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Abstract

In this thesis we examine the behaviour of dendritic macromolecules at various
levels of description, ranging from the conformations of isolated dendrimers to the
macroscopic phase behaviour of dendrimer mixtures and bridging thereby the length
scales from nanometer to centimetres. Starting at the monomer level, we introduce
a very simple coarse-grained model, termed ‘bead-thread’ model, and analyse, by
employing monomer-resolved Monte Carlo simulations, the radial monomer den-
sity distributions and the form factors of isolated dendrimers for various generation
numbers and flexibility. Here, we observe dense-core density profiles due to back-
folding of the end monomers. By comparing the results to those of a more complex,
well-established model, we find a clear insensitivity to model details. Moreover, the
validity of this simple model is confirmed by comparison to the form factor from ex-
perimental scattering data. We then proceed to determine, by means of simulations
that employ the bead-thread model, the effective interaction potential between the
centres of mass of two dendrimers. The resulting potentials can be cast in a Gaussian
form, whose strength and range can be tuned by variation of the generation number
and the flexibility of the spacers. Based on the isolated dendrimer density profiles,
the simulational results are corroborated by density functional theory, in which the
connectivity of the monomers is approximated by an external confining potential
holding the monomer beads together. The simplicity of the bead-thread model al-
lows monomer-resolved simulation of large systems containing many dendrimers.
Concomitantly, we perform ‘effective simulations’ considering the dendrimers as
point particles interacting by means of the previously calculated effective interaction
potentials. Comparison of both approaches enables a test of the so-called factori-
sation approximation, which is widely used for derivation of the structure factor
from experimental scattering data. Here, we find that for high densities, uncritical
application of this approximation leads to incorrect results. Furthermore, we test
the validity of the pair potential approximation, where it turns out that the effects
of many-body forces are small and they become weaker as the dendrimer flexibil-
ity increases. Finally, employing effective interactions enables us to investigate the
behaviour of two-component dendrimer mixtures by means of an accurate density
functional approach. To this end, we use the Gaussian potentials obtained from
monomer-resolved simulations for dendrimers of different generation number and
flexibility. Depending on the dendrimers’ architecture, we find either macroscopic
demixing or micro-phase separation and pattern formation under confinement. We
supplement our study with simulations performed employing the effective potentials,
finding good agreement with theory.





Zusammenfassung

Die vorliegende Arbeit befaßt sich mit dem Verhalten dendritischer Makromoleküle
auf verschiedenen Ebenen der Beschreibung – von den Konformationen isolierter
Dendrimere bis hin zum makroskopischen Phasenverhalten von Dendrimermischun-
gen, wobei Längenskalen von Nanometern bis Zentimeter überbrückt werden. Wir
beginnen auf der Ebene der Monomere und führen ein sehr einfaches vergröbertes
Modell ein. Für dieses bestimmen wir mit Hilfe von monomeraufgelösten Monte-
Carlo-Simulationen die radiale Segmentdichteverteilung, die aufgrund der Rückfal-
tung der Endmonomere ein Maximum im Zentrum des Moleküls aufweist, sowie
die Formfaktoren isolierter Dendrimere verschiedener Generationen und Flexibilität.
Ein Vergleich mit einem komplexeren, zur Beschreibung von Dendrimeren häufig ver-
wendeten Modell zeigt deutlich, daß eine Unempfindlichkeit der Ergebnisse gegen-
über den Details des verwendeten Modells besteht. Zudem wird die Gültigkeit
des einfachen Modells durch Vergleich mit experimentellen Streudaten bekräftigt.
Als nächstes bestimmen wir mittels monomeraufgelöster Simulationen die effektive
Wechselwirkung zwischen den Schwerpunkten zweier Dendrimere. Wir erhalten
gaußförmige Potentiale, deren Stärke und Reichweite durch die Wahl der Gener-
ationszahl und der Flexibilität des dendritischen Grundgerüsts eingestellt werden
kann. Auf Basis der Dichteprofile einzelner Dendrimere untermauern wir unsere
Ergebnisse durch eine Dichtefunktionaltheorie, bei der die Bindungen der Monomere
durch ein externes Potential ersetzt werden, welches die Monomere zusammenhält.
Die Einfachheit des eingeführten Modells ermöglicht monomeraufgelöste Simulatio-
nen größer Systeme, die aus mehreren Dendrimeren bestehen. Zugleich verwen-
den wir die zuvor berechneten Potentiale in effektiven Simulationen; dabei werden
die Dendrimere als Punktteilchen aufgefaßt, die vermittels der effektiven Poten-
tiale miteinander wechselwirken. Durch Vergleich beider Methoden läßt sich die bei
der Bestimmung von Strukturfaktoren aus experimentellen Streudaten häufig ange-
wandte Faktorisierungsnäherung überprüfen, wobei sich herausstellt, daß eine un-
kritische Anwendung derselben bei hohen Dichten zu fehlerhaften Resultaten führt.
Des Weiteren untersuchen wir die Gültigkeit der Paarpotentialnäherung, mit dem
Ergebnis, daß der Einfluß der Vielkörperkräfte gering ist, und mit zunehmender
Flexibilität der Dendrimere abnimmt. Schließlich sind wir durch die Verwendung
effektiver Wechselwirkungen in der Lage, das Verhalten zweikomponentiger Den-
drimermischungen mittels Dichtefunktionaltheorie zu untersuchen. Zu diesem Zweck
verwenden wir Gauß’sche Potentiale aus monomeraufgelösten Simulationen von Den-
drimeren verschiedener Generationen und Flexibilität. Abhängig von der spezifi-
schen Dendrimerarchitektur tritt dabei makroskopische Entmischung oder Mikro-
phasenseparation auf, und wir beobachten die Bildung von Mustern in begrenzten
Systemen. Wir ergänzen unsere Untersuchungen durch effektive Simulationen, wobei
gute Übereinstimmung mit der Theorie besteht.
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Chapter 1

Introduction

Dendrimers are synthetic macromolecules with a tree-like1, well-defined branched
structure [1]. Due to their peculiar architecture and the flexibility in modifying it in
various ways [2], dendrimers have attracted the interest of chemists and soft matter
physicists, leading to an almost exponential increase in the number of publications
on this topic since they have been synthesised for the first time in 1978 by Vögtle
et al. [3] and later by Newkome et al. [4] and Tomalia et al. [5]. Simultaneously, a
wealth of potential applications in miscellaneous fields of research opened up, rang-
ing from rheology modification or chemical catalysis to medical applications, e. g.
as host molecules for controlled release of pharmaceuticals, for gene transfer or as
contrast agents in anticancer therapy [6–10]. Complementary to their importance in
applications is their relevance as monodisperse, globular model macromolecules that
form hybrids between polymeric solutions and colloidal suspensions. The aforemen-
tioned flexibility in modifying the architecture of the molecules enables to control
the macroscopic behaviour of solutions at the microscopic level. Here, bridging the
gap between the relevant length scales is a challenge for soft matter physicists.

In order to design dendrimers purposefully for particular applications, accurate
understanding of their conformations is crucial. In this context, the question whether
there are cavities inside the dendrimer, where guest molecules could be encapsulated
[11], is of special interest. In this respect, the equilibrium structure of flexible,
neutral dendrimers, i. e., the radial density distribution of the monomers within
the macromolecule, has been discussed controversially for a long time [12–17]: the
two-dimensional rendition of the dendrimer’s shape shown in Figure 1.1 suggests
a structure with internal voids and with a dense shell, whereas backfolding of the
branches leads to an increase of the monomer density in the centre of the molecule
(dense-core model). We shall return to this question in chapter 3.

1The term “dendrimer” is composed of the Greek words for ‘tree’ and ‘part’, dendron (δένδρoν)
and meros (µέρoς) respectively.
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: Chemical structure of a dendrimer of fourth generation (courtesy of Matthias
Ballauff).

Similar to other complex materials [18–20], dendrimers can be characterised by a
hierarchy of different length scales, as illustrated in Fig. 1.2. Although in principle
possible, simulations at the atomistic level, in which detailed force fields for the
individual atoms are employed, are restricted in practical use to very small systems
due to their demand for computational resources [21–25]. It is thus desirable to
develop a model, which is simple enough to be simulated by standard techniques
and at the same time also sufficiently realistic to capture the salient features of the
dendrimers’ behaviour at the mesoscopic level.

At length scales of the order of a few Ångström, details of the chemical bondings
are important (Fig. 1.2 d)). But for many problems, as for example the confor-
mational characteristics of the dendritic backbone, it is sufficient to look upon the
macromolecule at larger, coarse-grained level, where the fluctuating positions of the
individual atoms comprising the dendrimer are irrelevant. Here, several atoms can
be grouped together to effective monomers (Fig. 1.2 c)), and microscopic details
are mapped to this coarse-grained model [18,20]. For flexible dendrimers, the steric
repulsion and the bonding interactions of these groups can be modeled by means of
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Figure 1.2: Schematic illustration of the varios length scales in dendrimer solutions.

simple, radially symmetric pair potentials. As the influence of the solvent molecules
is also included in the effective monomer-monomer interaction, the number of par-
ticles which have to be considered is decreased drastically. Concomitantly, in spite
of all those simplifications, atomistic and coarse grained simulations of isolated den-
drimers lead to very similar results for the radial density distribution [24, 25]. The
reduction of the number of particles and degrees of freedom in coarse-grained models
allows efficient simulations of systems large enough for investigating intermolecular
statistical quantities.

Considering solutions of dendrimers, one can go even one step further in coarse-
graining: here, the dominant length scale is the size of the dendrimer. Indeed, in
order to study macroscopic samples, it is inevitable to make simplifications due to
the huge number of the involved particles. Since the trajectories of the individual
fluctuating monomers are unimportant for the questions under consideration, it is
pertinent to choose one effective coordinate that represents the whole macromolecule
(for example the centre of mass). By tracing out the monomer degrees of freedom, an
effective pair interaction potential with respect to the centres of the macromolecules
can be derived [19]. In a dendrimer solution the individual macromolecules fea-
ture different conformations due to fluctuations of the monomers, resulting in an
almost spherical statistical intramolecular monomer distribution. For the statistical
behaviour of the macromolecules only the average over all conformations and ori-
entations of the interacting dendrimers has to be taken into account, provided no



4 CHAPTER 1. INTRODUCTION

phases with orientational order appear. Hence, the interaction between the macro-
molecules can be described by a radially symmetric potential (Fig. 1.2 b)), although
a dendrimer is a complex, structured object. Once this effective interaction is known,
the phase behaviour of the solution can be predicted by means of theory or simula-
tions, regarding the macromolecules as point particles interacting via this potential.
Thus, effective interactions are a powerful tool to bridge the length scales and to
extract macroscopic properties from microscopic details.

As outlined before, simplifications are unavoidable when investigating macro-
scopic properties of soft matter systems; this holds for the development of appropri-
ate models as well as for analytical theories based upon the same. Due to the loss of
details associated with the procedure of coarse graining and approximations made
in theories, consistency with experiments and other levels of description has to be
checked carefully. When comparing theoretical results to experiments, discrepan-
cies can arise from an inadequate underlying model, an inaccurate theory, or both.
Here, computer simulations play an important role as they can provide exact results
(within certain limitations) for a given model [26, 27]. Comparison of the simula-
tional results to those of experiments constitutes a test of the employed model. On
the other hand, comparison to theoretical predictions provides the opportunity to
test the validity of a theory. The latter may, in turn, yield results beyond the scope
of simulations, which are restricted to small particle numbers. Moreover, simula-
tions can help to interpret experimental data, as it will be demonstrated in chapter
5.4.

The main purpose of this work is to find appropriate descriptions for dendrimers
at various levels of coarse graining. At first, the use of a very simple monomer-
resolved coarse grained model is justified by means of simulations and comparison
to experimental data. This model is utilised in the next step of coarse graining in
order to derive the effective interactions. The latter are then employed in simulations
and for theoretical predictions of concentrated solutions and dendrimer mixtures.

The rest of this work is organised as follows: In chapter 2, quantities character-
ising the dendrimers are presented. Moreover, a very simple coarse grained model
describing neutral flexible dendrimers in athermal solvents is introduced. This model
is employed in Monte Carlo (MC) simulations in chapter 3. By comparing the static
conformational properties of isolated dendrimers to the standard coarse grained
model of Murat and Grest [28] and to experimental scattering data, the use of this
simple model is established, which provides an increased performance in MC simula-
tions and thus allows study of larger systems. In chapter 4, the effective interaction
of dendrimers is calculated by means of simulations and density functional theory
(DFT). The resulting pair potentials can be tuned by changing microscopic parame-
ters. By comparing results of simulations employing the effective pair interaction to
those of monomer-resolved simulations at various concentrations, the significance of
many-body effects in concentrated solutions is examined in chapter 5. In addition,
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the monomer-resolved simulations also provide a test of the validity of the oft-used
factorisation approximation to the total scattering intensity into a product of the
form- and scattering factors. In chapter 6, the effective interactions are employed
to investigate the behaviour of dendrimer mixtures by means of theory and simula-
tions, revealing interesting properties such as demixing, micro-phase separation or
pattern formation under confinement, depending on microscopic properties related
to the dendrimers’ architecture. Finally, in chapter 7 a summary and conclusions
are presented.



6 CHAPTER 1. INTRODUCTION



Chapter 2

Basics

In this chapter, we introduce the fundamental quantities that characterise dendrimers
and solutions of the same. We also present a simple coarse grained model (‘bead-
thread model’) whose properties are subject of the next chapters of this study. Fur-
ther, we give a brief overview over Monte Carlo (MC) simulations.

2.1 Terminology

In the synthesis of dendrimers, a stepwise iterative reaction is employed [13, 17]:
starting with an initiator core with f reactive sites, f linear polymer chains consist-
ing of P segments are attached to it, forming the zeroth generation of the molecule,
g = 0. P is referred to as the spacer length. At the end of those chains there are
again functional units, where f − 1 new chains can be attached, forming the next
generation of the dendrimer. In each reaction step, the number of generations is
increased by one, and the procedure is repeated, until the terminal generation G is
reached. The individual generations within a dendrimer are labelled by the gener-
ation index g, with 0 ≤ g ≤ G. Thus, the various experimentally realised types of
dendrimers can be specified by three numbers: the functionality f , the terminal G
and the spacer length P . It is convenient to denote dendrimers as Gn, where n is a
positive integer denoting the final generation number.

In this work, we focus on the usual case of trifunctional units (f = 3). The
studied dendrimers have the architecture sketched in Figure 1.1. Here, the dendra
(branches) emanate from two connected trifunctional units and thereby the two
central monomers comprise the zeroth-order generation, g = 0.1 In this architecture,
the total number of monomers N(g) up to the g-th generation is given by

N(g) = (f − 1)
[
(f − 1)g+1 − 1

]
, (2.1)

1Due to this architecture, the core has the functionality 4 instead of 3. However, none of the
conclusions in this work is essentially affected by this modification in the architecture.

7
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where f = 3. The total degree of polymerization is N = N(G). For G À 1,
the ratio of the monomers at the terminal generation, Nend = N(G) − N(G −
1) = (f − 1)G+1 obeys the relation N/Nend → 2, thus there are as many end-
monomers as in all previous generations. This exponential growth of the number of
monomers with G is a unique characteristic of the dendrimers and arises from their
hierarchical, self-similar architecture. It immediately has as consequence that above
a certain maximum generation no space is any more available to accommodate the
self-avoiding monomers and dendrimers cannot be grown any more.

2.2 Characteristic Quantities

2.2.1 Intramolecular Properties

In this section, we introduce some important intramolecular statistical quantities
which describe the average behaviour of the fluctuating monomers within one den-
drimer. This dendrimer does not necessesarily have to be an isolated dendrimer. In
presence of other dendrimers, the average over all macromolecules is taken.2 As this
average is trivial and for the sake of clarity, we define here all quantities for only
one dendrimer, labelled α. The position of its centre of mass is

Rα =
1

N

N∑
i=1

ri
α, (2.2)

whereby ri
α are the instantaneous positions of the N monomers comprising the

dendrimer.

The Radial Monomer Density Distribution

Dendrimers are subject to internal fluctuations which entail a large number of pos-
sible conformations. For the most problems, only the average conformation of the
fluctuating monomers is relevant, which can be described by the radial monomer
distribution. Since our dendrimers lack a single central monomer, we are led to
consider the radial monomer density distributions ξ(r) with respect to their centres
of mass instead. It is defined as

ξ(r) =

〈
N∑

i=1

δ(r− ri
α + Rα)

〉
. (2.3)

The process of taking configurational averages, 〈· · ·〉 in Eq. (2.3), renders the density
distribution radially symmetric. The same procedure can be applied to monomers

2In that case these quantities become concentration dependent.
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belonging to any chosen generation g; of particular importance are those of the
terminal generation g = G and their density distribution will be denoted by ξend(r).

The Radius of Gyration

The size of the dendrimer can be characterised by the radius of gyration, Rg, defined
as

Rg =

√√√√ 1

N

〈
N∑

i=1

(ri
α −Rα)2

〉
. (2.4)

Equation (2.4) can be directly employed to calculate Rg in simulations. Its experi-
mental value can be extracted from the small-q behaviour of the form factor.

The Form Factor

The form factor F (q) depending on the wavenumber q is a very useful quantity as
it contains information on the size and shape of the molecules on the one hand and
it provides a direct link with experiments on the other. Indeed, when scattering
(light, x-rays or neutrons) from dilute suspensions, the coherent scattering intensity
IS(q) at scattering wavevector q is proportional to the form factor F (q) [29,30]. The
latter is defined as [31–33]

F (q) = 1 +
1

N

〈
N∑

i=1

N∑

j 6=i

exp[−iq · (ri
α − rj

α)]

〉
, (2.5)

with the scattering wavevector q = qout − qin, and q = 4π
λ

sin(θ/2) for elastic scat-
tering, λ being the wavelength and θ the scattering angle. The behaviour of F (q)
at small values of the wavenumber allows to determine experimentally the gyration
radius, since it holds [32]

F (q) ∼= N

[
1− (qRg)

2

3

]
(qRg ¿ 1). (2.6)

By comparison of the experimental value of Rg to the simulational one, the absolute
length scale in coarse grained simulations can be defined.

2.2.2 Intermolecular Properties

The following quantities characterise the dendrimers’ behaviour in solutions, de-
scribing the individual molecules as a whole, represented by their centres of mass.
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The Pair Correlation Function

Let ρ = M/Ω be the number density of the sample containing M dendrimers in a
volume Ω. The radial pair distribution function G(R) between the centres of mass
is defined as

G(R) =
1

ρM

〈
M∑

α=1

M∑

β 6=α

δ (R−Rαβ)

〉
, (2.7)

where 〈· · ·〉 denotes a statistical average and Rαβ = Rα −Rβ is the relative vector
between the centres of mass of the dendrimers α and β. In a uniform system, ro-
tational and translational invariance implies that the pair correlation function only
depends on the magnitude R = |R| of the separation vector [34]. The pair distribu-
tion function G(R) is a measure for the probability of finding two dendrimers at a
distance R, relative to the probability expected for a completely random distribution
at the same density [26].

