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dass sie es nicht ist.“
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Summary

Quantum key distribution (QKD) allows to exchange secret keys using the laws of quantum

mechanics. These keys are utilized to encrypt messages with the Vernam cipher. Under the

assumption that the theory of quantum mechanics is correct and the setup is implemented

correctly, this cryptographic system is unconditionally secure meaning that its security does

not depend on the computational power and strategy of a potential eavesdropper. The

required qubits for QKD are distributed as photons through optical fibers and thus current

QKD systems are limited to a few hundred of kilometers due to losses in the fiber. To

overcome this problem, quantum repeaters were introduced. In classical telecommunication

technology, repeaters enhance the available signal; but in quantum theory simply copying

an unknown quantum state is prohibited by the no-cloning theorem. Quantum repeaters,

however, establish entanglement between qubits which are several hundreds to thousands

kilometers apart by relying on fundamental concepts from quantum information theory like

entanglement swapping and entanglement distillation.

This thesis covers two topics from quantum communication: Long-distance quantum key

distribution via quantum repeaters and security analysis for keys in the regime of a finite

number of signals.

On the one hand, secret key rates using quantum repeaters for infinitely many signals are

investigated. For this purpose, we present error models for the components of a quantum

repeater. We perform a quantitative analysis of the optimal secret key rates in terms of rele-

vant experimental parameters for different implementations of the repeater. Among them

are the original quantum repeater, the hybrid quantum repeater, the quantum repeater with

atomic ensembles, and the quantum repeater using quantum error-correcting codes. We find

that the original quantum repeater can tolerate more gate errors than the hybrid quantum

repeater and that the repeater with atomic ensembles is robust against realistic imperfections.

We also investigate the influence of different distillation strategies (i.e., distillation protocols

and different number of distillation rounds in each nesting level) on the original quantum

repeater scheme resulting in quantitative statements about the strategies for obtaining the

maximal secret key rate. We derive the rate for generating entangled pairs considering the

classical communication times required for entanglement swapping and entanglement distil-

lation. Furthermore, we analyze if different entanglement distillation techniques or the use of

quantum error-correcting codes is advantageous in terms of the secret key rate as the quan-

tum repeater using error-correcting codes needs less classical communication time. We find

that the former is advantageous for the parameter region studied here.

On the other hand, this thesis is devoted to QKD without repeaters. We derive a bound for

the secret key rate for a finite number of signals under the most general form of eavesdropping

attacks, namely coherent attacks. So far, not much is known about the difference in secret

key rates for collective and coherent attacks if the number of signals is finite but in the limit

ix



x

they become equivalent. Our results indicate that this does not hold in the finite case.



Zusammenfassung

Quantenschlüsselverteilung erlaubt den Austausch von sicheren Schlüsseln basierend auf

den Gesetzen der Quantenmechanik. Diese Schlüssel werden verwendet, um Nachrichten mit-

hilfe der Vernamchiffre zu kodieren. Unter der Annahme, dass die Theorie der Quantenmecha-

nik korrekt ist und dass der Aufbau korrekt implementiert wird, sind diese kryptografischen

Systeme bedingungslos sicher. Bedingungslose Sicherheit bedeutet, dass die Sicherheit nicht

von der Rechenleistung und der Angriffsstrategie eines potenziellen Lauschers abhängt. Da

die benötigten Qubits als Photonen durch die Glasfaberkabel gesendet werden, ist die Quan-

tenschlüsselverteilung aufgrund der Verluste im Kabel leider auf wenige Hundert Kilometer

beschränkt. Um dieses Problem zu beheben, wurden Quanten-Repeater eingeführt. In der

klassischen Telekommunikationstechnik verstärken Repeater das vorhandene Signal; in der

Quantentheorie ist jedoch jegliches Kopieren von unbekannten Quantenzuständen durch das

no-cloning Theorem verboten. Quanten-Repeater hingegen können Verschränkung zwischen

Qubits erzeugen, die Hunderte bis Tausende Kilometern entfernt sind. Dabei basieren sie

auf fundamentalen Konzepten aus der Quanteninformationstheorie wie Verschränkungstausch

und Verschränkungsdestillierung.

Diese Arbeit befasst sich mit zwei Themen aus der Quantenkommunikation: Quantenschlüs-

selverteilung über weite Strecken mithilfe von Quanten-Repeatern und die Sicherheitsanalyse

für Schlüssel im Bereich von endlich vielen Signalen.

Einerseits werden sichere Schlüsselraten mithilfe von Quanten-Repeatern für unendlich

viele Signale untersucht. Zu diesem Zweck präsentieren wir Fehlermodelle für die Komponen-

ten eines Quanten-Repeaters. Wir führen eine quantitative Analyse der optimalen sicheren

Schlüsselraten für relevante experimentelle Parameter von verschiedenen Implementierun-

gen des Repeaters durch. Unter diesen Implementierungen sind der ursprüngliche Quanten-

Repeater, der hybride Quanten-Repeater, der Quanten-Repeater bestehend aus atomaren

Ensembles und ein Quanten-Repeater basierend auf Fehlerkorrektur-Codes. Wir finden her-

aus, dass der ursprüngliche Quanten-Repeater mehr Gatterfehler als der hybride Quanten-

Repeater tolerieren kann und dass der Quanten-Repeater bestehend aus atomaren Ensembles

robust gegen realistische Fehler ist. Wir untersuchen auch den Einfluss von unterschiedlichen

Destillierungsstrategien (Destillierungsprotokolle und Anzahl der Destillierungsrunden in je-

dem Zwischenschritt des Quanten-Repeaters) auf den ursprünglichen Quanten-Repeater und

können quantitative Aussagen über die Strategien machen, die zu einer maximalen sicheren

Schlüsselrate führen. Wir leiten die Erzeugungsrate für verschränkte Paare unter Berück-

sichtigung der klassischen Kommunikationszeit, die für den Verschränkungstausch und die

Verschränkungsdestillierung benötigt wird, her. Des Weiteren analysieren wir, ob verschie-

dene Destillierungstechniken oder Fehlerkorrektur-Codes von Vorteil bezüglich der sicheren

Schlüsselrate sind, da der Quanten-Repeater mithilfe von Fehlerkorrektur-Codes weniger klas-

sische Kommunikation braucht. Wir kommen zu dem Ergebnis, dass ersterer Repeater von
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Vorteil ist für die hier betrachtete Parameterregion.

Andererseits ist diese Arbeit der Quantenschlüsselverteilung ohne Repeater gewidmet. Wir

leiten eine Grenze für die sichere Schlüsselrate für endlich viele Signale unter der Annahme der

allgemeinsten Form von Lauschangriffen (kohärente Attacke) her. Bisher ist nicht viel über

den Unterschied von sicheren Schlüsselraten unter kollektiven und kohärenten Lauschangriffen

für eine endliche Anzahl von Signalen bekannt; aber im Limes von unendlich vielen Signalen

existiert eine Äquivalenz. Unsere Resultate deuten allerdings darauf hin, dass das für endlich

viele Signale nicht stimmt.
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1 Introduction

In the history of mankind, inventions for guaranteeing the secrecy of a message are numer-

ous. They range from the Caesar cipher, which is a substitution cipher (i.e, each letter is

substituted by another), to modern cryptographic systems relying on prime factorization (for

an introduction to the history of cryptography, see [Singh, 1999]). Most of the cryptographic

schemes have in common that their safety depends on the computational power available to

an adversary, making these protocols computationally secure. Prime factorization, for ex-

ample, has a subexponential1 running time depending on the size of the integer (see, e.g.,

[Hoffstein et al., 2008]). But by building a quantum computer [Deutsch, 1985; DiVincenzo,

1996], the running time can be decreased to polynomial scaling by an appropriate algorithm

[Shor, 1994], thus compromising the security of these schemes.

The security of quantum key distribution [Bennett and Brassard, 1984] or quantum cryp-

tography is not conditioned on the computational power and strategy of a potential eaves-

dropper, hence this cryptographic system is called unconditionally secure. The term quantum

cryptography might be misleading as it consists of two parts: distributing the key between

the two communicating parties by sending and measuring, e.g., photons and encrypting the

message with this key using the Vernam cipher [Vernam, 1926] (also called one-time pad).

The encryption of the bit-message (plaintext) using this cipher consists in adding modulo

2 the preshared key to the plaintext, leading to the so-called ciphertext. The ciphertext is

decrypted by reversing the encryption procedure: the same key is added modulo 2 to the

ciphertext. This method is called one-time pad, as the key is only used once for every mes-

sage. It was later shown in [Shannon, 1949] that a multiple use of the key compromises the

security. Furthermore, the key has to have the same length as the message. The security

of quantum key distribution relies on the fact that incompatible measurement results reveal

possible eavesdropping attempts on the established key. The Vernam cipher itself is uncon-

ditionally secure as long as the key is equally distributed and completely uncorrelated with

the eavesdropper.

Quantum key distribution is developing very fast since its invention almost thirty years ago:

commercial quantum key distribution systems are now available on the market [Scarani et al.,

2009]. But still these systems are limited to distances of a few hundred kilometers [Stucki

et al., 2009] due to the losses in optical fibers. For long-distance quantum key distribution

we require so-called quantum repeaters [Briegel et al., 1998] to distribute entanglement over

large distances. They are based on principles like entanglement swapping and entanglement

distillation which are established concepts in quantum information theory. The main purpose

of this thesis is to investigate quantum key distribution in the context of quantum repeaters.

1Note that subexponential scaling is between exponential and polynomial growth, for further details see
[Hoffstein et al., 2008].
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Several examinations in this field were performed, but either only on quantum relays (quan-

tum repeaters without distillation) [Collins et al., 2005; Waks et al., 2002; Scherer et al.,

2011] or for specific experimental implementations [Razavi et al., 2010; Amirloo et al., 2010].

This thesis is structured as follows: in Chapter 2 we present the theoretical background of

classical and quantum information theory. Chapter 3 is devoted to quantum key distribution;

we explain the basic concepts and introduce the secret key fraction which is the ratio of the

secret key length and the measured bits. The main purpose of Chapter 4 is to introduce

the theory of quantum repeaters. We describe the procedures of entanglement swapping and

entanglement distillation. Furthermore, we introduce the repeater rate as the production

rate of entangled pairs per second and motivate the error models used for the repeater. We

explain the strategies how to handle gate errors in the repeater by introducing new distillation

protocols and present the concept of quantum repeaters using quantum error-correcting codes.

In Chapter 5, we summarize the results of our papers, which are given in the appendix, and

in Chapter 6, we discuss possible continuations of our investigations. We finish the thesis by

giving a list of the main results in Chapter 7.



2 Theoretical background

In this chapter we develop the necessary mathematical background of quantum information

theory [Nielsen and Chuang, 2000].

2.1 Quantum states

The state of a physical system is described by the state vector |ψ⟩ which is an element of the

Hilbert space H. A prominent example of a quantum state is the quantum bit (qubit):

|ψ⟩ = α |0⟩+ β |1⟩ , (2.1)

with α, β ∈ C, |α|2 + |β|2 = 1 and the orthonormal basis states {|0⟩ , |1⟩}. The qubit is an

element of the two-dimensional Hilbert space and the states |0⟩ and |1⟩ can denote, e.g., the

energy levels of an atom, the polarization of a photon or the spin of an electron. A qubit can

be in a superposition of two states |0⟩ and |1⟩; a phenomenon not known for classical bits.

During the thesis, we will encounter quantum states that are elements of the tensor product

of Hilbert spaces. If one party named Alice possesses a quantum state |ψA⟩ ∈ HA and the

other party (Bob) holds a state |ψB⟩ ∈ HB, then the total state of both parties together is

an element of the Hilbert space HAB := HA ⊗HB. Any state |ψ⟩ ∈ HAB can be written in

the Schmidt decomposition as:

|ψ⟩ =
r

j=1

aj |ej⟩A |fj⟩B , (2.2)

where aj ∈ R>0,


j a
2
j = 1, and |ej⟩A (|fj⟩B) are orthonormal states in HA (HB). The

number r denotes the Schmidt rank. States for which the Schmidt rank r is greater than one

are called entangled, otherwise they are called product states. Important two-qubit entangled

states are the Bell states:

φ± =
1√
2

(|00⟩ ± |11⟩) and
ψ± :=

1√
2

(|01⟩ ± |10⟩) . (2.3)

Bell states are important for quantum key distribution as explained in Chapter 3.

Quantum systems which are in different quantum states |ψi⟩ with probabilities pi are

described by density matrices:

ρ =


j

pj |ψj⟩ ⟨ψj | , (2.4)

with


i pi = 1 and pi > 0. They fulfill the following properties:

• tr (ρ) = 1,

3



4 2.2 Quantum computation

• ρ is a positive operator, i.e., ⟨φ|ρ|φ⟩ ≥ 0 ∀ |φ⟩,

• ρ is hermitean, i.e., ρ = ρ†.

In order to measure the quality of a density operator ρ with respect to a pure state |ψ⟩,
we introduce the fidelity as

F (ρ) = ⟨ψ|ρ|ψ⟩. (2.5)

2.2 Quantum computation

The manipulation of quantum states is the topic of this section.

2.2.1 Quantum gates

Quantum gates are unitary2 matrices, as they follow the rules of quantum mechanics, which

require reversible operations. For a single qubit important operations (quantum gates) are

the Pauli operators, given by the matrices:

X =


0 1
1 0


, Y =


0 −i
i 0


, Z =


1 0
0 −1


. (2.6)

By convention, the vector


1
0


represents the state |0⟩ and the vector


0
1


the state |1⟩

(often referred to as the computational basis). The action of the X-gate on the state

|ψ⟩ = α |0⟩ + β |1⟩ results into a bit-flip: X |ψ⟩ = α |1⟩ + β |0⟩. The application of the

Z-gate causes a phase-flip: Z |ψ⟩ = α |0⟩ − β |1⟩, i.e., the relative phase between the two

states is changed. The Y -gate causes a bit- and a phase-flip. Another important qubit gate

is the Hadamard-gate, which causes a rotation of the vectors from the computational basis

by π
4 :

H =
1√
2


1 1
1 −1


. (2.7)

The basis resulting from the rotation of the computational basis {|0⟩ , |1⟩} is usually called

rotated basis: {|+⟩ := 1√
2
(|0⟩+ |1⟩) , |−⟩ := 1√

2
(|0⟩ − |1⟩)}. The two bases (the computa-

tional and the rotated bases) are essential for quantum key distribution, as we will see in

Sec. 2.2.3.

So far, we have treated quantum gates that act on single qubits. An important gate acting

on two qubits is the controlled-not (cnot) gate. It consists of one control and one target

qubit. A bit-flip (not) operation is applied to the target qubit if the control qubit is in the

2A matrix U is unitary, when U†U = 1 holds.
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state |1⟩. Thus the gate can be written as the unitary operation:

cnot =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 = |0⟩ ⟨0|c ⊗ 1t + |1⟩ ⟨1|c ⊗Xt. (2.8)

In the notation of quantum circuits, where each line represents a qubit, the cnot gate is

given by

•

1

One important property of the cnot gate is that it is entangling, thus it is able to produce

the Bell states [see Eq. (2.3)] from product states. The circuit given in Fig. 2.1 produces the

Bell states.

|0〉c H • U

|0〉t

1

Figure 2.1: Circuit for producing the Bell states, where U is given by
{1, X, Y, Z} producing the Bell states {|φ+⟩ , |ψ+⟩ , |ψ−⟩ , |φ−⟩} up to some global
phase.

2.2.2 Quantum operations

A general quantum operation E maps any density operator ρ into a valid density operator ρ′,

i.e., E(ρ) = ρ′, where the following axioms must be fulfilled:

• ρ, ρ′ ≥ 0, and tr (ρ) = tr (ρ′) = 1,

• the map E is a convex-linear map, i.e., it holds that E (


i piρi) =


i piE(ρi),

• complete positivity is required for the map E . Positivity means that the output of the

map E(ρ) must be a positive operator for any ρ. A map is called completely positive

when the output state is positive if the map is only acting on one subsystem of the

input state, i.e., it holds that (1A ⊗ EB) (ρ) is positive for any bipartite ρ.

An equivalent representation for the map E satisfying the axioms above is the Kraus-operator

representation [Kraus, 1983]:

E(ρ) =


i

EiρE
†
i , (2.9)



6 2.2 Quantum computation

where


iE
†
iEi = 1 holds for the Kraus operators {Ei}.

An important map is the so-called depolarizing map, as this map simulates the behavior of

quantum states in a noisy quantum channel. With probability 1− p the state is replaced by

the completely mixed state and with probability p it is left unchanged:

Edep(ρ) = pρ+ (1− p)
12

2
, (2.10)

with 1d being the d× d identity matrix.

In the operator-sum representation the map for one qubit looks as follows (with the

parametrization p = 4F−1
3 ):

Edep(ρ) = Fρ+
1− F

3
(XρX + Y ρY + ZρZ) . (2.11)

This map is important as it generates the class of depolarized states. The action of a

depolarizing channel [Eq. (2.11)] on the Bell state |φ+⟩ gives

ρdep(F ) := (1⊗ Edep)
φ+
 
φ+
 = F

φ+
 
φ+
+ 1− F

3

14 −

φ+
 
φ+
 , (2.12)

Another map is the partial trace which results in reduced density operators. The partial

trace over subsystem B, denoted by trB(ρ) : HA ⊗HB → HA, is given by

trB(ρ) =


i

EiρE
†
i , with Ei =


j

|aj⟩ ⟨aj | ⟨bi| , (2.13)

and with the orthonormal states |ai⟩ (|bi⟩) of system A (B). The completeness relation
iE

†
iEi = 1AB is also fulfilled. The partial trace guarantees that the measurement statistics

of the remaining subsystem is not changed.

So far, we have defined depolarizing maps for qubits. We can generalize this concept for

general maps for n qubits in the sense that with probability pG an ideal map E ideal
i,j is applied

and with probability (1− pG) we replace this subsystem by the identity matrix:

Ereal
i,j (ρ) = pGE ideal

i,j (ρ) + (1− pG)tri,j(ρ)⊗ 1
i,j
4

4
, (2.14)

where tri,j(ρ) is the partial trace on the subsystems i, j and 1i,j
4 is the 4× 4 identity matrix

on the subsystems i and j. This is the error model used for quantum gates throughout the

thesis.

2.2.3 Quantum measurements

Quantum measurements are performed via a set of measurement operators {Ei}, where Ei

is the measurement operator associated to the measurement outcome i. These operators

have to fulfill the completeness relation, i.e.,


iE
†
iEi = 1. The probability of obtaining

outcome i is given by p(i) = tr

E†iEiρ


. The resulting state after the measurement is given
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by ρi = EiρE†i
p(i) .

An example of quantum measurements are projective measurements, i.e., where E2
i = Ei

holds. In the following we explain how a measurement can alter a state. For this purpose we

introduce the measurement operators for the computational basis (mentioned in Sec. 2.2.1

above) which are E0 = |0⟩ ⟨0| and E1 = |1⟩ ⟨1| and for the rotated basis E+ = |+⟩ ⟨+| and
E− = |−⟩ ⟨−|. The probability of obtaining the measurement outcome 0 or 1 when the

state |0⟩ is measured is p(0) = 1 and p(1) = 0. But if we measure the state in the rotated

basis, the probabilities of obtaining measurement + or − are equal, i.e., p(+) = p(−) = 1
2 .

It means that measuring in the rotated basis, the state vector is projected into this basis,

i.e., it is either |+⟩ or |−⟩ after the measurement. If we then once again measure in the

computational basis, the probabilities of obtaining outcomes 0 or 1 have drastically changed:

p(0) = p(1) = 1
2 . Although we had the state |0⟩ in the beginning, we can have the state |1⟩ in

the end. The basic idea of quantum key distribution is to exploit this behavior for detecting

an eavesdropper.

2.3 Classical and quantum entropies

The classical (quantum) entropy quantifies the uncertainty about a random variable (quantum

state) and is thus related to the security in quantum key distribution as it will be shown in

Sec. 3.2.

The concept of entropies in information theory were developed in [Shannon, 1948a,b].

Assume that the random variableX takes the value x with probability p(x), then the Shannon
entropy related to the probability distribution of this random variable is defined to be

H(X) =


x

p(x) log2 p(x), (2.15)

with the convention that 0 log2 0 = 0 holds. The logarithm is taken to be in base two, as the

entropy is conventionally measured in bits. In the case where the random variable takes two

values, one with probability p and the other with 1− p, the Shannon entropy is given by

h(p) := −p log2 p− (1− p) log2(1− p), (2.16)

which is also called the binary Shannon entropy. For two random variables X and Y , the

joint entropy measures the total uncertainty of the pair (X,Y ):

H(X,Y ) =

x,y

p(x, y) log2 p(x, y), (2.17)

where p(x, y) is the probability that the random variable X (Y ) takes value x (y). When

knowing the random variable Y , we can define the entropy of X conditioned on the knowledge
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of Y (conditional entropy):

H(X|Y ) = H(X,Y )−H(Y ). (2.18)

The mutual information of the random variables X and Y represents the information we can

learn about X by knowing Y :

I(X,Y ) = H(X) +H(Y )−H(X,Y ). (2.19)

For quantifying information of quantum states we use the eigenvalues of the density operators

instead of probability distributions. The von Neumann entropy [von Neumann, 1927] for a

quantum state ρ is defined as

S(ρ) := −tr (ρ log ρ) = −


i

λi log λi, (2.20)

where {λi}i are the eigenvalues of ρ. The conditional entropy of a composite system ρAB is

given by

S(A|B) = S(A,B)− S(B) = S(ρAB)− S(ρB), (2.21)

where ρB is defined as the partial trace [see Eq. (2.13)] over the system A of the state ρAB,

i.e., ρB = trA(ρAB).

Another important entropy which we will encounter in the chapter about quantum key

distribution for finite keys is the min-entropy. The min-entropy in classical information

theory defines the uncertainty of correctly guessing the value of the random variable in one

single trial: Hmin(X) = − log maxx p(x) (see, e.g., [Renner and König, 2005]). R. Renner

developed a formalism for the quantum min-entropy in his PhD thesis [Renner, 2008]. For

two density operators ρAB and σB the conditional min-entropy is defined as [Renner, 2008]:

Hmin(ρAB|σB) := − log


min
λ∈R

λ · 1A ⊗ σB − ρAB ≥ 0

, (2.22)

where σ − ρ ≥ 0 means that the eigenvalues of the operator σ − ρ are non-negative. When

we take the supremum over all arbitrary states σB, we write

Hmin(ρAB|B) := sup
σB

Hmin(ρAB|σB). (2.23)

The operational meaning of the min-entropy becomes clear by using the result from [König

et al., 2009]: First, let ρXE be a classical-quantum state, i.e.,

ρXE =


x

px |x⟩ ⟨x| ⊗ ρx
E . (2.24)

The classical-quantum state describes the system when party A has measured her system

(resulting in her classical system X) but the quantum party E is possessing information
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about the outcome of this measurement encoded in her state ρx
E . Second, let the set {Mx}x

be the elements of a positive operator valued measure (POVM)3 for system E, then

Hmin(ρXE |E) = − log pguess, (2.25)

where the guessing probability pguess is given by

pguess := max
{Mx}x


x

pxtr(Mxρx
E). (2.26)

The min-entropy is thus related to the maximal probability pguess of correctly guessing the

outcome of a random variable X when we only possess system E.

We introduce the ε-smooth min-entropy by taking the supremum of all states with trace

distance ε to the original state, i.e.,

Hε
min(ρAB|σB) := sup

ρ̄AB

Hmin(ρ̄AB|σB), (2.27)

with ||ρAB − ρ̄AB||1 ≤ ε. The trace-norm ||ρ||1 of a state ρ is defined as ||ρ||1 := tr (|ρ|) =
tr


ρ†ρ

. The smoothing is essential as small modifications of the state have a large impact

on the entropy (see [Renner, 2008] for examples). The relation between the von Neumann

and the min-entropy is [Renner, 2008]

1
n
Hε

min(ρ
⊗n
XE |ρ⊗n

E ) ≥ S(X|E)− δ, (2.28)

where δ := (2 log rank(ρX) + 3)


log(2/ε)/n and ρXE is a classical-quantum state [see

Eq. (2.24)]. In [Tomamichel et al., 2009] it was shown that the ε-smooth min-entropy con-

verges to the von Neumann entropy:

lim
ε→0

lim
n→∞

1
n
Hε

min(ρ
⊗n
XE |ρ⊗n

E ) = S(X|E). (2.29)

This result it also known as the quantum asymptotic equipartition property (AEP). The

classical AEP states that the outcome of a random experiment is given by a sequence of

independent and identically distributed (i.i.d.) random variables (X1, ..., Xn) with probability
close to 2−nH(X) [Cover and Thomas, 2006]. Thus all events are equally likely. It is a

consequence of the weak law of large numbers, where the value of 1
n


iXi approaches the

expectation value of the random variable X for large n. The quantum AEP is a generalization

for a classical random variable X with quantum side information E.

3The operators of this measurement are positive and fulfill the completeness relation, see Sec. 2.2.3.
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3 Quantum key distribution

3.1 Introduction

The aim of quantum key distribution is to generate a correlated string of symbols, e.g., bits

between two parties, which are usually called Alice and Bob. Alice and Bob use the laws of

quantum mechanics in their favor to distribute a secret key, hence the name quantum key

distribution (a review on quantum key distribution can be found in [Scarani et al., 2009]).

In order to start with the secret transmission of the keys, both parties should authenticate

each other’s identity. For authentication the parties need a preshared key, thus the procedure

is sometimes referred to as quantum key growing (see, e.g., discussion in [Alleaume et al.,

2007]). The first known quantum key distribution protocol is the BB84-protocol [Bennett

and Brassard, 1984] named after their inventors C. H. Bennett and G. Brassard4 and it

contains the following steps:

(1) State distribution: Alice randomly prepares states in the computational basis

B0 = {|0⟩ , |1⟩} (encoding each the classical bits ’0’ and ’1’) or in the rotated basis

B+ = {|+⟩ = 1√
2
(|0⟩+ |1⟩) , |−⟩ = 1√

2
(|0⟩ − |1⟩)} (encoding ’0’ and ’1’) and sends

them to Bob. The sequence of bits is noted as it later serves for the key.

(2) Measurement: Bob randomly measures the qubits in the bases B0 or B+ and records

the measurement basis and the measurement outcome.

(3) Sifting: Alice and Bob compare their choices of bases over an authenticated channel

and keep only those measurement outcomes where their measurement bases coincided.

It is important to note that no information about the outcome of the measurements is

revealed.

(4) Classical postprocessing: Alice and Bob reveal a fraction of their keys in order

to estimate the error (which could have been introduced either by the channel or an

eavesdropper), apply an error correction algorithm to the remaining bits and decrease

the eavesdropper’s (possible) knowledge by procedures known as privacy amplification

(see [Scarani et al., 2009] for a review).

As Alice prepares the quantum states and sends them to Bob, this scheme is called prepare-

and-measure scheme. An equivalent description with a source of entangled Bell pairs (see

Eq. (2.3) in Sec. 2.1) placed in the middle between Alice and Bob5 is provided in [Ekert,
4S. Wiesner should also be acknowledged as he had the idea of quantum money in the early seventies, but his
idea was only published in 1983 [Wiesner, 1983].
5The source can also be equivalently placed in Alice’s lab.

11
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1991; Bennett et al., 1992]. The source could also belong to a potential eavesdropper who

pretends to send entanglement states, but in reality only sends classically correlated states.

Alice and Bob can discover the fraud as their results would not be correlated anymore and

the measurement results would not violate the CHSH-inequality [Clauser et al., 1969] which

can only be violated by entangled quantum states. It was shown in [Curty et al., 2004] that

entanglement is a necessary prerequisite for QKD. The reader might then think that the

eavesdropper could also produce entangled states which are tripartite entangled like the so-

called GHZ-state [Greenberger et al., 1990] 1√
2
(|000⟩ABE + |111⟩ABE), but entanglement is

monogamous [Koashi and Winter, 2004] thus Alice and Bob are not fully entangled anymore

as in the case of Bell states and this can also be detected.

3.2 Security of quantum key distribution

The security of a cryptographic setting can be either computationally or unconditionally

secure (see, e.g., [Maurer, 1999]). As already mentioned in the introduction, classical crypto-

graphic protocols are only computationally secure; the development of quantum computers

presents, e.g., a serious threat for the security. The advantage of quantum key distribution

is that it is unconditionally secure thus technological advances would not compromise its

security.

In the following we will describe the possible eavesdropping attacks relevant for our work

and then introduce the notion of secret key rates, which gives the amount of extractable secret

bits divided by the initially sent quantum states. The secret key rate is the product of the

secret fraction and the raw key rate, which is the key rate before the classical postprocessing

([Scarani et al., 2009], see also Eq. (5.3) in Sec. 5.2).

3.2.1 Eavesdropping attacks

We divide the attacks by an eavesdropper into individual, collective, and coherent attacks

(see, e.g., [Scarani et al., 2009]). For the individual attacks we assume the following: Eve

attacks the states sent from Alice to Bob independently and with the same strategy; she

measures her ancillas (the auxiliary system that she appended to Alice’s states) before the

classical post-processing. In the collective attack scenario Eve has more power: she is allowed

to keep her ancillas in a quantum memory, but is still restricted to attack each of the states

independently. The most general attack is the coherent attack. In this case Eve is not

restricted at all.

3.2.2 Asymptotic secret fraction

We are now interested how to measure the amount of secrecy between Alice and Bob. We

know that the mutual information I(X,Y ) of two random variables X and Y quantifies their

common knowledge (see Sec. 2.3). In order to determine Alice’s and Bob’s unique knowledge

about X and Y , we have to subtract Eve’s knowledge about their random variables from
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the mutual information. The fraction of secret bits over sent signals (secret fraction, in the

asymptotic limit and for one-way classical postprocessing [Scarani et al., 2009]) is given by

r∞ = lim
N→∞

ℓ

N
= I(X,Y )−max(IXE , IY E), (3.1)

where IXE and IY E depend on the eavesdropping strategy. In the case of individual attacks

the quantities IXE and IY E are given by the mutual information maximized over all eaves-

dropping strategies, i.e., IXE = maxE I(X,E) or IY E = maxE I(Y,E) (Csiszár-Körner bound
[Csiszár and Körner, 1978]). In the case of collective attacks IXE = maxE χ(X,E) [Devetak
and Winter, 2005], where χ(X,E) is the Holevo quantity [Holevo, 1973]:

χ(X,E) = S(E)−


x

pxS(ρx
E), (3.2)

with ρXE =


x px |x⟩ ⟨x|⊗ρx
E being a classical-quantum state. In this case Eq. (3.1) is called

Devetak-Winter bound [Devetak and Winter, 2005] and can be rewritten as

r∞ = I(X,Y )− χ(X,E) = H(X)−H(X|Y )− S(E) +


x

pxS(ρx
E) (3.3)

= S(X|E)−H(X|Y ), (3.4)

where we used that S(X|E) = S(X,E) − S(E) and S(X,E) = H(X) +


x pxS(ρx
E) (joint-

entropy theorem, see [Nielsen and Chuang, 2000]).

If the initial state between Alice and Bob is of Bell-diagonal form, i.e.,

ρAB = A
φ+
 
φ+
+B

φ− φ−+ C
ψ+

 
ψ+
+D

ψ− ψ− , (3.5)

the secret fraction for the BB84 -protocol is given by [Scarani et al., 2009]:

rBB84∞ = 1− h(eZ)− h(eX), (3.6)

where h(p) is the binary entropy given in Eq. (2.16), and

eZ = C +D and eX = B +D (3.7)

are the error rates in the Z-basis (B0) and in the X-basis (B+). The error rate in basis i

is defined to be the fraction of discordant bits, i.e., ei := 1
2 (⟨01|ρ|01⟩i + ⟨10|ρ|10⟩i). The

description of a qubit using only measurements in the X- and Z-basis is not complete; as

the qubit is represented in the Bloch sphere (see, e.g., [Nielsen and Chuang, 2000]), an

additional basis is required, the Y -basis. Its basis states { 1√
2
(|0⟩+ i |1⟩) , 1√

2
(|0⟩ − i |1⟩)} are

the eigenstates of the Pauli Y -matrix [see Eq. (2.6)] and can also be used for quantum key

distribution. This is the idea of the six-state protocol [Bruß, 1998; Bechmann-Pasquinucci

and Gisin, 1999]. It results in a higher secret fraction than the BB84-protocol, because we can

determine all parameters of the quantum state. The secret fraction for the six-state protocol
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is [Scarani et al., 2009; Renner, 2008]:

rsix-state∞ := 1− eZh


1 + (eX − eY )/eZ

2


− (1− eZ)h


1− (eX + eY + eZ)/2

1− eZ


− h(eZ),

(3.8)

with

eY = B + C. (3.9)

It was shown in [Kraus et al., 2005; Renner et al., 2005] that collective and coherent attacks

are equivalent under certain restrictions and under the assumption of infinitely many signals.

An equivalence has not yet been proved for a finite number of signals. We showed in our

publication [Mertz et al., 2013] that they might be inequivalent in the finite regime.

3.2.3 Finite-key analysis

Finite-key analysis is the study of secret key rates under the assumption of a finite number

of signals. We have already introduced in Sec. 2.3 the notion of the ε-smooth min-entropy

[Eq. (2.27)] and its connection to the von Neumann entropy [Eq. (2.28)]. It was shown in

[Renner, 2008; Scarani and Renner, 2008] that the secret key rate of an ε-secure key for a

finite number of signals is given by

r =
1
N

inf
ρAB∈Γξ


H ε̄

min


ρ⊗n

XE |En
− leakEC


+

2
N

log2 (2εPA) . (3.10)

The probability ε := εPE + εEC + εPA + ε̄ describes the probability that the key is not secure6

and any of the classical postprocessing procedures failed. The abbreviation PE stands for

parameter estimation (Alice and Bob estimate the error in the channel), EC stands for error

correction and PA for privacy amplification (see [Scarani et al., 2009] for an introduction).

Different to other approaches for deriving finite-key rates (see, e.g., [Scarani and Renner,

2008]), the secret key rate presented here is composably secure. Composability means that

the secret key generated by these procedures remains secure if used for other application like

one-time pad encryption (see Chapter 1) [Renner, 2008]. The set Γξ contains all the states

that are compatible with the measurement statistics for parameter estimation, where ξ is the

deviation of the measured to the real parameter (see below). In parameter estimation we

estimate the statistics of the data by using a small subset of the sample. Assume that we

have sent m + n quantum states, and we perform measurements on m signals to estimate

the error Qm in the channel. We are now interested in the deviation of Qm to the error Qn

which we would obtain if we would measure the remaining n signals. We cannot measure

these signals as we want to use them for our secret key. It holds except with probability εPE

that 1
2 ||Qm −Qn||1 ≤ ξ. The last term in Eq. (3.10) is the leakage term for error correction

6We define a key to be ε-secure, if the trace distance to the uniformly distributed and completely uncorrelated
key is given by ε (see, e.g., [Renner, 2008]).
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leakEC. It is defined by

leakEC := nfH(X|Y ) + log2(2/εEC), (3.11)

where n is the number of signals on which we perform error correction and f is the efficiency

of the error correction protocol. The efficiency of the error correction protocol is given by the

length of the conversation (measured in the number of exchanged symbols) divided by the

optimal conversation length, which is given by the Shannon limit (see, e.g., [Elkouss et al.,

2011]). For infinitely many signals the efficiency f is assumed to be 1. Recent error correction
protocols can approach the Shannon limit by achieving good efficiencies of f = 1.05 − 1.1
[Elkouss et al., 2011]. Recently, it was found [Tomamichel et al., 2014] that the estimate of

the leakage term given in Eq. (3.11) is too optimistic using f = 1.1 for the finite-key regime.

In their paper they propose a two-parameter estimation that is more suited to the finite-key

effects.
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4 Quantum repeaters

4.1 Introduction

The concept of quantum repeaters was introduced in [Briegel et al., 1998] and aims at dis-

tributing entanglement over distances greater than several hundreds of kilometers. The ne-

cessity for the development of quantum repeaters is that the photon transmission probabil-

ity decays exponentially with the length of the optical fiber (Beer-Lambert’s law, see, e.g.,

[Demtröder, 2005]):

Pt = e−L/Latt = 10−αL/10, (4.1)

where Latt is the attenuation length, i.e., the length where the probability of transmission

drops to e−1 and α is called the attenuation coefficient and is measured in dB/km. For

wavelengths used in telecommunication the attenuation coefficient is 0.35 dB/km at 1310

nm and 0.2 dB/km at 1550 nm [Gisin et al., 2002]. If we send one photon at 1550 nm to a

receiver at 100 km, the probability of transmission is Pt = 0.01, at 600 km it is Pt = 10−12

and at 1000 km it is already Pt = 10−20. Even for a single-photon repetition rate of 10 GHz

(repetition rates of 50 MHz are available nowadays [Lee et al., 2011]), on average one photon

arrives every 318 years at a distance of 1000 km. Obviously, this is not feasible.

The quantum repeater uses techniques of entanglement swapping and entanglement dis-

tillation to extend the entanglement over a long distance. The basic principle is shown in

Fig. 4.1: the distance between Alice and Bob is L. To distribute an entangled pair over

n=1

n=2

n=N

nesting level

distance LAlice Bob

n=0
2 3 4

station 

Figure 4.1: Quantum repeater, figure taken from [Bratzik et al., 2013].

this distance, they divide the distance L in equidistant parts with length L0 = L/2N and

17
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place a repeater station at every division point. Using entanglement distillation they increase

the quality of the quantum state and by entanglement swapping two repeater stations are

entangled that did not shared any entanglement before. These concepts will be described in

the following.

