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Abstract

This work considers a problem of integrating heterogeneous semi–structured data sources

with the purpose of estimating integration quality (IQ). During the integration of such

data sources the IQ estimation plays an important role, because correspondences and

dependencies within and across the sources are not completely known, the schema or

semantics might be missing, which leads to results with unpredictable trustworthiness.

Therefore, we consider existing methods of analysis of such data sources and investigate

a possible scenario of the integration process. We analyze a problem of uncertainty in

the integration process. For that we introduce examples demonstrating present inability

of accounting for the combined uncertainties affecting integration quality. We introduce

a classification of the types of uncertainties. In order to account for the uncertainties

we suggest using the statistical method Latent Class Analysis (LCA), related to the

Latent Variable Models. This method allows to analyze the influence of the latent

factors on the set of data. As related to the task of integration, by a latent factor we

understand belonging of an object to a real–world class and in its turn the role of LCA

is to interpret correlation of discovering identical objects from different data sources as

a display of that universal factor. We build a statistical model of the integration task,

i.e., draw correspondences between the terms of statistics and the terms of integration.

Presence of at least three data sources is necessary for making use of LCA, at that, when

integrating two sources, an integrated database itself can represent a lacking third source.

The result of the analysis is the probability value of the real–world class membership

for a considered group of objects. Derived by LCA real–world class membership value

includes influence of all types of uncertainties and reflects IQ. By applying LCA to each

triplet of the corresponding classes at the lowest schema level and obtaining real–world

class membership, we can calculate the support of the real–world class for any level of

the database, including database itself, as a weighted average of the real–world class

membership for all classes at the lowest level. The proposed approach does not solve

common problems of integration of the heterogeneous data sources, but rather can be

used for evaluating and improving IQ. Capability to evaluate the IQ gives an important

tool to the users concerned with the data’s trustworthiness. It helps them to answer the
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question of whether or not and to what extent they can trust the data and the database

queries. In case of unacceptable IQ, by tuning integration parameters, for example,

changing integration strategy, appropriate IQ can potentially be achieved.
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1 Introduction

This chapter shortly introduces the context of this thesis, which contributes to the field

of database integration, especially to the task of evaluating and improving integration

quality. In Section 1.1 we briefly describe the problems that occur during the integration

of heterogeneous data sources, giving motivation for our work. Section 1.2 provides an

outline of this thesis.

1.1 Motivation

The problem of integration of heterogeneous semi–structured data sources is a subject

that attracts various groups of researchers ([BCV99, BM99, CFOA02, IJG03, RPRG94]).

One of the projects, devoted to this problem is DIAsDEM1.

The major aim of DIAsDEM is the incorporation of legacy data and semi–structured

documents into an integrated information system. Let us review data sources, considered

for integration by the DIAsDEM project.

Semi–structured documents relate to text databases. Text databases are data sources

that contain word descriptions for objects. These word descriptions are usually not sim-

ple keywords but rather long sentences or paragraphs, such as product specifications,

errors or bug reports, warning messages, summary reports, notes, or other documents.

Text databases may be highly unstructured (such as some Web pages). Some text data-

bases may be somewhat structured, that is, semi–structured (such as XML–documents),

while other are relatively well structured (such as library databases).

Unstructured and semi–structured data does not possess a schema (in the conventional

sense) and therefore, special methods should be applied to them in order to determine

general descriptions of objects classes, as well as keyword or content associations, and

the clustering behavior of text objects.

Knowledge discovery methods deliver results with a certain reliability, and obviously,

the less structure is contained within the text sources the less information upon which

1Part of this work has been supported by the German Science Foundation DFG (grant

no. CO 207/13–1); project DIAsDEM: Data Integration for Legacy Systems and Semi–Structured

Documents Employing Data Mining Techniques.
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1 Introduction

the methods could rely, is provided and in its turn the worse reliability of the final result

is delivered, and vice versa.

Many enterprises obtain legacy databases as a result of the long history of information

technology development (including the application of different hardware and operating

systems). A legacy database represents a system whose semantics is often not known.

A heterogeneous database consists of a set of interconnected, autonomous component

databases. The components communicate in order to exchange information and answer

queries. Objects in one component database may differ greatly from objects in other

component databases, making it difficult to assimilate their semantics into the overall

heterogeneous database.

Heterogeneity could arise due to two reasons. First of them is the difference between

component databases. Component databases could use different data models and as a

consequence, the same concepts could be differently modelled. This leads to a presence

of different structures in schemas. Besides that, the nature of conflicts could differ from

various integrity constraints to different query languages, etc. There exist quite powerful

methods, capable of resolving such conflicts and therefore, such heterogeneity does not

represent a serious problem for integration. On the contrary, the second reason giving

rise to heterogeneity is caused by the absence of unified understanding about meaning

and interpretation of the same data or the data that belongs together. This semantic

heterogeneity presents a serious problem because there is no common case solution, but

rather solutions for some specific problems.

Therefore, even if we do not consider semi–structured data sources with missing

schema information, but only heterogeneous sources with known structure, in order

to integrate such data, many conflicts have to be resolved to find correspondences be-

tween the given schemas and objects. There are also many methods for determining

correspondences between the sources that as well as in the case of structure extraction,

deliver results only with a certain degree of trustworthiness.

The integration of data from different sources into one information system is possible

only when the (database) schema of each source is known and free of contradictions.

Although available integration methods are capable of resolving some conflicts between

the sources, they nevertheless presuppose precise knowledge about the structure within

each source to be integrated and the correspondences between the sources.

Thus, to be able to integrate such sources as heterogeneous semi–structured data

sources various methods determining their structure and correspondences can be applied,

such as data mining, schema matching methods, etc. The uncertainty delivered by these

methods cannot be taken into account by the integration methods since, as mentioned

above, they presuppose precise information. Therefore, it is not possible to evaluate the

integration result, i.e., to give a quantitative estimate of its quality.

2



1.2 Outline of the Thesis

We define our objective as developing such mechanisms that are capable of estimating

the influence of uncertainties on the result of the integration process and, by that, to

improve the integration quality.

1.2 Outline of the Thesis

In the previous section we have shown the necessity for developing a method enabling us

to account for uncertainties and their influence on the integration result. In this thesis

we create a framework for such a method, based on statistical analysis. The remainder

of the thesis presents our approach and is organized as follows:

In Chapter 2 we review the integration process. Firstly, the integration of the sources

with defined structure is presented. Secondly, the possible scenario of integration of het-

erogeneous data sources is given. Additionally we examine sources, that cause conflicts

during the integration, and we provide a detailed classification of conflicts that occur

during the integration of heterogeneous semi–structured data sources.

In Chapter 3 the methods that can be applied for solving specific problems in the

integration process are reviewed. We consider the methods of knowledge discovery and

data mining. They can be used to identify a structure for each source to be integrated.

Then we examine the methods of schema matching, which are used for defining corre-

spondences between data sources on schema level. Also, schema and data integration

methods are analyzed in detail. The problem of data quality is then reviewed.

Chapter 4 provides us with a detailed analysis of the uncertainty. For that, we examine

examples of integration of data sources both with and without uncertainties, in order

to see on a contrast how they complicate estimation of the final result. In addition, we

propose our classification of the uncertainties.

In Chapter 5 the idea and basic principles of the Latent Variable Model are introduced.

Special attention is given to its part, the Latent Class Analysis (LCA) method, applicable

for our task. LCA’s theory and two possible solution scenarios are studied, the first is

based on the system of linear equations and the second is on the maximum likelihood

estimation method.

Chapter 6 is devoted to the questions of applying LCA to the integration task. For

that we expand [AC03a, AC03b, AC03c] and build the statistical model of the integration

task. Then we demonstrate how the integration process could be evaluated making use

of the LCA on the examples. Besides that, we elaborate on the issues of improving the

integration quality.

Chapter 7 concludes the thesis with a brief summary of the problem statement, the

major contributions and the outlook.
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2 Integration Process

In this chapter we review the issues related to the integration process. For that in

Section 2.1 we, at first, describe the integration process for the data sources with defined

structure, and then for those with undefined structure. Then in Section 2.2 we study

the sources that trigger the conflicts during the integration, as well as the conflicts

themselves. Section 2.3 summarizes this chapter.

2.1 Description of the Integration Process

Before considering the integration process for the heterogeneous semi–structured data or

legacy systems we would like to consider the integration on the example of the sources

with defined structure, i.e., for databases.

According to [SL90] multidatabase systems (MDBS) can be classified into two types

based on the autonomy of the component database systems (DBSs): nonfederated data-

base systems and federated database systems (FDBSs). A nonfederated database system

is an integration of component database management systems (DBMSs) that are not

autonomous. It has only one level of management and all operations are performed

uniformly. In contrast to a federated database system, a nonfederated database system

does not distinguish between local and nonlocal users. A particular type of nonfederated

database system in which all databases are fully integrated to provide a single global

schema can be called a unified MDBS.

A federated database system consists of component DBSs that are autonomous, yet

participating in a federation to allow partial and controlled sharing of their data. As-

sociation autonomy implies that the component DBSs have control over the data they

manage. They cooperate to allow different degrees of integration. There is no cen-

tralized control in a federated architecture because the component DBSs control access

to their data. Thus, FDBS represents a compromise between no integration and total

integration.

Depending on a degree to which the component DBSs are integrated, different architec-

tures of FDBS can be used, for example, import/export–schema architecture ([HM85]),

or multi–database architecture ([LMR90]), or the five–level schema architecture ([SL90]),

etc. Besides that, various multidatabase system classifications exist in the literature: the
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2 Integration Process

taxonomy we used is given in [SL90], an alternative classification is, for example, pro-

posed by authors in [BHP92]. In addition, integration can be carried out not on logical,

but rather on the physical level, like for example, in case of data warehouse, which

represents a repository of information collected from multiple sources/DBSs, stored

under a unified schema, and which usually resides at a single site (for example, see

[BG01, Leh03]). For our work, it is not important what exactly kind of integrated

system with what type of architecture was chosen.

local schema

component schema

export schema

external schema

federated (global) schema

local schema

component schema

export schema

external schema

Figure 2.1: The five levels of the schema architecture

We consider the general case of the integration process on the example of the five–

level schema architecture of an FDBS shown in Figure 2.1. This architecture includes

the following schemas:

Local schema is the conceptual schema of a component DBS. A local schema is ex-

pressed in the local data model of the corresponding component system.

Component schema is derived by translating local schemas into a canonical or com-

mon data model (CDM). If a component DBS already uses the global data model as a

local model, then local schema and component schema are the same.

Export schema represents a subset of a component schema that is available to the

FDBS. If all data is to be exported, no separate export schema is needed.
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2.1 Description of the Integration Process
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federated (global) schema

local schema

component schema

export schema

external schema

local schema

component schema

export schema

external schema

Figure 2.2: Bottom–up FDBS development process

Federated (global) schema provides an integrated view on all export schemas given

for the component DBSs participating in a federation. The redundancy that could

be found in the export schemas is removed in the federated schema. The structural

differences and other conflicts between export schemas are resolved. The federated

schema hides the distribution of data as well as all heterogeneities like different local

data models and different ways of modelling or structuring data.

External schema defines a specific view on the federated schema for a user and/or

application or a class of users and/or applications.

A bottom–up FDBS development process can be used to integrate several existing

databases to develop an FDBS. Figure 2.2 illustrates the bottom–up process outlined

below:

1. Translate schemas. Schema translation is performed when a schema represented in

one data model (the source schema) is mapped to an equivalent schema represented

in a different data model (the target schema). Schema translation is needed in two

cases:
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2 Integration Process

� Translating a local schema into a component schema when the DBMS’s native

data model is different from the CDM.

� Translating a part of the federated schema into an external schema when the

external schema is expressed in a data model different than the CDM.

In practice, the translation task may require more than just data model translation

because the source and the target schemas may not be able to represent exactly the

same semantics. Hence, schema translation poses two contradictory requirements:

capture additional semantics during the schema translation that can later help in

the task of schema integration, and maintain only the existing semantics because

the local schema is not able to support the additional semantics. The translation

should also be reversible in the sense that the component schema in the CDM

should represent the same database represented by the local schema and it should

be possible to translate a command on a component schema into command(s) on

the corresponding local schema.

Thus, schema translation is used for resolving heterogeneity conflicts caused by the

presence of various data models, but in its turn can produce other schema level

conflicts (for a possible conflict classification refer to Section 2.2).

2. Define export schemas. This step is performed by the administrators of respective

component DBSs to authorize part of their databases to be included in the FDBS.

3. Integrate schemas. Schema integration refers to integrating selected export schemas

into a single federated schema. This step includes analyzing and comparing the

objects of the schemas to be integrated, including identification and resolving

naming conflicts, domain conflicts, structural differences, constraint differences,

missing data, etc. Besides that, the interrelationships among the schema objects

should be specified at this step. The schema integration can be carried out right

after resolving all schema level conflicts. At the same step data conflicts have to

be resolved (see Section 2.2) for carrying out the logical data integration, which

ensures correct query processing in/on the FDBS.

4. Define external schemas. If necessary, define external schemas for each federation

user or class of federation users. If the data model of the external schema is

different than the CDM then the schema should be translated.

We have considered a possible integration scenario. Obviously, even if the data struc-

ture is defined, the process of integration is not straightforward. It becomes more com-

plicated because we aim at the incorporation of legacy data and heterogeneous non– or

semi–structured data sources into an integrated information system.

8



2.1 Description of the Integration Process

Thus, as indicated above, in order to integrate data from different sources into one

information system, the (database) schema of each source must be known and free of

contradictions. Only then the integration process can start to remove structural and

semantic conflicts between the sources. In the general case, neither legacy data nor

semi–structured documents fulfill these prerequisites. Many collections of legacy data

have no way of enforcing integrity constraints or of ensuring that constraints incorporated

into application code are always enforced. For semi–structured data, not even a schema

(in the conventional sense) is available, existing metadata is neither obligatory nor can

be used for identifying identical objects.

We address these problems in order to enable an integration of legacy and semi–

structured data following the traditional database integration techniques. In particular,

we distinguish the following steps:

� Detecting dependencies and identifying semantics–carrying structure within each

source.

� Finding the correspondences between the sources on the schema and instance

(data) level.

� Applying results obtained on previous steps for schema and data integration.

According to these steps and to the integration process considered earlier for creating

a FDBS we can present the integration process for legacy and semi–structured data

with respect to the problems, which have to be resolved at each integration step. Such

representation lets us abstract from type of architecture and integrated system, hence

we are able to consider the general case. This integration process can be depicted as

shown in Figure 2.3. Further we take a closer look at each of its steps.

Integrated Database
System

Collections of Legacy or
Semi-Structured Data

Deriving Structure
within Each Source

Finding Correspondences
between the Sources
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Figure 2.3: The integration process
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2 Integration Process

Detecting dependencies and identifying semantics–carrying structures within each

source is a relevant task for the legacy systems and semi–structured sources due to

the following reasons:

� Database schemas of component systems are often not complete, i.e., they do not

represent the complete semantics of the application.

� The documents containing data are usually semi–structured or a database schema

is not available.

� In legacy systems the semantics of database schemas is not completely known.

� Correspondences and dependencies among data within each source are also not

(completely) known. Sometimes even experts might only guess, which correspon-

dences are valid.

Thus, the way it is schematically shown in Figure 2.3, data sources, which we would

like to integrate, already contain uncertain information. The presence of the uncertain-

ties hinders the integration, thus at this step one should solve the problems listed above,

which relate to the structure discovery problem that is the problem of finding and char-

acterizing the underlying structure of a data set. Depending on the specific application

requirements, different techniques can be used to discover a good data representation.

One can use data mining techniques that refer to a class of technologies designed to as-

sist in the discovery of knowledge in large data sets. Data mining is an essential process

where intelligent methods are applied in order to extract data patterns. We describe

them in the next chapter.

Here we view the steps that are to be followed in order to detect dependencies and

find structure within each source.

� Choosing data mining techniques. In this step the existing mining techniques

should be checked with respect to their applicability to our task. One should

include into consideration such primitives as, for example, the kinds of knowledge

to be mined, interestingness measures for pattern evaluation, etc.

� Mining the data. This step corresponds to classical data analysis. Here, for exam-

ple, classification methods could be applied to generate and then check hypotheses

on dependencies within legacy data. As well, hypotheses of the application expert

can be checked and possibly refined. The detection of relationships among val-

ues in legacy data can provide additional indications on the existence of further

dependencies. For that, for example, dependency modelling techniques can be ap-

plied. For analyzing semi–structured data the methods for pattern recognition can

10



2.1 Description of the Integration Process

be used. The aim here is to detect structural properties which indicate semantic

properties. Thereby, pieces (fragments) of a conventional schema should be found.

� Analysis of mining results. The results obtained from the data mining techniques

have to be elaborated and generalized. Besides that, it should be taken into ac-

count, that these results always hold certain probabilities. The uncertainties orig-

inate from both the data sources, which contain uncertain information and the

process of knowledge discovery. In a case, where not all data and/or data states

are available, none of the methods of data mining ever extract the full and complete

information from data in databases. In realistic scenarios we typically have only

a restricted collection of data (representing a single or very few database states),

such that incompleteness and uncertainty is always present.

Finding the correspondences between the sources on the schema and instance

(data) level. After the structure and the correspondences in each source are found,

the next integration step can be carried out, namely, comparison of the input schemas,

which is necessary for:

� Identifying inter–schema relationships

� Detecting and resolving possible schema conflicts

In order to resolve these problems, the schema matching methods, that we consider

in detail in the next chapter, could be employed. In the following, shortly listed are the

steps that must be undertaken in order to apply schema matching for finding correspon-

dences between schemas:

� Choosing schema matching techniques. In this step the matching techniques should

be chosen. The choice is based on many parameters, for example, such as: schema

language (relational, XML schemas, etc.), the kind of input data that can be used

(schema information, data instances, dictionaries etc.), etc.

