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To my Grandmother,

who passed away on December 31, 2003.

Chapter 1

Introduction

Ever since the invention of a microscope, one of the greatest trends of

modern science has been toward resolving ever-finer detail in the study of

matter. Since small objects generally move quickly (which simply follows

from the dependence of inertia on mass), high spatial resolution alone is not

sufficient to image such objects (for example, to take a magnified photograph

of them with a camera). A short-duration flash of light (or fast shutter)

is also necessary to prevent blurring of the image. While the millisecond

duration of an ordinary camera is sufficient to freeze the action of a person

running (meter-scale length), a strobe light with ultrashort pulse duration

(1 femtosecond or 10−15 s) is required in order to resolve a moving atom

(10−10 -m-scale length).

For this reason, the study of ultrafast molecular dynamics did not

begin until the development of femtosecond-duration optical lasers in the

late 1970s. However, direct time-domain measurements with femtosecond

temporal resolution could be made only with micrometer-scale spatial

resolution because of the relatively long wavelength (∼ 1 micrometer) of

optical light. Alternatively, direct measurements with atomic-scale spatial

resolution could be made with x-rays from synchrotrons, but with only

nanosecond temporal resolution, because of the relatively long duration of

these sources. Now, with the development of a new generation of tabletop-

5



6 Introduction

size laser systems, it is feasible to generate femtosecond-duration x-ray pulses

[Kiselev et al., 2004, Rousse et al., 2004], which will allow high resolution to

be achieved simultaneously in both space and time.

1.1 Laser-driven x-ray sources

What makes lasers so promising is that they can deliver both short pulses

and high peak power. Because power is energy divided by time, when only

a joule of energy is released over femtoseconds, it can produce a terawatt

of power. This power can produce the highest light intensities on Earth,

1021 W/cm2, by focusing the light to a spot size of the laser wavelength. The

largest electric and magnetic fields ever produced of the order of 1012 V/cm

and 105 tesla (109 gauss), respectively are associated with these extreme

power densities. What permits solid-state lasers to generate fields of that

order is the chirped-pulse-amplification technique, invented in 1987. In order

to prevent damage to the amplifiers, the laser light is first stretched in time,

then amplified as a pulse with long duration, and thus with lower power, and

finally compressed to a short duration after the energy has been increased.

Fields of this high strength can accelerate electrons to relativistic energies,

which can be used to convert light to short pulses of x-rays.

1.1.1 Electron motion in laser fields

Light is a wave with transverse electric and magnetic fields oscillating at

the same frequency. At low laser power, electrons oscillate along the light’s

electric field E with a velocity v which is always very small compared to the

speed of light (Fig. 1.1a). This motion is described by the equation

dp

dt
= −eE,

where m is the electron mass and e is the magnitude of its charge. At higher

laser intensities, the electron velocity in a laser focus can approach close the

speed of light c and relativistic mass m increases. In this relativistic regime,
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one must also include an additional term in the equation of motion, which

then becomes
dp

dt
= −e[E + (v/c) × B].

Thus, the light’s magnetic field B will act to bend the electrons in the

direction of light propagation, perpendicular to both E and B (Fig. 1.1b).

Due to the magnetic force, the electron traces a figure-8, oscillating

twice in the direction of the light wave for every single oscillation along

the polarization direction (along E). This oscillating motion is then

superimposed upon a steady drift in the direction of the light wave. Thus

the motion is increasingly longitudinal as the light intensity is increased.

1.1.2 Laser focusing on solid targets

One way to make x-rays is by focusing an intense laser onto a solid

target. When the relativistic electrons collide with the ions of the solid,

they rapidly accelerate, causing the emission of bremsstrahlung radiation

in the x-ray spectral region. This is just like a conventional x-ray tube,

such as found in a dentist’s office, except it is the laser’s short-duration

electromagnetic field that accelerates the electrons instead of the continuous

electrostatic field between the anode and cathode of the x-ray tube. One of

the problems with these x-rays is that they are produced in all directions

simultaneously (4π steradians), and so their intensity decreases with the

square of the distance from the source. They are also incoherent and deliver

relatively long pulses, picoseconds in duration. However, because of the

simplicity of the method used to produce them, these x-rays have been used

to study picoseconds processes such as shock formation or melting by means

of either x-ray absorption or diffraction.

1.1.3 Laser focusing on gaseous targets

Another way to make x-rays is to focus an intense laser onto a gaseous-

density target. The highly nonlinear but periodic motion discussed above
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Figure 1.1: Motion of an electron in a light wave. (a) In classical optics,

the amplitude of the light wave is small, electrons oscillate in the direction

of the electric field E, at the light’s frequency, and there is no displacement

along the light’s propagation direction k. Only the electric field acts on the

electron, and the electron-oscillation velocity is very small compared with

the speed of light. (b) In relativistic optics, the amplitude of the light wave

is very large, the light’s magnetic field becomes important, and the combined

action of the electric and magnetic fields pushes the electron forward. In this

case, the electron velocity becomes close to the speed of light.
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results in nonlinear scattering. For instance, when the strength of the light

field approaches the Coulomb field binding electrons to nuclei, extremely high

order harmonics can be observed, culminating in the recent observation of the

501st harmonic of 800-nanometer laser light. The mechanism responsible for

this is recombination of the energetic e−. At larger light field strengths, the

atoms become ionized, producing plasma, which disrupts phase matching and

prevents the efficient generation of higher harmonics. In even larger fields,

the electron will no longer even collide with the nucleus due to acceleration

in the direction of the light wave. But when the field is increased yet further,

the free electrons in the plasma begin to oscillate with relativistic velocities,

and the nonlinear motion (discussed above) can produce harmonics. The

usefulness of this nonlinearly Thomson scattered light, however, is limited,

owing to the fact that the harmonics are scattered at large angles. Also,

because the oscillation frequency is reduced, so too is the scattering efficiency

into high harmonics.

Fortunately, at high laser intensities a directed beam of relativistic

electrons is also produced in the direction of the laser light by laser-

driven plasma waves. Lasers have been shown to accelerate greater than

1010 electrons to energies well above 1 MeV in low-divergence (< 10◦ angle)

beams at repetition rates of 10 Hz. The acceleration gradient is greater

than 1 GeV/cm, 104 times greater than that of conventional radio-frequency

accelerators. Recent experiments have shown that Compton scattering

by such a co-propagating electron beam produces a collimated beam of

high-order harmonics, also in the direction of the laser light (Fig. 1.2).

Unlike Thomson scattering from low-velocity electrons, which produces only

harmonics, Compton scattering from relativistic electron beams also results

in a Doppler shift, which (in the case of counterpropagating beams) can

further upshift the energy of the scattered light to the hard x-ray region of

the spectrum. For example, electrons with only 100 MeV energy can boost a

1 eV energy photon to 50 keV. This opens up the possibility of an all-optically-

driven ”tabletop” hard x-ray source, which is of interest not only as a probe
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Light wave
X-ray

electron

Figure 1.2: Process whereby harmonic generation and a relativistic Doppler

effect can upshift the frequency of visible radiation from a laser that

Compton-scatters from an energetic electron beam to the x-ray region of

the spectrum. Colliding a laser with 100-MeV-energy electron beams from a

tabletop laser accelerator can produce 50-keV x-rays.

with atomic-scale spatial resolution but also as a medical diagnostic tool

because of the large penetration of such energetic light through matter.

1.1.4 Other x-ray sources

There exist other means to generate x-ray sources, such as synchrotrons

and free-electron lasers. They rely on conventional (radio-frequency)

accelerators to generate an electron beam, but because of their low field

gradients (0.1 MeV/cm) they are usually quite large (tens to hundreds of

meters in length). Long sets of magnets (tens of meters) are required

to wiggle the electrons. Laser-Compton sources, by contrast, accelerate

electrons in millimeter distances, and the electrons are wiggled in a

millimeter-long interaction region by the magnetic field of the laser pulse.

Consequently, laser-Compton sources will be much more affordable, thus
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potentially permitting their operation at university, industrial, and hospital

laboratories. They also provide better temporal resolution (femtoseconds

instead of tens of picoseconds). There are proposals to build a short-pulse

x-ray free-electron laser, but this will require a 50-GeV-energy electron beam

conventionally accelerated in a 3-km-long (2-mi) tunnel to be passed through

a 50-m-long (150-ft) set of wiggler magnets. Free-electron lasers do have the

advantage over Compton sources that the electrons become tightly bunched,

improving coherence and x-ray power.

Another laser-driven x-ray source is an x-ray laser, which is driven by

electronic transitions in highly stripped ions. X-rays lasers do have the best

coherence properties and are currently the brightest monochromatic sources

in the extreme-ultraviolet region of the spectrum, but they do not scale to the

hard x-ray regime. Although they produce shorter pulses than synchrotrons,

their pulses, several picoseconds in duration, are still relatively long compared

with laser- Compton sources.

1.2 Electron acceleration

One of the promising schemes is the high-gradient laser wake field

acceleration (LWFA) of charged particles in plasmas [Esarey et al., 1996].

Hereinafter we consider this scheme. When a laser pulse propagates through

underdense plasma, it excites a running plasma wave oscillating with the

frequency

ωp/
√

γ, (1.1)

where

ωp =
(

4πe2n0/m
)1/2

(1.2)

is the nonrelativistic electron plasma frequency, e, m, and n0 denote charge,

mass, and density of electrons, respectively; γ is the average electron

relativistic factor. The wave trails the laser pulse with phase velocity set

by the laser pulse group velocity

vwake
ph = v0 ≃ c[1 − ω2

p/(2γω2)], (1.3)
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where ω is the laser frequency. A relativistic electron can ride this plasma

wave, staying in-phase with the longitudinal electric field and be accelerated

to high energies [Pukhov et al., 2003].

The laser pulse can excite the plasma wave in different ways

[Pukhov, 2003]. The excitation is most efficient when the laser pulse duration

is of the order of the plasma wavelength

λp = 2π
√

γc/ωp. (1.4)

Taking a plane laser pulse with the normalized intensity profile

a2 = a2
0 cos2 πζ/2L (1.5)

for

−L < ζ = z − ct < L, (1.6)

one finds that the wake field reaches the maximum

Emax/E0 = a2
0/(2 + 2a2

0), (1.7)

when the laser pulse full width at half maximum (FWHM) is

L = λp/2 (1.8)

[Esarey et al., 1996]. Here

E0 = mcωp/e (1.9)

normalizes the electric field of the plasma wave, and

a0 = eA0/mc2 (1.10)

is the dimensionless amplitude of the laser vector potential. The pattern

of wake field excitation differs significantly for laser pulses longer and

shorter than the plasma period. The long laser pulse gets self-modulated

with the plasma period, and the resonance between this self modulation

and the plasma frequency leads to an efficient wake field excitation. The

corresponding regime is called self-modulated laser wake field acceleration



1.2.Electron acceleration 13

(SM-LWFA) [Andreev et al., 1992]. Long laser pulses, however, experience

not only the one-dimensional self-modulation, but get self-focused and

form relativistic channels in the plasma [Pukhov and Meyer-ter-Vehn, 1996,

Pukhov et al., 1999]. Trapping of electrons in the plasma waves is a key

issue for LWFA. Injection and acceleration of external beams has been

demonstrated experimentally [Amiranoff et al., 1998b]. Creation of trapped

electrons inside the wave bucket has been proposed with the application

of supplementary laser pulses [Esarey et al., 1997, Umstadter et al., 1996b].

The wavebreaking can also lead to self-trapping and acceleration of

electrons by the plasma wave [Malka et al., 2002, Modena et al., 1995,

Santala et al., 2001].

1.2.1 Applications

Laser-driven ultrafast x-rays can provide the required temporal resolution

for the study of ultrafast processes such as conformational changes in ultrafast

biology and chemistry, innershell electronic processes in atomic systems, and

phase transitions in materials science. One problem they might help solve

is the determination of protein structure. They are also useful in the study

of photo-initiated processes, such as photosynthesis, because in this case the

optical pump and x-ray probe are absolutely synchronized with each other,

being derived from the same laser. Also, significant absorption of the x-ray

probe pulse (such as occurs in the in vitro imaging of live biological cells)

can destroy a sample or at least cause it to move. Thus, in order to acquire

an image before the occurrence of blurring from this heat-induced motion,

a single-shot pump-probe measurement with ultrashort-duration and high-

peak-power x-rays is required. Low-repetition-rate, laser-produced x-ray

sources are also best suited for studies of processes that are irreversible,

and in which the sample must be moved between shots. Tunable x-rays that

have energy near 50 keV can also be used in medicine for applications such

as either differential absorption or phase-contrast imaging.
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Chapter 2

Electron Acceleration in the

“Bubble” Regime

2.1 Phenomenological theory and 3D PIC

simulation of laser-plasma interaction in

the “bubble” regime

2.1.1 Introduction

Here, we focus on laser-plasma interaction in the “bubble” regime recently

proposed by [Pukhov and Meyer-ter-Vehn, 2002]. It has been observed in

3D Particle-In-Cell (PIC) simulations for ultra-relativistically intense laser

pulses shorter than λp (1.4). These laser pulses are intense enough to break

the plasma wave already after the first oscillation. The main features of the

“bubble” regime are the following:

(i) a cavity free from cold plasma electrons is formed behind the laser pulse

instead of a periodic plasma wave,

(ii) a dense bunch of relativistic electrons with a monoenergetic spectrum

is self-generated,

15



16 Electron acceleration

(iii) the laser pulse propagates many Rayleigh lengths in the homogeneous

plasma without a significant spreading.

These features are absent in the weakly relativistic regime of laser wake field

acceleration [Esarey et al., 1996].

We discuss here numerical 3D PIC simulation of laser-plasma interaction

in the “bubble” regime and develop a phenomenological theory of this regime.

The electron dynamics is defined by the laser ponderomotive force and the

electromagnetic fields pertinent to the “bubble” density patterns. It is seen

from Fig. 2.1 that there are roughly three patterns:

(i) the electron plasma cavity with the large ion charge,

(ii) the electron sheath around the cavity forming the “bubble” boundary,

(iii) the bunch of accelerated electrons growing behind the laser pulse in the

cavity.

The density of the electron sheath peaks at the head of the laser pulse and

at the base of the cavity. These density peaks are formed by the relativistic

electrons with v ≃ v0, where v0 is the “bubble” velocity. The “bubble” base

is the source of electrons, which get trapped and accelerated to γ ≫ γ0,

where γ0 = (1 − v2
0/c

2)
−1/2

is the relativistic gamma-factor of the bubble.

2.1.2 Numerical simulation parameters

For the simulations, we use the fully electromagnetic 3D PIC code

Virtual Laser-Plasma Laboratory [Pukhov, 1999]. The incident laser pulse

is circularly polarized, has the Gaussian envelope

a(t, r) = a0 exp(−r2
⊥/r2

L − t2/T 2
L), (2.1)

The parameters of the laser pulse are

λ = 0.82µm rL = 10λ

cTL = 4λ a0 = 10. (2.2)
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Figure 2.1: On-axis cuts of the electron density n in the x − y plane from

the PIC simulation at the times when the laser pulse passed about (a) lint =

25c/ωp ≃ 50λ and (b) lint = 442c/ωp ≃ 900λ, where λ is a laser wavelength.

The coordinates are given in c/ωp.
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The pulse propagates in a plasma with the density n0 = 6.1× 10−3nc, where

nc =
(

mω2/4πe2
)1/2

(2.3)

is the critical density.

The plasma density distribution observed in the simulation is shown in

Fig. 2.1 at two instants of time:

(a) when the laser pulse has passed lint = 25c/ωp ≃ 50λ

(b) lint = 442c/ωp ≃ 900λ

in plasma. These density distributions are very typical for the “bubble”

regime. It is seen from Fig. 2.1 that the wake behind the laser pulse takes

the form of a solitary cavity, which is free from plasma electrons. The cavity

is surrounded by a high density sheath of the compressed electron fluid.

At later times, Fig. 2.1(b), a beam of accelerated electrons grows from the

“bubble” base. Simultaneously, the “bubble” size increases.

2.1.3 Fields inside relativistic cavern

Before considering the relativistic cavity moving in plasma we summarize

the results for fields within an ionic sphere either at rest, or relativistically

moving. The electromagnetic field of the uniformly charged sphere at

rest is purely electrostatic. The electric field and the scalar potential

inside the sphere with radius R and with the charge density |e|n0 are

[Landau and Lifshits, 1982]

E =
r

3
, B = 0, ϕ = 1 +

R2

6
− r2

6
, (2.4)

where we choose that the potential is equal to unity at the sphere boundary.

We use dimensionless units, normalizing the time to ω−1
p , the lengths to c/ωp,

the velocity to c, the electromagnetic fields to mcωp/|e|, and the electron

density, n, to the background density n0.
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If the ionic sphere runs with the relativistic velocity v0 ≃ 1 along x-axis

then the fields inside the sphere are

Ex = 0, Ey = Bz =
y

2
, (2.5)

Bx = 0, Ez = −By =
z

2
, (2.6)

where the terms, which are proportional to γ−2
0 = 1− v2

0 ≪ 1, are neglected.

The Lorentz force on the relativistic electron moving inside the sphere with

velocity v = −v0 = −ex is

Fx = 0, Fy = −Ey − Bz = −y, (2.7)

Fz = −Ez + By = −z, (2.8)

while it is negligible for the electron with v = v0 = ex because of

relativistic compensation of the electrostatic force by the self-magnetic force

[Davidson, 2001].

Now we are interested in the question what are the fields inside a spherical

electron cavity moving in plasma. This cavity is similar to the hole in

semiconductor physics [Smith, 1959]. Contrary to the case discussed above,

the ions are now immobile in the cavity while the cavity runs with the

relativistic velocity v0 ≃ 1 along x-axis. The ion dynamics is neglected

because the cavity radius is assumed to be smaller than the ion response

length ≃ c/ωpi, where ωpi = (4πe2n0/M) is the ion plasma frequency and M

is the ion mass. To calculate the fields we rewrite the Maxwell equations in

terms of potentials using the following convenient gauge

Ax = −ϕ. (2.9)

We get

△Φ = 1 − n

(

1 − px

γ

)

+

(

∂

∂t
+

∂

∂x

)

(∇ · A)

+
1

2

∂

∂t

(

∂

∂t
− ∂

∂x

)

Φ, (2.10)
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∇×∇× A + n
p

γ
+

∂

∂t

(

∂A

∂t
− ∇Φ

2

)

= 0. (2.11)

Here we use the wake field potential Φ = Ax −ϕ instead of the scalar one, n

is the electron density and p is the electron momentum.

Then we use a quasistatic approximation assuming that all quantities

depend on ζ = x − v0t instead of x and t. The Maxwell equations reduce to

the form

△Φ =
3

2
(1 − n) + n

px

γ
− 1

2

∂

∂ξ
(∇⊥ · A⊥) (2.12)

△⊥A⊥ −∇⊥ (∇⊥ · A⊥) = n
p⊥

γ
+

1

2
∇⊥

∂Φ

∂ξ
, (2.13)

where the terms proportional to γ−2
0 ≪ 1, are neglected. Inside the cavity

(n = 0) we get

△Φ =
3

2
− 1

2

∂

∂ξ
(∇⊥ · A⊥) , (2.14)

△⊥A⊥ −∇⊥ (∇⊥ · A⊥) =
1

2
∇⊥

∂Φ

∂ξ
. (2.15)

The solution of Eqs. (2.14) and (2.15) with spherical symmetry is

Φ = 1 − R2

4
+

r2

4
, Ax = −ϕ =

Φ

2
, A⊥ = 0, (2.16)

where R is the radius of the cavity, r2 = ξ2 + y2 + z2, and the constant of

integration is chosen so that Φ(R) = 1.

The electromagnetic fields inside the relativistic cavity are

Ex = ξ/2, Ey = −Bz = y/4,

Bx = 0 Ez = By = z/4. (2.17)

The calculated distribution of electromagnetic fields is close to the one

observed in the 3D PIC simulation (see Fig. 2.2). The small deviation from

the analytically calculated field distribution is because the cavity shape is not

exactly a sphere. It is easy to see that the fields (2.16) satisfy the Maxwell

equations.
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Figure 2.2: Space distribution of the electromagnetic fields normalized to

mcωp/|e| at the time instance when the laser pulse has passed 25c/ωp: (a)

Ex as a function of x; (b) By as a function of z; (c) Ez as a function of z.

The PIC simulation results are shown by dashed lines while the analytical

results are shown by solid lines. The coordinates are given in c/ωp.



