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Abstract

Cellular signaling systems show astonishing precision in their response to external stimuli despite strong fluctuations in the
molecular components that determine pathway activity. To control the effects of noise on signaling most efficiently, living
cells employ compensatory mechanisms that reach from simple negative feedback loops to robustly designed signaling
architectures. Here, we report on a novel control mechanism that allows living cells to keep precision in their signaling
characteristics – stationary pathway output, response amplitude, and relaxation time – in the presence of strong
intracellular perturbations. The concept relies on the surprising fact that for systems showing perfect adaptation an
exponential signal amplification at the receptor level suffices to eliminate slowly varying multiplicative noise. To show this
mechanism at work in living systems, we quantified the response dynamics of the E. coli chemotaxis network after
genetically perturbing the information flux between upstream and downstream signaling components. We give strong
evidence that this signaling system results in dynamic invariance of the activated response regulator against multiplicative
intracellular noise. We further demonstrate that for environmental conditions, for which precision in chemosensing is
crucial, the invariant response behavior results in highest chemotactic efficiency. Our results resolve several puzzling
features of the chemotaxis pathway that are widely conserved across prokaryotes but so far could not be attributed any
functional role.
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Introduction

Information processing in living cells is limited by a complex

balance between randomizing and correcting intracellular forces

[1]. In particular, the stochasticity of biochemical reactions leads

to fluctuations in the abundance and activity of cellular

components, including those involved in cellular signaling.

Although rapid fluctuations within a signaling cascade – arising

from conformational changes, phosphorylation and binding events

– are in most cases filtered by the comparatively slow phenotypic

response of the cell, fluctuations on slower time scale can strongly

affect cell’s precision to adapt to changing environmental

conditions. Consequently, stochastic bursts in protein synthesis

can interfere with the response to extracellular stimuli, making

noise in gene expression one of the dominant noise sources that

produce significant cell-to-cell variation in the response behavior

of clonal cells [2]. The canonical way to reduce molecular noise is

to increase copy numbers of genes, mRNA, and protein and to

optimize their associated turnover rates [3]. The obvious

disadvantage is that these solutions are of high cost to the cell

and it is therefore not surprising that unicellular organisms employ

more resource efficient strategies to control intracellular noise.

Significant research efforts have been devoted in the last years to

understand noise compensatory strategies of cellular circuits and to

identify the underlying mathematical principles [1, 4–8].

However, most of the previous work focused on the conse-

quences of cellular noise on the stationary pathway output [9]. To

what extent cellular systems manage to eliminate effects of noise

on response amplitude and relaxation dynamics is yet unclear. In

the following we investigate signaling pathways that show precise

adaptation – that is the relaxation of the output signal to its pre-

stimulated level, even when the changed input persists. Adaptation

can be realized by integral feedback or feedforward control [10]

and allows living cells to ensure homeostasis of reaction fluxes and

component concentrations, to expand the input range of

molecular sensing devices, and to adjust the pre-stimulus activities

of signaling cascades to the level of highest pathway sensitivity

[11]. Well studied molecular circuits, where the existence of

integral feedback loops have been experimentally confirmed, are

the chemotaxis pathway in E. coli [12] and the hyperosmotic

shock-response system [13] in S. cerevisiae. For these and most other

cellular signaling systems there exists a strict time scale separation

between rapid signal transduction from sensory molecules to the

pathway output and comparatively slow changes of the dominant

noise sources. Examples of the latter are stochasticity in synthesis

and degradation of pathway components, assembly of large
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protein complexes, and changes in availability of cellular

resources, such as ribosomes and RNA polymerases. These noise

sources are in general multiplicative, show large standard

deviations, and therefore do not allow description by linear noise

approximation [3]. In this work we introduce a novel noise

compensatory mechanism that allows to eliminate effects of

multiplicative noise on signaling amplitude and response time

for systems that show precise adaptation.

Results

The flow chart of Fig. 1 shows a simple example of adaptive

signaling systems subject to slowly varying multiplicative noise z(t).
Exact adaptation can be achieved by an integral feedback,

mediated by an intermediate variable m(t). The dynamical system

shown in Fig. 1 can be described by the equations

y~zH f (u)zmð Þ ð1Þ

_mm~{J y{y0ð Þ , ð2Þ

where _mm denotes the time derivative. The monotone functions H

and J determine signaling gain and adaptation kinetics, respec-

tively, with H(w)§0 for all real values w and J(w)~0 for w~0.

These functional constraints on H and J ensure that the pathway

output, y(t)§0, always relaxes to the adapted state, y0, for

_uu(t)~0. The equations above can be written as a single equation

_yy~zH ’ wð Þ f ’(u) _uu{J y{y0ð Þ½ �zO _zzð Þ , ð3Þ

using the definition w : ~f (u)zm. Here, H ’ and f ’ denote the

derivatives of H and f , respectively. If the characteristic time

scales of changes in z are significantly longer than the adaptation

dynamics – as it is typically the case – the contribution of order _zz,

denoted byO _zzð Þ, can be neglected to good approximation. For the

same reason any slowly varying additive noise can be neglected in

Eq. (1). Given a stepwise increasing input function, u(t), (Fig. 2A)

and a linear signaling gain, H*w, the adaptation dynamics of the

output y(t) is identical for each step for z~const (Fig. 2B, red line).

To mimic slowly varying multiplicative noise we introduce by

z*constzt a perturbation that increases linear in time. This

perturbation affects both response amplitude and relaxation

dynamics of the signaling system (Fig. 2C, red line).