4.1.1 Entanglement swapping

For entanglement swapping [Żukowski et al., 1993] two distant parties want to share entan-

glement that never interacted before. In Fig. 4.2, Alice and Bob each share entanglement

with Charlie, but not with one another. Charlie performs a Bell measurement and sends the

result to Bob, who depending on the measurement result applies an unitary operation on his

qubit7. Then Alice and Bob are entangled with each other. This scenario works perfectly

Figure 4.2: Principle of entanglement swapping.

as long as the devices and the states are perfect. For mixed states of depolarized form [see

Eq. (2.12)], i.e.,

ρdep(F ) = F
φ+
 
φ+
+ 1− F

3

14 −

φ+
 
φ+
 , (4.2)

the fidelity [Eq. (2.5)] after swapping N pairs is given by [Briegel et al., 1998]

FN =
1
4


1 + 3


4F − 1

3

N

, (4.3)

thus decreases exponentially in the number of swappings N .

4.1.2 Entanglement distillation

The concept of entanglement distillation was presented in [Bennett et al., 1996a]. There, the

initial states used for distillation are depolarized states [Eq. (2.12)]. By applying appropriate

bilateral rotations (this operation is called twirl), any two-qubit state can be transformed to

a depolarized state [Bennett et al., 1996a]. Assume that we distributed two of these pairs to

Alice and Bob, i.e., they hold the total state:

ρtot = ρdep(F0)a1,b1 ⊗ ρdep(F0)a2,b2, (4.4)

where Alice (Bob) holds particles a1 (b1) and a2 (b2) (see Fig. 4.3). We want to generate a

pair ρdep(F1)a1,b1 with F1 > F0. This is achieved by local operations and classical communi-

cation: Alice and Bob each perform a cnot operation [see Eq. (2.8)] on their qubits with a1
7This information is needed in order to know which of the four Bell states [see Eq. (2.3)] Alice and Bob share.
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Figure 4.3: Entanglement distillation.

(b1) as control and a2 (b2) as target qubits. Then they both perform a measurement in the

computational basis on their qubits a2 and b2 and communicate the result of the measure-

ment to each other. If their measurement results coincide they have successfully generated

ρdep(F1)a1,b1. If their results do not match, they throw away the pairs, as the fidelity F1

of the resulting pairs is lower than F0 (it is even F1 = 0.25, thus they have a completely

mixed state). Note that the process of entanglement distillation is probabilistic and requires

two-way classical communication. For protocols with one-way classical communication see

[Bennett et al., 1996b]. The procedure is successful as the bilateral cnot operation and the

measurements increase the probability of the appearance of the state |φ+⟩ in the resulting

mixed state [see Eq. (2.4)] and thus the fidelity. In the case of the described distillation

protocol, the fidelity after one round of entanglement distillation is [Bennett et al., 1996b]:

FD =
F 2 + 1

9 (1− F )2

F 2 + 2
3F (1− F ) + 5

9 (1− F )2
. (4.5)

The probability that this entanglement distillation procedure is successful is given by the

denominator of Eq. (4.5).

Other distillation protocols are presented in Sec. 4.3.

4.1.3 Quantum repeater strategies

In this section we explain why entanglement swapping and entanglement distillation is in

principle needed for the quantum repeater. In Fig. 4.4 the procedure is explained. If we start

with a fidelity of around F = 0.95 it decreases due to swapping as shown in the picture. In

order to achieve the same fidelity as in the beginning, we have to perform several rounds of

distillation. For quantum key distribution, it is not always advantageous to have the setup

for the repeater as depicted in Fig. 4.1 with entanglement distillation after each swapping.

Additionally, it is also not necessary to distill to the same fidelity before swapping as shown in

Fig. 4.4. As entanglement distillation is probabilistic, multiple rounds of distillation, have an

impact on the rate of generating entangled pairs (see Sec. 4.1.4 and our publications [Abruzzo

et al., 2013; Bratzik et al., 2013]). In our publication [Bratzik et al., 2013], we focus on the

best distillation strategy for obtaining the optimal secret key rate. By distillation strategy

we mean the number of rounds in each nesting level (see Sec. 5.2.2).
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F
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Figure 4.4: The purification loop. Figure adapted from [Briegel et al., 1998].
The function FN [Eq. (4.3)] denotes the swapping of N = 3 pairs and FD

[Eq. (4.5)] gives the resulting fidelity after one round of distillation.

4.1.4 Repeater rate

We are now interested in the rate of the quantum repeater, i.e., the production rate of

entangled pairs per second. This quantity is called repeater rate which is important in our

publications [Abruzzo et al., 2013; Bratzik et al., 2013, 2014], where these rates are derived

for different quantum repeater schemes.

For this purpose, we think about the following game: consider that we have N coins which

we toss in parallel at certain discrete time steps T . The probability of obtaining head is

given by P and for tail 1 − P . If we obtain head, the corresponding coin is kept and not

flipped anymore. We stop the game, when all coins are flipped to head (assuming that the

initial value for all coins is neither head or tail in the beginning). The average waiting time

τN of this game is given by the expectation value of the random variable with probability

distribution pN (m) times T . The distribution pN (m) gives the success after m time steps for

N coins. For one single coin it is p1(m) = (1 − P )m−1P . The average waiting time for one

coin is [Sangouard et al., 2011]

τ1 = T

∞
m=1

m p1(m) =
T

P
. (4.6)

For two coins the probability distribution is given by the maximum waiting time for each of

the coins [Sangouard et al., 2011]:

p2(m) = p1(m)2 + 2p1(m)
m−1
j=1

p1(j). (4.7)

It can be explained as follows: either both coins are successful (i.e., show head) after m time

steps (first term) or one succeeds after m steps whereas the other coins already succeeded
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after j < m steps (second term). The expected waiting time is given by [Sangouard et al.,

2011]

τ2 =
3− 2P

(2− P )P
T ≈ 3T

2P
, (4.8)

for small P . In [Bernardes et al., 2011], the general formula for the average waiting time in

units of T was developed:

τN = TZN (P ), (4.9)

where

ZN (P ) :=
N

j=1


N

j


(−1)j+1

1− (1− P )j
. (4.10)

The connection to the repeater rates is the following: assume that we have 2N −1 repeater

stations (see Fig. 4.1) and swapping is deterministic, i.e., the probability of swapping is

PES = 1, then the repeater rate, which is the reciprocal value of the average waiting time, is

given by:

Rdet
Rep =

1
T0Z2N (Pt)

, (4.11)

where T0 = L0
c is the time a photon travels over the distance L0 = L/2N and Pt is the

probability that the photon arrives at the repeater station [see Eq. (4.1)]. Thus, the generation

of entanglement in the quantum repeater procedure corresponds to the coin tossing problem

described above. In our publication [Abruzzo et al., 2013] we derive the repeater rates for

different scenarios, i.e., when entanglement swapping is probabilistic and when distillation is

included.

4.2 Imperfections in quantum repeater components

The quantum repeater consists of many components, such as the source of entanglement, the

detectors, the gates and the quantum memories. Each of these components can be subjected

to imperfections that will be described in the following.

The source of entanglement in general depends on the following parameters: the probability

of generating entangled pairs, the efficiency, the repetition rate and the fidelity of these pairs.

In the ideal case, the source produces entangled Bell pairs with an infinite repetition rate and

on demand. For realistic sources, the error model of the resulting pairs is the depolarizing

map as introduced in Sec. 2.2.2, Eq. (2.11). For the detectors, we assume them to be photon-

number resolving. They are described by the POVM elements [Kok and Lovett, 2010]

Π(n) := ηn
d

∞
m=0


n+m

n


(1− ηd)m |n+m⟩ ⟨n+m| , (4.12)

where the element Π(n) corresponds to the detection of n photons and ηd is the detector

efficiency (the probability that the detector clicks upon arrival of a photon). The notation

|n+m⟩ denotes here a state of (n +m) photons. Usually, commercial photon detectors are
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also subjected to dark counts, i.e., the detector counts a non-existing photon. We showed in

our publication [Abruzzo et al., 2013] that dark counts on the order of 10−5 are negligible.

Available detectors can reach this threshold (see, e.g., [Scarani et al., 2009]). For the gate

errors, we assume the depolarizing model [see Sec. 2.2.2, Eq. (2.14)], i.e., with probability pG

the perfect operation is performed, whereas with probability 1−pG the affected subsystem is

replaced by a completely mixed state. This is the worst estimate of a gate error as the com-

pletely mixed states contains no useful information about the initial state anymore. Quantum

memories are an essential part of the quantum repeater. For a recent review on quantum

memories, see [Simon et al., 2010]. Throughout our publications, we assume our memories

to be perfect, except for the quantum repeater with atomic ensembles in Sec. 5.2.1.3, where

we employ the memory efficiency ηm. It gives the probability that the photon is undisturbed

after it was stored in the memory. There are other imperfections that we did not consider

here such as the photon conversion efficiency, fiber coupling losses, and so on (see [Sangouard

et al., 2011] for further details); but they can be easily implemented into our analysis. The

losses in the fiber are modeled by the transmission probability given in Eq. (4.1).

4.3 Entanglement distillation strategies

In this section we will describe how to improve the distillation protocol introduced in

Sec. 4.1.2. In the following we present two distillation protocols: the Deutsch et al. and the

Dür et al. distillation protocol. The latter was introduced in [Briegel et al., 1998; Dür et al.,

1999], where the quantum repeater was analyzed regarding the gate errors; this distillation

protocol is more robust against gate errors.

In [Deutsch et al., 1996] the Deutsch et al. protocol which is more efficient than the protocol

described in Sec. 4.1.2 was introduced. The efficiency refers to the final fidelity, as the

Deutsch et al. protocol converges faster to unity. The only difference to the protocol given in

Sec. 4.1.2 (which will now be called Bennett et al. protocol) is that after the application of

the cnot Alice employs the following transformation to her qubits

|0⟩ → 1√
2

(|0⟩ − i |1⟩) (4.13)

|1⟩ → 1√
2

(|1⟩ − i |0⟩) , (4.14)

and Bob’s transformation is:

|0⟩ → 1√
2

(|0⟩+ i |1⟩) (4.15)

|1⟩ → 1√
2

(|1⟩+ i |0⟩) . (4.16)

For the reader familiar with the Bloch vector representation of a qubit (see, e.g., [Nielsen and

Chuang, 2000]), Alice’s (Bob’s) transformation corresponds to a π
2 (−π

2 )-rotation about the



Quantum repeaters 23

X-axis.

Under the influence of gate errors as given in Sec. 2.2.2, an analysis of the error resistance

of both distillation protocols was performed in [Dür et al., 1999]. The result was that the

Deutsch et al. protocol is more resistant to errors than the Bennett et al. protocol. In [Dür

et al., 1999], another protocol, which is more efficient than the Deutsch et al. protocol under

gate errors, was invented. It works as follows: compared to the Deutsch et al. protocol

that distills pairs with the help of pairs with the same fidelity (see Fig. 4.5), the Dür et

al. protocol (see Fig. 4.6), distills pairs using pairs with different fidelities. The advantage of

this protocol is that it uses less gates than the Deutsch et al. protocol and thus can tolerate

higher gate errors. But when using perfect gates, this protocol is not efficient as it will never

result in a fidelity of 1. Another difference is the number of resources, i.e., qubits, used in

Figure 4.5: The Deutsch et
al. protocol. The fidelity in the
k-th distillation round is denoted
by Fk. Figure adapted from [Dür
et al., 1999].

Figure 4.6: The Dür et al. pro-
tocol. Figure adapted from [Dür
et al., 1999].

these procedures. As it can be seen on Figs. 4.5 and 4.6, the number qubits needed for the

Deutsch et al. protocol grows exponentially with the number of distillation rounds, whereas

for the Dür et al. protocol, it grows linearly. When considering several nesting levels and

k⃗ = (k0, ..., kN ) being the distillation vector (ki is the number of distillation rounds in the

i-th nesting level), the number of memories needed per half repeater node is given by [Bratzik

et al., 2013]

MD = 2
P

n kn (4.17)

for the Deutsch et al. protocol and

MDür = N + 2 + |{ki : ki = 0}| (4.18)

for the Dür et al. protocol, where N is the total number of nesting levels and the set

|{ki : ki = 0}| is the number of elements in k⃗ that are zero.

In our publication [Bratzik et al., 2013] we investigate the relation of obtaining the optimal

secret key rate and the required resources by evaluating the optimal secret key rate per

memory per second. The results are described in Sec. 5.2.2.
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4.4 Quantum repeaters with encoding

In order to correct and detect errors on a quantum state, quantum error correction was

developed (see, e.g., [Nielsen and Chuang, 2000] for an introduction). As in the classical

case, an encoding and decoding procedure is applied. We encode k logical qubits in n physical

qubits. The logical qubits for |0⟩ and |1⟩, denoted by |0L⟩ and |1L⟩, span a two-dimensional

subspace. When errors occur on the qubits8, the error operators map this subspace to other

subspaces. The errors are distinguishable (and thus correctable), if the subspaces are pairwise

orthogonal. If we measure the state which was subjected to errors with appropriate projectors

(see Sec. 2.2.3), we can determine the subspace and thus apply the corresponding error

correcting procedure. The important difference to classical codes is that quantum codes

must preserve the coherence such as given in Eq. (2.1). A simple example is the three-qubit

repetition code (see, e.g, [Nielsen and Chuang, 2000]), where |0⟩ is encoded as |000⟩ and |1⟩ as
|111⟩. This code can correct single bit-flip errors. We have four orthogonal subspaces telling

us if there was no error, an error on the first qubit and so on.

In [Jiang et al., 2009] the idea of using quantum repeaters with quantum error-correcting

codes appeared. To encode the sent quantum states has an advantage over the distillation

protocols described above because they only require one-way classical communication. Clas-

sical communication can be a bottleneck in long-distance quantum key distribution, as it

might limit the speed of the entanglement generation process (see, e.g., [Jiang et al., 2009]).

There is a connection between entanglement distillation and quantum error correction: it

was shown in [Bennett et al., 1996b] that one-way distillation protocols are equivalent to

quantum error-correcting codes. The main principle of the quantum repeater using quantum

Figure 4.7: Setup of the encoded quantum repeater for the three-qubit repe-
tition code, BM stands for Bell measurement. Figure taken from [Bratzik et al.,
2014], adapted from [Jiang et al., 2009].

8An arbitrary error on a qubit can be completely described by the operators from the discrete set {1, X, Y, Z}
with X, Y, Z being the Pauli matrices given in Eq. (2.6), see [Nielsen and Chuang, 2000].
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error-correcting codes works as follows (see Fig. 4.7 for the three-qubit repetition code): In

the first step encoded Bell pairs ρenc are distributed among the repeater stations Ri and

Ri+1, where in the ideal case ρenc =
φ̃+


φ̃+
 is given by (for the three-qubit repetition

code described above)φ̃+


=
1√
2
|000⟩Ri

|000⟩Ri+1
+ |111⟩Ri

|111⟩Ri+1
. (4.19)

In the second step three Bell measurements (see Sec. 4.1.1) are performed in the repeater

station leading to three measurement outcomes and thus leading to encoded entanglement

swapping. The measurement outcomes identify the resulting encoded Bell state, i.e., the

classical information in order to perform the correct rotation in the end (step 3), see Sec. 4.1.1.

Error correction is performed in the sense that a majority vote between the measurement

results is employed. No quantum operations are performed, as errors at the repeater stations

do not affect the final state. In Sec. 5.2.3 we present the results of our publication [Bratzik

et al., 2014] where we calculate the secret key rates for the encoded quantum repeater.
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5 Summary of the results

5.1 Finite secret key rates for coherent attacks

We have introduced in Sec. 3.2.1 possible attacks of an eavesdropper on the quantum states

sent from Alice to Bob. These are individual, collective and coherent attacks. The latter

is the most general attack. It was shown in [Kraus et al., 2005; Renner et al., 2005] that

under the assumption of certain quantum key distribution protocols the asymptotic secret

key rates (see Sec. 3.2.2) are equivalent for collective and coherent attacks. These protocols

are permutationally invariant, i.e., the output of the protocol remains the same if we change

the order of the input pairs. It holds for these protocols that the resulting state of Alice and

Bob after the distribution of N qubit pairs (after sifting and parameter estimation n signals

remain) is given by [Kraus et al., 2005; Renner et al., 2005]

ρn
AB = Pn


n∈Λn

µnσ
⊗n1
1 ⊗ σ⊗n2

2 ⊗ σ⊗n3
3 ⊗ σ⊗n4

4


, (5.1)

where Pn is a permutation map, σi are the projectors onto the four Bell states [Eq. (2.3)], µn
is the probability of one particular realization and Λn := {n = (n1, n2, n3, n4) :

4
i=1 ni = n}

is the set of all possible realizations. In the context of finite-key analysis (see Sec. 3.2.3) the

equivalence of collective and coherent attacks was not proven yet. In our publication [Mertz

et al., 2013] we provide a possible evidence of an inequivalence. The main result of our paper

is bounding the min-entropy (see Sec. 2.3) for states subjected to coherent attacks with the

min-entropy for product states which are the result of collective attacks:

H ε̄
min (ρn

XE |E) ≥ inf
σAB∈Γξcoh

H
ε̄/(2n)2

min


σ⊗n

XE


λ =

n
n


|E

− 1. (5.2)

The state ρn
XE describes Alice’s (X) and Eve’s (E) system after Alice’s measurement and

Eve’s collective attack. This state is a classical-quantum state as presented in Sec. 2.3. The

set Γξcoh contains all the states that comply with the statistics for parameter estimation

with deviation parameter ξcoh (see Sec. 3.2.3), ε̄ is the smoothing parameter for the min-

entropy [see Sec. 2.3, Eq. (2.27)], and σAB[λ] =
4

i=1 λiσi are Bell-diagonal states with λ :=
(λ1, λ2, λ3, λ4) =


n1
n ,

n2
n ,

n3
n ,

n4
n


. We use for this bound that permutation-invariant states

are a convex combination of tensor products of Bell states [Kraus et al., 2005; Renner et al.,

2005]. For evaluating Eq. (5.2), we use the bound of the min-entropy via the von Neumann

entropy given in Eq. (2.28) in Sec. 2.3 and the results about the secret key rate for a finite

number of signals given in Eq. (3.10) in Sec. 3.2.3.

27
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Figure 5.1 shows the secret key rate for the six-state protocol in terms of the total number

of signals N using the estimate given in Eq. (5.2), rcoh, compared to the secret key rate using

collective attacks rcoll [Eq. (3.10)] for different values of the quantum bit error rate (QBER)9.

Additionally, the secret key rates using the post-selection technique rpost [Christandl et al.,

2009] are depicted. We see that in the asymptotic limit the secret key rates converge to

the asymptotic value, but for a small number of signals our estimate for coherent attacks

(rcoh) shows an increase of the secret key rate of 51% (for QBER = 0.01, N = 106) and 45%
(QBER = 0.1, N = 108) compared to rpost. It means for the same number of signals the

secret key rate using our estimate is higher. As the approaches do not coincide in this region,

it hints that collective and coherent attacks are not equivalent for a small number of signals

(N < 1010).
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Figure 5.1: Comparison of the secret key rates rcoll [Eq. (3.10) using Eq. (2.28)]
(black circles), rpost (green squares) and rcoh [Eq. (5.2) using Eq. (2.28)] (red
triangles) versus the number N of initial signals for different quantum bit error
rates (QBER) with security parameter ε = 10−9 for the six-state protocol in
logarithmic scale; QBER = 0.01 (straight lines) and QBER = 0.1 (dotted lines).
Caption and figure taken from [Mertz et al., 2013].

5.2 Asymptotic secret key rates using quantum repeaters

5.2.1 Analysis for different experimental scenarios

In our publication [Abruzzo et al., 2013] we start our analysis by modeling the building

blocks (see Sec. 4.2) of a repeater and its imperfections. The main purpose of the paper is

to introduce a general analysis in such a way that it could be used for different experimental

setups. We have already identified the main problems in Chapter 4, which can be summarized

as the losses in the quantum channel, the error in the entanglement source (which was modeled

as a depolarizing error with parameter F ), the depolarizing error (parameter pG) in the gates,

9The quantum bit error rate is the ratio of wrong bits to received bits [Gisin et al., 2002], see also Eq. (3.7).
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the detector efficiency ηd and the memory efficiency ηm. These errors also influence the

processes of entanglement swapping and entanglement distillation.

In our work we characterize quantum key distribution using different quantum repeater

schemes. The secret key rate using quantum repeaters is defined by the product of the secret

fraction (see Sec. 3.2.2) and the repeater rate (see Sec. 4.1.4):

RQKD := RRepr∞. (5.3)

In [Abruzzo et al., 2013], we develop the repeater rate for specific situations, such as proba-

bilistic entanglement distillation and probabilistic entanglement swapping. Before, only the

repeater rate for deterministic swapping (see Sec. 4.1.4) was known. Deterministic means

that the probability of success is one. Usually, another factor that accounts for the sifting

(see Sec. 3.1) appears in the formula for the secret key rate. But throughout the paper we

assume a specific protocol, the so-called asymmetric protocol [Lo et al., 2005], where the

probability of choosing the measurement basis (see Sec. 3.1) is biased; thus the sifting factor

is one.

In the following we will briefly describe the experimental quantum repeater schemes and

the main results. As our analysis is quite extensive, we focus on the outstanding aspects of

the different repeater schemes.

5.2.1.1 The original quantum repeater

We denote the scheme from [Briegel et al., 1998] (see Chap. 4) by the original quantum re-

peater scheme. For simplicity, we assume that we distill only in the beginning (the restriction

will be released in Sec. 5.2.2). In Table 5.1, we identify the minimal parameters for the initial

fidelity F0 and gate quality pG to establish a nonzero secret key for different QKD-protocols

(see Sec. 3.2.2). We find that increasing the number of distillation rounds, the input pairs for

❍❍❍❍❍❍N
k

0 1 2 3

BB84 6S BB84 6S BB84 6S BB84 6S
0 0.835 0.810 0.733 0.728 0.671 0.669 0.620 0.614
1 0.912 0.898 0.821 0.818 0.742 0.740 0.669 0.664
2 0.955 0.947 0.885 0.884 0.801 0.800 0.713 0.709
3 0.977 0.973 0.929 0.928 0.849 0.848 0.752 0.749
4 0.988 0.987 0.957 0.957 0.887 0.887 0.788 0.785
5 0.994 0.993 0.975 0.975 0.917 0.917 0.819 0.818
6 0.997 0.997 0.985 0.985 0.939 0.939 0.847 0.846
7 0.999 0.998 0.992 0.992 0.956 0.956 0.872 0.870

Table 5.1: Minimal initial fidelity F0 (pG is fixed to one) for extracting a secret
key with maximal nesting level N and number of distillation rounds k for the
BB84- and six-state protocols, from [Abruzzo et al., 2013].
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the repeater can have low fidelity. In Fig. 5.2, the number of distillation rounds that maxi-

mize the secret key rate in terms of the gate quality pG and initial F0 is depicted. Introducing

more distillation rounds, increases the fidelity (see Sec. 4.1.2) and thus the secret fraction,

but at the same time the repeater rate, which is a function of the success probability of distil-

lation, decreases. For example for fairly good gates (pG ≥ 0.97) and fidelities (F0 ≥ 0.97), the
optimal distillation strategies is to not distill. Thus, the effect of distillation is not dominant

here. In regions for low fidelities (F0 ≥ 0.7) and low gate quality (pG ≤ 0.98), distillation is

a necessary tool for having a nonzero secret key.
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Figure 5.2: Original quantum repeater and the BB84-protocol: Number of
distillation rounds k that maximizes the secret key rate as a function of gate
quality pG and initial fidelity F0. In the white area, it is no longer possible to
extract a secret key. (Parameters: N = 2, L = 600 km), figure and caption taken
from [Abruzzo et al., 2013].

5.2.1.2 The hybrid quantum repeater

In the hybrid quantum repeater (HQR) [van Loock et al., 2006; Ladd et al., 2006] the en-

tanglement is transmitted via a coherent-laser pulse, which has previously interacted with a

qubit in a cavity (for details we refer to our publication [Abruzzo et al., 2013]). The main dif-

ference to the protocol given in Sec. 5.2.1.1 is that the entanglement swapping operations are

not probabilistic and that the probability of successful entanglement generation P0 depends

on the initial fidelity F0 of the state and the detector efficiency ηd (compared to P0 = Pt for

the original quantum repeater protocol):

P0 = 1− (2F0 − 1)
Ptηd

1+Pt(1−2ηd) , (5.4)

with Pt the transmission probability in a channel defined in Eq. (4.1). Different to the original

quantum repeater, the produced state is of the form

ρ0 := F0

φ+
 
φ+
+ (1− F0)

φ− φ− , (5.5)
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which is also called a binary state. Due to the dependence of the generation probability

P0 [Eq. (5.4)] on the fidelity, interesting effects for the secret key rate can be observed (see

Fig. 5.3): the secret key rate exhibits a nonmonotonic behavior in the fidelity. The reason is

that the generation probability P0 decreases with increasing fidelity, thus the repeater rate

decreases, but at the same time the secret fraction increases. This implies that at some point

a higher fidelity does not necessary lead to higher secret key rates. We examined also whether

the optimal fidelity changes with the total distance, and we found that for distances L > 100
km, the optimal fidelities are almost constant.

0.5 0.6 0.7 0.8 0.9 1
Initial fidelity F

0

0.001

0.01

0.1

1

Se
cr

et
 k

ey
 r

at
e 

(b
its

 p
er

 s
ec

on
d)

k=0, p
G

=1, η
d
=1

k=1, p
G

=1, η
d
=1

k=2, p
G

=1, η
d
=1

k=3, p
G

=1, η
d
=1

k=0, p
G

=0.995, η
d
=0.9

k=1, p
G

=0.995, η
d
=0.9

k=2, p
G

=0.995, η
d
=0.9

k=3, p
G

=0.995, η
d
=0.9

Figure 5.3: Hybrid quantum repeater with perfect quantum operations (pG = 1)
and perfect detectors (ηd = 1) (black lines) compared to imperfect quantum
operations (pG = 0.995) and imperfect detectors (ηd = 0.9) (orange lines): Secret
key rate per second as a function of the initial fidelity for 23 segments (N = 3)
and various rounds of distillation k. The distance between Alice and Bob is 600
km. Figure and caption taken from [Abruzzo et al., 2013].

5.2.1.3 The atomic ensemble quantum repeater

Another experimental protocol uses atomic ensembles which is called the DLCZ-protocol

[Duan et al., 2001] named after Duan, Lukin, Cirac and Zoller. Entanglement between

two remote parties is established by interfering and detecting Stokes photons emitted from

two distant atomic ensembles at a beamsplitter (see, e.g, [Sangouard et al., 2011]). The

entanglement is thus created in the atomic excitation, as it is unknown which atomic ensemble

emitted the photon.

The protocol [Minář et al., 2012] investigated in our publication [Abruzzo et al., 2013]

is an improvement of the DLCZ-protocol in the sense that the states produced in the end

do not contain any vacuum components. This protocol uses heralded qubit amplifiers in

order to produce entanglement on demand, different to the experimental setup described in

Sec. 5.2.1.2, which is probabilistic. Figure 5.4 shows the resulting secret key rates for the

quantum repeater scheme with atomic ensembles optimized over the pump parameter p of the

spontaneous parametric downconversion source and R the reflectivity of the beam splitter
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(see our publication [Abruzzo et al., 2013] for details). The figure shows that even with

realistic parameters, the secret key rate is only one order of magnitude smaller compared to

ideal parameters thus providing a high error tolerance.
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Figure 5.4: Quantum repeaters based on atomic ensembles: Optimal secret key
rate per second versus the distance between Alice and Bob. The secret key rate
has been obtained by maximizing over p and R. Ideal setup (solid line) with
parameters ηm = ηd = q = 1, γrep = ∞. More realistic setup (dashed line) with
parameters ηm = 1, ηd = 0.9, q = 0.96, γrep = 50 MHz. The parameter q is the
efficiency of the single-photon source and γrep is the repetition rate. Figure and
caption taken from [Abruzzo et al., 2013].

5.2.2 Improving the distillation strategies

So far, we focused in our analysis on distillation only in the beginning and only on one specific

distillation protocol. In our publication [Bratzik et al., 2013], we performed a generalized

analysis for the original quantum repeater investigating the effects on the secret key rate

regarding the distillation protocols and distillation strategies (see Secs. 4.1.2 and 4.3). By

distillation strategies, we mean different numbers of distillation rounds in each nesting level,

described by the distillation vector

k⃗ = (k0, ..., kN ) , (5.6)

where ki gives the number of distillation rounds in the i-th nesting level (see also Fig. 4.1).

In order to start with the analysis, we developed the repeater rate (see Sec. 4.1.4) for the

Deutsch et al. and Dür et al. protocol (see Sec. 4.3) considering the classical communication

time for entanglement distillation and entanglement swapping. In the following, the figure of

merit will be the secret key rate per memory per second defined as:

Ki = Ri
Rep(k⃗, N, L)

ri
∞(F0, pG, k⃗, N)

M i(k⃗, N)
, (5.7)

where the parameter i gives the different distillation protocols (Deutsch et al. or Dür et al. ),
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the memories M i are presented in Sec. 4.3, the repeater rate RRep is explained in Sec. 4.1.4,

and the asymptotic secret fraction is described in Sec. 3.2.2. For a fixed distance L = 600
km, we optimize the secret key rate per memory per second [see Fig. 5.5(a)] and give the

resulting parameters for the optimization [Figs. 5.5(b)-(f)]. For simplicity, we focus on two

distillation strategies:

• strategy α, where k⃗ = (k, ..., k), i.e., the same number of distillation rounds in each

nesting level,

• strategy β, where k⃗ = (k, 0, ..., 0), i.e., distillation is only performed in the beginning.
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Figure 5.5: (a) Optimal secret key rate per memory per second (bits per second)
[Eq. (5.7)] for the distance L = 600 km. The smallest secret key rate still depicted
is chosen to be 10−10 secret bits per second per memory. In the white region an
extraction of a non-zero secret key rate is not possible. The parameters for the
optimal secret key rate per memory per second are: (b) Distillation protocols:
Deutsch et al. protocol (blue), Dür et al. protocol (green), and no distillation
(yellow). (c) Number of rounds of distillation k (for the optimal distillation
strategy). (d) Number of nesting levels N . (e) Distillation strategies: Strategy α
(nested distillation) and strategy β (distillation only before the first entanglement
swapping). (f) Number of used memories per repeater node. Figure and caption
taken from [Bratzik et al., 2013].

We find that regarding the distillation protocols [Fig. 5.5(b)], we can divide the optimal pro-

tocols roughly in three regions: First, for good fidelities (F0 > 0.97) and all gate parameters

it is always optimal to not distill. Second, for gate qualities 0.94 ≤ pG ≤ 0.99 and fidelities
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F0 ≥ 0.8, the Dür et al. protocol performs best and third, the Deutsch et al. protocol for the

remaining regions. It is not obvious, why the Dür et al. protocol is optimal in the aforemen-

tioned region. There are many competing terms in the secret key rate [Eq. 5.7] such as the

repeater rate, the number of memories and the resulting state. As mentioned above, during

our analysis we only restricted to either distillation strategy α or β. In Fig. 5.5(e), we show

that for relatively good gate qualities pG ≥ 0.98 it is optimal to distill only in the beginning.

For specific values of the initial fidelity F0 and the gate quality pG, we optimized the

distillation strategy without any restriction and we have seen that the secret key rate can

be improved by almost one order of magnitude than to use strategy α or β. Furthermore,

allowing more general distillation strategies lead to different results regarding the optimal

distillation protocols, see Table 5.2. For specific examples of F0 and pG, we have seen that

changing the distillation strategy leads to an improvement of the secret key rate by a factor

of 3.

Dür et al. protocol Deutsch et al. protocol
N K k⃗ K k⃗

0 3.92 · 10−9 (0) 3.92 · 10−9 (0)
1 2.11 · 10−5 (0, 2) 2.63 · 10−5 (0, 1)
2 1.09 · 10−4 (2, 3, 2) 3.03 · 10−4 (0, 3, 1)
3 2.66 · 10−6 (3, 4, 5, 5) 1.51 · 10−4 (0, 3, 3, 1)
4 0 0 1.37 · 10−5 (0, 3, 3, 3, 1)

Table 5.2: Optimal secret key rate per memory per second [Eq. (5.7)] and cor-
responding distillation vector k⃗ [Eq. (5.6)] for the different distillation protocols,
F0 = 0.9, and pG = 0.96. From [Bratzik et al., 2013].

Instead of varying the distillation strategies, i.e., the distillation vector, one can also think

of parallel repeater setups. For parallel setups, the secret key rate resulting from each repeater

is added. By fixing the total number of memories used per half node of a repeater station,

we analyzed the optimal configuration and found that using parallel setups allows to improve

the secret key rate by a factor of 3. Furthermore, for our choice of parameters, parallel setups

may also be optimal for a different distillation protocol.

In our paper, we investigated the impact of the classical communication time on the secret

key rate. We compared the secret key rate using the repeater rate that we developed to

the repeater rate without any classical communication time and have found, different to the

statement in [Jiang et al., 2009], that the communication time has a small impact on the

secret key rate for a given distance and protocol considered here. We analyzed also the

influence of the form of input states onto the secret key rate. Usually we assumed the input

states to be depolarized states, see Eq. (2.12). The hybrid quantum repeater [van Loock

et al., 2006; Ladd et al., 2006] produces binary states [see Eq. (5.5)]. We have found that

here we can have a nonzero secret key for a larger range of parameters, i.e., 0.7 ≤ F0 ≤ 1 and

0.92 ≤ pG ≤ 1.
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5.2.3 Encoded quantum repeater

In Sec. 4.4 we described the quantum repeater using quantum error-correcting codes [Jiang

et al., 2009] (in the following called encoded quantum repeater). The idea of our publication

[Bratzik et al., 2014] is to compare the secret key rates for the quantum repeater using

distillation (the original quantum repeater, see Sec. 5.2.1.1) to the encoded quantum repeater.

The motivation behind it is that the encoded quantum repeater does not require classical

communication time except for entanglement generation and the announcement of the results

for entanglement swapping in the end. In the case of the original quantum repeater, depending

on the rounds of distillation, much time is lost by communicating the measurement results

needed for entanglement distillation. There exist concepts of running the repeater scheme

blindly (i.e., without any communication, see, e.g., [Hartmann et al., 2007]) but at the expense

of exponentially decreasing the success probability.

For starting the analysis, we first developed an error model for the encoded quantum

repeater. Different to the original paper [Jiang et al., 2009], our idea was to initialize the

states without fault-tolerance in order to save resources. Additionally, our analysis allows

the employment of initial Bell states (needed for the generation of the encoded Bell pair, see

Eq. (4.19) in Sec. 4.4) that have fidelity smaller than 1. Our model is as follows: We use

the depolarizing gate error model given in Eq. (2.14). If we have n quantum gates, we only

consider terms with gate error β = 1− pG, i.e., the linear terms and set all remaining states

to be the identity:

Λconc(ρ) := (1− β)n


n

a=1

Ua


ρ


n

a=1

Ua

†
+ nβ(1− β)n−1ρ̃+ p

1d

d
, (5.8)

where d = dim(ρ) and p = 1 − (1 − β)n − nβ(1 − β)n−1. The state ρ̃ is given by the map

Λ1−faulty(ρ)

ρ̃ =: Λ1−faulty(ρ) =
1
n

n
a=1


n

b=a+1

U b


f


(ia, ja), ρ,

a−1
c=1

U c


n

b=a+1

U b

†
, (5.9)

with f [(i, j), ρ, A] := tri,j


AρA†

 ⊗ 1i,j

4 . The operator Ua defines the two-qubit operation

U on the qubits (ia, ja) and the vector U⃗ := {U1, ..., Un} gives the sequence of the unitary

maps. Expanding the probability p for small β gives: p ≈ n(n−1)
2 β2−nn−1

2


β3. Thus, p is on

the order of β2 for appropriate n. The reason for introducing this map lies in the complexity

of the computations as already for the simple three-qubit repetition code (see Sec. 4.4) we

perform the computations in a 212-dimensional Hilbert space. Additional to this error model,

we also investigated the errors that can be corrected during the encoded connection step and

we have found a remarkable improvement if all correctable errors are used in comparison to

[Jiang et al., 2009]. Considering these additional errors in our analysis increases the error-

tolerance of the secret key rate [Bratzik et al., 2014]. Additionally, we explicitly accounted for
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the effect of the decoding scheme. Our advances also involved the derivation of the repeater

rate for the encoded quantum repeater scheme using the methods described in Sec. 4.1.4.

Table 5.3 shows the minimal parameters for establishing a nonzero secret key for the

encoded quantum repeater. If we compare this results with Table 5.1 in the preceding section,

we see that the encoded quantum repeater does not have any advantage here.

r N pG,min F0,min

1 1 0.984 0.943
3 2 0.992 0.972
7 3 0.994 0.981
15 4 0.996 0.986
31 5 0.997 0.989
63 6 0.997 0.991
127 7 0.998 0.992

Table 5.3: Minimal pG (F0 is fixed to one) and minimal fidelity F0 (pG is fixed to
one) for extracting a secret key for the six-state protocol with r = 2N−1 repeaters
with N being the nesting level for entanglement swapping. From [Bratzik et al.,
2014].

