other has not
2 if P and Q strictly disagree on c and d.

Given a set of candidates C and a multiset of preference rankings V on C, we
define the following three Kemeny score functions.

• For every preference ranking P on C,

KemenyScore(C, P, V ) =
∑

Q∈V

dist(P, Q).

• For every candidate c ∈ C,

KemenyScore(C, c, V ) = min{KemenyScore(C, P, V ) | P is a preference

ranking on C, and c is a preferred candidate in P}.

• KemenyScore(C, V )

= min{KemenyScore(C, P, V ) | P is a preference ranking on C}.
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Definition 5.2.1 We define the following decision problems related to Kemeny
elections. (Compare with similar definitions for Dodgson’s and Young’s voting
schemes in Chapter 4.)

1. Kemeny Score

Instance: A set of candidates C; a multiset V of preference rankings on C;
a positive integer k.
Question: Is KemenyScore(C, V ) ≤ k?

2. Candidate Kemeny Score

Instance: A set of candidates C; a multiset V of preference rankings on C;
a candidate c ∈ C; a positive integer k.
Question: Is KemenyScore(C, c, V ) ≤ k?

3. Kemeny Winner

Instance: A set of candidates C; a multiset V of preference rankings on C;
a candidate c ∈ C.
Question: Is there some Kemeny consensus P in which no candi-
date is strictly preferred to c? Equivalently, is KemenyScore(C, c, V ) ≤
KemenyScore(C, d, V ) for all d ∈ C?

4. Kemeny Ranking

Instance: A set of candidates C; a multiset V of preference rankings on C;
two distinguished candidates c, d ∈ C.
Question: Does c tie-or-defeat d in the election? That is, is
KemenyScore(C, c, V ) ≤ KemenyScore(C, d, V )?

Bartholdi, Tovey, and Trick [BTT89b] showed that Kemeny Score is NP-
complete and that Kemeny Winner and Kemeny Ranking are NP-hard. We now
state the main result of this chapter.

Theorem 5.2.2 Kemeny Winner and Kemeny Ranking are PNP
‖ -complete.

5.3 The Completeness Proof

Now we prove the main result of this chapter, namely that Kemeny Winner and
Kemeny Ranking are complete for PNP

‖ . It is easy to show that Kemeny Winner

and Kemeny Ranking are in PNP
‖ . The PNP

‖ algorithms will use the set
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Candidate Kemeny Score as an oracle. Note that Candidate Kemeny Score is
clearly in NP. Let C be a set of candidates and V a multiset of preference rankings
on C. For every c ∈ C, KemenyScore(C, c, V ) ≤ ||V || · ||C||2, so we can in polyno-
mial time in parallel query all tuples 〈C, V, c, k〉 to Candidate Kemeny Score for
all c ∈ C and all k ≤ ||V || · ||C||2. With the answers to all these queries in hand,
we know KemenyScore(C, c, V ) for each candidate c ∈ C, since this is the smallest
k such that 〈C, V, c, k〉 ∈ Candidate Kemeny Score. From the Kemeny scores for
the candidates, it is trivial to verify that a certain candidate is a winner (has the
smallest Kemeny score) or that a certain candidate ties-or-defeats another (does
not have a higher Kemeny score).

It remains to show that Kemeny Winner and Kemeny Ranking are hard for PNP
‖ .

The hardness proof consists of two parts. In Section 5.3.1 we give a reduction from
the problem Feedback Arc Set Member to Kemeny Ranking and Kemeny Winner.
The PNP

‖ -hardness of Feedback Arc Set Member is shown in Section 5.3.2.

5.3.1 The Reduction from the Feedback Arc Set Member

Problem

In [BTT89b], NP-hardness for Kemeny Score is proved by a reduction from the
NP-complete digraph problem Feedback Arc Set, which will be defined below.
Our approach to prove PNP

‖ -hardness for Kemeny Winner is the following. Define

a version Feedback Arc Set Member of Feedback Arc Set that is PNP
‖ -complete

and adapt the reduction from Feedback Arc Set to Kemeny Score so that it
becomes a reduction from Feedback Arc Set Member to Kemeny Winner. We will
then use this reduction to obtain a reduction from Feedback Arc Set Member to
Kemeny Ranking.

We will start by defining Feedback Arc Set and Feedback Arc Set Member.

Definition 5.3.1 1. A feedback arc set (FAS) for a digraph G is a set of arcs
of G that includes at least one arc from every cycle in G.

2. Feedback Arc Set = {〈G, k〉 | G is a digraph, k a positive integer, and G
has a feedback arc set of size at most k}.

3. Feedback Arc Set Member = {〈G, v〉 |G is an irreflexive and antisymmet-
ric digraph, v is a vertex of G, and some minimum size feedback arc set of
G contains all arcs entering v}.

We will now prove that Feedback Arc Set Member≤p
m Kemeny Winner.

Lemma 5.3.2 Feedback Arc Set Member≤p
m Kemeny Winner.

Proof We will modify the reduction from Feedback Arc Set to Kemeny Score

from [BTT89b] to construct a reduction f from Feedback Arc Set Member to
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Kemeny Winner. Suppose that we are given 〈G, ĉ〉, where G = 〈C, A〉 is an ir-
reflexive and antisymmetric digraph, and ĉ ∈ C.

Due to a note by McGarvey [McG53], we can interpret G as an election. We
can in polynomial time compute an election g(G) = 〈C, V 〉, where V is a multiset
of strict preference rankings on C such that the number of voters is even and
[c → d] ∈ A iff ||V ||/2 + 1 voters prefer c to d (and ||V ||/2 − 1 voters prefer d to
c), and c and d are unconnected iff exactly half of the voters prefer c to d (and
exactly half of the voters prefer d to c): For each arc [α1 → α2] ∈ A we create
one voter with preference ranking α1 > α2 > c1 > c2 > · · · > cn−2 and one voter
with preference ranking cn−2 > · · · > c2 > c1 > α1 > α2, where c1, . . . , cn−2 are
the remaining candidates.

Let f(〈G, ĉ〉) = 〈g(G), ĉ〉 = 〈C, V, ĉ〉. We have to show that 〈G, ĉ〉 ∈
Feedback Arc Set Member if and only if 〈C, V, ĉ〉 ∈ Kemeny Winner.

Lemma 3 in [BTT89b] can easily be strengthened such that the particular
Kemeny winner is preserved. We get the following lemma.

Lemma 5.3.3 ([BTT89b]) Given a set of candidates C and a multiset V of
strict preference rankings on C. If c ∈ C is a Kemeny winner, then there exists a
strict Kemeny consensus2 such that c is the preferred candidate in the consensus.

Our election 〈C, V 〉 consists only of strict preference rankings. That justifies the
definition of the following score function.

• StrictKemenyScore(C, c, V ) = min{KemenyScore(C, P, V ) | P is a strict

preference ranking on C, and c is the preferred candidate in P}.

Lemma 5.3.3 implies that the winners of 〈C, V 〉 are the candidates with smallest
StrictKemenyScore, because StrictKemenyScore(C, c, V ) = KemenyScore(C, c, V )
for all Kemeny winners c.

We define the following functions in analogy to KemenyScore.

• For every strict preference ranking P on C,

Disagree(G, P ) = ||{[c → d] | [c → d] ∈ A and P prefers d to c}||.

• For every candidate c ∈ C,

Disagree(G, c) = min{Disagree(G, P ) | P is a strict preference ranking on C,

and c is the preferred candidate in P}.

2A strict Kemeny consensus is a Kemeny consensus that is a strict preference ranking.
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The following claim is implicit in [BTT89b].

Claim 5.1 Let g(G) = 〈C, V 〉. Then the following is true for a function
FixedCost that depends neither on P nor on c.

1. For each strict preference ranking P ,

KemenyScore(C, P, V ) = FixedCost(G) + 4 Disagree(G, P ).

2. For any candidate c ∈ C,

StrictKemenyScore(C, c, V ) = FixedCost(G) + 4 Disagree(G, c).

Proof

1. According to the definitions,

KemenyScore(C, P, V ) =
∑

Q∈V

dist(P, Q) =
∑

{c,d}

∑

Q∈V

dP,Q(c, d).

Given an unordered pair {c, d}, it is easy to see that for every strict prefer-
ence ranking P ,

∑

Q∈V

dP,Q(c, d) = 2 ·





||V ||/2 − 1 if [c → d] ∈ A and P prefers c to d,
||V ||/2 + 1 if [c → d] ∈ A and P prefers d to c,
||V ||/2 − 1 if [d → c] ∈ A and P prefers d to c,
||V ||/2 + 1 if [d → c] ∈ A and P prefers c to d,
||V ||/2 if [c → d] /∈ A and [d → c] /∈ A.

Hence

KemenyScore(C, P, V )

= 2 ·
(
||V ||/2 · ||

{
{x, y} | x 6= y, [x → y] /∈ A and [y → x] /∈ A

}
||

+ (||V ||/2 − 1) ||A|| + 2 Disagree(G, P ))

= FixedCost(G) + 4 Disagree(G, P ).

Clearly, FixedCost(G) does not depend on P .

2. By definition,

StrictKemenyScore(C, c, V )
= min{KemenyScore(C, P, V ) | P is a strict preference ranking on C,

and c is the preferred candidate in P}
= min{FixedCost(G) + 4 Disagree(G, P ) | P is a strict preference

ranking on C, and c is the preferred candidate in P},

due to Claim 5.1(1). By the definition of Disagree(G, c), it follows that

StrictKemenyScore(C, c, V ) = FixedCost(G) + 4 Disagree(G, c).
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Hence Claim 5.1 is proved. (Claim 5.1)

Claim 5.2

Disagree(G, c) = min
{
||F || | F is a FAS of G containing all arcs entering c

}
.

Proof To prove that the left-hand side is less than or equal to the right-hand
side, suppose that F is a FAS of G that contains all arcs entering c. Let Ĝ be the
digraph that is obtained from G if we throw away all arcs that belong to F . Then
Ĝ does not contain cycles and Ĝ does not contain any arcs entering c. Order C,
the set of vertices of Ĝ, as c1, c2, . . . , c`, where ` = ||C||, such that c1 = c and for

all arcs [ci → cj] in Ĝ, i < j. This is possible because Ĝ is cycle free; therefore
its transitive closure is a partial order, any total extension of which agrees with
Ĝ. Now consider the preference ranking P = c1 > c2 > · · · > c`−2 > c`−1 > c`.
Clearly, Disagree(Ĝ, P ) = 0. Since G consists of Ĝ plus ||F || extra arcs, it follows
that Disagree(G, P ) ≤ ||F ||, and therefore Disagree(G, c) ≤ ||F ||.

To prove that the left-hand side is greater than or equal to the right-hand side,
let P̂ = c1 > c2 > · · · > c`−2 > c`−1 > c` be a preference ranking on C with c1 = c
and Disagree(G, P̂ ) = Disagree(G, c). Let Ĝ be the graph we obtain if we delete

from G the Disagree(G, c) arcs in F̂ = {[ci → cj] | [ci → cj] ∈ G and i > j} (the

arcs disagreeing with P̂ ). Graph Ĝ does not contain cycles, is obtained from G
by removing Disagree(G, c) arcs, and does not contain any arcs entering c (since

arcs entering c would disagree with P̂ ). The arc set F̂ is a FAS for G. Moreover,

F̂ contains all arcs entering c, because G with the arcs in F̂ removed has no arcs
entering c.

(Claim 5.2)

Using Lemma 5.3.3, and Claims 5.1, and 5.2, it is easy to prove that the
following statements are equivalent.

(i) Candidate ĉ is a Kemeny winner of the election 〈C, V 〉.

