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Abstract

The bubble regime of laser-wakefield acceleration has been studied over the recent
years as an important alternative to classical accelerators. Several models and the-
ories have been published, in particular a theory which provides scaling laws for
acceleration parameters such as energy gain and acceleration length. This thesis
deals with numerical simulations within the bubble regime, their comparison to
these scaling laws and data obtained from experiments, as well as some specific phe-
nomenona. With a comparison of the scaling laws with numerical results a parameter
scan was able to show a large parameter space in which simulation and theory agree.
An investigation of the limits of this parameter space revealed boundaries to other
regimes, especially at very high (a0 > 100) and very low laser amplitudes (a0 ≤ 4).
Comparing simulation data with data from experiments concerning laser pulse de-
velopment and electron energies, it was found that experimental results can be
adequately reproduced using the Virtual-Laser-Plasma-Laboratory code.
In collaboration with the Institut für Optik und Quantenelektronik at the Friedrich-
Schiller University Jena synchrotron radiation emitted from the inside of the bubble
was investigated. A simulation of the movement of the electrons inside the bubble
together with time dependent histograms of the emitted radiation helped to prove
that the majority of radiation created during a bubble acceleration originates from
the inside of the bubble. This radiation can be used to diagnose the amplitude
of oscillation of the trapped electrons. During a further study it was proven that
the polarisation of synchrotron radiation from a bubble contains information about
the exact oscillation direction. This oscillation was successfully controlled by using
either a laser pulse with a tilted pulse front or an asymmetric laser pulse.
First results of ongoing studies concerning injecting electrons into an existing bub-
ble and a scheme called ’staging’ are presented. The staging scheme utilises the
results from injecting electrons by transferring electrons from a bubble acceleration
into another bubble. In this manner electrons can be accelerated beyond the usual
limitations on the acceleration length of the bubble regime.
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Zusammenfassung

Das Bubble Regime der Laser-Kielwellenbeschleunigung wird seit Jahren unter-
sucht auf sein Potential, als Alternative zu klassischen Teilchenbeschleuniger zu
dienen. Verschiedene Modelle für das Bubble Regime wurden veröffentlicht, im
Besonderen eine Theorie, welche Skalierungsgesetze für Beschleunigungsgrößen bein-
halten, wie zum Beispiel der gewonnenen Energie oder der Beschleunigungslänge.
Die vorliegende Arbeit beschäftigt sich mit numerischen Simulationen bezüglich des
Bubble Regimes, dem Vergleich der Simulationen mit besagten Skalierungsgeset-
zen und Experimenten, ebenso wie ausgewählten Phänomenen. Eine Untersuchung
der Skalierungsgesetze mithilfe numerischer Simulationen ergab einen ausgedehnten
Parameterraum, in welchem Simulation und Theorie übereinstimmen. Die Gren-
zen dieses Parameterraums werden durch Übergänge in andere Regimes definiert,
speziell für sehr hohe (a0 > 100) oder sehr niedrige (a0 ≤ 4) Laser-Amplituden.
Ein Vergleich von Simulationsergebnissen mit Daten von experimentellen Messun-
gen mit Bezug auf die Entwicklung des Laserpulses und auf Elektronenenergien
zeigte, dass experimentelle Resultate mit dem Virtual-Laser-Plasma-Laboratory-
Code (VLPL) adäquat reproduziert werden können.
Eine Zusammenarbeit mit dem Institut für Optik und Quantenelektronik der Friedrich-
Schiller Universität Jena beschäftigte sich mit der Untersuchung von Synchrotron-
strahlung, welche vom Inneren der Bubble emittiert wird. Simulationen der Bewe-
gung der Elektronen innerhalb der Bubble zusammen mit Histogrammen der emit-
tierten Strahlung halfen zu beweisen, dass der Großteil der Strahlung, welche bei
einer Bubble Beschleunigung entsteht, aus dem Inneren der Bubble emittiert wird.
Diese Strahlung kann zur Diagnose der Schwingungsamplitude der gefangenen Elek-
tronen genutzt werden. In einer weiteren Untersuchung konnte gezeigt werden, dass
die Polarisationsrichtung der Strahlung mit der Oszillationsrichtung der Elektronen
stark korreliert ist. Diese Oszillationsrichtung wurde erfolgreich beinflusst mithilfe
von asymmetrischen Laserpulsen und Pulsen mit gekippten Pulsfronten.
Des Weiteren werden erste Ergebnisse einer Studie über Elektroneninjektion in ex-
istierende Bubbles und das Staging-Verfahren vorgestellt. Beim Staging werden die
Ergebnisse der Elektroneninjektion genutzt, um Elektronen aus einer Bubblebeschle-
unigung in eine neue Bubble zu injizieren. Das Ziel dieses Verfahren ist es, Elektro-
nen jenseits der üblichen Beschleunigungslängen des Bubble Regimes zu beschleu-
nigen.
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Chapter 1

Introduction

Modern physics has both a wide range of applications and has helped us understand
fundamental concepts of the world we live in. Solid matter physics has taught us how
to create advanced materials with incredible attributes for such tasks as withstand-
ing extraordinary conditions or being extremely light, robust and versatile. Thanks
to this we also learned much about how matter is structured, how its components
interact and what defines its characteristics. Atomic physics has not only made it
possible fuse atoms, but also provides a source of knowledge about the very nature
of matter on experimentally accessible level.

One field in this wide range of physical disciplines is the field of plasma physics.
Plasmas are ionized gases with a large number of individual particles acting in a
collective way. Similar to the already mentioned topics it not only has wide rang-
ing applications, including light sources, material processing and potentially even
energy generation in the near future. Plasma physics also helps us to gain insight
into quite different aspects of nature. This is not very surprising, given the fact,
that more than 99% of our solar system and indeed all of the visible universe is in
a plasma state. Plasmas include every gaseous form of quasi-neutral matter whose
inner dynamics are determined mostly by its own electro-magnetic fields and tem-
perature and which contain enough particles for collective behaviour. Therefore, it
is easy to see that quite different types of matter fall under this definition. Among
the well known types of plasma are stars, the Aurora Borealis and fluorescent lamps.
However, also other types of matter and physical phenomenon can be described as
plasmas. This includes intergalactic gases and certain particle clouds like the dust
on the surface of the moon. Both are compared to many common types of plasma
rather cold and have a low density. Still, most of their behaviour can be modelled
as plasma. Also, more abstract phenomenon like quark-gluon plasmas or even the
movement of electrons inside an electric conductor do have their place in plasma
physics.

A subtopic of plasma physics with very useful applications and an outlook on
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10 CHAPTER 1. INTRODUCTION

fundamental research of interest is the field of laser-plasma interaction. While the
outcome of applying strong electric fields to a gas whose behaviour is defined by the
Lorentz force appears obvious, reality turns out to be much more complicated. In
the presence of fields with high intensities, for instance, particles behave in a rela-
tivistic fashion. At even higher intensities matter can even be created from vacuum
during electron-position pair creation. Also, plasmas in a typical experiment can
easily exceed densities of 1018 particles per cubic centimetre. However, even though
the computational effort in certain problems seems to be immense, much can be
learned about the behaviour of astronomic objects, quantum fluctuations, our sun
and many more things. In addition to this very fundamental research, cutting edge
technology is being developed on the basis of laser-plasma-interactions. These ap-
plications include using laser as a cutting tool, diagnostics for fusion plasmas and
in recent years particle accelerators.

The demand for particle accelerators has grown over the years. In several fields
of physics high energy particles became more and more important. For example,
accelerators are sources of fast particles for collision experiments like the ones in
CERN, for spectroscopy or as sources for hard X-rays. Furthermore, in medicine
sources of fast ions are investigated in cancer therapy. In biology, chemistry and
medicine hard X-rays are extremely valuable for their ability in imaging very small
structures as for example living cells or even molecules. Such radiation beyond a
certain frequency usually is generated in undulators. In undulators fast electrons are
forced to do oscillations which causes them to emit cyclotron radiation. The higher
the velocity of the electrons the higher is the frequency of the emitted photons as
is explained in chapter 2.3. In case of ultra-relativistic electrons undulators can
emit high energetic, strongly collimated synchrotron radiation. If the electrons go-
ing through an undulator have the same velocity, the emitted photons are coherent
and undulator becomes a free-electron-laser (FEL). Such a high quality, high energy
beam would lead to fantastic applications as an imaging tool in biology, chemistry
and medicine. It also would be a diagnostic tool of enormous value in physics. How-
ever, even without the high quality of radiation from a FEL, the undulator still is
a very important source of radiation vital for several applications and for research.
Undulators and FELs as an example among many applications in dire need of fast
electrons require accelerators able to create electron beams suited to emit the radi-
ation necessary for the given task.

Over the last years the requirements on accelerators have grown. These require-
ments include that the accelerators have to deliver higher energies, mono-energetic
particles and just the requirement to be inexpensive. This led to both improvement
of existing accelerator concepts as well as to the creation of whole new ones. A con-
cept for plasma based accelerator was conceived by Tajima and Dawson in [1979].
In this concept called laser wake-field accelerator a laser pulse creates a plasma
wave. The strong electric gradients generated by this wave can accelerate electrons
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inserted into the wave. The first accelerators of this type were able to accelerate
electrons to Energies up to about 100MeV with a large energy spread. However,
they were the basis for more advanced schemes making use of more powerful lasers
after the invention of Chirped-Pulse Amplification by Strickland and Mourou in
[1985, July]. The main benefits of using such plasma based accelerators is the fact
that unlike in conventional accelerators electric fields are not limited by the ability
of the walls of the accelerator to withstand them. In common densities for wake
field accelerators fields become so strong that accelerations comparable to facility
size conventional accelerators can be achieved in plasma accelerators on millimetre
or centimetre lengths. One of the more recent developments is a laser-Plasma ac-
celerator utilising the bubble regime, found by Pukhov et al. in [2004, Jul]. The
bubble regime can be used as a concept for a very special kind of laser-wakefield
accelerator. In such a bubble accelerator electrons travel in the wake field of an ultra-
relativistic laser pulse to energies of several 100MeV or even to GeV . This method
became popular, because the acceleration could take place over a acceleration dis-
tance of several milli- to centimetres. The electrons usually are accelerated in a quasi
mono-energetic fashion and the cost of such an accelerator is much lower by orders of
magnitude than for instance for a linear or circular accelerators of similar capacities.

Exploring the possibilities of laser-plasma interaction and gaining understand-
ing of plasma physics, not only as a tool for acceleration, requires to understand
the physics of a system with a huge number of classical particles. In the field of
laser wake-field acceleration common electron densities of 1019 and more per cubic
centimetre can be encountered. Furthermore the Maxwell’s equations, which define
the electro-magnetic fields inside a plasma, in the relativistic regime are partial dif-
ferential equations. This means that not only a large number of problems cannot
be solved analytically, but also that numerical simulations are challenging. Several
different methods exist in order to face this challenge. One common solution is treat
the plasma as a fluid and only consider macroscopic, average values. However, in
this specific model kinetic effects, which rely on specific particle movements, are lost.
Therefore, another scheme has been developed. The Particle-in-cell (PIC) simula-
tions originate from the works of Buneman and Dawson in [1959] and [1962]. This
method is based on stochastically sampling a plasma using macro-particles. These
macro-particles correspond to clouds of real particles and reduce the computational
effort by orders of magnitude. This way a problem, which would for instance in-
volve 1020 particles, can be solved by computing a simulation with about 106 or 107

particles. These simulation became a vital link between theoretical models and ex-
periments and practical applications. Any theoretical prediction about laser-plasma
interaction can be tested in a ’virtual’ experiment before a real and probably very
expensive and time consuming experiment is conducted. Even though the PIC-
method is a very powerful tool, certain problems still require more computational
power than common PCs can offer. Therefore computer clusters are necessary, in
which several CPU or GPU are joined into a network of parallel working machines.



12 CHAPTER 1. INTRODUCTION

For these reasons this work deals with the comparison of a well known theory
about the bubble regime with particle-in-cell simulations. The theory and its predic-
tions about important scaling laws were published by Pukhov et al. in [2006, Oct].
These scaling laws include predictions about the energy gained from a bubble ex-
periment, the number of particles accelerated and optimal set-up parameters. These
predictions were derived using dimensional analysis, which means that dimension-
less constants in each scaling law have to be derived numerically. For this work
I used the three-dimensional PIC-code ’Virtual laser-plasma Laboratory’ (VLPL)
developed by my advisor Prof. Alexander Pukhov in [1999]. I chose a laser pulse
profile close to common laser profiles in experiments in order to gain the best corre-
lation with experimental studies. The PIC simulations were done in order to find the
parameter sub-space in which the scaling laws agree with a quiet realistic simulation
of a real experiment. A large parameter space could be found in which theory and
simulation matched. This space is limited by transitions into other regimes. At high
laser amplitudes and therefore high electron energies synchrotron radiation becomes
an important factor. Very small laser pulses as well as very low laser amplitudes
seem to be unable to create a stable bubble. Also, with the simulation results I
tried to find the dimensionless constants in order to make accurate predictions for
experimental applications.
In this work I will present several collaboration with experimental physicists. One
of this collaborations dealt with aspects of the movement of electrons during the
acceleration, since one major application of accelerated electrons is the generation
of radiation. In fact, electrons inside the bubble emit radiation similar to the radia-
tion from undulators. The first collaboration resulted in amongst others the finding,
that the majority of radiation, created during a bubble acceleration, is in fact cre-
ated by trapped electrons. This radiation carries information about the oscillation
amplitude of the trapped electrons. The second collaboration did research on the
polarisation of the emitted radiation. The polarisation depends on the direction,
in which the trapped electrons oscillate. The oscillation direction was successfully
controlled by using tilted pulses and asymmetric ones in order to drive the bubble.
During my work I needed to make minor changes on the existing VLPL-code which
will be discussed in the respective chapters.



Chapter 2

Theory

Before I explain my results in detail, I would like to introduce the main theoretical
concepts, which are of interest in my work. Most of the information presented here
can be found in text books or review papers like the books by Longmire in [1963],
by Chen in [1977] Landau and Lifshitz in [1980] and the review papers by Esarey
in [1996] and [2009, Aug] and by Pukhov in [2002, Dec]. I chose to use the cgs unit
system in the following chapters.

2.1 Plasma

Since the bubble regime is sub-topic of plasma physics, the physical term plasma
has to be defined first. This work only deals with plasma in the presence of strong
electric fields. Therefore I always assume an ideal, classical, relativistic plasma.
Furthermore, since single particle effects will be relevant, a kinetic model will be
used. Fluid dynamics and in fact most statistical concepts are insufficient to describe
the kinetic effects, necessary for the majority of this work, and therefore will not
discussed.

2.1.1 General properties

A plasma is a partially or fully ionised gas. It is quasi-neutral and behaves collec-
tively because of its electromagnetic interactions. ’Quasi-neutral’ means, that the
plasma as a whole includes as much negatively charged particles as it includes pos-
itively charged ones. The collective behaviour comes from the fact that a plasma is
dominated by the electromagnetic fields created by the charged particles. In gen-
eral an ionised gas is considered a plasma if its plasma parameter ND is very large
(ND ≫ 1). The plasma parameter of a gas is defined as

ND =
4

3
πλ3Dn. (2.1)

13



14 CHAPTER 2. THEORY

In this equation n is the particle density of the gas, while λD is the Debye-length
given by

1

λ2D
= 4πe2n


1

Ti
+

1

Te


, (2.2)

where Ti is the ion temperature inside the gas and Te is the temperature of the
electrons. The density n is both the density of electrons ne and ions ni, since due
to the quasi neutrality both densities are equal ni = ne = n.

In general plasmas can consists of partially ionised gas with particles colliding
with each others. Also, the condition ND > 1 is not a condition as strict as the
condition for a phase transition in other forms of matter. Therefore certain ionised
gases can not be clearly classified as being plasma or not being plasma. In the
following work, we always assume a fully ionised gas with ND ≫ 1, which only
interacts with itself via its electromagnet fields. Therefore the dynamics are mostly
defined by Maxwell’s equations:

∂tE = c∇×B− 4πj (2.3)

∂tB = −c∇× E (2.4)

∇ · E = 4πρ (2.5)

∇ ·B = 0 (2.6)

2.1.2 Defining parameters

In order to describe a plasma quantitatively, several parameters come in handy.
Since in this work only fully ionised gas is used, the first parameters, which come
to mind are the number density and mass of the ions nI and mI , their charge qI
and the same quantities of the electrons ne, me ≈ 9.11 · 10−28g and qe = e ≈
4.8 · 10−10


g cm3/s2. An other obvious quantity would be the temperature of the

plasma given by the average kinetic energy of a particle specie ⟨Ekin⟩ = 3/2kbTk
with kb being the Boltzmann-constant and k either i or e. In case of plasmas in
thermal equilibrium Ti = Te.
From this, other important quantities can be calculated. Disturbances in the particle
distribution lead to displacement of charged particles, which in turn locally destroys
the quasi-neutrality of the plasma. This leads to electric fields which act on particles
against the disturbance. A single particle displaced from its position would oscillate
around its original position due to these fields. If a particle cloud of density nq

with charge q would be displaced by a distance r they would feel an electric field
corresponding to

E = 4πnqqr. (2.7)

For electrons this leads to the classical equation of motion

me
d2r

dt2
= −eE. (2.8)
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From this we get the frequency of the oscillation, which is called the plasma frequency

ωp =


4πnee2

me

. (2.9)

Please note, that this only holds in the classical case. If the electrons move with
relativistic velocities, me becomes me(v) = meγ and equation (2.9) changes to

ω2
p,relativistic =

ω2
p

γ
, (2.10)

with γ = 1/


1− v2e/c
2 the relativistic gamma-factor for the electrons. With the

plasma frequency one can derive the length over which electric fields are screened
out by electron redistribution. This length is called the plasma wavelength

λp =
2πc

ωp

, (2.11)

with the speed of light c ≈ 3 · 1010cm/s. An alternative value is the plasma wave
number

kp =
2π

λp
=
ωp

c
. (2.12)

A more detailed derivation of this quantities can be found in the literature for
instance in the book by Chen from [1977] or the book by Longmire from [1963].

2.2 Laser-plasma interaction

A detailed introduction in laser-physics does not seem to be necessary in order to
understand this work. However, the interaction of a laser pulses with a plasma is an
important aspect of laser wake-field acceleration. Therefore this chapter contains
the most important information and equations regarding laser-plasma interactions.

