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Abstract

Clustering is an important task of data mining. The purpose of clustering

is discovering and grouping similar objects in a data set with the principle that

objects in the same group (cluster) are similar. Meanwhile, the ones from different

clusters are dissimilar. The traditional clustering approaches are designed for

searching clusters in the entire space. However, in high-dimensional real world

data sets, there are usually many irrelevant dimensions for clustering, where the

traditional clustering methods work often improperly. Subspace clustering is an

extension of traditional clustering that enables finding subspace clusters only

in relevant dimensions within a data set. However, most subspace clustering

methods usually suffer from the issue that their complicated parameter settings

are almost troublesome to be determined, and therefore it can be difficult to

implement these methods in practical applications.

In this dissertation, we introduce two novel subspace clustering methods

SUGRA (Subspace Clustering with the Gravitation Function) [Zhao 10a] and

ASCDD (Automatic Subspace Clustering with the Distance -Density Function)

[Zhao 12, Zhao 13]. The first algorithm SUGRA takes a gravitation function

to calculate the densities of objects. It searches clusters from low- to high-

dimensional subspaces. The second algorithm ASCDD uses another density

function and computes the density distribution directly in high-dimensional sub-

spaces. The relevant subspaces are explored by comparing their entropy values.

The clusters in ASCDD are searched with the technique of neighborhood expan-

sion.

Both of the subspace clustering methods are designed with the principle of un-

complicated parameter setting and easy applicability. For example, SUGRA can

separate non-cluster objects by one threshold that is close to a constant. ASCDD

requires only one simply determinable parameter in the step of the neighborhood

expansion.

Finally, we compare SUGRA and ASCDD with other subspace clustering

methods in different empirical experiments with various aspects. The results



show that the two proposed subspace clustering methods are accurate and easy

applicable on different types of data sets.



Zusammenfassung

Clustering ist eine wichtige Aufgabe von Data-Mining. Der Zweck von Clus-

tering ist die Entdeckung und Gruppierung ähnlicher Objekte in einem Daten-

satz mit dem Prinzip, dass die Objekte einer Gruppe (eines Clusters) einan-

der ähnlich sind und diejenigen aus verschiedenen Clustern unähnlich sind. Die

traditionellen Clusteringverfahren sind konzipiert für die Suche nach Clustern

in dem gesamten Raum. Dennoch gibt es häufig viele irrelevante Dimensio-

nen bezüglich des Clusterings in einem hochdimensionalen Datensatz der realen

Welt, wo die traditionellen Clusteringverfahren oft ungeeignet sind. Das Subspace

Clustering ist eine Erweiterung des traditionellen Clusterings. Dabei ermöglicht

es die Suche nach Subspace-Clustern nur in den relevanten Unterräumen eines

Datensatzes. Allerdings haben die meisten Subspace-Clustering-Algorithmen das

Problem, dass sich ihre komplizierten Parametereinstellungen ziemlich schwer

ermitteln lassen. Daher ist die Anwendung dieser Methoden in der Praxis prob-

lematisch.

In dieser Dissertation stellen wir zwei neue Subspace-Clustering-Methoden

SUGRA (Subspace Clustering with the Gravitation Function) [Zhao 10a] and

ASCDD (Automatic Subspace Clustering with the Distance -Density Function)

[Zhao 12, Zhao 13] vor. Der erste Algorithmus SUGRA benutzt eine Gravitations-

funktion, um die Dichte von Objekten zu berechnen. Er sucht Cluster in niedrig-

bis hochdimensionalen Unterräumen. Der zweite Algorithmus ASCDD verwendet

eine andere Dichtefunktion und berechnet die Dichteverteilung direkt in hoch-

dimensionalen Unterräumen. Die relevanten Unterräume werden durch den Ver-

gleich ihrer Entropiewerte entdeckt. Die Cluster in ASCDD werden mit der Tech-

nik der Nachbarschaftserweiterung gesucht.

Beide Subspace-Clustering-Methoden werden nach dem Prinzip einer unkom-

plizierten Parametereinstellung und einfacher Anwendbarkeit entwickelt. Beispiels-

weise trennt SUGRA Nichtclusterobjekte mit einem Schwellenwert, der in der

Nähe von einer Konstante ist. ASCDD erfordert nur einen einfach bestimmbaren

Parameter in dem Schritt der Nachbarschaftserweiterung.



Schließlich vergleichen wir SUGRA und ASCDDmit anderen Subspace-Clustering-

Methoden in diversen empirischen Experimenten hinsichtlich unterschiedlicher

Aspekte. Die Ergebnisse zeigen, dass die beiden vorgeschlagenen Subspace-Clustering-

Verfahren präzise und auf verschiedene Typen von Datensätzen leicht anwendbar

sind.
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�
Introduction & Background

“One man’s noise can be another man’s music.”1

It is nowadays uncomplicated to gather real-time bulk data with high-speed,

high-capacity and low-priced data storage devices in various domains, e.g. eco-

nomics, meteorology, genetics, and security. However, the huge bulk of data is

usually stored as unanalyzed raw data, whose meaning or implications are diffi-

cult to be revealed. In order to extract the significance of original data and to

utilize useful information for further analysis, it is necessary to discover unknown

or hidden information from the raw data.

Data mining is a process of discovering and exploiting hidden information in

data and converting the information more comprehensibly for further applica-

tions. Data mining involves many tasks for various requirements. A few common

tasks are introduced here shortly:

Classification identifies categories for new objects by analyzing the existing

categories of known data.

Regression analysis is a statistical method for estimating a model that opti-

mally fits data and investigating relationships between variables.

Association rule mining is a method for exploring interesting relations be-

tween objects.

Anomaly detection tries to find outliers, which do not have normal patterns

compared with other objects.

Clustering discovers groups of objects with similar properties or structures.

1[Air 57]
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Clustering is one of the core tasks in data mining because it is the foundation

for many other data mining tasks, such as classification, association rule mining

and anomaly detection. It is also commonly used in many domains such as mar-

keting, biology, medicine, World Wide Web, machine learning and information

retrieval.

The main purpose of a clustering task is to divide the objects in a data set

into groups (clusters), so that according to some principle the objects in the

same cluster are similar. Meanwhile, the ones from different clusters are dis-

similar. This is the general principle for clustering. The definitions of clusters

are usually based on similarities defined by various clustering algorithms. How-

ever, the explanations and definitions of the similarity between objects vary with

clustering algorithms.

Traditional clustering algorithms consider all dimensions of a data set as a

unity for seeking possible clusters. This is mainly meaningful for low-dimensional

data. However, as the number of dimensions increases, the traditional clustering

methods may face some problems.

One problem is that clusters may not exist in the entire space, but in some

projections of the dimensions. This often happens in high-dimensional data sets.

Since many dimensions are often irrelevant in high-dimensional data, the irrele-

vant dimensions can confuse traditional clustering algorithms with hidden clusters

in noise [Pars 04].

Another issue when applying traditional clustering methods to high-dimensional

data arises from the “curse of dimensionality” [Bell 03, Beye 99]. The phe-

nomenon of the “curse of dimensionality” shows that objects are getting increas-

ingly sparse and dissimilar as the dimensionality increases; meanwhile, the dis-

tance between two objects converges ( distmin

distmax

dim→∞−−−−→ 1) and consequently many

algorithms may work inefficiently.

An example illustrates the phenomenon of “curse of dimensionality” in fig-

ure 1.1, where the figures (a), (b) and (c) illustrate objects that spread out in one,

two and three dimensions, where the objects are enclosed with unit bins in diverse

dimensions. It shows that the number of objects contained in a one unit bin de-

creases as the number of dimensions increases. In some sense, a high-dimensional

unit bin can be said to be “sparser” than a low-dimensional unit bin. Therefore,
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the distances between objects in high dimensions tend to be more “equal” than

the distances between objects in low dimensions. In this situation, the traditional

clustering algorithms can be inapplicable for high-dimensional data sets.
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(c) 4 Objects in One Unit Bin

Figure 1.1: An example of “curse of dimensionality” [Pars 04]

Unlike traditional clustering methods, which search clusters only in the entire

space of a data set, subspace clustering methods focus on seeking clusters in par-

ticular projections of dimensions (subspaces). A subspace cluster can be found in

arbitrary subspaces rather than only in the entire space. In other words, only the

significant subspaces are found with clusters by subspace clustering algorithms.

Figure 1.2 shows an example of a three dimensional data set. The objects

are mixed with interlaced patterns. It is difficult to explore correct clusters by

applying a traditional clustering method only in the three dimensional space,

because the dissimilarities between clusters are not big enough to separate them.

If the objects are projected into two dimensional subspaces, then one cluster

appears much clearly. For example, the objects of cluster 1 are closer to each

other than the objects of cluster 2 or 3 in subspace {x, y}. Indeed, cluster 1 can

be easily found in {x, y}. It implicates that the subspace {x, y} has significant

relationship with cluster 1. Similarly, cluster 2 and cluster 3 can be found in

{x, z} and {y, z} respectively.

Subspace clustering can be applied in many domains. One prominent ex-

ample is gene analysis, the important gene expression information is saved in

DNA microarray data, where the expression level of large number of genes is

usually measured under many different conditions. Each condition corresponds

to a dimension. One challenging work is to explore patterns from the data. For
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Figure 1.2: An example of subspace clusters

example, checking whether homogeneous expression levels indicate a common

function or searching genetic relationships. In such searching tasks with mas-

sive high-dimensional data sets, subspace clustering techniques can surely play

an important role.

Another interesting example is face recognition, which can be used in security

systems, human-machine interaction and so on. It is a challenging area in pattern

recognition, because human faces are generally similar. It needs many features

to distinguish faces. Moreover, many factors can result in difficulties for the

recognition, such as pose, illumination, facial expression and cover. The features

with different conditions are usually saved as a high-dimensional data set. A

common task is to check whether the features of two faces are identical. Subspace

clustering can be definitely used for such applications.

There are a large number of published studies about various clustering tech-

niques, e.g. density-based, partition-based, hierarchy-based [Han 06]. Why are

there so many clustering algorithms? In [Esti 02], the author points out that

the notion of “cluster” cannot be precisely defined, because “clusters are in part

in the eye of the beholder”. In other words, the researchers try to define the

principles of clusters. These principles decide the similarity and dissimilarity of

objects. The principles of various methods are so different, so that the clustering

results may not be the same with various algorithms. For example, some cluster-

ing algorithms allow that one object belongs to only one cluster, whereas other
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clustering algorithms enable that an object assigns to many clusters. It is also

possible that one algorithm’s noise object can be another one’s cluster object.

One of the most challenging tasks for clustering algorithms is to assign objects

on the “edge” of clusters or “between” two and more clusters. The objects at

these special places can indicate forms of clusters, so assigning these objects can

result in big or small clusters. However, the assignment of these objects depends

strongly on the definition of similarity and also on the setting of parameters in

each clustering algorithm.

Choosing parameters is important for many clustering algorithms because

adjusting the parameters can change the clustering results. In many subspace

clustering algorithms, parameters are usually required for both clusters and sub-

spaces detection. However, a major problem is that most parameters can be

difficult to determine, especially if a data set has unknown information or com-

plicated types of data. The clustering algorithms can be even inapplicable for

some situations when their parameters are hard to choose.

The main aim of our study is to develop subspace clustering methods for

automatically clustering high-dimensional data. In order to achieve this purpose,

we try to reduce parameters and to make parameters easily determinable. This

dissertation summarizes mainly two of our studies, SUGRA (Subspace Clustering

with the Gravitation Function) [Zhao 10a] and ASCDD (Automatic Subspace

Clustering with the Distance -Density Function)[Zhao 12, Zhao 13].

SUGRA is an automatic density-based subspace clustering algorithm. It ap-

plies a mathematical property to separate non-cluster objects from others in a

simple way. It enables clustering without giving complex parameters.

The other method ASCDD is a development of SUGRA. ASCDD is also a

density-based subspace clustering algorithm, which applies very different tech-

niques as SUGRA in searching for clusters and subspaces. The algorithm uses

one parameter that can be simply determined.

The overall structure of the dissertation takes the form of following chap-

ters, including this introductory chapter. Chapter 2 begins by presenting related

research in the areas of clustering and subspace clustering. We introduce here

the problems of existing approaches and motivations of our studies. Chapter 3
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gives the definitions used for this study and details of our two subspace cluster-

ing algorithms. Chapter 4 focuses on discussing some issues of our studies and

comparisons to other subspace clustering methods. The next chapter 5 presents

experimental studies for verifying the proposed methods. Finally, chapter 6 con-

tains conclusions together with some ideas for further work.



�
Related work

In this chapter, we present some famous traditional clustering algorithms

and subspace clustering algorithms with their brilliant conceptions and also their

drawbacks. Finally, we elaborate the motivation and targets of our studies.

2.1 Traditional clustering algorithms

The traditional clustering algorithms denote the clustering algorithms that are

not used for the purpose of subspace clustering. The traditional clustering al-

gorithms use different techniques, which can be generally categorized as density-

based, statistics-based, hierarchy-based and partition-based clustering methods

[Han 06]. We will introduce here some well-known traditional clustering algo-

rithms.

Density-based clustering methods calculate the density values for objects.

The objects in a cluster are usually in the area with high density. Meanwhile,

the objects with low density are considered to be non-cluster objects.

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) [Este 96]

is a density-based clustering algorithm that finds clusters by estimating the den-

sity distribution of corresponding objects.

DBSCAN is based on the following definitions. A core object has more objects

than minPts (the minimum number of objects for forming a cluster) in its ε-

neighborhood, which is the set of objects with distances to the core object smaller

than ε. The objects in the ε-neighborhood of a core object are directly density-

reachable to this core object. Two objects are density-reachable, if there is a

chain of objects that are directly density-reachable between these two objects.
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Furthermore, two objects are density-connected, if they are density-reachable

through another object.

Searching a cluster in DBSCAN starts from a core object. All objects that

are density-connected with the start object are added to this cluster. The cluster

is expanded by adding new objects that are density-connected to any object in

the same cluster.

o

m1

m2

m3

p

q

n
ε

Figure 2.1: DBSCAN with minPts = 5

Figure 2.1 shows an example of DBSCAN. By choosing MinPts = 5, o is a

core object, since o has the ε-neighborhood with more than 5 objects. Objects p

and q are density-reachable through a chain of directly density-reachable objects

{m1,m2, o,m3} thus p, q are density-connected and belong to the same cluster.

The object n is a noise object, which is not density-connected to any cluster

object.

DBSCAN has the following main advantages:

• DBSCAN can find arbitrarily shaped clusters, especially with concave forms.

• The clustering process can start from any core object. It is not necessary

to estimate the number of clusters.

However, DBSCAN has some disadvantages as follows:



2.1 Traditional clustering algorithms 9

• Because of the “curse of dimensionality”[Bell 03, Beye 99], the Euclidean

distance as the metric used in DBSCAN is not suitable for high-dimensional

data sets.