Calculating the secret key rates, we find that it is always optimal to use original quantum

repeaters with the Deutsch et al. distillation protocol (see Sec. 4.3) for the whole range of error

parameters. The reason is that in the region where the encoded quantum repeater produces

a nonzero secret key rate (see Table 5.3), it is not optimal to perform any distillation (see

Fig. 5.5). When no distillation is performed, fewer classical communication is exchanged,

and less resources are needed, whereas in the encoded quantum repeater we constantly need

three Bell pairs.

During the preparation of the manuscript we became aware of a paper which treated a

quantum repeater scheme with one-way classical communication using teleportation-based

error correction [Muralidharan et al., 2013]. There, as a figure of merit the cost function was

defined as the minimal number of total qubits per secret bit:

C = min
i,N

2N+1

Ki
, (5.10)

where K is the secret key rate as defined in Eq. (5.7), N is the nesting level and i are

the different repeater protocols, i.e, either the encoded or the original quantum repeater.

Figure 5.6 shows the cost coefficient which is the cost function [Eq. (5.10)] divided by the

total distance. Compared to the rather complicated protocol given in [Muralidharan et al.,

2013], the encoded and the original quantum repeater are one order of magnitude better up to

distances of 5000 km. Additionally, using the rather simple three-qubit repetition code, the

optimal distance of the repeater stations is between 30− 100 km compared to 1− 2 km given

in [Muralidharan et al., 2013]. This means that the total number of required repeater stations

is roughly 1− 2 orders of magnitude smaller for the original quantum repeater scheme.
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Figure 5.6: The cost coefficient (C ′ = C/L) [Eq. (5.10)] for the encoded (green
squares), the generic quantum repeater (black circles) and the quantum repeater
protocol presented in [Muralidharan et al., 2013] (red crosses, with the effective
qubit error ε = 10−4, for an explanation see [Muralidharan et al., 2013]) as a
function of the total distance L (Parameters: F0 = 0.99995, pG = 0.9999, and
T0 = 1 as in [Muralidharan et al., 2013]). Figure and caption from [Bratzik et al.,
2014].
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6 Outlook

We investigated asymptotic secret key rates in the context of quantum repeaters. For our

analysis, some assumptions regarding the components of the repeater have been made. We

considered, e.g., the quantum memories to be perfect (except for the quantum repeater with

atomic ensembles, we assumed a memory efficiency). Our findings could be extended using

the results given in [Hartmann et al., 2007] where the role of memory errors in quantum

repeaters was analyzed. Furthermore, advances had been made regarding the repeater rate

and imperfect memories [Praxmeyer, 2013], which could also be implemented in our analysis.

The repeater rate and thus the secret key rate can be improved by strategies like multiplexing

[Abruzzo et al., 2014].

So far, we only treated quantum repeater for secret keys in the asymptotic limit. An

analysis of the secret key rate for quantum repeaters in the finite-key formalism remains

open. In this context new advances for calculating secret keys in the finite regime appeared

by employing uncertainty relations [Tomamichel and Renner, 2011; Tomamichel et al., 2012].

This approach gives tighter bounds on the finite secret key rate. Recently, new discoveries

regarding the information leakage term for error correction appeared [Tomamichel et al.,

2014]. It was found that the existing results were too optimistic and an approach using a

two-parameter approximation was given. This advance can be easily adapted to our finite-

key analysis. Still, the problem of the equivalence of collective and coherent eavesdropping

attacks for keys in the regime of a finite number of signals remains open.
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7 List of main results

• We developed a bound for coherent eavesdropping attacks in the context of finite-key

analysis. This bound is better for a small number of signals compared to the existing

techniques and gives evidence of an inequivalence of collective and coherent attacks in

the finite regime.

• We quantified and modeled the building blocks of a quantum repeater in order to per-

form a general analysis for different experimental repeater schemes. These schemes in-

clude the original quantum repeater, the hybrid quantum repeater, a quantum repeater

scheme based on atomic ensembles and the encoded quantum repeater. We performed

a quantitative analysis of the optimal secret key rates for each repeater scheme under

different realistic parameters and identified the particularities of each scheme. Regard-

ing the original quantum repeater, we determined the minimally required parameters

(such as the gate quality and the initial fidelity) for obtaining a nonzero secret key. The

requirements on the initial fidelity are not so strong, if distillation is allowed. The quan-

tum gates however, should not exceed errors of 1%. For the hybrid quantum repeater,

we found that the secret key rate is not a monotonic function in the initial fidelity,

thus there exists for each nesting level and number of distillation rounds a fidelity that

optimizes the secret key rate. This repeater scheme only tolerates gate errors in the

order of 0.1%. The analysis of the repeater scheme with atomic ensembles showed that

it is robust against most imperfections. Additionally, we derived the repeater rate for

probabilistic entanglement swapping and entanglement distillation.

• For given gate errors and initial fidelities, we investigated the repeater configuration

(i.e., the distillation protocol, the distillation strategy, the number of distillation rounds,

number of nesting levels, and the number of memories) to obtain the optimal secret

key rate. Regarding the distillation protocols we optimized either between the Deutsch

et al. protocol and the Dür et al. protocol. The former works in a recursive way and

is efficient in achieving the fidelity in few steps; the latter pumps the entanglement

but is more noise-tolerant than the former protocol. We found that for the parameters

pG ≤ 0.99 and F0 ≥ 0.8 the Dür et al. protocol performs best; considering lower

fidelities the Deutsch et al. protocol is better. For extremely good fidelities F0 ≥ 0.97
employing no distillation is favorable. Additionally, we derived the repeater rate for

different distillation protocols including the classical communication time needed for

entanglement swapping and entanglement distillation and showed the communication

time has a small impact on the secret key rate for the parameters considered here.

• We derived the repeater rate for an encoded quantum repeater and investigated un-
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der which circumstances it can be better than other repeater schemes like the original

quantum repeater using distillation. The encoded quantum repeater does not need as

much communication time as the original repeater scheme, but requires more resources.

For our analysis, we introduced a concatenated error model which allows the analysis

of Bell pairs with a fidelity smaller than one. We identified the errors that can be

corrected during entanglement connection for the three-qubit repetition code and addi-

tionally analyzed a decoding procedure. For the encoded quantum repeater using the

three-qubit repetition code, no advantage over the original repeater scheme was found.

Furthermore, we investigated the cost function which is the ratio of required resources

over the secret key rate and we have seen that our approaches lead to a significant im-

provement of roughly 1−2 orders of magnitude compared to a recent repeater proposal

using one-way classical communication working on a scheme called teleportation-based

error correction.
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We investigate secret key rates for the quantum repeater using encoding [L. Jianget al., Phys. Rev. A79,
032325 (2009)] and compare them to the standard repeater scheme by Briegel, Dür, Cirac, and Zoller. The
former scheme has the advantage of a minimal consumption of classical communication. We analyze the trade-
off in the secret key rate between the communication time and therequired resources. For this purpose, we
introduce an error model for the repeater using encoding which allows for input Bell states with a fidelity
smaller than one, in contrast to the model given in [L. Jianget al., Phys. Rev. A79, 032325 (2009)]. We
show that one can correct additional errors in the encoded connection procedure of this repeater and develop
a suitable decoding algorithm. Furthermore, we derive the rate of producing entangled pairs for the quantum
repeater using encoding and give the minimal parameter values (gate quality and initial fidelity) for establishing
a nonzero secret key. We find that the generic quantum repeater is optimal regarding the secret key rate per
memory per second and show that the encoded quantum repeaterusing the simple three-qubit repetition code
can even have an advantage with respect to the resources compared to other recent quantum repeater schemes
with encoding.

PACS numbers: 03.67.Hk, 03.67.Dd, 03.67.Bg

I. INTRODUCTION AND MOTIVATION

Quantum repeaters [1, 2] are a key tool for long-distance
quantum communication with photons due to the attenuation
in the optical fiber (see, e.g., discussion in [3]). They per-
mit to establish entangled Bell pairs over distances of several
hundreds of kilometers. A quantum repeater setup consists of
segments of small distances, where entangled Bell pairs are
created and then entanglement swapping [4] with the neigh-
boring pairs is performed. In order to overcome the decrease
in the fidelity due to swapping, entanglement distillation [5, 6]
can be performed. There are several suggestions for experi-
mental realizations of quantum repeaters [7, 8]. For a recent
review on quantum repeaters, see [9].

Recently, we investigated the optimal quantum repeater se-
tups with respect to the secret key rate [10, 11]. The limit-
ing factor of these quantum repeater schemes, especially re-
garding the repeater rate, can be the classical communica-
tion time to acknowledge the success of entanglement dis-
tillation [12]. To overcome this bottleneck, the quantum re-
peater using quantum error-correcting codes [12, 13] was de-
veloped. In these protocols, classical communication is only
needed between the neighboring repeater stations. The classi-
cal communication time becomes especially important when
the memories are not perfect (see, e.g., [14]), as the stored
states degrade with time.

In this paper we investigate the difference in the secret key
rates between the quantum repeater using distillation (generic
quantum repeater) and the quantum repeater using quantum
error-correcting codes (encoded quantum repeater) by em-
ploying the analysis developed in [11] for the generic quan-
tum repeater. As a representative for the encoded quantum
repeater we choose [12]. We analyze the trade-off between
the communication time and the needed resources. For this

∗ bratzik@thphy.uni-duesseldorf.de

purpose, we modify the analysis given in [12] by using a con-
catenated error model for which we obtain a bound for the
fidelity. Our model does not need a fault-tolerant prepara-
tion of the initial states, as it handles input pairs which are
depolarized states with fidelityF0 < 1. This approach saves
resources, compared to [12], where multi-qubit errors are ei-
ther suppressed or avoided via distillation. Furthermore,we
show how to correct additional errors in the encoded connec-
tion procedure - this correction leads to higher secret key rates
- and we develop a decoding algorithm suitable for quantum
key distribution. We derive the rate for generating entangled
pairs with the encoded quantum repeater and use it to calcu-
late secret key rates.

The paper is organized as follows: in Sec. II we first briefly
review the repeater scheme from Ref. [12]. Furthermore, the
error model and its effect on the quantum states is introduced.
We show which errors can be corrected during the encoded
connection step and develop an appropriate decoding proce-
dure. We then derive the repeater rate for the encoded quan-
tum repeater scheme, i.e., the average number of entangled
Bell pairs per second. In Sec. III, we review the generic quan-
tum repeater, which uses distillation instead of quantum error-
correcting codes. Then we provide the parameter thresholds
for the encoded quantum repeater for obtaining a nonzero se-
cret key rate. We continue to calculate the optimal secret key
rate of these quantum repeater protocols and point out where
our analysis differs from the original proposal of the encoded
quantum repeater scheme [12]. We then present a short analy-
sis of the cost function which was introduced recently in [15].
We conclude in Sec. IV.

II. ENCODED QUANTUM REPEATER SCHEME AND
SECRET KEY RATES

In this section we introduce for the quantum repeater using
encoding [12] (in the following calledencoded quantum re-
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peater) a generic error model, show its effect in the different
steps of this quantum repeater model and derive the repeater
rate, which is needed to calculate the secret key rate. This
error model has the advantage of handling states with initial
fidelity F0 < 1 and thus saving resources as no fault-tolerant
distillation of the states needs to be performed. Furthermore,
we identify additional correctable errors during entanglement
connection and show that considering these additional errors
leads to an improvement of the secret key rate. Also, we de-
velop a decoding circuit in order to quantify its effect on the
states used for quantum key distribution.

A. Principles of the encoded QR

The principle of the encoded quantum repeater is depicted
in Fig. 1: the first step is to distribute Bell pairs between the
neighboring repeater stations, it follows the encoding opera-
tions [step 1) in Fig. 1] and an entanglement swapping scheme
[step 2)] which allows to obtain error information. The error
information reveals the necessary rotation in order to get a
specific encoded Bell pair in the end [step 3)]. The details for
entanglement swapping and classical error correction are de-
scribed in [12]. The encoded quantum repeater was developed
for any CSS-code [16, 17].

For simplicity, we will consider the three-qubit repetition
code throughout this paper1. In the ideal case the encoded
stateρenc, shared between the repeater stationsRi andRi+1 at
step 1) is of the formρenc=

∣∣∣φ̃+〉 〈
φ̃+

∣∣∣ with

∣∣∣φ̃+〉 = 1√
2
|000〉Ri

|000〉Ri+1
+ |111〉Ri

|111〉Ri+1
. (1)

Figure 1. (Color online) Setup of the encoded quantum repeater
(adapted from [12]), BM stands for Bell measurement. In the ideal
caseρenc=

∣∣∣φ̃+〉 〈
φ̃+

∣∣∣ with
∣∣∣φ̃+〉 defined in Eq. (1).

1 We will see in Sec. III D that this simple code leads to a good ratio of the
secret key rate and the required resources.

1. Error models

Analogously to [2, 12], we will employ the depolarizing er-
ror model for all two-qubit gates, thus the unitary operation
Ui, j acting on qubitsi and j is replaced according to the fol-
lowing mapΛ(ρ):

Ui, jρU
†
i, j → (1− β)Ui, jρU

†
i, j +
β

4
tri, j(ρ) ⊗ 1i, j =: Λ(ρ), (2)

whereβ is the gate error parameter. We further assume no
misalignment and errorfree one-qubit operations2. We define

Ua := 1{1,...,N}\{ia, ja} ⊗ Uia, ja, (3)

to be the unitary operation acting on the two qubits (ia, ja)
and the identity on the remainingN − 2 qubits. The vector
~U = {U1, ...,Un} defines the sequence of applications of the
unitary operations: first one applies the gateU1 on the qubits
i1, j1, thenU2 and so on. For our analytical analysis we will
approximate the concatenation ofn two-qubit gates by assum-
ing that not more than one gate acts in a faulty way (which
corresponds to an expansion inβ, keeping only terms in ze-
roth and first order). Normalization is guaranteed by adding
the worst case density matrix (i.e., the identity) for the remain-
ing probability.

Thus, the resulting mapΛconc(ρ) is:

Λconc(ρ) := (1− β)n

 n∏
a=1

Ua

 ρ  n∏
a=1

Ua

† + nβ(1− β)n−1ρ̃

+ p
1d

d
, (4)

whered = dim(ρ), 1d is thed × d-identity matrix, andp =
1 − (1 − β)n − nβ(1 − β)n−1. For smallβ we can expandp
in p ≈ n(n−1)

2 β
2 − n

(
n−1

2

)
β3, thus p is in the order ofβ2 for

an appropriaten. The normalized state ˜ρ is given by the map
Λ1−faulty(ρ)

ρ̃ =
1
n

n∑
a=1

 n∏
b=a+1

Ub

 f

(ia, ja), ρ,
a−1∏
c=1

Uc


 n∏

b=a+1

Ub

†
=: Λ1−faulty(ρ), (5)

with f [(i, j), ρ,A] := tri, j

(
AρA†

)
⊗ 1i, j

4 . Thus,ρ̃ represents the
convex combination of states where one gate is replaced by
the identity matrix in the corresponding subspace. Insteadof
the first-order approximation map in Eq. (4) one could use the
simpler map

Λ̃(ρ) := (1− β)n

 n∏
a=1

Ua

 ρ  n∏
a=1

Ua

† + [1− (1− β)n]
1d

d
. (6)

But our analysis shows a distinct improvement in the secret
key rate using the map in Eq. (4).

2 This assumption about errorfree single-qubit rotations can be made as these
rotations can be implemented in the classical postprocessing (application
of bit-flips on the measurement data).
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2. Encoded state generation

The first step performed in the encoded quantum repeater
is to generate the encoded Bell state of Eq. (1) between all
repeater stations. Thus, the encoded Bell state is denoted as
(we drop the indicesRi andRi+1 for better readability)∣∣∣φ̃+〉 = 1√

2
|000000〉 + |111111〉 . (7)

To generate this state one starts with the state
1√
2

(|000〉 + |111〉) at one repeater station and with|000〉
at the other and applies ateleportation-based controlled-
() [18–20]:

1√
2

(|000〉 + |111〉) ⊗ |000〉

−−−→
1√
2
|000000〉 + |111111〉 . (8)

The teleportation-based consists of multiple gates and re-
quires Bell pairs as a resources, as shown in Fig. 2. The setup

|k〉1 • Z |k〉

Z

|φ+〉23
{

• X

|l〉4 X |l ⊕ k〉

Figure 2. Teleportation-based, see [20].

in the encoded quantum repeater is shown in Fig. 3. Between
the repeater stations we have a source (S) of Bell states. The
teleportation-based is marked by the red dashed box, i.e.,
qubits 1 and 2 in Fig. 2 correspond to one black and one yel-
low (light grey) qubit of repeater stationi and qubits 3 and 4 to
the qubits of repeater stationi + 1. In total we have three tele-
portation baseds (see Fig. 3). The total circuit in Fig. 3
consists of 6 two-qubit gates, thus we apply the concatenation
of gates as described in the map of Eq. (4). The distributed
Bell states are depolarized due to imperfections in the source
resulting inρdep with fidelity F0:

ρdep= F0

∣∣∣φ+〉 〈φ+∣∣∣ + 1− F0

3

(
14 −

∣∣∣φ+〉 〈φ+∣∣∣) . (9)

Different to the proposal in [12], we assume that the initial
states do not have fidelityF0 almost one. Due to the depo-
larizing error of the quantum operations, see Eq. (2), the state

1√
2

(|000〉 + |111〉) (repeater stationi in Fig. 3) transforms to3

3 We obtain this state by applying two faultys (1→3 and1→2)
on the state 1√

2
(|0〉 + |1〉) |00〉.

Figure 3. (Color online) Generation of the encoded stateρenc (see
text).

ρ′ =
1
2

[
1+ β

(
β

2
− 5

4

)] (
Π|000〉 + Π|111〉

)
+

1
2

(1− β)2 (|000〉〈111| + |111〉〈000|)

+
β

4

(
3
2
− β

) (
Π|101〉 + Π|010〉

)
+
β

8
(
Π|001〉 + Π|110〉 + Π|100〉 + Π|011〉

)
, (10)

whereΠ|klm〉 = |klm〉 〈klm|. The stateρenc after all operations
is lengthy and will not be given explicitly here.

3. Encoded connection

In the second step we perform three pairwise Bell measure-
ments (BM in Fig. 1 and Fig. 4) in the repeater station in
order to connect two encoded Bell pairs. The results of the

• X

Z

Figure 4. Circuit for a Bell measurement.

Bell measurements determine the encoded Bell state (see [12]
for further explanation). As the three-qubit repetition code
is used, we can correct up to one bit-flip error in the mea-
surement results. The bit-flip error is corrected viamajority
voting. Note that the error is corrected classically in the mea-
surement results; no quantum operation is performed on the
state.

We denote the map for the total encoded connectionC :
B(H) → B(H ′), whereB(H) is the space of bounded oper-
ators with dimH = 212 and dimH ′ = 26. The map consists
of the following procedures: Bell measurement, correctionof
the measurement results and application of the corresponding
Pauli matrices in order to obtain

∣∣∣φ̃+〉 in the end. Note that the
action of the Pauli matrices can be replaced by applying bit-
flips on the measurement data of the final state. In the follow-
ing we determine all states|ϕi〉 ∈ H , such that an application
of perfect gates would lead to the correct state, i.e.,

Cperf(|ϕi〉 〈ϕi |) =
∣∣∣φ̃+〉 〈

φ̃+
∣∣∣ . (11)
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a. Correctable errors for ideal The three-qubit
repetition code can correct single bit-flip errors. However,
due to the properties of the Bell measurement given in Fig. 4
one can correct more errors, which were not considered in the
analysis in [12].

If an X error on the control and the target qubit occurs be-
fore a perfect gate, the resulting error after the applica-
tion of the is an X-error on the control qubit (see, e.g.,
[21]). As the Bell measurement is performed by applying a
measurement in theX-basis (Z-basis) on the control (target)
qubit, this error does not corrupt the measurement result. The
same holds also forY- andZ-errors if they appear both in the
control and target qubit of one (see Fig. 5).

X • • X

X =

Y • • X

Y = Z

Z • •

Z = Z

Figure 5. Commutation rules for the gates, see [21].

Our analysis shows that considering the correlatedX-, Y-,
andZ-errors leads to a substantially higher error tolerance for
obtaining a nonzero secret key rate. As the error in the gates
is only important for the secret fraction in Eq. (27), the se-
cret fraction for different initial fidelities as a function of the
gate error parameterβ is displayed in Fig. 6. We find that
including the correlated error makes the secret key rate more
noise-tolerant, where the amount of improvement depends on
the initial fidelity F0.

se
cr

et
 fr

ac
tio

n

β 

 0.0001

 0.001

 0.01

 0.1

 1

 0.002  0.004  0.006  0.008  0.01  0.012

Figure 6. The secret fraction [Eq. (27)] plotted as a function of the
gate errorβ including all errors according to Eq. (12) (black cir-
cles) and those where only single bit-flip errors were correctable (red
squares),F0 = 0.98, one repeater station (r = 1).

We denote the control (target) qubits of thei-th  gate as

ci (ti), thus we can correct errors from the set

E = {Xci Xti ,Yci Yti ,Zci Zti ,1ci1ti ,1ci Xti ,Xci1ti }. (12)

Each of the six pairs from the set of errors can happen at one of
the three gates, thus we have 63 = 216 combinations. But
some of these combinations have to be excluded, e.g., cases
like 1c1Xt11c2Xt21c31t3 are not allowed, as they would lead to a
wrong measurement outcome for the majority voting (twoX-
errors cannot be corrected by the three-qubit repetition code).
Excluding these cases 160 combinations remain. We count
the number of permutations for three gates: Fixing, e.g.,
the combinationXci Xti Yc j Yt j ZckZtk with i , j , k ∈ {1, 2, 3}
one has 6 possible permutations of{1, 2, 3}. In total we have
160×6 = 960 possible combinations of correctable errors. Let
us denote these correctable error asEi , with i = 1, . . . , 960,
and the set that contains them asEcorr.

The probability of successful entanglement swappings is
defined by the overlap of the states to be swapped (ρenc, see
Fig. 1) with the correctable states|ϕi〉. These states|ϕi〉 are
computed by the action of correctable errorsEi from the set
Ecorr onto the states

∣∣∣φ̃+〉 ⊗ ∣∣∣φ̃+〉:
|ϕi〉 := Ei

(∣∣∣φ̃+〉 ⊗ ∣∣∣φ̃+〉) , i = 1, . . . , 960. (13)

Out of the 960 correctable states we have 64 distinct orthog-
onal states, denoted as|ϕ̃i〉. The probability of successful en-
tanglement swapping is thus:

ps =

64∑
i=1

〈ϕ̃i |ρenc⊗ ρenc|ϕ̃i〉, (14)

where ρenc is the output state after the teleportation-based
. This probability holds for one repeater station. Forr
repeaters we can bound the success probability by4

Pr = (ps)r , (15)

because we assumed that the errors can be corrected indepen-
dently. The final state after entanglement swapping is given
by:

ρideal
swap(r) = Pr

∣∣∣φ̃+〉 〈
φ̃+

∣∣∣ + (1− Pr )
26 − 1

(
126 − ∣∣∣φ̃+〉 〈

φ̃+
∣∣∣) , (16)

i.e.,

Cperf (ρenc⊗ ρenc) = ρ
ideal
swap(r). (17)

The state given in Eq. (16) is an estimate; with probability
Pr we obtain the perfect state and with probability 1− Pr we
obtain the completely mixed state without the perfect state.

4 Note that this estimate is a lower bound, as with more entanglement swap-
pings we could certainly correct more errors.
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b. Nonideal The nonideal operation in the
Bell measurements is obtained by using the noise model of
Eq. (4):

Λ(ρ) = (1− β)3UρU† + 3β(1− β)2ρ̃

+
[
1− (1− β)3 − 3β(1− β)2

] 126

26
, (18)

whereU is the concatenation of ideals. The state ˜ρ, see
Eq. (5), is the convex combination of states where one of the
three gates is replaced by the identity matrix in the cor-
responding subspace [see Eq. (2)]. The map for encoded con-
nection with imperfects acting on the correctable states
|ϕ̃i〉 with i = 1, . . . , 64 is

Cimperf (|ϕi〉 〈ϕi |) = (1− β)3
∣∣∣φ̃+〉 〈

φ̃+
∣∣∣

+ 3β(1− β)2 1
2

(
Π|000000〉 + Π|111111〉

)
+

[
1− (1− β)3 − 3β(1− β)2

] 126

26

=: ρs. (19)

The resulting state for imperfects after one round of en-
tanglement swapping is given by:

Cimperf (ρenc⊗ ρenc)

= P1ρs +
1− P1

26 − 1

(
126 − ∣∣∣φ̃+〉 〈

φ̃+
∣∣∣) . (20)

For more than one repeater station, we use the approxima-
tion

Cimperf
(
|ϕi〉 〈ϕi |⊗r

)
= (1− β)3r

∣∣∣φ̃+〉 〈
φ̃+

∣∣∣
+ 3rβr (1− β)2r 1

2
(
Π|000000〉 + Π|111111〉

)
+

[
1− (1− β)3r − 3rβr (1− β)2r

] 126

26

=: ρs(r), (21)

which leads to a lower bound on the secret key rate; higher or-
der terms are represented as identity, more useful states could
be present.

Finally, the state withr repeater stations after swapping is
given by:

ρnonideal
swap (r) = Prρs(r)

+
1− Pr

26 − 1

(
126 − ∣∣∣φ̃+〉 〈

φ̃+
∣∣∣) , (22)

with Pr given in Eq. (15).

4. Decoding and final state

In order to do quantum key distribution, one needs to de-
code the stateρnonideal

swap (r) in Eq. (22).
We assume that the decoding procedure is the reverse pro-

cess of the encoding procedure (see Fig. 7): Alice and Bob
each measure two of their three qubits. As we employ the
three-qubit repetition code, one can only correct one bit-flip

• • X

Z •
Z •

• • X

Z •
Z •

Figure 7. Decoding procedure: The upper three qubits are on Alice’s
and the lower are on Bob’s side.

error for Alice and Bob. Other errors cannot be corrected by
this code. Depending on their measurement results, Alice and
Bob have to correct their qubit with a bit-flip operation. If Al-
ice’s and Bob’s input state was only subjected to one-qubit
bit-flip errors, they only have to correct their qubit if their
measurement outcome was ”11”, which is the case when there
was a bit-flip error on the first qubit. If an error occurs in the
second or the third qubit, the error does not propagate to the
first qubit, thus no correction has to be performed.

To obtain the final state which is used for quantum key dis-
tribution, we take the state after swapping in Eq. (22) and per-
form the decoding operationD:

ρdec= D
[
ρnonideal

swap (r)
]
. (23)

The decoding map has the following properties:

D
(∣∣∣φ̃+〉 〈

φ̃+
∣∣∣) = |φ+〉 〈φ+| , (24a)

D (
Π|000000〉 + Π|111111〉

)
= |00〉 〈00| + |11〉 〈11| , (24b)

D
(
126

26

)
= 1

4 |φ+〉 〈φ+| + 3
4

[
1
3 (122 − |φ+〉 〈φ+|)

]
=

122

4 .(24c)

The first property [Eq. (24a)] follows from the action of the
 gates, see Fig. 7:∣∣∣φ̃+〉→ |φ〉+1,4 ⊗ |0000〉2,3,5,6 , (25)

where the index denotes the number of qubits. The second
property [Eq. (24b)] can be shown in an analogous way:

Π|000000〉 + Π|111111〉
→

(
|00〉 〈00|1,4 + |11〉 〈11|1,4

)
⊗ |0000〉 〈0000|2,3,5,6 . (26)

The last equality [Eq. (24c)] can be verified by inserting
the completely mixed state into the decoding map. Using
Eqs. (21) and (22) the state after perfect decoding is given
by:

ρdec=

[
Pr (1− β)3r − 1− Pr

26 − 1

] ∣∣∣φ+〉 〈φ+∣∣∣
+Pr3rβr (1− β)2r 1

2
(|00〉 〈00| + |11〉 〈11|)

+

[
Prqr +

(1− Pr)26

26 − 1

]
122

4
, (27)
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with qr = 1− (1− β)3r − 3rβr (1− β)2r .
We can also include gate errors in the decoding, by again

using the error model in Eq. (4), leading to the final state:

ρfinal = (1− β)4ρdec

+4β(1− β)3ρnonideal
dec

+(1− (1− β)4 − 4β(1− β)3)
14

4
, (28)

whereρnonideal
dec = Dimperf(ρnonideal

swap (r)) which is composed of
Λ1−faulty(ρnonideal

swap (r)), see Eq. (5), and applying the correcting
operation (see Fig. 7) such that

Dimperf
(∣∣∣φ̃+〉 〈

φ̃+
∣∣∣) = Dimperf

(
1
2

(
Π|000000〉 + Π|111111〉

))
=

1
2

{[
3
8

(|00〉 〈00| + |11〉 〈11|) + 1
8

(|01〉 〈01| + |10〉 〈10|)
]

+
14

4

}
=: ρ̃′. (29)

The stateρnonideal
dec is given by

ρnonideal
dec = Pr

{[
(1− β)3r + 3rβr (1− β)2r

]
ρ̃′

+{1− [(1 − β)3r + 3rβr (1− β)2r ]}14

4

}
+

1− Pr

26 − 1

(
2614

4
− ρ̃′

)
. (30)

We now use the final stateρfinal in Eq. (28) to calculate secret
key rates.

B. Secret key rate

Analogously to [11], we define the secret key rate per mem-
ory per second for the repeater to be

Kν = Rν
r∞
Mν
, (31)

whereRν is the repeater rate, i.e., the average number of gener-
ated entangled Bell pairs per second for the repeater scheme5

ν, r∞ is the secret fraction, i.e., the ratio of secret bits and
measured bits in the asymptotic limit (Devetak-Winter bound
[22]) andMν is the number of memories used for each proto-
col. For the three-qubit repetition code employed here, the
number of memories per half node of a repeater station is
given by

MQEC = 6, (32)

5 By the repeater schemeν, we mean the scheme mentioned in the intro-
duction: either the encoded quantum repeater (ν = QEC) or the generic
quantum repeater (ν = QR).

as we need six qubits on each side to perform the
teleportation-based (see Fig. 3). The formula for the se-
cret fraction using the six-state protocol [23, 24] can be found,
e.g., in Ref. [25]:

r∞ = 1− eZh

(
1+ (eX − eY)/eZ

2

)
−(1− eZ)h

(
1− (eX + eY + eZ)/2

1− eZ

)
−h(eZ), (33)

where the binary Shannon entropy is given by

h(p) = −p log2 p− (1− p) log2(1− p), (34)

andeX, eY andeZ are the error rates in theX-, Y-, andZ-basis,
respectively. The analytic form of the error rates for Bell-
diagonal states can be found in [25]. It is possible to perform
the analysis in an analogous way for other QKD-protocols
such as the BB84-protocol [26].

The remaining term in the secret key rate is the repeater
rateRν, which is the average number of generated entangled
Bell pairs per second. For its derivation, we first estimate the
average waiting time to distribute the Bell pairs needed for
the teleportation-based (see Fig. 2). The probability of
successful generation of one Bell pair over the distanceL0 is

P0 = 10−αL0/10, (35)

with α = 0.17 dB/km a realistic photon absorption coeffi-
cient for telecom fibers. The probabilityP0 corresponds to
the transmittivity of photons in an optical fiber with an atten-
uation length ofLatt = 25.5 km. In [27] the average waiting
time for generatingN Bell pairs with probabilityP0 is given
by

〈T〉N = T0ZN(P0), (36)

whereT0 = L0/c is the fundamental time (wherec = 2× 105

km/s is the speed of light in the fiber) and

ZN(P0) :=
N∑
j=1

(
N
j

)
(−1) j+1

1− (1− P0) j
(37)

is the average number of attempts to connectN pairs, see [27].
For the encoded quantum repeater withr repeater stations we
need to establish 3(r + 1) Bell pairs, thus the repeater rate (the
reciprocal value of the average waiting time) for the encoded
quantum repeater is given by

RQEC =
1
〈T〉 =

1
2T0Z3(r+1)(P0)

, (38)

under the assumption that the entanglement swapping process
is deterministic, i.e., the probability of successful entangle-
ment swapping is one. The factor 2 in front of the fundamen-
tal timeT0 accounts for the time needed to send a photon and
acknowledge its arrival. Note that no further classical commu-
nication is needed in this repeater protocol. This is contrary to
the generic quantum repeater, where after distillation anden-
tanglement swapping in each step the success has to be com-
municated [11]. We will compare this protocol with respect
to the secret key rate to the generic quantum repeater which
needs much more classical communication.
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III. RESULTS AND COMPARISON OF THE SECRET KEY
RATES

In this section, we first investigate the minimally required
parameter values for obtaining a nonzero secret key for the en-
coded quantum repeater. Then we find the optimal secret key
rate by optimizing over the encoded quantum repeater and the
generic quantum repeater model (see [11]). We further state
the differences between our analysis and the analysis given in
[12]. The recent development of a repeater scheme which con-
sumes minimum classical communication time [15] is a fur-
ther subject of our investigation. We calculate the cost func-
tion which is the minimum number of total memory qubits per
secret bit for the aforementioned scheme and compare it to the
schemes analyzed in this work.

A. Minimal parameter values

Similar to our analysis in [10], we derive for the encoded
quantum repeater the minimally required parameter values,
i.e., the initial fidelityF0 [for the depolarized state given in
Eq. (9)] and the gate qualitypG = 1−β [see Eq. (4)], to obtain
a nonzero secret key, see Eq. (31). Table I summarizes the
results of our investigations about the minimal fidelities and
gate qualities, which are needed to achieve a nonzero secret
key rate.

r N pG,min F0,min

1 1 0.984 0.943
3 2 0.992 0.972
7 3 0.994 0.981
15 4 0.996 0.986
31 5 0.997 0.989
63 6 0.997 0.991
127 7 0.998 0.992

Table I. Minimal gate qualitypG,min [see Eq. (4) withpG = 1 − β
andF0 = 1] and minimal fidelityF0,min with pG = 1 for extracting
a secret key for the six-state protocol, see Eq. (33), withr = 2N −
1 repeater stations, whereN is the nesting level for entanglement
swapping.

Comparing these numbers to the results for the generic
quantum repeater in [10], we find that the encoded quantum
repeater is less tolerant against gate errors. This can be ex-
pected as many gates are needed for generating the encoded
Bell pair. Regarding the initial fidelityF0, the encoded quan-
tum repeater also requires fairly good initial Bell states.In
Fig. 8, we show the secret key rate for the encoded quantum
repeater, optimized with respect to the number of repeater sta-
tions, as a function of the gate qualitypG and initial fidelity
F0, for a fixed distance. We find that a nonzero secret key rate
for the encoded quantum repeater is restricted to gate errors
belowβ = 0.0165 and fidelities aboveF0 = 0.943.

 0.94  0.95  0.96  0.97  0.98  0.99  1
Initial fidelity F0

 0.982
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Figure 8. (Color online) The optimal secret key rate per memory per
second, see Eq. (31), as a function of the initial fidelityF0 and the
gate qualitypG, optimized over the number of repeater stations for
the encoded quantum repeater (L = 600 km). In the white region it
is not possible to extract a nonzero secret key.

B. Optimal secret key rates

The purpose of this paper is to investigate whether the op-
timal secret key rate is reached for the encoded or the generic
quantum repeater. By the generic quantum repeater, we mean
the repeater scheme using distillation (either theDeutsch et
al. [6] or theDür et al. [2] distillation protocols, see [11]).

Figure 9 shows the optimal secret key rate per memory per
second [Eq. (31)] for the two different repeater schemes plot-
ted as the function of the distance for some realistic parameter
values (initial fidelityF0 = 0.98 and gate qualitypG = 0.992).
We find that the generic quantum repeater leads to an optimal
secret key rate that is one order of magnitude better than the
encoded quantum repeater. We know from [11] that in this
range of parameter values it is optimal for the generic quan-
tum repeater to not distill, thus the number of used memories
is one in this case. For the encoded quantum repeater, how-
ever, we constantly use six memories [see Eq. (32)] which
reduces the secret key rate by this factor. In the case of no
distillation and deterministic entanglement swapping theen-
coded quantum repeater is not an advantage for the chosen
parameter values. Also in regimes where distillation is opti-
mal for the generic quantum repeater (see [11]), we find that
the encoded repeater is never better.

C. Comparison to the scheme in Jiang et al.

As mentioned in the introduction, Ref. [12] analyzes the er-
rors of the encoded quantum repeater. Different to their anal-
ysis, we allow the initial Bell pairs to have a fidelityF0 < 1,
whereas in the original reference fault-tolerant distillation is
assumed which would require additional qubits and opera-
tions. Also we do not perform fault-tolerant initialization of
the codes which has the following advantages: our scheme
saves resources and no additional measurements have to be re-
alized. Our error model, see Eq. (4), is a very good estimate,
especially for theβ resulting from our investigations of the
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Figure 9. (Color online) The optimal secret key rate per memory
per second in Eq. (31) for the encoded (red squares) and the generic
quantum repeater (black circles) as a function of the total distanceL
(Parameters:F0 = 0.98, pG = 0.992).

minimal parameter values (β = 10−2 − 10−3, see Sec. III A):
the probabilityp for the identity is on the order of 10−3. It
means that the distance to a map, where the exact output state
is used, is small. We verified this statement for the decod-
ing map (Sec. II A 4) and found that the Uhlmann fidelity
of the state in Eq. (28) compared to a state calculated with
a map, where all gates with errors are used, is one for the
range ofβ given above. - So far, we do not consider mem-
ory and measurement errors, but they could be implemented
in a straightforward way to our analysis (see discussion in the
conclusions).