2.2.1 Non-relativistic regime

In order to accelerate particles, energy must be delivered. In this work the energy
always is inserted into the system using a laser pulse. Without going to much into
the details of lasers, I just like to present the facts we need for further understanding
this work.
A laser pulse is described by its focal spot size R and its duration τ . Furthermore
since we usually utilise a circular polarised laser pulse in this work another parameter
is the angular frequency ω0 = 2πc/λ. This gives the equation for the electric field
of a specific laser pulse which travels in positive x-direction as
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E⃗ = E0e
−r2/R2

cos


πt

2τ


Re

ekxx−iω0t(êy + iêz)


, (2.13)

with the amplitude of the electric field E0 and the wave-number kx for the propa-
gation direction x. This specific laser pulse follows a Gaußian profile in transversal
and a cosine profile in longitudinal direction. If not otherwise stated such a pulse is
used in all further calculations and simulations.
Another amplitude, often used to describe a laser pulse is the normalised, relativistic
amplitude a0 given by

a0 =
eA0

mec2
, (2.14)

with the amplitude A0 of the vector potential of the electric laser field. This
dimensionless parameter is often used, when the laser pulse is strong enough to
accelerate electrons to relativistic energies.
For the propagation of a laser pulse inside a plasma, the dispersion relation offers
a lot of information. For a light wave in vacuum the dependency of the angular
frequency ω on wave number k is

ω = ck. (2.15)

Inside a plasma this equation changes to

ω2 = (ck)2 + ω2
p. (2.16)

For a laser pulse travelling through a plasma with group velocity vg and phase
velocity vph it holds that

c2 = vgvph. (2.17)

Together with the dispersion relation ω = vphk follows

k =
vphω

c2
. (2.18)

Inserted into eq. (2.16) we receive

vg = c


1−

ω2
p

ω2
. (2.19)

With this, the refraction index η can be derived as

η =
c

vph
=


1−

ω2
p

ω2
=


1− ne

ncr

. (2.20)

Since η becomes imaginary when ω < ωp only light with higher frequency than
the plasma frequency can travel through the plasma. The density at which ω = ωp

is called the critical density for a certain laser and is given by
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ncrit =
ω2me

4πe2
. (2.21)

2.2.2 Relativistic transparency and self-focussing effect

Since in the relativistic case the plasma frequency changes according to eq. (2.10)
the refraction index changes to

η =


1−

ω2
p

ω2γ
. (2.22)

Equation (2.22) shows that laser pulses with ω < ωp can enter the plasma as
long as the electrons in front of the pulse are fast enough.
Since in the relativistic regime the mass of an electron is a function of its velocity
me = me(v), we have to use eq. (2.10) in order to calculate the refraction index.
This means the relativistic group velocity increases to

vg,rel = c


1−

ω2
p,rel

ω2
= c


1−

ω2
p,rel

ω2γ
, (2.23)

while the relativistic refraction index increases to

ηrel =


1− ne

ncrγ
. (2.24)

This increase of the refraction index acts like a collecting lens and acts against the
usual defocussing of a laser pulse behind its focus. So with the correct relativistic
plasma frequency one can send a laser pulse over long distances through a plasma
without suffering from defocussing. Esarey et al. summarised in [1996] that in the
limit a2 ≪ 1 the development of the radius R of a laser pulse can be approximated
as

dR

dz2
=

1

ZRR3


1− P

Pc


, (2.25)

with the Rayleigh length

ZR =
πR2

λ
, (2.26)

the normalised spot radius R = r/λ and P/Pc = k2pa
2
0r

2/16. The solution to the
differential equation (eq: RdevDiff) is

r

r0
= 1 +


1− P

Pc


z2

Z2
R

, (2.27)

with r0 being the initial spot size of the laser pulse. Equation (2.27) states that the
closer the pulse power P gets towards the critical power Pc the less the laser pulse
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suffers from diffraction. Equation (2.25) and therefore (2.27) have been derived for
a0 ≪ 1 which led to the approximation (1 + a20)

−1/2 ≈ 1 − a20/2 and with this to
the prediction of over-focussing for P > Pc. This is not a physical behaviour as
Sprangle et al. showed in [1987]. In fact for large powers P > Pc and especially for
large laser pulses R > λp it can be shown and observed in simulations that a laser
pulse has a width that oscillates around a stable spot size. The theory by Sprangle
et al. states that pulses small enough

L ≤ λp
1 + a2

(2.28)

do not benefit from this relativistic self-focussing and that they only observed this
behaviour typically for

L > λp. (2.29)

However, as the findings presented in chapter (5.1) suggest, that equation (2.29)
seems to be too strict.

2.3 Synchrotron radiation

Since the main focus of this work is fast, charged particles in strong fields, it is
necessary to consider radiation emitted by these particles due to acceleration. This
leads to synchrotron radiation in case of electrons trapped and accelerated inside
a bubble. During their acceleration inside the bubble, electrons oscillate around
their propagation direction. This is because the particles do have a transversal
momentum while entering the bubble and because of the transversal electric field
inside the bubble. In the review by Esarey et al. from [2002, May] it is shown that
the length of such a betatron oscillation can be calculated as

λβ = πrb


2γ

Φ0

(2.30)

with bubble radius rb and the normalised wake-amplitude Φ0, which can be calcu-
lated for the bubble regime as

Φ0 ≈
k2pr

2
b

4
, (2.31)

with kp = ωp/c. With this it follows, that

λβ =
2πc

ωp


2γ (2.32)

The resulting betatron frequency is

ωβ =
ωp√
2γ
. (2.33)
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Wit this it is possible to calculate the radiation emitted by electrons travelling
through the magnetic fields B⃗ of a bubble. The wave length of the synchrotron
radiation is

λs =
λβ
2γ2

=

√
2πc

ωp

γ−3/2. (2.34)

The energy of this radiation equals the energy lost by the emitting particle. While
at low particle velocities this loss of energy is small compared to the overall particle
energy, at relativistic velocities the energy radiated can not be neglected any more.
The total intensity radiated in every direction can be calculated as

Isynch =
2e4B⃗2v2γ2

3m2c5
(2.35)

as shown for instance by Landau et al. in [1980] §74. It can be calculated, that the
radiation for large particle energies is concentrated in the plane of oscillation. Be
∆Φ the angular range in which most of the radiation is emitted. It then holds that

∆Φ ≈ 1

γ
. (2.36)

As shown by Landau et al. in [1980] at high energies the radiation emitted within
∆Φ inside a uniformly, electric field is linearly polarised in the direction of the field.
This information will become quite useful when electron movements inside the bub-
ble are discussed further.
Another reason why synchrotron radiation is important in the field of electron accel-
eration is the fact, that it is a important source of high energy radiation. X-radiation,
radiation with wavelength between 0.01 and 10 nanometres, can be created using
the Bremsstrahlung effect. Since the cross section for the Bremsstrahlung effect
decreases with the velocity of electrons, for radiation with significantly higher ener-
gies other effects are necessary. A method in order to create hard X-rays using fast
electrons is to use undulators.

2.3.1 Undulators and free electron lasers

An undulator as proposed by Motz et al. in [1950] consists of two rows of magnets
(see fig. (2.1) on page 20) through which an electron beam of high velocity is guided.
In each row, the polarity of the magnets swaps with each magnet to the opposite
polarity. While moving forward, the electrons oscillate through the changing mag-
netic field. One oscillation is completed after the distance λu which is the distance
between two magnets of the same polarity. During this oscillations the electrons
emit photons almost in forward direction as given by eq. (2.36).
Undulator are very simple, yet very reliable and efficient sources for synchrotron
radiation when the electrons used are fast enough and therefore the angular spread
of the emitted photons is low.
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Figure 2.1: Principle of an undulator. 1 denotes the magnets of opposing polarity,
2 the electron beam and 3 the emitted photons. λu periodicity of the magnetic field.

If now the energies of all the electrons inside of an undulator are more or less the
same, the energy of the emitted photons is very similar as well. In case of fast, mono-
energetic electrons, the resulting radiation would be monochromatic and coherent.
In this case the undulator becomes a Free Electron Laser (FEL). High energy syn-
chrotron radiation, especially coherent one, has many application. Amongst these
are the imaging of very small objects, since the size of the smallest object one can
resolve using light is proportional to the wavelength of that light. In order to make
very small objects like molecules directly visible, high energetic radiation is needed.
The Abbe-limit

d =
λ

2n sinΘ
(2.37)

defines the smallest size d light of a wavelength λ can resolve while travelling through
a medium with refraction index n while converging to a spot at an angle Θ. n sinΘ
also is called numerical aperture (NA) and in optics of today the practical limit is
at about

NA . 1.4. (2.38)

With this, the smallest object a light source of wavelength λ can image has a size of

d ≈ λ

2.8
. (2.39)

Using coherent laser light, it would be possible to create three-dimensional, holo-
graphic images of small objects. Also, if the velocity of the electrons used in a FEL
is scalable, than the wavelength of the laser light is scalable as well. With reliable
sources of high energy electrons and scalable electron energies the wavelength of
FELs would be adjustable in a regime where there even are no laser sources at the
current time.
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2.3.2 Radiation from undulators

The wavelength of light emitted by an undulator can be calculated as shown by
Luchini et al in [1990 L]. In a system co-moving with the electron, the distance λu
becomes

λ′u =
λu
γ

(2.40)

and the electron emits radiation with the frequency

f ′ =
c

λ′u
=
cγ

λu
. (2.41)

Due to Doppler-shift, this frequency transforms in the laboratory system to

f =
f ′

γ(1− β cos θ)
=

c

λu(1− β cos θ)
, (2.42)

under the angle θ towards the propagation direction. With the Taylor-expansion of
cosine cos θ = 1 − θ2/2 + ... up to the second order and 1 + β ≈ 2, which leads to
γ2 ≈ 1/(2− 2β), one can calculate the observed frequency

f =
c

λu(1− β cos θ)
≈ 2γ2c

λu(1 + γ2θ2)
(2.43)

and with it the wavelength

λ ≈ λu
2γ2

(1 + γ2θ2). (2.44)

The Lorentz factor of an electron moving through a magnetic field of the shape
B⃗ = B0cos(2πz/λu)êy can be calculated with the equation of motion

dp⃗

dt
= −e(E⃗ + v⃗ × B⃗) = −e(v⃗ × B⃗). (2.45)

With p⃗ = γmv⃗ this equation gives us in forward direction x

mγ
dvx
dt

= e
dz

dt
B0 cos


2πz

λu


. (2.46)

After integrating both sides we receive

mγvx =
eB0λu
2π

sin


2πz

λu


. (2.47)

which transforms into

vx =
Kc

γ
sin


2πz

λu


. (2.48)
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with the definition of the magnetic deflection strength

K :=
eB0λu
2πmc

. (2.49)

In case of K ≫ 1 usually the undulator is called wiggler. Since the electron does not

change its energy passing through the magnetic field γ =

(1− (v2x + v2z)/c

2)
−1

is
a constant and therefore

v2z
c2

= 1− 1

γ2
− K2

γ2
sin2


2πz

λU


. (2.50)

This leads to the approximate

vz
c

≈ 1−
1 + K2

2

2γ2
+
K2

4γ2
cos


4πz

λU


, (2.51)

which again can be averaged over a full oscillation as

v̄z
c

= 1−
1 + K2

2

2γ
. (2.52)

Using this result we can define an effective Lorentz factor

γK =
γ

1 + K2

2

, (2.53)

which substituted into equation (2.44) gives the final undulator equation

λ =
λu
2γ2


1 +

K2

2
+ γ2θ2


, (2.54)

for β ≈ 1 and as an Taylor expand for θ to the second order.

2.3.3 Polarisation

Polarisation of the radiation can be an important factor as discussed later in chap-
ter 6.1.3. In general, polarisation of any transversal wave is the direction of the
oscillation of that wave. Since the oscillation direction of the magnetic and the
electric field of a electromagnetic wave are perpendicular, it is arbitrary which one
to discuss. Therefore in the following I choose the electric field polarisation as rep-
resentation of the polarisation of the whole electro-magnetic field. Polarisation of a
single wave can be linear, circular or ellipsoid. A linear polarised wave oscillates in
one plane. Projected on a plane perpendicular to the propagation direction, the os-
cillation takes place on a single line. Circular polarisation can be understood as two
oscillations superimposed: A sinusoidal one and a co-sinusoidal one, perpendicular
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Figure 2.2: The green arrow marks the polarsation of a wave, propagating in z-
direction. It follows the purple path. Blue and red denote the projections of the
circular polarisation onto the x/z− and respectively y/z−plane. The projections
correspond to linear polarisation in the x-direction (blue) and the y−direction (red).

to the first one. The polarisation is called ellipsoid in case, both oscillations are not
in phase (and have no phase difference of 90◦) or do not have the same amplitude,
but have a fixed phase difference and amplitude ratio.
The polarisation depends on the way, a wave was created. For instance, a single
particle oscillating in a plane would emit radiation polarised in the same plane.
Polarisation can also be changed by reflection or refraction. Most sources of ra-
diation include electromagnetic waves of different polarisation. If the polarisation
is uncorrelated, which means that the radiation has a mixture of different kinds
and/or directions of polarisation, it is called unpolarised. A clarification of circular
polarisation can be seen in figure (2.2) on page 23. In comparison to this, ellipsoidal
polarisation is illustrated in figure (2.3) on page 24.
Equation 2.13 on page 16 describes the electric field of a circular polarised pulse.
The electric field of a pulse, polarised linearly in y−direction, is given by

E = E0e
−r2/R2

cos


πt

2τ


cos(ω0t− kxx)ey. (2.55)
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Figure 2.3: The same as figure (2.2) on page 23, but now with an ellipsoidal po-
larised wave. The amplitude of the x−component (blue) has been reduced, while the
y−component (red) is slightly out of phase.



Chapter 3

Particle accelerators

Beams of charged particles are integral to a number of applications. These include
generation of high energy radiation, fundamental research on particles, biomedical
applications and industrial processing. Two very common accelerators for high
energy particles are linear accelerators and cyclotrons. Most particle accelerators
use electric fields E to bring particles to higher energies W according to

W = qEL, (3.1)

where q is the charge of the accelerating particle and L is the length over which it is
accelerated. The strength of the accelerating field and the acceleration length can
easily become limiting factors.

3.1 Conventional accelerators

The most basic accelerator for particles especially electrons is the Linear Accelerator
(LinAc). The electric field of a ring-shaped cathode attracts an approaching electron
until the electron passes through. Than the cathode is switched into an anode and
repels the electron forward. A LinAc consists of several of such drift tubes lined up
after each other (see figure (3.1) on page 30). Between the drift tubes the electrons
gain kinetic energy according to equation (3.1) on page 25. The advantage of a
LinAc is the fact that its principle is rather simple and the accelerated particle does
not loose energy because of synchrotron radiation (see chapter (2.3)). The downside
is the size of a LinAc. As an example the Stanford University Linear Accelerator
(SLAC ) at the time of writing has a length of two kilometres and accelerates elec-
trons to energies of up to 50GeV . An significant increase in the electric field in such
accelerators is impossible due to dielectric breakdown (usually below 100MV/m) of
the materials the accelerator consists of. Therefore the length of a LinAc is the only
parameter, which can be freely adjusted in order to obtain a specific energy. This
of course can lead to very long accelerators.
Because of these dimensions the cyclotron, synchrotron and similar accelerators

25
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where invented. Since this work is focused on high energy particles and super-
relativistic lasers, synchrotrons are going to be used representing all accelerators
with bend particle trajectories. These accelerators force electrons on circular or
spiral trajectories in order to achieve long acceleration length on a small area. The
downside of this approach is that charged particles on bend trajectories do loose
energy by emitting photons (see chapter (2.3)). This leads to the hindering fact
that with increasing particle velocity it becomes increasingly difficult to further ac-
celerate that particle. This together with the upper limit for electric fields also gives
an upper limit for any given synchrotron-accelerator. This upper limit can be very
high especially when the curvature and therefore the energy loss due to synchrotron
radiation is very low. Still, this makes is necessary to build very strong and expen-
sive field coils and large facilities. Particle accelerators like linear accelerators or
synchrotrons are quite common today, but still only few of them are able to accel-
erate electrons to more than a few GeV .

3.2 Laser driven plasma-based accelerators

In plasmas stronger electric fields can be achieved due to the high particle density
and the fact that ionisation of material is not a problem. Given a perturbation strong
enough to move this high densities, fields in the order of 100GV/m can be achieved
as shown by Gordon et al in [1998]. Such perturbations can be caused by modern
lasers. The very concept of the first Laser-Plasma-Accelerator (LPA) was proposed
by Tajima et al. in [1979]. The first LPA though were only able to accelerate a small
number of electrons to energies slightly above 100MeV while the majority of accel-
erated electrons remained relatively slow (< 10MeV ). There is a range of different
LPA concepts starting from using long laser pulses with moderate energy (Plasma-
Beat-Wave-Accelerator) to high energy, short pulses (Laser-Wakefield-Accelerator
(LWFA)). With the invention of Chirped-Pulse-Amplification the LWFA and its
high relativistic subtype the Bubble-/Blow-out-/Caviation-Regime-Accelerator be-
came more and more interesting. The electron acceleration within the bubble regime
will be the main object of this work.

3.2.1 Linear laser-wakefields

All LPAs create wakefields due to ponderomotive force in order to accelerate par-
ticles. The following derivation can be found in the book by Kruer et al. from
[2003(Kr)]. Since the linear regime will not be part of my work I will only sum-
marise the main points briefly. For a particle species j with phase space distribution
fj(x⃗, v⃗, t) starting from the continuity equation

∂fj
∂t

+
∂( ˙⃗xfj)

∂x⃗
+
∂( ˙⃗vfj)

∂v⃗
= 0 (3.2)
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we obtain the Vlasov equation

∂fj
∂t

+ v⃗ · ∂fj
∂x⃗

+
qj
γmj


E⃗ +

v⃗ × B⃗

c


· ∂fj
∂v⃗

= 0 (3.3)

using

˙⃗x = v⃗ and ˙⃗v =
qj
γmj


E⃗ +

v⃗ × B⃗

c


. (3.4)

With the mean velocity u⃗j

nju⃗j =


v⃗fj(x⃗, v⃗, t)dv⃗ (3.5)

the Vlasov equation becomes the force equation

n
∂u⃗

∂t
+ nu⃗

∂u⃗

∂x⃗
=

nq

γm


E⃗ +

u⃗× B⃗

c


− 1

m

∂P

∂x⃗
, (3.6)

where P is the pressure. For negligible electron pressure and an electric field, which
oscillates fast with the frequency ω, this equation can be averaged over fast, local
oscillation of electrons in order to obtain

m
∂u⃗

∂t
= −eE⃗ − e2

4mω2
∇E⃗2(x⃗). (3.7)

This equation now defines the ponderomotive force

F⃗p = − e2

4mω2
∇E⃗2(x⃗) (3.8)

as a force on particles (here electrons) by a strong, quickly oscillating field, pushing
away the particles from regions of high field pressure. It should be kept in mind, that
equation (3.8) was calculated for electrons neglecting their pressure and averaging
out fast, local movement of electrons.