22 Electron acceleration

The Lorentz force acting on a relativistic electron with vx = 1 inside the

cavity is

Fx = −∂Φ

∂ξ
= −Ex = −ξ

2
, (2.18)

Fy = −∂Φ

∂y
= −Ey + Bz = −y

2
, (2.19)

Fz = −∂Φ

∂z
= −Ez − By = −z

2
. (2.20)

The wake potential, Φ, can be considered as the potential of the Lorentz

force on the electron with vx = 1. The Lorentz force peaks for the electron

with vx = v0 = 1 while it is zero for the electron with vx = −1 because of the

relativistic compensation of the electrostatic force by the self-magnetic force.

Notice that this effect is opposite to that of the relativistically moving ionic

sphere. This is because the displacement current in the cavity is opposite to

the ion current in the relativistically moving ion sphere.

2.1.4 Shape of the “bubble”

In this section we discuss the cavity shape. It is seen from Fig. 2.1

that the “bubble” and the electron bunch inside the cavity grow with time.

At the beginning of the interaction there is no bunch yet and the cavity

shape is determined only by ponderomotive potential of the laser pulse. The

transverse size of the cavity reaches a maximum near the middle plane, which

passes through the cavity center. At the positions, where this plane cuts the

boundary of the “bubble”, the electron sheath contains a return current

carried by weakly relativistic electrons. These electrons feel the Lorentz

force (2.17) which is nearly balanced by the laser ponderomotive force. The

transverse radius R of the cavity can thus be estimated from the equation

R

4
(1 − vx) ≃

R

4
≃ Fpond ≃ ∂

∂R

√

1 + a2 (R), (2.21)

where the spherical symmetry for the ion cavity is assumed. The

ponderomotive force is written for a laser pulse which is spherical and
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circularly polarized [Quesnel and Mora, 1998]. The electron kinetic energy

is neglected as compared with the ponderomotive potential. For the laser-

plasma parameters used in our 3D PIC simulation (Sec. 2.1.2) we find from

Eq. (2.21) R ≃ 6 that is close to the “bubble” radius observed in the

simulation (see Fig. 2.1a).

When the force from the bunch becomes stronger than the ponderomotive

one, then the cavity shape is determined by the bunch. Because the bunch

density nb is much higher than the plasma density, we can refer to the

theory of relativistic electron beam in plasma in the ion-focused regime

[Whittum, 1992] and use it to estimate the “bubble” transverse radius.

The equilibrium at the interface near the middle plain is provided by the

balance between the Lorentz forces from the cavity (2.16) and from the bunch

electrons. The transverse radius of the cavity in this bunch dominated regime

is

rb

√
nb < R < rb

√
2nb, (2.22)

where the lower limit corresponds to a bunch with the weak current

nbπr2
b ≪ 1, while the upper limit occurs for the strong current nbπr2

b ≫ 1.

Plasma electrons flow along the interface in the direction, which is opposite

to the laser pulse propagation and form the return current sheath. If the

bunch current is weak, then the width of the return current sheath is about

c/ωp and the electron energy in the return current sheath is small γ ≃ 1. In

the opposite limit, nbπr2
b ≫ 1, the sheath electrons gain relativistic energies,

γ > 1, and the sheath width increases, ∼ √
γc/ωp. For rb ≃ 2 and nb ≃ 10

observed in the simulation at lint = 442 the bunch current is strong and

the cavity radius is defined by upper limit of the inequality 2.22). Using

Eq. (2.21) we get R ≃ 9 that is close to the value observed in the simulation

(see Fig. 2.1b). The length of the cavity is of the order of R at the beginning

of interaction. When the bunch becomes large, then the cavity strongly

elongates and its length is determined by the bunch.
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2.1.5 Electron trapping by the “bubble”

We assume that the laser field is circularly polarized and the azimuthal

motion of plasma electrons is neglected. For simplicity we assume that the

electron trajectory lies in the plane z = 0. The group velocity of the laser

pulse, v0, is assumed to be close to the speed of light so that γ−2
0 = 1−v2

0 ≪ 1.

The laser pulse propagates along the x-axis. The averaged motion of an

electron in the laser field and in the slowly varying electromagnetic fields

of the “bubble” is defined by the averaged Hamiltonian [Bauer et al., 1995,

Quesnel and Mora, 1998, Dodin and Fisch, 2003]

H =
√

1 + (P + A)2 + a2 − ϕ, (2.23)

where P is the canonical momentum of the electron, a is the vector potential

of the laser field, A and ϕ are the slowly varying vector and scalar potentials,

respectively. In this description the fast electron oscillations in the laser field

are averaged out and only the ponderomotive force remains.

We change variables in the Hamiltonian (2.23) from x and Px to ξ = x−v0t

and Pξ = Px by a canonical transformation with the generating function

S = (x − v0t)Pξ. The Hamiltonian in the new variables takes the form

H = γ − v0Px − ϕ

=
√

1 + (P + A)2 + a2 − v0Px − ϕ. (2.24)

The Hamilton equations of motion are given by

dPx

dt
= −vx

∂Ax

∂ξ
− vy

∂Ay

∂ξ
+

∂ϕ

∂ξ
, (2.25)

dPy

dt
= −vx

∂Ax

∂y
− vy

∂Ay

∂y
+

∂ϕ

∂y
, (2.26)

dξ

dt
=

px

γ
− v0 = vx − v0, (2.27)

dy

dt
=

py

γ
= vy. (2.28)

The laser pulse, the cavity and the electron sheath run with the velocity

v0. At the same time, the relativistic gamma-factor of the electron bunch
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is much higher: γb ≫ γ0. The potentials in the Hamiltonian (2.24) depend

on the ξ and also slowly change with x and t due to the ultra-relativistic

electron bunch. If we neglect the time-dependent corrections of the order

of t(vb − v0) ≃ tγ−2
0 /2 ≪ 1 then the Hamiltonian (2.24) is the integral of

motion, where vb ≈ 1 − 1/2γ2
b is the bunch velocity. It follows from the 3D

PIC simulations that the electron capture takes a time of the order the cavity

size, during which the time-dependent corrections are negligibly small.

The necessary condition for electron trapping in the cavity is the existence

of the point of return where dξ/dt = 0. It follows from Eq. (2.27) that at

this point

px = v0γ. (2.29)

The integral of motion (2.24) can be rewritten as follows

H = γ − v0px − Φ = 0, (2.30)

where the initial conditions p = A⊥ = a = 0 and Φ = 1 are applied. The

relations (2.29) and (2.30) can be expressed at the return point in the form

px = v0γ0γ⊥ = v0γ
2
0Φ, (2.31)

where γ2
⊥ = 1 + p2

y + a2. The domain in the phase space, where the electron

is trapped, can be defined as

px ≥ v0γ0γ⊥ = v0γ
2
0Φ. (2.32)

Eq. (2.31) gives the boundary of the domain. The trapping occurs most

likely at the boundary of the domain, where the electron becomes trapped

with the lowest energy. The laser field can be neglected in the trapping

process, because the trapping occurs well behind the laser pulse where the

laser field is small.

To obtain analytical results on the trapping, we approximate the “bubble”

by a sphere. The electron sheath around the cavity screens the ion field in

the surrounding plasma. We model the radial Lorentz force acting on a
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relativistic electron from this structure as

F = rS (r − R) = −r

4

(

tanh
r − R

d
− 1

)

, (2.33)

where r2 = ξ2+y2+z2, R is the sphere radius and d is the width of the electron

sheath. This force is close to the one observed in the 3D PIC simulation.

The potential of this structure is

Φ = 1 +
r2

4
− d2π2

48
− 1

4
rd ln

(

1 + exp
2r

d

)

−1

8
Li2

(

− exp
2r

d

)

, (2.34)

where

Li2(z) =

∫ 0

z

ln(1 − t)

t
dt (2.35)

is the dilogarithm function [Abramowitz and Stegun, 1972]. In the limit

d → 0 function S (r) reduces to the step function and Eq. (2.34) reduces

to Eq. (2.16).

It follows from Eq. (2.31) that the trapping most likely occurs on the

sphere surface, where Φ ≃ Φmin = 1. The trapping condition takes the form

px

v0γ0

= γ⊥ ≃ γ0. (2.36)

To be trapped the electron must be accelerated so that p⊥ ≃ γ0 and px ≃
γ2

0 . Integrating numerically the Hamilton equations (2.25)-(2.28) for the

potential (2.34) we find (see Fig. 2.3a) that the cavity can trap electrons,

which have been initially at rest, if

R > γ0. (2.37)

It is seen from Fig. 2.1 that the velocity of the cavity base is smaller than

that of the cavity front because the sheath electrons near the cavity base are

collected by the bunch. Notice that the the PIC simulation window presented

in Fig. 2.1 moves with the speed of light. The velocity of the cavity front is

equal to the group velocity of the laser pulse, which corresponds to γ0 ≃ 13.
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Figure 2.3: Electron trajectories in the plane z = 0 calculated by numerical

integration of Eqs. (2.25)-(2.28) for γ0 = 9 and potential (2.34) with d = 0.5

and the “bubble” radius (a) R = 10.7; (b) R = 6. The gray circle is the

region where 0 < Φ < 1. The coordinates are given in c/ωp.
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The relativistic gamma-factor of the cavity center can be estimated from

Fig. 2.1 as γ0 ≃ 9. Hence, the cavity fields defined by the potential (2.34)

with radius R > 9 and γ0 = 9 can trap plasma electrons. Notice that electron,

which have been initially at rest, cannot be trapped by the one-dimensional

nonlinear plasma wave if Φ > 1. The one-dimensional plasma wave can

trap plasma electrons when wavebreaking occurs, i.e., when Φmin = γ−1
0 < 1

[Esarey and Pilloff, 1995].

2.1.6 Electron trapping cross-section

We observed in the PIC simulation that at the beginning of the interaction

the cavity with 40% less radius than it follows from condition (2.37) can trap

the plasma electrons. The reason is that a more accurate distribution of Φ

should be used to describe the electron trapping. In the previous section

we use the simplified model of the “bubble” with spherically symmetric

distribution of the electrons in the sheath. The wake potential in the

“bubble” is also spherically symmetric in this model and is given by

Eq. (2.34). However it is seen from Fig. 2.4a that the electron density in

the sheath strongly peaks at the “bubble” base. The spatial distribution of

Φ observed in the 3D PIC simulation at lint = 25 is shown in Fig. 2.4. The

wake potential has a minimum at the electron density peak and 0 < Φmin < 1.

Moreover the wavebreaking occurs in this region, because vx > v0 here. Like

in the one-dimensional model [Teychenne et al., 1993, Sprangle et al., 1990]

the highest density is in the wavebreaking region. Because it is shown in the

previous section that the electron trapping most likely occurs in the region

where Φ ≈ Φmin we should describe the wavebreaking region more accurately.

To model the wavebreaking region, where 0 < Φ < 1, we add a potential

of the Gaussian form

Φp = Φ0 exp

[

−(ξ − ξ0)
2 + y2 + z2

r2
p

]

(2.38)

to the “bubble” potential (2.34). Taking R = 7, ξ0 = −6.5, and Φ0 = −1.5 we

get the minimum of the total potential Φmin ≃ 0.25. A numerical integration
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of the Hamilton equations (2.25)-(2.28) for the total potential demonstrates

that electron can be trapped already by a “bubble” with the radius R ≃ 7

(see Fig. 2.3b).

It can be seen from Fig. 2.3 that only the electrons whose trajectories

run through the wavebreaking region become trapped. Therefore only a

small portion of electrons which are initially located in the electron sheath

near the middle plain and whose trajectory runs through the wavebreaking

region get trapped. We introduce the trajectory divergence η that is defined

as follows. If initially the distance between two electrons in the sheath near

the middle plain is δρ then it becomes ηδρ in the wavebreaking region. Hence

electrons in a very narrow layer with the width D/η ≪ c/ωp located inside

the electron sheath become trapped. Then the cross-section σ for the electron

trapping can be estimated as

σ ∼ 2πRns
D

η
, (2.39)

where ns is the electron density in the sheath.

The bulk of the plasma electrons, which collide with the laser pulse, enter

the sheath with width d. The sheath density can be estimated as the ratio

between the area of the circle with radius R and that of the ring with radius

R and width d

ns ≃
R

2d
, (2.40)

where γ ≃ 1 in the sheath is assumed.

Making use of Eqs. (A.3), (2.39), (2.40) and (B.10) we finally obtain the

estimates for the trapping cross-section as a function of the cavity radius:

σ ≃ π

d

(

ln
R

2
√

2

)−1

. (2.41)

For the cavity radius d ≃ 2, R ≃ 7 at lint = 25 we get σ ∼ 1.5, which is close

to the value found in the PIC simulation σ ∼ 2.
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Figure 2.4: Results of the PIC simulation when the laser pulse has passed

about 25c/ωp. Distributions in the plane z = 0 of (a) potential Φ; (b)

potential 1−Φ in the wavebreaking region (zoomed); (c) normalized electron

density n/n0. The coordinates are given in c/ωp.
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2.1.7 Electron acceleration

It follows from Eq. (2.31) that the energy of the trapped electron is large,

γ ≫ γ0, and the transverse momentum is much smaller than the longitudinal

one. The Hamiltonian (2.24) can be split into two parts by expanding it in

powers of p2
y. The first part determines the longitudinal motion and the

second one determines the transversal motion. In the zeroth order we obtain

the longitudinal Hamiltonian

H‖ =
√

1 + p2
x − v0px − Φ ≃ 0. (2.42)

For simplicity we assume that the cavity is an ion sphere with the radius R.

Then Eq. (2.42) reduces to

H‖ ≃
px

2γ2
0

+
ξ2

4
≃ 1 +

R2

4
. (2.43)

The solution of the Hamilton equations is

ξ ∝ − t

2γ2
0

, px ∝ − t2

4γ2
0

. (2.44)

The maximum energy of the accelerated electrons peaks at the cavity center

γmax ≃ 2γ2
0

(

1 +
R2

4

)

≃ 1

2
γ2

0R
2. (2.45)

For γ0 ≃ 9 and R ≃ 7 we obtain that γmax ≃ 2× 103 that is about two times

larger than γmax observed in the PIC simulation. The difference is caused by

the cavity growth and elongation (see Fig. 2.1). As the cavity elongates the

potential maximum shifts down to the bunch head. The maximum energy of

electrons in the bunch head reduces, because the potential difference between

the bunch head and the cavity center decreases.

The transversal part of the Hamiltonian can be obtained by retaining the

first order expansion terms in the Hamiltonian (2.24):

H⊥ =
p2

y

2px

+
y2

4
. (2.46)
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The Hamilton equations of motion can be then rewritten as

d2py

dξ2
+ py

4γ2
0

r2
b − ξ2

= 0. (2.47)

Here we have used Eqs. (2.43) and (2.44). Equation (2.47) describes

the transversal betatron oscillations of relativistic electrons in the bunch.

Its solution can be expressed in terms of Hypergeometric functions

[Abramowitz and Stegun, 1972]. However, we use the Wentzel-Kramers-

Brillouin (WKB) method [Lifshitz and Landau, 1981] to find an approximate

solution. Eq. (2.47) is the oscillator equation with the betatron frequency

Ω(ξ) =
1√
2px

=
2γ0

√

r2
b − ξ2

. (2.48)

Since the betatron frequency Ω(ξ) is a slowly varying function,

Ω−2dΩ/dξ ≃ (2γ0)
−1 ≪ 1, (2.49)

there exists the adiabatic invariance that is the conservation of the area

enclosed in the transverse phase space

I =

∮

pydy = H⊥/Ω = const. (2.50)

This allows us to use the WKB approximation:

py ≃ I
√

Ω(ξ)
cos

[∫

Ω(ξ)dξ

]

, (2.51)

y ≃ I
√

Ω(ξ) sin

[∫

Ω(ξ)dξ

]

. (2.52)

It follows from Eqs. (2.51) and (2.52) that the amplitude of the transverse

momentum increases and the amplitude of betatron oscillation decreases as

the electron approaches the cavity center. It is seen from Fig. 2.1b that the

bunch gets tightly focused toward the cavity center.

Making use of
√

1 + p2
x + a2 instead of px in Eq. (2.48) we can estimate

the bunch radius rb:

rb ≃ R

√

Ω

Ω0

≃ R

(

a0

px

)1/4

≃
(

2a0R
2

γ2
0

)1/4

. (2.53)
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Having the expression for the electron trapping cross-section (2.41), one

can estimate the electron bunch density. By definition of σ, all electrons

entering the cross-section σ with velocity v0 ≃ 1 in the frame of the cavity,

become trapped. The trapped electrons form the bunch, which moves with

the velocity v ≃ 1/(2γ2
0) in the cavity frame, as it follows from Eq. (2.44).

Then the bunch density nb can be estimated to be

nb ≃
2σγ2

0

πr2
b

. (2.54)

Taking γ0 ≃ 9 and R ≃ 7 one find rb ≃ 1.9 and nb ≃ 21 that is in a fairly

good agreement with the 3D PIC simulation results: rb ≃ 2 and nb ≃ 10.

2.2 Comparison with an experiment

2.2.1 The Laboratoire d’Optique Appliquée (LOA)

experiment

The experiment was done by J. Faure, J.-P. Rousseau, and V. Malka.

The generation of intense accelerating fields in plasmas has been demon-

strated in many experiments [Kitagawa et al., 1992, Clayton et al., 1985,

Amiranoff et al., 1992]. Proof-of-principle experiments have shown the

feasibility of externally injecting electrons from a conventional accelerator

into the laser-driven plasma accelerating structure [Kitagawa et al., 1992,

Everett et al., 1994, Amiranoff et al., 1998a]. However, the output beam

quality has been poor: the electron energy distribution has had a 100% energy

spread. Until now, the most widespread method for producing electron

beams from plasmas has relied on the self-modulated laser wakefield acceler-

ator [Andreev et al., 1992, Sprangle et al., 1992, Antonsen and Mora, 1992].

Under the influence of the selfmodulation instability, its envelope modulates

at the plasma frequency and resonantly excites a plasma wave. Numerous

experiments have produced electron beams with nC charge and divergence

varying from a few degrees to tens of degrees and maxwellian energy distri-

butions [Modena et al., 1995, Umstadter et al., 1996a, Moore et al., 1997].
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More recently, several groups [Malka et al., 2002, Gahn et al., 1999,

Malka et al., 2001, Leemans et al., 2002] have demonstrated that more

compact lasers can be used to efficiently generate high-repetition-rate (10Hz)

electron sources, which could be used for applications. However, these

beams still have very large energy spreads and a low number of electrons

at high energy (typically < 1pC at 200 ± 10MeV ). Previous experiments

inherently produced poor-quality beams: wave-breaking occurred under

the laser pulse envelope and the accelerated electrons were also under

the influence of the ultraintense laser field. Direct laser acceleration

[Gahn et al., 1999, Pukhov et al., 1999] by transverse laser field caused the

spatial beam quality to deteriorate, causing emittance growth.

The comparison with theory of the generation of high-quality electron

beams from ultraintense laserplasma acceleration presented here. Extremely

collimated beams with 10mrad divergence and 0.5 ± 0.2nC of charge at

170±20MeV have been produced. Contrary to all previous results obtained

from laserplasma accelerators, the electron energy distribution is quasi-

monoenergetic.

The experiment was performed by focusing ultraintense laser pulse

generated in a titanium-doped sapphire, chirped pulse amplification laser

system [Strickland and Mourou, 1985, Pittman et al., 2002] onto a helium

gas jet (Fig. 2.5). The laser pulse had a 33 ± 2fs duration (FWHM),

and contained 1J of laser energy at central wavelength 820nm. It was

focused onto the edge of a 3-mm-long supersonic helium gas jet using a

f/18 off-axis parabola. The diffraction-limited focal spot had a diameter

of r0 ± 21µm at FWHM, producing a vacuum-focused laser intensity of

I = 3.2 × 1018Wcm−2, for which the corresponding normalized potential

vector is a0 = eA/(mc2) = 1.3 (A is the laser vector potential, e and m

are respectively the charge and mass of the electron). For these high laser

intensities, the helium gas was fully ionized by the foot of the laser pulse and

ionization did not play a role in the interaction.

Figure 2.6a shows a picture of the electron beam when no magnetic
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field is applied. The electron beam is very well collimated, with a 10mrad

divergence (full-width at half-maximum, FWHM); to our knowledge, this is

the smallest divergence ever measured for a beam emerging from a plasma

accelerator. Figure 2.6b shows the deviation of the beam when a magnetic

field is applied. The image shows a narrow peak around 170MeV, indicating

efficient monoenergetic acceleration. For comparison, Fig. 2.6c shows an

image obtained at higher electron density in the plasma (ne = 2×1019cm−3).

Here, electrons are randomly accelerated to all energies and the number of

high-energy electrons is low. In addition, the beam divergence is much larger

than in Fig. 2.6b. Figure 2.9 shows an electron spectrum after deconvolution.