An unexpected change in the response dynamics occurs if the

gain function satisfies the differential equation H ’(w)~gH(w),
with gw0. As a consequence, H(w)* exp½gw� and Eq. (3)

changes to

_yy~gy f ’(u) _uu{J y{y0ð Þ½ �zO _zzð Þ , ð4Þ

which has the profound effect that the noise term is eliminated and

the system has become dynamically robust against z. This case is

illustrated in Fig. 2C (black line), where a dynamically changing

function z*constzt results in the same response behavior as for

z~const, (Fig. 2B, black line). Thus, the effect of noise on

amplitude and relaxation dynamics is eliminated simultaneously.

This rather surprising result follows from the existence of a

symmetry property of dynamical systems that show exact adapta-

tion. Here, symmetry refers to invariance of the dynamic behavior

under a continuous change of at least one system parameter. To

illustrate this point we introduce a generic two-variable adaptation

system,

_yy~G f (u)zm,y½ � ð5Þ

_mm~F ½f (u)zm,y� : ð6Þ

The functions F and G are monotone in both arguments and

chosen such that the stationary output adapts to the stable fixpoint

y~y0 for all initial conditions. Note that Eqs. (5) and (6) do not

represent the most general form of a two-variable adaptation

system [14], as a generalization is possible by the substitutions

f (u)?fG(u,y) in Eq. (5) and f (u)?fF (u,y) in Eq. (6), such that

fG(u,y0)~fF (u,y0). Frequently studied cases of Eqs. (5) and (6) are

linear feedback loops, F*y{y0, and linear feedforward loops,

F*f (u)zm. It is important to note that the functional forms of

Eqs. (5) and (6) reflect the general principle of exact adaptation.

This principle requires the existence of an intermediate variable m
that relaxes under steady-state conditions, _uu~0, to c~f (u)zm,

with c a fixed constant that is uniquely determined by G c,y0½ �~0.

As a consequence, any transformation f?f (u)zh, with h a

constant, implies m?m{h after a transient relaxation time. In

other words, the system looses any information about the constant

offset h on longer time scales. As a consequence, the adaptation

system, Eqs. (5) and (6), is dynamically invariant against a constant

perturbation h of the form f (u)?f (u)zh and dynamically

invariant up to order _zz if h~h(z) is a slowly varying function on

the time scale of adaptation. A simple application of this concept is

fold-change detection, which has been recently reported [14].

Here, the authors search for adaptation systems that show

invariant output dynamics for the transformation u?zu, with z
a constant scaling parameter. From our analysis it is clear that in

this case the existence of invariant output dynamics requires input

signals of the form f (u) : ~ log (u) to result in the desired linear

combination of signal and scaling parameter, f (zu)~f (u)zh(z),
with h(z)~ log z. Using the illustrative examples of Shoval et al.,

the associated dynamically invariant equations can be easily

identified (Fig. 3). Our approach generalizes the results of Shoval et

al. in the sense that we seek to transform a noisy, dynamic system

to the functional form shown in Eqs. (5) and (6) by choosing

appropriate functions G, F , f (u), and h(z), such that the

perturbation z enters the system exclusively via the transformation

f (u)?f (u)zh(z).

Biochemical Constraints
The question arises, whether living systems make use of the

aforementioned symmetry property to eliminate slowly varying

Figure 1. Signaling system with input u(t) and gain function H.
The output, y(t), is controlled by an integral feedback loop, employing
an auxiliary component m(t), and approaches the adapted state y0 for
_uu(t)~0. Multiplicative noise, with correlation times much longer than
the relaxation time of the integral feedback, enters the system either via
z(t) affecting both y(t) and m(t).
doi:10.1371/journal.pone.0087815.g001
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perturbations from biochemical circuits. Returning to the generic

signaling network, Eq. (4), we first ask whether the condition

H(w)* exp½gw� is a biochemically acceptable constraint. To this

end we assume that the integral feedback loop is realized by

changing the free energy, ~ (w), of fast equilibrating confor-

mational states, x, of a receptor protein. Assuming the existence of

only two such conformational states – the x~on state that activates

and the x~off state that inactivates the pathway output – the

probability to find the receptor in an active state is given by P(t) : ~

Probfx~ong~ exp½{ on�=( exp½{ onz exp½{ off �), with the

state dependent free energies, on=off, given in units of kBT , with kB

the Boltzmann constant and T the temperature. If the free energy

difference D : ~ off{ on is determined by D ~gw(t) in the

physiological relevant regime, we can identify the gain function as

H(w) : ~P(t)~(1z exp½{gw(t)�){1 . Assuming further that

the equilibrium is dominated by the inactive state, P(t)%1,

we obtain H ’(w)~gP(t)(1{P(t))&gP(t)~gH(w). Thus,

H(w)* exp½gw(t)� holds to good approximation within a certain

regime of low receptor activity, which is determined by the

conformational free energies of receptor states. What remains to be

shown is that this concept has been realized in living systems.

The Bacterial Chemosensory Pathway as Model System
A particularly suitable cellular system for such analysis, whose

response dynamics requires high precision under intracellular

noise, is the E. coli chemotaxis pathway (Fig. 4). This pathway has

evolved to navigate bacteria in gradients towards favorable

environments and shows outstanding sensitivity for changes in

chemoeffectors, such as amino acids. Bacterial chemotaxis relies

on temporal comparisons of concentrations of attractants or

repellents along the swimming track of the cell [15]. A swimming

trajectory consists of straight swim runs (*1sec) interrupted by fast

changes in orientation (tumbling events, *0:1sec). Swimming in

direction of favorable environments prolongs the swim duration,

whereas swimming in opposite direction shortens it. Chemotactic

stimuli are detected by stable sensory complexes consisting of

Figure 2. Response behavior of the system shown in Fig. 1 and described by Eq. (3). (A) Stepwise increase of the input function u(t) over
time t. (B) Response dynamics of the output signal, y(t), in absence of noise z(t)~const, for f (u)~u and two different gain functions H~uzm (red
line) and H* exp½uzm� (black line). (C) Same as (B) but for slowly varying noise, simulated by a linear increase z(t)~2:2z0:88t. Here, the choice
H* exp½uzm� (black line) ensures robust response dynamics, in contrast to H~uzm (red line).
doi:10.1371/journal.pone.0087815.g002