(ii) Candidate ĉ has smallest KemenyScore(C, ĉ, V ).
(from the definition of Kemeny winner)

(iii) Candidate ĉ has smallest StrictKemenyScore(C, ĉ, V ).
(by Lemma 5.3.3)

(iv) Candidate ĉ has smallest Disagree(G, ĉ).
(by Claim 5.1(2))

(v) Candidate ĉ has smallest

min{||F || | F is a FAS of G containing all arcs entering ĉ}.

(by Claim 5.2)
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(vi) There is a minimum size FAS of G containing all arcs entering ĉ.

To see (v) → (vi), note that for every FAS of G there exists a vertex v such
that F contains all arcs entering v. That concludes the proof of Lemma 5.3.2.3

(Lemma 5.3.2)

We can use the reduction of the previous lemma to obtain a reduction from
Feedback Arc Set Member to Kemeny Ranking. The main idea is to add a special
candidate d̂ that is always a winner of the election. This way, ĉ is a winner of the
election if and only if ĉ’s KemenyScore is not greater than d̂’s KemenyScore.

Lemma 5.3.4 Feedback Arc Set Member≤p
m Kemeny Ranking.

Proof Suppose that x = 〈G, ĉ〉, with G an irreflexive, antisymmetric digraph
and ĉ ∈ V (G). It is easy to see that the following hold.

1. G has a minimum size feedback arc set that contains all vertices entering ĉ if
and only if (G∪〈{d̂}, ∅〉) has a minimum size feedback arc set that contains
all vertices entering ĉ.

2. Any minimum size feedback arc set of (G∪〈{d̂}, ∅〉) contains all arcs entering

d̂ (since there are no arcs entering d̂).

Let 〈C, V 〉 = g(G ∪ 〈{d̂}, ∅〉) where g is defined as in the proof of Lemma 5.3.2.

Then 〈C, V, ĉ〉 = f(G ∪ 〈{d̂}, ∅〉, ĉ) and 〈C, V, d̂〉 = f(G ∪ 〈{d̂}, ∅〉, d̂), where
f is the reduction from Feedback Arc Set Member to Kemeny Winner from
Lemma 5.3.2. From the observations above, and the fact that f is a reduction
from Feedback Arc Set Member to Kemeny Winner, it follows that:

1. G has a minimum size feedback arc set that contains all vertices entering ĉ
if and only if ĉ is a winner of 〈C, V 〉.

2. d̂ is a winner of 〈C, V 〉.

It follows immediately that G has a minimum size feedback arc set that contains all
vertices entering ĉ if and only if KemenyScore(C, ĉ, V ) ≤ KemenyScore(C, d̂, V ).

(Lemma 5.3.4)

5.3.2 The Hardness of the Feedback Arc Set Member

Problem

In order to conclude from Lemmas 5.3.2 and 5.3.4 that Kemeny Winner

and Kemeny Ranking are PNP
‖ -hard, we still need to show that

3At this point, it is easy to see that Kemeny’s voting scheme is also PNP
‖ -complete if we

disallow ties in all preference rankings (cf. footnote 1).
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Feedback Arc Set Member is PNP
‖ -hard. Karp [Kar72] proved that

Feedback Arc Set is NP-hard by reducing Vertex Cover to it. We
will follow the same approach as in Section 5.3.1: We will define a PNP

‖ -
complete version Vertex Cover Member of Vertex Cover, and we will reduce
Vertex Cover Member to Feedback Arc Set Member.

Definition 5.3.5 Vertex Cover Member = {〈G, v〉 | G is a graph, v is a vertex
of G, and some minimum size vertex cover of G contains v}.

Lemma 5.3.6 Vertex Cover Member≤p
m Feedback Arc Set Member.

Proof We will use Karp’s reduction from Vertex Cover to
Feedback Arc Set [Kar72]. Given an (undirected) graph G, define digraph
H = 〈W, A〉 as follows.

• W = {v, v′ | v ∈ V (G)}, and

• A = {[v → v′] | v ∈ V (G)} ∪ {[v′ → w], [w′ → v] | {v, w} ∈ E(G)},

where v′ is a duplicate of v for each vertex v. From [Kar72], we know that G
contains a vertex cover of size at most k if and only if H contains a feedback arc
set of size at most k. Note that this implies that the minimum size of a vertex
cover for G is the same as the minimum size of a feedback arc set for H.

We modify Karp’s reduction to obtain a reduction from Vertex Cover Member

to Feedback Arc Set Member as follows. For G a graph, and v̂ ∈ V (G), let
f(〈G, v̂〉) = 〈H, v̂′〉, where H is the digraph from Karp’s reduction defined above.
Note that H is irreflexive and antisymmetric and that f is computable in polyno-
mial time. It remains to show that 〈G, v̂〉 ∈ Vertex Cover Member if and only if
〈H, v̂′〉 ∈ Feedback Arc Set Member. This follows almost immediately from the
following lemma.

Lemma 5.3.7 G has a vertex cover of size at most k containing v̂ if and only if
H has a feedback arc set of size at most k containing [v̂ → v̂ ′].

This completes the proof of Lemma 5.3.6, since 〈G, v̂〉 ∈ Vertex Cover Member

if and only if G has a minimum size vertex cover containing v̂. By Lemma 5.3.7
and the properties of Karp’s reduction, this holds if and only if H has a minimum
size feedback arc set containing [v̂ → v̂′]. This last step is equivalent to 〈H, v̂′〉 ∈
Feedback Arc Set Member, since [v̂ → v̂ ′] is the only arc entering v̂′.

(Lemma 5.3.6)

Proof of Lemma 5.3.7. The proof follows from inspection of Karp’s
proof [Kar72]. We include the proof for the sake of completeness. First sup-
pose that V ′ ⊆ V (G) is a vertex cover for G such that ||V ′|| = k and v̂ ∈ V ′. We
claim that {[v → v′] | v ∈ V ′} is a feedback arc set for H. Note that the size of
this set is k, and that [v̂ → v̂′] is in this set.
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Suppose for a contradiction that 〈W, A \ {[v → v′] | v ∈ V ′}〉 contains a cycle.
By construction of H, this cycle is of the following form for some k ≥ 2, vi 6= vj

for all i 6= j, and all vi not in V ′.

v1 → v′
1 → v2 → v′

2 → · · · → vk → v′
k → v1

But in G, this implies that {v1, v2} ∈ E, while v1, v2 6∈ V ′. This contradicts
the fact that V ′ is a vertex cover for G.

For the converse, suppose that H has a feedback arc set A′ of size k that
contains [v̂ → v̂′]. We claim that

V ′ = {v ∈ V | ∃w ∈ W : [v → w] ∈ A′ or [v′ → w] ∈ A′}

forms a vertex cover. Note that ||V ′|| ≤ k and that v̂ ∈ V ′.
Suppose for a contradiction that {v1, v2} ∈ E and v1, v2 6∈ V ′. Then (by

definition)

[v1 → v′
1], [v

′
1 → v2], [v2 → v′

2], [v
′
2 → v1] ∈ A \ A′

so that we have a cycle in 〈W, A \ A′〉, which contradicts our assumption that A′

is a feedback arc set. (Lemma 5.3.7)

It remains to show that Vertex Cover Member is PNP
‖ -hard. From

Corollary 3.3.5 we know that Minimum Vertex Cover Compare is PNP
‖ -

complete. We give a reduction from Minimum Vertex Cover Compare to
Vertex Cover Member.

Lemma 5.3.8 Minimum Vertex Cover Compare≤p
m Vertex Cover Member.

Proof Let G and H be graphs such that ||V (H)|| = ||V (G)||. Let v and w be
two new vertices and let F = (G ∪ 〈{v}, ∅〉) ./ (H ∪ 〈{w}, ∅〉), where ./ is the
join operation and ∪ stands for the disjoint union of graphs. We claim that the
following holds: 〈G, H〉 ∈ Minimum Vertex Cover Compare if and only if F has a
minimum vertex cover that contains w. Our reduction will map 〈G, H〉 to 〈F, w〉.

Recall that τ (G) denotes the size of a minimum vertex cover of G. Note that
V is a vertex cover of F if and only if one of the two following statements holds.

1. V contains all vertices of (G ∪ 〈{v}, ∅〉) and V contains a vertex cover of
(H ∪ 〈{w}, ∅〉). The smallest vertex cover of this form is of size ||V (G)|| +
1 + τ(H ∪ 〈{w}, ∅〉) = ||V (H)|| + 1 + τ (H). Note that w is not part of the
smallest vertex cover of this type.

2. V contains all vertices of (H ∪ 〈{w}, ∅〉) and V contains and a vertex cover
of (G∪〈{v}, ∅〉). The smallest vertex cover of this form is of size ||V (H)||+
1 + τ (G ∪ 〈{v}, ∅〉) = ||V (H)||+ 1 + τ(G). Note that that w is always part
of a vertex cover of this type.
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It follows that w is an element of a minimum size vertex cover of F if and only if
there is a minimum size vertex cover of type 2 described above. This is the case
if and only if τ (G) ≤ τ (H). (Lemma 5.3.8)

Lemmas 5.3.8, 5.3.6, 5.3.2, and 5.3.4 immediately imply that Kemeny Winner

and Kemeny Ranking are PNP
‖ -hard. This completes the proof of Theorem 5.2.2.

In addition, these lemmas and the upper bounds for Kemeny Winner and
Kemeny Ranking proved at the start of this section show that the intermediate
graph problems used are also complete for PNP

‖ .

Corollary 5.3.9 Feedback Arc Set Member and Vertex Cover Member are
complete for PNP

‖ .



64 Chapter 5. The Complexity of Kemeny Elections



Chapter 6

Recognizing When Vertex Cover
Heuristics Can Do Well

6.1 Introduction

To cope with the intractability that appears to be inherent to the minimum vertex
cover problem, various heuristics for finding minimum vertex covers have been pro-
posed. Two of the most prominent such heuristics are the edge deletion heuristic
and the maximum-degree greedy heuristic, see, e.g., [PS82, Pap94]. These algo-
rithms run in linear time and, depending on the structure of the given input graph,
may find a minimum vertex cover, or may provide a good approximation of the
optimal solution.

It is common to evaluate heuristics for optimization problems by analyzing
their worst-case ratio for approximating the optimal solution. In this regard, the
two heuristics considered behave quite differently: The edge deletion heuristic
always approximates the size of a minimum vertex cover within a factor of 2
and thus achieves essentially the best approximation ratio known, whereas the
maximum-degree greedy heuristic, in the worst case, can have an approximation
ratio as bad as logarithmic in the input size. The latter result follows from the
early analysis of the approximation behavior of the greedy algorithm for the min-
imum set cover problem that was done by Johnson [Joh74], Lovász [Lov75], and
Chvátal [Chv79] (who studied the weighted version of minimum set cover). Note
that the vertex cover problem can be seen as the special case of the set cover prob-
lem, restricted so that each element occurs in exactly two sets. The currently best
polynomial-time approximation algorithm for the minimum vertex cover problem

by Karakostas [Kar04] achieves an approximation ratio of 2 − Θ
(

1√
log n

)
, where

n is the number of vertices. Dinur and Safra [DS02] proved that the minimum
vertex cover problem cannot be approximated to within any factor smaller than
10
√

5 − 21 ≈ 1.36067, unless P = NP.

We study the problem of recognizing those input graphs for which either of

65
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the two heuristics can approximate the size of a minimum vertex cover within a
constant factor of r, where r ≥ 1 is a fixed rational number. Let SED

r and SMDG
r ,

respectively, denote this recognition problem for the edge deletion heuristic and
for the maximum-degree greedy heuristic. Our main results are:

• For each rational number r with 1 ≤ r < 2, SED
r is PNP

‖ -complete (see

Theorem 6.3.2).

• For each rational number r ≥ 1, SMDG
r is PNP

‖ -complete (see Theorems 6.4.3

and 6.4.4).