Another difference in the analysis is the repeater rate. In
[12] it was assumed that the generation rate for undistilled
Bell pairs withmqubits6 available at each station is given by7

R= m
P0

L0
, (39)

using a perfect overall efficiency for collecting and detecting
single photons. This is only an appropriate estimate in the case
of infinitely many memories. We considered that exactlym
Bell pairs to start the encoding process are needed and one has
m memories instead of infinitely many memories available.
This results in the estimate with the average waiting time as
described by Eq. (37) (Sec. II B) and leads to a decrease of
the repeater rate [Eq. (38)] by several orders of magnitude8

compared to Eq. (39).

D. Cost function

Recently, in [15] a quantum repeater scheme was investi-
gated that only uses one-way classical communication without

6 Note thatm= M/2 with M given in Eq. (32).
7 The probability of successful transmissionP0 [see Eq. (35)] is equivalent

to the expression exp(−L0/Latt) given in [12].
8 The repeater rate and thus the secret key rate can be increased by using

multiplexing as shown in [28].

the necessity to herald the successful generation of entangled
Bell pairs between the repeater stations.

In [15], the cost function was defined to be the minimum
number of total memory qubits per secret bit:

C = min
ν,N

2N+1

Kν
, (40)

whereK is the secret key rate as defined in Eq. (31),N is
the nesting level andν is the index for the chosen protocol.
The factor 2N+1 accounts for the total number of memories
[with the number of memoriesM per half node of the repeater
station, see Eq. (32), being implicitly contained in the secret
key rate K]: (2N − 1)2 is the sum of all memory qubits in the
repeater stations (r = 2N − 1). Adding 2 memory qubits from
the two communicating parties (Alice and Bob) results in 2N+1

memory qubits in total.

C
’

L (km)

 1

 10

 100

 2000  4000  6000  8000  10000

Figure 10. (Color online) The cost coefficient (C′ = C/L) [Eq. (40)]
for the encoded (green squares), the generic quantum repeater (black
circles) and the quantum repeater protocol presented in [15] (red
crosses, with the effective qubit errorε = 10−4, for an explanation see
[15]) as a function of the total distanceL (Parameters:F0 = 0.99995,
pG = 0.9999, andT0 = 1 as in [15]).

Figure 10 shows the cost coefficientC′, which is the cost
function C [Eq. (40)] divided by the total lengthL, using
the encoded quantum repeater with the three-qubit repetition
code, the generic quantum repeater and the repeater protocol
presented in [15]. The optimal distillation protocol for the
generic quantum repeater is theDeutsch et al.protocol. We
find that up to 5000 km both the generic quantum repeater
and the encoded quantum repeater are below the cost coeffi-
cient given in [15]. The generic quantum repeater has a better
resource efficiency for all distances. The generic quantum re-
peater needs less resources and the overhead in classical com-
munication is compensated by fewer numbers of qubit mem-
ories used.

In Fig. 11, we show the optimal distanceL0 between the
repeater stations for the encoded and the generic quantum re-
peater as a function ofL. We point out thatL0 is in the order
of 30−100 km, depending onL, while the optimal distance in
[15] was given by 1− 2 km. In the generic quantum repeater
scheme the total number of required repeater stations is circa
1− 2 orders of magnitude smaller than in [15].
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Figure 11. (Color online) The optimal distance between the repeater
stationsL0 for the cost coefficient (C′ = C/L), see Eq. (40), for the
encoded (green squares) and the generic quantum repeater (black cir-
cles) (parametersF0 = 0.99995 andpG = 0.9999,T0 = 1 as in [15])
as a function of the total distanceL.

IV. CONCLUSIONS

We investigated secret key rates for the so-calledencoded
quantum repeaterthat utilizes quantum error-correcting codes
instead of entanglement distillation as used in thegeneric
quantum repeater. The advantage of the former repeater
scheme is that the classical communication is minimal as it
is needed only for the entanglement generation. Minimal time
consumption is essential for non-perfect memories. Before
starting to calculate the secret key rate, we improved the error
model for the encoded quantum repeater [12] and replaced it
by a concatenated one, which leads to a very good estimate
of the fidelity. This model permits us to start with Bell pairs
with fidelity smaller than one. We also accounted for addi-
tional correctable errors for the encoded connection of the
encoded Bell states, leading to higher secret key rates, and
finally developed a decoding algorithm suitable for the three-
qubit repetition code using an analogous error model. We esti-
mated the minimally required parameter values for a nonzero
secret key and found that for many repeater stations the re-
quirements for the gate quality and the initial fidelity of the
Bell pairs are quite demanding. In order to calculate the se-

cret key rate for the encoded quantum repeater, we derived the
rate for generating entangled pairs. The comparison of the se-
cret key rates for the encoded and generic quantum repeater
showed that the generic scheme is advantageous for the whole
considered range of parameter values for the gate quality and
the initial fidelity. Finally, we calculated the cost function for
the repeater schemes studied here. The cost function deter-
mines the required resources divided by the secret key rate.
We found that the cost function for the schemes analyzed here
is better than the scheme presented in [15], for a wide range
of parameters. Furthermore, the number of repeater stations
is circa 1− 2 orders of magnitude smaller than in the latter
scheme.

So far, measurement errors are excluded, but can be im-
plemented easily in our analysis in the same manner as done
in [10]. The measurement error will not change the qualita-
tive results of the paper; the secret key rate will decrease.So
far, we treated perfect memories. Memory errors (see, e.g.,
[29]) may change the results as the lower communication time
(and thus the lower degradation of the state) of the encoded
quantum repeater might compensate the additional need for
resources and thus increase the secret key rate. This investi-
gation is left for future work.

The secret key rate can be improved by applying multiplex-
ing (see, e.g., [28]). As we performed the calculations on den-
sity matrices, the quantum error-correcting codes used here
for the encoded quantum repeater are limited to a small num-
ber of qubits. As an example we treated the three-qubit rep-
etition code. We showed that even with this simple quantum
error-correcting code we can have an advantage regarding the
cost function over complicated schemes using more resources.
We conjecture that utilizing more sophisticated codes (see,
e.g., [12]) does not lead to an increase of the secret key rate,
as more resources are needed especially when the encoding is
performed with errors.
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We investigate quantum repeaters in the context of quantum key distribution. We optimize the secret key
rate per memory per second with respect to different distillation protocols and distillation strategies. For this
purpose, we also derive an analytical expression for the average number of entangled pairs created by the quantum
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I. INTRODUCTION AND MOTIVATION

Losses in the optical fiber limit the distance for the
distribution of entangled photon pairs and, hence, the range
of quantum key distribution. Recent experiments cannot reach
more than a few hundred kilometers (see, e.g., Ref. [1]). To
overcome this problem, the concept of a quantum repeater
was developed [2,3], which acts like a “distance amplifier:”
It permits enhancing the probability that an entangled pair is
created at a certain distance (see, e.g., calculations in Ref. [4]).
For a recent review on quantum repeaters, see Ref. [5]. The
main ingredients of a quantum repeater are entanglement
swapping [6] and entanglement distillation [7–9]. After the
distribution of entangled photon pairs between two distant
parties, one can perform quantum key distribution (for reviews,
see, e.g., Refs. [4,10]).

Since the original proposal of the quantum repeater, existing
protocols were analyzed or were improved, inter alia [11–25].
Moreover, new protocols, such as, e.g., the hybrid quantum
repeater [23] or quantum repeaters with atomic ensembles
[26], were introduced.

Recently, the following analyses of the secret key rate
in connection with a quantum repeater were performed: In
Ref. [27], a quantum key distribution (QKD) setup with
one repeater node and without distillation is investigated. In
this case, the parameters for the optimal secret key rate are
explored. In Ref. [28], the secret key rate for one node of the
Duan-Lukin-Cirac-Zoller (DLCZ) repeater [26] is analyzed.
Reference [29] treats a variation of the DLCZ repeater, namely,
Ref. [20]. In Ref. [30], secret key rates for the original quantum
repeater [2], for the hybrid quantum repeater [23], and for a
variation of the DLCZ repeater [18] are investigated where
distillation was considered only before the first entanglement
swapping. Here, we want to lift this restriction and allow
distillation in all nesting levels.

The main goal of the current paper is to analyze the
achievable secret key rate under different distillation protocols
and strategies. For the distillation protocols, we consider
a recurrence protocol [9] and the entanglement pumping
protocol [3]. The protocol [9] is more efficient regarding
the final fidelity for perfect gates but at the expense of an

*bratzik@thphy.uni-duesseldorf.de

exponentially growing number of memories. The protocol in
Ref. [3] reaches a higher fidelity than the protocol in Ref. [9]
in a certain regime of errors and uses less spatial resources
but at the expense of a temporal overhead. As performed in
Refs. [29,31], we will divide the secret key rate by the number
of memories needed per node. For the distillation strategies of
the quantum repeater, we consider a nested distillation scheme,
i.e., where distillation after each swapping is performed. A
special case will be distillation only before the first swapping,
which might be experimentally more feasible. We thoroughly
investigate the case where the number of distillation rounds
in each nesting level is identical. Then, we lift this restriction
and vary the number of distillation rounds individually after
each swapping. Additionally, we account for the classical
communication time needed for acknowledging the success
of entanglement swapping and entanglement distillation in the
quantum repeater nodes. For this purpose, we will derive a
formula for the generation rate of the entangled pairs (repeater
rate) including these classical communication times.

The paper is structured as follows: In Sec. II, we review
the concept of quantum repeaters, the relevant distillation
protocols, and the distillation strategies. In Sec. III, we present
analytical formulas for the secret key rates. As the secret key
rate is a product of the secret fraction and the repeater rate,
we will derive the latter for the different distillation protocols.
In Sec. IV, we analyze the quantum repeater in the context of
quantum key distribution and present the optimal secret key
rates. Here, the secret key rates are optimized with respect
to the different distillation protocols and distillation strategies,
the number of nesting levels, the number of distillation rounds,
and the number of used memories. Furthermore, we investigate
the impact of finite-efficiency detectors on the secret key rate.
Then, we will fix the number of required memories and will
investigate the optimal setup. In Sec. V, the influence of
the classical communication time on the secret key rate is
analyzed. We conclude in Sec. VI.

II. QUANTUM REPEATER AND
DISTILLATION STRATEGIES

In Fig. 1, we show a quantum repeater setup, whose concept
was introduced in Ref. [2]. The goal is to establish an entangled
pair between the two parties Alice and Bob over distance L. For

062335-11050-2947/2013/87(6)/062335(11) ©2013 American Physical Society
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FIG. 1. (Color online) A generic quantum repeater protocol with
nested distillation (see text).

this reason, one divides the distance into segments of length
L0 = L

2N , where N is the number of maximal nesting levels for
swapping. The segments are connected by repeater stations,
which are able to perform Bell measurements and distillation.
Due to entanglement swapping, the fidelity degrades, which
we compensate by entanglement distillation. We define the
fidelity of a state ρ as its overlap with the Bell state |φ+〉 =

1√
2
(|00〉 + |11〉), i.e.,

F (ρ) := 〈φ+|ρ|φ+〉, (1)

where |0〉 (|1〉) is, e.g., a horizontally (vertically) polarized
photon.

In the following, we will describe the distillation protocols
that we want to compare. Our figure of merit is the secret key
rate. Note that the influence of distillation on the fidelity was
studied in Ref. [3]. The analysis of distillation protocols on the
entanglement generation rate was investigated in Ref. [32]. As
the secret key rate is a nontrivial function of these and other
parameters, we will arrive at new results. In the following, we
will assume, analogous to Ref. [3], that the quantum gates are
subjected to depolarizing noise with probability (1 − pG) and
with probability pG, they are perfect.1

A. The distillation protocols

General distillation protocols consist of performing local
operations on n-qubit pairs resulting in m < n pairs with a
higher fidelity than the initial pairs. Throughout this paper, we
will consider protocols that operate on two-qubit pairs and lead
to one-qubit pair. Usually, local operations and a CNOT gate
are applied. The sequence of these operations is specific for
every protocol. Finally, both parties perform a measurement
and, depending on the outcome, the resulting pair has a higher
fidelity or is discarded. Thus, the protocols are probabilistic.

1The formulas for the fidelity and the success probability consider-
ing this error parameter can also be found in Ref. [3]. Different from
Ref. [3], we do not assume any misalignment, and the single-qubit
operation is error free.

FIG. 2. Recurrence protocol: The Deutsch et al. protocol (figure
adapted from Ref. [3]). The fidelity Fk is the fidelity in the kth
distillation round.

In the following, we briefly describe the protocols considered
in this paper.

1. Recurrence protocol: The Deutsch et al. protocol

The Deutsch et al. protocol [9], sometimes called the Oxford
protocol, works in a similar way as the distillation protocol
introduced in Refs. [7,8] but is more efficient. It can reach
a higher fidelity in fewer distillation rounds and, therefore,
results in higher secret key rates. In general, the protocol
operates on Bell-diagonal states, i.e.,

ρBell = A�|φ+〉 + B�|φ−〉 + C�|ψ+〉 + D�|ψ−〉, (2)

with A,B,C,D � 0, A + B + C + D = 1, and �|ψ〉 =
|ψ〉〈ψ | being the projectors onto the four Bell states |φ±〉 =

1√
2
(|00〉 ± |11〉) and |ψ±〉 = 1√

2
(|01〉 ± |10〉). For each state

of the form in Eq. (2), the first qubit belongs to Alice, and
the second belongs to Bob. Both share two pairs of the state
given in Eq. (2). Alice (Bob) applies a π/2 (−π/2) rotation
about the X axis on her (his) two qubits, followed by a CNOT

operation on both sides. After that, a bilocal measurement
on one qubit in the computational basis is performed. The
values of parameters A, B, C, and D as a function of the
imperfections of the CNOT and the fidelity F can be found in
Ref. [33]. The protocol works in a recursive way, i.e., it uses
two copies of the same fidelity for the next distillation step;
therefore, it is called the recurrence protocol (see Fig. 2).

2. Entanglement pumping: The Dür et al. protocol

This protocol, introduced in Ref. [3], sometimes also called
the Innsbruck protocol, uses the Deutsch et al. protocol, but
the two input states do not need to have the same fidelity.
Here, distillation is performed with an auxiliary pair always
having the same initial fidelity F0, see Fig. 3, hence, the name
entanglement pumping. We see that, different from the Deutsch
et al. protocol, the number of required memories does not
depend on the number of rounds of distillation, but it is linear
in the number of nesting levels (see Sec. III C).

Throughout the paper, we will assume that we only start
with entanglement swapping and entanglement distillation
when both pairs are present.

FIG. 3. Entanglement pumping: Dür et al. protocol (figure
adapted from Ref. [3]).
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FIG. 4. (Color online) Distillation strategy β: distillation only in
the beginning.

B. Distillation strategies for the quantum repeater

The protocols described in the previous section can be
inserted into the quantum repeater protocol in different
ways. In the following, we want to compare two different
specific distillation strategies. For this purpose, we define the
distillation vector,

�k = (k0, . . . ,kN ) (3)

for the distillation rounds where each component with index
n gives the number of distillation rounds in the nth nesting
level (see Fig. 1). Throughout the paper, distillation strategy
α denotes a strategy with the same number of distillation
rounds in each nesting level, hence, the distillation vector is
�kα = (k, . . . , k). A strategy, which might be less demanding
for experimental realizations,2 is the distillation strategy β (see
Fig. 4) where we only distill at the beginning. The distillation
vector is, thus, �kβ = (k,0, . . . , 0). In Sec. IV C1, we will
use general distillation vectors. This strategy will be called
distillation strategy γ .

III. SECRET KEY RATES AND
THE QUANTUM REPEATER

In the previous section, we have described the generation
of entangled pairs over a distance L between the parties
Alice and Bob using the quantum repeater protocol. For
performing QKD, they measure each of their particles in some
measurement basis. In this paper, we consider the six-state
protocol [34,35]; the BB84 protocol [36] leads to similar secret
key rates. The former works as follows: For each qubit pair,
Alice and Bob each perform measurements in the X, Y , and Z

directions. After the measurement, the used basis is announced
(sifting phase). Only those measurement results where their
measurement bases coincided will be utilized in the further

2When only swapping is performed, one can collect the outcomes
of the Bell measurements and later can apply bit flips on the classical
data resulting from the QKD measurement on the final state (see also
Ref. [30]). For the case of distillation after swapping, the single-qubit
rotations have to be applied, thus, the number of quantum operations
is increased.

analysis. Here, we adopt the asymmetric protocol [37], which
uses different probabilities for the choice of the measurement
direction. In this protocol, the sifting parameter, i.e., the
fraction of sifted bits, is the one in the asymptotic limit, which
we also assume here. The quantum bit error rate, i.e., the
fraction of discordant bits, bounds the eavesdropping attempt:
If it is above a certain threshold, the protocol is aborted. The
quantity we are interested in is the secret key rate K per
memory per second, which is the product of the repeater rate
RRep and the secret fraction r∞ (see, e.g., Ref. [4] for a review)
divided by the number of memories,

Ki = Ri
Rep(�k,N,L)ri

∞(F0,pG,�k,N )/Mi(�k,N ), (4)

with the superscript i being either D (the Deutsch et al.
protocol) or Dür (the Dür et al. protocol).

In the following sections, we will describe or will derive
each component of the secret key rate given in Eq. (4).

A. The secret fraction

The secret fraction is the ratio of secret bits and the
measured bits in the asymptotic limit, thus, denoted by r∞.
It is given by the so-called Devetak-Winter bound [38] and
can be expressed in terms of the error rates appearing in the
six-state protocol [4], Appendix],

r∞ = 1 − eZh

(
1 + (eX − eY )/eZ

2

)

− (1 − eZ)h

(
1 − (eX + eY + eZ)/2

1 − eZ

)
− h(eZ), (5)

with h(p) = −p log2 p − (1 − p) log2(1 − p) being the bi-
nary Shannon entropy and eX, eY , and eZ being the error rates
in the X, Y , and Z bases, respectively. These error rates depend
on the components of the quantum state (see, e.g., Ref. [4],
Appendix]) and, thus, are a function of the initial fidelity F0, the
gate quality pG, the maximal nesting level N , the distillation
vector �k, and the distillation protocol. For a detailed analysis of
the topic of quantum key distribution in connection to quantum
repeaters, we refer to Ref. [30].

B. The repeater rate, including classical communication times

By the repeater rate RRep, we denote the average number
of long-distance entangled pairs generated by the quantum
repeater per second. Considering a setup, which connects
only the neighboring pairs (so-called parallelization), several
formulas for different physical realizations of a quantum
repeater were derived: Ref. [39] treats the repeater rate for
deterministic swapping and probabilistic distillation before
the first swapping, Ref. [5] deduces the rate for probabilistic
swapping without distillation, and in Ref. [30], the formula
from the latter reference was modified to allow distillation
before the first swapping. These expressions have in com-
mon that they do not consider the classical communication
times needed to acknowledge the success of entanglement
swapping and entanglement distillation. In the following,
we will derive a repeater rate for probabilistic swapping
and probabilistic distillation including these communication
times. Our derivation is inspired by the recurrence formula
developed for quantum repeaters based on nitrogen-vacancy
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centers in diamond [40]. In Sec. V, we show how the secret
key rate changes when we omit the classical communication
times needed for entanglement swapping and entanglement
distillation. We will always assume that the entanglement
distribution requires classical communication.

1. The Deutsch et al. protocol

We define the repeater rate to be the reciprocal value of
the time τD(�k,N ) needed to establish an entangled pair over
the distance L with N being the maximal nesting level and the
distillation vector �kβ = (k,0, . . . , 0), i.e.,

RD
Rep := 1

T0τD(�k,N )
. (6)

Here, the superscript D refers to the Deutsch et al. protocol.
Note that the time τD(�k,N ) is given in units of the fundamental
time T0 := L0

c
with c = 2 × 105 km/s as the speed of light

in the optical fiber and L0 := L
2N as the fundamental length,

i.e., the distance between the repeater stations. The symbol
τD(kN,N ), with only one vector component kN as the first
argument, denotes the time needed in nesting level N for kN

distillation rounds. In the following, we present a recurrence
formula for τD(kN,N ) given by

τD(k0 = 0,N = 0) = 2

P0
, (7a)

τD(kN = 0,N > 0) = 1

PES(N )

[
3

2
τD(kN − 1,N − 1) + 2N − 1

]
,

(7b)

τD(kN > 0,N ) = 1

P D
D (kN,N )

[
3

2
τD(kN − 1,N ) + 2N

]
,

(7c)

with PES(N ) being the success probability of entanglement
swapping in the N th nesting level and P D

D (i,N ) being the
probability of success for entanglement distillation using
the Deutsch et al. protocol in the ith distillation round
in the N th nesting level. Here, P0 is the probability to generate
an entangled photon pair over a distance L0 and is given by
P0 = 10−αL0/10 with α = 0.17 dB/km being the attenuation
coefficient. To explain the recurrence formula in Eq. (7), we
start from the first line [Eq. (7a)]. There, we assume that the
source is placed at one side and the photon is distributed
over the distance L0 leading to a distribution time of T0. The
acknowledgment of the arrival of the photons at least needs the
same time, so we have, in total, 2T0 (see Ref. [30] for further
details and other schemes of entanglement distribution). We
divide by the probability P0 to generate this entangled photon
pair as, on average, we have to perform this process 1

P0
times

(see, e.g., Ref. [5] for an explicit calculation of this waiting
time). The next line [Eq. (7b)] gives the time for the N th
nesting level before starting with distillation, i.e., it is the time
directly after entanglement swapping. The formula consists of
two parts: the generation time for the pairs needed to begin the
swapping [ 3

2τD(kN−1,N − 1)T0] (see, e.g., Ref. [5], Appendix]
for an explanation of the factor 3

2 ) and the time to acknowledge
the success of the swapping, i.e., 2N−1T0; both divided by the
probability of successful swapping in the N th nesting level

1
PES(N) . Note that the factor 3

2 is an approximation for small

probabilities. The first part [ 3
2τD(kN−1,N − 1)T0] corresponds

to the average time to generate two pairs after kN−1 rounds
of distillation in the (N − 1)th nesting level. The last line
[Eq. (7c)] concludes the recurrence formula: We need the time
3
2τD(kN − 1,N )T0 to generate two pairs for the kN th round
of distillation. As distillation is performed over distance L

2N ,
the acknowledgment time is 2NT0. Both terms are divided
by the probability of success for entanglement distillation
[P D

D (kN,N )].
We present the analytic solution of the recurrence formula

in Eq. (7) in Appendix Eq. (A2).

2. The Dür et al. protocol

The repeater rate for the Dür et al. protocol differs from the
repeater rate for the Deutsch et al. protocol as the entanglement
distillation process works in a sequential way, i.e., the auxiliary
pair for each distillation round is always the same (see Fig. 3).
As the swapping process is the same in both distillation
protocols, Eqs. (8a) and (8b) are analogous to Eqs. (7a)
and (7b),

τDür(k0 = 0,N = 0) = 2

P0
, (8a)

τDür(kN = 0,N > 0) = 1

PES(N )

[
3

2
τDür(kN−1,N − 1) + 2N−1

]
,

(8b)

τDür(kN > 0,N ) = 1

P Dür
D (kN,N )

[τDür(kN − 1,N )

+ τDür(0,N ) + 2N ]. (8c)

The third line [Eq. (8c)] differs from Eq. (7c). Equation (8c)
represents the time needed to distill a pair in the kN th round in
the N th nesting level. In the entanglement pumping protocol,
we start to produce the elementary pair ρ(kN = 0,N ) for
distillation when the pair to be distilled ρ(kN − 1,N ) is
present. Thus, we have to add the time for generating the
elementary pair τDür(0,N )T0 to the time for the pair to be
distilled τDür(kN − 1,N )T0. The repeater rate for the Dür et al.
protocol is then given by

RDür
Rep := 1

T0τDür(�k,N )
. (9)

We give an analytic solution of the recurrence formula in
Appendix Eq. (A3).

C. Number of memories

In this section, we describe the needed number of memories
at each half of the repeater station (see the black dots in Fig. 1).
The vector �k consists of the number kn of distillation rounds
in the nth nesting level, see Eq. (3). The number of memories
needed at half a node for the Deutsch et al. protocol is

MD = 2
∑

n kn , (10)

because, in each nesting level, the number of memories needs
to be increased by a factor of 2kn as the distillation for all
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FIG. 5. (Color online) (a) Optimal secret key rate per memory per second (bits per second) [Eq. (4)] for the distance L = 600 km. The
smallest secret key rate still depicted is chosen to be 10−10 secret bits per second per memory. In the white region, an extraction of a nonzero
secret key rate is not possible. The parameters for the optimal secret key rate per memory per second are as follows: (b) Distillation protocols:
Deutsch et al. protocol (blue, dark gray), Dür et al. protocol (green, medium gray), and no distillation (yellow, light gray). (c) Number of rounds
of distillation k (for the optimal distillation strategy). (d) Number of nesting levels N . (e) Distillation strategies: strategy α (nested distillation)
and strategy β (distillation only before the first entanglement swapping). (f) Number of used memories per repeater node.

nesting levels is performed in parallel. The superscript D
denotes the Deutsch et al. protocol.

The Dür et al. protocol works in a sequential way, so the
number of memories is

MDür = N + 2 − |{ki : ki = 0}|, (11)

where the set |{ki : ki = 0}| is the number of elements in �k that
are zero. Equation (11) for strategy α, i.e., �k = (k, k, . . . , k),
can be explained as follows: For nesting level N = 0, at most
two memories are needed for the distillation process (see
Fig. 3). The resulting pair ρ(k0,N = 0) at distance L0 after
k0 distillation rounds is stored in one memory, and the other
one is emptied. After swapping two neighboring pairs, we
have the pair ρ(0,N = 1) at the distance 2L0. For starting the
distillation process in this nesting level (N = 1), one needs
another pair ρ(0,N = 1), which is generated by the same
procedure as above, so two additional memories are needed.
In total, one needs three memories for N = 1. For strategy β,
i.e., �k = (k,0, . . . ,0), one just needs two memories where we
store the state during the gate operation.

IV. OPTIMAL SECRET KEY RATES:
COMPARING DIFFERENT DISTILLATION

PROTOCOLS AND STRATEGIES

A. Comparison of key rates (strategy α vs β)

We investigate how the Deutsch et al. and the Dür et al.
protocols perform under gate errors where we use the secret
key rates as a figure of merit.

In the following, we calculate the secret key rate divided
by the number of needed memories [see Eq. (4)]. The division
by the number of memories allows for a fair comparison when
considering the resources. For a fixed set of parameters F0

(initial fidelity) and pG (gate quality), we aim at finding
the optimal distillation protocol, the optimal number of
distillation rounds, the optimal number of nesting levels, the
best distillation strategy, and the minimal number of memories.
Note that, in the ideal case, i.e., for perfect detectors, we
assume the entanglement swapping to be deterministic, i.e.,
PES(N ) = 1.

We will consider two error models for the input states:
on one hand, depolarized states and on the other hand,
so-called binary states. The latter states are interesting as
they can be produced by the hybrid quantum repeater [23,41].
Additionally, in Ref. [3], it was mentioned that the binary state
given in Eq. (13) below has the optimal shape for the Dür et al.
protocol.

1. Input states: Depolarized states

In this section, we want to investigate the optimal secret
key rates [Eq. (4)] when we start with depolarized states, i.e.,

ρDep = F�|φ+〉 + 1 − F

3
(�|φ−〉 + �|ψ+〉 + �|ψ−〉). (12)

Optimization of the distillation protocols (Deutsch et al. or
Dür et al.), the number of nesting levels N , the number of
distillation rounds k, and the distillation strategy (α or β), lead
to the secret key rates depicted in Fig. 5(a). We point out that
we find the global maximum as we calculate Ki for all possible
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FIG. 6. (Color online) Expanded region from Fig. 5(f): Number
of memories that lead to the optimal secret key rate per second per
memory [see Eq. (4), L = 600 km].

combinations of parameters for the length L and then choose
the maximal value. The parameters leading to the optimal
secret key rates of Fig. 5(a) are shown in Figs. 5(b)–5(f). The
optimal distillation protocol is shown in Fig. 5(b). It is difficult
to find an intuitive explanation why, in certain regimes, either
the Deutsch et al. or the Dür et al. protocol is optimal; there are
many different effects, such as the repeater rates [see Eqs. (7)
and (8)], the number of memories, and the resulting state.
Figure 5(c) shows the optimal number of distillation rounds
(for the optimal distillation strategy) that lead to the secret
key rate per memory per second of Fig. 5(a). We find that,
for a wide range of parameters, it is enough to have k � 3
distillation rounds. The role of the optimal number of nesting
levels is treated in Fig. 5(d). We find that, with increasing gate
quality and initial fidelity, more nesting levels are optimal. In
Fig. 5(e), the optimal of the two distillation strategies (α) or (β)
is shown: For good gates and low fidelities, it is better to only
distill in the beginning, which would be experimentally less
demanding. We emphasize that, in this regime of parameters,
distillation in later nesting levels degrades the secret key rate.
From the previous plots, in Fig. 5(f), we calculate the minimal
number of memories needed to obtain the secret key rate in
Fig. 5(a).

Figure 6 provides a zoom of Fig. 5(f) into the region where
the secret key rate is on the order of bits per second. In the
black region, no distillation is optimal, therefore, we only need
one memory. For the number of memories M = 2 and M = 4,
the optimal protocol is the Deutsch et al. protocol, whereas,
for M = 6, the Dür et al. protocol becomes favorable. From
Eq. (10), we see that, in a single setup, the number of memories
is restricted to a power of 2 for the Deutsch et al. protocol. If
we want to use, e.g., M = 6 memories and the Deutsch et al.
protocol, we have to employ setups in parallel. We will treat
this subject in Sec. IV C2.

2. Input states: Binary states

We will now consider binary states, i.e., states of the form

ρBin = F |φ+〉〈φ+| + (1 − F )|φ−〉〈φ−|. (13)

We performed a complete analysis of this case, in analogy to
Sec. IV A1. The results of our investigation can be summarized

as follows:
(1) Different from the setup where we start with depolarized

states, it is possible to extract a nonzero secret key rate
per memory per second for the whole range of parameters
considered here, i.e., for 0.7 � F0 � 1 and 0.92 � pG � 1.
The largest value of the secret key rate per memory per second
using binary states is on the same order of magnitude as for
depolarized states.

(2) The region where the Dür et al. protocol is optimal
extends to lower initial fidelities, compared to Fig. 5(b), and
the largest value for the optimal rounds of distillation is k = 3.
Also, the region where no distillation is optimal increases.

(3) Due to the small optimal k, the maximal number of
memories decreases.
One would recommend the use of binary states when pG �
0.97 and F0 � 0.8 as then, the number of used memories is
smaller than for depolarized states and the secret key rate per
memory per second is nonzero.

B. The influence of the detector efficiency

In this section, we want to investigate the impact of
finite-efficiency detectors on the secret key rate. The detector
efficiency is given by the parameter ηd with 0 � ηd � 1 where
ηd = 1 corresponds to perfect detectors. For implementing the
detector efficiency in our formulas, we have to replace the
probability of successful distillation PD(k,n) and the proba-
bility of successful swapping in the nth nesting level PES(n)
in the equations for the repeater rate [Eqs. (6) and (9)] by

PD(k,n) → η2
dPD(k,n) (14a)

PES(n) → η2
dPES(n), (14b)

because the Bell measurement requires a twofold detector
click. Additionally, we have to multiply the secret key rate
[Eq. (4)] by a factor of η2

d , which accounts for the final
quantum key distribution measurement.

The only contribution of the detector efficiency in the
secret key rate is in the repeater rate. For simplicity, we will
consider the repeater rate without classical communication
for entanglement swapping and entanglement distillation [see
Eqs. (17) and (18) in Sec. V]. After replacing the probabilities
in the repeater rates by Eq. (14), the repeater rate scales with

η
2(N+∑

n kn)
d .

When analyzing different detector efficiencies, we made
the following observations:

(1) With decreasing ηd , the region where no distillation is
optimal increases such that, for ηd = 0.1, it is optimal to not
perform distillation for almost all parameters,

(2) with decreasing ηd , the optimal number of nesting levels
also decreases,

(3) with decreasing ηd , the region where the distillation
strategy β (distillation only in the beginning) is optimal
increases (see Fig. 7).
Figure 7 shows the optimal distillation strategies for the secret
key rate per memory per second with a detector efficiency
of ηd = 0.9. This can be compared to Fig. 5(e) where the
detectors are perfect, i.e., ηd = 1. We see that, for low initial
fidelities, the region where the distillation strategy β is optimal
increases.
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FIG. 7. (Color online) Distillation strategies with imperfect
detectors: strategy α (nested distillation strategy) and strategy β

(distillation only before the first entanglement swapping) that lead
to the optimal secret key rate per memory per second [Eq. (4),
L = 600 km and ηd = 0.9].

C. More general strategies

1. Distillation strategy γ

As mentioned in Sec. II B, we now lift the restriction that the
number of distillation rounds in each nesting level is the same.
For this purpose, we fix the parameters for the initial fidelity
F0 and the gate quality pG and vary the number of nesting
levels and the number of distillation rounds in each nesting
level. A result for the parameters F0 = 0.9 and pG = 0.96
is shown in Table I. There, we report the optimal distillation
vector �k, see Eq. (3), for the number of nesting levels up to
N = 4 and the corresponding secret key rate per memory per
second. We found the optimal �k by calculating the key rate
for all possible �k’s. For the given parameters, distillation only
in the beginning does not help. Comparing the values that
we achieved in Sec. IV A, i.e., only considering strategy α

[distillation vector �k = (k,k, . . . , k)] or β [�k = (k,0, . . . , 0)],
the optimal secret key rate for the given set of parameters
was 0.99 × 10−4 with N = 2, �k = (2,2,2) for the Dür et al.
protocol. Here, the best secret key rate is 3.03 × 10−4 for
N = 2, �k = (0,3,1) and the Deutsch et al. protocol. Thus, the
secret key rate is on the same of order of magnitude but can
be improved by a factor of 3.

Table II gives results for the parameters F0 = 0.97 and
pG = 0.99. The parameters that lead to the optimal secret
key rate per memory per second of K = 0.32 in Sec. IV A
are for the nesting level N = 3, distillation strategy β, and

TABLE I. Optimal secret key rate per memory per second
[Eq. (4)] and corresponding distillation vector �k [Eq. (3)] for the
different distillation protocols F0 = 0.9 and pG = 0.96.

Dür et al. protocol Deutsch et al. protocol

N K �k K �k
0 3.92 × 10−9 (0) 3.92 × 10−9 (0)
1 2.11 × 10−5 (0,2) 2.63 × 10−5 (0,1)
2 1.09 × 10−4 (2,3,2) 3.03 × 10−4 (0,3,1)
3 2.66 × 10−6 (3,4,5,5) 1.51 × 10−4 (0,3,3,1)
4 0 0 1.37 × 10−5 (0,3,3,3,1)

TABLE II. Optimal secret key rate per memory per second
[Eq. (4)] and corresponding distillation vector �k [Eq. (3)] for the
different distillation protocols F0 = 0.97 and pG = 0.99.

Dür et al. protocol Deutsch et al. protocol

N K �k K �k
0 7.97 × 10−9 (0) 7.97 × 10−9 (0)
1 9.64 × 10−4 (0,0) 9.64 × 10−4 (0,0)
2 0.19 (0,0,0) 0.19 (0,0,0)
3 0.57 (0,0,2,0) 0.73 (0,2,0,0)
4 0.96 (0,1,1,1,0) 0.88 (0,1,1,1,0)
5 0.62 (0,1,1,2,0,0) 0.54 (0,0,2,1,0,0)
6 0.34 (0,1,1,1,1,1,0) 0.2 (0,1,1,1,1,1,0)

�k = (2,0,0,0) using the Deutsch et al. protocol. In this ex-
ample, we see that, by allowing general distillation strategies,
the optimal secret key rate can be increased by increasing the
nesting level. In this example, different from above, the Dür
et al. protocol remains optimal.

Due to the computational complexity, we only calculated
the general distillation strategies for two specific set of
parameters (see Tables I and II). As the quantum repeater
exhibits a self-similar structure, dynamical programming was
used in Ref. [42] in order to optimize the average time to
create an entangled pair for a given final fidelity and distance.
The results and methods of Ref. [42] cannot be used for a
global optimization as we have found counterexamples where
the distillation vector consists of different numbers in each
nesting level (see, e.g., Table I for the Dür et al. protocol and
Table II).

We see that it is not trivial to make general statements
about the optimal number of rounds of distillation, regarding
the secret key rate. For implementations, one has to determine
the parameters of the experiment, i.e., F0 and pG, and then to
optimize the secret key rate for any specific set of parameters.

2. Optimal strategies for a fixed number
of memories allowing parallel setups

In Sec. III C, we have mentioned that, in the following, we
want to fix the number of memories and find which setup is
optimal. As the memories in the Deutsch et al. protocol are
restricted to a power of 2 (see Sec. III C), we also allow setups
working in parallel.

