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Abstract

There is strong evidence that the amyloid-beta peptide (Ab) plays a central role in the pathogenesis of Alzheimer’s disease
(AD). In this context, a detailed quantitative description of the interactions with different Ab species is essential for
characterization of physiological and artificial ligands. However, the high aggregation propensity of Ab in concert with its
susceptibility to structural changes due to even slight changes in solution conditions has impeded surface plasmon
resonance (SPR) studies with homogeneous Ab conformer species. Here, we have adapted the experimental procedures to
state-of-the-art techniques and established novel approaches to reliably overcome the aforementioned challenges. We
show that the application of density gradient centrifugation (DGC) for sample purification and the use of a single chain
variable fragment (scFv) of a monoclonal antibody directed against the amino-terminus of Ab allows reliable SPR
measurements and quality control of the immobilized Ab aggregate species at any step throughout the experiment.
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Introduction

Alzheimer’s disease (AD) is the most common form of

neurodegenerative disorders. While several genetic risk factors

have been identified to be associated with the onset of AD, the

major risk factor of AD is age. In 2010 around 35 million people

were affected worldwide. With increasing life expectancy, .65

million cases are predicted by 2030 [1]. One of the hallmarks of

AD is the appearance of amyloid aggregates [2]. According to the

amyloid cascade hypothesis there is evidence that cellular events

leading to cell death in AD are initiated by different amyloid beta-

peptide (Ab) assembly states [3]. This is supported by the

observation of extracellular amyloid-like aggregates – mainly

consisting of Ab [4] – in the central nervous system of patients

suffering from AD. Formation of Ab is catalyzed by proteolytic

cleavage of the amyloid precursor protein (APP) by b-secretase

and c-secretase [5]. The role of the oligomeric and fibrillar

assembly states in disease progression is still debatable.

Nevertheless, due to the strong evidence that Ab plays a central

role in the pathogenesis of AD, substantial efforts aim to develop

assays that, on the one hand, either allow the detection and

quantification of Ab species in biological matrices as for instance

cerebrospinal fluids [6,7] or brain tissue [8–10] or, on the other

hand, allow the characterization of compounds that target

different Ab species and/or interfere with their formation. A

critical measure describing such compounds is their binding

affinities to distinct Ab species. Thus, reliable assays are urgently

needed for quantitative affinity determination between ligands and

the various Ab species.

An optimal assay for binding studies with Ab-binding molecules

should combine minimal consumption of label-free ligands with

maximum yield on kinetic and thermodynamic binding data. The

surface plasmon resonance (SPR) technology can meet these

requirements. In an SPR experiment, one of the interactants is

immobilized (ligand) on a sensor chip surface. With regard to the

propensity of Ab(1–42) to aggregate, its use as the ligand is a clear

advantage as stable fixation minimizes the risk of structural

rearrangements, oligomerization and aggregation throughout the

experiment.

However, several challenges exist with respect to the design of

an SPR-assay for Ab: (i) For obtaining robust data it is a

prerequisite to use preparation techniques that ensure reliable

preparation of homogeneous Ab species that are free from

undesired aggregation states. Ab readily forms different oligomeric

species that vary in size. Hence, samples are frequently hetero-

geneous, which prevents satisfactory data evaluation and binding

curve fitting even when using multi-compound binding models. (ii)

It is essential to find a suitable immobilization technique that is

compatible with the buffer where formation of the respective Ab
species was performed because this prevents structural rearrange-

ment of the prepared species. Many studies have analyzed the

effect of different buffer components, temperature and pH on the

formation of different Ab species [11]. Taken together even slight

changes in one of the latter physical parameters can cause

structural rearrangements and peptide instability. Unfortunately,

the majority of immobilization techniques in SPR are based on

chemical reactions that require a change of solution conditions.
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Moreover, immobilization of variable amounts of ligand on the

surface in a highly reproducible manner is another critical step as

this allows adaption of the Rmax (maximum response obtainable

when all available ligand binding places are occupied) to the

molecular weight of the interaction partner. Since there is a linear

dependence of molecular mass to the detected SPR response,

analytes with high molecular weights yield higher response signals

than smaller analytes [12]. Excessive amounts of ligand eventually

lead to heterogeneity in recorded sensorgrams during binding

experiments, hampering data evaluation because of mass transport

limitations and rebinding events. Generally, the lower the amount

of immobilized ligand that yields a sufficient response during

interaction with an analyte the lower the risk of heterogeneity. (iii)