With equation (3.8), describing the ponderomotive force, linear plasma waves
created by a laser pulse can be described analytically. In one dimension even for non-
linear waves using the cold fluid approach (the continuity equation, equation (3.6)
and the Poisson’s equation for electro-statics) the problem can be solved analytically.
The non-linear three dimensional case however requires numerical simulations. As
can be read in the review by Esarey et al. from [1996] in the linear regime of
laser-wakefield acceleration a0 ≪ 1 the plasma wave generated is described by

∂2

∂t2
+ ω2

p


n

n0

= c2∇2a
2

2
, (3.9)
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where a⃗ = eA⃗/mec
2 is the normalised potential of the electric vector-potential A⃗,

ωp is the plasma frequency and n/n0 is the perturbed density of the plasma wave.
The electric field follows the equation

∇2φ = 4π(ne − ni), (3.10)

where φ is the electric potential, ni the ion density and ne the electron density. For
a circular polarised laser pulse with

a2 = a20 exp


−2r2

r2L


sin2


πζ

L


, (3.11)

with rL the width of the laser pulse, L the length and ζ = x − ct the relative
longitudinal coordinate. Behind the laser pulse, which is for ζ < 0 the electric field
in forward direction is given by

Ex

E0

= −π
4
a20 exp


−2r2

r2L


cos(kpζ), (3.12)

while the plasma disturbance is

n

n0

= −π
4
a20


1 +

8

k2pr
2
L


1− 2r2

r2L


exp


−2r2

r2L


sin(kpζ). (3.13)

E0 = mecωp/e here is the non-relativistic wave breaking field and in this regime
E ≪ E0. The radial force which is a sum of the electric field Er and the magnetic
field −Bθ can be calculated according to the Panofsky-Wenzel theorem

∂Ex

∂r
=
∂(Er −Bθ)

∂ζ
, (3.14)

which gives
Er −Bθ

E0

=
a20rπ

r2Lkp
exp


−2r2

r2L


sin(kpζ). (3.15)

While equation (3.9) and (3.10) are true for all non-relativistic, laser driven, linear
wakefields (a0 ≪ 1 which implies E ≪ E0), the equations (3.12), (3.15) and (3.13)
were derived for a specific laser pulse given by equation (3.11).

3.2.2 Non-linear wakefields and wave-breaking

The non-linear regime of wakefield acceleration can be solved in one dimension as
has been reviewed by Esarey et al. in [2009, Aug]. With a quasi-static approach
using fluid momentum and the continuity equation, the Poisson’s equation for such
a one-dimensional plasma ∂2φ/∂ζ2 = k2p(n/n0 − 1) can be transformed into

∂2φ

∂ζ2
= k2pγ

2
p


βp


1− 1 + a2

γ2p(1 + φ)2

− 1
2

− 1


, (3.16)
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where γp = (1−β2
p)

−1/2 ≈ ω0/ωp and βp = vp/c with the wake field phase velocity vp.
The phase velocity of the wake field can be approximated with the group velocity
of the laser pulse creating it

vp =
c

1− ω2
p

ω2
0

, (3.17)

where ω0 is the laser frequency. From equation (3.16) the density perturbation

n

n0

= γ2pβp


1− 1 + a2

γ2p(1 + φ)2

− 1
2

− βp


(3.18)

and the average fluid velocity

ux = γ2p(1 + φ)


βp −


1− 1 + a2

γ2p(1 + φ)2

 1
2


(3.19)

follow.
From equation (3.16) follows that behind the laser pulse (a0 = 0) the potential has
extrema

φm =
Ê2

max

2
± βp

1 + Ê2
max

2

2

− 1, (3.20)

with the normalised maximum of the electric field Êmax = Emax/E0.
For higher dimensions usually simulations are used. Common methods for sim-

ulating non-linear, relativistic laser plasma interactions include non-linear (qua-
sistatic) plasma fluid models as used by Shadwick et al. in [2002, Feb] as well
as Particle-In-Cell-simulations as presented in chapter (4). The two dimensional
case will not be part of this work, therefore I will not discuss it in detail.
As can be read in the reviews by Esarey et al. from [2009, Aug] or Pukhov et
al. from [2002, Dec] the theory of strongly non-linear plasma waves and the wave
breaking (see below) of plasma wakefields is complex and can only partially de-
scribed analytically. In the following I like to consider a pulse as the one given by
equation (3.11) with a length L < λp/2. Pulses which are longer than one half of
the plasma wave length in the non-linear regime experience strong modulations and
lead to a different regime, the so called self-modulated laser-wake field acceleration
(as described by Esarey et al. in [1996]). A short laser pulse however creates a wake
field, which has a maximum given by

Emax

E0

=
a20
1 + a20

. (3.21)

For Emax > E0, with E0 = cmeωp/e the wake field becomes highly non-linear.
Inserting equation (3.21) into (3.20) for the negative sign gives

1

γm
= φm + 1. (3.22)
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Figure 3.1: Schema of a Linear Accelerator according to Gustav Ising and Rolf
Wideröe. The source emits electrons which are attracted by positively charged drift
tubes in front of them and repelled by negative ones behind of them. The length
of the tubes is chosen so that the electrons take the same time passing through the
tube as the RF source in order to change the charge of the tubes.

Equation (3.22) inserted into equation (3.19) leads to ux = βp (again, behind the
laser: a0 = 0), while equation (3.18) diverges with n → ∞. This leads to wave
breaking of the plasma wave behind the laser pulse when electrons start to move
with phase velocity and the periodical structure of the wake is destroyed.
With the assumption of a cold plasma the maximum electric field of a periodic
plasma wave, which is the same as the minimum electric field in order to achieve
wave breaking, can be estimate as

Ewb

E0

=


2(γp − 1). (3.23)

Wave breaking turned out to be the key mechanism for self-injection of electrons
into an accelerating potential just behind the laser pulse, where these electrons can
be accelerated. With well adjusted laser parameters this method leads to another
acceleration regime which will be the main topic of this work.

3.2.3 Limiting factors and energy gain

In order to obtain the energy gain of an electron in a LWFA one first has to under-
stand which mechanisms limit the acceleration of electrons. One of this mechanisms
is the difference in the velocities of the accelerated electrons and the accelerating
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wake. The phase velocity vp of the plasma wake can be approximated by the group
velocity of the laser pulse which according to equation (2.19) always is lower than
the speed of light. In the one-dimensional low-intensity limit in fact

γp ≈
ω

ωp

, (3.24)

which is equivalent to

βp =


1− ωp

ω
< 1 (3.25)

for any under-dense plasma ωp < ω, which is equivalent to vp < c. This also
means that high energy electrons with velocity vx ≈ c move faster than the plasma
wave. This can lead to a situation called dephasing in which electrons leave the
accelerating phase of the wave, which is the half of one wave period with electric
fields accelerating electrons. After leaving this phase, electrons enter the following
decelerating phase of that wave period, in which the sign of the electric field changes.
Obviously, electrons only gain energy during the accelerating phase. The dephasing
length LD is the distance a relativistic electron has to travel in order to cross one
half of the plasma wave period. Since the decelerating length grows linearly with
increasing quotient vp/vx until dephasing would vanish in the limit vp → vx, which
is LD → ∞, the dephasing length can be described with

1− vp
vx


LD =

λp
2
. (3.26)

Again for vx ≈ c and with a Taylor expansion of 1− β2
p around the point βp = 1 we

can write

2


1− vp

vx


vx≈c
= 2


1− vp

c


FE
≈ 1

γ2p
. (3.27)

With equation (3.27) equation (3.26) becomes

LD ≈ γ2pλp. (3.28)

With equation (3.1) on page 25 one can estimate the maximum energy Wmax an
electron can gain during its acceleration as

Wmax = eEmaxLD ≈ 2πγ2p
Emax

E0

mec
2, (3.29)

with the last approximate given by Esarey et al. in [1996].
The second mechanism, which impairs the energy gain of electrons in LWFA and
which I would like to discuss briefly, is the depletion and diffraction of the driving
laser pulse. While the laser pulse drives a wake field and accelerates particle, it con-
stantly looses energy and it is subject to Rayleigh diffraction. Rayleigh diffraction
limits the acceleration length for most LWFA. As it is well known and can be read
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in textbooks (as for instance the one by Eichler from [1963 E]), the spot size R of a
Gaussian pulse propagating in x-direction behaves according to

R(x) = R0


1 +

x

ZR

, (3.30)

with the Rayleigh length ZR of a laser pulse given by equation (2.26). After travelling
the distance x = ZR, the pulse widened by a factor of

√
2. In vacuum the diffraction

distance Ldiff equals the Rayleigh length ZR. In plasmas mechanisms like beam
guide lining as described by Esarey et al. in [1996] or the relativistic self-focussing
effect (chapter (2.2.2)) can be used, in order to increase the diffraction distance.
The depletion length Ldp, which is the distance a laser pulse can travel before using
up too much energy in order to drive a wake field in the given regime, is a little bit
more difficult to handle. An easy approximate can be done by equating the total
laser energy WL to the energy of the wake field driven by the pulse

ExLdp ≈ ELL = WL (3.31)

ignoring the transversal electric field. In this equation EL is the electric field of the
laser pulse. Obviously for the most efficient acceleration one has to aim for matching
these three lengths LD ≈ Ldp ≪ Ldiff .

3.3 Bubble regime

3.3.1 Motivation

While the first of the accelerators the LWFA was proposed for non-relativistic laser
pulses, bubble accelerators operating in the bubble regime only work with laser pulses
of relativistic intensities. Such strong laser fields became possible with the invention
of the chirped pulse amplification by Strickland and Mourou in [1985, July]. At this
laser intensities the amplitudes of the wake-field can become high enough for wave-
breaking to occur. In case of this scenario the periodic wake behind the laser pulse
breaks and a single spherical structure, the so called bubble, is formed ([2002, Mar]).
This regime can not be described by linear plasma theory, which is the reason why
numerical simulations are of utmost importance for a deeper understanding of the
bubble regime.
Laser pulses necessary for bubble acceleration are so strong that almost all the
plasma electrons are expelled from the volume of the bubble due to the strong
ponderomotive force of the laser pulse. Some electrons can be trapped inside the
bubble during the wave-breaking. This trapping of background electrons is called
self-injection. In some simulations a feedback of the electric field of the electrons
onto the electric field of the bubble has been observed. This leads to a distortion
and elongation of the bubble and is referred to as beam loading. The bubble regime
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Figure 3.2: Schematic of a bubble acceleration. The laser pulse creates the bubble
due to its ponderomotive force. An electron bunch is trapped and accelerated in the
electric field of the bubble.

is reached most reliably when the laser pulse is shorter than half the plasma wave-
length λp (See figure (3.2) on page 33). The electric field has to be higher than about
the threshold given by equation (3.23), which usually is given whenever a0 ≫ 1. The
majority of the statements of chapter (3.2.2) also apply for the bubble regime.
Inside the bubble the electrons are subject to strong electric fields. The confinement
of the electron bunch in transversal direction leads to a strongly collimated electron
beam with a small angular spread. Also, the transversal fields lead to transversal
oscillations of the electrons. However, more interesting in regard to the accelera-
tion are the electric field pointing in forward direction. For an electron density of
1018cm−3 this field can be of the order of Ex ≈ 100GV/m and therefore is three
orders of magnitudes higher than it would even be possible in a conventional accel-
erator.
The accelerating field is almost uniform in transversal direction. Along the longi-
tudinal axis though it has the highest values close to the back of the bubble and
becomes weaker towards the middle of it. This volume of space corresponds to the
accelerating phase of this single plasma oscillation. Close to the laser pulse the
sign of the electric field changes defining the decelerating phase. If electrons gain
enough energy to become faster than the laser pulse and if the laser pulse is not
depleted early, the electrons can reach this decelerating phase of the electric field.
This leads to dephasing as described in chapter (3.2.3). This electric gradient limits
the maximum energy gained by the electrons (compare with equation (3.28)), but
also matches the velocities of the electrons. Slow electrons in the back of the bubble
are accelerated stronger than faster ones which already have travelled closer towards



34 CHAPTER 3. PARTICLE ACCELERATORS

the center of the bubble where the accelerating fields are weaker. This not only leads
to strong acceleration on short length scales, but also to strong collimated beams
with small velocity spreads or quasi mono-energetic electrons.

As shown by Kostyukov et al. in [2004, Jun] the accelerating field Ex is almost
linear as a function of the relative coordinate ζ = ct−x and constant as a function of
the transversal distance r from the axis. The maximum of Ex is reached for ζ = RB

where RB is the bubble radius, assuming a spherical bubble. The radial field Er and
the azimuthal magnetic field Bθ have a linear behaviour with transversal radius r.
The values of the fields are

Ex ≈ kpζ

2
E0 (3.32)

Er ≈
kpr

4
E0 (3.33)

Bθ ≈ −kpr
4
E0. (3.34)

The linear radial fields lead to betatron oscillation of electrons around the propaga-
tion axis. During these oscillations electrons emit synchrotron radiation. This will
be discussed further in chapter (3.3.2). As Kostyukov et al. found in [2004, Jun]
the condition for spot size and laser amplitude in order to reach the bubble regime
is

kpR ≈
√
a0, (3.35)

while the laser duration τ has to follow

τ ≤ R

c
. (3.36)

While equation (3.36) is valid for the bubble regime, which usually deals with short
laser pulses, equation (3.35) also applies for pulses larger than the plasma wave-
length λp. This however leads to a regime of self modulation of the laser pulse
which will not be subject of this work.

A theoretical model together with extensive simulations was published by Pukhov
and Meyer-ter-Vehn in [2002, Mar] which led to the development of scaling laws for
the bubble regime by Gordienko, Pukhov et al. in [2005]. These publications are the
basis for my work presented in chapter (5.1). It should be pointed out, even though
it will not be part of this work, that another theoretical theory was developed by
Lu et al. in [2006, Apr] leading to slightly different results concerning scaling laws
for the electron acceleration than the ones given by Gordienko, Pukhov and Meyer-
ter-Vehn.



3.3. BUBBLE REGIME 35

Figure 3.3: Bubble outlines (blue) created by laser pulse (yellow) moving along
propagation axis (black). High electron densities are denoted in red. The trapped
electrons oscillate around the propagation axis in the plane given by the laser po-
larisation.

Figure 3.4: Scheme of electron trapping inside the bubble (green). Electrons start
in rest at y = R, ζ = 0 and are accelerated into the bubble until they reach the
turning point rm.
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3.3.2 Electron movement inside the bubble

The trapping of electrons inside the bubble has been studied by Kostyukov et al. in
[2009, Jan]. This study included an analytical analysis based on numerical simula-
tions in order to understand where electrons around the bubble start their movement
and what condition has to be matched by them in order to get trapped. Simulations
suggest that the trajectory of electrons which get trapped start at the side of the
bubble at y = R, ζ = 0 with a velocity of p⃗ = 0 (compare figure (3.4) on page
35). They are then accelerated towards the propagation axis until they reach the
axis at ζ = rm. At this point their forward velocity has to be higher than the wake
field phase velocity. For the spherical bubble it was shown that the condition for
trapping is

γb
R

<∼ 1√
2
, (3.37)

where γb is the Lorentz-factor of the back of the bubble.
Inside the bubble the trapped electrons follow the electric fields not only in forward
direction but also in transversal direction. The transversal electric field is directed
towards the propagation axis and therefore keeps the electrons trapped inside the
bubble. In transversal direction the field is uniform and its strength it proportional
to the radius of the bubble

Er =
m2

ek
2
pr

2e
, (3.38)

with transversal bubble radius r as shown in [2002, May]. While passing ζ = rm the
electrons about to get trapped already gained a transversal momentum. Therefore
the trapped electrons perform a betatron oscillation during their acceleration. In
figure (3.3) on page 35 the oscillation of electrons around the propagation axis is
shown as an example. In a small bubble R ≤ λp the strong fields which rise linearly
in transversal direction conserve a low transversal momentum spread. This leads to
a low emittance of the accelerated electron bunch. The betatron wavelength for this
oscillation follows from equation (2.32) on page 18 as

λβ = λp


2γ, (3.39)

with the plasma wavelength λp and the gamma factor of the electrons γ. Since
the electrons achieve relativistic velocities synchrotron radiation is emitted from the
bubble. The cut-off frequency for the radiation can be calculated as

~ωc =
3

2
γ3~crβ


2π

λβ

2

(3.40)

with rβ being the oscillation amplitude as been shown by Kostyukhov et al. in
[2003(Ko)].
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3.3.3 Scaling laws for bubble acceleration

With analytic discussion and the use of similarity theory (see the book by Connor
and Taylor from [1977] and the paper by Kadomtsev from [1975]) scaling laws for
the energy gain of electrons, the number of electrons trapped inside a bubble and
dependencies of laser parameters have been found by Pukhov and Gordienko in
[2006, Oct]. Because these laws were derived by using similarity theory, which in-
cludes dimensional analysis, for some variables only parametric dependencies could
be calculated. Dimensionless factors could not be determined analytically. Most
of these undetermined variables already have been approximated with simulations.
One of the main statements given by Pukhov and Gordienko is that similar states of
laser-plasma-interactions are characterised by a corresponding similarity parameter

S =
ne

a0ncrit

. (3.41)

In the regime of relativistically underdense plasma S ≪ 1 a bubble can be formed
which traps

Nmono ≈
1.8

k0re


P

Prel

(3.42)

electrons and accelerates them to energies of

Emono ≈ 0.65mec
2


P

Prel

cτ

λ
. (3.43)

In these equations re = e2/(mec
2) is the classical electron radius, k0 = 2π/λ, P

is the pulse power, while Prel = m2
ec

5/e2 is the relativistic power unit. The electrons
need to be accelerated over a length of

Lacc ≈ 0.7
cτ

λ
ZR (3.44)

with the Rayleigh length ZR = πR2/λ in order to gain this energy.
The principle of similarity can be seen, if different simulations with the same similar-
ity parameter. In figure (3.5) on page 38 two simulations with different S-parameter
are shown as a reference. Even though, in both cases a bubble is formed by a laser
pulse of a0 = 32, the overall shape of the bubbles differs significant from one another.
If instead simulations with matching S-parameter are compared, as in figure (3.6)
on page 38 with S = 1.44 ·10−3, differences between the bubbles are difficult to spot.
Even though all simulations are done with laser pulses ranging between a0 = 32 and
a0 = 512, the shape and size of the resulting bubbles is more or less the same.