For calculating the optimal strategy for a fixed number
of memories M , we solve the following equation to get all
possible setups:

M∑
m=1

smm = M (15)

for sm ∈ N and 	M
m


 � sm � 0. The number sm denotes how
many setups using m memories work in parallel. For each
setup, we then proceed by calculating the optimal secret key
rate per second, i.e., mKm = r∞RRep. The index m for the
secret key rate K means that we restrict to distillation vectors
and nesting levels that solve Eqs. (10) and (11) for m memories.
The optimal vector �s = (s1, . . . , sM ), a solution of Eq. (15), is
found by maximizing the value

∑
m smmKm. The secret key
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TABLE III. Secret key rate per total number of used memories
[Eq. (16)] for the different distillation protocols and for a fixed
number of memories M . The optimal configurations are given
by the distillation vectors �kM = (k0, . . . ,kN ) with �kM denoting the
distillation strategy using M memories. The notation (�km, �km′ ) means
parallel setups using m and m′ memories. Parameters: F0 = 0.97 and
pG = 0.99.

Dür et al. protocol Deutsch et al. protocol

M K Configuration K Configuration

1 0.19 �k1 = (0,0,0) 0.19 �k1 = (0,0,0)
2 0.58 �k2 = (0,0,2,0) 0.58 �k2 = (0,0,1,0)
3 0.96 �k3 = (0,1,2,0,0) 0.45 (�k1,�k2)
4 0.82 �k4 = (0,1,1,1,0) 0.87 �k4 = (0,0,2,0,0)
5 0.81 (�k2,�k3) 0.73 (�k1,�k4)
6 0.96 (�k3,�k3) 0.78 (�k2,�k4)
7 0.89 (�k3,�k4) 0.69 (�k1,�k2,�k4)

rate of the total setup with a fixed number of memories M is,
thus, given by

K =

∑
m

smmKm

M
, (16)

with
∑

m smm = M . We will also compare this result to a
configuration of one setup with distillation vector �k [see
Eq. (3)], if possible. For the parameters F0 = 0.97 and pG =
0.99, we calculated the optimal �s to see if a parallel setup
was advantageous. In Sec. IV A, we showed that the optimal
number of memories is 4 using the Deutsch et al. protocol
for N = 3, �k = (2,0,0,0) with a secret key rate per memory
per second of K = 0.32. In Table III, we fixed the number of
memories and calculated the optimal key rate by optimizing
the remaining parameters. We find that, except for M = 4, the
secret key rate per memory per second is higher (or equal) for
the Dür et al. protocol.

V. IMPACT OF CLASSICAL COMMUNICATION
ON THE SECRET KEY RATE

In this section, we investigate the impact of the classical
communication time required for acknowledging the success
of entanglement swapping and entanglement distillation on
the secret key rate. First, we calculate the repeater rates
RRep,NC where we only consider the classical communication
for entanglement distribution. Then, we compare the optimal
secret key rates using the repeater rate without (RRep,NC) and
with classical communication (RRep) [see Eqs. (6) and (9)] and
discuss the differences.

The repeater rate for the Deutsch et al. protocol, with-
out the classical communication time due to entanglement
swapping and entanglement distillation, is given by (see, e.g.,
Refs. [5,30])

RD
Rep,NC = 1

2T0

(
2

3

)N+∑
n kn

P0

N∏
n=1

PES(n)
kn∏

i=0

P D
D (i,n), (17)
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FIG. 8. (Color online) The relative change [Eq. (20)] in the
optimal secret key rate per memory per second [Eq. (4)] without
and with the classical communication time (see text) in terms of the
initial fidelity F0 and gate quality pG (L = 600 km).

which is derived from the solution of the recurrence relation
in Eq. (7) by omitting all terms acknowledging the classical
communication time, i.e., the terms with 2N−1 and 2N [see
Appendix Eq. (A2)].

The corresponding repeater rate for the Dür et al. protocol
can be derived analogously by omitting terms in the recurrence
relation given in Eq. (8). This leads to

RDür
Rep,NC = P0

2T0

(
2

3

)N N∏
i=0

PES(i)

a(i)
, (18)

where

a(i) =
ki−1∏
j=0

P Dür
D (ki − j,i)−1 +

ki−1∑
m=0

m∏
j=0

P Dür
D (ki − j,i)−1,

(19)

and PES(0) = 1 (see Appendix A 2b for details).
For investigating the relevance of the classical communi-

cation time, we determine the relative change in the optimal
secret key rates with this classical communication K(RRep)
and without classical communication K(RRep,NC), i.e.,

�rel(K(RRep,NC),K(RRep)), (20)

with K being the optimal secret key rate per memory per
second [Eq. (4)]. The relative change �rel is defined by

�rel(a,b) := (a − b)/max{a,b}. (21)

We optimize both secret key rates over the same parameter set
as in Sec. IV.

Figure 8 shows the relative change in the optimal secret key
rate per second per memory. Depending on the parameters,
the secret key rate, without the classical communication time
K(RRep,NC), can be bigger by a factor of 2. This is the yellow
region in Fig. 8. By inspecting Fig. 5(a), the secret key rate
in this region is on the order of secret bits per second. Except
for some regions, the parameters leading to the optimal secret
key rate without and with the classical communication time
are almost the same.

In a previous paper [3], it was claimed that the main
contribution of the entanglement generation time (i.e., the
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inverse of the repeater rate) is the classical communication
time needed for acknowledging the success of entanglement
swapping and entanglement distillation. Here, we have seen
that this is not the case. Comparing the results given in Ref. [3],
we have found that the relative change [Eq. (20)] is not more
than 40% and both secret key rates are on the same order of
magnitude (distance L = 1280 km). We discovered that the
influence of nonperfect success probabilities for distillation
is substantial. Here, the entanglement generation time is 1
order of magnitude larger than in Ref. [3] where the success
probability of entanglement distillation was not considered
(parameters: F0 = 0.96 and pG = 0.995).

Note that, here, we consider the memories to be perfect.
Certainly, if the storage time of the memories is limited, such
an analysis might lead to other results.

VI. CONCLUSION

For given imperfect initial fidelities and imperfect gates, we
found the quantum repeater configurations (i.e., the distillation
protocol, distillation strategy, number of distillation rounds,
number of nesting levels, and number of memories) that lead
to the optimal secret key rate per memory per second. For this
purpose, we focused on a specific recurrence protocol (Deutsch
et al.) and an entanglement pumping protocol (Dür et al.).
We found that there exists a regime (pG � 0.99 and F0 �
0.8) of parameters where the entanglement pumping protocol
performs best. However, for lower initial fidelities, typically,
the recurrence protocol is favorable.

Regarding the distillation strategy [distilling with the same
number of rounds in each nesting level (strategy α) or distilling
only in the beginning (strategy β)], we have seen that, for some
parameters, strategy β, which is experimentally more feasible,
is optimal and that this region strongly depends on the detector
efficiency. We found that, with decreasing detector efficiency,
it is optimal to not distill. Lifting the restriction of an equal
number of distillation rounds in each nesting level for some
set of parameters (initial fidelity and gate quality), we have
found that the improvement of the secret rate is not more than
1 order of magnitude compared to distillation strategy α. We
also showed that increasing the number of repeater stations and
rounds of distillation does not necessarily lead to an increase
in the secret key rate.

We investigated the role of the form of the input states where
we used either a depolarized or a binary state. We found that the
secret key rate per memory per second for both forms is in the
same order of magnitude; the binary states have the advantage
that, for low fidelities and gate qualities, they provide a nonzero
secret key rate compared to a depolarized input state. Binary
states can be produced by the hybrid quantum repeater.

When fixing the number of memories for a specific set
of parameters, we investigated which distillation protocol is
optimal and found that setups working in parallel can be
advantageous.

Finally, we derived formulas for the generation rate of
entangled pairs per second (repeater rate) including the
classical communication times for acknowledging the success
of entanglement swapping and entanglement distillation. We

calculated the secret key rate per memory per second without
and with the classical communication time and found that the
main contribution is the time to distribute the entangled pairs,
which is contrary to the results in the literature.

Further studies could implement the formalism for the
quantum repeater in the context of finite keys (see, e.g., Ref. [4]
for a review) and for imperfect memories (see, e.g., Ref. [43]).
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APPENDIX: SOLUTIONS FOR THE
RECURRENCE FORMULAS

In this appendix, we give the solutions for the recurrence
formulas [Eqs. (7) and (8) in Sec. III B] that are needed for
calculating the repeater rate for the Deutsch et al. and the Dür
et al. protocols.

1. The Deutsch et al. protocol

We first solve the recurrence relation for Eq. (7c) and
terminate when kN = 0,

τD(kN,N ) = τD(0,N )

(
3

2

)kN kN−1∏
j=0

1

P D
D (kN − j,N )︸ ︷︷ ︸

=:α(N)

+ 2N

kN−1∑
i=0

(
3

2

)i i∏
j=0

1

P D
D (kN − j,N )︸ ︷︷ ︸

=:β(N)

. (A1)

Then, we replace τD(0,N ) by Eq. (7b), resulting in

τD(kN,N ) = α(N )

PES(N )

(
3

2
τD(kN−1,N − 1) + 2N−1

)
+ β(N ),

which is another recurrence relation depending on N . We can
now solve this relation until we reach τD(k0,0),

τD(kN,N ) = τD(k0,0)

(
3

2

)N N−1∏
j=0

α(N − j )

PES(N − j )

+
N∑

i=1

(
3

2

)N−i

2i−1
N−i∏
j=0

α(N − j )

PES(N − j )

+
N∑

i=1

(
3

2

)N−i

β(i)
N−(i+1)∏

j=0

α(N − j )

PES(N − j )
, (A2)

where we can replace τD(k0,0) by τD(0,0)α(0) + β(0) using
Eq. (A1).
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2. The Dür et al. protocol

a. Solution of the recurrence relation Eq. (8)

The solution of the recurrence relation in Eq. (8) is analogously given by

τDür(kN,N ) = τDür(0,N )

⎛
⎝kN−1∏

j=0

P Dür
D (kN − j,N )−1 +

kN−1∑
i=0

i∏
j=0

P Dür
D (kN − j,N )−1

⎞
⎠

︸ ︷︷ ︸
=:a(N)

+ 2N

⎛
⎝kN−1∑

i=0

i∏
j=0

P Dür
D (kN − j,N )−1

⎞
⎠

︸ ︷︷ ︸
=:b(N)

,

(A3)

where we use the convention that
∑−1

i=0 f (i) = 0 and∏−1
i=0 c(i) = 1. Now, inserting τDür(0,N ) = 3

2τDür(kN−1,N −
1) + 2N−1 into τDür(kN,N ) = τDür(0,N )a(N ) + b(N ) leads to
the recurrence relation,

τDür(kN,N ) = a(N )

PES(N )

(
3

2
τDür(kN−1,N − 1) + 2N−1

)

+ b(N ). (A4)

The solution of this relation is

τDür(kN,N ) = τ (k0,0)

(
3

2

)N N−1∏
j=0

a(N − j )

PES(N − j )

+
N∑

i=1

(
3

2

)N−i

2i−1
N−i∏
j=0

a(N − j )

PES(N − j )

+
N∑

i=1

(
3

2

)N−i

b(i)
N−(i+1)∏

j=0

a(N − j )

PES(N − j )
.

(A5)

We get the solution for τDür(k0,0) from Eq. (A3),

τDür(k0,0) = τDür(0,0)a(0) + b(0). (A6)

b. Derivation of the repeater rate without the classical
communication time for entanglement distillation and

entanglement swapping, Eq. (18)

For obtaining the solution for the recurrence relations with-
out classical communication time for entanglement distillation
and entanglement swapping, in Eq. (A3) we just set b(N ) = 0.
What remains from the solution is just the first term of Eq. (A5),
which is exactly

τDür
NC (kN,N ) = τDür

NC (k0,0)

(
3

2

)N N−1∏
j=0

a(N − j )

PES(N − j )
. (A7)

We replace τDür
NC (k0,0) by τDür(0,0)a(0) [see Eq. (A6)] and get

τDür
NC (kN,N ) = τDür(0,0)

(
3

2

)N N∏
j=0

a(N − j )

PES(N − j )
. (A8)

The repeater rate is given by

RDür
Rep,NC = 1

T0τ
Dür
NC (kN,N )

= P0

2T0

(
2

3

)N N∏
i=0

PES(i)

a(i)
, (A9)

where we used the fact that τDür(0,0) = 2
P0

.
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We analyze various prominent quantum repeater protocols in the context of long-distance quantum key
distribution. These protocols are the original quantum repeater proposal by Briegel, Dür, Cirac and Zoller, the
so-called hybrid quantum repeater using optical coherent states dispersively interacting with atomic spin qubits,
and the Duan-Lukin-Cirac-Zoller-type repeater using atomic ensembles together with linear optics and, in its
most recent extension, heralded qubit amplifiers. For our analysis, we investigate the most important experimental
parameters of every repeater component and find their minimally required values for obtaining a nonzero secret
key. Additionally, we examine in detail the impact of device imperfections on the final secret key rate and on the
optimal number of rounds of distillation when the entangled states are purified right after their initial distribution.

DOI: 10.1103/PhysRevA.87.052315 PACS number(s): 03.67.Hk, 03.67.Dd

I. INTRODUCTION

Quantum communication is one of the most exciting and
well developed areas of quantum information. Quantum key
distribution (QKD) is a subfield, where two parties, usually
called Alice and Bob, want to establish a secret key. For
this purpose, typically, they perform some quantum operations
on two-level systems, the qubits, which, for instance, can be
realized by using polarized photons [1–5].

Photons naturally have a long decoherence time and hence
could be transmitted over long distances. Nevertheless, recent
experiments show that QKD so far is limited to about 150 km
[6], due to losses in the optical-fiber channel. Hence, the
concept of quantum relays and repeaters was developed
[7–11]. These aim at entangling qubits over long distances
by means of entanglement swapping and entanglement dis-
tillation. There exist various proposals for an experimental
implementation, such as those based upon atomic ensembles
and single-rail entanglement [12], the hybrid quantum repeater
[13], the ion-trap quantum repeater [14], repeaters based on
deterministic Rydberg gates [15,16], and repeaters based on
nitrogen-vacancy (NV) centers in diamond [17].

In this paper, we analyze the performance of quantum
repeaters within a QKD setup for calculating secret key
rates as a function of the relevant experimental parameters.
Previous investigations on long-distance QKD either consider
quantum relays [9,11,18], which only employ entanglement
swapping without using quantum memories or entanglement
distillation, or, like the works in [19,20], they exclusively refer
to the original Duan-Lukin-Cirac-Zoller (DLCZ) quantum
repeater [12]. Finally, in [21] the authors analyze a variation
of the DLCZ protocol [22] where they consider, at most, one
repeater station. Here, our aim is to quantify the influence
of characteristic experimental parameters on the secret key
rate for three different repeater schemes, namely the original
quantum repeater protocol [7], the hybrid quantum repeater

*abruzzo@thphy.uni-duesseldorf.de

[13], and a recent variation of the DLCZ repeater [23]. We
investigate the minimally required parameters that allow a
nonzero secret key rate. In order to reduce the complexity of the
full repeater protocol, we consider entanglement distillation
only directly after the initial entanglement distribution. Within
this scenario, we investigate also the optimal number of
distillation rounds for a wide range of parameters. The
influence of distillation during later stages of the repeater, as
well as the comparison between different distillation protocols,
will be studied elsewhere [24].

This paper is organized as follows. In Sec. II we present a
description of the relevant parameters of a quantum repeater,
as well as the main tools for analyzing its performance for
QKD. This section should also provide a general framework
for analyzing other existing quantum repeater protocols and
for studying the performance and the potential of new proto-
cols. Sections III, IV, and V investigate long-distance QKD
protocols for three different quantum repeater schemes; these
sections can be read independently. Section III is devoted to the
original proposal for a quantum repeater [7], Sec. IV analyzes
the hybrid quantum repeater [13], and finally, in Sec. V, we
investigate quantum repeaters with atomic ensembles [12].
The conclusion is given in Sec. VI, and more details on the
calculations are presented in the Appendixes.

II. GENERAL FRAMEWORK

A. Quantum repeater

The purpose of this section is to provide a general
framework that describes formally the theoretical analysis of
a quantum repeater.

1. The protocol

Let L be the distance between the two parties Alice and Bob
who wish to share an entangled state. A quantum repeater [7]
consists of a chain of 2N segments of fundamental length
L0 := L/2N and 2N − 1 repeater stations which are placed
at the intersection points between two segments (see Fig. 1).

052315-11050-2947/2013/87(5)/052315(21) ©2013 American Physical Society



SILVESTRE ABRUZZO et al. PHYSICAL REVIEW A 87, 052315 (2013)

FIG. 1. Scheme of a generic quantum repeater protocol. We adopt
the nested protocol proposed in [7]. The distance between Alice
and Bob is L, which is divided into 2N segments, each having the
length L0 := L/2N . The parameter n describes the different nesting
levels, and the value N represents the maximum nesting level. In this
paper, we consider quantum repeaters where distillation is performed
exclusively before the first entanglement swapping step. The number
of distillation rounds is denoted by k.

Each repeater station is equipped with quantum memories and
local quantum processors to perform entanglement swapping
and, in general, also entanglement distillation. In consecutive
nesting levels, the distances over which the entangled states
are shared will be doubled. The parameter N is the maximal
nesting level.

The protocol starts by creating entangled states in all
segments, i.e., between two quantum memories over distance
L0. After that, if necessary, entanglement distillation is
performed. This distillation is a probabilistic process which
requires sufficiently many initial pairs shared over distance
L0. As a next step, entanglement swapping is performed at
the corresponding repeater stations in order to connect two
adjacent entangled pairs and thus gradually extend the entan-
glement. In those protocols where entanglement swapping is
a probabilistic process, the whole quantum repeater protocol
is performed in a recursive way as shown in Fig. 1. Whenever
the swapping is deterministic (i.e., it never fails), then all
swappings can be executed simultaneously, provided that no
further probabilistic entanglement distillation steps are to be
incorporated at some intermediate nesting levels for enhancing
the fidelities. Recall that in the present work, we do not
include such intermediate distillations in order to keep the
experimental requirements as low as possible. At the same
time it allows us to find analytical rate formulas with no need
for numerically optimizing the distillation-versus-swapping
scheduling in a fully nested quantum repeater.

2. Building blocks of the quantum repeater
and their imperfections

In this section we describe a model of the imperfections
for the main building blocks of a quantum repeater. In an
experimental setup more imperfections than those considered
in this model may affect the devices. However, most of them
can be incorporated into our model. We point out that if not
all possible imperfections are included, the resulting curves

for the figure of merit (throughout this paper: the secret key
rate) can be interpreted as an upper bound for a given repeater
protocol.

(a) Quantum channel. Let us consider photons (in the form
of single- or multiphoton pulses) traveling through optical
fibers.

Photon losses are the main source of imperfection. Other
imperfections like birefringence are negligible in our context
[8,25]. Losses scale exponentially with the length �; i.e., the
transmittivity is given by [8]

ηt (�) := 10− αatt �

10 , (1)

where αatt is the attenuation coefficient given in dB/km. The
lowest attenuation is achieved in the telecom wavelength range
around 1550 nm and it corresponds to αatt = 0.17 dB/km. This
attenuation is also used throughout the paper. Note that other
types of quantum channels, such as free space, can be treated
in an equivalent way (see, e.g., [26]). Further note that besides
losses, the effect of the quantum channel can be incorporated
into the form of the initial state shared between the connecting
repeater stations.

(b) Source of entanglement. The purpose of a source is to
create entanglement between quantum memories over distance
L0. An ideal source produces maximally entangled Bell states
(see below) on demand. In practice, however, the created state
may not be maximally entangled and may be produced in a
probabilistic way. We denote by ρ0 a state shared between two
quantum memories over the elementary distance L0 and by P0

the total probability to generate and distribute this state. This
probability would contain any finite local state-preparation
probabilities before the distribution, the effect of channel
losses, and the success probabilities of other processes, such
as the conditioning on a desired initial state ρ0 after the state
distribution over L0.

For improving the scaling over the total distance L from
exponential to subexponential, it is necessary to have a
heralded creation and storage of ρ0. How this heralding
is implemented depends on the particular protocol and it
usually involves a form of postprocessing, e.g., conditioning
the state on a specific pattern of detector clicks. This can
also be a finite postselection window of quadrature values
in homodyne detection. However, in the present work, the
measurements employed in all protocols considered here are
either photon-number measurements or Pauli measurements
on memory qubits.

(c) Detectors. We consider photon-number resolving de-
tectors (PNRDs) which can be described by a positive-operator
valued measure (POVM) with elements [27]

�(n) := ηn
d

∞∑
m=0

(
n + m

n

)
(1 − ηd)m |n + m〉 〈n + m| . (2)

Here, �(n) is the element of the POVM related to the detection
of n photons, ηd is the efficiency of the detector, and |n + m〉
is a state of (n + m) photons. In the POVM above, we
have neglected dark counts; we have shown analytically for
those protocols considered in this paper that realistic dark
counts of the order of 10−5 are negligible [see Appendix B,
below Eq. (B5), for the proof]. Note that our analysis could
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also be extended to threshold detectors, by replacing the
corresponding POVM (see, e.g., [27]) in our formulas.

(d) Gates. Imperfections of gates also depend on the par-
ticular quantum repeater implementation. Such imperfections
are described, e.g., in [28]. In our analysis, we characterize
them using the gate quality, which will be denoted by pG [see
Eqs. (19) and (24)].

(e) Quantum memories. Quantum memories are a crucial
part of a quantum repeater. A complete characterization of
imperfections of quantum memories is beyond the purpose
of this paper (see [29] for a recent review). Here we account
for memory errors by using a fixed time-independent quantum
memory efficiency ηm when appropriate. This is the probability
that a photon is released when a reading signal is applied
to the quantum memory, or, more generally, the probability
that an initial qubit state is still intact after write in, storage,
and readout. We discuss the role of ηm only for the quantum
repeater with atomic ensembles (see Sec. V).

(f) Entanglement distillation. As mentioned before,
throughout this work we only consider distillation at the
beginning of each repeater protocol. Entanglement distillation
is a probabilistic process requiring local multiqubit gates
and classical communication. In this paper, we consider
the protocol by Deutsch et al. [30]. This protocol performs
especially well when there are different types of errors (e.g.,
bit flips and phase flips). However, depending on the particular
form of the initial state and on the particular quantum repeater
protocol, other distillation schemes may perform better (see
[24] for a detailed discussion). The Deutsch et al. protocol
starts with 2k pairs, and after k rounds it produces one
entangled pair with higher fidelity than at the beginning. Every
round requires two controlled NOT (CNOT) operations, each
performed on two qubits at the same repeater station, and
projective measurements with postselection.

Distillation has two main sources of errors: imperfect
quantum gates which no longer permit to achieve the ideal
fidelity, as well as imperfections of the quantum memories and
the detectors, decreasing the success probability. We denote the
success probability in the ith distillation round by PD[i].

We study entanglement distillation for the original quantum
repeater protocol (Sec. III) and the hybrid quantum repeater
(Sec. IV). For the quantum repeater with atomic ensembles
(Sec. V), we do not consider any additional distillation on two
or more initial memory pairs.

(g) Entanglement swapping. In order to extend the initial
distances of the shared entanglement, entanglement swapping
can be achieved through a Bell measurement performed at
the corresponding stations between two adjacent segments.
Such a Bell measurement can be, in principle, realized
using a CNOT gate and suitable projection measurements on
the corresponding quantum memories [31]. An alternative
implementation of the Bell measurement uses photons released
from the quantum memories and linear optics [32]. The latter
technique is probabilistic, but typically much less demanding
from an experimental point of view.

We should emphasize that the single-qubit rotation de-
pending on the result of the Bell measurement, as generally
needed to complete the entanglement swapping step, is not
necessary when the final state is used for QKD applications.
In fact, it simply corresponds to suitable bit flip operations

on the outcomes of the QKD measurements; i.e., the effect
of that single-qubit rotation can be included into the classical
postprocessing.

Imperfections of entanglement swapping are characterized
by the imperfections of the gates (which introduce noise and
therefore a decrease in fidelity) and by the imperfections
of the measurement process, caused by imperfect quantum
memories and imperfect detectors. We denote the probability
that entanglement swapping is successful in the nth nesting
level by P

(n)
ES .

(h) Other imperfections. Other imperfections which are
not explicitly considered in this paper but which are likely
to be present in a real experiment include imperfections of the
interconversion process, fluctuations of the quantum channel,
fiber coupling losses, and passive losses of optical elements
(see [25] and references therein for additional details). These
imperfections can be accounted for by a suitable adjustment
of the relevant parameters in our model.

3. Generation rate of long-distance entangled pairs

In order to evaluate the performance of a quantum repeater
protocol it is necessary to assess how many entangled pairs
across distance L can be generated per second.

A relevant unit of time is the fundamental time needed
to communicate the successful distribution of an elementary
entangled pair over distance L0, which is given by

T0 := βL0

c
, (3)

where c = 2 × 105 km/s is the speed of light in the fiber
channel (see, e.g., [25]) and β is a factor depending on the
type of entanglement distribution. Note that here we have
neglected the additional local times needed for preparing and
manipulating the physical systems at each repeater station.
Figure 2 shows three different possibilities of how to model
the initial entanglement distribution. The fundamental time T0

consists of the time to distribute the photonic signals, Tdist, and
the time of acknowledgment, Tack , which all together can be
different for the three cases shown.

Throughout the paper, we denote the average number of
final entangled pairs produced in the repeater per second by
RREP. We emphasize that, regarding any figures and plots,
for each protocol, we are interested in the consumption of
time rather than spatial memories. Thus, if one wants to
compare different setups for the same number of spatial
memories, one has to rescale the rates such that the number of
memories becomes equal. For example, in order to compare
a protocol without distillation with another one with k rounds
of distillation, one has to divide the rates for the case with
distillation by 2k (as we need two initial pairs to obtain one
distilled pair in every round).

In the literature, two different upper bounds on the en-
tanglement generation rate RREP are known. In the case of
deterministic entanglement swapping (P (n)

ES = 1) we have [35]

Rdet
REP = [T0ZN (PL0 [k])]−1, (4)

with PL0 [i] being a recursive probability depending on the
rounds of distillation i as follows [35]:

PL0 [i = 0] = P0, (5)
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FIG. 2. (Color online) The fundamental time for different models
of entanglement generation and distribution. The source (S) that
produces the initial entangled states is either placed in the middle
(a), at one side (b), or at both sides (c). In the latter case, photons are
emitted from a source and interfere in the middle (see [33,34]).

PL0 [i > 0] = PD[i]

Z1(PL0 [i − 1])
. (6)

We remind the reader that PD[i] is the success probability in
the ith distillation round. Here,

ZN (P0) :=
2N∑
j=1

(
2N

j

)
(−1)j+1

1 − (1 − P0)j
(7)

is the average number of attempts to connect 2N pairs, each
generated with probability P0.

In the case of probabilistic entanglement swapping, proba-
bilistic entanglement distillation, and P0 � 1, we find an upper
bound on the entanglement generation rate,

R
prob
REP = 1

T0

(
2

3a

)N+k

P0P
(1)
ESP

(2)
ES · · ·P (N)

ES

k∏
i=1

PD[i], (8)

with a � 2
3PL0 [k]Z1(PL0 [k]). Our derivation is given in Ap-

pendix A. For the plots we bound a according to the occurring
parameters, typically a is close to one, which corresponds to
the approximate formula given in [25] for the case when there
is no distillation.

Equations (4) and (8) should be interpreted as a limiting
upper bound on the repeater rate, due to the minimal time
needed for communicating the quantum and classical signals.
For this minimal time, we consider explicitly only those
communication times for initially generating entanglement,

FIG. 3. Scheme of QKD. The state ρAB is produced using a
quantum repeater. Alice and Bob locally rotate this state in a
measurement basis and then they perform the measurement. The
detectors are denoted by dA

0 ,dA
1 ,dB

0 ,dB
1 and to each detector click a

classical outcome is assigned.

but not those for entanglement swapping and entanglement
distillation.

B. Quantum key distribution

1. The QKD protocol

In Fig. 3 a general QKD setup is shown. For long-distance
QKD, Alice and Bob will generate entangled pairs using the
quantum repeater protocol. For the security analysis of the
whole repeater-based QKD scheme, we assume that a potential
eavesdropper (Eve) has complete control of the repeater sta-
tions, the quantum channels connecting them, and the classical
channels used for communicating the measurement outcomes
for entanglement swapping and distillation (see Fig. 3). The
QKD protocol itself starts with Alice and Bob performing
measurements on their shared, long-distance entangled pairs
(see Fig. 3). For this purpose, they would both independently
choose a certain measurement from a given set of measurement
settings. The next step is the classical postprocessing and for
this an authenticated channel is necessary. First, Alice and Bob
discard those measurement outcomes where their choice of
the setting did not coincide (sifting), thus obtaining a raw key
associated with a raw key rate. They proceed by comparing
publicly a small subset of outcomes (parameter estimation).
From this subset, they can estimate the quantum bit error rate
(QBER), which corresponds to the fraction of uncorrelated
bits. If the QBER is below a certain threshold, they apply an
error correction protocol and privacy amplification in order to
shrink the eavesdropper’s information about the secret key (for
more details, see, e.g., [36]).

Various QKD protocols exist in the literature. Besides the
original QKD protocol by Bennett and Brassard from 1984,
the so-called BB84 protocol [37], the first QKD protocol
based upon entanglement was the Ekert protocol [1]. Shortly
thereafter the relation of the Ekert protocol to the BB84
protocol was found [38]. Another protocol which can also be
applied in entanglement-based QKD is the six-state protocol
[39,40].

2. The quantum bit error rate

In order to evaluate the performance of a QKD protocol,
it is necessary to determine the QBER. This is the fraction
of discordant outcomes when Alice and Bob compare a small
amount of outcomes taken from a specified measurement basis.
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This measurement can be modeled by means of four detectors
(two on Alice’s side and two on Bob’s side; see Fig. 3),
where to each detector click a classical binary outcome is
assigned. Particular care is necessary when multiphoton states
are measured [41,42]. In the following, we give the definition
of the QBER for the case of PNRDs and we refer to [20] for the
definition in the case of threshold detectors. The probability
that a particular detection pattern occurs is given by

P
(i)
jklm := tr

(
�

(j )
dA

0
�

(k)
dA

1
�

(l)
dB

0
�

(m)
dB

1
ρ

(i)
AB

)
, (9)

where the POVM �(n) has been defined in Eq. (2) with a
subscript denoting the detectors given in Fig. 3. The superscript
i refers to the measurement basis and ρ

(i)
AB represents the state

ρAB rotated in the basis i.
A valid QKD measurement event happens when one

detector on Alice’s side and one on Bob’s side click. The
probability of this event is given by [20]

P
(i)
click := P

(i)
1010 + P

(i)
0101 + P

(i)
0110 + P

(i)
1001. (10)

The probability that two outcomes do not coincide is given
by [20]

P (i)
err := P

(i)
0110 + P

(i)
1001. (11)

Thus, the fraction of discordant bits, i.e., the QBER for
measurement basis i is [20]

ei := P (i)
err

P
(i)
click

. (12)

For the case that ρAB is a two-qubit state, we find that the
QBER does not depend on the efficiency of the detectors, as
P

(i)
click = η2

d and P (i)
err ∝ η2

d.
If we assume a genuine two-qubit system1 like in the

original quantum repeater proposal (see Sec. III) or the
hybrid quantum repeater (see Sec. IV), without loss of
generality,2 the entangled state ρAB can be considered diagonal
in the Bell basis, i.e., ρAB = A|φ+〉〈φ+| + B|φ−〉〈φ−| +
C|ψ+〉〈ψ+| + D|ψ−〉〈ψ−|, with the probabilities A,B,C,D,
A + B + C + D = 1, and with the dual-rail3 encoded Bell
states4 |φ±〉 = (|1010〉 ± |0101〉)/√2 and |ψ±〉 = (|1001〉 ±
|0110〉)/√2 (we shall use the notation |φ±〉 and |ψ±〉 for the

1Note that the states of the DLCZ-type quantum repeaters (see
Sec. V) are only effectively two-qubit states when higher-order
excitations of the atom-light entangled states [12], or those of
the states created through parametric down-conversion [23], are
neglected.

2As proven in [43,44], it is possible to apply an appropriate local
twirling operation that transforms an arbitrary two-qubit state into
a Bell diagonal state, while the security of the protocol is not
compromised.

3In this paper, by dual-rail representation we mean that a single
photon can be in a superposition of two optical modes, thus
representing a single qubit. By single-rail representation we mean
that a qubit is implemented using only one single optical mode.
See [27] for additional details.

4The ket |abcd〉 is a vector in a Hilbert space of four modes and
the values of a, b, c, and d represent the number of excitations in the
Fock basis.

Bell basis in any type of encoding throughout the paper). Then
the QBER along the directions X, Y , and Z corresponds to [6]

eX := B + D, eZ := C + D, eY := B + C. (13)

Throughout the whole paper X, Y , and Z denote the three
Pauli operators acting on the restricted Hilbert space of qubits.

3. The secret key rate

The figure of merit representing the performance of QKD
is the secret key rate RQKD, which is the product of the raw key
rate Rraw (see above) and the secret fraction r∞. Throughout
this paper, we use asymptotic secret key rates. The secret
fraction represents the fraction of secure bits that may be
extracted from the raw key. Formally, we have

RQKD := Rrawr∞ = RREPPclickRsiftr∞, (14)

where the sifting rate Rsift is the fraction of measurements
performed in the same basis by Alice and Bob. Throughout
the paper we use Rsift = 1, which represents the asymptotic
bound for Rsift when the measurement basis are chosen with
biased probability [45]. We point out that both RREP and r∞
are functions of the explicit repeater protocol and the involved
experimental parameters, as we discuss in detail later. Our aim
is to maximize the overall secret key rate RQKD. There will be
a trade-off between RREP and r∞, as the secret key fraction r∞
is an increasing function of the final fidelity, while the repeater
rate RREP typically decreases with increasing final fidelity.

Note that even though for the considered protocol we find
upper bounds on the secret key rate, an improved model (e.g.,
including distillation in later nesting levels or multiplexing
[46]) could lead to improved key rates.

The secret fraction represents the fraction of secure bits over
the total number of measured bits. We adopt the composable
security definition discussed in [47–49]. Here, composable
means that the secret key can be used in successive tasks
without compromising its security. In the following we
calculate secret key rates using the state produced by the
quantum repeater protocol.

In the present work, we consider only two QKD protocols,
namely the BB84 protocol and the six-state protocol, for which
collective and coherent attacks are equivalent [43,44] in the
limit of a large number of exchanged signals. The unique
parameter entering the formula of the secret fraction is the
QBER.

In the BB84 protocol only two of the three Pauli matrices
are measured. We adopt the asymmetric protocol where the
measurement operators are chosen with different probabilities
[45], because this leads to higher key rates. We call X the basis
used for extracting a key, i.e., the basis that will be chosen with
a probability of almost one in the measurement process, while
Z is the basis used for the estimation of the QBER. Thus, in
the asymptotic limit, we have Rsift = 1. The formula for the
secret fraction is [6]

rBB84
∞ := 1 − h(eZ) − h(eX), (15)

with h(p) := −p log2 p − (1 − p) log2(1 − p) being the bi-
nary entropy. This formula is an upper bound on the secret
fraction, which is achievable only for ideal implementations
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of the protocol; any realistic, experimental imperfection will
decrease this secret key rate.

In the six-state protocol we use all three Pauli matrices.
We call X the basis used for extracting a key, which will be
chosen with a probability of almost one, and both Y and Z

are the bases used for parameter estimation. In this case, the
formula for the secret fraction is given by [6,36]5

r6S
∞ : = 1 − eZh

(
1 + (eX − eY )/eZ

2

)

− (1 − eZ)h

(
1 − (eX + eY + eZ)/2

1 − eZ

)
− h(eZ).

(16)

C. Methods

The secret key rate represents the central figure of merit for
our investigations. We study the BB84 protocol, because it is
most easily implementable and can also be used for protocols,
where ρAB is not a two-qubit state, with help of the squashing
model [41,42]. Throughout the paper, we also report on results
of the six-state protocol if applicable. We evaluate Eq. (14)
exactly, except for the quantum repeater based on atomic
ensembles where we truncate the states and cut off the higher
excitations at some maximal number (see footnote 11 for the
details). For the maximization of the secret key rate, we have
used the numerical functions provided by Mathematica [50].

III. THE ORIGINAL QUANTUM REPEATER

In this section, we consider a general class of quantum
repeaters in the spirit of the original proposal by Briegel
et al. [7]. We analyze the requirements for the experimental
parameters such that the quantum repeater is useful in
conjunction with QKD. The model we consider in this section
is applicable whenever two-qubit entanglement is distributed
by using qubits encoded into single photons. This is the case,
for instance, for quantum repeaters based on ion traps or
Rydberg-blockade gates. We emphasize that we do not aim
to capture all peculiarities of a specific setup. Instead, our
intention is to present a fairly general analysis that can give
an idea of the order of magnitude, which has to be achieved
for the relevant experimental parameters. The error model we
consider is the one used in [7].