• The setting of the two important parameters ε and minPts can be difficult

for a data set with unknown information.

Statistics-based clustering methods are usually based on statistical dis-

tribution models. With the strong theoretical foundation it can yield not only

clusters, but also statistical properties for a data set, e.g. dependence and cor-

relation. If objects belong to the same distribution, they belong usually to the

same cluster.

It is necessary to select appropriate statistical distribution models for real data

sets. However, choosing a statistical distribution model is sometimes complicated,

because not all data sets have the same distribution.

A famous statistical method is EM (Expectation-Maximization) algorithm

[Demp 77], which tries to find the maximum a posteriori probability or maximum

likelihood with iterations. The parameters of the statistical models that fit to

data sets are estimated iteratively.

DENCLUE (Density-based clustering) [Hinn 98] is a statistics-based cluster-

ing algorithm that applies the Gaussian kernel function for estimating density

values of objects. The density function for an object o in a data set with N

objects is defined as:

f(o) =
N∑
i=1

e−
d(o,oi)

2σ2 (2.1)
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Figure 2.2: Density values of DENCLUE with different σ [Hinn 98]
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The densities of objects can be calculated using the density function. The

standard deviation σ as a parameter indicates the influence of an object on other

objects. The value of σ decides also the density divergence between cluster objects

and outliers. As shown in figure 2.2, a small σ results in a “sharp” form of density

values.
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Figure 2.3: Clustering results of DENCLUE with different ξ [Hinn 98]

Another important parameter required by DENCLUE is ξ, which is the min-

imal density required for forming a cluster. The value of ξ determines the size of

the clusters. Figure 2.3 shows the clustering results with two different values of

the parameter ξ. More objects are gathered into a cluster with a small ξ than

with a big ξ.

DENCLUE applies a hill-climbing procedure to find firstly objects with local

maximal density (density-attractors). Then the objects are explored as a cluster

when their density values exceed the minimal density ξ and meanwhile the objects

are density-attracted by a density-attractor.

DENCLUE has some advantages and drawbacks.

Main advantages:

• The density values of objects show the areas of possible clusters and

outliers clearly.

• It works efficiently for data sets with many outliers.

• It can be applied to find clusters with arbitrary shapes.

Some drawbacks:

• The method requires that the objects have a Gaussian distribution.

However, not all data sets have a Gaussian distribution.
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• It needs a careful determination of the parameters ξ and σ, because

the choice of the parameters may significantly influence the clustering

results.

DENCLUE 2.0 [Hinn 07] improves mainly the hill-climbing procedure of DEN-

CLUE. Similarly, DENCLUE 2.0 depends also on the Gaussian kernel function,

which means it is still necessary to estimate the parameters σ and ξ in the al-

gorithm. In its new hill-climbing procedure two extra parameters, the itera-

tion threshold and the percentage of the largest posteriors, are also required in

DENCLUE 2.0. Both DENCLUE and DENCLUE 2.0 are not designed for high-

dimensional subspace clustering.

Partition-based clustering methods divide objects of a data set into groups.

Each group is represented by a central core, which may not belong to the data set.

The members of groups and central cores are reassigned iteratively to improve

clustering results.

k-Means [MacQ 67] is a famous partition-based clustering algorithm that par-

titions objects of a data set into k clusters, where k is an input parameter. Each

cluster is represented by a centroid (mean of the cluster). Each object is assigned

to a cluster whose centroid is closest to the object. After each assignment, the

mean values of clusters are recalculated and the centroids are updated. Then

each object is newly reassigned to the closest centroid. The algorithm finishes

when the assignments no longer change.

k-Means works well on clearly separated objects in many situations. However,

it has some disadvantages:

• The parameter k is difficult to be specified, especially for unknown data

sets.

• It is unsuitable for searching clusters with concave shapes.

• k-Means is sensitive to outliers or noise objects, which influence substan-

tially the mean values.

• It is inapplicable if the mean of the objects is not defined, e.g. the objects

have non numerical properties.
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Another similar partition-based clustering method, k-medoids [Rous 87], takes

a real object (medoid) as the representation for a cluster. Instead of calculating

the mean of a cluster, a medoid is the object with the minimal average distance

to all the objects in the cluster. However, k-medoids has similar disadvantages

as k-Means.

Fuzzy C-Means [Bezd 81] is similar to k-Means. However, Fuzzy C-Means

assigns to each object a degree of belonging to clusters, thus objects can belong

to more than one cluster.

Hierarchy-based clustering methods generate usually a dendrogram that

represents a hierarchical structure of objects. Two types of hierarchy-based clus-

tering methods exist, namely agglomerative and divisive methods, which depend

on whether the hierarchy is constructed in a merging (bottom-up) or splitting

(top-down) sequence.

Instead of directly finding clusters, a hierarchy-based clustering algorithm

finds a hierarchy of the whole data set. The clusters can be obtained by a hori-

zontal cut through the dendrogram at a desired dissimilarity level.

We introduce only the agglomerative methods here. If the distance between

two objects or two clusters satisfies a distance criterion, they are merged into one

node in the dendrogram. Suppose dist(a, b) is the distance between two objects

and D(A,B) is the distance between two clusters A and B, the following three

distance criteria are normally used:

Single-Link D(A,B) = min
a∈A,b∈B

dist(a, b) [Snea 57]

Complete-Link D(A,B) = max
a∈A,b∈B

dist(a, b) [McQu 60]

Average-Link D(A,B) =
1

|A||B|
∑

a∈A,b∈B
dist(a, b) [Soka 58]

The hierarchy-based clustering methods suffer from the inability to make ad-

justments once the hierarchy is constructed. It is also problematic to decide on

a dissimilarity level for clustering, because choosing a parameter for this purpose

is difficult.
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2.2 Subspace clustering algorithms

There has been an increasing amount of literature on subspace clustering in recent

years. Many subspace clustering algorithms are derived from the traditional

clustering techniques. In contrast to the traditional clustering algorithms, which

search clusters in the entire space, the main task of subspace clustering approaches

is the detection of clusters in subspaces.

Surveys conducted by [Pars 04] and [Krie 09] have divided subspace clustering

algorithms into two categories according to the searching sequence of subspace:

top-down and bottom-up.

• Top-down methods (e.g. PROCLUS [Agga 99], ORCLUS [Agga 00], FINDIT

[Woo 04], σ-Clusters[Yang 02], COSA [Frie 04]) search clusters from parti-

tions of objects and improve the clustering results iteratively.

• Bottom-up methods (e.g. CLIQUE [Agra 98], ENCLUS [Chen 99], MAFIA

[Goil 99], CBF [Chan 02], DOC [Proc 02], CLTree [Liu 00]) find firstly clus-

ters in low-dimensional subspaces, and then expand the search into higher

dimensions in order to find all possible high-dimensional subspace clusters.

Most subspace clustering methods apply a downward-closure (monotonicity)

criterion, which is described as follows:

Proposition 1 (Downward-closure [Agra 98]). If a cluster C exists in a k-

dimensional subspace S, then C is part of a cluster in a (k − 1)-dimensional

subspace S′ (S ′ ⊆ S).

The following conclusions can be obtained from the downward-closure prop-

erty:

• If there is a cluster in a subspace S, then each subspace S ′ ⊆ S contains a

cluster too.

• A cluster in a subspace S ′ is not necessarily a cluster in a subspace S ⊃ S ′.

• A set of non-cluster objects in a subspace S ′ is still a set of non-cluster

objects in a subspace S ⊃ S ′.
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With the downward-closure criterion, most bottom-up subspace clustering

methods search clusters from low-dimensional subspaces to high-dimensional sub-

spaces. The clusters found in this manner have usually hypercube shapes. In

order to obtain clusters with arbitrary shapes, many algorithms provide steps for

merging the clusters.

Besides the above categorizations, other surveys such as [Mull 09], [Krie 09]

and [Sim 12] categorize subspace clustering methods based on their features

and techniques generally into grid-based, density-based and partition-based ap-

proaches. The top-down subspace clustering approaches are actually extensions

of partition-based approaches, whereas grid-based and density-based approaches

use mostly the bottom-up principle. We prefer to introduce the subspace clus-

tering approaches according to their techniques and features.

Grid-based subspace clustering methods partition the data space with

crossed grids and generate cells. A cell with a significant number of objects is

considered dense and the objects inside are selected for forming subspace clusters.

The high-dimensional subspace clusters are usually generated by combinations of

low-dimensional subspace clusters according to the bottom-up principle.

CLIQUE (Automatic subspace clustering of high dimensional data for data

mining applications) [Agra 98] is a representative grid-based subspace clustering

algorithm using the bottom-up principle. The data space is divided into cells

with the crossed grids parallel to the axes. A cell is considered as dense, if the

proportion of the number of contained objects to the total number of objects is

larger than a density threshold τ . Figure 2.4 shows an example of dense cells for

CLIQUE. The total number of objects is 30. By choosing τ = 15%, we can find

dense cells in the area C1 and C2.

CLIQUE detects first one-dimensional subspace cells and combines them for

searching high-dimensional subspace cells with the downward-closure property.

CLIQUE uses a greedy growth algorithm to cover the maximal adjacent dense

cells in order to find clusters with any shapes.

The setting of parameters intervals and position of grids can influence the

clustering results: If the intervals of grids are too large, many non-cluster objects
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Figure 2.4: Dense units in CLIQUE [Kola 06]

can be included into a cluster; Contrarily, if the intervals are set too small, many

real clusters are possibly separated into small ones or even disappear.

ENCLUS (Entropy-based subspace clustering for mining numerical data) [Chen 99]

is an extension of CLIQUE. ENCLUS tries to use three criteria: high coverage,

high density and dimensional correlation for discovering subspaces with possi-

ble “good clusters”. Entropy is used by ENCLUS as the metric for executing

these criteria, namely the entropy values are calculated for detecting potential

subspaces with clusters.

H(X) is defined as the entropy of a variable X. The calculation of H(X)

requires a probability that is calculated as follows: Each dimension is divided

into cells with equal length, and the probability is then defined as the proportion

of objects contained in a cell to all objects.

ENCLUS concentrates mainly on finding interesting subspaces. The following

conclusions are important for searching the interesting subspaces:

• The entropy decreases as the coverage increases, where coverage is the per-

centage of data covered by all dense units.

• The entropy decreases as the density of the dense units increases.

• A larger interest indicates the higher correlation between subspaces, where
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the interest of subspaces X1, . . . , Xn is defined as

interest({X1, . . . , Xn}) =
n∑

i=1

H(Xi)−H(X1, . . . , Xn) (2.2)

Generally, a subspace with clusters has lower entropy than a subspace without

clusters. ENCLUS searches for high-dimensional interesting subspaces through

interest gain, which is defined as follows.

interest gain({X1, . . . , Xn})
= interest({X1, . . . , Xn})−

max
i
{interest({X1, . . . , Xn} − {Xi})} (2.3)

The subspaces with the entropy exceeding ω and the interest gain larger than ε ′

are considered interesting.

After detecting all possible subspace candidates, the clustering process of

ENCLUS on these possible subspace candidates is the same as the process of

CLIQUE. Although ENCLUS suggests a way of searching significant subspaces,

it has still the same drawbacks as CLIQUE.

CLIQUE has many other extensions. For instance, MAFIA [Goil 99] uses

adaptive grids to improve quality of clustering results. nCluster [Liu 07] adapts

overlapping for defining one-dimensional grids. CBF [Chan 02] tries to reduce

the number of cells by optimizing the partitions based on checking the maxima

and minima of subspaces.

Density-based subspace clustering methods estimate the density values

of a data set. The areas with high density values are considered as candidates for

clusters.

SUBCLU (Density-connected subspace clustering for high-dimensional data)

[Krog 04] is a subspace clustering algorithm that is based on the technique of DB-

SCAN [Este 96]. SUBCLU redefines the terms such as ε-Neighborhood, density-

reachability and density-connectivity for high-dimensional subspaces.

Similar to DBSCAN, SUBCLU calculates the density based on the number

of objects in the ε-neighborhood. A cluster in a relevant subspace satisfies two
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properties: The objects in a cluster are density-connected with each other; If an

object is density-connected to any object of a cluster, it belongs to the cluster as

well.

SUBCLU uses a greedy strategy to find clusters in subspaces. With the

downward-closure criterion, it checks firstly all one-dimensional subspaces, then

all clusters in (k+1)-dimensional subspaces are detected from k-dimensional ones.

If a set of objects is a cluster in a k-dimensional subspace, SUBCLU checks with

the method of DBSCAN whether the set retains a cluster in a (k+1)-dimensional

subspace.

With the density-connected method, SUBCLU can find clusters with arbitrary

shapes. The parameters ε and minPts are required for detecting dense areas in

the subspaces. However, it is impossible to find a global setting of these two

parameters for every subspace because the distances between two objects change

a lot in different subspaces, especially if the subspaces of the data set have various

value ranges. Additionally, a separated setting of parameters for each subspace

is also impractical.

Another subspace clustering method that applies the concept of DBSCAN is

PreDeCon (Density connected clustering with local subspace preferences) [Bohm 04].

It defines a weighted Euclidean distance based on a so-called subspace preference

vector. A subspace for an object is relevant if the variance of objects in the ε-

neighborhood of the object is smaller than a threshold. Besides the parameters

required by DBSCAN, PreDeCon needs two more parameters for computing the

subspace preference.

Partition-based subspace clustering methods are derived from the tradi-

tional partition-based clustering methods like k-Means.

Typical partition-based subspace clustering methods are PROCLUS (Pro-

jected clustering algorithm) [Agga 99] and its extensions, such as ORCLUS,

FINDIT. PROCLUS assigns the objects in a subspace to k clusters, which are

represented by k medoids.

PROCLUS has three phases: initialization, iteration, cluster refinement. In

the initialization phase, PROCLUS tries to find a good set of medoids. Through

the iteration phase, the medoids are recalculated and each object is reassigned
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to the closest medoid. The measuring of cluster quality is based on the average

distance between objects and medoids. For a set of medoids, PROCLUS chooses

the associated subspaces with average distances from each medoid to a set of

objects within a specific distance area smaller than the statistical expectation.

The refinement computes new subspaces for medoids and reassigns objects to new

medoids and finally removes outliers.

PROCLUS uses sampling of objects in order to accelerate the clustering pro-

cess. However, it can cause missing clusters with a small sampling of objects.

The clustering result with PROCLUS is sensitive to the input parameters such

as k. Moreover, it produces usually equally sized clusters with spherical shapes.

ORCLUS [Agga 00] as an extension of PROCLUS tries to find projected sub-

space clusters that are not parallel to the axes. By computing the covariance

matrix, subspaces are relocated with the clusters. The closest pairs of clusters

with similar directions are merged. The algorithm requires parameters for the

number of clusters and the size of subspaces.