The distribution is clearly quasimonoenergetic and peaks at 170MeV , with

a 24% energy spread (corresponding to the spectrometer resolution).

Finally, the charge contained in this beam can be inferred using an

integrating current transformer: the whole beam contains 2 ± 0.5nC, and

the charge at 170 ± 20MeV is 0.5 ± 0.2nC. From the above, we can deduce

that the electron beam energy was 100mJ . Thus, the energy conversion from

the laser to the electron beam was 10%.

Experimentally, this regime could be reached in a narrow range of

parameters: stretching the pulse duration above 50fs was sufficient to lose

the peaked energy distribution. Similarly, when the electron density was

increased from 6 × 1018cm−3 to 7.5 × 1018cm−3, the energy distribution

became a broad plateau, similar to previous results [Malka et al., 2002].

Above 1019cm−3, the electron distribution was maxwellian-like with very few

electrons accelerated at high energy. Below 6 × 1018cm−3, the number of

accelerated electrons decreased dramatically, although the distribution was

still monoenergetic. The evolution of electron spectra with experimental

parameters indicates that using laser pulses shorter than the plasma period

is beneficial for high-quality and monoenergetic electron acceleration.

We use three-dimensional (3D) particle-in-cell (PIC) simulations (Virtual

Laser Plasma Laboratory [Pukhov, 1999]). The simulation parameters

corresponded to the optimal experimental case: the plasma electron density
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Figure 2.5: Experimental setup (taken from [Faure et al., 2004]). Top

represents the picture of the experiment. The setup diagram is shown at

the bottom. An ultrashort and ultraintense laser pulse is focused onto a

3mm supersonic gas jet and produces a highly collimated 170MeV electron

beam. LANEX is a phosphor screen; CCD is charge-coupled device camera;

ICT is integrating current transformer. The maximum strength parameter

attainable on target is a0 = 5.6.
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Figure 2.6: Raw images obtained on the LANEX screen (taken from

[Faure et al., 2004]). The vertical axis represents the beam angular

divergence. When a magnetic field is applied, the horizontal axis represents

electron energy. The white vertical dashed line is drawn at the intersection of

the laser axis with the LANEX screen. a, Image of the electron beam spatial

distribution obtained from the LANEX screen when no magnetic field B is

applied. b, Image obtained when the magnetic field is applied, showing that

the bulk of the beam is deviated and its position corresponds to 170MeV

electrons. The fact that the beam trajectory is displaced when a magnetic

field is applied confirms that the signal on the LANEX screen corresponds

to electrons and not to photons. c, Image obtained with a magnetic field

and a higher plasma density (ne = 2× 1019 cm−3). This electron beam has a

much larger divergence and a 100% energy spread with few electrons above

100MeV .
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Figure 2.7: 3D PIC simulation results. a, b, Distributions of laser intensity

(a) and electron density (b) in the xz plane, which is perpendicular to

the polarization direction and passes through the laser axis. The beam

of accelerated electrons is seen as the black rod in b. These electrons are

propagating behind the laser pulse (a) and are not disturbed by the laser

field. c, Electron phase space density f(x, γ) in arbitrary units. The red

horizontal dashed lines indicate the location of the mono-energetic peak in

the phase space.
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Figure 2.8: 3D PIC simulation results. Distributions of electron density.

This 3D picture corresponds to Figure 2.7b. The electrons are propagating

behind the laser pulse and are not disturbed by the laser field.
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was ne = 6 × 1018cm3, the laser pulse duration was 30fs and the initial

laser spot size 21mm FWHM. The laser pulse was assumed to be a perfect

gaussian containing 1J of energy. The plasma profile was chosen to fit the

experimental density profile of the gas jet. The simulation results are shown

in Fig. 2.7ac and Fig. 2.8. The laser pulse runs from left to right, and has

propagated 2mm in the plasma. The “bubble” structure is clearly visible.

The laser pushes the electron fluid forward at the “bubble” head and creates

a density compression there. Behind the laser we see the cavitated region

with nearly zero electron density. The radially expelled electrons flow along

the cavity boundary and collide at the X-point at the “bubble” base. Some

electrons are trapped and accelerated in the “bubble”. γ is the relativistic

factor of the electron: γ = (1 − v2/c2)−1/2, and v is the electron velocity.

We see that the electrons have dephased and have self-bunched in the phase

space around γ ≫ 350. This self-bunching results in the mono-energetic peak

in the energy spectrum (Fig. 2.9). Our simulation suggests that experimental

results can be explained by the following scenario.

1) At the beginning of the simulation, the laser pulse length (9µm) is nearly

resonant with the plasma wave (λp = 13.6µm); but its diameter (21µm >

λp) is larger than the matched diameter.

2) As the pulse propagates in the plateau region of the gas jet, it self-focuses

and undergoes longitudinal compression by plasma waves (Fig. 2.7a). This

decreases the effective radius of the laser pulse and increases the laser

intensity by one order of magnitude.

3) This compressed laser pulse is now resonant with the plasma wave and it

drives a highly nonlinear wakefield (Fig. 2.7b): the laser ponderomotive

potential expels the plasma electrons radially and leaves a cavitated

region behind (this is referred to as the “bubble” regime). In this

regime, the 3D structure of the wakefield resembles a plasma “bubble”

[Pukhov and Meyer-ter-Vehn, 2002].

4) As the electron density at the walls of the “bubble” becomes large, wave-
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Figure 2.9: Experimental and simulated electron spectra. Blue line with

crosses corresponds to Fig. 2.6b after deconvolution. Dashed line denotes

estimation of the background level. Red horizontal error bars corresponds to

resolution of the spectrometer. Green line corresponds to electron spectrum

obtained from 3D PIC simulations. dN/dE is the number of electrons per

MeV (E is the electron energy in MeV.)

breaking occurs and electrons are injected and accelerated inside the

bubble.

5) As the number of trapped electrons increases, the “bubble” elongates.

Its effective group velocity decreases, and electrons start to dephase with

respect to the accelerating field. This dephasing causes electron self-

bunching in the phase space (Fig. 2.7c). This selfbunching results in the

monoenergetic peak in the energy spectrum Fig. 2.9.

Simulations also show that the quality of the electron beam is higher when

trapped electrons do not interact with the laser field. If this was to occur, the
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laser field would cause the electrons to scatter in phase space, degrading the

low divergence as well as the monoenergetic distribution. This argument

could explain why higher quality beams are obtained experimentally for

shorter pulses and lower electron densities.

Figure 2.7a shows that the self-focused and compressed laser pulse stands

in front of the trapped electrons (Fig. 2.7b), leaving them almost undisturbed

[Malka et al., 2002, Pukhov and Meyer-ter-Vehn, 2002]. The electron energy

spectrum obtained from the simulations is shown in Fig. 2.9: it peaks

at 175 ± 25MeV , in agreement with the experiment. The divergence of

10mrad is also in agreement with experiment. Simulations also indicate

that the electron bunch duration is less than 30fs (here, the term “bunch”

refers to the fact that electrons are created in short bursts). Because

the electron distribution is quasi-monoenergetic, the bunch will stay short

upon propagation: considering a 24% energy spread at 170MeV , the bunch

stretches by only 50fs m−1 as it propagates.

Another important point is the apparent robustness of the “bubble”

regime. The initial laser parameters for example, the focal spot radius and

intensity were far from the final values in the “bubble” (Fig. 2.7). Yet

self-focusing led to compression of the laser pulse and to the formation of

an electron cavity. The energy of 1J for a 30fs laser pulse, used in the

experiment, is close to the threshold for this regime. Simulations suggest

that with more laser energy and shorter pulses, the formation of the “bubble”

will lead to the acceleration of monoenergetic beams at higher energies and

higher charges.

The experimental results and our 3D PIC simulations indicate that it

is possible to generate a monoenergetic electron beam by carefully selecting

laser and plasma parameters. The bunch duration (< 50fs), along with

the present improvement in the charge (nC) and the quality of the electron

beam (monoenergetic spectrum, low divergence), reinforce the relevance of

plasma-based accelerators for many applications (such as high-resolution

radiography for non-destructive material inspection, radiotherapy, ultra fast
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chemistry, radiobiology and material science). With the rapid progress of

laser science, we expect that it will soon become possible to generate compact,

monoenergetic and high-quality electron beams with a tunable energy range

at a reasonable cost. Such a source would be perfectly adapted as an injector

for future GeV laserplasma accelerator schemes. It would also be relevant

for generating ultra short X-ray sources, using undulators or lasers.
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Chapter 3

Betatron Radiation

3.1 Synchrotron emission in an ion channel

3.1.1 Overview

Electron dynamics in plasma-focusing channels has important ap-

plications to new plasma technologies, such as advanced accelera-

tors [Esarey et al., 1996], novel radiation sources, new types of lens

[Hairapetian et al., 1995]. It is a key phenomenon for ion-channel laser (ICL)

[Whittum et al., 1990, Whittum, 1992] and plasma-wiggler free electron laser

(FEL) [Joshi et al., 1987], which are perspective candidates for the new type

of high brightness X-ray radiation sources. The generation and application

of high-brightness X-rays is a fast developing area of science and technology.

Diverse demands of research, as well as industrial and medical applications

require new more intense and compact X-ray sources [Winick, 1987].

Experiments that explore the interaction of intense 28.5-GeV electron

beam with plasma at Stanford Linear Accelerator Center (SLAC)

[Wang et al., 2002, Joshi et al., 2002] have shown that the ion channel can

be successfully used to produce broadband X-ray radiation.

Moreover, the high density of the ions in the channel provides a

much higher wiggler strength than that of a conventional magnet wiggler.

45
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This leads to a more effective generation of X-ray radiation than in the

conventional light sources and could be used for the development of the next

generation of radiation sources.

To create an ion channel, an electron beam has to interact with plasma in

blow-out regime [Rosenzweig et al., 1991], when the electron beam density,

nb, is higher than the plasma density, np. In this regime, the electron

beam charge quasistatically expels the background plasma electrons out

from the beam volume and forms the ion channel. Note that relativistic

electrons of the beam are not expelled from the channel because of relativistic

compensation of the beam electron charge force by the self-magnetic force

[Lawson, 1988]. The channel radius, ri ≃ r0

√

nb/np is much larger than the

electron beam radius, r0, for dense nb ≫ np and narrow kpr0 ≪ 1 electron

beam [Geraci and Whittum, 2000]. Here kp = c/ωp is the plasma skin depth,

ωp = (4πnpe
2/m)

1/2
is the plasma frequency, e is the electron charge, m is the

electron mass and c is the speed of light. If all plasma electrons are expelled

from the channel, then the restoring force on the beam electrons due to the

ion charge is given by the Gauss law. In the cylindrical geometry it is:

Fres = mω2
pr⊥/2, (3.1)

where r⊥ is the vector from an electron to the channel axis. The beam

electrons in the ion channel undergo betatron oscillations caused by this

force. The wavelength for small betatron oscillations is close to λb =

2π/kb ≃ 2π
√

2γ/kp, where γ is the relativistic factor of the electron beam

[Clayton et al., 2002].

The relativistic electrons undergoing betatron oscillations in the ion

channel emit short-wavelength EM radiation [Jackson, 1975]. Some

features of this radiation spectrum have been studied in the recent

publications [Wang et al., 2002, Joshi et al., 2002, Esarey et al., 2002]. The

wavelength of the radiation is close to λ ≃ λb/ (2γ2) for small-amplitude

near-axis betatron oscillations. If the amplitude of the betatron oscillations

becomes large, then electron radiates high harmonics. If the plasma wiggler
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Figure 3.1: The function S(x) versus x.

strength

K = γkbr0 = 1.33 × 10−10
√

γne [cm−3]r0 [µm] (3.2)

is so high that K ≫ 1, then the radiation spectrum becomes quasi-continuous

broadband. Here r0 is the amplitude of electron betatron oscillation in the

channel. The radiation spectrum becomes similar to the synchrotron one,

which is determined by the universal function S(ω/ωc), where

S (x) = x

∫ ∞

x

K5/3 (ξ) dξ, (3.3)

and ωc is the critical frequency [Jackson, 1975]. The function S(x) is shown

in Fig. 3.1. For frequencies well below the critical frequency (ω ≪ ωc), the

spectrum increases with frequency as ω2/3, reaches a maximum at ∼ 0.29ωc,

and then drops exponentially to zero above ωc. The critical frequency for a

relativistic electron in an ion channel is

~ωc =
3

2
γ3

~cr0k
2
b ≃ 5 × 10−24γ2ne

[

cm−3
]

r0 [µm] keV. (3.4)

Because of the strongly relativistic motion of the electron, the emitted
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radiation is confined within a very narrow angle

θ ≃ K

γ
. (3.5)

Synchrotron radiation emitted from an ion channel has been observed in a

recent experiment [Wang et al., 2002].

The averaged total power radiated by an electron undergoing betatron

oscillations is [Esarey et al., 2002]

〈Ptotal〉 ≃
e2c

12
N0γ

2k4
br

2
0, (3.6)

where N0 is the number of betatron oscillations performed by the electron.

We can introduce also the stopping power of an electron. We define it as the

energy loss of an electron per unit distance

Q =
〈Ptotal〉

c

≃ 1.5 × 10−45
(

γne

[

cm−3
]

r0 [µm]
)2 MeV

cm
. (3.7)

The averaged number of photons with the mean energy ~ωc emitted by

the electron is

〈NX〉 ≃
2π

9

e2

~c
N0K ≃ 5.6 × 10−3N0K. (3.8)

It follows from Eq. (3.6) that the radiated power is proportional to the

squared density of ions in the channel. This fact has been confirmed in the

experiment [Wang et al., 2002].

As it was mentioned above, the ion density in the channel has to be

smaller than the electron beam density. This leads to the serious limits

on the gain in the radiated power, which is quadratic in plasma density.

One of the ways to overcome the limits is to use a laser-produced ion

channel. The ion density in such channel can be easily increased to 1019cm−3

[Key et al., 1998, Wharton et al., 1998, Pukhov and Meyer-ter-Vehn, 2002]

that is 5 order higher than the ion density in a channel produced in the
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simple beam-plasma interaction experiments [Wang et al., 2002]. The use of

an ion channel produced by a laser pulse can increase the power of X-ray

radiation by 1010 times!

We present three-dimensional (3D) particle-in-cell (PIC) simulation of

X-ray generation by 25-GeV electron bunch in laser-produced ion channel

using Virtual Laser Plasma Laboratory (VLPL) code [Pukhov, 1999]. We

observed ultra-high energy γ-quanta (up to several GeV) at high photon flux

and brilliance of the radiation.

The spontaneous X-ray emission from an ion channel has been studied in

detail in Ref. [Esarey et al., 2002]. The general expression for the spectrum

has been derived. It is a complex expression that involves the sum of products

of the Bessel function. A numerical evaluation of the spectrum becomes

difficult in the limit K ≫ 1. The simple asymptotic expression for the

angular dependence of the radiated spectrum has been derived in this limit

only in the plane that is perpendicular to the electron orbit. Here we calculate

the general angular dependence of the radiated spectrum.

The resonance interaction between the EM radiation and the betatron

oscillations of an electron beam in the ion channel leads to the bunching

of the electron beam and then to the amplification (or damping) of EM

radiation. It is a stimulated emission (or absorption). The stimulated

emission is a basic process in ICLs [Whittum et al., 1990, Whittum, 1992]

and FELs [Luchini and Motz, 1990]. The reverse process is the stimulated

absorption. It leads to the direct laser acceleration [Pukhov et al., 1999]

and to the magnetic field generation [Kostyukov et al., 2002] in relativistic

laser channels. Unfortunately, the stimulated emission (absorption) in ion

channels has not yet been explored in the limit K ≫ 1. This is, however,

exactly the regime of the ion-channel synchrotron-radiation laser (ICSRL).

The general asymptotic expression for the radiation spectrum for arbitrary

angular dependencies is derived in the limit K ≫ 1. The spectrum averaged

over the azimuthal angle is calculated for an axially symmetrical electron

beam.
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3.1.2 Electron dynamics in an ion channel

The relativistic equation of electron motion in a cylindrical ion channel

is

dp

dt
= Fres, (3.9)

where Fres is the restoring force defined by Eq. (3.1). It follows from Eq. (3.9)

that the momentum along the channel axis pz is an integral of motion. First

we consider radial betatron oscillations. Assuming that py = 0 we get the

equation for the x-coordinate:

d2x

dt2
=

γ2
z

2γ3
x, (3.10)

Here we introduce the constant of motion γ2
z = 1 + p2

z. We use

dimensionless units, normalizing the time to ω−1
p , the length to c/ωp, and

the momentum to mc.

The Hamiltonian does not depend on time, and thus it is another constant

of motion

H = γ +
x2

4
= const = γz +

r2
0

4
, (3.11)

where r0 is the amplitude of the betatron oscillation. We express γ as a

function of x from the obtained relation to resolve Eq. (3.10). Then the

transverse motion of the electron can be reduced to oscillations in the effective

potential

U (x) =
8γ2

z

(4γz + r2
0 − x2)

2 . (3.12)

The oscillations can be described in the implicit form:

t = r0

√
ν2 + 4

ν
E

(

arcsin

(

x

r0

)

,
ν2

ν2 + 4

)

− 2

ν
√

ν2 + 4
F

(

arcsin

(

x

r0

)

,
ν2

ν2 + 4

)

. (3.13)
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Here E(x, k) and F (x, k) are the elliptic integrals of the first and the

second kinds [Abramowitz and Stegun, 1972], respectively, and ν is

ν2 = r2
0/2γz. (3.14)

The period of betatron oscillations is

Tb =
2π

ωb

= 4r0

√
ν2 + 4

ν

×
[

E

(

ν2

ν2 + 4

)

− 2

ν2 + 4
K

(

ν2

ν2 + 4

)]

, (3.15)

where K(x) and E(x) are the complete elliptic integrals of the first and

the second kinds [Abramowitz and Stegun, 1972], respectively. In the limit

ν2 ≪ 1, the parameter ν is the ratio of the longitudinal and transversal

energy of the electron

ν2 ≃ p2
x/γ

2
z ≃ p2

⊥/p2
z, (3.16)

where px is the maximum of the transversal momentum which is at the

channel axis x = 0. In most applications the transversal moment of the

electron is much smaller than the longitudinal one, so we assume ν ≪ 1.

Now we can use the expansion in ν to describe betatron oscillations:

ωb =
1√
2γz

(

1 − 3

8
ν2 + ...

)

, (3.17)

x (t) = r0 sin (ωbt) − r0
3

64
ν2 sin (3ωbt) + .... (3.18)

Using Eq. (3.11) we obtain relations for the electron orbit in the zeroth

order in ν that coincides with the ones calculated in Ref. [Esarey et al., 2002]



52 Synchrotron emission in an ion channel

ωb ≃ 1√
2γz

, (3.19)

x (t) ≃ r0 sin (ωbt) , (3.20)

y (t) ≃ 0, (3.21)

z (t) ≃ z0 +
pz

γz

(

1 − ν2

4

)

t − r0
pz

γz

ν

8
sin (2ωbt) . (3.22)

Notice that the parameter ν coincides with the expression kbr0 introduced

in Ref. [Esarey et al., 2002], and the plasma wiggler strength parameter can

be expressed through ν as K ≃ γzν ≃ p⊥.

A more general regime of the betatron motion when py 6= 0 and

the electron orbit is not plane has been considered and classified in

Ref. [Kostyukov et al., 2002] in the limit pz ≫ p⊥. The electron orbit

equation in this case is given by

x (t) ≃ px√
2γz

sin (ωbt) , (3.23)

y (t) ≃ py√
2γz

sin (ωbt + ψ) , (3.24)

z (t) ≃ z0 +
pz

γz

[

1 −
p2

x + p2
y

4γ2
z

− p2
x

8γ2
z

sin (2ωbt)

+
p2

y

8γ2
z

sin (2ωbt + 2ψ)

]

, (3.25)

where ψ is the phase difference between oscillations along x-axis and y-axis,

px and py are the maximum of the electron momentum along x-axis and along

y-axis, respectively. These maximum momenta are achieved at the channel

axis (x = 0, y = 0). If the angular momentum of an electron, L = pyx−pxy is

equal to zero, then the electron executes radial harmonic oscillations across

the axis with the amplitude r0 = 2
√

H. If L = ±Lmax = ±H/ωb, then

the electron motion is circular with the radius r0. In the general case (an

arbitrary value of −Lmax < L < Lmax), the electron trajectory is ellipse-like
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and is confined between the maximal radius

√

(

H +
√

H2 − ω2
bL

2
)

, and the

minimal radius

√

(

H −
√

H2 − ω2
bL

2
)

.