A. The setup

1. Elementary entanglement creation

The probability that two adjacent repeater stations (sepa-
rated by distance L0) share an entangled pair is given by

P0 := ηt (L0) , (17)

where ηt (�), as defined in Eq. (1), is the probability that a
photon is not absorbed during the channel transmission. In a

5Note that the formula for the six-state protocol is independent of the
choice of basis, when we assume the state of Alice and Bob ρAB to be
Bell diagonal. Then the secret fraction reduces to r6S

∞ = 1 − S(ρE)
with S(ρ) the von Neumann entropy and ρE is the eavesdropper’s
state.

specific protocol, P0 may contain an additional multiplicative
factor such as the probability that entanglement is heralded or
also a source efficiency. We assume that the state created over
distance L0 is a depolarized state of fidelity F0 with respect to
|φ+〉; i.e.,

ρ0 : = F0|φ+〉〈φ+|
+ 1 − F0

3
(|ψ+〉〈ψ+| + |ψ−〉〈ψ−| + |φ−〉〈φ−|). (18)

The fidelity F0 contains the noise due to an imperfect
preparation and the noise in the quantum channel. We have
chosen a depolarized state, because this corresponds to a
generic noise model and, moreover, any two-qubit mixed
quantum state can be brought into this form using local twirling
operations [51].

2. Imperfect gates

For the local qubit operations, such as the CNOT gates, we
use a generic gate model with depolarizing noise, as considered
in [7]. Thus, we assume that a noisy gate OBC acting upon two
qubits B and C can be modeled by

OBC(ρBC) = pGO ideal
BC (ρBC) + 1 − pG

4
1lBC, (19)

where O ideal
BC is the ideal gate operation and pG describes the

gate quality. Note that, in general, the noisy gates realized in an
experiment do not necessarily have this form; however, such
a noise model is useful for having an indication as to how
good the corresponding gates must be. Other noise models
could be analogously incorporated into our analysis. Further,
we assume that one-qubit gates are perfect.

3. Entanglement distillation

We consider entanglement distillation only before the
first entanglement swapping steps, right after the initial pair
distributions over L0. We employ the Deutsch et al.protocol
[30] which indeed has some advantages, as shown in the
analysis of [24]. In Appendix B2, we review this protocol and
we also present the corresponding formulas in the presence of
imperfections. We point out that when starting with two copies
of depolarized states, the distillation protocol will generate an
output state which is no longer a depolarized state, but instead
a generic Bell diagonal state. Distillation requires two-qubit
gates, which we describe using Eq. (19).

4. Entanglement swapping

The entanglement connections are performed through en-
tanglement swapping by implementing a (noisy) Bell measure-
ment on the photons stored in two local quantum memories.
We consider a Bell measurement that is deterministic in the
ideal case. It is implemented using a two-qubit gate with gate
quality pG [see Eq. (19)]. Analogous to the case of distillation,
starting with two depolarized states, at the end of the noisy Bell
measurement, we obtain generic Bell diagonal states. Also in
this case, it turns out that a successive depolarization decreases
the secret key rate and this step is therefore not performed in
our scheme.
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B. Performance in the presence of imperfections

The secret key rate Eq. (14) represents our central object of
study, as it characterizes the performance of a QKD protocol.
It can be written explicitly as a function of the relevant
parameters,

RO
QKD = RREP(L0,N,k,F0,pG,ηd)Pclick(ηd)

×Rsiftr∞(N,k,F0,pG), (20)

where RREP is given by Eq. (4) when ηd = 1 (because then
PES = 1) or by Eq. (8) if ηd < 1.6 The probability that
the QKD measurement is successful is given by Pclick = η2

d
and the secret fraction r∞ is given by either Eq. (15) or
Eq. (16), depending on the type of QKD protocol. For the
asymmetric BB84 protocol, we have Rsift = 1 (see Sec. II B).
The superscript O refers to the original quantum repeater
proposal as considered in this section. In order to have a
nonzero secret key rate, it is then necessary that the repeater
rate, the probability for a valid QKD measurement event, and
the secret fraction are each nonzero too. As typically RREP > 0,
Rsift > 0, and Pclick > 0, for RQKD > 0, it is sufficient to have
a nonzero secret fraction, r∞ > 0. The value of the secret
fraction does not depend on the distance, and therefore some
properties of this protocol are distance invariant.

Minimally required parameters. In this paragraph, we
discuss the minimal requirements that are necessary to be able
to extract a secret key; i.e., we specify the parameter region
where the secret fraction is nonzero. From the discussion in the
previous paragraph, we know that this region does not depend
on the total distance, but only on the initial fidelity F0, the
gate quality pG, the number of segments 2N , and the maximal
number of distillation rounds k. Moreover, note that even if
the secret fraction is not zero, the total secret key rate can be
very low (see below).

For calculating the minimally required parameters, we start
with the initial state in Eq. (18), we distill it k times (see the
formulas in Appendix B2), and then we swap the distilled state
2N − 1 times (see the formulas in Appendix B1). At the end,
a generic Bell diagonal state is obtained. Using Eq. (13) one
can then calculate the QBER, which is sufficient to calculate
the secret fraction.

Tables I and II show the minimally required values for F0

and pG for different maximal nesting levels N (i.e., different
numbers of segments 2N ) and different numbers of rounds of

6The supposed link between the effect of imperfect detectors
and the determinism of the entanglement swapping here assumes
the following. Any incomplete detection patterns that occur in the
Bell measurements due to imperfect detectors are considered as
inconclusive results and will be discarded. Conversely, with perfect
detectors, we assume that we always have complete patterns and thus
the Bell state discrimination becomes complete too. Note that this
kind of reasoning directly applies to Bell measurements in dual-rail
encoding, where the conclusive output patterns always have the same
fixed total number for every Bell state (namely, two photons leading
to twofold detection events), and so any loss of photons will result in
patterns considered inconclusive. In single-rail encoding, the situation
is more complicated and patterns considered conclusive may be the
result of an imperfect detection.

TABLE I. Minimal initial fidelity F0 (pG is fixed to one) for
extracting a secret key with maximal nesting level N and number of
distillation rounds k for the BB84 and six-state protocols.

�
��N

k

0 1 2 3

BB84 6S BB84 6S BB84 6S BB84 6S

0 0.835 0.810 0.733 0.728 0.671 0.669 0.620 0.614
1 0.912 0.898 0.821 0.818 0.742 0.740 0.669 0.664
2 0.955 0.947 0.885 0.884 0.801 0.800 0.713 0.709
3 0.977 0.973 0.929 0.928 0.849 0.848 0.752 0.749
4 0.988 0.987 0.957 0.957 0.887 0.887 0.788 0.785
5 0.994 0.993 0.975 0.975 0.917 0.917 0.819 0.818
6 0.997 0.997 0.985 0.985 0.939 0.939 0.847 0.846
7 0.999 0.998 0.992 0.992 0.956 0.956 0.872 0.870

distillation k. Throughout these tables, we can see that for the
six-state protocol, the minimal fidelity and the minimal gate
quality pG are lower than for the BB84 protocol. Our results
confirm the intuition that the larger the number of distillation
rounds, the smaller the affordable initial fidelity can be (at the
cost of needing higher gate qualities).

In Fig. 4, the lines represent the values of the initial infidelity
and the gate error for a specific N that allow for extracting a
secret key. As shown in Fig. 4, any lower initial fidelity requires
a correspondingly higher gate quality and vice versa. Note that
above the lines in Fig. 4 it is not possible to extract a secret
key.

The secret key rate. In this section, we analyze the influence
of the imperfections on the secret key rate; see Eq. (20).

In Fig. 5 we illustrate the effect of gate imperfections on the
secret key rate for different numbers of rounds of distillation
and for a fixed distance, initial fidelity, and maximal number of
nesting levels. Throughout this whole section, we use β = 2
in Eq. (3) for the fundamental time, which corresponds to
the case where a source is placed at one side of an elementary
segment (see Fig. 2). The optimal number of distillation rounds
decreases as pG increases. We see from the figure that k = 2 is
optimal when pG = 1. This is due to the fact that from k = 1
to k = 2, the raw key rate decreases by 40%, but the secret
fraction increases by 850%. However, from k = 2 to k = 3,
the raw key rate decreases once again by 40%, but now the

TABLE II. Minimal pG (F0 is fixed to one) for extracting a secret
key with maximal nesting level N and number of distillation rounds
k for the BB84 and six-state protocols.

�
��N

k

0 1 2 3

BB84 6S BB84 6S BB84 6S BB84 6S

0 0.800 0.773 0.869 0.860 0.891 0.884
1 0.780 0.748 0.922 0.910 0.942 0.937 0.947 0.942
2 0.920 0.908 0.965 0.960 0.973 0.970 0.974 0.972
3 0.965 0.959 0.984 0.981 0.987 0.986 0.987 0.986
4 0.984 0.981 0.992 0.991 0.994 0.993 0.994 0.993
5 0.992 0.991 0.996 0.995 0.997 0.997 0.997 0.997
6 0.996 0.995 0.998 0.998 0.999 0.998 0.999 0.998
7 0.998 0.998 0.999 0.999 0.999 0.999 0.999 0.999
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FIG. 4. (Color online) Original quantum repeater and the BB84
protocol: Maximal infidelity (1 − F0) as a function of gate error (1 −
pG), making it possible to extract a secret key for various maximal
nesting levels N and numbers of distillation rounds k (parameter:
L = 600 km).

secret fraction increases only by 141%. In this case, the net
gain is smaller than 1 and therefore three rounds of distillation
do not help to increase the secret key rate compared to the
case of two rounds. In other words, what is lost in terms of
success probability when having three probabilistic distillation
rounds is not added to the secret fraction. For a decreasing pG,
more rounds of distillation become optimal. The reason is that
when the gates become worse, additional rounds of distillation
make it possible to increase the secret key rate sufficiently to
compensate the decrease of RREP.

In Fig. 6 we show the optimal number of rounds of
distillation k as a function of the imperfections of the gates
and the initial fidelity. It turns out that when the experimental
parameters are good enough, then distillation is not necessary
at all.

Let us now investigate the secret key rate Eq. (20) as a
function of the distance L between Alice and Bob. In Fig. 7
the secret key rate for the optimal number of distillation rounds
versus the distance for various nesting levels is shown for a
fixed initial fidelity and gate quality. These curves should be
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FIG. 5. (Color online) Original quantum repeater and the BB84
protocol: Secret key rate Eq. (20) versus gate quality pG for different
rounds of distillation k. The case k = 0 leads to a vanishing secret
key rate (parameters: F0 = 0.9, N = 2, L = 600 km).
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FIG. 6. (Color online) Original quantum repeater and the BB84
protocol: Number of distillation rounds k that maximizes the secret
key rate as a function of gate quality pG and initial fidelity F0. In the
white area, it is no longer possible to extract a secret key (parameters:
N = 2, L = 600 km).

interpreted as upper bounds; when additional imperfections
are included, the secret key rate will further decrease. We see
that for a distance of more than 400 km, the value N = 4
(which corresponds to 16 segments) is optimal. Note that with
the initial fidelity and gate quality assumed here, it is no longer
possible to extract a secret key for N = 5.

In many implementations, detectors are far from being
perfect. The general expression of the raw key rate including
detector efficiencies ηd becomes

Rraw = 1

T0
Rsift

(
2

3

)N+k

η
2(k+N+1)
d P0

k∏
i=1

PD[i], (21)

using Eq. (14) with the repeater rate RREP given by Eq. (8). The
term η2k

d arises from the twofold detections for the distillation,
and, similarly, η2N

d comes from the entanglement swapping
and η2

d from the QKD measurements.
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FIG. 7. (Color online) Original quantum repeater and the BB84
protocol: Optimal secret key rate Eq. (20) versus distance for different
nesting levels, with and without perfect detectors. For each maximal
nesting level N , we have chosen the optimal number of distillation
rounds k. A nesting level N � 5 no longer permits to obtain a nonzero
secret key rate (parameters: F0 = 0.9 and pG = 0.995).
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In Fig. 7 we observe that even if detectors are imperfect, it is
advantageous to do the same number of rounds of distillation
as for the perfect case. This is due to the fact that the initial
fidelity is so low that even with a lower success probability, the
gain in the secret fraction produces a net gain greater than 1.

For realistic detectors, the dark count probability is much
smaller than their efficiency. We show in Appendix B that,
provided that the dark count probability is smaller than 10−5,
dark counts can be neglected. This indeed applies to most
modern detectors [52].

IV. THE HYBRID QUANTUM REPEATER

In this section, we investigate the so-called hybrid quantum
repeater (HQR) introduced by van Loock et al. [13] and
Ladd et al. [53]. In this scheme, the resulting entangled pairs
are discrete atomic qubits, but the probe system (also called
qubus) that mediates the two-qubit entangling interaction
is an optical mode in a coherent state. The scheme does
not only employ atoms and light at the same time, but it
also uses both discrete and continuous quantum variables;
hence, the name hybrid. The entangled pair is conditionally
prepared by suitably measuring the probe state after it has
interacted with two atomic qubits located in the two spatially
separated cavities at two neighboring repeater stations. Below
we consider a HQR where the detection is based on an
unambiguous state discrimination (USD) scheme [54,55]. In
this case, arbitrarily high fidelities can be achieved at the
expense of low probabilities of success.

A. The setup

1. Elementary entanglement creation

Entanglement is shared between two electronic spins (such
as 
 systems effectively acting as two-level systems) in
two distant cavities (separated by L0). The entanglement
distribution occurs through the interaction of the coherent-
state pulse with both atomic systems. The coherent-state
pulse and the cavity are in resonance, but they are detuned
from the transition between the ground state and the excited
state of the two-level system. This interaction can then be
described by the Jaynes-Cummings interaction Hamiltonian
in the limit of large detuning, Hint = h̄χZa†a, where χ is
the light-atom coupling strength, a (a†) is the annihilation
(creation) operator of the electromagnetic field mode, and
Z = |0〉〈0| − |1〉〈1| is the Z operator for a two-level atom
(throughout this section, |0〉 and |1〉 refer to the two Z Pauli
eigenstates of the effective two-level matter system and not
to the optical vacuum and one-photon Fock states). After the
interaction of the qubus in state |α〉 with the first atomic state,
which is initially prepared in a superposition, the output state
is Uint[|α〉(|0〉 + |1〉)/√2] = (|αe−iθ/2〉|0〉 + |αeiθ/2〉|1〉)/√2,
with θ = 2χt an effective light-matter interaction time inside
the cavity. The qubus probe pulse is then sent through the lossy
fiber channel and interacts with the second atomic qubit also
prepared in a superposition. Here we consider the protocol
of [55], where linear optical elements and photon detectors are
used for the unambiguous discrimination of the phase-rotated
coherent states. Different from [55], however, we use imperfect
PNRDs, as described by Eq. (2), instead of threshold detectors.

FIG. 8. (Color online) Schematic diagram for the entanglement
generation by means of a USD measurement following [55]. The
two quantum memories A and B are separated by a distance L0.
The part on the left side (an intermediate Alice) prepares a pulse
in a coherent state |α〉a (the subscript refers to the corresponding
spatial mode). This pulse first interacts with her qubit A and is then
sent to the right side together with the local oscillator pulse (LO).
The part on the right side (an intermediate Bob) receives the state
|√ηtα〉b1 and produces from the LO through beam splitting a second
probe pulse |√ηtα〉b2 , which interacts with his qubit B. He further
applies a 50:50 beam splitter to the pulses in modes b1 and b2, and a
displacement D(−√

2ηtα cos θ/2) = e−√
2ηt α cos θ/2(a†−a) to the pulse

in mode b4. The entangled state is conditionally generated depending
on the results of detectors D1 and D2. The fiber attenuation ηt (L0)
has been defined in Eq. (1).

By performing such a USD measurement on the probe state,
as illustrated in Fig. 8, the following entangled state can be
conditionally prepared,

ρ0 := F0|φ+〉〈φ+| + (1 − F0)|φ−〉〈φ−|, (22)

where we find F0 = [1 + e−2(1+ηt (1−2ηd ))α2 sin2(θ/2)]/2 for α real,
ηt (L0) is the channel transmission given in Eq. (1), and ηd is
the detection efficiency (see Sec. II A2). Our derivation of
the fidelity F0 can be found in Appendix C1. Note that the
form of this state is different from the state considered in
Sec. III. It is a mixture of only two Bell states, since the two
other (bit flipped) Bell states are filtered out through the USD
measurement. The remaining mixedness is due to a phase flip
induced by the coupling of the qubus mode with the lossy
fiber environment. We find the optimal probability of success
to generate an entangled pair in state ρ0,

P0 = 1 − (2F0 − 1)
ηt ηd

1+ηt (1−2ηd ) , (23)

which generalizes the formula for the quantum mechanically
optimal USD with perfect detectors, as given in [54], to the case
of imperfect PNRDs. We explain our derivation of Eq. (23) in
Appendix C1. 7

2. Entanglement swapping

A two-qubit gate is essential to perform entanglement swap-
ping and entanglement distillation. In the HQR a controlled-Z

7One may also measure the qubus using homodyne detection [13].
However, for this scheme, final fidelities would be limited to F0 <

0.8 for L0 = 10 km [13], whereas by using USD, we can tune the
parameters for any distance L0, such that the fidelity F0 can be chosen
freely and, in particular, made arbitrarily close to unity at the expense
of the success probability dropping close to zero [54].
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(CZ) gate operation can be achieved by using dispersive
interactions of another coherent-state probe with the two input
qubits of the gate. This is similar to the initial entanglement
distribution, but this time without any final measurement
on the qubus [56]. Controlled rotations and uncontrolled
displacements of the qubus are the essence of this scheme. The
controlled rotations are realized through the same dispersive
interaction as explained above. In an ideal scheme, after a
sequence of controlled rotations and displacements on the
qubus, the qubus mode will automatically disentangle from
the two qubits and the only effect will be a sign flip on the |11〉
component of the input two-qubit state (up to single-qubit
rotations), corresponding to a CZ gate operation. Thus, this
gate implementation can be characterized as measurement-free
and deterministic. Using this gate, one can then perform a fully
deterministic Bell measurement (i.e., one is able to distinguish
between all four Bell states), and consequently, the swapping
occurs deterministically (i.e., PES ≡ 1).

In a more realistic approach, local losses will cause errors in
these gates. Following [57], after dissipation, we may consider
the more general, noisy two-qubit operation OBC acting upon
qubits B and C,

OBC(ρBC) = O ideal
BC

{
p2

c (x)ρBC

+pc(x)[1 − pc(x)](ZBρBCZB + ZCρBCZC)

+ [1 − pc(x)]2ZBZCρBCZCZB
}
, (24)

where

pc(x) := 1 + e−x/2

2
(25)

is the probability for each qubit to not suffer a Z error, and

x := π
1−p2

G√
pG(1+pG) ; here pG is the local transmission parameter

that incorporates photon losses in the local gates.8 We
derive explicit formulas for entanglement swapping including
imperfect two-qubit gates in Appendix C2.

3. Entanglement distillation

For the distillation, the same two-qubit operation as
described above in Eq. (24) can be used. It is then interesting
to notice that if we start with a state given in Eq. (22), after one
round of imperfect distillation, the resulting state is a generic
Bell diagonal state. The effect of gate errors in the distillation
step is derived in Appendix C3.9

B. Performance in the presence of imperfections

In the following, we only consider the BB84 protocol,
because it is experimentally less demanding and also because

8Note that this error model is considering a CZ gate operation. For
a CNOT gate, Z errors can be transformed into X errors.

9Note that we assume perfect qubit measurements for the distillation
and the swapping, but imperfect two-qubit gates. In principle, these
qubit measurements can be done using a local qubus and homodyne
measurement [54]. In this case, losses in the qubit measurement can
be absorbed into losses of the gates. On the other hand, if we consider
imperfect detectors for the qubit measurement then entanglement
swapping will succeed with probability given by Eq. (B5).
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FIG. 9. (Color online) Hybrid quantum repeater with perfect
quantum operations (pG = 1) and perfect detectors (ηd = 1) (black
lines) compared to imperfect quantum operations (pG = 0.995) and
imperfect detectors (ηd = 0.9) (orange lines): Secret key rate per
second Eq. (26) as a function of the initial fidelity for 23 segments
(N = 3) and various rounds of distillation k. The distance between
Alice and Bob is 600 km.

we found in our simulations that the six-state protocol produces
almost the same secret key rates, due to the symmetry of the
state in Eq. (22). The secret key rate per second for the HQR
can be written as a function of the relevant parameters:

RH
QKD = Rdet

REP(L0,N,k,F0,pG,ηd)

×Rsiftr
BB84
∞ (L0,N,k,F0,pG), (26)

where Rdet
REP is the repeater pair-creation rate for deterministic

swapping Eq. (4) described in Sec. II A3 and rBB84
∞ is

the secret fraction for the BB84 protocol Eq. (15). For the
asymmetric BB84 protocol, we have Rsift = 1 (see Sec. II B).
The superscript H stands for HQR. Note that the fundamental
time is T0 = 2L0

c
, as the qubus is sent from Alice to Bob

and then classical communication in the other direction is
used (see Sec. II A3 and Fig. 2). Further notice that the
final projective qubit measurements which are necessary for
the QKD protocol are assumed to be perfect. Thus, the
secret key rate presented here represents an upper bound and,
depending on the particular setup adopted for these measure-
ments, it should be multiplied by the square of the detector
efficiency.

The secret key rate. Figure 9 shows the secret key rate for
23 segments (N = 3) for various rounds of distillation. We
see from the figure that for the HQR the secret key rate is
not a monotonic function of the initial fidelity. The reason
is that increasing F0 decreases P0 [see Eq. (23)] and vice
versa. We find that the optimal initial fidelity, i.e., the fidelity
where the secret key rate is maximal, increases as the maximal
number of segments increases (see Table III). On the other
hand, examining the optimal initial fidelity as a function of the
distance, it turns out that it is almost constant for L > 100 km.
Thus, for such distances, it is neither useful nor necessary
to produce higher fidelities, because these would not make it
possible to increase the secret key rate.

We also observe that the maximum of the initial fidelity is
quite broad for small N , and gets narrower as N increases.
If we now consider perfect gates and perfect detectors, we
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TABLE III. Hybrid quantum repeater without imperfections
(pG = 1 and ηd = 1): Initial fidelity F0 that maximizes the secret
key rate in Eq. (26) for a given number 2N of segments and k rounds
of distillation.

�����N

k

0 1 2 3

1 0.898 0.836 0.765 0.705
2 0.946 0.876 0.788 0.715
3 0.972 0.907 0.812 0.726
4 0.986 0.931 0.834 0.741

see that by fixing a certain secret key rate, we can reach this
value with lower initial fidelities by performing distillation.
Furthermore, by distilling the initial entanglement, we can
even exceed the optimal secret key rate without distillation by
one order of magnitude. However, note that distillation for k

rounds requires 2k memories at each side. If we then assume
that we choose the protocol with no distillation and perform it
in parallel 2k times, i.e., we use the same amount of memories
as for the scheme including distillation, the secret key rate
without distillation (as shown in Fig. 9) should be multiplied
by 2k . As a result, the total secret key rate can then be even
higher than that obtained with distillation.

Let us now assess the impact of the gate and detector
imperfections on the secret key rate (orange lines) in Fig. 9. We
notice that pG has a large impact even if it is only changed by a
small amount, like here from pG = 1 to pG = 0.995; the secret
key rates drop by one order of magnitude. Imperfect detectors
are employed in the creation of entanglement. As we see in
Fig. 10, imperfect detectors do not affect the secret key rate
significantly. As for N = 3 and k = 0, improving the detector
efficiency from 0.5 to 1 leads to a doubling of the secret key
rate. We conclude that for the HQR, the final secret key rates
are much more sensitive to the presence of gate errors than
to inefficiencies of the detectors. However, recall that in our
analysis, we only take into account detector imperfections that
occur during the initial USD-based entanglement distribution.
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FIG. 10. (Color online) Hybrid quantum repeater with perfect
gates (pG = 1): The optimal secret key rate Eq. (26) for the BB84
protocol in terms of the detector efficiency ηd for the distance
L = 600 km with various numbers of segments 2N and rounds of
distillation k.
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FIG. 11. (Color online) Hybrid quantum repeater with distillation
and imperfections: Maximally allowed infidelity (1 − F0) as a
function of the local loss probability (1 − pG) for various maximal
numbers of segments 2N and rounds of distillation k (distance:
L = 600 km). Above the curves it is no longer possible to extract a
secret key. The lines with k = 0 correspond to entanglement swapping
without distillation.

For simplicity, any measurements on the memory qubits
performed in the local circuits for swapping and distillation are
assumed to be perfect, whereas the corresponding two-qubit
gates for swapping and distillation are modeled as imperfect
quantum operations (see footnote for more details).

Minimally required parameters. As we have seen in the pre-
vious section, it is also worth finding the minimal parameters
for F0 and pG, for which we can extract a secret key. Figure 11
shows the initial infidelity required for extracting a secret key
as a function of the local loss probability pG, which was
introduced in Sec. IV A2. We obtain also the minimal values
of the local transmission probability pmin

G,N without distillation
(solid lines in Fig. 11). If pG < pmin

G,N , then it is no longer
possible to extract a secret key. As shown in Fig. 11, these
minimal values (for which the minimal initial fidelity becomes
F0 = 1, without distillation) are pmin

G,1 = 0.853 (not shown in
the plot), pmin

G,2 = 0.948, pmin
G,3 = 0.977, and pmin

G,4 = 0.989 (not
shown in the plot). When including distillation, we can extend
the regime of nonzero secret key rate to smaller initial fidelities
at the cost of better local transmission probabilities. So there
is a trade-off: If we can produce almost perfect Bell pairs, that
is, initial states with high fidelities F0, we can afford larger
gate errors. Conversely, if high-quality gates are available, we
may operate the repeater with initial states having a lower
fidelity. Note that these results and Fig. 11 do not depend on
the length of each segment in the quantum repeater, but only
on the number of segments.

In Fig. 12 we plotted the optimal secret key rate for a fixed
local transmission probability pG and detector efficiency ηd in
terms of the total distance L. We varied the number of segments
2N and the number of distillation rounds k. We observe that a
high value of k is not always advantageous: There exists for
every N an optimal k, for which we obtain the highest key
rate. We see, for example, that for N = 1, the optimal choice
is k = 2, whereas for N = 3, the optimal k is 3. One can also
see that there are distances, where it is advantageous to double
the number of segments if one wants to avoid distillation, as,
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FIG. 12. (Color online) Hybrid quantum repeater with imperfect
quantum operations (pG = 0.995) and imperfect detectors (ηd =
0.9): Optimal secret key rate Eq. (26) for the BB84 protocol as a
function of the total distance L, for various numbers of segments 2N

and rounds of distillation k. For N = 5, it is not possible to obtain a
secret key when distillation is applied.

for example, for N = 3 and N = 4 at a distance of around
750 km.

V. QUANTUM REPEATERS BASED
ON ATOMIC ENSEMBLES

Probably the most influential proposal for a practical real-
ization of quantum repeaters was made in [12] and it is known
as the DLCZ protocol. These authors suggested to use atomic
ensembles as quantum memories and linear optics combined
with single-photon detection for entanglement distribution,
swapping, and (built-in) distillation. This proposal influenced
experiments and theoretical investigations and led to improved
protocols based on atomic ensembles and linear optics (see
[25] for a recent review).

To our knowledge, the most efficient scheme based on
atomic ensembles and linear optics was proposed very recently
by Minář et al. [23]. These authors suggest to use heralded
qubit amplifiers [58] to produce entanglement on demand
and then to extend it using entanglement swapping based on
two-photon detections. The state produced at the end of the
protocol no longer contains vacuum components and therefore
can be used directly for QKD. This is an improvement over
the original DLCZ protocol in which the final long-distance
pair is still contaminated by a fairly large vacuum term
that accumulates during the imperfect storage and swapping
processes.10

In this section, we first review the protocol proposed in
[23] and then we analyze the role of the parameters and the
performance in relation to QKD.

10Very recently it was shown that in the context of QKD over
continuous variables, an effective suppression of channel losses
and imperfections can also be achieved via a virtual, heralded
amplification on the level of the classical postprocessing [59,60].
In this case, it is not even necessary to physically realize a heralded
amplifier.

A. The setup

The protocol is organized in three logical steps. First,
local entanglement is created in a repeater station, then it is
distributed, and finally it is extended over the entire distance
[23].

As a probabilistic entangled-pair source we consider
spontaneous parametric down-conversion (SPDC) [61] which
produces the state (see [23,62])11

ρpair := (1 − p)
∞∑

m=0

2mpm

(m!)2(m + 1)
(B†)m|0〉〈0|Bm, (27)

where B† := (g†
H in†

H + g
†
V in†

V )/
√

2. The operator g
†
i (in†

i )
denotes a spatial mode with polarization given by i = H,V .
The pump parameter p is related to the probability to have an
n-photon pulse by P (n) = pn(1 − p).

A probabilistic single-photon source with efficiency q

produces states of the form

ρi
single := (1 − q) |0〉 〈0| + qa

†
i |0〉 〈0| ai, (28)

where a
†
i (ai) is the creation (annihilation) operator of a photon

with polarization i = H,V .
We also define by γrep the smallest repetition rate among

the repetition rates of the SPDC source and the single-photon
sources.

1. On-demand entanglement source

The protocol that produces local entangled pairs works as
follows (see Fig. 13 and [23] for additional details).

(1) The state ρpair ⊗ ρH
single ⊗ ρV

single is produced.
(2) The single photons, which are in the same spatial mode,

are sent through a tunable beam splitter of reflectivity R cor-
responding to the transformation ai → √

Rci + √
1 − Routi .

(3) The spatial modes in and c are sent through a linear-
optics network which is part of the heralded qubit amplifiers,
and the following transformations are realized,

cH → d3 + d4 + d2 − d1

2
,

cV → d3 + d4 − d2 + d1

2
,

inH → d2 + d1 + d3 − d4

2
,

inV → d2 + d1 − d3 + d4

2
,

where d1, d2, d3, d4 are four spatial modes, corresponding to
the four detectors.

(4) A twofold coincidence detection between d1 and d3

(or d1 and d4 or d2 and d3 or d2 and d4) projects the modes
g and out onto an entangled state. These are the heralding
events that acknowledge the storage of an entangled pair in the

11In our calculation, similar to [23], we consider only those terms
with m � 2. The reason is that the contribution to the total trace of
the first three terms is given by 1 − p3 and therefore for p < 0.1 the
state obtained by considering only the first three terms differs in a
negligible way from the full state.
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FIG. 13. (Color online) Quantum repeater based on atomic
ensembles: Setup for creation of on-demand entanglement (see also
[23]). The whole setup is situated at one physical location. A pair
source produces the state ρpair. One part of the pair (the mode g) is
stored in an atomic ensemble and the other part (mode in) goes into
a linear-optics network. A single-photon source produces the states
ρH

single and ρV
single which go through a beam splitter of reflectivity R.

The output modes of the beam splitter are called c and out . The
mode out is stored in a quantum memory and the mode c goes into a
linear-optics network which is composed of a polarizing beam splitter
in the diagonal basis ±45◦ (square with a circle inside), two polarizing
beam splitters in the rectilinear basis (square with a diagonal line
inside), and four detectors.

quantum memories out and g.The probability of a successful
measurement is given by

P s
0 (p,q,R,ηd)

= 4tr
(
�

(1)
d1

(ηd)�(0)
d2

(ηd)�(1)
d3

(ηd)�(0)
d4

(ηd)ρ ′
g,out,d1,d2,d3,d4

)
,

(29)

where ρ ′
g,out,d1,d2,d3,d4

is the total state obtained at the end of
step (iii) and the superscript s stands for source. The POVM for
the detectors has been defined in Eq. (2). The factor 4 accounts
for the fact that there are four possible twofold coincidences.
The resulting state is

ρs
0(p,q,R,ηd) = 4

P s
0

trd1,d2,d3,d4

(
�

(1)
d1

(ηd)�(0)
d2

(ηd)�(1)
d3

(ηd)

×�
(0)
d4

(ηd)ρ ′
g,out,d1,d2,d3,d4

)
. (30)

This is the locally prepared state that will be distributed
between the repeater stations. In the ideal case with perfect
detectors and perfect single-photon sources, the resulting state
(after a suitable rotation) is ρs

0 = |φ+〉〈φ+|, which can be
obtained with probability P s

0 = pR(1 − R). In the realistic
case, however, additional higher-order excitations are present.
In [23], the explicit form of ρs

0 and P s
0 can be found for the

case when 1 > R 
 p and 1 
 1 − q.
Therefore, we have seen that the protocol proposed in [23]

makes it possible to turn a probabilistic entangled-pair source
(SPDC in our case) into an on-demand entangled photon
source. In this context on-demand means that when a heralding
event is obtained then it is known for sure that an entangled
quantum state is stored in the quantum memories out and g.

FIG. 14. (Color online) Quantum repeater based on atomic
ensembles: Setup used for entanglement distribution (swapping)
(see [23] for additional details). The modes out and out ′ are released
from two quantum memories separated by distance L0 (or located at
the same station for the case of swapping) and sent into a linear-optics
network consisting of one polarizing beam splitter in the rectilinear
basis (square with diagonal line inside), two polarizing beam splitters
in the diagonal basis (square with circle inside), and four detectors.

2. Entanglement distribution and swapping

Once local entangled states are created, it is necessary to
distribute the entanglement over segments of length L0 and
then to perform entanglement swapping. Both procedures are
achieved in a similar way (see Fig. 14), as we describe in
this section. Entanglement distribution is done as follows (see
Fig. 14 and [23] for additional details).

(1) Each of the two adjacent stations create a state of the
form ρs

0. We call g and out the modes belonging to the first
station and g′ and out ′ the modes of the second station.

(2) The modes out and out ′ are read out from the quantum
memories and sent through an optical fiber to a central station
where a linear-optics network is used in order to perform
entanglement swapping. The transformations of the modes
are as follows:

outH → d3 + d4√
2

, outV → d1 − d2√
2

,

out′H → d1 + d2√
2

, out′V → d3 − d4√
2

,

where d1, d2, d3, and d4 are four spatial modes.
(3) A twofold coincidence detection between d1 and d3 (or

d1 and d4 or d2 and d3 or d2 and d4) projects the modes out

and out ′ onto an entangled state. The probability of this event
is given by

P0(p,q,R,ηd,ηmtd ) = 4tr
(
�

(1)
d1

(ηmtd )�(0)
d2

(ηmtd )�(1)
d3

(ηmtd )

×�
(0)
d4

(ηmtd )ρ ′
g,g′,d1,d2,d3,d4

)
, (31)

where ρ ′
g,g′,d1,d2,d3,d4

is the total state obtained at the end of step

(ii) and ηmtd := ηmηt (
L0
2 )ηd, with ηm being the probability that

the quantum memory releases a photon. The factor 4 accounts
for the fact that there are four possible twofold coincidences.
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The resulting state is

ρ0,g,g′ = 4

P0
trd1,d2,d3,d4

(
�

(1)
d1

(ηmtd )�(0)
d2

(ηmtd )

×�
(1)
d3

(ηmtd )�(0)
d4

(ηmtd )ρ ′
g,g′,d1,d2,d3,d4

)
. (32)

The state ρ0,g,g′ is the entangled state shared between
two adjacent stations over distance L0. In order to perform
entanglement swapping, the same steps as described above are
repeated until those two stations separated by distance L are
finally connected. Formally, the probability that entanglement
swapping is successful in the nesting level n is given by

P
(n)
ES (p,q,R,ηd,ηmtd ) = 4tr

(
�

(1)
d1

(ηmd )�(0)
d2

(ηmd )�(1)
d3

(ηmd )

×�
(0)
d4

(ηmd )ρ ′
n−1,g,g′,d1,d2,d3,d4

)
,

(33)

where ρ ′
n−1,g,g′,d1,d2,d3,d4

is the total state resulting from steps
(i) and (ii) described above in this section, and ηmd := ηmηd.

The swapped state is given by

ρk,g,g′ = 4

P
(i)
ES

trd1,d2,d3,d4

(
�

(1)
d1

(ηmd )�(0)
d2

(ηmd )

×�
(1)
d3

(ηmd )�(0)
d4

(ηmd )ρ ′
k−1,g,g′,d1,d2,d3,d4

)
. (34)

The state ρn,g,g′ is the state that will be used for QKD
when n = N . In a regime where higher-order excitations can
be neglected, the state ρn,g,g′ is a maximally entangled Bell
state. In [23] is given the expression of the state ρn,g,g′ under
the same assumptions on the reflectivity R and the efficiency
q of the single-photon sources as discussed regarding ρs

0 in
Eq. (30).

Given the final state ρAB := ρN,g,g′ it is possible to calculate
Pclick and the QBER, using the formalism of Sec. II B3 and
inserting ηmd for the detector efficiency.

The final secret key rate then reads

RAE
QKD = RREP(L0,p,N,ηd,ηm,γrep,q)Pclick(L0,p,N,ηd,ηm,q)

×Rsiftr
BB84
∞ (L0,p,N,ηd,ηm,q), (35)

where RREP is given by Eq. (8) with β = 1 for the communica-
tion time [see Fig. 2(c)]. As for the QKD protocol, we consider
the asymmetric BB84 protocol (Rsift = 1, see Sec. II B). The
superscript AE stands for atomic ensembles.

Note that even though for the explicit calculations we
used PNRD, the previous formulas hold for any type of
measurement.