In addition to preparation and immobilization, special require-

ments for the measurement procedure are also present. A standard

SPR assay includes regeneration steps between multiple analyte

injections. This introduces the risk of critical structural rearrange-

ments in the immobilized Ab aggregates. It would therefore be

beneficial to circumvent this step to yield reproducible interaction

data. (iv) A reference molecule for quality control purposes of the

surface activity during every single step of an experiment would

greatly facilitate experimental design. Accordingly, selection of a

proper analyte for assay development and surface characterization

is crucial. It should be available in sufficient amounts, possess an

on- and off-rate within SPR instrument specifications without

introducing avidity effects.

Methods

Expression of the single chain variable fragment IC16
For recombinant production of scFv-IC16, E. coli BL21 DE3

pRARE2 was transformed with the expression vector pET22b-

scFv-IC16-5His. Each 1 l 2YT (10 g l-1 yeast extract, 20 g l-1

tryptone, 10 g l-1 NaCl, 10 ml l-1 20% dextrose, 5 ml l-1 2 M

MgCl2, chloramphenicol and ampicillin, pH 7.4) expression

culture was inoculated with an aliquot of a 50 ml overnight LB

(5 g l-1 yeast extract, 10 g l-1 tryptone, 10 g l-1 NaCl) culture

(grown at 37uC, 150 rpm) to a final OD600 of ,0.1. Cells were

grown at 37uC (150 rpm) to an OD600 of 1.6–1.8. Subsequently,

cultures were chilled for 1 hour at 4uC until IPTG was added to a

final concentration of 0.2 mM for induction of scFv-IC16 protein

expression. Expression was carried out for 24 hours at 18uC under

gentle agitation (150 rpm). Cells were harvested by centrifugation

(30 min, 4uC, 3750 rpm), pellets washed with PBS (10 mM

sodium phosphate buffer pH 7.4, 137 mM NaCl, 2.7 mM KCl)

and stored at 220uC until further use.

Purification of scFv-IC16
Pellets were resuspended in 20 ml lysis buffer I (50 mM Tris-

HCl pH 8.0, 1 mM EDTA, 1 mg/ml lysozyme), supplemented

with protease inhibitors (Complete EDTA-free Protease Inhibitor

Cocktail Tablets, Roche). For cell lysis 20% Triton X-100 was

added to a final concentration of 1%. MgCl2 was added to a final

concentration of 20 mM together with 500 U DNAse I. After an

incubation at RT for ,15 minutes the volume was adjusted to

50 ml with lysis buffer II (8.33 mM imidazole, 833 mM NaCl,

16.6 mM CaCl2, 1% Triton X-100) followed by centrifugation for

30 min at 20,000 g. Pellets containing scFv-IC16 in inclusion

bodies were resuspended in 30 ml binding buffer (50 mM Tris-

HCl pH 7.8, 500 mM NaCl, 8 M urea) followed by overnight

incubation at 4uC in an orbital shaker. Suspensions were

centrifuged (45 min, 20,000 g) and supernatants containing scFv-

IC16 were purified by denaturing Ni2+-NTA-chromatography.

Affinity chromatography was performed with Ni2+-loaded nitrilo-

triacetic acid (NTA) agarose from Qiagen (column volume, CV, of

3 ml) that was equilibrated with binding buffer. Supernatant was

loaded onto the column by gravity flow, followed by washing steps

with two CVs of wash buffer I (50 mM Tris-HCl pH 6.0, 500 mM

NaCl, 8 M urea) and two CVs of wash buffer II (50 mM Tris-HCl

pH 5.3, 500 mM NaCl, 8 M urea). scFv-IC16 was eluted with

elution buffer (50 mM Tris-HCl pH 4.0, 500 mM NaCl, 8 M

urea). All fractions were analyzed by SDS-PAGE with subsequent

Coomassie staining and scFv-IC16-containing fractions were

pooled. For refolding, renaturation buffer (50 mM Tris-HCl,

500 mM NaCl, 1% Triton X100, pH 7.2) was added to elution

fractions in a 10:1 ratio (v/v). Afterwards, a second affinity

chromatography purification was performed with Ab(1–16)