The Structure Factor

Related to this quantity is the structure factor S(q) that describes the correlations
between the centres of mass in reciprocal space. In isotropic and homogeneous fluids,
S(q) is a function only of the wavenumber q = |q| [31] and it is given by

S(q) =
1

M

〈
M∑

α=1

M∑

β=1

exp [−iq ·Rαβ]

〉
. (2.8)

Note that S(q) and G(R) are related by a Fourier transformation [31]

S(q) = 1 + ρ

∫
dR exp [−iq ·R] [G(R)− 1] . (2.9)

The connection to the experimental measured scattering intensity of concen-
trated solutions will be studied in chapter 5 in more detail.

2.3 The Model

Before introducing the bead-thread model, which will be subject of large parts of
this work, we first present the well-established model of Murat and Grest [28]. The
latter will be used as a reference model for the comparison of the conformational
properties.

Though the bond angles and lengths of the C-C bonds building the dendritic
backbone are almost fixed, they also have rotational degrees of freedom, so that
after a couple of successive bonds with different orientation the information on
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the original direction is lost, giving rise to flexibility of the dendrimer. Hence, it
is reasonable to assume connected branching points as freely jointed and having a
maximum distance. Due to the steric repulsion of the monomers, there is an excluded
volume, i. e., a minimum distance between branching points. Thus, the dendrimer
can be represented by effective monomers (Kuhn segments) which are treated as
bonded spherical beads. Hereafter, the beads are simply termed ‘monomers’ but
one should keep in mind that these are not true monomers in the chemical sense.

Since the length scales characterising the solvent and the dissolved particles are
vastly different, it is reasonable to treat the former as a continuum, leading to a
reduction of complexity, as there is no need to simulate and to keep track of all
those solvent molecules. All that matters is the solvent quality (a fact borrowed
from polymer theory on linear chains). Therefore, the solvent is taken into account
only as an effective medium and the solubility of the polymers is encapsulated in a
small number of parameters, such as the excluded-volume parameter or the form of
the monomer-monomer interaction potential.

In the model originally introduced by Murat and Grest, the interaction between
monomers is described by a pure repulsive Lennard-Jones like potential, and the
bonds by the finite-extensible-nonlinear-elastic (FENE) potential [28]. (hereafter
referred to as FENE-LJ model). In detail, the potential Umm(r) between non-bonded
monomers in this model is given by

Umm(r) =

{
φLJ(r)− φLJ(rc) for r ≤ rc;
0 for r > rc,

(2.10)

where φLJ(r) is the standard Lennard-Jones interaction

φLJ(r) = 4ε

[(σLJ

r

)12

−
(σLJ

r

)6
]
. (2.11)

The cutoff distance rc allows for the modeling of solvents of varying quality. The
choice rc = 21/6σLJ renders the monomer-monomer interaction purely repulsive and
thus suitable for an effective description of athermal solvents. Increasing rc adds an
attractive tail to the interaction. In this way, the value of the second virial coefficient
B2 of the interaction can be tuned so that good (B2 > 0), poor (B2 < 0) and Θ
(B2 = 0) solvents can be incorporated into the model. Here we compare our results
with those obtained by employing [35] rc = 21/6σLJ that models athermal solvents.
Furthermore, bonded monomers are connected via a FENE potential UFENE, acting
in addition to Umm:

UFENE(r) =




−15ε

(
R0

σLJ

)2

ln

[
1−

(
r

R0

)2
]

for r ≤ R0;

∞ for r > R0,
(2.12)
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where R0 = 1.5σLJ and T = 1.2ε/kB. This model was also recently employed
by Harreis et al. [35] in an analysis of the fluctuations of G4-dendrimers and it
was shown that it produces excellent agreement with small-angle neutron scattering
(SANS) measurements for the form factor.

The essential features of the FENE-LJ model are a strong repulsion between
monomers and a maximum bond length. An even simpler model featuring the same
characteristics is defined by a Hard-Sphere interaction VHS(r) that plays the role
of Umm(r) and ideal ‘threads’ with a maximum extension (1 + δ)σ that connect
the beads and whose effect is given by the interaction potential Vbond(r) below.
Explicitly, we have

VHS(r) =

{ ∞ for r/σ < 1
0 otherwise

(2.13)

for non-bonded monomers and

Vbond(r) =




∞ for r/σ < 1
0 for 1 < r/σ < 1 + δ
∞ for r/σ > 1 + δ

(2.14)

for bonded monomers, i.e., the hard spheres of diameter σ are surface-to-surface
connected by threads of contour length δσ. In order to avoid the occurrence of
ghost chains during the simulations, i. e., crossing of bonds, δ has to be chosen
smaller than

√
2− 1 ∼= 0.414. However, when only statical problems are considered,

this restriction is not necessary. This bead-thread model was employed in the recent
work of Sheng et al. [36] who examined the dependence of the radius of gyration of
dendrimers on the spacer length P and generation number, restricted to the case
δ = 0.4. No results for density distributions or form factors were examined, however.

In the limit δ = 0, the bead-thread model reduces to tangent hard spheres, a
model commonly used for simulations of polymers. Lue and Prausnitz [37] have
also employed the tangent hard spheres-model to simulate dendrimers, with the
difference that there the angle between two bonds at each branching site was fixed to
120o. The stiffness of the bead-thread model dendrimer can be tuned by varying the
surface-to-surface thread length δ. In addition to the special choice of the potential,
the flexibility of the dendrimer can also be modified by the number of spacer beads
between the branching points. Here, we examine exclusively dendrimers without
additional spacer beads (P = 1).

Figure 2.1 shows a snapshot of a typical conformation of a G4-dendrimer, gen-
erated during the simulation employing the bead-thread model.
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Figure 2.1: Simulation snapshot of a G4 dendrimer using the bead-thread model with
δ = 0.10. The blue spheres of diameter σ denote the monomers of the end groups, while
all other monomers are represented by semi-transparent spheres. The bonds between the
monomers are rendered as cylinders. The spread of the end-monomers inside the dendrimer
can be clearly discerned.

2.4 Monte Carlo Simulations

Following references [31], [26] and [27], we give a brief introduction into Monte Carlo
techniques.

Let rN ≡ {r1, ..., rN} denote the positions of N particles with the total potential
energy VN(rN). The canonical ensemle average of a function F of the particle
coordinates can be written as [31]

〈F 〉 =

∫
F (rN) exp[−βVN(rN)] drN

∫
exp[−βVN(rN)] drN

. (2.15)

Evaluating these 3N dimensional configurational integrals with standard numeri-
cal methods is practically impossible. Another approach to calculate the ensemble
avarage is to generate a large number N of random configurations of the particles.
This ‘brute force’ Monte Carlo method is inefficient, because it is likely that vast
majority of the generated configurations have an extremely small Boltzmann fac-
tor and thus would yield a negligible contribution. It is thus desirable, to generate
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configurations more frequently in those regions of the configuration space that con-
tribute most to the integrals in (2.15). When such a non-uniform distribution is
applied, the bias introduced in the sampling is corrected by weighting the configura-
tions appropriately. If W (m) is the probability of choosing a configuration m with
a total potential energy VN(m), equation (2.15) must be replaced by [31]

〈F 〉 ≈

N∑
m=1

F (m) exp[−βVN(m)]/W (m)

N∑
m=1

exp[−βVN(m)]/W (m)

. (2.16)

Here, the Boltzmann distribution itself,

W (m) ∝ exp[−βVN(m)] , (2.17)

is of particular interest, because in this case equation (2.15) reduces to

〈F 〉 ≈ 1

N
N∑

m=1

F (m) . (2.18)

The canonical average is therefore obtained as an unweigthed average over configu-
rations in the sample [31].

The principal difficulty is to find a procedure which generates configurations
with the desired distribution. The Metropolis algorithm is a technique employed in
standard MC simulations to generate a sequence of random states, i. e., a trajectory
in the configuration space, according to the Boltzmann distribution: Starting from
a system in a state m, a new trial configuration n is generated which only slightly
differs from m (by displacing one of the N particles by a small random vector δr).
Let ∆VN = VN(n)−VN(m) be the difference in the total potential energy of the old
and the new trial state. If the new configuration is energetically more favourable,
i. e., ∆VN < 0, the new configuration is accepted. In the other case (∆VN > 0),
the trial move is accepted only with the probability exp(−β∆VN). In this case,
whether a trial move is accepted or rejected is decided by generating a random
number ξ ∈ [0, 1]: if ξ ≤ exp(−β∆VN), it is accepted, otherwise, the displaced
particle is set back to its old position.

In case of short range interactions (short compared to the size of the simulation
box), most particles do not contribute to the energy of a particle i. As the energy
calculation is time consuming, it is desirable only to take into account the particles
in the vicinity of the particle under consideration and to exclude the non-interacting
particles from this calculation. This can be achieved by using Verlet lists, cell lists,
or a combination of both methods [27,38,39].
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In Monte Carlo simulations of the bead-thread model, it is not necessary to
calculate the potential energy or the forces; one only needs to check for overlaps of
particles, and whether the maximum bond length condition is fulfilled. If one of
these conditions is violated, the trial move is rejected in any case, so the search for
further overlaps can be aborted. Furthermore, due to the very short range of the
hard sphere interaction, neighbour lists are very efficient. Therefore, Monte Carlo
simulations of this model are very fast, which is important due to the exponential
growth of the number of monomers with the generation number.
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Chapter 3

Isolated Dendrimers

In this chapter, we examine the sizes and conformations of flexible dendrimers of
generation numbers G = 4 to G = 9 by means of Monte Carlo simulations on a
coarse-grained level. To this end, we introduce a simple, ‘bead-thread’ model with
variable thread-to-bead size ratio δ. In addition, we compare the results from this
model to previously calculated ones, based on a soft-sphere–spring model, in order
to test the dependence of the results on the microscopic details. We find a clear
insensitivity of the resulting conformational properties on those, both models lead-
ing to dense-core density profiles and to increasingly compact structures upon in-
crease of the terminal generation. Moreover, we calculate the distribution of the
end-monomers, which turns out to be broad and extending throughout the volume
occupied by the dendrimer. The dependence of the radius of gyration Rg on the
monomer number N does not follow the scaling law Rg ∼ N1/3 that has been often
put forward in the literature, but rather it obeys, for high generation numbers, a
dependence of the form Rg ∼ N0.24. (Published in Ref. [75].)

3.1 Introduction

Research on dendrimers is a part of modern nano-science with the aim of tailor-
ing material properties at the molecular level. The motivation for the current in-
vestigations rests on the enormous flexibility in modifying the architecture of the
dendrimers, in line with the general scheme sketched above, and which leads to the
possibility of adapting dendrimers to meet various needs in applications [2]. The
two-dimensional rendition of the dendrimer’s shape shown in Figure 1.1 suggests a
structure with internal voids and with a dense shell, and has thus led to the concept
of the hollow ‘dendritic box’ that can be employed as carrier for smaller molecules
encapsulated in its interior [11]. This dense-shell or hollow-core model of dendrimers
was also put forward in the early theoretical analysis of de Gennes and Hervet [12]

17
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that was based on self-consistent field (SCF) calculations. Following the pioneering
work of Lescanec and Muthukumar [14], however, it has been demonstrated in var-
ious simulational studies during the last 10 years that the dense-shell model does
not describe the conformations of self-avoiding, neutral dendrimers, as we discuss in
more detail below. The pitfall in the SCF-calculations of de Gennes and Hervet has
been their implicit assumption that the end-groups of the dendrimers are localised
on their periphery. When this restriction is relaxed, then the improved SCF cal-
culations lead to the opposite, dense-core picture of the dendrimers, in which the
monomer density monotonically decays with the distance from their centre and the
end-monomers are distributed throughout the molecule. The pioneering theoretical
study that led to the dense-core model has been carried out by Boris and Rubin-
stein [15]. Zook and Pickett [16] have recently revisited the arguments of de Gennes
and Hervet and pointed out to the weakness that led to the erroneous, dense-shell
prediction. The problem lies in the assumption that there is a unique, typical trajec-
tory of a chain that dominates all others, equivalently, a unique ‘ground state’ of the
system. However, it turns out that there are infinitely many, degenerate trajectories
for the self-consistent potential, in analogy to the well-known case of the parabolic,
planar polymer brush [40]. When the degeneracy is taken into account, a parabolic
density profile with a maximum at the core as well as a distribution of the chain
tips throughout the dendrimer [16].

Various different models for dendrimers have been proposed in simulation studies
of the same, ranging from atomistic ones [21–24], in which detailed force-fields are
employed, to coarse-grained ones [28,35–37,44–49], in which the steric and bonding
interactions are modeled by means of simple, radially symmetric pair potentials.
Often the simulations of coarse-grained models require specially designed algorithms,
such as pivot moves [45,46]. Also, some of the simulations are performed on lattice
models and there special care has to be taken in order to employ moving algorithms
that satisfy detailed balance [41, 42, 44, 51]. It is desirable, thus, to develop an off-
lattice model, so that an artificial discretization of space can be avoided, which at
the same time is simple enough to be simulated by standard techniques and also
sufficiently realistic to capture the salient features of the dendrimers’ behavior at
the mesoscopic length scale.

In this chapter, we introduce a model for dendrimers that is particularly well-
suited for performing Monte-Carlo (MC) simulations. Due to its simplicity, it allows
for a systematic investigation of the dendrimers’ properties for a a wide range of
generations G. Moreover, its implementation can be carried out by employing the
standard, Metropolis Monte Carlo algorithm: no resorting to specially designed
moves is necessary. In our approach, we envision every monomer as a hard sphere of
diameter σ whereas the bonding between monomers is modeled by flexible threads
of maximum extension ∆ = σ(1+ δ). The extension of the thread can be varied and
offers one tunable parameter for the model. On the other hand, in order to test the



3.2. SIMULATION DETAILS 19

sensitivity of the conformational properties of the dendrimers on the details of the
microscopic interactions employed, we compare the results of the bead-thread model
to those of the standard model of Murat and Grest [28]. We examine exclusively
dendrimers with spacer length P = 1 and we adopt the notation G for the terminal
generation and g ≤ G to denote internal generations within the dendrimer. The
main results of our work read as follows: we find clear evidence of universality of the
static conformational properties of the dendrimers at the mesoscopic level. When
scaled with the radius of gyration, density profiles and form factors arising from
different models practically collapse on one another for a wide parameter range.
Moreover, we calculate the evolution of the scattering form factor with generation,
finding a tendency of the molecules towards sphericity and compactness with growing
G, in accordance with recent experimental results [52]. The distribution of end-
monomers is also broad, once again in agreement with recent SANS measurements
[43]. Finally, the radius of gyration Rg does not scale with the number of monomers
N as a simple power law for the whole range of N considered.

3.2 Simulation Details

We simulated dendrimers of terminal generations G = 4 to G = 9 having the
architecture sketched in Figure 1.1. To generate an initial configuration, a dendrimer
of generation G is built of a dendrimer of generation G− 1 by trying to attach the
additional end groups during a separate Monte Carlo simulation. To achieve this, for
all monomers of the generation G− 1 that do not have end-groups yet, we generate
randomly two test monomers at a distance σ. These two test monomers are checked
for overlap with each other and all other existing monomers. If no overlap occurs,
the test monomers are accepted as end monomers and subsequently they are allowed
to move up to a maximum distance (1 + δ)σ from their parent monomer, according
to Eq. (2.14). Otherwise, new positions for the test monomers are generated up to
100 times. This procedure is repeated during each MC step.

As an alternative way to produce the initial configuration, we also generate one
of the two arms of the dendrimer randomly, which is subsequently duplicated and
mirrored. These two arms are then pulled together in a separate MC simulation.
In order to create the random arm, we use a recursive function that creates two
new randomly oriented unit-vectors to a given vector, i.e., the direction of the con-
nection between the considered monomer and its origin monomer in the generation
below. For these two new positions, overlaps are checked and, if they are accepted,
the function calls itself for these two vectors until the requested generation num-
ber is reached. If after 10 000 test positions no two new vectors could be found,
the recursion is aborted and started anew at the central monomer. This second
method, though, yielded accepted configurations within feasible time scales only up
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to terminal generations G = 7; for higher G’s the required time turns out to be
prohibitively long. We have tested that the two methods of generating the initial
configuration lead to identical conformational averages after the equilibration time,
guaranteeing that the dendrimers have relaxed and we are indeed sampling equi-
librium configurations. We were not able to find any acceptable initial states for
dendrimers larger than G9 employing thread lengths δ = 0.05 and 0.10. However,
growth of a G10-dendrimer has been achieved with thread lengths δ = 0.30 and
0.40. Typically, after a phase of equilibration of 107 Monte Carlo steps, 108 (for G4)
to 109 (for G9) MC steps were simulated, of which 4× 105 to 4× 106 configurations
were used to calculate the statistical averages. In order to provide an additional
check of the equilibration procedure, we increased the equilibration time by a factor
10, especially for the G8 and G9 dendrimers, finding no change in the resulting
density profiles and sizes beyond the level of statistical noise. Moreover, since there
is no energy to be monitored during equilibration in our model (pure hard sphere
interactions), we have monitored instead the growth of the radius of gyration during
the process of adding end-groups to generate dendrimer GN from an equilibrated
dendrimer G(N − 1). Throughout the process of adding the endgroups, Rg grows
monotonically. After all the endgroups have been attached, Rg shows small vari-
ations well within the equilibration time but after no more that 50 000 MC steps
it saturates to its final value and only shows statistical-noise variance around its
average thereafter.

3.3 Density Distributions

In this section we present the results regarding the density distributions from MC
simulations of the bead-thread model with varying thread length δ and their compar-
isons with those from MC simulations of the FENE-LJ model described above [35].

The results for the density distribution of a G4 dendrimer are shown in Figure
3.1. The local minimum at r = 0 arises from the fact that the centre of mass is
located in the neighbourhood of the midpoint between the two monomers making up
the zeroth generation and in this region few monomers can be found. Otherwise, we
obtain typical dense-core profiles, with a narrow minimum after the first peak that
comes about from the coordination between the g = 0- and g = 1-monomers. As can
also be seen in Figure 2.1, end-monomers are distributed throughout the dendrimer.
A striking feature that emerges from the comparison between the density profiles
of the bead-thread model with two different thread lengths (∆ ≡ δσ = 0.05 σ and
0.10 σ), as well as with the density profile from the FENE-LJ model, is their strong
insensitivity on the details of the microscopic interactions employed. When plotted
by using σ or σLJ as units of length, the density profiles from the different models do
differ. In particular, with increasing δ, the density spreads out to larger distances
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and at the same time its height becomes smaller (so that its integral remains fixed
to the number of monomers N). However, when the unit of length is rescaled to
the gyration radius Rg, all curves practically collapse on one another. The effect
of changing the thread’s contour length can still be discerned in the slightly weaker
correlations present for larger δ but it is rather small (see also Figure 3.2). When
the constraint δ <

√
2 − 1 is lifted, so that crossing of bonds is also allowed, the

correlation peaks disappear with growing thread length and the dense core character
becomes even more pronounced (Figure 3.3).
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Figure 3.1: Radial density distribution of a G4 dendrimer with respect to the centre of
mass, normalised by the radius of gyration Rg. The solid line shows the result for the
FENE-LJ model (Ref. [35], courtesy of Holger Harreis), the dashed and dotted lines are
the results for the bead-thread model with the values δ = 0.05 and 0.10. The density
distribution of the end-monomers for the bead-thread model is shown as dashed-dotted
line.