B. Performance in the presence of imperfections

As in the previous sections, we shall focus on the secret
key rate. The free parameters are the pump parameter p and
the reflectivity of the beam splitter R. In all plots, we optimize
these parameters in such a way that the secret key rate is
maximized. As all optimizations have been done numerically,
our results may not correspond to the global maximum, but
only to a local maximum. In general, we observed that if
we treat the secret key rate as a function of p (calculated at
the optimal R), the maximum of the secret key rate is rather
narrow. On the other hand, when calculated as a function of R

(at the optimal p), this maximum is quite broad.
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FIG. 15. (Color online) Quantum repeaters based on atomic
ensembles: Optimal secret key rate per second versus the distance
between Alice and Bob. The secret key rate has been obtained by
maximizing over p and R. Ideal setup (solid line) with parameters
ηm = ηd = q = 1,γrep = ∞. More realistic setup (dashed line) with
parameters ηm = 1, ηd = 0.9, q = 0.96, γrep = 50 MHz.

The most favorable scenario (ideal case) is characterized by
perfect detectors (ηd = 1), perfect quantum memories (ηm =
1), and deterministic single-photon sources (q = 1) which can
emit photons at an arbitrarily high rate (γrep = ∞). In this case,
the heralded qubit amplifier is assumed to be able to create
perfect Bell states and the secret fraction therefore becomes
one. The only contribution to the secret key rate is then given
by the repeater rate. In Fig. 15 the optimal secret key rate
versus the distance, obtained by maximizing over p and R, is
shown (see solid lines).

For the calculation of Fig. 15, we have assumed that the
creation of local entanglement, i.e., of state ρs

0, is so fast that
we can neglect the creation time. In the case of SPDC, the
repetition rate of the source is related to the pump parameter
p and, moreover, the single-photon sources also have finite
generation rates that should be taken into account. For this
purpose, we introduce the photon-pair preparation time which
is given by T s

0 = 1
γrepP

s
0

[23]. The formula for the repeater
rate in this case corresponds to Eq. (8) with T0 → T0 + T s

0 .
As shown in Fig. 16, when ηd = 1 the secret key rate is
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FIG. 16. (Color online) Quantum repeaters based on atomic
ensembles: Optimal secret key rate per second versus the basic
repetition rate of the source γrep. The secret key rate has been obtained
by maximizing over p and R (parameters: ηd = ηm = q = 1).
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FIG. 17. (Color online) Quantum repeaters based on atomic
ensembles: Optimal secret key rate per second versus the efficiency
of the detectors ηd. The secret key rate has been obtained by
maximizing over p and R (parameters: ηm = q = 1, γrep = 50 MHz,
L = 600 km).

constant for γrep > 107; however, for realistic detectors with
ηd = 0.9, much higher repetition rates are required in order to
reach the asymptotic value. Nowadays, SPDC sources reach
a rate of about 100 MHz, whereas single-photon sources
have a repetition rate of a few MHz [52]. Recently, a new
single-photon source with repetition rate of 50 MHz has been
realized [63]. In the following, we employ γrep = 50 MHz.

A consequence of imperfect detectors is that multiphoton
pulses contribute to the final state. The protocol we are
considering here is less robust against detector inefficiencies
than the original DLCZ protocol. This is due to the fact that
successful entanglement swapping is conditioned on twofold
detection as compared to one-photon detection of the DLCZ
protocol. However, twofold detections make it possible to
eliminate the vacuum in the memories [25], thus increasing
the final secret key rate. As shown in Fig. 17, the secret key
rate spans four orders of magnitude as ηd increases from 0.7
to 1. Thus, an improvement of the detector efficiency causes a
considerable increase of the secret key rate. For example, for
N = 3, an improvement from ηd = 0.85 to ηd = 0.88 leads to
a threefold increase of the secret key rate. Notice that we have
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FIG. 18. (Color online) Quantum repeaters based on atomic
ensembles: Optimal secret key rate per second versus the probability
to emit a single photon. The secret key rate has been obtained
by maximizing over p and R (parameters: ηm = 1,γrep = 50 MHz,
L = 600 km).
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FIG. 19. (Color online) Quantum repeaters based on atomic
ensembles: Optimal value of p versus the distance between Alice
and Bob. The corresponding secret key rate is shown in Fig. 15
(parameters: ηm = 1, ηD = 0.9, q = 0.96, γrep = 50 MHz, L =
600 km).

considered photon detectors which are able to resolve photon
numbers. Photon detectors with an efficiency as high as 95%
have been realized [64]. These detectors work at the telecom
bandwidth of 1556 nm and they have negligible dark counts.
The drawback is that they need to operate at very low tem-
peratures of 100 mK. The reading efficiency of the quantum
memory ηm plays a similar role as the detector efficiency. In
accordance with [25], intrinsic quantum memory efficiencies
above 80% have been realized [65]; however, total efficiencies
where coupling losses are included are much lower.

A single-photon source is also characterized by its effi-
ciency, i.e., the probability q to emit a photon. As shown
in Fig. 18, we see that it is necessary to have single-photon
sources with high efficiencies, in particular, when detectors
are imperfect. The source proposed in [63] reaches q = 0.96.

In Fig. 15 we show the secret key rate as a function of
the distance between Alice and Bob for parameters (dashed
lines) which are optimistic in the sense that they could be
possibly reached in the near future. We observe that with an
imperfect setup and for N = 4, the realistic secret key rate
is by one order of magnitude smaller than the ideal value.
This decrease is mainly due to finite detector efficiencies. For
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FIG. 20. (Color online) Quantum repeaters based on atomic
ensembles: Optimal value of the reflectivity R versus the distance
between Alice and Bob. The corresponding secret key rate is shown
in Fig. 15 (parameters: ηm = 1, ηD = 0.9, q = 0.96, γrep = 50 MHz).
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N = 4, the secret key rate scales proportionally to η2
dη

2
dη

2·4
d η2

d
(local creation, distribution, entanglement swapping, and QKD
measurement). For ηd = 0.9, finite detector efficiencies lead
to a decrease of the secret key rate by 78%. Regarding the
optimal pump parameter p, we observe in Fig. 19 that for
large distances (L > 600 km) its value is about 0.15%. The
order of magnitude of this value is in agreement with the results
found in [20] regarding the original DLCZ protocol and the
BB84 protocol.

The optimal reflectivity R is given in Fig. 20. We observe
that as N increases, the optimal value of R has a modest
increase.

VI. CONCLUSIONS AND OUTLOOK

Quantum repeaters represent nowadays the most promising
and advanced approach to create long-distance entanglement.
Quantum key distribution is a developed technology which
has already reached the market. One of the main limitations of
current QKD is that the two parties have a maximal separation
of 150 km, due to losses in optical fibers. In this paper, we
have studied long-distance QKD by using quantum repeaters.

We have studied three of the main protocols for quantum
repeaters, namely, the original protocol, the HQR, and a varia-
tion of the so-called DLCZ protocol. Our analysis differs from
previous treatments, in which only final fidelities have been
investigated, because we maximize the main figure of merit for
QKD, the secret key rate. Such an optimization is nontrivial,
since there is a trade-off between the repeater pair-generation
rate and the secret fraction: The former typically decreases
when the final fidelity grows, whereas the latter increases when
the final fidelity becomes larger. Our analysis makes it possible
to calculate secret key rates under the assumption of a single
repeater chain with at most 2k quantum memories per half
station for respectively k distillation rounds occurring strictly
before the swappings start. The use of additional memories
when parallelizing or even multiplexing several such repeater
chains as well as the use of additional quantum error detection
or even correction will certainly improve these rates, but also
render the experimental realization much more difficult.

The comparison of different protocols is highly subjective,
as there are different experimental requirements and difficul-
ties for each of them; therefore, here we investigated the main
aspects for every protocol separately.

The general type of quantum repeater is a kind of prototype
for a quantum repeater based on the original proposal [7].
We have provided an estimate of the experimental parameters
needed to extract a secret key and showed what the role of each
parameter is. We have found that the requirement on the initial
fidelity is not so strong if distillation is allowed. However,
quantum gates need to be very good (errors of the order of 1%).

Further, we have studied the HQR. This protocol makes it
possible to perform both the initial entanglement distribution
and the entanglement swapping with high efficiencies. The
reason is that bright light sources are used for communication
and cavity quantum electrodynamics (CQED) interactions are
employed for the local quantum gates, making the swapping,
in principle, deterministic. Using PNRDs, we have derived
explicit formulas for the initial fidelity and the probability of
success for entanglement distribution. Furthermore, we have

found the form of the states after entanglement swapping
and entanglement distribution in the presence of gate errors.
We have seen that finite detector efficiencies do not play a
major role regarding the generation probability. This makes it
possible to have high secret key rates in a setup where it is
possible to neglect imperfections of the detectors. By studying
imperfect gates we found that excellent gates are necessary
(errors of the order of 0.1%).

Finally, we have considered repeaters with atomic en-
sembles and linear optics. There exist many experimental
proposals and therefore we have studied the scheme which
is believed to be the fastest [23]. This scheme uses heralded
qubit amplifiers for creating dual-rail encoded entanglement
and entanglement swapping based on twofold detection events.
In contrast to the previous two schemes, the Bell measurement
used for entanglement swapping is not able to distinguish
all four Bell states. We have characterized all common
imperfections and we have seen that using present technology,
the performance of this type of quantum repeater in terms
of secret key rates is only about one order of magnitude
different from the corresponding ideal setup. Thus, this scheme
seems robust against most imperfections. These types of
repeater schemes, as currently being restricted to linear optics,
could still be potentially improved by allowing for additional
nonlinear-optics elements. This may render the entanglement
swapping steps deterministic, similar to the HQR using CQED,
and thus further enhance the secret key rates.

For the protocols considered here, single-qubit rotations
were assumed to be perfect. Obviously, this assumption is
not correct in any realistic situation. However, most of these
single-qubit rotations can be replaced by simple bit flips of the
classical outcomes which are used when the QKD protocol
starts. Therefore, we see that in this case, specifically building
a quantum repeater for QKD applications permits to relax
the requirements on certain operations that otherwise must
be satisfied for a more general quantum application, such as
distributed quantum computation.

As an outlook our analysis can be extended in various
directions: In our work we have considered standard QKD,
in which Alice and Bob trust their measurement devices. To
be more realistic, it is possible to relax this assumption and
to consider device-independent quantum key distribution (DI-
QKD) [1–5]. An analysis of the performance of long-distance
DI-QKD can also be done using the methods that we developed
in this paper.

A possible continuation of our work is the analysis of
multiplexing [25,46]. It has been shown that this technique has
significant advantage in terms of the decoherence time required
by the quantum memories. On the other hand, it produces
only a moderate increase of the repeater rate [25,66,67].
Possible future analyses include the effect on the secret key
rate by distilling in all nesting levels [24] or by optimizing
the repeater protocol as done in Refs. [68,69]. Moreover, other
repeater protocols which are based on quantum error correction
codes [70–72] may help to increase the secret key rate.
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APPENDIX A: ADDITIONAL MATERIAL FOR THE
GENERAL FRAMEWORK

1. Generation rate with probabilistic entanglement swapping
and distillation

In this Appendix, we give the derivation of Eq. (8) in
Sec. II A2, which describes the generation rate of entangled
pairs per time unit T0 with probabilistic entanglement swap-
ping and distillation; i.e.,

R
prob
REP = 1

T0

(
2

3a

)N+k

P0P
(1)
ESP

(2)
ES · · ·P (N)

ES

k∏
i=1

PD[i]. (A1)

In [25] the formula has been derived only for the case without
distillation and there it reads as

R
prob
REP = 1

T0

(
2

3

)N

P0P
(1)
ESP

(2)
ES · · · P (N)

ES , (A2)

where P0 is the probability to generate a pair for entanglement
swapping. This formula was derived for small P0.

In order to incorporate distillation into Eq. (A2) we use the
definition of the recursive probability PL0 [k] given in Eq. (6);
see [35]. It describes the generation probability of an entangled
pair after k rounds of purification. If we choose an appropriate
a < 1 such that Z1(x) = 3−2x

x(2−x) � 3
2x

a, we can rewrite PL0 [k],

PL0 [k] = PD[k]

Z1(PL0 [k − 1])
� 2

3a
PD[k]PL0 [k − 1]

= 2

3a
PD[k]

PD[k − 1]

Z1(PL0 [k − 2])

� · · · �
(

2

3a

)k

P0

k∏
i=1

PD[i], (A3)

where in the last line PL0 [k] is a recursive formula. For deriving
Eq. (A1), we replace in Eq. (A2) P0 with PL0 and we use
Eq. (A3).

For the plots we have L = 600 km and usually ηd = 0.9,
which leads to PL0 [k] � 0.037 and a � 0.994.

APPENDIX B: ADDITIONAL MATERIAL FOR THE
ORIGINAL QUANTUM REPEATER

1. Entanglement swapping

In this Appendix we present the formulas of the state
after entanglement swapping and the distillation protocol.
Moreover, we bound also the role of dark counts in the
entanglement swapping probability.

(a) The protocol

We consider the total state ρab ⊗ ρcd . The entanglement
swapping algorithm consists of the following steps.

(1) A CNOT is applied on system b as source and c as target.

(2) One output system is measured in the computational
basis and the other one in the basis {|+〉 := |H 〉+|V 〉√

2
, |−〉 =

|H 〉−|V 〉√
2

}, obtained by applying a Hadamard gate.
(3) In the standard entanglement swapping algorithm,

a single qubit rotation depending on the outcome of the
measurement is performed. However, for the purpose of QKD
it is not necessary to do this single-qubit rotation.12 We
propose that Bob collects the results of the Bell measurements,
performs the standard QKD measurement and then he can
apply a classical bit flip depending on the QKD measurement
basis and on the Bell measurement outcomes.

(b) Formulas in the presence of imperfections

We consider a setup with two detectors d1 and d2.
We associate the detection pattern of these two detectors
with a two-dimensional Hilbert space, e.g., d1 = click, d2 =
noclick ⇒ |H 〉 = |1d1 ,0d2〉 and d1 = no click, d2 = click ⇒
|V 〉 = |0d1 ,1d2〉, where {|H 〉,|V 〉} are a basis of a two-
dimensional Hilbert space which can be, for example, identi-
fied with horizontal and vertical polarizations of a qubit. We
discard those events where there are no clicks or when both
detectors click. If the detectors are imperfect, we may have an
error in the detection of the quantum state. The POVM consists
of two elements �H (�V ) which detect mode |H 〉 (|V 〉):

�H := γ |H 〉 〈H | + (1 − γ ) |V 〉 〈V | , (B1)

�V := γ |V 〉 〈V | + (1 − γ ) |H 〉 〈H | , (B2)

with

γ := ηd + pdark(1 − ηd)

ηd + 2pdark(1 − ηd)
, (B3)

where pdark is the dark count probability of the detectors and
ηd is their efficiency.13

The POVM above has been used also in [7,73]; however,
the connection with the imperfections of the detectors was not
made.

12Note that this step is different from [7], where the single-qubit
rotations were explicitly included.
13The coefficient γ can be calculated as follows. The POVM for

having a click under the assumption of single-photon sources and
imperfect detectors is given by

E(click) = pdark |0〉 〈0| + (1 − (1 − pdark)(1 − ηd)) |1〉 〈1|
and that for no click is given by

E(noclick) = (1 − pdark) |0〉 〈0| + (1 − pdark)(1 − ηd) |1〉 〈1|.
When we say that the detector a clicked, and b did not click and we
discard the vacuum events, and those where both detectors clicked,
the POVM looks as follows:

E(click)
a ⊗ E

(noclick)
b

= [1 − (1 − pdark)(1 − ηd)] (1 − pdark) |1a,0b〉 〈1a,0b|
+ pdark(1 − pdark)(1 − ηd) |0a,1b〉 〈0a,1b| .

The trace is (1 − pdark)[ηd + 2pdark(1 − ηd)], which is exactly the
probability that we have this measurement. If we normalize this
measurement and relate it to the POVM in Eq. (B1), we get γ .
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If we start with the states ρab = ρcd = A|φ+〉〈φ+| + B|φ−〉〈φ−| + C|ψ+〉〈ψ+| + D|ψ−〉〈ψ−|, the resulting state after
entanglement swapping between a and d is still a Bell diagonal state with coefficients of the form [74]

A′ = 1 − pG

4
+ pG[γ 2(A2 + B2 + C2 + D2) + 2(1 − γ )2(AD + BC) + 2γ (1 − γ )(A + D)(C + B)],

B ′ = 1 − pG

4
+ pG[2γ 2(AB + CD) + 2(1 − γ )2(AC + BD) + γ (1 − γ )(A2 + B2 + C2 + D2 + 2AD + 2BC)],

(B4)
C ′ = 1 − pG

4
+ pG[2γ 2(AC + BD) + 2(1 − γ )2(AB + CD) + γ (1 − γ )(A2 + B2 + C2 + D2 + 2AD + 2BC)],

D′ = 1 − pG

4
+ pG[2γ 2(AD + BC) + (1 − γ )2(A2 + B2 + C2 + D2) + 2γ (1 − γ )(A + D)(B + C)],

and the probability to obtain the state above is equal to

PES(ηd,pdark) := {[1 − pdark][ηd + 2pdark(1 − ηd)]}2 , (B5)

which can be interpreted as the probability that entanglement
swapping is successful.14 Note that P (η,0) = η2 and P (1,0) =
1 as we expect. When we consider dark counts pdark < 10−5,
then these are negligible as (PES(0.1,10−5)/(PES(0.1,0)))N <

1.03N , so the impact on the secret key rate is minimal. Note
that we open the gates only for a short time window, which
is the interval of time where we expect the arrival of a photon.
The dark count probability pdark represents the probability
that in the involved time window the detector gets a dark
count.

2. Distillation

(a) The protocol

We assume that Alice and Bob hold two Bell diagonal states
ρa1,b1 and ρa2,b2 . The algorithm is as follows.

(1) In the computational basis, Alice rotates her particles
by π

2 about the X-axis, whereas Bob applies the inverse rotation
(−π

2 ) on his particles.
(2) Then they apply on both sides a CNOT operation, where

the states a1 (b1) serve as source and a2 (b2) as target.
(3) The states corresponding to the target are measured in

the computational basis. If the measurement results coincide,
the resulting state ρa1,b1 is a purified state; otherwise, the
resulting state is discarded. Therefore, this entanglement
distillation scheme is probabilistic.

(b) Formulas in the presence of imperfections

Given a Bell diagonal state with the coefficients

ρab = A|φ+〉〈φ+| + B|φ−〉〈φ−| + C|ψ+〉〈ψ+|
+D|ψ−〉〈ψ−|, (B6)

the coefficients transform according to the map [30]

A′ = 1

PD

(A2 + D2), (B7)

B ′ = 1

PD

(2AD) , (B8)

14This probability was derived by taking the probability of the
measurement in the preceding footnote squared, as we need two
coincident clicks for the Bell measurement.

C ′ = 1

PD

(B2 + C2), (B9)

D′ = 1

PD

(2BC) , (B10)

where PD is the probability that the measurement outcomes
are both the same for Alice and Bob, and thus the probability
of successful distillation is

PD[k] = (Ak−1 + Dk−1)2 + (Bk−1 + Ck−1)2 . (B11)

Including the gate quality pG, these formulas change to [74]

PD[k] = 1
2

{
1 + p2

G (−1 + 2Ak−1 + 2Dk−1)2
}
, (B12)

with

A′ = {
1 + p2

G

[
(A − B − C + D)(3A + B

+C + 3D) + 4(A − D)2
]}/

(8PD),

B ′ = {
1 − p2

G

[
A2 + 2A(B + C − 7D)

+ (B + C + D)2
]} /

(8PD),

C ′ = {
1 + p2

G

[
4(B − C)2 − (A − B

− C + D)(A + 3(B + C) + D)
]} /

(8PD),

D′ = {
1 − p2

G

[
A2 + 2A(B + C + D) + B2

+ 2B(D − 7C) + (C + D)2
]} /

(8PD).

APPENDIX C: ADDITIONAL MATERIAL FOR THE
HYBRID QUANTUM REPEATER

In this Appendix we derive the formula for successful
entanglement generation when PNRD are used for the mea-
surements. Moreover, we present the formulas for the states
after entanglement swapping and entanglement distillation.

1. Entanglement generation

The total state before the detector measurements is de-
scribed by [55]

ρAB,b3,b5 = p{[|0〉b3 (|00〉AB |β〉b5 + |11〉AB |−β〉b5 )/2

+ |0〉b5 (|01〉AB |−β〉b3 + |10〉AB |β〉b3 )/2] × H.c.}
+ (1 − p){[|0〉b3 (|00〉AB |β〉b5 − |11〉AB |−β〉b5 )/2

+ |0〉b5 (|01〉AB |−β〉b3 − |10〉AB |β〉b3 )/2] × H.c.},
(C1)
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where H.c. stays for the Hermitian conjugate of the previous
term, A (B) represents the qubit at Alice’s (Bob’s) side,
b3 is the coherent-state mode arriving at the detector D1,
b5 is the coherent-state mode arriving at the detector D2,
and β = i

√
2ηt sin (θ/2) [see Eq. (8)]. The probability of

error caused by photon losses in the transmission channel
is given by (1 − p), with p = (1 + e−2(1−ηt )α2 sin2 (θ/2))/2. It
is possible to observe from Eq. (C1) that whenever Bob
detects a click in either one of the detectors D1 or D2,
an entangled state has been distributed between qubits A

and B.
We discuss in the following the case that D1 and D2

are imperfect PNRD [see Eq. (2)]. When detector D1 does
not click and D2 clicks, the resulting state ρAB is then
given by

ρAB = trb3b5

(
�

(0)
b3

�
(n)
b5

ρAB,b3,b5

)
tr
(
�

(0)
b3

�
(n)
b5

ρAB,b3,b5

) , (C2)

with n > 0. The same result up to local operations can be
obtained in the opposite case (a click in detector D1 and no
click in detector D2).

Depending on the outcome of the detector, a local op-
eration maybe applied to change the resulting state into
the desired state. In this way, if the outcome is an even
number, nothing should be done; otherwise, a Z operation
should be applied. Following this, the resulting state can be
written as

ρ = F0|φ+〉〈φ+| + (1 − F0)|φ−〉〈φ−|,
where

F0 = [〈00|AB + (−1)n〈11|AB]√
2

ρA,B

[|00〉AB + (−1)n|11〉AB]√
2

= 1 + e−2[1+ηt (1−2ηd )]α2 sin2(θ/2)

2
. (C3)

The probability of success is calculated by adding all success-
ful events, and is given by

P0 =
∞∑

n=1

tr
(
�

(0)
b3

�
(n)
b5

ρAB,b3,b5 + �
(0)
b5

�
(n)
b3

ρAB,b3,b5

)
. (C4)

Combining Eqs. (C1) and (2) we obtain Eq. (23).

2. Entanglement swapping

The initial states used in the swapping operation are a full rank mixture of the Bell states, ρ0 := A|φ+〉〈φ+| + B|φ−〉〈φ−| +
C|ψ+〉〈ψ+| + D|ψ−〉〈ψ−|. After the connection, the resulting state will remain in the same form, A′|φ+〉〈φ+| + B ′|φ−〉〈φ−| +
C ′|ψ+〉〈ψ+| + D′|ψ−〉〈ψ−|, but with new coefficients:

A′ = 2BC + 2AD + 2[−2BC + A(B + C − 2D) + (B + C)D]pG + (A − B − C + D)2p2
G,

B ′ = 2AC + 2BD + [A2 + (B + C)2 − 4BD + D2 + 2A(−2C + D)]pG − (A − B − C + D)2p2
G,

(C5)
C ′ = 2AB + 2CD + [A2 + (B + C)2 − 4CD + D2 + 2A(−2B + D)]pG − (A − B − C + D)2p2

G,

D′ = A2 + B2 + C2 + D2 − 2[A2 + B2 + C2 − A(B + C) − (B + C)D + D2]pG + (A − B − C + D)2p2
G.

It is possible to see that A′ + B ′ + C ′ + D′ = 1, such that even for the case of imperfect connection operations, the swapping
occurs deterministically.

3. Entanglement distillation

We calculated also the effect of the gate error in the distillation step. Starting with two copies of states in the form of
ρ0 := A|φ+〉〈φ+| + B|φ−〉〈φ−| + C|ψ+〉〈ψ+| + D|ψ−〉〈ψ−|, the resulting state after one round of distillation is given by
A′|φ+〉〈φ+| + B ′|φ−〉〈φ−| + C ′|ψ+〉〈ψ+| + D′|ψ−〉〈ψ−|, where

A′ = 1

PD

(
D2 + A2[1 + 2(−1 + pG)pG]2 − 2A(−1 + pG)pG

[
C + 2D + 2(B − C − 2D)pG + 2(−B + C + 2D)p2

G

]
−2D(−1 + pG)pG{−2D − 2(C + D)(−1 + pG)pG + B[1 + 2(−1 + pG)pG]}) ,

B ′ = 1

PD

[−2
(
D(−1 + pG)pG

(
C + D + 2BpG − 2CpG − 2DpG − 2Bp2

G + 2Cp2
G + 2Dp2

G

)+ A2pG

(−1 + 3pG − 4p2
G + 2p3

G

)

−A
{
D

(
1 − 2pG + 2p2

G

)2 − (−1 + pG)pG

[ − 2C(−1 + pG)pG + B
(
1 − 2pG + 2p2

G

)]})]
,

C ′ = 1

PD

(
B2

(
1 − 2pG + 2p2

G

)2 − 2B(−1 + pG)pG

[ − 2A(−1 + pG)pG + D
(
1 − 2pG + 2p2

G

) + C
(
2 − 4pG + 4p2

G

)]

+C
{
C

(
1 − 2pG + 2p2

G

)2 − 2(−1 + pG)pG

[ − 2D(−1 + pG)pG + A
(
1 − 2pG + 2p2

G

)]})
,

D′ = 1

PD

{−2
(
C(−1 + pG)pG(C + D + 2ApG − 2CpG − 2DpG − 2Ap2

G + 2Cp2
G + 2Dp2

G

)+ B2pG

(−1 + 3pG − 4p2
G + 2p3

G

)

−B
{
C

(
1 − 2pG + 2p2

G

)2 − (−1 + pG)pG

[ − 2D(−1 + pG)pG + A
(
1 − 2pG + 2p2

G

)]})}
. (C6)
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PD is the distillation probability of success and is given by

PD = (B + C)2 + (A + D)2 − 2(A − B − C + D)2pG + 2(A − B − C + D)2p2
G. (C7)

For the case of pG = 1, Eqs. (C6) and (C7) are in accordance with [30].
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We develop a method to quantify the secret key rate for permutation-invariant protocols for coherent attacks and
finite resources. The method reduces the calculation of secret key rates for coherent attacks to the calculation for
collective attacks by bounding the smooth min-entropy of permutation-invariant states via the smooth min-entropy
of corresponding tensor-product states. The comparison of the results to the well-known postselection technique
for the BB84 and six-state protocol shows the high relevance of this method. Since our calculation of secret key
rates for coherent attacks strongly depends on the way of treating collective attacks, a prospective progress in the
analysis of collective attacks will immediately cause progress in our strategy.

DOI: 10.1103/PhysRevA.87.012315 PACS number(s): 03.67.Dd

I. INTRODUCTION

The aim of quantum key distribution (QKD) is the gen-
eration of a secret key between two authorized parties Alice
and Bob in the presence of an eavesdropper Eve. In practical
implementations the number of signals used to establish a
secure key is finite. An essential element of the calculation of
key rates for a finite number of signals is the evaluation of the
smooth min-entropy [1] for high-dimensional states, which is
in general hard or even impossible to compute. In the last years
many results have appeared [1–11] considering the calculation
of secret key rates for finite resources under the restriction of
the eavesdropper’s attack to a collective attack [12,13], where
Eve interacts with each signal independently and identically.
This restriction leads to a state, which has tensor-product
form and allows one to bound the smooth min-entropy by
the conditional von Neumann entropy of a single-signal state
by using the asymptotic equipartition property (AEP) [1,14].

In studies of coherent attacks [15,16] the eavesdropper is
not restricted at all (i.e., she may interact with all signals
simultaneously). Already in the year 2005 it was shown in
Refs. [17,18] that for protocols, which are invariant under
permutations of single-signal states, collective and coherent
attacks are equivalent in the case of infinitely many signals.
But for a finite number of signals this equivalence has not
been proven yet. As a consequence the development of tools
to compute a secret key for finite resources in the presence of
coherent attacks is necessary.

Up to now direct strategies that treat coherent attacks only
exist for the BB84 [19] protocol (see [10,11]). In Ref. [10]
Tomamichel et al. used an uncertainty relation for smooth
entropies [20] to circumvent the evaluation of the smooth
min-entropy by the computation of the smooth max-entropy
[1]. Since the resulting max-entropy has to be evaluated for a
classical state, the calculation becomes analytically solvable.

In comparison to these direct strategies, many studies have
focused on indirect approaches like postselection [21] or the de
Finetti approach [1,22] to quantify secret key rates, where the
analysis for coherent attacks is traced back to the investigation
of collective attacks. In Ref. [7], these indirect approaches have
been compared to each other for the BB84 protocol with the

*mertz@thphy.uni-duesseldorf.de

result that the postselection technique exceeds the de Finetti
approach in terms of secure key rates.

In this paper we present a strategy to calculate secret key
rates for general permutation-invariant (i.e., the output of the
protocol remains the same under permutations of the input
pairs) protocols for coherent attacks. In particular, we relate
the secret key rate for coherent attacks to the calculation of
secret key rates for collective attacks by bounding the smooth
min-entropy of a permutation-invariant state via the min-
entropy of a corresponding tensor-product state “smoothed”
over a reduced environment. We compare the results to
the postselection technique by applying the AEP bound for
the treatment of collective attacks. Note that most of the
protocols studied in the literature already fulfill the condition
of permutation invariance or can made to be permutation
invariant, like, for example, the BB84 and six-state [23,24]
protocol. Note that in this paper we only consider single-
photon pulses. An analogous investigation of weak coherent
pulses could be fruitful by following the strategy in Ref. [25].

The paper is organized as follows. In Sec. II we explain the
protocol and fix the notation. We clarify the formalism used
to calculate secret key rates under the assumption of collective
attacks in Sec. III. The formalism to analyze coherent attacks,
the main result of this paper, is presented in Sec. IV. Section V
shortly reviews the postselection technique, which is then
compared to our strategy with respect to secret key rates for
the BB84 and six-state protocol in Sec. VI. Finally, Sec. VII
concludes the paper.

II. PRELIMINARIES

In this paper we consider permutation-invariant
entanglement-based QKD protocols, which consist of
these steps: state distribution, sifting, parameter estimation
(PE), error correction (EC), error verification, and privacy
amplification (PA) (for a detailed description, see [17,18]).
Here, permutational invariance means that for any permutation
of the input pairs the output of the protocol remains unchanged.
In the following we denote by ρN

AB the initial state of N signals
shared by Alice and Bob, and by ρN

ABE a purification of ρN
AB,

which describes the state shared by Alice, Bob, and Eve after
the state distribution. Now, let NAB be the operation, that
represents the procedures, which Alice and Bob perform on
their states (i.e., measurement, sifting, parameter estimation,

012315-11050-2947/2013/87(1)/012315(10) ©2013 American Physical Society
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error correction, and error verification. (Note that privacy
amplification is not included here, since the output of this
procedure is the final bit-string used as key.) Then we define
the resulting classical-quantum state containing Alice’s bit
string and Eve’s quantum state as ρn

XE := (NAB ⊗ 11E)ρN
ABE.

As the main quantity for the calculation of secret key rates we
use the smooth min-entropy [1],

Hε
min(ρAE|E) := sup

σAE∈B ε
2 (ρAE)

sup
ρE∈S(HE )

Hmin(σAE|ρE), (1)

defined as an optimization of the min-entropy,

Hmin(σAE|ρE) := sup{λ ∈ R : 2−λ11A ⊗ ρE − σAE � 0},
(2)

over an ε
2 environment given by

B ε
2 (ρ) :=

{
σ :

1

2
||σ − ρ||1 � ε

2

}
, (3)

with the 1-norm ||A||1 = tr(
√

AA†). S(HE) denotes the set of
density operators on the Hilbert space HE .

III. COLLECTIVE ATTACKS

In contrast to coherent attacks, the assumption of collective
attacks forces the eavesdropper Eve to interact with each of the
signals separately. Under this restriction the distributed state
can for permutation-invariant protocols regarded as a product
state ρ⊗N

AB , which is diagonal in the Bell basis [17,18]. We
denote by m the number of randomly chosen signals used for
parameter estimation and by n the remaining number of signals
for privacy amplification. Then, the rate of an ε-secure key can
be quantified in the following way.

Theorem 1. [3] Let εPE,εEC,εPA,ε̄ > 0 and let ρ⊗n
XE =

(NAB ⊗ 11E)ρ⊗N
ABE be a tensor-product state for a purification

ρABE in HABE of the state ρAB ∈ S(HAB). Then the rate of an
εcoll := (εPE + εEC + εPA + ε̄)-secure key is given by

r := 1

N
inf

ρAB∈�coll

(
Hε̄

min

(
ρ⊗n

XE

∣∣E) − leakEC
) + 2

N
log2(2εPA).

(4)

The smooth min-entropy of the classical-quantum state
ρ⊗n

XE shared by Alice and Eve and the correction 2 log2(2εPA)
arise from the analysis of privacy amplification. The entropy
quantifies Eve’s uncertainty of Alice’s bit string.

The term leakEC stands for the number of bits which Alice
and Bob leak to the eavesdropper due to public communication
during the error correction procedure and cost for the error
verification. In total, the leakage can be estimated by [3,10]

leakEC := n1.1H (X|Y ) + log2

(
2

εEC

)
. (5)

Here, the factor 1.1 denotes the efficiency of a specific
error-correction protocol used during the key generation. The
minimization of the smooth min-entropy is due to parameter
estimation, where we only except qubit states ρAB which are
contained in the set [10],

�coll := {
σAB : 1

2 ||Pm − Pn||1 � ξ (εPE,n,m)
}
, (6)

with

ξ (εPE,n,m) :=
√

(n + m)(m + 1) ln(1/εPE)

8m2n
. (7)

This means, that the tolerated quantum bit error rate (QBER)
Pm due to an m-fold independent application of a POVM
E on a tensor-product state is ξ close to the parameter Pn,
which corresponds to a virtual measurement on the remaining
n signals, which are used for the key generation, except with
probability εPE (see Lemma 6 in the Appendix). Note that this
estimate has been developed in Ref. [10] for coherent attacks
on permutation-invariant states. As tensor-product states in
collective attacks are permutation invariant, Lemma 6 can be
applied.

For product states ρ⊗n
XE we can use the asymptotic equiparti-

tion property [see Eq. (B7)] to bound the smooth min-entropy
by the conditional von Neumann entropy of a single copy ρXE.
Finally, we get for the rate of an εcoll := (εPE + εEC + εPA +
ε̄)-secure key:

rcoll := n

N

[
inf

ρAB∈�coll

(
S(X|E) − leakEC

n

)
− 5

√
log2(2/ε̄)

n

]

+ 2

N
log2(2εPA), (8)

where

S(X|E) = S(ρXE) − S(ρE), (9)

with S(ρ) := −tr(ρ log2 ρ).
In the next section we present a formalism to treat coherent

attacks. We will see that the analysis of secret key rates for
coherent attacks can be traced back to the calculation of
secret key rates under the assumption of collective attacks
[see Eq. (8)].

IV. COHERENT ATTACKS

A coherent attack is the most general attack an eavesdropper
can perform (i.e., Eve is not restricted at all). For the investiga-
tion of secret key rates for coherent attacks, we have to consider
nonproduct states for the evaluation of the smooth-min entropy.
No changes are needed in the analysis of parameter estimation
for collective attacks [see Eq. (6)], because it also holds for
coherent attacks [i.e., nonproduct states (see Lemma 6 in the
Appendix)]. Since error correction and error verification are
also independent of the underlying attack of the eavesdropper
(they are purely classical procedures), the protocol analysis for
these steps can be adopted from the one for collective attacks.

For permutation-invariant protocols it has been shown
in Refs. [17,18] that we can assume w.l.o.g. that, after
the distribution of N qubit pairs, Alice and Bob share
a permutation-invariant quantum state, which is a convex
combination of tensor products of Bell states:

ρN
AB = PN

( ∑
n∈�N

μnσ
⊗n1
1 ⊗ σ

⊗n2
2 ⊗ σ

⊗n3
3 ⊗ σ

⊗n4
4

)
, (10)
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with probabilities μn for the “realization” n and the set of
realizations,

�N :=
{

n = (n1,n2,n3,n4) :
4∑

i=1

ni = N

}
. (11)

The σi for i = 1, . . . ,4 correspond to the projector onto the
four Bell-states in HA ⊗HB , that is,

σ1 = |φ+〉〈φ+|, σ2 = |φ−〉〈φ−|,
(12)

σ3 = |ψ+〉〈ψ+|, σ4 = |ψ−〉〈ψ−|,
with

|φ±〉 := 1√
2

(|00〉 ± |11〉) (13)

and

|ψ±〉 := 1√
2

(|01〉 ± |10〉). (14)

PN denotes the completely positive map (CPM) which sym-
metrizes the state with respect to all possible distinguishable
permutations of the N qubit pairs.

The following section explains the analysis of parameter
estimation for permutation-invariant states [see Eq. (10)].