In the equations (3.42), (3.43) and (3.44) one parameter is the focal spot size R.
The spot size is given by equation (3.35) on page 34
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Figure 3.5: Cut through density profile of two bubble simulation through the propa-
gation axis. Both cases with a0 = 32. S-parameter and electron density correspond
to the spot size. a) R = 5λ and S ≈ 1.44 · 10−3, b) R = 4λ and S ≈ 2.3 · 10−4

Figure 3.6: Cut through density profile of bubble simulations through the propagation
axis. All simulations were done for R = 5λ, and similarity parameter S ≈ 1.44·10−3,
but different intensities and electron densities. The four cases are a) a0 = 32, b)
a0 = 128, c) a0 = 256 and d) a0 = 512.
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kpR ∝
√
a0,

with the plasma wave number kp = ωp/c. It also gives an upper limit for the
pulse duration τ by equation (3.36) on page 34

τ ≤ R

c
.

In fact Esarey showed in [1996] that the maximum acceleration field is gained
when

τ =
λp
2c
. (3.45)

The pulse power P in equations (3.43) and (3.42) for Gaußian pulses is propor-
tional to R2 for both linear and circular polarised pulses. For circular polarised
pulses one can show that

P [GW ] ≈ 43


a0R

2

λ2

2

. (3.46)
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Chapter 4

Particle-In-Cell simulation

4.1 Introduction

In plasma physics, one is often confronted with scenarios where the dynamics of a
plasma consisting of many particles are relevant. In laser plasma interaction with
densities at about the critical density for a laser the electron density alone can be of
1021 particles per cube centimetre. In a volume which at least includes a laser pulse
of a size of several micrometre in every direction this would lead to a total of about
1013 particles in this volume. This high number of particles leads to computational
problems if one would try to simulate such a scenario with each particle modelled
individually. Even if one tries to model the plasma as a whole problems arise. As
an example A fluid-like model fails to describe situations in which the plasma acts
very turbulent. The resulting individual particle motions are important for instance
during wave-breaking, which is vital to bubble acceleration (see chapters 3.2.2 and
3.3). One solution to the problem of handling a huge number of particles in electro-
magnetic fields is the Particle-in-Cell (PIC) algorithm. Of course the PIC algorithm
can be applied to other fields of physics, as well, but PIC-simulations are well known
in particular for their application in plasma physics. In this chapter I would like to
explain the concept of the PIC method. For this, first one has to understand how
to describe a plasma analytically. Most of the information given here also can be
found in the review paper by Verboncoeur from [2004, Oct] and the lecture notes
by Pukhov from [1999, May].

From the definition of plasma it is obvious that the plasma can be characterised
by the equations (2.3) to (2.6) on page 14. From equation (2.3) and (2.5), with only
the curl free part of equation (2.3), it follows the charge continuity equation

∂ρ

∂t
+∇ · j⃗ = 0, (4.1)

which gives the evolution of the charge density as a function of the current. This
means that if equation (4.1) is satisfied at every point in time and if Gauss’ Law

41
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(equation (2.5)) if fulfilled at any time, then Gauss’ Law is automatically fulfilled at
every point in time, too. Because of equation (2.4), the same is true for the magnetic
field. Thus it is only necessary to find a initial state in which the equations (2.5) and
(2.6) are satisfied and from there on we only need to consider the equations (2.3)
and (2.4) which give us the time evolution of the system. The current j⃗ is given by
the relativistic Boltzmann-Vlasov equation

∂f

∂t
+

p⃗

mγ
∇f + q


E⃗ +

v⃗

c
× B⃗


∇p⃗f = C, (4.2)

where f = f(x, p⃗, t) is the single particle distribution function of a particle of mass
m, charge q, momentum p⃗ and Lorentz factor γ. C represents the collision term,
which usually is part of the Boltzmann-Vlasov equation. However, since in this work
relativistic under-dense laser-plasmas are of concern we expect fast electrons, very
small cross section for collisions and therefore collision-less plasmas. This means
it is save to set C = 0. With the equations (2.5) and (2.6) satisfied for the initial
condition of a system only the equations (2.3), (2.4) and (4.2) have to be calculated
in order to fully describe a system. Unfortunately the Bolzmann-Vlasov equation is
a six dimensional partial equation and as such rather complicated to solve. It can be
solved numerically using finite differences on an eulerian grid, but this can be very
time consuming even if done for just one spatial dimension. An important reason,
why these Vlasov-Codes are so performance consuming is the fact that the phase
space distribution of a plasma does not cover the whole phase space. Which part of
the phase space actually is of interest, usually cannot be judged initially. Therefore
the eulerian grid covers a vast volume of phase space, which is of no interest for the
physical problem. Still a vast part of the phase space is used only to make sure,
that the whole phase space distribution of the plasma is covered as well. This is
illustrated in figure (4.1) a) on page 43.

A way to approach this problem with less computational costs is to sample
the distribution function f(x⃗, p⃗) in a statistic fashion with N Finite Phase Fluid
Elements (FPFE). These FPFE defined by a shape Sph in phase-space at a certain
position (x⃗n, p⃗n) and a weightW ph can be used to define an approximation ff to the
phase space distribution as shown in picture (4.1) b) on page 43. The approximated
phase space distribution is given by

f(x⃗, p⃗) ≈ ff (x⃗, p⃗) =
N

n=1

W ph
n Sph(x⃗− x⃗n, p⃗− p⃗n). (4.3)

Depending on the shape of the FPFE, equation (4.3) can vastly simplify our problem.
For instance, if six-dimensional hyper cubes of side lengths δxi, i ∈ {x, y, z}, are
chosen, the shape function is

Sph(x⃗, p⃗) =


1 , if (x⃗)i − (x⃗n)i ≤ δxi, ∀i, and p⃗ = p⃗n
0 , else.

(4.4)
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Figure 4.1: a) Phase space distribution within an Eularian grid. Only the red area is
relevant for describing the plasma while the white area is empty. b) The same phase
space distribution but now covered with finite fluid elements (orange). The rest of
the phase space is ignored.

Here (x⃗)i is the i-th component of x⃗. Please keep in mind that the ’hyper cube’
defined in equation (4.4) in fact is flat in p⃗−direction, because we only want FPFE
with exactly one velocity. These FPFE carry with them the distribution function ff
according to the Vlasov equation (equation (4.2) on page 42) during their movement
through phase space given by

dx⃗n
dt

=
p⃗

mγ
(4.5)

dp⃗n
dt

= q


E⃗ +

v⃗

c
× B⃗


. (4.6)

The equations (4.5) and (4.6) define the movement of quasi-particles. These parti-
cles and their ability to model the development of a given phase space distribution
is the key to the PIC algorithm.
The PIC-algorithm is one of the lowest possible level of simplifications and therefore
very close to actual physical reality. This is because it solves Maxwell’s equations and
the Boltzmann-Vlasov-equation for particles very similar to real plasma particles.
The only simplification done is the statistical sampling of the phase space distri-
bution. The FPFE correspond to the macro-particles in PIC-simulations. These
macro-particles, usually defined for electrons and ions separately, have the same
mass-to-charge ratio as plasma electrons or ions, but have mass and volume cor-
responding to a finite cloud of plasma particles. So the macro-particles can be
understood as a cloud of ions or electrons co-moving with the same velocity. This
seems to be a very intuitive way to reduce the number of particle in a plasma simu-
lation. Furthermore, as it has been shown before, results from such PIC-simulations
can be expected to properly model a physical phenomenon, given a ’good’ sampling
of the phase space distribution. In terms of PIC-simulations, a good sample would
be a simulation which sufficiently small and many macro-particles.
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This method makes it possible to simulate a dense plasma on modern machines
in a very realistic fashion. In PIC simulations the modelling of the plasma is close
enough to the real physical situation, so that many important information about
the system, like individual particle position, are preserved. The PIC-method has its
downsides, too. The most severe one of which is the computational power necessary
in order to receive correct results. Even though it has vastly better performance
requirements than a Simulation of the dynamic of all plasma particles and even
a Vlasov-Code, PIC simulation can become so costly in regard of computational
power that for many applications only large computer cluster are able to handle
these simulations.

4.2 Algorithm

In this section I would like to explain the PIC algorithm in more detail. For that I
will present a basic scheme for a PIC code as it can be found in the literature (for
instance the review paper by Verboncoeur from [2004, Oct] or the lecture notes by
Pukhov from [1999, May]). Of course a PIC code can be implemented differently,
for instance with different solver-methods or adaptive grids instead of Eulerian ones.
The method presented here though is a very common one and the basis for even
many of the more sophisticated codes in use at the moment.
In a PIC simulation a three-dimensional domain is defined. The domain includes the
whole space, which is going to be part of the simulation and everything inside of it.
In this domain, particles will be represented continuously in space and velocity while
fields are defined on discrete positions. These discrete positions usually are given
by an Eulerian grid dividing the simulation domain into three-dimensional cells. In
case of the very common Yee-grid, the electric fields are defined on the centre of
the surfaces of one grid cell while the magnetic fields point along the edges (see
figure (4.2) on page 45 for a explanation of one grid cell). Here the first advantage
in regard of performance over Vlasov-Codes becomes clear, since the grid in PIC-
simulation has only three dimensions instead of six. Starting from initial conditions
for particle positions and velocities, fields as well as particle positions and velocities
are advanced sequentially to discrete points in time. If we assume these points in
time to be equidistant with difference ∆t between two adjacent points ti and ti+1

then usually particle velocities and positions have a time difference of ∆t/2. This
way the leap frog scheme, a second-order accurate centre difference scheme, can
be implemented in order to integrate the equations of motion. The equations for
particle positions and velocities in finite form for the leap frog method are

v⃗t+∆t/2 − v⃗t−∆t/2

∆t
=

q

m


E⃗t +

v⃗t+∆t/2 + v⃗t−∆t/2

2γt
× B⃗t


, (4.7)
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Figure 4.2: General structure of a Yee-grid cell. Electric fields components (red)
are calculated on the surfaces of the cell, magnetic field components (green) on the
edges. Particles are placed continuously inside the grid.

x⃗t+∆t − x⃗t

∆t
=
u⃗t+∆t/2

γt+∆t/2
. (4.8)

The leap frog method is illustrated in figure (4.3) on page 46. There the circles on
the time line correspond to times, at which particle velocities, currents and magnetic
fields are defined while the squares represent particle positions, densities and electric
fields. Given a starting position at time t = t0 all the values for fields and particle
velocities and positions at t0 and t0 − ∆t/2 are known (black box). With them
equation (4.7) gives the velocities at t0 + ∆/2, which than can be used in order to
calculate the currents and the magnetic fields. Knowing all the values from t = t0,
t0 −∆t/2 and t0 +∆t/2 (orange box in addition to black box) equation (4.8) gives
the new positions at t = t0 + ∆t (turquoise box). From there one can iterate the
process.

The particles in a PIC simulation are macro particles. Instead of simulating
every single ion and electron, each macro particle represents many particles of one
sort. Since the Lorentz force only depends on the charge to mass ratio, it does not
matter how many particles of the same sort are put together into a macro particle.
However in order to generate a valid statistic of particle trajectories and an accurate
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Figure 4.3: Illustration of the leap frog method. The black box holds the known, initial
values for fields and particle positions and velocities. These are used to advance
velocities, currents and the magnetic field (orange box) using equation (4.7) on page
44. With this information, the new values for position, particle densities and the
electric field can be calculated (turquoise box) using equation (4.8).

sample of the phase space distribution (see chapter 4.1) the size of the macro parti-
cles and therefore the number of real particles corresponding to a macro particle has
to be chosen carefully. The simulations presented here are collision free, although
particle-particle interactions via electro-magnetic fields of course occur.

Since the focus of this work is electron acceleration within the bubble regime, my
goal was to simulate a laser pulse creating a bubble and travelling through a plasma
over a certain acceleration length. The total acceleration length in most simulations
was much longer than the resolution of the grid, which was in the order of the laser
wave length. A simulation domain of the size of the whole acceleration length and
with suitable resolution usually would include a large number of cells, difficult to
handle with most computer clusters. Therefore I used the moving window technique.
With the moving window technique only a small fraction of the whole simulation
domain is simulated at a given time, called the simulation box. This box should
include every structure one might be interested in. In case of bubble acceleration
this mainly includes, the laser pulse, the bubble and the immediate surrounding
plasma. The box was co-moving with both pulse and bubble travelling with speed
of light. With the reduction of the volume, that is simulated at every time step, the
resources needed to complete simulations were reduced drastically.

4.3 Numerical problems and dispersion free solver

One of the major differences of the VLPL to the basic PIC-algorithm is the use
of a non-standard field solver. The standard approach for calculating the electric



4.4. PARALLEL COMPUTING 47

and magnetic field is to use a centred finite difference based on the Yee-grid. Such
an approach leads to the Yee-solver, which is quiet common in PIC-simulations.
However, it is well known that in the Yee-scheme waves travel slower than expected
in under-dense plasmas. This effect can for instance reduce the speed of light and
therefore electro-magnetic waves significantly.
The Numerical Dispersion Free Solver or NDF-solver as presented by Pukhov in
[1999] is a field solver which is much more stable than a common Yee-solver. A
Yee-grid is a common way to divide the simulation box and to manage the positions
at which the fields are represented (see figure 4.2). The details about such a grid
and the field solver which usually is used on it are given by Birdsal and Langdon in
[1991]. For the Yee-solver in two dimensions one can calculate a numerical dispersion
relation as

1

c2τ 2
sin2

ωkτ

2


=

1

∆x2
sin2


kx∆x

2


+

1

∆y2
sin2


ky∆y

2


. (4.9)

This dispersion relation leads to non-imaginary values for the frequency whenever
the Courant-Levy criterion is fulfilled,

1

c2τ 2
≥ 1

∆x2
+

1

∆y2
. (4.10)

A derivation of the criterion and the behaviour of physical (real values for the fre-
quency) and un-physical (imaginary values for the frequency) systems were presented
in the review paper by Verboncoeur in [2004, Oct].
The NDF-solver has a different dispersion relation, given by

1

c2τ 2
sin
ωτ

2


=

1

∆x2
sin2


kx∆x

2


(by + 2ay cos (ky∆y))

+
1

∆x2
sin2


ky∆y

2


(bx + 2ax cos (kx∆x)) (4.11)

With this dispersion relation one obtains the much better stability condition

cτ ≤ ∆x, (4.12)

which only depends on the spatial step in the propagation direction of a wave.
With this less restricting stability criterion much larger time steps can be chosen to
strongly reduce simulation time.

4.4 Parallel computing

Even on modern computers PIC simulations of extensive systems are more than
challenging. As an example I want to estimate the resources needed to simulate the
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Figure 4.4: The simulation box is divided into several domains (exemplary in yellow,
blue and red). Each cluster node computes the data of exactly one domain.

immediate surrounding of a laser pulse of wavelength λ travelling through a plasma
in 3D. Let us assume a resolution of 0.1λ in direction of pulse propagation and only
0.5λ in transverse direction. This means, that every cell of our PIC-simulation will
be a cuboid of a size of 0.03λ · 0.25λ · 0.25λ. A typical pulse in a bubble acceleration
experiment would have a full-width-at-half-maximum of about 15λ transverse and
10λ longitudinal. A good cut-off distance after which the field of such a pulse
almost vanishes would be about twice its FWHM in every direction. This would
mean, the simulation box would be at about 500 cells in longitudinal direction and
160 in transversal direction. Therefore there are 12.8 · 106 cells in the simulation
box. Every cell includes values for the electric field, the magnetic field, the plasma
density, the current and the position and velocities of particles inside the cell. If we
assume just 8 electrons per cell and no ions, this means that on average, we need
at least 3 + 3 + 1 + 3 + 8 · (2 · 3) = 58 values per cell. With 16 byte per every
value, this sums up to ∼ 11 · 109bytes or about 11 Gigabytes. This conservative
estimate for just the laser pulse and its immediate surrounding helps to understand,
that the demands on the RAM of a computer alone are rather high. Given the fact,
that usually one is interested in structures surrounding the laser pulse or travelling
behind it and that the processor performance cannot be neglected, it is easy to
understand, why someone might want to use more than one computer for a PIC
simulation.
The basic idea of parallel computing is to divide the problem on several machines.
In case of PIC simulations, the whole simulation box would be divided in sub-boxes,
which then again would be handled by different machines or nodes of the same
machine (see figure (4.4) on page 48).

Each node computes the steps of the PIC-scheme for its domain and then ex-
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changes informations with its direct neighbours. In figure (4.5 on page 50) two
domains, which are part of the complete simulation box, are shown. Both domains
overlap with their neighbours. All the field and particle information from this over-
lap is exchanged with the corresponding neighbour after every simulation step. A
intuitive approach in a PIC-simulation is to use cells on every machine dedicated
to its overlap region. This way, after every step, all of the contents of the overlap
cells is send to the corresponding neighbour domain without the need of checking
whether or not a specific particle or field information has left a domain and now
belongs to another one.
As mentioned before, parallel computing also is able to provide better processor
performance. Since the computational power of an processor is technically limited,
a way to more computational power would be to use more than one processor.
Amdahl’s law gives an estimate for the speed-up, the increase of speed, a code
might need to perform a certain task. An important factor for parallel computing
is the parallel efficiency. According to Amdahl’s law the speed-up from using more
machines for parallel computing strictly depends on the parallel efficiency. This effi-
ciency refers to the percentage of the processes of a code, which can be parallelised.
The remaining operations are strictly serial (for instance any process, which needs
global informations). Amdahl’s law states, that the maximum speed up S(n) for
working on n threads behaves as

S(n) =
1

B + 1
n
(1−B)

, (4.13)

where B is the percentage of strictly serial processes of the code. The term ’threads’
refers to the number of parallel instances of one computation, since in fact most
computer clusters use multi-threading in order to have more than one domain on
every single node. Equation (4.13) points out, that even for an infinite number of
threads, there is an upper limit for the speed-up for any non-vanishing value of B.
Therefore it seems reasonable to optimise one’s code in order to reduce B as much
as possible (which is equivalent to increase the parallel efficiency). In fact in case of
the code, I used for this work and which is described in chapter (4.5), tests showed
in [1999] that the parallel efficiency is more than 90%. This means that with about
256 threads, which I used for most of the simulations presented here, the speed-up
is close to the maximum one, given by S(∞).