FINDIT [Woo 04] uses a similar concept as PROCLUS. However, FINDIT

defines a dimension oriented distance for measuring medoids. The dimensions

are selected through a dimension voting method. Two parameters, the minimum

number of objects in a cluster and the minimum distance between two clusters,

are required by FINDIT.

2.3 Problem & Motivation

As shown above, the settings of parameters in various subspace clustering meth-

ods are very important for the clustering results and quality. For instance, the

parameters of partition-based subspace clustering methods (e.g. the number of

clusters and the position of subspaces) influence the iterations and clustering

results. For the grid-based methods, the parameters (e.g. the grid interval, the

dense requirement, the size of clusters) can evidently affect the quality of clusters.

In addition, parameters (such as the neighborhood size, the number of objects

in neighborhood) required by density-based subspace clustering algorithms play

also essential roles in searching for clusters.
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The key problem of these subspace clustering methods is that they suffer from

serious limitations related to determination of proper values for their parameters.

The important parameters cannot be easily determined, especially when it lacks

information about the data set, which is a normal situation for the clustering

task. In order to make the clustering task more practical, it is necessary to find

a way to determine parameters easily.

Our aim is to establish subspace clustering methods that require only a small

number of simple parameters. The clustering process should work automatically

or semi-automatically without unpredictable parameters.

SUGRA (Subspace Clustering with the Gravitation Function) [Zhao 10a] is

the first subspace clustering method proposed by us. SUGRA applies a gravitation

function for the purpose of computing the density of objects in each dimension.

In SUGRA, cluster objects can be found with the following property: the cluster

objects have evidently higher values of density than non-cluster objects, which

have density values lower than a threshold. The threshold is close to a constant

value. The clustering process works automatically without other parameter set-

tings. SUGRA is a bottom-up subspace clustering method, which searches firstly

clusters of one-dimensional subspaces and then locates high-dimensional subspace

clusters by combination of low-dimensional subspace clusters.

Although SUGRA works well in many situations, the high-dimensional sub-

space clusters found by SUGRA have usually hypercube shapes, which is similar

to other bottom-up subspace clustering algorithms. Some merging or pruning

techniques may help. However, the extra pruning processes cost much run time

and can not guarantee the accuracy. So searching high-dimensional subspace clus-

ters with the combination of low-dimensional subspace clusters is not the best

solution.

For the above reason, another subspace clustering method ASCDD (Auto-

matic Subspace Clustering with the Distance -Density Function) [Zhao 12, Zhao 13]

is proposed. The aim of ASCDD is to explore clusters directly in high-dimensional

subspaces as well as to simplify the determination of parameters.

The density function of ASCDD is an improvement of the gravitation function

in SUGRA. With the density function of ASCDD, the density values of objects

are calculated directly in any subspace. Based on the density values, the centers
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of clusters can be found easily. It applies a neighborhood technique to detect

clusters with any shape. ASCDD finds a cluster by expanding neighbors of an

object with high density. The neighborhood expanding technique is similar to

DBSCAN. However, the definition of density-connectivity and the criterion for

neighborhood expansion are different from DBSCAN. The method can be applied

for differently scaled data.

In order to make the clustering process as simple and accurate as possible,

ASCDD needs one parameter calledDDT (distance-density threshold). DDT can

influence the clustering result by determining whether two objects are neighbors

(in the same cluster). We choose the value of DDT within the range (0, 1) in

order to set this parameter easily.

The density function of ASCDD can be applied directly on any high-dimensional

subspace. However, it is still necessary to find a way to choose the right subspaces

with potential clusters instead of searching each subspace.

In order to find the potential subspaces, ASCDD applies entropy to detect the

potential subspaces and to reduce the complexity of searching subspaces. Unlike

ENCLUS which calculates the entropy with the grid-based method, ASCDD es-

timates the entropy with the help of its own density function. Moreover, ASCDD

uses different technique from ENCLUS to search for significant subspaces in or-

der to locate the significant candidates of subspaces efficiently and detect clusters

directly from these subspace candidates.

In the next chapter, we will introduce some definitions in section 3.1 and the

details of our algorithms SUGRA and ASCDD in section 3.2 and section 3.3.
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Subspace clustering methods

In this chapter, we introduce two subspace clustering algorithms developed by

us: SUGRA (Subspace Clustering with the Gravitation Function) [Zhao 10a] and

ASCDD (Automatic Subspace Clustering with the Distance -Density Function)

[Zhao 12, Zhao 13].

This chapter has been divided into three parts. The first part deals with some

basic subspace clustering definitions. The following two parts describe the ideas

and processes of SUGRA and ASCDD.

3.1 Definitions

3.1.1 Data & Data set

“Data are defined as series of observation, measurements, or facts in the form of

numbers, words, sounds and/or images” [Robe 00]. Data can be treated as the

lowest level of abstraction from which information and knowledge are derived.

In computer science, data have usually categorical or numeric types and are ar-

ranged in particular formats. Categorical data present distinct categories rather

than numbers. For example, skin color and zip code are categorical data. In

contrast, numeric data can be computed with various standard mathematical op-

erations such as addition, subtraction, multiplication and division. For instance,

length, weight and salary are numeric data.

A data set is a data-collection, which is usually structured in a tabular form

that consists of rows and columns, a tree form with hierarchical structure or

a graph form with interconnected nodes. Different structures are required by

various applications.
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In relational databases , a tabular form (table) is widely applied for data sets.

The columns and rows in a table represent attributes and objects (tuples). All

objects in a data set have usually common attributes, such as color, price, length

etc. The attributes are also considered as an n-dimensional space, and an object

is a vector within this space.

Definition 3.1. A data set could be considered as a pair: (A,O), where A is a

set of all attributes (dimensions):

A = {a1, a2, . . .} (3.1)

and O is a set of all objects:

O = {o1, o2, . . .} (3.2)

oami denotes the value of an object oi on dimension am.

A table structure of a data set (A,O) is shown in table 3.1.

�������O

A
a1 a2 a3 · · · am · · ·

o1 oa11 oa21 oa31 · · · oam1 · · ·
o2 oa12 oa22 oa32 · · · oam2 · · ·
...

...

oi oa1i oa2i oa3i · · · oami · · ·
...

...

Table 3.1: Table structure of a data set

3.1.2 Subspace clusters

We define here some concepts related to subspace clusters.

Definition 3.2 (Subspace). A subspace Ã of a data set (A,O) is a nonempty

subset of A:

Ã ⊆ A and Ã �= ∅ (3.3)
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Definition 3.3 (Subspace cluster). Subspace clusters are the clusters that exist

in subspaces of a data set. A subspace cluster S is also a data set, which can be

described as follows:

S = (Ã, Õ) (3.4)

where the subspace Ã ⊆ A and Õ ⊆ O.

A general principle applying to subspace clustering is that the objects in the

same subspace cluster are more similar than the objects from different subspace

clusters. However, the similarities between objects are diversely defined in differ-

ent subspace clustering algorithms.

An object could belong to multiple subspace clusters in different subspaces,

and a subspace can also be significant to different clusters. For example, S1 =

(A1,O1) and S2 = (A2,O2) have the relations: O1 = O2∪{o} and A2 = A1∪{a}.
Should S1 and S2 with the small differences in the clustering result be regarded

as two distinct clusters or the same cluster? In order to distinguish clusters

with similar objects or subspaces and to avoid obscurity, we differentiate between

diverse subspace clusters with following principles:

• According to the definition 3.3, a subspace cluster is identified by its objects

and subspaces, so if {A1 �= A2} or {O1 �= O2} =⇒ S1 �= S2.

• If {A1 ⊇ A2 and O1 = O2} or {A1 = A2 and O1 ⊇ O2} =⇒ S1 > S2.

• Because of the downward-closure property, if S1 > S2 > · · · , only the largest
subspace cluster S1 is retained in the clustering results.

Definition 3.4 (Subspace clustering result). A subspace clustering result C is

a set of subspace clusters found in a data set by applying a subspace clustering

algorithm, where C has the property: If S ∈ C and S > S ′ =⇒ S ′ /∈ C

Our algorithms require the intersection of subspace clusters, which is defined

as follows:

Definition 3.5 (Intersection). Suppose S1 = (A1,O1) and S2 = (A2,O2) are two

subspace clusters, the intersection of two subspace clusters is defined as follows:

S1 ∩ S2 = (A1 ∪A2,O1 ∩ O2). (3.5)
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Subspace clustering is a process of discovering clusters in the relevant sub-

spaces. However, a data set with an n-dimensional space has 2n possible sub-

spaces. It is unfeasible to traverse all possibilities when n is very large. So most

subspace clustering methods try to optimize the subspace search to reduce the

run time, which is also one of our aims.

3.1.3 Distance & Density

The Euclidean distance is usually applied to measure the distance between two

objects in a Euclidean space �n. For two objects oi and oj, the Euclidean distance

in space Ã is

r
˜A
oi,oj

=

⎛⎝∑
∀a∈ ˜A

|oai − oaj |2
⎞⎠1/2

(3.6)

In order to unify coordinates of the data with different scales in each subspace,

we apply normalized coordinates in our methods. The normalization of an object

oi in one dimension a is defined as ōai =
oai −min(oa)

max(oa)−min(oa)
. Every normalized object

has then a value ōai ∈ [0, 1]. Since the normalization of objects will not change

the clustering result, we use normalized oai for each object in the remainder of

the dissertation.

The “curse of dimensionality”[Bell 03, Beye 99] asserts that a distance mea-

sure such as the Euclidean distance becomes meaningless as the number of di-

mensions increases, because the distance between two objects converges and the

difference of the maximal and minimal distances shrinks:

lim
|A|→∞

distmax

distmin

→ 1 (3.7)

Due to the “curse of dimensionality”, the Euclidean distance is unsuitable for

direct clustering in high-dimensional space. We need an another way to measure

the distance for subspace clustering.

If we imagine a data set as a substance that is composed of its molecules

(objects), then the “substance” has density. The distribution of objects decides

the local density inside the data set, which means the area with the objects close

to each other has a higher local density than the area with sparsely populated
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objects. So we use this principle for the purpose of clustering: cluster objects

have usually higher density than non-cluster objects.

Assumption 1. Data sets D1 and D2 have the same number of objects and the

same ranges of values. D1 has evenly distributed objects, whereas D2 has clusters

of objects. The comparison of D1 and D2 is shown in figure 3.1 (a) and (b). We

assume that:

• The data set D1 with evenly distributed objects has no clusters.

• Cluster objects in D2 are denser than the evenly distributed objects in D1.

(a) (b)

Figure 3.1: Evenly distributed objects and cluster objects

If the number of objects is very large so that we do not consider the objects at

the edge, then the evenly distributed objects have the same density everywhere.

There are no clusters in this situation. The density of evenly distributed objects

can be considered a threshold, which is important for clustering the same number

of objects.

The clusters are always associated with dense areas. In other words, a dense

area can indicate a possible cluster. The definitions and calculations of density are

different in diverse clustering algorithms. The density functions will be defined

in the sections of the algorithms.

In the next section we will introduce the subspace clustering algorithm by

using a gravitation function.
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3.2 Subspace Clustering with the Gravitation

Function (SUGRA)

This section will introduce one of our subspace clustering methods SUGRA (Sub-

space Clustering with the Gravitation Function) [Zhao 10a]. The main idea of

SUGRA is to apply a gravitation function to calculate the density and to extract

clusters based on the density values.

3.2.1 Basic ideas of SUGRA

Gravitation describes the force of attraction between objects with mass. Newton’s

law of universal gravitation [Newt 87] defines the gravitation G between two point

masses m1 and m2 as follows:

G = G · m1m2

r2
(3.8)

where G is the gravitational constant and r is the distance between the two point

masses m1 and m2.

In order to apply the gravitation function on a data set for density measuring

between the objects and to facilitate the calculation, we assume that:

Assumption 2 (Gravitation property in a data set).

• The objects in a data set are attracted mutually as point masses by gravita-

tion force.

• A single object o has the mass 1.

• The gravitational constant G = 1.

With the above assumption, a simple gravitation function of two objects is

defined here:

Definition 3.6. Gravitation between two objects oi and oj on a one-dimensional

subspace a is defined as follows:

Ga
oi,oj

=
mimj

(laoi,oj)
2
=

1

(laoi,oj)
2

(3.9)
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laoi,oj =
raoi,oj · (|O| − 1)

max(oa)−min(oa)
is the measurement of distance between oi and oj in

the subspace a, where |O| is the number of objects and max(oa)−min(oa) is the

maximal distance of objects in subspace a. So the equation 3.9 can be transformed

into:

Ga
oi,oj

=

(
max(oa)−min(oa)

raoi,oj · (|O| − 1)

)2

(3.10)

In order to let Ga
oi,oj

be calculable when raoi,oj = 0, our solution is to set raoi,oj
to a value between 0 and the minimal positive distance in a, which is the minimal

distance between the objects with a value bigger than 0. This method ensures

raoi,oj is still the smallest distance, so that Ga
oi,oj

is then calculable. For example,

suppose l is the minimal positive distance in a, we can set raoi,oj = l/2 to make

sure that Ga
oi,oj

is big enough.

Definition 3.7. (Gravitation of an object) The gravitation of an object oi in

dimension a is defined as the sum of gravitation between oi and other objects.

Ga
oi
=

∑
∀j, j �=i

Ga
oi

(3.11)

In a one-dimensional subspace the gravitation of an object defined in equa-

tion 3.11 has the following properties:

• Objects close to others have larger gravitation values than objects isolated

from others. As shown in figure 3.2, the objects with high concentration

have much higher gravitation than the evenly distributed objects.

• Evenly distributed objects do not have the same gravitation values. The

center objects have larger gravitation values than the objects at the edge.

Figure 3.3 illustrates an example of evenly distributed objects. The curve

represents the corresponding gravitation.

As can be seen from the figure 3.2, the gravitation corresponds to the density

as we discussed above. Large gravitation values indicate high densities and areas

with possible clusters. Contrarily, small gravitation values indicate objects that

are more sparsely distributed. These properties correspond with the definition of
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Figure 3.2: An illustration of gravitation in a one-dimensional subspace
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Figure 3.3: An illustration of gravitation with evenly distributed objects

density. Therefore, applying gravitation for searching clusters is the main idea of

SUGRA.

The gravitation values of evenly distributed objects are not the same. How-

ever, the difference is much smaller than unevenly distributed objects. For in-

stance, the maximal difference of gravitation values in figure 3.3 is about 1.5. But

the difference is about 70 in figure 3.2.

An important phenomenon is that the evenly distributed objects have gravita-

tion values smaller than a constant value. Unevenly spaced objects have usually
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gravitation values larger than the same constant. The constant value is shown

in figure 3.3 and figure 3.2 as a dotted line. We call this constant value the

gravitation threshold.

Definition 3.8. The gravitation threshold Ga of a one-dimensional subspace a is

the maximal gravitation of evenly distributed objects in a.