This type of recognition problem was investigated for other problems and
other heuristics as well. Bodlaender, Thilikos, and Yamazaki [BTY97] defined and
studied the analogous problem for the independent set problem and the minimum-
degree greedy heuristic, which they denoted by Sr. They proved that Sr is coNP-
hard and belongs to PNP. Closing the gap between these lower and upper bounds,
Hemaspaandra and Rothe [HR98] proved that Sr is PNP

‖ -complete.

Like in previous chapters, we obtain PNP
‖ -hardness by a reduction from the

Minimum Vertex Cover Compare problem (see Section 3.3). Also, we show that
the vertex cover problem, restricted to those input graphs for which the heuristics
considered can find an optimal solution, remains NP-hard. We then lift these
NP lower bounds to PNP

‖ lower bounds that prove our main results. This lifting
requires a padding technique such that the given approximation ratio r is precisely
met. In particular, to achieve PNP

‖ -hardness of SMDG
r for each rational number

r ≥ 1, we modify a construction by Papadimitriou and Steiglitz [PS82] that they
use to analyze the worst-case approximation behavior of the maximum-degree
greedy heuristic.

6.2 Two Heuristics for the Vertex Cover Prob-

lem

We consider the following two heuristics (see, e.g., [PS82, Pap94]) for finding a
minimum vertex cover of a given graph:

Edge Deletion Heuristic (ED): Given a graph G, the algorithm outputs a
vertex cover C of G. Initially, C is the empty set. Nondeterministically
choose an edge {u, v} ∈ E(G), add both u and v to C, and delete u, v, and
all edges incident to u and v from G. Repeat until there is no edge left in G.

Maximum-Degree Greedy Heuristic (MDG): Given a graph G, the algo-
rithm outputs a vertex cover C of G. Initially, C is the empty set. Nonde-
terministically choose a vertex v ∈ V (G) of maximum degree, add v to C,
and delete v and all edges incident to v from G. Repeat until there is no
edge left in G.
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As mentioned in the introduction, these two heuristics have a quite different
approximation behavior. While the worst-case ratio of the MDG algorithm is log-
arithmic in the input size [Pap94, Joh74], the ED algorithm always approximates
the optimal solution within a factor of 2. Thus, despite its extreme simplicity, the
edge deletion heuristic achieves essentially1 the best approximation ratio known
for finding minimum vertex covers [Pap94].

The central question raised in this chapter is: How hard is it to determine
for which graphs G either of these two heuristics can approximate the minimum
vertex cover of G within a factor of r, for a given rational number r ≥ 1? Let
min-ed(G) (respectively, min-mdg(G) ) denote the minimum size of the output
set of the ED algorithm (respectively, of the MDG algorithm) on input G, where
the minimum is taken over all possible sequences of nondeterministic choices the
algorithms can make. For any fixed rational r ≥ 1, SED

r (respectively, SMDG
r ) is

the class of graphs for which ED (respectively, MDG) can output a vertex cover
of size at most r times the size of a minimum vertex cover. Formally,

SED
r = {G |G is a graph and min-ed(G) ≤ r · τ (G)};

SMDG
r = {G |G is a graph and min-mdg(G) ≤ r · τ(G)}.

We will prove that for each fixed rational number r with 1 ≤ r < 2, SED
r is PNP

‖ -

complete, and that for each fixed rational number r ≥ 1, SMDG
r is PNP

‖ -complete.

To this end, we give reductions from the PNP
‖ -complete Minimum Vertex Cover

Compare problem. Here we need the additional useful property of the reduction
given by Theorem 3.3.4.

6.3 The Edge Deletion Heuristic

Lemma 6.3.1 below states that the vertex cover problem restricted to graphs in
SED

1 is NP-hard. The reduction g from Lemma 6.3.1 will be used in the proof of
the main result of this section, Theorem 6.3.2. Define the problem

VC-SED
1 = {〈G, k〉 |G ∈ SED

1 and k ∈ � + and τ (G) ≤ k}.

Lemma 6.3.1 There exists a polynomial-time many-one reduction g from
Vertex Cover to VC-SED

1 transforming any given graph G into a graph H ∈ SED
1

such that
τ(H) = 2(τ(G) + ‖V (G)‖). (6.1)

Hence, VC-SED
1 is NP-hard.2

1See [Kar04].
2Theorem 6.3.2 will imply that VC-SED

1 in fact is PNP
‖ -complete.
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Proof Given any graph G, we construct the graph H ∈ SED
1 as follows. For

each vertex v ∈ V (G), create a component Gv that is defined by the vertex set
V (Gv) = {v1, v2, v3, v4} and the edge set E(Gv) = {{v1, v2}, {v3, v4}, {v1, v3}}.

Define the graph H by joining every pair of components that correspond to
adjacent vertices of G:

V (H) =
⋃

v∈V (G)

V (Gv);

E(H) = {{ai, bj} | {a, b} ∈ E(G) and i, j ∈ {1, 2, 3, 4}} ∪
⋃

v∈V (G)

E(Gv).

We now prove Equation (6.1). Let C be a minimum vertex cover of G, i.e.,
τ (G) = ‖C‖. Construct a vertex cover D of H as follows. For each vertex v ∈ C,
add v1, v2, v3, and v4 to D; and for each vertex w ∈ V (G) − C, add w1 and w3

to D. Hence,

‖D‖ = 2(‖C‖ + ‖V (G)‖).
Since mvc(H) ≤ ‖D‖, it follows that

τ(H) ≤ 2(τ(G) + ‖V (G)‖).

Conversely, let D be a minimum vertex cover of H, i.e., τ(H) = ‖D‖. Then,
it holds that:

• for each edge {u, v} ∈ E(G), V (Gu) ⊆ D or V (Gv) ⊆ D;

• for each vertex v ∈ V (G), ‖D ∩ V (Gv)‖ ≥ 2.

Hence,

‖D‖ ≥ 4 · τ (G) + 2(‖V (G)‖ − τ (G))

= 2(τ(G) + ‖V (G)‖).

It follows that
τ(H) ≥ 2(τ(G) + ‖V (G)‖),

which proves Equation (6.1).
It remains to prove that H ∈ SED

1 . Let C be a minimum vertex cover of G.
The edge deletion algorithm can find a vertex cover of H as follows. For every
vertex v ∈ C, choose the edges {v1, v2} and {v3, v4}. For the remaining vertices
w ∈ V (G)−C, choose the edge {w1, w3}. Thus, min-ed(H) = 2(τ(G)+ ‖V (G)‖).
By Equation (6.1), min-ed(H) = τ (H), so H ∈ SED

1 . (Lemma 6.3.1)

Theorem 6.3.2 For each rational number r with 1 ≤ r < 2, SED
r is PNP

‖ -
complete.
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Proof It is easy to see that SED
r is in PNP

‖ . To prove PNP
‖ -hardness, let A be an

arbitrary set in PNP
‖ , and let f be the reduction from A to Minimum Vertex Cover

Compare stated in Theorem 3.3.4. Fix any rational number r with 1 ≤ r < 2, and
let ` and m be integers such that r = `/m. Note that 1 ≤ m ≤ ` < 2m.

For any string x ∈ Σ∗, let f(x) = 〈G2, G1〉. Since we can add isolated vertices
to any graph G without altering τ (G), we may without loss of generality assume
that ‖V (G1)‖ = ‖V (G2)‖. Let g be the reduction from Lemma 6.3.1 that trans-
forms any given graph G into a graph H ∈ SED

1 such that Equation (6.1) holds.
Let H1 = g(G1) and H2 = g(G2). Thus, both H1 and H2 are in SED

1 , and for
i ∈ {1, 2}, we have τ(Hi) = 2(τ(Gi) + ‖V (Gi)‖).

We will define a graph Ĥ and an integer k ≥ 0 such that:

min-ed(Ĥ) = r(m · τ(H2) + 2km); (6.2)

τ(Ĥ) = m · τ (H1) + 2km. (6.3)

The reduction mapping any given string x (via the pair 〈G2, G1〉 obtained
according to Theorem 3.3.4 and via the pair 〈H2, H1〉 obtained according to

Lemma 6.3.1) to the graph Ĥ such that Equations (6.2) and (6.3) are satisfied
will establish that A≤p

m SED
r . In particular, from these equations, we have that:

• τ (H2) = τ (H1) implies min-ed(Ĥ) = r · τ(Ĥ), and

• τ (H2) > τ (H1) implies min-ed(Ĥ) > r · τ(Ĥ).

Note that, due to Theorem 3.3.4, τ (H2) ≥ τ(H1).

H1
2 H2

2 H2
1H1

1
· · · · · ·

L R

· · ·

indep. set I2
indep. set I1

./

H`
2 Hm

1

a1 a2 ak·`

b1 b2 bk·`

Figure 6.1: The graph Ĥ constructed from H1 and H2.

Look at Figure 6.1 for the construction of Ĥ from H1 and H2. The graph
Ĥ consists of two subgraphs, L and R, that are joined by the join operation ./,
plus some additional vertices and edges that are connected to R. Formally, let
H1

1 , H
2
1 , . . . , H

m
1 be m pairwise disjoint copies of H1, and let H1

2 , H
2
2 , . . . , H

`
2 be `

pairwise disjoint copies of H2. Let k = `‖V (H2)‖ + m‖V (H1)‖. Let I1 and I2 be
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independent sets such that L contains exactly k(2m − `) vertices and R exactly
k` vertices. (This is possible, because k(2m− `)− `‖V (H2)‖ is not negative, since
2m − ` ≥ 1, and k` − m‖V (H1)‖ is not negative, since ` ≥ 1.) Let ei = {ai, bi}
(1 ≤ i ≤ k`) be additional edges. Every vertex ai is adjacent to exactly one vertex
in R, and each vertex in R is adjacent to exactly one vertex ai. The vertices ai

and bi are not adjacent to any other vertices.

1. We first determine min-ed(Ĥ). Let Ê be a fixed minimum-size output set of

the ED algorithm on input Ĥ, i.e., min-ed(Ĥ) = ‖Ê‖. Since Ê is a vertex

cover of Ĥ, Ê must contain ai or bi for each i ∈ {1, . . . , k`}. Since the

ED-algorithm can delete only edges, and Ê is a minimum-size output set, it
follows that Ê contains all vertices ai, all vertices from R, and no vertex bi.

Let CL be a minimum-size output set of the ED-algorithm on input L.
By construction of L, ‖CL‖ = ` · min-ed(H2). Thus, since H2 ∈ SED

1 ,
‖CL‖ = ` · τ(H2).

Define Ê ′ = V (R)∪CL∪
⋃k`

i=1{ai}. It is easy to see that Ê ′ is a minimum-size

output set of the ED algorithm on input Ĥ. Hence,

min-ed(Ĥ) = 2k` + ` · τ (H2)

= r(2km + m · τ(H2)).

This proves Equation (6.2).

2. We now determine τ(Ĥ). Let Ĉ be a fixed minimum vertex cover of Ĥ, i.e.,

τ(Ĥ) = ‖Ĉ‖. Distinguish the following two cases.

Case 1: V (R) ⊆ Ĉ. In this case, Ĉ contains all vertices from R, at least
one of ai or bi for each i, 1 ≤ i ≤ k`, and a minimum vertex cover of
L. Hence,

τ (Ĥ) = 2k` + ` · τ (H2).

Case 2: V (L) ⊆ Ĉ. In this case, Ĉ contains all vertices from L, a minimum
vertex cover of R, and exactly one of ai or bi for each i, 1 ≤ i ≤ k`.
Hence,

τ (Ĥ) = k(2m − `) + k` + m · τ(H1)

= 2km + m · τ(H1).

