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Zusammenfassung

Die Erforschung von Kolloiden bietet ein weites Betätigungsfeld. Die vorlie-
gende Arbeit konzentriert sich dabei auf zwei Aspekte der theoretischen Beschrei-
bung mesoskopischer Teilchen. Zum einen werden ladungsstabilisierte Kolloide,
die durch die sehr große Reichweite der Coulomb-Wechselwirkung charakterisiert
sind, betrachtet. Auf der anderen Seite bietet das Modell der harten Wechsel-
wirkung, bei dem die Teilchen nur bei Kontakt Kräfte aufeinander ausüben,
Einsichten in die Auswirkungen sehr kurzreichweitiger Wechselwirkungen.

In Teil 1 der Arbeit wird das Verhalten geladener Teilchen in einem externen
Feld untersucht. Dabei kommen sowohl Monte-Carlo-Computersimulationen als
auch Poisson-Boltzmann-Theorie zum Einsatz. Zunächst wird eine binäre Kol-
loidmischung im Schwerefeld betrachtet. Dabei stellt sich heraus, daß die ent-
scheidende Größe für die Dichteprofile nicht allein die Teilchenmasse, sondern
das Verhältnis von Masse und Ladung ist. Das bedeutet, daß die Spezies mit
niedrigerem Masse-Ladungsverhältnis auch dann oberhalb der anderen Kompo-
nente sedimentiert, wenn ihre Masse die größere ist.

Weiter wird ein Elektrolyt in einem Kondensator betrachtet. Das äußere
elektrische Feld kann dabei zur Ladungstrennung im Elektrolyten führen, der
seinerseits ein Feld aufbaut. Das Zusammenwirken der Felder führt zu einem
Übergang zwischen einem delokalisierten und einem lokalisierten Zustand: ist
die anliegende Spannung U niedrig, verteilen sich die Ionen im gesamten System.
Steigt U über einen kritischen Wert Uc, so konzentrieren sich die Ionen in der
Nähe der Kondensatorplatten. Der mittlere Abstand 〈h〉 einer Ionenspezies von
der entgegengesetzt geladenen Platte divergiert dabei mit 〈h〉 ∼ ln(U − Uc)/Uc.

In Teil 2 der Arbeit wird eine Dichtefunktionaltheorie für harte Teilchen
vorgestellt. Dabei werden zum einen dreikomponentige Mischungen von Ku-
geln, Stäbchen und Plättchen im Grenzfall verschwindender Dicke von Stäbchen
und Plättchen untersucht. Für den Überlapp von Kugeln und Plättchen wird
zudem der Zusammenhang mit zweidimensionalen harten Scheiben aufgezeigt.
Darüberhinaus werden binäre Mischungen von Kugeln und Stäbchen im soge-
nannten Onsager-Limes betrachtet. In diesem Grenzfall werden Terme erster
Ordnung im Stäbchendurchmesser D ebenfalls berücksichtigt. Experimentelle
Systeme werden so insbesondere bei hoher Packungsdichte besser beschrieben.
Um Anwendungen der Theorie zu erleichtern, wird das Funktional für einige
einfache Geometrien explizit angegeben.
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Abstract

Out of the broad field of research that colloids provide, this thesis focuses
on two aspects of the theoretical description of mesoscopic particles. On the
one hand, charge-stabilised colloids are characterised by the very long range of
the Coulomb interaction. On the other hand, the model of hard bodies provides
insight into the effects of very short-ranged interactions: interparticle forces are
exerted only upon contact.

In Part 1 of this thesis, the behaviour of charged particles under an external
field is examined using both Monte-Carlo computer simulations and Poisson-
Boltzmann theory. For a binary colloidal mixture in a gravitational field, it
turns out that sedimentation is controlled by the ratio of particle mass to charge
rather than by mass alone. Thus, the species with the lower mass-per-charge
ratio will sediment on top, even if its mass is larger than that of the other species.

The ion distribution of an electrolyte between capacitor plates is influenced
strongly by the external electric field. The non-uniform ion distribution, in turn,
generates an electric field internal to the system. The interplay between these
fields leads to a transition from a delocalised to a localised state: as long as
the voltage U applied across the capacitor remains low, the ions are distributed
throughout the system. When U rises above a certain threshold value Uc, the
ions become localised next to the capacitor plates. The average distance 〈h〉 of
one species of ions from the oppositely charged capacitor plate diverges logarith-
mically as 〈h〉 ∝ ln(U − Uc)/Uc.

In Part 2 of this thesis, a density functional theory for hard bodies is pre-
sented. In particular, ternary mixtures of spheres, and rods and platelets of
vanishing thickness, are examined. For the overlap of spheres and platelets,
the relationship to two-dimensional hard disks is explained. Binary mixtures of
rods and spheres in the Onsager limit are also considered. In this limit, terms
that are linear in the needle thickness D are included in the functional. This
allows for a more accurate description of experimental systems – which are nec-
essarily characterised by a finite D – at high packing fractions. The theory
follows Rosenfeld’s hard-sphere density functional theory and generalises it to
anisotropic particles. In order to facilitate applications, explicit expressions of
the functional for simple geometries are given.
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CHAPTER 1

Introduction

In an 1861 publication, Thomas Graham noted that some substances like
starch and gelatine diffuse much more slowly than substances such as salt or
sugar do. Taking the Greek translation of gelatine, κóλλα, he named this class
of substances colloids [1]. Far from being an academic curiosity, colloids are very
common in everyday life. Ink and paint are colloidal dispersions of pigments in
water or oil; in homogenised milk [2], fat is dispersed in water. Human blood is
also a colloid consisting mainly of red blood cells dispersed in blood plasma [3].

Colloidal particles range in size from the nanometre to the micrometre scale.
Thus, they are significantly larger than atoms but much smaller than any ob-
jects that can be seen by the unaided eye. Therefore, they are referred to as
mesoscopic particles. On the one hand, mesoscopic particles are small enough
to exhibit collective behaviour similar to that found in atomic systems. Sepa-
ration into liquid, vapour and solid phases with different lattice structures (e.g.
face-centered cubic and body-centered cubic) are all known to exist in colloids.
However, colloidal particles are also large enough so that their collective be-
haviour differs in many aspects from that of atoms and micro-molecules. For
example, dynamics in colloids is slower than in atomic systems; it was their
slow diffusion that prompted Graham [1] to define colloids as a separate class
of matter. Another characteristic that separates colloids from atomic systems
is their softness: While a substantial force is required to bend a metal bar,
colloids can be deformed much more easily – to the delight of every child who
has ever eaten jelly. It is important to notice that this softness is the result of
collective behaviour; deformation of the individual particles is not necessarily
easy. The difference in particle sizes (and, therefore, mass) between atoms and
colloidal particles becomes directly apparent when the influence of gravity on
different systems is observed. While macroscopic particles (such as sand grains)
settle down in dense layers, the density of the atmosphere only varies on a scale
of kilometres. The density of colloidal particles, however, typically varies on a
scale of a few microns to a millimetre. Being mesoscopic, colloidal particles have
a mass that lies between that of atoms and macroscopic particles. Therefore,
their sedimentation behaviour falls between these extremes. This has already
been observed by Perrin and been used to determine Avogadro’s constant [4].

Sedimentation is only one example where the density or composition is not
constant throughout a many-particle system. Such inhomogeneities are of special
interest both from a fundamental and a more practically oriented point of view.
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12 1. INTRODUCTION

The presence of an inhomogeneity (such as an interface) in the system can induce
many new effects. As an example, consider a system prepared in such a way
that the vapour phase is stable. If an interface is present, a layer of liquid may
appear even though the liquid phase is not stable in the bulk. This phenomenon
is known as wetting, and extensive research [5, 6] has been carried out. From a
more general point of view, one can scarcely fail to notice that any interaction
between a colloidal system and the outside world must by definition involve an
inhomogeneity – at least in the form of a surface of the finite system.

Focusing on the individual particles, it is evident that their index of refrac-
tion will in general differ from that of the solvent in which they are dispersed.
It is possible to index-match the solvent to the dispersed particles by mixing it
from different components. In practice, however, a slight difference in refrac-
tive indices will remain. It has been long known that in this case, fluctuating
dipoles will appear, leading to an attractive force between the particles [7]. These
van-der-Waals forces are usually only important on microscopic and mesoscopic
scales. If, however, two macroscopic bodies are brought into very close contact
over a large area, a considerable force may result. The stickiness of cling film to
smooth surfaces is a prominent example. The ability of geckos to climb smooth
surfaces is another: Gecko feet are covered with almost half a million very fine
hairs. In total, these hairs make up a large contact area, thus preventing the
gecko from sliding off the surface [8].

Colloidal particles are also subject to van-der-Waals forces. The correspond-
ing pair potential has a deep minimum upon contact – in fact, in the idealised
case of smooth spheres, the interaction potential diverges. Therefore, when-
ever two colloidal particles touch, they do not come apart again. The normal
phase behaviour of the colloid which depends on the reversibility of the particle
movements is thus destroyed.

In order to avoid such coagulation, colloids need to be stabilised, usually ei-
ther electrostatically or sterically. Electrostatically stabilised colloids carry an
electric charge. When the electrostatic repulsion between the particles is super-
imposed on the van-der-Waals attraction, a large potential barrier at slightly
larger separations is erected, thereby effectively preventing coagulation [9, 10].
However, the potential minimum is not cancelled, so coagulation is still possible
over long timescales.

Charge-stabilised colloids are intrinsically susceptible to external electric
fields, providing the experimentalist with an easily controllable way to influence
their behaviour [11]. Due to the long-ranged nature of the Coulomb potential,
there is also a strong interaction between different components in a mixture
(and, of course, between different particles of the same component). Moreover,
there is a large number of microscopic ions present. Each of these counter-ions
carries a small charge, thus maintain the global charge-neutrality of the system.
Because counter-ions are much smaller and lighter than the macro-ions, they
interact non-trivially with each other.
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In Chapter 2 of this thesis, we turn to such a system and examine the inter-
play between an external gravitational field and the internal Coulomb forces. We
find that in a binary mixture, the interaction of macro-ions and counter-ions and
the external gravity field lead to an interesting phenomenon: sedimentation is
controlled by the particles’ charge per mass rather than by mass only. Therefore,
heavy, highly-charged particles may sediment on top of lighter, weakly-charged
ones.

In Chapter 3, the effect of an external electric field on a mixture of pos-
itively and negatively charged ions is examined. When such an electrolyte is
placed between oppositely charged plates – a capacitor – the ions will be influ-
enced strongly by the external electric field. The non-uniform ion distribution,
in turn, will generate an electric field internal to the system. Examining the
interplay between these fields, we find that a symmetric electrolyte in a capac-
itor undergoes a transition from a delocalised to a localised state: as long as
the voltage U applied across the capacitor remains sufficiently low, the ions are
distributed throughout the capacitor. When U rises above a certain threshold
value, the ions become localised next to the capacitor plates.

As opposed to exploiting electric forces, colloids can also be stabilised against
coagulation by grafting polymers onto the particles’ surfaces. As reported in [12],
ink was stabilised in this way in ancient Egypt: coagulation will render carbon-
based ink unusable after a few minutes unless arabic gum is added to the mixture.
Whenever two such particles approach one another, their respective polymer
coatings will overlap. This leads to a large reduction of the accessible configura-
tion space of the polymers which in turn gives rise to an entropic repulsion. If the
polymers are short as compared to the size of the colloidal particles, the repul-
sion sets in rather abruptly so that the colloidal particles can be approximated
as hard bodies: their interaction potential is infinite whenever they overlap and
zero otherwise. Thus, the phase behaviour of such a colloid is governed only by
the particles’ shapes, and they are said to be sterically stabilised. Even the sim-
plest such system, that of hard spheres, already displays phase separation into
a fluid and a crystalline phase. Hard spheres can also be realised by charged
colloids: if a large amount of salt is added, the macro-ion charges are completely
screened by the microscopic salt ions even over very short distances. Thus, the
interaction potential becomes that of hard spheres.

Thin rods and platelets are the simplest prolate and oblate hard body sys-
tems, respectively. Being non-isotropic, they display not only positional but also
orientational order which leads to a variety of different liquid crystalline phases.
This makes them interesting for fundamental studies, but platelike and rodlike
particles are also found in our everyday life: Flatscreen TV sets and computer
monitors influence the orientational ordering of rod-like liquid crystals by exter-
nal fields in order to display images. Some viruses are also rod-shaped [13, 14],
sometimes with aspect ratios in excess of 100 [15, 16]. Platelets occur in every-
day life as well, most notably in clay which plays an important role as building
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material e.g. for bricks and pots. Plate-like particles have also been subject
of intense studies. The phase behaviour of polydisperse platelets [17] and of
platelet–polymer mixtures has been studied in computer simulations [18,19] and
scaled particle theory [20]. Capillary nematisation and wetting of binary hard-
rod and hard-platelet fluids [21] and the Zwanzig model [22,23] in which particle
orientations are restricted to the axes of the coordinate system have been sub-
ject of theoretical studies. Examples of experimental work include gibbsite, an
important aluminium ore [24–26], bentonite [27], and clay suspensions [28,29].

In Chapter 4 we present a density functional theory for mixtures of hard
spheres and thin rods (needles). We give explicit expressions for the functional
for several simple geometries. As an application, a treatment of the free sphere–
needle interface between demixed fluid phases is also presented.

In Chapter 5 we extend the density functional to the Onsager limit, i.e. terms
that are linear in the needle thickness D are included in the functional. This
allows for a more accurate description of experimental systems at high packing
fractions: Rods in real systems always have a finite diameter. The Onsager limit
is also a first step toward a functional for rods at finite thickness and can thus
foreshadow some of the problems that have to be overcome in order to reach
that goal.

In Chapter 6 a density functional for mixtures of spheres, needles and thin
platelets is developed along the same principles. The interaction between plate-
lets and spheres turns out to be considerably more difficult than that between
needles and spheres, so we restrict ourselves to an approximate treatment of the
sphere–platelet Mayer bond. However, we point out in detail what needs to be
done in order to recover the exact Mayer bond within the framework of this
functional.

Finally, a summary of the results of the present work and some suggestions
for future research are given in Chapter 7.



Part 1

Segregation Effects in Charged Colloids





CHAPTER 2

The Colloidal Brazil Nut Effect

1. Introduction

Binary systems of granular matter separate upon shaking in gravity, so that
the larger particles lie on top of the smaller ones even if they are heavier and
denser than the latter. This is due to a sifting mechanism in which tiny grains
filter through the interstices between the large particles which is well-known as
Brazil nut effect : in a jar of mixed nuts or in a package of cereal, the largest
species rises to the top [30, 31]. This clearly distinguishes granular matter from
ordinary fluids where the rising species is controlled by Archimedes’ law. Under-
standing the full details of the Brazil nut effect is still a problem; recently even a
reverse Brazil nut effect of large light grains sinking in a granular bed has been
predicted [32–34] and verified in experiments [35].

Here we report on equilibrium density profiles of binary charged colloidal
fluids (macro-ions) under gravity. Using extensive Monte-Carlo computer simu-
lations of the primitive model [36] of strongly asymmetric electrolytes and density
functional theory, we predict that the heavier particles sediment on top of the
lighter ones provided the charge per mass of the heavier particles is higher. In
analogy to granular matter, we call this counter-intuitive phenomenon a colloidal
Brazil nut effect [37]. It is generated by the entropy of the microscopic counter-
ions in the solution, which are coupled to the macro-ions by strong Coulomb
binding. Clearly, though this effect is qualitatively similar to the granular Brazil
nut effect insofar as heavy particles are on top of lighter ones, its physical origin
is different: first, the particle charge (and not the size) is crucial. Second, the
colloidal Brazil nut effect is a pure equilibrium phenomenon while the granular
Brazil nut effect happens intrinsically in non-equilibrium. The colloidal Brazil
nut effect can be verified, e.g., in depolarised-light scattering or real-space ex-
periments on sediments of strongly deionised binary charged suspensions [38,39].
Similar techniques have been used to measure one-component colloidal density
profiles [38,40] where deviations from the ideal barometric law [4,41,42] are still
subject to an ongoing debate [43–47].

2. Model

We simulate the asymmetric primitive model of binary charged suspensions
in which the solvent enters only via a continuous dielectric background with
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18 2. THE COLLOIDAL BRAZIL NUT EFFECT

permittivity ε but all charged particles (two species of negatively charged macro-
ions and microscopic counter- and co-ions) are treated explicitly at constant
temperature T . With Z1e, Z2e, −qe and σ1, σ2, σc denoting the charges and
the diameters of the two colloidal species and the micro-ions, the interaction
between the charged particles is given as a combination of Coulomb forces and
excluded volume of the hard particle cores. Here, e is the electron charge. For
simplicity we assume that the co- and counter-ions of the salt solution have the
same valency and the same hard core diameter σc. We consider a finite system of
N1, N2 charged macro-ions and corresponding number of counter-ions (fixed by
global charge neutrality) plus salt ions of bulk concentration cs. The simulation
box is rectangular with lengths Lx = Ly and Lz = 32 Lx in the three different
spatial directions with periodic boundary conditions in x and y direction and
finite length in z-direction. Hard walls are placed at z = 0, Lz and gravity with
acceleration g points along the −z direction. Only the colloidal particles with
their buoyant masses m1 and m2 are subject to gravity, whereas the micro-ions
are not.

A Monte-Carlo simulation is performed in the canonical ensemble with the
long-ranged Coulomb interaction treated via Lekner sums [48]. Typically 103

Monte Carlo moves per particle were performed for equilibration and it took an
additional 104 Monte Carlo moves per particle to gather statistics. Finite system
size effects were carefully checked by changing all lateral linear dimensions by
a factor of 4. This means that we have changed the total number of colloidal
particles N1 +N2 in the range of 12–200. We have calculated the inhomogeneous
z-dependent averaged density profiles ρ1(z), ρ2(z), ρ3(z) and ρ4(z) of the two
macro-ions and the counter- and co-ions. Data are shown for the largest system
size where N1 = N2 = 100.

Besides the ratios Z1/q, Z2/q, m1/m2, σ1/σ2, σc/σ2, the system is char-
acterised by two partial area densities ni = Ni/LxLy (i = 1, 2), the Bjerrum
length λB = q2e2/εkT (kT denoting the thermal energy), the gravitational length
`2 = kT/m2g of the second particle species, and the salt concentration. In order
to reduce the parameter space, we have assumed throughout the simulations
monovalent micro-ions (q = 1), and the same hard core diameter of the macro-
ions σ = σ1 = σ2 which serves as a natural length scale. We further fixed
Z2 = 15, λB = σc = σ/128 and n1 = n2 = 0.1/σ2. This corresponds to typical
parameters for low-charge aqueous suspensions. We varied the colloidal charge
Z1, the colloidal mass ratio m1/m2 (with m1 > m2), the gravitational length `2,
and the salt concentration.

3. Results

In the salt-free case, density profiles for the two macro-ions and the counter-
ions are shown in Figure 1 for m1/m2 = 1.5 and three different macro-ion charges
Z1 = 45, 30, 25. For large heights z, the heavy particles (solid curve) are on top of
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Figure 1. Density profiles of macro- and counter-ions for Z1 =
45, 30, 25 (solid lines; top to bottom). The second colloidal compo-
nent is shown as a dashed line. Counter-ion densities (thin lines)
have been divided by Z1 +Z2. For clarity, curves pertaining to dif-
ferent simulation runs have been shifted by 5× 10−4 with respect
to each other. The parameters are: m1/m2 = 1.5, `2/σ = 10,
cs = 0. Inset: Semi-logarithmic plots of the same colloidal density
profiles with the slopes predicted from theory.

the lighter ones (dashed curve). This colloidal Brazil nut effect is getting stronger
for increasing charge asymmetry between the colloidal particles: for the highest
charge Z1 = 45, the two macro-ion species are almost completely separated. To
quantify the Brazil nut effect, we define – in analogy to the ordinary Brazil nut
problem [34] – a mean (or sedimentation) height of the two profiles via

hi =

∫∞
0

zρi(z) dz∫∞
0

ρi(z) dz
i = 1, 2 (2.1)

By definition, the colloidal Brazil nut effect occurs if h1 > h2, but there is no
Brazil nut effect in the opposite case, h1 ≤ h2.