Figure 3. Network motifs that show dynamic invariance against rescaling of the input. Rescaling is defined by u(t)?zu(t), with a constant
factor z. (A) Incoherent feedforward loop, (B) nonlinear integral feedback, and (C) linear integral feedback. Suitable transformation of the intermediate
state variable, x(t)?m(x(t)), transforms the adaptation networks to the functional form shown in Eqs. (5) and (6), confirming the required logarithmic
input dependency as explained in the main text.
doi:10.1371/journal.pone.0087815.g003
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receptors that are coupled to a kinase CheA with the help of an

adaptor protein CheW, whereby binding of attractants downreg-

ulates the autophosphorylation activity of CheA and binding of

repellents has the opposite effect. These sensory complexes are

organized in large clusters, where allosteric interactions between

receptors serve to largely amplify the signals on the level of kinase

control. Phosphorylated CheA rapidly transfers its phosphoryl

group to the response regulator CheY, which binds to flagellar

motors and causes them to switch from the counterclockwise

(CCW) to clockwise (CW) direction of rotation. The pathway

further includes a CheY phosphatase, CheZ, and an adaptation

system that consists of two receptor modification enzymes, the

methyltransferase CheR and the methylesterase CheB. The

pathway activity shows almost perfect adaptation under constant

stimulation [12,15]. This adaptive behavior is the result of an

integral feedback from the sensory complex activity to the activity

of the adaptation system, mediated at two levels: enzyme

specificity of CheR/CheB for inactive/active receptors and CheB

phosphorylation. Furthermore, the E. coli chemotaxis pathway

shows an exceptionally high signaling gain [16] and mechanisms

to compensate for the detrimental effects of gene expression noise

on the adapted state [6,17]. These properties indicate the existence

of a high selection pressure to maximize the signal-to-noise ratio in

detecting changes of chemoattractants and suggest that further

noise compensatory mechanisms might have evolved to ensure

precision of response amplitude and adaptation dynamics under

intracellular perturbations. Although other noise sources such as

fluctuations in the assembly of fully functional receptor clusters

might affect the chemotaxis behavior, we focus in this work

exclusively on the effects of gene expression noise, which is one of

dominating noise sources in bacterial signaling [6].

Mathematical Modeling of Chemoattractant Response
Kinetics

We now introduce a simplified mathematical model that

describes the response dynamics of the chemotaxis pathway in

vicinity of the adapted state with sufficient accuracy. Due to

simplicity, this mathematical model cannot capture the complete

response behavior of the chemotaxis pathway, such as nonlinear

behavior in the methylation dynamics with respect to receptor

activity [19]. To describe receptor activation we employ a highly

accurate model of cooperative chemoreceptor interactions in E.

coli as introduced previously [20,21]. In this model, a number of

g*10{20 receptor homodimers form an allosteric complex and

both the specific chemoeffector concentration, L(t), and the

average methylation level, SmT, can change the free energy

difference D . The free energy difference determines the

probability of allosteric receptor complexes in be in an active state

P(t)~
1

1z exp½{D �~
1

1z exp½{gu(t)� ð7Þ

Here, u(t) : ~{f (L)zESmTzE0, with f (L)~ ln (1zL=Koff ){
ln (1zL=Kon). The constant E&0:44 has been determined using a

linear regression model for the experimentally measured kinase

activities and E0 represents an offset value. Dissociation constants

for chemoeffectors in the ‘on’ and ‘off’ state are denoted by Kon

and Koff , respectively, with Kon~0:5mM and Koff ~0:02mM for

methylaspartate [16,20,21]. The monotone increasing function

f (L) is the average free energy increase per receptor due to ligand

binding. We further approximated the mean methylation level of

the individual allosteric receptor complexes by the average

methylation level of receptor homodimers, SmT. Previous results

[20] justify these approximations for D : the additivity between

Figure 4. Cartoon of the phosphoflux regulation of the E. coli chemotaxis pathway. CheBp and CheYp indicate the phosphorylated forms
of CheB and CheY, respectively. The adapted receptor activity is determined by the ratio between the methyltransferase flux – determined by the
concentration of the methytransferase CheR (not shown) – and the methylesterase flux – determined by the concentration of the methylesterase
CheB, whose activity is strongly increased upon phosphorylation. (A) Concerted upregulation of CheY and CheZ results in the perturbation z shown in
Fig. 1. Upregulation of the major phosphate sink CheY relative to CheB decreases methylesterase activity, resulting in an increased receptor activity.
Higher receptor activity in turn compensates the increased phosphatase activity of CheZ and results in an invariant pathway output, CheYp. (B) The
inverse scenario takes place upon concerted downregulation of CheY and CheZ. As only concentration ratios matter, concerted downregulation of
CheY and CheZ has the same effect as concerted upregulation of the remaining pathway proteins, CheRBAW and chemoreceptors.
doi:10.1371/journal.pone.0087815.g004
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the free energy contributions arising from both ligand binding and

receptor methylation and the linear dependence of the free energy

on the mean receptor methylation level. Recent experiments [19]

further showed that in the regime of 0{0:7 the maximum

receptor activity the dynamics of SmT can be described to leading

order by the rate equation

S _mmT~r{bP(t) : ð8Þ

Here, r~kRRT=(KRzT)&kRRT=T and b~kBBT=(KBzT)