The procedure of using the radius of gyration as the length scale is not only
the natural one for the coarse-grained description of the dendrimers but it provides
contact with experiments as well. Indeed, the microscopic parameter σ has no
direct physical meaning, apart from the obvious requirement that it must be of the
order of the length of a Kuhn segment. In adopting a certain model to describe
experimental data, the radius of gyration Rg which is measurable in small-angle
scattering experiments provides the missing link between theory and experiment and
allows for the assignment of a certain value to the parameter σ, see also Ref. [35].
What we find here (and will be further confirmed in what follows) is that a broad
one-parameter family of models, generated by a varying the absolute value of a
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Figure 3.2: The radial density distribution of a G4 dendrimer for different values of δ.
The dendrimer becomes larger for increasing δ, but Rg also increases, so that the extension
of the density in terms of r/Rg remains constant. The peaks of the different shells are
smeared out as δ increases, because the connections become more loose.
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Figure 3.3: Same as Fig. 3.2, but for δ = 2.0, 4.0.
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single microscopic scale, lead to practically identical results for the description of
the dendrimers at the nano-scale.

This universality picture is further confirmed by the results for the G5-dendrimers,
shown in Figure 3.4. Comparing with the density profile of the G4-dendrimers, three
features show up: first, the correlation effects manifested in the peaks and troughs of
the density profile become more pronounced. Second, a plateau of roughly constant
density starts developing in the region 0.5 . r/Rg . 1.0 but it should be empha-
sised that the height of this plateau is not constant but growing with G. Finally, the
end-monomer distribution leaks more towards the central region of the molecule.
We will return to the first two points shortly.
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Figure 3.4: Same as Figure 3.1 but for a G5 dendrimer. The results for the LJ-FENE
potential (solid line) are courtesy of Holger Harreis.

At this stage, it is interesting to monitor the development of the end-monomer
distribution as a function of G for high generation numbers, G6 to G9. The result
is shown in Figure 3.5. The outermost part of the dendrimer is populated by end-
monomers but the converse is not true. With increasing G, the end-monomers tend
to distribute themselves within the molecule. There is a depression following the
maximum at the edge of the molecule, caused by the fact that there the density
profile of the G − 1-generation monomers displays its own local maximum. Some
substructure is visible for G = 8 and G = 9 dendrimers. Strong back-folding of the
dendra is taking place, a necessary mechanism for accommodating the increasingly
large number of monomers, in agreement with findings in previous on- and off-lattice
simulation studies involving a variety of model interparticle forces [14,24,28,37,44–
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49]. Preceding studies were limited to generation numbers G ≤ 7, however. In this
work, we demonstrate that the backfolding mechanism is also present for higher-
generation dendrimers but it can only be efficient if substantial stretching of the
inner generations takes place. This stretching can be observed in Figure 3.6, where
the monomer density distribution of the inner generations (g = 0 − 8) of a G9
dendrimer is shown together with the complete density distribution (i. e., g = 0− 8
too) of a G8 dendrimer: compared to the G8 dendrimer, the density profile of
inner monomers of the G9 dendrimer increases at the periphery; in other words, the
inner monomers take a larger volume, and as a consequence, the average monomer
density decreases in the centre of the molecule, leaving space for the additional g=9
monomers. Simultaneously, the coordination peaks slightly shift to higher radii.
In order to visualise the very high degree of back-folding, we show in Figure 3.7 a
simulation snapshot from a G6-dendrimer in which one selected, back-folded branch
has been explicitly marked and in Figure 3.8 a snapshot of a G9-dendrimer and a
view of the same configuration cut through the middle of the molecule.

By comparing Figures 2.1, 3.7, and 3.8, we first note that an increase in the
terminal generation has the effect of turning the dendrimer more compact and its
boundary sharper. Indeed, the loose outermost ‘blobs’ that are visible for the G4
and G6-dendrimers have disappeared in the case of the G9-molecule. The distribu-
tion of end-monomers in the whole of the molecule is evident. In the case of the
G9-dendrimer, a very interesting feature emerges, namely the following: since the
number of terminal monomers to be accommodated is becoming exceedingly high,
the corresponding voids have to be created at some other place in the molecule,
in particular in its interior. Thereby, the chains building the lower generations
(up to g = 4) stretch and open up. The end-monomers are now folding back into
precisely the voids created by this stretching, as can be seen also by comparing the
terminal-generation and total density profiles in Figures 3.5 and 3.9. There is strong
localization of the low-generation monomers and the dendritic structure up to g = 4
becomes clearly visible. This should be compared with the snapshot of a dendrimer
of terminal generation 4 in Figure 2.1. If the bonds were omitted there, it would
be hard to say that the spheres belong to a dendrimer, whereas in Figure 3.8 the
dendritic architecture of the lowest generations is immediately recognizable and has
a clear similarity with the ‘flattened out’, rigid chemical structure shown in Figure
1.1.

These features can be quantified by looking now at the total density profiles
of the dendrimers, shown in Figure 3.9. With increasing G, strong peaks develop
for the first few generations, indicating the strong localization of the monomers
belonging to those and the stretching of the inner parts of the arms. This finding
is in agreement with the recent theoretical results of Timoshenko et al. [50] who
considered a model of beads connected by harmonic springs. They found that the
innermost springs connecting monomers are the most extended, with the degree of
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Figure 3.5: End-monomer density distributions for G6-G9 dendrimers, as obtained by
the MC-simulation of the bead-thread model with δ = 0.10.
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Figure 3.6: The solid line shows the overall monomer density distribution for a G8 den-
drimer, and the dashed line shows monomer density distribution of the inner generations,
g < G, of a G9 dendrimer (ξ(r)− ξend(r)).
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Figure 3.7: Simulation snapshot of a G6-dendrimer obtained by employing the bead-
thread model with δ = 0.10. The left panel shows all monomers rendered as spheres of
diameter σ. A single, back-folded branch has been selected and colored red, whereas all
other monomers are rendered as glass spheres. The shadowing assists in demonstrating
the back-folding of the branch within the body of the dendrimer. Right panel: here only
the monomers of the back-folded branch are shown as spheres and they are color-coded
as follows: the end monomer is colored yellow and it is situated within the dendrimer.
Starting from this, a path leads to one of the two innermost monomers, colored red.
Increasing intensity of red denotes approaching of the aforementioned central monomer.
All other monomers are omitted for clarity, but the bonds are rendered as cylinders.

stretching decreasing as one moves along the terminal bead along a dendrimer’s
branch. In comparing the locations of the weak local maxima of the end-monomer
distribution for G9, shown in Figure 3.5 with the total density profile in Figure 3.9,
we see that the end-monomers that fold back into the inner part of the molecule are
to be found in the void regions created by the strongly stretched first few generations.
These form a rigid structure, witnessed by the strong coordination peaks of the total
density profiles in Figure 3.9. Additionally, we remark that the density profiles at
r = 0 decrease to zero value upon increasing G. This implies that the centre of
mass becomes more and more sharply localised at the midpoint between the two
beads of the zeroth generation as G increases, where no monomers are ever found.
For lower values of G, the fluctuations of the molecule can displace the centre of
mass considerably and bring it occasionally in coincidence with the position of one
of the central monomers, giving rise to the nonzero value of ξ(r = 0). We draw
the conclusion that dendrimers with G ≥ 6 possess a rigid, non-fluctuating core
consisting of the stretched first few generations and in those all (weak) fluctuations
take place at the outermost part of the molecule.

Another question that has caused quite some controversy in the literature is that
of the scaling of the gyration radius Rg with the number of monomers N . Lescanec
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Figure 3.8: Simulation snapshot of a G9-dendrimer obtained by employing the bead-
thread model with δ = 0.10. The left panel shows all monomers rendered as spheres of
diameter σ, with those belonging to the end-generation colored blue and all other rendered
as semi-transparent spheres of diameter σ. The outer surface is covered exclusively by
g = 9-monomers but there are also many end-monomers within the dendrimer that are
somewhat obscured by the high concentration of semi-transparent spheres. Right panel:
a cut through the middle of the configuration on the left, showing the coordination of the
monomers belonging to various generations within the dendrimer. The generations are
color-coded as indicated in the color bar on the right.

and Muthukumar [14] found in their pioneering simulation work Rg ∼ N0.22±0.02 but
some doubts regarding the equilibrated character of their configurations remained
[28]. Murat and Grest [28] on the other hand, report a scaling relation of the form
Rg ∼ N1/3, indicating that dendrimers are compact structures with a constant
average density within their volume. Since then, there have been various claims
both in favor of the ∼ N1/3-law [22,24,49,51] and in favor of a ∼ N1/5-dependence
[36, 46]. Sheng et al. [36], who employed the same model as we do for the special
case δ = 0.40, offered an explanation for these discrepancies. They found that when
Rg is considered as a function of N for fixed thread length P (the monomer number
N changing through a change of the final generation G), then a scaling Rg ∼ N1/3

obtains. If one now keeps the generation number G fixed and varies N through a
change of the thread length, a different scaling, Rg ∼ N3/5, identical to the behavior
of linear polymers obtains. But if one wants to describe all dependencies of Rg in
a single scaling law, then the correct dependence is indeed Rg ∼ (PG)2/5N1/5, as
conjectured by Chen and Cui [46]. In all preceding studies, typical generations range
from G3 to G7 and monomer numbers lie in the domain 10 . N . 1000.

We have also examined the N -dependence of Rg in our study, in which however
we have a fixed spacer number P = 1 and thus we can vary N only through a vari-
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Figure 3.9: The density profiles for G6 to G9 dendrimers, obtained from the bead-thread
model with δ = 0.10. Here, the bead diameter σ is used as the unit of length.

ation of the generation number G. The results are shown in Figure 3.10. It is clear
that a single power-law of the type Rg ∼ N1/3 does not describe the Rg-dependence
in the whole range of N considered. Even at small generation dendrimers, G4 to
G7, there are slight deviations from this law, which become strong for the higher
generations, G7 to G9. For the latter case, a dependence of the form Rg ∼ N0.24

appears to hold. Taking into account the finding of Sheng et al. [36] that the correct
scaling has the form Rg ∼ (PG)2/5N1/5 and that in our model P = 1 and G ∼ lnN ,
we see that rather a dependence of the type Rg ∼ (lnN)0.4N0.2 obtains. In the
N -domain corresponding to G7-G9 dendrimers, this dependence strongly resembles
a ∼ N0.24-law. Thus, our finding should not be interpreted as a universal law but
rather as a local fit of the results in the region 400 . N . 2000. Our results are
in agreement with the original prediction of an exponent x = 0.22 ± 0.02 of Les-
canec and Muthukumar [14] within error bars and close to the exponent 1/5 of Chen
and Cui [46] and Sheng et al. [36]. Giupponi and Buzza [51] also reported devia-
tions from the 1/3-exponent in their lattice model, however these were much weaker
than the ones we find here. The explanation for the deviation from the ‘compact
sphere’-exponent 1/3 can be found in Figure 3.9 showing the density profiles of the
dendrimers. It can be seen that there exists a large plateau in the monomer profiles,
in which the density is roughly constant. Were this constant value to be also inde-
pendent from G, this would lead to the conclusion of a RG ∼ N1/3-dependence. We
notice, however, that by increasing G the height of the plateau itself increases. Thus,
if we envision the dendrimers as homogeneous spheres to a first approximation, we
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Figure 3.10: Double-logarithmic plot of the radius of gyration Rg against the number of
monomers N of the dendrimers. The change in N is caused by an increase of G and the
results shown are for G = 4, 5, 6, 7, 8 and 9. It can be seen that the results for large N
can be fitted by a power-law Rg ∼ Nx with x = 0.24 and not by Rg ∼ N1/3. The error
bars on the data are of the order of 10−3 σ.

see that the density of these spheres grows with G and thus the N(G) monomers are
packed more and more densely. This causes the exponent to be significantly smaller
than 1/3 and having the apparent value 0.24. It should also be noted that the
deviation from the RG ∼ N1/3-dependence is connected with the stretching of the
innermost generations for the G7, G8 and G9-dendrimers, in conjunction with the
short-spacer condition, P = 1, employed in our study. The innermost generations
for these dendrimers cannot be described as flexible chains any more and hence a
universal scaling law cannot be valid.

The existence of the density plateau is in agreement with the result of Murat and
Grest [28] but our findings are at odds with their claim that the value of the density
at this plateau is independent of the generation number. On the other hand, our
simulation is in agreement with two recent scattering studies. A clear deviation from
the N1/3-law for dendrimers with 4 ≤ G ≤ 8 has been seen in the SAXS-experiments
of Rathgeber et al. [52] An analysis of the results reported there on the basis of a
Guinier fit of the scattering intensities (Table 1 and Figure 6 of Ref. [52]) yields
the law Rg ∼ N0.24, in precise agreement with our results. The authors of Ref. [52]
also argued on the grounds for this slower increase of Rg along the same lines as we
do.1 Moreover, Mallamace et al. [53] report for high-generation dendrimers a scaling

1The dendrimers of Ref. [52] had again a slightly different architecture than ours, for which the
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exponent Rg ∼ N0.21 from a Guinier fit of SAXS-measurements, again close the value
0.24 we obtained in our simulations but very different from the oft-proposed value
0.33.

3.4 Form Factors

An important test for a coarse grained model lies in examining whether its form
factor, equation (2.5), reproduces the experimental scattering data. Very good
agreement between the experimentally determined form factor for G4-dendrimers
and the one obtained from simulations of the FENE-LJ model has been found in
Ref. [35].
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Figure 3.11: Form factors of G4 dendrimers (solid line: FENE-LJ model, Ref. [35]; dashed
lines: bead-thread model with δ/σ = 0.05, 0.10, 0.20, 0.30, 0.40). For clarity, the curves
have been shifted upwards in amounts of 10 (from bottom to top), otherwise they all
collapse and they become indistinguishable.

It can be seen from Figure 3.11, that the simulated form factor is nearly indepen-
dent of microscopic details like the thread length δ within a wide parameter range,
or even the model type itself (FENE-LJ, bead-thread), when q is scaled with the

number of monomers M(g) up to generation g is given by M(g) = (f − 1)g+3 − f . Comparing
this relation with Eq. (2.1), we find N(g) = M(g − 1) + 1 ∼= M(g − 1) since M(g − 1) À 1. Thus
our simulation results for dendrimers of generation G correspond, in the notation of Ref. [52], to
experimental ones for dendrimers of generation G− 1.
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Figure 3.12: Form factors of G4 dendrimers obtained by simulation of the bead-thread
model for δ = 0.1, 2.0, 6.0.

radius of gyration Rg. This feature is similar to the one already discussed regarding
the density-profiles but it is even stronger for the form factor because the various
F (q)-curves indeed collapse on one another for δ ≤ 0.4. For very long thread lengths
in the bead-thread model, as shown in Figure 3.12 for δ = 2.0 and δ = 6.0 deviations
in F (q) arise. When the form factor is rescaled with the experimental value of the
radius of gyration, Rg = 1.489 [30], the simulation data can be compared to the
scattering data obtained by SANS [29,30] as shown in Figure 3.13. The differences
of the form factors belonging to the various simulated cases are small compared
to the error bars in the experimental data. Therefore, the form factor alone, and
its comparison to scattering data, is not sufficient to decide which model is most
suitable to describe the given dendrimers. As it will be shown in the next chapter,
the structure factor of solutions can provide a test criterion for this purpose.

Finally, in Figure 3.14 we show the form factors of G4 - G9 dendrimers on a dou-
ble logarithmic scale. With increasing generation number, an oscillatory structure
in the domain qRg & 3 shows up, signaling the fact that the dendrimers develop
sharper boundaries. The oscillations first appear for generation numbers exceeding
G = 5, in agreement with other simulation studies [49, 51, 54]. The form factor for
G = 9 has an envelope that scales as ∼ q−4 at high values of the wavenumber, which
represents Porod’s law for scattering from a compact sphere [53]. The shapes of the
curves, their evolution with G as well as the locations of the minima are addition-
ally in very good agreement with experimental scattering curves from dendrimers of
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Figure 3.13: Total scattering intensity IS(q) from a dilute solution of G4 dendrimers. The
circles are SANS-data from Ref. [30]. The lines are obtained from the simulation form
factor of the bead-thread model with δ = 0.10, 2.0, 6.0. The simulation yields F (q) as a
function of qσ. The value of σ is determined so as to obtain the experimentally measured
radius of gyration, Rg = 1.489 nm in this case, and the horizontal axis is appropriately
rescaled. Experimentally, the forward scattering intensity IS(0) is not directly measurable,
but can be calculated via the experimentally measured volume of the molecule [58].
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Figure 3.14: Double-logarithmic plot of the form factors for dendrimers G4 to G9 ob-
tained by the simulation of the bead-thread model with δ = 0.10. The straight solid line
represents Porod’s law, F (q) ∼ q−4.

varying generation numbers [52, 53, 55, 56]. This amply demonstrates the ability of
the present model to describe real dendrimers.
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Chapter 4

Effective Interactions

We employ extensive Monte Carlo and Molecular Dynamics simulations to inves-
tigate the effective interactions between the centres of mass of dendritic macro-
molecules of variable flexibility and generation number. Two different models for
the connectivity and steric interactions between the monomers are employed, the
first one being purely entropic in nature and the second explicitly involving energetic
interactions. We find that the effective potentials have a generic Gaussian shape,
whose range and strength can be tuned via modifications in the generation number
and flexibility of the spacers. We supplement our simulation analysis by a density-
functional approach in which the connectivity between the monomers is approximated
by an external confining potential that holds the monomer beads together. Using a
simple density functional for the interactions between the monomers, we find semi-
quantitative agreement between theory and simulation. The implications of our find-
ings for the interpretation of scattering data from concentrated dendrimer solutions
are also discussed. (Published in Ref. [94].)

4.1 Introduction

Most of the theoretical investigations on the properties of dissolved dendrimers have
focused on the questions of their internal conformations and sizes [17]. Much less
is known about the effective interaction (to be defined in Sec. 4.2) between two
dendrimers, which is important in many respects: provided the particles interact
through pairwise-additive forces, the thermodynamic properties of the system may
be calculated theoretically [31], and the reduction of complexity allows efficient
simulations of large systems. Finally, it enables calculation of the structure factor
and thus comparison to scttering experiments.

Lue and Prausnitz [37] as well as Lue [47] have carried out simulations based on a
tangent-sphere model for the dendrimers, whereas Likos et al. [57,58] have presented

35
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a Flory-type theory yielding a Gaussian interaction potential. Nevertheless, the
detailed form of the effective interaction as well as its dependence on generation
number and spacer length between the branching points has not been investigated
to date. The purpose of this chapter is to examine in detail this question.