Let us now describe the properties of the density profiles for increasing z
qualitatively and put forward a simple theory to describe the basic features.
Close to the hard container bottom at z = 0, small correlation effects are visi-
ble as a density shoulder of the low-charge particles while high-charge particles
are depleted from the wall. The reason is a combination of a pure interface
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effect and Archimedes’ principle. First, we have checked by simulation that
depletion of high-charge particles persists for zero gravity. Second, by crudely
mapping the interacting binary colloidal mixture onto one with effective hard
interaction cores, the high-charge particles will have a larger diameter and hence
Archimedes’ principle will lift the high-charge particles in the sea of small ones
provided their mass density is smaller [49]. For our parameters, however, the
latter effect is small and confined to regions close to the wall. More importantly,
as revealed by the semi-logarithmic plot in the inset of Figure 1, there is an ex-
ponential decay of the two colloidal profiles for intermediate heights associated
with two different decay lengths for the two colloidal species. The decay length
for the heavier but high-charge particles is larger than that for the low-charge
particles. This gives the most significant contribution in the integral (2.1) of the
mean height. Finally, for large z, a cross-over appears towards another exponen-
tial decay involving the gravitational length `1 = kT/m1g for the high-charge
particles. It is important to note that the density profiles fulfil local charge neu-
trality throughout the whole sample except at the container bottom (z = 0) and
at very large heights z. But even there the excess charge separated is small.1

Our theoretical explanation for the colloidal Brazil nut effect is based on a
simple density functional approach. The free energy F per unit area, which is a
functional of the inhomogeneous density fields ρ1(z), ρ2(z), ρ3(z) of the macro-
and counter-ions, splits into the gravitational energy, the entropy of the three
species, and all Coulomb contributions. The latter are approximated within a
mean-field-type Poisson-Boltzmann theory [43–47]. Hence:

F [ρ1(z), ρ2(z), ρ3(z)] =
2∑

ν=1

∞∫

0

mνgzρν(z) dz

+
3∑

ν=1

∞∫

0

kTρν(z)(ln(Λ3
νρν(z))− 1) dz

+
1

2

∫ ∞∫

0

∞∫

0

ρt(z)ρt(z
′)

ε
√

r′2 + (z − z′)2
dz′ dz d2r′ (2.2)

Here, Λν , (ν = 1, 2, 3), are Lagrange multipliers which ensure that the over-
all colloidal densities per unit area equal the prescribed number densities, i.e.∫∞

0
ρi(z) dz = ni (i = 1, 2). Λ3 is fixed by global charge neutrality, and ρt(z) =

Z1eρ1(z)+Z2eρ2(z)−qeρ3(z) is the total local charge density of the system. The
functional F is minimal for the physically realised equilibrium density profiles.

1The charge non-neutrality at the system boundaries will result in a small electric field
as recently predicted by theory in Ref. [47] and also confirmed by simulation of the one-
component colloidal system [50]. The presence of this field, however, will change neither the
density field for intermediate z nor the general conclusions of our analysis which assumes local
charge neutrality.
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We discuss two different cases of weak and strong Coulomb coupling sub-
sequently. For weak Coulomb coupling, which is realised for very large heights
z where the densities are extremely small, one may neglect the third term on
the right-hand side of Eq. (2.2). Then, the minimisation of F yields colloidal
density profiles which follow the traditional barometric law ρi(z) ∝ exp(−z/`i)
(i = 1, 2). Strong Coulomb coupling, on the other hand, will impose local charge
neutrality ρt(z) = 0 which implies that the counter-ion density field is enslaved
to that of the macro-ions. Minimising F in this limit with respect to the two
colloidal densities only, again yields an exponential decay ρi(z) ∝ exp(−γiz)
(i = 1, 2) but with inverse decay lengths γi which are smaller than 1/`i. These
decay lengths γi turn out to be as follows: Let α be the index i for which the mass
per charge ratio mi

Zi/q+1
is minimal and let β = 3−α be the index complementary

to α, i.e. β = 1 if α = 2 and β = 2 if α = 1. Then

γα =
mα

Zα/q + 1

g

kT
(2.3)

and

γβ =

(
mβ −mα

Zβ

Zα + q

)
g

kT
> γα (2.4)

with γβ ≥ mβg

kT (Zβ/q+1)
≥ γα. This second case of strong Coulomb coupling will

be realised for heights z where correlations between the ions are small (which
justifies the mean-field approximation) but where local charge neutrality is still
valid. The physical reason for the much slower decay of the colloidal density
profiles in the second regime results from the counter-ion entropy which tends
to delocalise the counter-ions. However, since the macro-ions are coupled to
the counter-ions due to the constraint of local charge neutrality, they are lifted
upwards together with their counter-ions. Assuming that the main contribution
in the integrand of the right-hand side of (2.1) comes from the second regime,
the mean heights are given by hα = 1/γα and hβ = 1/γβ. A Brazil nut effect
occurs when α = 1 and β = 2. Hence the transition towards the Brazil nut effect
happens at m1

Z1/q+1
= m2

Z2/q+1
.

Let us now test the prediction of the theory against our simulation data.
First, the slopes in the inset of Figure 1 confirm the inverse decay lengths γα

and γβ perfectly for a large range of intermediate heights; the theoretical pre-
dictions for the slopes as given by Eqs. (2.3) and (2.4) are shown as thick lines.
The crossover to the bare gravitational length for large z is confirmed for the
high-charge particles and is found to be pretty sharp. Consistently with the
theoretical assumption, local charge neutrality in the intermediate regime is ful-
filled. Second, we have tested the location of the transition towards the colloidal
Brazil nut effect by systematically varying the mass and charge ratio. The re-
sults are summarised in Figure 2. The theory, which predicts the transition at
(Z1 + 1)/(Z2 + 1) = m1/m2, is shown as a straight line there. All parameter
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m1/m2 for which the Brazil nut effect was (circles) or was not
observed (crosses). The straight line shows the theoretical predic-
tion. The parameter combinations were obtained by changing `2

and Z1 in the range of 4 . . . 20 σ and 16 . . . 45, respectively.

combinations simulated are indeed separated by this theoretical prediction, con-
firming our simple theory. This is remarkable as any wall or bulk correlation
effects are neglected in the theory.

In order to elucidate this further, we have compared the theoretical predic-
tions 1/γ1, 1/γ2 for the heights with the simulation data in a situation where the
transition line was crossed. In Figure 3 the heights are shown as a function of a
varied charge Z1. The simulation data reveal that the variation of both heights
hi with Z1 is large close to the transition and becomes maximal at the transition.
In the theory, this feature is reproduced and accompanied by a generic cusp at
the transition. Moreover, a marked maximum in the fluctuations of the mean
heights of both species appears at the cusp. Though the cusp is smeared out
and in general the heights are larger in the simulation data due to the density
reduction close to the wall, there is still semi-quantitative agreement. The rapid
variation of the heights at the transition implies that the location of the tran-
sition towards the Brazil nut effect is very robust explaining the validity of the
theory in Figure 2.
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a function of Z1 for the parameters of Figure 1, namely m1/m2 =
1.5, `2/σ = 10, cs = 0. The lines show the theoretical predictions.

Finally we address the case of added monovalent salt. Density profiles for the
two macro-ion species and the counter- and co-ions are presented in Figure 4.
Addition of salt reduces the Brazil nut effect; in the inset of Figure 4 the heights

are plotted versus added salt concentration. The c
(0)
s needed to reverse the

Brazil nut effect is estimated as c
(0)
s ≈ Z1ρ1(z0) + Z2ρ2(z0) which is the counter-

ion concentration at the position z0 where the two colloidal density profiles cross
in the salt-free case. This salt concentration is indicated as an arrow in the
inset of Figure 4, confirming the validity of the estimate. Though the Brazil nut
effect is proven to remain stable with respect to added salt, it will only show
up for de-ionised solutions. Highly charged suspensions in non-polar solvents
with a small dielectric constant ε and low impurity ion concentrations [51] are
promising candidates to exhibit a strong Brazil nut effect.

4. Conclusions and Outlook

In conclusion, we predict an analog of the granular Brazil nut effect in equi-
librium sediments of charged suspensions, which is generated by an entropic
charge lifting due to the Coulomb coupling to the counter-ions. An experimen-
tal verification of the levitation should be possible employing depolarised light
scattering [38] or confocal microscopy [51]. The simulated charge asymmetries
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Figure 4. Density profiles for added salt. The macro-ion densi-
ties are shown by the thick lines. The counter- and co-ion densities
(thin dotted lines) have been divided by Z1 + Z2; the co-ion den-
sity is smaller than that of the counter-ions. The parameters are
Z1 = 45, m1/m2 = 2, `2 = 20 σ, and csσ

3 = 2.5 × 10−3. Inset:
Sedimentation heights hi of heavy (+) and light (¯) particles as
a function of reduced salt concentration for Z1 = 32, m1/m2 = 2,
and `2 = 5 σ. The theoretical estimate of the threshold salt con-
centration is marked by an arrow.

correspond to micelles and proteins rather than highly charged colloids but the
simple theory which was confirmed by the simulations is applicable for arbitrary
charges.

The lifting effect is immediately generalisable to sediments of solutions which
are polydisperse in mass and charge [52]. Therefore the colloidal Brazil nut
effect has important biochemical implications for the separation of polydisperse
biological matter, such as protein solutions. Analytical sedimentation is typically
used in an ultracentrifuge to separate different species [53]. The colloidal Brazil
nut effect implies that the separation is sensitive to the mass per charge but
not to the mass itself. Recently, J. Zwanikken et al. [54] have generalised the
functional (2.2) to polydisperse systems. Performing a free minimisation – in
contrast to our simple parameterisation – of this functional, they have been
able to achieve very good agreement with the simulation data that have been
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presented in this chapter. For polydisperse systems, Zwanikken et al. predict
that species also segregate according to their mass-per-charge ratio.





CHAPTER 3

Localisation–Delocalisation Transition of Electrolytes
Between Microelectrodes

1. Introduction

If a charged body is placed into a salt solution, the cations and anions of
the salt will screen the body charge. For high temperatures and/or low charge
densities, the traditional linearised screening theory leads to an electric double
layer around the charged body surface which involves an exponentially decreasing
density field of the micro-ions as a function of their distance to the surface. One
of the simplest set-ups are two parallel homogeneously charged plates with the
famous solution of Gouy-Chapman almost a century ago [55,56]. Subsequently,
further linear and nonlinear screening theories have been performed and the
electrostatic forces acting between two parallel plates have been calculated, see
e.g. Ref. [57–61] and references therein.

While the colloidal community has spent much effort to investigate the inter-
action between like-charge plates which directly affects colloidal stability, one of
the central topics of electrochemistry concerns electrolytes between plates of op-
posite charges. The latter situation, an electrolyte in a capacitor or condenser, is
relevant for a fundamental understanding of electrodes. Here the surface charge
density on, or equivalently, the electric field between the plates can be tuned
by the external voltage U applied. Recent progress has also been achieved in
miniaturising capacitors leading to well-controlled micro-electrodes [62–64] or
even nano-electrodes [65, 66] in an electrolyte solution. These are used as basic
switching elements in micro-fluidic devices and in nano-electronics.

In this chapter, we show that symmetric electrolytes in a condenser of two
oppositely charged plates undergo a transition from a localised to a delocalised
state. The transition occurs as a function of external voltage U applied for fixed
electrolyte area density and temperature in the limit where the plate distance
D goes formally to infinity. The order parameter of the transition is the first
moment 〈h〉 of the micro-ion density profiles which is the averaged distance of the
anions and cations to the oppositely charged plate. If σ denotes the modulus of
the charge of anions (or cations) between the plates per unit area, the transition
occurs exactly at that voltage Uc which equals the surface charge density of the
plates, σp, to σ. The fingerprint of this transition is a logarithmic divergence
of the order parameter 〈h〉 in (U − Uc)/Uc for U ↘ Uc (resp. in (σ − σp)/σp

for σp ↘ σ). For U < Uc, on the other hand, the averaged distance is of the

27
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order of the plate distance D diverging in the limit D → ∞. This is obtained
by Poisson-Boltzmann theory and confirmed by computer simulations of the
primitive electrolyte model with explicit micro-ions.

The physical reason for the localisation-delocalisation is simple: for U > Uc

(resp. for σ < σp), all electrolyte ions will feel an external electric field attractive
to the plates of opposite charge, and all ions will screen this field which results
in a localised density profile decaying exponentially with the distance to the
plates. On the other hand, for U < Uc (resp. for σ > σp), a fraction of the
electrolyte ions is sufficient to completely screen the surface charge. Hence the
rest of them is free to delocalise between the plates due to entropy reasons.
Despite its simplicity we are not aware that this transition has been discussed
previously in the literature. This might be due to the fact that for typical
electrolyte solutions between charged plates, one encounters the delocalised case
σ > σp. This is different, however, for micro-electrodes where, at fixed bulk salt
concentration, the area density σ can be drastically reduced by a confinement
which is, however, still larger than the molecular length scales. Therefore, as we
shall detail below, the transition is clearly detectable in micro-electrodes.

2. Model

In our theoretical model, we consider a system of two species of ions with
charges +qe and −qe, respectively, (q > 0), and microscopic hard core diameters
d. The ions are kept at finite temperature T and placed in a solvent of dielectric
permittivity ε inside a capacitor. The condenser consists of two homogeneously
and oppositely charged planar plates which are a distance D apart. The plates
are no in contact with the electrolyte to prevent electrolysis. The plate charge is
σp at z = 0 and−σp at z = D. The total micro-ion number density per plate area
is denoted 2σ. The system is globally charge neutral. One of the basic length
scales is the microscopic Bjerrum length λB = q2e2/εkT which is the typical
distance where two oppositely charged ions gain a thermal energy kBT . The
opposite plate charges ±σp lead to an external electric field in the condenser,
E = 4πσp/ε. Equivalently one may see the plate charge originating from an
external voltage U applied with U = ED. The plates are infinitely large in the x
and y directions. We address the case of large plate distances D, taking formally
the limit D → ∞ at finite σ. The key quantity to characterise localisation and
delocalisation are the inhomogeneous averaged density profiles, ρ+(z) and ρ−(z)
of the cations and anions. Due to symmetry, ρ−(D/2 + z) = ρ+(D/2 − z),
hence it is sufficient to consider only one species. The whole set-up is shown
schematically in Figure 1.

3. Poisson–Boltzmann Theory

An analytical approach is provided by one-dimensional nonlinear Poisson-
Boltzmann theory [67–69] which is a mean-field approximation. This approach
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Figure 1. Schematic drawing of the electrolyte condenser consid-
ered. The voltage U is applied across the capacitor, charging the
plates to the area charge density σp. This corresponds to an elec-
tric field E external to the electrolyte. The microscopic cations
and anions are shown in the dielectric fluid, and their averaged
density profiles ρ+(z) and ρ−(z) are sketched as well.

incorporates entropy and electrostatics but neglects any correlations and fluc-
tuations of the electrolyte. Let us assume that we have a situation above the
transition, U > Uc, such that we are dealing with localised micro-ion density
profiles close to the plates. Since the plate distance is large, it is reasonable to
further assume completely separated cation and anion density profiles in the two
slabs separated by the midplane of the condenser at z = D/2. Then Poisson’s
and Boltzmann’s equations read as

d2Φ(z)

dz2
= −4π

ε
qeρ−(z) (3.1)

ρ−(z) =
σ

D
e−qeΦ(z)/kT (3.2)
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in the domain 0 ≤ z ≤ D/2 for the anionic density. Here, Φ is the electric
potential.

The analytical solution is

ρ−(z) =
Aλσ

sinh2
(√

Az + ϕ
) (3.3)

where A and ϕ are determined from the boundary conditions
∫ D/2

0
ρ−(z) dz = σ

and dΦ(z)/dz|z=0 = −E as coth ϕ = 1/(b
√

A) and A = [1/b − 1/λ]2 where
b = 1/(2πλBσp) is the traditional Gouy-Chapman length, and we introduce the
localisation length λ = 1/(2πλBσ). Clearly, for nonzero A the density profile
(3.3) is localised. Hence, necessarily, A has to vanish at a possible localisation-
delocalisation transition. This yields the threshold criterion for the critical elec-
tric field Ec = 4πqeσ/ε or the critical external voltage Uc = EcD. Equivalently,
this can be expressed as σp = qeσ or λ = b. Note that Ec is also equal to
the maximum internal electric field that is generated by complete separation
of charges in the system. In other words, the density profiles are delocalised
whenever the system can compensate for the external electric field by building
up an equal but opposite internal field. When the external field is too strong to
be compensated for, the remaining field localises the ions next to the capacitor
plates.

In order to quantify the localisation-delocalisation transition, we introduce
the first moment of the density profile as an order parameter defining a charac-
teristic height

〈h〉 =

∫ D/2

0
zρ−(z) dz

∫ D/2

0
ρ−(z) dz

. (3.4)

Eqn. (3.3) yields

〈h〉 = λ ln
2δ + 1

2δ
. (3.5)

where δ = (U −Uc)/Uc ≡ (E −Ec)/Ec > 0 measures the dimensionless distance
to the transition. Thus, the characteristic height 〈h〉 diverges logarithmically
∝ ln δ as the external voltage approaches its critical value Uc.

We have further performed extensive computer simulations of the primitive
electrolyte model where the solvent is treated as a dielectric continuum [59].
This model includes any correlations and fluctuations of the micro-ions which
are neglected in the analytical Poisson-Boltzmann approach. We consider a
finite, globally charge-neutral system of N cations and N anions in a rectangular
simulation box with lengths Lx, Ly, D and periodic boundary conditions in the
x and y directions. Walls impenetrable to the ions are placed at z = 0, D,
and an external electric field E = Eez is applied in the z direction. We take
L ≡ Lx = Ly and vary D and L to check for finite-size effects.

A Monte-Carlo (MC) simulation is performed in the canonical ensemble. The
Coulomb interaction is calculated via Lekner sums [48]. We use the Bjerrum
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length λB as the basic length scale. The hard-core diameter of the ions was d =
0.25 λB. The lateral system size was L = 512 λB for most runs. Upon increasing
it to 1024 λB to check for finite size effects, the results did not change. The area
density per species varied between 0.95 . . . 4.8× 10−4λ−2

B for the smaller system
corresponding to a total number 2N of simulated particles varying between 2000
and 10000. Equilibration took typically 250 MC steps per particle; statistics
were gathered during 50000 MC steps per particle. The distance between the
capacitor plates was varied between D = 128 λB to D = 4096 λB.

Simulation data for the density profiles for δ = 3.17 and δ = 0.043 are
presented in Figure 2. The parameters were chosen to be σ = 9.54 × 10−4λ−2

B ,
D = 4.10×103λB and L = 5.12×102λB. One can clearly see the delocalisation of
the density profiles close to the transition. The predictions of Poisson-Boltzmann
theory for positive δ as given by Eq. (3.3) are also included and show favourable
agreement with the simulation data.

Furthermore we have performed a detailed approach towards the transition
for three different parameter combinations. The resulting heights 〈h〉 are shown
in Figure 3. We have plotted the data using the universal scaling representation
suggested by the theory. The averaged height is scaled with the length scale
λ, and the distance to the transition is just expressed by the dimensionless δ.
Not only do the simulation data fall onto the same universal curve, there is
even quantitative agreement with the prediction (3.5) of our analytical Poisson-
Boltzmann approach. The inset of Figure 3 shows the same data on a semi-
logarithmic plot proving that there is indeed a logarithmic divergence in the
simulation data. Based on both Figures 2 and 3 we conclude that the predictions
of the Poisson-Boltzmann theory are quantitatively confirmed by the simulation.
Regarding the divergence of 〈h〉 close to the transition (0 < δ ¿ 1), we think
that Poisson-Boltzmann theory is still adequate. Correlation effects may lead to
micro-ion structuring and layering near the walls. Halfway between the plates,
however, the concentration of micro-ions is small close to the transition such that
Poisson-Boltzmann theory is still applicable there. Therefore we believe that the
asymptotic form of the divergence (3.5) will not be changed for strong Coulomb
coupling. The same insensitivity is expected for surface charge modulations
[70, 71] provided the modulation length is much smaller than the plate spacing
D.