&kBBT=T are determined by the total concentrations of CheR,

RT , CheB, BT , and chemoreceptors, T , with KR and KB the

associated Michaelis-Menten constants. As both chemoreceptors

and CheR/CheB are part of the same regulon, the ratio between r

and b shows only small intrinsic noise [6] and can be treated as

constant. From Eq. (8) follows that the adapted receptor activity,

Pa, is determined by

Pa~
r

b
*

RT

BT
: ð9Þ

Taking the time derivative of Eq. (7) results in the expression

Figure 5. Scaling behavior of adaptation dynamics and of kinase activity. (A) FRET measurements of kinase activity upon sudden addition
of attractant, 30mM a-DL-methylaspartate, at 50s. Expression of CheY-YFP/CheZ-CFP FRET pair was induced by 50mM IPTG. The FRET signal was
recorded every second and smoothened by sliding window of four seconds. CheB was expressed from plasmid at varying levels (0% to 0.01%) of
arabinose yielding 0:4-fold (black line), 1:3-fold (dark brown line), 2:2-fold (light brown line), and 5:7-fold (gray line) the native expression level. Bold
solid lines are the predictions of the mathematical model, Eq. (13), with adaptation rate c~0:05(1{P(t)). (B) Adaptation dynamics from (A) after
rescaling of the kinase activity with the CheB expression level. (C) FRET measurements of kinase activity (brown line) and corresponding theoretical
prediction (black line) for a sequence of increasing steps (1mM, 3mM, 10mM, and 30mM) of a-DL-methylaspartate. (D) Linear relationship between CheB
expression level and adapted kinase activity. (E) Linear relationship between CheR expression level and the adaptation rate. (F) Linear dependency of
kinase activity on concerted changes in CheY-YFP/CheZ-CFP expression level. Lines in the panels (D–F) show least-squares fits to the data and error
bars denote standard errors.
doi:10.1371/journal.pone.0087815.g005
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_PP(t)~gP(t) 1{P(t)ð Þ _uu(t)

&gP tð Þ E r{bP tð Þð Þ{f ’ Lð Þ _LL tð Þ
� �

,
ð10Þ

with f ’(L) the derivative of f (L). The second line of Eq. (10)

assumes that P(t)%1 in vicinity of the adapted regime. This

assumption will be justified experimentally in the following and

allows us to neglect differences in the methylation rate of CheR

when bound to active or inactive receptors.

The reason why it makes sense for the cell to keep only a small

proportion of receptors active in the adapted state is that the

sensitivity to stimuli is maximal in limit Pa?0. This can be seen by

calculating the signaling gain, G, which is defined by the relation

P(t)=Pa~G L=L, with L a sufficiently small change in ligand

concentration and P : ~P(t){Pa. From Eq. (7) we obtain

G*(1{Pa), which confirms that the signaling gain is maximized

in the limit Pa?0. However, a small Pa significantly reduces the

dynamic range over which attractant can be detected as in this

case P(t)ƒPa. For example reducing the dynamic range from

0ƒP(t)ƒ0:5 by ten-fold to 0ƒP(t)ƒ0:05 implies that a non-

saturating response to chemoattractant results in ten-fold reduced

signal-to-noise ratio at the receptor level. Although the correlation

times of the conformational receptor states and ligand binding are

short in comparison to the turnover of CheYp at the flagellar

motor complex – which implies averaging over noise at the

receptor level – there exists a tradeoff between increasing the

signaling gain and reducing the signal-to-ratio upon decreasing Pa.

Additionally, lowering Pa requires a simultaneous increase in

kinase activity to reach the required level of phosphorylated CheY.

In fact the kinase activity of CheA is orders of magnitude higher

than the kinase activity of other two-component systems.

Following Fig. 1 we denote the physiological relevant signaling

output by y(t). As y(t) is proportional to the receptor activity, we

introduce with z a stochastic proportionality factor, y~zP(t),

which is determined by the fluctuating amount of receptor kinase

complexes relative the concentration of CheZ. Fluctuations in

receptor kinase complexes affect both the output signal, y, by

changing the level of CheY phosphorylation and the feedback

strength by changing the level of CheB phosphorylation.

Consequently, the transformed differential equation for the

signaling output is given by

z _PP(t)~gzP(t) E(r{bzP(t)){f ’(L) _LL(t)
� �

: ð11Þ

Substitution of zP(t) shows that relative fluctuations in kinase

activity are eliminated by the same mechanism as presented in Eq.

(4)

y(t)~gy(t) E(r{by(t)){f ’(L) _LL(t)
� �

: ð12Þ

For a step increase in chemoeffector concentration at time t0, DL,

under otherwise constant conditions, the solution of Eq. (12) is

given by

y(t)~
r

b
1ze{gEr(t{t0) egDf {1

� �� �{1
, ð13Þ

with Df : ~f (LzDL){f (L). This result shows that the adapta-

tion dynamics to step changes in chemoattractant is determined by

the rate r but independent of the rate b.

Experimental Confirmation of Dynamic Invariant
Behavior in E. coli

In the following we give experimental evidence that E. coli cells

operate in the regime where noise compensation by exponential

can be realized. To confirm that the functional form of Eq. (13)

provides a good representation of the adaptation dynamics in E.