Having established the validity of the bead-thread model in chapter 3 by com-
paring its properties for isolated dendrimers to another coarse-grained model and to
experiments, we may now proceed to use it to derive the effective pair interaction
between dendrimers. This is achieved in two different ways: first, we directly mea-
sure the effective potential by means of simulations for varying parameters. Here,
again, we compare the results to those for the FENE-LJ model. Secondly, we em-
ploy a density functional theory based on the simulational radial monomer density
of isolated dendrimers.

4.2 Theoretical Concepts

A very useful concept for understanding at least the equilibrium behavior of complex
fluids is that of the effective interaction between suitably chosen degrees of freedom
[19]. Since we are not interested in keeping track of all the fluctuating, microscopic
degrees of freedom, it is pertinent to choose one effective coordinate that represents
somehow the whole macromolecule, integrate out the rest, and envision thereafter
the dendrimers as ‘point particles’ interacting by means of an effective potential.
The latter includes all the effects of the integrated-out degrees of freedom and the
thermodynamics of the system is preserved.

The choice of the effective degrees of freedom is largely a matter of convenience.
For star-branched macromolecules, such as star polymers [59] or polyelectrolyte
stars, [60] the common anchoring point is the natural choice. For linear polymer
chains, both the central monomer [61] and the centre of mass [62–67] have been used
as effective coordinates. For dendrimers, the centre of mass is a natural choice for
two reasons: first, many experimental dendrimers lack a central particle and second
because it is precisely the correlations between the centres of mass that are probed
in scattering experiments [30]. Since the centres of mass are not real particles of
the system, the definition of the effective interaction between those requires some
explanation. We present a mathematical definition of this concept below.

Consider two macromolecules consisting of N monomers each. Let α = 1, 2
denote the composite molecule and i = 1, 2, . . . , N be the index characterizing the
individual monomer, so that piα uniquely denotes the canonical momentum of a
particular monomer of mass m and riα its position vector. Our starting point is the
Hamiltonian of the whole system, H, which can be decomposed as follows:

H = H11 +H12 +H22. (4.1)
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Here, Hαβ includes terms pertaining to interactions between monomers of macro-
molecules α and β only, i.e., H11 andH22 include the interactions between monomers
of the same dendrimer (as well as the trivial, kinetic energy terms), whereas inH12 all
cross-interactions between monomers belonging to different dendrimers are incorpo-
rated. Introducing the pair potential functions Vc and Vs that model the connectivity
and the steric interactions between the beads, respectively, we can therefore write:

Hαβ = δαβ

N∑
i=1

p2
iα

2m
+ δαβ

∑
i<j

[Vc({riα}) + Vs({riα})]

+ (1− δαβ)
N∑

i=1

N∑
j=1

Vs({riα, rjβ})

= K + Vαβ, (4.2)

where {riα} is a shorthand for (r1α, r2α, . . . , rNα), K stands for the kinetic energy
and Vαβ for the potential energy. The canonical partition function of the system, Q,
is defined as

Q =

{
2∏

α=1

h−3Nα

∫
dpN

α

∫
drN

α

}
exp(−βH), (4.3)

where
∫

dpN
α is a shorthand for the multiple integral

∫ ∫ · · · ∫ d3p1αd3p1α . . . d
3pNα,

similarly for drN
α , h denotes Planck’s constant, and β = (kBT )−1, with Boltzmann’s

constant kB and the absolute temperature T . Note the absence of the combinatorial
factors N ! in the definition of the partition function, since the particles are in this
case distinguishable due to their connectivity constraints.

In order to define the effective interaction between the centres of mass of the
dendrimers, we proceed in a way analogous to that employed for linear polymer
chains [64] and introduce the centres-of-mass density operators

ρ̂(α)
cm (Rα) = δ

(
Rα − 1

N

N∑
i=1

riα

)
, (4.4)

where Rα denotes the position vector of the centre of mass of the dendrimer α and
δ(·) is Dirac’s delta function. We keep the centres of mass fixed at the positions R1

and R2 and, following Ref. [64], we define the effective interaction Veff(R1,R2) as

Veff(R1,R2) = −kBT ln

{
Ω2

Q2
1

h−6N

∫
dpN

1 dpN
2

∫
drN

1 drN
2 ρ̂

(1)
cm(R1)ρ̂

(2)
cm(R2)

× exp[−β(H11 +H12 +H22)]
}
, (4.5)



38 CHAPTER 4. EFFECTIVE INTERACTIONS

where Ω is the volume of the system and Q1 is the partition function of an isolated
dendrimer:

Q1 = h−3N

∫
dpN

1

∫
drN

1 exp(−βH11). (4.6)

The connection of Veff to the thermodynamics of the system is provided by Eqs.
(4.1), (4.3), and (4.5), from which it follows

Q =
Q2

1

Ω2

∫ ∫
dR1dR2 exp[−βVeff(R1,R2)]. (4.7)

The effective potential depends only on the magnitude R of the separation vector
R = R1−R2 between the centres of mass, Veff = Veff(R). Its definition in Eq. (4.5)
makes manifest the property Veff(R) → 0 as R → ∞. Since the effective potential
has the form of a restricted partition function, its direct calculation through Eq.
(4.5) in a simulation cannot be achieved through standard simulation techniques [27].
However, it is easy to show from Eq. (4.5) that the Veff(R) is related to the correlation
function G(R) between the positions of the centres of mass through

G(R) ≡ 〈ρ̂(1)(R1)ρ̂
(2)(R2)〉

=
exp[−βVeff(R)]

Ω
∫

dR exp[−βVeff(R)]
, (4.8)

where 〈· · ·〉 denotes a canonical average. Since the calculation of expectation values
is straightforward in a computer simulation, the last result provides a possibility to
measure Veff(R) by using standard techniques.

An alternative possibility is offered by considering the force Fα = −∇RαVeff(R1,R2)
acting on the centre of mass of dendrimer α. It can be shown that this force can be
calculated as the expectation value of the sum of the forces exerted on the individual
monomers, i.e.,

Fα(R) =

〈
N∑

i=1

Fiα

〉

R

(4.9)

where the subscript on the right-hand side implies that the average has to be evalu-
ated at fixed separation R between the centres of mass. Since the proof of Eq. (4.9)
above is somewhat technical, we relegate it to the Appendix.

4.3 Simulation

We have applied two different simulation models, the bead-thread and the FENE-LJ
model, so as to obtain independent results and provide a comparison between them.
In addition, the application of different simulation models helps to shed light into
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the question of the sensitivity of the effective interaction on the microscopic details
of the system. As will be demonstrated below, the results do depend quantitatively
on the numerical values of the microscopic parameters, it is nevertheless possible
to make a broad correspondence between different models, so that they yield very
similar results for the effective interaction.

4.3.1 Simulation Details

Simulations of the bead-thread model

Within the bead-thread model, the most efficient way of measuring the effective
interaction is offered by Eq. (4.8), a technique also applied by Dautenhahn and
Hall to measure the potential between two polymer chains [65]. Indeed, since all
forces between monomers identically vanish, Eq. (4.9) is of no use. The function
G(R) in this case can be obtained by letting two dendrimers freely move within
the simulation box (accepting the moves according to the Metropolis criterion), and
then making a histogram of the centre-of-mass distance R. In order to fulfill the
condition Veff(R) → 0 for large separations R, the histogram has to be normalised
in such a way that G(R) → 1 in the same limit. Then, we can simply set

βVeff(R) = − ln[G(R)]. (4.10)

Since the range of the interaction is anticipated to be finite (of the order of the
gyration radius Rg of the dendrimers), we do not need statistics for large distances
where the interaction potential vanishes, as this would cost unnecessarily simulation
time. In order to prevent this, we accept only moves where the centre-of-mass
distance is smaller than a cutoff distance Rcut

∼= 4Rg. Furthermore, the repulsion
between dendrimers at close separations can be very strong, therefore configurations
with small R are extremely unlikely and would not occur in reasonable simulation
times. In order to deal with this problem and sample all relevant separations equally,
we apply an additional attractive external potential Φ(R) acting on the centres of
mass. The total interaction potential is then V̄ (R) = Veff(R) + Φ(R), giving rise to
the correlation function Ḡ(R). Then, Eq. (4.10) becomes

Ḡ(R) = exp[−βV̄ (R)]

= exp[−β(Veff(R) + Φ(R))], (4.11)

where Veff(R), the real effective interaction potential, is then obtained by

βVeff(R) = − ln[Ḡ(R)]− βΦ(R). (4.12)

The MC simulation is carried out as follows: we try to move a monomer, and for
the new position we check for overlaps and if the maximum bond length condition
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is fulfilled. If the new position is not allowed, the particle is set back to its old
position. This procedure is repeated with all 2N particles. In order to apply the
external potential acting on the centres of mass, we use the Metropolis algorithm:
Consider a configuration with a centre-of-mass distance Rold. After all 2N particles
have been moved (or have been tried to move), we calculate the new centre-of-mass
distance Rnew. If Rnew < Rold, the new configuration is accepted, as the external
potential is attractive. Otherwise, the new configuration is only accepted with the
probability exp{−β[Φ(Rnew) − Φ(Rold)]}. If it is rejected, all 2N particles are set
back to their old positions.

Good statistics can only be achieved if the total potential Vtotal(R) = Veff(R) +
Φ(R) is smaller than ∼ kBT for all distances R; optimally, Vtotal(R) should be
independent of R, so that histograms are flat and all R-regions are sampled equally
frequently. As Φ(R) has to be chosen in that way that the real potential and
the external potential nearly cancel each other, and Veff(R) is not known a priori,
Φ(R) can only be determined within a trial-and-error procedure, where the external
potential is improved after each cycle. In contrast to the simulation of the Lennard-
Jones–FENE model (see the following subsection), where separate simulations are
used for discrete values of R, this method yields the potential for the whole range
0 < R < Rcut in one simulation. Therefore, very long runs are necessary to obtain
good statistics. Here we use 1010 MC steps.

In Fig. 4.1, simulation snapshots of two G4 dendrimers are shown for a centre of
mass distance R ≈ 0 and R ≈ 4σ, respectively. When the dendrimers approach each
other, they are deformed due to the repulsive interaction. As can be discerned from
Fig. 4.1(b), the dendrimers become almost flat at the midplane between their centres
of mass for intermediate separations R, whereas they recover their spherical shape
for full overlaps, Fig. 4.1(a). Results for the effective interaction Veff(R) obtained
within this model will be presented in Sec. 4.3.2.

Simulations of the FENE-LJ model1

To supplement our study, we furthermore carry out Molecular-Dynamics (MD) sim-
ulations2 of two dendrimers employing the FENE-LJ model. The location of diver-
gence in the FENE potential, R0 in equation (2.12), determines the maximum bond
length between two monomers. The average bond-length is additionally influenced
by the prefactor U0. Both can be varied to account for different experimentally
realised dendrimers exhibiting different effective Kuhn lengths. Finally let us note
that the temperature of the system is fixed at T = 1.2ε/kB.

1Carried out by Holger M. Harreis and published jointly in [94].
2In MD simulations, the trajectories of the particles are determined by the classical equations

of motion.
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Figure 4.1: Simulation snapshots of two G4 dendrimers. The monomers of one dendrimer
are rendered as dark spheres, the monomers of the other as light spheres of diameter σ.
The centre of mass distance is (a) R ≈ 0 and (b) R ≈ 4σ.

To determine the effective interaction between two dendrimers at a given centre-
of-mass separation R we proceed as follows: Two dendrimers are placed at the
distance R and standard Molecular-Dynamics simulation techniques are employed
to generate sample configurations. In order to effect the sampling at the given
center-of-mass separation, we introduce an external force acting on the two centres
of masses after each MD time step in the form of a rigid translational move bringing
the two dendrimers back to a center-of-mass separation of R. Typically 6 × 107

MD steps were simulated, with a time-step of 10−3τ , yielding a total MD simulation
time of 6 × 104τ , whereby τ is the MD time unit, τ =

√
mσ2

LJ/ε. Here, m is
the mass of one bead. Of the 6 × 107 MD steps, 107 were used for equilibration.
In the remaining simulation time, 5 × 103 configurations were used to calculate
statistical averages of the effective force acting between the two dendrimers centres
of masses. Concurrently, statistical averages of the radial density distribution ξ(r)
of the dendrimer around its centre of mass, the monomer pair distribution function
g(r), the form factor F (q), as well as its radius of gyration Rg were measured,
yielding results similar to the ones presented in Ref. [35].

4.3.2 Results

We start with the MC-simulation of the bead-thread model. In Figs. 4.2 and 4.3
we show the simulation results for G4 and G5 dendrimers with different spacer
lengths. Although the repulsion is very strong, the dendrimers are interpenetrable.
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Generation δ ε1 ε2 α γ
G4 0.1 55 5.5 6.25 0.950
G4 0.2 49 5.5 6.50 0.925
G4 0.3 44 5.0 6.75 0.925
G4 0.4 39 4.5 5.00 0.900
G4 2.0 12 0.6 7.00 0.700
G5 0.1 120 11.0 6.25 0.900
G5 0.2 104 11.0 6.50 0.875
G5 0.3 89 10.0 6.75 0.850
G5 0.4 78 9.5 7.00 0.850

Table 4.1: The values of the fit parameters of Eq. (4.13) that describe the effective
interaction between dendrimers, for different values of the thread length δ.

Increasing the thread length leads to a softer interaction whose range is also longer.
The effective interaction for all thread lengths considered can be fitted by a sum of
two Gaussian functions having the form:

βVeff(R) = ε1 exp

(
−3R2

4R2
g

)
+ ε2 exp

[−α(R/Rg − γ)2
]
, (4.13)

where Rg is the radius of gyration of the dendrimers, as obtained by simulation
using the same model. The first term in Eq. (4.13) above is identical in form to
the one used previously to describe the interaction in the framework of a Flory-type
theory, [57, 58] whereas the second provides a small correction. The quantities ε1,
ε2, α and γ are fit parameters, whose values are summarised in Table 4.1.

As can be read off from Table 4.1, the effective interaction between dendritic
macromolecules has, to an excellent approximation, a Gaussian form centred at the
origin, the second term in Eq. (4.13) providing simply a small correction. More-
over, the strength of the interaction is governed by the thread length, providing
thus a mechanism for tuning the potential experimentally by employing dendrimers
of varying flexibility. In particular, in order to achieve an interaction strength of
roughly 10 kBT , which is the value used to provide an excellent agreement with ex-
perimental data for G4-dendrimers, [58] a rather long thread length, δ = 2.0 must
be employed. An additional parameter that allows the tuning of the effective po-
tential is the terminal generation number, with G5-dendrimers displaying a stronger
interaction than G4 ones for the same thread length. The effect of the stiffening of
the effective interaction with decreasing δ for fixed G and/or increasing G for fixed
δ can be understood by means of the increased crowding of the hard spheres in the
interior of the dendritic macromolecule.
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Figure 4.2: Simulation results for the effective interaction of G4 dendrimers obtained by
employing the bead-thread model for different values of the thread length δ.
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Figure 4.3: Same as Fig. 4.2, but for G5-dendrimers.
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Figure 4.4: Simulation results for the effective interaction of G4 dendrimers obtained by
employing the Lennard-Jones–FENE model for different values of the divergence length
R0 and the prefactor U0.

In Fig. 4.4 we show the results obtained by performing MD-simulations employ-
ing the Lennard-Jones–FENE model of Eqs. (2.10), (2.11) and (2.12). It can be
seen that the specific microscopic model employed does not affect the generic form
of the interaction. Once more, the shape of the effective potential is Gaussian and
the quantitative details of Veff(R) can be now tuned by changing the microscopic
energy parameter U0 and the maximum length R0 of the inelastic springs. In order
to attain a value comparable to experiment, ∼ 10 kBT , the microscopic energy pa-
rameter and the maximum bond length must be tuned to U0 = 0.5 and R0 = 10.0,
as can be read off from the inset of Fig. 4.4. It is worthwhile noting that a simple
increase in the value of R0 is not sufficient to bring down the strength of the in-
teraction to ∼ 10 kBT , as can be seen from the main plot of Fig. 4.4. In contrast
to the bead-spring model, the maximum extent of the spring is associated with an
energetic cost set by the parameter U0. Thus, only a decrease in the value of U0

can bring about the desired strength of the effective interaction and an increase of
R0 alone is not sufficient. Otherwise, the understanding the influence of these two
parameters on the stiffening of the pair potential is quite intuitive: the repulsion
that every monomer feels from any monomer of the other dendrimer gets lower the
smaller U0 is and, in addition, the larger R0 the more space it has to avoid it.
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4.4 Density Functional Theory

In this section we put forward a first attempt to estimate the effective interaction
between dendrimers by using techniques from classical density functional theory
(DFT). DFT is a powerful theoretical tool that allows for the calculation of equi-
librium density profiles of inhomogeneous fluids and at the same time provides a
way for calculating the free energy of the same under the influence of arbitrary ex-
ternal potentials [68]. For simple classical fluids composed of nonbonded molecules,
various approximate functionals have been developed in the last two decades. The
situation for polymeric fluids, where the bonding between the monomers plays a cru-
cial role, is much less developed. Approximate functionals for polymer chains have
been proposed recently, [69–71] however the complicated, branched connectivity of
dendrimers renders their application to the problem at hand untenable. Hence, we
put forward the idea of removing all the bonds from the molecules and formally
replacing them with an appropriate external potential Vext(r), which is chosen in
such a way that the equilibrium profile of an isolated dendrimer coincides with the
one that has been obtained from simulation.

Let us consider, therefore, an isolated dendrimer whose one-particle density pro-
file is ξ(r), where r measures the distance from its centre of mass. The inhomogeneity
of this profile is caused by the bonding between the molecules, which, in the spirit
of the bead-thread model, we consider as hard spheres of diameter σ. In order to
achieve the same inhomogeneous profile ξ(r) in a fluid of hard spheres composed of
exactly the same number of particles as those in the dendrimer, one needs to act on
the system with an external potential Vext(r). For this system, we thus write down
a classical density functional F [ξ] of the form

F [ξ] = kBT

∫
d3rξ(r)

[
ln(ξ(r)σ3)− 1

]

+ Fex[ξ] +

∫
d3rVext(r)ξ(r), (4.14)

where Fex[ξ] is the excess contribution arising from the excluded volume interac-
tions between the monomers. For this term we use the simplest weighted density
approximation that was introduced first by Nordholm [72] and later refined by Tara-
zona, [73] namely

Fex[ξ] =

∫
d3rξ(r)ψex(ξ̄(r)), (4.15)

with the weighted density ξ̄(r)

ξ̄(r) =
3

4πσ3

∫
d3rΘ(σ − r)ξ(r) (4.16)
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and the excess free energy of the homogeneous hard sphere fluid [74]

βψex(ξ) = η(4− 3η)(1− η)−2, η =
πξσ3

6
. (4.17)

In Eq. (4.16) above, Θ(σ − r) is the Heaviside step function.
In order to determine the fictitious external potential Vext(r), we took the equi-

librium density profile ξ(r) from the MC-simulation of an isolated dendrimer of the
bead-thread model. Requiring that the functional of Eq. (4.14) is minimised for this
profile, we obtain the equation

ln
[
ξ(r)σ3

]
+
δβF [ξ]

δξ(r)
+ βVext(r) = βµ, (4.18)

where the second term on the left-hand side denotes the functional derivative with
respect to the density and µ is a Lagrange multiplier introduced to guarantee that
the number of particles is kept fixed at the number of beads of the dendrimer. Eq.
(4.18) can be immediately solved for Vext(r).