3.1.3 Spontaneous synchrotron emission in an ion

channel

Using Eqs. (3.23) - (3.25) for the electron trajectory, the energy

spectrum radiated by an electron can be calculated [Jackson, 1975,

Esarey et al., 2002]. The total radiation flux can be separated in two

independent components with polarization in the eθ and eφ directions.

Here the unit vectors eθ and eφ correspond to the spherical coordinate

system: x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ. Then energy

radiated per unit frequency interval per unit solid angle in the direction

k = (ω/c) (ex sin θ cos φ + ey sin θ sin φ + ez cos θ) during the interaction time

T is [Esarey et al., 2002]:

dWspon,j

dωdΩ
=

e2

4π2c
η2 |Ij|2 , (3.26)

Iθ =

T/2
∫

−T/2

eiΨ(t)

(

dx

dt
cos θ cos φ

+
dy

dt
cos θ sin φ − dz

dt
sin θ

)

dt, (3.27)

Iφ =

T/2
∫

−T/2

(

dx

dt
sin φ − dy

dt
cos φ

)

eiΨdt, (3.28)

Ψ = η [t − x (t) sin θ cos φ − y (t) sin θ sin φ − z (t) cos θ] , (3.29)

where j = θ, φ is the polarization index, the electron trajectory is given

by Eqs. (3.23) - (3.25) and η = ω/ωp. The final results can be expressed
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Figure 3.2: Schematic of synchrotron radiation in an ion channel. Open

circles show the points on the electron trajectory where the electron emits in

the direction of k.

as double-infinite series of the Bessel function products (see, for example,

Eqs. (32) - (41) in Ref. [Esarey et al., 2002] or can be expressed by the

infinite series of the generalized Bessel function introduced in the quantum

electrodynamics [Nikishov and Ritus, 1963]).

Unfortunately, the series converge slowly in the limit K ≫ 1 that makes

the numerical evaluation of the radiation spectrum difficult. The energy

spectrum and the angular dependence of the radiation have been derived

only for directions that are perpendicular to the plane of the betatron

oscillation (i. e., for φ = π/2) [Esarey et al., 2002]. To extend this result,

instead of Bessel function expansion we use here the saddle point method

[Morse and Feshbach, 1953] to evaluate the integrals (3.27) and (3.28).

It is well known that the radiation of accelerated relativistic electron is

beamed in a very narrow cone in the direction of the electron momentum

vector. An observer sees a short pulse of radiation as the searchlight beam

sweeps across the observation point [Jackson, 1975] (see Fig. 3.2). So the time

moments when the electron momentum, p, is directed along wave number,
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k, give the main contribution to the integrals (3.27) and (3.28). The pulse

duration is very short, and it is necessary to know the electron momentum

and the electron position over only a small arc of the trajectory whose tangent

points in the direction that is close to the direction of k. Then we can expand

integrand in Eqs. (3.27) and (3.28) about this time moments and perform

the integration. This approach implies that we approximate the part of

the electron trajectory near these time moments by arcs of a circular path

[Jackson, 1975]. In this case the radiation has the well-known synchrotron-

like spectrum. It is noted in Ref. [Landau and Lifshits, 1982] that another

necessary condition (the first one is that the electron is relativistic) for use

of the synchrotron radiation approach is that the electron deflection angle

should be much larger than the simultaneous angle spread of the radiation

emission. The electron momentum oscillates within the cone angle ∼ p⊥/pz

(the electron deflection angle). The radiation of the relativistic particle is

confined within the angle 1/γ [Jackson, 1975]. So the validity condition for

the synchrotron radiation approach is p⊥/pz ≫ 1/γ. This is equivalent to the

condition for the high harmonics generation K ≫ 1. Therefore, the radiation

spectrum can be approximated by the synchrotron one if

γ ≫ p⊥ ≫ 1. (3.30)

This condition is easily satisfied in experiments.

The arguments presented above justify the use of the saddle point method

[Morse and Feshbach, 1953] to evaluate the integrals (3.27) and (3.28). We

can expand the phase Ψ around the moment of time ξn = ωbtn up to the

third order:

Ψ = Ψ0 + b1(ξ − ξn) + b2(ξ − ξn)2 + b3(ξ − ξn)3, (3.31)

Ψ0 = Ψ (ξn) = α0ξn − αx sin (ξn) − αy sin (ξn + ψ)

+αzx sin (2ξn) + αzy sin (2ξn + 2ψ) , (3.32)
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b1 =
dΨ

dξ

∣

∣

∣

∣

ξ=ξn

= α0 − αx cos (ξn) − αy cos (ξn + ψ)

+2αzx cos (2ξn) + 2αzy cos (2ξn + 2ψ) , (3.33)

b2 =
d2Ψ

dξ2

∣

∣

∣

∣

ξ=ξn

= αx sin (ξn) + αy sin (ξn + ψ)

−4αzx sin (2ξn) − 4αzy sin (2ξn + 2ψ) , (3.34)

b3 =
d3Ψ

dξ3

∣

∣

∣

∣

ξ=ξn

= αx cos (ξn) + αy cos (ξn + ψ)

−8αzx cos (2ξn) − 8αzy cos (2ξn + 2ψ) , (3.35)

where

α0 =
η

ωb

[

1 − pz

γz

(

1 −
p2

x + p2
y

4γ2
z

sin θ cos φ

)]

, (3.36)

αx =
η

ωb

px

γz

sin θ cos φ, (3.37)

αy =
η

ωb

py

γz

sin θ cos φ, (3.38)

αzx =
η

ωb

pz

γz

p2
x

8γ2
z

cos θ, (3.39)

αzy =
η

ωb

pz

γz

p2
y

8γ2
z

cos θ. (3.40)

Now we can expand the pre-exponent factors in Eqs. (3.27) and (3.28)

about the moment of time ξn = ωbtn to the first order:

dx

dt
cos θ cos φ +

dy

dt
cos θ sin φ − dz

dt
sin θ

= Bθ,n + Dθ,n(ξ − ξn), (3.41)
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dx

dt
sin φ − dy

dt
cos φ = Bφ,n + Dφ,n(ξ − ξn), (3.42)

where

Bθ,n = cos θ

[

px

γz

cos ξn cos φ +
py

γz

cos (ξn + ψ) sin φ

]

− sin θ
pz

γz

+ sin θ
pzp

2
x

4γ3
z

cos (2ξn)

+ sin θ
pzp

2
y

4γ3
z

cos (2ξn + 2, ψ) (3.43)

Dθ,n = − cos θ

[

px

γz

sin ξn cos φ +
py

γz

sin (ξn + ψ) sin φ

]

− sin θ
pzp

2
x

2γ3
z

sin (2ξn)

− sin θ
pzp

2
y

2γ3
z

sin (2ξn + 2ψ) , (3.44)

Bφ,n =
px

γz

sin φ cos (ξn) − py

γz

cos φ cos (ξn + ψ) , (3.45)

Dφ,n = −px

γz

sin φ sin (ξn) +
py

γz

cos φ sin (ξn + ψ) . (3.46)

Notice that it is sufficient to keep the leading term in the pre-exponent

factor while the other terms much less than unity can be neglected in the

exponent argument.

The main contribution to the integral comes from the neighbourhood of

the saddle points specified by dΨ/dξ = 0 [Morse and Feshbach, 1953]. The

first-order term in phase expansion (3.31) can be written as follows

dΨ

dξ

∣

∣

∣

∣

ξ=ξn

=
η

ωb

(

1 − k · p
kγ

)

≃ η

2ωb

(

1

γ2
+ ϕ2

)

, (3.47)
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where ϕ is the angle between k and p. It follows from Eq. (3.47) that

dΨ/dξ is minimal and close to zero at ϕ = 0 when the electron momentum is

directed along k that agrees with the qualitative argument presented above.

For the sake of simplicity, we assume that py = 0, i.e., the electron orbit

is plane and the betatron oscillations are radial. It follows from Eq. (3.33)

that the values of ξ whose neighborhood gives the main contribution to the

integral are defined by the relation

cos ξn =
γz

px

tan θ cos φ. (3.48)

It is seen from Eq. (3.48) and Fig. 3.2 that the number of saddle points is

2N0 = ωbT/π that is the number of times when the direction of the electron

momentum and the direction of the wave number coincides. It can be shown

[Jackson, 1975] that the second-order term can be neglected in Eq. (3.31).

Then Eqs.(3.27) and (3.28) take the form:

Ij =
1

ωb

2N0
∑

n=1

exp (iΨ0,n) Rj,n, (3.49)

Rj,n =

∫ +∞

−∞

(Bj,n + Dj,nsn)

× exp
[

ib1,nsn + ib3,ns3
n

]

dsn, (3.50)

where j = θ, φ is the polarization index, sn = ξn − ξ0, Ψ0,n is the value of

phase Ψ in the n-th saddle point.

It follows from the saddle point definition Eq. (3.48) and from Eqs. (3.31)-

(3.46) that Rj,n = Rj,n−1 = Rj, Bj,n = Bj,n−1 = Bj, Dj,n = Dj,n−1 = Dj,

bm,n = bm,n−1 = bm. Accomplishing the integration in Eq. (3.50) we obtain
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Rj =

√

8b1

3b3



BjK1/3





√

8b3
1

9b3





+Dj

√

2b1

b3

K2/3





√

8b3
1

9b3







 , (3.51)

where K1/3(x) and K2/3(x) are the modified Bessel functions

[Abramowitz and Stegun, 1972]. In the synchrotron regime of radiation

ω ∼ ωc ≫ ωp and Ψ0,n ≫ 1 then we can write for large number of the

betatron periods (N0 ≫ 1 )

∣

∣

∣

∣

∣

2N0
∑

n=1

exp (iΨ0,n)

∣

∣

∣

∣

∣

2

≃ 2N0. (3.52)

Using Eqs. (3.16), (3.26), (3.51) and condition (3.30) we finally get

d2Wspon,θ

dωdΩ
= 2N0

e2η2ρ2χ2 cos2 φ

3π2c

×
[

sin θ sin2 φ√
χ

K1/3(q) + K2/3(q)

]2

(3.53)

d2Wspon,φ

dωdΩ
= 2N0

e2η2ρ2χ2 sin2 φ

3π2c

×
[

sin θ cos φ√
χ

K1/3(q) − K2/3(q)

]2

, (3.54)

where

ρ =

√

2γz

p2
x/γ

2
z − sin2 θ cos2 φ

(3.55)

is the curvature radius of the circular path that is used to approximate the

part of the electron trajectory where the electron emits in the direction of k,

χ = γ−2
z + sin2 θ sin2 φ, (3.56)
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q =
1

3
ηρχ3/2. (3.57)

The total radiation of the spontaneous emission from the electron in the

channel is

d2Wspon

dωdΩ
=

d2Wspon,θ

dωdΩ
+

d2Wspon,φ

dωdΩ

= 2N0
e2η2ρ2χ2

3π2c

[

sin2 θ sin2 φ

χ
K2

1/3(q) + K2
2/3(q)

]

. (3.58)

This is the general expression for the angular distribution of the radiation

emitted by an a relativistic electron in the ion channel.

Let us consider some limiting cases. It follows from the condition (3.30)

that θ ≪ 1. Then in the limit φ = π/2 Eq. (3.58) takes the form

d2Wspon

dωdΩ
= N0

6e2

π2c

γ2
zq

2

(1 + γ2
zθ

2)

[

γ2
zθ

2

(1 + γ2
zθ

2)
K2

1/3(q) + K2
2/3(q)

]

, (3.59)

that coincides with the asymptotic spectrum emitted by the relativistic

electron in the channel for φ = π/2 (see Eq. (64) in Ref. [Esarey et al., 2002]).

It was discussed above that in the limit K ≫ 1 the radiation emitted by an

electron at a given moment of time is similar to the synchrotron radiation

emitted from an electron in an instantaneously circular motion with the same

curvature radius. Indeed, introducing the notation ϕ = sin θ sin φ and using

relation γ ≃ γz ≃ pz we can reduce Eq. (3.58) to the known form

d2Wspon

dωdΩ
= 2N0

e2 (ηρ)2

3π2c

(

1

γ2
+ ϕ2

)2

×
[

K2
2/3(q) +

ϕ2

1/γ2 + ϕ2
K2

1/3(q)

]

, (3.60)

that coincides with the expression for energy radiated by a relativistic

electron in instantaneously circular motion with radius ρ per unit frequency
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Figure 3.3: Angular distribution of the spontaneous emission spectrum
d2Wspon

dωdΩ
(arbitrary units) versus angles θx and θy from a single electron with

γz = 1000, K = px = 20 for ω = 0.5ωc.

per unit solid angle 2π cos ϕdϕ after 2N0 revolutions (see, for example,

Eq. (14.83) in Ref. [Jackson, 1975]).

To visualize our results we use new angle coordinates θx = sin θ cos φ,

θy = sin θ sin φ instead of the spherical one (θ, ϕ) (see Fig. 3.2 and Fig. 3.3).

It is seen from Fig. 3.3 that there is no radiation for θx > θmax because the

argument of the Bessel function in Eq. (3.58) goes to infinity and the Bessel

function goes to zero for θx = θmax. Therefore in our approximation the

emission angle along x-axis is confined to the electron deflection angle θmax =

px/pz. However it is evident that electrons with maximal deflection angle

px/pz emit radiation up to the angle θ = ± (θmax + γ−1). The emission angle

is confined within the angle ∼ 1/γ in the direction of y-axis which is normal

to the electron orbit plane. Hence our results agree with the qualitative

analysis in Ref. [Esarey et al., 2002].

Averaging Eq. (3.58) over θy we obtain
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∫ 1

−1

d2Wspon

dωdΩ
dθy =

√
3

2
N0

e2γz

πc
S

(

2

3

√
2η

γ
3/2
z

√

p2
x − γ2

zθ
2
x

)

, (3.61)

where S (x) is the universal function mentioned in Introduction. Using Eqs.

(3.4), (3.14) and (3.16) the argument of the function S(x) can be reduced to

the ω/ωc in the limit θx = 0 that corresponds the spectrum of the synchrotron

radiation of the relativistic electron. The expression (3.61) can be considered

as a radiation power emitted by a flow of electrons uniformly distributed

along the y-axis. The y−axis is directed normally to the betatron oscillation

plane. The electrons are moving along the z-axis. The ion channel in this

slab geometry is an ion layer perpendicular to the x-axis.

Let us now consider a monoenergetic, axisymmetric electron beam.

Radiation spectrum from electron beam with electron distribution function

f (p) is defined by the relation:

〈

d2Wspon

dωdΩ

〉

=

∫ 2π

0

dφ

2π

∫ +∞

−∞

dpf (p)
d2Wspon

dωdΩ
(k,p) . (3.62)

Let all electrons have the same longitudinal and transversal energy before

interaction and the electron distribution function is

f (p) = δ(pz − γz)δ(
√

p2
x + p2

y − p⊥). (3.63)

Then the radiation spectrum from the beam takes the form

〈

d2Wspon

dωdΩ

〉

=

∫ 2π

0

dφ

2π

d2Wspon

dωdΩ
. (3.64)

In the limit of near-axis radiation θ ≪ 1/γz, the radiation spectrum is

〈

d2Wspon

dωdΩ

〉

≃ 2N0
3e2

π2c

( √
2η

3pxγ
3/2
z

)2

K2
2/3

( √
2η

3pxγ
3/2
z

)

. (3.65)

In the opposite limit, θ ≫ 1/γz, the main contribution to Eq. (3.64) is

given by the small values of φ ≪ 1 that correspond to the minimum of q.

The radiation spectrum in this limit is
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〈

d2Wspon

dωdΩ

〉

≃
√

3

2
N0

e2γz

πcθ
S

(

2

3

√
2η

γ
3/2
z

√

p2
x − γ2

zθ
2

)

. (3.66)

Notice that the obtained expression coincides with Eq. (3.61).

3.1.4 Ion channel synchrotron radiation laser

When an EM wave of approximately the same frequency as the

spontaneous emission propagates through the ion channel simultaneously

with the electron beam, a significant exchange of energy between the beam

and the wave can occur and lead to the coherent efficient amplification of the

wave energy. This amplification can be explained in terms of the stimulated

emission processes that determines the operation of ICL. Unlike the ICL

theory [Whittum et al., 1990, Whittum, 1992], here we consider the regime

of a strong wiggler field (K ≫ 1), when the emission process is close to the

synchrotron one. This is the regime of the ion-channel synchrotron-radiation

laser.

The difference between the spontaneous and stimulated emissions is the

following. The radiation fields generated by an electron undergoing betatron

oscillations has a phase which depends on the time of arrival of the electrons

at the channel entrance. The fields produced by different electrons in a

uniform input beam have a random phase relation to each other and sum up

incoherently. This leads to the incoherent spontaneous radiation. Contrary

to the spontaneous emission, electrons in the ion channel can be driven by an

external EM wave in synchronous oscillation, the phase of which is no longer

random, but locked to the phase of the wave. As a result, the external wave

causes the bunching of the electron beam and the more efficient interaction

between the beam and the wave. Then the radiation fields of different

electrons sum up coherently to each other and to the external wave leading

either to a decrease or to an increase of the power. The wave amplification or

absorption depends on whether the interference is constructive or destructive.

In quantum approach the amplification/absorption can be viewed as a
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transition between the quantum states of the electron in the ion channel with

photon absorption/emission forced by the external wave. An amplification

process of this kind is called stimulated emission. It is known from the laser

physics that the stimulated emission can be much more efficient and powerful

than the spontaneous one.

As it is known in the quantum physics [Heitler, 1954], there is a relation

between the spontaneous and stimulated emission. Using this fact the

elementary quantum methods based on the Einstein coefficients have been

used to study the instability of EM waves in cosmic plasmas [Twiss, 1958,

Ginzburg and Zhelenyakov, 1958]. Particularly, the synchrotron instability

in a cold magnetoactive plasmas has been identified [Zheleznyakov, 1967,

Fung, 1969]. The relation between the spontaneous and stimulated emission

of electrons in undulators is called Madey’s theorem in the theory of

FELs [Madey, 1979]. It can be considered as an extension of the

Einstein coefficients method to the classical limit. The generalized Madey

theorem [Luchini and Motz, 1990, Fraiman and Kostyukov, 1995] enables us

to reduce the problem of ICSRL gain to the problem solved in Sec. III that

is the calculation of the power of spontaneous emission in an ion channel.

To use Madey’s theorem we should formulate the problem within the

Hamiltonian approach. An electron motion in an ion channel and in the EM

wave can be described by a relativistic Hamiltonian

H =
√

1 + (p⊥ + Ai)2 + p2
z +

x2 + y2

4
, (3.67)

where Ai is the vector potential of the wave with θ or φ polarizations (i =

θ, φ):

Aθ = A0 (ex cos θ cos φ + ey cos θ sin φ − ez sin θ)

× exp [iηt − iη (k · r) /k] , (3.68)

Aφ = A0 (ex sin φ − ey cos φ) exp [iηt − iη (k · r) /k] . (3.69)
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Hamiltonian (3.67) is again written in dimensionless units, normalizing

the time to ω−1
p , the length to c/ωp, the momentum to mc, the vector

potential to mc2/e. As usual, we assume that the time of arrival of the

electrons at the channel entrance is random. Assuming that the external EM

wave is weak we can consider it as a perturbation and use the perturbation

theory to calculate the work done upon the electron beam by an EM wave

with j-polarization. It follows from the generalized Madey theorem (see,

for example, Eq. (5.52) in Ref. [Luchini and Motz, 1990]) that this work per

beam electron is

〈Wj〉 =
1

2

∂
〈

γ2
1,j

〉

∂γ0

+
1

2

k⊥

k
·
∂

〈

γ2
1,j

〉

∂p⊥

, (3.70)

where γ1,j is the first-order work done upon a single electron moving along

the unperturbed electron trajectory r0 (t) by EM wave with j-polarization

γ1,j =

∫ +∞

−∞

dt
dr0 (t)

dt
· Ai

[

t, r0 (t)
]

, (3.71)

where γ0 and p⊥ are the electron energy and the transversal momentum of

the electron before the interaction. The unperturbed electron trajectory r0(t)

is determined by Eqs. (3.23) - (3.25). Averaging in Eq. (3.70) implies the

averaging over the time of arrival of the electrons at the channel entrance.