� Schema Matching. In this step a number of schema matching methods could be

applied in various combinations.

In case when useful schema information is limited, as is often the case for semi–

structured data, a schema can be constructed from instance data. The use of

instance–level matchers can be valuable to detect incorrect interpretations of schema

information. For example, constraint– or linguistic–based methods can be used for

extracting probabilistic structures of data objects. Schema–level matchers are rea-

sonable to apply when we have knowledge about structure, but not sure about the

11



2 Integration Process

assignment of data objects to classes or about the extensional correspondence be-

tween classes from two data sources. The constraint– and linguistic–based match-

ers mentioned above can as well be used as schema–level matchers. For example,

linguistic–based matchers that use names and text (i.e., words or sentences) can

be applied to find semantically similar schema elements. Schemas often contain

constraints to define data types and value ranges, relationship types and cardinal-

ities, etc. If both input schemas contain such information, it can be used by a

constraint–based matcher to determine the similarity of schema elements.

� Analysis of matching results. The output of a match system is a mapping indicating

which elements of the input schemas correspond to each other, i.e., match. Ba-

sically matching prototypes determine correspondences between schema elements

and use similarity values between 0 (strong dissimilarity) and 1 (strong similarity)

to indicate the plausibility of the correspondences. Besides that, various qual-

ity measures enable the comparison of the output quality of different matching

systems. Obviously, any schema matching method adds uncertainty into the inte-

gration process.

After the correspondences between the schemas are determined, the instance level

conflicts must be resolved and the correspondences between the specific data records

must be determined. In order to do that, numerous data cleaning methods can be

applied. We distinguish the following steps:

� Choosing data cleaning techniques. In this step the data cleaning techniques should

be chosen that are appropriate to our task. One should distinguish between data

cleaning methods intended for resolving the single–source problems that refer to

errors and inconsistencies in the actual data, which are not visible at the schema

level and the multi–source problems that refer to identifying matching records.

� Data Cleaning. Depending on the kind of the conflicts that must be resolved and

on the additional information at one’s disposal, we can employ various methods of

data cleaning. Data cleaning methods can be divided into inference–based, where

cleaning is performed by discovering patterns within the data and using those

patterns to derive rules for data cleaning and data–based, usually applied to clean

a specific type of data such as name and address data where cleaning rules are

pre–specified in the cleaning tool and cleaning is performed by finding data that

matches those rules and mapping to the cleaned value by using lookup tables. We

discuss data cleaning methods in detail in the next chapter.

� Analysis of data cleaning results. Obviously, that as well as the rest of the methods

being used in the integration process, the methods of data cleaning do not deliver

12



2.1 Description of the Integration Process

precise results, but rather results with certain reliability, in this way increasing the

uncertainty of the integration process. That is why, at this step the results of the

data cleaning methods must be evaluated, for which one could employ various data

quality metrics such as, for example, accuracy, consistency, completeness, etc.

Applying results obtained on previous steps for schema and data integration. Let

us first consider the schema integration process that consists of the following steps:

� Choosing schema integration technique. Since not all the conflicts at the schema

level could have been resolved by the previous methods, one should choose such

a schema integration method that would be capable of resolving the rest of the

conflicts. Aside from that during the selection of the schema integration technique,

it is important to take into account the kind of modelling concept supported by

the schema integration method. During the selection of the integration method,

the criteria of the integration quality should be defined, based on which one would

be able to judge about the integrated schema quality.

� Schema integration. At this step the designer has to decide what kind of the

strategy will be used to integrate the given schemas. Answers to the following

questions should be found: do the schemas to be integrated have different weights

of relevance for the integration? In what order should the schemas be integrated?

Should they be integrated simultaneously? Further for conducting the integra-

tion, the additional information gathered at the preceding stages could be needed.

For example, if we need to integrate a relational schema with an object–oriented

schema and we consider, that both of them have the same weights of relevance

for the integration, then in order to account for the information received from the

schema matching about the correspondences between sources for integration, it is

advisable to use the Model Independent Assertions method (see Section 3.3). This

method is capable of resolving some structural conflicts that could exist between

schemas and fully resolves all of the heterogeneity conflicts. In the next chapter

the integration methods are considered in detail.

� Analysis of schema integration results. The integrated schema has to fulfill different

quality criteria, for example, minimality, correctness, etc. Here it is important to

note that these criteria judge about the capabilities of the integration technique and

during the calculation take into account neither data quality, nor the information

about the data reliability, received from the methods at the preceding steps.

Data integration concludes the process of integration. For data integration the data

cleaning methods described above can be used. Here one should consider what type
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of data integration was chosen: physical or logical, at which in contrast to physical

integration, data must be only correctly brought together in case of queries.

Thus, the above described integration process could be presented as a chain of the

successively applied methods, aimed at the resolving certain conflicts. In the next section

we analyze possible reasons triggering these conflicts and then give detailed classification

of the conflicts themselves.

2.2 Schema and Data Integration Conflicts

Since a database is defined by its schema and data, we classify conflicts at the highest

level as either schema or data conflicts. Schema conflicts result from the use of different

schema definitions in different databases. Data conflicts are due to inconsistent data in

the absence of schema conflicts.

First we consider schema conflicts. There are three basic causes of schema conflicts.

� Different modelling perspectives. The different viewpoints that groups of users and

designers have about certain information during the design phase.

� Different modelling constructs. The existence of different kinds of constructs in

the data models, offering different modelling possibilities.

� Incompatible design specifications. A different choice for the common parts of

the various schemas regarding names, types, integrity constraints, etc. results in

different schemas.

According to earlier research [BLN86, SCS99, SPD92] four types of conflicts occur:

� Semantic conflicts

� Descriptive conflicts

� Heterogeneity conflicts

� Structural conflicts

Semantic conflicts. Considering two independently designed schemas describing se-

mantically intersected universes of discourse, one could find mutually corresponding

classes (or relations), whose objects, however, do not represent fully identical sets of the

real–world objects. Thus, we can distinguish four cases: similar objects can be presented

as equivalent, overlapping, included or disjoint sets.

14



2.2 Schema and Data Integration Conflicts

Descriptive conflicts. This type of conflict occurs, when the same data item is rep-

resented differently in two schemas. Descriptive are such conflicts as: name conflicts,

when the schemas define names for classes and attributes in different ways (homonyms

and synonyms), attribute conflicts, when the semantically equivalent attributes describe

a property with different precision or homonyms and synonyms occur on value level,

integrity constraints conflicts, when the set of object states or attribute values for cor-

responding classes or attributes are restricted differently.

Heterogeneity conflicts. They occur when different data models are used for the

schemas, for example, a relational one and an object–oriented one. This conflict type is

especially relevant when such schemas have to be integrated. Then one should decide

which data model should be preferred for the integrated schema. Hereby, it should be

noted that the modelling concept of a relational schema is not as rich as that of an

object–oriented. Also, for modelling of the same things different data models, as a rule,

use different modelling concepts. As a consequence, the heterogeneity conflicts often

implicitly include the next type of conflicts, namely, structural conflicts.

Structural conflicts. Since the way in which designer models a real–world aspect is

not unique, even if only one data model is used, the structural conflicts appear. In other

words, the structural conflicts occur when the same real–world object described in two

schemas use different elements of the same data model. The most frequent type of the

structural conflict appears between an attribute and a class, when an attribute of a class

of one schema corresponds to a class of the other schema.

The authors [KS91, KCGS] suggest an alternative classification for the above described

conflicts based on the relational model. And then they extend it for the object–oriented

model. Below we describe a conflict classification for the relational model.

As an outcome of the fact that the relational model uses either tables or attributes to

represent information, we can classify schema conflicts within this model completely by

enumerating combinations of different structures used to represent information and all

possible specifications of the structures. Then the classification looks like as follows:

1. Table–versus–table conflicts

A. One–to–one table conflicts

a. Table name conflicts

� Different names for equivalent tables

� Same name for different tables

b. Table structure conflicts

15



2 Integration Process

� Missing attributes

� Missing but implicit attributes

c. Table constraint conflicts

B. Many–to–many table conflicts

2. Attribute–versus–attribute conflicts

A. One–to–one attribute conflicts

a. Attribute name conflicts

� Different names for equivalent attributes

� Same name for different attributes

b. Default value conflicts

c. Attribute constraint conflicts

� Data type conflicts

� Attribute integrity–constraint conflicts

B. Many–to–many attribute conflicts

3. Table–versus–attribute conflicts

Table–versus–table conflicts occur when different databases use different definitions

to represent information in tables (for example, different names, structures, or con-

straints on the tables). Table–versus–table conflicts can be decomposed into one–to–one

table conflicts and many–to–many table conflicts.

One–to–one table conflicts can occur when databases represent the same informa-

tion in single tables using different names, structures, and constraints. Thus, one–to–one

table conflicts are further decomposed into table name conflicts, table structure conflicts,

and table constraint conflicts.

Table name conflicts arise due to different names assigned to tables in different data-

bases. There are two types: conflicts due to the use of different names for semantically

equivalent tables and conflicts due to the use of the same name for semantically different

tables.

Table structure conflicts arise from differences in the number of attributes in database

tables, that is, when a table in one database is missing some attributes in a corresponding

table in another database. There are two interpretations for missing attributes: the

attributes are indeed missing, or the missing attributes are implicit and can be deduced.

Table constraint conflicts arise from differences in the specifications of tables con-

straints. For the database language SQL this type of conflict includes four subcategories:
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candidate key definition, primary key definition, foreign key definition, and check con-

dition.

Many–to–many table conflicts occur when databases use different numbers of

tables to represent the same information. This type of conflict may frequently occur

since database users may define tables in different ways.

Some conflicts may combine many–to–many table conflicts with subcategories of one–

to–one table conflicts. However, separate categories are not required for such compound

conflicts because they can be decomposed into basic conflicts.

Attribute–versus–attribute conflicts are caused by different definitions for semanti-

cally equivalent attributes in different databases, including different names, attribute

data types, and integrity constraints. Like the table–versus–table conflicts, these con-

flicts can be decomposed into one–to–one and many–to–many conflicts.

One–to–one attribute conflicts arise due to different definitions for semantically

equivalent attributes in different tables. The attribute definition consists of the attribute

name, data type, constraints, and default values. Where the data type specification for

an attribute can be considered as a special case of its constraint definition.

Attribute name conflicts are similar to the table name conflicts discussed earlier. There

are two types: one arising from the use of different names for semantically equivalent

attributes in different databases and the other arising from the use of the same name

for semantically different attributes.

Default value conflicts arise when the default values of semantically equivalent at-

tributes in different databases are different.

Attribute constraint conflicts are further decomposed into data type and attribute

integrity–constraint conflicts, which occur when semantically equivalent attributes in

different databases have different data types or respectively different attribute integrity–

constraints.

Many–to–many attribute conflicts. As remarked for many–to–many table con-

flicts, these conflicts may combine many–to–many attribute conflicts with subcategories

of one–to–one attribute conflicts. Again, there is no need for separate categories for such

compound conflicts because they can be decomposed into several types of basic conflicts.

Table–versus–attribute conflicts occur if some databases use tables and others use

attributes to represent the same information. This conflict can be regarded as a combi-

nation of many–to–many table conflicts and many–to–many attribute conflicts.

Since the above classification results from the combinations of different structures and

all possible specifications of the structures, the number of the conflicts represented in

the classification will grow if the data model is richer than the reviewed relational model.
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That is because the richer the data model, the more different combinations, which cause

conflicts, exist. In this way the classification becomes non transparent. Moreover, this

classification hardly adds new features to the classification given in the beginning of this

section, which supposes four types of conflicts: semantic, descriptive, heterogeneity, and

structural. For our purposes it is sufficient to use this four–conflict–types classification.

Thus far, our discussion has been focused on the classification of the schema conflicts.

Below we examine the four types of data conflicts:

1. Incomplete data (missing values)

2. Wrong data

A. Incorrect–entry data

B. Obsolete data

3. Noisy Data

4. Different representation for the same data (same representation for different data)

A. Different expressions

B. Different units

C. Different precisions

Incomplete data means, that some tuples can have no recorded value for several at-

tributes.

Wrong data generally arises due to failures in maintaining a database, such as in-

ability to keep the database up to date and to enforce integrity constraints. We can

distinguish two types of conflicts: incorrect–entry data, when equivalent attributes in

different databases, which are expected to have the same value, have different values

and obsolete data, when the equivalent attributes have different values because one of

the values was not updated in time.

Noisy data is the data containing errors or outlier values that deviate from the ex-

pected. Noise is defined as a random error or variance in a measured variable.
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Different representation for the same data. There are three aspects to the represen-

tation of data: expressions, units, and precisions.

Different expressions. Conflicts of this type arise when different scalar values are used

to represent the same data. Of particular interest are cases when different expressions

describe the same piece of information and when different databases use separate codes

to denote the same data.

Different units. Conflicts of this type arise when numerical data denoting the same

physical quantity are represented in different units across databases. Different units give

differing meanings to numeric data.

Different precisions. This type of conflict arises when semantically equivalent at-

tributes have values from domains with different cardinalities. This difference in cardi-

nality results in different scales of precision for similar data.

In practice schema and data conflicts usually emerge not alone, but rather in different

combinations. Discrepancies between schemas as well as between data usually show a

mix of conflict types and should be solved together.

2.3 Summary

In Section 2.1 we have given a possible multidatabase system classification. Then, using

data sources with defined structure as an example, a possible scenario of integration

process for creating a federated database system with use of the five–level schema ar-

chitecture, has been reviewed. Such a process in general consists of four steps: schema

translation, schema definition, schema integration and, if necessary, external schema de-

finition. At that, at each step the specific problems must be resolved, which makes the

integration process complicated.

Since our primary task is integrating the data sources with undefined structure, such

as legacy data or heterogeneous semi–structured data, integration process becomes even

more complicated. In order to review the general case of integration of such sources

independently of the specific architecture or integration system, we proposed to consider

integration process, subject to methods that have been used during the integration.

At the first step, data mining methods could be used in order to find the structure

within each source. At the next step, methods of schema matching could be employed

in order to determine correspondences between the sources at the schema level, whereas

data cleaning methods could be used in order to find corresponding data records. After

the correspondences in each source and across sources are found, methods of integration

could be used to carry out integration itself.

Section 2.2 considers the conflicts that need to be resolved by the methods mentioned

above and the causes of these conflicts. One should distinguish the schema level and the
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data level conflicts. According to the classification that is most commonly used in the

literature, schema conflicts could be divided into semantic, descriptive, heterogeneity and

structural conflicts. There also exist more comprehensive classifications, in accordance

with the enumeration of all possible structure combinations that are used in order to

present information in schema, for example, different names for equivalent tables, same

name for different attributes, etc. Data conflicts could be subdivided into incomplete,

wrong, noisy data. Besides that, there are such conflicts that the same data has different

representation or different data has the same representation.

It is important that regardless of the fact that each of the methods used during the

integration resolves only certain types of conflicts, helping in this way (and in some

cases making integration possible), any of those methods output result with certain

trustworthiness, thus introducing additional uncertainty into the integration process.

In the next chapter we concentrate on the methods described in this chapter.
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In the previous chapter the integration process has been reviewed and its essential stages

have been distinguished. In this chapter we consider the questions related to the spe-

cific problems intrinsic to each of those stages along with the possible methods for their

solution. The chapter is organized as follows: in Section 3.1 we touch the problem of

knowledge discovery and data mining, which is concerned with the task of information

discovery from the data in databases. Section 3.2 refers to the second step of the in-

tegration process and is concerned with questions of schema matching, which searches

for corresponding elements in different schemas. Sections 3.3 and 3.4 elaborate on the

methods of the schema and respectively data integration. Section 3.5 reviews the prob-

lem of data quality. The final Section 3.6 concludes the chapter providing a summary

of the important related work results.

3.1 Knowledge Discovery in Databases and Data Mining

Data Mining and Knowledge Discovery in Databases (KDD) have become important

subjects of research in the recent years and a vast amount of publications on these

topics are now available [CHY96, FPSS96, HC98, HK01, HMS01, PS96].

KDD means a process of nontrivial extraction of implicit, previously unknown, and

potentially useful information from data in databases. The term process implies that

KDD consists of many steps, which involve data preparation, search for patterns (ex-

tracting structure from data), knowledge evaluation, and refinement, all repeated in

successive iterations.

Data mining is a step in the KDD process that consists of applying data analysis

and discovery algorithms that, under acceptable computational efficiency limitations,

produce a particular enumeration of patterns (or models) over the data.

The knowledge discovery goals are defined by the intended use of the system. We can

distinguish two types of goals: verification and discovery. With verification, the system

is limited to verifying the user’s hypothesis. With discovery, the system autonomously

finds new patterns. The scope of our work concentrates only on the latter. We fur-

ther subdivide the discovery goal into prediction, where the system finds patterns for

predicting the future behavior of some entities, and description, where the system finds
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patterns for presentation to a user in a human–understandable form. The classification

of the data mining methods with respect to their goals is presented below. It is necessary

to note, that the boundaries between prediction and description are not sharp, some of

the predictive models can be descriptive and vice versa.

A. Prediction

� Classification is the process, which finds the common properties among a set

of data items (objects) in a database and classifies them into different classes,

according to a classification model.

� Regression is learning a function that maps a data item to a real–valued

prediction variable.

Prediction can be viewed as the construction and use of a model to assess the class

of an unlabeled sample, or to assess the value or value ranges of an attribute that

a given sample is likely to have. In this view, classification and regression are two

major types of prediction problems, where classification is used to predict discrete

or nominal values, while regression is used to predict continuous or ordered values.

B. Description

� Clustering is a common descriptive task where one seeks to identify a finite

set of categories or clusters to describe the data. The categories can be

mutually exclusive and exhaustive or consist of a richer representation, such

as hierarchical or overlapping categories.