Due to the approximate character of the excess functional, Eqs. (4.15)-(4.17),
a technical problem occurs. The high values of ξ(r) close to the origin, see Fig.
4.5, cause the external potential Vext(r) to develop a deep minimum at r = 0. The
density profile and the external potential are denoted in Fig. 4.5 and in the inset
with the dashed lines. When this potential is reintroduced in Eq. (4.18) and used
to calculate the equilibrium profile, it yields as stable solution not the original one
but a new profile, which is similar to the old one away from the origin but has a
much higher peak close to r = 0. This is a combined artifact of the approximate
nature of the excess functional and the assumption that all bonds can be removed.
In order to remedy this deficiency, we remove the large peak from the simulation
density profile, which arises from the two monomers of the zeroth generation, and
work with a modified profile that includes the effects of the subsequent generations
only. This modified profile is denoted with the solid line in Fig. 4.5. With this
modification, a new fictitious external potential is obtained, denoted with the solid
line in the inset of Fig. 4.5, which is now self-consistent: introducing anew Vext(r)
in Eq. (4.18) and calculating ξ(r) yields as equilibrium profile the input density,
denoted with the solid line in Fig. 4.5. Though this procedure may seem arbitrary
at first sight, it carries two additional physical motivations. First, the fact that
the bonding between the two innermost monomers cannot be completely removed,
hence we replace both of them with a potential barrier into which the monomers of
the subsequent generations cannot penetrate. And secondly, since we are eventually
interested in the calculation of the effective interaction, which is caused mainly
by the overlap and deformation of the outermost generations, the details in the
treatment of the innermost monomers should be not crucial.
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Figure 4.5: The simulation density profile of a G4-dendrimer with thread length δ = 0.1
(dashed line) and the modified profile that results after removing the high peak arising
from the two monomers of the zeroth generation (solid line). The inset shows the external
potentials Vext(r) that give rise to these profiles in the framework of our density-functional
approach. The lines in the inset are coded in the same way as those in the main panel.
For an explanation of the meaning of the modified profile, see the text.

D

Figure 4.6: A sketch showing two confined hard-sphere fluids whose confining potentials
are kept a distance D apart. All particles interact with one another but the light (dark)
spheres only feel the effect of the light (dark) external potential. Due to the deformation
of the density profiles, the distance D does not coincide with the separation R between
the centres of mass of the confined fluids.
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In order to calculate the effective interaction Veff(R), we now extend the treat-
ment to two dendrimers. Consistently with the picture of a single dendrimer, these
are modeled as two confined hard-sphere fluids, whose respective external potentials
are separated by a distance D. All hard spheres interact with each other but the
molecules of species i only feel the external potential V

(i)
ext(r) that represents the

bonding within the macromolecule labelled by i (i = 1, 2). Since the profiles will be
distorted, D is not identical to the centre-of-mass separation R in general and only in
the trivial cases D = 0 and D = ∞ it holds D = R. Positioning the first dendrimer
at the origin and the second at a distance D, it clearly holds V

(2)
ext (r) = V

(1)
ext (D− r).

The physical setup is schematically depicted in Fig. 4.6. The density functional of
Eqs. (4.14)-(4.17) is now generalised to two interacting dendrimers and reads as

F [ξ1, ξ2;D] = kBT

2∑
i=1

∫
d3xξi(r)

[
ln(ξi(r)σ

3)− 1
]

+ Fex[ξ1 + ξ2;D] +
2∑

i=1

∫
d3rV

(i)
ext(r)ξi(r),

(4.19)

where the D-dependence arises from the separation between the two fictitious exter-
nal potentials. Since the term Fex describes the effect of the interactions between all
beads, irrespective of the dendrimer to which they belong, it depends on the total
density profile ξ1(r) + ξ2(r).

For every separation D, this functional has been minimised with respect to ξ1(r)
and ξ2(r). The equilibrium density profiles serve then to determine also the centre-
of-mass separation R that corresponds to every D and a relation D = D(R) is
established. Clearly, due to the symmetry of the problem, it holds ξ2(r) = ξ1(D−r),
as for the external potentials.

The advantage of this approach compared to the simple Flory-type theory pre-
sented in Refs. [57] and [58] is that the resulting density profiles are now deformed
with respect to their shape at R → ∞, since the presence of the hard spheres
belonging to one dendrimer takes away allowable configurations from those of the
other.

The next issue is to identify the effective interaction Veff(R) between the two den-
drimers. At first sight, it would appear that one should state Veff(R) = F [ξ1, ξ2;D(R)]−
F [ξ1, ξ2;∞] but this is physically unrealistic. First of all, the true dendrimers are
not under the influence of an external potential; the latter has been introduced only
as an intermediate step in order to estimate the deformed density profiles. Moreover,
the first term in the right-hand side of Eqs. (4.14) and (4.19) does not accurately
describe the ideal free energy of bonded molecules, which has a much more com-
plicated form that can be read off in Ref. [69]. We make here instead the physical
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assumption that, due to the very high connectivity between the beads, the true
ideal term is much smaller in magnitude than the one introduced here. The only
term that is realistically reproduced by our hybrid DFT is the excess contribution,
Fex, which is also mainly responsible for the reduction of available states for one
dendrimer in the presence of the other. Our approach is similar to the Flory idea of
removing all connections between monomers and estimating the effective interaction
from the overlap of the two undisturbed density profiles. We maintain this spirit
but use now the deformed density profiles that arise from the DFT to write

Veff(R) ≈ Fex[ξ1 + ξ2;D(R)]−Fex[ξ1 + ξ2;∞]. (4.20)

Clearly, the last term is just twice the excess free energy of an isolated dendrimer.

The results from the DFT-approach are presented in Figs. 4.7 and 4.8 and com-
pared there to simulation. It can be seen that, although the agreement is not
spectacular, the approximate DFT introduced here captures the features of the ef-
fective interaction semi-quantitatively. The evolution of the strength of Veff(R) with
spacer length and the general shape of the effective potential are reproduced. A
general deficiency of the DFT is the systematic overestimation of the width of the
effective interaction. This may arise both from the approximate form of the excess
density functional and from the fact that we did not allow, in this approach, the
fictitious external potentials to vary with R. Indeed, in the true dendrimers the
bonds bend and yield as R varies, whereas here Vext(r) maintains its shape for iso-
lated dendrimers for all values of R. This constraint causes an overestimation of the
effective interaction, however it is not clear at present how it could be lifted in a
self-consistent way.

As a quantitative measure of the deformation of the dendrimers with respect
to their undisturbed shape, we introduce the overlap parameter O(R), defined as
follows: consider the midplane between the line connecting the centres of mass of
the dendrimers and count the average number of monomers N(R) belonging to the
dendrimer whose centre of mass lies to the right of this plane, and which lie to the
left of the plane (the words ‘right’ and ‘left’ can be interchanged here.) With N
being the total number of monomers in the dendrimer, we define

O(R) =
2N(R)

N
. (4.21)

The definition above guarantees that in the limit R = 0 the overlap parameter
attains the value unity. In Fig. 4.9 we show a representative result, obtained for two
G4-dendrimers of thread length δ = 0.1. Though the DFT still overestimates the
overlap between the dendrimers, it provides an improvement upon the result of the
undistorted density profiles, which is denoted by the dotted line in Fig. 4.9.
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Figure 4.7: Simulation results (solid line) and DFT results (dashed line) for G4 dendrimers
with δ = 0.1, 0.2, 0.3, 0.4 (top to bottom).
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Figure 4.8: Simulation results (solid line) and DFT results (dashed line) for G5 dendrimers
with δ = 0.1, 0.2, 0.3 (top to bottom).
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Figure 4.9: The overlap parameter defined in Eq. (4.21) for two G4-dendrimers with
thread length δ = 0.1, as a function of the centre-of-mass separation R.

4.5 Connection to experiments

In scattering experiments at vanishing concentration of dendrimers, the form factor
F (q) of the macromolecules is measured as a function of the scattering wavevector
q. The form factor provides information about the size and typical conformation of
dendrimers. In chapter 3 and two recent publications, [35, 75] it has been demon-
strated that both the bead-thread model and the Lennard-Jones–FENE model yield
results that can bring about excellent agreement with experimental data on the form
factor of G4-dendrimers. Moreover, the bead-thread model correctly predicts the
evolution of dendrimers toward compact hard spheres with growing terminal gen-
eration number. [52, 75] As it has been argued before, chapter 3 the broad family
of the bead-thread model, parametrised by the value of the spacer length δ, pos-
sesses a degree of universality as far as the form factors are concerned: when plotted
against the dimensionless parameter qRg, the form factors arising from different
values of δ show only minor differences to each other and, when compared to SANS-
experiments, all lie within experimental uncertainties. Since in the bead-thread
model it holds Rg = αδσ, where αδ is a δ-dependent numerical coefficient of order
unity, for every value of δ a corresponding length scale σ (say, in nm) can be chosen,
so that the simulation results and the given experimentally measured F (q) agree
quantitatively. In other words, on the basis of experimental information on F (q)
alone, it cannot be determined which member of the δ-parametrised family is the
best model to describe the real system.
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The situation is different when experimental results from concentrated dendrimer
solutions are available. In this case, the total scattering intensity contains informa-
tion about the correlations between the different dendrimers, which is encoded in
the static structure factor S(q). The latter quantity is sensitive to the strength
of the effective interaction between the centres of mass. As demonstrated in Fig.
4.10, a soft interaction, such as the one that arises from the bead-thread model for
high values of δ, gives rise to structure factors that are deprived of any significant
peaks. [57, 58] On the other hand, stiff dendrimers with short spacer lengths (small
δ) are expected to give rise to scattering profiles exhibiting a strong degree of liquid-
like ordering in the system, as can be seen in Fig. 4.10. The structure factor S(q)
does not display the universality of the form factor F (q), even when plotted as a
function of qRg. Thus, it provides a suitable tool to determine which member of the
bead-thread family best describes a given solution of flexible dendrimers.

Finally, we note that in view of the fact that the Gaussian interaction between
dendrimers can attain values exceeding 100 kBT at full overlap (see Figs. 4.2 and 4.3),
the interesting possibility opens up, that one might be able to form crystalline phases
in a many-body system of dendrimers. Indeed, as it has been shown recently, [76] the
above-mentioned value is the threshold above which particles interacting by means
of Gaussian potentials can form stable crystals.
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Figure 4.10: Theoretical structure factors for a concentrated solution of G4-dendrimers
at a density ρR3

g = 0.06. These structure factors have been obtained by solving the
hypernetted-chain closure for the effective interactions of Eq. (4.13), reading off the pa-
rameter values from Table 4.1. Depending on the value of δ in the bead-thread model, S(q)
may show pronounced peaks that signal a strong liquid-like ordering or may be deprived
of any significant structure.
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Chapter 5

Concentrated Dendrimer Solutions

We employ monomer-resolved computer simulations of model dendrimer molecules,
to examine the significance of many-body effects in concentrated solutions of the
same. In particular, we measure the radial distribution functions and the scat-
tering functions between the centres of mass of the dissolved dendrimers at vari-
ous concentrations, reaching values that slightly exceed the overlap density of the
macromolecules. We analyse the role played by many-body effective interactions
by comparing the structural data to those obtained by applying exclusively the pre-
viously obtained two-body effective interactions between the dendrimers (chapter 4
and Ref. [94]). We find that the effects of the many-body forces are small in general
and they become weaker as the dendrimer flexibility increases. Moreover, we test the
validity of the oft-used factorisation approximation to the total scattering intensity
into a product of the form- and the scattering factors, finding a breakdown of this
factorisation at high concentrations. (Published in Ref. [95].)

5.1 Introduction

The use of effective potentials greatly facilitates the investigation of large systems.
However, only the pair interaction potentials can easily computed, as shown in chap-
ter 4. The simplicity of the bead-thread model also allows explicit monomer-resolved
simulation of systems containing many dendrimers. Comparison to simulations em-
ploying the effective pair potentials from chapter 4 enables to test the validity of the
pair potential approximation, where the many-body terms are neglected.

There is a number of subtleties associated with the effective potential energy
function that have to be taken into account when a coarse-grained statistical me-
chanical treatment of a soft matter system is employed. Two of them are partic-

55
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ularly relevant in the context of calculating thermodynamic quantities and tracing
out phase diagrams. First, the potential energy cannot, in general, be written as
a sum of pair interactions:1 the process of eliminating the microscopic degrees of
freedom inadvertently generates higher-order, many-body potentials [77–79]. Trun-
cating the effective potential energy function at the pair-level constitutes the pair
potential approximation, whose validity is not a priori guaranteed and has to be
explicitly checked. And secondly, that the contributions to the potential energy
are in general state-dependent, the most prominent example of the latter being the
Debye-Hückel effective pair potential that has been extensively employed to model
charge-stabilised colloidal suspensions under certain physical conditions [80]. Some-
times the state-dependence of an effective pair potential hides precisely the effect
of many-body forces and then particular care has to be taken in the ways in which
the pair potential is employed, so as to avoid blatant thermodynamic inconsisten-
cies [81–84].

Many-body potentials are already encountered in the realm of atomic systems,
the Axilrod-Teller interaction [85] being a characteristic example that has been
shown to be relevant for the description of high-precision measurements of the struc-
ture factor of rare gases [86]. A formal decomposition of the effective potential energy
function between the particles of one kind in a binary mixture in which the particles
of the other kind are traced out has been given in Refs. [78] and [79]. Unfortunately,
the treatment there applies only to mixtures for which the number densities of the
two components can be varied at will, e.g., colloid-polymer or hard-sphere mixtures.
It is not applicable to two broad categories of soft matter systems, namely charged
mixtures and solutions of polymers of arbitrary architecture. In the former case,
the number densities of the two components are constrained by the electroneutral-
ity condition. In the latter, where one specific monomer [59,61] or the centre of mass
of the molecule [66, 67, 87–89] are chosen as effective, mesoscopic coordinates, the
total number of monomers and the number of effective particles are coupled to each
other through the constraint of keeping the number of monomers per macromolecule
fixed.

In charge-stabilised colloidal suspensions, three-body forces are generated by
nonlinear counterion screening. Their effects have been examined by density func-
tional theory and simulations [90] as well as by numerical solution of the nonlinear-
Poisson Boltzmann equation [91,92]. It has been found that the three-body forces in
this case are attractive [90–92], a result confirmed by direct experimental measure-
ments using optical tweezers [91,92]. As far as polymeric systems are concerned, the
triplet forces in star polymer solutions have been analysed by theory and simulations

1An important exception, however, is the depletion attraction in colloid-polymer mixtures de-
scribed by the idealised Asakura-Oosawa model. In this case, all n-th order polymer-mediated
effective interactions between colloids vanish identically for n ≥ 3 if the polymer-to-colloid size
ratio does not exceed 2

√
3/3− 1. See Ref. [77] for details.
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in Ref. [93], where it was found that they play a minor role for concentrations vastly
exceeding the overlap density. For linear chains, on the other hand, the many-body
forces appear to have a more pronounced effect, as witnessed by the considerable
state-dependence of the effective pair potential that reproduces the correlation func-
tions of concentrated polymer solutions [67,89]. The general functional form of the
centre-of-mass effective interaction between polymer chains was found to preserve
its Gaussian form, its strength and range being nevertheless modified within a range
of ∼ 10% of their original values, due to many-body effects [67,89].

Another polymeric system that serves as a prototype for a tunable colloidal
system that displays a Gaussian, soft effective pair interaction is that of a solu-
tion of dendritic macromolecules, or dendrimers for simplicity [17]. It has been
recently shown that a Gaussian effective pair potential can describe extremely well
the scattering intensities obtained experimentally from concentrated dendrimer so-
lutions [57, 58]. The Gaussian pair interaction has also been explicitly measured in
recent computer simulations that employed two different coarse-grained models for
the microscopic, monomer-monomer interactions (chapter 4 and [94]). Nevertheless,
in the approach of chapter 4 only two dendritic molecules were simulated, hence no
information about many-body forces was gained. In the present work, we address
the issue of the magnitude and importance of many-body effective interaction poten-
tials in concentrated dendrimer solutions. We do not attempt to derive an explicit
decomposition of the potential energy function into n-body terms, n = 2, 3, 4, . . .;
this would require separate simulations of just n dendrimers. Instead, we explicitly
simulate a large number of interacting dendrimers at the microscopic level simul-
taneously. We measure thereby the pair correlation functions in the concentrated
system directly and we compare the result with the one obtained by simulating the
same number of dendrimers as effective entities interacting exclusively by means
of pair potentials. The discrepancies in the results from the two approaches for
the correlation functions yield then information regarding the importance of the
many-body forces of all orders. We find that the many-body effects are of minor
importance, especially for flexible dendrimers.

5.2 Simulation Details

In this chapter, we focus exclusively on dendrimers of the fourth generation (G4).
For the monomer resolved simulations the bead thread model is employed.

The effective pair interaction potential between the centres of mass of two G4-
dendrimers has been determined with the help of configuration-biased Monte Carlo
simulations of this model in chapter 4. The strength of the interaction between
dendrimers can be tuned by varying the number of generations or the parameter
δ. Denoting by R the centre of mass separation, the δ-dependent effective pair
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potential V
(2)
eff (R; δ) has been found to have a Gaussian form with small, additional

corrections. In particular, it can be fitted by the function:

β V
(2)
eff (R; δ) = ε0 exp

(
−R

2

γ0

)
+ε1 exp

[
−(R−R1)

2

γ1

]
−ε2 exp

[
−(R−R2)

2

γ2

]
, (5.1)

where β = (kBT )−1 with Boltzmann’s constant kB and the absolute temperature T ;
the numerical values of the various fit parameters, depending on the choice of δ, are
given in Table 5.1. Note that the precise values of the fit parameters are slightly
different than those given in chapter 4, since there we employed a more constrained
fit by setting γ0 = 4R2

g,∞/3, with the radius of gyration Rg,∞ of the dendrimers at
infinite dilution, and ε2 = 0. The gyration radius is also shown at the last column of
Table 5.1. Here, we consider G4-dendrimers with two different values, δ = 0.1 and
δ = 2.0, representing the two extreme cases studied in chapter 4.