coupled NHS-sepharose (Pierce). After equilibration with a 10:1

mixture of refolding and elution buffer fractions containing scFv-

IC16 were loaded onto the column. A washing step with 10 CVs

TBS (50 mM Tris-HCl, 150 mM NaCl, pH 7.4) removed non-

bound material. Elution was achieved with 50 mM glycine,

pH 2.5. Each elution fraction was immediately neutralized by

addition of 50 ml 2 M Tris-HCl, pH 8.0 per ml fraction volume

and checked by SDS-PAGE. Fractions containing scFv-IC16 were

pooled, dialyzed against PBS, and concentrated to a final

concentration of 5 mM with Vivaspin 20 columns from Sartorius

Stedim (3000 MWCO PES).

Preparation of Ab(1–42) monomers and oligomers by
size exclusion chromatography (SEC)

The protocol used by Johansson, Berglind-Dehlin, Karlsson,

Edwards, Gellerfors and Lannfelt [13] was adapted for Ab(1–42)

monomer and oligomer preparation by SEC with minor

modifications. Lyophilized stocks of Ab(1–42) (Bachem), car-

boxy-terminally biotinylated Ab(1–42) (Eurogentec) and amino-

terminally biotinylated Ab(1–42) (Anaspec) were separately

dissolved in 100% hexafluoroisopropanol (HFIP) and incubated

overnight at RT. In the case of oligomer preparations, amino-

terminally biotinylated Ab(1–42) and non-biotinylated Ab(1–42)

were mixed in a 1:10 ratio. After incubation, solutions were

divided into 125 mg aliquots. HFIP was removed by evaporation in

a Concentrator 5301 (Eppendorf). Ab(1–42) was resolubilized in

100 ml SEC-buffer (50 mM sodium phosphate buffer, 150 mM

NaCl, 0.6% Tween 20, pH 7.4) and briefly centrifuged (30 s) at

15,000 g to sediment insoluble material immediately prior to

separation by SEC. Separation was performed with a Superdex 75

10/300 GL column operated at RT by an Äkta purifier system at

a flow rate of 0.8 ml min21. For each single run ,100 ml of

solubilized Ab(1–42) was loaded onto the column. Monomers

eluted at ,14 ml, whereas oligomers eluted close to the void

volume (at ,8 ml). Samples were immediately used for immobi-

lization on sensor chip surfaces. Initially, for establishment of the

immobilization assay a BCA-assay was used to correlate the

absorbance at 214 nm of the SEC fractions to the overall Ab
concentration. We observed, that an A214 = 250 mAU (oligomers)

or A214 = 150 mAU (monomers) in the size exclusion chromato-

gram correlates with ,1 mM total Ab concentration derived from

a BCA-assay. Omitting the BCA-assay step dramatically reduces

the time between elution and immobilization. For immobilization

of monomers and oligomers (10% amino-terminally biotinylated)

Ab(1–42) concentrations of ,10 nM and ,100 nM, respectively,

were used.

Preparation of Ab(1–42) fibrils
The protocols used by Wood, Maleeff, Hart and Wetzel [14]

and Nagel-Steger, Demeler, Meyer-Zaika, Hochdorffer, Schrader

and Willbold [15] were adapted for Ab(1–42) fibril preparation

Immobilization of Ab Species for SPR Measurements
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with minor modifications. Lyophilized aliquots of Ab(1–42) and

amino-terminally biotinylated Ab(1–42) were dissolved separately

in 100% HFIP and incubated at RT overnight. Biotinylated Ab(1–

42) and non-biotinylated Ab(1–42) in HFIP were mixed in a 1:10

ratio and subsequently divided into 72 mg aliquots. HFIP was

removed by evaporation in a Concentrator 5301 (Eppendorf).

Then, Ab pellets were solubilized in 200 ml sodium phosphate

buffer pH 7.4 (10 mM; yielding an 80 mM Ab solution) and

incubated for 24 hours at 25uC (600 rpm). To separate the hereby

obtained fibrils from smaller aggregates and from monomers, they

were subjected to a density gradient centrifugation (DGC) step.