� Summarization. Data and objects in databases often contain detailed infor-

mation at primitive concept levels. Data Summarization is a process, which

abstracts a large set of relevant data in a database from a low concept level

to relatively high, in other words, it involves methods for finding a compact

description for a subset of data.

� Dependency modelling consists of finding a model that describes significant

dependencies between variables. Dependency models exist at two levels: the

structural level of the model specifies (often in graphic form) which variables

are locally dependent on each other and the quantitative level of the model

specifies the strengths of the dependencies using some numeric scale.

Nowadays the array of different algorithms is enormous, but they all tend to differ

primarily in the goodness of fit criterion used to evaluate model fit or in the search

method used to find a good fit and most methods can be viewed as extensions or hybrids

of a few basic techniques and principles listed above.
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As mentioned above data mining derives patterns within the data. By its nature

such a process cannot yield precise results, because the mining of the data is not a

straightforward procedure, multiple data conflicts have to be resolved, and the implicit

semantics of the data should be interpreted. This presents the most difficult part in the

whole process, because even experts are often only able to guess the semantics. As a

consequence, data mining results are never unambiguous.

This way a data mining process may generate a large number of patterns, although

specification of the task–relevant data and of the kind of knowledge to be mined may

substantially reduce the number of patterns generated. Typically, only a small fraction

of these patterns will actually be of interest to the given user. Thus, users need to

further confine the number of uninteresting patterns returned by the process. This

can be achieved by specifying quality measures that estimate the simplicity, certainty,

utility, and novelty of patterns. These objective measures are based on the structure of

patterns and the statistics underlying them. In general, each measure is associated with

a threshold that can be controlled by the user. Rules that do not meet the threshold are

considered uninteresting and hence are not presented to the user as knowledge.

Simplicity. A factor contributing to the quality of a pattern is the pattern’s overall

simplicity for human comprehension. Objective measures of the pattern simplicity can

be viewed as functions of the pattern structure, defined in terms of the pattern size in

bits, or the number of attributes or operators appearing in the pattern.

Certainty. Each discovered pattern should have a measure of certainty associated with

it that assesses the validity or “trustworthiness” of the pattern. A certainty could be

measured, for example, by a confidence, which denotes the conditional probability of

the fact that a pattern was found correctly, or precision, which refers to a proportion

of patterns retrieved that are relevant, or recall, which refers to a proportion of target

patterns that are retrieved.

Utility. The potential usefulness of a pattern is a factor defining its quality. It can be

estimated by a utility function, such as support. The support of a pattern refers to the

percentage of task–relevant data tuples for which the pattern is true.

Novelty. Novel patterns are those that contribute new information or increased perfor-

mance to the given pattern set. For example, data exception may be considered novel in

that it differs from that expected based on a statistical model or user beliefs. Another

strategy for detecting novelty is to remove redundant patterns.
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Data mining systems allow users to flexibly and interactively specify, test, and modify

quality measures and their respective thresholds. There are many other objective mea-

sures, apart from the basic ones studied above. Subjective measures exist as well, which

consider user beliefs regarding relationships in the data, in addition to the objective

statistical measures.

In the context of the DIAsDEM project a method utilizing iterative clustering algo-

rithm to derive structured XML DTDs (Document Type Definitions) in order to extend

previously derived flat DTDs was developed [GSW02, GWS01, WS02].

This method pursues two objectives for a given archive of text documents: all text

documents should be semantically tagged and an appropriate, preliminary flat XML

DTD should be derived for the archive. Semantic tagging is a two–phase process. At

the first phase knowledge discovery methods are employed in order to build clusters of

semantically similar text units, to tag documents in XML according to the results and to

derive an XML DTD describing the archive. The knowledge discovery process results in

a final set of clusters whose labels serve as XML tags and DTD elements. Huge amounts

of new documents can be converted into XML documents in the second, batch–oriented

and productive phase of the framework. All text units contained in new documents are

clustered by the previously built text unit clusters and are subsequently tagged with the

corresponding cluster labels.

Since the semantic annotations are derived with data mining techniques, they have

some level of confidence. Thus, it is essential that the validity of each tag is expressed

in quantitative terms and is estimated properly. Furthermore, an ordering should be

imposed upon the tags. Hence, after deriving semantic XML tags, they are combined

into a probabilistic DTD by deriving the most likely ordering of the tags and computing

the statistical properties of each tag inside the document type definition.

3.2 Schema Matching

A schema of any source consists of a set of related elements, such as tables, columns,

classes, or attributes, or XML elements. Matching is a schema manipulation operation,

which takes two schemas as an input and returns a mapping that identifies corresponding

elements in the two schemas. Each mapping element can have a mapping expression,

which specifies how these elements are related.

The criteria used to match elements of two schemas are based on heuristics that are

not easily captured in a precise mathematical way. Thus, schema matching is inherently

subjective. Schemas may not completely capture the semantics of the data that they

describe, and there may be several plausible mappings between two schemas (making

the concept of a single best mapping ill–defined). This subjectivity makes it valuable to
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have user input to guide the match and essential to have user validation of the result.

This guidance may come via an initial mapping, a dictionary or thesaurus, a library of

known mappings, etc. Thus, the goal of schema matching is: given two input schemas in

any data model and, optionally, auxiliary information and an input–mapping, compute a

mapping between schema elements of the two input schemas that passes user validation.

Various methods of schema matching have been developed (e.g., MOMIS [BBGV01],

LSD [DDL00a, DDL00b], DIKE [PTU00], Clio [MHH00, YMHF01]). Schema matchers

can be characterized by the following criteria (a detailed survey based on this taxonomy

can be found in [RB01]):

� Schema–level matchers

� Instance–level matchers

� Element–versus–Structure granularity

� Constraint–based matchers

� Linguistic–based matchers

� Auxiliary information

� Matching cardinality

� Combining different matchers

Schema–level matchers. These matchers consider only schema information, not in-

stance data. Schema information contains knowledge about schema structure, con-

straints, data types, description, name, different kinds of relationships, etc.

Instance–level matchers. Matching approaches consider instance data. They either

use metadata and statistics derived from data instances to annotate the schema or

directly find related schema elements.

Element–versus–Structure granularity. A structure–level matching computes com-

binations of elements that appear together in a schema. An element–level matching

computes a mapping between individual schema elements.

Constraint–based matchers. These matchers use schema constraints to determine the

similarity of schema elements. For example, similarity can be based on the equivalence

of data types and domains, of key characteristics, of relationships cardinality, etc.
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Linguistic–based matchers. This type of matchers uses names and other textual de-

scriptions to find semantically similar schema elements.

Auxiliary information. Schema matchers may rely on auxiliary information, such as

dictionaries, global schemas, previous matching decisions, and input match–mismatch

information.

Matching cardinality. Schema matchers may compute mappings between elements of

two schemas with different cardinality, namely 1:1 and the set–oriented cases 1:n, n:1,

and n:m.

Combining different matchers. An individual matcher uses a single algorithm to per-

form the match. A more effective way is to run independent match algorithms on the

two schemas and then combine the results (Multiple matchers), or use multiple criteria

to perform the matching (Hybrid matchers).

Another important aspect is the evaluation of the matching quality because, as men-

tioned before, schema matching is a subjective process and as well as in case of data

mining, it cannot provide a user with precise results.

According to [DMR03] the match task first has to be manually solved in order to

provide a basis for evaluating the quality of automatic matching strategies. The ob-

tained real match result can be used as the standard to assess the quality of the result

automatically determined by the match system. Comparing the automatically derived

matches with the real matches results in the four sets that can be used to define quality

measures for schema matching. The set of derived matches is comprised of the true pos-

itives and the false positives. False negatives are matches needed, but not automatically

identified, while false positives are matches falsely proposed by the automatic match

operation. True negatives are false matches, which have also been correctly discarded

by the automatic match operation. Intuitively, both false negatives and false positives

reduce the match quality.

Based on the cardinality of these sets, two common measures, precision and recall

can be computed, where precision describes the correctness of the matching result. It

is defined as the share of the true positives among all derived matches. Recall describes

the completeness of the matching result. It is defined as the share of the true positives

among all real matches. In the ideal case, when no false negatives and false positives are

returned, precision and recall are equal to 1. However, neither precision nor recall alone

can accurately assess the match quality. In particular, recall can easily be maximized at

the expense of a poor precision by returning all possible correspondences, i.e., the cross

product of two input schemas. On the other side, a high precision can be achieved at the
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expense of a poor recall by returning only few (correct) correspondences. Hence, it is

necessary to consider both measures or a combined measure. Overall is an example of a

combined measure, which was developed specifically in the schema matching context and

embodies the idea to quantify the post–match effort needed for adding false negatives

and removing false positives.

The next aspect that we should be aware of is that despite the large variety of available

methods of schema matching, none of them can consider uncertain input information.

One of the examples of combining different matchers is the Cupid approach [MBR01].

Cupid is schema–based and includes automated linguistic–based matching and is both

element–based and structure–based. It is biased toward similarity of atomic elements

(i.e., leaves), where a large part of schema semantics is captured.

Cupid computes similarity coefficients between elements of the two schemas and then

deduces a mapping from those coefficients. The coefficients are calculated in two phases.

The first phase, called linguistic matching, matches individual schema elements based

on their names, data types, domains, etc. A thesaurus is used to help match names

by identifying acronyms and synonyms. The result is a linguistic similarity coefficient

between each pair of elements. The second phase is the structural matching of schema

elements based on the similarity of their contexts or vicinities. The structural match

depends in part on the linguistic matches calculated in phase one. The result is a

structural similarity coefficient for each pair of elements. The weighted similarity is a

mean of linguistic similarity and structural similarity. A mapping is created by choosing

pairs of schema elements with maximal weighted similarity.

3.3 Schema Integration

In the previous section we have reviewed possible methods for finding mapping between

schema elements. After the needed set of matching elements has been found, the schema

integration can be carried out. According to [Con97] we can distinguish four basic

integration principles:

� Model Independent Assertions

� Upward Inheritance

� Formalized Object–Oriented Integration

� Generic Integration Model

27



3 Related Work

Model Independent Assertions. This method assumes two phase integration process

described in [SP94, SPD92].

First, similarities and discrepancies among input schemas have to be determined.

This is the investigation phase. The basic idea is to examine input schemas to define the

applicable set of inter–schema correspondences, which represents a problem of schema

matching, described in the previous section. That is why the authors assume that all

correspondences are defined and only consider second phase, that is integration. The

integrated schema is built semi–automatically, according to the inter–schema correspon-

dences and available integration rules.

This approach is based on a generic data model that represents a set of modelling

concepts and allows to reason about integration of conflicting schemas. Thus, the method

solves all of the heterogeneity conflicts and performs integration without transformation

of initial schemas. The method supports heterogeneity of input schemas through a data–

model–independent description of inter–schema correspondences and generic integration

rules. For instance, a relational schema may be directly compared with an object–

oriented schema.

This integration method allows to integrate not only schema elements, but also paths

and links between elements. It automatically resolves some of the structural conflicts,

for example, it makes it possible to integrate an entity type and a relationship type in

the Entity–Relationship Model. That is due to the fact that in one schema a relation

between objects could be presented as a relationship whereas in another schema the

same relation could be modelled as an entity.

Semantic conflicts cannot be resolved using this method. That is because the method

considers only semantically equivalent integration assertions. The method should be

extended for integration of inclusion, intersection, and exclusion assertions.

This method supports neither a concept of generalization and specialization nor inte-

gration cases in which one object in one schema corresponds to a set of objects in the

other schema. It also cannot integrate complex attributes and none of the descriptive

conflicts could be resolved.

Upward Inheritance. Integration methodologies proposed in [SN88, BFN94, GSSC95]

resolve semantic overlapping by introducing generalized classes (upward inheritance).

That is, the original inheritance hierarchies are subhierarchies of the resulting inte-

grated hierarchy. In other words, it is assumed that for each class of the local schemas

there always exists a semantically equivalent class in the integrated schema and for all

class–subclass–relations in the local schemas there exist same relations in the integrated

schema. Thus, two classes can be integrated into one class if and only if they are seman-

tically equivalent. If two classes are not semantically equivalent, but have overlapping
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extensions (sets of objects belonging to the classes), then for each class an independent

class in the integrated schema should be created. If one class to be integrated is a sub-

class of another class to be integrated, then this class–subclass–relation should also be

represented in the integrated schema. For two classes one superclass in the integrated

schema should be created if they semantically overlap. Thus, this method allows to solve

semantic conflicts.

Heterogeneity conflicts should be resolved since the method assumes that the schemas

to be integrated are object–oriented. This always requires transformation into the

object–oriented data model. Neither descriptive nor structural conflicts could be re-

solved using this method.

Formalized Object–Oriented Integration. In [RPG95, RPRG94] a methodology has

been proposed for the creation of an integrated schema from a given set of local database

schemas. This methodology involves acquisition of semantic knowledge pertinent to the

objects of a local objects schema. During this knowledge acquisition process, for each

property of a local object, parameters that contribute to the semantic meaning of the

property are identified (such as meta–properties) and their values (meta–values) are

captured. Further, concepts such as object equivalence class and property equivalence

class are utilized to facilitate the creation of the integrated schema. Thus, the method

partially solves semantic conflicts.

Similar to the upward inheritance method, this method supposes transformation into

object–oriented data model and in this way resolves heterogeneity conflicts. The method

does not resolve structural conflicts. Descriptive conflicts could be partially resolved

making use of meta–properties and meta–values information.

Generic Integration Model. The integration strategy discussed in [SS96a, SS96b,

CHJ+96, Sch95] is based on the Generic Integration Model (GIM), which is a seman-

tically poor data model and used as canonical data model. The advantage of using a

semantically poor data model instead of a semantically rich data model is that a semanti-

cally rich data model causes more heterogeneity on the schema level. This heterogeneity

on schema level in its turn increases the complexity of the integration process. This

method is data–model–independent, i.e., this method is not concerned with the kind of

data models the schemas have, regardless of whether these are the schemas to be inte-

grated or the integrated schema. Thus, GIM solves most of the heterogeneity conflicts.

In GIM only schema information, which is necessary for the integration process can be

expressed by means of GIM concepts whereas schema information defining a specific

view of an application cannot be expressed.

Besides that, the hierarchies which are to be found in the schemas for integration do
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not necessarily have to be in the integrated schema, thus this approach allows restructur-

ing the initial hierarchies and is flexible in working with generalization and specialization

that leads to a state, where the number of superclasses (among which are also the ones

not needed by the integrated schema user) does not increase in the integrated schema

in the way that it happens in the upward inheritance method.

GIM requires non–overlapping class extensions. The extensions of any two classes have

to be either disjoint or identical. In case they overlap, the GIM method uses extensional

decomposition. Then three disjoint extensions appear: one for the objects common

to both classes, and other two, containing only the respective objects of each of the

individual classes. Through the disjoint decomposition semantic conflicts are resolved.

Descriptive and structural conflicts cannot be resolved using this method.

Speaking about the schema integration methods, it is necessary to touch upon the

subject of their quality. Following [BLN86] there are four major quality criteria for

schema integration:

� Completeness. The integrated schema must be a representation of the union of

the application domains associated with the schemas. This means that there must

not be a loss of information contained in local schemas. In general all methods

are not complete. That is because the modelling concepts could always be found,

such that, they are not supported by the given, specific integration methods. In

some cases one can speak about the limited completeness, when in the integrated

schemas only the modelling concepts supported by the specific methods are used.

� Correctness. The integrated schema must contain all concepts present in any

component schema correctly. This means that for each element in the integrated

schema there must exist a corresponding (semantically equivalent) element in one

of the local schemas. All methods listed above meet this criterion.

� Minimality. If the same concept is represented in more than one component

schema, it must be represented only once in the integrated schema. Redundancy

on the schema level must be avoided. Both Model Independent Assertions and

Upward Inheritance methods could lead to the state, where the same concept ap-

pears in the integrated schema several times. Whereas methods of Formalized

Object–Oriented Integration and GIM permit to avoid redundancy, thus meeting

the minimality criterion.

� Understandability. The integrated schema should be easy to understand for the

designer and the end user. This implies that among the several possible represen-

tations of results of integration allowed by a data model, the one that is (qualita-

tively) the most understandable should be chosen. All methods listed above meet
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this criterion. Although, in GIM the occurrences could arise where the relation-

ships between classes in the integrated schema and classes in the schemas to be

integrated do not become clear right away.

The choice of the specific integration method is determined by the requirements to

the integration quality, given data models, schemas and additional information being at

one’s disposal. Presently the topic is being researched on the matter of revealing the

hybrid and complex methods leading to confining the final result. Nevertheless, none

of those methods by its nature is able to take unprecise nondeterministic information

as its input. That presents the main contradiction between the pre–integration and the

integration methods, because the methods used immediately before integration always

deliver the result with uncertainty, which cannot be considered and processed by the

integration techniques.

3.4 Data Integration

In contrast to the previous section, which deals with the problem of constructing an

integrated schema, this section is devoted to the issues arising when considering source

integration at the extensional/instance level.

Real–world data tends to be incomplete, noisy, and inconsistent (for a more detailed

conflict classification refer to Section 2.2). Thus, as a first step, special data cleaning

tools have to be applied to each source to be integrated in order to fill in the missing

values, smooth out noise while identifying outliers, correct inconsistencies in the data,

eliminate redundant information. Then, secondly, in order to carry out data integration,

it is necessary to identify overlapping data, in particular matching records referring to

the same real–world object. This problem is also referred to as the object/instance

identity problem that arises when the same real–world object is modelled by different

data records. Frequently, the information is only partially redundant and the sources

may complement each other by providing additional information about an object. Thus,

duplicate information should be purged out and complementing information should be

consolidated and merged in order to achieve a consistent view of real–world objects.