Let ρ = M/Ω be the number density of a sample containing M dendrimers en-
closed in the volume Ω. The definition of the overlap density ρ∗ of a dendrimer solu-
tion requires some care, as it is not a sharply defined quantity. Previous simulation
studies with this system in chapter 3 have revealed that the monomer density pro-
files around the dendrimer’s centre of mass decay to zero at a distance rc ∼= 1.5Rg,∞.
Motivated by this fact, we envision every dendrimer as a ‘soft sphere’ of radius rc

and define the overlap density through the relation:2

4π

3
ρ∗r3

c = 1. (5.2)

Moreover, we introduce the diameter of gyration at infinite dilution, τ ≡ 2Rg,∞, as
the characteristic mesoscopic length scale to be used to introduce a dimensionless
expression for the number density, ρτ 3. In these terms, the overlap density of Eq.
(5.2) above is given by ρ∗τ 3 = 0.566. The highest density in the simulation was
ρmaxτ

3 = 0.605, slightly exceeding the overlap value, since ρmax = 1.07ρ∗.

2In the literature, there are alternative definitions. For polymer chains, for instance, the defi-
nition 4π

3 ρ∗R3
g = 1 was used in Ref. [89].

δ ε0 γ0/σ
2 ε1 γ1/σ

2 R1/σ ε2 γ2/σ
2 R2/σ Rg,∞/σ

0.1 55.75 9.75 5.0 0.9 2.5 0.1 1.5 7.2 2.665
2.0 11.35 33.0 0.8 10.0 3.7 0.0 — — 4.939

Table 5.1: The numerical values of the fit parameters of the effective pair potential
between the centres of mass of two G4-dendrimers appearing in Eq. (5.1) for two different
values of δ. At the last column the gyration radius Rg,∞ at infinite dilution is also shown.
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For both values of δ, ten different concentrations were simulated, in particular at
the densities ρ/ρmax = 0.1, 0.2, . . . , 1.0. Periodic boundary conditions were employed
throughout. At all densities, systems of 500 dendrimers were simulated, whereby
each dendrimer consists of N = 62 monomers, and the size of the simulation box was
changed in order to modify the dendrimer number density. The minimum box length
was Lmin = 9.384 τ , yielding a system with the density ρmax. The equilibration
criterion for the system at hand requires some care, as there are is no internal
energy in the microscopic model, since all interactions are either zero or infinity. We
therefore took advantage of the fact that the effective, pair interaction V

(2)
eff (R; δ)

between the centres of mass is known and given by Eq. (5.1) with the parameters
given in Table 5.1. Hence, we chose to monitor the total effective pair potential
energy U (2)(M ; δ) given by

U (2)(M ; δ) =
1

2

M∑
i=1

M∑

j 6=i

V
(2)
eff (|Ri −Rj|; δ), (5.3)

where ri,j denotes the position of the i, j-th centre of mass.
Two different starting configurations were tried. In the first one, the centres

of mass dendrimers possessing identical microscopic conformations were placed at
the vertices of a fcc-lattice, which was achieved without violation of the excluded
volume conditions. This procedure is particularly useful especially at the highest
density, ρmax, where a random distribution of the centres of mass will result with
high probability into a forbidden state with monomer overlaps. The system was
then equilibrated, monitoring U (2)(M ; δ) described above. In the second one, the
dendrimers’ centres of mass were placed in a random arrangement. Although this
procedure requires a large number of failed attempts before an allowed configura-
tion is found, especially at high densities, such configurations are possible. Once
again, we monitored the total effective pair potential energy during the equilibra-
tion period, finding that it converges to the same value as the one obtained from
the fcc-initial state. In this way, sufficient equilibration of the system was guaran-
teed. Finite-size effects were checked by selectively simulating some systems with
256 of dendrimers, in a box having a correspondigly smaller volume, so that the
same density is achieved, and finding agreement between the two attempts.

For δ = 0.1, Nequil = 107 MC steps were used to equilibrate the system, and about
Nrun = 2× 108 steps to gather statistics. Statistical averages were calculated every
Nmeas = 10 000 MC steps. For δ = 2.0, where a much larger random displacement
for the monomers can be used, the equilibration phase consisted of Nequil = 106 steps
and statistical averages were calculated every Nmeas = 1000 steps over a period of
Nrun = 2 × 108 steps. The quantities measured were monomer profiles around the
centres of mass, the radial distributions functions of the latter, radii of gyration, form
factors, structure factors from the centres of mass and total scattering intensities;
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all these quantities will be precisely defined in the sections that follow.
In Figs. 5.1 and 5.2, we show simulation snapshots of the monomer-resolved

simulations for the lowest and the highest density for the thread length δ = 0.1.
(For clarity, in Fig. 5.1 we show only a section of the simulation box of the same
size as in Fig. 5.2.) Although at Fig. 5.1 individual dendrimer molecules can still
be resolved, since the density is much smaller than ρ∗, in Fig. 5.2 this is not any
more possible. Here, ρ = 1.07ρ∗ and the whole system appears as a dense solution
of monomers, in which the individual character of each macromolecule is lost. We
will return to the implications of this fact in section 5.4.

In addition, a different kind of Monte Carlo simulations was also carried out,
in which the monomers were not explicitly resolved. Instead, the dendrimers were
replaced entirely by their centres of mass, which were then treated as effective, soft
particles interacting exclusively by means of the pair potential of Eq. (5.1). Accord-
ingly, we call this approach an effective simulation. As all monomers have dropped
out of sight in the effective approach, it is only possible to measure quantities per-
taining to the centres of mass, i.e., their radial distribution functions and structure
factors. Comparison of the results regarding these quantities that are obtained
through the two different types of simulations yields important information by way
of testing whether the pair-potential approximation is meaningful.

5.3 Monomer Resolved vs. Effective Simulations

Each dendrimer of the fourth generation consists of N = 62 monomers. Let i, j be
monomer indices within a given dendrimer whereas α, β are integers describing the
dendrimer molecules as whole entities. In particular, let Rα stand for the position
of the centre of mass of the α-th dendrimer, ri

α denote the position vector of the
i-th monomer in the α-th dendrimer, and ui

α stand for the same quantity but now
measured in a coordinate system centred at Rα. Obviously, it holds

ri
α = Rα + ui

α. (5.4)

In the monomer-resolved simulation, the following quantities were measured:
The radial distribution G(R), its Fourier transform S(q), the form factor F (q), the
radial monomer distribution within the dendrimers ξ(r) and the radius of gyra-
tion Rg. Here, we recapitulate their defintions from section 2.2 and generalise the
quantities defined there for a single dendrimer to the case of M dendrimers.

The radial distribution function G(R) between the centres of mass, defined as

G(R) =
1

M

〈
M∑

α=1

M∑

β 6=α

δ (R−Rαβ)

〉
, (5.5)
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Figure 5.1: A snapshot from the monomer resolved-simulation of dendrimers. The
monomers are rendered as spheres of diameter σ. Here, dendrimers with threads charac-
terised through δ = 0.1 at a density ρτ3 = 0.0605 are shown. Note that only a part of the
simulation box is shown, which has the same size as the full box depicted in Fig. 5.2.

Figure 5.2: Same as Fig. 5.1 but at density ρτ3 = 0.605. Here the complete simulation
box is shown.
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where 〈· · ·〉 denotes a statistical average and Rαβ = Rα − Rβ. Related to this
quantity by a Fourier transformation is the structure factor S(q) that describes the
correlations between the centres of mass in reciprocal space and it is given by

S(q) =
1

M

〈
M∑

α=1

M∑

β=1

exp [−iq · (Rα −Rβ)]

〉
. (5.6)

Moreover, we took advantage of the microscopic nature of the simulation to measure
the dendrimers’ form factor F (q) at every simulated density ρ. This quantity is
expressed by the relation:

F (q) =
1

M

M∑
α=1

1

N

〈
N∑

i=1

N∑
j=1

exp
[−iq · (ui

α − uj
α

)]
〉
, (5.7)

Another quantity of interest is the monomer distribution around the centre of mass,
ξ(r), which can again be measured at any desired overall density and is given by the
expression:

ξ(r) =
1

M

M∑
α=1

〈
N∑

i=1

δ
(
r− ui

α

)
〉
, (5.8)

The overall size of the dendrimer is characterised by its radius of gyration Rg, which
was measured in the simulation by calculating the quantity:

Rg =
1

M

M∑
α=1

√√√√ 1

N

〈
N∑

i=1

ui
α · ui

α

〉
, (5.9)

In Eqs. (5.7) - (5.9) above, the summand in the sum over α is the corresponding
quantity (form factor, density profile, and radius of gyration, respectively) of the
α-th dendrimer. The additional summation over α and the division by the total num-
ber of dendrimers corresponds to an additional average over all dendrimers. Since all
macromolecules are equivalent, the expectation values are identical for every sum-
mand. Finally, we also measured the scattering function I(q) of the concentrated
solution, which corresponds to the coherent contribution of the total scattering in-
tensity in a SANS experiment, under the assumption that all monomers possess the
same scattering length density [29,30,96,97]. This is given by the equation:

I(q) =
1

MN

〈
M∑

α=1

M∑

β=1

N∑
i=1

N∑
j=1

exp
[−iq · (ri

α − rj
β

)]
〉
, (5.10)

i.e., it is the total coherent scattering intensity from all monomers of the system.
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In the effective picture, all information regarding the monomers’ degrees of free-
dom is lost, hence in the effective simulation we can only measure the corresponding
radial distribution function Geff(R) and its Fourier transform, the structure factor
Seff(q) of the centres of mass. These are given by Eqs. (5.5) and (5.6) above but
with the averages now performed with the effective Hamiltonian, i.e.,

Geff(R) =
1

M

〈
M∑

α=1

M∑

β 6=α

δ (R−Rαβ)

〉

Heff

, (5.11)

and

Seff(q) =
1

M

〈
M∑

α=1

M∑

β=1

exp [−iq · (Rα −Rβ)]

〉

Heff

. (5.12)

The effective Hamiltonian Heff involves the momenta pα and positions Rα of the
centres of mass only and contains exclusively pair interactions, i.e.,

Heff =
M∑

α=1

p2
α

2m
+

1

2

M∑
α=1

M∑

β 6=α

V
(2)
eff (|Rα −Rβ|; δ), (5.13)

where m is the dendrimers’ mass, which is irrelevant as far as static quantities of
the system are concerned. In the simulations, G(R) and Geff(R) can be simply cal-
culated by counting the number of pairs separated at a distance within an interval
around R and normalising the histograms appropriately [26]. A particular prop-
erty of the effective description of a complex system is that it leaves all correlation
functions between the coarse-grained degrees of freedom invariant provided that the
mapping into the effective system is exact [19]. In other words, if the effective Hamil-
tonian contains the contributions to the effective potential at all orders, it makes
no difference whether one calculates quantities such as G(R) or S(q) in the original,
microscopic description or in the coarse-grained one. As our effective Hamiltonian
Heff is truncated at the pair level, the deviations between G(R) and Geff(R) or,
equivalently, between S(q) and Seff(q) will be a measure of the importance of the
neglected many-body terms in Eq. (5.13).

Representative results comparing between the two approaches are shown in Fig.
5.3, pertaining to the dendrimers with δ = 0.1 and in Fig. 5.4, which refers to den-
drimers with δ = 2.0. The length scale used in this plot is the zero-density gyration
radius of the dendrimers, Rg,∞. For clarity, only the results only for three different
densities obtained from the monomer resolved simulations are compared to those
from the effective ones. At sufficiently low densities, ρ = 0.1ρmax, the results from
the two types of simulations are indistinguishable, hence the pair-potential approxi-
mation is an excellent one and many-body forces seem to play no role there; they can
be thus safely ignored. Deviations between the two descriptions arise nevertheless
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Figure 5.3: Comparison between the results from the monomer-resolved and the effective
simulation of concentrated dendrimers with maximal thread length δ = 0.1 of the bonds.
The three different densities are ρ = 0.1ρmax, 0.5ρmax and ρmax, as indicated on the plots,
with ρmaxτ

3 = 0.605. Results are shown for (a) the radial distribution function G(R) and
(b) the structure factor S(q) of the centre of mass coordinates.
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Figure 5.4: Same as Fig. 5.3 but for thread length δ = 2.0.
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as the overall concentration of the solution grows. Referring to Fig. 5.3(a), we see
that for the δ = 0.1-dendrimers, which have a rather high internal monomer density,
the deviations are already visible (but small) at a density ρ = 0.5ρmax and they be-
come more pronounced at the highest simulated density, ρ = ρmax. The true radial
distribution function G(R) between the centres of mass shows a more pronounced
coordination than the effective one, Geff(R), and this effect is also reflected in the
corresponding structure factors. The peak height of S(q) is higher than the one
of Seff(q), pointing to the fact that the zero-density pair potential underestimates
somehow the strength of the repulsions between the dendrimers’ centres of mass.
The relative deviation between the two descriptions as far as the peak height is con-
cerned are at the highest density about 6%. Much more drastic is the discrepancy of
the S(q → 0) limit, for which S(q → 0) = 0.018 whereas Seff(q → 0) = 0.033. Given
the fact that the S(q = 0)-value is proportional to the osmotic isothermal compress-
ibility of the solution, employing the effective picture can lead here to serious errors
in the calculation of the thermodynamics of the system. Two integrations of the
inverse compressibility are needed in order to obtain the Helmholtz free energy of
the solution, hence errors at all lower densities accumulate in performing such an
integration and they can lead to a serious underestimation of the free energy if the
effective picture is employed.

The agreement between the microscopic and the coarse-grained approaches is
a lot better for the case of the δ = 2.0-dendrimers, which possess a much lower
internal monomer density than their δ = 0.1-counterparts. Indeed, as can be seen
in Fig. 5.4(a), the radial distribution functions G(R) and Geff(R) barely show any
difference, all the way up to the maximum density ρmax. Similar to the case δ = 0.1,
G(R) shows a slightly more pronounced coordination than Geff(R), the difference
between the two is nevertheless extremely small. The same holds for the structure
factors S(q) and Seff(q), shown in Fig. 5.4(b). Here, even the discrepancy in the
compressibility is very small, with S(q → 0) = 0.132 and Seff(q → 0) = 0.138 at
ρ = ρmax. For dendrimers with a higher degree of internal freedom, the pair potential
approximation holds all the way up to the overlap concentration. In this respect,
it is very satisfactory that it is precisely the model with the value δ = 2.0 that has
been found to accurately describe scattering data from real dendrimers [94].

Let us now try to to obtain some physical insight into the mechanisms that
cause the true correlation functions to show higher ordering than the effective ones.
Suppose that the reason lied in the increasing significance of three-body effective
forces. Three-body potentials arise through three-dendrimer overlaps: the region of
space in which three spherical objects simultaneously overlap is overcounted when
one adds over the three pair interactions and it has to be subtracted anew. Given
the fact that any overlap between repulsive monomers gives rise to a correspond-
ingly repulsive interaction, together with the fact that the contribution from the
triple-overlap region has to be subtracted, leads to the conclusion that triple forces
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Figure 5.5: The radial monomer density profiles ξ(r) [Eq. (5.8)] of the dendrimers around
their centres of mass at infinite dilution (ρ = 0) and at the highest density ρ = ρmax =
1.07ρ∗, as indicated on the plots. (a) For model dendrimers with thread length δ = 0.1
and (b) for δ = 2.0. Note the shrinkage and growth of the profiles.
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should be attractive, as for the case of star polymers [93], as well as self-avoiding
polymer chains [89], for which three-body forces have been measured explicitly3.
Yet, an attractive contribution to the potential energy leads to a reduced effective
pair repulsion. This is on the one hand intuitively clear and, on the other, it can
be put in formal terms by making a density expansion of the density-dependent
pair interaction up to linear order in density, see Eq. (10) of Ref. [89]. Thus, we
would then obtain a weakening of the correlations and an increase of the osmotic
compressibility, whereas in Figs. 5.3 and 5.4 exactly the opposite is true. In order
to obtain the true G(R) at ρ = ρmax for the δ = 0.1-dendrimers, a renormalised

effective pair potential Ṽ
(2)
eff (R; δ, ρ) can be employed that is more strongly repulsive

than the original one, V
(2)
eff (R; δ); as a matter of fact, we were able to reproduce

G(R) at ρmax by using Ṽ
(2)
eff (R; δ = 0.1, ρmax) ∼= 1.2V

(2)
eff (R; δ = 0.1). A similar

effect has been observed for polymer chains [89], for which the density-dependent,
renormalised pair potential necessary to reproduce G(R) at high concentrations was
found to be more repulsive than the one that holds at ρ = 0, whereas, at the same
time, the correction arising from triplet forces alone goes in the opposite direction
of weakening the pair repulsions.

The above considerations point to the fact that the deviations between G(R)
and Geff(R) are a genuinely many-body effect that arises from the high concentra-
tion of the solution per se and cannot be attributed to three-body forces alone. In
particular, the presence of many dendrimers surrounding a given one in the concen-
trated solution, gives rise to a deformation of the dendrimer itself. To corroborate
this statement, we have measured the concentration-dependent monomer density
profiles ξ(r) around the dendrimers’ centre of mass, given by Eq. (5.8). Results are
shown in Fig. 5.5(a) for the case δ = 0.1 and in Fig. 5.5(b) for the case δ = 2.0.
It can be seen that as a result of the crowding of the dendrimers at the highest
concentration, the monomer profiles become slightly shorter in range and they grow
in height; in other words, the dendrimers shrink as a result of the increased overall
concentration, as can be also witnessed by the reduction of their radius of gyration
shown in Fig. 5.6. The molecules that effectively interact are stiffer at higher densi-
ties than at lower ones; their internal monomer concentration grows with ρ and as
a result of this deformation, the interaction between two dendrimers becomes more
repulsive than at zero density.

The above claim is supported by the fact that the effect of the concentration
on the pair interaction is much more pronounced for the dendrimers with the short
thread length than for those with the longer one. Although the monomer profiles for

3It is intriguing, in this respect, that the three-body forces are also attractive for charged
colloids, see Refs. [91] and [92]. However, in the latter case the many-body forces arise through
nonlinear counterion screening and the corresponding rearrangements of the counterion clouds,
hence a direct analogy with the case at hand cannot be made.
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Figure 5.6: The dependence of the dendrimers’ radius of gyration on the solution density
for the two types of model macromolecules, as indicated in the legend.

both dendrimer kinds grow with ρ, the internal monomer concentration for the stiffer
dendrimers is much higher than the one for the softer ones. A concentration-induced
increase of ξ(r) has a much stronger effect for the effective interaction of the stiff
dendrimers than for the soft ones, since it occurs at a scale of σ3ξ(r) ∼ 0.4 for the
former but at a scale of σ3ξ(r) ∼ 0.1 for the latter, see Fig. 5.5. The monomer beads
are modeled here as hard spheres. The change in the free energy of a hard-sphere
fluid upon an increase of the local density is highly nonlinear and grows rapidly with
increasing packing fraction, hence the effect is much more pronounced for the case
δ = 0.1 than for the case δ = 2.0.