Since τ(H1) ≤ τ (H2), m ≤ `, and 2km ≤ 2k`, it follows that

τ(Ĥ) = 2km + m · τ (H1).

This proves Equation (6.3).

(Theorem 6.3.2)
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6.4 The Maximum-Degree Greedy Heuristic

Lemma 6.4.1 below states that the vertex cover problem restricted to graphs
in SMDG

1 is NP-hard. The proof of Lemma 6.4.1 is reminiscent of a proof by
Bodlaender et al. [BTY97, Thm. 4], who show that the independent set problem
restricted to graphs for which the minimum-degree greedy heuristic can find an
optimal solution is NP-hard. The reduction g from Lemma 6.4.1 will be used in
the proof of the main result of this section, Theorem 6.4.4. Define the problem

VC-SMDG
1 = {〈G, k〉 |G ∈ SMDG

1 and k ∈ � + and τ (G) ≤ k}.

Recall that ∆(G) denotes the maximum degree of the vertices in G.

Lemma 6.4.1 There is a polynomial-time many-one reduction g from
Vertex Cover to VC-SMDG

1 transforming any given graph G into a graph H ∈
SMDG

1 such that

τ(H) = τ(G) + ‖E(G)‖(∆(G) + 1). (6.4)

Hence, VC-SMDG
1 is NP-hard.3

Proof Given any graph G, we construct the graph H ∈ SMDG
1 as follows. We

replace each edge of G by a gadget that contains a complete bipartite graph of
size 2(∆(G) + 1). Formally, H is defined by:

V (H) = V (G) ∪
⋃

e = {u,v}∈E(G)

{ue
i | 1 ≤ i ≤ ∆(G) + 1} ∪ {ve

i | 1 ≤ i ≤ ∆(G) + 1};

E(H) =
⋃

e = {u,v} ∈E(G)

(
{{ue

i , v
e
j} | 1 ≤ i, j ≤ ∆(G) + 1} ∪ {{u, ue

1}} ∪ {{v, ve
1}}
)
.

We now prove Equation (6.4). Let C be a minimum vertex cover of G, i.e.,
τ (G) = ‖C‖. Note that {u, v} ∩ C 6= ∅ for each edge {u, v} in E(G). Construct
a vertex cover D of H as follows:

• D contains all vertices from C.

• For every edge e = {u, v} in E(G), add to D:

– either all vertices ue
i , 1 ≤ i ≤ ∆(G) + 1, if u 6∈ C or if both u and v are

in C;

– or all vertices ve
i , 1 ≤ i ≤ ∆(G) + 1, if v 6∈ C.

It follows that

τ (H) ≤ τ(G) + ‖E(G)‖(∆(G) + 1).

3Theorem 6.4.3 will imply that VC-SMDG
1 in fact is PNP

‖ -complete.
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Conversely, let D be a minimum vertex cover of H, i.e., τ(H) = ‖D‖. Con-
struct a vertex cover C of G as follows. Initially, set C = D. Let e = {u, v} be any
fixed edge in E(G). Suppose that at least one vertex from {u, v} is in D. Since
D is a vertex cover of H, it contains at least ∆(G) + 1 of the vertices ue

i and ve
i ,

1 ≤ i ≤ ∆(G)+1, that correspond to the edge e. Remove any ∆(G)+1 such ver-
tices from C. Suppose now that neither u nor v is in D. Since D is a vertex cover
of H, it contains at least ∆(G) + 2 of the vertices ue

i and ve
i , 1 ≤ i ≤ ∆(G) + 1,

that correspond to the edge e. Remove any ∆(G) + 2 such vertices from C, and
add to C one of u or v instead. Since the set C thus obtained is a vertex cover
of G, we have

τ(H) ≥ τ (G) + ‖E(G)‖(∆(G) + 1),

which proves Equation (6.4).
It remains to prove that H ∈ SMDG

1 . Let C be a minimum vertex cover of G.
The maximum-degree greedy algorithm can find a vertex cover of H as follows.
For every edge e = {u, v} in E(G), the MDG algorithm on input H can choose:

• either all vertices ue
i , 1 ≤ i ≤ ∆(G)+1, if u 6∈ C or if both u and v are in C;

• or all vertices ve
i , 1 ≤ i ≤ ∆(G) + 1, if v 6∈ C.

Note that the MDG heuristic can always do so, since every vertex in V (G) has
degree at most ∆(G). Subsequently, all vertices that are not in C are isolated.
Thus, the MDG algorithm can now choose all vertices from C. Hence,

min-mdg(H) = τ(G) + ‖E(G)‖(∆(G) + 1).

By Equation (6.4), min-mdg(H) = τ(H), so H ∈ SMDG
1 . (Lemma 6.4.1)

Lemma 6.4.2 below will be used in the proof of Theorem 6.4.4. The construc-
tion of the graph G in this lemma is a modification of a construction given by
Papadimitriou and Steiglitz [PS82, p. 408, Fig. 17-3], which shows that the worst-
case approximation ratio of the MDG heuristic can be as bad as logarithmic in
the input size, and so grows unboundedly. Similar constructions for achieving the
worst-case approximation behavior of the greedy heuristic solving the more gen-
eral minimum set cover problem were given by Johnson [Joh74], Lovász [Lov75],
and Chvátal [Chv79].

Lemma 6.4.2 For all positive integers n1, n2, δ ≥ 6, and µ satisfying

µ(lnµ − 2 ln(δ + 2) − 1) ≥ n1 + n2, (6.5)

there exists a bipartite graph G with the following properties:

1. V (G) = V ∪ Ṽ such that V ∩ Ṽ = ∅ and both V and Ṽ are independent sets,
where
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• V = {u1, u2, . . . , un1
, w1, w2, . . . , wµ, z1, z2, . . . zn2

} and

• Ṽ = {ũ1, ũ2, . . . , ũn1
, w̃1, w̃2, . . . , w̃µ}.

2. {{ui, ũi} | 1 ≤ i ≤ n1} ∪ {{wi, w̃i} | 1 ≤ i ≤ µ} ⊆ E(G).

3. Every vertex ũi, where 1 ≤ i ≤ n1, has degree one.

4. For each induced subgraph S of G that can be obtained by deleting vertices
from V such that V ∩ V (S) 6= ∅, it holds that

max
v∈V ∩V (S)

degS(v) > max
v∈Ṽ

degS(v) + δ.

Proof Let the constants n1, n2, δ, and µ be given such that Equation (6.5) is
satisfied. We describe the construction of the graph G. As stated in the lemma,
the vertex set of G is given by V (G) = V ∪ Ṽ , where V and Ṽ are two disjoint
independent sets.

Rename the vertices of V by V = {α1, α2, . . . , αn1+µ+n2
}.

Let W̃ = {w̃1, w̃2, w̃3 . . . , w̃µ}. The edge set of G is defined as follows:

• Create the edges {ui, ũi} for each i with 1 ≤ i ≤ n1 and the edges {wj, w̃j}
for each j with 1 ≤ j ≤ µ.

• Partition W̃ into
⌊

µ
δ+3

⌋
disjoint sets W̃ δ+3

1 , W̃ δ+3
2 , . . . , W̃ δ+3

b µ
δ+3c of size δ + 3

each, possibly leaving out some vertices from W̃ and taking care that no
vertex in W̃ δ+3

i already is connected with αi, 1 ≤ i ≤
⌊

µ
δ+3

⌋
. For each i with

1 ≤ i ≤
⌊

µ
δ+3

⌋
, connect αi with each vertex in W̃ δ+3

i by an edge.

• Partition W̃ into
⌊

µ
δ+4

⌋
disjoint sets W̃ δ+4

1 , W̃ δ+4
2 , . . . , W̃ δ+4

b µ
δ+4c of size δ + 4

each, possibly leaving out some vertices from W̃ and taking care that no
vertex in W̃ δ+4

i already is connected with αb µ
δ+3c+i, 1 ≤ i ≤

⌊
µ

δ+4

⌋
. For each

i with 1 ≤ i ≤
⌊

µ
δ+4

⌋
, connect αb µ

δ+3c+i with each vertex in W̃ δ+4
i by an

edge.

• Partition W̃ into
⌊

µ
δ+5

⌋
disjoint sets W̃ δ+5

1 , W̃ δ+5
2 , . . . , W̃ δ+5

b µ
δ+5c of size δ + 5

each, possibly leaving out some vertices from W̃ and taking care that no
vertex in W̃ δ+5

i already is connected with αb µ
δ+3c+b µ

δ+4c+i, 1 ≤ i ≤
⌊

µ
δ+5

⌋
.

For each i with 1 ≤ i ≤
⌊

µ
δ+5

⌋
, connect αb µ

δ+3c+b µ
δ+4c+i with each vertex in

W̃ δ+5
i by an edge.

• Continue in this way until all vertices αi are connected with vertices in W̃ .
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The construction is possible, since Equation (6.5) implies
⌊

µ

δ + 3

⌋
+

⌊
µ

δ + 4

⌋
+ · · ·+

⌊
µ

µ − 1

⌋
≥ n1 + µ + n2, (6.6)

and thus there are enough vertices in W̃ . To see why, note that
⌊

µ

δ + 3

⌋
+

⌊
µ

δ + 4

⌋
+ · · ·+

⌊
µ

µ − 1

⌋

=
⌊µ

1

⌋
+
⌊µ

2

⌋
+ · · ·+

⌊
µ

µ

⌋
− 1 −

(⌊µ

1

⌋
+
⌊µ

2

⌋
+ · · · +

⌊
µ

δ + 2

⌋)

≥ µ

1
+

µ

2
+ · · · + µ

µ
− µ −

(
µ

1
+

µ

2
+ · · · + µ

δ + 2

)

= µHµ − µ − µHδ+2

≥ µ lnµ − µ − µ ln(δ + 2) − µ

≥ µ lnµ − µ ln(δ + 2) − 2µ

≥ µ lnµ − µ ln(δ + 2) − µ ln(δ + 2) (6.7)

= µ lnµ − 2µ ln(δ + 2).

Here, Hk denotes the kth harmonic number, which is defined by Hk =
∑k

i=1
1
i
. It

is well known that for all k, ln k ≤ Hk ≤ ln k + 1 (see, e.g., Graham, Knuth, and
Patashnik [GKP94]). Equation (6.7) holds because δ ≥ 6 and hence ln(δ+2) ≥ 2.

It is evident from the construction that G has all required properties. In
particular, to see why Property 4 holds, let S be any induced subgraph of G
that can be obtained by deleting vertices from V such that V ∩ V (S) 6= ∅. Let
yS = maxv∈V ∩V (S) degS(v). By construction, S can have only edges of the form
{ui, ũi} or {wj, w̃j} or edges that are added during the stages δ + 3, δ + 4, . . . , yS,
where δ + i denotes the stage in which W̃ is partitioned into subsets of size δ + i.
It follows that

max
v∈Ṽ

degS(v) ≤ 1 + yS − (δ + 3) + 1 = yS − δ − 1 < yS − δ,

which proves the lemma. (Lemma 6.4.2)

Theorem 6.4.3 SMDG
1 is PNP

‖ -complete.

Proof It is easy to see that SMDG
1 is in PNP

‖ . To prove PNP
‖ -hardness of SMDG

1 ,

let A be an arbitrary set in PNP
‖ , and let f be the reduction from A to Minimum

Vertex Cover Compare stated in Theorem 3.3.4. For any string x ∈ Σ∗, let
f(x) = 〈G2, G1〉.

We will define a graph Ĝ and an integer q ≥ 0 such that:

min-mdg(Ĝ) = τ (G2) + q; (6.8)

τ (Ĝ) = τ (G1) + q. (6.9)
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The reduction mapping any given string x (via the pair 〈G2, G1〉 obtained

according to Theorem 3.3.4) to the graph Ĝ such that Equations (6.8) and (6.9)
are satisfied will establish that X ≤p

m SMDG
1 . In particular, from these equations,

we have that:

• τ (G2) = τ (G1) implies min-mdg(Ĝ) = τ (Ĝ), and

• τ (G2) > τ (G1) implies min-mdg(Ĝ) > τ (Ĝ).