coli chemotaxis, we measured in vivo the activity of the chemore-

ceptor associated kinase CheA in response to a step increase in

chemoattractant while varying the levels of CheB and CheR

(Fig. 5A). The measurement was carried out using phosphoryla-

tion-dependent interaction of CheY fused to yellow fluorescent

protein (CheY-YFP) with its phosphatase CheZ fused to cyan

fluorescent protein (CheZ-CFP) as an intracellular reporter of the

pathway activity, as described previously [16]. The amount of the

complex formed by the two proteins, which is directly proportional

to the intracellular kinase activity (see below), was determined

using fluorescence resonance energy transfer (FRET). Although

receptor activity gradually decreased upon increase in CheB

concentration (Fig. 5A,D), the adaptation kinetics remained

invariant. Multiplying both sides of Eq. (13) by a factor

proportional to the concentration CheB, b, shows that by(t) is

independent of the concentration of CheB, which is confirmed by

the collapse of the FRET response curves onto a single master

curve (Fig. 5B). Moreover, our model could well reproduce the

adaptation kinetics observed for attractant stimuli of increasing

strength (Fig. 5C). On the other hand, the adaptation rate showed

a linear dependence on the level of CheR, again consistent with

Eq. (13). It would have been desirable to measure the response

dynamics of attractant removal, as this would give additional

experimental evidence that Eq. (13) is indeed correct in vicinity of

the adapted state. However, there exists strong evidence for an

abrupt change in the strength of the adaptation feedback in regime

of high receptor activity [19], whose molecular origin has not yet

been elucidated. Due to phenotypic heterogeneity of E. coli cells, a

significant fraction of cells will enter the high activity regime upon

attractant removal which make it hard if not impossible to infer

Figure 6. Experimental confirmation of dynamically invariant
response behavior of the chemotaxis pathway in E. coli upon a
perturbation indicated by z in Fig. 4. Shown are the effects of a
decreasing ratio between the concentrations of CheY-YFP and CheZ-
CFP and the remaining signaling proteins by 2-fold (red line) and 7-fold
(black line), whereby CheY-YFP/CheZ-CFP were expressed in LL4 cells at
10 or 50mM IPTG induction, respectively. Cells were stimulated by
addition and subsequent removal of 50mM MeAsp. The y-axis shows the
normalized change in FRET signal, which is to good approximation
proportional to the signaling output, y, as explained in the main text.
The base line of zero activity was determined by addition of saturating
amounts of attractant.
doi:10.1371/journal.pone.0087815.g006
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from attractant removal the adaptation dynamics around the

adapted state.

The phosphorylation rate of chemoreceptor complexes can be

expected to be a product of P(t), the CheA autophosphorylation

rate, kA, and the concentration of kinases CheA that are a part of

functional receptor clusters, Ac, resulting in the kinase activity

kA(Ac{Ac
p)P(t), with Ac

p the amount of phosphorylated kinases

CheA. Because of fast phosphate group transfer to CheY [22],

almost all kinases are unphosphorylated near the adapted state,

and the resulting kinase activity, kAAcP(t), is balanced by the

hydrolysis rate of phosphorylated CheY,

kAAcP(t)~kZ½YpZ�(t)~kZZT Yp(t)

KZzYp(t)
: ð14Þ

Here, we denoted by ZT the total concentration of the

phosphatase CheZ and by kZ the associated dephosphorylation

rate. The hydrolysis rate of CheYp is proportional to the

concentration of CheZ/CheYp complexes, ½YpZ�, which are

resolved by introducing the Michaelis-Menten constant KZ and

the concentration of freely diffusible CheYp, Yp, – the physiolog-

ical relevant pathway output. To allow for direct comparison with

Fig. 1, we define the signaling output, y(t) : ~

½YpZ�=ZT~Yp(t)=(KZzYp(t)), as a monotone increasing

function of Yp. The signaling output can be directly measured

by fluorescence resonance energy transfer (FRET) between CheY-

YFP and CheZ-CFP, bicistronically expressed from a plasmid in a

cheY/cheZ deleted strain [16,23]. This technique detects the

amount of CheY that is bound to CheZ up to a proportionality

factor. As only phosphorylated CheY binds with significant affinity

to CheZ, the light intensity emitted by the FRET pairs is

proportional to ½YpZ�. The background FRET signal can be

determined using a saturating stimulus of chemoattractant, which

switches off the receptors and thereby drives ½YpZ� to zero.

Measuring simultaneously the light intensity emitted by CheZ-

CFP allows to infer the concentration ZT , after calibration. The

ratio between the FRET signal and the CheZ-CFP fluorescent

signal scales linear with the signaling output

y(t)~
½YpZ�

ZT
~

kAAc

kZZT

|fflffl{zfflffl}
z

P(t) : ð15Þ

Here, we used Eq. (14) to substitute the expression ½YpZ� and

defined the pathway perturbation, z, as the imbalance between the

concentrations of functional receptor-kinase complexes and

phosphatase CheZ.

Figure 7. Phenotypic selection in chemotactic E. coli cells. (A) Picture of a chemotactic swarm ring produced by an E. coli population spreading
for eight hours on soft agar. Cells with highest chemotaxis efficiency accumulate in the outer swarm ring. (B)-(D) Scatter plots of the concentrations of
bicistronically expressed CheY-YFP and CheZ-CFP in individual cells taken from the inner (squares) and the outer (triangles and circles) swarm ring at
different induction. Average expression levels in the culture were either below (0 IPTG), (B), or above (25 mM IPTG), (C), the native level. Circles indicate
cells expressing CheZF98S -CFP that cannot bind to receptor clusters. Collapse of the scatter plots for the best swarming cells is shown in (D).
doi:10.1371/journal.pone.0087815.g007
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Under physiological conditions, the stochastic properties of z
are likely dominated by fluctuations in the assembly of functional

receptor-kinase complexes, CVc \e, and intrinsic gene expression

noise among the chemotaxis operons. The noise contribution

arising from unequal distribution of receptor clusters among

daughter cells is attenuated by the fact that a large fraction of

CheZ stably associates with receptor clusters – thus preserving the

Ac=ZT ratio [24].