Ga can be estimated as follows: Suppose om is the middle object of evenly

distributed objects oa. As showed above, om has the maximal gravitation Ga,

which can be calculated as follows:

Let L := max(oa)−min(oa), then (3.12)

Ga =
∑

∀i, i �=m

L2

r2om,oi
· (|O| − 1)2

(3.13)

=
L2

(|O| − 1)2
·
( ∑

∀i, i �=m

1

r2om,oi

)
(3.14)

=
L2

(|O| − 1)2
·

⎛⎜⎝ ∑
1≤n≤ |O|

2

1

( L
|O|−1

· n)2

⎞⎟⎠ · 2 (3.15)

= 2 ·

⎛⎜⎝ ∑
1≤n≤ |O|

2

1

n2

⎞⎟⎠ (3.16)

Some examples of gravitation thresholds with different |O| are listed in the

following table:

|O| 7 22 40 50 67 100 200 1000

Ga 3.02 3.20 3.24 3.25 3.26 3.27 3.28 3.287

Table 3.2: Gravitation threshold with different number of objects

As the number of objects |O| increases, the gravitation threshold Ga converges

to a fixed value of 3.29, which can be calculated as follows:

Ga = 2 ·

⎛⎜⎝ ∑
1≤n≤ |O|

2

1

n2

⎞⎟⎠ |O|→∞−→ 2 · π
2

6
=

π2

3
≈ 3.29 (3.17)
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As described above, the gravitation threshold is important for SUGRA be-

causeGa can separate cluster objects from non-cluster objects, because the cluster

objects and non-cluster objects have great differences in gravitation values. The

non-cluster objects have usually smaller gravitation than Ga, meanwhile the clus-

ter objects have almost larger gravitation values than Ga. The gravitation values

of non-cluster and cluster objects distribute on the two sides of Ga.

3.2.2 Algorithm of SUGRA

SUGRA is a bottom-up subspace clustering algorithm, which searches firstly

one-dimensional subspace clusters and subsequently higher-dimensional subspace

clusters based on the one-dimensional clusters. The algorithm of SUGRA consists

of following steps:

1. Selection of objects (Clustering in one-dimensional subspace)

2. Selection of subspaces (Clustering in high-dimensional subspace)

3. Reduction of redundancy

Selection of objects

The main purpose of this step is selecting the cluster objects through their

gravitation values for each one-dimensional subspace.

Definition 3.9 (Cluster objects and non-cluster objects of SUGRA). A cluster

object has gravitation larger than the gravitation threshold Ga. Contrarily, the

objects with gravitation smaller than Ga are non-cluster objects.

For example in figure 3.3 and figure 3.2, the objects with gravitation above

the dotted line are cluster objects, whereas non-cluster objects have gravitation

values below the dotted line.

The next task is to find clusters from the cluster objects. We arrange firstly

the objects in one-dimensional subspaces according to their values. The objects in

a one-dimensional subspace can be sorted in ascending or descending order. Ac-

cording to the relations of the neighboring objects we use the following principles

to construct clusters from the objects:
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Algorithm 1: SUGRA (step 1): Selection of objects

Input: (A,O)

Output: Set of all one-dimensional subspace clusters C

1 foreach a ∈ A do

2 sort the objects in a

3 t = 1, Ot := ∅
4 foreach oai do

5 if Ga
i > Ga then

6 if oi−1 ∈ Ot and raoi−1,oi
< L then

7 set oi ∈ Ot

8 else

9 S = (a,Ot), C = C ∪ {S}
10 t = t+ 1, Ot = ∅
11 let oi ∈ Ot

12 end

13 end

14 end

15 end

16 return C

• A cluster object oi and the object oi−1 belong to the same cluster if oi−1

is also a cluster object and the distance between the two objects is smaller

than the average distance.

• A cluster object oi starts a new cluster in the following three situations:

1. oi is the first object in the search list.

2. oi−1 is a non-cluster object.

3. oi−1 is a cluster object and the distance between oi−1 and oi is larger

than the average distance.

The average distance is the distance between evenly distributed objects, which

is defined as follows:
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Definition 3.10 (Average distance). The average distance L for a one-dimensional

subspace a is calculated as follows:

L =
|max(oa)−min(oa)|

|O| (3.18)

As described in assumption 1, neighboring objects in a cluster should have

a distance smaller than the average distance. Therefore, if the distance of two

neighboring cluster objects is larger than the average distance, they do not belong

to the same cluster.
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Figure 3.4: An example of clusters selection in SUGRA

Figure 3.4 illustrates an example of the separation of clusters. The objects

with gravitation values greater than the gravitation threshold Ga are chosen as

cluster objects. Since the objects are already sorted in ascending order, the next

step is to search clusters from the first to the last cluster object. For example,

o1 is the first object and a cluster object, so o1 starts cluster 1. The following

neighboring cluster objects between o1 and o2 are all settled in cluster 1. o3 is

assigned as the first object to cluster 2 because o3 is the first non-cluster object

after o2. Similar to cluster 1, cluster 2 consists of the objects from o3 to o4.

Although o5 is the neighboring cluster object to o4, the two objects do not belong
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to the same cluster. Since the distance between o4 and o5 is larger than the

average distance (definition 3.10), o5 starts a new cluster 3. The process stops

when there is no more new cluster found in the one-dimensional subspace a.

Three clusters are explored in this example.

The clusters found in this step are all one-dimensional subspace clusters. Since

only the dense objects in a low-dimensional subspace could be dense in a higher-

dimensional subspace, all one-dimensional subspace clusters are chosen as candi-

dates for higher-dimensional subspaces.

The next step is the selection of subspaces, where the set of one-dimensional

subspace clusters C will be applied for selecting high-dimensional subspace clus-

ters.

Selection of subspaces

In this step, we combine low-dimensional clusters to search for higher-dimensional

clusters. All one-dimensional subspace clusters are considered as original clus-

ters. The clusters in higher-dimensional subspaces are based on the intersection

(equation 3.5) of one-dimensional subspace clusters. The principle for finding

higher-dimensional subspace clusters is defined as follows:

Definition 3.11. For subspace clusters S1 = (A1,O1) and S2 = (A2,O2), if

|O1 ∩ O2| ≥ N , then S1 ∩ S2 is a new subspace cluster.

N is the minimal number of objects required in a subspace cluster. In order

to yield all clusters, we can set N to a small value, e.g. N = 2.

Figure 3.5 shows an example of SUGRA applied on a two-dimensional data

set. The objects are firstly projected into each one-dimensional subspace. In each

one-dimensional subspace, the objects with gravitation greater than gravitation

threshold are selected as cluster objects. The one-dimensional subspace clusters

are then combined and checked for finding two-dimensional subspace clusters.

For higher-dimensional subspaces, every subspace should be checked through

the intersection. This process will stop when no more new clusters are found.

The detailed algorithm is shown in algorithm 2.



34 3. Subspace clustering methods

Algorithm 2: SUGRA (step 2): Selection of subspaces

Input: The set of all one-dimensional subspace clusters C1

Output: The set of all subspace clusters Call

1 Call = C1

2 dim = 2

3 Cdim = ∅
4 foreach S ∈ Cdim−1 do

5 while ∃ S ′ ∈ C1 and AS′ � AS do

6 Snew = S ∩ S ′

7 if |OSnew | ≥ 2 then

8 Cdim = Cdim ∪ {Snew}
9 end

10 end

11 end

12 if Cdim �= ∅ then

13 Call = Call ∪ Cdim

14 if dim < |A| then
15 dim = dim+ 1

16 go to 3

17 end

18 end

19 return Call

Reduction of redundancy

The final step is to reduce the small subspace clusters, and to keep only the

largest subspace clusters. Because a big subspace cluster contains already the

necessary information of a small one.

If S > S ′, S ′ will be removed and only S will be retained in the final clustering

results.
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Figure 3.5: An example of SUGRA in two-dimensional data set

3.3 Automatic Subspace Clustering with the Dis-

tance -Density Function (ASCDD)

3.3.1 Motivation of ASCDD

In section 3.2, we have introduced the SUGRA (Subspace Clustering with the

Gravitation Function) [Zhao 10a], which applies the gravitation function for cal-

culating the density distribution in each single subspace and locates the high-

dimensional subspace clusters with the bottom-up principle. SUGRA works well

in many situations. However, the bottom-up methods have a common problem

that it is difficult to explore clusters with concave forms in a high-dimensional

subspace.

In order to discover high-dimensional subspace clusters with any forms and to

minimize the number of parameters, we developed SUGRA into another subspace

clustering algorithm with the name ASCDD (Automatic Subspace Clustering
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with the Distance -Density Function). ASCDD’s density function is modified

from the gravitation function of SUGRA and can be applied directly to any

subspace. Moreover, ASCDD applies entropy to locate possible subspaces with

clusters, and adapts the idea of neighborhood expansion to find clusters with any

forms.

The following items are our concrete requirements for ASCDD:

• The density function should be applicable directly to objects in any high-

dimensional subspace. The density values should have significant differences

between cluster objects and non-cluster objects.

• Applying entropy to detect potential subspaces with clusters.

• The clustering method should find subspace clusters with any forms, espe-

cially concave forms.

• The scale of density values should not depend on the types or scales of the

objects, e.g. the density values of “salary” and “age” should have the same

range.

3.3.2 Distance-Density function

An important definition of ASCDD is distance-density function, which measures

the density value of two objects. The distance-density function of ASCDD is

developed from SUGRA’s density function for the purpose of directly calculating

the density values of objects in any subspace.

Definition 3.12. The distance-density of objects oi and oj with regard to subspace

Ã is defined as follows:

d
˜A
oi,oj

=
1((

r ˜A
oi,oj

)2

· |O|+ 1

)2 (3.19)

where r
˜A
oi,oj

∈ [0, 1] is the normalized Euclidean distance defined in equa-

tion 3.6. |O| is the number of objects and has a value � 1. The distance-density

d
˜A
oi,oj

has then a value ≤ 1.
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From the distance-density of two objects, we define the density function of a

single object in the subspace Ã as follows:

Definition 3.13. Distance-density of a single object oi with regard to Ã is the

sum of the distance-density of the object oi to all other objects in the subspace Ã:

D
˜A
oi
=

∑
∀oj

d
˜A
oi,oj

=
∑
∀oj

1((
r ˜A
oi,oj

)2

· |O|+ 1

)2 (3.20)

D
˜A
oi

has the value > 0. However, the maximal density value depends on the

number of objects. Generally, the larger the number of objects is, the higher is

the maximal density.
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Figure 3.6: An example of the distance-density function of ASCDD

Figure 3.6 and figure 3.7 show examples of one-dimensional and two-dimensional

objects with their distance-densities respectively. Similar to the gravitation func-

tion of SUGRA, the distance-density function of ASCDD can be considered as
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Figure 3.7: An example of the distance-density for a two-dimensional

subspace with ASCDD

a distribution function that indicates the positions of dense and sparse objects.

Comparing the differences of densities between cluster objects and non-cluster

objects is an essential part of the clustering process. High peaks indicate dense

objects, which are possible centers of clusters; Conversely, valleys point out sparse

objects, which are usually boundaries of clusters or non-cluster objects.

The density of a single object is influenced more by its local surrounding

objects than the objects beyond. For example, the density of an object will be

higher if a new object is inserted nearby, but the densities of objects far from it

will not change much.

As shown in figure 3.8, the evenly distributed objects do not have the same

density value, because the densities of objects in the middle are a little bigger

than the densities at the edge. Nevertheless, the densities between objects in

the center and at the edge are not very different compared to situations where

clusters clearly exist.

Compared with SUGRA’s density function that can be applied only to a one-

dimensional subspace, the distance-density function of ASCDD is applicable not
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Figure 3.8: An example of distance-density of evenly distributed objects

with ASCDD

only in a one-dimensional subspace but in any subspace, because ASCDD does

not have to sort the objects, which is especially convenient in high-dimensional

subspaces. Generally speaking, ASCDD is more efficient than SUGRA for high-

dimensional subspaces. However, unlike SUGRA, which can separate clusters

with a single constant threshold Ga, ASCDD does not have such properties,

because the range of density values in ASCDD changes with the number of

objects. Another small improvement of ASCDD compared to SUGRA is the

treatment for the situation if r
˜A
oi,oj

= 0, the distance-density of ASCDD is then

d
˜A
oi,oj

= 1
(0+1)2

= 1, whereas SUGRA can not calculate the density directly and

has to handle this case specially.

3.3.3 Find potential subspaces with entropy

Although ASCDD can be directly applied in any subspace, it is impractical to

search clusters in all subspaces. Which subspaces have possibly clusters? We
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utilize entropy for detecting the potential subspaces. The authors of ENCLUS

[Chen 99] introduced a method of applying entropy for detecting subspaces, which

inspired us to apply entropy in ASCDD. However, ASCDD calculates and applies

entropy for subspace detection in a different way.

Definition 3.14. The Shannon entropy [Shan 48] for a discrete random variable

X with n possible outcomes {xi : i = 1, · · · , n} is defined as follows:

H(X) = −
n∑

∀i=1

p(xi) log p(xi) (3.21)

where p(·) is the probability mass function.

Entropy plays a role in information theory as a measure of the amount of

uncertainty with regard to a random variable. An important property of the

entropy is that the variables with more uncertainty have lower entropy than the

variables with less uncertainty. In the clustering tasks, we can say that a subspace

with clusters has a lower entropy than a subspace without clusters.

The entropy H(X) is larger than 0. The entropy reaches the maximum if all

outcomes are equally probable, when ∀i : p(xi) =
1
n
. The maximal entropy has

the value log n that is calculated as follows:

H(X) ≤ H(
1

n
, · · · , 1

n
) = −

n∑
i=1

1

n
log

1

n
= log n (3.22)

As we described above, H(X) lies in the range [0, log n]. However, if H(X)

does not depend on n it is much more convenient for the comparison between data

sets with different number of objects. For this purpose, we use the normalized

entropy E(X), which is defined as follows:

Definition 3.15 (Normalized entropy).

E(X) =
H(X)

log n
= −

n∑
∀i=1

p(xi)
log p(xi)

log n
(3.23)

The normalized entropy E(X) has the range [0, 1], and does not depend on n.

Similar toH(X), E(X) has also the same property of measuring the uncertainties.

Unlike ENCLUS, the probability of an object oi on a subspace Ã is defined as

the proportion of its density value to the sum of density values of entire objects,

which is described as follows:
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Definition 3.16 (Probability of an object).

p(oi) =
D

˜A
oi∑

∀i
D

˜A
oi

(3.24)

Obviously p(oi) ∈ [0, 1],
∑

∀i p(oi) = 1 and an object oi with high density has

also a large value p(oi). Therefore, the definition corresponds to the probability

mass function.

As mentioned above, we apply the normalized entropy in ASCDD in order to

facilitate calculating and comparing entropy values for any subspace. The entropy

mentioned in the remaining part of this dissertation refers to the normalized

entropy, which can be seen in the following definition.