Note that, due to Theorem 3.3.4, τ (G2) ≥ τ(G1).

We now describe the construction of Ĝ. Let g be the reduction from
Lemma 6.4.1 and let H2 = g(G2). Thus, H2 is in SMDG

1 and, by Equation (6.4),

τ(H2) = τ(G2) + ‖E(G2)‖(∆(G2) + 1). (6.10)

Since one can add isolated vertices to any graph G without affecting the values of
τ (G) or min-mdg(G), we may without loss of generality assume that

‖V (H2)‖ = ‖V (G1)‖ + ‖E(G2)‖(∆(G2) + 1). (6.11)

./H2

a1 a2

· · ·

aj

b1 b2 bj

L R = G1

Figure 6.2: The graph Ĝ constructed from G1 and H2.

Look at Figure 6.2 for the construction of Ĝ from G1 and H2. The graph Ĝ
consists of two subgraphs, L and R, that are joined by the join operation, plus
some additional vertices and edges that are connected to L. Formally, choose 2j
new vertices ai and bi, 1 ≤ i ≤ j, where j is a fixed integer large enough such that
the degree of each vertex in R is larger than the maximum degree of the vertices
in L. Note that the degree of each vertex in R must remain larger than the degree
of any vertex in L even after some vertices have been removed from R.

Let B be the bipartite matching with the vertex set

V (B) = {ai | 1 ≤ i ≤ j} ∪ {bi | 1 ≤ i ≤ j}

and the edge set E(B) = {{ai, bi} | 1 ≤ i ≤ j}. Let R = G1, and let L be the
graph with the vertex set V (L) = {ai | 1 ≤ i ≤ j} ∪ V (H2) and the edge set
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E(L) = E(H2). The graph Ĝ is defined by forming the join L ./ R, i.e., there
are edges connecting each vertex of L with each vertex of R, plus attaching the
vertices bi, 1 ≤ i ≤ j, to L by adding the j edges from E(B).

We first consider min-mdg(Ĝ). By our choice of j, each vertex in R has a

degree larger than the degree of any vertex not in R. Hence, on input Ĝ, the
MDG algorithm first deletes all vertices from R. Subsequently, it can find a
minimum vertex cover of H2, which has size τ(G2) + ‖E(G2)‖(∆(G2) + 1) by
Equation (6.10), and eventually it can choose, say, the vertices ai, 1 ≤ i ≤ j, to
cover the edges of B. Hence,

min-mdg(Ĝ) = ‖V (G1)‖ + τ (G2) + ‖E(G2)‖(∆(G2) + 1) + j
(6.11)
= τ (G2) + ‖V (H2)‖ + j.

We now consider τ (Ĝ). Since every vertex cover of Ĝ must contain all vertices
of L or all vertices of R to cover the edges connecting L and R, it follows from
Equations (6.10) and (6.11) that:

τ (Ĝ) = min{‖V (G1)‖ + τ (H2) + j, ‖V (H2)‖ + j + τ (G1)}
= min{τ(G2) + ‖V (H2)‖ + j, τ(G1) + ‖V (H2)‖ + j}.

Since τ(G2) ≥ τ (G1), it follows that

τ(Ĝ) = τ (G1) + ‖V (H2)‖ + j.

Hence, setting q = ‖V (H2)‖ + j, Equations (6.8) and (6.9) are satisfied, which
completes the proof that SMDG

1 is PNP
‖ -complete. (Theorem 6.4.3)

Theorem 6.4.4 For each rational number r > 1, SMDG
r is PNP

‖ -complete.

Proof Fix any rational number r = `/m, where ` and m are integers with
1 ≤ m < `. Without loss of generality, we may assume that gcd(` − m, m) = 1,
where gcd(a, b) denotes the greatest common divisor of the integers a and b. It
is easy to see that SMDG

r is in PNP
‖ . To prove PNP

‖ -hardness of SMDG
r , let A be an

arbitrary set in PNP
‖ , and let f be the reduction from A to Minimum Vertex Cover

Compare stated in Theorem 3.3.4. For any string x ∈ Σ∗, let f(x) = 〈G2, G1〉.
Note that τ (G2) ≥ τ(G1).

We will define a graph Ĝr and integers p, q ≥ 0 such that:

min-mdg(Ĝr) = r(p · τ (G2) + q); (6.12)

τ(Ĝr) = p · τ(G1) + q. (6.13)

The reduction mapping any given string x (via the pair 〈G2, G1〉 obtained

according to Theorem 3.3.4) to the graph Ĝr such that Equations (6.12) and (6.13)
are satisfied will establish that A≤p

m SMDG
r . In particular, from these equations,

we have that:
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• τ (G2) = τ (G1) implies min-mdg(Ĝr) = r · τ(Ĝr), and

• τ (G2) > τ (G1) implies min-mdg(Ĝr) > r · τ(Ĝr).

We now describe the construction of Ĝr:

• Let g be the reduction from Lemma 6.4.1 and let H2 = g(G2). Thus,
H2 ∈ SMDG

1 and Equation (6.10) holds:

τ(H2) = τ(G2) + ‖E(G2)‖(∆(G2) + 1).

• Let G1
1, G

2
1, . . . , G

m
1 be m pairwise disjoint copies of G1, and let H1

2 , H2
2 , . . .,

H`
2 be ` pairwise disjoint copies of H2.

• Let Ũ =
⋃`

i=1 H i
2 be the disjoint union of these copies of H2, and rename

the vertices of Ũ by V (Ũ) = {ũ1, ũ2, . . . , ũ`·‖V (H2)‖}.

• Let Z =
⋃m

i=1 Gi
1 be the disjoint union of these copies of G1, and rename

the vertices of Z by V (Z) = {z1, z2, . . . , zm·‖V (G1)‖}.

• To apply Lemma 6.4.2, choose n1 = ` · ‖V (H2)‖, n2 ≥ m · ‖V (G1)‖, and
δ = max{6, ∆(H2) + 1}, where the exact value of n2 will be specified below.
Choose the constant µ so as to satisfy Equation (6.5):

µ(ln µ − 2 ln(δ + 2) − 1) ≥ n2 + n1.

• Given the constants n1, n2, δ, and µ, define Ĝr to be the bipartite graph G
from Lemma 6.4.2 extended by the edges between the ũi vertices that were
added above to represent the structure of the copies of H2, and extended
by the edges between the zj vertices that were added above to represent the

structure of the copies of G1. That is, unlike G, the graph Ĝr is no longer
a bipartite graph. Formally, the vertex set of Ĝr is given by

V (Ĝr) = V (G) = V ∪ Ṽ , where

V = {u1, u2, . . . , un1
, w1, w2, . . . , wµ, z1, z2, . . . zn2

} and

Ṽ = {ũ1, ũ2, . . . , ũn1
, w̃1, w̃2, . . . , w̃µ},

and the edge set of Ĝr is given by E(Ĝr) = E(G) ∪ E(Ũ) ∪ E(Z), where
E(G) is constructed as in the proof of Lemma 6.4.2.

This completes the construction of Ĝr. We now prove Equations (6.12)
and (6.13).
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1. We first consider min-mdg(Ĝr). By construction, for each vertex v in Ṽ , we
have

deg bGr
(v) ≤ degG(v) + ∆(H2) < degG(v) + δ. (6.14)

Let S be any induced subgraph of Ĝr that can be obtained by deleting
vertices from V such that V ∩ V (S) 6= ∅. Property 4 of Lemma 6.4.2 and
Equation (6.14) imply that

max
v∈V ∩V (S)

degS(v) > max
v∈Ṽ

degS(v).

Hence, on input Ĝr, the MDG algorithm starts by choosing the n1 + µ + n2

vertices from V , which isolates each vertex w̃i ∈ Ṽ and leaves ` isolated
copies of H2. Subsequently, since H2 ∈ SMDG

1 , the MDG algorithm can
choose a minimum vertex cover in each of these ` copies of H2. By Equa-
tion (6.10),

τ (H2) = τ (G2) + ‖E(G2)‖(∆(G2) + 1),

and hence,

min-mdg(Ĝr) = n1 + µ + n2 + `(τ (G2) + ‖E(G2)‖(∆(G2) + 1)).

2. We now consider τ(Ĝr). Define the set C = Ṽ ∪ D, where D with ‖D‖ =
m·τ(G1) is a minimum vertex cover of Z. It is obvious from the construction

of Ĝr that C is a minimum vertex cover of Ĝr. Hence,

τ (Ĝr) = n1 + µ + m · τ(G1).

To complete the proof, we have to choose n2 ≥ m · ‖V (G1)‖ such that Equa-
tions (6.12) and (6.13) are satisfied for suitable integers p and q. Setting p = m
and q = n1 + µ and requiring

n1 + n2 + µ + ` · ‖E(G2)‖(∆(G2) + 1) = r(n1 + µ) (6.15)

or, equivalently,

m · n2 + m · ` · ‖E(G2)‖(∆(G2) + 1) = (` − m)n1 + (` − m)µ (6.16)

satisfies Equations (6.12) and (6.13).
Our assumption that gcd(` − m, m) = 1 implies that the equation

m · n′
2 + 1 = (` − m)µ′ (6.17)

has integer solutions. Clearly, the set of solutions of Equation (6.17) depends only
on the fixed rational number r = `/m. Fix one such solution (n′

2, µ
′). Multiplying

this solution with m · ` · ‖E(G2)‖(∆(G2) + 1) − (` − m)n1, we obtain an integer
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solution (n̂2, µ̂) for Equation (6.16). For every k ∈ � , (n2, µ) is a solution of
Equation (6.16), where

n2 = n̂2 + k(` − m), (6.18)

µ = µ̂ + km. (6.19)

Choosing k large enough, we can make sure that (a) n2 and µ are positive integers,4

(b) n2 ≥ m · ‖V (G1)‖, and (c) n2 and µ satisfy Equation (6.5) for given n1 and δ.
It is easy to see that k can be small enough such that n2 and µ are polynomially
bounded in the size of the input of the reduction being described. This completes
the proof of the theorem. (Theorem 6.4.4)

4Recall that ` − m > 0 and m > 0.
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Chapter 7

Counting Class Separations

In this chapter, we are concerned with some open problems of an influential paper
by Fenner, Fortnow, and Kurtz [FFK94]. First, we give partial answers to the
following questions by relativization:

1. Does it hold that WPPSPP = WPP?

2. Is WPP closed under polynomial-time Turing reductions?

3. Are the similar appearing classes LWPP and WPP equal?

Second, we prove that LWPP and WPP are not uniformly gap-definable.

Our proofs combine the well-known polynomial encoding technique with a new
combinatorial property of low-degree multilinear polynomials (Key Lemma 7.3.2).

7.1 Counting Classes

We study complexity classes that are based on counting the number of accept-
ing and rejecting computation paths of NPTMs. Valiant [Val79] introduced the
famous class #P, which is the set of all functions that can be defined by the
number of accepting paths of some NPTM. He proved several natural problems
complete for #P, for example the problem of computing the permanent of a zero-
one matrix. Fenner, Fortnow, and Kurtz [FFK94] generalized #P to GapP and
developed a theory of gap-definable counting classes.1 The class GapP is the set
of functions that can be defined by the difference (the “gap”) between the number
of accepting and rejecting paths of an NPTM.

1Gupta [Gup95] defined independently the same class under the name Z#P.