4.5 Virtual-Laser-Plasma-Laboratory code

All the simulations presented here have been done with the Virtual-Laser-Plasma-
Laboratory Code (VLPL) written by A. Pukhov. Details about this codes can be
found in his publication from [1999]. The VLPL is a three dimensional Particle-
in-Cell-Code written in C++. It was designed for parallel computing using MPI-
routines. It is highly object oriented and can easily be modified to simulate different
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Figure 4.5: Two domains A and B inside a grid of simulation domains. The domains
overlap with the neighbouring ones.

kinds of particles, shapes of laser pulses, targets and plasmas. For different applica-
tions different versions of the code exist, such as one-dimensional or two-dimensional
versions as well as a hybrid code between hydro-dynamical- and PIC-simulation, the
H-VLPL. As mentioned in chapter 4.3 the NDF-scheme is used in order to solve the
field equations on a Yee-grid. The macro-particles are rectangular in shape and
collision free.
The code also includes radiation reaction. Both classical radiation reaction (corre-
sponding to synchrotron radiation) and quantum-electro-dynamic radiation reaction
(corresponding to the creation of gamma quantums and electron positron pairs) can
be utilised.
In the VLPL-simulation lengths are normalised by the wavelength λ of the laser
pulse (even if a simulation does not include one). Times are normalised by the
speed of light and the wavelength c/λ, while both electric as well as magnetic fields
are given in numbers of E0 = cmeωL/e. Field intensity is calculated via the radiant
flux

I

I0
=

1

2
(E⃗2 + B⃗2), (4.14)

with I0 = E0 · E0. The radiant flux I multiplied by c/2 gives the intensity in the
cgs-gauge.



Chapter 5

Simulations on bubble acceleration

The main part of my work dealt with simulation of electron acceleration within the
bubble regime. Here I would like to present the main results of this work. All the
simulations preseted here have been done with the VLPL-Code using the NDF -solver
for calculating the field (see chapter 4). Both VLPL-Code and the NDF-solver were
presented by Pukhov in [1999]. In the following the natural units of the VLPC-code
will be used, which means that all length scales are given in order of the Laser wave
length λ, time is given in λ/c, energies in MeV and electric and magnetic fields in
cmeωLaser/e.

5.1 Comparison of scaling laws

The scaling laws for the bubble regime (chapter 3.3.3) were the central part of
my work. My first goal was to investigate whether or not the scaling laws can be
validated using PIC-simulation and in which parameter range simulations match
theoretical predictions. This included a parameter scan over the possible input val-
ues of the scaling laws as well as an investigation of possible reasons for the theory to
not match the results from the simulations. Although Before any of this could start,
I first had to determine dimensionless factors in the equations (3.42), (3.43) on page
37 and (3.35) on page 34. These factors cannot be derived with the theory used to
obtain the equations, but have to be estimated for every laser pulse shape separately.

The equations (3.42) and (3.43) give the values for the number of the accelerated
electrons and their energy. However, the pre-factors used in both equations come
from simulations using a pulse envelope of

aorig(t, r) = a0 cos


πt

2τ


exp


− r2

R2


. (5.1)

In this work I used a pulse, which had the envelope

anew(t, r) = a0
1

2


1 + cos


πt

2τ


exp


− r2

R2


. (5.2)
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The envelope given by equation (5.1) was defined for −τ ≤ t ≤ τ while equation 5.2
is valid for −2τ ≤ t ≤ 2τ . Since the cosine has a local minimum at t = π, but only
an inflexion point at t = π/2 the pulse given by equation (5.2) drops down smoother
to a = 0 than the one given by equation (5.1). This changes the pre-factor of both
equations (3.42) and (3.43), but features a pulse envelope, which is closer to real
laser pulses found in experimental set-ups.

For my simulations I used a grid with different lengths and resolution ranging
from 0.1λ to 0.5λ in transversal direction. The exact value was depending on the
size of the laser pulse and therefore of the whole simulation box. Even though the
resolution of 0.1λ was desirable, with large simulation boxes it was not feasible to
use it. As longitudinal resolution I chose 0.05λ since lower resolution tend to lead
to numerical dispersion and had a strong impact on the resulting electron energies.
The time step was chosen according to the grid resolution and the NDF -scheme
(equation (4.12) on page 47). In this simulations a laser pulse of the shape given by
equation (2.13) travelled through a linear density gradient into a uniform pre-ionised
plasma (see figure (7.2) on page 89). The electrons did not have any initial velocity
while the ions were considered to be static leading to a uniform electric field in the
background. This simplification was done, because laser pulse and electrons involved
in the bubble acceleration were both much faster than any ions. Test simulations
with ions modelled as PIC-particles did not change the outcome in any significant
way and therefore validated this simplification.

At this point a parameter scan would include four free parameters. The pulse
amplitude a0, the pulse width R, its duration τ and the plasma electron density
ne. In order to reduce the number of free parameter, I always chose ’spherical’ laser
pulses. Equation 3.36 on page 34 gives an upper limit for the pulse duration. In the
following I always set

τ =
R

c
. (5.3)

This makes sense in order to maximise the energy gain from a laser pulse of spot
size R. Also, in experiments the pulse duration usually is a limiting factor, since it
is challenging to create very short pulses. Here it should be kept in mind that the
pulse duration still should be so small as to create a laser pulse shorter than half of
a plasma wave length. Equation (5.3) reduces the number of free parameters in the
equations 3.43 and 3.42 to three, namely the spot size R, the electron density ne and
the laser amplitude a0. For the parameter scan the set of now three free parameters
can be reduced further using (3.35) on page 34. This gives a correlation between
R, ne and a0 making one of the three a function of the other two. In order to use
R as a function of ne and a0, the constant in equation (3.35) has to be determined
exactly.
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Figure 5.1: Laser pulse with a
too small spot size, while travelling
through a plasma. The pulse defo-
cusses similar to a pulse in vacuum.

Figure 5.2: Laser pulse with a too big
spot size, while travelling through a
plasma. The pulse is quenched by the
self-focussing effect.

5.1.1 Focal spot size

Since equation 3.35 only gives a parametric dependency, the proportional constant
has to be determined. The focal radius R is important for the largest possible en-
ergy gain for electrons as well as for the wave breaking. This can be seen in the
publication by Pukhov in [2005] and in the equations (3.42) and (3.43) on page 37
and equation (3.46) on page 39. A thus optimal chosen radius R also would lead to
situation where the relativistic self-focussing effect and defocussing are in balance
due to the fitting plasma wavelength (see chapter 2.2.2). This way both laser spot
size and the bubble itself keep their shape. For radii not chosen correctly the pulse
shape and with it the shape of the bubble change over time, which decreases the
energy gain of the electrons. The exact value of R also is important for a comparison
of theoretical predictions and numerical simulations as discussed in the introduction
of this chapter.
My first approach was to find spot radii which lead to laser pulses travelling through
the plasma without changing their transversal shape. In figure 5.1 and 5.2 two cases
are presented in which the laser pulses did not match the optimal spot size. Figure
5.3 shows a laser pulse which is stabilised by the self-focussing effect and passes its
Rayleigh-length without significant changes in its transversal size. The longitudinal
shape however changes. This is easy to understand, since the front of the pulse is
travelling through a denser medium than the back. Due to the density and therefore
the diffraction index being higher at the front of the pulse, the back is slightly faster.
This quenching of the laser pulse however does not hinder the bubble acceleration.
On the contrary, a short pulse confined to the very front of the bubble interior does
not effect the trapped electrons as much as a more extended one.

Of course, the laser pulse being stable does not mean that its pulse width is ex-
actly the optimal one given by equation (3.35). However, this search gave us a first
guess for the optimal radius, which then later (chapter 5.1.2) could be confirmed by
comparing acceleration length, number of trapped electrons and energy gain from
simulations with the predictions from the theory. For the analysis of the develop-
ment of the spot size I determined the full-width at halve-maximum (FWHM) of
the laser pulse in transversal direction during simulations. Strong variations from
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Figure 5.3: Laser pulse with too small spot size, while travelling through a plasma.
The pulse stays stable in transversal direction even long after passing its Rayleigh-
length.

its initial value and strong fluctuations can be considered to be an evidence for a
not-optimal initial radius. For this I implemented a routine into the VLPL-code,
which tracked the pulse and determined its FWHM in simulation time. This way I
avoided saving all the three-dimensional field information at enough time steps in
order to make a reasonable analysis.

Both figure (5.4) and (5.5) give three simulations each for three different initial
pulse widths. Both sets of simulations have been done for the same similarity pa-
rameter S = 0.001. The plasma in this simulations was a electron plasma and a
positively charged background with a linear density gradient in the beginning and
a constant density plateau afterwards. In both cases the pulse with initial width
R = 6λ seems to be the most stable one while travelling through the density plateau.
The reason for the peaks at the beginning of the simulations are the strong reaction
of the pulse to the density gradient. The pulse shape, while travelling through the
gradient, was strongly distorted from a gaußian shape as can be seen in figure (5.6)
on page 55. This distortion of course effects the calculated FWHM, wich was calcu-
lated after fitting a Gaußian distribution through the intensity distribution. After
passing the gradient, the pulse regained a much more gaußian shape. The peaks at
the end of the simulations occur because of depletion. The laser pulse lost almost
all its energy, which again leads to a pulse profile which does not match a gaußian
shape very well any more.

With this first guess for an optimal spot size and introducing a new constant CR

with the equation (3.35) on page 34

kpR = CR

√
a0, (5.4)

we can use the equations (2.12) and (2.21) on page 17 to derive a equation for the
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Figure 5.4: Exemplary set of simula-
tions in order to find a stable laser
pulse. R = 6λ seems to be the best
of the three choices. The peaks at the
beginning of the simulation is due to
the density gradient, the plasma in the
simulation had. The peaks at the end
are results of the depletion of the laser
pulse.

Figure 5.5: Similar to fig. 5.4, but for
a different set of a0 and ne. The S-
parameter in both figures is the same.

Figure 5.6: Intensity distribution of a laser pulse while travelling through a density
gradient. Strong variations from the initial gaußian profile are visible.
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spot radius as a function of the similarity parameter S. With

kp =
ωp

c
=


4πnee2

mec2
(5.5)

eq.2.21

⇒
kp
√
ncrit =

√
neω

c
= 2π

√
ne

λ
(5.6)

this leads to

⇒ R

λ
= CR

√
ncrit

λ

√
a0√

ncritkp
=
CR

2π


nca0
ne

=
CR

2π
√
S
. (5.7)

If we now put into equation (5.7) that for a similarity parameter of S = 0.001 the
optimal spot size would be R ≈ 6λ we get that CR/2π ≈ 0.19 or

R

λ
≈ 0.19

1√
S
. (5.8)

Of course this approximation of CR only holds for this choice of pulse envelope, but
it should be correct regardless of the choice of S. To proof that this approximation
to CR is a good one, I checked whether results for electron energy gain and number
of trapped electrons from my simulation fit predictions from the theory (equations
(3.42) and (3.43)) using equation (5.8). The rather positive results can be seen in
detail in the following chapter.
Another information equation (5.8) holds is the fact that the optimal spot size R and
the similarity parameter S can be used interchangeable. Every similarity parameter
S corresponds to exactly one optimal spot size R. It is important to distinguish
between the optimal spot size R and any other Laser spot size rL one might choose
for an experiment. While the definition of S (equation (3.41) on page 37) allows
any value for S for any given spot size rL by changing the Laser amplitude or the
electron density, S defines exactly one optimal spot size R.

5.1.2 Energy gain and trapped particles

Using the equation (5.8) on page 56 and the definition of the similarity parameter
(3.41) on page 37 the set of parameters for a parameter scan is reduced to two. For
any chosen spot size R equation (5.8) gives the appropriate similarity parameter S.
The second parameter, which has to be chosen is either the laser amplitude a0 or
the electron density ne. The other one is determined by equation (3.41) on page 37.
In the following I always used a0 as a free parameter, calculating ne from equation
(3.41).

With this preparations I was able to compare the energy from electrons from
simulations with the predictions from equation (3.43). For this I calculated the
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ratio QE

QE =
Esim

Etheory

(5.9)

of the electron energy from simulations Esim over the energy predicted by the theory
Etheory. A ratio of QE = 1 therefore means, that theory and prediction perfectly
matched, while higher values of QE correspond to simulations during which the
electron energies exceeded the predictions. In my simulation a different laser pulse
shape was used then in the simulations which lead to the pre-factor in the original
equation (3.43). The dependence of the expected energy on the exact shape of a
laser pulse can be seen if one compares the figures 5.8 a) and (5.7). Both figures
show a parameter scan of QE as a function of R and a0, using the results of 30
simulations each. Figure (5.7) on page 59 shows the ration QE using the original
equation (3.43) for the energy of the accelerated electrons. As can clearly be seen,
even though the Laser envelopes are similar, overall a significantly higher energy is
gained with the new shape. Using a least-square fit method in order to match the
parametric dependency

Eparametric = CEmec
2


P

Prel

cτ

λ
= C̃Ea0

R2

λ2
[MeV ] (5.10)

to the energies gained in my simulation presented in figure (5.7), I could calculate
the new factor C̃E ≈ 1. This lead to the equation

Emono, new ≈ 0.93mec
2


P

Prel

cτ

λ
. (5.11)

for the energy of the trapped electron bunch, using an envelope of the form given
by equation (5.2) on page 51.

The ratio QE with the predicted energy given by equation (5.11) can be seen in
figure (5.8) a) on page 60. In this plot in contrast to figure (5.7) there is a wide range
of parameters at which theory and results from simulations fit almost perfectly. At
very small laser spot sizes my simulations achieved slightly less energy then expected
in particular for very high laser amplitudes a0 ≥ 128. At low amplitudes of a0 ≤ 4 I
found deviation from the theory. In the plot one can see higher energies at some of
the radii and lower energies at R = 2λ. The reason for this can be seen by comparing
two snapshots from different simulations. In figure (5.7) c) the density- and intensity
distribution for a simulation at R = 6λ and a0 = 128 is shown. There a well defined
bubble can be seen with trapped electrons and a broken wake field behind the laser.
In figure (5.7) b) in contrast to that, one can see a laser pulse followed by a periodic
wake field. The majority of electrons is neither inside of the bubble or in front of
the laser pulse, but to the sides of the cavities. Some electrons are trapped inside
the first cavity, but their number is quiet low. Still though figure (5.9) on page 61
shows that electrons in fact are accelerated in a quasi mono-energetic fashion. This
indicates that the simulations at a0 = 4 are situated at the boundaries of the bubble
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regime. In fact during simulations with low Laser amplitude a0 < 4 or small spot
sizes R < 2λ almost never a bubble was formed. Figure (5.8) a) shows that for spot
sizes of R ≥ 3λ and for laser amplitudes of a0 > 4 I received very good agreement
of energies from the theory and the simulations.

The number of accelerated particles behaved slightly different with the new laser
pulse shape, too. I found that for this shape the equation for the number of electrons
should be

Nmono, new ≈ 3.01

k0re


P

Prel

. (5.12)

With this new factor the ratio QN of number of electrons accelerated in a mono-
energetic fashion over the expected value Nmono,new can be seen in figure (5.10) on
page 61. Again the region of a0 = 4 differs significantly from the theory. However,
as discussed above, this region is a border of the bubble regime. In the majority of
the parameter space I found agreement between theory and simulation, aside from
high intensities at low spot sizes. To understand this discrepancy it is useful to have
a look at the relative energy spread ∆E/E. ∆E denotes the width of a peak in
the energy spectrum, while E is the position of the top of the peak. Figure (5.11)
a) on page 62 illustrates this information. At the position, at which the anomaly
occurs, much higher relative energy spreads can be found. A Comparison of two
energy histograms from similar simulations, in this case R = 2 and similarity pa-
rameter S = 0.009, can be found in (5.11) b) and c). b) shows a good example for
quasi mono-energetic acceleration with a well pronounced peak at the highest energy
values in this histogram. c) in contrast to this shows a less pronounced peak and
further more electrons with higher energies. Both histograms were done after the
same acceleration length, but it seems, that in case of c) the bubble already became
instable and the electrons started loosing energy. Since in similar experiments the
same acceleration length is expected according to equation (3.44), very small spot
sizes seem to be another limit to the scaling laws. The wider energy peaks, which
are results of an instable bubble, also explain the slightly lower energies in figure
(5.8) a) on page 60 at the same parameters.

The reason why the parameter scan ends at radius R = 12λ and a0 = 512 is
for one, that I could not find any evidence that at high laser amplitudes the scaling
laws would not match the simulations. Also, at an amplitude of a0 = 512 we already
are in a regime which is rather unlikely to be reached by experiments in the near
future. No simulations with larger spot sizes have been conducted for computa-
tional reasons. Since the resolution of the simulation grid has upper limits given by
the laser- and plasma wave lengths, the number of cells inside the simulation box
becomes increasingly larger for large spot sizes. Also, the acceleration length and
therefore the simulation time increases proportional to R2 (equation (3.44) on page
37). Simulations with spot sizes of R = 12λ already took seven to ten days each
and the majority of the available RAM. Larger spot sizes would need much more
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Figure 5.7: Electron energy ratio QE = Esim/Etheory using with the original factor
according to equation 3.43 on page 37.

computational power then available or advanced schemes like PIC-hydrodynamic-
hybrid-Codes or Lorentz-boosted simulations.

In conclusion I can state that I found lower limits for the parameters a0 and R
at which simulation and theory stop matching and a wide parameter space in which
theory and simulation fit well. So far, no upper limits for a0 and R are known.
However, since at very high laser intensities the electrons achieve very high energies,
at large values for a0 synchrotron radiation should be considered.