A. Parameter estimation

Let the sifting procedure now be such that n + m signals
remain, where m denotes the number of randomly chosen sig-
nals used for parameter estimation and n denotes the remaining
number of signals for privacy amplification. Then we can adopt
Lemma 6 to estimate the QBER Qn by the tolerated QBER Qm

coming from a measurement on general permutation-invariant
states [see also the arguments below Eq. (7)].

Theorem 2. Let εPE > 0 and m,n > 0. Let ρm+n
AB ∈

S(H⊗m+n
AB ) be a permutation-invariant quantum state, and let E

be a POVM onHAB which measures the QBER. Let Qm and Qn

be the frequency distributions when applying the measurement
E⊗m and E⊗n, respectively, to different subsystems of ρm+n

AB .
Then for any element Qm and Qn from Qm and Qn except
with probability εPE

1
2 ||Qm − Qn||1 � ξ (εPE,n,m), (15)

with ξ (εPE,n,m) :=
√

(m+n)(m+1) ln (1/εPE)
8m2n

.
Proof: This follows directly from Lemma 6 in the

Appendix, which is a consequence of [10]. �
Now with the definition of the set of states, which pass the

parameter estimation procedure,

�n
εPE

:= {
σn

AB : 1
2 ||Qm − Qn||1 � ξ (εPE,n,m)

}
, (16)

we are able to give an analytic expression for the rate of an
ε-secure key for coherent attacks.

Corollary 1. Let εPE,εEC,εPA,ε̄ > 0 and let ρn
XE = (NAB ⊗

11E)ρN
ABE be a permutation-invariant state for a purification

ρN
ABE in H⊗N

ABE of ρN
AB ∈ S(H⊗N

AB ). Then the rate of an εcoh :=
(εPE + εEC + εPA + ε̄)-secure key is given by

r := 1

N
inf

ρn
AB∈�n

εPE

(
Hε̄

min

(
ρn

XE

∣∣E) − leakEC
) + 2

N
log2(2εPA).

(17)

In the following section we show that the smooth
min-entropy for permutation-invariant states can be mainly
bounded by the min-entropy for corresponding product states
“smoothed” over a reduced ε environment.

B. Privacy amplification

In order to get a calculable formula for the key rate
[Eq. (17)] we bound the smooth min-entropy for permutation-
invariant states by the smooth min-entropy for tensor-product
states, which then can be easily evaluated by the asymptotic
equipartition property [Eq. (B7)] as explained in Sec. III.

We now define analogously to Eq. (10) the permutation-
invariant state with n signals, which Alice and Bob share after
the parameter estimation procedure.

ρn
AB := Pn

(∑
n∈�n

μnσ
⊗n1
1 ⊗ σ

⊗n2
2 ⊗ σ

⊗n3
3 ⊗ σ

⊗n4
4

)
, (18)

where σi with i = 1, . . . ,4 correspond to the projectors
onto the four Bell states in HA ⊗HB and �n := {n =
(n1,n2,n3,n4) :

∑4
i=1 ni = n} [see Eq. (10)]. Additionally, we

denote the single-copy state shared by Alice and Bob in the
following as

σAB[λ] :=
4∑

i=1

λiσi, (19)

with λ := (λ1,λ2,λ3,λ4) = ( n1
n
, n2

n
, n3

n
, n4

n
).

The next theorem is one of our central results. It gives
a relation between the smooth min-entropy for permutation-
invariant states and the smooth min-entropy for tensor-product
states. The proof is inspired by [18] and uses the fact, that
there exists a certain measurement on σAB[λ]⊗n, such that the
resulting state is equal to the state ρn

AB for a specific realization
n. Then, the application of some fundamental properties of the
smooth min-entropy leads to the result.

Theorem 3. Let ε̄ > 0, λ = ( n1
n
, n2

n
, n3

n
, n4

n
) and MAB be the

quantum operation which describes the local measurements
Alice and Bob perform followed by a partial-trace operation
on Bob’s part (HB). Let ρn

XE = (MAB ⊗ 11E)⊗nρn
ABE be the

classical quantum state obtained after applying the quantum
operation (MAB ⊗ 11E)⊗n on a purification ρn

ABE in H⊗n
ABE

of a permutation-invariant state ρn
AB ∈ S(H⊗n

AB). Analogously
let σXE[λ]⊗n = (MAB ⊗ 11E)⊗nσABE[λ]⊗n be the classical
quantum state obtained after applying the quantum operation
(MAB ⊗ 11E)⊗n on a purification σABE[λ]⊗n of a tensor-
product state σAB[λ]⊗n ∈ S(H⊗n

AB). Let E be a POVM onHA ⊗
HB which measures the QBER. Let Qn, Pn be an element
of the frequency distribution Qn, Pn of the outcomes when
applying the measurement E⊗n to ρn

AB and σ⊗n
AB , respectively.

Then except with probability ε̄,

Hε̄
min

(
ρn

XE

∣∣E)
� inf

σAB∈�ξcoh

Hε̄/(2n2)
min

(
σ⊗n

XE

[
λ = n

n

]∣∣∣∣E
)

− 1,

(20)

where

�coh := {
τAB : 1

2 ||Qm − Pn||1 � ξcoh(ε̄,n,m)}, (21)
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with

ξcoh(ε̄,n,m) := 1

2
ξatt(ε̄,2,n) + ξ

(
ε̄

2
,n,m

)
, (22)

where

ξatt(ε̄,2,n) :=
√

16 ln(2) + 8 ln(1/ε̄)

n
, (23)

and

ξ

(
ε̄

2
,n,m

)
:=

√
(m + n)(m + 1) ln(2/ε̄)

8m2n
(24)

defines the set of tensor-product states τ⊗n which pass the
parameter estimation procedure.

Proof: The state to be considered is given by ρn
XE and can

be expressed as a convex combination of states for all possible
realizations n with probability μn, that is,

ρn
XE =

∑
n∈�n

μnρ
n
XE[n]. (25)

Note that this structure is provided in Eq. (18) and is conserved
due to the linearity of MAB and a purification of ρn

AB, which
is optimal for Eve.

The first part proves the theorem for the special case, that
only one μn in Eq. (25) is nonzero (i.e., we consider a single
realization n). Then, part 2 extends part 1 to the general case.

Part 1: Let |φi〉 be an extension to HA ⊗HB ⊗HE of
σi [see Eq. (18)] with the condition, that the remaining states
trAB(P|φi 〉) are mutually orthogonal for i ∈ {1, . . . ,4}. Note that
this choice of orthogonal ancillas is optimal, since it enables
the eavesdropper to distinguish perfectly the reduced states
shared by Alice and Bob. Let Sn be the set of distinguishable
permutations π on n qubits for a fixed realization n. Then,
with

|ψ〉n
ABE := 1√|Sn|

∑
π∈Sn

π

(
4⊗

i=1

|φi〉⊗ni

)
, (26)

and

|φ〉λABE :=
4∑

i=1

√
λi |φi〉, (27)

we define

ρn
XE[n] := (MAB ⊗ 11E)⊗nP|ψ〉n

ABE
, (28)

σXE[λ] := (MAB ⊗ 11E)P|φ〉λABE
, (29)

for an arbitrary, but fixed realization n. For any i ∈ {1, . . . ,4}
let Pi be the projector onto the support of (M⊗ 11E)P|φi 〉
which by definition are orthogonal for distinct i. Let F be a
measurement defined by

F : ρ →
1∑

z=0

FzρF †
z ⊗ |z〉〈z|, (30)

where

F0 :=
∑
π∈Sn

π
(
P

⊗n1
1 ⊗ P

⊗n2
2 ⊗ P

⊗n3
3 ⊗ P

⊗n4
4

)
, (31)

and F1 := 11 − F0. Then F0 picks out a specific realization n
from the tensor-product state σXE[λ]⊗n, that is,

ρn
XE[n] = 1

PZ(Z = 0)
F0(σXE[λ]⊗n)F †

0 , (32)

with PZ(Z = 0) = tr(F0(σ⊗n
XE[λ])F †

0 ) = |Sn|
∏4

i=1 λ
ni

i (For a
detailed proof see [18], Lemma A.4).

Now let ρ̄n
XEZ[n] be the resulting state after applying F on

σ⊗n
XE[λ] and let Z be the classical measurement outcome, that

is,

ρ̄n
XEZ[n] =

1∑
z=0

Fzσ
⊗n
XE[λ]F †

z ⊗ |z〉〈z| (33)

=:
1∑

z=0

PZ(Z = z)ρ̄nZ=z
XE [n] ⊗ |z〉〈z|. (34)

Then it follows directly from Eq. (32) that

ρn
XE[n] = ρ̄nZ=0

XE [n], (35)

and therefore

Hε̄
min

(
ρn

XE[n]|E) = Hε̄
min

(
ρ̄nZ=0

XE [n]|E)
. (36)

With some fundamental properties of the smooth min-entropy
we get

Hε̄
min

(
ρ̄nZ=0

XE [n]|E) Eq.(A7)
� HpZ(Z=0)ε̄

min

(
ρ̄n

XEZ[n]|EZ
)

Eq.(B1)
� HpZ(Z=0)ε̄

min

(
ρ̄n

XEZ[n]|E)
− log2 (rank(ρZ)). (37)

By definition, the orthogonality and completeness of the set
{Fz} ensures that trZ(ρ̄n

XEZ[n]) = σ⊗n
XE[λ], such that we can

apply Eq. (A2) in the Appendix. This leads to

HpZ (Z=0)ε̄
min

(
ρ̄n

XEZ[n]|E) − log2 (rank(ρZ))
Eq.(A2)

� HpZ (Z=0)ε̄
min

(
σ⊗n

XE[λ]|E) − log2 (rank(ρZ))

� Hε̄/n2

min

(
σ⊗n

XE[λ]|E) − 1, (38)

where we used in the last step that rank(ρZ) � 2 and from
Lemma 7 in the Appendix that

pZ(Z = 0) = |Sn|
4∏

i=1

λ
ni

i > 1/n2. (39)

The following part generalizes the proof to the unrestricted
case.

Part 2: Now let ρn
ABE := P|ψ〉 with

|ψ〉 :=
∑
n∈�n

√
μn|ψ〉n

ABE (40)

be a purification of ρn
AB. For any n ∈ �n let Hn

E be the
smallest subspace of H⊗n

E containing the support of the traces
ρn

E[n] = trH⊗n
AB

(ρn
ABE[n]). By the definition of the vectors |φi〉 as

in part 1, the subspacesHn
E are orthogonal for distinct n ∈ �n.

There exists a projective measurement F ′ onto the subspaces
H⊗n

AB ⊗Hn
E . Now let the state ρ̃n

XEZ′ be the resulting state from
the measurement F ′ of the state ρn

XE and let Z′ ∈ �n be the
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classical outcome, that is,

ρ̃n
XEZ′ =

∑
n∈�n

F ′
nρ

n
XEF ′†

n ⊗ |n〉〈n| (41)

=:
∑
n∈�n

μnρ
n
XE[n] ⊗ |n〉〈n|. (42)

By the definition of the state ρn
XE we know that for a tolerated

QBER Qm the parameter Qn for a virtual measurement on n

signals has to fulfill except with probability ε̄
2 that

1

2
||Qm − Qn||1 � ξ

(
ε̄

2
,n,m

)
. (43)

Note that the choice of ε̄
2 is arbitrary. In principle, the intro-

duction of a new parameter could lead to better results. Now,
this condition implies that realizations n in the permutation-
invariant state ρn

AB = ∑
n∈�n μnρ

n
AB[n], whose corresponding

parameter Qn does not fulfill the condition in Eq. (43), only
appear with small probability, that is, more precisely,

∑
n: 1

2 ||Qm−Qn||1>ξ ( ε̄
2 ,n,m)

μn � ε̄

2
. (44)

This behavior of the probabilities enables us to apply Eq. (A6)
in the Appendix for probability ε′ = ε̄

2 to restrict the states
ρn

AB[n] (or equivalently their corresponding realizations n) to
the set,

�̃n
ε̄/2 :=

{
σn

AB[n] :
1

2
||Qm − Qn||1 � ξ

(
ε̄

2
,n,m

)}
. (45)

Namely, we have

Hε̄
min

(
ρn

XE |E) Eq.(A4)
� Hε̄

min

(
ρ̃n

XEZ′ |EZ′)
Eq.(A6)

� inf
ρn

AB[n]∈�̃n
ε̄/2

Hε̄/2
min

(
ρn

XE[n]|E)
. (46)

Then Eq. (46) becomes, together with Eqs. (36)–(38),

inf
ρn

AB[n]∈�̃n
ε̄/2

Hε̄/2
min

(
ρn

XE[n]|E)

� inf
ρn

AB[n]∈�̃n
ε̄/2

Hε̄/(2n2)
min

(
σ⊗n

XE

[
λ = n

n

]∣∣∣∣E
)

− 1. (47)

Since the min-entropy is now a function of a tensor-product
state, we would like to express the restricting infimum in terms
of the statistics Pn of this tensor product. By definition, we
have ρ1

XE[n] = σXE[λ = n
n

], such that we can apply Lemma
8 in the Appendix (for k = N = n), which states that, except
with probability ε̄, the statistics Pn of the tensor-product state
σ⊗n

XE[λ = n
n

] is ξatt close to Qn, that is,

1
2 ||Qn − Pn||1 � ξatt(ε̄,|E |,n). (48)

(Here the choice of ε̄ is arbitrary. The consideration of a new
parameter could in general lead to better results.) Now we
are able to bound the distance between Pn and the tolerated
QBER Qm measured during parameter estimation by using the

triangular inequality.

1

2
||Qm − Pn||1 � 1

2
||Qm − Qn||1 + 1

2
||Qn − Pn||1

� ξ

(
ε̄

2
,n,m

)
+ ξatt(ε̄,2,n)

2
=: ξcoh(ε̄,n,m), (49)

where we used that for the POVM applied for parameter
estimation [see Eq. (6) and Sec. IV A] the number of POVM
elements becomes 2 (see [8]) and that [8]

1
2 ||Qn − Pn||1 � 1

2
1
2 ||Qn − Pn||1. (50)

Consequently we end up in

inf
ρn

AB[n]∈�̃n
ε̄/2

Hε̄/(2n2)
min

(
σ⊗n

XE

[
λ = n

n

]∣∣∣∣E
)

− 1

� inf
σAB∈�ξcoh

Hε̄/(2n2)
min

(
σ⊗n

XE

[
λ = n

n

]∣∣∣∣E
)

− 1. (51)

The assertion then follows by putting Eqs. (51) and (47) into
Eq. (46). �

Finally, we are able to formulate a calculable rate of an
εcoh-secure key for coherent attacks.

Theorem 4. Let εPE,εEC,εPA,ε̄ > 0 and let ρn
XE = (NAB ⊗

11E)ρN
ABE be a permutation-invariant state for a purification

ρN
ABE in H⊗N

ABE of ρN
AB ∈ S(H⊗N

AB ). Then the rate of an εcoh :=
(εPE + εEC + εPA + 2ε̄)-secure key is given by

rcoh := n

N

[
inf

ρAB∈�coh

(
S(X|E) − leakEC

n

)
− 5

√
log2(4n2/ε̄)

n

]

− 1

N
+ 2

N
log2 (2εPA), (52)

where

�coh = {
σAB : 1

2 ||Qm − Pn||1 � ξcoh(ε̄,n,m)
}
, (53)

with

ξcoh(ε̄,n,m) := ξatt(ε̄,2,n)

2
+ ξ

(
ε̄

2
,n,m

)
, (54)

for

ξ

(
ε̄

2
,n,m

)
:=

√
(m + n)(m + 1) ln (2/ε̄)

8m2n
, (55)

ξatt(ε̄,2,n) :=
√

16 ln(2) + 8 ln(1/ε̄)

n
, (56)

and

S(X|E) = S(ρXE) − S(ρE), (57)

with S(ρ) := −tr(ρ log2 ρ).
Proof: The proof follows by inserting the result from

Eq. (20) into Eq. (17) and using Eq. (B7) to express the smooth
min-entropy of product states by the conditional von Neumann
entropy of a single-copy state. �

A careful analysis of the proof of Eq. (20) enables us to
obtain the main corrections for the secret key rate for coherent
attacks [Eq. (52)] in comparison to collective attacks [Eq. (8)]:
First, for coherent attacks the probability of measuring a single
realization n for a given tensor-product state is rather small,
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which makes the ε environment, for example, in Eq. (51)
small. Second, the statistics for the different attacks are
not identical in general. Additional fluctuations have to be
taken into account as done by considering ξatt [see Eqs. (54)
and (56)]. These corrections lose their corrupting influence
on the secret key rate, when considering the asymptotic
limit (N → ∞, ε → 0). In this case ξatt becomes zero and
no additional fluctuations have to be added to the QBER,
thus the corrections vanish. This confirms the equivalence
of collective and coherent attacks for permutation-invariant
protocols stated in Refs. [17,18] in the asymptotic limit.
But for a finite number of signals these corrections have
a dramatic impact on the secret key rate. And, since these
additional terms seem unavoidable, this might be a hint, that
the equivalence of collective and coherent attacks might not
hold for permutation-invariant states in the regime of finite
resources.

The following section shortly reviews the known postselec-
tion technique [21], which we then will compare to Eq. (52).

V. POSTSELECTION—A SHORT REVIEW

In order to determine the quality of rcoh [Eq. (52)] from
the previous section, we have to compare it to key rates
obtained by strategies existing in the literature. Up to now,
there exist two main techniques to quantify secret key rates
for finite resources for coherent attacks for the whole class
of permutation-invariant protocols, namely the de Finetti
approach [1,22] and the postselection technique [21]. Since
Sheridan et al. showed in [7] that the latter technique leads
to higher secret key rates, we only take the postselection
technique for comparison.

The postselection technique applied to QKD estimates
the deviation of the finite key rate rpost obtained from a
permutation-invariant protocol against coherent attacks from
the corresponding rate rcoll against collective attacks. The rate
of an εpost-secure key is given by [21]

rpost = rcoll − 30 log2 (N + 1)/N, (58)

where rcoll is given by Eq. (8) evaluated for the security
parameter εcoll = εpost(N + 1)−15.

VI. COMPARISON

In this section we compare our newly developed secret key
rate rcoh [Eq. (52)] and the known rate rpost [Eq. (58)] for
coherent attacks to the secret key rate evaluated under the
assumption of collective attacks rcoll [Eq. (8)] for the BB84
protocol and the six-state protocol.

The finite-key rates are calculated for a total security
parameter of ε := εcoll = εpost = εcoh = 10−9. In the following
let QBER:=Qm denote the tolerated QBER from the POVM
used for parameter estimation [see Eq. (6) and Sec. IV A].
Then the values of S(X|E) and leakEC are fully determined
via the estimated QBER Pn. For the BB84 protocol the exact
shape of dependence is given by [4]

S(X|E) = 1 − h(Pn), (59)

H (X|Y ) = h(Pn), (60)

where h(P ) := −P log2 P − (1 − P ) log2 (1 − P ) denotes
the binary Shannon entropy. This enables us to determine the
crucial terms in rcoh [Eq. (52)] by

inf
ρAB∈�coh

S(X|E) = 1 − h(Qm + 2ξcoh(ε̄,n,m)), (61)

inf
ρAB∈�coh

H (X|Y ) = h(Qm + 2ξcoh(ε̄,n,m)), (62)

and analogously by

inf
ρAB∈�coll

S(X|E) = 1 − h(Qm + 2ξ (εPE,n,m)), (63)

inf
ρAB∈�coll

H (X|Y ) = h(Qm + 2ξ (εPE,n,m)), (64)

for rcoll [Eq. (8)]. For the six-state protocol the entropies can
be obtained as [1]

S(X|E) = (1 − Pn)

(
1 − h

(
1 − 3

2Pn

1 − Pn

))
, (65)

H (X|Y ) = h(Pn). (66)

Then, analogously to the BB84 case, the evaluation of the
infimum in rcoh [Eq. (52)] and rcoll [Eq. (8)] is determined by
replacing Pn by Qm + 2ξcoh(ε̄,n,m) and Qm + 2ξ (εPE,n,m),
respectively.

The results are obtained from a numerical optimization
procedure, which maximizes the key rate with respect to the
parameters m,ε̄,εPE,εEC,εPA. Note that then n follows from
the fact that for a fixed total number of signals N , the number
of sifted bits n + m is fully determined as being a ratio of
N . This ratio depends on the actual used protocol. To obtain
our results we used an asymmetric protocol, which means that
the probabilities of measuring in a certain basis are different.
Since in our calculations we take the signals measured in the x

(x and y) basis for parameter estimation and generate the key
from signals measured in the z (z) basis for the BB84 (six-state)
protocol, the measurement probabilities are directly connected
to the signals m used for parameter estimation or the signals n

used for the key generation. Consequently, the optimization of
m determines the measurement probabilities and therefore n.

In Fig. 1 the secret key rates are shown as a function of
the initial number of signals N for different QBERs for the
BB84 protocol. Figure 2 presents an analogous calculation for
the six-state protocol. Note that, as mentioned in Sec. IV B, in
both cases we recover the known result that coherent attacks
become collective attacks in the limit of infinitely many signals
N . For finite N the figures show that the new rate rcoh is always
significantly higher in comparison to the rate rpost obtained
from the postselection technique. This advantage of rcoh can
be seen for a rather small QBER = 0.01 as well as for a high
value QBER = 0.1. For example, we obtain that the increase
of rcoh in comparison to rpost is around 43% for a QBER of
0.01 (N = 106) and 33% for a QBER of 0.1 (N = 1010) for the
BB84 protocol. In case of the six-state protocol rcoh exceeds
rpost by around 51% for a QBER of 0.01 (N = 106) and 45%
for a QBER of 0.1 (N = 108).

The trends of the rates m
N

and n
N

for different N show in all
three approaches that the importance of parameter estimation
decreases with increasing N . More precisely, the fraction m

N

decreases from a value about 10% − 20% (for the minimal
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FIG. 1. (Color online) Comparison of the secret key rates rcoll

[Eq. (8)] (black circles), rpost [Eq. (58)] (green squares), and rcoh

[Eq. (52)] (red triangles) versus the number N of initial signals for
different QBERs with security parameter ε = 10−9 for the BB84
protocol in logarithmic scale; QBER = 0.01 (straight lines) and
QBER = 0.1 (dotted lines).

number of signals needed to extract a nonzero key rate) to near
0% (for N = 1016) while the ratio of signals n

N
related with

the final key rate increases from about 60% (for the minimal
number of signals needed to extract a nonzero key rate) to near
100% (for N = 1016). Note that the effect that the total ratio
of sifted signals m+n

N
increases from about 70% − 80% to near

100% is due to the asymmetry in the protocol (see above).
In comparison to the case of low numbers of N , where the
probability of measuring in different bases has a significant
portion, the probability to measure in a single basis used for
the generation of the key becomes almost one for large N ,
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FIG. 2. (Color online) Comparison of the secret key rates rcoll

[Eq. (8)] (black circles), rpost [Eq. (58)] (green squares), and rcoh

[Eq. (52)] (red triangles) versus the number N of initial signals for
different QBERs with security parameter ε = 10−9 for the six-state
protocol in logarithmic scale; QBER = 0.01 (straight lines) and
QBER = 0.1 (dotted lines).

such that in this case the number of sifted signals is close
to N .

VII. CONCLUSION

In this paper we presented a method to quantify the rate
of a secret key for general permutation-invariant protocols for
coherent attacks. We show a technique to trace the calculation
of secret key rates for coherent attacks back to the analysis of
collective attacks. The high quality of this method manifests
itself by a comparison to the up to now best-known strategy,
the postselection technique. For the treatment of collective
attacks we applied the von Neumann entropy bound. We
showed that for a finite number of initial signals the secret
key rates for the BB84 and the six-state protocol obtained by
our method exceed the rates coming from the postselection
technique significantly. In case of the BB84 protocol, higher
secret key rates have been obtained in Refs. [10,11] by a
specialized method, which can, however, not be applied to the
six-state protocol. Our method, in contrast, can be applied to all
permutation-invariant quantum key distribution protocols for
which an analysis of collective attacks is available. Since our
results strongly depend on the underlying analysis of collective
attacks, a prospective progress in the analysis of collective
attacks will automatically cause a progress in our strategy
with respect to secret key rates.

Additionally the results of our derivation confirm the known
result that, in the limit of infinitely many initial signals, coher-
ent attacks are as powerful as collective attacks. Furthermore,
we point out the main impact on the corrections for the key rate
against coherent attacks in comparison to collective attacks.
Since this extensive impact seems unavoidable, this might give
some evidence for the inequivalence of the two types of attacks
for finite resources.

Since the assumption of permutation invariance is fairly
weak (most protocols used in the literature are permutation
invariant or can be made to be), the results of this paper can
be widely applied.
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APPENDIX A

1. Properties of the (smooth) min-entropy

Lemma 1. Let ρABZ := ∑
z∈Z PZ(z)ρz

AB ⊗ |z〉〈z| ∈
S(HA ⊗HB ⊗HZ) be a classical-quantum state with
ρAB = trZ(ρABZ) and σB ∈ S(HB), then

Hε
min(ρABZ|B) � Hε

min(ρAB|B). (A1)

Proof: For any ν > 0 there exists ρ̄AB ∈ B ε
2 (ρAB) such that

for any σB ,

Hmin(ρ̄AB|σB) � Hε
min(ρAB|σB) − ν.
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Then it follows with Eq. (B4) that

Hmin(ρ̄ABZ|σB) � Hmin(ρ̄AB|σB).

To conclude the proof it suffices to verify that ρ̄ABZ ∈
B ε

2 (ρABZ).

1

2
||ρ̄ABZ − ρABZ||1 � 1

2
||ρ̄AB − ρAB||1 � ε

2
,

where we used the fact that the trace distance cannot increase
when applying a quantum operation (see [1], Lemma A.2.1).
The assertion then follows by choosing σB such that

Hε
min(ρAB|σB) = Hε

min(ρAB|B),

and the fact that

Hmin(ρ̄ABZ|B) � Hmin(ρ̄ABZ|σB). �
Lemma 2. Let ρAB ∈ S(HA ⊗HB), {|z〉}z a family of

orthogonal vectors in HZ and ε > 0. Then for a state
ρ̄ABZ := ∑

z∈Z FzρABF
†
z ⊗ |z〉〈z| with

∑
z∈Z F

†
z Fz = 11 and

trZ(ρ̄ABZ) = ρAB,

Hε
min(ρAB|B) � Hε

min(ρ̄ABZ|B). (A2)

Proof: From the definition of ρ̄ABZ it follows immediately
that

Hε
min(trZ(ρ̄ABZ)|B) = Hε

min(ρAB|B).

Then the assertion follows with Lemma 1,

Hε
min(trZ(ρ̄ABZ)|B) � Hε

min(ρ̄ABZ|B). (A3)

�
Lemma 3. Let ρAB ∈ S(HA ⊗HB), {|z〉}z a family of

orthogonal vectors inHZ and ε > 0. Then for a state ρ̄ABZ :=∑
z∈Z PZ(Z = z)F ′

zρABF
′†
z ⊗ |z〉〈z| with

∑
z∈Z F

′†
z F ′

z = 11
and trZ(ρ̄ABZ) = ρAB.

Hε
min(ρAB |B) � Hε

min(ρ̄ABZ|BZ). (A4)

Proof: From the definition of ρ̄ABZ it follows immediately
that

Hε
min(trZ(ρ̄ABZ)|B) = Hε

min(ρAB|B).

Then the assertion follows from the strong subadditivity of the
smooth min-entropy [see Eq. (B3)], that is,

Hε
min(trZ(ρ̄ABZ)|B) � Hε

min(ρ̄ABZ|BZ). (A5)

�
Lemma 4. Let ρABZ = ∑

z∈Z PZ(z)ρz
AB ⊗ |z〉〈z| be a clas-

sical quantum state and ε,ε′ > 0, then for any subset Z ′ ⊆ Z
such that Prob[z ∈ Z ′] > 1 − ε′,

H
ε+ε′
min (ρABZ|BZ) � inf

z∈Z ′
Hε

min

(
ρz

AB

∣∣B)
. (A6)

Proof: For any ν > 0 and z ∈ Z ′ there exists ρ̄z
AB ∈

B ε
2 (ρz

AB) such that for any σ z
B ,

Hmin

(
ρ̄z

AB

∣∣σ z
B

)
� Hε

min

(
ρz

AB

∣∣σ z
B

) − ν.

Let

ρ̄ABZ :=
∑
z∈Z ′

PZ′ (z)ρ̄z
AB ⊗ |z〉〈z|.

Then it follows with Eq. (B2) that

Hmin(ρ̄ABZ|σBZ) = inf
z∈Z ′

Hmin

(
ρ̄z

AB

∣∣σ z
B

)
� inf

z∈Z ′
Hε

min

(
ρz

AB

∣∣σ z
B

) − ν.

To conclude the proof it suffices to verify that ρ̄ABZ ∈
B ε+ε′

2 (ρABZ).

1

2
||ρ̄ABZ − ρABZ||1 Eq.(B6)=

∑
z∈Z ′

PZ′ (z)
1

2

∥∥ρ̄z
AB − ρz

AB

∥∥
1

+
∑

z∈Z\Z ′
PZ\Z′ (z)

1

2

∥∥ρz
AB

∥∥
1

� ε

2

∑
z∈Z ′

PZ′ (z) + 1

2

∑
z∈Z\Z ′

PZ\Z′ (z)

� ε + ε′

2
.

The assertion then follows by choosing σ z
B such that

Hε
min

(
ρz

AB

∣∣σ z
B

) = Hε
min

(
ρz

AB

∣∣B)
,

and the fact that

Hmin(ρ̄ABZ|BZ) � Hmin(ρ̄ABZ|σBZ). �

Lemma 5. Let ρABZ = ∑
z∈Z PZ(z)ρz

AB ⊗ |z〉〈z| be a classi-
cal quantum state and εz := PZ(z)ε, then

Hεz
min(ρABZ|BZ) � Hε

min

(
ρz

AB

∣∣B)
. (A7)

Proof: For any ν > 0 and z ∈ Z there exists ρ ′
ABZ ∈

B εz
2 (ρABZ) such that for any σBZ ,

Hmin(ρ ′
ABZ|σBZ) � Hεz

min(ρABZ|σBZ) − ν.

Then it follows with Eq. (B5) that

Hmin

(
ρ ′z

AB

∣∣σ z
B

)
� Hεz

min(ρABZ|σBZ) − ν.

To conclude the proof it suffices to verify that ρ ′z
AB ∈ B ε

2 (ρz
AB).

εz

2
� 1

2
‖ρ ′

ABZ − ρABZ‖1
Eq.(B6)=

∑
z∈Z

PZ(z)
1

2

∥∥ρ ′z
AB − ρz

AB

∥∥
1

� PZ(z)
1

2

∥∥ρ ′z
AB − ρz

AB

∥∥
1.

The assertion then follows by choosing σBZ such that

Hεz
min(ρABZ|σBZ) = Hεz

min(ρABZ|BZ),

and the fact that

Hmin

(
ρ ′z

AB

∣∣B)
� Hmin

(
ρ ′z

AB

∣∣σ z
B

)
. �

2. Estimation of frequency distributions

Lemma 6. Let εPE > 0 and 0 � k � N . Let ρN ∈ S(H⊗N )
be a permutation-invariant quantum state, and let E be a POVM
on H which measures the quantum bit error rate (QBER). Let
Qk and QN−k be the QBERs when applying the measurement
E⊗k and E⊗N−k , respectively, to different subsystems of ρN .
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Then except with probability εPE it holds that

1
2‖QN−k − Qk‖1 � ξ (εPE,N − k,k), (A8)

with ξ (εPE,N − k,k) :=
√

N(k+1) ln (1/εPE)
8k2(N−k) .

Proof: It follows from the supplementary information (note
2) of [10] that with εPE := e− 2k(N−k)

N
k

k+1 (2ξ (εPE,N−k,k))2
,

Prob[Qn � Qk + 2ξ (εPE,N − k,k)] � εPE. (A9)

The assertion then follows by negation of the statement. �

3. Multinomial distribution

Lemma 7. Let n ∈ N and λi = ni

n
for i = 1, . . . ,4 with∑4

i=1 ni = n. Then

n!

n1!n2!n3!n4!

4∏
i=1

λ
ni

i >
1

n2
, (A10)

for n > 500.
Proof: After applying the logarithm we get

ln

(
n!

n1!n2!n3!n4!

4∏
i=1

λ
ni

i

)

= ln (n!) −
4∑

i=1

ln (ni!) + ni ln

(
ni

n

)
. (A11)

By using the Stirling formula,

√
2πn

(
n

e

)n

< n! <

(
1 + 1

11n

)√
2πn

(
n

e

)n

, (A12)

we get for n > 0,

ln (n!) −
4∑

i=1

ln (ni!) + ni ln

(
ni

n

)

>
1

2
ln(2πn) −

(
4∑

i=1

1

2
ln (2πni) + ln

(
1 + 1

11ni

))

= −3

2
ln(2πn) −

(
4∑

i=1

1

2
ln

(
ni

n

)
+ ln

(
1 + 1

11ni

))

> −3

2
ln(2πn) − 4 ln

(
12

11

)
, (A13)

where we used in the last line that 1
2 ln( ni

n
) < 0 and ln(1 +

1
11ni

) < ln(1 + 1
11 ) for ni > 0 ∀i = 1, . . . ,4. After exponenti-

ation we end up in

n!

n1!n2!n3!n4!

4∏
i=1

λ
ni

i >
1

(2πn)3/2

(
11

12

)4

>
1

n2
, (A14)

which holds for n > 500. �

APPENDIX B: KNOWN RESULTS

Here, we review known results, which are crucial for
derivations in the paper.

1. Properties of the (smooth) min-entropy

(1) Chain rule (see [1], Theorem 3.2.12): Let ρABC ∈
S(HA ⊗HB ⊗HC) and ε � 0. Then for ρC = trAB(ρABC),

Hε
min(ρABC|B) � Hε

min(ρABC|BC) + log2 (rank(ρC)). (B1)

(2) Conditioning on classical information (see [1],
Theorem 3.2.12): Let ρABZ := ∑

z∈Z PZ(z)ρz
AB ⊗ |z〉〈z| ∈

S(HA ⊗HB ⊗HZ) a classical-quantum state, then

Hmin(ρABZ|BZ) = inf
z∈Z

Hmin

(
ρz

AB

∣∣B)
. (B2)

(3) Strong subadditivity (see [1], Theorem 3.2.12): Let
ρABC ∈ S(HA ⊗HB ⊗HC) and ε � 0, then

Hε
min(ρABC|BC) � Hε

min(ρAB|B). (B3)

(4) Partial-trace operation on classical subsystem can
only decrease min-entropy (see [1], Lemma 3.1.9): Let
ρABZ := ∑

z∈Z PZ(z)ρz
AB ⊗ |z〉〈z| ∈ S(HA ⊗HB ⊗HZ) be

a classical-quantum state with ρAB = trZ(ρABZ) and σB ∈
S(HB), then

Hmin(ρABZ|σB) � Hmin(ρAB|σB). (B4)

(5) Quantum operations can only increase min-entropy
(see [26], Theorem 18): Let ρAB ∈ S(HA ⊗HB) and let E
be a quantum operation such that ρ̄AC = (11A ⊗ E)ρAB, then

Hε
min(ρ̄AC|C) � Hε

min(ρAB|B). (B5)

(6) Trace distance of mixtures (see [1], Lemma A.2.2):
Let ρAZ := ∑

z∈Z PZ(z)ρz
A ⊗ |z〉〈z| ∈ S(HA ⊗HZ) be a

classical-quantum state and an analogous definition for ρ ′
AZ ,

then

1

2
‖ρAZ − ρ ′

AZ‖1 =
∑
z∈Z

PZ(z)
1

2

∣∣∣∣ρz
A − ρ ′z

A

∣∣∣∣
1. (B6)

(7) Smooth min-entropy of quantum tensor-product states
(see [1], Corollary 3.3.7): Let ρ⊗n

XE ∈ S((HX ⊗HE)⊗n) a
classical-quantum tensor-product state and ε � 0, then

Hε
min

(
ρ⊗n

XE

∣∣E)
� n

(
S(X|E) − 5

√
log2 (2/ε)

n

)
, (B7)

where S(X|E) = S(ρXE) − S(ρE) with S(ρ) :=
−tr(ρ log2 ρ).

2. Estimation of frequency distributions

Lemma 8. [18,27] Let εatt > 0 and 0 � k � N . Let ρN ∈
S(H⊗N ) be a permutation-invariant quantum state, and let
E and F be POVMs on H with |E | and |F | outcomes,
respectively. Let QE

k and QF
N−k be the frequency distribution

of the outcomes when applying the measurement E⊗k and
F⊗N−k , respectively, to different subsystems of ρN . Finally,
let � be any convex set of density operators such that, for
any operator A on n − 1 subsystems, the normalization of
trn−1(11 ⊗ Aρn11 ⊗ A†) is contained in �. Then except with
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probability εatt, there exists a state σ ∈ � such that

k

N

1

2

∣∣∣∣QE
k − PEk

∣∣∣∣
1 + N − k

N

1

2

∣∣∣∣QF
N−k − PFN−k

∣∣∣∣
1

� ξatt(εatt,|E | + |F |,N ), (B8)

where PEk , PFN−k denote the probability distributions of the out-
comes when measuring σ with respect toE andF , respectively,

and ξatt(εatt,|E | + |F |,N ) :=
√

8 ln (2)(|E |+|F |)+8 ln (1/εatt)
N

.
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