81
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Definition 7.1.1 For any oracle NPTM N and A ⊆ Σ∗, we define the following
functions:

1. For every x ∈ Σ∗, #accNA(x) denotes the number of accepting paths of
NA(x).

2. For every x ∈ Σ∗, #rejNA(x) denotes the number of rejecting paths of NA(x).

3. For every x ∈ Σ∗, gapNA(x) = #accNA(x) − #rejNA(x).

We can now formally define the function classes #P and GapP.

Definition 7.1.2 1. [Val79] #P = {g | (∃NPTM N)[g = #accN ]}.

2. [FFK94, Gup95] GapP = {g | (∃NPTM N)[g = gapN ]}.

It is easy to show that every #P function is also a GapP function [FFK94].
Several important languages classes, including PP, ⊕P, C=P, and UP, can be

conveniently defined in terms of GapP or #P functions. Valiant [Val76] introduced
the class UP of all NP languages that can be decided by NPTMs that never have
more than one accepting path. With the help of #P functions we can define:

Definition 7.1.3 ([Val76]) The class UP is the set of all languages L such that
for some function f ∈ #P and every x ∈ Σ∗:

• x ∈ L =⇒ f(x) = 1.

• x /∈ L =⇒ f(x) = 0.

We get the counting class SPP if we allow f to be any function in the larger class
GapP:

Definition 7.1.4 ([FFK94, Gup95, OH93]) The class SPP is the set of all
languages L such that for some function f ∈ GapP and every x ∈ Σ∗:

• x ∈ L =⇒ f(x) = 1.

• x /∈ L =⇒ f(x) = 0.

This class was independently introduced by Fenner, Fortnow, and Kurtz [FFK94]
(under the name SPP), Gupta [Gup95] (under the name ZUP), and Ogiwara and
Hemachandra [OH93] (under the name XP). It can be considered as gap analog of
the class UP. Fenner et al. [FFK94] also introduced the following generalizations
of SPP.
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Definition 7.1.5 ([FFK94])

1. The class WPP is the set of all languages L such that for some functions
f ∈ GapP and g ∈ FP with 0 /∈ range(g), and every x ∈ Σ∗:

• x ∈ L =⇒ f(x) = g(x).

• x /∈ L =⇒ f(x) = 0.

2. The class LWPP is the set of all languages L such that for some functions
f ∈ GapP and g ∈ FP with 0 /∈ range(g), and every x ∈ Σ∗:

• x ∈ L =⇒ f(x) = g(0|x|).

• x /∈ L =⇒ f(x) = 0.

LWPP is the restricted version of WPP where the function g depends only on the
length of x.

From the definitions, we get the following inclusion relation among the above
defined classes:

UP ⊆ SPP ⊆ LWPP ⊆ WPP.

Although obviously UP ⊆ NP, it is not clear whether SPP ⊆ NP is true.

The class SPP is known to contain an important natural problem—the graph
isomorphism problem [AK02]. Arvind and Vinodchandran [AV97] and Vinod-
chandran [Vin04] showed that many group-theoretic computational problems are
in SPP or LWPP.

7.2 Preliminaries

For any set X of variables, and for any multivariate polynomial p ∈ � [X], deg(p)
denotes the total degree of p. Polynomials bounding the running time of machines
are monotonically increasing.

Recall that a computation path of an oracle NPTM N encodes a complete
valid computation of N relative to some oracle, i.e., is a sequence of configurations
including query strings and answers from the oracle. Given a computation path ρ,
let sign(ρ) = +1 if ρ is an accepting path, and let sign(ρ) = −1 if ρ is a rejecting
path.

In our proofs, we use an encoding of nondeterministic polynomial-time oracle
Turing machines defined in terms of multilinear polynomials with integer coeffi-
cients over variables representing the oracle strings queried by the machine. See,
e.g., the paper by de Graaf and Valiant [dGV02] for a similar approach. The
formal description of the polynomial encoding is given below.
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Definition 7.2.1 Let N (·)(x) be a nondeterministic polynomial-time oracle Tur-
ing machine with running time t(.) and input x ∈ Σ∗. Let x1, x2, . . . , xm be an
enumeration of all strings in Σ∗ up to length t(|x|).

A polynomial encoding of N (·)(x) is a multilinear polynomial p ∈
� [y1, y2, . . . , ym] defined as follows: Call a computation path ρ valid if ρ is a
computation path of ND(x) for some oracle D ⊆ Σ∗. Let xi1 , xi2 , . . . , xi` be the
distinct queries along a valid computation path ρ. Create a monomial mono(ρ)
that is the product of terms zik , k ∈ {1, 2, . . . `}, where zik = yik if xik is answered
“yes” and zik = (1 − yik) if xik is answered “no” along ρ. Define

p(y1, y2, . . . , ym) =
∑

ρ:ρ is valid

sign(ρ) · mono(ρ)

The next proposition states that the multilinear polynomial p has low total
degree, and contains all the necessary information about N (·)(x) to yield the value
gapNB(x) for every oracle B ⊆ Σ∗.

Proposition 7.2.2 The just defined polynomial p(y1, y2, . . . , ym) has the following
properties:

1. deg(p) ≤ t(|x|), and

2. for all B ⊆ Σ∗, p(χB(x1), χB(x2), . . . , χB(xm)) = gapNB(x).

Lemma 7.2.3 states a variant of the prime number theorem. We will need it in
our oracle constructions to estimate the number of primes between two integers.

Lemma 7.2.3 ([RS62]) For every n ≥ 17, the number of primes less than or
equal to n, π(n), satisfies

n/ lnn < π(n) < 1.25506 n/ lnn.

7.3 The Key Lemma

In this section, we prove Lemma 7.3.2, which will be the main tool for the oracle
constructions in the following sections.

First, we need the following lemma.

Lemma 7.3.1 Let N, p ∈ � , where 1 < p ≤ N/2. Let s ∈ � [y1, y2, . . . , yN ]
be a multilinear polynomial with rational coefficients, where each monomial has
exactly p − 1 different variables. Suppose that for some val ∈ � , it holds that
s(y1, . . . , yN) = val for every y1, y2 . . . , yN ∈ {0, 1} with

∑N
i=1 yi = p. Then each

monomial in s(y1, . . . , yN) has the same rational coefficient, i.e.,

s(y1, y2, . . . , yN) =
∑

1≤i1<i2<···<ip−1≤N

(val/p) · yi1yi2 · · · yip−1
.
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Proof of Lemma 7.3.1 Assume that the hypothesis of the lemma is true. For
each 1 ≤ i ≤ N , we identify variable yi by its index i and identify a monomial∏k

j=1 yij by the set of indices {i1, . . . , ik}. Let A denote the collection of all subsets
of {1, . . . , N} of size p and let B denote the collection of all subsets of {1, . . . , N}
of size p − 1. W.l.o.g, we assume that the elements of A and B are ordered in
an arbitrary but fixed manner. We use m =

(
N
p

)
to denote the size of A and

n =
(

N
p−1

)
to denote the size of B. Let Ai, 1 ≤ i ≤ m, denote the ith element of

A, and Bj, 1 ≤ j ≤ n, denote the jth element of B. For a 2-dimensional matrix
Mm×n, let Row(M, i), 1 ≤ i ≤ m, denote the ith row of M .

The condition s(y1, . . . , yN) = val for every y1, . . . , yN ∈ {0, 1} with
∑N

i=1 yi =
p, as given in the hypothesis, can be expressed in terms of a matrix equation
Mm×nXn×1 = bm×1. Here Mm×n is a 0-1 matrix whose (i, j) entry, M [i, j], is one
if Ai ⊇ Bj and is zero otherwise, Xn×1 is a column vector with the jth entry, X[j],
is a variable that denotes the coefficient of monomial Bj, and bm×1 is a column
vector with each entry bi, 1 ≤ i ≤ m, equals val. By assigning all coefficients X[j]
the value val/p, we obtain clearly a solution for the system of equations. Hence it
is sufficient to prove that the solution is unique, i.e., rank(M) = n. We show that
it is possible to express each canonical vector ei = [0, . . . , 0, 1, 0 . . . , 0], 1 ≤ i ≤ n,
as a linear combination of row vectors in M . W.l.o.g, we show that for vector
e1 = [1, 0, . . . , 0].

Form a matrix M̂p×n in the following way. Row k, 1 ≤ k ≤ p, of M̂ is the sum
of all rows i in M with ||Ai ∩ B1|| = p − k. Note that there is at least one row i
with ||Ai ∩ B1|| = p − k. This follows from ||{1, . . . , N} − B1|| ≥ p, which is true
because of the condition p ≤ N/2.

Claim 7.1 The matrix M̂ has the following properties. For every row k (1 ≤ k ≤
p),

1. M̂ [k, j1] = M̂ [k, j2] whenever ||Bj1 ∩ B1|| = ||Bj2 ∩ B1||,

2. M̂ [k, j] 6= 0 for all j with ||Bj ∩ B1|| = p − k,

3. M̂ [k, j] = 0 for all j with ||Bj ∩ B1|| > p − k.

Proof To see (1), note that for fixed k, the cardinality of the set {Ai ∈ A | ||Ai∩
B1|| = p − k ∧ Ai ⊇ Bj} depends only on the number of elements of Bj ∈ B that
are also in B1. Hence for every j1 and j2, with ||Bj1 ∩B1|| = ||Bj2 ∩B1||, it holds
that

||{Ai ∈ A | ||Ai ∩ B1|| = p − k ∧ Ai ⊇ Bj1}||
= ||{Ai ∈ A | ||Ai ∩ B1|| = p − k ∧ Ai ⊇ Bj2}||.



86 Chapter 7. Counting Class Separations

Statement (1) follows immediately. For the proof of (2), we have to verify that
for every k and j,

S df
= {Ai ∈ A | ||Ai ∩ B1|| = p − k ∧ Ai ⊇ Bj} 6= ∅ if ||Bj ∩ B1|| = p − k.

It is easy to see that, if ||Bj ∩B1|| = p−k then S has as element any set Bj ∪{g},
where g /∈ B1. Finally, to show (3), note that for every k and j,

||{Ai ∈ A | ||Ai ∩ B1|| = p − k ∧ Ai ⊇ Bj}|| = 0 if ||Bj ∩ B1|| ≥ p − k + 1.

since ||Bj ∩ B1|| ≥ p − k + 1 and Ai ⊇ Bj implies that ||Ai ∩ B1|| ≥ p − k + 1.
(Claim 7.1)

To complete the proof of the lemma, we show that the structure of the matrix M̂
stated in Claim 7.1 implies that e1 can be expressed as a linear combination of
row vectors of M̂ , and hence also as linear combination of row vectors of M . We
construct a matrix M ′

p×p from M̂p×n, which will turn out to have full rank. From

Claim 7.1(1), we know that column j1 and column j2 of M̂ are equal whenever
||Bj1 ∩B1|| = ||Bj2 ∩B1||. Thus it makes sense to define a matrix M ′ eliminating

all these duplicate columns from M̂ . We define column `, 1 ≤ ` ≤ p, of M ′ to
equal column j of M̂ for some j with ||Bj ∩ B1|| = p − `. Note that column

1 of M ′ corresponds uniquely to column 1 of M̂ . Claim 7.1(3) implies that the
matrix M ′ is an upper triangular matrix, and from Claim 7.1(2), it follows that
all diagonal elements in M ′ are 6= 0. Hence M ′ has full rank. In particular,
row vector [1, 0, . . . , 0]1×p can be written as a linear combination of rows in M ′.
Suppose

[1, 0, . . . , 0]1×p =

p∑

k=1

ck · Row(M ′, k).

for c1, . . . , ck ∈ � . Then

e1 = [1, 0, . . . , 0]1×n =

p∑

k=1

ck · Row(M̂, k),

because column 1 of M̂ equals column 1 of M ′, and all other columns of M̂ equal
a column j in M ′ with p ≥ j > 1. (Lemma 7.3.1)
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Key Lemma 7.3.2 Let N, p ∈ � be such that p is a prime and p ≤ N/2. Let
s ∈ � [y1, y2, . . . , yN ] be a multilinear polynomial with total degree deg(s) < p. If
for some val ∈ � , it holds that

1. s(0, 0, . . . , 0) = 0, and

2. s(y1, y2, . . . , yN) = val, for every y1, y2, . . . , yN ∈ {0, 1} with
∑N

i=1 yi = p,

then p | val.