The gradient was prepared in thin-walled ultracentrifugation tubes

(Ultra-Clear 11634 mm, 2.2 ml from Beckman) by successively

overlaying the following volumes of density gradient solutions:

260 ml 50%, 260 ml 40%, 260 ml 30%, 780 ml 20%, 260 ml 10%

and 100 ml 5% (v/v) Iodixanol in 10 mM sodium phosphate buffer

pH 7.4. After addition of 100 ml sample, the gradient was

centrifuged (3 h, 4uC, 259,000 g) using a TLS-55 rotor in a

benchtop ultracentrifuge Optima TL-100 (Beckman-Coulter).

From each gradient 14 fractions of 140 ml were harvested from

top to bottom. Fibrils were typically located in fractions 11 to 13.

Surface Plasmon Resonance (SPR)
For SPR experiments Series S Sensor Chips SA (GE Healthcare

Life Sciences) in combination with a Biacore T200 system were

used. Series S Sensor Chips SA are coated with streptavidin and

allow ligand immobilization based on the biotin-streptavidin

interaction. For our experiments PBS (filtered with 0.2 mm,

PVDF) was used as running buffer. After docking a new sensor

chip, the system was initiated with a ‘‘Prime’’ command and the

detector normalized with 70% glycerol (GE Healthcare Life

Sciences). All flow cells were activated with three consecutive one

minute injections of 1 M NaCl in 50 mM NaOH. For ligand

immobilization the flow rate was adjusted to 5 ml min21 in order

to minimize sample consumption. After immobilization we let the

flow cells stabilize overnight to remove unspecifically bound

material and detergence. To do so, we set the flow speed and

temperature to 30 ml min21 and 25uC respectively.

For interaction studies the flow speed and temperature were

adjusted to 30 ml min21 and 25uC respectively. All interaction

studies were performed in the single-cycle kinetic mode [16]. Here,

five different analyte concentrations were injected within a single

cycle (contact time: 90 s, final dissociation time after the highest

concentration: 1800 s) in order of increasing concentration. The

applied analyte concentrations for scFv-IC16 were 312.5, 625,

1250, 2500 and 5000 nM. Binding studies with monoclonal

antibody 6E10 were performed with concentrations of 0.32, 1.6, 8,

40 and 200 nM. All binding data were double referenced by

collecting data in dual-channel mode with an untreated and

therefore not Ab(1–42) containing reference flow cell connected

upstream of the flow cell with the respective Ab(1–42) assembly

state and by the subsequent subtraction of a blank buffer injection

(16 PBS) from the obtained binding responses.

Double referenced SPR data were evaluated with Biacore T200

Evaluation Software (version 1.0) using the available binding

models. Ab monomer data was fit to a 1:1 binding model, whereas

sensorgrams of Ab oligomers and fibrils were analyzed with a

heterogeneous ligand binding model accounting for two separate

ligand sites for analyte binding. Values for bulk refractive index

(RI) and mass transfer (kt) correction were manually set to zero,

because double-referencing was applied and low amounts of ligand

were immobilized.

Results

For immobilization of different Ab(1–42) species we have

chosen a streptavidin-biotin-coupling procedure as this avoids

change in buffer conditions during Ab(1–42) immobilization [17]

concomitant with many alternative protocols. In addition, due to

the strong interaction of streptavidin and biotin with a dissociation

constant KD of around 10215 M [18] there is virtually no loss of

ligand during the experiment. Moreover, streptavidin-biotin-

coupling can be used effectively to control the amount of bound

ligand simply by varying the concentration of the ligand or the

duration of the injection. Fig. 1 shows the experimental setup

scheme for the preparation of different Ab(1–42) species and their

immobilization.

Because any harsh regeneration steps between measurements

will very likely do harm to the immobilized Ab(1–42) species, they

need to be avoided completely. Instead, very long washing steps

have been introduced between separate measurements. To save

time, so called kinetic titration [13], where the analyte is injected

in increasing concentrations without regeneration steps in-

between, is the method of choice. In comparison with classical

multi-cycle kinetics, sample consumption and analysis time is

reduced and, most importantly, the need for regeneration is

eliminated [16,19]. For analysis of the kinetic titration obtained

sensorgrams the tool ‘‘single-cycle kinetics’’ of the Biacore

evaluation software package has been used.