Many research papers have been written to the topic of data cleaning, for example,

[FLMC01, GFS+01, LLL01, LLLK99, RH01]. Surveys on data cleaning are given in

[DJ03, HK01, RD00]. [Kim96] views data cleaning as a process consisting of six steps:

elementizing, standardizing, verifying, matching, householding, and documenting. Ele-

mentizing is another name for data parsing or the procedure of placing elements of a

record into the correct fields. Standardization brings data elements to forms that are

standard throughout the integrated database. Verification checks consistency of the
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standardized data. Matching determines whether two records represent data on the

same subject. Householding combines related records. These stages sometimes make

use of auxiliary information. Documenting documents the results of the data cleaning

steps.

For our purposes the data cleaning process could be combined into a two step process

that includes analysis/detection and then correction of errors and inconsistencies in a

data set.

There are two related approaches for data analysis, data profiling and data mining.

Data profiling tools provide exhaustive inventory of the data. Data profiling focuses

on the instance analysis of individual attributes. It derives information such as the

data type, length, value range, discrete values and their frequency, variance, uniqueness,

occurrence of null values, typical string pattern, etc., providing an exact view of various

quality aspects of the attribute.

Data mining discussed in Section 3.1 helps to discover specific data patterns in data

sets. Depending on the type of the data cleaning problem, appropriate data mining

methods can be employed. For example, outliers may be detected by clustering, where

similar values are organized into groups or clusters. Thus, values that fall outside of

the set of clusters may be considered outliers. Data can be smoothed by fitting to a

function, such as with regression. Linear regression involves finding the best line to

fit two variables, so that one variable could be used to predict the other. Multiple

linear regression is an extension of linear regression, where more than two variables are

involved and the data is fit to a multidimensional surface. Using regression to find a

mathematical equation that fits the data helps smoothing out the noise.

Obviously, data cleaning methods used for cleaning the data and subsequent data

integration do not provide exact results, but rather results with a certain level of confi-

dence. Neither do they assume that other methods are being applied to schemas or data

prior to them and therefore treat the input information as exact. However, since they do

not just analyze the data, but also manipulate it, data cleaning methods utilize various

metrics for data quality evaluation. Data quality is a stand–alone problem, which we

consider in the next section.

An example of commercial solution on data profiling is Migration Architect from

Evoke Software Corporation. Migration Architect is a specialized data analysis tool

that mines actual data to discover interdependencies between data elements and other

inherent data–driven business rules. The uncovered information enables analysts to

determine the following metadata for each attribute: data type, length, cardinality,

discrete values and their percentage, minimum and maximum values, missing values, and

uniqueness. It is extremely useful to accurately map the source files to the consolidated

target data structure. Migration Architect consolidates knowledge from multiple systems
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and rationalizes them into a single, unified, non–redundant model. It keeps track of

all the findings and maintains a map of each source–to–target attribute relationship.

Migration Architect also generates optimized DDL (Data Definition Language) for any

specific RDBMS that may be targeted. The DDL is complete with referential integrity

instructions for the model generated.

WizRule (WizSoft Inc.) is an innovative data auditing application that automatically

reveals all the rules in a given data and points at the deviations from the set of the

discovered rules as suspected errors. WizRule uses a proprietary data mining algorithm

based on association rules showing attribute–value conditions that occur frequently to-

gether in a given set of data. WizRule can find spelling or unconditional rules, all the

“if–then” rules with no limit to their number of clauses and formulae rules. WizRule

reads the database once and then automatically separates cases deviating from the rules

into data entry errors and suspicious entries. WizRule calculates the degree of deviation

from the norm for each field in each record in the database with respect to the discovered

rules. Separate reports are generated for data entry (spelling) errors, suspicious entries

(deviations), as well as the report of all the rules that govern the database.

Nowadays there are also many commercial data cleaning solutions available on the

market that deal with a particular domain, mostly name and address data, for exam-

ple, Trillium (Trillium Software), PureName PureAddress (Carleton), NADIS (Group1

Software and MasterSoft International) or eliminate duplicates, for example, Centrus

Merge/Purge library (Qualitative Marketing Software), matchIT (helpIT Systems Lim-

ited), Integrity (Vality), PureIntegrate (Carleton), etc.

3.5 Data Quality

Data quality is a complex and essentially unstructured concept. A major challenge in

devising general solutions is that solving data quality problems requires highly domain–

specific and context–dependent information, involving interaction with domain experts.

Only experts can specify the rules and data flows (dynamic constraints) that are correct.

Developing such a set of rules is a critical step in data checking and validation. In

addition, the set of specifications that define appropriate data behavior are skewed, in

the sense that, while some number of rules can specify say a half of the data, every

additional rule specifies smaller and smaller proportions of the data. To cover all the

data, we might need hundreds of rules. The ultimate goal of data quality methods as

well as metrics is the improved usability and reliability of the data.

Data cleaning, considered in the previous section, improves data quality since it deals

with detecting and removing errors and inconsistencies from data. Therefore, data

cleaning methods relate to the data quality methods.
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In this section we focus on the data quality metrics. The purpose of the data quality

metrics is to indicate whether the data is usable and reliable.

We can distinguish five basic data quality metrics:

� Accuracy. Data must be technically correct, reliable, and free of error. Accuracy

is a qualitative assessment of freedom from error. It describes how precise and

accurate real–world information is mapped onto local data structures (e.g., exact

versus approximate values).

� Consistency. Data should be presented in the same format and be compatible

with previous data. Data is maintained so that it is free of variation or contradic-

tion. Consistency requires that the data stored in a database satisfies the integrity

constraints specified for the database.

� Uniqueness refers to the property that there is one record for each unique entity.

Uniqueness shows the ability to establish the uniqueness of a data record (and

data key values).

� Timeliness. The age of the data must be appropriate for the task at hand. Timeli-

ness refers to the fact that the recorded information is up–to–date and not expired.

� Completeness. Data must be of sufficient breadth, depth, and scope for the task

at hand. Completeness means that all real–world information relevant for appli-

cations is recorded in the database.

In addition to the basic metrics for improving data quality any other metrics could

be employed, for example, the following:

� Accessibility is the extent to which data is available or easily and quickly retriev-

able. It measures, for instance, the time between request for access and the actual

ability to view the data.

� Interpretability is the extent to which data is in appropriate languages, symbols,

and units, and the definitions are clear. The interpretability metric could be based

on availability of metadata (e.g., counting the proportion of fields, tables, keys,

and so on, which are documented), and the adherence of data to specifications

(e.g., by counting the number of reported problems that are resolved by updating

the metadata).

� Understandability is the extent to which data is easily comprehended.

� Believability is the extent to which data is regarded as true and credible.

34



3.5 Data Quality

� Concise representation is the extent to which data is compactly represented.

� Conformance to schema is a metric which measures how well a snapshot of the

data conforms to the metadata in its schema. For example, are the keys unique,

do the values in the fields fit their formats, and so on.

When performing objective assessments, a set of principles should be followed in order

to develop metrics specific to one’s needs. As a matter of fact a user can employ all of

the metrics or only their part, depending on the specific application.

In order to calculate the metrics a set of methods could be made use of, such as,

simple ratio, min or max operation, weighted average.

Simple ratio measures the ratio of desired outcomes to total outcomes. Metrics that

can use this form are for example, completeness, consistency, concise representation.

Min or max operation could be applied in order to handle metrics that require the

aggregation of multiple data quality indicators (variables). One computes the minimum

(or maximum) value from among the normalized values of the individual data quality

indicators. The min is a conservative whereas max is a liberal form of assessment. An

example of metrics that can make use of the min operator is believability. The max

operator proves useful in assessing timeliness and accessibility.

Weighted average refers to the multivariate case. When one can specify a degree of

importance for each variable, the weighted average could be an appropriate method to

use. For example, it could appear a good believability measure.

These three operations are only the most crude approaches in helping to determine

the above data quality metrics. When it comes to making a more refined evaluation,

the choice of additional methods should be made based on the individual application

requirements. The standards for the most common case are being under development.

In order to familiarize with the current state of the data quality metrics theory one could

refer to [BP85, DM92, Goo95, LSKW02, WS96, Zmu78].

This way, with help of various quality metrics, we can judge how accurate, complete,

consistent, etc. the data is. This limits us to acquiring only estimations of usefulness and

reliability of the data. The developed quality metrics do not show, however, how well the

data in our possession is determined in the sense that during data quality estimation we

cannot take into account, that the data had been processed with many other methods

and we cannot have an estimate on how that had influenced the data’s authenticity.
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3.6 Summary

In this chapter a review of existing methods, which can be applied to each step of the

integration process, has been given.

If the integration sources are of non– or semi–structural type, then various data mining

methods could be used to extract structure (Section 3.1). This area is well explored

and currently there is a vast amount of the research approaches as well as commercial

solutions, which could be used depending on the data at hand. Data mining methods

add the structure information and deliver results with a certain level of confidence.

Schema matching methods, examined in Section 3.2 are concerned with looking for

matching elements in given schemas. There is a vast amount of approaches in this area

as well, and depending on the input schemas and on the additional information at user’s

disposal, optimal methods could be chosen, such that, as a result they would output

mappings with high validity, but still not exact.

In Section 3.3 the possible schema integration methods are analyzed. This has been a

topic of a growing interest in the recent past. There is a number of research approaches,

whose classification and ground principles have been given in this section. At that it

is important to note that all of them could be quality checked only by such criteria as

minimality, correctness, etc. They presuppose deterministic input data and are not able

to process uncertain data, which comes into contradiction with methods used to make

integration possible, namely, data mining and schema matching.

Questions dealing with the instance level integration are reviewed in Section 3.4.

Applicable for that methods are related to data cleaning methods and are well developed

to the present moment. However, as well as the methods of schema integration, data

cleaning methods do not give a result of deterministic type and also cannot consider

non–precise data as an input.

Problems of data quality estimation during the process of data cleaning are described

in Section 3.5. The topic of data quality is very actual now and also well developed.

And although to this moment the standards defining the quality of the data are not

developed, there exist many solutions for improving the data quality and calculating the

data quality metrics. All these approaches, however, cannot operate with non–precise

data. Their bottom line is that they are being fed with precise input data and the

calculation being carried out is to determine how accurate, consistent, unique, etc. the

data is.

To summarize the above: all the methods being used by the process of integration

give the result with uncertainty and at the same time do not presuppose that the input

data is of the uncertain type. Therefore, we see our task not in the development of some

integration process improvement methods at some of its steps, but rather in developing

36



3.6 Summary

the procedure, which would allow to evaluate the whole process, judge about its quality

and validity, keeping in mind that each of the used methods introduces additional un-

certainty in the whole process of integration. The next chapter classifies uncertainties

accumulated in this way during the integration.
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Integration Process

In the previous chapters we reviewed a possible integration scenario and also described

the methods, which can be used for realizing the integration process. We also have shown

that the uncertainty grows in the process of integration. Before we consider building the

model that can evaluate uncertainty we find it necessary to give a detailed uncertainty

analysis.

For that in the subsequent sections we review the example of data sources integra-

tion with absence of uncertainties, i.e., when all information needed for integration is

available. After that we present the uncertainty classification. Then we introduce uncer-

tainties into the example and demonstrate how they complicate the process of estimating

the integration results. Then we summarize the chapter.

4.1 An Abstract Integration Example

Let us consider a simple integration example in order to study the problem of uncertainty

in the integration process. Suppose we should integrate two schemas: schema 1 and

schema 2. Suppose each of them contains one superclass with three subclasses as shown

in Figure 4.1.

In Section 3.3 we discussed the basic schema integration methods and we also defined

the main prerequisites for carrying out the integration process. It is necessary that each

of the schemas to be integrated is, firstly, precisely defined and free of contradictions

and, secondly, correspondences between schemas must be known.

In the context of our example this means that class A1 contains three subclasses B1,

C1, and D1 with the probability of 100%. The same is true for schema 2, where classes

B2, C2, and D2 belong to the class A2. This way we satisfy the first of the conditions for

schema integration, namely, we possess precise information about relationships in each

of the integrated sources at the schema level.

To conduct a correct integration the second condition should also be satisfied, i.e.,

correspondences between schema 1 and schema 2 must be reflected in the integrated

schema.
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Schema 1

A1

B1 C1 D1

Schema 2

A2

B2 C2 D2

Integrated Schema

A

B C D

Figure 4.1: Example of the integration process for two schemas

Class correspondences could be of four types: classes could be equivalent, could over-

lap, one class could be a subclass of another class, and finally classes could be disjoint.

Below we review how classes should be integrated depending on the type of correspon-

dences they have.

Suppose that all the classes (A1 and A2, B1 and B2, C1 and C2, D1 and D2) are

pairwise equivalent. Two classes are equivalent if they both model one real–world class

and the objects of one class are equivalent to objects of the other class. It is obvious

that in this case any of the two input schemas could be taken as an integrated schema.

In our example the integrated schema contains class A with three subclasses B, C,

and D, where the following holds A ≡ A1 ≡ A2, B ≡ B1 ≡ B2, C ≡ C1 ≡ C2, and

D ≡ D1 ≡ D2.

Let all the classes (A1 and A2, B1 and B2, C1 and C2, D1 and D2) overlap in pairs.

Two classes could be considered overlapping if they both model the same real–world class

and objects of these two classes intersect, i.e., there exist objects common to both classes

and objects that belong only to one of the two classes. Since each of the class pairs that

we integrate reflect one real–world class, the integrated schema should look exactly like

in the case considered above, namely the integrated schema contains class A with three

subclasses B, C, and D. Since the integrated schema has to include all objects (without

duplicates) that are contained in the input schemas and correspond to real–world objects,

then if classes overlap (A1 ∩ A2 6= ∅, B1 ∩ B2 6= ∅, C1 ∩ C2 6= ∅, and D1 ∩ D2 6= ∅), then

integrated classes should be obtained in the following way: A = A1 ∪ A2, B = B1 ∪ B2,
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C = C1 ∪ C2, and D = D1 ∪ D2.

The case when one class is a subclass of another class, i.e., one class (superclass)

contains all objects of another class (subclass) and additionally contains the objects not

contained in the subclass we have already implicitly considered. Classes A1 and A2 are

the superclasses for classes B1, C1, D1 and B2, C2, D2 respectively. The class–subclass

relationships of the source schemas must also be preserved by the integrated schema.

Hence, the integrated schema contains class A with the three subclasses B, C, and D.

Two classes could be disjoint, i.e., lacking common objects, but at the same time

model the same real–world class. In the terms of integration this corresponds to the case

of class overlapping, namely an integrated class must contain the union of the source

classes. In our example, if classes are disjoint (A1 ∩ A2 = ∅, B1 ∩ B2 = ∅, C1 ∩ C2 = ∅,

and D1 ∩ D2 = ∅) then integrated classes should be obtained in the following way:

A = A1 ∪ A2, B = B1 ∪ B2, C = C1 ∪ C2, and D = D1 ∪ D2.

Clearly, the considered example does not represent a realistic scenario, but rather

an ideal case of integration, because it has been built on an assumption that the in-

tegration data is “perfect” and complete information on the semantics, schemas and

correspondences both between objects and classes is available.

In the following, we introduce uncertainties and observe how they may change our

example.

Suppose precise data about the correspondences between classes B1 and B2 is not

available. The only knowledge we have is that with probability p these classes model

the same real–world class, and with probability q — different real–world classes.

Clearly, with the presence of these probabilities the result of integration could be-

come ambiguous: if during integration it was decided that classes model the same real–

world class, then only one class B should be created in the integrated schema (with

probability p) for both source classes B1 and B2. If we believe that classes represent

different real–world classes, then two independent classes B1 and B2 (with probability q)

must be created in the integrated schemas. This way we have two possible integrated

schema, one, in which class B serves as a subclass of class A, and another one, where

class A has two independent subclasses B1 and B2. At that, in practice, integration

methods do not allow to get two integrated schemas, each with its own trustworthiness

probability. In respect to that a user has two possible solutions. First one is to use given

probabilities only as reference for making local decisions during integration, for example,

in our case it could be said that probability q is lower than the chosen threshold and

hence we carry out the integration only for the case when classes B1 and B2 model the

same real–world class. This is the easiest of the approaches and is often used in practice.

The problem in this approach is the incapability in estimating the final result, which is

undesirable since at the presence of lots of uncertainties and the need to integrate large
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schemas, the control over the result’s trustworthiness diminishes.

The second approach is to compute all possible integration cases and calculate all

probabilities. The considered example with only p and q probabilities is trivial, hence

let us introduce another uncertainty into it. Let class B1 in schema 1 belong to class

A1 with probability pB1/A1 and class B2 in schema 2 belong to class A2 with probability

pB2/A2. Apparently that if during the integration we believed that classes B1 and B2 are

carried over to the integrated schema as two independent classes, then the probabilities

that these classes belong to the integrated class A stay unchanged, so that class B1

belongs to class A with probability pB1/A1, class B2 belongs to class A with probability

pB2/A2. But what should we do in case classes B1 and B2 are integrated into a common

class B? With what probability does class B belong to class A in the integrated schema?

It becomes obvious that we cannot unambiguously estimate received result without a

special mechanism as it was even in the simplest integration case, where intentionally

not all types of uncertainties, but rather some of them were introduced. This way

we demonstrated that the uncertainties present a problem for integration, because the

known integration methods suppose determined input data and do not offer capability to

take into account uncertainties during the integration and their influence on the result.

In the next section we discuss existing types of uncertainty and consider their origins.

4.2 Classification of Uncertainty Types

In [AC01] we distinguish three types of uncertainty:

� Uncertainty about the exact structure of data objects

� Uncertainty concerning the assignment of data objects to classes

� Uncertainty concerning the extensional correspondence between classes from two

data sources

Uncertainty about the exact structure of data objects. The uncertainty about the

exact structure of the data objects means that the schema is not completely known. As

mentioned in the previous chapter, one can collect the missing for integration schema

information with the help of experts or, for example, by means of employing the data

mining techniques. Although data mining techniques are able to partially extract needed

information, they do not deliver “perfect” results. This way we can talk about the

structural uncertainty that originates from the procedure of assigning structure to semi–

structured or non–structured data. It appears at the first integration step in the following

way: detecting dependencies and identifying semantics–carrying structure within each
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source (see Section 2.1). This uncertainty could be measured and could be expressed,

for example, through the conditional probability (for more details refer to Section 3.1 of

the previous chapter).