Mathematical statement of the Madey theorem is that the second-order

quantity, 〈Wj〉, is proportional to the average squared first-order quantities,

γ1,j. Therefore Madey’s theorem essentially simplifies calculations in the

framework of the perturbation theory. Using instead of the variables γ0 and

p⊥ the initial value of the electron momentum p = (p⊥, pz), Eq. (3.70) can

be also rewritten in a more symmetric form

〈Wj〉 =
1

2

k

k
·
∂

〈

γ2
1,j

〉

∂p
. (3.72)

Similar to the FEL theory we introduce the incremental gain of ICSRL as

a ratio between the power generated by the electron beam and the incoming

EM wave power
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Γj =
2λ2renb 〈Wj〉

πA2
0

, (3.73)

where nb is the density of the electron beam, re = mc2/e2 is the classical

electron radius, λ = 2πc/ω is the wavelength of the EM wave. It should be

noted that in order to calculate 〈Wj〉 we take the given EM wave and do

not consider the dynamics of EM wave during the interaction. Hence, our

calculations are valid for Γ ≪ 1. This regime of interaction is called in the

FEL theory as a small-signal small-gain regime [Luchini and Motz, 1990].

It follows from Eqs. (3.27), (3.28) and (3.71) that γ1,j is proportional to

Ij. That is the particular case of the general reciprocity relation between

the far field of the moving electron and the work done by the plane EM

wave on it [Luchini and Motz, 1990]. Therefore we can express the quantity
〈

γ2
1,j

〉

through the energy of the spontaneous emission energy radiated per

frequency per solid angle

〈

γ2
1,j

〉

= A2
0

(

e2

4π2c

ω2

ω2
p

)−1
d2Wspon,j

dωdΩ
. (3.74)

and we express the gain in term of
d2Wspon,j

dωdΩ

Γj =
λ2rene

π

(

e2

4π2c

ω2

ω2
p

)−1 (

k

k
· ∂

∂p

)

d2Wspon,j

dωdΩ
. (3.75)

It has been noted in the previous Section that the efficient spontaneous

emission in the direction k takes place only at a short moment of time when

the electron moment is directed along k. Therefore we can conclude from

Eq. (3.75) that the interaction with an EM wave propagating in the direction

of k is only possible at the same moments of time. It was mentioned in

Sec. 3.1.3 (see Fig. 3.2) that the number of the interactions moments is 2N0.

The number of electron oscillations in the EM wave between the interaction

moments is extremely large. So we can suppose that the electron phases are

random at the interaction moments and can consider the interaction moments

independently. Using this fact Eq. (3.75) can be rewritten as follows
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Γj = 2N0
λ2rene

π

(

e2

4π2c

ω2

ω2
p

)−1

×
(

k

k
· ∂

∂p

) (

d2Wspon,j

dωdΩ

1

N0

)

. (3.76)

For simplicity we assume that py = 0. To take derivatives in Eq. (3.76)

we should present
d2Wspon,j

dωdΩ
as a function of the momentum, p, and use the

simplifying assumptions py = 0 only after performing the differentiation in

Eq. (3.76). This is because the electron motion in the ion channel and in the

EM wave is no longer plane. Although the unperturbed betatron oscillation

is in the plane y = 0, the action of the EM wave leads to small oscillations

along y-axis in the first-order of perturbation theory.

It follows from Eqs. (3.26), (3.49) and (3.52) that

(

e2

4π2c

ω2

ω2
p

)−1
d2Wspon,j

dωdΩ

1

N0

=
2

ω2
b

η2 |Rj|2 . (3.77)

Then using Eqs. (3.33)-(3.51) we can perform the differentiation in

Eq. (3.75). To do it we have to take into account that γz, ωb are functions

of pz: γz (pz) =
√

1 + p2
z, ωb (pz) = 1/

√

2γz (pz). Having performed the

differentiation we can put py = 0. Then we simplify the obtained expression

with the help of MATHEMATICA [Wolfram, 1991] and derive the gain of

ICSRL:
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Γφ = N0

√
2λ2rene

9π

ρ4 sin2 φ

γ3
zpx

×
[

sin θ cos φK1/3(q) −
√

χK2/3(q)
]

×
[√

χ (3qT0 + sin θ
√

χT1) K1/3(q)

−
(

3q sin θ cos φT0 + χ3/2T2

)

K2/3(q)
]

, (3.78)

T0 = −3p3
x + sin2 θ cos2 φ

[

3p3
x − 8p2

xγz sin θ cos φ

+2γ3
z sin3 θ cos φ

(

1 + 2 cos2 φ
)

− pxγ
2
z sin2 θ cos2 φ

]

,

T1 = 6p3
x cos φ − 2γ3

z sin3 θ cos2 φ(1 − 4 cos2 φ)

+2p2
xγz sin θ

(

3 − 8 cos2 φ
)

− 2pxγ
2
z sin2 θ cos3 φ,

T2 = 3p3
x − 8p2

xγz sin θ cos φ − pxγ
2
z sin2 θ cos2 φ

+2γ3
z sin3 θ cos φ(1 + 2 cos2 φ),

Γθ = N0

√
2λ2rene

9π

ρ4

γ3
zpx

×
[

sin θ sin2 φK1/3(q) +
√

χ cos φK2/3(q)
]

×
[√

χ (3q cos φT0 + sin θ
√

χT3) K1/3(q)

+
(

3q sin θ sin2 φT0 + χ3/2T4

)

K2/3(q)
]

, (3.79)

T3 = 6p3
x − 16p2

xγz sin θ cos φ − 2pxγ
2
z sin2 θ cos2 φ

+4γ3
z sin3 θ cos φ

(

1 + 2 cos2 φ
)

,

T4 = 3p3
x cos φ + 2p2

xγz sin θ
(

3 − 4 cos2 φ
)

+pxγ
2
z sin2 θ cos3 φ − 4γ3

z sin3 θ cos2 φ sin2 φ.

We have also checked the obtained results by the numerical differentiation

for some values of parameters. It follows from Eqs. (3.78) and (3.79) that
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the EM wave can be amplified if the wave propagates at a small angle to the

axis z. It is seen from Fig. 3.4 that there is no amplification of EM wave

when the wave propagates exactly along the channel axis.

Eqs. (3.54) and (3.53) have been derived under assumption that all the

electrons have the same momentum before interaction. Now we consider a

monoenergetic, axisymmetric electron beam with the electron distribution

function given by Eq. (3.63). The ICSRL gain for such electron beam is

defined by the relation

〈Γj〉 =

∫ 2π

0

dφ

2π
Γj (p,φ) . (3.80)

We have performed the integration in Eq. (3.80) numerically

(Chapter 3.2). We are not able to find the wave amplification by the

axisymmetric electron beam at least for the considered beam parameters.

3.1.5 Summary

To summarize, we calculate the period of nonlinear betatron oscillations.

The method based on the Bessel function expansion has been used in

Ref. [Esarey et al., 2002] to calculate the spectrum of the spontaneous

emission in ion channel. We have extended that result to the emission

at arbitrary directions. The generalized Madey theorem was used to

calculate the electron energy gain of ICSRL. The calculation shows that

the amplification takes place when the EM wave propagates at small angles

with respect to the channel axis. To calculate the radiation spectrum and the

gain of ICSRL, we have used a very simple distribution function. Further

investigations should include more realistic electron distribution functions.

The gain of the ICSRL was calculated in the small-signal small-gain limit.

Further investigations are needed to explore the large-gain regime of the

ICSRL.
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Figure 3.4: a) Γθ (arbitrary units), for θ-polarized EM wave with ω = ωc

versus angles θx and θy for electrons with γz = 500, K = px = 10. b) The

domains of the angles θx and θy where θ-polarized EM wave with ω = ωc is

amplified by the electrons Γθ < 0, grey region) and where the EM wave is

absorbed by the electrons (Γθ > 0, white region) for γz = 500, K = px = 10.

The angles are given in radians. c) Γφ (arbitrary units), for φ-polarized

EM wave with ω = ωc versus angles θx and θy for electrons with γz = 500,

K = px = 10. d) The domains of the angles θx and θy where φ-polarized

EM wave with ω = ωc is amplified by the electrons (Γφ < 0, grey region) and

where the EM wave is absorbed by the electrons (Γφ > 0, white region) for

γz = 500, K = px = 10. The angles are given in radians.
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3.2 Numerical simulation

3.2.1 Overview

The development of novel high-brightness compact X-ray sources is

important for many applications in industry and medicine. Synchrotron

light sources (SLSs) are the most intense X-ray sources today. In SLS,

the radiation is generated as a result of relativistic electrons scattering

by a bending magnet, magnetic undulators or wigglers [Kim, 1989], or

by high-power laser pulses (Compton scattering) [Leemans et al., 1997,

Schoenlein et al., 2000, Esarey et al., 1993, Pogorelsky, 1998].

The high density of the ions in the channel provides a much higher wiggler

strength than that of a conventional magnet wiggler. This leads to a more

effective generation of X-ray radiation than in the conventional light sources

and could be used for the development of next generation of radiation sources.

An ion channel in plasma can be produced by an electron beam itself.

However in this case the plasma density has to be less than the beam density.

Unfortunately, the density of a relativistic electron beam cannot be very high

because of the technology reasons. This leads to a serious limitation on the

gain in the radiated power. The use of a high-power laser could overcome

this limitation.

3.2.2 Numerical simulation

The high-power laser pulse can expel plasma electrons by its

ponderomotive force and create the ion channel [Key et al., 1998]. Moreover,

a strongly nonlinear “bubble” regime has been recently observed in 3D PIC

simulations [Pukhov and Meyer-ter-Vehn, 2002]. In this “bubble” regime,

the background electrons are completely evacuated from the first half-plasma

wave excited behind the laser pulse. The ion density in this “bubble”

is many orders of magnitude higher than that in a simple beam-plasma

interaction. For example, the ion density in the “bubble” can be as high
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Figure 3.5: Schematic of the spontaneous emission from an electron bunch

undergoing betatron oscillations in a laser-produced ion channel.

as 1019cm−3 [Pukhov and Meyer-ter-Vehn, 2002, Key et al., 1998]. It is 105

times higher than that in the beam-plasma experiment recently reported

[Wang et al., 2002]. Therefore the radiated power in the laser-produced

channel can be 1010 times higher. The “bubble” moves with the group

velocity of the laser pulse, which is close to the speed of light. A relativistic

electron bunch injected into the “bubble” can propagate inside the “bubble”

over a very long distance. Hence, in spite of the small length of the “bubble”,

the electrons can oscillate in the “bubble” for a long time (see Fig. 3.5,

Fig. 3.9).

It has been recently shown by three-dimensional particle-in-cell (PIC)

simulations that a dense quasi-monoenergetic bunch of relativistic electrons,

collected from the background plasma, can be generated inside the “bubble”

[Pukhov and Meyer-ter-Vehn, 2002]. Because of the bubble focusing the

bunch has a much higher density than the background plasma. In the present

work we show that betatron oscillations of the bunch in the transverse fields

of the “bubble” lead to the efficient X-ray generation, which can be used for
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the developing of table-top high-brightness X-ray radiation sources.

We perform a numerical simulation of the X-ray generation in laser-

plasma interactions for the strongly nonlinear broken-wave regime when

the “bubble” is formed behind the laser pulse. The incident laser pulse

is circularly polarized, has the Gaussian envelope

a(t, r) = a0 exp

(

−r2
⊥

r2
L

− t2

T 2
L

)

. (3.81)

Here a = eA/mc2 is the relativistic laser amplitude. The wavelength λ =

0.82µm, rL = 8.2µm, TL = 22fs, a0 = 10. The laser pulse propagates in a

plasma with the density ne = 1019cm−3.

Fig. 3.6 presents snapshots of the laser pulse (the coloured scale) and

the electron density (the black/white scale) at different distances. We

observed that laser pulse has passed 14 Rayleigh lengths (ZR = πr2
L/λ) after

the interaction time Tint = 4500λ/c and lifetime of the “bubble” is about

3500λ/c ≃ 10ps. Electrons, trapped in the “bubble”, form the relativistic

bunch. We observe as the “bubble” stretches and the bunch elongates with

time. Despite the fact that the bunch density is higher than the background

ion density, the transverse force acting on the accelerated electrons,

F 2
⊥ = F 2

x + F 2
y , (3.82)

is mainly determined by the electrostatic focusing force from the

ions, see Fig. 3.7a. This is because the charge force of relativistic

electrons and the self-generated magnetic force almost cancel each other

[Lawson, 1988]. The energy spectrum of the electron bunch is shown

in Fig. 3.7b. We observe formation of the quasi-monoenergetic peak

[Pukhov and Meyer-ter-Vehn, 2002]. At ct = 4000λ the peak is located at

360MeV . We calculate the corresponding wiggler strength of K ≃ 89 ≫ 1.

Thus, the electrons emit X-rays in the synchrotron regime. The number of

electrons in the bunch is about 6.5 × 1010 at this time. The total energy of

electrons of the bunch is about 3.3 J that is about 20% of the laser pulse

energy. The number of betatron oscillations experienced by the electrons up
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Figure 3.6: The evolution of the laser pulse intensity (the coloured scale)

and the “bubble” (the electron density is given in the black/white scale) in

the strongly nonlinear broken-wave regime. The laser pulse propagates in a

plasma layer from left to right. The plasma density and the laser intensity

at a) ct/λ = 500, b) ct/λ = 1000, c) ct/λ = 2000, d) ct/λ = 4000.
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Figure 3.7: a) The transversal force acting on the relativistic electrons

moving in the x-direction at ct/λ = 2000. b) Temporal variation of the

energy spectrum of the electron bunch: (1) ct/λ = 1000, (2) ct/λ = 2000,

(3) ct/λ = 3000, (4) ct/λ = 4000.
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to this time was N0 = cTint/λb ≃ 8.6. To simulate the X-ray generation

we suppose that at any given moment of time, the electron emits along its

momentum, and the radiation spectrum is defined by S(ω/ωc) (3.1). The

critical frequency ωc is given by

ωc =
3

2
γ2 |F⊥|

mc
. (3.83)

In our PIC code, we follow trajectories of each electron and calculate the

emission during the interaction. The emitted radiation exerts a recoil on

the electron [Jackson, 1975]. The recoil force (3.7) was included into the

equations of electron motion in our simulations.

The synchrotron spectra at ct = 1000λ and ct = 4500λ are presented

in Figs. 3.8 (a, b). The surfaces shown in Figs. 3.8 (a, b) give the number

of photons within 0.1% of the bandwidth (∆~ω = 10−3
~ω) per solid angle,

2π sin θdθ: ÑX = ∆ωd2NX/(2π sin θdωdθ). It is seen from Fig. 3.8 (b) that

the relativistic bunch radiates highly energetic photons within a very narrow

cone. The maximum of the radiation spectrum is located at about 50keV .

The analytical estimates for electron energy predict the maximum of S(x) ≃
0.3~ωc ≃ 55keV that is in a good agreement with the numerical simulation

data. It is seen from Fig. 3.8 that the radiation from the bunch is confined

within the angle θ ≃ 0.1rad and the theoretical estimate is about 0.2rad.

The photon flux (the number of photons per second in 0.1% bandwidth) and

the spectral brilliance of the source at ct = 1000λ and ct = 4500λ are shown

in Figs. 3.8 (c, d). We can estimate the flux and the brilliance using the

following formulas.

FX ≃ S(1)

S

(

∆~ωc

~ωc

)

NX
c

Lb

, (3.84)

where Lb is the bunch length and S =
∫ ∞

0
S(x)dx = 8π/37/3

[Schwinger, 1949]. Assuming that the effective source size of the radiation

can be approximated as

SR ≃ π
[

r2
b + c2T 2

intθ
2/(4π2)

]

(3.85)

where rb is the bunch radius, we estimate the peak spectral brilliance at
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Figure 3.8: a) The synchrotron spectrum from the plasma at ct/λ = 1000,

b) at ct/λ = 4500, c) the photon flux (the number of photons per second in

0.1% bandwidth), d) the spectral brilliance. The dashed line in frames c)

and d) corresponds to ct/λ = 1000, the solid line corresponds to ct/λ = 4500.

~ω = ~ωc as [Esarey et al., 1993]

BX ≃ FX

4π2θ2S2
R

. (3.86)

To emphasize the advantage of the X-ray generation in the laser-produced

ion channel in comparison with that in the self-generated channel, we perform

a numerical simulation of the X-ray emission from an external 28.5-GeV

electron bunch. The bunch has a diameter 2r0 = 24.6µm and a length

Lb = 82µm with the total charge Qb = 5.4nC. The plasma and laser

pulse parameters are the same as in the previous simulation. The electron

beam density was much smaller than that of the background plasma, so
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Figure 3.9: Temporal evolution of the plasma density, laser intensity and the

envelope of the external 28.5-GeV electron bunch (blue): a) at the beginning

of interaction and b) at ct/λ = 1500.

that the laser pulse and “bubble” dynamics is not strongly affected by the

external electron bunch. At the beginning of interaction the front of the

electron bunch is close to the center of the laser pulse (see Figs. 3.9 (a)).

The head of the bunch has overtaken the laser center by some 46λ after

the interaction time Tint = 4500λ/c. The number of betatron oscillations

during the interaction time was N0 = cTint/λb ≃ 1.1. It is seen from

Fig. 3.9 (b) that the laser pulse and the “bubble” remain structurally stable

during the full interaction and the bunch is focused at this moment of time.

The synchrotron spectrum after the interaction time Tint = 4500λ/c is

presented in Fig. 3.10 (a). In the present simulation we do not consider

the emission from the background plasma electrons. At the given plasma

density, the plasma wiggler strength parameter is about K ≃ 817. It is

seen from Fig. 3.10 (a) that the relativistic bunch radiates highly energetic



3.2.2. Numerical simulations 79

 

 10-4 

ÑX 

a) 

B
, (

10
22
·m

m
-2
·m

ra
d

-2
 ·s

-1
) 

 10-2 

 1010 
 0 

 105 

  1011 

 1014 

    108 

θ, θ, θ, θ, rad ħω, ω, ω, ω, eV γmc2, (GeV) 
N

e/G
eV

 b) 

10 20 30

 104 

1.2 

0.4 

ħω, ω, ω, ω, eV 

ΦΦ ΦΦ
, 

(1
021

 ·
s-1

) 

0 

0.8 

c) 

ħω, ω, ω, ω, eV 

0 

1 

d) 

 108 
 108 

 104 

2 

  6·109
 

0 
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photons within a very narrow cone. The maximum of the bunch radiation

spectrum is located at about 210MeV . The analytical estimates predict the

maximum of S(x) ≃ 0.3~ωc ≃ 385MeV . The disagreement is caused by the

bunch stopping because of the radiation damping force. We also observe a

significant photon flux up to the energy of 10GeV . The radiation from the

bunch is confined within the angle θ ≃ 10mrad that is close to the theoretical

estimate 15mrad. The total number of photons emitted by the bunch are

about 2 × 1011. This means that every electron of the bunch emits about 6

photons. The estimation for the photon number with the critical frequency

ωc is NX = Ne 〈NX〉, where Ne is the number of electrons in the bunch. The

estimation is in a good agreement with the numerical simulation results. The

bunch lost about one third of its energy after Tint. The energy distribution of

the bunch electrons after the interaction is shown in Fig. 3.10 (b). The photon

flux and the brilliance versus the photon energy are shown in Figs. 3.10 (c,d).

The brilliance at the beginning of interaction is slightly higher than at the

end because, at the beginning, the bunch is not yet focused and, therefore,

emits at small angles. It follows from the Figs. 3.10 (c,d) that the photon

energy, flux and brilliance of the X-ray emission from laser-produced ion

channel are several orders of magnitude higher than the ones observed in the

self-generated ion channel [Wang et al., 2002].

To summarize, we propose compact x-ray radiation source based on

the strongly nonlinear broken-wave laser-plasma interaction. While the

large size (hundreds meters) of modern x-ray source makes the use of

them in industry and medical applications almost impossible, broadband

spectrum and small size (several meters) offer outstanding possibilities for

the proposed source in of the industry and medicine. The size of the laser-

proposed plasma wiggler is in three orders of magnitude less than size of

conventional magnetic undulators in proposed schemes of x-ray free electron

lasers (FELs) [TESLA, 2001]. The high ion density in the such wiggler

provides in several orders of magnitudes larger energies of the x-rays than

that of designed FELs and in the recent experiment with self-generated ion
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channel [Wang et al., 2002]. We also note that the dense relativistic electrons

produced by intense laser pulses in the strongly nonlinear regime can be used

for X-ray generation via Compton scattering. The incident laser pulse can

be split in two pulses. The first pulse can be used to produce the “bubble”

and the relativistic bunch, and the second one can collide with the bunch to

generate high energetic photons via direct Compton scattering.

3.3 Comparison with an experiment

3.3.1 The Laboratoire d’Optique Appliquée (LOA)

experiment

The experiment was done by Kim Ta Phuoc, Fréderic Burgy, Jean-

Philippe Rousseau, Victor Malka, and Antoine Rousse. Here has been shown

experimentally that synchrotron radiation, based on betatron oscillation

of relativistic electrons, can be produced efficiently from the interaction

of an intense laser and a plasma both used to accelerate and wiggler the

electron bunch (Fig. 3.11). Three important conditions must be achieved

simultaneously in the plasma for that purpose. First, the electrons must

be accelerated at relativistic energies for which γ ≫ 1, where γ is the

Lorentz relativistic factor of the electron. Second, they must propagate

in an ion channel (plasma wiggler) over large distances (few millimeters).