For assay development and for quality check of surface

characterization of immobilized Ab species, the single-chain

variable fragment (scFv-IC16) of the antibody IC16 that was

initially selected to target the first 16 amino-acid residues of Ab
was selected [20,21]. scFvs are easy to produce and purify, stable

at high concentrations for at least weeks, and possess only a single

binding site with high specificity for their epitope, thereby avoiding

any avidity effects.

Characterization of Ab monomers
To test the specificity of scFv-IC16 to the amino-terminal part

of Ab, the chosen biotin-streptavidin immobilization procedure

should be well-suited. The orientation of Ab on the surface can be

modulated easily by changing the location of the biotin tag. In

theory it should therefore be possible to hide the epitope of scFv-

IC16 by fusion of a biotin tag in close proximity. To do so we have

immobilized the amino-terminally biotinylated Ab(1–42) mono-

mers (Fig. S1 A) that have been purified by size exclusion

chromatography (SEC) prior to immobilization (Fig. S2 A) [13].

SEC purification ensures monodispersity of Ab monomers.

Binding of an anti-Ab(1–42) antibody (6E10) demonstrated that

Ab was successfully immobilized (Fig. S3). In contrast, binding of

scFv-IC16 to the N-terminally biotinylated Ab(1–42) monomer

loaded surface could not be detected (for details see Fig. S4).

Conversely, C-terminally biotinylated Ab(1–42) monomers that

were immobilized to the surface was bound by both, 6E10 and

scFv-IC16 (Fig. 2 and Fig. S5). We conclude that both, N- and C-

terminally biotinylated Ab monomers were successfully immobi-

lized, but immobilization of N-terminally biotinylated Ab(1–42) on

the streptavidin-coated sensor chip restricts binding of scFv-IC16.

To extract quantitative information from the experimental data of

scFv-IC16 and C-terminally biotinylated Ab(1–42) we fitted the

obtained sensorgrams to a Langmuir 1:1 binding model.

Refractive index correction (RI) was not required because all

binding data were double referenced prior to analysis. As can be

seen in Fig. 2 and Tab. 1, the resulting fit represents the

experimental data very well and yields a dissociation constant (KD)

of 0.77 mM. A low x2-value of 4.1 supports this finding. A

Immobilization of Ab Species for SPR Measurements
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comparison with steady state affinity analysis (a linear fitting

approach, see Fig. S7) revealed an excellent match. With this

approach the KD determined was equal to 0.97 mM (x2: 0.38).

Characterization of an example for Ab oligomers
Next we immobilized Ab(1–42) oligomers containing 10%

amino-terminally biotinylated Ab(1–42) and checked for successful

immobilization of Ab with 6E10 and scFv-IC16. To reduce the

risk of sample heterogeneity we removed species different than

oligomers by SEC [13] and immediately immobilized these

oligomers (Fig. S1 A). 6E10 and scFv-IC16 were both able to

bind to the Ab oligomers on the surface (see Fig. 2 and Fig. S6).

Importantly, since amino-terminally biotinylated monomers are

not recognized by scFv-IC16 we can conclude that the obtained

responses rely on scFv-IC16 binding to oligomers. Therefore,

scFv-IC16 proves to be a powerful tool for surface characterization

and quality control of immobilized Ab and application as a

molecular tool for SPR studies with Ab in higher aggregation

states is conceivable. Antibodies and their respective Fab

fragments are often known to recognize both, linear and

conformational epitopes. Binding curves were therefore fit with a

heterogeneous ligand binding model. Again, owing to double

referencing, a refractive index (RI) correction was not required.

We obtained two separate KD values (0.37 mM and 5.60 mM; x2:

3.0) with affinities differing by one order of magnitude. Use of

simpler models increased x2 by at least a factor of ten and supports

the initial assumption of a second epitope of Ab(1–42) oligomers

for scFv-IC16. This effect is very likely not being caused by

rebinding effects of the analyte. The total mass of immobilized

Ab(1–42) oligomers is very comparable with the amount of

immobilized Ab(1–42) monomers, in which clearly no rebinding

could be observed (Fig. S1 A).