Thus, for each data source a set of different schemas could be extracted. In the

example shown in Figure 4.2 the object class A includes subclasses B, C, and D with

probability p1 (schema 1). Another possible schema 2 (with probability p2) defines D as

subclass C, etc.

Schema 1 (p )1

A

B C D

Schema 2 (p )  ...2

A

B C

D ...

Figure 4.2: Uncertainty about the exact structure of data objects: option 1

Structural uncertainty could be presented in another way, as it is shown in Figure 4.3,

when each class belongs to another class with certain probability. Thus, in schema 1

classes B, C, and D belong to the class A with probabilities p1,B, p1,C , and p1,D respec-

tively. In schema 2 classes B and C belong to class A with probabilities p2,B and p2,C .

Probability p2,D shows with what probability class D belongs to class C.

Schema 1 

A

B C D

Schema 2     ...

A

B C

D ...

p1,B p1,C p1,D

p2,D

p2,Cp2,B

Figure 4.3: Uncertainty about the exact structure of data objects: option 2

Obviously, for integration, for each source only one schema must be chosen that best
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4 The Problem of Uncertainty in the Integration Process

conforms to the reality. Based on the outputs of the applied structure extraction methods

experts can choose the most plausible schema for a given source.

Uncertainty concerning the assignment of data objects to classes. In case when

the structure of data objects is not available the uncertainty concerning the assignment

of data objects to classes naturally appears. However, even if the structure of the source

is well defined this kind of uncertainty could arise due to possible semantic conflicts.

This way of uncertainty could be presented graphically as it is shown in the general

case in Figure 4.4, where the data objects (O1 . . . On) belong to classes (A1 . . . Am) with

corresponding probabilities (p1,1 . . . p1,m, . . . , pn,1 . . . pn,m).

A1
...

p1,1

O1

Am

pn,m

On

pn,1p1,m

...

Figure 4.4: Uncertainty concerning the assignment of data objects to classes

Uncertainty concerning the assignment of data objects to classes could be presented

in a different way, namely when probabilities correspond to classes and show with what

probability the corresponding class was defined correctly. For example, like in using

cluster analysis belonging to data mining methods (refer to Section 3.1) when the objects

are clustered or grouped based on the principle of maximizing the intraclass similarity

and minimizing the interclass similarity.

The given situation is not directly related to the problem of schema integration, but of

instance/data integration. Assigning data objects to classes is an important prerequisite

for physical integration, where all objects should be described in terms of one integrated

schema. For logical integration the problem appears in the stage of query processing,

because every query should be correctly addressed and the result should be correctly

interpreted.

Uncertainty concerning the extensional correspondence between classes from two

data sources. Another kind of uncertainty occurs if one compares classes of two dif-

ferent data sources in order to get the class/object correspondence. This way it appears

at the second integration step: finding the correspondences between the sources on the

schema and instance (data) level (see Section 2.1). All types of conflicts described in

Section 2.2 may contribute to this uncertainty, which might be investigated, for example,

with schema matching and data cleaning methods (see Sections 3.2 and 3.4 respectively).
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Let A1 and A2 be corresponding classes from two different data sources, (O1,1 . . . O1,k)

and (O2,1 . . . O2,k) be corresponding objects of these classes. Figure 4.5 presents an

example of extensional correspondences between classes from two data sources. A con-

clusion about correspondences between classes A1 and A2 with probabilities of equiv-

alence, inclusion, intersection or disjointness of classes (p≡, p⊇, p∩ or p 6= respectively)

could be derived from the correspondence probabilities between objects of these classes

(p1 . . . pk), etc. In some cases probability of class correspondence could be obtained only

based on schema information, like in the example when schema–level matchers are used

(see Section 3.2).

p1

pk

p p p p≡     ⊇     ∩     ≠A1

O1,1 ...
O1,k

A2

O2,1 ...
O2,k

Schema 1 Schema 2 

Figure 4.5: Uncertainty concerning the extensional correspondence between classes from

two data sources

Thus, we have reviewed existing types of uncertainties. In the next section we analyze

an integration example where the numerical values of uncertainties corresponding to the

given classification are entered.

4.3 Integration Example with Uncertainties

In practice one rarely meets only one of the uncertainties. Usually one has to deal with

the mix of all the uncertainties described above. In Section 4.1 we presented an inte-

gration example where uncertainties are completely absent and we also have begun to

describe problems, which could appear during the integration due to uncertainties. In

this section we give an integration example supplied with the numerical values of uncer-

tainties in conformance with given in the previous section classification. An example of

such an integration is given in Figure 4.6.

Suppose we integrate schema 1 and schema 2. Let classes B1, C1, D1 in schema 1

belong to class A1 with respective probabilities 0.8, 0.8, and 0.7. Besides that, the

equivalence probabilities between classes (p≡) are also known, namely, probability that

classes B1 and B2 are equivalent is 0.8, probability of equivalence of classes C1 and
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B
?

C
?

D
?

? ??

A
?

Integrated Schema

B1

0.87

C1

0.75

D1

0.91

0.8 0.70.8

A1

0.77

B2

0.84

C2

0.75

D2

0.91

0.8 0.70.7

A2

0.73

0.8 0.68 0.9

0.7

Schema 1 Schema 2

Figure 4.6: Example of uncertainties influence on the estimation of the integration result

C2 is equal to 0.68, and the equivalence probability of classes D1 and D2 is equal to

0.9. Furthermore, the probability that each of the classes was correctly determined is

also known, for instance, for the class A1 that probability comes up to 0.77, for the

class A2 — 0.73, for the class B2 — 0.84, etc.

As the next step we answer a question about what classes enter the integrated schema.

If we define a threshold at 65% for all the probabilities, then apparently integrated

schema will have class A = A1∪A2 containing three subclasses B = B1∪B2, C = C1∪C2,

and D = D1∪D2. At that it should be noted that as opposed to the example considered

in Section 4.1, integrated classes are resulted through the unification of the source classes,

in spite of the fact that we consider the case of the source classes equivalence. In this

case one should include the class union because in accordance with our data, considered

classes are equivalent with certain probability, which supposes presence of the probability

that classes to be integrated are disjoint.

Carrying out the integration in this way, the key question is how far we can trust the

obtained result. In our example, class C1 was defined correctly with the same probabil-

ity as class C2, thus one can assume, that class C in the integrated schema will also be

determined with probability of 0.75. Besides that C1 and C2 belong to classes A1 and

A2 with probability of 80%, hence we can assume that class C belongs to class A also

with probability of 0.8. Similar reasoning goes to class D. We assume it is defined at

91% correctly and is a subclass of class A with probability of 70%. In such calculation
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we do not account for many factors that can influence the resulting probabilities, for

example, we do not take account of how the class correspondence probability influences

the other probabilities, we do not account for decisions, made by experts during integra-

tion. Hence, such approximate calculation of the estimate of the integration result could

be sufficient only in the isolated cases when, for example, probabilities of the sources to

be integrated coincide and are sufficiently high.

Thus, such calculation could be carried out in the isolated cases and does not provide

solution for the general case. For example, how to evaluate the trustworthiness of two

classes A and B in the integrated schema? Class B1 was defined correctly with prob-

ability of 0.87 whereas class B2 with probability of 0.84. Keeping in mind high class

correlation, do we have to assume that class B is defined with probability of 0.84 or do

we have to take into consideration the size of classes B1 and B2 and accept the weighted

probability? Another open question is with what probability class A was correctly de-

fined in the integrated schema.

Thus, even on this small example it appears obvious that the evaluation of the inte-

gration process is not a trivial task and even at presence of trustworthiness estimates

for each employed during the integration method (see Chapter 3) it does not always

appear possible to evaluate the trustworthiness of the final result without using special

approach. Hence, we find it necessary to develop a mechanism that would allow to eval-

uate the whole integration process independently of uncertainty types present in it and

the nature of these uncertainties. In our work, for evaluating the integration process, we

propose to use statistical methods. Next chapter is devoted to reviewing and choosing

the certain statistical method that would fit the integration process.

4.4 Summary

In the given chapter, we have demonstrated, using a small example, how the data can

be integrated under a condition that it is completely defined and we possess the whole

information about the semantics, schemas, and correspondences between schemas.

Such situation cannot be real, because in practice various uncertainties are usually

present and not the whole information needed for integration is available.

Thus, we find it important to classify the uncertainties that can appear in the process

of integration. We distinguish three types of uncertainty: uncertainty about the exact

structure of data objects, uncertainty concerning the assignment of data objects to

classes, and uncertainty concerning the extensional correspondence between classes from

two data sources.

Having introduced the uncertainties into the integration example we demonstrated

the impossibility of calculating the uncertainty using integration methods, which leads
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4 The Problem of Uncertainty in the Integration Process

to contradiction between methods of integration and the real–world conditions. Thus, it

appears that the probabilities could serve as the input data, but the methods, allowing to

account for these probabilities and their influence on the final result, are not developed.

Thus, uncertainty presents a problem for integration.

We find that it is important to develop a transparent method for evaluating uncer-

tainties in the process of integration.
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5 Latent Variable Model

In this chapter we exploit the Latent Variable Model. The general idea and basic princi-

ples are given in Section 5.1. The theoretical framework of the concrete LCA method rel-

evant for our use is considered in Sections 5.2 and 5.3. In those sections two approaches

for building the latent model are examined: estimation method based on simultaneous

linear equations and maximum likelihood estimation method. The goodness of fit test

for evaluating the built model is explained in Section 5.4. Section 5.5 summarizes this

chapter.

5.1 Principles of Latent Variable Model

Latent variable models provide an important tool for the analysis of multivariate data.

They offer a conceptual framework within which many disparate methods can be unified

and a base upon which new methods can be developed. Latent variable models include

such methods as factor analysis, latent class analysis, latent trait analysis, latent profile

analysis, etc. [BK99, Bas94, Goo74, LH68, McC87].

Latent variable models are based on the statistical model and are used to study the

patterns of relationship among many dependent variables, with the goal of discovering

something about the nature of the latent (unobservable) variables that affect them, even

though those latent variables were not measured directly. The latent variables are called

factors. Dependent variables used in Latent Variable Models are manifest variables

which can be directly observed.

Generally, both latent and manifest variables could be metrical or categorical. Metrical

variables have the values in the set of real numbers and may be discrete or continuous.

Categorical variables assign individuals to one of a set of categories.

The relevant method for the integration task is Latent Class Analysis (LCA), since

both latent and manifest variables are categorical.

A typical LCA model suggests answers to three major questions:

1. How many different factors are needed to explain the pattern of relationships

among the variables?

2. How well do the hypothesized factors explain the observed data?
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5 Latent Variable Model

3. How much purely random or unique variance does each observed variable include?

In the next section we present the LCA model formally.

5.2 Theoretical Framework of Latent Class Analysis

In this section we adopt the definitions given in [Bas94]. We extend them by correcting

some indices and by introducing some additional notions, necessary for our application.

The latent class model can be understood and developed from standard probability

theory making use of Bayes’ theorem. Consider any two random variables x1 and x2

defined as

xi =







1, if event Ei is observed

0, if event Ei is not observed

for i = 1 and 2. The outcome corresponding to the code “1”, which is defined arbitrarily,

is known as the “positive” outcome or the “success” of the trial and the code “0” is

termed as the “negative” or the “failure” outcome of the trial. For example, xi may

represent independent binomial trials or outcomes for any other discrete distribution.

The following theorem is well known from the classical probability theory.

Theorem 5.1. Let A1, A2, . . . , Am represent a mutually exclusive partition of a sample

space S, such that P (As) 6= 0, s = 1, 2, . . . ,m, and
∑m

s=1 P (As) = 1. Let Ei be some

arbitrary event defined in S. Then we have

P (Ei) =
m
∑

s=1

P (As)P (Ei|As). (5.1)

The result of the Theorem 5.1 can be generalized to any finite number of independent

events. Thus for two events we have

P (Ei ∩ Ej) =
m
∑

s=1

P (Ei ∩ Ej ∩ As),

where

P (Ei ∩ Ej|As) =
P (Ei ∩ Ej ∩ As)

P (As)

and cross multiplying yields

P (Ei ∩ Ej) =
m
∑

s=1

P (As)P (Ei ∩ Ej|As)

=
m
∑

s=1

P (As)P (Ei|As)P (Ej|As). (5.2)
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For any finite number of k arbitrary events E1, E2, . . . , Ek, we have the relation

P (E1 ∩ E2 ∩ . . . ∩ Ek) =
m
∑

s=1

P (As)P (E1|As)P (E2|As) . . . P (Ek|As). (5.3)

In a typical application of equation (5.3) the probabilities P (As) of the partition-

ing events are given, and k < m. In the latent class model however we assume

the events A1, A2, . . . , Am to be unobservable and the probabilities P (As) to be un-

known. The problem then poses itself as follows. Given the observed probabilities

P (E1), P (E2), . . . , P (Ek) is it possible to compute the conditional probabilities P (Ei|As)

(i = 1, 2, . . . , k; s = 1, 2, . . . ,m) together with the partition probabilities P (As) such that

m < k? Consider k dichotomous random variables (the observed classes or categories)

and m < k unobserved classes, where

P (As) = πs – the unobserved probability of being in the sth la-

tent class, s = 1, 2, . . . ,m;

P (Ei) = pi – observed proportion of sample points that respond

positively to the ith category (i = 1, 2, . . . , k);

P (Ei ∩ Ej) = pij – observed proportion of sample points that re-

spond positively to both the ith and jth categories

(i 6= j, pij = pji);

P (Ei ∩ Ej ∩ . . . Ek) = pij...k – observed proportion of sample points that re-

spond positively to the ith, jth, . . ., kth categories

(i 6= j 6= . . . 6= k ) where permutations of indices

are excluded;

P (Ei|As) = νis – the unobserved conditional probability that a sam-

ple point in the sth latent class is also in the ith

observed category.

Since the sets A1, A2, . . . , Am represent a partition of the sample space,
∑m

s=1 πs = 1.

Using the notation shown above we have the normal equations

1 =
m
∑

s=1

πs (5.4)

pi =
m
∑

s=1

πsνis (i = 1, 2, · · · , k) (5.5)

pij =
m
∑

s=1

πsνisνjs (i, j = 1, 2, · · · , k) (5.6)
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pij···l =
m
∑

s=1

πsνisνjs · · · νls (i, j, · · · , l = 1, 2, · · · , k) (5.7)

where i 6= j 6= · · · 6= l and permuted subscripts do not appear. Equations (5.4) – (5.7)

express observed probabilities in terms of unknown probabilities, and represent the gen-

eral system of normal equations for a latent class model. They are also known in the

literature as the “accounting” equations. In practice, given a sample the observed joint

frequencies or the manifest probabilities are substituted on the left–hand side of equa-

tions (5.4) – (5.7), and assuming the existence of a unique solution (identifiability) the

system can be solved to yield estimates of the unobserved parameters πs, νis, νjs, . . . , νls,

known as the latent probabilities.

For k > m observed categories, the largest possible number of joint probabilities is

when l = k. Taking p0 ≡ 1 as the “null subscript” probability, the maximum number

of equations which is possible is then
∑k

l=0 C
(l)
k = 2k. Since for k observed categories

and m < k latent classes the total number of unknown latent parameters is m + mk =

m(k + 1), a necessary condition for identifiability is that 2k ≥ m(k + 1), that is,

2k

k + 1
≥ m. (5.8)

Equation (5.8) can always be satisfied since given m we can always choose k sufficiently

large assuming large sample be given. Conversely, if the system is identifiable and if there

are more equations (i.e., joint probabilities) than parameters, a solution can always be

found by using a subset of the normal equations.

According to equations (5.4) – (5.7) and condition (5.8) the minimal case which the

LCA model is able to consider is a case where k = 3 and m = 2. Then the LCA model

could be represented as the following system of eight equations with eight variables.

1 = π1 + π2

p1 = π1ν11 + π2ν12

p2 = π1ν21 + π2ν22

p3 = π1ν31 + π2ν32

p12 = π1ν11ν21 + π2ν12ν22

p13 = π1ν11ν31 + π2ν12ν32

p23 = π1ν21ν31 + π2ν22ν32

p123 = π1ν11ν21ν31 + π2ν12ν22ν32







































































(5.9)

As mentioned above, for practical calculations, it is sometimes convenient to use

observed frequencies of the patterns as opposed to the manifest probabilities. Then

a contingency table could be built. The Contingency Table 5.1 reflects the minimal

possible case scenario (k = 3 and m = 2), where every pattern i− j − k (i, j, k = 0, 1) is
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counted nijk times and the corresponding observed frequencies are fijk = nijk/n, where

n =
∑

ijk
nijk is a total number of sample points.

Table 5.1: Contingency table

Observed Pattern Number of occurrences Observed frequency

1 − 1 − 1 n111 f111

1 − 1 − 0 n110 f110

1 − 0 − 1 n101 f101

1 − 0 − 0 n100 f100

0 − 1 − 1 n011 f011

0 − 1 − 0 n010 f010

0 − 0 − 1 n001 f001

0 − 0 − 0 n000 f000

Obviously, a set of {fijk} values can be easily derived from a set of seven values

{pi, pij, pijk}:

f111 = p123

f110 = p12 − p123

f101 = p13 − p123

f100 = p1 + p123 − p13 − p12

f011 = p23 − p123

f010 = p2 + p123 − p23 − p12

f001 = p3 + p123 − p23 − p13

f000 = 1 − p123 + p23 + p13 + p12 − p1 − p2 − p3







































































(5.10)

Conversely, a set of seven values {pi, pij, pijk} can be computed given set of {fijk} values:

p1 = f111 + f110 + f101 + f100

p2 = f111 + f110 + f011 + f010

p3 = f111 + f101 + f011 + f001

p12 = f111 + f110

p13 = f111 + f101

p23 = f111 + f011

p123 = f111



























































(5.11)

When the observed categories are binomial the method of maximum likelihood can

be used to estimate the latent probabilities.
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5.3 Maximum Likelihood Estimation

In this subsection we consider the method of maximum likelihood estimation described

in [BK99] in the context of the definitions of the previous subsection.