Proof of Lemma 7.3.2 We transform s(y1, . . . , yN) to a multilinear polynomial
s′(y1, . . . , yN) with the following properties:

(1) All monomials in s′ have exactly p − 1 different variables.

(2) s′(y1, . . . , yN) = s(y1, . . . , yN) = val ∈ � , for all y1, . . . , yN ∈ {0, 1} with∑N
i=1 yi = p.

(3) The coefficients of the monomials in s′ have the form a/b, where a, b ∈ � , and
p - b.

Since s(0, . . . , 0) = 0, the polynomial s has no monomial with degree 0. Let
t(y1, . . . , yN) = a

∏
i∈A yi be a monomial, where A ⊆ {1, . . . , N} and 1 ≤ ||A|| =

` < p − 1. Define the multilinear polynomial ut by

ut(y1, . . . , yN) =
∑

B⊆{1,...N}−A,

||A∪B||=p−1

(
a

p − `

∏

i∈A∪B

yi

)
. (7.1)

Claim 7.2 For all y1, . . . , yN ∈ {0, 1} with
∑N

i=1 yi = p, ut(y1, . . . , yN) =
t(y1, . . . , yN).

Proof Let y1, . . . yN ∈ {0, 1} be such that
∑N

i=1 yi = p. Depending on the choice
in the selection of y1, . . . , yN , we have two cases.

Case 1: t(y1, . . . , yN) = 0.
Then, clearly ut(y1, . . . , yN) = t(y1, . . . , yN) = 0.

Case 2: t(y1, . . . , yN) = a.
Then yi = 1 for all i ∈ A. Let D = {i | i ∈ {1, . . . , N} − A ∧ yi = 1}.
Clearly, ||D|| = p − `. In the sum on the right hand side of Eq. (7.1), only
B’s with B ⊆ D contribute a value 6= 0. The sets B have always cardinality
p − 1 − `. Hence, there are exactly

(
p−`

p−1−`

)
= p − ` sets B contributing the

value a/(p − `) to the sum.

(Claim 7.2)
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Transform polynomial s(y1, . . . , yN) to polynomial s′(y1, . . . , yN) by substituting
each monomial t(y1, . . . , yN) in s(y1, . . . , yN) of degree < p− 1 by the correspond-
ing polynomial ut(y1, . . . , yN). Since {a/b | a, b ∈ � ∧ b 6= 0 ∧ p - b} is closed
under addition, it follows that the polynomial s′(y1, . . . , yN) satisfies properties
(1), (2), and (3) stated at the beginning of the proof. Lemma 7.3.1 implies that
all the coefficients of monomials in s′(y1, . . . , yN) are equal to val/p. Thus to
match with property (3) of polynomial s′(y1, . . . , yN), val/p must be an integer.
It follows that p | val. (Lemma 7.3.2)

7.4 Is WPP Closed Under Polynomial-Time

Turing Reductions?

We now prove that, relative to an oracle, WPP is not closed under polynomial-
time Turing reductions. Since LWPP is known to be closed under polynomial-time
Turing reductions relative to every oracle, this provides also a relativized world
where the similarly defined classes LWPP and WPP are not equal. Prior to this
work there was no intuition against the possibility of a relativizable proof for the
equality of these classes.

Theorem 7.4.1 There exists an oracle A such that PWPPA

* WPPA.

Proof Recall that pos(z) denotes the number of strings of length |z| that are
lexicographically less than z. For every set A ⊆ Σ∗, w ∈ Σ∗, and n ∈ � , we define
“Witcount”, “Promise” and “Boundary” as follows.

Witcount(A, w) = ||{x ∈ Σ∗ | |x| = |w| ∧ wx ∈ A}||,
Promise(A, n) ≡ (∀w ∈ Σn)[Witcount(A, w) = 0 ∨ Witcount(A, w) = pos(w)]∧

(∀w1, w2 ∈ Σn)[pos(w1) ≤ pos(w2) ∧ Witcount(A, w2) 6= 0 ⇒
Witcount(A, w1) 6= 0], and

Boundary(A, n) = max{pos(w) | |w| = n ∧ Witcount(A, w) 6= 0}.

For every set A ⊆ Σ∗, define LA as follows.

LA = {0n | Boundary(A, n) ≡ 1 (mod 2)}.

Clearly, if A satisfies Promise(A, n) at each length n, then LA is in PWPPA

(using
binary search along the strings w with |w| = n).

We construct an oracle A such that, for each n, Promise(A, n) is true, and
LA /∈ WPPA. Let (Ns, Ms, ps)s≥1 be an enumeration of all triples such that Ns is
a nondeterministic polynomial-time oracle Turing machine, Ms is a deterministic
polynomial-time oracle transducer, ps is a polynomial, and the running time
of both Ns and Ms is bounded by ps regardless of the oracle. The oracle A is
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constructed in stages. In stage s, the membership in A of strings of length 2ns

is decided, and the initial segment As−1 is extended to As. Our choice of ns

guarantees that the oracle extension in stage s does not affect the computation
in earlier stages. Set A0 := ∅ and n0 := 17.

Stage s where s ≥ 1 : Let ns be large enough so that the previous stages
are not affected and 2ns > 4n2

sps(ns). We diagonalize against nondeterministic
polynomial-time oracle Turing machine Ns and deterministic polynomial-time or-
acle transducer Ms. Let val be the value computed by MAs−1

s (0ns). Because of the
condition 0 /∈ range(g) in the definition of LWPP, we can assume that val 6= 0.
Let

T = {w ∈ Σ2ns |MAs−1

s (0ns) queries w}.
(?) Choose a set B, B ⊆ T∩Σ2ns , satisfying Promise(B, ns) such that the following
holds:

Boundary(B, ns) ≡ 1 (mod 2) ∧ gap
N

As−1∪B
s

(0ns) 6= val, or

Boundary(B, ns) ≡ 0 (mod 2) ∧ gap
N

As−1∪B
s

(0ns) 6= 0.

Let As := As−1 ∪ B.
End of Stage s

Clearly, the construction guarantees that LA /∈ WPPA. The feasibility of the
construction follows from the following claim.

Claim 7.3 For each s ≥ 1, there exists an oracle extension B satisfying (?).

Proof Suppose that in stage s no set B satisfying (?) exists. Then, for every
B ⊆ T ∩ Σ2ns satisfying Promise(B, ns), the following hold.

Boundary(B, ns) ≡ 1 (mod 2) =⇒ gap
N

As−1∪B
s

(0ns) = val, and (7.2)

Boundary(B, ns) ≡ 0 (mod 2) =⇒ gap
N

As−1∪B
s

(0ns) = 0. (7.3)

Let

U = {w ∈ Σns | pos(w) is prime, and 2ns−2 ≤ pos(w) ≤ 3

2
· 2ns−2}.

Fix an arbitrary w ∈ U . Choose a set Cw ⊆ T ∩ Σ2ns satisfying (a)
Promise(Cw, ns), and (b) Boundary(Cw, ns) = pos(w) − 1. Such a set Cw always
exists because 2ns − ps(ns) > 3

2
· 2ns−2. Statements (7.2) and (7.3) in particular

imply that, for all Dw ⊆ T ∩ wΣns, it holds that (note that pos(w) is odd)

Witcount(Dw, w) = 0 =⇒ gap
N

As−1∪Cw∪Dw
s

(0ns) = 0, and (7.4)

Witcount(Dw, w) = pos(w) =⇒ gap
N

As−1∪Cw∪Dw
s

(0ns) = val. (7.5)
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Let s′w ∈ � [y1, y2, . . . , ym] be the polynomial encoding of N
(·)
s (0ns).

W.l.o.g. assume that x1, x2, . . . , xN enumerate the strings in T ∩ wΣns, and
xN+1, xN+2, . . . , xm enumerate the remaining strings up to length ps(ns). From
Proposition 7.2.2, it follows that the polynomial s′w(y1, y2, . . . , ym) has the follow-
ing properties.

1. For all Dw ⊆ T ∩ wΣns, it holds that

s′w(χDw(x1), χDw(x2), . . . , χDw(xN), χAs−1∪Cw(xN+1), . . . , χAs−1∪Cw(xm))

= gap
N

As−1∪Cw∪Dw
s

(0ns). (7.6)

2. deg(s′w) ≤ ps(ns) < 2ns−2/n2
s < pos(w) < N/2.

Note that the sets As−1 ∪ Cw and T ∩ wΣns are disjoint. The values
χAs−1∪Cw(xN+1), . . . , χAs−1∪Cw(xm) do not depend on Dw. Define the new polyno-
mial sw(y1, y2, . . . , yN) that has these values fixed:

sw(y1, y2, . . . , yN) = s′w(y1, y2, . . . , yN , χAs−1∪Cw(xN+1), . . . , χAs−1∪Cw(xm)).

Hence sw satisfies

1. For all Dw ⊆ T ∩ wΣns, it holds that

sw(χDw(x1), χDw(x2), . . . , χDw(xN )) = gap
N

As−1∪Cw∪Dw
s

(0ns). (7.7)

2. deg(sw) ≤ deg(s′w) < N/2.

Statements (7.4) and (7.5) respectively imply that

• sw(0, 0, . . . , 0) = 0, and

• for all z1, z2, . . . , zN ∈ {0, 1} such that
∑N

i=1 zi = pos(w), we have
sw(z1, z2, . . . , zN ) = val.

It follows from Lemma 7.3.2 that pos(w) | val.

Therefore, for each w ∈ U , pos(w) | val. Hence,

val ≥
∏

w∈U

pos(w) ≥ 2||U || ≥ 2π( 3
2
·2ns−2)−π(2ns−2) ≥ 22ns−2/n2

s > 2ps(ns),

where the fourth inequality follows from Lemma 7.2.3 and the fifth inequality
follows because, 2ns > 4n2

sps(ns). However, val ≤ 2ps(ns), because the running

time of M
(·)
s (0ns) is bounded by ps(ns) regardless of the oracle. Thus, for each

s ≥ 1, As−1 can always be extended in stage s.
(Claim 7.3 and Theorem 7.4.1)

As an immediate corollary of Theorem 7.4.1, and the fact that LWPP is closed
under polynomial-time Turing reductions in all relativized worlds [FFK94], we get
the following result.

Corollary 7.4.2 There exists an oracle A such that WPPA 6⊆ LWPPA.
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7.5 LWPP And WPP Are Not Uniformly Gap-

Definable

Resolving an issue open since Fenner, Fortnow, and Kurtz raised it in 1994
[FFK94], we prove that LWPP as well as WPP are not uniformly gap-definable.

The notion of gap-definability was introduced by Fenner, Fortnow, and
Kurtz [FFK94]. A gap-definable counting class is a collection of all sets such
that, for any set in the class, the membership of a string in the set depends
(in a way particular to the class) on the difference (gap) between the number of
accepting and rejecting paths produced by some NPTM associated with the set.

Definition 7.5.1 ([FFK94]) A class C is gap-definable if there exist disjoint
sets A, R ⊆ Σ∗ × � such that, for any L ⊆ Σ∗, L ∈ C if and only if there exists
an NPTM N such that for all x ∈ Σ∗,

x ∈ L =⇒ (x, gapN(x)) ∈ A, and

x 6∈ L =⇒ (x, gapN(x)) ∈ R.