Characterization of Ab fibrils
For immobilization of fibrils, an Ab(1–42) mixture with 10%

amino-terminally biotinylated Ab(1–42) was used. To ensure the

absence of lower molecular weight species we applied density

gradient centrifugation (DGC) for separation of fibrils from other

oligomeric states and monomers. Iodixanol was used as gradient

media because this reagent has several advantages over other

potential agents: it is non-ionic, forms self-generated gradients in

comparatively short centrifugation times and, most importantly, it

is iso-osmotic [22]. This ensures a low influence on protein

stability and structure. Nevertheless, to analyze the potential

influence of Iodixanol on the structural assembly of the prepared

fibrils AFM studies were performed (Fig. S8). The obtained AFM

results indicate that fibril formation is not altered by Iodixanol,

that the fibrils are virtually identical to Ab fibrils previously studied

by AFM [23] and that no background signal by lower molecular

weight species such as oligomers can be observed. As observed for

SEC-purified Ab-oligomers, it was possible to immobilize repro-

ducible amounts of the DGC separated Ab-fibrils on the surface

(Fig. S1 B). To the best of our knowledge, this is the first report on

the immobilization of Iodixanol DGC-separated Ab(1–42) fibrils

via a biotin-streptavidin technique and acts as a proof-of-principle

Figure 1. Surface preparation with different Ab(1–42) assembly states for surface plasmon resonance (SPR) analysis. Size exclusion
chromatography (monomers and oligomers) and density gradient centrifugation (fibrils) ensure highly pure samples for immobilization on sensor
surfaces and subsequent SPR measurements.
doi:10.1371/journal.pone.0089490.g001

Figure 2. Interaction of scFv-IC16 with different immobilized
Ab(1–42) assembly states. SPR sensorgrams were recorded sepa-
rately with single-cycle kinetics. Experimentally obtained, double-
referenced binding data (black traces) were superimposed with the
corresponding fit (red traces). Monomer data was fit to a 1:1 Langmuir
binding model, and oligomer and fibril data were fit to a heterogeneous
ligand binding model. DRU: delta of the response units. t/s: time in
seconds.
doi:10.1371/journal.pone.0089490.g002

Immobilization of Ab Species for SPR Measurements
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experiment that demonstrates this combination of methods as a

powerful tool for future sample preparation of ligands for SPR

studies. However, the refractive index shows a dramatic jump

following sample injection because of the presence of Iodixanol

(Fig. S1 B). Incubation of the flow cell in a continuous flow mode

revealed a linear decay of 4 RU (RU: response units) per hour

after 8 h. We assumed this decay is caused by a small amount of

the fibrils dissociating, because similar decays have been observed

previously for immobilized fibrils [24]. scFv-IC16 was able to bind

to the fibril surface. The binding curves were fit with the identical

model used for Ab(1–42) oligomers. The resulting dissociation

constants for scFv-IC16 binding to Ab(1–42) fibrils were deter-

mined to be 0.31 mM and 4.26 mM (x2: 1.2, Tab. 1), which are

very similar to those obtained for Ab oligomers.

Discussion

A direct comparison of the obtained kinetic rates and overall

affinities for scFv-IC16 and Ab species reveals that for each Ab
assembly state (C-terminally biotinylated monomers, as well as

10% N-terminally biotinylated oligomers and fibrils), there is one

interaction component present with nearly identical properties

among all three assembly states (Fig. 3. and Tab. 1). The attained

association and dissociation rates for the high affinity site of scFv-

IC16 binding to Ab monomers, oligomers and fibrils are

2.36104 Ms21 and 1.761022 s21, 2.76104 Ms21 and

1.061022 s21, 3.06104 Ms21 and 0.961022 s21, respectively.