As variation in the adapted pathway output has a negative effect

on the chemotaxis efficiency, we wondered whether the E. coli

chemotaxis system uses the concept of noise elimination by

exponential signaling gain to preserve the adapted pathway

output, the response amplitude, and the adaptation time in

presence of large perturbations. Previously we have shown that an

approximately 7-fold upregulation of all proteins involved in

chemotaxis signaling – CheRBYZA and chemoreceptors – results

in the same adapted pathway output as observed for the wild type

system [6]. This outstanding degree of robustness could be

attributed to a concerted concentration change of receptor-kinase

complexes and phosphatase, leading to balanced phosphorylation

and dephosphorylation of the response regulator CheY. Here, we

perturb the phosphorylation flux balance of the chemotaxis

pathway by strongly varying the expression level of CheY and

CheZ, as schematically indicated in Fig. (4). This perturbation

simulates the physiologically relevant imbalance between the

fluctuating amount of fully functional receptor complexes and the

downstream signaling proteins CheY and CheZ.

Fig. 6 shows the response dynamics for a 7- and a 2-fold

reduced concentration of the pathway proteins CheY and CheZ in

comparison to the remaining proteins involved in chemotaxis

signaling. Such variation was achieved by deleting the genes for

CheY and CheZ from the genome and expressing them from

plasmid as fluorescent fusion constructs, CheY-YFP and CheZ-

CFP. From Eq. (15) it is clear that fold changes in the

concentration of CheZ strongly reduces the signaling output, y,

and thus the concentration of phosphorylated CheY. Surprisingly,

no significant difference in the signaling output is observed upon

elevating CheZ, while leaving the kinase activity unchanged

(Fig. 6). This observation points to a regulatory mechanism within

the chemotaxis system that can detect an imbalance between

kinase activity and the concentration of CheZ, as their ratio

determines the signaling output. The significant difference in the

response amplitude upon attractant removal might be attributed to

the saturating effects of the enzyme CheZ or the phosphoreceiver

CheY, if both proteins are expressed at low level. As high precision

of the chemotaxis signaling system in E. coli is mainly required for

detecting shallow nutrient gradients, the adapted signaling output

and the adaptation time are expected to be under strong selection,

but not necessarily the response amplitude after strong negative

stimulation. The observation of an unchanged response dynamics

of the chemotaxis system despite a 7-fold reduction in phosphatase

activity requires a molecular mechanism that regulates kinase

activity proportional to the expression level of CheZ and CheY.

The observed invariance in the response dynamics is also

surprising from the evolutionary point of view, as a 7-fold

difference in the concentration ratio between CheY/CheZ and the

other pathway proteins seems to be far outside the physiological

noise range.

Our first guess that the strong binding affinity of CheZ to the

kinase CheA might be responsible for the observed kinase

regulation turned out not to be true. We could reject this

hypothesis by measuring the phosphotransfer rate from CheA to

CheB for varying concentrations of CheZ in absence of CheY.

The absence of any significant effect of CheZ concentration on

kinase activity is shown in Table S1 in File S1. As there is no

experimental evidence that kinase activity affects phosphatase

activity [25], we are left with the remaining hypothesis that

changes in CheY concentration affect kinase activity. This

hypothesis is directly confirmed by FRET measurements (Fig. 5F)

and by swarming experiments [26] where the observation of

tumbling cells upon CheY overexpression suggests an increased

concentration of CheYp and the observation of swimming cells

upon CheZ overexpression indicates a decreased level of CheYp.

In contrast, no significant change in tumbling frequency was

observed upon concerted overexpresssion of CheY and CheZ,

which is in agreement with the FRET results reported in this work.

Although the mechanism how CheY affects kinase activity

remains to be investigated in more detail, we speculate that it

might be at least partly related to the experimentally observed

competitive binding between CheY and CheB to the phosphor-

eceiver domain of CheA [27]. This hypothesis is supported by the

fact that the wild type concentration of CheY is around 30-fold

higher than the concentration of CheB and that CheA autophos-

phorylation is the rate limiting step of phosphorylation of CheB

and CheY. As phosphotransfer to CheY is the dominant

phosphate sink in the system, the phosphotransfer rate to CheB

is limited by the concentration ratio [CheB]/[CheY]. Conse-

quently, the concentration of CheBp is to leading order inversely

proportional to the concentration of CheY,

Bp*
kAAc

cB

BT

Y T
P(t) ð16Þ

with cB the autodephoshorylation rate of CheBp. Although it has

been shown by in vitro and in vivo experiments that the methyles-

terase activity of CheB is enhanced several fold upon phosphor-

ylation, it is generally believed that preferential demethylation of

active receptors by CheB and preferential methylation of inactive

receptors by CheR is the dominating mechanism of adaptation.

However, most of our knowledge about the in vivo adaptation

dynamics has been generated by FRET assays, with the CheY-

YFP/CheZ-CFP FRET pair expressed almost one order of

magnitude above the wild type level [16]. As shown in Fig. 5F

this overexpression results in an order of magnitude elevation of

the receptor activity and thereby strengthens the feedback via

preferential methylation of active receptors. If CheY-YFP/CheZ-

CFP is expressed at wild type level, the competition between CheY

and CheB for phosphogroups at CheA shifts in favor for CheB

phosphorlation and thereby strengthens the feedback via CheB

phosphorylation. Under wild type conditions, the small proportion

of active receptors do not significantly affect the net methylation

rate of CheR and shuttling of phosphorylated CheB between the

phosphoreceiver domain at CheA and the pentapeptide sequence

at Tar and Tsr receptors might be sufficient to ensure that

adaptation of receptor activity occurs locally. This scenario is

further supported by the high autodephosphorylation rate of CheB

that narrows the action range of phosphorylated CheB. Further-

more, the existence of a phosphorylated form of CheB seems to be

under significant selection as it is an ubiquitous feature of bacterial

chemotaxis although it is not required for adaption. Assuming that

CheB phosphorylation dominates the adaptation feedback near

the adapted state under wild type expression levels, we arrive at

the expression

bP(t)&k’B
Bp

T
zk’’B

BT{Bp

T
P(t) ð17Þ
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with associated rate constants, k’
B
&k’’B . This functional form

reproduces the experimentally observed linear dependence of the

demethylation rate on receptor activity, P(t), in the regime of low

receptor acitivity [19]. As under wild type conditions the

phosphorylated form of CheB seems to dominate the demethyl-

ation kinetics around the adapted state, we can neglect the

contribution of non-phosphorylated CheB in Eq. (17) to describe

the perturbation experiment, Figs. 4 and 6. Using the definition of

z in Eq. (15), we can rewrite Eq. (17) as

bP(t)?cz(t)P(t) , ð18Þ

where the constant c~kZkB’ ZT BT=(cBTY T ) is invariant under

concerted concentration changes of CheY and CheZ. Comparison

with Eq. (11) shows that under these assumptions the chemotaxis

signaling pathway is dynamically invariant against changes in z(t).