The class C is also denoted by Gap(A, R).

For relativizable classes, Fenner, Fortnow, and Kurtz [FFK94] introduced two
ways of defining gap-definability: uniform and nonuniform. A relativizable class
C is said to be uniformly gap-definable if it is gap-definable w.r.t. any oracle with
a fixed (independent of the oracle) choice of A and R. A relativizable class C is
said to be nonuniformly gap-definable if it gap-definable w.r.t. an oracle where
the choice of A and R is dependent on the oracle. Thus, the choice of A and R
may vary with different oracles in case of nonuniform gap-definability. We now
give a definition that expresses the oracle (in)dependence of the pair (A, R) in the
notion of gap-definability. In what follows, (A, R) is called an accepting pair if
A, R ⊆ Σ∗ × � and A ∩ R = ∅.

Definition 7.5.2 ([FFK94]) 1. A relativizable class C is gap-definable rela-
tive to an oracle O with accepting pair (A, R) if for any L ⊆ Σ∗, L ∈ CO if
and only if there exists an oracle NPTM N such that for all x ∈ Σ∗,

x ∈ L =⇒ (x, gapNO(x)) ∈ A, and

x 6∈ L =⇒ (x, gapNO(x)) ∈ R.

2. A relativizable class C is uniformly gap-definable with accepting pair (A, R)
if for any oracle O ⊆ Σ∗, it holds that C is gap-definable relative to O with
accepting pair (A, R).

A class D is called low for a class C if and only if CD ⊆ C. Fenner et al. proved
that SPP is low for GapP. This implies that SPP is low for every uniformly gap-
definable counting class, such as PP, C=P, ⊕P, and SPP. It is easy to see that
this result holds in every relativized world:
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Theorem 7.5.3 ([FFK94]) If C is a uniformly gap-definable class, then for ev-
ery O ⊆ Σ∗, it holds that CSPPO

= CO.

In Theorem 7.5.5 below, we construct a relativized world in which UP ∩ coUP is
not low for LWPP as well as for WPP. Since UP∩coUP ⊆ SPP in every relativized
world, this also shows that relative to the same oracle, SPP is not low for either of
LWPP or WPP. Fenner, Fortnow, and Kurtz [FFK94] proved that both LWPP
and WPP are nonuniformly gap-definable. However, they left open the question
of whether LWPP and WPP are uniformly gap-definable. From Theorems 7.5.3
and 7.5.5, we can conclude that LWPP and WPP are not uniformly gap-definable.

First, we need the following definition.

Definition 7.5.4 1. We will refer to any pair (NA, MA), where N is a non-
deterministic polynomial-time oracle Turing machine, M is a deterministic
polynomial-time oracle transducer and A ⊆ Σ∗, as an LWPPA pair.

2. If (NA, MA) is an LWPPA pair, then let

L(NA, MA)
df
= {x ∈ Σ∗ | gapNA(x) = g(0|x|)},

where g is the function computed by transducer MA.

3. We say that an LWPPA pair (NA, MA) is valid, if for each x ∈ Σ∗,
g(0|x|) 6= 0 and gapNA(x) ∈ {0, g(0|x|)}, where g is the function computed by
transducer MA.

Theorem 7.5.5 There exists an oracle A such that LWPPUPA∩coUPA

* WPPA.2

Proof For any B ⊆ Σ∗, define the test language LB by

LB = {0n | ||B=2n|| 6= 0}.

We put certain constraints on the set B that guarantee LB to be in
LWPPUPB∩coUPB

. For each n ∈ � , we say that B satisfies Constraint(B, n) if
the following conditions hold:

(a) B=2n+1 = {0z} for some z ∈ Σ2n, and

(b) B=2n+1 = {0z} =⇒ ||B=2n|| ∈ {0, pos(z)}.

Claim 7.4 If B satisfies Constraint(B, n) at each length n, then LB is in

LWPPUPB∩coUPB

.

2It is easy to see that LWPPUPA∩coUPA

= LWPP(UPA∩coUPA)⊕A.
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Proof Let B satisfy Constraint(B, n) for every n ∈ � . We will define L ⊆ Σ∗

and oracle machines N and M that satisfy the following: (a) L ∈ UPB ∩ coUPB,
(b) (N L⊕B,ML⊕B) is a valid LWPPL⊕B pair, and (c) L(N L⊕B,ML⊕B) = LB.

This will show that LB is in LWPPUPB∩coUPB

. The set L is defined as follows:

L = {x | |x| is odd and (∃x′) [pos(x) ≤ pos(x′) ∧ x′ ∈ B]}.

It is easy to see that if B satisfies Constraint(B, n) for every n ∈ � , then L ∈
UPB ∩ coUPB.

Let N ′ be a nondeterministic polynomial-time oracle Turing machine that,
with access to the oracle B, on input x,

1. if x /∈ 0∗ then rejects x, and

2. if x ∈ 0∗ then guesses a string x′ of length 2|x| and accepts x′ if and only if
x′ is in B.

Since #P ⊆ GapP in every relativized world, there exists a nondeterministic
polynomial-time oracle Turing machine N such that for all O ⊆ Σ∗ and x ∈ Σ∗,
gapNO(x) = #accN ′O(x). Finally, we define the deterministic polynomial-time
oracle transducer M that, with access to the oracle L ⊕ B, on input x,

1. if x /∈ 0∗ then outputs some nonzero value, say 1, and

2. if x ∈ 0∗ then performs a binary search for the unique string 0w, where
|w| = 2|x|, in B by asking queries for the membership of strings of the
form 0w′, where |w′| = 2|x|, in L. The machine ML⊕B(0n) finally outputs
pos(w).

It can easily be verified that (N L⊕B,ML⊕B) is a valid LWPPUPB∩coUPB

pair and
L(N L⊕B,ML⊕B) = LB. Thus the claim follows. (Claim 7.4)

We construct an oracle A such that, for each n, Constraint(A, n) is true, and
LA /∈ WPPA. Let (Ns, Ms, ps)s≥1 be an enumeration of all triples such that Ns is
nondeterministic polynomial-time oracle Turing machine, Ms is a deterministic
polynomial-time oracle transducer, ps is a polynomial, and the running time
of both Ns and Ms is bounded by ps regardless of the oracle. The oracle A is
constructed in stages. In stage s, the membership in A of strings of length 2ns

and 2ns + 1 are decided and the partial oracle As−1 is extended to As. Our
choice of ns guarantees that the oracle extension in stage s does not affect the
computation in earlier stages. Finally A := limn→∞An. Let A0 := ∅ and n0 := 17.

Stage s, s ≥ 1: Choose ns large enough so that 2ns > 4n2
sps(ns) and none of the

strings of length 2ns or more is queried by any machine in previous stages. We
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diagonalize against nondeterministic polynomial-time oracle Turing machine Ns

and deterministic polynomial-time oracle transducer Ms. Let

Y = {02m+1 |m ∈ � , 2m + 1 ≤ ps(ns), m 6= ns, and Σ2m+1 ∩ As−1 = ∅}.

Let val be the value computed by MAs−1∪Y
s (0ns). Because of the condition 0 /∈

range(g) in the definition of LWPP, we can assume that val is nonzero. Let

S = {w | w ∈ Σ2ns and MAs−1∪Y
s (0ns) does not query w}

∪ {0w | w ∈ Σ2ns and MAs−1∪Y
s (0ns) does not query 0w}.

(??) Choose B ⊆ S such that Constraint(B, ns) is true and the following hold.

||B=2ns|| 6= 0 ∧ gap
N

As−1∪Y ∪B
s

(0ns) 6= val, or

||B=2ns|| = 0 ∧ gap
N

As−1∪Y ∪B
s

(0ns) 6= 0.

We will show in Claim 7.5 that there is a set B satisfying (??). Let
As := As−1 ∪ Y ∪ B. Continue on to the next stage.
End of Stage s

Clearly, the construction guarantees that Constraint(A, n) is true at each length

n (and hence LA ∈ LWPPUPA∩coUPA

by Claim 7.4) and LA 6∈ WPPA. Thus, it
remains to show that a set B satisfying (??) always exists.

Claim 7.5 For every s ≥ 1, there exists a set B satisfying (??).

Proof Assume to the contrary that in some stage s, no set B satisfying (??) ex-
ists. Then, for every B ⊆ S such that B satisfies Constraint(B, ns), the following
hold.

||B=2ns|| 6= 0 =⇒ gap
N

As−1∪Y ∪B
s

(0ns) = val, and

||B=2ns|| = 0 =⇒ gap
N

As−1∪Y ∪B
s

(0ns) = 0.

Let U = {z ∈ Σ2ns | pos(z) is prime, 0z ∈ S, and 2ns−2 ≤ pos(z) ≤ 2ns−1}.
Fix an arbitrary element z from U . Then, for all C ⊆ Σ2ns ∩ S, it holds that

||C|| = pos(z) =⇒ gap
N

As−1∪Y ∪C∪{0z}
s

(0ns) = val, and (7.8)

||C|| = 0 =⇒ gap
N

As−1∪Y ∪C∪{0z}
s

(0ns) = 0. (7.9)

Let s′z ∈ � [y1, y2, . . . , ym] be the polynomial encoding of N
(·)
s (0ns). W.l.o.g. as-

sume that x1, x2, . . . , xN enumerate the strings in Σ2ns∩S, and xN+1, xN+2, . . . , xm

enumerate the remaining strings up to length ps(ns). From Proposition 7.2.2, it
follows that the polynomial s′z(y1, y2, . . . , ym) has the following properties.
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1. For all C ⊆ Σ2ns ∩ S, it holds that

s′z(χC(x1), χC(x2), . . . , χC(xN ), χAs−1∪Y ∪{0z}(xN+1), . . . , χAs−1∪Y ∪{0z}(xm))

= gap
N

As−1∪Y ∪C∪{0z}
s

(0ns). (7.10)

2. deg(s′z) ≤ ps(ns) < 2ns−2/n2
s < pos(z) < N/2.

Note that the sets As−1 ∪ Y ∪ {0z} and Σ2ns ∩ S are disjoint. The values
χAs−1∪Y ∪{0z}(xN+1), . . . , χAs−1∪Y ∪{0z}(xm)) do not depend on C. Define the new
polynomial sz(y1, y2, . . . , yN) that has these values fixed:

sz(y1, y2, . . . , yN) = s′z(y1, y2, . . . , yN , χAs−1∪Y ∪{0z}(xN+1), . . . , χAs−1∪Y ∪{0z}(xm)).

Hence sz satisfies

1. For all C ⊆ Σ2ns ∩ S, it holds that

sz(χC(x1), χC(x2), . . . , χC(xN )) = gap
N

As−1∪Y ∪C∪{0z}
s

(0ns). (7.11)

2. deg(sz) ≤ deg(s′z) < N/2.

Statements (7.8) and (7.9) respectively imply that

• for all y1, y2, . . . , yN ∈ {0, 1} such that
∑N

i=1 yi = pos(z), we have
sz(y1, y2, . . . , yN) = val, and

• sz(0, 0, . . . , 0) = 0.

It follows from Lemma 7.3.2 that pos(z) | val.

Therefore, for each z ∈ U , pos(z) | val. Hence by Lemma 7.2.3 and the
fact that 2ns > 4n2

sps(ns), val ≥ ∏
z∈U pos(z) ≥ 2||U || ≥ 2π(2ns−1)−π(2ns−2)−ps(ns)

≥ 22ns−1/n2
s−ps(ns) > 2ps(ns). However, M

(·)
s (0ns) runs in time ps(ns) and so val ≤

2ps(ns). Thus, we have a contradiction. (Claim 7.5 and Theorem 7.5.5)

Corollary 7.5.6 LWPP and WPP are not uniformly gap-definable.
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