Based on these rate constants, it is tempting to speculate that the

same binding epitope for scFv-IC16 is present in each of the

studied Ab assembly states. Because this epitope is obviously

missing in purely N-terminally biotinylated monomers, we can

conclude that this epitope contains the very N-terminal residues of

Ab. Moreover, the affinity of the slower binding reaction of scFv-

IC16 binding oligomers and fibrils was nearly one order of

magnitude weaker (KD2-values in Tab. 1). Based on this

observation we conclude that Ab generates a secondary binding

site for scFv-IC16 when forming higher assembly states like

oligomer and fibril structures. Remarkably, fitting of sensorgram

data obtained with scFv-IC16 binding monomeric Ab(1–42) to the

heterogeneous ligand binding model, as used for oligomers and

fibrils, did not yield a second binding component similar to the

oligomer and fibril data. Instead, an unlikely apparent KD of

9.9610214 M in concert with an Rmax value of 1.6 supports the

notion that scFv-IC16 binding data for monomers follows a 1:1

Langmuir interaction, which confirms that the Ab monomer

preparation was extremely homogeneous, and that the secondary

binding epitope existing in oligomers and fibrils is clearly not a

fitting artefact.

In addition to the specific findings concerning the properties of

scFv-IC16, we hereby describe a general approach to immobilize

any Ab assembly that contains a fraction of n-terminally

biotinylated Ab molecules to streptavidin-coated SPR chips while

having the possibility to confirm integrity of the immobilized Ab
species via binding of scFv-IC16 at any time of the experiment.

IC16 was chosen, because it recognizes the amino-terminus of Ab
only, when it is not biotinylated and bound to streptavidin. The

scFv fragment of IC16 has been chosen because it binds in a 1:1

ratio to the target and is eluting more rapidly than the full-length

IC16 antibody. The setup allows immobilization of either C-

Table 1. Overview of kinetic rates for scFv-IC16 binding to different Ab(1–42) assembly states obtained within the single-cycle
kinetic SPR experiments.

monomers monomers# oligomers# fibrils#

ka1
[a] 2.27*104 2.16*104 2.66*104 (4.9*103; n = 4) 2.96*104 (3.9*103; n = 3)

kd1
[b] 1.74*1022 2.03*1022 0.98*1022 (1.8*1023; n = 4) 0.92*1022 (1.5*1023; n = 3)

KD1
[c] 7.69*1027 9.36*1027 3.70*1027 (1.4*1027; n = 4) 3.12*1027 (7.5*1028; n = 3)

ka2
[a] - 4.80*104 1.03*102 (9.2*101; n = 4) 4.54*102 (3.7*102; n = 3)

kd2
[b] - 4.78*1029 5.76*1024 (2.9*1023; n = 4) 1.93*1023 (1.0*1023; n = 3)

KD2
[c] - 9.90*10214 5.60*1026 (7.9*1026; n = 4) 4.26*1026 (2.2*1026; n = 3)

x2 4.1 2.4 3.0 1.2

Rmax1
[d] 36.6 36.2 69.1 89.3

Rmax2
[d] - 1.6 206.1 143.1

The hash (#) denotes that kinetic rates were determined with a heterogeneous binding model. Standard deviation with number of experiments is given in brackets.
#fit to a heterogeneous binding model. Units are: [a] Ms21, [b] s21, [c] M, and [d] RU.
doi:10.1371/journal.pone.0089490.t001

Figure 3. Kinetic rates obtained for scFv-IC16 binding to
different immobilized Ab(1–42) assembly states. Association rate
constants (ka) were plotted against dissociation rate constants (kd). The
dissociation constant (KD) can be extracted from the diagonal lines.
Circles, squares and triangles correspond to data from interactions with
monomers, oligomers and fibrils, respectively, whereas filled symbols
represent data for the second binding site. All data was determined
with the heterogeneous fitting model. The grey circle represents
monomer data obtained with a 1:1 binding model.
doi:10.1371/journal.pone.0089490.g003
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terminally Ab monomers or any kind of higher order Ab forms

that were artificially prepared employing a fraction of N-

terminally biotinylated Ab. We have given one example each of

a monomer, oligomer and fibril preparation, as were published

previously by others.

Conclusions

Taken together, we have established a novel approach allowing

reproducible interaction studies with different homogeneous

Ab(1–42) assembly states by SPR. SEC and DGC purification of

Ab species prior to streptavidin-biotin coupling ensures sample

homogeneity and minimal surface alterations, which are major

limitations of SPR experiments involving Ab. In addition, we have

employed a monoclonal antibody-derived scFv for direct verifica-

tion of successfully immobilized higher Ab assembly states.