4. Conclusions

Finally we discuss whether the condition at the delocalisation-localisation
transition, σp = qeσ, can be fulfilled in realistic samples. This criterion needs
high plate charges σp and small electrolyte densities σ. Let us subsequently
estimate limits for these two quantities. Very highly charged plates immersed
into an electrolyte will lead to chemi- and physisorption of the microscopic ions
[72] such that they are not any longer dissociated. A typical maximum for an
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Figure 2. Density profiles as obtained by simulation for δ = 3.17
(+) and δ = 0.043 (◦) and their respective theoretical predictions.
A delocalised density profile (δ = −0.48) is also shown (small
dots). The other parameters were σ = 9.54×10−4λ−2

B , D = 4.10×
103λB and Lx = Ly = 5.12 × 102λB. The inset shows the same
data on a semilogarithmic scale.

effective renormalised plate charge is given by the Manning threshold value [73]
and is of the order of σp = 1 e/λ2

B. In aqueous solutions at room temperature,
monovalent electrolytes typically have bulk concentrations ranging from at least
10−6 mol/litre to 10−3 mol/litre. Depending on the electrolyte concentration,
the criterion therefore requires plate distances which are in the range between
a millimetre and a micrometre to see the transition. The conclusion from this
estimate is that the transition can in principle be observed in small condensers.
However, for reasonable electrolyte concentrations, one has to go down to micro-
electrodes.

In an experiment on micro-electrodes, one can see the fingerprints of the tran-
sition by watching the electrolyte concentration directly. This is in principle pos-
sible by fluorescent marking of the micro-ions (see e.g. [74,75] for recent progress
in this domain) Alternatively, the transition may be observed by watching the
response of the system [76, 77] under a time-dependent AC electric field. Close
to the localisation-delocalisation transition, there should be a marked anom-
aly in the resistance at low frequencies; a delocalised state should contribute
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The inset shows the same data in a semi-logarithmic plot.

much more efficiently to the conductivity than a localised one. Another im-
plication of the delocalisation-localisation transition concerns the transport of
mesoscopic neutral particles with an electric dipole moment (e.g. proteins close
to the isoelectric point) in the transverse direction of a micro-electrode. Tuning
the external voltage such that the system parameters are close to the transition,
it is expected that the effective interaction and the transport through such a
micro-fluidic device can be tailored at wish.

In conclusion, we have predicted a sharp localisation-delocalisation transi-
tion in a electrolyte solution confined to a condenser as a function of the ex-
ternal voltage applied. At the transition, there is a qualitative change in the
screening of the condenser plates by the electrolyte. There are either enough
electrolyte ions in order to completely screen the plate charge leaving additional
ions in the solution which are delocalised due to entropy. Or micro-ions are
missing for complete screening, but then they are all localised. Crossing through
the transition produces a logarithmic divergence of the averaged distance of the
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micro-ions to the plates in the limit of large plate distances. The basics of this
transition is a simple competition between entropy and electrostatics, and non-
linear Poisson-Boltzmann theory describes it adequately. It would be interesting
to systematically investigate electrolytes in micro-electrodes in order to detect
this transition experimentally.

We finally point out that a similar effect occurs in asymmetric electrolytes
and even for strongly asymmetric systems such as nanometric proteins or meso-
scopic charged colloids. It would be interesting to expose sedimenting charged
suspensions [38, 47, 50, 78] to an additional electric field and study the corre-
sponding levitation. 1

1Note that the logarithmic divergence law is qualitatively different from the ordinary
divergence in a levitating solution where, when gravity g goes to zero, the averaged height 〈h〉
diverges algebraically as 1/g.
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Effects of Particle Shape





CHAPTER 4

Mixtures of Spheres and Thin Rods

1. Introduction

Mixtures of spherical and rod-like particles provide soft matter systems that
display astonishingly rich phase behaviour [79]. When a second component is
added as a depletant agent to a suspension of colloidal spheres, the spheres
may exhibit colloidal vapour, liquid, and crystalline phases. Rod-like deple-
tants alone, however, already have rich liquid-crystalline phase behaviour. The
possible combinations of both types of ordering are vast. Experimental exam-
ples of rod-sphere mixtures are dispersions of silica spheres and silica coated
boehmite rods [80, 81], silica beads immersed in suspensions of rod-like fd bac-
teriophage virus [13,14], and, in the biological domain, microtubules inside vesi-
cles modelling the eukaryotic cell [82, 83]. Experimental work has also been
devoted to self-diffusion and sedimentation of spheres in dispersions of rods [84].
Depletion-induced crystallisation was found in mixtures of colloidal silica spheres
and colloidal silica rods with light microscopy and confocal scanning laser mi-
croscopy [81]. Fluid–fluid phase separation was observed experimentally in a
mixture of silica spheres and semi-flexible polymeric rods (PBLG with molecu-
lar weight 105000) [85]. The free interface between demixed fluid phases is one
topic that we address in the present chapter.

As a simple theoretical model of a rod–sphere mixture Bolhuis and Frenkel
proposed a binary system of hard spheres and vanishingly thin hard needles [86].
Due to the vanishing needle thickness, and hence the absence of interactions be-
tween needles, this system does not display liquid crystalline order, but exhibits
(sphere) vapour, liquid and solid states, as was found in Ref. [86] with simulation
and a perturbation theory. The theory is similar to the free volume treatment of
the Asakura-Oosawa (AO) model [87,88] of colloidal spheres and non-interacting
polymer spheres by Lekkerkerker et al. [89]. The depletion potential exerted on a
pair of spheres due to the presence of the rods was studied theoretically [90], and
experimentally using optical tweezers [13, 14]. Considerable work was done to
understand the nature of the depletion force due to rodlike polymers in the On-
sager limit [91], and the interactions between flat plates and between two large
spheres via the Derjaguin approximation [92]. Theoretical phase behaviour of
mixtures of spheres and rods with finite diameter were studied in Ref. [80] and
compared to experiment [81], and in a mixture of parallel hard spherocylinders
and hard spheres layered phases were investigated [93].

37
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Density-functional theory (DFT) [94,95] is a powerful tool to study equilib-
rium properties of inhomogeneous many-particle systems. For realistic systems,
one usually has to rely on approximations for the central quantity of DFT, the
excess free energy functional. One particularly successful example of such an
approximation is Rosenfeld’s density functional for hard sphere (HS) fluids [96]
that also describes the HS solid [97–100]. An early extension of this theory to
treat hard convex bodies was proposed [101], and used to derive bulk direct
correlation functions for molecular fluids [102], two-dimensional anisotropic flu-
ids [103], and hard sphere chain fluids [104]. The theory of Ref. [101] suffered
from an incomplete deconvolution of the Mayer bond leading to an incorrect
virial expansion, and an extension to remedy this deficiency was made for the
model of hard spheres and hard, vanishingly thin needles [105]. Subsequently,
this was also generalised to a hard body amphiphilic mixture [106] and to mix-
tures of colloidal spheres, rods and polymer spheres [107]. Recently, the entropic
torque exerted on a single spherocylinder immersed in a hard sphere fluid at a
hard wall was calculated with a similar approach [108].

In contrast to the case of simple fluids, interfaces in such complex systems are
genuinely characterised by positional and orientational order. Interfaces between
phases with different liquid crystalline ordering, like isotropic-nematic interfaces,
have attracted considerable interest, see Ref. [109] for a recent study of the
hard-rod fluid. In this chapter we investigate the free interface between demixed
(isotropic) fluid phases in a rod-sphere mixture, an issue that has not been
addressed so far. We use the simplest non-trivial model in the context, namely
Bolhuis and Frenkel’s mixture of hard spheres and vanishingly thin needles, and
investigate it by means of the geometry-based DFT proposed earlier [105]. As
this theory reproduces the bulk fluid free energy and hence the accurate fluid
demixing binodal of perturbation theory [86], and was also shown to yield bulk
(sphere) pair correlation functions in good agreement with computer simulation
results [105], we are confident to apply it to inhomogeneous situations. We find
that, driven by packing effects of the spheres, orientational order of the needles
occurs at the free fluid-fluid interface, and that the density profiles are oscillatory
provided the sphere-rich fluid is on the oscillatory side of the Fisher-Widom line
in the bulk phase diagram [110–113]. The interface tension is found to be of the
order of the thermal energy per molecular area, and we investigate its scaling
with needle length and sphere diameter in detail.

Similar interface studies using density-functional approaches were recently
carried out [114, 115] for the AO model [87, 88] of colloid-polymer mixtures.
Our present model, however, allows to go beyond those studies through the
investigation of orientational order at the interface. Clearly, such ordering is
absent in the AO model of spherical bodies.
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θ zL σ
Ω

Figure 1. Model of hard spheres with diameter σ = 2R and nee-
dles with length L. In planar geometry, the z-direction is perpen-
dicular to the interface between needle-rich (z < 0) and sphere-rich
(z > 0) phases. The needle orientation is denoted by Ω, and the
angle between Ω and the z-axis is ϑ.

2. Model

We consider a mixture of hard spheres (species S) with radii R and straight
hard needles (species N) with length L and diameter D, see Figure 1 for a
sketch. The spheres interact with a hard core potential VSS(r) as a function of
their centre separation distance r, which is given by VSS(r) = ∞ if r < 2R and
zero otherwise. Spheres and needles interact with a hard body interaction that
depends, due to the particle shapes, on the difference vector r between sphere
and needle centre, as well as on the needle orientation given by a unit vector Ω
pointing along the needle shape. (The needles possess an inflection symmetry,
Ω → −Ω.) The sphere–needle interaction is given by VSN(r,Ω) = ∞ if both
shapes overlap, and zero otherwise.

The needles are taken to have vanishing thickness. Although these “line”
particles would non-trivially collide in a dynamic description, their excluded
volume vanishes due to the vanishing particle volume. Therefore, configurations
of overlapping needles carry vanishing statistical weight. As we are interested
in static quantities only, the needles can be regarded as an ideal gas of rotators,
solely due to their geometric properties. As an aside, no such scaling holds in
the somewhat similar AO model of hard sphere colloids and ideal (polymer)
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spheres. There the interactions between the particles of the second component
are regarded as being ideal from the outset.

We denote the number densities of spheres and needles by ρS(r) and ρN(r,Ω),
respectively. As bulk thermodynamic parameters, we use the packing fraction of
spheres η = 4πR3ρS/3 and the scaled needle density ρ∗ = ρNL2σ, where σ = 2R
denotes the sphere diameter. Furthermore, we denote the density in a reservoir
of pure needles that is in chemical equilibrium with the system as ρr

N and use a
scaled version ρr

∗ = ρr
NL2σ. The ratio of needle length and sphere diameter, L/σ,

is a control parameter. As only hard core interactions are present, temperature
T is an irrelevant variable that only sets the energy scale through kT , where k
is Boltzmann’s constant.

3. Density functional theory

3.1. Description of the functional. In this section we briefly review the
DFT proposed in Ref. [105]. The starting point is a geometrical representation
of the particles in terms of weight functions wi

µ, where i labels the species,
and µ = 3, 2, 1, 0 corresponds to the particles’ volume, surface, integral mean
curvature and Euler characteristic, respectively [101]. The weight functions are
determined to give the Mayer bonds fij = exp(−βVij)− 1, where β = 1/kT , by

a linear combination of terms wi
γ(r)∗wj

3−γ(r), where the star denotes the spatial

convolution, g(r) ∗ h(r) =
∫

g(x)h(r − x) d3x. For needles, following Ref. [101]
yields

wN
1 (r,Ω) =

1

4

L/2∫

−L/2

δ(r + Ω l) dl, (4.1)

wN
0 (r,Ω) =

1

2

[
δ(r +

L

2
Ω) + δ(r− L

2
Ω)

]
, (4.2)

where δ(x) is the Dirac distribution. The function wN
1 describes the linear shape

of a needle, whereas wN
0 is only non-vanishing at the needle endpoints.

For spheres the weight functions [96,100] are

wS
3(r) = Θ(R− r), wS

2(r) = δ(R− r), (4.3)

wS
v2(r) = wS

2(r) r/r, ŵS
m2(r) = wS

2(r)[rr/r
2 − 1̂/3], (4.4)

where r = |r|, Θ(x) is the Heaviside step function, 1̂ is the 3 × 3 identity
matrix, and rr is a dyadic product. Further, linearly dependent, weights are
wS

1(r) = wS
2(r)/(4πR),wS

v1(r) = wS
v2(r)/(4πR), wS

0(r) = wS
1(r)/R. The weight

functions for spheres have different tensorial rank: wS
0 , wS

1 , wS
2 , wS

3 are scalars;
wS

v1, wS
v2 are vectors; ŵS

m2 is a (traceless) second-rank tensor. The Mayer bond
between pairs of spheres is obtained through−fSS/2 = wS

3∗wS
0+wS

2∗wS
1−wS

v2∗wS
v1
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[96]. In order to recover the sphere-needle Mayer bond one uses [105]

wSN
2 (r,Ω) = 2|wS

v2(r) ·Ω|, (4.5)

which contains information about both species: it is non-vanishing on the surface
of a sphere with radius R, but also possesses (needle) orientation–dependence.
This function allows us to generate the Mayer bond through −fSN(r,Ω) =
wS

3(r) ∗ wN
0 (r,Ω) + wSN

2 (r,Ω) ∗ wN
1 (r,Ω) as follows.

We take the difference vector between the centres of mass of needle and sphere
to lie in the equatorial plane: r = (r sin ϕ, r cos ϕ, 0). Due to the rotational
symmetry, we can choose the needle to be aligned parallel to the y-axis: Ω =
(0, 1, 0). Then,

wS
3(r) ∗ wN

0 (r,Ω)

=
1

2

∞∫

0

2π∫

0

π∫

0

Θ(R− r′)
∑
±

δ(r sin ϕ− r′ sin ϑ′ sin ϕ′)

× δ
(
r cos ϕ− r′ sin ϑ′ cos ϕ′ ± L

2

)
δ(−r′ cos ϑ′)r′2 sin ϑ′ dϕ′ dϑ′ dr′

(4.6)

=
1

2

∑
±

Θ
(
R2 − r2 − L2

4
± Lr cos ϕ

)
, (4.7)

and

wSN
2 (r,Ω) ∗ wN

1 (r,Ω)

=
1

2

∞∫

0

2π∫

0

π∫

0

∣∣∣
(

sin ϑ′ sin ϕ′
sin ϑ′ cos ϕ′

cos ϑ′

)
·
(

0
1
0

)∣∣∣δ(R− r′)

×
L/2∫

−L/2

δ(r sin ϕ− r′ sin ϑ′ sin ϕ′)δ(r cos ϕ− r′ sin ϑ′ cos ϕ′ + l)

× δ(−r′ cos ϑ′) dl r′2 sin ϑ′ dϑ′ dϕ′ dr′

(4.8)

=
1

2

∑
±

Θ(R− |r sin ϕ|)Θ
(L

2
− |r cos ϕ±

√
R2 − r2 sin2 ϕ|

)
, (4.9)

where the integrals over ϑ′, r′, and l in Eqs. (4.6,4.8) are straightforward. The
integral over ϕ is split into two domains: for 0 < ϕ < π, sin ϕ is positive, while
for π < ϕ < 2π it is negative. The sum of Eqs. (4.7,4.9) represents the (negative)
Mayer bond between sphere and needle, i.e. −fSN = wS

3 ∗wN
0 +wSN

2 ∗wN
1 . This can

be seen by considering the cases where the above expressions are non-vanishing:
In Eq. (4.7), the step function counts the number of needle endpoints that lie in
the sphere. In Eq. (4.9) the first step function is non-zero only if the needle axis
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intersects the sphere. If it does, the second step function counts how often the
needle intersects the surface of the sphere. This covers all cases of sphere–needle
overlap.

All weight functions are used to obtain weighted densities ni
ν by smoothing

the actual density profiles through spatial convolutions,

nN
ν (r,Ω) = ρN(r,Ω) ∗ wN

ν (r,Ω), ν = 1, 0, (4.10)

nS
ν(r) = ρS(r) ∗ wS

ν(r), ν = 3, 2, 1, 0, v2, v1, m2, (4.11)

nSN
2 (r,Ω) = ρS(r) ∗ wSN

2 (r,Ω). (4.12)

Note that nN
ν and nS

ν are pure weighted densities, involving only variables of
either species [96,100,101]. The function nSN

2 is obtained as a convolution of the
sphere density with an orientation-dependent weight function; hence it combines
characteristics of both species and couples the orientational degrees of freedom
of the needles to the sphere distribution.

The (Helmholtz) excess free energy is obtained by integrating over a free
energy density,

Fexc[ρS, ρN] =
kT

4π

∫∫
Φ

({ni
ν}

)
d3r d2Ω, (4.13)

where the reduced free energy density Φ is a simple function (not a functional)
of the weighted densities ni

ν . The variable r runs over space, and as Φ depends
also on orientation, Ω runs over the unit sphere. The functional form of Φ is
obtained by consideration of the exact zero-dimensional excess free energy [105],
and is given by

Φ = ΦS + ΦSN, (4.14)

ΦS = −nS
0 ln(1− nS

3) +
nS

1 nS
2 − nS

v1 · nS
v2

1− nS
3

+
1
3

(
nS

2

)3 − nS
2

(
nS

v2

)2
+ 3

2

(
nS

v2n̂
S
m2n

S
v2 − 3 det n̂S

m2

)

8π(1− nS
3)

2
,

(4.15)

ΦSN = −nN
0 ln(1− nS

3) +
nN

1 nSN
2

1− nS
3

. (4.16)

The contribution ΦS is equal to the pure HS case [96,100], and ΦSN arises from
needle-sphere interactions [105]. The arguments of the weighted densities are
suppressed in the notation in Eqs. (4.15,4.16); see Eqs. (4.10-4.12) for the explicit
dependence. This completes the prescription for the excess free energy functional
for the case of vanishingly thin needles. For completeness, the ideal free energy
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is

Fid[ρS, ρN] = kT

∫
ρS(r)[ln(ρS(r)Λ

3
S)− 1] d3r

+
kT

4π

∫∫
ρN(r,Ω)[ln(ρN(r,Ω)Λ3

N)− 1] d3r d2Ω, (4.17)

where Λi is the (irrelevant) thermal wavelength of species i = S,N .

4. Planar geometry

In a fully inhomogeneous situation, the density profiles depend on three space
coordinates. In addition, the needle density profiles depend on two orientation
parameters, making for a total of five parameters. When applying the density
functional to such a scenario, storage and computation requirements are there-
fore high. If, however, the density profiles can be assumed to depend only on a
few parameters, this situation changes. The remaining parameters can then be
integrated out analytically, yielding effective weight functions that are easy to
handle numerically together with effectively one-dimensional density profiles.