And third, the strength parameter K of the plasma wiggler must exceed

unity to reach the synchrotron regime. Those conditions are satisfied in the

strongly non-linear broken wave regime observed recently from 3D Particle In

Cell (PIC) simulations [Pukhov and Meyer-ter-Vehn, 2002]. In this regime,

the plasma wave excited behind the laser pulse transforms into a “bubble”

moving forward with the group velocity of the laser pulse close to the speed

of light. Inside the “bubble”, almost free from background electrons and

where the ion density is as high as 1019cm−3, a dense bunch of electrons

can be trapped and accelerated up to 100 MeV. These relativistic electrons
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Figure 3.11: Schematic representation of the synchrotron x-ray source based

on the betatron oscillation of relativistic electrons in a laser-produced plasma

channel. At the laser focus, where the intensity is I ∼ 1019W/cm2, the

ponderomotive force of the laser expels the electrons from the axis. This

results in the generation of an ion channel in the wake of the laser pulse.

Inside the channel, a bunch of electrons is trapped and accelerated up to

100MeV . While the electrons experience the transverse electrostatic field,

they make betatron oscillations and emit a femtosecond and collimated beam

of synchrotron radiation in the x-ray region.
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make betatron oscillations in the transverse field of the “bubble” and emit

synchrotron radiation. The characteristics of the radiation strongly depend

on the amplitude r0 of the betatron oscillation. For small amplitude and

near axis oscillations, the radiation is emitted at the fundamental wavelength

given by

λ = λb/
(

2γ2
)

, (3.87)

where λb is the betatron wavelength. When the amplitude of the betatron

oscillation becomes large, high harmonics are radiated and the resulting

broadband spectrum is extended up to a critical energy

~ωc [keV] = 5 × 1024γ2ne

[

cm−3
]

r0 [µm] (3.88)

after which it drops exponentially. ne is the electron density of the plasma

and ωc is the critical frequency. The radiation is emitted in the forward

direction within a cone of angle K/γ, where

K = 2π (γr0) /λb = 1.33 × 10−10γ0.5n0.5
e

[

cm−3
]

r0 [µm] . (3.89)

The average number of photons with the mean energy ~ωc emitted by one

electron is

N× = 5.6 × 10−3N0K, (3.90)

where N0 is the number of betatron oscillations accomplished by the electron.

The experiment was performed at the LOA using a titanium-doped

sapphire (Ti:Sa) laser operating at 10 Hz with a wavelength λ0 of 820 nm in

chirped-pulse amplification mode [Pittman et al., 2002]. The laser delivered

energies up to 1 J on target in 30-fs full width at half-maximum (FWHM)

pulses, with a linear horizontal polarization. The laser beam was focused

with an f/18 off-axis parabolic mirror onto the edge of a supersonic helium

gas jet (diameter 3 mm). The neutral-density profile jet was characterized by

interferometry and shows high uniformity throughout the jet as well as sharp

edge. The laser distribution at full energy in the focal plane was a Gaussian

with a waist w0 of 18µm containing 50% of the total laser energy. This

produces vacuum-focused intensities IL on the order of 3 × 1018W/cm2, for
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Figure 3.12: The numerically predicted synchrotron spectrum from the

plasma with density ne = 1 × 1019W/cm2 after 3mm propagation distance.

The distribution gives the number of x-ray photons emitted within 0.1% of

the energy bandwidth (∆~ω = 10−3
~ω) per solid angle, 2π sin θdθ.
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which the corresponding normalized vector potential a0 is 1.2. The electron

plasma density was varied between 2×1018cm−3 and 6×1019cm−3, which was

achieved by varying the backing pressure on the gas jet. In this experiment,

the electrons accelerated in the forward direction were characterized using a

magnetic electron spectrometer covering energies from 0 to 217 MeV. Finally,

the interaction and the laser propagation in the plasma were characterized

using side, top, and 45◦ Thomson scattering imaging as well as time resolved

shadowgraphy.

The x-ray radiation produced in the plasma was measured using a cooled

x-ray CCD camera placed directly on axis without any focusing x-ray optic

(Fig. 3.13). For all the measurement a 25µm Beryllium filter, blocking any

radiation below 0.8 keV, was placed in front of the CCD camera. In order

to minimize the noise level on the detector, 0.5 Tesla permanent magnets

were placed along 20 centimeters between the plasma and the x-ray CCD to

deviate the accelerated charged particles on-axis. In addition, a 5 cm lead

shielding with a few millimeters vertical aperture for the x-ray signal was

used to isolate the CCD camera from radiation coming from any sources but

the plasma. A Nickel mesh with 41µm wire diameter and 80% open area was

placed in the x-ray beam to discriminate the x-ray signal from the residual

noise. Indeed, this mesh is transparent for the electrons with energy above

100 keV (electrons with energy below 100 keV are deviated by the permanent

magnet and can not be detected on the CCD camera) and blocks the x-rays

with energy below 10 keV. In addition, the mesh was used as a knife edge

to perform a transverse source size measurement. Careful tests were done

with magnets (orientation) and reflecting x-ray optics (metallic Nickel mirror

at grazing incidence) to rule out the electrons as the origin of the observed

signal. The spectrum of the radiation was estimated using an additional set

of Aluminium, Nickel and Copper filters.

In the experiment, x-rays from 1 keV to 4 keV have been detected.

The back-illuminated CCD which is not sensitive to x-rays energies above

8 keV did not allow a full spectral characterization of the radiation. The
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Figure 3.13: Angular distribution of the radiation for x-ray integrated

energies beyond 1 keV (taken from [Phuoc et al., 2005]). (A) Beam profile of

the x-ray beam at ne = 8 × 1018cm−3 and the corresponding lineout graphics.

(B) Angular distribution of the x-ray intensity for ne = 1.1 × 1019cm−3

(dashed line). The x-ray intensity has been normalized.
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total number of photons integrated over the bandwidth of the filters is more

than 108 photons per shot and integrated over all angles, which is in close

agreement with the result expected from the simulation (Fig. 3.12). Thanks

to the vertical aperture made in the lead shielding, the spatial distribution

of the x-ray beam in the vertical plane was obtained at each shot. The CCD

image on Fig. 3.13 clearly shows that the radiation is collimated in a narrow

cone centered on the laser axis. Large fluctuations of the divergence of the

beam shot to shot (40%) were observed during the experiment. The most

collimated x-ray beam was recorded at 20mrad at full width at the half-

maximum (FWHM). On the other hand, the horizontal angular distribution

was obtained by rotating the x-ray CCD as well as the lead shielding

around the gas jet. In both planes the x-ray beam divergence, averaged

over more than 10 shots, is found to be ∆θ = 50 ± 20 mrad at FWHM.

These experimental results are in a good agreement with the angular widths

expected from the numerical simulations (Fig. 3.12).

The intensity of the x-ray signal is sharply peaked at an electron density

of 5 ± 1 × 1018 cm−3 (Fig. 3.14). Below this critical density, the x-ray signal

vanishes mainly because the number of trapped electrons is too low. This

is confirmed in the experiment for which no electrons were detected by the

spectrometer in that case. At larger densities up to 1.2 × 1019 cm−3, the x-

ray signal drops down and a plateau is reached. For these experimental

conditions, the resulting plasma wave is too weak because the plasma

period becomes non-resonant with the temporal laser pulse length. The

pulse must be first modulated and additional laser energy would be needed.

The numerical simulations clearly reproduce this experimental behavior

(Fig. 3.14): a sharp increase of the x-ray intensity followed by a smoother

decrease of the signal. However, we can note that the critical density is

found to be four times higher than in the experiments. The most plausible

explanation is a mismatch between the expected and experimental laser pulse

duration.

As it is usually the case in plasma physics, other radiative processes
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Figure 3.14: X-ray signal as a function of the plasma electron density for x-

ray energies beyond 1 keV . Each data point corresponds to an average value

over ten shots. The square along the dotted line corresponds to the results

obtained using a 3D PIC simulation.
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having similar characteristics, like the nonlinear Thomson scattering or

the relativistic Bremsstrahlung radiation could contribute to the overall x-

ray emission. The nonlinear Thomson scattering of relativistic electrons

oscillating in the laser field and accelerated in the forward direction is

expected to be peaked close to 100 eV. This radiative process can not produce

efficient keV radiation unless a0 ∼ 10 can be reached, which is far above the

laser intensity used in our experiment. We have also shown in a previous

study that the expected collimation should be one order of magnitude broader

in that case. On the other hand, the relativistic Bremsstrahlung could

generate a collimated angular distribution as well. However, it is expected

to produce less than 106 photons/shot in the full x-ray spectrum extending

up to a few MeVs. Those processes can safely be ruled out as participating

to the hard x-ray radiation observed in the present parameter regime.

This compact laser-produced plasma synchrotron source provides unique

capabilities: a beam of x-rays, a broad spectrum and an ultrashort pulse

duration. The pulse duration must be in the order of the electron bunch

duration, which is close or less than the laser pulse duration (30 fs). The

transverse size of the radiation source coming from the plasma, measured

with a knife edge technique, is 20µm×20µm. The average brightness is then

found to be 5 × 106ph/s/mm−2/mrad−2/0.1%BW while the peak spectral

brightness is 2 × 1020ph/s/mm−2/mrad−2/0.1%BW . The x-ray flux could

be further enhanced by increasing the propagation length of the “bubble”

and therefore the number N0 of betatron oscillations experienced by the

accelerated electrons. In this experiment, the simulation shows that the

“bubble” subsists in only 1 mm within the 3 mm of the gas jet which

allows the accelerated electrons to experience 5 betatron oscillations. The

x-ray energy can be extended to harder x-rays by increasing the strength

parameter K of the plasma wiggler (K=21 in the experiment). Higher laser

energy as well as more energetic electrons will be required for those purposes.

Like every all-optical schemes, such radiation is perfectly synchronized with

the laser system to do visible pump-x-ray probe experiments with no time-
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jitter. Its reasonable flux (5×106photons/pulse/s/0.1%BW ) makes possible

multiple-Bragg and absorption x-ray experiments which will significantly

extend the first x-ray diffraction studies already demonstrated in ultrafast

x-ray science [Rischel et al., 1997, Rousse et al., 2001].



Chapter 4

Electron Beam Filamentation

4.1 Overview

The understanding of the transport of high energy electrons through

matter is of fundamental importance, in particular for the fast ignitor

concept relevant for laser fusion. In this scheme the ignition of the pre-

compressed pellet of the fusion fuel is initiated by laser produced electrons

with energies in the MeV range [Tabak et al., 1994]. The main advantage

of fast ignition in contrary to direct or indirect drive is significantly

relaxed symmetry requirements on the implosion and the achievement

of higher gain [Tabak et al., 1994, Kidder, 1976, Atzeni and Ciampi, 1997,

Kodama et al., 2001]. It is crucial for this scheme that the energy of the

ignition laser is efficiently converted into an electron beam that can propagate

through the high density overcritical plasma and initiate the thermonuclear

burn in the pre-compressed core [Deutsch et al., 1996]. Measurements show

that up to 50% of the laser energy can be transferred into kinetic energy of

fast electrons [Hatchett et al., 2000].

The transport of the electrons to the pre-compressed core involves

currents of the order of 100-1000 MA through regions of overdense plasma.

These currents exceed the critical Alfvén limit given by

JA = 17.1βγ [kA] , (4.1)

91
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where β = v/c and γ is the relativistic Lorentz factor [Alfvén, 1939]. This

is only possible when return currents which are formed by the thermal

background electrons of the plasma play a significant role in neutralization.

Under these conditions, i.e. in presence of a large flow of fast electrons

and a counter-streaming flow of cold electrons, kinetic instabilities like

the Weibel instability [Weibel, 1959] can grow. 3D PIC simulations have

clearly predicted that the transport of the relativistic electron beam is not

homogeneous, but filamentary structures will occur and magnetic fields up

to 100 MG surround the filaments [Taguchi et al., 2001, Pukhov, 2003]. The

arrangement of the filaments propagating through the region of overdense

plasma is of great interest because it determines the amount of energy that

can be deposited in the fuel. It has however been predicted that processes like

collective stopping of the hot electrons, coalescence of the current filaments

and energy dissipation due to heating of the surrounding plasma can play a

significant role and are connected to the electric and magnetic fields of the

current filaments [Honda et al., 2000, Sentoku et al., 2002]. Therefore the

understanding of the underlying propagation mechanisms of the relativistic

electrons through overdense plasma is essential for the success of the fast

ignitor scheme.

4.2 Numerical simulation and comparison

with an experiment

A number of experiments investigating the propagation and filamentation

of laser produced relativistic electron beams have been performed using metal

and plastic foils or glass slabs [Tatarakis et al., 1998, Zheng et al., 2004,

Hall et al., 1998, Teng et al., 2003, Fuchs et al., 2003, Santos et al., 2002].

In such experiments with solid targets it is difficult to create homogeneous

plasmas by pre-ionization before the main interaction. Furthermore, present

PIC-simulations are inadequate to simulate electron propagation through

solid densities since these plasmas are highly collisional and the transport
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is over long distances, typically hundreds of microns. Foam targets offer

a different approach where electron beam propagation can be studied over

relatively long distances at lower densities.

Here we make a comparison an experimental data and simulations. We

use one tenth of solid density pre-ionized CH-foam targets. This approach

provides well controlled conditions for electron beam propagation through

dense, homogeneous plasmas over long distances. The electrons exiting the

rear surface of the target were diagnosed by imaging the optical transition

radiation (OTR) and synchrotron radiation with high spatial resolution. The

images show filamentary structures with a scale length of a few microns.

These filaments are organized in a ring like structure of larger filaments

around the center, surrounded by a cloud of several smaller filaments. A

detailed analysis has been performed using 3D PIC simulations to calculate

the electron energy distribution. The propagation of the electron beam

through the dense plasma was then simulated. The numerical results clearly

show filamentary structures and are in good agreement with the experimental

data.

The experimental measurements were carried out at the Vulcan Petawatt

Laser Facility at the Rutherford Appleton Laboratory. A 350J laser pulse

at 1053nm and 750fs in duration was focussed with an f/3.2 parabola onto

low density foam targets with various thicknesses incident at 45 degrees,

obtaining a reproducible focal spot of 6µm in diameter that contains about

75% of the laser energy. The rear side of the target was imaged with an

f/2 lens system with a focal length of f = 100mm onto two cameras

with Ilford HP5 film. The magnification was 40×. Spectra of the light

emitted were recorded with an optical spectrometer operating at the central

wavelength of 527nm and detected with a 16-bit CCD camera. Stray light of

the Petawatt infrared laser beam was blocked using KG5 filters. The spectral

sensitivity range of the imaging system was 400 to 700nm. To achieve high

resolution, the spectral window of one of the two cameras used was limited

to a bandwidth of ∆λ = 10nm around the central wavelength of the second
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harmonic of the laser at 527nm using an interference filter. The second

camera integrated over the visible spectral range.

Multilayered foam targets with a cell size of 1µm were used. The density

was chosen as 100 and 200mg/cm3. The thicknesses were 250, 500 and

750µm. The front side of the foams was overcoated with a layer of 75nm

of gold to produce x-ray radiation for pre-ionization by the leading edge of

the laser pulse. The rear side of the targets was overcoated with 200nm

of aluminium to obtain a sharp density gradient important for the OTR

technique [Ginzburg and Tsytovich, 1990] and blocked the light emitted by

the pre-plasma. The direct propagation of optical radiation of the laser beam

was effectively prevented by the density of the plasma and the long target

thicknesses as well as the additional aluminium coating at the rear side.

In addition, the energies of the electrons emitted at the rear side of

the target were measured with a permanent-magnet electron spectrometer

[Norreys et al., 2004] along the axis of the laser beam. The distance from

the target to the 5mm diameter collimator is 3.7m, resulting in a solid angle

of 1.4 · 10−6sr. The electron spectra were recorded on Fujifilm image plates.

Fig. 4.1 shows typical electron spectra obtained for different target

conditions. A two temperature Boltzmann distribution was seen with a “hot”

temperature of around Th ≈ 9MeV and a “cold” temperature of Tc ≈ 3MeV .

The optical spectra and the comparison of the images with and without

the bandpass filter showed that the emission collected by the optics is

peaked significantly around the second harmonic of the laser frequency due

to coherent transition radiation or coherent synchrotron radiation. The

bandwidth of the peak is ∆λp = 4nm (FWHM) (in comparison the laser

spectral bandwidth is ∆λL = 2.2nm). The coherence of the emission is

also confirmed as in some of the images an interference pattern is observed.

This indicates that the electrons are basically accelerated in bunches twice

per optical cycle ω0 of the Petawatt laser pulse. This is in agreement with

observations by other experiments [Santos et al., 2002, Baton et al., 2003,

Cowan et al., 2000]. Thus the bunches of electrons producing the filamentary
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Figure 4.1: Electron spectra measured for different foam target conditions

and spectrum obtained from the simulation for similar target and laser

conditions (total number per MeV).
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structures are supposed to be accelerated by the laser ponderomotive force.

At high relativistic intensities the Lorenz force −e~v × ~B acting on electrons

quivering in the laser field expels them in the longitudinal direction.

Since further acceleration mechanisms such as resonant absorption and

direct laser acceleration are known to accelerate electrons to high relativistic

energies, we calculated the effective temperatures for the conditions defined

by our laser parameters. According to the model given by [Wilks et al., 1992]

the laser ponderomotive force will lead to an effective temperature of

Tpm = 0.511 ·
[

(

1 + I18λ
2
L/1.37

)1/2 − 1
]

MeV (4.2)

while resonance absorption will contribute to a Boltzmann distribution with

a temperature given by [Beg et al., 1997]

Tres = 0.1 ·
(

I17 · λ2
L

)1/3
MeV (4.3)

with λL as the wavelength of the accelerating laser pulse (in µm, I17 and I18

denotes the intensity in terms of 1017 and 1018W/cm2 respectively). The

latter equation is only valid for p−polarized radiation (as was the case

in the experiment). The difference between both mechanisms is basically

that the oscillating component of the ponderomotive force will accelerate

bunches of electrons twice every laser cycle, while only once per cycle in

resonance absorption. Also it is well known that electrons accelerated

by resonance absorption of the laser pulse will be directed perpendicular

to the target surface (due to the direction of the density gradient),

while the laser ponderomotive force at high intensities accelerates electrons

along the laser propagation axis [Beg et al., 1997, Malka and Miquel, 1996,

Santala et al., 2000]. Because of the spectral window of the imaging optics,

the light observed can be ascribed to electrons undergone ponderomotive

laser acceleration. We compared the temperatures measured with those

predicted according to equation (4.2) and (4.3): The intensity on the different

targets was between 3.5 and 5 ·1020W/cm2, that leads to Th between 7.5 and

9.3MeV and Tc ≈ 2MeV . The measured values are close to the estimated
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ones. This is again an indication that the “hot” electrons are accelerated by

ponderomotive forces of the laser pulse.

A typical optical image taken on a foam target is shown in Fig. 4.2(a). The

thickness was 250µm. A filamentary spot like-structure is clearly observed. A

central bright spot is surrounded by a cloud of smaller filamentary structures.

As shown in the inset, in the center larger spots forming one half of a ring are

found. The ellipticity of the rings observed can be explained by taking into

account the oblique incidence of the laser pulse while the diagnostics imaged

normal to the target’s surface. This gives further evidence that the filaments

observed are basically produced by electrons pushed in the laser direction by

the laser ponderomotive force. Under the assumption that the electrons are

emitted under an angle of 42 to 45 degree [Sheng et al., 2000], the widths of

the images have to be rescaled using a factor of ∼ 0, 75. This results that

the inner and outer ring form concentric circles. This is shown in Fig. 4.2(b).

The diameter of the inner ring is about 60µm with spot sizes of ∼ 10µm in

diameter (FWHM). The outer ring has a diameter of ∼ 140µm and the size

of smallest observable filaments is < 3µm. An analysis of the divergence of

the inner and the outer structure reveals that the global spot size diverges

under a full opening angle of ∼ 17o with increasing target thickness.

The experimental data were simulated with the 3D PIC code Virtual

Laser Plasma Laboratory (VLPL) [Pukhov, 1999]. In a first step we have

used a laser pulse with the Gaussian profile

a = a0 exp(−(t/T )2 − (r/R)2) cos[ω0(t − cz)], (4.4)

where a0 = 15, T = 314ω−1
0 and R = 63c/ω0. The laser was normally incident

onto a plasma layer with a linear density ramp reaching the maximum Nmax =

20Nc over the distance L = 300c/ω0, where Nc = ω2
0m/4πe2 is the critical

density. The linear density ramp was used to mimic the pre-plasma at the

target surface. The spectrum of accelerated electrons is shown in Fig. 4.1.