Although, the hereby described approach is straightforward only

for in vitro-generated Ab assemblies, it may prove to be an

essential step toward future screening and in-depth characteriza-

tion of potential drug candidates and thereby has the capability to

greatly simplify and accelerate drug development for AD.

Supporting Information

Figure S1 Overlay of sensorgrams obtained during
immobilization of three different Ab(1–42) assembly
states on a streptavidin sensor chip. Oligomers and fibrils

were prepared in a 1:10 molar ratio of amino-terminally

biotinylated and non-biotinylated Ab(1–42), whereas monomers

were completely biotinylated at the carboxy-termini. Final

immobilized amounts are given in brackets. Shown are examples

of sensorgrams obtained during immobilization of Ab(1–42)

monomers and oligomers (A) as well as fibrils (B). Because the

procedure involves changes in buffer, these sensorgrams don’t

allow conclusions about association and dissociation rates of the

immobilized Ab(1–42) assembly states. After a few hours a stable

baseline decay dependent on the immobilized assembly state was

reached. RU: response units.

(PNG)

Figure S2 Size exclusion chromatography profile at
214 nm of A) 100% C-terminal biotinylated Ab(1–42), B)
100% N-terminal biotinylated Ab(1–42), C) 10% N-
biotinylated Ab(1–42)/90% Ab(1–42), D) Molecular
weight standard with Aprotinin (6.5 kDa), Lysozyme
(14.4 kDa) and Conalbumin, Catalase, Aldolase, Ferritin
in the void volume with Superdex 75 10/300 GL.
Oligomers elute partly within the void volume and the monomers

at ,9 kDa. AU: absorption units at 214 nm.

(PNG)

Figure S3 SPR sensorgram depicting binding of mono-
clonal IgG antibody 6E10 to N-terminally biotinylated
Ab(1–42) monomers immobilized on a streptavidin-
coated SPR sensor chip.
(PNG)

Figure S4 SPR sensorgrams depicting binding pattern
of scFv IC16 to ,1200 RU N-terminally biotinylated

Ab(1–42) monomers, immobilized on a streptavidin-
coated SPR sensor chip.

(PNG)

Figure S5 SPR sensorgram depicting binding of mono-
clonal IgG antibody 6E10 to C-terminally biotinylated
Ab(1–42) monomers immobilized on a streptavidin-
coated SPR sensor chip.

(PNG)

Figure S6 SPR sensorgram depicting binding of mono-
clonal IgG antibody 6E10 to Ab(1–42) oligomers immo-
bilized on a streptavidin-coated SPR sensor chip. Ab
oligomers were composed of a 1:10 ratio of amino-terminally

biotinylated Ab(1–42) and non-biotinylated Ab(1–42).

(PNG)

Figure S7 Steady-state analysis of scFv-IC16 binding to
immobilized C-terminally biotinylated Ab(1–42) mono-
mers. The dissociation constant KD for a 1:1 interaction is

calculated from equation Req = (C*Rmax)/(KD+C), where C refers

to the analyte concentration, Req to the obtained equilibrium

binding levels and Rmax to the maximum analyte binding capacity

of the surface. Values for KD and Rmax were determined to

0.97 mM and 39.7 RU with a corresponding x2 value of 0.38.

(PNG)

Figure S8 Analysis of Ab(1–42) fibrils after density
gradient centrifugation (DGC) by atomic force micros-
copy. The fibrils were created in 10 mM sodium phosphate

buffer (pH 7.4) and separated by density gradient centrifugation to

remove smaller Ab(1–42) assembly states. Fibrils are illustrated in

(A) and shows the height image of the surface. Image (A) was used

to determine a height profile (B) of the surface indicated by the

black bar in (A).

(PNG)

Figure S9 Development of the baseline after immobili-
zation of: A) ,150 RU N-terminally biotinylated Ab(1–42)
monomers, B) ,200 RU Ab(1–42) oligomers, C) ,400 RU
Ab(1–42) fibrils. Ab(1–42) oligomers and fibrils were composed

of a 1:10 ratio of amino-terminally biotinylated Ab(1–42) and non-

biotinylated Ab(1–42).

(PNG)
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