Definition 3.17. E(Ã) is the normalized entropy with regard to a subspace Ã.

E(Ã) = −
n∑

∀i=1

p(oi)
log p(oi)

log n
(3.25)

Since p(oi) is calculable in any subspace, the entropy E(Ã) is then also ap-

plicable in any subspace. Moreover, because the value of E(Ã) depends on the

densities of objects in Ã, E(Ã) reflects the distribution of objects in this sub-

space. A small E(Ã) indicates more uncertainties in Ã, which means there is a

big chance to detect clusters in Ã. Contrarily, a big E(Ã) shows that the objects

are distributed more uniformly in Ã than in the subspaces with small entropy.

The maximal value of E(Ã) should be 1. However, as described before, the

evenly distributed objects have little difference in density between middle objects

and objects at edges. Therefore, a subspace with evenly distributed objects has

a value of E(Ã) very close to 1.

Since it is impractical to traverse all possible 2|A| subspaces, our aim is to find

the subspaces with possible clusters. We call a subspace with possible clusters a

“potential subspace”.

Comparing the entropy of different subspaces can help us to detect potential

subspaces. A subspace Ã and a higher-dimensional subspace Ã∪Ã′ (with Ã∩Ã′ =

∅) have the following properties:
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• If E(Ã∪ Ã′) < E(Ã), then the subspace Ã∪ Ã′ has more clearly separated

clusters than Ã.

• If E(Ã ∪ Ã′) > E(Ã), it is likely that Ã ∪ Ã′ has more evenly distributed

objects than Ã.

Suppose Ã is a potential subspace. We use the following principle to check

whether a higher-dimensional subspace Ã ∪ {ai} is also a potential subspace:

E(Ã ∪ {ai}) ≤ min({E(X) | ∀X ⊂ Ã ∪ {ai}}) (3.26)

If E(Ã ∪ {ai}) is not bigger than the entropy of any subspace of Ã ∪ {ai}, then
subspace ai can be integrated into subspace Ã, and Ã ∪ {ai} is also a poten-

tial subspace. For instance, suppose that the current subspace is Ã = {a1}, if
E(a1, a2) < min(E(a1), E(a2)) then Ã will be expanded to Ã = {a1, a2}.

In order to maximize the dimensionality of each potential subspace, the max-

imal dimensionality is defined as follows:

Definition 3.18 (Maximal dimensionality of a potential subspace). A potential

subspace Ã reaches its maximal dimensionality, if Ã satisfies the condition:

∀ai : E(Ã) < E(Ã ∪ {ai}) (3.27)

If a potential subspace Ã reaches its maximal dimensionality, Ã has more

uncertainty than any of its supersets. So Ã will be taken for searching clusters

as the final subspace and its superset will not be considered.

The process of searching for potential subspaces starts from the one-dimensional

subspace with the lowest entropy. The current subspace is then expanded to its

maximal dimensionality. After that, we search the next one-dimensional subspace

with the lowest entropy from the remaining subspaces and repeat the process. The

process stops when all subspaces have reached the maximal dimensionality.

Figure 3.9 shows an example of how to detect potential subspaces. In this

example there are obviously three clusters. However, it is not straightforward to

find them directly in the three-dimensional space {x, y, z}, but if the objects are

projected into each two-dimensional subspace, the clustering process will be more

effective. In each two-dimensional subspace, one cluster is much tighter than the



3.3 ASCDD 43

 0
 0.2

 0.4
 0.6

 0.8
 1  0

 0.2
 0.4

 0.6
 0.8

 1

 0
 0.2
 0.4
 0.6
 0.8

 1
z

Cluster 1
Cluster 2
Cluster 3

x y

z

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

y

x

Figure 3.9: An example of detecting a potential subspace

other two clusters, namely, the two-dimensional subspaces {x, y}, {y, z}, {x, z}
have more distinct cluster distribution than the three-dimensional space. As

illustrated in figure 3.10, when the objects are projected into the subspace {x, y},
the density distribution of objects is much clearer than that in {x, y, z}. Similarly,

subspaces {x, z} and {y, z} have also clearer density distribution than {x, y, z}.

Position of the objects
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Figure 3.10: Distance-density of objects in the subspace {x,y}

The above result can also be verified through the principle of detecting sub-
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spaces. The calculation of the entropy shows that the subspaces have the following

relations:

E(x, y);E(y, z);E(x, z) < E(x);E(y);E(z) < E(x, y, z) (3.28)

Equation 3.28 indicates that the entropy of a two-dimensional subspace is smaller

than the entropy of a one-dimensional and a three-dimensional subspace. Thus

each two-dimensional subspace reaches the maximal dimensionality.

The details of the subspace searching process of the example figure 3.9 are

shown as follows:

1. ASCDD searches firstly a one-dimensional subspace {x}. Then it checks

{x, y}: Since E(x, y) < E(x), {x} is expanded to {x, y}.

2. In the next step, it checks {x, y, z}: Because E(x, y) < E(x, y, z), {x, y}
will not expand to {x, y, z}, which means that {x, y} has the maximal

dimensionality.

3. The next potential subspace is {y}. Since {x, y} is already checked, we

check then {y, z}. Like {x, y}, the subspace {y, z} is the next potential

subspace with maximal dimensionality.

4. Similarly, we find the last potential subspace {z, x} with maximal dimen-

sionality from {z}.

As described above, the search for potential subspaces stops at each two-dimensional

subspace {x, y}, {y, z} and {z, x}, whereas the three-dimensional space is not con-

sidered because the two-dimensional subspaces reach the maximal dimensionality.

3.3.4 Exploring clusters

The positions and densities of clusters are indicated by the distance-density func-

tion. The objects with high densities are possible cluster objects, meanwhile

objects at the edges of clusters have lower densities. The density of an object

is mainly determined by the other objects in its local environment, so a cluster

could consist of an object with high density and its neighbors. The main purpose



3.3 ASCDD 45

of this section is to establish a way of assigning objects and their surrounding

objects to the corresponding clusters.

One question is how to find clusters from the objects with large distance-

density values. Since neighboring objects with high density values belong possibly

to the same cluster, we search the neighboring objects from high density to low

density.

The main idea of searching clusters in a subspace consists of the following two

main steps:

1. Searching for the neighbors of an object with the highest density

2. Maximizing clusters by extending neighborhoods

The objects of a cluster consist of directly connected neighbors and the expan-

sion of neighbors. Figure 3.11 shows an example of two clusters that are labeled

with different colors. As illustrated in the figure, the objects are surrounded by

circles. The circle indicates the neighborhood of its corresponding central object,

which means the objects within the same circle are considered as neighbors. The

determination of the radius will be introduced later.

If a central object of a circle belongs to another circle, then the two circles are

“connected”. All objects in a cluster are connected through the circles. Mean-

while, the objects from different clusters can not be connected through any circle.

In this example, the clustering process starts from a start object o1, who has

the maximal density. As a central object, o1 has neighbors in its circle. Each

new neighboring object can have also further neighbors. For example, the figure

illustrates two new circles towards two directions. From the new circles, we can

find further neighbors. All the objects in the connected circles form a cluster.

The other cluster consists of only the objects in the circle of the central object o2

and it can not be expanded with further new neighbors from the objects in this

cluster. The objects in the first cluster are not connected with the objects in the

second cluster through the neighbor-expansion.

This process is similar to but not the same as DBSCAN [Este 96]. The main

differences are:
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o1

o2

Figure 3.11: Neighboring objects

• The determination of the start object is different. DBSCAN finds a start

object, whose neighborhood has the number of objects larger than MinPts,

whereas ASCDD takes the object with the highest density as the start

object, which does not require any parameters.

• DBSCAN defines neighborhood based on Euclidean distance. The distance

of two directly density-connected objects should smaller than the parameter

ε, which should be determined differently on diverse subspaces. ASCDD

determines the neighborhood based on their density differences, whose range

does not depend on the subspaces.

As we mentioned above, an important procedure in ASCDD is to determine

the size of circles and to check whether two objects are neighbors. The details

will be introduced in the next two paragraphs.

Searching neighbors of an object
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Definition 3.19 (The set of neighbors). The set of neighbors of an object oi in

subspace Ã is defined as follows:

Neighbor(o
˜A
i ) = {oj| d ˜A

oi,oj
> DDT} (3.29)

where DDT (Distance-Density Threshold) is a threshold for choosing neighbors.

From the above definition, only the objects with distance-density to the cen-

ter object o
˜A
i higher than DDT meet the condition and will be considered as

neighbors of o
˜A
i .

The DDT value is equivalent to the radius of circles, which can affect the

number of neighbors or the size of clusters. Generally, the larger DDT is chosen,

the fewer neighbors are selected. So choosing a proper DDT is important. Since

d
˜A
oi,oj

has a value between 0 and 1, the parameter DDT has also to be determined

within the range (0, 1). However, a too small or too big value of DDT can cause

that the whole objects belong to one cluster or there is no cluster. So a proper

value for DDT should be set in (0, 1). However, it is still problematic to pick a

value for DDT in (0, 1), so the range for choosing DDT must be smaller.

We notice that these two values are important for the determination of DDT .

T
˜A
min = min

∀i

(
max
∀j �=i

(d
˜A
oi,oj

)

)
(3.30)

and

T
˜A
max = max

∀i

(
max
∀j �=i

(d
˜A
oi,oj

)

)
(3.31)

where max
∀j �=i

(d
˜A
oi,oj

) is the maximal distance-density of oi with regard to the sub-

space Ã. Obviously, if oj has the minimal Euclidean distance to oi then oi has

the maximal distance-density value with oj in Ã. T
˜A
min and T

˜A
max are the smallest

and biggest maximal distance-density of all objects with regard to Ã. Notice that

T
˜A
min and T

˜A
max are different according to diverse Ã.

These two values affect the clustering results as follows:

• If DDT ≥ T
˜A
max, no object is assigned to any cluster, because no object has

a neighbor.
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• If DDT < T
˜A
min, all objects are selected as one cluster, because all objects

are connected through the neighborhood.

Obviously, DDT should be set between T
˜A
min and T

˜A
max to obtain a clustering

result, therefore we can define DDT as follows:

Definition 3.20 (Definition of DDT ).

DDT = q · T ˜A
min + (1− q) · T ˜A

max, 0 < q < 1 (3.32)

oi : o1 o2 o3 omin · · · omax

m
a
x

∀j
(d

Ã o
i
,o

j
)

T Ã
max

T Ã
min

Figure 3.12: An example of T
˜A
min and T

˜A
max

Figure 3.12 illustrates an example of values T
˜A
min and T

˜A
max. omin and omax are

the objects with the distance-density value T
˜A
min and T

˜A
max respectively. If DDT

is close to T
˜A
min, many objects with distance-density values bigger than T

˜A
min have

the chances to be selected in the next step. Conversely, if DDT is close to T
˜A
max,

the number of selected objects will be much smaller. So by setting DDT close

to T
˜A
min (when q is close to 1), the clustering results become relative acceptable

in most cases. The comparison of clustering results by choosing different q is

illustrated in section 4.2.1.
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Maximize clusters by extending neighborhoods

For exploring a cluster, ASCDD begins with searching neighbors of an ob-

ject with the highest density, which is called the “start” object. Suppose o
˜A is

a start object. Its neighboring objects are firstly put into an initial set Õ =

Neighbor(o
˜A). The next step is the expansion of Õ, ∀o ˜A

i ∈ Õ/{o ˜A}:

if Neighbor(o
˜A
i ) �= ∅, then Õ = Õ ∪Neighbor(o

˜A
i ) (3.33)

The new objects in Neighbor(o
˜A
i ) are added to the Õ. This step is repeated for

each new found object until no further new neighbors are found. Finally, (Ã, Õ)

generates a cluster with the “start” object o
˜A
i .

We have described above the way of exploring a cluster from a “start” object.

However, how do we obtain the “start” objects from all objects? As shown in

figure 3.6, the peaks with high density values reveal the positions of clusters.

ASCDD firstly finds an object with the maximal density from the whole objects

as the “start” object and then searches the objects related to the “start” object.

Afterwards it finds the next object with the maximal density value from the rest

of objects, namely the next “start” object.

Figure 3.13 shows an example of a one-dimensional clustering process. In

this example, the clustering process starts from the neighbors of object o1 that

has maximal density. Then it extends the objects in Neighbor(o1) until no more

new objects are found. Cluster 1 is derived from o1 and consists of objects from

the extension of neighborhood. After we get cluster 1, the objects in cluster 1

are excluded and the next “start” object with the highest density in the rest of

objects is o2. The clustering process for cluster 2 is the same as cluster 1. Then

we find cluster 3 from o3, and so on. The clusters are explored in turn according

to the densities of their “start” objects.

3.3.5 Algorithm of ASCDD

The clustering process of ASCDD consists of the following steps.

1. Search for potential subspaces

2. Exploration of clusters within the potential subspaces
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DÃ
o1

DÃ
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Figure 3.13: An example of clustering process of ASCDD

3. Reduction of redundancy

Search for potential subspaces

As we discussed in section 3.3.3, the search for the potential subspaces is based

on the entropy values. Algorithm 3 shows the process of the search for potential

subspaces with the following steps:

1. We calculate the entropy of each one-dimensional subspace E(a), ∀a ∈ A.

2. Suppose a is a one-dimensional subspace with the lowest entropy, we expand

a to the maximal dimensionality.

3. Then we search for the next one-dimensional subspace with the lowest en-

tropy. Repeat step 2 until no more new one-dimensional subspaces exist.
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Algorithm 3: Search for potential subspaces in ASCDD

Input: (A,O)

Output: Potential subspace set: PSS

1 calculating entropy of each subspace E(ai), ∀ai ∈ A

2 ascending sort E(ai)

3 PSS = ∅
4 for i = 1 to |A| do
5 C = {ai}
6 for j = i+ 1 to |A| do
7 minEntropy = min(E(C), E(aj))

8 if E(C ∪ {aj}) <minEntropy then

9 C = C ∪ {aj}
10 end

11 end

12 PSS = PSS ∪ {C}
13 end

14 return PSS

Exploration of clusters within the potential subspaces

Algorithm 4 illustrates the process of the exploration of clusters in ASCDD.

This process for a potential subspace Ã is divided into four steps.

1. ∀i, the density value of each object D
˜A
oi
is calculated.

2. We find the “start” object os with the maximal density from the current

set of objects Ocurrent.

3. Then we insert all neighbors of os and the connected neighbors into S.

4. The objects of S are then removed from Ocurrent, repeat step 2 until no

more new clusters are found.