Suppose there are k binary variables x1, x2, . . . , xk with xi = 0 or 1 for all i. This

collection can be presented as a vector x = (x1, x2, . . . , xk). Let us consider whether

their mutual association could be accounted for by a single binary variable s. In other

words, is it possible to divide the population into two parts so that the x are mutually

independent in each group? The prior distribution of s may then be written

h(1) = P{s = 1} = π and h(0) = 1 − h(1). (5.12)

The conditional distribution of xi given s, gi(xi|s) will be that of a Bernoulli random

variable written

gi(xi|s) = P{xi|s} = νxi

is (1 − νis)
1−xi =







νis, if xi = 1

1 − νis, if xi = 0
(xi, s = 0, 1), (5.13)

where νis is the probability that xi = 1 when the latent class is s. Notice that in this

simple case the form of the distribution h and {gi} is not in question; it is only their

parameters, {π}, {νi1} and {νi0} which are unspecified by the model.

As only x can be observed, any inference must be based on joint distribution whose

density is denoted f(x). Thus, the LCA model with binary manifest variables and a

single binary latent variable could be represented as follows:

f(x) = π
k
∏

i=1

νxi

i1 (1 − νi1)
1−xi + (1 − π)

k
∏

i=1

νxi

i0 (1 − νi0)
1−xi . (5.14)

The extension of the two–class to a m–class model is almost immediate. Let νis

be the probability of a positive response on variable i for an object in latent class s

(i = 1, 2, . . . , k; s = 0, 1, . . . ,m − 1) and let πs be the prior probability that a randomly

chosen object is in class s (
∑m−1

s=0 πs = 1). For the case of m classes (5.14) becomes

f(x) =
m−1
∑

s=0

πs

k
∏

i=1

νxi

is (1 − νis)
1−xi . (5.15)

The posterior probability that an object with response vector x belongs to latent class s

is thus

h(s|x) = πs

k
∏

i=1

νxi

is (1 − νis)
1−xi/f(x) (s = 0, 1, . . . ,m − 1). (5.16)
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From (5.15) we find the log–likelihood function for a random sample of size n to be

L =
n
∑

h=1

ln

{

m−1
∑

s=0

πs

k
∏

i=1

νxih

is (1 − νis)
1−xih

}

. (5.17)

This has to be maximized subject to
∑

πs = 1, so we find the unrestrained maximum

of

φ = L + θ
m−1
∑

s=0

πs,

where θ is an undetermined multiplier. Finding partial derivatives, we have

∂φ

∂πs

=
n
∑

h=1

{

k
∏

i=1

νxih

is (1 − νis)
1−xih/f(xh)

}

+ θ (s = 0, 1, . . . ,m − 1)

=
n
∑

h=1

{g(xh|s)/f(xh)} + θ, (5.18)

where g(xh|s) is the joint probability of xh for an object in class s. Also,

∂g(xh|s)

∂νis

=
n
∑

h=1

πs
∂

∂νis

g(xh|s)/f(xh) (i = 1, 2, . . . , k; s = 0, 1, . . . ,m − 1).

Now

∂g(xh|s)

∂νis

=
∂

∂νis

exp

(

k
∑

i=1

{xih ln νis + (1 − xih) ln(1 − νis)}

)

= g(xh|s)

{

xih

νis

−
1 − xih

1 − νis

}

= (xih − νis)g(xh|s)/νis(1 − νis). (5.19)

Therefore,

∂φ

∂νis

= {πs/νis(1 − νis)}
n
∑

h=1

(xih − νis)g(xh|s)/f(xh). (5.20)

The resulting equations can be simplified by expressing (5.18) and (5.20) in terms of the

posterior probabilities {h(s|xh)}. By Bayes’ theorem,

h(s|xh) = πsg(xh|s)/f(xh). (5.21)

Substituting in (5.18) and setting equal to zero, we find
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n
∑

h=1

h(s|xh) = −θπs.

Summing both sides over s and using
∑

πs = 1 gives θ = −n, and hence the first

estimating equation is

π̂s =
n
∑

h=1

h(s|xh)/n (s = 0, 1, . . . ,m − 1). (5.22)

The second is

n
∑

h=1

(xih − νis)h(s|xh)/νis(1 − νis),

hence

ν̂is =
n
∑

h=1

xihh(s|xh)
/ n
∑

h=1

h(s|xh)

=
n
∑

h=1

xihh(s|xh)/nπ̂s (i = 1, 2, . . . , k; s = 0, 1, . . . ,m − 1). (5.23)

Although these equations have a simple form it must be remembered that h(s|xh) is a

complicated function of {πs} and {νis} given by

h(s|xh) = πs

k
∏

i=1

νxih

is (1 − νis)
1−xih

/m−1
∑

s=0

πs

k
∏

i=1

νxih

is (1 − νis)
1−xih . (5.24)

However, if h(s|xh) were known it would be easy to solve (5.22) and (5.23) for {πs}

and {νis}. The Expectation Maximization (EM) algorithm takes advantage of this fact

proceeding in a “zig–zag” fashion as follows:

(i) Choose an initial set of posterior probabilities {h(s|xh)}.

(ii) Use (5.22) and (5.23) to obtain a first approximation to {π̂s} and {ν̂is}.

(iii) Substitute these estimates into (5.24) to obtain improved estimates of {h(s|xh)}.

(iv) Return to (ii) to obtain second approximations to the parameters and continue the

cycle until convergence is attained.

The solution reached will be a local maximum. It is known that models of this kind

may have multiple maxima and the risk of this appears to increase as m, the number of

classes, increases and to decrease with increasing sample size. By using different starting
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values one can guard against the risk of mistaking a local for a global maximum, but if

such multiple maxima do occur it is not clear what interpretation should be placed on

the different set of latent classes implied by the various local maxima.

A reasonable way of starting the iteration is to allocate objects, arbitrarily, to latent

classes on the basis of their total score (
∑k

i=1 xi) that is, to take {h(s|xh) = 1} if xh

is allocated to class s and {h(s|xh) = 0} otherwise. Although the method may take a

very large number of iterations to converge, the steps are simple and fast, so the total

computing time is unlikely to be excessive. As well as providing parameter estimates

the method also provides the posterior probabilities that each object belongs to a given

latent class.

Nowadays there are many software packages available that implement the above

given theory, for instance, such programs as PANMARK (Assessment Systems Corpora-

tion), Latent GOLD (Statistical Innovations Inc.), LEM (freeware program developed by

Jeroen Vermunt, Department of Methodology, Faculty of Social Sciences, Tilburg Uni-

versity), LATCLASS (supporting software for the [BK99]), etc. In our work we use the

freeware program WinLTA developed by the Methodology Center of the Pennsylvania

State University.

5.4 Goodness of Fit

For evaluating the latent class model the goodness of fit test could be applied. Goodness

of fit is assessed by comparing the observed and predicted response pattern frequencies

and can be carried out using the two test statistics, namely, the likelihood ratio usually

denoted G2 and the Pearson chi–squared statistics denoted χ2.

χ2 =
∑ (fij...k − f̂ij...k)

2

f̂ij...k

. (5.25)

G2 = 2
∑

fij...k ln(fij...k/f̂ij...k). (5.26)

In the equations (5.25) and (5.26) i, j, · · · , k could take only ones for the positive and

zeros for the negative outcomes of the trial, fij...k represents the observed frequency of

the response pattern ij . . . k, and f̂ij...k represents the frequency predicted by the model.

Asymptotically, G2 is distributed as a chi–square (χ2) with degrees of freedom equal

to

2k − km − (m − 1),

where k is number of categories, 2k is the maximum number of equations possible in the

LCA model, km is number of response probabilities, and m is number of latent classes.
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The value given by (5.25) or (5.26) should not exceed the critical value χ2
0 that could

be obtained from the table of critical values of the χ2 distribution. For example, for the

model where k = 3 and m = 2 we could choose a critical region of size 0.05 (permissible

error probability is 5%), then the critical value of the χ2 distribution with one degree of

freedom will be χ2
0 = 3.841. The resulting model is then considered as fit if the value of

χ2 or G2 is less or equal to 3.841.

If the model was rejected by the goodness of fit test, then the parameters of the latent

model should be changed until the values G2 or χ2 are acceptable.

5.5 Summary

In this chapter the overview of the Latent Variable Models has been given. Among its

methods, the one relevant for the integration task, Latent Class Analysis (LCA) has

been presented. In the following the theory of the LCA method is summarized.

The LCA is a statistical method that is used to discover the latent unobserved variables

(factors), which best describe relationships between manifest observed variables.

The LCA defines latent classes so that, within each latent class, each variable is sta-

tistically independent of every other variable. To say this differently, latent classes are

defined such that, if one removes the effect of latent class membership on the data, all

that remains is randomness (understood here as complete independence among mea-

sures).

The LCA provides a means for testing whether latent factors explain the observed

pattern of relationships among the variables, how many different factors are needed to

explain the observed data, the substantive meaning of the latent variables, the promi-

nence of the manifest variables as indicators of latent factors, and how much purely

random variance does each observed variable include.

The LCA supposes a simple parametric model and uses observed data to estimate

parameter values for the model. The model parameters are: probability that a sample

point is in the latent class and conditional response probability that a sample point that

belongs to the latent class is also in the observed category. The input data for the LCA

are manifest probabilities or observed frequencies of the patterns that could be presented

in the form of the contingency table.

The LCA uses estimation method based on simultaneous linear equations (refer to

Section 5.2) or simple iterative proportional fitting could be used to find maximum

likelihood parameter values; this method is type of algorithm described in Section 5.3.

Once the latent class model is estimated, it need to be verified in terms of their

goodness of fit. Model fit is assessed by comparing the observed cross classification

frequencies to the expected frequencies predicted by the model. The difference is formally
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assessed with a likelihood ratio or the Pearson chi–squared statistic (refer to Section 5.4).

This statistics shows which latent categorization explains the original association or, in

other words, tells us which of the initial test latent models is the best fit for our problem.

In the next chapter we demonstrate how the LCA is used in the integration task.

59





6 Applying Latent Class Analysis to

the Integration Task

In this chapter we come to the objective of our work. We demonstrate how the inte-

gration process and the statistical methods could be combined together. In general it

appears hard to comprehend how these two, operating on values of absolutely different

nature could be combined at all. It is clearly seen that the information the integration

task is dealing with is discrete on the example of the objects, which either belong to

classes or do not, partial membership of objects in the classes is clearly a non–existing

terminology. Integration methods do not operate with uncertainties, they suppose com-

plete knowledge about belonging of objects to classes, the class correspondences, etc.

However, since we need to integrate unstructured or semi–structured data we have

to employ special methods, which extract structure and determine correspondences and

dependencies within and between data sources. Therefore, we no longer deal with the

real–world classes and real–world objects, which results into uncertainties appearing in

the integration process. We now describe how exactly the integration process should be

approached in such a way that it becomes a direct input data for statistics, and how

conclusions about the integration process can be drawn from the results of the statistics

methods.

Thus, we propose analyzing the uncertainties and their propagation from one integra-

tion step to another using the available statistical methods. The principle of the Latent

Variable Models is based on revealing knowledge about the latent variables using vari-

ables that can be observed. The integration process has a similar pattern, that is there

are some absolute or real–world entities, not directly visible and there are entities at the

outcome of the integration that we observe directly and based on which we would like

to give an estimation to the invisible ones, that they describe. The correlation between

the statistical method and the integration process is obvious. Our task is to use this

similarity and express the integration process in terms of the statistical model such that

we can get a grip on the statistical estimation of the real–world entities of the integration

process.

Building a statistical model of the integration task is considered in Section 6.1. In

Section 6.2 we demonstrate on examples how the integration result can be evaluated

61



6 Applying Latent Class Analysis to the Integration Task

using the LCA. Section 6.3 considers questions related to integration quality. Section 6.4

concludes the chapter.

6.1 Statistical Model of the Integration Task

In the previous chapter we reviewed the theory of the Latent Variable Models and

suggested that the LCA could be used for estimating the integration process. In order

to achieve that, a statistical model of the integration task should be built. We distinguish

the following steps for converting integration task into the statistics plane:

� Data representation in the integration task

� Construction of the class membership table

� Integration task in terms of the statistical model

Data representation in the integration task. Taking into account that the LCA uses

a contingency table as an input data, we need to represent the data of the integration

task in the same way, so that the LCA is able to work on it. According to Section 2.1

for integrating k data sources, first the correspondences of schema nodes of these data

sources should be determined, so that the integrated schema can be built. Then for

carrying out the data integration the correspondences between the objects from corre-

sponding schema nodes (class, subclass) have to be established. Thus, for each schema

node we have a set of n objects and a knowledge (partly uncertain) about their class

membership. This information could be presented as a table of the class membership of

objects in each data source. We denote the class membership with the following values:

xi,j =















0, if object does not belong to the class

1, if object belongs to the class

2, missing data

Table 6.1 (where subscript i = 1, 2, . . . , n refers to the object number, j = 1, 2, . . . , k

is the data source) is an illustration of the class membership table in general case. A set

of values xi,j forms the n–rows by k–columns (n × k) matrix X of class membership.

In the case that we possess exact knowledge about membership of objects in classes,

xij take only values “1” and “2”. The exact meaning of these values is as following: “1”

means that the considered object belongs to the considered class in the corresponding

data source, “2” means that the considered object does not exist in the corresponding

class of the corresponding data source. Thus, supposing that all columns of the class

membership table contain only “1”s, means that the considered classes from given data
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6.1 Statistical Model of the Integration Task

Table 6.1: Class membership table

i
Z

ZZ
j 1 2 . . . k

1 x1,1 x1,2 . . . x1,k

2 x2,1 x2,2 . . . x2,k

. . . . . . . . . . . . . . .

n xn,1 xn,2 . . . xn,k

sources are equivalent. The case when all columns of the class membership table contain

only “2”s corresponds to a situation when the considered classes from given data sources

are disjoint. Table containing both ones and twos represents overlapping classes, i.e.,

there exist objects common to all classes and objects that belong only to certain classes.

As a consequence of applying information extraction methods we have neither exact

knowledge about membership of objects in classes nor correspondences between classes,

i.e., both class membership and correspondences are annotated by a certain level of

confidence, support, etc. At that, if the support value is different from 1 it cannot

be inserted into the table instead of the value xij. That is why some objects will be

introduced by a zero and some by a one, but which is which is not exactly known.

Support of class membership will be represented in the table by a ratio of the number of

“1”s to n column wise, whereas support of class correspondence will be represented by a

ratio of pairs “1–1” to n. It is important that in such an interpretation the row–object

relationships will be lost.

Besides, the presence of the support values in the table implies that there could be

mistakes of two types, namely when an object belongs to the class but was defined as

“0” and when an object not belonging to the class was defined as “1”. These mistakes

introduce uncertainty into the class membership table so that the rows with random

combinations of “1” and “0” appear, which means that the rows with all ones and all

zeros could appear as well. Therefore, this table is a collection of both correct and

random data. All three types of uncertainties described in Section 4.2 contribute to the

values xi,j. Thus, the random part cannot be mechanically separated from the rest of

the table. A statistical method should be applied for that.

Statistical methods do not require assigning a certain row to a certain object. That is

why the rows can be sorted in order to compose a clear structure of the table. It is conve-

nient to distinguish three different parts in the table, namely, the definite part (I), which

includes the objects that are presented in each data source (equivalence), a part (II),

which includes missing data (disjoint), and a so–called random part (III), which includes

63



6 Applying Latent Class Analysis to the Integration Task

all the uncertainties. The Table 6.2 reflects the situation described above and presents

the three parts of the class membership table.

Table 6.2: Three parts of the class membership table

i
Z

ZZ
j 1 2 . . . k

1 1 1 . . . 1

2 1 1 . . . 1

. . . . . . . . . . . . . . .
I

. . . 1 1 . . . 1

. . . 2 1 . . . 1

. . . 1 1 . . . 2

. . . . . . . . . . . . . . .
II

. . . 1 2 . . . 1

. . . 1 0 . . . 1

. . . 0 1 . . . 0

. . . . . . . . . . . . . . .
III

n 1 1 . . . 0

Data representation as given in the Table 6.2 is not necessary for the LCA, but it

gives a descriptive representation for understanding LCA’s principle of work, namely

separation of the random part from all the other ones.

Construction of the class membership table. Since the data sources that we need to

integrate do not possess defined structure and the exact correspondences between them

are also not known, we construct the class membership table based on the data obtained

by various methods used in the integration process. In fact it is not possible to identify

a certain object with a certain row. The table should be reconstructed using the integral

parameters delivered by the applied techniques such as data mining, schema matching,

data cleaning, etc.

The support of the object’s class membership for each data source is provided by data

mining techniques (see Section 3.1). Therefore, the proportion of values “0” and “1” in

every column of the class membership table is known.

Schema matching (refer to Section 3.2) delivers the support of class correspondence.

We use this information together with the information obtained by data mining and

data cleaning to find the parts of the table, which should be disjoint for every pair of

corresponding classes in different data sources.
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The value of the integral parameter (for example, support of class membership) means

that the corresponding column of the table contains a certain number of “1”s and “0”s,

but there is no information which row contains “1” and which row contains “0”. There-

fore, we can sort the values in every column in order to fit the value of the support of

the class correspondence. This integral parameter is responsible for the relative number

of combinations “1–0”, “0–1”, “1–1” and “0–0” for every two columns of the table.