The calculated spectrum consists of two Boltzmann-like energy distributions

with Teff ≈ 8MeV and 3.5MeV .
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Figure 4.2: Data obtained using 250µm foam target [Jung et al., 2005]. (a)

Picture of optical emission with 2ω bandpass filter used. The inset shows a

picture recorded with the second camera without bandpass but gray filters.

As the optical density is different, the substructure of the inner circle is

clearly revealed. (b) Reprocessed data. Two concentric rings with 140µm

(red) and 60µm (yellow) are drawn.
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In a second step, an electron beam with a Boltzmann energy distribution

(Teff ≈ 7.5MeV ) was injected into a plasma with Ne = 30Nc and its

propagation was studied. The transverse electron beam temperature was

set to zero to avoid the beam divergence and to keep the beam within

the simulation box. The size of the simulation box is limited because of

the computational power restrictions. Initially, the electron beam had a

smooth Gaussian transverse density profile with radius Rb = 10µm and a

peak density of Nb = 0.1Nc. This beam transports the power

Pb = γNbmc3 · πR2
b ≈ 14[TW] (4.5)

and the current

J = Nbec · πR2
b ≈ 10JA ≈ 2[MA]. (4.6)

The electron beam current is significantly above the Alfvén limit and

the beam quickly begins to filament. 3D PIC simulation result presents on

Fig. 4.3. It can be observed a dozen of dense filaments. Each of them

carries an Alfvén current. Fig. 4.4 show transverse cuts of the electron

density and the x−component of the quasi-static magnetic field after the

beam has propagated 10, 20 and 100µm through the foam plasma. The

onset of the filamentation is observed at a radius ∼ Rb after the beam

has propagated about 10µm (Fig. 4.4(a) and (b)). This can be explained

with small perturbations in the magnetic repulsion of the counter-streaming

beams. At 20µm, strong magnetic fields at a radius r ≈ 7µm are observed

and cause the inner part of the beam also to filament (Fig. 4.4(c) and (d)).

This leads to the occurrence of the inner current filaments observed. Then

some of the filaments begin to merge while the ring like geometry survives.

The ring like structure is clearly revealed in Fig. 4.4(e) and (f). Here the

beam has propagated over 100µm. Note that a similar ring structure has

been observed in the experiment.

According to analytical predictions, filamentation due to the Weibel

instability is expected to grow on a time scale of the plasma frequency of
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the relativistic electron beam,ωbe, and the growth rate of the instability,

γinst ≈ ωbe [Nb/(γNe)] v/c,

scales with the beam contrast Nb/Ne, where Ne is the density of the

surrounding plasma [Honda et al., 2000]. Using Nb = 0.1Nc, Ne = 30Nc, and

v ∼ c, and estimating the growth rate of the Weibel instability, one obtains

γ−1
inst ∼ 130 fs. This corresponds to a beam propagation distance of about

40 µm which is of the same order as that observed in the simulation. Each

small filament in Fig. 4.4(e) and Fig. 4.3 carries a current smaller than the

limiting Alfven current JA and is surrounded by the self-generated magnetic

field. The Bx−field reaches 30MG (Fig. 4.4(f)). Thus we assume that it

is this magnetic field that leads to beam filamentation due to the Weibel

instability.

To summarize, we have studied the electron beam propagation through

overdense plasmas using one tenth of solid density pre-ionized CH-foam

targets. High resolution images of the optical radiation emitted by MeV

electrons at the rear side have been taken. The optical emission is ascribed

either to coherent transition radiation or coherent synchrotron radiation

produced by electron bunches generated by the laser ponderomotive force

twice per optical cycle. The measured electron temperatures correlate

strongly with the acceleration mechanisms discussed. It is observed that the

electron beam breaks up into filaments. The filaments form two concentric

rings. Comparison with the 3D-PIC simulations show that filamentation is

due to the Weibel instability.



Chapter 5

Conclusions

5.1 Electron acceleration in the “bubble”

regime

We have studied the electron trapping and acceleration in the “bubble”

regime of laser-plasma interaction. Because of the very complex nature

of the ultra-relativistic laser-plasma interactions, our analysis was a

phenomenological one. Yet, we were able to calculate electromagnetic fields

inside the spherical cavity moving in plasma with a relativistic velocity. The

cavity runs in the plasma with velocity that is close to the speed of light

while the ions inside the cavity are immobile. The calculated fields are in a

good agreement with the ones obtained in the direct numerical simulation.

At the beginning of the interaction the “bubble” shape is determined by the

laser pulse. However, the length and the transverse radius of the “bubble”

are determined by the electron bunch, when the bunch charge becomes large.

We provide estimates for the “bubble” size in the both regimes.

A plasma cavity which has the potential (2.34) with R > γ0 can trap

plasma electrons. This is an essentially multidimensional effect because the

electron has to reach the large transverse momentum p⊥ ∼ γ0 to be trapped.

A small cavity generated by the laser pulse can trap the plasma electrons

because of the wavebreaking. Wavebreaking occurs in the region where
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0 < Φ < 1. Only a small fraction of the sheath electrons, which reach

the wavebreaking region, can be trapped. The estimate for the trapping

cross-section is obtained in terms of the “bubble” radius and the electron

sheath width. The estimate is close to the value of the trapping cross-section

observed in the PIC simulation.

The electron dynamics of the electron bunch in the “bubble” is studied.

It is shown that the cavity elongation has to be taken into account in order

to estimate the maximum energy gain of the electron bunch. The adiabatic

description can be used to describe the transversal dynamics of the bunch

electron. Making use of the trapping cross-section the bunch density is

estimated.

Finally, we have developed a phenomenological theory of the ultrarela-

tivistic laser-plasma interaction in the “bubble” regime. Of course, it contains

a number of fitting parameters. Yet, it helps to understand deeper the very

complex physics of this new regime.

5.2 Betatron radiation

We have studied spontaneous and stimulated emission from electrons

undergoing betatron motion in ion channel. We calculate the period of

nonlinear betatron oscillations. The method based on the Bessel function

expansion has been used in Ref. [Esarey et al., 2002] to calculate the

spectrum of the spontaneous emission in ion channel. We have extended that

result to the emission at arbitrary directions. The generalized Madey theorem

was used to calculate the electron energy gain of ICSRL. The calculation

shows that the amplification takes place when the EM wave propagates at

small angles with respect to the channel axis.

Our analysis shows that the radiation amplification may be possible

for appropriately tailored electron beams. Particularly, a narrow electron

beam could be injected off-axis such that all the beam electrons execute

approximately the same betatron orbit. To calculate the radiation spectrum
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and the gain of ICSRL, we have used a very simple distribution function.

Further investigations should include more realistic electron distribution

functions. The gain of the ICSRL was calculated in the small-signal small-

gain limit. Further investigations are needed to explore the large-gain regime

of the ICSRL.

We propose an X-ray radiation source based on the laser-produced ion

channel. The high ion density in the channel leads to a much higher power

of the X-ray spontaneous emission than that in a self-generated channel.

5.3 Electron beam filamentation

We have studied the electron beam propagation through overdense

plasmas using one tenth of solid density pre-ionized CH-foam targets. High

resolution images of the optical radiation emitted by MeV electrons at the

rear side have been taken. The optical emission is ascribed either to coherent

transition radiation or coherent synchrotron radiation produced by electron

bunches generated by the laser ponderomotive force twice per optical cycle.

The measured electron temperatures correlate strongly with the acceleration

mechanisms discussed. It is observed that the electron beam breaks up into

filaments. The filaments form two concentric rings. Comparison with the 3D-

PIC simulations show that filamentation is due to the Weibel instability.
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Appendix A

Size of the Wavebreaking

Pattern

At the beginning of the interaction (see Chapter 2, Sec. 2.1.6, Fig. 2.4)

the wavebreaking region is located exactly on the x-axis. The laser

ponderomotive potential is low here and can be neglected. We use the one-

dimensional cold fluid approximation to estimate the scale of this region.

The one-dimensional approach as an estimation can be used here because

p⊥ ≈ ∂p⊥/∂r⊥ ≈ E⊥ ≈ ∂E⊥∂r⊥ ≈ 0 at the x−axis. The hydrodynamic

approach fails when the wavebreaking occurs. However we assume that the

structure of the nonlinear plasma wave is not yet strongly destroyed at the

beginning of the interaction, as it is seen in the PIC simulation, Fig. 2.4c.

The equation for the potential of the one-dimensional nonlinear plasma wave

is [Akhiezer and Polovin, 1956, Sprangle et al., 1990, Teychenne et al., 1993]

d2Φ

dξ2
=

v0 − Φ
√

Φ2 − γ−2
0

v0

(

Φ2 − γ−2
0

)

+ Φ
√

Φ2 − γ−2
0

, (A.1)

where p⊥ = py = 0 is assumed.

An analysis of Eq. (A.1) shows that Φmin < Φ < Φmax, where Φmin ≃
Φ−1

max in the limit Φmax ≫ 1 [Teychenne et al., 1993]. The singularity

appears in the right-hand side of Eq. (A.1) in the limit Φmax = γ0.

This means the plasma wavebreaking and the failure of the cold fluid
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approach [Teychenne et al., 1993, Sprangle et al., 1990]. We assume that

the “bubble” velocity is close to the group velocity of the laser pulse γ0 ≃ 13

at the beginning of interaction. It follows from Eq. (2.16) that Φmax ≃ R2/4.

The first integral given by Eq. (A.1) in the limit 1 ≪ 1/Φmin ≃ Φmax and

Φ < 1, γ0 ≫ 1 reduces to the form

(

dΦ

dξ

)2

≃ 1

Φmin

− 1

Φ
. (A.2)

Integrating Eq. (A.1) from 1 to Φmin we find the width of the wavebreaking

region

D/2 ≃ Φ−1/2
max . (A.3)

We get D ≃ 0.6 for R ≃ 7 from Eq. (A.3) that is about two times smaller than

the value of the pattern width observed in the PIC simulation at lint = 25.

It follows from the Hamiltonian (2.30) that

γ ≃ γ2
0Φ

−1
max

(

1 −
√

1 − Φ2
maxγ

−2
0

)

. (A.4)

Eq. (A.1) gives γ ≃ 7 that is two time smaller than γ0 ≃ 13. To derive a more

accurate estimation for D and γ one needs a solution of a three-dimensional

nonlinear equation on the plasma wave [Lotov, 1998].



Appendix B

Trajectory Divergence

The potential Φ is almost constant in the electron sheath and we use the

equipotential approximation to analyse the electron motion in the sheath.

We get from Eq. (2.30)

γ − v0px = Φ ≃ const. (B.1)

Then, Eqs. (2.25) and (2.27) reduces to the form

dPx

dt
≃ dpx

dt
≃ −ξ

2
, (B.2)

dξ

dt
=

px

Φ + v0px

− v0 ≃ − v0Φ

Φ + v0px

, (B.3)

where we the Lorentz force is taken in the form (2.33) and px ≪ γ2
0 is

assumed. The obtained system of equations has the first integral

ξ2 − ξ2
0

4
≃ Φ ln (Φ + v0px) , (B.4)

where the initial conditions −ξ = −ξ0 ≫ 1, y = y0 and px = 0 are assumed

and Φ is of the order of unity in the electron sheath and outside of the

wavebreaking pattern.

The return current ends at the point ξ = ξ0 within the electron sheath

(see Fig. B.1).
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Figure B.1: Results of the PIC simulation when the laser pulse has passed

about 25c/ωp. The dark-shaded regions show the return current location

(the places, where px < 0) in the plane z = 0. The cavity boundary is

shown by the dashed line. The gray circles are the region where px ≃ 0. The

coordinates are given in c/ωp.
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Using Eqs. (B.1) and (B.4) we get

γ ≃ exp

(

ξ2 − ξ2
0

4Φ

)

, py ≃ −
√

2Φγ, (B.5)

where γ ≫ 1 is assumed. Eq. (2.28) can be rewritten in the form

dy

dξ
=

dy

dt

(

dξ

dt

)−1

=
py

px − v0γ
≃

√

2γ

Φ
. (B.6)

Integrating the obtained equation in the limit |ξf − ξ0| ≪ |ξ0| we find the

shape of plasma cavity from the point, where the return current is over

(ξ = ξ0), to the cavity base (ξ = ξf ) in the limit γ ≫ 1

ln

[

ξ0 (y − y0)

4
√

2Φ

]

≃ ξ0 (ξ − ξ0)

4Φ
. (B.7)

Making use of Eq. (B.7) the distance between two electrons can be evaluated

δR ≃ 4
√

2γ

ξ0

(

1

2
√

Φ
− ξf − ξ0

4Φ2

)

∂Φ

∂y
δρ, (B.8)

where δρ ≪ 1 is the initial distance between the two electrons. As Φ ∼ 1

and ∂Φ/∂y = F ∼ −ξ0 the trajectory divergence can be estimated as

η =

∣

∣

∣

∣

δR

∂ρ

∣

∣

∣

∣

≃ 4
√

2γ (ln
√

γ − 1/2) . (B.9)

Then the trajectory divergence between the point ξ = ξ0 in the electron

sheath, where px = 0, and the wavebreaking pattern (ξ = ξf ) is

η ≃ 2R ln

(

R

2
√

2

)

. (B.10)

Here we have used γ ≃ Φmax/2 ≃ R2/8. This follows from Eq. (A.4) in the

limit Φ2
maxγ

2
0 ≪ 1.



Index

Alfvén limit, 91

atom, 5

betatron oscillations, 46

Compton scattering, 9

electric fields

the largest, 6

Electron acceleration, 11

3D PIC simulation, 35

injection electrons, 33

LWFA, 11

quasi-monoenergetic, 34

relativistic compensation of

the electrostatic force, 19

SM-LWFA, 13

the “bubble” regime, 15

ionic sphere, 18

quasistatic approximation,

20

shape, 22

trapping cross-section, 29

wavebreaking, 13

Electron beam

filamentation, 91

electron motion

figure-8, 7

electron recombination, 9

high harmonic generation, 9

ion channel, 46

ion-channel laser (ICL), 45

laser

chirped-pulse-amplification, 6

tabletop-size, 6

laser pulse

femtosecond, 5

ultrashort, 5

laser vector potential, 12

light intensities

the highest, 6

magnetic fields

the largest, 6

plasma

critical density, 18

plasma wiggler strength, 47

plasma-wiggler free electron laser

(FEL), 45

return current, 92

112



113

SLAC, 45

Thomson scattering, 9

wake field

maximum, 12

Weibel instability, 92

growth rate, 102

x-ray

applications, 13

external electron bunch, 77

LOA experiment, 81

numerical simulation, 71

quasi-monoenergetic bunch, 72

x-ray sources

free-electron lasers, 10

Laser-driven, 6

synchrotrons, 10



114 Bibliography



Bibliography

[Abramowitz and Stegun, 1972] Abramowitz, M. and Stegun, I., eds (1972).

Handbook of Mathematical Functions. New York: Dover.

[Akhiezer and Polovin, 1956] Akhiezer, A. and Polovin, R. (1956). Zhurnal

Eksperimental’noi i Teoreticheskoi Fiziki 30, 915. Sov. Phys. JETP 3, 696

(1956).

[Alfvén, 1939] Alfvén, H. (1939). Physical Review 55, 425.

[Amiranoff et al., 1998a] Amiranoff, F., Baton, S., Bernard, D., Cros, B.,

Descamps, D., Dorchies, F., Jacquet, F., Malka, V., Marques, J. R.,

Matthieussent, G., Mine, P., Modena, A., Mora, P., Morillo, J., and

Najmudin, Z. (1998a). Physical Review Letters 81 (5), 995–998.

[Amiranoff et al., 1998b] Amiranoff, F., Bernard, D., Cros, B., Dorchies,

F., Jacquet, F., Malka, V., Marques, J., Matthieussent, G., Mine, P.,

Modena, A., Morillo, J., and Najmudin, Z. (1998b). Nuclear Instruments

and Methods in Physics Research 410A, 364.

[Amiranoff et al., 1992] Amiranoff, F., Laberge, M., Marques, J. R., Moulin,

F., Fabre, E., Cros, B., Matthieussent, G., Benkheiri, P., Jacquet, F.,

Meyer, J., Mine, P., Stenz, C., and Mora, P. (1992). Physical Review

Letters 68 (25), 3710–3713.

[Andreev et al., 1992] Andreev, N., Gorbunov, L., Kirsanov, V., Pogosova,

A., and Ramazashvili, R. (1992). Pis’ma v Zhurnal Eksperimental’noi i

Teoreticheskoi Fiziki 55, 551. JETP Lett. 55, 571-576(1992).

115



116 Bibliography

[Antonsen and Mora, 1992] Antonsen, T. M. and Mora, J. P. (1992).

Physical Review Letters 69 (15), 2204–2207.

[Atzeni and Ciampi, 1997] Atzeni, S. and Ciampi, M. (1997). Nuclear Fusion

37, 1665.

[Baton et al., 2003] Baton, S. D., Santos, J. J., Amiranoff, F., Popescu, H.,

Gremillet, L., Koenig, M., Martinolli, E., Guilbaud, O., Rousseaux, C.,

Gloahec, M. R. L., Hall, T., Batani, D., Perelli, E., Scianitti, F., and

Cowan, T. E. (2003). Physical Review Letters 91 (10), 105001.

[Bauer et al., 1995] Bauer, D., Mulser, P., and Steeb, W.-H. (1995). Physical

Review Letters 75 (25), 4622–4625.

[Beg et al., 1997] Beg, F. N., Bell, A. R., Dangor, A. E., Danson, C. N.,

Fews, A. P., Glinsky, M. E., Hammel, B. A., Lee, P., Norreys, P. A., and

Tatarakis, M. (1997). Physics of Plasmas 4 (2), 447–457.

[Clayton et al., 2002] Clayton, C. E., Blue, B. E., Dodd, E. S., Joshi, C.,

Marsh, K. A., Mori, W. B., Wang, S., Catravas, P., Chattopadhyay, S.,

Esarey, E., Leemans, W. P., Assmann, R., Decker, F. J., Hogan, M. J.,

Iverson, R., Raimondi, P., Siemann, R. H., Walz, D., Katsouleas, T., Lee,

S., and Muggli, P. (2002). Physical Review Letters 88 (15), 154801.

[Clayton et al., 1985] Clayton, C. E., Joshi, C., Darrow, C., and Umstadter,

D. (1985). Physical Review Letters 54 (21), 2343–2346.

[Cowan et al., 2000] Cowan, T. E., Hunt, A. W., Phillips, T. W., Wilks,

S. C., Perry, M. D., Brown, C., Fountain, W., Hatchett, S., Johnson, J.,

Key, M. H., Parnell, T., Pennington, D. M., Snavely, R. A., and Takahashi,

Y. (2000). Physical Review Letters 84 (5), 903–906.

[Davidson, 2001] Davidson, R. (2001). Physics of Nonneutral Plasmas.

London: Imperial College Press.



Bibliography 117

[Deutsch et al., 1996] Deutsch, C., Furukawa, H., Mima, K., Murakami, M.,

and Nishihara, K. (1996). Physical Review Letters 77 (12), 2483–2486.

[Dodin and Fisch, 2003] Dodin, I. Y. and Fisch, N. J. (2003). Physical

Review E (Statistical, Nonlinear, and Soft Matter Physics) 68 (5), 056402.

[Esarey et al., 1997] Esarey, E., Hubbard, R. F., Leemans, W. P., Ting, A.,

and Sprangle, P. (1997). Physical Review Letters 79 (14), 2682–2685.

[Esarey and Pilloff, 1995] Esarey, E. and Pilloff, M. (1995). Physics of

Plasmas 2 (5), 1432–1436.

[Esarey et al., 1993] Esarey, E., Ride, S. K., and Sprangle, P. (1993).

Physical Review E (Statistical Physics, Plasmas, Fluids, and Related

Interdisciplinary Topics) 48 (4), 3003–3021.

[Esarey et al., 2002] Esarey, E., Shadwick, B. A., Catravas, P., and Leemans,

W. P. (2002). Physical Review E (Statistical, Nonlinear, and Soft Matter

Physics) 65 (5), 056505.

[Esarey et al., 1996] Esarey, E., Sprangle, P., Krall, J., and Ting, A. (1996).

IEEE Transactions on Plasma Science 24, 252.

[Everett et al., 1994] Everett, M., Lal, A., Gordon, D., Clayton, C., Marsh,

K., and Joshi, C. (1994). Nature 368, 527.