Reduction of redundancy

Similar to SUGRA, we eliminate the small subspace clusters and keep only

the large ones.
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Algorithm 4: Exploration of clusters in ASCDD

Input: (A,O), Potential subspace set: PSS

Output: Set of all clusters Ŝ

1 Ŝ = ∅
2 foreach Ã ⊆ PSS do

3 Ocurrent = O

4 ∀i, calculate D
˜A
oi

5 while Ocurrent �= ∅ do

6 os has max (d
˜A
oi
), ∀oi ∈ Ocurrent

7 Õ = Neighbor(os)

8 Iteration: ∀oi ∈ Õ, Neighbor(oi) ⊆ Õ

9 Ocurrent = Ocurrent − Õ

10 S = (Ã, Õ), Ŝ = Ŝ ∪ S

11 end

12 end

13 return Ŝ

If the clustering results include two clusters S and S ′ with the relation S > S ′,

then S is kept in the clustering result, and S ′ is removed as a redundancy.

3.4 Summary

We introduced our subspace clustering methods SUGRA and ASCDD with their

ideas, definitions, properties and algorithms in this chapter.

In the next chapter, we will discuss more details about these two methods

and compare them with other subspace clustering algorithms.
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Discussion & Comparison

We have introduced two subspace clustering approaches SUGRA and ASCDD

in chapter 3. However, there are still many unexplained questions. In this chap-

ter, we discuss more about these two algorithms and compare different subspace

clustering methods.

4.1 Discussion about SUGRA

SUGRA (Subspace Clustering with the Gravitation Function) is introduced in

section 3.2. It separates cluster objects by using a gravitation threshold. We

will analyze the main advantages and disadvantages of this subspace clustering

algorithm.

4.1.1 Parameter choice

In the algorithm SUGRA, the parameter gravitation threshold should approxi-

mate theoretically 3.29. We can use 3.29 as the gravitation threshold in many

situations. However, this value could vary a little in some situations in order to

find the “desired” clusters. This happens if the cluster boundary is not “clear”,

so that the gravitation threshold could be bigger or smaller than 3.29 to separate

the vague clusters.

The value 3.29 can be set as a starting point for choosing the gravitation

threshold. Although a manual regulation near 3.29 may be sometimes necessary,

it is still simpler to choose a parameter near 3.29 than to determine the parameters

for other approaches, where the parameters have to be selected from unknown

ranges.
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4.1.2 Data scale
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Figure 4.1: Gravitation values with different scales of data

SUGRA finds clusters based on the distribution of objects and does not de-

pend on the scale of data. For instance, if the data are stretched proportional to

another scale, the gravitation values will not change. As shown in figure 4.1, a

data set has the same gravitation values before and after the normalization (see

x-axis). With this property, the data with different scales could be compared

simply.

4.1.3 Cluster shapes

The biggest limitation of SUGRA is that it is difficult to find clusters with con-

cave forms in a high-dimensional subspace, especially if the concave clusters are

interlaced. The mixed clusters are usually extracted together as one big cluster

or separated to small ones.

An example in figure 4.2 shows that the objects in the middle area have much

higher gravitation values than those at the side. After projecting the objects to

each one-dimensional subspace, SUGRA extracts objects in the middle as a clus-

ter, however the outer objects with the ring form have relative small gravitation

values and are fragmented into small ones.

Although it is possible to merge the small clusters into one big cluster (similar

to CLIQUE), the merging process requires much extra run time and the clustering
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Figure 4.2: An example of concave clusters

results may lose accuracy in a high-dimensional subspace. To avoid the limitation,

we could use ASCDD for high-dimensional subspaces.

4.2 Discussion about ASCDD

We have introduced ASCDD (Automatic Subspace Clustering with the Distance -

Density Function) in section 3.3. As an improvement of SUGRA, ASCDD has

many distinguishing characteristics. This section discusses the details of this

method.

4.2.1 Parameter choice

ASCDD requires no parameter for the density calculation and subspace selection,

but it needs one parameter (DDT ) for searching the neighbors. As defined in

definition 3.20, DDT correlates with T
˜A
min and T

˜A
max, where DDT = q · T ˜A

min +

(1− q) · T ˜A
max, 0 < q < 1. The value of q decides the clustering result. Generally,

a large q generates large clusters and a small q yields clusters with small sizes.

Figure 4.3 - figure 4.8 show the clustering results of a two-dimensional data set

by setting q from 0 to 1. The cluster objects are presented with different colors.

The first figure shows the density values of three clusters, where the cluster C3

has much higher density than the clusters C2 and C1. For q = 0 there is no
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Figure 4.3: Density of objects and clustering result with q = 0
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Figure 4.5: Clustering result with q = 0.3 and q = 0.4

cluster extracted from the objects. By setting q close to 0, the clusters can be

partitioned into small ones. As q increases to 1, the clustering results are getting
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Figure 4.8: Clustering result with q = 0.9 and q = 1

stable.

Generally, a cluster with high density is less influenced by q than a cluster
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with low density. A cluster with low density can be easily split into smaller ones,

especially when q has a small value. In this example C1 and C2 are separated

into many small clusters when q is between 0.1 and 0.4. The figures show that

C3 has very similar clustering results when q is between 0.3 and 1, whereas C1

and C2 have similar results with q ranging from 0.5 to 1.

The comparison also shows that the clustering results are much better by

setting a q close to 1. However, outliers can be included by clusters when q is set

with a very large value. Contrarily, clusters include fewer objects when q is small.

We suggest choosing a q close to 1. Nevertheless, according to the application, a

fine tuning of q can yield a better clustering result.

4.2.2 Cluster shapes
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Figure 4.9: An example of two-dimensional concave clusters

It is not difficult to identify a convex shaped cluster with many clustering
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algorithms. However, not all the algorithms are able to find concave clusters.

ASCDD could find arbitrary (convex and concave) shaped clusters.

As we discussed in section 3.3.4, the object with the highest density in a cluster

is chosen as the “start” object. However, a “start” object is not necessarily the

geometric center of a cluster. Figure 4.9 shows an example of two-dimensional

clustered objects. Figure 4.10 illustrates the corresponding density values of the

objects and clusters marked with different colors. The two clusters have both

concave forms and the “start” objects o1 and o2 of the two clusters do not lie at

their geometric centers but at the edges of the clusters, where the density is high.

The cluster objects in the same cluster are all the extensions of neighborhoods

from its “start” object. Through the addition of new neighbors, the objects in a

cluster can be connected together to reach the concave shape of the cluster.
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Figure 4.10: Density values of concave clusters

The clustering result of ASCDD does not depend on the input order of the

objects, and furthermore it is not necessary to estimate the number of clusters.

This is due to the fact that the clusters are explored based on the density values

of the “start” objects from the highest density to the lowest density, one by one.

ASCDD can solve the example shown in figure 4.2. The figure 4.11 illustrates

the density values and clustering result with ASCDD. The objects in the middle
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circle area have much higher density than the objects in the ring. As a result,

the two clusters can be clearly separated from each other.
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Figure 4.11: Clustering result with ASCDD

4.2.3 Time complexity

The time complexity of ASCDD depends on the number of objects |O| and di-

mensions |A| as well as on the number of potential subspace sets |PSS|. The run
time of the density calculation is O(|O|2) for one subspace. The number of pos-

sibly involved subspaces for density calculation can be from |A| to 2|A|. The run

time of searching subspaces depends on the cardinality of the potential subspace

sets |PSS|, which has the range (0, 2|A|).

One idea for reducing the run time related to the number of objects is to apply

sampling data. For example, by choosing 1
n
entire objects as sampling objects,

the run time is reduced to 1
n2 . However, one problem is that the sampling data

may be biased if they are not evenly selected, which may cause changing or even

losing clusters.
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4.3 Comparison

In this section, we compare some subspace clustering methods with respect to

their algorithms and clustering results. It includes a comparison of SUGRA with

ASCDD, as well as comparisons between these two methods and other subspace

clustering methods with similar concepts.

4.3.1 SUGRA versus ASCDD

In SUGRA, the non-cluster objects have low density values in the range [0, 3.29].

Contrarily, the cluster objects have density values in the range > 3.29. However,

the maximum gravitation can be very different, which does not depend on the

number of objects but depends strongly on the local density. For example, if some

objects are extremely close in comparison with other objects, the gravitation of

these objects will be much higher than others. However, the non-cluster objects

have still lower gravitation than the gravitation threshold. Generally, SUGRA is

more sensitive to the local distance.

Compared with SUGRA, ASCDD’s density values are less sensitive to the

local density. The difference of the maximum and minimum density is smaller

than SUGRA. But ASCDD can not find a static threshold as SUGRA.

The figure 4.12 shows the clustering results on the same one-dimensional data

set with SUGRA and ASCDD. Where SUGRA uses 3.29 as gravitation threshold,

and ASCDD applies q = 0.9 as the parameter setting. SUGRA has a much

“sharp” curve and ASCDD’s curve is more “smooth”. However, the clustering

results with both methods are almost the same in this situation.

4.3.2 SUGRA versus CLIQUE

SUGRA and CLIQUE [Agra 98] are both bottom-up subspace clustering meth-

ods, which search clusters from low-dimensional to high-dimensional subspaces.

The two algorithms use very different approaches in searching for clusters. CLIQUE

uses the process of “dividing objects”, “searching high density areas”, “merging

the dense objects” to find clusters in one-dimensional subspaces. This manner of

searching clusters can cause inaccuracy, because separating and merging objects
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Figure 4.12: Comparison of clustering results with SUGRA and ASCDD

many times may lose cluster objects or yield big clusters. In comparison with

CLIQUE, SUGRA takes one cut to separate the cluster and non-cluster objects,

which yield the entire clusters at one time.

The example in figure 4.13 shows the comparison of clustering results of

SUGRA and CLIQUE on a one-dimensional subspace. SUGRA can find two

clusters C1 and C2 simply, which are labeled with different colors. However,

CLIQUE has very different results by choosing the different numbers of grids.

For example, with 5 grids CLIQUE detects only a part of C1, which is combined

with some non-cluster objects together. Meanwhile, the cluster C2 contains also

some non-cluster objects. Choosing the number of grid cells with 9 or 11 produces

similar situations, where the clusters are split or attached with non-cluster ob-

jects. The inaccuracy of CLIQUE is caused by the inexact dividing of objects by

the grid, which is a common issue of grid-based subspace clustering algorithms.

By contrast, SUGRA can locate the position of clusters more exactly.

4.3.3 ASCDD versus DENCLUE

Estimating the density values of objects by using density functions is a similar-

ity between DENCLUE [Hinn 98] and ASCDD. DENCLUE applies the Gaussian

kernel function (equation 2.1) and ASCDD uses the distance-density function

(equation 3.19). The density values are calculated in different manners by apply-

ing these two functions.
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Figure 4.14 shows the differences between the density functions of ASCDD

and DENCLUE on a two-dimensional data set with three clusters. ASCDD de-

termines directly the appropriate distribution of objects for the next clustering

step, where the center of clusters have clearly higher density than other objects.

However, DENCLUE has to choose the standard deviation σ as a parameter to

estimate the distribution of objects. For example, by choosing the parameter

σ ≥ 0.3, there are no distinct clusters. By setting σ ≤ 0.2, the distribution of

objects allows to distinguish these clusters.

The above example indicates that choosing the parameters in DENCLUE
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plays a decisive role for estimating the densities and the clustering result. Whereas

ASCDD does not need extra parameters to achieve the calculation of density.

4.3.4 ASCDD versus ENCLUS

Since the entropy is used by both ASCDD and ENCLUS [Chen 99] for detecting

the potential subspace, we compare the clustering results of these two algorithms

in this section.

As we introduced in section 2.2, ENCLUS calculates entropy based on the

division of objects with grids. It needs interest gain defined in equation 2.3 to

measure whether high-dimensional subspaces are strongly related. A subspace

is considered as a potential subspace if its entropy is under a threshold ω and

its interest gain exceeds another threshold ε ′. In ASCDD, we use the maximal

dimensionality (definition 3.18) to determine whether a subspace is “interesting”.

We will compare the differences of these two methods by applying them to the

example mentioned in figure 3.9. The original data with 90 objects are listed in

section 7.1.

Sub- N = 5 Interest N = 9 Interest N = 12 Interest

space Entropy Interest gain Entropy Interest gain Entropy Interest gain

{x} 1.261 0 0 1.544 0 0 1.894 0 0

{y} 1.260 0 0 1.641 0 0 1.672 0 0

{z} 1.278 0 0 1.589 0 0 1.696 0 0

{x, y} 2.060 0.461 0.461 2.531 0.654 0.654 2.872 0.694 0.694

{y, z} 2.035 0.503 0.503 2.594 0.636 0.636 2.631 0.737 0.737

{x, z} 2.046 0.493 0.493 2.589 0.544 0.544 2.758 0.832 0.832

{x, y, z} 2.653 1.146 0.643 3.350 1.424 0.770 3.603 1.659 0.827

Table 4.1: An example of entropy values calculated with ENCLUS

Table 4.1 shows the entropy, interest and interest gain calculated with the

methods of ENCLUS. We choose the number of grid cells N for a one-dimensional

subspace to be 5, 9 and 12. The result shows that the number of grid cells

influences the entropy value of a subspace. The entropy becomes bigger as the

number of grid cells increases, because when the number of cells grows, the objects

spread out more equally throughout the entire cells than the objects placed in

fewer grids.
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One problem here is how to choose the parameter ω and ε ′ in order to select the

potential subspaces. We set ω to 80% of the maximal entropy. The entropy of a

one-dimensional subspace reaches the maximum value when the objects are evenly

distributed within the N grids, which can be calculated with: −N · 1
N
· log( 1

N
) =

− log( 1
N
) = log(N). Two- and three-dimensional subspaces have the maximal

entropy values log(N2) and log(N3) respectively. For example, when N is set

to 9, the parameters ω for the one-, two- and three-dimensional subspace are

0.8· log(9) = 1.758, 0.8· log(81) = 3.516 and 0.8· log(729) = 5.237. In this case, all

subspaces are selected. However, it is still difficult to determine another threshold

ε ′. If we choose ε ′ = 0.5, then {x, y}, {y, z}, {x, z} and {x, y, z} are all considered
as potential subspaces. Finally, all subspaces are selected as “interesting”. It is

not wrong, but as we discussed for the example of figure 3.9, the two-dimensional

subspaces have more distinct clusters than the three-dimensional subspace.

Subspace {x} {y} {z} {x, y} {y, z} {x, z} {x, y, z}
Normalized entropy 0.982 0.983 0.986 0.946 0.952 0.948 0.993

Table 4.2: An example of entropy values calculated with ASCDD

Table 4.2 describes the entropy calculated by ASCDD. The calculation does

not depend on any parameter. It is clear that the two-dimensional subspaces

have lower entropy than the one- and three-dimensional subspaces. With the

relation E(x, y);E(y, z);E(x, z) < E(x);E(y);E(z) < E(x, y, z), the subspace

{x, y}, {y, z}, {x, z} are considered as the potential subspaces. In comparison

with ENCLUS, the result of ASCDD corresponds much closer to the fact that the

two-dimensional subspaces have more distinct clusters than the three-dimensional

subspace.