In order to facilitate the application of the theory to situations like the free
interface considered below in Secs. 6.2 and 6.3 and to planar wall problems, we
give explicit expressions for the weight functions in situations depending on a
single spatial coordinate z and possessing translational invariance in the x and
y directions, where r = (x, y, z) is a Cartesian coordinate system. Additionally,
we assume invariance with respect to rotations around the z-axis by an angle ϕ.
The remaining relevant angle ϑ is that between an orientation Ω and the z-axis,
see Figure 1 on page 39. Hence ρS(r) = ρS(z), and ρN(r,Ω) = ρN(z, ϑ). Due to
the inflection symmetry of the needles, considering ϑ ∈ [0, π/2] is sufficient, In
this planar geometry the weighted densities, Eqs. (4.10-4.12), can be expressed
as

nN
ν (z, ϑ) =

∫
ρN(z′, ϑ)wN

ν (z − z′, ϑ) dz′ (4.18)

nS
ν(z) =

∫
ρS(z

′)wS
ν (z − z′) dz′ (4.19)

nSN
2 (z, ϑ) =

∫
ρS(z

′)wSN
2 (z − z′, ϑ) dz′, (4.20)

where the effective weight functions wN
ν (z, ϑ), wS

ν(z), wSN
2 (z, ϑ) are obtained by

carrying out the integrations in Eqs. (4.10-4.12) over coordinates x, y:



44 4. MIXTURES OF SPHERES AND THIN RODS

wN
ν (z, ϑ) =

∞∫

−∞

∞∫

−∞

wN
ν (r,Ω) dx dy (4.21)

wS
ν(z) =

∞∫

−∞

∞∫

−∞

wS
ν (r) dx dy (4.22)

wSN
2 (z, ϑ) =

∞∫

−∞

∞∫

−∞

wSN
2 (r,Ω) dx dy, (4.23)

where r = (x, y, z). In the following, we employ cylindrical coordinates r =
(r cos ϕ, r sin ϕ, z).

Explicitly, for the needles one obtains

wN
1 (z, ϑ) =

1

4 cos ϑ
Θ

(L

2
cos ϑ− |z|

)
, (4.24)

wN
0 (z, ϑ) =

1

2
δ
(L

2
cos ϑ− |z|

)
. (4.25)

For the spheres

wS
3(z) = π(R2 − z2)Θ(R− |z|), (4.26)

wS
2(z) = 2πRΘ(R− |z|), (4.27)

wS
v2(z) = 2πzΘ(R− |z|)ez, (4.28)

ŵS
m2(z) = π

(z2

R
− R

3

)
Θ(R− |z|) diag(−1,−1, 2), (4.29)

where ez is the unit vector pointing along the z-axis and diag(·) denotes a 3× 3
diagonal matrix. The linearly dependent weight functions are wS

1(z) = Θ(R −
|z|)/2, wS

0(z) = Θ(R− |z|) /(2R), wS
v1(z) = zΘ(R− |z|) ez/(2R). Finally, the

mixed weight function is obtained as

wSN
2 (z, ϑ) =





8
√

R2 sin2 ϑ− z2

+8z cos ϑ

× arcsin
(

z cot(ϑ)√
R2−z2

)
if |z| < R sin ϑ

4π|z| cos ϑ if R sin ϑ ≤ |z| ≤ R

0 else.

(4.30)

For the scalar and vectorial sphere weight functions [Eqs. (4.3,4.4)] as well as
for the pure needle weight functions [Eqs. (4.1,4.2)] the integrations in (4.21,4.22)
are straightforward and yield the results given in Eqs. (4.24-4.28). The calcula-
tions for ŵS

m2(z) and wSN
2 (z, ϑ) [defined through Eqs. (4.4) and (4.5), respectively]

are slightly more involved, and are given explicitly in the following subsections.
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4.1. Tensor sphere weight function. We insert the definition of the ten-
sor weight [Eq. (4.4)] into Eq. (4.22),

ŵS
m2(z) =

∞∫

−∞

∞∫

−∞

δ(R− |r|)
(

rr

r2
− 1̂

3

)
dx dy (4.31)

=

2π∫

0

∞∫

0

δ
(
R−

√
r2 + z2

)

×
[

1

r2 + z2




r2 sin2 ϕ r2 sin ϕ cos ϕ r sin ϕz
r2 sin ϕ cos ϕ r2 cos2 ϕ r cos ϕz

r sin ϕz r cos ϕz z2




− 1̂

3

]
dϕ r dr

(4.32)

=

∞∫

0

δ
(
R−

√
r2 + z2

)

×
(

1

r2 + z2
diag(πr2, πr2, 2z2)− 2π

3
1̂

)
r dr

(4.33)

=

(
π

R
diag(R2 − z2, R2 − z2, 2z2)− 2πR

3
1̂

)
Θ(R2 − z2), (4.34)

from which Eq. (4.29) can be readily obtained. The off-diagonal elements in
Eq. (4.32) vanish due to the ϕ-integration over a complete wavelength, and to
obtain Eq. (4.34) we have used δ(f(x)) = |f ′(x0)|−1δ(x − x0), where x0 is the
zero of f(x), i.e. f(x0) = 0.

4.2. Mixed sphere-needle weight function. Due to the rotational sym-
metry around the z-axis, we can take Ω = (sin ϑ, 0, cos ϑ), and due to the in-
flection symmetry of the needles, we can restrict ourselves to 0 ≤ ϑ ≤ π/2. By
inserting the definition of the mixed weight function [Eq. (4.5)] into Eq. (4.23)
we obtain

wSN
2 (z, ϑ) = 2

∫∫ ∣∣∣∣∣δ
(
R− |r|

) 1√
r2 + z2

( r cos ϕ
r sin ϕ

z

) · ( sin ϑ
0

cos ϑ

)
∣∣∣∣∣ dx dy (4.35)

= 2

2π∫

0

∞∫

0

∣∣∣∣∣δ
(
R−

√
r2 + z2

)z cos ϑ + r cos ϕ sin ϑ√
r2 + z2

∣∣∣∣∣ r dr dϕ (4.36)
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=

{[
8
√

(R2 − z2) sin2 ϑ− z2 cos2 ϑ

+ 4z cos ϑ sgn
(√

R2 − z2 sin ϑ
)
arcsin

(
z cos ϑ√

R2 − z2 sin ϑ

)]

×Θ

(
1−

∣∣∣ z cos ϑ√
R2 − z2 sin ϑ

∣∣∣
)

+ 4π|z cos ϑ|Θ
(∣∣∣ z cos ϑ√

R2 − z2 sin ϑ

∣∣∣− 1

)}
Θ(R− |z|)

(4.37)

=





8
√

R2 sin2 ϑ− z2

+8z cos ϑ arcsin
(

z cot ϑ√
R2−z2

)
if |z| < R sin ϑ

4π|z| cos ϑ if R sin ϑ ≤ |z| ≤ R

0 else.

(4.38)

In Eq. (4.36), we have used the same representation for the Dirac distribution
as before. The non-trivial part is the integral over ϕ, which we discuss in the
following. It is of the form

2π∫

0

|a + b cos ϕ| dϕ

with constants (with respect to ϕ) a, b. Due to the symmetry of the cosine
function, the integration from 0 to π yields the same result as that from π to 2π.
We consider two cases: The argument of | · | changes its sign once if |a/b| < 1,
and we have

π∫

0

|a + b cos ϕ| dϕ

= sgn(a + b)
([

aϕ + b sin ϕ
]x

0
+

[−aϕ− b sin ϕ
]π

x

)
(4.39)

= sgn(b)(2b sin x + 2ax− aπ) (4.40)

= sgn(b)
(
2b sin arccos

−a

b
+ 2a arccos

−a

b
− aπ

)
(4.41)

= 2
√

b2 − a2 + 2a sgn(b) arcsin
a

b
, (4.42)

where x = arccos(−a/b). If, on the other hand, |a/b| > 1, the argument does
not change its sign. Then, |a + b cos ϕ| = (a + b cos ϕ) sgn(a):

π∫

0

|a + b cos ϕ| dϕ = |a|π. (4.43)
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Note that in Eq. (4.37), sgn(·) = +1 holds since 0 ≤ ϑ ≤ π/2.

This fully specifies the DFT in planar geometry. We note that the tensorial
weight function, Eq. (4.29), is included for reasons of completeness. Albeit being
crucial for a reliable description of the solid [100], it is known to yield a small
contribution to the free energy in planar geometry, and may be neglected to a
good approximation. We will adopt this strategy in Sec. 6 below.

5. Spherical geometry

Here we focus on situations that only depend on the distance to the origin,
r, and that remain invariant under rotations around the origin. This is realised
e.g. in the important test-particle limit that allows to obtain pair distribution
functions by minimising the functional in the presence of a test sphere fixed at
the origin. In spherical geometry, only the angle ϑ between needle orientation
Ω and position r remains relevant, and ρS(r) = ρS(r), and ρN(r,Ω) = ρN(r, ϑ).
Again, we can restrict ourselves to 0 ≤ ϑ ≤ π/2. The pure weighted densities,
Eqs. (4.10-4.12) can be expressed as

nN
ν (r, ϑ) =

∞∫

0

ρN(r′, ϑ)wN
ν (r, r′, ϑ) dr′, (4.44)

nS
ν(r) =

∞∫

0

ρS(r
′)wS

ν (r, r
′) dr′, (4.45)

where the reduced weight functions are

wN
1 (r, r′, ϑ) =

r′

4
√

r′2 − r2 sin2 ϑ

×
∑
±

Θ
(L

2
−

∣∣∣r cos ϑ±
√

r′2 − r2 sin2 ϑ
∣∣∣
)
, (4.46)

wN
0 (r, r′, ϑ) =

1

2

∑
±

δ

(
r′ −

√(
r ± L

2
cos ϑ

)2

+
L2

4
sin2 ϑ

)
, (4.47)

wS
3(r, r

′) =
πr′

r

[
R2 − (r − r′)2

]
Θ

(
R− |r − r′|), (4.48)

wS
2(r, r

′) =
2πRr′

r

[
Θ(R− |r − r′|)−Θ(R− r − r′)

]
, (4.49)

wS
v2(r, r

′) =
R2 + r2 − r′2

2Rr
wS

2 (r, r′)
r

r
, (4.50)

ŵS
m2(r, r

′) =
1

2

[(
R2 + r2 − r′2

2Rr

)2

− 1

3

]
wS

2(r, r
′)

(
3
rr

r2
− 1̂

)
. (4.51)
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In Eqs. (4.50,4.51) only the dependence on the scalar argument r is important;
the dependence on r/r is trivial due to the structure of Φ, Eq. (4.15). The
linearly dependent weight functions are

wS
1(r, r

′) =
r′

2r
[Θ(R− |r − r′|)−Θ(R− r − r′)], (4.52)

wS
v1(r, r

′) =
r2 − r′2 + R2

2Rr
wS

1(r, r
′), (4.53)

wS
0(r, r

′) =
r′

2Rr
[Θ(R− |r − r′|)−Θ(R− r − r′)]. (4.54)

The mixed weight function is

wSN
2 (r, r′, ϑ) =




8r′
r

[√
r′2(1− u2)−R2 cos2 ϑ

+(r − r′u) cos(ϑ) arcsin
(

(r−r′u) cot ϑ

r′
√

1−u2

)]

if |r − r′u| < r′
√

1− u2 tan ϑ

4π(r′/r)|r − r′u| cos ϑ if |r − r′u| ≥ r′
√

1− u2 tan ϑ

0 if |u| ≥ 1,

(4.55)

where u = (r′2 + r2 −R2)/(2rr′).
We note that the for a test-particle limit calculation, where a hard sphere

is fixed at the origin, the above expression can be simplified, as the density
distributions vanish inside the test particle. This allows one to omit the second
step-function in Eq. (4.49) and rewrite the convolution kernels for spheres as a
function of the difference r−r′ only. The expressions given above are completely
general and apply also to cases of non-vanishing densities in the immediate
vicinity of the origin.

6. Applications

As an example of how to utilise this density functional to perform explicit
calculations in an inhomogeneous situation, we present the treatment of the free
fluid–fluid interface by Brader et al. [116].

6.1. Bulk phase diagram. As a prerequisite for the interface study, we
reconsider the bulk fluid demixing phase diagram of hard spheres and vanishingly
thin needles. Within our approach, this is obtained from the bulk Helmholtz free
energy, which in turn is obtained by applying the density functional (outlined in
Sec. 3.1) to constant density fields of spheres and needles. Then, the weighted
densities become proportional to the respective bulk densities, ni

ν = ξi
νρi, where

the proportionality constants are fundamental measures given by ξi
ν =

∫
wi

ν d3x.
For spheres ξS

3 = 4πR3/3, ξS
2 = ξSN

2 = 4πR2, ξS
1 = R, ξS

0 = 1, whereas for needles
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ξN
1 = L/4, ξN

0 = 1. Then the excess Helmholtz free energy per volume V is given
by Fexc(ρS, ρN)/V = φHS(ρS) − ρNkT ln α(ρS), where φHS(ρS) is the excess free
energy density of pure hard spheres in the scaled-particle (and Percus-Yevick
compressibility) approximation and α = (1 − ηS) exp[−(3/2)(L/σ)ηS/(1 − ηS)].
This expression for the free energy is identical to the result from the perturbation
theory of Bolhuis and Frenkel [86]. We note that this is also equivalent to
a straightforward application of scaled-particle theory for non-spherical bodies
[117] to the current model. From the free energy all thermodynamic quantities
can be calculated, and equating the total pressure and the chemical potentials of
both species in both phases yields the coexisting densities. The resulting binodal
was found to be in remarkable agreement with simulation results [86].

Here we consider the case of equal sphere diameter and needle length, σ = L,
where fluid-fluid phase separation is stable with respect to freezing [86] and
display the phase diagram in system representation (as a function of η and ρ∗)
in Figure 2. Shown is the binodal for coexisting states, where a sphere-rich and
needle-poor fluid (sphere liquid) coexists with a sphere-poor and needle-rich fluid
(sphere gas). For low densities, the density discontinuity vanishes at a critical
point. We also display the Fisher-Widom (FW) line, which separates regimes in
the phase diagram where the ultimate decay of pair correlation functions (and
inhomogeneous one-body density profiles) at large separation is either damped
oscillatory or monotonic [110–113]. The FW line was calculated for the present
model in Ref. [105] by considering the poles of the partial structure factors in the
plane of complex wavevectors [111, 112]. Furthermore, we display four tielines
between coexisting fluid states. These belong to reservoir densities of needles
ρr
∗ = 16, 18, 20, 22, and indicate the states where we will carry out detailed

structural studies below. Tielines are horizontal in the phase diagram in needle
reservoir representation (as a function of η and ρr

∗), see the inset in Figure 2.
The smallest reservoir density, ρr

∗ = 16, is close to the critical point (which is
located at ηS = 0.15767, ρ∗ = 9.3141, ρr

∗ = 14.642). For ρr
∗ = 16 the liquid

density is located well on the monotonic side of the FW line, hence we expect
one-body interface profiles to decay monotonically into both bulk phases. The
set of the three higher reservoir densities (ρr

∗ = 18, 20, 22) covers the region up
to the triple point, which was located with perturbation theory at ρr

∗ ≈ 24 [86].
For these states we expect damped oscillatory profiles on the sphere-rich side of
the interface.

6.2. Structure of the fluid-fluid interface. Here we aim at an under-
standing of the free interface between demixed fluid states, see Figure 1 on
page 39 for a schematic sketch of the following situation: Two demixed bulk flu-
ids are in equilibrium in contact; the coordinate perpendicular to their (planar)
interface is denoted z, and the sphere-poor (-rich) phase is present for negative
(positive) z-values. The coordinate origin (in z) is set to the position of the Gibbs

dividing surface, i.e. the z-coordinate fulfils
∫ 0

−∞[ρS(z)−ρS(−∞)] dz+
∫∞

0
[ρS(z)−
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Figure 2. Fluid–fluid demixing phase diagram of the mixture of
hard spheres and vanishingly thin needles with size ratio L/σ = 1
obtained from DFT. Shown are the binodal (solid line) and the
Fisher-Widom line (dashed) dividing states where the ultimate
decay of correlation functions is either monotonic or damped os-
cillatory. Tielines (short-dashed) between coexisting states are
shown for ρr

∗ = 16, 18, 20, 22. a) system representation with η and
ρ∗; b) reservoir representation with η and ρr

∗.
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Figure 3. Scaled sphere density profiles σ3ρS(z) at the free inter-
face between sphere-poor (z < 0) and sphere-rich (z > 0) phases
as a function of the scaled distance z/σ perpendicular to the in-
terface for ρr

∗ = 16, 18, 20, 22 corresponding to the tielines in the
phase diagram, Fig. 2. The inset shows a magnified view of the
(oscillatory) profile σ3ρ(z) as a function of z/σ at the sphere-rich
side for ρr

∗ = 22.

ρS(∞)] dz = 0. Note that as we deal with isotropic states for z → ±∞, the pla-
nar geometry considered in Sec. 4 applies.

The numerical minimisation of the density functional of Sec. 3.1 is done by an
iteration technique, see e.g. [118]. We discretise ρS(z) and ρN(z, ϑ) in z-direction
with a resolution of 0.01 σ, and we find that angular discretisation in 20-50 steps
are sufficient to get reliable results for density profiles. For the calculation of
interface tensions between demixed fluids (Sec. 6.3), we use 120 steps. Note that
when, say, 20 needle orientations are considered, we are dealing in effect (due to
the additional sphere profile) with a 21 component mixture.

We choose the size ratio σ/L = 1 for our interface study. This is of the same
order as realised in the experiments [85] with silica spheres of 78 nm diameter
and polymer rods (PBLG) with L = 70 nm. However, we disregard effects arising
from rod flexibility and finite rod thickness and hence consider only D = 0 (note
that D = 1.6 nm for the polymer in [85]). We first turn to the sphere density
profiles, ρS(z), displayed in Figure 3 as a function of the scaled distance z/σ
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for scaled needle reservoir densities ρr
∗ = 16, 18, 20, 22. These state points are

indicated by tielines in Figure 2. The asymptotic densities for z → ±∞ in
Figure 3 correspond (up to the factor π/6) to the sphere packing fractions at
both ends of the tielines. With increasing ρr

∗, and hence increasing distance to
the critical point, the interface becomes sharper, i.e. it crosses over from one to
the other limiting (bulk) value over a shorter distance. For the highest needle
reservoir density considered, ρ∗ = 22, clear oscillations emerge on the liquid side
of the interface, see the inset in Figure 3. The amplitude of the oscillations,
however, is considerably smaller than that typically found at interfaces in the
AO model (where the depletants are ideal spheres rather than needles) [115].
From the general theory of asymptotic decay of correlation functions [111,112],
we expect that all state points where the liquid density is inside the oscillatory
region of the phase diagram (separated by the FW line) will display similar
behaviour, and indeed we find oscillations on the liquid side of the interface also
for ρr

∗ = 18, 20. The liquid state at density ρr
∗ = 16 is inside the monotonic

region, and no oscillations emerge upon magnifying the corresponding density
profile in Figure 3.

In the present geometry the needle density profile depends on two variables,
namely the perpendicular distance z from the interface and the angle ϑ of needle
orientation and interface normal. The DFT yields ρN(z, ϑ) fully dependent on
both variables. In order to demonstrate this, we choose ρr

∗ = 22 as an example
and display in Figure 4 ρ∗(z, ϑ) sin ϑ as a function of z/σ. The factor sin ϑ is the
spherical volume element, hence the density distribution at a given angle ϑ is
weighted according to the actual probability that ϑ is attained. This weight is
maximal for ϑ = π/2 (parallel to the interface) and vanishes for ϑ = 0 (perpen-
dicular to the interface). In order to graphically represent the density profile,
we display a set of curves parameterised by ϑ; each curve then depends on the
single variable z, see Figure 4. As expected, the needles show a clear tendency
to aggregate on the sphere-poor side of the interface. In order to assess the ori-
entational distribution we also plot the bare ρ∗(z, ϑ) in Figure 4b. We observe
that for fixed z on the needle-rich side of the profiles the density increases with
increasing ϑ. This means that large angles are favoured, hence the needles tend
to lie parallel to the surface, corresponding to biaxial order. On the needle rich
side of the interface, however, the opposite trend is manifest. Upon increasing ϑ
at fixed z the density decreases. Hence small angles are more favourable; needles
arrange perpendicular to the interface displaying uniaxial order.