Another way of expressing the vast discrepancy in the monomer crowding of
the two systems is to look at the monomer packing fraction ηm. As there are N
monomers per dendrimer, this quantity is given by the expression

ηm =
π

6
Nρτ 3

(σ
τ

)3

. (5.14)

For both types of dendrimers, N = 62 and ρmaxτ
3 = 0.605. Yet, the ratio σ/τ has

the value 0.188 for δ = 0.1 and 0.101 for δ = 2.0, see the last column of Table 5.1.
Accordingly, at ρ = ρmax we obtain ηm = 0.13 for δ = 0.1 but ηm = 0.02 for δ = 2.0.
The soft dendrimers have a much lower monomer packing fraction at ρ∗ than the
stiffer ones, a result that can be traced to the fact that their radius of gyration
is larger.4 Thus, we conclude that the density-dependence of the pair interaction

4This is characteristic for non-compact objects: for polymer chains, e.g., one obtains ηm ∼ R
−4/3
g
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can be traced back to the shrinking of the dendrimers, a phenomenon that leads to
increased crowding of the monomers in their interior.

5.4 Total Scattering Intensities and the Factori-

sation Approximation

In this section we turn our attention to a different question, which is however re-
lated to the issues discussed above, namely to the interpretation of scattering data
from concentrated dendrimer solutions. As a first step, we consider the form factor
F (q), defined by Eq. (5.7). Clearly, F (q) expresses the intramolecular correlations
between the monomers belonging to a certain dendrimer. When scattering from an
infinitely dilute solution, F (q) offers the only contribution to the coherent scatter-
ing density. Since all the information about the monomer correlations is encoded
in F (q), great experimental effort is devoted to the determination of this quantity.
At low values of q, qRg,∞, the form factor delivers information about the overall
size of the molecule whereas at higher values of the scattering wavevector, q ∼ 1/a,
where a is the monomer length, information about the monomer correlations and
the fractal dimension of the object is hidden [19,97,98].

Although F (q) is experimentally measured at the limit ρ→ 0, the same quantity
can be defined at any density. At arbitrary concentrations, F (q) will in general
change with respect to its form at infinite dilution, due to possible deformations
of the macromolecules. In Fig. 5.7 we show the form factors for the two model
dendrimers at the lowest and at the highest simulate densities. It can be seen
there that there is only a small change in both cases, which takes the form of a
slight extension of F (q) to higher q-values as the concentration increases. This is
consistent with the shrinkage of the dendrimers and the corresponding decrease of
the gyration radius. Indeed, in the Guinier regime, qRg < 1, the form factor has a
parabolic profile, F (q) ∼= N [1− (qRg)

2/3], and a reduction of Rg manifests itself as
a swelling in q-space and vice versa [99].

Let us now turn our attention to the total coherent scattering intensity from all
monomers, I(q), given by Eq. (5.10). It is clear from its definition that I(q) can
also be measured in the monomer-resolved simulation and this has been done for
both dendrimer species, characterised by the maximum thread extensions δ = 0.1
and δ = 2.0. In attempting to model complex polymeric entities as soft colloids,
it is a common procedure to separate the intramolecular from the intermolecular
correlations and to write down approximations for the quantity I(q) in which the
two types of correlations appear in a factorised fashion. Here we are going to put
this approach into a test and figure out the limits of its validity as far as dendritic

at the overlap concentration [19].
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Figure 5.7: The form factors measured in the monomer-resolved simulations for one
isolated dendrimer molecule (ρ = 0, solid line) and at the highest density (ρ = ρmax,
dotted line). The model dendrimers have maximum thread length (a) δ = 0.1 and (b)
δ = 2.0.
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Figure 5.8: The total coherent scattering intensity I(q) [Eq. (5.10)] from concentrated δ =
0.1-dendrimer solutions, compared with the result from the factorisation approximation,
Eq. (5.19), at different overall concentrations ρ. (a) ρ = 0.1ρmax and (b) ρ = 0.5ρmax.
Results using both the form factor F (q) at the given density and its counterpart at infinite
dilution, F0(q) are shown for the factorisation approximation.
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molecules are concerned. A similar test has been carried out by Krakoviack et
al. [100] who compared results from the PRISM model for polymers with simulations
and with the factorisation ansatz.

As a first approximate step, one assumes that the intramolecular conformations
and centre-of-mass correlations decouple from each other. Correspondingly, Eq.
(5.10) takes the approximate form:

I(q) ∼= 1

MN

M∑
α=1

M∑

β=1

N∑
i=1

N∑
j=1

〈exp [−iq · (Rα −Rβ)]〉 〈exp
[−iq · (ui

α − uj
β

)]〉
.

(5.15)
The approximation inherent in Eq. (5.15) above is a reasonable one for dendrimers.
Indeed, as it has been shown in Ref. [35], the monomer degrees of freedom are
correlated at length scales ∼ σ, whereas for the overall densities ρ considered here,
the centres of mass are correlated at lengths at least ∼ Rg and the two are well-
separated from each other. Hence, at the wavevector-scale qCM ∼ 1/Rg at which the
centre-of-mass S(q) shows structure, the dendrimers still appear as compact objects
and the internal fluctuations can be decoupled from the intermolecular ones. The
second approximation is now the following. Suppose that we are at sufficiently low
densities, so that close approaches between the centres of mass of the dendrimers
are very rare and they carry therefore a negligible statistical weight. Then, since
monomers belonging to different dendrimers stay far apart, it is reasonable to assume
that the deviations from their respective centres of mass are uncorrelated. In this
case, one can approximately write:

1

N

N∑
i=1

N∑
j=1

〈
exp

[−iq · (ui
α − uj

β

)]〉 ∼= 1

N

N∑
i=1

N∑
j=1

〈
exp

(−iq · ui
α

)〉 〈
exp

(
iq · uj

β

)〉

=
1

N

〈
ξ̂q

〉〈
ξ̂−q

〉
, (5.16)

where ξq is the Fourier transform of the monomer density operator ξ̂(r) around the
centre of mass of an arbitrary dendrimer:5

ξ̂(r) =
N∑

i=1

δ
(
r− ui

α

)
. (5.17)

Clearly, the right hand side of Eq. (5.16) has no dependence on the dendrimer index.
At the same time, it has been shown in Ref. [35] that the product N−1〈ξ̂q〉〈ξ̂−q〉 is
an excellent approximation for the form factor F (q) of the dendrimers, deviations
from the exact expression in Eq. (5.7), F (q) = N−1〈ξ̂qξ̂−q〉, appearing only at high

5The quantity ξ(r) defined in Eq. (5.8) is simply the expectation value of the operator ξ̂(r).



74 CHAPTER 5. CONCENTRATED DENDRIMER SOLUTIONS

0 2 4 6 8
qR

g,∞

0

2

4

6

8
I(q

), 
F

(q
)S

(q
)

I(q)
S(q)F(q)
S(q)F0(q)

(a)

0 2 4 6 8 10
qR

g,∞

0

0.5

1

1.5

2

S(
q)

, S
ap

p(q
)

S(q)
Sapp(q)

(b)

Figure 5.9: (a) Same as Figs. 5.8(a) and (b) but for ρ = ρmax. (b) The true structure
factor S(q) between the centres of mass at ρ = ρmax, as obtained from the monomer-
resolved simulations, compared with the apparent structure factor Sapp(q) = I(q)/F0(q).
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q-values that are unreachable in a typical SANS experiment. The approximation
inherent in Eq. (5.16) has been derived for monomers belonging to different den-
drimers (α 6= β) and now, in view of the results of Ref. [35], it can be also applied
to the case α = β. Putting everything together, we obtain

1

N

N∑
i=1

N∑
j=1

〈
exp

[−iq · (ui
α − uj

β

)]〉 ∼= F (q). (5.18)

Eqs. (5.15) and (5.18) now yield the oft-employed factorisation approximation:

I(q) ∼= S(q)F (q), (5.19)

whose validity will be tested in what follows.
The assumptions that went into the derivation of Eq. (5.19) above become exact

when the particles from which one scatters are rigid colloids [101], in which case
individual scattering centres are devoid of a fluctuating nature. In this context, it is
important to note that there is an analog of the factorisation approximation that is
applied in the theory of concentrated polymer solutions and carries the name “rigid
particle assumption” [100, 102]. Here, one starts from Eq. (5.15) and assumes that
monomer-monomer correlations between monomers belonging to different polymers
are identical to the intramolecular correlations in any chain [100]. Under this as-
sumption, the second factor on the right-hand-side of Eq. (5.15) above takes the
form:

1

N

N∑
i=1

N∑
j=1

〈
exp

[−iq · (ui
α − uj

β

)]〉 ∼= 1

N

N∑
i=1

N∑
j=1

〈
exp

[−iq · (ui
α − uj

α

)]〉
= F (q),

(5.20)
and, in conjunction with Eq. (5.15), the factorisation approximation of Eq. (5.19)
follows once again. Krakoviack et al. tested the validity of Eq. (5.19) for polymer
solutions, finding that it breaks down for high polymer densities.

We have put the validity of Eq. (5.19) into a strong test by comparing the directly
measured total coherent scattering intensity I(q) with the product F (q)S(q), where
for the latter quantity both factors are the ones measured in the same simulation.
Results are shown in Figs. 5.8 and 5.9(a) for the δ = 0.1-dendrimers as well as in
Figs. 5.10 and 5.11(a) for the δ = 2.0-dendrimers. It can be seen that the factorisa-
tion approximation is valid at the lowest density shown (ρ = 0.1ρmax) but that its
quality becomes poorer as the concentration of the solution increases. A dramatic
breakdown can be seen in Fig. 5.9(a) for the more compact dendrimers, whereas the
breakdown is also clear (but less spectacular) for the more open dendrimers, Fig.
5.11(a).

We can now trace back to the physical origins of the breakdown of the factori-
sation approximation, Eq. (5.19). There is first of all a weak breakdown of the
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Figure 5.10: Same as Fig. 5.8 but for δ = 2.0-dendrimers.
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Figure 5.11: Same as Fig. 5.9 but for δ = 2.0-dendrimers.
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first assumption, Eq. (5.15), in which the centre-of-mass coordinates were decou-
pled from the fluctuating monomers. Indeed, were this approximation to be true,
then the form factor F (q) would remain unchanged at all concentrations. This is
however not the case, as the results in Fig. 5.7 demonstrate: the dendrimers shrink
as ρ grows. Yet, the difference between the infinite-dilution form factor, F0(q) and
its counterpart at finite density, F (q), is not sufficient to account for the failure of
the factorisation approximation. As can be seen in Figs. 5.8(b), 5.9(a), 5.10(b) and
5.10(a), the product S(q)F (q) is in even worse agreement with I(q) than the product
S(q)F0(q). The reason for the breakdown of Eq. (5.19) lies in the assumption inher-
ent in deriving the approximation of Eq. (5.18), namely that fluctuations between
monomers belonging to different dendrimers are uncorrelated. At sufficiently low
densities ρ, this is a reasonable assumption. However, in approaching the overlap
density ρ∗, it does not hold any more. As monomers from different dendrimers begin
to crowd with one another, their coordinates with respect to their centres of mass
become more and more strongly correlated and Eq. (5.18) loses its validity. In this
respect, it is not surprising that the breakdown of Eq. (5.19) is more dramatic for
the δ = 0.1-dendrimers than for the δ = 2.0-ones. In the former case, the monomer
packing fraction is higher and the corresponding correlations between monomers
belonging to different molecules stronger than in the latter. To put it in more picto-
rial terms: at the overlap concentration it is not any more possible to tell to which
dendrimer a monomer belongs, see Fig. 5.2. A clear separation between intra- and
inter-dendrimer fluctuations is not any more possible.

We finally discuss the consequences of the above findings for the interpretation
of scattering data obtained from concentrated dendrimer solutions. The validity of
Eq. (5.19) is often taken for granted: the form factor F (q) is measured in a SANS-
or SAXS experiment at low concentrations and extrapolated to infinite dilution to
obtain the quantity F0(q). Thereafter, the measured coherent scattering intensity at
any concentration, I(q) is divided through F0(q), the result being interpreted as the
structure factor of the system. In order to differentiate it from S(q), we emphasise
here that this is only an apparent structure factor Sapp(q), given by

Sapp(q) =
I(q)

F0(q)
. (5.21)

In Figs. 5.9(b) and 5.11(b) we compare the apparent structure factors for the two
dendrimer species at the highest simulated density with the true ones. It can be
seen that the process of applying Eq. (5.21) has the effect of producing apparent
structure factors that are everywhere lower than the true ones and they even fail to
reach the asymptotic value unity at the range considered.

Such structure factors from concentrated dendrimer solutions have been pub-
lished in Refs. [103] and [104], in which they have been correctly termed ‘apparent’.
It is important here to point out that apparent structure factors can lead to false
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conclusions regarding the validity of the pair potential approximation in mesoscopic
theories of dendrimer solutions. Indeed, as we have explicitly shown in this work,
many-body effective potentials play only a minor role in concentrated dendrimer so-
lutions, therefore, one can obtain accurate structure factors from theory by working
with a density-independent pair potential. If, however, these structure factors were
to be compared with the apparent experimental quantities Sapp(q), discrepancies of
the kind shown in Figs. 5.9(b) and 5.11(b) would show up. It would be then possible
to argue that these discrepancies are due to the breakdown of the pair potential ap-
proximation but, as we have shown here, this conclusion would be unwarranted. The
reason for the disagreement between theory and ‘experiment’ would, in this case, lie
in the employment of an erroneous approximation, Eq. (5.19), in deriving apparent
structure factors from the experimental data. It is worth noting that Krakoviack et
al. [100] reached similar conclusions for the case of polymer solutions, although they
did not formally introduce an apparent structure factor into their considerations.
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Chapter 6

Dendrimer Mixtures

We use effective Gaussian interactions to investigate the behaviour of binary den-
drimer mixtures. Depending on the choice of the dendrimer architecture, which read-
ily influences the concomitant interaction potentials, we find macroscopic demixing
or micro-phase separation, i. e., a state characterised by undamped periodic concen-
tration fluctuations. Furthermore, we observe pattern formation under confinement.
(An extended version of this chapter will be published in [111].)

6.1 Introduction

The possibility to realise Gaussian interactions in physical systems opens up a host
of possibilities for exploring the occurrence of phenomena that have been predicted
recently for Gaussian mixtures. These systems can be materialised, e. g., by using
dendrimer mixtures of different generations and/or flexibility, in order to bring about
effective Gaussian repulsions in which the non-additivity parameter of the cross-
interaction can be tuned. In such cases, one may be able to observe a wealth of
interesting phenomena, going from demixing [105] to microphase separation [108,
109] and pattern formation under confinement [108].

The Gaussian interaction potentials employed in [108], the cross-interaction be-
tween unlike particles in particular, were chosen reasonably but arbitrarily, in order
to obtain micro-phase separation. The possibility to obtain Gaussian interaction po-
tentials from simulations of dendrimers enables us to investigate Gaussian mixtures
that correspond to real systems. In chapter 4, we only considered the interaction be-
tween two dendrimers of the same generation and with the same parameter δ, finding
Gaussian potentials. We may now extend this procedure to unlike dendrimers, so
that the cross-interaction is consistent within this model. Due to the flexibility in
modifying the dendrimers’ architecture, the interaction between like particles can be
tuned systematically (see chapter 4); the cross-interaction between the two species,

81
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however, is hard to pre-estimate.
We investigate two-component dendrimer mixtures by means of theory and

MC simulations employing effective interactions. The latter were obtained from
monomer resolved MC simulations for dendrimers of different generations and vary-
ing thread length δ in the bead-thread model as described in chapter 4. In contrast
to chapters 4 and 5, we use here simple Gaussian fits to the effective interaction
potentials, which is a good approximation for long thread lengths δ & σ.

We consider a two-component mixture consisting of M1 particles of species 1
and M2 particles of species 2 enclosed in a volume V , with the partial densities
ρi = Mi/V, i = 1, 2 and the total density ρ = ρ1 + ρ2. Furthermore, we define
x = ρ2/ρ as the concentration parameter for species 2. The pair interaction potential
between dendrimers of species i and j obtained from monomer-resolved siulations is
given by Vij(R) = εij exp(−R2/R2

ij).
Under confinement, the concentration fluctuations cannot propagate freely but

obey the prescribed geometry leading to patterns in the concentration distribution
which can easily be observed in the partial density profiles.

6.2 Theory

The Ornstein-Zernike (OZ) equations for hij(R) in Fourier space for a two-component
liquid can be written as

ĥij(q) =
Nij(q)

D(q)
, (6.1)

where hij(R) = Gij(R)− 1, with the numerators

N11(q) = ĉ11(q) + ρ2[ĉ
2
12(q)− ĉ11(q)ĉ22(q)];

N22(q) = ĉ22(q) + ρ1[ĉ
2
12(q)− ĉ11(q)ĉ22(q)]; (6.2)

N12(q) = ĉ12(q);

and the denominator

D(q) = [1− ρ1ĉ11(q)][1− ρ2ĉ22(q)]− ρ1ρ2ĉ
2
12(q), (6.3)

where ĉij(q) is the FT of the direct pair correlation function cij(r) [105]. The partial
pair distribution function Gij(R), (i, j = 1, 2), defined as [31]

ρiρjGij(R) =

〈
Mi∑
α=1

Mj∑

β=1

δ (R + Rα −Rβ)

〉
(6.4)

is proportional to the probability of finding a particle of species i at a distance R
from a particle of species j.
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When D(q) = 0, the partial structure factors Sij(q) = δij +
√
ρiρjĥij(q) diverge.

If S(q) diverges at q = 0, the system becomes unstable to the density modulations
of long wavelengths, i. e., the two species demix (macro-phase separation). The con-
dition 1/S(q = 0) ≡ 0 defines the spinodal line of the phase diagram. A divergence
at a wavenumber q 6= 0 corresponds to a purely oscillatory behaviour of Rhij(R)
for R → ∞ [108], implying undamped periodic concentration fluctuations, termed
micro-phase separation. The λ-line is defined as the locus of of points at which
D(q) = 0; outside this line D(q) > 0 for all q values [108]. On this line, the fluid
becomes unstable with respect to periodic concentration fluctuations.

6.3 Random Phase Approximation

We employ the simple random phase approximation (RPA) for the excess Helmholtz
free energy functional of the inhomogeneous mixture:

Fex[{ρi}] =
1

2

∑
ij

∫
dR1

∫
dR2 ρi(R1)ρj(R2)Vij(|R1 −R2|). (6.5)

This functional generates the RPA1 for the pair direct correlation functions,

c
(2)
ij (R1,R2) = − βδ2Fex

δρi(R1)δρj(R2)
= −βVij(|R1 −R2|) (6.6)

where β = (kBT )−1 [68]. Inserting this simple closure into equation (6.3) yields the
spinodal or the λ-line if existing. The validity of the RPA for Gaussian potentials has
been established in [76,88,105] and generally for bounded or even weakly diverging
soft potentials in [106,107].

The RPA closure to the OZ equations may be used to calculate the pair correla-
tion functions Gij(R) via Fourier transform. Alternatively, they can also be obtained
by using DFT via the RPA test-particle route: Within DFT, the profiles ρi(R) are
calculated by minimising the grand potential functional [68, 108]:

Ω[{ρi}] = F [{ρi}]−
2∑

i=1

∫
dR(µi − V ext

i (R))ρi(R), (6.7)

where F = Fid + Fex, and Fid is the ideal gas part of the free energy functional,
µi are the chemical potentials and V ext

i (R) are the external potentials, in this case
those due to the fixed test particle of species j. Then, Gij(R) = ρi(R)/ρbulk

i .
Moreover, the DFT can also be used to calculate density profiles in confined

geometries. Here, V ext
i (R) in equation (6.7) are the wall potentials. The RPA has

benn shown to be reliable for the Gaussian core model in [108].