[Faure et al., 2004] Faure, J., Glinec, Y., Pukhov, A., Kiselev, S., Gordienko,

S., Lefebvre, E., Rousseau, J., Burgy, F., and Malka, V. (2004). Nature

431 (7008), 541 – 544.

[Fraiman and Kostyukov, 1995] Fraiman, G. M. and Kostyukov, I. Y. (1995).

Physics of Plasmas 2 (3), 923–934.

[Fuchs et al., 2003] Fuchs, J., Cowan, T. E., Audebert, P., Ruhl, H.,

Gremillet, L., Kemp, A., Allen, M., Blazevic, A., Gauthier, J.-C., Geissel,

M., Hegelich, M., Karsch, S., Parks, P., Roth, M., Sentoku, Y., Stephens,

R., and Campbell, E. M. (2003). Physical Review Letters 91 (25), 255002.



118 Bibliography

[Fung, 1969] Fung, P. (1969). Plasma Physics 11, 285.

[Gahn et al., 1999] Gahn, C., Tsakiris, G. D., Pukhov, A., ter Vehn, J. M.,

Pretzler, G., Thirolf, P., Habs, D., and Witte, K. J. (1999). Physical

Review Letters 83 (23), 4772–4775.

[Geraci and Whittum, 2000] Geraci, A. A. and Whittum, D. H. (2000).

Physics of Plasmas 7 (8), 3431–3440.

[Ginzburg and Tsytovich, 1990] Ginzburg, V. and Tsytovich, V. (1990).

Transition Radiation and Transition Scattering. Bristol: Hilger.

[Ginzburg and Zhelenyakov, 1958] Ginzburg, V. and Zhelenyakov, V.

(1958). Astron. Zh. 35, 694.

[Hairapetian et al., 1995] Hairapetian, G., Davis, P., Clayton, C. E., Joshi,

C., Hartman, S. C., Pellegrini, C., and Katsouleas, T. (1995). Physical

Review Letters 72, 2403.

[Hall et al., 1998] Hall, T. A., Ellwi, S., Batani, D., Bernardinello, A.,

Masella, V., Koenig, M., Benuzzi, A., Krishnan, J., Pisani, F., Djaoui,

A., Norreys, P., Neely, D., Rose, S., Key, M. H., and Fews, P. (1998).

Physical Review Letters 81 (5), 1003–1006.

[Hatchett et al., 2000] Hatchett, S. P., Brown, C. G., Cowan, T. E., Henry,

E. A., Johnson, J. S., Key, M. H., Koch, J. A., Langdon, A. B., Lasinski,

B. F., Lee, R. W., Mackinnon, A. J., Pennington, D. M., Perry, M. D.,

Phillips, T. W., Roth, M., Sangster, T. C., Singh, M. S., Snavely, R. A.,

Stoyer, M. A., Wilks, S. C., and Yasuike, K. (2000). In: Electron, photon,

and ion beams from the relativistic interaction of Petawatt laser pulses

with solid targets volume 7 pp. 2076–2082, Seattle, Washington (USA):

AIP.

[Heitler, 1954] Heitler, W. (1954). The Quantum Theory of Radiation.

London: Oxford University Press.



Bibliography 119

[Honda et al., 2000] Honda, M., Meyer-ter-Vehn, J., and Pukhov, A. (2000).

Physical Review Letters 85 (10), 2128–2131.

[Jackson, 1975] Jackson, J. (1975). Classical Electrodynamics. New York:

Wiley.

[Joshi et al., 2002] Joshi, C., Blue, B., Clayton, C. E., Dodd, E., Huang,

C., Marsh, K. A., Mori, W. B., Wang, S., Hogan, M. J., O’Connell, C.,

Siemann, R., Watz, D., Muggli, P., Katsouleas, T., and Lee, S. (2002). In:

High energy density plasma science with an ultrarelativistic electron beam

volume 9 pp. 1845–1855, Long Beach, California (USA): AIP.

[Joshi et al., 1987] Joshi, C., Katsouleas, T., Dawson, J., Yan, Y., and

Slater, J. (1987). IEEE Journal of Quantum Electronics 23, 1571.

[Jung et al., 2005] Jung, R., Osterholz, J., Lowenbruck, K., Kiselev, S.,

Pretzler, G., Pukhov, A., Willi, O., Kar, S., Borghesi, M., Nazarov, W.,

Karsch, S., Clarke, R., and Neely, D. (2005). Physical Review Letters 94

(19), 195001.

[Key et al., 1998] Key, M. H., Cable, M. D., Cowan, T. E., Estabrook, K. G.,

Hammel, B. A., Hatchett, S. P., Henry, E. A., Hinkel, D. E., Kilkenny,

J. D., Koch, J. A., Kruer, W. L., Langdon, A. B., Lasinski, B. F., Lee,

R. W., MacGowan, B. J., MacKinnon, A., Moody, J. D., Moran, M. J.,

Offenberger, A. A., Pennington, D. M., Perry, M. D., Phillips, T. J.,

Sangster, T. C., Singh, M. S., Stoyer, M. A., Tabak, M., Tietbohl, G. L.,

Tsukamoto, M., Wharton, K., and Wilks, S. C. (1998). In: Hot electron

production and heating by hot electrons in fast ignitor research volume 5

pp. 1966–1972, Pittsburgh, Pennsylvania (USA): AIP.

[Kidder, 1976] Kidder, R. (1976). Nuclear Fusion 16, 405.

[Kim, 1989] Kim, K. (1989). In: Physics of Particle Accelerators, (Month,

M. and Dienes, M., eds) p. 565, AIP New York: AIP.



120 Bibliography

[Kiselev et al., 2004] Kiselev, S., Pukhov, A., and Kostyukov, I. (2004).

Physical Review Letters 93 (13), 135004.

[Kitagawa et al., 1992] Kitagawa, Y., Matsumoto, T., Minamihata, T.,

Sawai, K., Matsuo, K., Mima, K., Nishihara, K., Azechi, H., Tanaka,

K. A., Takabe, H., and Nakai, S. (1992). Physical Review Letters 68 (1),

48–51.

[Kodama et al., 2001] Kodama, R., Norreys, P. A., Mima, K., Dangor, A. E.,

Evans, R. G., Fujita, H., Kitagawa, Y., Krushelnick, K., Miyakoshi, T.,

Miyanaga, N., Norimatsu, T., Rose, S. J., Shozaki, T., Shigemori, K.,

Sunahara, A., Tampo, M., Tanaka, K. A., Toyama, Y., Yamanaka, T.,

and Zepf, M. (2001). Nature 412 (6849), 798–802.

[Kostyukov et al., 2002] Kostyukov, I. Y., Shvets, G., Fisch, N. J., and Rax,

J. M. (2002). Physics of Plasmas 9 (2), 636–648.

[Landau and Lifshits, 1982] Landau, L. and Lifshits, E. (1982). The

Classical Theory of Fields. New York: Pergamon, 3rd revised english

edition.

[Lawson, 1988] Lawson, J. (1988). The Physics of Charged Particle Beams.

London: Oxford University Press.

[Leemans et al., 1997] Leemans, W., Schoenlein, R., Volfbeyn, P., Chin, A.,

Glover, T., Balling, P., Zolotorev, M., Kim, K.-J., Chattopadhyay, S., and

Shank, C. (1997). IEEE Journal of Quantum Electronics 33, 1925.

[Leemans et al., 2002] Leemans, W. P., Catravas, P., Esarey, E., Geddes, C.

G. R., Toth, C., Trines, R., Schroeder, C. B., Shadwick, B. A., van Tilborg,

J., and Faure, J. (2002). Physical Review Letters 89 (17), 174802.

[Lifshitz and Landau, 1981] Lifshitz, E. and Landau, L. (1981). Quantum

Mechanics-Nonrelativistic Theory. New York: Pergamon Press, 3rd

edition.



Bibliography 121

[Lotov, 1998] Lotov, K. V. (1998). Physics of Plasmas 5 (3), 785–791.

[Luchini and Motz, 1990] Luchini, P. and Motz, H. (1990). Undulators and

Free-Electron Lasers. Oxford: Clarendon Press.

[Madey, 1979] Madey, J. (1979). Nuovo Cimento 50B, 64.

[Malka and Miquel, 1996] Malka, G. and Miquel, J. L. (1996). Physical

Review Letters 77 (1), 75–78.

[Malka et al., 2001] Malka, V., Faure, J., Marques, J. R., Amiranoff, F.,

Rousseau, J. P., Ranc, S., Chambaret, J. P., Najmudin, Z., Walton, B.,

Mora, P., and Solodov, A. (2001). Physics of Plasmas 8 (6), 2605–2608.

[Malka et al., 2002] Malka, V., Fritzler, S., Lefebvre, E., Aleonard, M.-M.,

Burgy, F., Chambaret, J.-P., Chemin, J.-F., Krushelnick, K., Malka, G.,

Mangles, S. P. D., Najmudin, Z., Pittman, M., Rousseau, J.-P., Scheurer,

J.-N., Walton, B., and Dangor, A. E. (2002). Science 298 (5598), 1596–

1600.

[Modena et al., 1995] Modena, A., Najmudin, Z., Dangor, A., Clayton, C.,

Marsh, K., Joshi, C., Malka, V., Darrow, C., Danson, C., Neely, D., and

Walsh, F. (1995). Natur 377, 606.

[Moore et al., 1997] Moore, C. I., Ting, A., Krushelnick, K., Esarey, E.,

Hubbard, R. F., Hafizi, B., Burris, H. R., Manka, C., and Sprangle, P.

(1997). Physical Review Letters 79 (20), 3909–3912.

[Morse and Feshbach, 1953] Morse, P. and Feshbach, H. (1953). Methods of

Theoretical Physics, volume I. New York: McGraw-Hill Book Company.

[Nikishov and Ritus, 1963] Nikishov, A. and Ritus, V. (1963). Zhurnal

Eksperimental’noi i Teoreticheskoi Fiziki 46, 776. Sov. Phys. JETP 19,

529 (1964).



122 Bibliography

[Norreys et al., 2004] Norreys, P. A., Lancaster, K. L., Murphy, C. D.,

Habara, H., Karsch, S., Clarke, R. J., Collier, J., Heathcote, R.,

Hemandez-Gomez, C., Hawkes, S., Neely, D., Hutchinson, M. H. R., Evans,

R. G., Borghesi, M., Romagnani, L., Zepf, M., Akli, K., King, J. A.,

Zhang, B., Freeman, R. R., MacKinnon, A. J., Hatchett, S. P., Patel, P.,

Snavely, R., Key, M. H., Nikroo, A., Stephens, R., Stoeckl, C., Tanaka,

K. A., Norimatsu, T., Toyama, Y., and Kodama, R. (2004). In: Integrated

implosion/heating studies for advanced fast ignition volume 11 pp. 2746–

2753, Albuquerque, New Mexico (USA): AIP.

[Phuoc et al., 2005] Phuoc, K. T., Burgy, F., Rousseau, J.-P., Malka, V.,

Rousse, A., Shah, R., Umstadter, D., Pukhov, A., and Kiselev, S. (2005).

Physics of Plasmas 12 (2), 023101.

[Pittman et al., 2002] Pittman, M., Rousseau, S. F. J., Notebaert, L.,

Chambaret, J., and Chériaux, G. (2002). Applied Physics B: Lasers and

Optics 74, 529–535.

[Pogorelsky, 1998] Pogorelsky, I. (1998). Nuclear Instruments and Methods

in Physics Research 411, 172.

[Pukhov, 1999] Pukhov, A. (1999). Journal of Plasma Physics 61, 425.

[Pukhov, 2003] Pukhov, A. (2003). Reports on Progress in Physics 66, 47.

[Pukhov et al., 2003] Pukhov, A., Kiselev, S., Kostyukov, I., and ter Vehn,

J. M. (2003). volume 5228 pp. 345–352, SPIE.

[Pukhov and Meyer-ter-Vehn, 1996] Pukhov, A. and Meyer-ter-Vehn, J.

(1996). Physical Review Letters 76 (21), 3975–3978.

[Pukhov and Meyer-ter-Vehn, 2002] Pukhov, A. and Meyer-ter-Vehn, J.

(2002). Applied Physics B 74, 355–361.

[Pukhov et al., 1999] Pukhov, A., Sheng, Z.-M., and Meyer-ter-Vehn, J.

(1999). Physics of Plasmas 6 (7), 2847–2854.



Bibliography 123

[Quesnel and Mora, 1998] Quesnel, B. and Mora, P. (1998). Physical Review

E (Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary

Topics) 58 (3), 3719–3732.

[Rischel et al., 1997] Rischel, C., Rousse, A., Uschmann, I., Albouy, P.,

Geindre, J., Audebert, P., Gauthier, J., Froster, E., Martin, J., and

Antonetti, A. (1997). Nature 390, 490.

[Rosenzweig et al., 1991] Rosenzweig, J. B., Breizman, B., Katsouleas, T.,

and Su, J. J. (1991). Physical Review A (Atomic, Molecular, and Optical

Physics) 44 (10), R6189–R6192.

[Rousse et al., 2004] Rousse, A., Phuoc, K. T., Shah, R., Pukhov, A.,

Lefebvre, E., Malka, V., Kiselev, S., Burgy, F., Rousseau, J., Umstadter,

D., and Hulin, D. (2004). Physical Review Letters 93 (13), 135005.

[Rousse et al., 2001] Rousse, A., Rischel, C., Fourmaux, S., Uschmann, I.,

Sebban, S., Grillon, G., Balcou, P., Forster, E., Geindre, J., Audebert, P.,

Gauthier, J., and Hulin, D. (2001). Nature 410 (6824), 65–68.

[Santala et al., 2001] Santala, M. I. K., Najmudin, Z., Clark, E. L.,

Tatarakis, M., Krushelnick, K., Dangor, A. E., Malka, V., Faure, J., Allott,

R., and Clarke, R. J. (2001). Physical Review Letters 86 (7), 1227–1230.

[Santala et al., 2000] Santala, M. I. K., Zepf, M., Watts, I., Beg, F. N., Clark,

E., Tatarakis, M., Krushelnick, K., Dangor, A. E., McCanny, T., Spencer,

I., Singhal, R. P., Ledingham, K. W. D., Wilks, S. C., Machacek, A. C.,

Wark, J. S., Allott, R., Clarke, R. J., and Norreys, P. A. (2000). Physical

Review Letters 84 (7), 1459–1462.

[Santos et al., 2002] Santos, J. J., Amiranoff, F., Baton, S. D., Gremillet,

L., Koenig, M., Martinolli, E., Gloahec, M. R. L., Rousseaux, C., Batani,

D., Bernardinello, A., Greison, G., and Hall, T. (2002). Physical Review

Letters 89 (2), 025001.



124 Bibliography

[Schoenlein et al., 2000] Schoenlein, R., Chattopadhyay, S., Chong, H.,

Glover, T., Heimann, P., Shank, C., Zholents, A., and Zolotorev, M.

(2000). Applied Physics B 71, 1.

[Schwinger, 1949] Schwinger, J. (1949). Physical Review 75, 1912.

[Sentoku et al., 2002] Sentoku, Y., Mima, K., Sheng, Z. M., Kaw, P.,

Nishihara, K., and Nishikawa, K. (2002). Physical Review E (Statistical,

Nonlinear, and Soft Matter Physics) 65 (4), 046408.

[Sheng et al., 2000] Sheng, Z.-M., Sentoku, Y., Mima, K., Zhang, J., Yu, W.,

and Meyer-ter-Vehn, J. (2000). Physical Review Letters 85 (25), 5340–

5343.

[Smith, 1959] Smith, R. (1959). Semiconductors. Cambridge: Cambridge

University Press.

[Sprangle et al., 1992] Sprangle, P., Esarey, E., Krall, J., and Joyce, G.

(1992). Physical Review Letters 69 (15), 2200–2203.

[Sprangle et al., 1990] Sprangle, P., Esarey, E., and Ting, A. (1990). Physical

Review A (Atomic, Molecular, and Optical Physics) 41 (8), 4463–4469.

[Strickland and Mourou, 1985] Strickland, D. and Mourou, G. (1985).

Optics Communications 56, 219–221.

[Tabak et al., 1994] Tabak, M., Hammer, J., Glinsky, M., Kruer, W., Wilks,

S., Woodworth, J., Campbell, E., Perry, M., and Mason, R. (1994). Physics

of Plasmas 1, 1626.

[Taguchi et al., 2001] Taguchi, T., Antonsen, T. M., Jr., Liu, C. S., and

Mima, K. (2001). Physical Review Letters 86 (22), 5055–5058.

[Tatarakis et al., 1998] Tatarakis, M., Davies, J. R., Lee, P., Norreys, P. A.,

Kassapakis, N. G., Beg, F. N., Bell, A. R., Haines, M. G., and Dangor,

A. E. (1998). Physical Review Letters 81 (5), 999–1002.



Bibliography 125

[Teng et al., 2003] Teng, H., Zhang, J., Chen, Z. L., Li, Y. T., Li, K., Peng,

X. Y., and Ma, J. X. (2003). Physical Review E (Statistical, Nonlinear,

and Soft Matter Physics) 67 (2), 026408.

[TESLA, 2001] TESLA (2001). Technical Report DESY 2001-011, ECFA

2001-209 TESLA.

[Teychenne et al., 1993] Teychenne, D., Bonnaud, G., and Bobin, J.-L.

(1993). Physical Review E (Statistical Physics, Plasmas, Fluids, and

Related Interdisciplinary Topics) 48 (5), R3248–R3251.

[Twiss, 1958] Twiss, R. (1958). Australian Journal of Physics 2, 564.

[Umstadter et al., 1996a] Umstadter, D., Chen, S.-Y., Maksimchuk, A.,

Mourou, G., and Wagner, R. (1996a). Science 273 (5274), 472–475.

[Umstadter et al., 1996b] Umstadter, D., Kim, J. K., and Dodd, E. (1996b).

Physical Review Letters 76 (12), 2073–2076.

[Wang et al., 2002] Wang, S., Clayton, C. E., Blue, B. E., Dodd, E. S.,

Marsh, K. A., Mori, W. B., Joshi, C., Lee, S., Muggli, P., Katsouleas,

T., Decker, F. J., Hogan, M. J., Iverson, R. H., Raimondi, P., Walz, D.,

Siemann, R., and Assmann, R. (2002). Physical Review Letters 88 (13),

135004.

[Weibel, 1959] Weibel, E. (1959). Physical Review Letters 2, 83.

[Wharton et al., 1998] Wharton, K. B., Hatchett, S. P., Wilks, S. C., Key,

M. H., Moody, J. D., Yanovsky, V., Offenberger, A. A., Hammel, B. A.,

Perry, M. D., and Joshi, C. (1998). Physical Review Letters 81 (4), 822–

825.

[Whittum, 1992] Whittum, D. H. (1992). Physics of Fluids B: Plasma

Physics 4 (3), 730–739.

[Whittum et al., 1990] Whittum, D. H., Sessler, A. M., and Dawson, J. M.

(1990). Physical Review Letters 64 (21), 2511–2514.



126 Bibliography

[Wilks et al., 1992] Wilks, S. C., Kruer, W. L., Tabak, M., and Langdon,

A. B. (1992). Physical Review Letters 69 (9), 1383–1386.

[Winick, 1987] Winick, H. (1987). Scientific American 88, 11.

[Wolfram, 1991] Wolfram, S. (1991). MATHEMATICA. New-York: Addison

- Wesley, 2nd edition.

[Zheleznyakov, 1967] Zheleznyakov, V. (1967). Soviet Phys. JETP 24, 381.

[Zheng et al., 2004] Zheng, J., Tanaka, K. A., Sato, T., Yabuuchi, T.,

Kurahashi, T., Kitagawa, Y., Kodama, R., Norimatsu, T., and Yamanaka,

T. (2004). Physical Review Letters 92 (16), 165001.



Acknowledgements

I would like to express the deepest gratitude to my supervisor

Prof. Dr. A. Pukhov for his permanent interest and support of my

research and for numerous valuable and insightful remarks, to Prof. Dr. K.-

H. Spatschek for his wise leadership of Institut für Theoretische Physik I,

to Dr. I. Kostyukov for many helpful comments, productive work and useful

critiques.

I would like to thank the research group “Computational Plasma Physics”

of the University of Düsseldorf for the creative atmosphere. My special

thanks to Dr. Serguei Gordienko for interesting philosophic discussions in

various areas of knowledge, to Teodora Baeva for enthusiasm and openness

for talk. I thank the nearest colleague Dr. Oleg Shorokhov for his patience

from my numerous questions and for all his time.

I would like to thank my colleagues from the Institut für Theoretische

Physik I of Düsseldorf University: Akad. Direktor Dr. Herbert Wenk for help

with computer and administrative problems, Eckhard Zügge for technical
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