In order to investigate the needle behaviour in more detail, we obtain two
characteristic distributions from the full needle density profile ρ∗(z, ϑ). One is
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Figure 4. a) Scaled needle density multiplied by the spherical
volume element, ρ∗(z, ϑ) sin ϑ, as a function of z/σ at the interface
between sphere-poor (z < 0) and sphere-rich (z > 0) fluids for
ρr
∗ = 22. Each curve is for fixed angle ϑ to the interface normal;

from bottom to top ϑ increases from 0 (direction normal to the
interface) to π/2 (direction parallel to the interface) in steps of
π/24. b) The bare ρ∗(z, ϑ) without the volume element sin ϑ is
shown.
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the orientation averaged needle density profile, defined as

ρ̄N(z) =
1

4π

∫
ρN(r,Ω) dΩ (4.56)

=
1

2

π/2∫

0

ρN(z, ϑ) sin ϑ dϑ, (4.57)

which measures the density of needle midpoints regardless of their orientation.
The other is an orientational order parameter profile defined as

〈P2(cos ϑ)〉 =
1

ρ̄N(z)

1

4π

∫
ρN(r,Ω) P2(cos ϑ) d2Ω (4.58)

=
1

2ρ̄N(z)

∫
ρN(z, ϑ) P2(cos ϑ) sin ϑ dϑ, (4.59)

where P2(x) = (3x2 − 1)/2 is the second Legendre polynomial. Negative values
of 〈P2(cos ϑ)〉 indicate biaxial ordering, the extreme value being −1/2 for full
parallel alignment to the interface (needles with ϑ = π/2 lying in a plane). Posi-
tive values 〈P2(cos ϑ)〉 indicate uniaxial ordering, the extreme value (unity) is at-
tained for perpendicular alignment to the interface (ϑ = 0). Finally, 〈P2(cos ϑ)〉 =
0 indicates isotropic states. Note that this order parameter has the same inflec-
tion symmetry as the needles.

In Figure 5 we show ρ̄N(z) for the four state points considered. A crossover
from high values for negative z to low values for positive z is manifest; hence, as
observed before, the needles are depleted in the space occupied by the colloids.
The inset in Figure 5 shows a magnified view of the profile for ρr

∗ = 22 on the
sphere-rich side of the interface. Oscillations can be observed clearly. These
arise from the packing effects of the spheres, and are “imprinted” on the needle
distribution.

We next turn to the order parameter profile 〈P2(cos ϑ)〉, see Figure 6. On
the needle-rich side (z < 0) of the interface we find that 〈P2(cos ϑ)〉 < 0. This
indicates needle ordering parallel to the interface, and can be understood in
terms of packing effect, similar to those of rods near a hard wall. On the sphere-
rich side (z > 0) we find that 〈P2(cos ϑ)〉 > 0, hence the needles are oriented
preferentially perpendicular to the interface. We attribute the ordering to needles
that stick through the voids in the first sphere layer.

6.3. Interface tension. The interface tension γ between demixed fluids is
defined as the difference per unit area in grand potentials between the inhomo-
geneous situation and bulk. It is given by

γA = Ω̄ + PV (4.60)

where A is the interface area, Ω̄ is the grand potential in the inhomogeneous
situation, and P is the total pressure. Within our DFT approch it is obtained
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Figure 5. Orientation averaged needle density profiles ρ̄∗(z) as
a function of the scaled distance z/σ for ρr

∗ = 16, 18, 20, 22 corre-
sponding to Fig. 3. The inset shows ρ̄∗(z) as a function of z/σ on
the sphere-rich side (z > 0) of the interface for ρr

∗ = 22. Damped
oscillations are visible.

from

γ =

∫
[ω(z) + P ] dz, (4.61)

ω(z) = −µSρS(z)− µN ρ̄N(z) +
β

4π

∫
Φ({ni

ν(z, ϑ)}) d2Ω, (4.62)

where Φ is the excess free energy density [given through Eqs. (4.14-4.16)] de-
pendent on the weighted densities ni

ν [Eqs. (4.18-4.20)], and µi is the chemical
potential of species i = S, N . From dimensional analysis, it is clear that the
typical scale of γ should be the thermal energy, kT , divided by an area that is
related to molecular length scales. However, as we deal with a binary mixture
it is not obvious which power b in Lbσ2−b gives the correct scaling with vary-
ing size ratio L/σ. We restrict ourselves to the cases L/σ = 1, 1.5, 2, where we
find that b = 1/3 gives an almost complete data collapse, see Figure 7 for a
plot of βγσ5/3L1/3 as a function of the scaled distance to the critical value of
the needle reservoir density, (ρr

∗ − ρr
∗,crit)/ρ

r
∗,crit. For states close to the critical
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Figure 6. Orientational order parameter profiles 〈P2(cos ϑ)〉 as
a function of the scaled distance z/σ for ρr

∗ = 16, 18, 20, 22 across
the interface between sphere-poor (z < 0) and sphere-rich (z > 0)
fluids. Negative values indicate parallel, positive values indicate
normal alignment of needles relative to the interface. The inset
shows the (scaled) integrand of the interface tension, [ω(z)+P ]βσ3

as a function of z/σ for ρr
∗ = 22.

point, we find mean-field scaling of the surface tension, γ ∝ (ρr
∗ − ρr

∗,crit)
3/2. For

(ρr
∗ − ρr

∗,crit)/ρ
r
∗,crit > 0.4 a linear relation is found that extends up to the triple

point, for L = σ this is from the perturbation theory of Ref. [86] roughly at the
right end of the horizontal axis in Figure 7.

The magnitude of the interface tension is mainly governed by the difference in
bulk densities of both phases. Hence a relevant variable is the difference ηl− ηv,
where ηl (ηv) is the sphere packing fraction in the coexisting liquid (vapour)
phase. In the same spirit as above, we seek a combination of length scales to
scale βγ, in order to obtain data collapse for different L/σ. It turns out that this
is the case for βγσ3L−1, see the inset in Figure 7. Clearly, the different exponent
to the case above arises from the relation between η and ρ∗ given through the
binodals for different L/σ. Although we only present results for σ ≤ L ≤ 2σ,
we expect the scaling relations to hold beyond that range. However, for L À σ
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Figure 7. Scaled interface tension βγσ5/3L1/3 as a function of
the scaled distance from the critical point (ρr

∗ − ρr
∗,crit)/ρ

r
∗,crit for

size ratios L/σ = 1, 1.5, 2. All curves practically collapse onto
each other. The inset shows the scaled interface tension βγσ3L−1

as a function of the difference between liquid and vapour sphere
packing fractions, ηl − ηv, for the same size ratios L/σ = 1, 1.5, 2.

there might well be a crossover to a different scaling regime, and preliminary
results show deviations already for L = 5 σ.

As a final issue, we seek to elucidate further the origin of the surface tension.
A recent study by Archer and Evans addressed this issue in a binary mixture of
Gaussian core particles [119] (see Figuress 11 and 12 therein). They consider two
different regimes for their model: (a) where demixing is driven by non-additivity
and (b) where it is driven by energetics, and construct two new variables, namely
the total density and a local concentration. In order to calculate the surface
tension one must perform the integral Eq. (22) in Ref. [119] [corresponding to
our Eq. (4.61)]. If the integrand is plotted they find that in regime (a) it closely
resembles the local concentration and in regime (b) the total density. Their
conclusion is that in one regime, γ is dominated by concentration fluctuations
and in the other, by fluctuations in the total density.
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Applying this analysis to our model, we find that neither local concentration
nor total density resemble the integrand of the surface tension in Eq. (4.61).
However, the integrand closely resembles the (negative) of the orientational order
parameter, see the inset in Figure 6 for a plot of [w(z) + P ]βσ3 as a function of
z/σ for the largest reservoir density considered, ρr

∗ = 22. As interpretation of
the similarity, negative values of 〈P2(cos ϑ)〉 indicate a loss of rotational entropy,
and hence a a positive contribution to γ. Positive values of 〈P2(cos ϑ)〉 indicate
a relaxation of the needles sticking through the first sphere layer and hence
lowering the tension. From this analysis, it it tempting to argue that in the
present model the surface tension is determined by orientation fluctuations.

7. Conclusions

In conclusion, we have considered the free (planar) interface between demixed
fluid phases in a model mixture of spherical and needle-shaped colloidal particles.
We have focused on the case of vanishingly thin needles, which constitutes a
minimal model for orientational order at fluid interfaces. Both sphere and needle
density profiles show either monotonic or damped oscillatory behaviour on the
sphere-rich (and needle-poor) side of the interface, depending on which side
of the Fisher-Widom line in the bulk phase diagram the sphere liquid state
resides. The amplitude of the oscillations, however, is considerably smaller than
in the related AO model of spherical (polymer) depletants, and will be further
reduced by capillary fluctuations that are not taken into account in the present
treatment. It is tempting to interpret the smaller amplitude in the current model
by a washing out of oscillations due to the depletants’ rotator degrees of freedom,
which are absent in the AO case. On the needle-rich (and sphere-poor) side of
the interface both density profiles decay monotonically towards the respective
bulk densities. Needles possess biaxial order on the needle-rich side, i.e. they lie
preferentially parallel to the interface plane. This can be understood in terms of
simple packing of needles against the dense hard sphere fluid. On the sphere-rich
side uniaxial order of needles occurs, i.e. needles tend to be oriented normal to
the interface. This is somewhat surprising, and we interpret this effect as being
caused by the void structure of the hard sphere fluid, into which the needles
stick to maximise their entropy.

We have furthermore given explicit expressions for the present density func-
tional for the important cases of planar and spherical symmetries, facilitating
future studies.

Testing our predictions for the fluid-fluid interface constitutes a demanding
task for computer simulations due to the large numbers of needles involved at
state points of interest, and due to the difficulty of stabilising the free fluid-
fluid interface in a finite simulation box. An alternative circumventing the first
problem could be to study an effective one-component system of spheres that
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interacts by means of the needle-depletion potential [90], although such an ap-
proach would prevent study of the orientational distribution of the needles.

Recently, P.G. Bolhuis et al. [123] have performed Monte-Carlo computer
simulations of the fluid-fluid interface. They have confirmed the orientational
ordering of the needles close to the interface.

Moreover, R. Roth et al. [124] have used the density functional presented in
this chapter to investigate entropic wetting of a hard wall. They find that for
small rods, the sphere liquid wets the wall completely as long as the rod density
lies below the wetting point.





CHAPTER 5

Mixtures of Spheres and Rods in the Onsager Limit

1. Introduction

Mixtures of colloidal spheres and mesoscopic rods, like colloidal rods or stiff
polymer chains, suspended in a molecular solvent, are well-characterised model
systems governed by steric (excluded volume) forces [13, 14, 80, 81, 85, 120, 121].
Interesting questions concern the bulk phase behaviour and effective sphere-
sphere and sphere-wall interactions mediated by the presence of the rods [13,
14,121]. Based on Rosenfeld’s fundamental-measure theory for mixtures of non-
convex bodies [101,122], a density-functional theory [95] for a minimal model of
hard sphere colloids and infinitely thin needles [86] was proposed [105] and used
to investigate the structure of the interface between sphere-rich and sphere-poor
phases [116, 123], and the wetting behaviour of a hard wall [124]. This binary
DFT proved to predict phase behaviour accurately compared to the simulation
results of [86], and to give high-quality results for (fluid) density profiles in
inhomogeneous situations, when compared both to results from an effective one-
component treatment [124] using the depletion potential between spheres [90,
125], and to computer simulation results of the free fluid-fluid interface of the
binary mixture [123]. By combining Yu and Wu’s functional for mixtures of
polymeric fluids [126] and the theory of Ref. [105], Bryk arrived at a DFT for
binary mixtures of hard rods and polymer chains [127].

In all these cases, the rods are assumed to have vanishing thickness. Due
to the geometry, the statistical weight of configurations with overlapping rods
vanishes, and hence the rods behave as though being ideal. (The rod-sphere
interaction is unaffected by this argument and is governed by excluded volume.)
Rosenfeld’s theory when applied to a mixture of hard spheres of finite (large)
packing fraction and a second component of (thick) spherocylinders at vanishing
density was shown to predict the entropic force and torque on the rod near a
hard wall very accurately [108], and more general cases have also been considered
[128].

In order to capture effects of finite rod thickness and finite rod density, an
extension to the theory for vanishingly thin rods [105] was made in Ref. [116],
incorporating the Onsager limit of the rods [129], hence recovering exactly the
rod-rod Mayer bond in the limit of large aspect ratio. The Onsager model
continues to be a valuable system to study the properties of anisometric particles,
see e.g. Ref. [109, 130, 131] for recent work. Cinacchi and Schmid proposed a

61
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DFT for general anisotropic particles interpolating between the Rosenfeld and
the Onsager functional [132]. The theory of Ref. [116] is, however, restricted
to the limit of LD/σ2 ¿ 1 where L and D are the rod length and thickness,
respectively, and σ is the sphere diameter.

2. Model

In the present chapter, we extend the framework, restricting ourselves still
to the Onsager limit [129] of L/D À 1.

In this case, a residual excluded volume persists for thin rods, leading to non-
trivial interaction already in the pure needle system. Again, the pair potential is
that of hard bodies and is given, for the difference vector r between the centres
of two needles with orientations Ω and Ω′, as VNN(r,Ω,Ω′) = ∞ if both rods
overlap, and zero otherwise.

This is accomplished by introducing several new geometric weight functions.
We demonstrate how these weight functions recover the leading order contribu-
tion (in D) to the rod–sphere and rod–rod Mayer bonds. Our model is a binary
mixture of hard spheres (species S) of diameter σ = 2R and hard needle-like
spherocylinders (species N) with length L (of the cylindrical part) and diam-
eter D. This is considered in the (Onsager) limit of large rod aspect ratio of
length-to-thickness, L/D À 1. The one-body density distributions of spheres
and needles are denoted by ρS(r) and ρN(r,Ω), respectively, where r is the po-
sition coordinate (pointing to the centre of the respective particle shape) and Ω
is a unit vector describing the needle orientation.

Note that the Onsager limit is obtained by letting L/D →∞ while keeping
the combination ρNDL2 constant. Here we furthermore restrict ourselves to
size ratios that fulfil LD ¿ R2, i.e. the sphere surface is assumed to be large
compared to the needle surface. This additional restriction is similar in spirit to
the Onsager limit for pure needles and constitutes the simplest scaling regime of
the three lengths R,L, D.

3. Density functional theory

We start by defining the density functional. In order to not duplicate ma-
terial, explicit expressions are given only for the new quantities. We refer the
reader directly to Chapter 4 for a full account of the known terms. We do,
however, discuss the relation to the sphere-rod Mayer bond in detail below. The
Helmholtz excess (over ideal gas) free energy functional is expressed as

Fexc[ρS, ρN] = kT
1

4π

∫∫
Φ({nα

i }) d3r d2Ω, (5.1)

where k is the Boltzmann constant and T is temperature, nα
i are weighted den-

sities that are obtained through convolutions of the bare density profiles with
geometric weight functions wα

i ; α refers to the particle species and i refers to
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the type of weighted density. The weight functions wα
i are obtained by im-

posing the correct (2nd order) low-density behaviour of (5.1); this is achieved
by the so-called deconvolution of the Mayer bond, which we will turn to be-
low. The functional form of Φ is obtained from consideration of the dimensional
crossover [99,100] and scaled-particle ideas [96].

The weight functions necessary to recover the sphere–needle and needle–
needle Mayer bonds are found to be

wSN
1 (r,Ω) = (2π)−1δ(r ·Ω)δ(R− r), (5.2)

wSN∆
2± (r,Ω) = δ(R− r)Θ(±Ω · r), (5.3)

wN∆
1± (r,Ω) = (D/2)δ (r± LΩ/2) , (5.4)

wN
2 (r,Ω) = πD

L/2∫

−L/2

δ(r + Ωl) dl, (5.5)

wNN
2 (r,Ω;Ω′) = 16D

√
1− (Ω ·Ω′)2 wN

1 (r,Ω). (5.6)

where R = σ/2 is the sphere radius, δ(·) is the Dirac distribution, Θ(·) is the
Heaviside step function, and r = |r|. We use mixed weight functions that depend
on properties of both species (see Fig. 1 for illustrations). wSN

1 describes the
“equator” of the sphere, where the polar axis is pointing into the direction given
by the (needle) orientation Ω. wSN∆

2± describes the “northern” (subscript +) and
“southern” (subscript −) hemisphere. Hence wSN∆

2+ + wSN∆
2− = wS

2 , where wS
2 is

the usual sphere surface weight function [96]. The rod endcaps are described by
wN∆

1± , where wN∆
1+ + wN∆

1− = DwN
0 (as defined in Eq. (4.2)). The weight function

wN
2 makes the dimensional analysis consistent [101, 122], and is proportional to

a known weight, wN
2 = 4πDwN

1 , where wN
1 is given in Eq. (4.1) and obtained

directly through [101,122]. The function wNN
2 describes the residual rod surface

in the limit of large aspect ratio.

The corresponding fundamental measures, ξi
α =

∫∫
wi

α/(4π) d3r d2Ω, are

ξSN
1 = R, ξSN∆

2± = 2πR2, ξN∆
1± = D/2, ξN

2 = πLD, (5.7)

equal to the integral mean curvature of the sphere, surface of a hemisphere of
radius R, radius of a hemispherical endcap of the rod, and residual (for small
D/L) rod surface, respectively.

Weighted densities are built using spatial convolution, but retaining the an-
gular dependence. For the needle–needle weight function, an angular convolution
is also required. This turns out to be necessary for the present case of interacting



64 5. MIXTURES OF SPHERES AND RODS IN THE ONSAGER LIMIT

Figure 1. Illustration of the geometry of the weight functions:
wN

2 describes the residual rod surface (thick line), wSN
1 is non-

vanishing on the equator of the sphere (bold circle), wN∆+
1 corre-

sponds to one rod endcap (dot), and wSN∆−
2 describes a hemisphere

(gray).

anisotropic particles.

nSN
1 (x,Ω) =

∫
ρS(r)w

SN
1 (x− r,Ω) d3r, (5.8)

nSN∆
2± (x,Ω) =

∫
ρS(r)w

SN∆
2± (x− r,Ω) d3r, (5.9)

nN∆
1± (x,Ω) =

∫
ρN(r,Ω)wN∆

1± (x− r,Ω) d3r, (5.10)

nN
2 (x,Ω) =

∫
rρN(r,Ω)wN

2 (x− r,Ω) d3r, (5.11)

nNN
2 (r,Ω′) =

1

4π

∫∫
ρN(r,Ω)wNN

2 (x− r,Ω;Ω′) d3r d2Ω, (5.12)

Note that orientation-dependent sphere densities are built via (5.8) and (5.9).

Following Rosenfeld’s dimensional analysis [96, 101, 122], and in accordance
with the scaled-particle theory for mixtures of non-spherical particles [117], the
(reduced) free energy density is found to be Φ = ΦS + ΦSN + ΦSNN + ∆Φ, where
ΦS is the hard sphere term [96], ΦSN is the contribution in the case of infinitely
thin needles [105]; these terms are given explicitly in Eqs. (4.15) and (4.16),
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respectively. The new contributions are

∆Φ =
nSN

1 nN
2 + nN∆

1+ nSN∆+
2− + nN∆

1− nSN∆
2+

1− nS
3

, (5.13)

ΦSNN =
nN

1 nNN
2

1− nS
3

, (5.14)

where nS
3(r) = Θ(R− |r|) ∗ ρS(r) is the usual local packing fraction for spheres.

This completes the prescription of the functional.

As an aside, we can immediately reformulate the Onsager excess free en-
ergy functional for a pure system of rods, being precisely a second order virial
expansion, by setting Φ = ΦSNN and nS

3 = 0 in Eq. (5.1).

The exact 2nd virial coefficient between sphere and rod is

BSN
2 = πR2

(
L +

4R

3

)
+ πDR(L + 2R) + πD2

(
L

4
+ R

)
+

πD3

6
, (5.15)

where the theory of Chapter 4 obtains the first term (independent of D), and
the present chapter recovers also the next term, linear in D.

Expanding (5.13) for small density leads to second (leading) order

∆φ = nSN
1 nN

2 + nN∆
1+ nSN∆

2− + nN∆
1− nSN∆

2+ (5.16)

= ρSρN(ξSN
1 ξN

2 + ξN∆
1+ ξSN∆

2− + ξN∆
1− ξSN∆

2+ ) (5.17)

= ρSρNπ(LDR + 2DR2). (5.18)

Hence the additional contribution to the 2nd virial coefficient is

BSN∆
2 = ∆φ/(ρSρN) = π(LDR + 2DR2), (5.19)

indeed equal to the second term of the exact result, given in (5.15).