This information may not be sufficient for the complete reconstruction of the class

membership table, but this is not really needed for applying statistical methods as soon

as the integral parameters are given.

Integration task in terms of the statistical model. In Section 5.2 the theory of LCA

was reviewed. As a next step we would like to analyze similarities and differences between

the data representation in integration and statistics. In addition to that we would like

to draw correspondences between the concepts of LCA and integration.

The information we deal with in the integration process has a discrete nature. Every

real object is unique and cannot have a partial class membership. As described above,

the integration task operates with only such boolean statements as, that an object is

either a real–world object or not, it either belongs to real–world class or it does not. On

the contrary, the statistics does not make any difference between objects and considers

a class membership of each object as a single measurement (or trial) of the random

variable assigned to this class.

Keeping this in mind, the term sample in statistics corresponds to a set of objects, part

of which represents real–world objects, whereas another part represents uncertainties.

Uncertainties appear in a sample as a consequence of applying the knowledge extrac-

tion methods representing an error of two types: when the real–world objects were not

revealed and when those revealed are not the real–world objects.

Thus, the concept of sample point corresponds to the object in terms of integration.

The matrix X introduced above is formed from the values xi,j. These values represent

three possibilities for each object: an object can belong to the class, can not belong and

we can have no information at our disposal about the class membership of this object.

Hence, the concept of object’s class membership is the event/measurement in terms of

statistics. At that, the classes to be integrated correspond to the categories and are the

manifest variables that can be directly observed. The factor (latent class) is real–world

class.

Further, class membership table introduced above corresponds to the Contingency

Table 5.1. Data in this table is the input data for LCA and it represents either observed

frequencies of patterns or p–values. Below we summarize p–values in the integration’s

terms:
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pi – observed proportion of objects assigned to the ith class (i = 1, 2, . . . , k);

pij – observed proportion of objects assigned to both the ith and jth classes

(i 6= j, pij = pji);

pij...k – observed proportion of objects assigned to the ith, jth, . . ., kth classes

(i 6= j 6= . . . 6= k ).

Values πs and νis are the parameters which are to be found. Their meaning in the

terms of integration is as following: πs=1 value is the unobserved probability that a

class was defined correctly, i.e., it corresponds to a real–world class. Value πs=2 is the

unobserved probability that a class was defined incorrectly, i.e., it is not a real–world

class. Value νi1 is the unobserved conditional probability that an object from the real–

world class is also in the ith class. Value νi2 is the unobserved conditional probability

that an object, which is not from the real–world class is in the ith class.

Thus, we have equated the concepts of the integration task and the LCA. Further

on we substantiate the developed framework with an illustrative example where we

implement the statistical method for evaluating the integration process.

Suppose we have two data sources, which need to be integrated and a database resulted

from their integration, i.e., integrated database. In Section 2.1 we provided three major

steps for integrating the data sources with undefined structure and correspondences

between the sources. These are: detecting dependencies and identifying semantics–

carrying structure within each source, finding the correspondences between the sources

on the schema and instance (data) level and applying results obtained on previous steps

for schema and data integration. It is important to note, that these steps should be

applied sequentially class by class, i.e., first the structure class–subclass in each source

should be determined, then correspondences between classes from corresponding data

sources should be revealed. At the data level, this means that first the objects belonging

to each of the classes in each data source should be found and then matching objects from

corresponding classes of corresponding data sources should be determined. As mentioned

in Chapter 3, any of the methods, applied at each of these steps, never provide exact

results and are always being accompanied, for example, by a certain level of confidence.

The methods are applied to the schema on a class by class basis (they cannot handle

the complete schema in one shot). Therefore, as a result of applying these methods

each class is annotated with a value of confidence. Hence, for evaluating the complete

integration process we need to include all these values into analysis, which means that

we have to evaluate the integration process also class by class.

We can realize this principle if we apply the LCA to each triplet of the considered

classes: two classes to be integrated and one integrated class, as shown in Figure 6.1.
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6.1 Statistical Model of the Integration Task

Such representation of the task allows to estimate the result of the integration and also

to estimate how correctly each of the source classes was determined and how correctly

the correspondences between these classes were found. In the terms of the integration

this means that we, using the LCA, intend to verify how close each of the classes in

the triplet reflects real–world class. Obviously, if we get an answer for every class to be

integrated, then we can evaluate the whole integration process.

Database 1 Database 2

Real-World ClassIntegrated Database

Level of Confidence
Mapping

Class

Figure 6.1: Triplet of classes to be considered in the LCA

Let us consider in detail the above case where two classes to be integrated (A1 and

A2) and one integrated class A should be analyzed using the LCA. The general case of

this integration is depicted in Figure 6.2.

Class A1

Schema 1

Class A

Integrated Schema

Class A2

Schema 2

Real-World Class

p13

p12

p23

p2
p1

p3

n
11

?

p
1
?

n
31

?

n
21

?

p123

Figure 6.2: General case: evaluating the integration of two classes using LCA

As described in the paragraph Construction of the class membership table p–values,

which are the input for the LCA can be derived from the methods applied during the

integration process. Values p1, p2, and p3 show the proportion of the objects that

belong to the classes A1, A2, and A3 respectively. Values p12, p13, and p23 represent the

proportion of the objects that belong to each pair of classes A1 and A2, A1 and A3, and

67



6 Applying Latent Class Analysis to the Integration Task

A2 and A3 respectively. Value p123 is the proportion of objects that belongs to all three

classes A1, A2, and A3.

The LCA allows us to estimate the probability (π1) with which all three considered

classes correspond to the real–world class. Besides, it estimates probabilities with which

every class (A1, A2, and A3) corresponds to the real–world class.

The case considered above supposes integration of two data sources, that is why

according to the LCA’s identifiability condition (5.8), described in Section 5.2 we are

forced to include the integrated database in the analysis. That answers the minimal case

when the number of the latent classes is equal to 2 and number of categories is equal to 3.

At that, it is necessary to analyze the integrated database in order to derive the values

of p3, p13, p23, and p123. Besides, it is important that a set of objects considered in the

analysis is a sample in the terms of statistics, and hence the number of the considered

objects should be the same for all three data sources. This means, that if in the process

of integration, for example, experts made decision not to include certain objects into the

integrated database, then those objects should be taken out of the analysis completely.

That way, even in case of integration of only two databases the integration result can

be analyzed, but the real advantage of the method is revealed when the number of

data sources to be integrated is three or more. That is because we can avoid including

integrated database into analysis and evaluate integration results based on the initial

data sources.

In the next section we demonstrate on examples how the statistical analysis evaluates

various uncertainties.

6.2 Evaluation of the Integration Process Using LCA

6.2.1 Exact Solution for three Variables

In previous section we described the integration task in the terms of statistics. Now

we would like to clarify on the numerical examples how integration can be evaluated.

For that let us consider a simple case described in the previous section and depicted

in Figure 6.2, where we have two classes (A1 and A2) from different data sources to be

integrated and one integrated class (A) in the integrated database.

Thus, in this example we have the number of categories k = 3. The minimal number

of latent classes m = 2 reserves for the objects only two possibilities: to be a member

of the real–world class or not to be.

In order to demonstrate the LCA’s working principle let us first consider an ideal case.

Given is the following class membership 108 × 3 matrix X, which does not contain any

missing data, i.e., it represents a case of class equivalence.
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X =
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Thus, the matrix X consists only of the definite part (100 rows with a pattern “1–1–1”)

and of the ideally random part (last 8 rows). The matrix being built by the last 8 rows is

completely random. It contains 8 possible response patterns in equal proportions. The

randomness of this part can be easily proved by calculating the correlation coefficients

ri,j for every pair of categories (columns).

ri,j =
Cov(xi, xj)

σiσj

,

where covariance

Cov(xi, xj) =
1

n − 1

n
∑

p=1



xpi −
1

n

n
∑

q=1

xqi







xpj −
1

n

n
∑

q=1

xqj





and dispersion

σi =

√

√

√

√

√

1

n − 1

n
∑

p=1



xpi −
1

n

n
∑

q=1

xqi





2

.

Hence, the correlation matrix R = {ri,j} for the random part shows no correlation

between categories

R =









1 0 0

0 1 0

0 0 1









69



6 Applying Latent Class Analysis to the Integration Task

In this ideal case an exact solution of the system of equations (5.4) – (5.7) can be

found, whereas in real applications such an ideal separation between definite and random

content of the sample data does not take place. Therefore, in the real case, the random

part has to be extracted using the best fit to the ideal one. Such a fitting procedure lays

in the basement of the LCA.

In our ideal example represented by the matrix X the observed respond frequencies

are given in the Table 6.3.

Table 6.3: Contingency table for the ideal case

Observed Pattern Number of occurrences Observed frequency

1 − 1 − 1 101 0.935

1 − 1 − 0 1 0.009

1 − 0 − 1 1 0.009

1 − 0 − 0 1 0.009

0 − 1 − 1 1 0.009

0 − 1 − 0 1 0.009

0 − 0 − 1 1 0.009

0 − 0 − 0 1 0.009

Using (5.11) we can find p–values:

p1 =
104

108

p2 =
104

108

p3 =
104

108

p12 =
102

108

p13 =
102

108

p23 =
102

108

p123 =
101

108

Substituting these p–values into the left hand side of the equations (5.4) – (5.7) yields

two possible solutions:
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π1 = 25
27

– the unobserved probability of real–world class membership;

νi1 = 1 – the unobserved conditional probability that an object from the

real–world class (definite part) is correctly assigned to the ith data

source;

π2 = 2
27

– the unobserved probability of real–world class non–membership;

νi2 = 1
2

– the unobserved conditional probability that an object which is not

in real–world class (random part) is incorrectly assigned to the ith

data source.

and

π1 = 2
27

– the unobserved probability of real–world class membership;

νi1 = 1
2

– the unobserved conditional probability that an object from the

real–world class (definite part) is correctly assigned to the ith data

source;

π2 = 25
27

– the unobserved probability of real–world class non–membership;

νi2 = 1 – the unobserved conditional probability that an object which is not

in real–world class (random part) is incorrectly assigned to the ith

data source.

These solutions are symmetric, i.e., one can be turned into the other and vise versa by

swapping their response category indices and cross naming the object groups “latent class

membership” and “latent class non–membership”. A choice between these two solutions

is actually a choice of response category that is considered as a real–world class. It is

naturally based on the initial assignment of object to classes, i.e., response “1” is counted

in favor of real–world class. Most of objects in the sample usually respond positively to

class membership in every of three data sources. In our case the first solution has to be

chosen.

The second solution reflects a simple and obvious fact that alternative initial assign-

ing of object to classes, i.e., when response “0” is counted in favor of real–world class

naturally leads to a low presence of this class in the sample.

One can imagine a situation where the scores of “1” and “0” in the contingency table

are almost equal. In this case a correct choice of appropriate solution is not possible.

Thus, the LCA gives us an answer to the question what proportion of objects belongs

to the real–world class (π1 = 25
27

≈ 0.926). Indeed, this value demonstrates a confidence

with which the integrated class corresponds to real–world class.

We see that 2
27

of objects (≈ 7.4%) do not belong to real–world class. They have equal
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probability (50%) to be found or not to be found in each data set. This follows from

the initial assumptions about the statistical nature of our uncertainties.

On this example we can see that the estimation value π1 of the real–world class is

different from p3. That is a consequence of the fact that by using only the p3–value

we cannot make a certain conclusion about how integrated class corresponds to the

real–world class, because the p3–value represents the support of class membership for

an integrated class and does not take into account the confidence value for this class,

which depends on several values of the class correspondence between the data sources.

On contrary, the π1–value takes into account all these uncertainties and gives us an

integrated value of support of real–world class membership for the integrated set of

objects.

6.2.2 An Example of Applying LCA

In this section we return to the example considered in Section 4.3. In this example

we studied the problems, appearing with an attempt to estimate the result of the inte-

gration of the data, that contains uncertainties. To be more concrete, we present this

example according to Figure 4.6, where the abstract classes A1, A2, B1, B2 and so on are

substituted with concrete classes All Clients, All Customers, Late on their payment,

Debtors, etc. respectively.

Below we consider two cases of evaluation of the integration shown in Figure 4.6,

namely a case of class equivalence and a case of class overlapping. The equivalence

case corresponds to a situation where the same set of clients is represented differently

in two existing data sources. In the case where classes of different data sources overlap,

there are clients, that are present in two sources at the same time and additionally, each

data source contains a number of clients, that are missing in the other data source. As

a result of applying data mining, schema matching, etc. methods, both sources have

been analyzed on a matter of belonging of objects to classes and on the correspondence

between classes/objects. Further, we suppose, that as a result of analysis and integration

steps, a set of objects has been selected, that enters the integrated schema, and for that

set correspondences and support values have also been determined. The obtained values

agree with those shown in Figure 4.6.

Equivalence case. Let us consider a case of equivalence, where all of the objects,

selected for integration, belong to each data source. In this example (Figure 4.6) the

integrated schema copies the source schema 1, therefore it can be naturally assumed,

that the p–values for the integrated schema have the same values as those in schema 1,

i.e., p3 = p1, p13 = p1, p23 = p12, and p123 = p12, where index 3 refers to the integrated
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Class All Clients

Class Late on
their payment

Class VIP ClientsClass Clients

Integrated Schema

Class Late on
their payment

Class All Clients

Class VIP ClientsClass Clients

Schema 1

Class Debtors

Class All
Customers
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Figure 6.3: Integration of two data sources

schema. We should emphasize that if we make this assumption, then the LCA cannot

be correctly applied, because the complete correlation between two data sources would

surface in the LCA as an influence of the latent (we assume real–world) factor. This

could immediately be seen in the results of the calculations, carried out under these

assumptions. We demonstrate this considering following classes: class Late on their

payment, its corresponding class Debtors and integrated class Late on their payment.

Taking the numbers from Figure 4.6 we get the following set of values p:

p1 = 0.87

p2 = 0.84

p3 = 0.87

p12 = 0.80

p13 = 0.87

p23 = 0.80

p123 = 0.80
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and a Contingency Table 6.4. This table is used as input data by the program WinLTA

that realizes the maximum likelihood estimation method.

Table 6.4: Option 1: contingency table for the equivalence case, 1000 objects

Observed Pattern Number of occurrences Observed frequency

1 − 1 − 1 800 0.8

1 − 1 − 0 0 0

1 − 0 − 1 70 0.07

1 − 0 − 0 0 0

0 − 1 − 1 0 0

0 − 1 − 0 40 0.04

0 − 0 − 1 0 0

0 − 0 − 0 90 0.09

The results of the application of the LCA look like as follows:

π1 = 0.87 – the unobserved probability of real–world class membership;

ν11 = 1 – the unobserved conditional probability that the objects from the

real–world class are correctly assigned to the class Late on their

payment;

ν21 = 0.92 – the unobserved conditional probability that the objects from the

real–world class are correctly assigned to the class Debtors;

ν31 = 1 – the unobserved conditional probability that the objects from the

real–world class are correctly assigned to the integrated class Late

on their payment;

π2 = 0.13 – the unobserved probability of real–world class non–membership;

ν12 = 0 – the unobserved conditional probability that the objects which are

not in real–world class are incorrectly assigned to the class Late on

their payment;

ν22 = 0.008 – the unobserved conditional probability that the objects which are

not in real–world class are incorrectly assigned to the class Debtors;

ν32 = 0 – the unobserved conditional probability that the objects which are

not in real–world class are incorrectly assigned to the integrated

class Late on their payment.

It is worth to note, that the goodness of fit for this calculation is close to zero. It

indicates an exact fit of the statistically expected frequencies to the input ones.
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These results show that the equivalence between the first and the third (integrated)

schema, which we introduced, led us to an incorrect result. Namely, low probabilities of

class correspondences between the integrated data sources had no influence on π1 com-

pared with p1, which does not conform to our interpretation. Hence, we demonstrated

unconditional importance of the independent analysis of each of the three data sources,

included in the LCA task. Therefore, we cannot yet answer the questions stated in

Section 4.3 Figure 4.6. These answers could be given if we include into consideration

at least one more independent data source or if we analyze the integrated classes in

order to obtain independent p–values. If the objects are introduced into the integrated

database exclusively by two initial sources, then independent analysis of the integration

result is not possible. If we assume a broader notion of integration, namely, suppose,

that candidates for the membership in the integrated database do exist and we select

them using our data sources, then such analysis is possible. For example, we have a

list of the potential clients of our firm (in general case list of all the city residents) and

we would like to determine possible real clients using data of two other similar firms,

operating in the city some time ago. Obviously, changes, occurred with the flow of time

introduce uncertainties into the problem of relating the real clients (people living cur-

rently) to the records about the clients, kept in the old data sources. Then we have to

determine correspondences between the objects in our list with the objects of the two

sources and according to the result distribute them into the subclasses Late on their

payment, Clients or V IP Clients. It is obvious that such an analysis represents an

independent analysis of the integrated schema, giving as a result all needed p–values.

Now we continue the analysis suggesting that these values are available, that is we add

some arbitrary p–values, related to the integrated class Late on their payment. Then

as p–values data we should have something like:

p1 = 0.87

p2 = 0.84

p3 = 0.88

p12 = 0.80

p13 = 0.81

p23 = 0.81

p123 = 0.78

Table 6.5 is the corresponding contingency table.
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Table 6.5: Option 2: contingency table for the equivalence case, 1000 objects

Observed Pattern Number of occurrences Observed frequency

1 − 1 − 1 780 0.78

1 − 1 − 0 20 0.02

1 − 0 − 1 30 0.03

1 − 0 − 0 40 0.04

0 − 1 − 1 30 0.03

0 − 1 − 0 10 0.01

0 − 0 − 1 40 0.04

0 − 0 − 0 50 0.05

The results of the LCA’s application look like as follows:

π1 = 0.81 – the unobserved probability of real–world class membership;

ν11 = 0.972 – the unobserved conditional probability that the objects from the

real–world class are correctly assigned to the class Late on their

payment;

ν21 = 1 – the unobserved conditional probability that the objects from the

real–world class are correctly assigned to the class Debtors;

ν31 = 0.984 – the unobserved conditional probability that the objects from the

real–world class are correctly assigned to the integrated class Late

on their payment;

π2 = 0.19 – the unobserved probability of real–world class non–membership;

ν12 = 0.437 – the unobserved conditional probability that the objects which are

not in real–world class are incorrectly assigned to the class Late on

their payment;

ν22 = 0.160 – the unobserved conditional probability that the objects which are

not in real–world class are incorrectly assigned to the class Debtors;

ν32 = 0.437 – the unobserved conditional probability that the objects which are

not in real–world class are incorrectly assigned to the integrated

class Late on their payment.