Our analysis shows that competitive phosphorylation of CheY

and CheB at CheA can serve to counterbalance any mismatch

between kinase activity and the concentration of CheZ. The same

mechanism can also compensate deviations from the optimal

adapted state due to differences in expression levels between the

individual chemotaxis operons. The compensatory mechanism

relies on the fact that the concentration of CheY is an excellent

proxy of the concentration of CheZ due to coexpression and

translational coupling.

Our results suggest that strong coupling between the levels of

CheY and CheZ is beneficial for optimal chemotaxis, as in this

case CheY counterbalances CheZ activity by acting as a

phosphate sink and thereby reduces the phosphotransfer rate to

CheB. This can be directly demonstrated by selection for best-

chemotactic cells on tryptone broth soft agar plates. On these

plates, an attractant gradient is created at the edge of the growing

colony by nutrient depletion due to cell growth and, as a

consequence of chemotaxis, cells with highest chemotactic

efficiency accumulate at the outer edge of the swarm ring [26]

(Fig. 7A). We tracked cells by video microscopy to control that

they were actively swimming. Indeed, when cells coexpressing

CheY-YFP and CheZ-CFP in a cheY/cheZ deleted strain from a

bicistronic construct were subject to this assay, we observed a

strong correlation between the levels of both proteins among the

best chemotactic cells (Fig. 7B,C), consistent with previous reports

[17,26] and with the proposed mechanism of noise reduction. We

further observed that the levels of CheY-YFP and CheZ-CFP from

the outer swarm ring, taken from populations with different

average expression levels (Fig. 7B,C), collapse onto a single scatter

plot (Fig. 7D). This result shows that not only the correlation

between CheY and CheZ but also defined levels of these proteins

around the native expression level (Fig. S6 in File S1) are

important for optimal chemotaxis. Given linear scaling between

kinase activity and CheY/CheZ concentration, our data suggest

that the optimal adapted kinase activity is in the low range. As the

native level of CheZ is similar to the level of CheA [28],

substituting the measured rates kA&40s{1 [29] and kZ&2s{

[31] in Eq. (14) suggests that in the adapted state only about 5% of

receptor-kinase complexes are active. Higher adapted activity that

was observed in previous experiments might have resulted from

expression levels of the FRET pair above those of the wild-type

proteins. The soft agar experiments also suggest that localization of

CheZ to receptor clusters is not required for the proposed

regulation of kinase activity by the levels of CheY/CheZ, since

cells expressing CheZF98S-CFP that cannot bind CheA [25] show

similarly strong selection for the correlated levels of CheY and

CheZ (Fig. 7C). A higher optimal level of CheZ in these cells is

consistent with lower CheZ activity in absence of localization to

clusters.

Although we found strong evidence that chemosensing in E. coli

follows noise compensation by exponential gain as presented in

Eq. (4), it is not yet clear whether slowly varying multiplicative

noise has any detrimental effect on chemotaxis efficiency. At this

stage it cannot be decided whether the two different response

behaviors shown in Fig. 2C result in different chemotaxis

efficiency, as the areas under the response peaks are essentially

equal. To address this question we focus on bacterial chemotaxis

in shallow attractant gradients. In this regime changes in

chemoeffector concentrations are small and cells can be expected

to be strongly selected for noise suppression in order to increase

the signal-to-noise ratio. For a stationary, linear attractant

gradient, +L, the steady state drift velocity in gradient direction,

VD, is given to leading order in j+Lj [31] by

VD*z(t)H ’(�u�)V2
0

j+Lj
L

1

2Drtdz1

DQ

Dr(2Drzc)
zO _�uu�uu

� �
ð19Þ

with c : ~z(t)H ’(u )J ’(0) the effective adaptation rate,

V0&30mms{1 the swim velocity, td the time delay between

ambient chemoeffector changes and flagella response, and

Dr : ~DBzDQ, with DB the Brownian rotational diffusion

constant that changes swim orientation in agar by approximately

300 per second [15] (see File S1 for details). The overbar denotes

averaging over many tumbling events and results in a time

independent expression for the chemotaxis related diffusion

constant, DQ~s2
Q=(4t), where sQ is the standard deviation of

directional changes between successive swim runs of average

duration t. To compare the effect of different gain functions, H(�uu),
on the chemotactic efficiency in presence of multiplicative noise,

z(t), we define z(t)H ’(�uu) : ~gyz(z(t){SzT) H ’(�uu), with H ’(�uu)
the deviation from the noise eliminating gain function

y*z(t) exp½g�uu� and SzT the expected value of z(t). Here, the

functional form of H ’(�uu) is chosen such that the absence of

multiplicative noise, z(t)~SzT, has the same effect as noise

elimination. From Eq. (19) follows that for VD§0 the drift velocity

is a concave function in z(t), VD½z(t)�*z(t)H ’(�uu)=
½constzz(t)H ’(�uu)�, and therefore we get from Jensen’s inequality

the relation VD½SzT�§SVD½z(t)�T, with equality only if z(t)~SzT.