4. Deconvolution of the Mayer bonds

4.1. The rod–rod Mayer bond. The Mayer bond f(r,Ω,Ω′) of two hard
bodies is defined as being −1 if both particles overlap and zero otherwise. In
order to deal with rod–rod interactions, we first express the Mayer bond between
rods in the Onsager limit through

fNN(r,Ω,Ω′)/2 = −wNN
2 (r,Ω;Ω′) ∗ wN

1 (r,Ω′), (5.20)

where r is the difference vector between the needle centres and Ω,Ω′ are their
respective orientations.

Choosing a specific coordinate system, we demonstrate the validity of (5.20).
Since only the relative orientation of both rods is relevant, we take Ω′ = (0, 0, 1)
and Ω = (0, sin ϑ, cos ϑ); the difference vector between both particle positions is
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(x, y, z). We then perform the spatial convolution of the weight functions given
in Eqs.(4.1,5.6) as

−2wNN
2 (r,Ω;Ω′) ∗ wN

1 (r,Ω′)

= −2D sin ϑ

∞∫

−∞

∞∫

−∞

∞∫

−∞

L/2∫

−L/2

δ(x′)δ(y′ + l sin ϑ)δ(z′ + l cos ϑ) dl

×
L/2∫

−L/2

δ(x− x′)δ(y − y′)δ(z − z′ + l′) dl′ dx′ dy′ dz′

(5.21)

= −2D tan ϑ

∞∫

−∞

∞∫

−∞

∞∫

−∞

δ(x′)Θ
(L

2
−

∣∣∣ y′

sin ϑ

∣∣∣
)
δ
(
z′ − y′

tan ϑ

)

×
L/2∫

−L/2

δ(x− x′)δ(y − y′)δ(z − z′ + l′) dl′ dx′ dy′ dz′

(5.22)

= −2D δ(x)Θ
(L

2
−

∣∣∣ y

tan ϑ
+ z

∣∣∣
)
Θ

(L

2
−

∣∣∣ y

sin ϑ

∣∣∣
)

(5.23)

= fNN(r,Ω;Ω′). (5.24)

From Eq. (5.21) to (5.22), we solve the integral over l as an explanatory case; the
other integrals can be done analogously. In order to recognise that Eq. (5.23)
is indeed the rod–rod Mayer bond, we compare with the expressions given
in Ref. [133], and observe that the step-functions in Eq. (5.23) correspond to
Eqs. (A1,A2) in the appendix of Ref. [133]. Since

lim
D→0

1

2D
Θ(D − |x|) = δ(x),

the term 2D δ(x) corresponds to Eq. (A3) in Ref. [133] in the limit of small
values of D, hence Eq.(5.24) constitutes a valid equality.

4.2. The sphere–rod Mayer bond. In the following we demonstrate the

deconvolution of the sphere–rod Mayer bond. We split fSN = f
(D=0)
SN + ∆fSN,

where f
(D=0)
SN is the Mayer bond for vanishingly thin needles, which can be de-

convolved into one-body weight functions, see Chapter 4, Section 3.1 (where this
contribution is denoted fSN). We express the correction, valid for small D/L, as

−∆fSN(r,Ω) =
D

2

(
Θ(|r ·Ω| − L/2)δ(|r− (r ·Ω)Ω| −R)

+ δ(|r + LΩ/2| −R)Θ(−r ·Ω− L/2)

+ δ(|r− LΩ/2| −R)Θ(r ·Ω− L/2)
)
,

(5.25)
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where r is the difference vector between the particle centres and Ω is the rod
orientation. Note that

lim
D→0

D

2
δ(x) = Θ

(
D

4
−

∣∣∣∣x−
D

4

∣∣∣∣
)

.

Using the weight functions, (5.2)–(5.5), this can be expressed as

−∆fSN = wSN
1 ∗ wN

2 + wN∆
1+ ∗ wSN∆

2− + wN∆
1− ∗ wSN∆

2+ , (5.26)

where ∗ denotes the spatial convolution.

We next choose a specific coordinate system, and demonstrate the validity of
Eq. (5.26). We first consider the first term on the right hand side of Eq. (5.26)
and take the needle orientation Ω to be parallel to the z axis and both needle
and sphere to lie within the y-z plane, i.e. Ω = (0, ϕ̄), r = (r, ϑ, 0). Then,

wSN
1 (r,Ω) ∗ wN

2 (r,Ω)

=
D

2

π∫

0

2π∫

0

δ(R cos ϑ′)

×
L/2∫

−L/2

δ
( −R sin ϑ′ sin ϕ′

r sin ϑ−R sin ϑ′ cos ϕ′
r cos ϑ−R cos ϑ′+l

)
dl R2 sin ϑ′ dϕ′ dϑ′

(5.27)

=
D

2

2π∫

0

L/2∫

−L/2

δ
( −R sin ϕ′

r sin ϑ−R cos ϕ′
r cos ϑ+l

)
dlR dϕ′ (5.28)

=
D

2
Θ

(
L

2
− |r cos ϑ|

) 2π∫

0

δ(R sin ϕ′)δ(r sin ϑ−R cos ϕ′)R dϕ′ (5.29)

=
D

2
Θ

(
L

2
− |r cos ϑ|

)
δ(r sin ϑ−R), (5.30)

which recovers the first line of Eq. (5.25).

We next consider the term wN∆
1+ ∗ wSN∆

2− in Eq. (5.26); the calculation of
wN∆

1− ∗ wSN∆
2+ can be performed analogously and is skipped here. We write the

convolution in its most general form, i.e. using absolute coordinates,
∫

wN∆
1+ (r− r′,Ω)wSN∆

2− (r′′ − r′)d3r′

=

∫
D

2
δ(r− r′ + Ω

L

2
)δ(R− |r′′ − r′|)Θ(−Ω · (r′′ − r′)) d3r′. (5.31)

Then we place everything in the x-y-plane, ϑ = ϑ̄ = ϑ′′ = π/2; the sphere shall sit
on the negative x-axis: ϕ′′ = −π/2. Using the remaining translational symmetry,
we put the tip of the needle in the origin: r = L/2, ϕ = π+ ϕ̄. To summarise, we
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have: r = (L/2, π/2, π + ϕ̄), r′ = (r′, ϑ′, ϕ′), r′′ = (r′′, π/2,−π/2),Ω = (π/2, ϕ̄).
Using these coordinates we can transform Eq. (5.31) and obtain:

wN∆
1+ (r,Ω) ∗ wSN∆

2− (r,Ω)

=
D

2

∞∫

0

2π∫

0

π∫

0

δ(r′ sin ϑ′ sin ϕ′)δ(r′ sin ϑ′ cos ϕ′)δ(r′ cos ϑ′)

× δ(R−
√

r′′2 + r′2 + 2r′r′′ sin ϑ′ sin ϕ′)

×Θ(r′′ sin ϕ̄ + r′ sin ϑ′ sin ϕ′ sin ϕ̄ + r′ sin ϑ′ cos ϕ′ cos ϕ̄)

× r′2 sin ϑ′dϑ′ dϕ′ dr′

(5.32)

=
D

2

∞∫

0

2π∫

0

δ(r′ sin ϕ′)δ(r′ cos ϕ′)δ(R−
√

r′′2 + r′2 + 2r′r′′ sin ϕ′)

×Θ(r′′ sin ϕ̄ + r′ sin ϕ′ sin ϕ̄ + r′ cos ϕ′ cos ϕ̄) r′ dϕ′ dr′

(5.33)

=
D

2

∑
±

∞∫

0

δ(r′)δ(R−
√

r′′2 + r′2)Θ(r′′ sin ϕ̄± r′ cos ϕ̄) dr′ (5.34)

=
D

2
δ(R− r′′)Θ(r′′ sin ϕ̄) (5.35)

which recovers the second line of Eq. (5.25).

We turn to a brief investigation of the prediction of the DFT for the bulk
free energy. There the contribution of (5.13) to the free energy per volume is
obtained by setting ρi = const, and hence nα

i = ξα
i ρi. With the sphere packing

fraction η = πρSσ
3/6, the resulting excess free energy is

βFexc

V
= φhs(η)− ρN ln(1− η) +

πL2D

4

ρ2
N

1− η

+
3

2

(
L

2R
+

LD

2R2
+

D

R

)
ρNη

1− η
, (5.36)

where φhs is equal to the Percus-Yevick compressibility (scaled-particle) result
for pure hard spheres, V is the system volume, and the second and third term
inside the parentheses is the contribution due to (5.13).

5. Planar Geometry

As in the previous chapter, we give explicit expressions for the effective weight
functions. Planar geometry is characterised by invariance under translations in
the x and y directions, and under rotations around the z axis. Thus ρS(r) = ρS(z)
and ρN(r,Ω) = ρN(z, ϑ).
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The weighted densities, Eq. (5.8-5.12), can then be expressed as

nSN
1 (z, ϑ) =

∞∫

−∞

ρS(z
′)wSN

1 (z′ − z, ϑ) dz′, (5.37)

nSN∆
2± (z, ϑ) =

∞∫

−∞

ρS(z
′)wSN∆

2± (z′ − z, ϑ) dz′, (5.38)

nN∆
1± (z, ϑ) =

∞∫

−∞

ρN(z′, ϑ)wN∆
1± (z′ − z, ϑ) dz′, (5.39)

nN
2 (z, ϑ) =

∞∫

−∞

ρN(z′, ϑ)wN
2 (z′ − z, ϑ) dz′, (5.40)

nNN
2 (z, ϑ′) =

1

4π

π∫

0

∞∫

−∞

ρN(z′, ϑ′)wNN
2 (z′ − z, ϑ′; ϑ) dz′ dϑ′, (5.41)

where the effective weight functions are defined by

wSN
1 (z, ϑ) =

∞∫

−∞

∞∫

−∞

wSN
1 (r,Ω) dx dy, (5.42)

wSN∆
2± (z, ϑ) =

∞∫

−∞

∞∫

−∞

wSN∆
2± (r,Ω) dx dy, (5.43)

wN∆
1± (z, ϑ) =

∞∫

−∞

∞∫

−∞

wN∆
1± (r,Ω) dx dy, (5.44)

wN
2 (z, ϑ) =

∞∫

−∞

∞∫

−∞

wN
2 (r,Ω) dx dy, (5.45)

wNN
2 (z, ϑ; ϑ′) =

∞∫

−∞

∞∫

−∞

wNN
2 (r,Ω;Ω′) dx dy. (5.46)
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Carrying out the integrations, one obtains

wSN
1 (z, ϑ) =

R

π

Θ(R| sin ϑ| − |z|)√
R2 sin2 ϑ− z2

, (5.47)

wSN∆
2± (z, ϑ) =





0 if z > R

2πR if R > ±z > R sin ϑ

0 if −R sin ϑ > z

2R arccos |z cot ϑ|√
R2−z2 else,

(5.48)

wN∆
1± (r, ϑ) = D δ

(
z ± L

2
cos ϑ

)
, (5.49)

wN
2 (r, ϑ) =

πD

cos ϑ
Θ

(
L

2
− |z|

cos ϑ

)
, (5.50)

wNN
2 (z, ϑ; ϑ′) =

D tan ϑ

π
Θ

(L cos ϑ

2
− |z|

)

×
2π∫

0

√
1− (sin ϑ′ sin ϑ cos ϕ + cos ϑ′ cos ϑ)2 dϕ.

(5.51)

For the final effective weight function, one integral has to be solved numerically.

6. Conclusions

In conclusion we have extended the DFT of Refs. [105,116] and Chapter 4 to
include effects of non-vanishing rod thickness. To that end we have introduced
several qualitatively new weight functions into the geometric framework. Our
theory accounts for excluded volume effects caused by finite rod aspect ratios,
D/L. We emphasise, however, that although we treat the statistical weight
associated with finite D, the present theory will not resolve features of den-
sity variation on length scales comparable to D. We also have only dealt with
contributions of the order of 1/(1 − nS

3) to the excess free energy. Rosenfeld’s
prescription [101,122] also involves terms proportional to 1/(1− nS

3)
2, which we

have not treated here. Whether the weight functions introduced in the present
work can be used to modify these terms is an interesting problem that we leave
for future research.

The proposed theory should lead to rich bulk phase behaviour as one has,
besides demixing into fluid phases with different chemical composition of species,
also the possibility of nematic ordering of rods. In turn this clearly leads to a rich
variety of interesting interfacial situations. It would also be interesting to see how
the present theory performs against other theoretical approaches or computer
simulations. From the practical point of view the present functional causes only
a moderate increase of computational complexity as the new weighted densities
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for the sphere–rod Mayer bond are built with spatial convolutions only (although
the angular convolution needed for the rod–rod Mayer bond is more involved).





CHAPTER 6

Mixtures of Spheres, Thin Rods and Thin Platelets

1. Introduction

Dispersions of non-spherical colloidal particles are model systems to study
phenomena in condensed matter ranging from fluid phase separation to the emer-
gence of liquid crystalline phases. Example of such systems are clay suspen-
sions [134, 135], gibbsite platelets [136], mixtures of silica spheres and silica-
coated boehmite rods [137], or wax disks [138]. For binary mixtures the phase
behaviour is considerably richer than for pure systems, due to the additional
possibility of demixing into bulk phases with different chemical compositions,
e.g. in dispersions of disks and spheres [138].

Theoretical work has been devoted to fluids of platelike particles near a hard
wall [139], an interaction site model for lamellar colloids [140], wetting and cap-
illary nematisation of binary hard-platelet and hard-rod fluids [21], the lamellar
Zwanzig model [22, 23], and colloidal hard-rod fluids near geometrically struc-
tured substrates [141]. The phase diagram of mixtures of hard colloidal spheres
and discs was obtained within a free-volume scaled particle approach [142]. The
depletion potential between two spheres immersed in a sea of platelets was stud-
ied in detail [143, 144], and the Derjaguin approximation was found to be quite
accurate for this case [143]. Sedimentation was found to influence liquid crystal
phase transitions of colloidal platelets [25], as well as multi-phase equilibria in
mixtures of platelets and ideal polymer [145].

The fundamental-measure theory (FMT) is an (approximate) density-func-
tional theory (DFT) [94, 95] originally proposed by Rosenfeld for additive hard
sphere mixtures [96]. Early extensions to more general non-spherical shapes have
been given [101, 122]. This theory, when applied to homogeneous and isotropic
fluid states, does recover the correct second virial coefficient of the equation
of state, but fails to recover the exact density functional up to second order
in density. To remedy this problem, an interpolation between the hard sphere
Rosenfeld functional and the Onsager functional for elongated rods was proposed
in Ref. [132] and applied to the bulk isotropic-nematic transition.

The Bolhuis-Frenkel model of hard spheres and vanishingly thin hard nee-
dles [86] can be considered as the simplest model hard core mixture of spheres
and rods. Previous work was devoted to the formulation of a DFT for this
model [105], and an extension to include rod–rod interactions on the Onsager

73
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(second virial) level [116, 146] has been proposed. Predictions for the orienta-
tion ordering of the rods at a free interface between (isotropic) sphere-rich and
sphere-poor phases [116] were successfully confirmed by simulations [123]. The
fluid demixing phase behaviour of ternary mixtures of spheres, rods, and model
polymers was considered [107]. Hard spheres were considered in random rod net-
works [147], and the isotropic-nematic transition of rods in matrices of quenched
(immobilised) spheres was investigated [148].

Central to FMT is the so-called deconvolution of the Mayer bond into weight
functions that are characteristic of the shape of the particles. The Mayer bond
is fij = exp(−βVij)− 1 for a given pair interaction potential Vij between species
i and j, where β = 1/(kT ), k is the Boltzmann constant and T is temperature.
Such weight functions have been obtained for hard sphere mixtures in Ref. [96]
and for the Mayer bond between a sphere and a vanishingly thin needle in
Ref. [105], curing, for this particular model, the defect of Rosenfeld’s initial
formulation for non-convex bodies [101,122].

Here we show how to treat platelet-shaped particles and their mixtures with
spheres and needles within the same framework. The relevant weight functions
are given and it is shown explicitly how the Mayer bonds for the ternary mix-
ture are obtained through convolutions. For two-dimensional hard disks, the
Rosenfeld functional only approximately yields the Mayer bond. Despite this
deficiency this theory is considered to be a useful tool to study inhomogeneous
situations, see e.g. Ref. [149] for an investigation of laser-induced freezing and
melting of confined colloidal particles. The treatment of the sphere-platelet case
inevitably leads to the same (arguably small) deficiency, while we achieve an
exact deconvolution of the Mayer bonds for platelet-platelet and platelet-needle
interactions.

Harnau and Dietrich recently considered bulk and wetting phenomena in a
similar binary mixture of colloidal hard spheres and hard platelets [150]. We
will discuss the relationship of the current work to Ref. [150] in detail in Sec. 7,
after having laid out our approach.

2. Model

We consider a mixture of hard spheres (species S) with diameter σ = 2R,
where R is the radius, hard platelets (species D) of diameter 2RD and vanishing
thickness, and hard needle-like rods (species N) of length L and again vanishing
thickness. The pair interaction potential Vij between any two particles of species
i, j = S, D,N is infinite if their geometrical shapes overlap and zero otherwise.
The one-body density distribution of species i = S, D, N is denoted by ρS(r),
ρD(r,Ω), and ρN(r,Ω), respectively, where r is the position of the particle cen-
tre, and Ω is a unit vector pointing along (normal to) the shape of the needle
(platelet), thus describing its orientation in space.
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3. Deconvolution of the Mayer bonds

3.1. The sphere-sphere and sphere-needle Mayer bonds. For com-
pleteness we first summarise results from the literature for hard spheres and
their mixtures with needles. Rosenfeld’s hard sphere weight functions [96] are

wS
3(r) = Θ(R− |r|), (6.1)

wS
2(r) = δ(R− |r|), (6.2)

wS
v2(r) = wS

2(r)
r

|r| , (6.3)

where Θ(·) is the unit step (Heaviside) function and δ(·) is the Dirac distri-
bution. Here and in the following the wi

τ are quantities with the dimension
of (length)τ−3; the subscript v indicates vectorial quantities. Further, linearly
dependent, weight functions are wS

1(r) = wS
2(r)/(4πR), wS

0(r) = wS
2(r)/(4πR2),

and wS
v1(r) = wS

v2(r)/(4πR). For pure hard spheres the Mayer bond is obtained
through

−fSS(r)/2 = wS
3(r) ∗ wS

0(r) + wS
2(r) ∗ wS

1(r)−wS
v2(r) ∗wS

v1(r), (6.4)

where the (three-dimensional) convolution is defined as

h(r) ∗ g(r) =

∫
h(x)g(x− r) d3x

and also implies a scalar product between vectors, as appears in the last term
on the right hand side of Eq. (6.4).

Vanishingly thin needles do not experience excluded volume, but do interact
with hard spheres. For such binary mixture the needles’ weight functions used in
Ref. [105] were obtained from the prescription of Refs. [101, 122], and are given
by

wN
0 (r,Ω) =

1

2

[
δ

(
r− L

2
Ω

)
+ δ

(
r +

L

2
Ω

)]
, (6.5)

wN
1 (r,Ω) =

1

4

L/2∫

−L/2

δ(r− lΩ) dl. (6.6)

Introducing a “mixed” weight function that is non-vanishing on the surface of a
sphere, but carries a dependence on orientation,

wSN
2 (r,Ω) = 2|wS

v2(r) ·Ω|, (6.7)

allows one to obtain the Mayer bond between sphere and needle through convo-
lutions,

−fSN(r,Ω) = wS
3(r) ∗ wN

0 (r,Ω) + wSN
2 (r,Ω) ∗ wN

1 (r,Ω). (6.8)
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For the case of residual rod-rod interactions in the Onsager limit, fNN can also
be deconvolved into weight functions, see Chapter 5. In the following, however,
we will restrict ourselves to vanishingly thin needles.