Goodness of fit is G2 = 0.042, which is an acceptable value. In real application it can

be expected that the solution does not as easily converge, then the parameters of the

latent model should be changed until the goodness of fit test value is acceptable.

To a high degree this solution resembles the result for the ideal case, considered in
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the beginning of the section. It gives a realistic illustration of how the different kinds of

uncertainties can be converged to a single π1–value under the condition, that the initial

uncertainties have statistical nature and are correctly defined.

In a similar manner the calculations for all the remaining subclasses of the lowest level

of the integrated schema can be carried out, in our case classes Clients and V IP Clients.

In order to evaluate the superclasses All Clients, All Customers and integrated class All

Clients the analysis using the LCA should not be repeated, since they, as well as all the

classes of the highest level, are the simple unions of the set of objects of the lowest level.

Therefore, for determining the π1–value for a superclass, an average π1–value, weighted

by all the subclasses could be taken. Let the total number of objects be N , the number

of objects in subclasses Late on their payment, Clients and V IP Clients be n1, n2 and

n3 respectively.

We denote π1–values delivered by the LCA for each of the subclasses as π1
1, π2

1, and π3
1

respectively. Then the probability π1 that the superclass All Clients in the integrated

schema corresponds to the real–world class could be calculated according to the following

formula:

π1 =
π1

1n1 + π2
1n2 + π3

1n3

N
. (6.1)

Considering that N =
∑k

i=1 ni formula 6.1 in the general case takes the following form:

π1 =
1

N

k
∑

i=1

πi
1ni, (6.2)

where i = 1, 2, . . . k refers to the corresponding subclass.

Overlapping case. Now we broaden the analysis of our last example of integration

of class Late on their payment and its corresponding class Debtors into the integrated

class Late on their payment by setting that they overlap. We set, that additionally

to the 1000 equivalent objects, class Late on their payment contains 400 more objects

that are missing in class Debtors, and class Debtors contains 300 more objects that are

missing in the class Late on their payment.

Let mi be an number of missing objects in ith category, then the corresponding fre-

quencies and a number of corresponding respond patterns when the data is missing in

the 1st and in the 2nd categories (denoted as “2” in the respond pattern) is determined

as shown in Table 6.6:

The variables p1, p2, p3, p13, p23 are known. The frequencies fi2k and f2jk, which

correspond only to the respective set of missing objects, are unknown. We should suggest

for these sets the same p–values as for the complete set of objects. Then the following

set of equations results, having missing data in the 1st category:
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Table 6.6: Number of occurrences of respond patterns with missing data

Observed Pattern Number of occurrences Observed frequency

2 − 1 − 1 f211 × m1 f211

2 − 0 − 1 f201 × m1 f201

2 − 1 − 0 f210 × m1 f210

2 − 0 − 0 f200 × m1 f200

1 − 2 − 1 f121 × m2 f121

0 − 2 − 1 f021 × m2 f021

1 − 2 − 0 f120 × m2 f120

0 − 2 − 0 f020 × m2 f020

p2 = f211 + f210

p3 = f211 + f201

p23 = f211

In case that there is missing data in the 2nd category, the set of equations looks like as

follows:

p1 = f121 + f120

p3 = f121 + f021

p13 = f121

That gives:

f211 = p23

f201 = p3 − p23

f210 = p2 − p23

f200 = 1 + p23 − p3 − p2

f121 = p13

f021 = p3 − p13

f120 = p1 − p13

f020 = 1 + p13 − p3 − p1
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In our example m1 = 300 and m2 = 400. The computation outcome is shown in

Table 6.7.

Table 6.7: Contingency table for the overlapping case, 1700 objects

Observed Pattern Number of occurrences Observed frequency

1 − 1 − 1 780 0.459

1 − 1 − 0 20 0.012

1 − 0 − 1 30 0.018

1 − 0 − 0 40 0.040

0 − 1 − 1 30 0.018

0 − 1 − 0 10 0.006

0 − 0 − 1 40 0.024

0 − 0 − 0 50 0.029

2 − 1 − 1 243 0.810

2 − 0 − 1 21 0.070

2 − 1 − 0 9 0.030

2 − 0 − 0 27 0.090

1 − 2 − 1 324 0.810

0 − 2 − 1 28 0.070

1 − 2 − 0 24 0.060

0 − 2 − 0 24 0.060

The results of the LCA’s application look like as follows:

π1 = 0.81 – the unobserved probability of real–world class membership;

ν11 = 0.972 – the unobserved conditional probability that the objects from the

real–world class are correctly assigned to the class Late on their

payment;

ν21 = 1 – the unobserved conditional probability that the objects from the

real–world class are correctly assigned to the class Debtors;

ν31 = 0.984 – the unobserved conditional probability that the objects from the

real–world class are correctly assigned to the integrated class Late

on their payment;
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π2 = 0.19 – the unobserved probability of real–world class non–membership;

ν12 = 0.438 – the unobserved conditional probability that the objects which are

not in real–world class are incorrectly assigned to the class Late on

their payment;

ν22 = 0.159 – the unobserved conditional probability that the objects which are

not in real–world class are incorrectly assigned to the class Debtors;

ν32 = 0.438 – the unobserved conditional probability that the objects which are

not in real–world class are incorrectly assigned to the integrated

class Late on their payment.

These results fully conform to the results obtained for the case of equivalence since

here we used the same input p–values. This demonstrates the ability of the method

to handle overlapping classes as easy as equivalent ones. Thus, accounting for the

overlapping classes does not require a special analysis. The case with overlapping classes

can naturally be included into consideration.

6.3 Integration Quality (IQ)

In this section we review a problem of the integration quality (IQ). Under IQ we under-

stand correspondence of obtained integrated database to the real–world database. The

contribution of our work consists of proposing the method, capable of estimating the

integration process.

As has been repeatedly mentioned above, during the integration of the heterogeneous

data sources a number of conflicts and discrepancies appears that could be resolved by

various methods that introduce uncertainties into the integration process. Application

of the LCA by no means supposes resolution of the part of the arising conflicts or

improvement of the work of some methods, but rather only allows to account for the

uncertainties of different nature and as result gives common estimation to the whole

integration process, i.e., correspondence of the derived result to the real–world.

LCA’s working principle for estimating the IQ is following. Consider integration

developing according to the bottom–up scenario, i.e., the lowest level of each integration

data source is a determining basic object level, from which other levels are derived. The

real–world class membership (π1), calculated by the LCA methods, is delivered for this

lowest database level. The other real–world class memberships for the classes along the

bottom–up hierarchy are the weighted average of their parent nodes. Exercising this

principle all the way up, objects membership for the whole tree is calculated.

As was shown in the examples of the previous section, the input data for the LCA
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are the support values for each of the considered node (class) membership and also

correspondence values between these nodes. Therefore, for evaluating real–world class

membership at the lowest level, these values should be calculated, at that, during the

calculation, only those classes/objects should be studied, which afterwards will be in-

cluded in the integrated database, i.e., by the time that the LCA is activated, all the

preceding integration work has to be accomplished.

During the estimation of the IQ by the LCA method, it is also important that ac-

cording to the applicability condition at least three data sources should be provided.

Therefore, during the evaluation of the integration of two data sources, the integrated

database should be involved in the analysis as well, as was shown in the examples of the

previous section. In the integration case of three and more data sources the integrated

database should not be included in the analysis, and hence, there is no need to analyze

the integrated database with the purpose of discovering the membership support values

as well as the class correspondence values. Conclusions about the integrated database

could be drawn only based on the weighted average π1–values, derived for the sources

to be integrated.

The proposed approach allows to improve the IQ using an iteration principle as

shown in Figure 6.4.

Thus, as could be seen from this figure, the IQ improvement procedure comes to

estimating the integration process by the method of the LCA, and then, if the result’s

quality is unacceptable, the previous steps of the integration process can be repeated

with new input data, i.e., using alternative methods/strategies for: structure extraction,

finding correspondences, integration, and as a consequence different resulting sample of

objects is considered in the LCA. Besides that, the input parameters in used methods can

be changed, for example, for schema matching methods a new learning set can be built

or another dictionary can be used, etc. The cycle should continue until the acceptable

quality is attained.

It is important to underscore, that the LCA is intended for the integral estimate

and accounting for uncertainties based on the already selected set of objects, hence LCA

cannot give any recommendation as to which exactly objects should be selected and how

exactly the parameters of the applied methods should be altered. Similarly it cannot find

a more effective method for solving some of the integration tasks. In this case experts’

experience proves to be decisive, since the integration of the heterogeneous data sources

is an ambiguous process, and depending on the given data and the area of application,

decisions can vary a lot. It is easy to imagine such a situation, where an attempt to

determine classes more precisely, i.e., to increase the value of class membership support

(pi–values), leads to decreasing the values of class correspondence support (pij–values),

if the objects across classes are compared according to the same strict rules. This
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Figure 6.4: Improvement of the integration quality

happens because the methods, determining pi–values and pij–values work independently

and cannot account for the mutual influence. Then using the LCA becomes important

for determining the selection parameters. Computing the π–values does not present

a problem when input data (p–values) is determined. Thus, the LCA’s role becomes

obvious at the stage where it is necessary to estimate the result of the combined influence

of the different uncertainty types and to make a decision, in this way improving IQ.

6.4 Summary

In this chapter we have proposed to account for uncertainties in the integration process

using the available statistical method LCA. For that in Section 6.1 we build statistical

model of the integration task. Building the model is subdivided into the following steps:

data representation in the integration task, constructing the class membership table,

and formulating the integration task in terms of the statistical model.

Viewing classes as categories in the LCA and considering that p–values correspond to

the support of the class membership and support of class correspondence, we can, using
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LCA, get the π–values, which correspond to the real–world class memberships.

Since the minimal case that could be considered by the LCA method supposes presence

of three categories, then for integrating only two data sources we have to include an

integrated database into the analysis. Testing the triples of the corresponding classes

on a real–world class membership, i.e., two classes to be integrated and one integrated

class, we get the π–values, accounting for the combined influence of all types of the

uncertainties.

It is important that for integrating three and more sources, we do not have to include

the integrated database into the analysis. For testing if the whole integrated database

corresponds to the real world we have to obtain π–values for each triplet at the lowest

level and then taking weighted average we can move up the tree accordingly.

In Section 6.2 the examples of applying LCA for evaluating the integration process

have been given. First, an ideal case with three categories, which contains only a definite

and an ideally random part, has been considered. This example demonstrated that for

integration of three data sources, the obtained π1–value is different than the p3–value, i.e.,

it was shown that the value π includes influence of uncertainties of class correspondence,

whereas p–value does not and reflects only the support of class membership.

Another example also dealt with integration of two data sources. We made an attempt

to demonstrate that replicating the integrated database from the initial database leads

to the incorrect result, namely to the π–value being equal to the p–value of the copied

class.

Then we considered a case of integration of two data sources, calculating p–values for

the third database independently. The received result proves that π1 considers influence

of all the uncertainties on the integrated database. Besides that an example has been

given, reviewing the case when the classes overlap and providing an acceptable result.

Thus, LCA can estimate the case of class overlapping.

In Section 6.3 problems of quality of the integration process have been touched. We

demonstrated that the proposed method can assist in improving integration quality us-

ing iterations. One could try out different integration strategies, use various techniques

to derive schema information, schema correspondences, etc. Thereby changing objects

entering the integrated database, i.e., providing new data as an input to LCA and calcu-

lating the result, one can repeat the procedure until the acceptable quality is attained.
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This chapter presents a summary of the contributions of this thesis. Section 7.1 gives a

statement of the problem and in Section 7.2 we describe our contributions to the solution

of the given problem. Section 7.3 provides an outlook for our work.

7.1 Problem Statement

We consider integration process for heterogeneous semi–structured data or legacy sys-

tems.

Heterogeneity of these sources appears as a consequence of them being created in

different time and different places by different people. Due to these reasons there is a

chance that the same data is represented in different ways. Thus, sources that have

to be integrated could use different data models and therefore during the integration a

decision should be made about the type of model for the integrated schema. Besides

that, the same real–world object could be presented by different structural elements in

schemas. Additionally, conflicts, caused by homonyms and synonyms used at different

schema levels (classes, attributes, objects) could complicate integration. And, of course,

the most serious conflicts during the integration of the heterogeneous data sources are

caused by the not completely known data source semantics.

Besides that, semi–structured sources and legacy systems do not always possess the

complete schema, the semantics is not always completely known and correspondences

between such sources are not known.

Therefore, integrating such data sources is not possible, using only the available inte-

gration methods, because they suppose complete and precise knowledge about sources

and their relationships. We, hence, have to apply to our data sources such methods

as data mining, schema matching, data cleaning, etc. These methods allow to extract

the necessary information for integration. They, however, do not provide a reliable

result, but rather a result with a certain trustworthiness. The appearing in this way

uncertainties could distort the integration result in an unpredictable way.

For the integration task it is important to know how good the result reflects the

reality. Integration methods proposed so far are not capable of accounting for existing
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uncertainties and accordingly are not able to evaluate the integration result, i.e., cannot

provide an estimate of the integration quality.

The aim of our work is to develop an approach that is able to take into account all

existing uncertainties and give a quantitative estimation to the integration quality.

7.2 Contributions

In this thesis we have considered the problem of integrating heterogeneous data sources

from the point of view of possible integration quality estimation. For that we reviewed

existing analysis methods of such data and analyzed the proposed possible integration

process. The following stages of the process were introduced: Detecting dependencies

and identifying semantics–carrying structure within each source, finding the correspon-

dences between the sources on the schema and instance (data) level and applying results

obtained at previous steps for schema and data integration. A crucial problem is that all

the methods employed return their results with a limited confidence. Having focused on

this problem we suggested classifying uncertainties by their types, namely: uncertainty

about the exact structure of data objects, uncertainty concerning the assignment of

data objects to classes, uncertainty concerning the extensional correspondence between

classes from two data sources.

Most attention has been given to accounting for interaction between different types

of uncertainties. We suggested an approach using the statistical analysis principles that

account for the influence of the latent factors on the behavior of the data aggregate —

Latent Class Analysis (LCA), which made it possible to interpret the correlation of

discovering the identical objects in different data sources as an influence of such universal

factor as belonging of objects to a respective real–world class.

We have reviewed theoretical framework of the LCA method and the conditions un-

der which its application is possible and advisable. Special attention has been given

to building the statistical model for the uncertainty analysis and to discovering the

correspondences between model parameters and the data source parameters.

It has been especially emphasized that it is essential for the analysis to have at least

three (or more) independent data sources, containing the set of objects suspected to be

equivalent, normally associated with the certain classes in the data structure. In this

case the analysis results into the probability value of the real–world class membership

for a given group of objects. In case where only two initial schemas are being integrated,

the role of the compulsory third source could be played by the integrated schema, where

an independent determination of all support and confidence parameters involved in the

statistical analysis is provided. In other words, these parameters should not be derived

from the initial data sources.
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The value of the real–world class membership returned by the LCA is an integral

parameter, which combines the influences of all types of uncertainties. That is why it

reflects the quality of integration. If we define this value for all groups of objects that

form the subclasses of the lowest schema level, then for any class of any level, including

the whole database, we get the support of real–world class membership as a simple

weighted average of these values over included subclasses.

It is important to stress that the given method does not solve the common problem of

integration of the heterogeneous data sources. It represent a useful instrument for eval-

uating the integration results, which under certain conditions can be used for improving

quality of selection of the data, containing uncertainties.

7.3 Outlook

In this work we have reviewed the basic principles that can be employed and the condi-

tions that have to be satisfied for applying statistical analysis to the integration of several

heterogeneous and semi–structured data sources. We supposed that the data required

for this analysis can be derived by such methods as data mining, schema matching, data

cleaning, etc., and that this data corresponds unambiguously to the p–values, used by

the statistical analysis. In practice, there might be the cases that these assumptions are

violated, i.e., some of the p–values could be lacking. This is especially possible when we

have to analyze the integration of more than three data sources. In Section 5.2 we have

defined the necessary condition for LCA’s identifiability (see equation 5.8). In case that

m = 2 and k > 3, not all the equations are mandatory for obtaining a solution. This

means that it is not necessary to use the joint probabilities higher than a few first orders,

i.e., pi, pij. In statistics a number of different models have been developed, depending

on the type and amount of information employed (i.e., depending on the number of

variables) and the number of joint probabilities, which are used. A possible direction of

future work can be investigating applicability of LCA models capable of solving system

with the incomplete set of equations, i.e., when not all the joint probabilities are given.

Another problem requiring more detailed analysis is building the mathematical model,

in which the p–values are not independent (Restricted Model). Such breach of inde-

pendence can be caused by additional conditions and limitations emerging as a result

of obtaining the support and confidence values (p–values) by the data source analysis

methods.

In the thesis we demonstrated how our method could be applied to evaluate integra-

tion process and improve IQ on some small integration examples. Large scale application

crosses the scope of one dissertation, because the integration process of legacy or semi–

structured data sources consists of many steps (defining structure and correspondences,
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resolving conflicts, etc.), the process is complicated and ambiguous. It would be never-

theless interesting to review a large scale integration example in the future works.
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