5.1.3 Radiation reaction

So far my simulations did not include any form of radiation reaction. At low values
for a0 this should not make a difference, but since the parameter scan ranges up to
a0 = 512 radiation reaction should be considered. Apparently one of the first points
to address is at which point radiation reaction has to be considered in order to make
realistic predictions.
At first I only considered classical synchrotron-like radiation reaction without any
quantum-electro-dynamic (QED) effects. Radiation reaction in the VLPL-code is a
modification of the the particle pusher. At every time step the energy and momen-
tum and their change for every particle is calculated and used to decide whether or
not a particle emits radiation. With radiation reaction I obtained the results given
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Figure 5.8: a) Comparison of analytic predictions and results from simulations. The
colour represents the quotient of the energy from the simulation over the prediction
QE = Esim/Etheory. Green colour was used for a quotient of Q = 1 which means,
that theory and simulation perfectly match. Red colour and a quotient of Q > 1
represents simulations which achieved higher energies than expected from the theory,
while blue stands for simulations with lower energy than expected.

b)Snapshot from a simulation at R = 4, a0 = 4 and S = 2.25 · 10−3. The 3D-figure
shows the electron density in blue (low density) and red (high density) and the

Laser intensity in yellow. as well as a 2D cut of the density through the middle of
the box. The picture shows a structure with a periodic, unbroken wave following the
laser pulse. Some electrons are trapped inside the first cavity, as can be seen in the

2D-cut, but much more are just following the oscillations.
c) Similar to b), but at R = 6λ and a0 = 128, which leads to S = 0.001. The bubble
structure is easy to spot as well as the trapped electrons. The 2D cut beneath the

3D image also shows that the bubble is only followed by some turbulances.



5.1. COMPARISON OF SCALING LAWS 61

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 0  50  100  150  200

n
u
m

b
e
r 

o
f 

e
le

c
tr

o
n
s

E in MeV

Figure 5.9: Electron energy corresponding to the situation in figure 5.8 b) on page
60. This histogram shows a well defined peak indicating that electrons are accelerated
in a quasi mono-energetic fashion.

Figure 5.10: Ratio of the expected number of accelerated electrons over the number
of electrons accelerated during the simulations QN = Nsim/Ntheory.
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Figure 5.11: a) Relative energy spread of the energy peak of the quasi mono-energetic
electron bunch. Green corresponds to a relative energy spread of 10% while red stands
for higher spread and blue for less spread.

a) Energy histogram of electrons at R = 2, a0 = 8 after a acceleration length of
70λ. A clear pronounced energy peak containing the fastest electrons can be seen.
b) Same as a), but at a0 = 128. Here the peak is less pronounced and electrons of

higher energy can be seen.



5.1. COMPARISON OF SCALING LAWS 63

in figure (5.12). The first guess that radiation reaction does not change the results
at low values was validated by this simulations for a0 ≤ 50. Above that especially
beginning at about a0 = 100 we can see, that the energy gain of the electrons is
significantly lower then in the simulations before. Due to synchrotron radiation the
electrons inside the bubble loose energy during their betatron oscillation. At very
high energies the loss of energy due to radiation reaction also leads to instable bub-
ble formation and propagation. In figure (5.13) on page 64 two sets of histograms
are shown. (a) refers to the point (R = 12λ, a0 = 512) in figure (5.12) (Energy ratio
with synchrotron radiation), while (b) refers to (5.8) (the same without synchrotron
radiation). As can be seen, the acceleration length, given by the green curve in
both cases, is reached at different times, even though both systems are similar. As
expected, a) achieved significantly less energy, but also the peak is less well pro-
nounced. In fact, a peak is only visible for a short fraction of the total acceleration
length, while without synchrotron radiation, peaked structures are clearly visible
for the most part. However, most surprisingly, during the simulation belonging to
a), more then ten times as many electrons were accelerated. To help understanding
this, figure (5.14) on page 65 shows another cut through the transversal axis of the
density profile for both simulations. The simulation without synchrotron radiation
(b) shows a well defined bubble with a small stem growing from its back. Contrary
to this the simulation with radiation reaction (a) pictures a structure with a well
defined front, but a unstable, ’noisy’ back. The border between inside and outside of
the bubble fluctuates and particles move between both areas. The bubble is strongly
elongated and therefore much longer than the plasma wavelength. This seems to be
an evidence, that at very high laser intensities, the synchrotron radiation not only
limits the energy gain, but inhibits the formation of regular bubble. This behaviour
and its resulting trapping of more electrons can be seen in figure (5.15) on page
65. There it becomes evident, that in the area, where lower energies occur than
expected (figure (5.12), also much more electrons are trapped.

Synchrotron radiation not only reduces the energy significantly, but it also im-
pairs the energy spread and with this the quality of the electron beam. The relative
energy spread with synchrotron radiation can be seen in figure (5.16) on page 66.
Starting at about a0 = 128 the energy spread increases far over 10% with increasing
a0.
In case of R = 12λ it seems, that the effects of synchrotron radiation occur on much
smaller laser amplitudes, comparable to the simulations at R = 2λ. At this point
it is unclear whether or not this behaviour at R = 12λ is connected to the worse
resolution used in the R = 12λ simulations compared to the other ones.

If instead of classical synchrotron radiation the creation of gamma quanta is
used the results almost does not differ. The quantum dynamical creation of high
energetic photons is implemented in the VLPL-code in a similar manner as the
creation of synchrotron radiation. The main difference is the fact, that the gamma-
quanta are real PIC-particles, which move and can interact with other particles and
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Figure 5.12: Energy ratio similar to figure 5.8 a) on page 60, but now with classical
radiation reaction.

Figure 5.13: Histogram from two simulations at R = 12λ and a0 = 512 with syn-
chrotron radiation (a) and without (b) at different time steps.
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Figure 5.14: Two cuts through the density distribution of bubble acceleration sim-
ulations at R = 12λ, a0 = 512 and t = 1000λ/c. One simulation was done with
synchrotron radiation (a) and one without (b).

Figure 5.15: Ratio of the expected number of accelerated electrons over the num-
ber of electrons accelerated during the simulations QN = Nsim/Ntheory. Now with
synchrotron radiation.
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Figure 5.16: Relative energy spread similar to figure 5.11 a) on page 62, but now
with classical radiation reaction. With R = 12λ and a0 = 512 no mono-energetic
peak could be found in the electron spectrum.

fields via the generation of electron-positron pairs. Also, whether or not photons
are emitted is determined by a Monte-Carlo-like algorithm, based on the energy
of the emitting particles. Emitting gamma-quanta reduce the energy of electrons,
similar to the effect of synchrotron radiation. One would suspect, that these impact
on the electron energy would only occur on very hight electron energies. In figure
(5.17) on page 67 it is shown that for the whole parameter space the decrease of the
energy of electrons becomes significant about at the same energy as for the classical
synchrotron radiation. Furthermore, even the amount of which the electron energies
are reduced are comparable for both sets of simulations. From this it seems, that
in the regime I studied the difference between classical synchrotron radiation and
quantum-electro-dynamical creation of gamma quanta is negligible. An exact study,
at which point to use radiation reaction emulating classical synchrotron radiation
and at which point QED-effects become more important, therefore seems to be not
necessary.
From this an upper limit for the scaling laws seems to be around a0 ∼ 128 at which
point synchrotron radiation cannot be neglected any more. Below that the energy
emitted by the electrons does not significantly influence the acceleration.

5.1.4 Summary

In this section I investigated the scaling laws for the bubble regime (chapter 3.3.3)
specifically the energy gain of the electrons and the number of electrons accelerated.
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Figure 5.17: Energy ratio similar to figure 5.8 a) on page 60, but now with gamma
quanta creation.

For this I performed a series of simulation in order to find laser pulse specific, di-
mensionless factors for the scaling laws. With these factors I conducted a parameter
scan in order to find a regime in which theory matches prediction and therefore
validate the scaling laws. Having found such a regime I tried to find the limits of
this regime and to understand them. As lower boundaries I found that for low laser
amplitudes a0 ≤ 4 and small spot sizes R ≤ 2λ the bubble formation became more
and more incomplete. The laser pulse instead was followed by a periodical wake-
field, which denotes the beginning of a different regime of particle acceleration. An
upper limit at a0 ∼ 128 is a result of energy loss of the electrons due to synchrotron
radiation. Even higher laser amplitudes in certain cases lead to incomplete forma-
tion of the bubble. At lower laser amplitudes the radiation emitted by the electrons
while betatron oscillating inside the bubble does not influence their energy gain
significantly. An upper limit for the spot radius is not known so far. Synchrotron
radiation also reduces the quality of the electron beam created by the bubble accel-
eration by increasing the energy spread of the quasi mono-energetic electron bunch.
An additional term, approximating the energy loss at high laser amplitudes due to
synchrotron radiation was presented and briefly discussed.
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5.2 Comparison with bubble acceleration experi-

ment

The simulations presented in this work not only matched theoretical predictions
(see chapter 5.1), but also achieved results which could directly be compared to
experiments done in the field of bubble acceleration. One important aspect of laser-
plasma simulations is the development of the laser pulse during the simulation.
Interpolation of fields, particle movements and positions, the resolution of the lattice
and boundary conditions in a PIC-simulation can lead to non-physical behaviour
like numerical dispersion, numerical heating, other conservation issues and more.
Some numerical issues can be spotted fairly easily while others have a more subtle
impact on simulation results. Detailed information about numerical issues with
simulations can be found in the book by Birdsal and Langdon from [1985]. Especially
the more subtle numerical problems as well as any assumption or simplification a
numerical simulation might include make it vital to compare simulation results with
experimental data. In this chapter I would like to present some simulations made to
reproduce experimental data using the same input parameter as been used by the
respective experimentalists.

5.2.1 Pulse development

Since the driver for the wake field, which is the source for the electron acceleration,
is a laser pulse I would like to start with a study of the development of a laser pulse
travelling through a plasma. This study was done in collaboration with Ariane
Pipahl, who published the results in [2010]. All the experimental data presented
in this chapter have been obtained by her working at the Arcturus Laser Facility
of the Heinrich-Heine-Universität. The initial electric field and its corresponding
envelope can be seen in figure (5.18) on page 69. The envelopes have been created by
extracting the electric field data from the simulation and Fourier-transforming them
along the propagation direction. In figure (5.19) on page 69 three laser envelopes
are shown. The initial envelope of the simulated laser pulse after initialisation (grey),
the laser pulse after travelling through a plasma of density ne = 5 ·1018cm−3 and the
envelope of a laser pulse according to experimental data after travelling through a
plasma of density ne = 6.6 ·1018cm−3. In both cases a laser pulse with an amplitude
of a0 = 4.7 a duration of 28fs and a radius of about 5µm. Both simulation and
experiment point out a red shift of the laser pulse with an additional peak at about
925nm in the simulation data and at about 900nm in the experimental data. This
red shift is a result of a self-modulation of the laser pulse. Also, due to the increase
of electron density and relativistic electron mass in front of the laser (see chapter
(2.2.2)) a change in the different diffraction is created. This increase of density of
mass induced by the laser pulse in return leads to a modulation of the electric field.
The increase of density in front of the laser pulse can be seen in figure (5.20) b) on
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Figure 5.18: Electric field of a just initialised laser pulse in propagation direction
(black) and the envelope as a function of the laser wave length λ (red).

Figure 5.19: Laser envelope simulated
of a laser pulse before (gray) and after
(red) travelling through a target of ne =
5 · 1018cm−3. Blue denotes experimen-
tal results by Ariane Pipahl in the same
regime.

Figure 5.20: a) Electric field along the
propagation axis. A clear modulation at
the front of the pulse can be seen. b) Elec-
tron density along the propagation axis.
At the same position as the field modula-
tion, an increase of electron density was
found.
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page 69. The resulting modulation is found in figure (5.20) a). This modulation
is the reason for the red-shift in the envelope. The experimental data show an
additional blue-shift, which is a results of ionisation. The electron density in the
experiment is a function of time as well as position and the rear part of the laser
pulse experienced a much different electron density as the front part. Since during
the simulations the gas was fully ionised and therefore ionisation effects did not take
place, this behaviour cannot be seen in the simulation data. The overall results seems
comparable. Both data sets show a red-shift and a second signal peak at around
900− 925nm. The red shift in the simulation though is a more collective one then
in the experiment and the position of the second peak and its hight relative to the
hight of the first peak differ slightly between simulation and experiment. It should
be noted that the positions of the peaks differ only by less than 10% and that the
rather collective and smooth shift of the simulation curve to higher wave length most
likely is based on the fact that the simulation did not include ionisation. Therefore
the simulation was apt to reproduce the physical behaviour of the development of
the laser pulse with only slight differences in the red-shift, the exact position and
relative hight of the second peak.

5.2.2 Electron acceleration

In chapter 4.1 I stated that PIC-simulation are considered to be very realistic. To
check how close to reality the simulations, I conducted, were, I compared my re-
sults to data obtained from experiments with corresponding parameters. While
comparing electron spectra obtained from experiments with electron spectra from
simulations, one should keep in mind that experimental results tend to differ slightly
from experiment to experiment. I tried in this chapter to regard a large number of
experimental results in order to find typical structures, which I then compared the
data from simulations. Also, I would like to point out, that both facilities from
which the experimental data originate did not anticipate electron energies of more
than 200MeV . Both facilities are not equipped to deal with such electrons safely,
therefore no data about such electrons were available.
An experimental set-up for a bubble acceleration includes all the equipment for cre-
ating a laser pulse, guiding and focussing it on a target of course. The part of the
set-up, which was most important for my simulations though, was the target and
its immediate surrounding. Typically this would be a ultrasonic gas stream ejected
from a gas nozzle inside an evacuated container, the gas chamber. This can be seen
schematically and simplified in figure (5.21) on page 71. Since many laser systems
are able to emit several pulses within short periods of time, it is quiet useful to have
a target, which is replaced quickly between several shots. Furthermore, since the
target is going to be ionised (by the laser pulse itself or a ’pre-pulse’) and one usually
wants to use under-dense targets, a gas stream seems to be a very good choice. This
method has a few minor downsides however. The gas stream moves at a ultra-sonic
speed, which means that it is almost static in the frame of the laser pulse, but the
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Figure 5.21: Simplified experimental set-
up for a bubble experiment. A laser pulse
is focussed on a gas stream on one side.
Within the stream, emitted by a gas noz-
zle, a bubble is formed. After the acceler-
ation, electrons will leave the gas stream
on the opposing side.

Figure 5.22: Density distribution of gas
jet above the gas nozzle. Turquoise de-
notes the distribution just above the noz-
zle, while red corresponds to the distribu-
tion far above the nozzle.

target area is replenished between shots. The only downside is, that most gas cham-
bers cannot be evacuated in the same speed the gas is filled in. That means that
during later shots in the same experiment the laser interacts with gas even before
it is focussed on its target. Also, the density profile poses challenges. The density
distribution of the gas stream almost always will have a gradient, which is difficult
to control, and not an entirely flat plateau. The profile will become worse with
increasing distance to the nozzle as is illustrated in figure (5.22). Unfortunately it is
unpractical to focus the laser pulse too close to the nozzle, because the laser pulse
can significantly damage the nozzle. In the simulations presented here I modelled
the gas stream as a fully ionised plasma with a linear gradient and a flat plateau.
The first experiment was done by Ariane Pipahl at the Arcturus Laser Facility

at the Heinrich-Heine-University Düsseldorf. In her experiments she used a laser
pulse with a wavelength of λ = 800nm a pulse duration τ = 28fs = 10.5λ/c, a
spot radius of rL = 5µm = 6.25λ and an intensity of I0 = 4 · 1019W/cm2 corre-
sponding to an amplitude of a0 = 4.3. The electron density in this experiment was
ne = 1.3 · 1019cm−3 = 7.44 · 10−3nc. The result of one experiment is shown in figure
(5.23) on page 72 after an acceleration length of about 2500µm. A distinguished
multi-peak spectrum can be seen to energies up to 120MeV . Electrons of higher en-
ergy exist though they do not seem to be mono-energetic. The measurement stopped
at 200MeV , because only electrons with energies of 10 − 200MeV were expected
and no measurement of higher energies have been conducted. Simulations at exactly
the same parameters led to energy-spectra, which can be seen in figure (5.24) and
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Figure 5.23: Energy histogram of electrons after experimental bubble acceleration.
Data obtained by Ariane Pipahl. Exact data about the electron numbers were not
available.

(5.25) on page 73. Figure (5.24) was done during an early time step of the whole
acceleration. It shows a similar multi-peak structure and energies of up to 150MeV ,
although there is another very flat peak at about 220MeV . A comparison of the
number of electrons trapped in experiment and simulation was not done, due to the
lack of information about the number of electrons in the experiments. In contrast
to the experiments in my simulations the laser pulse never reached the acceleration
length of 2500µm ∼ 3000λ as can be seen in the histogram (5.25). There the multi-
peak feature is lost and the energy of the accelerated electrons is smeared out over
more than 200MeV . Explanations for the factor of 2.5 between the experimental
and the simulated acceleration length could be slightly different parameters in the
shot presented in figure (5.23). This could include a different plasma density or
a slightly higher laser amplitude, which could lead to a larger acceleration length.
Also, a shorter gas stream during this specific shot or deviations from the linear
gradient and the flat plateau could explain the differences. Still both simulation
and experiment show the same multi-peak structure at about the same energies.
The reason for this multi-peak structure can be seen in figure (5.26) on page 73.
The picture shows a transversal cut through the electron density distribution during
the early time in the simulation. There a distorted bubble can be seen and inside
the electron bunch shows a clear segmentation. Since the accelerating field is linear
to the relative position ζ(x) (equation (3.32) on page 34) all the different segments
are subjected to electric fields of different strength. This leads to several peaks in
the electron spectrum presented in figure (5.24) and most likely the experimental
histogram 5.23.

In chapter 6 I will present two collaborations with Michael Schnell from the In-
stitut für Optik und Quantenelektronik at the Friedrich-Schiller University Jena. In
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Figure 5.24: Energy histogram of elec-
trons from simulation at t = 1000λ/c.
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Figure 5.25: Energy histogram of elec-
trons after having left the plasma (at t =
3500λ/c).