3.2. Strictly two-dimensional hard disks. As a prerequisite for our sub-
sequent treatment of platelets with a rotational degree of freedom in three di-
mensions, we give an overview of Rosenfeld’s functional for the simpler model of
strictly two-dimensional disks. We need, however, to deal with a multicompo-
nent mixture with radii Ri of species i, and characterised by the pair potential
Vij(r) = ∞ if r < Ri + Rj and zero otherwise, where r is the centre-centre
distance between the disks of species i and j. (Of course, when viewed from the
viewpoint of the three-dimensional model, all disks possess the same orientation
Ω, perpendicular to the 2d plane of position coordinates). Rosenfeld’s weight
functions are

w
(i)
2 (r) = Θ(Ri − |r|), (6.9)

w
(i)
1 (r) = δ(Ri − |r|), (6.10)

w
(i)
v1 (r) = w

(i)
2 (r)

r

|r| , (6.11)

and there is an additional, linearly dependent weight function,

w
(i)
0 (r) = w

(i)
2 (r)/(2πRi),

corresponding to the Euler characteristic.

The exact Mayer bond fij is then approximated through fij ≈ f ∗ij, where

− f ∗ij(r) = w
(i)
0 (r) ∗ w

(j)
2 (r) + w

(i)
2 (r) ∗ w

(j)
0 (r)

+
1

2π

(
w

(i)
1 (r) ∗ w

(j)
1 (r)−w

(i)
v1 (r) ∗w

(j)
v1 (r)

)
, (6.12)

where here (and only here) ∗ denotes the two-dimensional convolution,

h(r) ∗ g(r) =

∫
h(x)g(x− r) d2x,

and again implies a scalar product between vectors.

As our treatment of the three-dimensional sphere-platelet case below relies
heavily on Eq. (6.12), we will obtain an explicit expression for f ∗ij and discuss
some of its properties. We choose 2d Cartesian coordinates r and x, such that
r = (0, r),x = (x′ sin ϕ′, x′ cos ϕ′), which allows us to write



3. DECONVOLUTION OF THE MAYER BONDS 77

∫
w

(i)
0 (x)w

(j)
2 (x− r) d2x

=

2π∫

0

∞∫

0

1

2πRi

δ(x′ −Ri)Θ
(
Rj −

√
x′2 + r2 − 2rx′ cos ϕ′

)
x′ dx′ dϕ′

(6.13)

=
1

π
arccos

(r2 + R2
i −R2

j

2rRi

)
Θ

(
2rRi −

∣∣r2 + R2
i −R2

j

∣∣) (6.14)

By the cosine theorem, this is equal (up to a factor of 2π) to the length of
the arc which the rim of the left disc traces across the interior of the right one
(see Figure 2).

To get the Mayer function from the original Rosenfeld functional, the term
(w1∗w1−wv1∗wv1)/(2π) remains to be calculated. Using the same assumptions
as before, we obtain:

1

2π

∫
w

(i)
1 (x)w

(j)
1 (x− r)−w

(i)
v1 (x)w

(j)
v1 (x− r) d2x

=
1

2π

2π∫

0

∞∫

0

δ (Ri − x′) δ
(
Rj −

√
r2 + x′2 − 2rx′ cos ϕ′

)

×
(

1− 1

RiRj

(
x′ sin ϕ′
x′ cos ϕ′

)
·
(

x′ sin ϕ′
x′ cos ϕ′−r

))
x′ dx′ dϕ′

(6.15)

=
1

π
Θ(Ri − |Rj − r|) r2 − (Ri −Rj)

2

√
4r2R2

i − (r2 + R2
i −R2

j )
2

(6.16)

In the special case that both platelets have the same radius, Ri = Rj, as
relevant for describing the pure hard disk system, the above expression further
simplifies to

1

2π

∫
w

(i)
1 (x)w

(i)
1 (x− r)−w

(i)
v1 (x)w

(i)
v1 (x− r) d2x

=
1

π
Θ(2Ri − r)

r√
4R2

i − r2
. (6.17)

3.3. Platelet-platelet Mayer bond in three dimensions. Returning to
three dimensions, direct application of Rosenfeld’s recipe [101, 122] to platelets
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Figure 1. The Mayer bond between two-dimensional hard disks
of radii R1/R2 = 1, 0.71, 0.44 (right to left) is shown as a function
of the centre-to-centre distance of the two disks. This is also the
Mayer bond of a sphere and disk of equal radius as a function of
the distance between the centre of the platelet and the sphere’s
axis (parallel to the orientation Ω of the platelet). The distance
between the centre of the sphere and the plane of the platelet is
0, 0.7, 0.9 (right to left). Note that whenever the platelet fully cuts
through the sphere, the Mayer bond obtained is exact.

yields the scalar weight functions

wD
2 (r,Ω) = 2Θ(RD − |r|)δ(r ·Ω), (6.18)

wD
1 (r,Ω) =

1

8
δ(RD − |r|)δ(r ·Ω), (6.19)

wD
0 (r,Ω) =

1

2πRD

δ(RD − |r|)δ(r ·Ω), (6.20)

corresponding to the surface, ξD
2 = 2πR2

D, integral mean curvature, ξD
1 = πRD/4,

and Euler characteristic, ξD
0 = 1, of the platelets, respectively. The remaining

scalar weight function that describes the particle volume vanishes, wS
3(r,Ω) = 0,

due to the vanishing thickness, and hence vanishing volume of the platelets,
ξD
3 = 0.

In contrast to the result of Rosenfeld’s use of vectorial weight functions [101,
122], we here aim at an exact deconvolution of fDD(r,Ω′,Ω), where r is the
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R
’
D
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x

y

Figure 2. Overlapping pair of strictly two-dimensional hard
disks with radii Ri and Rj and centre-centre distance r. Shown
are the x and y axis of the coordinate system used, the angle α
(that can be calculated by the cosine theorem) between the y-axis
and Ri, as well as half of the part (bold) of the circumference of
disk i that lies inside disk j.

centre-centre distance vector between both particles and Ω and Ω′ are their
orientations. We introduce

wDD
1 (r,Ω;Ω′) =

2

RD

|Ω · (Ω′ × r)|wD
1 (r,Ω), (6.21)

and keep Rosenfeld’s surface weight function, wD
2 (r,Ω), as given in Eq. (6.18),

in order to recover the Mayer bond between platelets via

−fDD(r,Ω;Ω′) = wDD
1 (r,Ω;Ω′) ∗ wD

2 (r,Ω′)

+ wD
2 (r,Ω) ∗ wDD

1 (r,Ω′;Ω). (6.22)

As this expression consists of two symmetric terms, it is sufficient to consider
the first, the second one gives the same contribution to fDD.
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Figure 3. Setup for the calculation of the platelet–platelet Mayer
bond. Platelet D is located in the x–y-plane with its centre at the
origin. Platelet D′ has its centre in the y–z-plane and an arbitrary
orientation. The calculation checks for the intersection of the rim
of D and the interior of D′ (bold dot). The one-dimensional over-
lap volume of the two platelets is shown as a bold line.

Without loss of generality we place the particles such that one platelet shall
be located at the origin with its orientation vector pointing up. The other
platelet lies in the y–z plane, see Figure 3 for an illustration of the coordinates
chosen:

r = (0, r, z) Ω = (0, 0, 1) Ω′ = (
√

1− z̄2 sin ϕ̄,
√

1− z̄2 cos ϕ̄, z̄);

the integration variable is x = (r′ sin ϕ′, r′ cos ϕ′, z′). With the weight function

wDD
1 (r,Ω;Ω′) =

1

4RD

|Ω′ · (r×Ω)| δ (RD − |r|) δ (r ·Ω) , (6.23)

we obtain:∫
wDD

1 (x,Ω;Ω′)wD
2 (x− r,Ω′) d3x

=
1

2RD

2π∫

0

∞∫

−∞

∞∫

0

∣∣∣∣
(

0
0
1

)
·
[( √

1−z̄2 sin ϕ̄√
1−z̄2 cos ϕ̄

z̄

)
×

(
r′ sin ϕ′
r′ cos ϕ′

z′

)]∣∣∣∣

× δ
(
RD −

√
r′2 + z′2

)
δ (z′) Θ(RD − |(r′ sin ϕ′, r′ cos ϕ′ − r, z′ − z)|)

× δ

(( r′ sin ϕ′
r′ cos ϕ′−r

z′−z

)
·
( √

1−z̄2 sin ϕ̄√
1−z̄2 cos ϕ̄

z̄

))
r′ dr′ dz′ dϕ′

(6.24)
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=
RD

2

2π∫

0

∣∣∣∣
(

sin ϕ′
cos ϕ′

0

)
·
( −√1−z̄2 cos ϕ̄√

1−z̄2 sin ϕ̄
0

)∣∣∣∣

×Θ(RD − |(RD sin ϕ′, RD cos ϕ′ − r,−z)|)

× δ

((
RD sin ϕ′

RD cos ϕ′−r
−z

)
·
( √

1−z̄2 sin ϕ̄√
1−z̄2 cos ϕ̄

z̄

))
dϕ′

(6.25)

=
RD

2

2π∫

0

∣∣∣
√

1− z̄2 cos ϕ′ sin ϕ̄−
√

1− z̄2 sin ϕ′ cos ϕ̄
∣∣∣

×Θ
(
RD −

√
R2

D + r2 + z2 − 2rRD cos ϕ′
)

× δ
(
(r −RD cos ϕ′)

√
1− z̄2 cos ϕ̄−RD

√
1− z̄2 sin ϕ′ sin ϕ̄ + zz̄

)
dϕ′

(6.26)

=
RD

2

2π∫

0

∣∣∣
√

1− z̄2 sin(ϕ̄− ϕ′)
∣∣∣ Θ

(
2rRD cos ϕ′ − r2 − z2

)

× δ
(
r
√

1− z̄2 cos ϕ̄−RD

√
1− z̄2 cos(ϕ′ − ϕ̄) + zz̄

)
dϕ′

(6.27)

=
1

2

[
Θ

(
2rRD cos

(
arccos

r
√

1− z̄2 cos ϕ̄ + zz̄

RD

√
1− z̄2

+ ϕ̄

)
− r2 − z2

)

+ Θ

(
2rRD cos

(
2π − arccos

r
√

1− z̄2 cos ϕ̄ + zz̄

RD

√
1− z̄2

+ ϕ̄

)
− r2 − z2

)]

×Θ
(
RD

√
1− z̄2 −

∣∣∣r
√

1− z̄2 cos ϕ̄ + zz̄
∣∣∣
)

(6.28)

=
1

2

∑
±

Θ

(
2rRD cos

(
ϕ̄± arccos

r
√

1− z̄2 cos ϕ̄ + zz̄

RD

√
1− z̄2

)
− r2 − z2

)

×Θ
(
RD

√
1− z̄2 −

∣∣∣r
√

1− z̄2 cos ϕ̄ + zz̄
∣∣∣
) (6.29)

The integrals in Eq. (6.24) over z′ and r′ can be calculated in a straight-
forward manner. From (6.26) to (6.27), we rewrote the argument of the Dirac
delta in such a way that ϕ′ appears only once, using the identity sin ϕ′ sin ϕ̄ +
cos ϕ′ cos ϕ̄ = cos(ϕ′ − ϕ̄).

Given the complexity of the overlap condition between two arbitrarily ori-
ented platelets in three dimensions, it is not surprising that Eq. (6.29) is an
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involved expression. It can be viewed as counting the number of intersections
between the platelet D′ and the rim of platelet D 1.

3.4. The platelet-needle Mayer bond. In order to obtain the platelet-
needle Mayer bond, fDN, we define a “mixed” weight function for the platelets
that is non-vanishing on the platelet surface (with surface normal ΩD), but
carries an additional dependence on the rod orientation ΩN,

wDN
2 (r,ΩD;ΩN) = |ΩD ·ΩN|wD

2 (r,ΩD). (6.30)

This allows us to obtain the Mayer bond between platelet and needle via

−fDN(r,ΩD;ΩN) = wDN
2 (r,ΩD;ΩN) ∗ wN

1 (r,ΩN). (6.31)

Employing cylindrical coordinates, put the platelet on the y-axis, its orien-
tation vector being ez. Position the needle in such a way that its intersection
with the x–y-plane is the origin (cf. Figure 4).

The needle is described by

rN = (zN/z̄
√

1− z̄2 sin ϕ̄, zN/z̄
√

1− z̄2 cos ϕ̄, zN)

ΩN = (
√

1− z̄2 sin ϕ̄,
√

1− z̄2 cos ϕ̄, z̄).

The coordinates of the platelet are rD = (0, rD, 0) and ΩD = (0, 0, 1); the inte-
gration variable is x = (x′ sin ϕ′, x′ cos ϕ′, z′).

With the weight function

wDN
2 (r,ΩD;ΩN) = 4Θ(RD − |r|) δ (r ·ΩD) |ΩD ·ΩN| , (6.32)

we obtain:

1We use D and D′ to refer both to the platelets and the points of their origins. Consider
the triangle ∆ between the centre of platelet D, the intersection I of platelet D′ with the rim of
D, and the centre of D′ projected onto the x–y plane (call this point A). This triangle has by
construction two known sides, RD and r. The length of the third side of ∆ can be calculated
by the cosine theorem from the angle ∠ADI. Using the Pythagorean theorem on the triangle
between I and the real and projected centres of D′, the length |D′I| can be calculated and
compared to the radius of D′, RD. This is accomplished by the first step function. In order
to calculate the angle needed for the cosine theorem, consider ∆ and the right-angled triangle
∆′ that is obtained by continuing AI over I to form a right angle at the new point B. Then,
|AB| = |r cos ϕ̄| and |AI| = zz̄/

√
1− z̄2. Therefore, the arccos equals the angle ∠DIB, and

we obtain the angle ∠ADI by adding ϕ̄. The second step function in Eq. (6.29) checks if the
plane defined by D′ intersects with the rim of D.
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Figure 4. Setup for the calculation of the platelet–needle Mayer
bond. The needle is located at rN in such a way that it points at
the origin. The platelet is located at rD.

−fDN(r,ΩD;ΩN) =

∫
wN

1 (x− rN,ΩN)wDN
2 (x− rD,ΩD;ΩN) d3x (6.33)

=

∞∫

−∞

2π∫

0

∞∫

0

L/2∫

−L/2

δ
(
x′ sin ϕ′ − zN/z̄

√
1− z̄2 sin ϕ̄ + l

√
1− z̄2 sin ϕ̄

)

× δ
(
x′ cos ϕ′ − zN/z̄

√
1− z̄2 cos ϕ̄ + l

√
1− z̄2 cos ϕ̄

)

× δ(z′ − zN + lz̄)Θ(RD − |(x′ sin ϕ′, x′ cos ϕ′ − rD, z′)|)
× |z̄|δ(z′) dl x′ dx′ dϕ′ dz′

(6.34)

=

2π∫

0

∞∫

0

δ (x′ sin ϕ′) δ (x′ cos ϕ′)

×Θ(RD − |(x′ sin ϕ′, x′ cos ϕ′ − rD)|) Θ

(
L

2
|z̄| − |zN|

)
x′ dx′ dϕ′

(6.35)

= Θ(RD − rD) Θ

(
L

2
|z̄| − |zN|

)
(6.36)
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The integrals over z′ and l are straightforward. In Eq. (6.35), the integral
over ϕ′ is performed first, rendering the x′-integral trivial.

The result (6.36) is indeed the Mayer bond between platelet and needle: due
to the set-up, an overlap must occur only at the origin. The first step function
checks whether the origin is inside the platelet while the second step function
checks whether the needle intersects the origin.

3.5. The sphere-platelet Mayer bond. The treatment of the sphere–
platelet Mayer bond leads to the most involved geometry in the present ternary
mixture. It turns out that for its exact deconvolution the deconvolution of the
Mayer bond of the two-dimensional hard disk model is a prerequisite. It is
known that the Rosenfeld functional gives only an approximate representation
in this case. Still the DFT for hard disks is a reasonably accurate theory, see
e.g. [149] for a recent study. In the present study we propose an approximate
deconvolution that is on the same level of approximation as the 2d Rosenfeld
case. Its advantage is that the resulting weight functions are single-particle
quantities. We introduce the weight functions

wSD
v2 (r,Ω) =

4

π

r− (r ·Ω)Ω

R
wS

2(r), (6.37)

wSD
2 (r,Ω) =

4

π

√
1− (r ·Ω/R)2wS

2(r), (6.38)

wD
v1(r,Ω) =

r

RD

wD
1 (r,Ω). (6.39)

Eq. (6.37) describes a vector field tied to the surface of the sphere (with radius
R). In contrast to the “radial hedgehog” of the classic vector weight function
wS

v2, as given in Eq. (6.3), the direction of the vector field is radial with respect to
the Ω direction and its magnitude decreases towards either pole – a configuration
one could refer to as a “cylindrical hedgehog”. Note further that wSD

2 = |wSD
v2 |.

The crown-like vector-field of Eq. (6.39) is the straightforward generalisation of
the corresponding 2d hard disk weight function. These functions allow us to
approximate fSD ≈ f ∗SD with

−f ∗SD(r,Ω) = wS
3(r) ∗ wD

0 (r,Ω) + wS
1(r) ∗ wD

2 (r,Ω)

+ wSD
2 (r,Ω) ∗ wD

1 (r,Ω)−wSD
v2 (x,Ω) ∗wD

v1(r,Ω). (6.40)

where again the convolution implies a scalar product between vectors.

The deconvolution of the sphere–platelet Mayer bond consists of three parts.
One is the arc that the rim of the platelet traces inside the sphere (Figure 5);
secondly, the arc that the sphere traces on the platelet (Figure 6); thirdly, an
additional contribution of the cusps where the two arcs meet.

We put the platelet into the x–y-plane with its centre at the origin. The
sphere is located in the y–z-plane, see Fig 5, hence the coordinates are r =
(0, r, z), Ω = (0, 0, 1), x = (r′ sin ϕ′, r′ cos ϕ′, z′).
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Figure 5. Setup for the calculation of the sphere–platelet Mayer
bond. The platelet is located at the origin. The convolution wD

0 ∗
wS

3 is equal to the angle under which the arc shown in bold appears.

Explicitly, the relevant weight functions are

wSD
v2 (r,Ω) =

4

π
δ (R− |r|) r− (r ·Ω)Ω

R
and (6.41)

wD
v1(r,Ω) =

r

8RD

δ (RD − |r|) δ (r ·Ω) , (6.42)

and we obtain for the first part:
∫

wD
0 (x,Ω)wS

3(x− r) d3x

=
1

2πRD

2π∫

0

∞∫

−∞

∞∫

0

δ
(
RD −

√
r′2 + z′2

)
δ (x ·Ω)

×Θ(R− |x− r|) r′ dr′ dz′ dϕ′

(6.43)

=
1

2π

2π∫

0

Θ
(
R−

√
R2

D + r2 + z2 − rRD cos ϕ′
)

dϕ′ (6.44)
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Figure 6. Setup for the calculation of the sphere–platelet Mayer
bond. The platelet is located at the origin. The convolution wS

1 ∗
wD

2 is equal to the angle under which the arc shown in bold ap-
pears.