1Sometimes this approximation is also called mean spherical approximation, or Debye-Hückel
approximation in the context of charged systems.
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6.4 Bulk Results

In this section, we consider the bulk structure for two different binary mixtures,
which exhibit macro-phase and micro-phase separation respectively. Close to the
spinodal and the λ-line, bulk simulations become impractical due to the long-range
power-law/oscillatory nature of the correlation functions for the case of spinodal/λ-
line instabilities, respectively, requiring very large systems. We thus compare theo-
retical results to simulations well below the spinodal or the λ-line respectively. Here,
we can exclude finite size effects by performing simulations at the same density but
different total numbers of dendrimers (M = 20, 000 and 100, 000), that both yield
identical results.

6.4.1 Macro-phase Separation

The first system we investigate, hereafter referred to as ‘system A’, consists of G4
dendrimers with δ = 2.0σ, in the following termed species 1, and G3 dendrimers
with δ = 3.0σ (species 2). Here, the ranges of the interaction potentials are very
similar, but they differ in the prefactor. The parameters of the effective interactions
Vij(R) = εij exp(−R2/R2

ij) are

ε11 = 11.6 kBT, R11 =
√

34σ

ε22 = 3.45 kBT, R22 =
√

31σ

ε12 = 6.4 kBT, R12 =
√

33σ.

Here, we find that D(q) = 0 for q = 0, i. e., the system demixes and thus has a
spinodal. The latter is shown in figure 6.1. The radial distribution functions Gij(R)
are shown for a density ρR11 = 1.49 and concentration x = 0.5. The results obtained
by inserting the RPA closure into the OZ relation fit well to the simulational results
for large radii R > R11. At small R, deviations and even unphysical negative values
of G(R) appear. More accurate results are obtained by using DFT via the RPA
test-particle route, where positive values of G(R) are guaranteed.

The spinodal is located at rather high densities: for x = 0.5, the corresponding
monomer density is σ3ρm = 0.47, where σ is the monomer diameter. Here, the
validity of pair potential is questionable, but the tendency of macro-phase separation
is already observable at lower densities, where the structure factors develop a local
maximum at q = 0 with increasing density, as shown in figures (6.3)-(6.4) for x = 0.5.
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Figure 6.1: Spinodal for system A.
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Figure 6.2: Radial distribution function Gij(R) for system A with a total density ρR3
11 =

1.49 and concentration x = ρ2/ρ = 0.5. The circles denote the MC-results, the full lines
the DFT test-particle results and the dashed lines are obtained by inserting the RPA
closure into the OZ equations. (The DFT results are courtesy of A. J. Archer)
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Figure 6.3: The partial structure factor S11(q) for system A at concentration x = 0.5
for the densities ρR3

11 = 1.0 (top) and ρR3
11 = 1.49 (bottom). The circles denote the

MC-results, the full lines the DFT test-particle results and the dashed lines are obtained
by inserting the RPA closure into the OZ equations. (The DFT results are courtesy of A.
J. Archer)
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Figure 6.4: Same as figure 6.3 but for S22.
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Figure 6.5: Same as figure 6.3 but for S12.
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Figure 6.6: The λ-line for system B.

6.4.2 Micro-phase Separation

The second Gaussian mixure we investigate (system ‘B’) represents G3 dendrimers
with thread length δ = 2.0σ and G4 dendrimers with δ = 4.7σ. Here, the G4-G4
interaction is very soft, and the G3-G3 repulsion is comparatively strong and short
ranged. The parameters for the effective interactions Vij(R) = εij exp(−R2/R2

ij)
obtained from MC simulations are

ε11 = 6.3 kBT, R11 =
√

21σ

ε22 = 3.1 kBT, R22 =
√

100σ

ε12 = 3.2 kBT, R12 =
√

52σ.

This system exhibits a divergence of the partial structure factors at a non-zero
wavelength. The corresponding λ-line is shown in figure 6.6. It is located at rather
high densities: its minimum density ρR3

11 = 1.23 corresponds to a monomer density
of σ3ρm = 0.63. The radial distribution functions are shown in figure 6.7 for x = 0.5
and ρR3

11 = 0.96 that is 76% of the density at the λ-line for this value of x. Here,
long range oscillations with a wavelength λ ∼ 1.8R22 are already visible. Moreover,
the fact that G22(0) > 1 shows that the dendrimers of species 2 prefer complete
overlap.

Figures (6.8)-(6.10) show the partial structure factors for x = 0.5 and the den-
sities ρR3

11 = 0.72 and ρR3
11 = 0.96. The peaks arise at a wavenumber qR11 ∼ 1.6.

Again, theory is in good agreement with the simulation results.
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Figure 6.7: Radial distribution function Gij(R) for system B with a total density ρR3
11 =

0.96 and concentration x = ρ2/ρ = 0.5. The circles denote the MC-results, the full lines
the DFT test-particle results and the dashed lines are obtained by inserting the RPA
closure into the OZ equations. (The DFT results are courtesy of A. J. Archer)
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Figure 6.8: The partial structure factor S11(q) for system B at concentration x = 0.5
for the densities ρR3

11 = 0.72 (top) and ρR3
11 = 0.96 (bottom). The circles denote the

MC-results, the full lines the DFT test-particle results and the dashed lines are obtained
by inserting the RPA closure into the OZ equations. (The DFT results are courtesy of A.
J. Archer)
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Figure 6.9: Same as figure 6.9 but for S22.



6.4. BULK RESULTS 91

0 2 4 6 8 10-2.5

-2

-1.5

-1

-0.5

0

0 2 4 6 8 10
qR11

-2.5

-2

-1.5

-1

-0.5

0S 12
(q

)

Figure 6.10: Same as figure 6.8 but for S12.
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6.5 Confined Geometry

We now expose the systems A and B from the previous section to external potentials.
Here, we solely use spherical confinements. First we use the simplest (but somewhat
unrealistic) spherical potential, where the centres of the particles interact with a hard
wall, i. e.,

V ext
i (R) =

{
0 for R < Rwall

∞ otherwise.
(6.8)

The radial partial density profiles for systems A and B are shown in figures 6.11
and 6.13 respectively. The DFT results fit very well to the simulational ones and
also capture the details of the highly structured profiles. However, a slight phase
shift is noticeable in the micro-phase separation case. The bulk behaviour (micro- or
macro-phase separation) predicted for the two system is also reflected in the density
profiles under confinement. System A separates into two regions as can be seen
from figure 6.11: there are almost exclusively particles of species 2 in the center of
the cavity for R . 8 R11 with constant density, whereas species 1 is located near
the wall, showing layer-like ordering due to the presence of the wall. System B, in
contrast, shows ‘onion-like’ order of layers alternating from rich in species 1 to rich
in species 2.

The above wall potential is unrealistic as the dendrimers do not interact with
the wall until their centres of mass have reached it. In order to model the wall
interaction more realistic, a soft potential range of the dendrimers’ radius would
take into account that the monomers can interact with the wall when its centre of
mass approaches to it. Here, we choose Yukawa potentials, given by

V ext
i (R) =

{
εii exp[−(Rwall −R)/Rii]/(Rwall −R) for R < Rwall

∞ otherwise,
(6.9)

using εii and Rii of the interaction potentials Vij(R).
For system B (micro-phase separation), there are only minimal changes due to

the different wall potential; in the simulational results as well as in the DFT ones
(compare figures 6.13 and 6.14). But for sytem A (macro-phase separation), we find
a strong sensitivity with respect to the form of the wall potential: in the hard wall
case, species 1 is preferred, and in the Yukawa-wall case species 2, as can be seen by
comparing figures 6.11 and 6.12.

Other confining geometries could also be interesting, such as parallel walls, where
the resulting lamellar ordering of the micro-phase separating mixture causes strong
anisotropy regarding the shear properties of the system. In this way, the mixture
could act as a lubricant, facilitating relative motion of the walls parallel to each
other.
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Figure 6.11: Radial density profiles ρi for system A with concentration x = 0.5 and a
total density ρR3

11 = 3.97 confined in a spherical hard wall potential. The circles denote
the MC results, the lines those of DFT. (species 1: full line, full circles; species 2: dashed
line, open circles) The DFT results are courtesy of A. J. Archer.
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Figure 6.12: Same as figure 6.11 but for a Yukawa-like wall.
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Figure 6.13: Same as figure 6.11 but for system B.
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Figure 6.14: Same as figure 6.13 but for a Yukawa-like wall.



Chapter 7

Conclusions

We have introduced a ‘minimal’ model to describe dendrimers of various generations.
Our approach takes into account the connectivity and steric interactions of self-
avoiding dendrimers in the very simple way, by viewing the monomers as hard
spheres connected by ideal threads that have a maximum possible extension. We
focused on dendrimers with spacer length P = 1 and on athermal solvents in this
study, but the generalization to arbitrary P ’s and to solvents of varying quality is
straightforward. One can introduce a tunable effective attraction of varying shape,
depth and range in order to model solvents of decreasing quality. We have shown
that the dendrimers are a distinct class of polymeric colloids, possessing a density
profile that features a broad plateau of constant density. This makes them clearly
distinct from other branched polymeric entities, such as star polymers for which a
density profile ξ(r) ∼ r−4/3 holds, [98] or star-branched polyelectrolytes, in which
case a dependence of the form ξ(r) ∼ r−2 obtains. [60,110] In addition, the height of
this plateau was found to be generation-dependent, a feature that causes the size of
the dendrimers to grow with the number of monomers slower than the inverse-third
power of the latter, as has been observed experimentally. The form factors obtained
are also in very good agreement with experiments.

An important property of the models we considered is a strong insensitivity of
the results on the details of the microscopic model. This holds both for the bead-
thread model, when the contour length is varied by a factor 8 (from 0.05 to 0.40) and
for the Lennard-Jones–FENE potential. When lengths are scaled with the radius of
gyration of the molecule, results practically collapse on master curves. This has the
implication that one cannot determine on the basis of comparisons with scattering
data from dilute solutions alone which model is the most realistic for the system at
hand. On the other hand, a quantity that most certainly does depend on the model
details is the effective interaction (potential of mean force) between two dendrimers.

Having shown that the bead-thread model yields reliable results, we employed
it to calculate the interaction potential. By carrying out extensive computer sim-

95



96 CHAPTER 7. CONCLUSIONS

ulations with two different models for dendrimers, and for a variety of parameters
within those, we have demonstrated that the effective interaction between their cen-
tres of mass can be very well approximated by a Gaussian form. The quantitative
characteristics of this Gaussian potential, i. e. its strength and range, can be tuned
through a variation of the spacer length and the generation number. Thus, den-
drimers are one additional physical system in which the novel family of bounded,
ultrasoft and tunable effective interactions can be materialised. Our study has been
supplemented by an approximate density-functional theory in which the connections
between the monomers have been replaced by a fictitious external potential. This
approach captures the main features of the interaction, although the agreement with
the simulation results is still not quantitative.

Due to the simplicity of the bead thread model, monomer resolved simulations of
concentrated solutions are possible, where correlation functions between the centres
of mass of the macromolecules and the individual monomers themselves can be cal-
culated. Moreover, we have carried out simulations employing previously calculated
effective interaction potentials. By comparing the real-space correlation functions
obtained by the two simulation approaches, we found that many-body effective po-
tentials play a minor role up to the overlap density and they can be altogether
ignored for open dendrimers with long bond lengths. Our finding for the scattering
intensity, on the other hand, is that the factorisation approximation of this quantity
into a form- and a structure factor loses its validity as one approaches the over-
lap concentration. Structure factors that are obtained from experimental data by
dividing the scattering intensity through the form factor can be seriously in error.

It appears, therefore, that the extraction of an accurate structure factor from
concentrated dendrimer solutions is extremely difficult as one approaches the over-
lap concentration. We anticipate that this result is also valid for other ‘polymeric
colloids’ such as star-shaped polymers and brushes. One strategy to circumvent this
inherent difficulty is to use the labeling technique, in which a small, inner part of
the molecule is protonated and the rest is deuterated in such a way that the con-
trast between the outermost part of the molecule and the solvent vanishes. In this
way, only the innermost part of the molecule will have contrast with the solvent and
scatter coherently. Thus, one can reach concentrations for the whole system that
exceed ρ∗, whereas the labelled parts are still nonoverlapping. Such a technique was
successfully applied, e.g., to star polymers [59].

We also have investigated mixtures of dendrimers, finding macroscopic demixing
or micro-phase separation, depending on the choice of the dendrimers’ generation
numbers and architecture. Here, in contrast to previous studies concerning micro-
phase separation, we do not employ arbitrary Gaussian potentials but those obtained
from monomer-resolved simulations of dendrimers. Furthermore, we observe pattern
formation under confinement, finding a strong sensitivity with respect to the form of
the wall potential. The procedure used for calculation of the dendrimer-dendrimer
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potentials could also be employed to calculate effective dendrimer-wall interaction
potentials in MC simulations.

In this thesis, we have restricted ourselves to flexible and neutral dendrimers,
always finding dense-core conformations. In view of practical applications, investi-
gation of stiff or charged dendrimers or modified end monomers is of special interest
in order to achieve dense shell configurations. Another question are the dynamical
properties of dendrimers and the ability of effective interaction potentials to describe
it. These are open questions for future work.
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Appendix A

Proof of Equation (4.9)

Let us consider, without loss of generality, the force F1 = −∇R1Veff(R1,R2) acting
on the centre of mass of the first macromolecule. First, let us define the new variables

wα =
1

N

N∑
i=1

riα, (A.1)

with α = 1, 2. Our starting point is Eq. (4.5) of the main text. Acting with the ∇R1-
operator on both sides and carrying out the trivial integrations over the momenta
on the right-hand side, we obtain

F1 = kBT

{∫
drN

2

∫
drN

1 δ(R2 −w2)∇R1δ(R1 −w1) exp[−β(V11 + V12 + V22)]

}

×
{∫

drN
2

∫
drN

1 δ(R2 −w2)δ(R1 −w1) exp[−β(V11 + V12 + V22)]

}−1

. (A.2)

Let Z be the denominator in Eq. (A.2) above. Writing∇R1δ(R1−w1) = −∇w1δ(R1−
w1) and taking into account that V22 does not depend on the coordinates {ri1},
i = 1, 2, . . . , N of the monomers of the first dendrimer, we thus obtain

F1 = −kBT

Z

∫
drN

2 δ(R2 −w2) exp(−βV22)

×
∫

drN
1 [∇w1δ(R1 −w1)] exp[−β(V11 + V12)].

(A.3)

The potential energy function V11 depends only on the relative coordinates of the
monomers of dendrimer 1. On the other hand, V12 contains all the interactions
between monomers of different dendrimers, thus for a fixed conformation {rN

2 } of
the second dendrimer, it can be considered a function of the variables {rN

1 } only.
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Let us introduce a transformation from the set of variables {r11, r21, . . . , rN1} into
the new variables {y21,y31, . . . ,yN1,w1}, where

yj1 = r11 − rj1, j = 2, 3, . . . , N (A.4)

and w1 is given by Eq. (A.1) above. The Jacobian of this transformation is equal
to unity and it is straightforward to show that the inverse transformation reads as

r11 =
1

N

N∑
j=2

yj1 + w1; (A.5)

ri1 =
1

N

N∑
j=2

yj1 − yi1 + w1, j = 2, 3, . . . , N. (A.6)

The potential energy functions transform as follows:

V11 → Ṽ11(y21,y31, . . . ,yN1), (A.7)

i.e., there is no dependence on the variable w1, whereas for the cross-interaction
term we obtain

V12(r11, r21, . . . , rN1) → Ṽ12(y21,y31, . . . ,yN1,w1), (A.8)

where the explicit form of the function Ṽ12 is obtained by substituting the transfor-
mations (A.5) and (A.6) in the function V12, explicitly

Ṽ12 = V12

(
1

N

N∑
j=2

yj1 + w1,
1

N

N∑
j=2

yj1 − y21 + w1, . . . ,
1

N

N∑
j=2

yj1 − yN1 + w1

)
.

(A.9)
Under these transformations, Eq. (A.3) takes the form:

F1 = −kBT

Z

∫
drN

2 δ(R2 −w2) exp(−βV22)

×
∫

dyN−1
1 exp(−βṼ11)

×
∫

d3w1[∇w1δ(R1 −w1)] exp(−βṼ12), (A.10)

where
∫

dyN−1
1 is a shorthand for the multiple integral

∫ ∫ · · · ∫ d3y21d
3y31 . . . d

3yN1.
In order to evaluate the last integral in Eq. (A.10), we make use of the property of
the delta-function

∫
d3x∇xδ(x− a)f(x) = −∇xf(x)|x=a. (A.11)
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Applying now the above formula for the last integral of Eq. (A.10), using the chain
rule for Eq. (A.9) and the transformations (A.5) and (A.6), we obtain

∫
d3w1[∇w1δ(R1 −w1)] exp(−βṼ12)

= β

N∑
i=1

[∇ri1
V12(r11, r21, . . . , rN1)] exp(−βV12)|w1=R1 .

(A.12)

Reverting to the original variables, rearranging terms in Eq. (A.10), using Eq.
(A.12) and reintroducing formally a δ(R1−w1)-function to implement the constraint
on the centre of mass, we have

F1 =

{∫
drN

2

∫
drN

1 δ(R2 −w2)δ(R1 −w1)

×
[
−

N∑
i=1

∇ri1
V12({ri1}, {ri2})

]
exp[−β(V11 + V12 + V22)]

}

×
{∫

drN
2

∫
drN

1 δ(R2 −w2)δ(R1 −w1) exp[−β(V11 + V12 + V22)]

}−1

.(A.13)

The term in the square brackets in the numerator of the right-hand side is the sum
of the forces exerted on the monomers of dendrimer 1 from all the monomers of
dendrimer 2. There is no contribution to the force from internal forces within the
dendrimer, as they cancel in pairs. Moreover, Eq. (A.13) makes it manifest that F1

is the expectation value of the sum of the individual forces under the constraint of
keeping the centres of mass fixed at positions R1 and R2. This proves Eq. (4.9) of
the main text.
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2000, 12, 5087.

[77] Dijkstra, M.; Brader, J. M.; Evans, R. J. Phys.: Condens. Matter 1999, 11,
10079.

[78] Dijkstra, M.; van Roij, R.; Evans, R. Phys. Rev. Lett. 1998, 81 2268; ibid.
1999, 82, 117.

[79] Dijkstra, M.; van Roij, R.; Evans, R. Phys. Rev. E 1999, 59, 5744.
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[97] Higgins, J. S.; Benôıt, H. C. Polymers and Neutron Scattering (Oxford: Claren-
don) 1994.

[98] For an illuminating review on experimental aspects of scattering from polymeric
systems see the article: Grest, G. S.; Fetters, L. J.; Huang, J. S.; Richter, D.
Adv. Chem. Phys. 1996, XCIV, 67.
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