Figure 5.26: Cut through the electron density distribution of a bubble simulation
with parameters corresponding to the experiment done by Ariane Pipahl. A distorted
bubble with a strongly segmented bunch of electrons is visible.
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Figure 5.27: Energy histogram of elec-
trons from three shots during the same
experiment conducted by Michael Schnell.
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Figure 5.28: Energy histogram of elec-
trons after simulated bubble acceleration
with the same parameters as in the ex-
periment.

both works we achieved quiet good agreement between simulation and experiments.
Therefore I would like to discuss electron histograms obtained from Schnell’s exper-
iments and from my simulations. I was given a sample of typical data obtained from
a single acceleration experiment. During this experiment several ’shots’ of the laser
facility haven been focussed onto the same gas jet in rapid succession. The data from
this experiment was used as a basis for a statistical analysis for this experiment. The
electron spectrum from three of these shots, which are typical for the whole data
set, can be seen in figure (5.27) on page 74. The energy of the trapped electrons
from these shots range between 100MeV and 130MeV . The peaks are well defined.
For all the shots the acceleration length was about 1.3mm = 1625λ. In figure (5.28)
data from a simulation with parameters exactly corresponding to the ones from the
experiment is shown. Similar to the simulations of the Pipahl-experiment I found
in the simulations higher energies as the ones in the experiments. The histogram
at t = 1550λ/c fits the experimental results quiet well, especially shot #2 and #3
with only slightly higher energies at about 150MeV . After reaching the same accel-
eration length as in the experiment after a simulation time of 2550λ/c the electron
energies are much higher than observed by Schnell at about 200MeV . This implies,
that the laser pulse was not depleted after 1.3mm during simulations. Here, only a
slight difference in the acceleration length of about 100λ was found.
From this studies, it seems that the VLPL-code is able to simulate realistic sce-
narios very well including details in field development and particle energies. The
only exemption was a significant different acceleration length in one of the experi-
ments. Since this experiment was the only exception, there is not enough data for
a systematic analysis of the reason.



5.2. COMPARISON WITH BUBBLE ACCELERATION EXPERIMENT 75

5.2.3 Summary

This section dealt with comparisons of experimental data with the PIC-simulation
I conducted using the VLPL-code. I focussed on the development of the laser pulse
itself and the energy of electrons gained during the acceleration. During the simula-
tions the laser pulse developed very similar to the laser pulse in the experiments. The
same red-shift and pulse modulation could be found in both sets of data. However
a most likely ion induced, slight blue-shift was absent in the simulation data. This
was not surprising since the simulations did not include ionisation. Electron energies
and noticeable structures in the electron spectra gained from experiments could be
reproduced with simulations. Only slight deviations were found in the spectra. One
experimental set of data suggested a very different acceleration length, while other
experiments agreed with the acceleration length from the simulations.
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Chapter 6

Synchrotron radiation and
application

6.1 Introduction

In the introduction I already mentioned, that the creation of radiation is one of
the main application for fast electrons. In particular for synchrotron radiation (see
chapter 2.3) one needs electrons from very powerful accelerators such as the bubble
accelerator. In this chapter specific problems and application from synchrotron
radiation generated by electrons within the bubble regime will be presented. Some
of the findings of this chapter are the results of collaborations with experimental
physicists.

6.1.1 Calculation and representation of radiation and polar-
isation

In the VLPL-3D code the emission of synchrotron radiation is calculated using the
momentum updates which are calculated in PIC-simulations anyway. With the
change of the momentum in all spacial directions the code calculates the number,
energy and direction of photons being emitted by every macro-particle. The nu-
merical equations are based on the exact equation for classical betatron radiation
presented in [1980]. In figure (6.1) on page 78 the synchrotron spectrum during a
simulation on a bubble acceleration experiment is presented. The figure shows the
spectrum of synchrotron radiation coming from thermal distributed electrons, but
with another small peak at several keV . This hump is a result of the quasi mono-
energetic electron bunch trapped inside the bubble.
The photons created by the synchrotron module decrease the electrons energy by
the amount of energy the photons carry, but otherwise there is no interactions be-
tween photons and particles. The photons do not create any fields or interact with
particles otherwise. They do not take part in the simulation, but are just stored for

77
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Figure 6.1: Exemplary synchrotron spectrum during a bubble simulation at a0 = 2.1
and ne = 0.00572ncr.

further analysis. The output file for photons contains a three-dimensional histogram
of photon energy and the to angles in which the photons have been emitted.

In order to analyse the polarisation of the emitted synchrotron radiation, I in-
cluded another histogram containing the polarisation of the photons. The polar-
isation Pi for a certain direction i is calculated using the absolute value of the
momentum change dpi

P2
i =

dp2i
dp2x + dp2y + dp2z

. (6.1)

If the calculated polarisation only has one non-vanishing component the cor-
responding photon is linear polarised. The majority of radiation from a bubble
simulation although is expected to be a superposition of different polarisation direc-
tions and types. Since the emitting electron during a bubble acceleration usually has
a change of momentum in forward direction (x−direction) the module also calcu-
lates a x−polarisation which in the following will be of no concern. For a reasonable
analysis of the transversal polarisation I transformed the equation

P2
x + P2

y + P2
z = 1 (6.2)

into
P̃2

y + P̃z
2
= 1 (6.3)

using the new variable

P̃i
2
=

P2
i

1− P2
x

. (6.4)
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Figure 6.2: The angle Φ
which describes the transver-
sal polarisation of a photon
during a Bubble simulation
in relation to the transversal
spatial axis.

Figure 6.3: Exemplary plot of the polarisa-
tion of synchrotron photons from a Bubble ac-
celeration. The x−axis denotes the angle be-
tween the spatial y−axis of the simulation box
and the polarisation of a photon, while the
−y−axis of the plot shows the number of pho-
tons with that polarisation direction.

With this new polarisation variables I like to define the angle Φ as the angle
between the transversal axis y and the polarisation vector P̃ on the 2D-plane spanned
by the transversal axis y and z as shown in figure (6.2) on page 79. As been shown
in figure (6.2) an angle Φ = 0 means a photon is linear polarised in y− direction,
while Φ = 45◦=̂π/4 corresponds to a photon which is circular polarised in the
z − /y−plane. This new variable Φ helps visualise the two dimensional, transversal
component of the polarisation of photons with a one dimensional variable.
As an example, figure (6.3) on page 79 shows the polarisation of photons from a
bubble acceleration. From the predominant z− and y−polarisation it is evident that
the electrons inside the bubble were oscillating in both transversal direction during
the acceleration. The higher amount of y−polarised photons is due to the fact that
the laser pulse in this simulation was y−polarised and some of the electrons already
reached the back end of the laser pulse inside the bubble.

6.1.2 Velocity dependent synchrotron radiation

From the findings of Kostyukhov in [2003(Ko)] it can be shown from

K = γ2π
rβ
λβ

(6.5)
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for K ≫ 1 and the oscillation amplitude rβ of a single oscillation electron, that

rβ =
2cωc

3ω2
β

1

γ2
, (6.6)

with the cut-off frequency ωc from equation (3.40) on page 36 This means that the
transversal oscillation of a electron is quenched during a bubble acceleration as long
as that electron gains energy. In [2012] Schnell et al. studied the possibility to deduct
the diameter of an electron beam inside a bubble using the emitted synchrotron
radiation.
For this work I conducted a series of simulations in order to study the dependence
of emitted radiation on the energy of trapped electrons inside a bubble. The set
of simulation in the following was done using a linear polarised laser pulse with a
Gaussian envelope and an amplitude of a0 = 1.5, a duration of τ = 8.11λ/c and
a width of R = 14.26λ. The electron density was ne = 0.006ncr. The spatial
resolutions were 0.1λ in propagation direction and 0.5λ in transversal direction.
In figure (6.4) on page 81 the energy distribution of all electrons inside the simulation
box is shown at different time steps. The red curve corresponds to the energy
distribution before quasi mono-energetic acceleration takes place. The green and
blue curve show the energy of the trapped electrons as a peak, which shifts during
the acceleration to higher energies, while the peak becomes wider. The pink curve
represents the electron energy at a time, when the laser pulse used up its energy,
the bubble became unstable and there is no quasi mono-energetic acceleration any
more. This graph we compared with the synchrotron radiation presented in figure
(6.4) on page 81. There it seems, that the majority of photons are emitted during
the acceleration of the trapped electrons.

Taking into account more data points we found confirmation of this as shown in
figure (6.6) on page 81. There it can clearly be seen that the synchrotron radiation
peaks at about the same time as the electron energy. Before and after the main
part of the acceleration significantly less radiation is emitted by the whole system.
This proved Schnell’s claim that most of the radiation detected in his acceleration
experiment was originated inside the bubble. Therefore it was legit to use this data
to make statements about the shape of the trapped electron bunch.
I also were able to directly confirm the bunch size measured by Schnell (see figure
(6.7) on page 82) with direct measurement of the diameter of the electron bunch
inside the bubble during simulations (see figure (6.8) on page 82). These results
helped to prove that synchrotron radiation from bubble experiments is a valuable
instrument for diagnosis of the oscillation of trapped electrons.

One should keep in mind, that bunch size d and the amplitude a of the oscillation
of the electrons is not necessary the same. Especially if one considers a situation, in
which electrons tend to oscillate in one specific direction y. This can be achieved with
the laser polarisation, off-axis injection of electrons into the bubble or asymmetric
spot size (see next chapter (6.1.3)). In such a case the amplitude of oscillation in
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Figure 6.4: Electron energy histogram
of all electrons inside the simulation
box. The three different curves belong
to the same bubble acceleration simu-
lation at different simulation times.

Figure 6.5: Synchrotron radiation
during bubble acceleration. The graph
shows the number of photons emitted
during a time step of 100 laser cycles.

Figure 6.6: Data about synchrotron radiation from a bubble acceleration in depen-
dants of electron energies and energy spread. Green shows the position of the peak
in a electron energy histogram, red the width of the energy peak and blue the number
of photons emitted.
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Figure 6.7: Experimental data of
the size of the electron bunch inside
the bubble as a function of the elec-
trons average γ-factor as presented in
[2012] by Schnell et al.

Figure 6.8: Snapshot of the electron
density during a bubble acceleration.
This picture is a cut in transversal di-
rection showing the electrons trapped
inside the bubble and the diameter of
the electron bunch.

one direction perpendicular to y can be almost vanishing, while the size of the bunch
in this direction z does not vanish. Equation (3.38) states, that the electric field
of the bubble close to the propagation axis is very low. Yet electrons repulse each
other due to their own electric field. Therefore electrons with low initial transversal
momentum in z direction and almost on-axis injection into the bubble might travel
with only a small oscillation az ≤ dz in z−direction. In case of few electrons doing
strong oscillations, a and d can be very close to each other. Amplitude and spot
diameter are illustrated in figure (6.9) on page 82.

Figure 6.9: Density distribution of electrons in a bubble acceleration. Blue represents
low electron densities, red denotes high densities and the laser spot is illustrated in
yellow. a) shows the oscillation amplitude of electrons undergoing betatron oscilla-
tion inside the bubble. b) shows the diameter of the trapped electron bunch.
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6.1.3 Polarisation of synchrotron radiation

As discussed in chapter (2.3) electrons trapped inside the bubble oscillate around
the propagation axis. If there are no asymmetries inside the bubble or during the
formation of the bubble the electrons should oscillate equally in every transversal
direction. As an comparison to figure (6.3) on page 79 which showed the polarisation
of an electron bunch which is more or less evenly oscillating in both transversal di-
rections, the pictures (6.12) and (6.13) on page 85 show the polarisation of radiation
from unevenly oscillating electrons. In the simulation corresponding to figure 6.12
electrons were created in a already existing bubble, but with a distance of about the
bubble radius in y−direction away from the propagation axis. Perpendicular to this
off-axis direction in the simulation, which lead to (6.13), the electrons were created
off-axis in z−direction. As can clearly be seen the polarisation of the synchrotron
radiation is predominant in the same direction as the electrons have been created in.

With the addition of the calculation and output of polarisation of emitted syn-
chrotron radiation I joined Schnell’s research of the polarisation of radiation from
a bubble acceleration in [2013]. This study proved that it is possible to control the
polarisation of the radiation emitted from the electrons inside a bubble. This was
done by either using a tilted pulse front or using a asymmetric laser pulse. For this
study I conducted several simulations in order to investigate the dependence of the
polarisation of the radiation on the exact shape of the laser pulse. The two modi-
fication of shapes I used were laser pulses which were prolonged in one transversal
direction and laser pulses with tilted pulse front.

In case of the tilted laser pulse, the longitudinal coordinate x in the Gaussian
profile of the laser envelope was transformed into

x′ = x− y tan


πψ

180


(6.7)

in order to obtain a pulse which has a pulse front tilted by the angle ψ in the
transversal y-direction (see figure (6.10) on page 84).

In figure (6.14) on page 85 the quotient of all photons with at least 95% y−polarisation
or Φ ≤ 0.05 · π/2 over the number of photons with at least 95% z−polarisation or
Φ ≥ 0.95 · π/2 is shown. This figure proves that the number of photons polarised in
tilt-direction compared to the photons polarised perpendicular to that direction can
be increased with tilt angles ψ up to 20◦. At higher angles the ratio decreases until
at about 40◦ when the effect is nullified. Comparing this to the experimental data
from Schnell we were able to achieve a very good agreement as shown in figure (6.15)
on page 85. In this figure again a quotient is shown, but this time of the number of
electrons polarised perpendicular to the tilt direction over the number of photons
polarised in pulse direction. Since the pulse angles during the experiments were
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Figure 6.10: 2D-cut of intensity distribution of two
pulses. Both are propagating in x−direction. The
right one has a pulse front tilted by Ψ = 30◦.

Figure 6.11: Intensity plot of an
asymmetric laser pulse used in a
Bubble acceleration experiment.

measured at different points than in my simulations, the tilt angles presented so far
are not the same as the ones in Schnell’s experiments and had to be transformed in
order to obtain the results.
In order to model a asymmetric laser pulse as it was used in several experiments I
initialised a second laser pulse with just 10% of the power of the main pulse. Both
pulses were close to each other with a distance of 21λ between the center of their fo-
cusses. The second pulse was initialised off-axis in y−direction while the main pulse
travelled on-axis. The exact shape was modelled according to the measurements
of Schnell (shown in figure (6.11) on page 84) during one of his experiments. This
pulse shape proved to be the most successful one in order to control the polarisation
of the emitted synchrotron radiation. The figures (6.16) and (6.17) on page 86 show
a strong prominence in the y−polarisation of the radiation up to about nine times
the number of photons than in z−direction. With this results it is evident, that the
polarisation of synchrotron radiation can be controlled both with a pulse front tilt
and an asymmetric laser pulse. The better results though were achieved using an
asymmetric pulse.

6.1.4 Summary

In this chapter I focussed on the synchrotron radiation emitted from the electrons
inside the bubble and the polarisation of that radiation. I wrote a routine in order
to calculate the polarisation of synchrotron radiation and compared my results with
experimental data. My data confirmed that synchrotron radiation during a bubble
acceleration mainly is emitted by the trapped electrons. We also found good agree-
ment of the specific frequency of the synchrotron radiation from which the diameter
of the bunch of trapped electrons can be calculated. This calculated diameter could
be matched with direct measurements of the electron bunch from my simulations.
Furthermore we could verify that the polarisation of the synchrotron radiation is
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Figure 6.12: Polarisation of syn-
chrotron radiation of particles injected
off-axis in y−direction into the bubble.

Figure 6.13: Polarisation of syn-
chrotron radiation of particles injected
off-axis in z−direction into the bubble.

Figure 6.14: Relative y−polarisation
of synchrotron radiation from simula-
tions with different tilted laser pulses.
The x−axis denotes the pulse tilt an-
gle in the simulation, while the y−axis
shows the quotient of the number of
photons emitted in pulse tilt direction
over the number of photons polarised
perpendicular.

Figure 6.15: Comparison of simu-
lation data and experimental results.
The x−axis denotes the pulse tilt an-
gle in the experimental set-up, while
the y−axis shows the inverse of the
Quotient from figure (6.14).
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Figure 6.16: Polarisation of radiation
from a bubble created by a laser pulse
prolonged in y−direction.

Figure 6.17: Relative y−polarisation
of synchrotron radiation from simula-
tions a symmetric laser pulse and an
asymmetric laser pulse.

directly correlated to the oscillation direction of the electrons inside the bubble.
This direction could be controlled in experiments as well as in simulation by using
asymmetric or oblique laser pulses. This information made clear that synchrotron
radiation is a useful diagnostic tool for bubble experiments.



Chapter 7

Towards advanced bubble
acceleration schemes

7.1 Introduction

So far, experiments were only able to accelerate electrons to several 100MeV using
the bubble regime. Higher energies were achieved for instance by Leemans et al.
in [2006, Jul], but in a slightly different regime using beam guiding. According to
scaling laws, energies of even GeV would be possible given strong enough lasers.
Unfortunately, achieving these energies require very strong laser pulses, which at
the time, this thesis was written, are not largely available. The reason for the need
of this high energies are de-phasing and pulse depletion, as explained in the chapters
(3.2.3) and (3.3). Since the energy of the laser pulse is depleted at some point and
electrons start catching up with the laser pulse, bubble acceleration has a limited
acceleration length.

Another problem is the beam quality at high energies. As pictured in figure (5.16)
on page 66), the energy spread of the electrons increases at high laser amplitudes
due to synchrotron radiation. Therefore the bunch of accelerated electrons has a
wider range of velocities and would be less useful for example the application in a
FEL than electrons created with smaller laser amplitudes.
Both problems are focus of current research. Two projects I would like to present
here.

7.1.1 Side injection

Electron motion during wave breaking is a rather chaotic. Because of this, initial
velocities and and positions of electrons at the back side of the bubble tend to vary.
Also, self-injection seems to be a process which does take place over a certain pe-
riod of time. As can be seen in figure (6.9) on page 82, electrons inside the bubble
are spread over a certain area and, because of this, are subject to different field
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Figure 7.1: Bubble without self injected electrons (blue) with driving laser pulse
(yellow). Electron bunch (red) is injected into the bubble.

strengths. This of course leads to a certain spread in the energy histogram around
the energy predicted by the theory.
In order to reduce this energy spread, one possible way might be trying to avoid
self injection. Instead of self-injected electrons with their issues mentioned before,
one could try to inject an electron beam with good beam quality into the bubble
(figure (7.1) on page 88). From the technical point of view, it is rather simple at
low energies (keV or few MeV ) to generate an electron beam with a large number
of electrons and a small energy spread. If it would be possible to inject such a beam
into a bubble, the resulting beam after the acceleration could have significantly
improved properties over self-injected electron beams. However, slow, self-injected
electrons would interfere with the faster injected electron beam. In order to keep
slow electrons from affecting the acceleration by beam loading and other effects,
self-injection should be avoided in this scheme.