4.4 Summary

In this chapter, we discussed issues and details about our subspace clustering

methods SUGRA and ASCDD. It shows that both of them have some advantages

and disadvantages.
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SUGRA and ASCDD yielded clustering results with higher accuracy in com-

parison with other subspace clustering methods. Furthermore, the settings of

parameters for SUGRA and ASCDD are relatively simple.

The next chapter illustrates more clustering results by showing empirical ex-

periments on SUGRA and ASCDD and additional comparisons with other sub-

space clustering algorithms. The properties of SUGRA and ASCDD will be

demonstrated more clearly through these experiments.
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�
Empirical experiments

In this chapter, we show empirical experiments on the subspace clustering

methods SUGRA and ASCDD and comparisons with other subspace clustering

algorithms. Some experiments are already introduced in [Zhao 10a, Zhao 12,

Zhao 13].

The purpose of these experiments is to observe the effectiveness and efficiency

of SUGRA and ASCDD, particularly their accuracy and run time for large num-

bers of objects in high-dimensional spaces and their abilities for searching sub-

spaces.

The experiments are carried out with both synthetic data and real data. We

use the synthetic data as experimental data in order to make the experiments

controllable and to measure the accuracy easily. The accuracy is defined as

the proportion of the number of correctly clustered objects to the real number

of objects in that cluster. The real data contains the data gathered from real

situations, and is more complicated and more challenging for clustering than the

synthetic data.

All experiments are carried out on a PC with 800MHz dual-core processor,

4GB RAM, Linux operating system and Java environment.

5.1 Experiments with SUGRA

5.1.1 Synthetic data

In the experiment with synthetic data, the results of SUGRA are compared with

the subspace clustering method CLIQUE [Agra 98], because both methods are

bottom-up subspace clustering methods.
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Run time

In this experiment, we used a data set with a 10-dimensional space and five

clusters in different subspaces. The number of objects was increased from 20000

to 160000 in different tests. Figure 5.1 shows that SUGRA has almost the same

run time as CLIQUE. SUGRA is faster for a small number of objects but it

requires more run time than CLIQUE for a large number of the objects. The

reason is that the calculation of gravitation of an object in SUGRA involves all

objects, so the run time of density calculation is quadratic. For a small number

of objects, the calculation time is not influenced so strongly by the number of

objects. However, a big number of objects can burden the CPU a lot.
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Figure 5.1: Run time (Objects) (SUGRA vs. CLIQUE)

In the next experiment, we used 105 objects as the test data. The number

of dimensions increased from 10 to 60, where there were ten subspace clusters.

Figure 5.2 indicates that SUGRA and CLIQUE require more run time as the

number of dimension increases, which is similar to other bottom-up algorithms.

The combination process will stop directly if there is no further cluster in a low-

dimensional subspace, otherwise the combination process will continue in higher

dimensions. SUGRA is faster than CLIQUE in this case, because SUGRA simply

combines one-dimensional subspace clusters for searching high-dimensional clus-

ters. Unlike SUGRA, CLIQUE has to check whether high-dimensional cluster-

combinations do still stay in the dense unit. Naturally the higher dimensionality
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of the subspace that the clusters are located in, the more time it requires. The

pruning process of CLIQUE needs extra time, but this process is not necessary

in SUGRA.
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Figure 5.2: Run time (Dimension) (SUGRA vs. CLIQUE)

Accuracy

The accuracy of the clustering results is also an important evaluation for a

clustering method. A test data set had 104 objects and 10-dimensional space

with 5 clusters, which were divided in different subspaces.

Preset

clusters

1 2 3 4 5

Subspace {1,3,7,8,9} {2,4,6,8} {1,2,5,7,8,9,10} {3,6,7,8,9} {2,3,9,10}
Number of

objects

2000 5000 1000 2000 3000

CLIQUE {1,3,7,8,9} {2,6,8} {1,2,5,8,9} {3,6,7,8,9} {3,9,10}
P: 0.64; R: 0.58 P: 0.59; R: 0.64 P: 0.56; R: 0.74 P: 0.70; R: 0.72 P: 0.41; R: 0.56

SUGRA {1,3,7,8,9} {2,4,6,8} {1,2,5,7,8,9,10} {3,6,7,8,9} {2,3,9,10}
P: 0.85; R: 0.86 P: 0.90; R: 0.90 P: 0.88; R: 0.96 P: 0.92; R: 0.92 P: 0.76; R: 0.81

(P: Precision; R: Recall)

Table 5.1: Comparison of clustering results from SUGRA and CLIQUE

The table 5.1 shows the clustering results of CLIQUE and SUGRA. CLIQUE

finds sometimes fewer cluster objects and sometimes more cluster objects than the
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original number of cluster objects, because the grid-based method with partition-

ing and merging processes cause inaccuracies. For example, CLIQUE separates

several clusters into small ones that are not considered as clusters, and the prun-

ing process in CLIQUE can not merge these small ones together, because they

are not clusters. Contrarily, the pruning process of CLIQUE can merge some

non-cluster objects into the clusters, which can cause finding big clusters. In

this experiment, the clustering result of SUGRA is more precise than CLIQUE,

because SUGRA does not have this problem with partitioning and merging of a

grid-based method. SUGRA does not have to separate the clusters into pieces

but finds the clusters in one step by using the gravitation threshold. The small

inaccuracy with SUGRA comes from the vague objects on the verge of clusters.

5.1.2 Real data

Here we will show the clustering results of SUGRA and CLIQUE on two real data

sets.

“Iris”

The data set “Iris”1 was obtained from the UC Irvine Machine Learning

Repository [Bach 13]. It includes 150 objects and 4 attributes. The attributes

are: sepal length (a1), sepal width (a2), petal length (a3) and petal width (a4).

The data set contains three clusters, where each cluster has 50 objects and refers

to a type of iris plant: Iris Setosa (S1), Iris Versicolour (S2) and Iris Virginica (S3).

Figure 5.3 illustrates the gravitation calculation with SUGRA on four attributes.

The clustering results of SUGRA and CLIQUE are shown in table 5.2. CLIQUE

was set with 5 grids on each subspace and density threshold τ = 20%. The cluster

S1 is easily discovered by both SUGRA and CLIQUE, because S1 is far from the

other two clusters, especially in the dimensions a3 and a4. Clusters S2 and S3

are mixed, because some boundary objects are not very clear (in a3 near 5.3, in

a4 near 1.7). At these two places, the objects should be separated. However, the

gravitation values with SUGRA are not low enough with the gravitation threshold

of 3.29 to separate them. In this situation, we increased the gravitation threshold

1http://archive.ics.uci.edu/ml/datasets/Iris

http://archive.ics.uci.edu/ml/datasets/Iris
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Figure 5.3: Gravitation of the four attributes on “iris”

on a3 and a4 with Ga3 = 5, Ga4 = 5. CLIQUE can not separate the clusters S2

and S3 even when the parameters are changed, so it retains them as one cluster.

Changing the parameter in CLIQUE usually causes that the clusters disappear

or connect as one big cluster. Although the clustering results of S2 and S3 with

SUGRA are a little different from the original clusters, the clustering results of

these two clusters have still high precision.

“Wine”

Another data set “wine”1 was also obtained from [Bach 13]. The data rep-

resent the results of a chemical analysis of wines grown in the same region in

Italy but were derived from three different cultivars. The analysis determined

the quantities of 13 constituents found in each of the three types of wines. There

are 178 objects and 13 attributes in this data set.

The three types of wines are three clusters that are distributed in {o1, . . . , o59},
1http://archive.ics.uci.edu/ml/datasets/Wine

http://archive.ics.uci.edu/ml/datasets/Wine
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Iris clusters S1 S2 S3

objects 1-50 51-100 101-150

CLIQUE subspace {3,4} {1,2,3,4}
objects P: 0.95; R: 0.93 P: 0.69; R: 0.46

SUGRA subspace {2,3,4} {1,2,4} {2,4}
objects P: 1; R: 1 P: 0.90; R: 0.94 P: 0.89; R: 0.82

(P: Precision; R: Recall)

Table 5.2: Accuracy of SUGRA on “iris”

Wine (dimension) a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13

Threshold 3 2 5 5 3.29 2.3 2 3.29 3.29 3.29 2.2 2 2

Table 5.3: Threshold setting for SUGRA on “wine”

{o60, . . . , o130} and {o131, . . . , o178}. Because there are too many subspace clusters

within different subspaces, the results can not be listed here. The accuracy of

the clustering results with CLIQUE is 68%, 62%, 75% for the three clusters. In

order to get a higher accuracy, we altered the thresholds for some subspaces. The

selected thresholds of each dimension are listed in table 5.3, where the thresholds

are all around 3.29. SUGRA has then the accuracy with 74%, 65%, 85%.

Altering the gravitation threshold in SUGRA has generally the following prin-

ciples: If the objects in a dimension trends to be uniformly distributed, the

threshold can be chosen with the value lower than 3.29. Contrarily, a threshold

bigger than 3.29 can be used for clusters with unclear boundaries.

5.2 Experiments on ASCDD

In this section, we show the experiments on ASCDD with synthetic and real data.

The clustering results will also compared with other subspace clustering methods.

5.2.1 Synthetic Data

“Galaxy”
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The synthetic data in this experiment was a manually defined “galaxy stars”.

The data set has 8372 objects with two dimensions. The experimental data and

clustering result are shown in figure 5.4, where the cluster objects are marked

with different colors and the black objects are outliers. We set q = 0.97 as the

parameter setting. The clustering process required 72 seconds. The clustering

result shows great accuracy according to our expectation on both concave and

convex shaped clusters.
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Figure 5.4: Clustering result of “Galaxy” with ASCDD

Figure 5.5 illustrates the densities of objects in three-dimensional space. The

axis z shows that all objects have densities from 0 to 900. The curve of the density

function presents the distribution of the objects very clearly: The outliers (black

color) have very low density values that are close to 0; The start objects have

much higher densities than the edge objects.

We also applied this data set to the clustering algorithm DENCLUE, which

uses the Gaussian kernel function to estimate the density. We set the two param-

eters of DENCLUE with ξ = 2 and ε = 0.7, it required 106 seconds to finish the
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Figure 5.5: Clustering result of “Galaxy” with ASCDD demonstrated

in 3D

clustering process. The clustering result shows that some clusters are found cor-

rectly, for instance the cluster with red color. However, since not all the clusters

in this data set have the Gaussian distribution, DENCLUE can not find some

clusters correctly. For example, the three clusters with spiral shapes (blue) are

found as one cluster by DENCLUE, which can not be changed by adjusting the

parameters.

Run time with different q

In the next experiment, a synthetic data set consisted of 104 objects and

100 dimensions. 20 clusters with different shapes were hidden in 10 different

subspaces. The subspaces without clusters were filled with random objects.

We compared the results of ASCDD with different settings of the parameter

DDT . As we defined in definition 3.20, DDT depends on q, determining the

DDT means choosing the q ∈ (0, 1). The two extreme situations q = 0 and q = 1

cause two results: no cluster object and one cluster with the entire objects. As

we discussed in section 4.2.1, bigger clusters can be found with a q close to 1
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than with a small q. Moreover, more objects are explored as cluster objects than

that with a small q. Contrarily, when q approximates to 0, some small clusters

disappear, and the big clusters shrink to small ones. However, the computation

time will be reduced with a small q, because many small clusters will not be dense

on high-dimensional subspaces anymore, which means it saves the searching time

in these subspaces. Generally speaking, altering q between 1 and 0 could adjust

between details of clusters and run time. Figure 5.6 presents the run time with

four arbitrarily chosen q values. The run time becomes longer when q and the

number of objects increase.
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Figure 5.6: Run time with different q

Comparison with ENCLUS

Since ENCLUS [Chen 99] is one of the most famous subspace clustering meth-

ods by applying entropy, we compared ASCDD with ENCLUS in the next ex-

periment with regard to potential subspaces and clustering results. The data set

used for this experiment contained 70 dimensions and 104 objects. There were

25 clusters within 15 different subspaces.

ASCDD starts searching with the subspace with lowest entropy, and expands

the subspace to its maximal dimensionality. The process of searching potential
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subspace works automatically, which does not need parameters. Finally ASCDD

finds all expected subspaces and some extra subspaces.

We applied ENCLUS by setting the number of units to 285 in order to keep

averagely 35 objects in each cell as the authors suggest. ENCLUS needs ω and

ε as thresholds of parameters entropy and interest gain for detecting interesting

subspace. However, it is a challenge to choose proper values for these two pa-

rameters. We chose ω = 8.5, ε = 1 as described in the article. ENCLUS did not

find all the possible subspace, ENCLUS found only part of expected subspaces

and some non-expected subspaces. Even by altering the two parameters with

different combinations, the result of interesting subspaces with of ENCLUS were

still mixed with non-expected subspaces.

Next we compared the clustering results between ASCDD and ENCLUS. EN-

CLUS uses grid-based method by searching the clusters firstly in one-dimensional

subspace, and combines the clusters in high-dimensional subspace to search more

clusters. In this experiment, we chose the same parameters as the above para-

graph. ENCLUS found just some simple low-dimensional convex clusters cor-

rectly. In high-dimensional subspace, ENCLUS showed much inaccuracy because

some concave clusters are bound together as one cluster and some are separated

into small clusters. Unlike ENCLUS, ASCDD can focus directly on the high-

dimensional subspace for searching clusters. In parameter setting of ASCDD, we

chose q = 0.9, which is very close to 1. ASCDD found the clusters with both

convex and concave shapes with high precision.

The efficiency evaluation of ASCDD and ENCLUS are illustrated in figure 5.7.

We used subsets of the synthetic data for this evaluation. ASCDD and ENCLUS

used the same parameter settings as stated above.

Figure 5.7 (a) presents that the run time of ASCDD grows quadratically with

increasing number of objects because the density calculation of each object in-

volves all the objects. Although the run time of ASCDD with regard to the

number of objects is not linear, the complexity ensures ASCDD gets more accu-

rate clustering results than ENCLUS, whose clustering results are often bigger

or smaller than the original clusters. Of course the run time with regard to the

number of objects depends also on the parameter settings, for example it re-
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Figure 5.7: ASCDD compared with ENCLUS

quires more run time in ASCDD by choosing the parameter DDT that yields

many objects in clusters than a DDT that involves few objects.

As shown in figure 5.7 (b), the run time of ASCDD increases linearly as the

number of dimensions grows. The reason is that ASCDD searches firstly only

the potential subspace, and the clustering process executes directly on each high-

dimensional potential subspace. ASCDD has almost the same run time for a

clustering within a subspace with high or low dimensionality. ENCLUS is slower

than ASCDD for high-dimensional subspace because ENCLUS does clustering

only from low to high-dimensional subspace, which requires much time than direct

clustering in high-dimensional subspace as ASCDD.