Consequently, the gain function H(u)* exp½gu(t)� leads to

highest chemotatic drift in the presence of slowly varying

multiplicative noise and for environments where Eq. (19) applies.

Discussion

The concept of noise compensation by exponential gain is

designed to eliminate effects of slowly varying multiplicative noise

on the output of a dynamical system that shows precise adaptation

of the output signal. The concept requires a strict time scale

separation between slow noise dynamics and fast relaxation of the

output signal. In living systems, this concept can be realized by

utilizing the natural time scale separation of cellular signaling:

almost instantaneous conformation changes at the receptor level,

fast signal transduction by phosphorylation of cytosolic proteins,

and fast signal termination by feedback control in comparison to

slow concentration changes of pathway components. It thereby

provides a resource efficient alternative to noise reduction by

increasing the abundance of signaling components and it is

therefore not surprising that this concept has been likely realized in

the highly sensitive chemotaxis pathway of E. coli. Recent

experiments in this organism showed that chemoreceptor clusters
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assemble spontaneously and subsequently grow or shrink on time

scales of minutes [18,24]. As in E. coli a 5% change in the number

of functional receptor kinase complexes results in an almost 50%
change in the adapted flagellar rotation bias due to the steep

motor response curve [32], a tight control of the activated response

regulator is essential for high chemotaxis efficiency.

The realization of noise compensation by exponential gain

requires special pathway properties that have been observed in E.

coli but could not be assigned a functional role. First, CheB

phosphorylation as an indirect measure for the ratio of kinase and

phosphatase activity is essential for this mechanism to work and

would explain why CheB phosphorylation is found in almost all

chemotactic prokaryotes [33], although CheB phosphorylation is

non-essential for adaptation. Second, a competition between CheB

and CheY for phosphate groups at CheA is required to feed back

the information about any mismatch between the CheY/CheZ

expression level and the adapted kinase activity. Third, fast

phosphotransfer to CheY is required to ensure that the CheYp

level is exclusively determined by the ratio between kinase activity

and phosphatase acitivty (Eq. (14)), thus explaining the existence of

a phosphoreceiver binding domain at CheA – a unique feature in

bacterial two-component systems. Forth, the necessary linear

relation between CheY (CheZ) expression level and kinase activity

requires the concentration of phosphorylated CheB to scale as

½CheBp�*1=½CheY �, whereas CheY phosphorylation should not

be affected by CheB abundance. This relation can give an

explanation for the observed low copy number of CheB (*240
copies) in contrast to CheY (*8200 copies) [28], which makes

CheY to the dominant phosphate sink. Precision in the adapted

state further requires identical binding and co-localization

dynamics of CheR and CheBp to reduce effects of fluctuations

in receptor concentration and cluster size distribution [34]. It is

therefore not surprising that CheR and CheBp have similar

concentrations [28] and share the same docking domain at the Tsr

and Tar receptors [35], with almost identical exchange dynamics

between receptor clusters and cytosol as measured by FRAP [24].

Given the long evolutionary time span since radiation of the

chemotaxis signaling system among prokaryotes, it can be

expected that almost all evolutionary accessible mechanisms to

increase the signal-to-noise ratio have been systematically scanned,

and selected for their performance and resource efficiency. The

outstanding signaling gain of order 102 [16,32] of the E. coli

chemotaxis system is just one indication of this selection process,

that most likely co-evolved with similar outstanding noise

compensatory mechanisms, as presented in this work.

Materials and Methods

Strains and Plasmids
Escherichia coli K-12 strains VS100 [D cheY], VS104 [D(cheY

cheZ)], VS124 [D(cheB cheY cheZ)], VS127 [D cheR D(cheY cheZ)] and

VS149 [D(cheR cheB cheY cheZ)] used in this work were described

before [16,36]. Strains LL4 [D flgM D(cheY cheZ)] and LL5 [D flgM

D(cheR cheB cheY cheZ)] were constructed by the in-frame deletion of

flgM in VS104 and VS149, respectively [6]. Strain VS162 that

expresses CheY-YFP from the native chromosomal location was

described before [6]. Plasmid pVS88 was used to co-express the

CheY-YFP/CheZ-CFP FRET pair as one bicistronic mRNA

under control of the inducible pTrc promoter [23]. pAV8 is a

derivative of pVS88 encoding CheZF 98S-CFP (Vaknin & Berg,

2004). CheBS164C -YFP was expressed under control of the pTrc

promoter from pDK159 [38] and Tar-CFP (pDK53) [37], CheB

(pVS91) (Liberman et al., 2004) and CheR (pVS113) (Lan et al.,

2011) were expressed under control of the L-arabinose inducible

pBAD promoter.

Experimental Conditions
E. coli cells were grown under standard chemotaxis conditions

(Sourjik & Berg, 2002) in a rotary shaker at 34uC to mid-

exponential phase (OD600 &0:48) in tryptone broth (TB)

medium supplemented with appropriate antibiotics. Expression

was induced by indicated amounts of IPTG and arabinose. Swarm

assays were performed at 34uC on TB plates supplemented with

0:3% agar (Applichem) and indicated concentrations of IPTG.

FRET Measurements
Cell preparation, FRET measurements and evaluation of FRET

data were performed as described previously, [16].

Quantification of Gene Expression
Expression of fluorescent reporter proteins in individual cells

was quantified as described before [6] using fluorescence imaging

on a AxioImager fluorescence microscope equipped with an

ORCA AG CCD camera (Hamamatsu) or by flow cytometry on a

FACScan (BD Biosciences). Wild-type level of CheY was estimated

based on strain VS162. Expression of untagged CheR and CheB

was quantified using immunoblotting with a respective polyclonal

antibody as described previously [31].

Supporting Information

File S1 Derivation of mathematical expressions and issues of

data analysis.

(PDF)
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