At the time, this thesis was written, to the best of my knowledge, no reliable in-
formation were available about avoiding self-injection, without avoiding the creation
of a stable bubble as well. Since the injection seems to be correlated to gradients
in the background electron density, I conducted a series of simulations in order to
find, whether or not, self-injection can be avoided. Good results were achieved using
a slight gradient instead of a density plateau as shown in figure (7.2) on page 89.
Figure (7.3) on page 89 shows a cut through the density profile of a bubble along
the propagation axis. This bubble, seen in a), lacks the typical electron bunch or
stem, which is clearly visible in other figures (for example figure (3.6) on page 38).
Still, injection took place, but on a smaller scale. In b) a bunch of injected electrons,
performing betatron oscillations, is visible. During this simulation 90% of the in-
jected electrons were trapped inside the bubble. The energy of the trapped electrons
in comparison can be seen in figure (7.4) on page 90. The trapped electrons were
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Figure 7.2: a) Density profile along the propagation direction of the laser pulse for
the plateau profile (black) and the slightly rising profile (red). b) density distribution
for the channel profile in transverse direction.

Figure 7.3: Density profile of a cut through the longitudinal center of the simulation
box. The bubble (visible in a) travels in positive x-direction. b) shows the density of
side injected electrons inside the bubble.

accelerated in a mono-energetic fashion with only a few background electrons accel-
erated at all. However the injected electrons only reach energies similar to those of
the background electrons. In this specific scenario the injection of pre-accelerated
electrons did not result in higher energies than a common bubble acceleration.

So far I could not find any scalability of this method. Finding the specific values
for the length of the initial gradient, the rate at which it is rising, the density, at
which the initial gradient stops and the rate of the slightly rising gradient (compare
figure (7.2) on page 89) is a lengthy progress. The dependency of these gradient
parameters on the spot size or the field amplitude are unclear at the moment. This
means, that until now a set of gradient parameters, which actually does prevent self-
injection for a given laser pulse, can not be used in order to calculate parameters
for different pulse. One reason for this is the fact, that I only obtained working sets
of gradient parameters for a very small number of pulses.
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Figure 7.4: Energy histogram of background electrons (red) and side-injected elec-
trons (green).

Since the work with different gradients was only partially successful so far, I
investigated another option. For this I used a plasma with a channel in longitudinal
direction in size of the laser pulse. Such a channel would help focussing the laser
pulse over a long distance as shown by Geddes et al. in [2004, May]. It also might
counter-act the self-injection because of the small number of electrons on-axis. Here
a laser pulse with spot size R = 6λ and laser amplitude a0 = 6 was used for the
simulations. The density profile used in the following simulations is shown in figure
(7.2) b) on page 89. Figure (7.6) b) shows that, unlike in the previous simulation
without a channel, almost no electrons from the background were trapped. After
an acceleration length of about 800λ the laser pulse started to significantly change
shape and the beam quality worsened. An energy histogram of the electrons at
an acceleration length of 800λ can be seen in figure (7.6) a) on page 92. There it
becomes obvious, that next to no background electrons were trapped. The energy
spread of the injected electrons is less than 10%, but the overall energy is quiet low.
According to equation (5.11) on page 57 an energy of 216MeV was expected. The
simulation ended with an energy of about 150MeV of the electron bunch, which
had an initial energy of less than 4MeV . The reason for this difference in energies
might be the lower density on-axis inside the channel leading to lower electric fields
inside the bubble. This is not entirely investigated, yet, but still the result goes
to show, that the concept is able to create bubbles without self-injection. Another
important factor for avoiding side injection is the pulse length. So far I always tried
to use spherical pulses for bubble accelerations. This was done in order to maximise
the energy of the laser pulse and use less restrictive parameter for experiments to
come. However short pulses proved to be much more efficient in creating more stable
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bubble with less self-injection. This is illustrated in figure (7.5) on page 92. There
cuts through the electron density distribution are shown along the propagation axis
for two simulations at different time steps. Both simulations feature a laser pulse
with spot size of R = 4λ an amplitude of a0 = 15 and a channel of width 4λ in the
background plasma distribution with a plateau at a density of n = 0.34ncr according
to the scaling laws. In case of a) the pulse duration 0.5λ/c was used. This resulted
in a bubble which hardly changes shape after its formation and with next to no
injection. In b) a pulse with duration of τ = 2λ/c was used. The pulse still is
shorter than the bubble, which is about as long as wide, but both width and length
of the bubble change during the acceleration. Furthermore, the movement of the
back relative to the laser pulse injects electrons whenever the back of the bubble
falls behind. It seems to be save to assume, that the plasma length has to be longer
than the overall laser pulse in order to keep the back of the bubble from oscillating.
Since the plasma length is proportional to the optimal spot size,

R ∼ 1√
S

∼ 1
√
ne

∼ 1

ωp

∼ kp, (7.1)

it seems that the maximum of the pulse length able to avoid self-injection τm in-
creases with optimal spot size R. In another simulation with pulse width R = 6λ,
amplitude a0 = 6 and therefore plasma density n = 0.006ncr a pulse duration of
τ = 3λ/c led to positive results as been presented in figure (7.6) on page 92. a)
shows an energy histogram at the end of the simulation after 1000 laser cycles. The
green curve denotes the injected electrons with energies up to about 150MeV , while
red shows, that significantly less background electrons were trapped. In b) a cut
through the density distribution around the bubble is presented with the injected
electrons in green. The back of the bubble is well pronounced and seems quiet sta-
ble. These two simulation already suggest, that the maximum pulse duration τm is
not simply proportional to kp and therefore to R, since the simulation at R1 = 6λ
and τ1 = 3λ/c would suggest success at R2 = 4λ and τ2 = 2λ/c, instead of the much
more restrictive R2 = 4λ and τ2 = 0.5λ/c. From these few simulation it seems,
that the mechanism of avoiding oscillation of the back of the bubble and therefore
self-injection is not trivial.

7.1.2 Staging acceleration

Using the idea of injecting accelerated electrons into an existing bubble, the next
reasonable step seems to be staging acceleration. Depletion of a laser pulse as well
as de-phasing (see chapter 3.2.3), limit the acceleration length of trapped electrons.
Together with the acceleration length, the total energy gain is limited. In order to
work around depletion and de-phasing one possible solution might be to use several
bubbles instead of just one. In one stage, the electrons of one bubble, after travel-
ling their acceleration length, are extracted from the old bubble. In the next stage,
the electrons are injected into a new bubble. One possible way of realising staging
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Figure 7.5: Formation of two bubbles over time. a) using a pulse with a pulse
duration of τ = 0.5λ/c and b) with τ = 2λ/c.

Figure 7.6: a) Histogram of electron energies at the end of bubble simulation Lacc =
900λ with spot size of R = 6λ and a0 = 6. Red denotes background electrons, while
green shows injected electrons in the histogram as well as in the density profile b).
b) also shows a cut through the bubble with almost no visible self injection. Side
injected electrons are shown in green.
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acceleration would be to use oblique mirrors in order to separate each stage. A
highly over-dense plasma would reflect the laser pulse driving the bubble. Electrons
of high enough energy would have a very small cross-section for interaction with the
mirror and therefore pass it with little to no effect. The method is illustrated in
figure (7.7) on page 95.
Differences to the previous chapter in the method of injection are apparent as the
electrons are not accelerated from the side into an existing bubble. Still the tasks
of creating a bubble with next to no self injection and the timing of injecting the
accelerated electrons into this bubble remain. First, I would like to discuss a sim-
plification of the scheme given in figure (7.7). The simplification was done in order
to reduce computation time vastly and divide the problem into two smaller ones.
During a simulation of laser-plasma-interaction, the grid resolution in propagation
direction of a laser pulse has to be rather high. In most simulations presented to far,
the resolution in forward direction was as high as 0.1λ or 0.03λ, while the transversal
resolution was much lower (usually 0.5λ). This not only means, that the number of
cells in forward direction is much larger, but also is the time step for every PIC-step
smaller, as can be seen in equation (4.12) on page 47. A smaller time step means,
that more steps have to be computed in order to simulate an acceleration over a
given time period. In case of a simulation according to figure (7.7), a laser pulse
would propagate on two different axes. One parallel to the overall acceleration axis
and one perpendicular to it. This means, that the resolution in this second direction
has to be increased as well, increasing the computational cost significantly. There-
fore I first simulated a simplified version of figure (7.7), which is given in figure (7.8).
This scheme is similar to the one from figure (7.7), with the main difference, that
the mirrors are not oblique, but perpendicular to the forward axis. Laser pulses
are not created off-axis at the border of the simulation box and re-directed by the
mirrors. Instead pulses are created just behind the mirror at the right moment and
position as to trap the accelerated electrons passing the mirror.
One of the first simulation to successfully transfer an electron bunch from one bub-
ble (stage 2) into another one (stage 3) is shown in figure (7.9) on page 96. It
is important to point out, that not only the parameter already discussed are im-
portant (dimensions of the laser pulse and plasma density distribution), but also
certain timing related values. Equation (3.32) on page 34 states, that the electric
field in forward direction vanishes at the centre of the bubble and then changes its
sign, becoming decelerating. Usually during a bubble acceleration, the de-phasing
length and the depletion length are the same (see chapter 3.2.3), leading to only one
length, the acceleration length (3.44) on page 37. Here, the depletion length is much
larger, because of the guiding channel. The laser pulse needs less energy to push
aside background electrons. Therefore, electrons from inside the bubble have to be
extracted, before de-phasing starts and the electrons enter the decelerating phase
of the electric field inside the bubble. In figure (7.9) at the time t = 200λ/c the
trapped electron bunch already is very close to the centre of the bubble. Extraction
therefore is due. The extracted bunch without accelerating field would loose energy
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travelling through the background plasma. For this reason a new bubble has to
be created quickly after the extraction. An important factor for the re-injection is
the position, the electrons will have, after the bubble is formed. In the picture at
t = 350λ/c it can be seen, that the electrons again are close to the centre of the
bubble. This is the case just after 60 laser periods after the creation of the new
bubble. So it can be assumed that the electrons were injected too far away from
the back of the bubble. However an attempt to inject the electrons too close to the
back would result in a loss of many of the electrons together with the background
electrons, which fail to be self-injected into the bubble. The simulations so far only
showed one stage, namely the injection of pre-accelerated electrons into a newly
formed bubble. Obviously, further stages with more than one bubble are of interest.
The results of a first successful multi-stage simulation can be seen in figure (7.10) on
page 96. The red line shows the energy of the electrons in stage 1 at initialisation.
After initialisation the electron bunch in injected into the first bubble in stage 2
(green) and from there into two additional ones during stage 3 (blue) and 4 (pink).
The final energy of more than 500MeV was achieved after an acceleration of about
1200λ. A regular bubble acceleration should achieve 240MeV . However during all
stages after the second one, the beam quality deteriorated progressively. To this
point it is not clear, whether this can be solved by further optimisation or whether
it is a feature of staging acceleration. Also, it seems that during each further stage
less and less energy was gained. Since in all cases similar pulses with R = 4λ and
a0 = 15 have been used, the total possible energy gain using staging acceleration
might be limited, unless more powerful pulses are used in later stages. A comparison
of the energy from the staging acceleration simulation with electrons without staging
acceleration can be seen in figure (7.11) on page 97. The electrons from the staging
acceleration (red) clearly show higher energies than the pre-accelerated electrons
without further staging acceleration (green) or background electrons (blue) trapped
during the channel simulation without staging acceleration. Here again, after the
staging acceleration the beam quality was significantly worse than the one without
staging acceleration.

7.1.3 Summary

Side injection of electrons has been introduced together with the idea of avoiding self-
injection. After evaluating the influence of channel guided laser pulses and very small
pulses on self-injection, first successful results of pre-accelerated electrons injected
into an existing bubbles were presented. These inserted electrons were accelerated to
even higher energies inside the bubble. As one possible application of side injection,
the concept of staging acceleration was presented. In this scheme electrons from one
bubble acceleration were extracted from that bubble and injected into another one
for further acceleration. After a possible, experimental set-up was discussed, a more
simplified model was simulated. First successful results of a multi-stage simulation
were presented. There it could be seen, that higher energies than with just pre-
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Figure 7.7: Scheme of staging bubble acceleration. After one bubble acceleration
(stage 1) the bubble hits an oblique mirror (black) and its pulse is reflected (blue
line). The electrons continue to travel along the black line and are captured by a
second bubble travelling along the red line.

Figure 7.8: Simplified scheme of staging bubble acceleration. All times are given in
λ/c. In stage 1 an accelerated electron bunch travels through a mirror (black) along
the red line. A laser pulse (yellow) is created in stage 2 and creates a bubble in
which the bunch is trapped. Bubble, electrons and pulse travel until they hit another
mirror, which is passed only by the electrons. In stage 3 another pulse is created.
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Figure 7.9: Snapshots from a simplified staging acceleration simulation. t = 0 shows
the set-up with an pre-accelerated electron bunch (green) and the first mirror (black)
in stage 1. At t = 20 the electron bunch enters the plasma in stage 2, while a laser
pulse (yellow and red) is generated. The bunch is then captured and accelerated
inside a bubble (t = 200). The accelerating pulse, after almost being depleted, hits a
wall at t = 280. The bunch travels through the wall into stage 3, where a new laser
pulse is created. A new bubble is formed and the acceleration continues (t = 350).
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Figure 7.10: Energy histogram of a simplified staging acceleration simulation (figure
(7.8)). Red shows the energy of the electron bunch before injection (stage 1). The
other graphs show the progression of the electron beam through three further stages.
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Figure 7.11: Comparison of energy histograms of electrons after staging acceleration
simulation (red), pre-accelerated electrons without staging acceleration (green) and
captured background electrons (blue).

accelerated electrons can be achieved, but with a loss of beam quality. Whether
this is can be avoided through further optimisation or if it is a feature of staging
acceleration is unknown, yet.



98CHAPTER 7. TOWARDS ADVANCED BUBBLE ACCELERATION SCHEMES



Chapter 8

Summary

The main focus of this work was the bubble regime of laser-plasma acceleration. I
investigated scaling laws based on a theoretical model for the bubble regime with
numerical simulations. Since the scaling laws were derived utilising dimensional
analysis, dimensionless factors for pulse spot size, electron energy and number of ac-
celerated electrons had to be estimated. For this I observed the laser pulse evolution
during simulations, calculated its Full-Width-at-Half-Maximum in order to find the
exact conditions for a stable laser pulse. I compared electron numbers and energies
from simulations to theoretical predictions by conducting a parameter scan. During
this scan I found a wide range of parameters in which the theoretical prediction
matched the simulation very well. This scan also allowed me to fit theoretical pre-
dictions to simulation results in order to obtain the missing dimensionless factors.
Comparing the achieved energies of electrons with the predictions from the theory,
while also investigating the general shape of the plasma oscillations created at differ-
ent parameters, I found the lower limits of the parameter space at which simulation
and prediction stopped matching each other. At very low spot sizes R ≤ 2λ or very
low laser amplitudes a0 ≤ 4, bubbles were not created clearly and observed energies
did not match the predictions. After including radiation in the simulations reaction
in the form of synchrotron radiation as well as creation of gamma quanta, a upper
limit for the laser amplitude at about a0 = 128 became apparent. At this point ra-
diation losses significantly reduce the energy electrons gain during the acceleration,
as well as the quality of the electron beam. An expression describing the loss of
energy was approximated numerically.
My work included several collaborations, which made it possible to compare re-
sults from simulation to data gained from experimental studies. A comparison of
simulation data to experimental data form the Arcturus Facility at the Heinrich-
Heine-University Düsseldorf proved that, in both simulation and experiment, high
densities in front of a laser pulse can lead to pulse modulation and to red shift.
Furthermore, I was able to confirm that simulations with the VLPL-code are able
to reproduce electron energies very similar to ones obtained from data of corre-
sponding experiments. The simulated electrons achieved slightly more energy, but
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their histograms showed comparable structures. An anomaly was found in the ac-
celeration length of the simulation, which differed significantly from data frome one
experimental campaign. Since other experiments seem to agree with the simulated
acceleration length, a specific reason could not be found.
Another part of my collaboration with experimental physicists included a project
dealing with synchrotron radiation emitted from a bubble experiment. During this
collaboration it was possible to prove that the transverse size of the electron bunch
and therefore the amplitude of the oscillation of the electrons inside the bubble can
be calculated from the radiation emitted during a bubble experiment. Also, using
the polarisation of the emitted radiation, the exact direction of the betatron oscil-
lation can be determined. This direction could be calculated and controlled in both
experiment and simulation by using oblique or asymmetric pulses.
The last part of my work gives an overview on projects, which are still subject of
research at the time of writing this thesis. The first project focusses on side injec-
tion of pre-accelerated electrons into an existing bubble. A key to this work is to
avoid the self-injection of background electrons. A preliminary analysis of how spot
size and background plasma density distribution have to be chosen is also given.
One important application of side injection, the so-called staging acceleration, is
presented in the second project. Staging acceleration is a method of accelerating
electrons after the pulse driving a bubble is depleted. In this scheme, electrons are
extracted from one bubble and inserted into a new one. First successful results of
a staging simulation with several bubbles were shown and compared to simulations
without staging. Staging was able to achieve higher energies, but at the cost of
higher energy spread.



Chapter 9

Outlook

Several further studies suggest themselves based on the results presented in this
thesis. The parameter scan presented in chapter 5.1.2 included spot sizes up to a
radius of R = 12λ. This limit was given by the computational effort of simulating
larger spot sizes. With advanced PIC-schemes, such as Lorentz-Boosts, larger spot
sizes are possible. It would be reasonable to investigate spot sizes up to R = 30λ
or R = 50λ at least in order to include the whole range of experimental reasonable
parameters. In particular deviations of the simulation results from the theoretical
predictions at R = 12λ raise the question, whether this deviation are results of the
lower resolution, which had to be used, or of the larger spot size. Also, the question
arises, whether or not the loss of energy of the electrons due to synchrotron radiation
can be modelled with a simple correction of the scaling laws. This study would need
to include an analysis of the depletion length of the laser pulse in the high energy
regime with synchrotron radiation, since the radiation reaction could influence the
energy loss of the laser pulse.
So far, a comparison of simulation results with experimental data about the energy
gain of a bubble acceleration has only be done with data from a few experiments.
A more detailed study, including a comparison of the the number of electrons accel-
erated, might help to find out something about possible limits of PIC-simulations
and how to improve them.
Presented in chapter 7 were the first results in regard of electron side injection and
staging of the bubble acceleration scheme. No scaling for either method was pub-
lished, yet. Open questions also include, whether or not staging deteriorates beam
quality and whether side injection can be used in order to improve the quality of a
given electron beam.
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