Comparison with SUBCLU

SUBCLU [Krog 04] is a density-based bottom-up subspace clustering algo-

rithm, which uses the technique of DBSCAN [Este 96]. SUBCLU starts clustering

from one-dimensional subspace, and then checks whether the higher-dimensional

subspace clusters combined from low-dimensional subspace clusters are still dense.

The main differences between SUBCLU and ASCDD with regard to the neighborhood-

expansion process are as follows: SUBCLU needs two parameters the minimum

distance ε and the minimum number minPts for finding the start object and

searching density-connected objects, where ASCDD finds automatically the start

object and needs one parameter DDT for expanding the neighbors.

We applied the same synthetic data set on ASCDD and SUBCLU in order to
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compare the performances of the two algorithms. The first experiment data set

had ten dimensions with the same value ranges and 103 objects. In the first test,

we set five simple clusters in different subspaces. By choosing the proper param-

eters, both algorithms yielded almost the same results. Both methods found the

five clusters. The run time is also similar for two methods. It is noteworthy that

as the dimensionality of subspace increases, the parameter settings are changing.

The setting of ε and minPts for SUBCLU is quite difficult by high-dimensional

subspace, whereas the parameter DDT of ASCDD is relatively simple to choose

because q should always be selected between 0 and 1 and possibly close to 1.

In the next experiment, we changed the ten-dimensional data with various

value ranges. In this case, SUBCLU can not continue to work in the subspace

that is higher than four dimension, because in high-dimensional subspaces all

objects appear to be sparse, and the strategy of choosing neighborhood with

the minimum distance ε becomes less efficient. Another problem is that it is

difficult to choose the proper ε for various value ranges. However, ASCDD worked

still excellent in this situation, and did not have troubles in discovering the five

subspace clusters.

5.2.2 Real Data

“Wine”

In this experiment, we used the data set “wine”1 [Bach 13] again for ASCDD,

which was already used for SUGRA. The data set corresponds to the analysis of

wines derived from three different cultivars. There are 13 dimensions with three

clusters (with 59, 71 and 48 objects). Each dimension measures a constituent of

the three types of wines.

The clusters were detected by ASCDD in many subspaces. We illustrate two

examples of the clustering results and their accuracies in table 5.4. For instance,

by applying ASCDD directly on the 13 dimensional space, we found two subspace

clusters S1, S2, where S1 corresponds to the original clusters Sa and Sb together,

and S2 corresponds to Sc. The clustering required 0.05 seconds. In the second

example, we found three clusters S3, S4 and S5 on the subspace {3, 7, 12, 13}. The
1http://archive.ics.uci.edu/ml/datasets/Wine

http://archive.ics.uci.edu/ml/datasets/Wine
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accuracy of each cluster is shown in the table. This clustering process required

0.04 seconds.

Table 5.4: Result of ASCDD on “wine”.

Subspace Clusters (P: Precision; R: Recall)

A = {1, · · · , 13} S1 S2

(P: 0.70; R: 0.58) (P: 0.86; R: 0.82)

A = {3, 7, 12, 13} S3 S4 S5

(P: 0.82; R: 0.71) (P: 0.64; R: 0.43) (P: 0.90; R: 0.88)

The clustering results of ASCDD are quite close to the original clusters. The

clustering process of ASCDD can be implemented directly on high-dimensional

subspaces, and furthermore the run time for high-dimensional subspaces is still

very low.

We compared the clustering result of ASCDD with FINDIT [Woo 04], which

is a partition-based subspace clustering approach. Since we knew already the

number of clusters, it simplified applying FINDIT. In the parameter setting of

FINDIT, we chose 40 for the minimum number of objects in a cluster and 1.3

for the minimum distance between two clusters. FINDIT required 2 seconds to

finish the clustering process, and found similar clusters as ASCDD did. However,

if we changed the number of clusters to a different value, the clustering results of

FINDIT were then very different.

“Gas sensor array drift”

From the UC Irvine Machine Learning Repository [Bach 13] we obtained the

data set “Gas Sensor Array Drift”1. The data set corresponds to the measure-

ments of 16 chemical sensors utilized in simulations for drift compensation in dis-

criminating six gas types (Ammonia, Acetaldehyde, Acetone, Ethylene, Ethanol,

and Toluene) at various concentrations. The data is prepared for the chemo-

sensor research community and artificial intelligence to develop strategies to cope

with sensor/concept drift. The data set contains 128 dimensions, 13910 measure-

ments with six gas types (six clusters). The task is to find the combinations of

1http://archive.ics.uci.edu/ml/datasets/Gas+Sensor+Array+Drift+Dataset

http://archive.ics.uci.edu/ml/datasets/Gas+Sensor+Array+Drift+Dataset
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chemical elements that can detect the gas types. We applied both ASCDD and

ENCLUS on the data without cluster labels, the results were then compared with

the original cluster labels.

We illustrate some examples of the clustering results related to months one

and two in table 5.5.

Table 5.5: Results of ASCDD and ENCLUS on “Gas Sensor Array Drift”

ASCDD ENCLUS

Cluster Precision Subspace Precision Subspace

1 68% 76, 113, 17, 4, 79,

70, 14, 68, 121, 57,

15, 6, 7, 53, 118, 12,

54, 62, 127

41% 113, 4, 79, 70, 68,

57, 15, 54, 7, 14, 53,

118, 83, 14, 73

2 67% 15, 6, 78, 49, 7, 12,

55, 63

55% 20, 6, 78, 30, 19, 7,

66, 23, 11, 50, 93

3 39% 47, 24, 107, 111, 88,

97, 99, 105

31% 88, 40, 26, 113, 105,

95, 33, 28, 16

4 68% 44, 108, 39, 47, 24,

103, 111, 88, 97, 99,

105

52% 111, 23, 108, 75, 39,

94, 47, 85

5 34% 112, 56, 120, 122,

98, 16, 35, 106, 43,

80, 36, 108, 24, 107,

88, 97, 99, 105

19% 112, 43, 106, 16, 80,

24, 74, 87, 86, 98,

19, 108, 58

6 88% 65, 9, 76, 4, 79, 70,

14, 68, 15, 6, 78, 7,

12, 39, 47, 103

59% 65, 83, 4, 68, 70, 6,

81, 14, 7, 103, 79

This clustering process required 1440 seconds with ASCDD and 4410 seconds

with ENCLUS. Compared with ENCLUS, ASCDD is more efficient and has higher

precision in high-dimensional subspace clustering than ENCLUS.
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Conclusion

This dissertation proposes and characterizes two subspace clustering algo-

rithms SUGRA (Subspace Clustering with the Gravitation Function) [Zhao 10a]

and ASCDD (Automatic Subspace Clustering with the Distance -Density Func-

tion) [Zhao 12, Zhao 13]. Since most subspace clustering methods suffer from

the issue that it is troublesome to determine their parameters, the purpose of

our studies is to simplify the settings of parameters in order to facilitate the

application of subspace clustering methods in practice.

Our new method SUGRA applies the gravitation function in order to cal-

culate the density of objects. An important property of SUGRA is that the

non-cluster objects have density values smaller than a threshold. Meanwhile,

the cluster objects have much larger values than this threshold. The threshold

has approximately a value of 3.29, which does not depend on the number of ob-

jects. SUGRA follows a bottom-up clustering process, which searches firstly each

one-dimensional subspace, and then checks the combinations of low-dimensional

subspace clusters in high-dimensional subspaces.

The second method ASCDD calculates also the density of objects. However,

ASCDD uses a different density function than SUGRA and applies many other

techniques in the clustering process, such as expanding neighborhood and ex-

ploring potential subspaces with entropy. The neighborhood expansion ensures

finding subspace clusters with any shapes. A low entropy value of a subspace in-

dicates that the subspace is potential for finding clusters. ASCDD detects firstly

the maximal dimensionality of potential subspaces and then searches the clusters

directly in each potential subspace. The process of searching potential subspaces

is automatic, and the neighborhood expansion needs only one parameter, which

has the range [0, 1].
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The comparison and empirical experiments indicate that SUGRA and ASCDD

can be easily applied to data with different value ranges. Furthermore, these two

methods yield clustering results with higher accuracy than other subspace clus-

tering methods but require only a simple setting of parameters. SUGRA can be

used in many cases by choosing the threshold 3.29. However, the threshold can

be slightly adjusted in some situations in order to get higher accuracy. ASCDD

can identify clusters with arbitrary shapes. The clusters are detected by ASCDD

according to their densities, which does not depend on the input order. The pa-

rameter required by ASCDD in the neighborhood expansion is simple. It usually

can be chosen close to its maximum value in order to yield clusters.

The main limitation of our study is that the run time grows quadratically as

the number of objects increases, because in both SUGRA and ASCDD, the cal-

culation of the density value of an object involves all objects. The future research

will be focused on optimizing the run time, for example, random sampling can

be used instead of the entire set of objects in the density calculation in order to

improve the speed with a very large number of objects.

Another future study could be the adaption of the subspace clustering meth-

ods to various data types, such as time series or multimedia data.
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Appendixes

7.1 Appendix A

The following table lists the three-dimensional data set related to figure 3.9.

x y z
0.4730011283192138 0.9612102957898717 0.6282110694166531
0.508530770154819 0.9932858325537071 0.9349343098204828
0.507159219817764 0.97512902789024 0.09930613037703816
0.5127140442140167 0.9779671453351743 0.4757685887350595
0.5031532991992841 0.9966260021560709 0.7356774968244953
0.47591506758845104 0.9986654255834072 0.7190634042491406
0.5035207600484914 0.9758924994997382 0.16252400995503288
0.4643599223914509 0.9618726794501848 0.271084880847213
0.4568761413668097 0.9889462439660984 0.2219110200867313
0.4838620439503893 0.9681637091124196 0.3292234976252114
0.509498169935583 0.9832239145062116 0.2053228376835948
0.49529932035642377 0.9866977264710048 0.9517132635872769
0.4633555487500571 0.9899051730422 0.8492228328292082
0.5053657283122357 0.945596389650087 0.6045889245696863
0.4738526977513474 0.9751347565568873 0.5996544984560435
0.5093214082857972 0.9971422573831376 0.347604648058783
0.49217626098665745 0.9889283968930445 0.9361214061825179
0.4831018833349414 1.0 0.31335399558504246
0.458676394690458 0.9540242202907606 0.3594228059778682
0.5022169779628294 0.958527094124501 0.5100317945056634
0.5079761076415037 0.990062628603441 0.3842755830823454
0.46725301961648613 0.9782975670472382 0.5160619599367016
0.4816749384747505 0.9929591879975602 0.3008959160267451
0.5122362112572396 0.9597850025786459 0.5208504275223238
0.46338750957247005 0.9616317850264011 0.0

Continued on next page
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x y z
0.5028737908569963 0.964906804497335 0.9399149858691653
0.5016854167955148 0.9873716104380567 0.9001168418055306
0.4863741555107523 0.976090316458028 0.6020468120965289
0.4755768132410899 0.9904603605767763 0.24329429006551104
0.4923010438136428 0.9481730426639245 0.1882387275501861
0.9585229093044194 0.06580888484018996 0.4861649430808801
0.9776610210421223 0.70444839037419 0.4482510357027089
1.0 0.03119459184350662 0.4376289332934707
0.9778549822865452 0.0 0.48384744865521584
0.994529384411328 0.42389100919865336 0.4945921500635462
0.9904282761361972 0.5617949995990943 0.4819996011317272
0.9851114743533554 0.9095942485089805 0.47408722669776676
0.9570279973312904 0.3486083215829756 0.4560264872382409
0.9683309722252635 0.5983236829877193 0.4368395633682064
0.982739456184984 0.8232493619246947 0.4590110742269297
0.9695698323426947 0.35752489919673897 0.4583167155393761
0.9722806400026927 0.20736507512636423 0.45869939669012016
0.9849036918052428 0.9615892517347563 0.4749214928098718
0.9920838949649954 0.06605109725329868 0.47805085130670644
0.9665191631079211 0.9194689930494531 0.49006852736700995
0.9717696549847662 0.22610151099294906 0.4910606996292407
0.9537364723346974 0.39800596108679026 0.46613468605332986
0.9876145688075029 0.9347268201516857 0.4534647933587315
0.9989707887813511 0.12999745887851102 0.47143781964503306
0.9479410726349033 0.7786314433240971 0.434828069513582
0.9648759013337348 0.17449326285291938 0.44109559244661734
0.9951759006360101 0.8512233597121897 0.4788182254447671
0.9754113735361141 0.9085429667684816 0.488218690409371
0.9900145332761915 0.9412410467591643 0.4495447907275556
0.9692350056540515 0.680030021533559 0.4821963362009923
0.9470506187862608 0.4304676643104892 0.45689871781096797
0.9646363390200567 0.2849239267015102 0.4614564524347223
0.9900458701350155 0.32081609078424767 0.47367099125566126
0.9522181830320228 0.1819989671014806 0.4858378709204199
0.9503325552084042 0.315608771324952 0.4817262858948488
0.4692376401568368 0.4623103924698122 0.9975419553641346
0.6746333872638749 0.48641216311268404 0.9904959757337198
0.5319468028068531 0.4806140567232098 0.990241255483499
0.7165163435361294 0.4925361468366189 0.9777605905565022

Continued on next page
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x y z
0.4153825252341009 0.48860989788682885 0.986032174530355
0.6573980482017492 0.46088944118778064 0.9464303573450801
0.5922114959232897 0.4589549186556198 0.986297214197329
0.08007290894939786 0.475075626974711 0.9458660814237905
0.9291246254553452 0.4665533157738916 0.98968898227394
0.012872718231806184 0.45978597068176164 0.991525621238826
0.0693802950927522 0.4918267413459769 0.9619629924630341
0.6009599794218656 0.4412988185122136 1.0
0.9003130242087116 0.4453608615259125 0.9805057237222492
0.8026940953525877 0.481785323129864 0.9523920960628272
0.2557498815499801 0.48269637606060056 0.9656443700267326
0.9588887661917795 0.4415232811864237 0.9557634006436856
0.14226053318167542 0.4702943716613444 0.9440271927002727
0.2307031337022026 0.4497523607936268 0.9945053500498834
0.9152803973049509 0.4852110842490298 0.9443917219267656
0.40484187610411415 0.498052847957586 0.9419394600450518
0.0725428482364476 0.47566170159492865 0.9820479806375346
0.47388378548445537 0.4862228316475461 0.9888082842742297
0.7181430578236923 0.4586210840408313 0.9890579150266778
0.14320516015044923 0.44105489013554794 0.9435822902312655
0.9621104320068049 0.49336825461817213 0.9718645152914294
0.7920804935126288 0.49798031796882924 0.9455194320726596
0.6486566607496604 0.485701541389139 0.959342657916061
0.0 0.495040667269766 0.9999982017900144
0.3837386428368687 0.4509870018903454 0.9792500316660431
0.11399916806170969 0.4663723378332479 0.9472228585310871

Table 7.1: A three dimensional data set
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