=
1

π
arccos

(r2 + R2
D + z2 −R2

2rRD

)
Θ

(
2rRD −

∣∣r2 + R2
D + z2 −R2

∣∣) (6.45)

We take into account that R2− z2 is the squared radius of the circle that the
platelet cuts out of the sphere and note that by the cosine theorem, this is equal
(up to a factor of 2π) to the length of the arc which the rim of the disc traces
inside the sphere, see Eq. (6.14).
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For the second part:

∫
wS

1(x)wD
2 (x− r,Ω) d3x

=
1

4πR

∞∫

−∞

2π∫

0

∞∫

0

δ
(
R−

√
r′2 + z′2

)

× 2Θ
(
RD −

√
r2 + r′2 + (z′ − z)2 − 2rr′ cos ϕ′

)

× δ (z′ − z) r′ dr′ dϕ′ dz′

(6.46)

=
1

2πR

∫∫
δ
(
R−

√
r′2 + z2

)
Θ

(
RD −

√
r2 + r′2 − 2rr′ cos ϕ′

)
r′ dr′ dϕ′

(6.47)

=
1

2π

2π∫

0

Θ(R− |z|) Θ

(
RD −

√
r2 + R2 − z2 − 2r

√
R2 − z2 cos ϕ′

)
dϕ′

(6.48)

=
1

π
arccos

(r2 + R2 − z2 −R2
D

2r
√

R2 − z2

)
Θ

(
2r
√

R2 − z2 −
∣∣r2 + R2 − z2 −R2

D

∣∣
)

(6.49)

This is indeed the length of the arc that the sphere traces on the platelet
divided by 2π, see Eq. (6.14).

The remaining term to recover the approximate sphere–platelet Mayer bond
is:

∫
wSD

2 (x)wD
1 (x− r)−wSD

v2 (x)wD
v1(x− r) d3x

=
1

2π

∫ (
δ (R− |x|) δ (RD − |x− r|) δ (Ω · (x− r))

x ·Ω
|x|

− δ (R− |x|) δ (RD − |x− r|) δ (Ω · (x− r))

× x− (x ·Ω)Ω

|x| · x− r

RD

)
d3x

(6.50)
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=
1

2π

2π∫

0

∞∫

0

∞∫

−∞

δ
(
R−

√
r′2 + z′2

)

× δ
(
RD −

√
r2 + r′2 − 2rr′ cos ϕ′ + (z′ − z)2

)

× δ (z′ − z)


 r′√

r′2 + z′2
−

(
r′ sin ϕ′
r′ cos ϕ′

0

)
·
( r′ sin ϕ′

r′ cos ϕ′−r
z′−z

)

RD

√
r′2 + z′2


 dz′ r′ dr′ dϕ′

(6.51)

=
1

2π

2π∫

0

∞∫

0

δ
(
R−

√
r′2 + z2

)
δ
(
RD −

√
r2 + r′2 − 2rr′ cos ϕ′

)

×
(

r′√
r′2 + z2

− r′2 − rr′ cos ϕ′

RD

√
r′2 + z2

)
r′ dr′ dϕ′

(6.52)

=
R

2π

2π∫

0

δ

(
RD −

√
r2 + R2 − z2 − 2r

√
R2 − z2 cos ϕ′

)

×
√

R2 − z2

R

(
1−

√
R2 − z2 − r cos ϕ′

RD

)
Θ(R− |z|) dϕ′

(6.53)

=
1

π
Θ

(
2r
√

R2 − z2 − |r2 + R2 − z2 −R2
D|

)
Θ(R− |z|)

× R2 − (
√

R2 − z2 −RD)2

√
4r2(R2 − z2)− (r2 + R2 − z2 −R2

D)2

(6.54)

Considering again that R2 − z2 is the squared radius of the circle that the
plane of the platelet cuts out of the sphere, we recover the Rosenfeld (approxi-
mate) Mayer bond of hard disks in two dimensions, see Eq. (6.16).

4. Weighted densities

The weight functions are used to build weighted densities via convolutions
with the bare density profiles. Again starting with spheres and needles, the
procedures are

nS
ν(r) = wS

ν(r) ∗ ρS(r), ν = 0, 1, 2, 3, (6.55)

nS
vν(r) = wS

vν(r) ∗ ρS(r), ν = 1, 2, (6.56)

nN
ν (r,Ω) = wN

ν (r,Ω) ∗ ρN(r,Ω), ν = 0, 1, (6.57)

nSN
2 (r,Ω) = wSN

2 (r,Ω) ∗ ρS(r). (6.58)
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To treat the degrees of freedom of the platelets, we introduce corresponding
weighted densities as

nD
ν (r,Ω) = wD

ν (r,Ω) ∗ ρD(r,Ω), ν = 0, 1, 2, (6.59)

nDD
1 (r,Ω′) =

1

4π

∫
wDD

1 (r,Ω;Ω′) ∗ ρD(r,Ω) d2Ω. (6.60)

Furthermore there is a mixed weighted density,

nDN
2 (r,Ω′) =

1

4π

∫
wDN

2 (r,Ω;Ω′) ∗ ρD(r,Ω) d2Ω, (6.61)

and the vectorial weighted densities,

nD
v1(r,Ω) = wD

v1(r,Ω) ∗ ρD(r,Ω), (6.62)

nSD
v2 (r,Ω) = wSD

v2 (r,Ω) ∗ ρS(r). (6.63)

5. Free energy functional

Following Ref. [105] we express the excess Helmholtz free energy functional
for particles with rotational degrees of freedom not only as a spatial integral (as
was proposed in Refs. [101,122]), but also as an integral over the director space,

βFexc =
1

4π

∫∫
Φ({ni

ν}) d3r d2Ω, (6.64)

where the (reduced) free energy density, Φ, is a function of the set of weighted
densities, {ni

ν}, where i labels the species and µ labels the type of weight func-
tion.

For hard spheres Φ = ΦS where

ΦS =− nS
0 ln(1− nS

3) +
nS

1n
S
2 − nS

v1 · nS
v2

1− nS
3

+
(nS

2)
3/3− nS

2n
S
v2 · nS

v2

8π(1− nS
3)

2
, (6.65)

is the original Rosenfeld form [96] that yields, for bulk fluids, the (reduced)
free energy density as obtained by the Percus-Yevick compressibility (or scaled-
particle) route. Improved versions that feature exact dimensional crossover have
been developed [98, 100]. In Ref. [151] a version is given that is adopted to the
Carnahan-Starling equation of state.

For binary mixtures of spheres and needles the reduced free energy density
is Φ = ΦS + ΦSN, where ΦS is given in (6.65), and ΦSN describes the effect of
needle-sphere interactions [105], given as

ΦSN = −nN
0 ln(1− nS

3) +
nN

1 nSN
2

1− nS
3

. (6.66)
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The free energy for bulk fluid states is the same as that obtained from a thermo-
dynamic (free volume like) perturbation theory [86], that results in a fluid-fluid
demixing binodal that compares well with results from simulations.

For a system of pure platelets Φ = ΦD, with

ΦD = nDD
1 nD

2 + A(nD
2 )3. (6.67)

where according to Rosenfeld A = 1/(24π) = 0.01326. Scaled-particle theory
[117] gives a slightly different constant, A = π/192 = 0.01636. Eq. (6.67) is
the simplest form of a free energy density that features the correct second virial
level and a similar free energy for bulk isotropic fluid states as scaled-particle
theory, where the third order contribution to the excess free energy density (per
volume) is expressed in terms of fundamental measures as (ξD

1 ξD
2 )2ρ3

D/6.

The free energy density of a binary platelet–needle mixture is Φ = ΦD+ΦDN,
with only the simple second-order contribution

ΦDN = nDN
2 nN

1 . (6.68)

For binary sphere-platelet mixtures we obtain Φ = ΦS + ΦSD with

ΦSD =− nD
0 ln(1− nS

3)

+
nDD

1 nD
2 + nS

1n
D
2 + nS

2n
D
1 + nSD

v1 · nD
v2

1− nS
3

+
(nS

2 + nD
2 )3/3− nS

v2 · nS
v2(n

S
2 + nD

2 )

8π(1− nS
3)

2
. (6.69)

Finally for ternary sphere-platelet-needle mixtures the free energy density is

Φ = ΦS + ΦSN + ΦSD +
nN

1 nDN
2

1− nS
3

. (6.70)

The terms that couple spheres and needles are hence the same as in Ref. [105] and
we have restricted ourselves to the case of vanishingly thin needles throughout.

6. Planar geometry

In many practical situations of inhomogeneous fluids one is faced with inho-
mogeneities that depend only on a single (Cartesian) coordinate, say the z-axis,
while being translationally invariant in the two remaining directions. A smooth
planar wall, where the fluid density profile(s) only depend on the perpendicular
distance from the wall is a primary example. For rotators an additional simpli-
fication constitutes (cylindrical) rotational symmetry around the z-axis. Hence
such problems are characterised solely by z, and the tilt angle ϑ between the
particle orientation and the z-axis. We assume ϑ ∈ [0, π]. We give in the follow-
ing explicit expressions for (reduced) weight functions appropriate for efficient
numerical treatment of such situations.
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The weighted densities, Eqs. (6.59)-(6.63), can then be written as

nD
ν (z, ϑ) =

∞∫

−∞

wD
ν (z′ − z, ϑ)ρD(z′, ϑ) dz′, ν = 0, 1, 2, (6.71)

nDD
1 (z, ϑ′) =

1

2

∞∫

−∞

π∫

0

wDD
1 (z′ − z, ϑ; ϑ′)ρD(z′, ϑ) sin ϑ dϑ dz′, (6.72)

nDN
2 (z, ϑ′) =

1

2

∞∫

−∞

π∫

0

wDN
2 (z′ − z, ϑ; ϑ′)ρD(z′, ϑ) sin ϑ dϑ dz′, (6.73)

nD
v1(z, ϑ) =

∞∫

−∞

wD
v1(z

′ − z, ϑ)ρD(z′, ϑ) dz′, (6.74)

nSD
v2 (z, ϑ) =

∞∫

−∞

wSD
v2 (z′ − z, ϑ)ρS(z

′) dz′. (6.75)

The effective one-dimensional weight functions are obtained by integrating
over the lateral coordinates:

wD
ν (z, ϑ) =

∫∫
wD

ν (r,Ω) dx dy ν = 0, 1, 2 (6.76)

where r = (x, y, z) and Ω = (ϑ, ϕ).

They turn out to be:

wD
2 (z, ϑ) =

4
√

R2
D − z2/ sin2 ϑ

sin ϑ
Θ(RD sin ϑ− |z|) (6.77)

wD
1 (z, ϑ) =

RDΘ(RD sin ϑ− |z|)
4
√

R2
D sin ϑ2 − z2

(6.78)

wD
0 (z, ϑ) =

Θ(RD sin ϑ− |z|)
π
√

R2
D sin ϑ2 − z2

(6.79)

Note that these are not piecewise constant functions of z, and hence differ
from Eqs. (15) and (16) in Ref. [150].
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For the vector and mixed weight functions, we define

wSD
v2 (z, ϑ) =

1

2π

∫∫∫
wSD

v2 (r,Ω) dϕ dx dy (6.80)

wD
v1(z, ϑ) =

1

2π

∫∫∫
wD

v1(r,Ω) dϕ dx dy (6.81)

wDN
2 (z, ϑD; ϑN) =

1

2π

∫∫∫
wDN

2 (r,ΩD;ΩN) dϕD dx dy (6.82)

wDD
1 (z, ϑ; ϑ′) =

1

2π

∫∫∫
wDD

1 (r,Ω;Ω′) dϕ dx dy (6.83)

and obtain

wSD
v2 (z, ϑ) =

8π

RD

z sin2 ϑ
√

R2
D − z2ez (6.84)

wD
v1(z, ϑ) =

z

8RD sin2 ϑ

√
R2

D sin2 ϑ− z2

R2
D − z2

(6.85)

wDN
2 (z, ϑD; ϑN) =

4 cot ϑD cos ϑN

√
R2

D − z2

R2
D − z2/ sin2 ϑD

Θ(RD sin ϑD − |z|) (6.86)

wSD
2 (z, ϑ) =

2

π2
Θ(R− |z|)

×
2π∫

0

√
R2 − (

(R2 − z2) cos ϕ sin ϑ + z cos ϑ
)2

dϕ
(6.87)

wDD
1 (z, ϑ; ϑ′) =





0 if p2 < 0
1
2
cos ϑ′ if p2 sin(ϑ− ϑ′) sin(ϑ + ϑ′) > z2 sin2 ϑ′

1
πp

(√
(z2 + p2) sin2 ϑ′

sin2 ϑ
− p2

+p| cos ϑ′| arcsin p| cot ϑ′|√
z2+R2

D cos2 ϑ

)
else,

(6.88)

where p =
√

R2
D sin2 ϑ− z2.

The integral in Eq. (6.87) has to be solved numerically.

7. Conclusions

In conclusion we have derived a geometry-based density functional theory for
hard body mixtures of spheres, platelets and needles. Both the needles and the
(circular) platelets possess vanishing thickness and hence constitute the simplest
examples of prolate and oblate model particles, respectively. Our treatment of
the mixture is based on the so-called deconvolution of the Mayer function into
single-particle functions which vanish beyond the extent of the particle. The
Mayer bonds are recovered upon convolution of the single-particle functions. In
order to facilitate future applications, like wetting of planar walls or capillary
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phenomena in planar slits, we have given explicit simplified expressions for the
relevant quantities in planar geometry.

In a recent contribution Harnau and Dietrich propose and apply a DFT for
binary platelet-sphere mixtures [150]. They obtain a platelet-sphere functional
by starting from the rod-sphere functional of Refs. [105, 116], and in particu-
lar from the explicit expressions for the needle weight functions in planar and
uniaxial geometry, Eqs. (22) and (23) in [116]. Modifying the definition of the
relevant angle between the particle orientation and the z-axis they take the rod
weight functions to play the role of platelet weight functions. The excess free
energy functional that they obtain is linear in the platelet density, limiting the
theory to small densities of platelets. Recall that for binary mixtures where
one component (the depletant) is ideal, the absence of higher than linear order
terms in the density distribution of this component is a good approximation.
Examples are the above rod-sphere mixture and the Asakura-Oosawa model of
colloid-polymer mixtures, where the polymers are described as non-interacting
spheres. While in these cases the pure depletant system is an ideal gas, pure
platelets constitute an interacting system. Hence higher than linear order terms
in the platelet density should only be irrelevant at low platelet densities.

In the present work we have shown explicitly how our DFT for the sphere-
platelet mixture reduces to the correct low-density limit. We have treated the full
three-dimensional problem and have, up to a technical difficulty already present
for two-dimensional hard disks, obtained the deconvolution of the sphere-platelet
Mayer bond and hence the appropriate platelet weight functions. Projecting
those to planar and uniaxial symmetry (appropriate for fluid states at a planar
smooth wall, like those investigated in Ref. [150]) reveals that the expressions
differ markedly from those for sphere-rod mixtures. This might come as no
surprise given the fact that the genuine shapes of the particles are one of the
building blocks of the geometry-based DFT. An immediate consequence is that
the platelet weight functions we obtain also differ from the expressions used in
Ref. [150].

Ref. [150] ignores disk-disk repulsion, a good approximation provided the
disk density is low. In the DFT framework this is formally due to the lack terms
of higher than linear order in the platelet density profile. From the dimensional
analysis it is clear that there should also be third order terms. Higher order terms
are absent as the platelets carry vanishing volume. In order to obtain the correct
coefficients for the third order terms, three-body overlap configurations have to
be examined. Even for pure hard spheres this was only solved a decade after
the Rosenfeld’s original publication, and its generalisation to binary mixtures of
spheres is a mathematical tour de force.

Possible future applications of our theory include capillary and wetting phe-
nomena, influence of gravity or other external fields, and the study of free inter-
faces between demixed (and possibly liquid crystalline) phases.





CHAPTER 7

Summary and Outlook

In Part 1 of this work, we have used both Monte-Carlo computer simulations
and Poisson-Boltzmann theory to study the segregation of a system of charged
particles under the influence of an external field. In Chapter 2, the influence of
gravitation upon a binary colloidal mixture has been considered. It turned out
that in such a system, sedimentation is controlled by the ratio of particle mass
to charge rather than by mass alone. Thus, the species with the lower mass-per-
charge ratio will sediment on top, even if its mass is larger than that of the other
species. We have shown that the extent of segregation depends on the individual
mass-per-charge ratios. As long as these differ only slightly, our simulations show
barometric height profiles for both species. The decay lengths of these profiles
are determined by the mass-per-charge ratios. If, however, the mass-per-charge
ratios are considerably different, we found that one of the components will form
a layer on top of the other component.

It will be a challenging task to check these results in real-space experiments.
In order to check the density profiles, a broad range of densities must be measured
while distinguishing between the species. Moreover, the gravitational lengths can
easily be on the order of a few centimetres. Thus, keeping the cell at equilib-
rium to prevent convections of the solvent will be difficult. If such experiments
prove successful, possible applications such as demixing in a centrifuge should
be researched.

The authors of [54] have generalised our theory to encompass more than
two species and even polydisperse colloids. They report that for these systems,
sedimentation is still controlled by the ratio of mass and charge. They have
also used a better minimisation method to show that the density functional
completely describes our simulation data.

In Chapter 3, we have shown that for a symmetric liquid in a capacitor, there
exists a distinct transition between a localised and a delocalised ion distribution.
Taking the average distance 〈h〉 of one species of ions from the oppositely charged
capacitor plate as an order parameter, we have employed Poisson-Boltzmann
theory to determine the divergence of 〈h〉 as a function of the voltage applied
across the capacitor. This turns out to be logarithmic. We have confirmed
both the ion density profiles and the divergence of the order parameter 〈h〉 by
computer simulations.
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It would be interesting to see whether this effect can be used in microfluidic
switching devices.

From the theoretical point of view, a generalisation to asymmetric elec-
trolytes is perhaps the most immediate problem to address. Moreover, it would
be interesting to combine gravity and an electric field in one system and study
their interplay. In particular, if one considers a large electric field, gravitation
can be neglected, and sedimentation will be controlled by the particles’ charge
only. It will then be interesting to see how the transition from charge-per-mass
to charge-only as the important parameter happens.

In Part 2 of this work, we have presented a density functional theory that
draws upon the hard sphere DFT by Rosenfeld and generalises it to anisotropic
particles. In particular, we have considered ternary mixtures of spheres, and
rods and platelets of vanishing thickness; and binary mixtures of thin rods in
the Onsager limit with spheres. We have calculated explicit expressions of the
functional in simple geometries, thereby showing that the number of parame-
ters for these geometries is small enough to allow for a free minimisation of the
density functional. These expressions are also intended as a reference for future
applications. For future research, a calculation of the bulk phase diagrams for
rods in the Onsager limit and for a system of thin platelets would be an inter-
esting starting point. Once the bulk behaviour has been established, one could
turn to the investigation of inhomogeneous systems, e.g. near a hard wall.

We have shown that a systematic extension of fundamental measure func-
tionals to different anisotropic particles is possible. However, it has also become
clear that the complexity of the weight functions needed to recover the particle–
particle Mayer bonds rises rapidly as the particle shapes deviate from the very
simple: rods of vanishing thickness, and spheres. While a fundamental measure
functional for anisotropic particles with finite volume would be highly desirable,
both the theoretical formulation and the numerical calculations will certainly be
very involved and thus pose a challenge to future researchers. Considering the
success of geometry-based density functionals [152], an extension to charged sys-
tems is also very desirable. Indeed, progress has been made in the development
of fundamental measure functionals for soft interactions [153–155]. However,
potentials that contain attractions or are long-ranged seem to pose considerable
problems for this formalism.
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for providing support, encouragement, and the opportunity to work with them.

Thanks to Joseph M. Brader and the ThPhy2 group Now&Then: Elshad Allahy-
arov, Ronald Blaak, Joachim Dzubiella, Christian von Ferber, Vladimir Froltsov,
Ingo Götze, Martin Heni, Norman Hoffmann, Arben Jusufi, Heike Kaminski,
Cord Kielhorn, Raina Kirchhoff, Martin Konieczny, Christos Likos, Christian
Mayer, Rene Messina, Dagmar Petry, Ralf Pierre, Eckhard Rebhan, Hendrik
Reich, Martin Rex, Federica Lo Verso, Rik Wensink, Paul Wessels, Karin Wild-
hagen, and Adam Wysocki.

Thanks to Holger M. “600 m/h” Harreis and Christina Harreis; and to Jan Feller
and Marja Kokkonen: Paljon kiitoksia juhannusjuhlista!

I gratefully acknowledge financial support from the Deutsche Forschungsgemein-
schaft.

Very special thanks go to my parents and my brother for being there.

103


